WorldWideScience

Sample records for water spray systems

  1. Water spray ventilator system for continuous mining machines

    Science.gov (United States)

    Page, Steven J.; Mal, Thomas

    1995-01-01

    The invention relates to a water spray ventilator system mounted on a continuous mining machine to streamline airflow and provide effective face ventilation of both respirable dust and methane in underground coal mines. This system has two side spray nozzles mounted one on each side of the mining machine and six spray nozzles disposed on a manifold mounted to the underside of the machine boom. The six spray nozzles are angularly and laterally oriented on the manifold so as to provide non-overlapping spray patterns along the length of the cutter drum.

  2. 29 CFR 1910.163 - Fixed extinguishing systems, water spray and foam.

    Science.gov (United States)

    2010-07-01

    ... 29 Labor 5 2010-07-01 2010-07-01 false Fixed extinguishing systems, water spray and foam. 1910.163... Suppression Equipment § 1910.163 Fixed extinguishing systems, water spray and foam. (a) Scope and application. This section applies to all fixed extinguishing systems, using water or foam solution as the...

  3. Experimental and numerical analysis of the cooling performance of water spraying systems during a fire.

    Directory of Open Access Journals (Sweden)

    YaoHan Chen

    Full Text Available The water spray systems are effective protection systems in the confined or unconfined spaces to avoid the damage to building structures since the high temperature when fires occur. NFPA 15 and 502 have suggested respectively that the factories or vehicle tunnels install water spray systems to protect the machinery and structures. This study discussed the cooling effect of water spray systems in experimental and numerical analyses. The actual combustion of woods were compared with the numerical simulations. The results showed that although the flame continued, the cooling effects by water spraying process within 120 seconds were obvious. The results also indicated that the simulation results of the fifth version Fire Dynamics Simulator (FDS overestimated the space temperature before water spraying in the case of the same water spray system.

  4. Potential for HEPA filter damage from water spray systems in filter plenums

    Energy Technology Data Exchange (ETDEWEB)

    Bergman, W. [Lawrence Livermore National Lab., CA (United States); Fretthold, J.K. [Rocky Flats Safe Sites of Colorado, Golden, CO (United States); Slawski, J.W. [Department of Energy, Germantown, MD (United States)

    1997-08-01

    The water spray systems in high efficiency particulate air (HEPA) filter plenums that are used in nearly all Department of Energy (DOE) facilities for protection against fire was designed under the assumption that the HEPA filters would not be damaged by the water sprays. The most likely scenario for filter damage involves filter plugging by the water spray, followed by the fan blowing out the filter medium. A number of controlled laboratory tests that were previously conducted in the late 1980s are reviewed in this paper to provide a technical basis for the potential HEPA filter damage by the water spray system in HEPA filter plenums. In addition to the laboratory tests, the scenario for BEPA filter damage during fires has also occurred in the field. A fire in a four-stage, BEPA filter plenum at Rocky Flats in 1980 caused the first three stages of BEPA filters to blow out of their housing and the fourth stage to severely bow. Details of this recently declassified fire are presented in this paper. Although these previous findings suggest serious potential problems exist with the current water spray system in filter plenums, additional studies are required to confirm unequivocally that DOE`s critical facilities are at risk. 22 refs., 15 figs.

  5. A Numerical Study of the Temperature Reduction by Water Spray Systems within Urban Street Canyons

    Directory of Open Access Journals (Sweden)

    Ying-Chen Lee

    2018-04-01

    Full Text Available To reduce energy demand (both fossil fuel and renewable energy for cooling the urban heat island environment, some solutions have been studied. Among these methods, the water spray system is considered more flexible due to its dynamic controls. This study investigated the cooling effect of water spray systems in the street canyon under different aspect ratios and high relative humidity environments using a computational fluid dynamics model. This model was validated with water channel and wind tunnel experiments. The results showed that the most effective cooling area was the area just under the spray nozzles. However, in a narrow street canyon, people in the middle of the street may feel the cooling effect because of the dispersion and accumulation of the cooled air. Our simulations demonstrated that air under the nozzles was saturated and this revealed that under drier conditions the water spray systems will have higher cooling performance. We also found that using large water droplets created a wider cooling area in the middle of the street canyon, and this phenomenon was not changed much if the nozzle height was increased from 2.5 m to 3.5 m.

  6. Numerical heat transfer model for frost protection of citrus fruits by water from a spraying system

    Directory of Open Access Journals (Sweden)

    Issa Roy J.

    2012-01-01

    Full Text Available A simplified model is developed to simulate the conditions associated with the protection of fruits from frost damage using water from a spraying system. The model simulates the movement of the solidifying water front on a single fruit, and based on that determines the spray frequency needed for a water film to continuously surround the ice-coated fruit to prevent the fruit temperature from dropping below 0ºC. Simulations are presented for the frost protection of sweet oranges (citrus sinensis. The effect of environmental conditions such as air temperature, air velocity, surface radiation and water film evaporation on the development of the ice layer encasing is considered. Simulations show the effect the encasing ice sheet thickness has on the fruit temperature if water from a spraying system is turned off permanently. Experimental tests are also conducted to determine the change in the thermal properties of citrus sinensis for operating temperatures that range from above freezing to sub-freezing. The results of the experimental tests and the numerical simulations shall lead to a better understanding of fruit protection from frost damage by the application of water from a spraying system.

  7. Spraying system with water delivery to the cutter element working in conjunction with the GPK coal combine

    Energy Technology Data Exchange (ETDEWEB)

    1979-04-01

    Technical specifications of the system are given. The system is used to reduce air dustiness when driving preparatory workings. Operational tests carried out in the Donets and Karaganda coal basins show that spraying system with water delivery to the zone where rock or coal is cut is from 2 to 2.5 times more effective than other spraying systems. It is recommended that the described spraying system be serially produced. (In Russian)

  8. Experiments on aerosol removal by high-pressure water spray

    Energy Technology Data Exchange (ETDEWEB)

    Corno, Ada del, E-mail: delcorno@rse-web.it [RSE, Power Generation Technologies and Materials Dept, via Rubattino 54, I-20134 Milano (Italy); Morandi, Sonia, E-mail: morandi@rse-web.it [RSE, Power Generation Technologies and Materials Dept, via Rubattino 54, I-20134 Milano (Italy); Parozzi, Flavio, E-mail: parozzi@rse-web.it [RSE, Power Generation Technologies and Materials Dept, via Rubattino 54, I-20134 Milano (Italy); Araneo, Lucio, E-mail: lucio.araneo@polimi.it [Politecnico di Milano, Department of Energy, via Lambruschini 4A, I-20156 Milano (Italy); CNR-IENI, via Cozzi 53, I-20125 Milano (Italy); Casella, Francesco, E-mail: francesco2.casella@mail.polimi.it [Politecnico di Milano, Department of Energy, via Lambruschini 4A, I-20156 Milano (Italy)

    2017-01-15

    Highlights: • Experimental research to measure the efficiency of high-pressure sprays in capturing aerosols if applied to a filtered containment venting system in case of severe accident. • Cloud of monodispersed SiO{sub 2} particles with sizes 0.5 or 1.0 μm and initial concentration in the range 2–90 mg/m{sup 3}. • Carried out in a chamber 0.5 × 1.0 m and 1.5 m high, with transparent walls equipped with a high pressure water spray with single nozzle. • Respect to low-pressure sprays, removal efficiency turned out significant: the half-life for 1 μm particles with a removal high-pressure spray system is orders of magnitude shorter than that with a low-pressure sprays system. - Abstract: An experimental research was managed in the framework of the PASSAM European Project to measure the efficiency of high-pressure sprays in capturing aerosols when applied to a filtered containment venting system in case of severe accident. The campaign was carried out in a purposely built facility composed by a scrubbing chamber 0.5 × 1.0 m and 1.5 m high, with transparent walls to permit the complete view of the aerosol removal process, where the aerosol was injected to form a cloud of specific particle concentration. The chamber was equipped with a high pressure water spray system with a single nozzle placed on its top. The test matrix consisted in the combination of water pressure injections, in the range 50–130 bar, on a cloud of monodispersed SiO{sub 2} particles with sizes 0.5 or 1.0 μm and initial concentration ranging between 2 and 99 mg/m{sup 3}. The spray was kept running for 2 min and the efficiency of the removal was evaluated, along the test time, using an optical particle sizer. With respect to low-pressure sprays, the removal efficiency turned out much more significant: the half-life for 1 μm particles with a removal high-pressure spray system is orders of magnitude shorter than that with a low-pressure spray system. The highest removal rate was

  9. Experiments on aerosol removal by high-pressure water spray

    International Nuclear Information System (INIS)

    Corno, Ada del; Morandi, Sonia; Parozzi, Flavio; Araneo, Lucio; Casella, Francesco

    2017-01-01

    Highlights: • Experimental research to measure the efficiency of high-pressure sprays in capturing aerosols if applied to a filtered containment venting system in case of severe accident. • Cloud of monodispersed SiO_2 particles with sizes 0.5 or 1.0 μm and initial concentration in the range 2–90 mg/m"3. • Carried out in a chamber 0.5 × 1.0 m and 1.5 m high, with transparent walls equipped with a high pressure water spray with single nozzle. • Respect to low-pressure sprays, removal efficiency turned out significant: the half-life for 1 μm particles with a removal high-pressure spray system is orders of magnitude shorter than that with a low-pressure sprays system. - Abstract: An experimental research was managed in the framework of the PASSAM European Project to measure the efficiency of high-pressure sprays in capturing aerosols when applied to a filtered containment venting system in case of severe accident. The campaign was carried out in a purposely built facility composed by a scrubbing chamber 0.5 × 1.0 m and 1.5 m high, with transparent walls to permit the complete view of the aerosol removal process, where the aerosol was injected to form a cloud of specific particle concentration. The chamber was equipped with a high pressure water spray system with a single nozzle placed on its top. The test matrix consisted in the combination of water pressure injections, in the range 50–130 bar, on a cloud of monodispersed SiO_2 particles with sizes 0.5 or 1.0 μm and initial concentration ranging between 2 and 99 mg/m"3. The spray was kept running for 2 min and the efficiency of the removal was evaluated, along the test time, using an optical particle sizer. With respect to low-pressure sprays, the removal efficiency turned out much more significant: the half-life for 1 μm particles with a removal high-pressure spray system is orders of magnitude shorter than that with a low-pressure spray system. The highest removal rate was detected with 1

  10. Desalination using spray tower and vapour compression refrigeration system

    International Nuclear Information System (INIS)

    Sathish Kumar, S.; Mani, A.

    2006-01-01

    A desalination system using a spray tower and Vapour Compression Refrigeration (VCR) system is proposed for obtaining fresh water from brackish water. In the spray tower, simultaneous heat and mass transfer take place between the brackish water and air, which results in the evaporation of the brackish water and humidification of the air. Fresh water is obtained from the humidified air by condensing the water vapour using a VCR system. Parametric studies were carried out to study the effect of various operational parameters on the fresh water production rate. (author)

  11. Numerical simulation of an innovated building cooling system with combination of solar chimney and water spraying system

    Science.gov (United States)

    Rabani, Ramin; Faghih, Ahmadreza K.; Rabani, Mehrdad; Rabani, Mehran

    2014-05-01

    In this study, passive cooling of a room using a solar chimney and water spraying system in the room inlet vents is simulated numerically in Yazd, Iran (a hot and arid city with very high solar radiation). The performance of this system has been investigated for the warmest day of the year (5 August) which depends on the variation of some parameters such as water flow rate, solar heat flux, and inlet air temperature. In order to get the best performance of the system for maximum air change and also absorb the highest solar heat flux by the absorber in the warmest time of the day, different directions (West, East, North and South) have been studied and the West direction has been selected as the best direction. The minimum amount of water used in spraying system to set the inside air averaged relative humidity <65 % is obtained using trial and error method. The simulation results show that this proposed system decreases the averaged air temperature in the middle of the room by 9-14 °C and increases the room relative humidity about 28-45 %.

  12. Water spray interaction with air-steam mixtures under containment spray conditions: experimental study in the TOSQAN facility

    Energy Technology Data Exchange (ETDEWEB)

    Porcheron, E.; Lemaitre, P.; Malet, J.; Nuboer, A.; Brun, P.; Bouilloux, L.; Vendel, J. [Institut de Radioprotection et de Surete Nucleaire (IRSN), Direction de la Surete des Usines, des laboratoires, des transports et des dechets, Saclay, BP 68 - 91192 Gif-sur-Yvette cedex (France)

    2005-07-01

    Full text of publication follows: During the course of an hypothetical severe accident in a Pressurized Water Reactor (PWR), hydrogen can be produced by the reactor core oxidation and distributed into the reactor containment according to convection flows and steam wall condensation. In order to assess the risk of detonation generated by a high local hydrogen concentration, hydrogen distribution in the containment has to be known. The TOSQAN experimental program has been created to simulate typical accidental thermal hydraulic flow conditions in the reactor containment. The present work is devoted to study the interaction of a water spray injection used as a mitigation mean in order to reduce containment pressure and to produce a mixing of air, steam and hydrogen induced by spray entrainment and condensation on droplet. In order to have a better understanding of physical phenomena, we need to make a detailed characterization of the spray and the gas. The TOSQAN facility that is highly instrumented with non-intrusive diagnostics consists in a closed cylindrical vessel (7 m{sup 3} volume, 4 m high, 1.5 m i.d.) into which steam is injected. Water droplets size is measured in the vessel by the Interferometric Laser Imaging for Droplet Sizing technique. Droplet velocity is obtained by Particle Image Velocimetry and Laser Doppler Velocimetry, and droplet temperature is measured by global rainbow refractometry. Gas concentration measurements are performed by Spontaneous Raman Scattering. The walls of the vessel are thermostatically controlled by heated oil circulation. Inner spray system that is located on the top of the enclosure on the vertical axis, is composed of a single nozzle producing a full cone water spray. Spray test scenario consists of water spray injection in TOSQAN that is first pressurized with a steam injection (steam injection is stopped before spray injection). Water spray falling into the sump is removed to avoid accumulation and evaporation

  13. A novel method to design water spray cooling system to protect floating roof atmospheric storage tanks against fires

    Directory of Open Access Journals (Sweden)

    Iraj Alimohammadi

    2015-01-01

    Full Text Available Hydrocarbon bulk storage tank fires are not very common, but their protection is essential due to severe consequences of such fires. Water spray cooling system is one of the most effective ways to reduce damages to a tank from a fire. Many codes and standards set requirements and recommendations to maximize the efficiency of water spray cooling systems, but these are widely different and still various interpretations and methods are employed to design such systems. This article provides a brief introduction to some possible design methods of cooling systems for protection of storage tanks against external non-contacting fires and introduces a new method namely “Linear Density Method” and compares the results from this method to the “Average Method” which is currently in common practice. The average Method determines the flow rate for each spray nozzle by dividing the total water demand by the number of spray nozzles while the Linear Density Method determines the nozzle flow rate based on the actual flow over the surface to be protected. The configuration of the system includes a one million barrel crude oil floating roof tank to be protected and which is placed one half tank diameter from a similar adjacent tank with a full surface fire. Thermal radiation and hydraulics are modeled using DNV PHAST Version 6.53 and Sunrise PIPENET Version 1.5.0.2722 software respectively. Spray nozzles used in design are manufactured by Angus Fire and PNR Nozzles companies. Schedule 40 carbon steel pipe is used for piping. The results show that the cooling system using the Linear Density Method consumes 3.55% more water than the design using the average method assuming a uniform application rate of 4.1 liters per minute. Despite higher water consumption the design based on Linear Density Method alleviates the problems associated with the Average Method and provides better protection.

  14. 30 CFR 75.1107-7 - Water spray devices; capacity; water supply; minimum requirements.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Water spray devices; capacity; water supply... Water spray devices; capacity; water supply; minimum requirements. (a) Where water spray devices are... square foot over the top surface area of the equipment and the supply of water shall be adequate to...

  15. Experimental investigation of iodine removal and containment depressurization in containment spray system test facility of 700 MWe Indian pressurized heavy water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Manish [Department of Mechanical Engineering, I.I.T., Bombay, Powai, Mumbai (India); Kandar, T.K.; Vhora, S.F.; Mohan, Nalini [Directorate of Technology Development, Nuclear Power Corporation of India Limited, Mumbai (India); Iyer, K.N. [Department of Mechanical Engineering, I.I.T., Bombay, Powai, Mumbai (India); Prabhu, S.V., E-mail: svprabhu@iitb.ac.in [Department of Mechanical Engineering, I.I.T., Bombay, Powai, Mumbai (India)

    2017-05-15

    Highlights: • Depressurization rate in a scaled down vessel filled with air and steam is studied. • Iodine removal rate in a scaled down vessel filled with steam/air is investigated. • Effect of SMD and vessel pressure on depressurization rate is studied. • Depressurization rate decreases with the increase in the droplet size (590 μm – 1 mm) • Decrease in pressure and iodine concentration with time follow exponential trend. - Abstract: As an additional safety measure in the new 700 MWe Indian pressurized heavy water reactors, the first of a kind system called containment Spray System is introduced. The system is designed to cater/mitigate the conditions after design basis accidents i.e., loss of coolant accident and main steam line break. As a contribution to the safety analysis of condition following loss-of-coolant accidents, experiments are carried out to establish the performance of the system. The loss of coolant is simulated by injecting saturated steam and iodine vapors into the containment vessel in which air is enclosed at atmospheric and room temperature, and then the steam-air mixture is cooled by sprays of water. The effect of water spray on the containment vessel pressure and the iodine scrubbing in a scaled down facility is investigated for the containment spray system of Indian pressurized heavy water reactors. The experiments are carried out in the scaled down vessel of the diameter of 2.0 m and height of 3.5 m respectively. Experiments are conducted with water at room temperature as the spray medium. Two different initial vessel pressure i.e. 0.7 bar and 1.0 bar are chosen for the studies as they are nearing the loss of coolant accident & main steam line break pressures in Indian pressurized heavy water reactors. These pressures are chosen based on the containment resultant pressures after a design basis accident. The transient temperature and pressure distribution of the steam in the vessel are measured during the depressurization

  16. Spray cooling

    International Nuclear Information System (INIS)

    Rollin, Philippe.

    1975-01-01

    Spray cooling - using water spraying in air - is surveyed as a possible system for make-up (peak clipping in open circuit) or major cooling (in closed circuit) of the cooling water of the condensers in thermal power plants. Indications are given on the experiments made in France and the systems recently developed in USA, questions relating to performance, cost and environmental effects of spray devices are then dealt with [fr

  17. Exploration of Impinging Water Spray Heat Transfer at System Pressures Near the Triple Point

    Science.gov (United States)

    Golliher, Eric L.; Yao, Shi-Chune

    2013-01-01

    The heat transfer of a water spray impinging upon a surface in a very low pressure environment is of interest to cooling of space vehicles during launch and re-entry, and to industrial processes where flash evaporation occurs. At very low pressure, the process occurs near the triple point of water, and there exists a transient multiphase transport problem of ice, water and water vapor. At the impingement location, there are three heat transfer mechanisms: evaporation, freezing and sublimation. A preliminary heat transfer model was developed to explore the interaction of these mechanisms at the surface and within the spray.

  18. Water spray assisted ultrashort laser pulse ablation

    International Nuclear Information System (INIS)

    Silvennoinen, M.; Kaakkunen, J.J.J.; Paivasaari, K.; Vahimaa, P.

    2013-01-01

    Highlights: ► We show the novel method to use multibeam processing with ultrashort pulses efficiently. ► Sprayed thin water layer on ablation zone enhances ablation rate and quality. ► In some cases this method also enables ablation of the deeper and straighter holes compared to ones made without the water layer. ► Method also makes possible to directly write features without the self-organizing structures. - Abstract: We have studied femtosecond ablation under sprayed thin water film and its influence and benefits compared with ablation in the air atmosphere. These have been studied in case of the hole and the groove ablation using IR femtosecond laser. Water enhances the ablation rate and in some situations it makes possible to ablate the holes with a higher aspect ratio. While ablating the grooves, the water spray allows using the high fluences without the generation of the self-organized structures.

  19. Measuring water ingestion from spray exposures.

    Science.gov (United States)

    Sinclair, Martha; Roddick, Felicity; Nguyen, Thang; O'Toole, Joanne; Leder, Karin

    2016-08-01

    Characterisation of exposure levels is an essential requirement of health risk assessment; however for water exposures other than drinking, few quantitative exposure data exist. Thus, regulatory agencies must use estimates to formulate policy on treatment requirements for non-potable recycled water. We adapted the use of the swimming pool chemical cyanuric acid as a tracer of recreational water ingestion to permit detection of small water volumes inadvertently ingested from spray exposures. By using solutions of 700-1000 mg/L cyanuric acid in an experimental spray exposure scenario, we were able to quantify inadvertent water ingestion in almost 70% of participants undertaking a 10 min car wash activity using a high pressure spray device. Skin absorption was demonstrated to be negligible under the experimental conditions, and the measured ingestion volumes ranged from 0.06 to 3.79 mL. This method could be applied to a range of non-potable water use activities to generate exposure data for risk assessment processes. The availability of such empirical measurements will provide greater assurance to regulatory agencies and industry that potential health risks from exposure to non-potable water supplies are well understood and adequately managed to protect public health. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. A study on post impingement effects of urea-water solution spray on the heated wall of automotive SCR systems

    Science.gov (United States)

    Shahariar, G. M. H.; Wardana, M. K. A.; Lim, O. T.

    2018-04-01

    The post impingement effects of urea-water solution spray on the heated wall of automotive SCR systems was numerically investigated in a constant volume chamber using STAR CCM+ CFD code. The turbulence flow was modelled by realizable k-ε two-layer model together with standard wall function and all y+ treatment was applied along with two-layer approach. The Eulerian-Lagrangian approach was used for the modelling of multi phase flow. Urea water solution (UWS) was injected onto the heated wall for the wall temperature of 338, 413, 473, 503 & 573 K. Spray development after impinging on the heated wall was visualized and measured. Droplet size distribution and droplet evaporation rates were also measured, which are vital parameters for the system performance but still not well researched. Specially developed user defined functions (UDF) are implemented to simulate the desired conditions and parameters. The investigation reveals that wall temperature has a great impact on spray development after impingement, droplet size distribution and evaporation. Increasing the wall temperature leads to longer spray front projection length, smaller droplet size and faster droplet evaporation which are preconditions for urea crystallization reduction. The numerical model and parameters are validated comparing with experimental data.

  1. [Research about effect of spray drying conditions on hygroscopicity of spray dry powder of gubi compound's water extract and its mechanism].

    Science.gov (United States)

    Zong, Jie; Shao, Qi; Zhang, Hong-Qing; Pan, Yong-Lan; Zhu, Hua-Xu; Guo, Li-Wei

    2014-02-01

    To investigate moisture content and hygroscopicity of spray dry powder of Gubi compound's water extract obtained at different spray drying conditions and laying a foundation for spray drying process of Chinese herbal compound preparation. In the paper, on the basis of single-factor experiments, the author choose inlet temperature, liquid density, feed rate, air flow rate as investigated factors. The experimental absorption rate-time curve and scanning electron microscopy results showed that under different spray drying conditions the spray-dried powders have different morphology and different adsorption process. At different spray-dried conditions, the morphology and water content of the powder is different, these differences lead to differences in the adsorption process, at the appropriate inlet temperature and feed rate with a higher sample density and lower air flow rate, in the experimental system the optimum conditions is inlet temperature of 150 degrees C, feed density of 1.05 g x mL(-1), feed rate of 20 mL x min(-1) air flow rate of 30 m3 x h(-1).

  2. Simultaneous effects of water spray and crosswind on performance of natural draft dry cooling tower

    Directory of Open Access Journals (Sweden)

    Ahmadikia Hossein

    2013-01-01

    Full Text Available To investigate the effect of water spray and crosswind on the effectiveness of the natural draft dry cooling tower (NDDCT, a three-dimensional model has been developed. Efficiency of NDDCT is improved by water spray system at the cooling tower entrance for high ambient temperature condition with and without crosswind. The natural and forced heat convection flow inside and around the NDDCT is simulated numerically by solving the full Navier-Stokes equations in both air and water droplet phases. Comparison of the numerical results with one-dimensional analytical model and the experimental data illustrates a well-predicted heat transfer rate in the cooling tower. Applying water spray system on the cooling tower radiators enhances the cooling tower efficiency at both no wind and windy conditions. For all values of water spraying rate, NDDCTs operate most effectively at the crosswind velocity of 3m/s and as the wind speed continues to rise to more than 3 m/s up to 12 m/s, the tower efficiency will decrease by approximately 18%, based on no-wind condition. The heat transfer rate of radiator at wind velocity 10 m/s is 11.5% lower than that of the no wind condition. This value is 7.5% for water spray rate of 50kg/s.

  3. Water spray interaction with air-steam mixtures under containment spray conditions: comparison of heat and mass transfer modelling with the TOSQAN spray tests

    International Nuclear Information System (INIS)

    Malet, J.; Lemaitre, P.; Porcheron, E.; Vendel, J.

    2005-01-01

    Full text of publication follows: During the course of a hypothetical severe accident in a Pressurized Water Reactor (PWR), hydrogen can be produced by the reactor core oxidation and distributed into the reactor containment according to convection flows and water steam wall condensation. In order to mitigate the risk of detonation generated by a high local hydrogen concentration, spray systems are used in the containment. The TOSQAN programme has been created to simulate separate-effect tests representative of typical accidental thermal-hydraulic flow conditions in the reactor containment. The present work concerns the interaction of a water spray, used at the top of the containment in order to reduce the steam partial pressure, with air-steam mixtures. The main phenomena occurring when water spray is used are the mixing induced by spray entrainment and the condensation on droplets. In order to improve the latter phenomena, different levels of modelling can be used. The objective of this paper is to analyze experimental results obtained for water spray interaction with air-steam mixtures using different heat and mass transfer modelling. For this purpose, two modelling issues have been used: the first one is devoted for the determination of the gas thermodynamical properties, and the second one concerns the droplets characterization. In the first one, the gas thermodynamical analysis is performed using depressurization, gas temperature variation and humidity decrease during the spray injection. In this modelling, heat and mass transfer between the spray and the surrounding gas is treated in a global way by energy balance between the total amount of water and the gas. In the second one, droplets characterization is obtained by means of droplet size, temperature and velocities evolutions. In this modelling, the spray is considered as a single droplet falling with an initial velocity. Droplet interactions are neglected. Assessment of these two modelling is performed

  4. Synchronized droplet size measurements for Coal-Water-Slurry (CWS) diesel sprays of an electronically-controlled fuel injection system

    Science.gov (United States)

    Kihm, K. D.; Terracina, D. P.; Payne, S. E.; Caton, J. A.

    Experiments were completed to study intermittent coal-water slurry (CWS) fuel sprays injected from an electronically-controlled accumulator injector system. A laser diffraction particle analyzing (LDPA) technique was used to measure the spray diameters (Sauter mean diameter, SMD) assuming the Rosin-Rammler two parameter model. In order to ensure an accurate synchronization of the measurement with the intermittent sprays, a new synchronization technique was developed using the light extinction signal as a triggering source for the data taking initiation. This technique allowed measurement of SMD's near the spray tip where the light extinction was low and the data were free from the multiscattering bias. Coal-water slurry fuel with 50% coal loading in mass containing 5 (mu)m mass median diameter coal particulates was considered. Injection pressures ranging from 28 to 110 MPa, two different nozzle orifice diameters, 0.2 ad 0.4 mm, and four axial measurement locations from 60 to 120 mm from the nozzle orifice were studied. Measurements were made for pressurized (2.0 MPa in gauge) and for ambient chamber conditions. The spray SMD showed an increase with the distance of the axial measurement location and with the ambient gas density, and showed a decrease with increasing injection pressure. A correlation of the Sauter mean diameter with the injection conditions was determined. The results were also compared with previous SMD correlations that were available only for diesel fuel sprays.

  5. Structure of steam water mixture spray

    International Nuclear Information System (INIS)

    Mitsuhashi, Yuki; Mizutani, Hiroya; Sanada, Toshiyuki; Saito, Takayuki

    2008-01-01

    The flow structure of steam and water mixture spray is studied both numerically and experimentally. The velocity and pressure profiles of the single phase flow are calculated using numerical methods. Using calculated flow fields, the droplet behavior is predicted by the one-way interaction model. This numerical analysis clarifies that the droplets are still accelerated after they are sprayed from the nozzle. In the experiments, the spray of the mixture is observed by using ultra high-speed video camera, and the velocity field is measured by using PIV technique. Along with this PIV velocity field measurement, the velocities and diameters of droplets are measured by phase Doppler anemometry. Furthermore, mixing process of steam and water, and atomization process of liquid film are observed through the transparent nozzle. The high-speed photography observation reveals that the flow inside the nozzle forms the annular flow and the most of the liquid film is atomized at the nozzle outlet. Finally, the optimum method of processing mixture of steam and water is proposed. (author)

  6. A Two-Continua Approach to Eulerian Simulation of Water Spray

    DEFF Research Database (Denmark)

    Nielsen, Michael Bang; Østerby, Ole

    2013-01-01

    Physics based simulation of the dynamics of water spray - water droplets dispersed in air - is a means to increase the visual plausibility of computer graphics modeled phenomena such as waterfalls, water jets and stormy seas. Spray phenomena are frequently encountered by the visual effects industry...

  7. Quantitative Assessment of Spray Deposition with Water-Sensitive Paper

    Science.gov (United States)

    Spray droplets, discharged from the lower six nozzles of an airblast sprayer, were sampled on pairs of absorbent filter and water-sensitive papers at nine distances from sprayer. Spray deposition on filter targets were measured by fluorometry and spray distribution on WSP targets were assessed by t...

  8. Substrate system for spray forming

    Energy Technology Data Exchange (ETDEWEB)

    Chu, Men G. (Export, PA); Chernicoff, William P. (Harrisburg, PA)

    2002-01-01

    A substrate system for receiving a deposit of sprayed metal droplets including a movable outer substrate on which the sprayed metal droplets are deposited. The substrate system also includes an inner substrate disposed adjacent the outer substrate where the sprayed metal droplets are deposited on the outer substrate. The inner substrate includes zones of differing thermal conductivity to resist substrate layer porosity and to resist formation of large grains and coarse constituent particles in a bulk layer of the metal droplets which have accumulated on the outer substrate. A spray forming apparatus and associated method of spray forming a molten metal to form a metal product using the substrate system of the invention is also provided.

  9. Reduction of PWR containment pressure after hypothetical accidents by water-cooling of the outer containment surface - annular space spray system

    International Nuclear Information System (INIS)

    Cremer, J.; Dietrich, D.P.; Roedder, P.

    1980-12-01

    The consequences of a core melt-out accident in the vicinity of a nuclear power station are determined by the integrity of the safety containment. This can be adversely affected by different events during the course of the core melt-out accident. The most important phenomenon is the contact between the melt and sump water. Due to the evaporation of the sump water, there is a continuous rise in pressure of the safety containment, which finally leads to failure due to excess pressure. In order to reduce the fission product release due to the resulting leakage, one must try to reduce the pressure as quickly as possible. As heat cannot be removed from the steel containment to the environment because of the thick concrete containment, it is best to bypass the insulating effect of the concrete by cooling the steel containment from outside. The aim of this investigation is therefore to work out a technically relatively simple system, which offers the possibility of backfitting, setting to work and repair. Such a system is an annular space spray system, by which the annular space between the concrete and steel containment has water pumped to the level of the dome and evenly sprayed over the top hemisphere. Mobile pumps on fire engines belonging to the fire brigade are sufficient to supply the cooling water and these will be available some hours after the accident occurs. The used spray water without any radioactive components is collected outside the reactor building and/or drained off. (orig./GL) [de

  10. Absorption of airborne molecular iodine by water sprays

    International Nuclear Information System (INIS)

    Albert, M.F.; Wichner, R.P.; Baumgarten, P.K.

    1986-01-01

    A computer model, I2WASH, which accounts for the effect of hydrolysis reactions between molecular iodine and water, has been developed to predict the rate of removal of gaseous molecular iodine by water sprays. It has been shown that the hydrolysis reactions can affect the concentration driving force of mass transfer for molecular iodine absorption. Thus, factors that affect the hydrolysis kinetics, such as spray solution pH, iodine concentration, and temperature, should be considered in the design of a well-based absorption model. The described model also includes the effects of spray drop-size distribution, convective heat transfer, droplet evaporation or water condensation, decay heating, and ventilation air flow through the containment. The model was originally developed at Oak Ridge National Laboratory (ORNL) in 1985 for the Nuclear Regulatory Commission's Severe Accident Sequence Analysis program and has been improved to assist in a comprehensive probability risk assessment of the Savannah River Plant (SRP). Results obtained using the model are compared with those of the Containment Systems Experiments conducted at Pacific Northwest Laboratories (PNL) in 1970. An improvement over the earlier model is indicated at room temperatures, but accuracy decreases as the temperature rises. The decreased agreement at high temperature is partially due to an incomplete knowledge of the temperature effects on iodine hydrolysis reactions. The results of the I2WASH model for a postulated catastrophic accident at SRP show that ∼85% of the molecular iodine will be captured by the sprays at a buffered pH of 10.0, and ∼52% will be captured at a buffered pH of 7.0. The model is believed to be a significant improvement over (and more realistic than) other models

  11. Evaluating a Heptafluoropropane System With a Water Spray Cooling System for Compartments With Low Flash Point Liquids. Halon Replacement Agent Testing Compartment 1

    National Research Council Canada - National Science Library

    Sheinson, Ronald

    2003-01-01

    .... The presence of HF in the room's atmosphere greatly hinders recovery. To counter the HF threat, we evaluated fire suppression via HFP with the NRL- invented Water Spray Cooling System (WSCS) in a 28 m(3) (1,000 ft(3...

  12. Characterization of the full cone pressure swirl spray nozzles for the nuclear reactor containment spray system

    Energy Technology Data Exchange (ETDEWEB)

    Jain, Manish [Department of Mechanical Engineering, I.I.T., Bombay, Powai, Mumbai (India); John, Benny [Nuclear Power Corporation of India Limited, Mumbai (India); Iyer, K.N. [Department of Mechanical Engineering, I.I.T., Bombay, Powai, Mumbai (India); Prabhu, S.V., E-mail: svprabhu@iitb.ac.in [Department of Mechanical Engineering, I.I.T., Bombay, Powai, Mumbai (India)

    2014-07-01

    Highlights: • Full cone spray pressure swirl nozzle with X-Vane is studied. • Laser illuminated imaging technique is used. • Correlations for coefficient of discharge, spray cone angle and SMD are suggested. • Droplet size and mass fraction distribution is measured. • Inviscid theory predicts the coefficient of discharge. - Abstract: The objective of the present study is to characterize a full cone pressure swirl nozzle for the Containment Spray System (CSS) of Indian Pressurized heavy Water reactors (IPHWR). The influence of Reynolds number and geometric parameters on the coefficient of discharge, spray cone angle, mass flux density distribution, droplet size distribution, Sauter mean diameter (SMD is studied for full cone pressure swirl full cone nozzles. The nozzles of orifice diameter range from 1.3 to 7.2 mm are studied. Experiments are conducted with water at room temperature as the working medium. The nozzles are operated with the pressure ranging from 1 to 8 bar. The measurements of the drop size distributions are performed with laser illuminated imaging technique. The spray cone-angle of the full cone nozzles is measured by the evaluation of images recorded with a camera using IMAGE J software. Correlations for coefficient of discharge, spray cone angle and Sauter mean diameter are suggested on the basis of the experimental results. Rosin–Rammler model and Nukiyama–Tanasawa distributions predict the mass fraction distribution reasonably well. However, the droplet size distribution is predicted by Nukiyama-Tanasawa model only.

  13. Flow structure of steam-water mixed spray

    International Nuclear Information System (INIS)

    Sanada, Toshiyuki; Mitsuhashi, Yuki; Mizutani, Hiroya; Saito, Takayuki

    2010-01-01

    In this study, the flow structure of a steam-water mixed spray is studied both numerically and experimentally. The velocity and pressure profiles of single-phase flow are calculated using numerical methods. On the basis of the calculated flow fields, the droplet behavior is predicted by a one-way interaction model. This numerical analysis reveals that the droplets are accelerated even after they are sprayed from the nozzle. Experimentally, the mixed spray is observed using an ultra-high-speed video camera, and the velocity field is measured by using the oarticle image velocimetry (PIV) technique. Along with this PIV velocity field measurement, the velocities and diameters of droplets are measured by phase Doppler anemometry. Furthermore, the mixing process of steam and water and the atomization process of a liquid film are observed using a transparent nozzle. High-speed photography observations reveal that the flow inside the nozzle is annular flow and that most of the liquid film is atomized at the nozzle throat and nozzle outlet. Finally, the optimum mixing method for steam and water is determined.

  14. Flow structure of steam-water mixed spray

    Energy Technology Data Exchange (ETDEWEB)

    Sanada, Toshiyuki, E-mail: ttsanad@ipc.shizuoka.ac.j [Department of Mechanical Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Shizuoka (Japan); Mitsuhashi, Yuki; Mizutani, Hiroya; Saito, Takayuki [Department of Mechanical Engineering, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu 432-8561, Shizuoka (Japan)

    2010-12-15

    In this study, the flow structure of a steam-water mixed spray is studied both numerically and experimentally. The velocity and pressure profiles of single-phase flow are calculated using numerical methods. On the basis of the calculated flow fields, the droplet behavior is predicted by a one-way interaction model. This numerical analysis reveals that the droplets are accelerated even after they are sprayed from the nozzle. Experimentally, the mixed spray is observed using an ultra-high-speed video camera, and the velocity field is measured by using the oarticle image velocimetry (PIV) technique. Along with this PIV velocity field measurement, the velocities and diameters of droplets are measured by phase Doppler anemometry. Furthermore, the mixing process of steam and water and the atomization process of a liquid film are observed using a transparent nozzle. High-speed photography observations reveal that the flow inside the nozzle is annular flow and that most of the liquid film is atomized at the nozzle throat and nozzle outlet. Finally, the optimum mixing method for steam and water is determined.

  15. Reactor container spray device

    International Nuclear Information System (INIS)

    Yanai, Ryoichi.

    1980-01-01

    Purpose: To enable decrease in the heat and the concentration of radioactive iodine released from the reactor vessel into the reactor container in the spray device of BWR type reactors. Constitution: A plurality of water receiving trays are disposed below the spray nozzle in the dry well and communicated to a pressure suppression chamber by way of drain pipeways passing through a diaphragm floor. When the recycling system is ruptured and coolants in the reactor vessel and radioactive iodine in the reactor core are released into the dry well, spray water is discharged from the spray nozzle to eliminate the heat and the radioactive iodine in the dry well. In this case, the receiving trays collect the portions of spray water whose absorption power for the heat and radioactive iodine is nearly saturated and falls them into the pool water of the pressure suppression chamber. Consequently, other portions of the spray water that still possess absorption power can be jetted with no hindrance, to increase the efficiency for the removal of the heat and iodine of the spray droplets. (Horiuchi, T.)

  16. Spray drying of lipid-based systems loaded with Camellia sinensis polyphenols.

    Science.gov (United States)

    Secolin, Vanessa A; Souza, Claudia R F; Oliveira, Wanderley P

    2017-03-01

    In this work, spray-dried lipid systems based on soy phosphatidylcholine, cholesterol and lauroyl polyoxylglycerides for entrapping Green tea polyphenols were produced. The aim was to study the effects of the encapsulating composition and spray drying conditions on the system performance and physicochemical product properties. The spray dryer powder production yield falls around 50.7 ± 2.8%, which is typical for lab scale spray dryers. Wrinkled and rounded particles, with low surface porosities were generated, independent of the drying carriers (trehalose or lactose) used. The product showed high encapsulation efficiency of Green tea polyphenols, which was promptly redispersible in water. It presented low density, and good compressive and flow properties. The results herein reported confirm the feasibility of the entrapment of Green tea polyphenols in lipid-based compositions by spray drying in presence of the drying carriers evaluated. The spray-dried microparticles show high potential to be used as additive in food, nutraceutical and pharmaceutical products.

  17. Water spray cooling technique applied on a photovoltaic panel: The performance response

    International Nuclear Information System (INIS)

    Nižetić, S.; Čoko, D.; Yadav, A.; Grubišić-Čabo, F.

    2016-01-01

    Highlights: • An experimental study was conducted on a monocrystalline photovoltaic panel (PV). • A water spray cooling technique was implemented to determine PV panel response. • The experimental results showed favorable cooling effect on the panel performance. • A feasibility aspect of the water spray cooling technique was also proven. - Abstract: This paper presents an alternative cooling technique for photovoltaic (PV) panels that includes a water spray application over panel surfaces. An alternative cooling technique in the sense that both sides of the PV panel were cooled simultaneously, to investigate the total water spray cooling effect on the PV panel performance in circumstances of peak solar irradiation levels. A specific experimental setup was elaborated in detail and the developed cooling system for the PV panel was tested in a geographical location with a typical Mediterranean climate. The experimental result shows that it is possible to achieve a maximal total increase of 16.3% (effective 7.7%) in electric power output and a total increase of 14.1% (effective 5.9%) in PV panel electrical efficiency by using the proposed cooling technique in circumstances of peak solar irradiation. Furthermore, it was also possible to decrease panel temperature from an average 54 °C (non-cooled PV panel) to 24 °C in the case of simultaneous front and backside PV panel cooling. Economic feasibility was also determined for of the proposed water spray cooling technique, where the main advantage of the analyzed cooling technique is regarding the PV panel’s surface and its self-cleaning effect, which additionally acts as a booster to the average delivered electricity.

  18. Investigations of combined used of cooling ponds with cooling towers or spraying systems

    International Nuclear Information System (INIS)

    Farforovsky, V.B.

    1990-01-01

    Based on a brief analysis of the methods of investigating cooling ponds, spraying systems and cooling towers, a conclusion is made that the direct modelling of the combined use of cooling systems listed cannot be realized. An approach to scale modelling of cooling ponds is proposed enabling all problems posed by the combined use of coolers to be solved. Emphasized is the importance of a proper choice of a scheme of including a cooler in a general water circulation system of thermal and nuclear power plants. A sequence of selecting a cooling tower of the type and spraying system of the size ensuring the specified temperature regime in a water circulation system is exemplified by the water system of the Ghorasal thermal power plant in Bangladesh

  19. Study on spraying water soluble resin to reduce pollution for Fukushima daiichi NPP accident

    International Nuclear Information System (INIS)

    Zhang Qiong; Guo Ruiping; Zhang Chunming; Han Fujuan; Hua Jie; Zhang Jiankui

    2012-01-01

    After Fukushima nuclear accident, Tokyo electric power company used the method of spraying water soluble resin synthesis at the scene of the accident, to restrain and control the spread of the radioactive dust, by forming consolidation layer in pollution area surface. This paper briefly introduced the accident, motivation of spraying water soluble resin, spraying range and implementation process. According to the relevant report on Fukushima nuclear accident, the effect of spraying water soluble resin for reducing pollution was analyzed. The mechanism of reducing pollution for water soluble resin and the application prospect were discussed. Spraying water soluble resin for fixing radioactive dust has reasonable reducing pollution effect. It is worth to use as reference and study in China. (authors)

  20. Assessment of spray deposition with water-sensitive paper cards

    Science.gov (United States)

    Spatial distributions of spray droplets discharged from an airblast sprayer, were sampled on pairs of absorbent paper (AP) and water-sensitive paper (WSP) targets at several distances from the sprayer. Spray solutions, containing a fluorescent tracer, were discharged from two size nozzles to achiev...

  1. Modeling spray drift and runoff-related inputs of pesticides to receiving water.

    Science.gov (United States)

    Zhang, Xuyang; Luo, Yuzhou; Goh, Kean S

    2018-03-01

    Pesticides move to surface water via various pathways including surface runoff, spray drift and subsurface flow. Little is known about the relative contributions of surface runoff and spray drift in agricultural watersheds. This study develops a modeling framework to address the contribution of spray drift to the total loadings of pesticides in receiving water bodies. The modeling framework consists of a GIS module for identifying drift potential, the AgDRIFT model for simulating spray drift, and the Soil and Water Assessment Tool (SWAT) for simulating various hydrological and landscape processes including surface runoff and transport of pesticides. The modeling framework was applied on the Orestimba Creek Watershed, California. Monitoring data collected from daily samples were used for model evaluation. Pesticide mass deposition on the Orestimba Creek ranged from 0.08 to 6.09% of applied mass. Monitoring data suggests that surface runoff was the major pathway for pesticide entering water bodies, accounting for 76% of the annual loading; the rest 24% from spray drift. The results from the modeling framework showed 81 and 19%, respectively, for runoff and spray drift. Spray drift contributed over half of the mass loading during summer months. The slightly lower spray drift contribution as predicted by the modeling framework was mainly due to SWAT's under-prediction of pesticide mass loading during summer and over-prediction of the loading during winter. Although model simulations were associated with various sources of uncertainties, the overall performance of the modeling framework was satisfactory as evaluated by multiple statistics: for simulation of daily flow, the Nash-Sutcliffe Efficiency Coefficient (NSE) ranged from 0.61 to 0.74 and the percent bias (PBIAS) runoff in receiving waters and the design of management practices for mitigating pesticide exposure within a watershed. Published by Elsevier Ltd.

  2. Water Reclamation using Spray Drying, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — We propose a new spray drying technology for the recovery and recycle of water while stabilizing the solid wastes or residues as found in advanced life support...

  3. Experimental investigation of water sprayed finned heat exchanger tube bundles

    International Nuclear Information System (INIS)

    Sommer, A.

    1987-07-01

    Experimental investigations have been made to study the performance of two finned tube-bundle heat exchangers (FORGO type) when wetted by water sprays. The heat exchangers are designed to cool water in a dry cooling tower. The test-elements had a frontal area of 1 m 2 . The water sprays were created by 20 nozzles, 200 mm in front of the heat exchangers. Air velocities at the inlet of the coolers were in the range 0,8 m/s to 12 m/s and initial temperature differences ITD reached 45 degrees C. The test facility was designed to determine the combined latent and sensible heat fluxes in the wetted heat exchanger, the airside pressure drop and the air humidity and temperature at the exchanger inlet and outlet, and to measure the weight of the water wetting the cooler's surface. The sprayed test elements were investigated in different positions, but most of the experiments were carried out in the position with the fins horizontal

  4. Chicken meat quality as a function of fasting period and water spray

    Directory of Open Access Journals (Sweden)

    CM Komiyama

    2008-09-01

    Full Text Available This study aimed at evaluating the effect of different fasting periods and water spray during lairage on the quality of chicken meat. A number of 300 male Ross broilers were reared up to 42 days of age, and submitted to four pre-slaughter fasting periods (4, 8, 12, and 16 hours and sprayed with water or not during lairage. Deboned breast meat was submitted to the following analysis: pH, color, drip loss, water retention capacity, cooking loss, and shear force. There was a significant effect (p < 0.05 of fasting period on meat luminosity was significantly different, with the highest value obtained for 4-hour fasting, whereas no difference was found among the other fasting periods. Meat pH values were different among fasting periods when birds received water spray, with birds fasted for 4, 8, and 12 hours of fasting presenting lower meat pH values (5.87, 5.87, and 6.04, respectively. The interaction between fasting period and water spray influenced meat drip loss and cooking loss, with birds fasted for 16h and not receiving water spray presenting higher drip loss (4.88 and higher cooking loss (28.24 as compared to the other birds. Fasting period affects meat quality, and very short periods (4h impair meat quality.

  5. Experimental Assessment of Water Sprays Utilization for Controlling Hydrogen Sulfide Releases in Confined Space

    Directory of Open Access Journals (Sweden)

    Dongfeng Zhao

    2015-01-01

    Full Text Available This paper reported the utilization of water spray for controlling H2S release in a confined space, which is especially important in industry. A typical spray tower was modified to simulate the confined space for people's enterable routine operation (e.g., pump room, in which the dilution capacity of water sprays can also be evaluated. This work consists of two parts: the first part focuses on the influences of different operating conditions on chemical dilution capacities of water sprays in mechanisms; the second one is comparison between two nozzle configurations for evaluating their feasibilities of practical application. Water sprays express eligible performance for H2S release control even though their dilution capacity was weakened at high gaseous concentrations and rates of releases. The presence of Na2CO3 can significantly improve absorption effectiveness of H2S in water and the optimal Na2CO3 additive was found to be 1.0 g·L−1 in this test. Compared with Na2CO3, adjusting water flow rate may be an effective strategy in enhancing dilution capacity of water sprays due to the fact that larger flow rate led to both less dilution time (TD and dilution concentration (CD. Furthermore, multinozzle configuration is more efficient than single-nozzle configuration under the same water consumption.

  6. Standardization of spray-dried powder of Piper betle hot water extract.

    Science.gov (United States)

    Arawwawala, Liyanage Dona Ashanthi Menuka; Hewageegana, Horadugoda Gamage Sujatha Pushpakanthi; Arambewela, Lakshmi Sriyani Rajapaksha; Ariyawansa, Hettiarachchige Sami

    2011-04-01

    The leaves of Piper betle Linn. (Family: Piperaceae) possess several bioactivities and are used in the Traditional Medical systems of Sri Lanka. The present investigation was carried out to standardize the spray-dried powder of P. betle by (a) determination of physicochemical parameters, presence or absence of heavy metals, and microbial contamination; (b) screening for phytochemicals; and (c) development of High Pressure Liquid Chromatography (HPLC) fingerprint and densitogram. The percentages of moisture content, total ash, acid insoluble ash, water-soluble ash, and ethanol extractable matter of spray-dried powder of P. betle were 2.2-2.5, 6.8-7.0, 0.003-0.005, 4.1-4.3, and 15.8-16.2, respectively. The concentrations of all the tested heavy metals were below the WHO acceptable limits and bacterial species, such as Escherichia coli, Salmonella spp, Staphylococcus aureus, and Pseudomonas aeroginosa were not present in the P. betle spray-dried powder. Phenolic compounds, tannins, flavonoids steroids, and alkaloids were found to be present in the spray-dried powder of P. betle and HPLC fingerprint and densitogram clearly demonstrated the proportional differences of these chemical constituents. In conclusion, the results obtained from this study can be used to standardize the spray-dried powder of P. betle.

  7. Standardization of spray-dried powder of Piper betle hot water extract

    Science.gov (United States)

    Arawwawala, Liyanage Dona Ashanthi Menuka; Hewageegana, Horadugoda Gamage Sujatha Pushpakanthi; Arambewela, Lakshmi Sriyani Rajapaksha; Ariyawansa, Hettiarachchige Sami

    2011-01-01

    The leaves of Piper betle Linn. (Family: Piperaceae) possess several bioactivities and are used in the Traditional Medical systems of Sri Lanka. The present investigation was carried out to standardize the spray-dried powder of P. betle by (a) determination of physicochemical parameters, presence or absence of heavy metals, and microbial contamination; (b) screening for phytochemicals; and (c) development of High Pressure Liquid Chromatography (HPLC) fingerprint and densitogram. The percentages of moisture content, total ash, acid insoluble ash, water-soluble ash, and ethanol extractable matter of spray-dried powder of P. betle were 2.2-2.5, 6.8-7.0, 0.003-0.005, 4.1-4.3, and 15.8-16.2, respectively. The concentrations of all the tested heavy metals were below the WHO acceptable limits and bacterial species, such as Escherichia coli, Salmonella spp, Staphylococcus aureus, and Pseudomonas aeroginosa were not present in the P. betle spray-dried powder. Phenolic compounds, tannins, flavonoids steroids, and alkaloids were found to be present in the spray-dried powder of P. betle and HPLC fingerprint and densitogram clearly demonstrated the proportional differences of these chemical constituents. In conclusion, the results obtained from this study can be used to standardize the spray-dried powder of P. betle. PMID:21716924

  8. Occurrence of vancomycin-resistant and -susceptible Enterococcus spp. in reclaimed water used for spray irrigation

    Energy Technology Data Exchange (ETDEWEB)

    Carey, Stephanie Ann; Goldstein, Rachel E. Rosenberg [Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD (United States); Gibbs, Shawn G. [Department of Environmental Health, School of Public Health-Bloomington, Indiana University, Bloomington, IN (United States); Claye, Emma [Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD (United States); He, Xin [Department of Epidemiology and Biostatistics, University of Maryland School of Public Health, College Park, MD (United States); Sapkota, Amy R., E-mail: ars@umd.edu [Maryland Institute for Applied Environmental Health, University of Maryland School of Public Health, College Park, MD (United States)

    2016-05-15

    Reclaiming municipal wastewater for agricultural, environmental, and industrial purposes is increasing in the United States to combat dwindling freshwater supplies. However, there is a lack of data regarding the microbial quality of reclaimed water. In particular, no previous studies have evaluated the occurrence of vancomycin-resistant enterococci (VRE) in reclaimed water used at spray irrigation sites in the United States. To address this knowledge gap, we investigated the occurrence, concentration, and antimicrobial resistance patterns of VRE and vancomycin-susceptible enterococci at three U.S. spray irrigation sites that use reclaimed water. We collected 48 reclaimed water samples from one Mid-Atlantic and two Midwest spray irrigation sites, as well as their respective wastewater treatment plants, in 2009 and 2010. Samples were analyzed for total enterococci and VRE using standard membrane filtration. Isolates were purified and then confirmed using biochemical tests and PCR. Antimicrobial susceptibility testing was conducted using the Sensititre® microbroth dilution system. Data were analyzed by two-sample proportion tests and one-way analysis of variance. We detected total enterococci and VRE in 71% (34/48) and 4% (2/48) of reclaimed water samples, respectively. Enterococcus faecalis was the most common species identified. At the Mid-Atlantic spray irrigation site, UV radiation decreased total enterococci to undetectable levels; however, subsequent storage in an open-air pond at this site resulted in increased concentrations of enterococci. E. faecalis isolates recovered from the Mid-Atlantic spray irrigation site expressed intrinsic resistance to quinupristin/dalfopristin; however, non-E. faecalis isolates expressed resistance to quinupristin/dalfopristin (52% of isolates), vancomycin (4%), tetracycline (13%), penicillin (4%) and ciprofloxacin (17%). Our findings show that VRE are present in low numbers in reclaimed water at point-of-use at the sampled spray

  9. Occurrence of vancomycin-resistant and -susceptible Enterococcus spp. in reclaimed water used for spray irrigation

    International Nuclear Information System (INIS)

    Carey, Stephanie Ann; Goldstein, Rachel E. Rosenberg; Gibbs, Shawn G.; Claye, Emma; He, Xin; Sapkota, Amy R.

    2016-01-01

    Reclaiming municipal wastewater for agricultural, environmental, and industrial purposes is increasing in the United States to combat dwindling freshwater supplies. However, there is a lack of data regarding the microbial quality of reclaimed water. In particular, no previous studies have evaluated the occurrence of vancomycin-resistant enterococci (VRE) in reclaimed water used at spray irrigation sites in the United States. To address this knowledge gap, we investigated the occurrence, concentration, and antimicrobial resistance patterns of VRE and vancomycin-susceptible enterococci at three U.S. spray irrigation sites that use reclaimed water. We collected 48 reclaimed water samples from one Mid-Atlantic and two Midwest spray irrigation sites, as well as their respective wastewater treatment plants, in 2009 and 2010. Samples were analyzed for total enterococci and VRE using standard membrane filtration. Isolates were purified and then confirmed using biochemical tests and PCR. Antimicrobial susceptibility testing was conducted using the Sensititre® microbroth dilution system. Data were analyzed by two-sample proportion tests and one-way analysis of variance. We detected total enterococci and VRE in 71% (34/48) and 4% (2/48) of reclaimed water samples, respectively. Enterococcus faecalis was the most common species identified. At the Mid-Atlantic spray irrigation site, UV radiation decreased total enterococci to undetectable levels; however, subsequent storage in an open-air pond at this site resulted in increased concentrations of enterococci. E. faecalis isolates recovered from the Mid-Atlantic spray irrigation site expressed intrinsic resistance to quinupristin/dalfopristin; however, non-E. faecalis isolates expressed resistance to quinupristin/dalfopristin (52% of isolates), vancomycin (4%), tetracycline (13%), penicillin (4%) and ciprofloxacin (17%). Our findings show that VRE are present in low numbers in reclaimed water at point-of-use at the sampled spray

  10. PLASMA SPRAYING OF REFRACTORY CERMETS BY THE WATER-STABILIZED SPRAY (WSP®) SYSTEM

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Brožek, V.; Cheong, D.-I.; Chráska, Pavel

    2009-01-01

    Roč. 54, č. 3 (2009), s. 241-253 ISSN 0001-7043 Institutional research plan: CEZ:AV0Z20430508 Keywords : Plasma spraying * cermet coatings * microhardness * zirconium carbide * tungsten Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  11. Simulation of the containment spray system test PACOS PX2.2 with the integral code ASTEC and the containment code system COCOSYS

    International Nuclear Information System (INIS)

    Risken, Tobias; Koch, Marco K.

    2011-01-01

    The reactor safety research contains the analysis of postulated accidents in nuclear power plants (npp). These accidents may involve a loss of coolant from the nuclear plant's reactor coolant system, during which heat and pressure within the containment are increased. To handle these atmospheric conditions, containment spray systems are installed in various light water reactors (LWR) worldwide as a part of the accident management system. For the improvement and the safety ensurance in npp operation and accident management, numeric simulations of postulated accident scenarios are performed. The presented calculations regard the predictability of the containment spray system's effect with the integral code ASTEC and the containment code system COCOSYS, performed at Ruhr-Universitaet Bochum. Therefore the test PACOS Px2.2 is simulated, in which water is sprayed in the stratified containment atmosphere of the BMC (Battelle Modell-Containment). (orig.)

  12. The characteristic of spray using diesel water emulsified fuel in a diesel engine

    International Nuclear Information System (INIS)

    Park, Sangki; Woo, Seungchul; Kim, Hyungik; Lee, Kihyung

    2016-01-01

    Highlights: • Water in oil emulsion is produced using ceramic membrane. • Surfactant type affect stability performance and droplet size distribution. • Evaporation characteristic of DE is poor compared with neat diesel. • Coefficient of variation maintains below 2.0% both DE and neat diesel. - Abstract: In this study, it was applied to the diesel–water emulsified (DE) fuel that carried out the experiment for the characteristic of sprat using diesel water emulsified fuel in a diesel engine, and the possibility of its application to conventional diesel engines was evaluated from the fundamental characteristics of diesel–water emulsified fuel. According to the results of the spray characteristics such as spray penetration and spray distribution were measured in the experiment, and then analyzed through digital image processing. The DEs were applied to actual diesel engines and their combustion, emission, and fuel consumption characteristics were compared with those of diesel. The results showed that the experiments were confirmed as the spray atomization characteristics at the various emulsified fuels.

  13. Ground experimental investigations into an ejected spray cooling system for space closed-loop application

    Directory of Open Access Journals (Sweden)

    Zhang Hongsheng

    2016-06-01

    Full Text Available Spray cooling has proved its superior heat transfer performance in removing high heat flux for ground applications. However, the dissipation of vapor–liquid mixture from the heat surface and the closed-loop circulation of the coolant are two challenges in reduced or zero gravity space environments. In this paper, an ejected spray cooling system for space closed-loop application was proposed and the negative pressure in the ejected condenser chamber was applied to sucking the two-phase mixture from the spray chamber. Its ground experimental setup was built and experimental investigations on the smooth circle heat surface with a diameter of 5 mm were conducted with distilled water as the coolant spraying from a nozzle of 0.51 mm orifice diameter at the inlet temperatures of 69.2 °C and 78.2 °C under the conditions of heat flux ranging from 69.76 W/cm2 to 311.45 W/cm2, volume flow through the spray nozzle varying from 11.22 L/h to 15.76 L/h. Work performance of the spray nozzle and heat transfer performance of the spray cooling system were analyzed; results show that this ejected spray cooling system has a good heat transfer performance and provides valid foundation for space closed-loop application in the near future.

  14. Two-dimensional modeling of water spray cooling in superheated steam

    Directory of Open Access Journals (Sweden)

    Ebrahimian Vahid

    2008-01-01

    Full Text Available Spray cooling of the superheated steam occurs with the interaction of many complex physical processes, such as initial droplet formation, collision, coalescence, secondary break up, evaporation, turbulence generation, and modulation, as well as turbulent mixing, heat, mass and momentum transfer in a highly non-uniform two-phase environment. While it is extremely difficult to systematically study particular effects in this complex interaction in a well defined physical experiment, the interaction is well suited for numerical studies based on advanced detailed models of all the processes involved. This paper presents results of such a numerical experiment. Cooling of the superheated steam can be applied in order to decrease the temperature of superheated steam in power plants. By spraying the cooling water into the superheated steam, the temperature of the superheated steam can be controlled. In this work, water spray cooling was modeled to investigate the influences of the droplet size, injected velocity, the pressure and velocity of the superheated steam on the evaporation of the cooling water. The results show that by increasing the diameter of the droplets, the pressure and velocity of the superheated steam, the amount of evaporation of cooling water increases. .

  15. Spray deposition and spray drift in orchard spraying by multiple row sprayers

    NARCIS (Netherlands)

    Wenneker, M.; Zande, van de J.C.; Michielsen, J.G.P.; Stallinga, H.; Velde, van P.

    2016-01-01

    The evaluation of the latest data on spray drift in orchard spraying in the Netherlands, and measurements of surface water quality parameters show that the current legislation and measures are insufficient to protect the surface water. To meet the national and European objectives regarding surface

  16. Effect of nozzle geometry for swirl type twin-fluid water mist nozzle on the spray characteristic

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Soon Hyun; Kim, Do Yeon; Kim, Dong Keon [Pusan National University, Busan (Korea, Republic of); Kim, Bong Hwan [Jinju National University, Jinju (Korea, Republic of)

    2011-07-15

    Experimental investigations on the atomization characteristics of twin-fluid water mist nozzle were conducted using particle image velocimetry (PIV) system and particle motion analysis system (PMAS). The twin-fluid water mist nozzles with swirlers designed two types of swirl angles such as 0 .deg. , 90 .deg. and three different size nozzle hole diameters such as 0.5mm, 1mm, 1.5mm were employed. The experiments were carried out by the injection pressure of water and air divided into 1bar, 2bar respectively. The droplet size of the spray was measured using PMAS. The velocity and turbulence intensity were measured using PIV. The velocity, turbulence intensity and SMD distributions of the sprays were measured along the centerline and radial direction. As the experimental results, swirl angle controlled to droplet sizes. It was found that SMD distribution decreases with the increase of swirl angle. The developed twin-fluid water mist nozzle was satisfied to the criteria of NFPA 750, Class 1. It was proven that the developed nozzle under low pressures could be applied to fire protection system.

  17. Effect of nozzle geometry for swirl type twin-fluid water mist nozzle on the spray characteristic

    International Nuclear Information System (INIS)

    Yoon, Soon Hyun; Kim, Do Yeon; Kim, Dong Keon; Kim, Bong Hwan

    2011-01-01

    Experimental investigations on the atomization characteristics of twin-fluid water mist nozzle were conducted using particle image velocimetry (PIV) system and particle motion analysis system (PMAS). The twin-fluid water mist nozzles with swirlers designed two types of swirl angles such as 0 .deg. , 90 .deg. and three different size nozzle hole diameters such as 0.5mm, 1mm, 1.5mm were employed. The experiments were carried out by the injection pressure of water and air divided into 1bar, 2bar respectively. The droplet size of the spray was measured using PMAS. The velocity and turbulence intensity were measured using PIV. The velocity, turbulence intensity and SMD distributions of the sprays were measured along the centerline and radial direction. As the experimental results, swirl angle controlled to droplet sizes. It was found that SMD distribution decreases with the increase of swirl angle. The developed twin-fluid water mist nozzle was satisfied to the criteria of NFPA 750, Class 1. It was proven that the developed nozzle under low pressures could be applied to fire protection system

  18. Chicken meat quality as a function of fasting period and water spray

    OpenAIRE

    Komiyama, CM; Mendes, AA; Takahashi, SE; Moreira, J; Garcia, RG; Sanfelice, C; Borba, HS; Leonel, FR; Almeida Paz, ICL; Balog, A

    2008-01-01

    This study aimed at evaluating the effect of different fasting periods and water spray during lairage on the quality of chicken meat. A number of 300 male Ross broilers were reared up to 42 days of age, and submitted to four pre-slaughter fasting periods (4, 8, 12, and 16 hours) and sprayed with water or not during lairage. Deboned breast meat was submitted to the following analysis: pH, color, drip loss, water retention capacity, cooking loss, and shear force. There was a significant effect ...

  19. Analysis of inadvertent containment spray actuation for NPP Krsko

    International Nuclear Information System (INIS)

    Grgic, D.; Spalj, S.; Fancev, T.

    2000-01-01

    Refueling Water Storage Tank (RWST) supplies borated water to the Chemical and Volume Control System, Emergency Core Cooling System and Containment Spray System. In the analyses of the containment external pressure the spray temperature is assumed to be equal to the RWST lower temperature limit. This value ensures that the design negative containment pressure will not be exceeded in the event of inadvertent actuation of the Containment Spray. For NPP Kriko the negative containment pressure has to be kept below 0.1 kp/cm2 to avoid the loss of containment integrity. This paper pursuents the analysis of Inadvertent Containment Spray Actuation in order to check the influence of change in RWST water temperature on containment negative pressure. GOTHIC computer code was used for calculation of containment thermal hydraulic behavior during this accident. (author)

  20. Effects of Water Hardness on Spray Droplet Size Under Aerial Application Conditions

    Science.gov (United States)

    2008-01-01

    Nonimaging Light‐Scattering Instruments (ASTM, 2003). Table 1. Spray formulations for water hardness levels. Hardness (ppm) Tank, L (gal) Kocide, kg (lb...characteristics in a spray using optical nonimaging light‐scattering instruments. W. Conshohocken, Pa.: ASTM Intl. ASTM. 2004. E1620‐97. Standard

  1. Mathematical modelling of heat absorption capacity of containment spray system in a 700 MWe PHWR

    International Nuclear Information System (INIS)

    Kota, Sampath Bharadwaj; Ali, Seik Mansoor; Balasubramaniyan, V.

    2015-01-01

    This paper presents a mathematical model for estimating the heat removal by containment spray system in the post Loss of Coolant Accident (LOCA) environment. The procedure involves firstly, the calculation of heat removal rates by droplets of spray dispersed in the air-steam mixture by an appropriate direct contact condensation model accounting for the presence of non-condensable gas (air). Parametric influence of droplet size, ambient pressure and temperature on heat flux is brought out. It was found that the heat flux is inversely proportional to the ambient pressure and diameter. A spray module was subsequently developed and incorporated into an in-house containment thermal hydraulics code. The pressure and temperature transients in a 700 MWe PHWR containment building following a Large Break LOCA was obtained using this code. The efficacy of the spray in condensing the steam is shown by comparing the transients with and without the operation of spray system. Parametric studies are also conducted with respect to droplet size and flow rate of water droplet spray. The details of the investigation are presented and discussed in this paper. (author)

  2. Heat removal tests for pressurized water reactor containment spray by largescale facility

    International Nuclear Information System (INIS)

    Motoki, Y.; Hashimoto, K.; Kitani, S.; Naritomi, M.; Nishio, G.; Tanaka, M.

    1983-01-01

    Heat removal tests for pressurized water reactor (PWR) containment spray were carried out to investigate effectiveness of the depressurization by Japan Atomic Energy Research Institute model containment (7-m diameter, 20 m high, and 708-m 3 volume) with PWR spray nozzles. The depressurization rate is influenced by the spray heat transfer efficiency and the containment wall surface heat transfer coefficient. The overall spray heat transfer efficiency was investigated with respect to spray flow rate, weight ratio of steam/air, and spray height. The spray droplet heat transfer efficiency was investigated whether the overlapping of spray patterns gives effect or not. The effect was not detectable in the range of large value of steam/air, however, it was better in the range of small value of it. The experimental results were compared with the calculated results by computer code CONTEMPT-LT/022. The overall spray heat transfer efficiency was almost 100% in the containment pressure, ranging from 2.5 to 0.9 kg/cm 2 X G, so that the code was useful on the prediction of the thermal hydraulic behavior of containment atmosphere in a PWR accident condition

  3. Aerial spraying to capture released radioactivity from NPP in a severe accident

    International Nuclear Information System (INIS)

    Younus, Irfan; Yim, Man Sung; Medard, Thiphaine

    2016-01-01

    The proposed strategy in this paper is the use of aqueous spray (water/foam) mixed with suitable chemical additives to capture, dissolve and stabilize the radioactive gases and aerosol particles released from leaked reactor containment and auxiliary building. The spray system can be approached to the leaked reactor building through the use of a truck with high rising cranes, unmanned aerial vehicles (UAVs, such as helicopters), aerostats, or by installing fixed piping structure around the containment building depending on the accident situation. Laboratory-scale experimental system was setup to examine the performance of such systems. The alkaline water (aqueous NaOH.Na_2S_2O_3) and foam-based spray material (sodium lauryl sulphate) were used to examine capture efficiency of gaseous iodine and aerosol particles. The gaseous iodine and aerosol removal efficiency of foam-based spray is higher when compared with alkaline water-based spray. 2. The nozzle producing full cone spray provides the better removal efficiency than nozzle producing hollow cone spray patterns.

  4. Effect of spray angle and spray volume on deposition of a medium droplet spray with air support in ivy pot plants.

    Science.gov (United States)

    Foqué, Dieter; Pieters, Jan G; Nuyttens, David

    2014-03-01

    Spray boom systems, an alternative to the predominantly-used spray guns, have the potential to considerably improve crop protection management in glasshouses. Based on earlier experiments, the further optimization of the deposits of a medium spray quality extended range flat fan nozzle type using easy adjustable spray boom settings was examined. Using mineral chelate tracers and water sensitive papers, the spray results were monitored at three plant levels, on the upper side and the underside of the leaves, and on some off-target collectors. In addition, the deposition datasets of all tree experiments were compared. The data showed that the most efficient spray distribution with the medium spray quality flat fan nozzles was found with a 30° forward angled spray combined with air support and an application rate of 1000 L ha(-1) . This technique resulted in a more uniform deposition in the dense canopy and increased spray deposition on the lower side of the leaves compared with the a standard spray boom application. Applying 1000 L ha(-1) in two subsequent runs instead of one did not seem to show any added value. Spray deposition can be improved hugely simply by changing some spray boom settings like nozzle type, angling the spray, using air support and adjusting the spray volume to the crop. © 2013 Society of Chemical Industry.

  5. Release mitigation spray safety systems for chemical demilitarization applications.

    Energy Technology Data Exchange (ETDEWEB)

    Leonard, Jonathan; Tezak, Matthew Stephen; Brockmann, John E.; Servantes, Brandon; Sanchez, Andres L.; Tucker, Mark David; Allen, Ashley N.; Wilson, Mollye C.; Lucero, Daniel A.; Betty, Rita G.

    2010-06-01

    Sandia National Laboratories has conducted proof-of-concept experiments demonstrating effective knockdown and neutralization of aerosolized CBW simulants using charged DF-200 decontaminant sprays. DF-200 is an aqueous decontaminant, developed by Sandia National Laboratories, and procured and fielded by the US Military. Of significance is the potential application of this fundamental technology to numerous applications including mitigation and neutralization of releases arising during chemical demilitarization operations. A release mitigation spray safety system will remove airborne contaminants from an accidental release during operations, to protect personnel and limit contamination. Sandia National Laboratories recently (November, 2008) secured funding from the US Army's Program Manager for Non-Stockpile Chemical Materials Agency (PMNSCMA) to investigate use of mitigation spray systems for chemical demilitarization applications. For non-stockpile processes, mitigation spray systems co-located with the current Explosive Destruction System (EDS) will provide security both as an operational protective measure and in the event of an accidental release. Additionally, 'tented' mitigation spray systems for native or foreign remediation and recovery operations will contain accidental releases arising from removal of underground, unstable CBW munitions. A mitigation spray system for highly controlled stockpile operations will provide defense from accidental spills or leaks during routine procedures.

  6. Water Spray Flow Characteristics Under Synthetic Jet Driven By a Piezoelectric Actuator

    Science.gov (United States)

    Marchitto, L.; Valentino, G.; Chiatto, M.; de Luca, L.

    2017-01-01

    Particle Image Velocimetry (PIV) and Phase Doppler Anemometry (PDA) have been applied to investigate the droplets size and velocity distribution of a water spray, under the control of a piezo-element driven synthetic jet (SJ). Tests were carried out under atmospheric conditions within a chamber test rig equipped with optical accesses at two injection pressures, namely 5 and 10 MPa, exploring the variation of the main spray parameters caused by the synthetic jet perturbations. The SJ orifice has been placed at 45° with respect to the water spray axis; the nozzle body has been moved on its own axis and three different nozzle quotes were tested. PIV measurements have been averaged on 300 trials whereas about 105 samples have been acquired for the PDA tests. For each operative condition, the influence region of the SJ device on the spray has been computed through a T-Test algorithm. The synthetic jet locally interacts with the spray, energizing the region downstream the impact. The effect of the actuator decreases at higher injection pressures and moving the impact region upwards. Droplets coalescence can be detected along the synthetic jet axis, while no significant variations are observed along a direction orthogonal to it.

  7. Aerial spraying to capture released radioactivity from NPP in a severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Younus, Irfan; Yim, Man Sung [KAIST, Daejeon (Korea, Republic of); Medard, Thiphaine [Ecole des Mines de Saint-Etienne, Daejeon (Korea, Republic of)

    2016-05-15

    The proposed strategy in this paper is the use of aqueous spray (water/foam) mixed with suitable chemical additives to capture, dissolve and stabilize the radioactive gases and aerosol particles released from leaked reactor containment and auxiliary building. The spray system can be approached to the leaked reactor building through the use of a truck with high rising cranes, unmanned aerial vehicles (UAVs, such as helicopters), aerostats, or by installing fixed piping structure around the containment building depending on the accident situation. Laboratory-scale experimental system was setup to examine the performance of such systems. The alkaline water (aqueous NaOH.Na{sub 2}S{sub 2}O{sub 3}) and foam-based spray material (sodium lauryl sulphate) were used to examine capture efficiency of gaseous iodine and aerosol particles. The gaseous iodine and aerosol removal efficiency of foam-based spray is higher when compared with alkaline water-based spray. 2. The nozzle producing full cone spray provides the better removal efficiency than nozzle producing hollow cone spray patterns.

  8. On radiative transfer in water spray curtains using the discrete ordinates method

    Energy Technology Data Exchange (ETDEWEB)

    Collin, A. [Laboratoire d' Energetique et de Mecanique Theorique and Appliquee (LEMTA), CNRS UMR 7563, Faculte des Sciences et Techniques BP 239 - 54506 VANDOEUVRE Cedex (France); Boulet, P. [Laboratoire d' Energetique et de Mecanique Theorique and Appliquee (LEMTA), CNRS UMR 7563, Faculte des Sciences et Techniques BP 239 - 54506 VANDOEUVRE Cedex (France)]. E-mail: Pascal.Boulet@lemta.uhp-nancy.fr; Lacroix, D. [Laboratoire d' Energetique et de Mecanique Theorique and Appliquee (LEMTA), CNRS UMR 7563, Faculte des Sciences et Techniques BP 239 - 54506 VANDOEUVRE Cedex (France); Jeandel, G. [Laboratoire d' Energetique et de Mecanique Theorique and Appliquee (LEMTA), CNRS UMR 7563, Faculte des Sciences et Techniques BP 239 - 54506 VANDOEUVRE Cedex (France)

    2005-04-15

    Radiative transfer through water spray curtains has been presently addressed in conditions similar to devices used in fire protection systems. The radiation propagation from the heat source through the medium is simulated using a 2D Discrete Ordinates Method. The curtain is treated as an absorbing and anisotropically scattering medium, made of droplets injected in a mixing of air, water vapor and carbon dioxide. Such a participating medium requires a careful treatment of its spectral response in order to model the radiative transfer accurately. This particular problem is dealt with using a correlated-K method. Radiative properties for the droplets are calculated applying the Mie theory. Transmissivities under realistic conditions are then simulated after a validation thanks to comparisons with some experimental data available in the literature. Owing to promising results which are already observed in this case of uncoupled radiative problem, next step will be to combine the present study with a companion work dedicated to the careful treatment of the spray dynamics and of the induced heat transfer phenomena.

  9. Spray Freeze-drying - The Process of Choice for Low Water Soluble Drugs?

    International Nuclear Information System (INIS)

    Leuenberger, H.

    2002-01-01

    Most of the novel highly potent drugs, developed on the basis of modern molecular medicine, taking into account cell surface recognition techniques, show poor water solubility. A chemical modification of the drug substance enhancing the solubility often decreases the pharmacological activity. Thus, as an alternative an increase of the solubility can be obtained by the reduction of the size of the drug particles. Unfortunately, it is often difficult to obtain micro or nanosized drug particles by classical or more advanced crystallization using supercritical gases or by milling techniques. In addition, nanosized particles are often not physically stable and need to be stabilized in an appropriate matrix. Thus, it may be of interest to manufacture directly nanosized drug particles stabilized in an inert hydrophilic matrix, i.e. nanostructured and nanocomposite systems. Solid solutions and solid dispersions represent nanostructured and nanocomposite systems. In this context, the use of the vacuum-fluidized-bed technique for the spray-drying of a low water soluble drug cosolubilized with a hydrophilic excipient in a polar organic solvent is discussed. In order to avoid the use of organic solvents, a special spray-freeze-drying technique working at atmospheric pressure is presented. This process is very suitable for temperature and otherwise sensitive drugs such as pharmaproteins

  10. Nano and microparticle engineering of water insoluble drugs using a novel spray-drying process.

    Science.gov (United States)

    Schafroth, Nina; Arpagaus, Cordin; Jadhav, Umesh Y; Makne, Sushil; Douroumis, Dennis

    2012-02-01

    In the current study nano and microparticle engineering of water insoluble drugs was conducted using a novel piezoelectric spray-drying approach. Cyclosporin A (CyA) and dexamethasone (DEX) were encapsulated in biodegradable poly(D,L-lactide-co-glycolide) (PLGA) grades of different molecular weights. Spray-drying studies carried out with the Nano Spray Dryer B-90 employed with piezoelectric driven actuator. The processing parameters including inlet temperature, spray mesh diameter, sample flow rate, spray rate, applied pressure and sample concentration were examined in order to optimize the particle size and the obtained yield. The process parameters and the solute concentration showed a profound effect on the particle engineering and the obtained product yield. The produced powder presented consistent and reproducible spherical particles with narrow particle size distribution. Cyclosporin was found to be molecularly dispersed while dexamethasone was in crystalline state within the PLGA nanoparticles. Further evaluation revealed excellent drug loading, encapsulation efficiency and production yield. In vitro studies demonstrated sustained release patterns for the active substances. This novel spray-drying process proved to be efficient for nano and microparticle engineering of water insoluble active substances. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Preliminary Design of Aerial Spraying System for Microlight Aircraft

    Science.gov (United States)

    Omar, Zamri; Idris, Nurfazliawati; Rahim, M. Zulafif

    2017-10-01

    Undoubtedly agricultural is an important sector because it provides essential nutrients for human, and consequently is among the biggest sector for economic growth worldwide. It is crucial to ensure crops production is protected from any plant diseases and pests. Thus aerial spraying system on crops is developed to facilitate farmers to for crops pests control and it is very effective spraying method especially for large and hilly crop areas. However, the use of large aircraft for aerial spaying has a relatively high operational cost. Therefore, microlight aircraft is proposed to be used for crops aerial spraying works for several good reasons. In this paper, a preliminary design of aerial spraying system for microlight aircraft is proposed. Engineering design methodology is adopted in the development of the aerial sprayer and steps involved design are discussed thoroughly. A preliminary design for the microlight to be attached with an aerial spraying system is proposed.

  12. Reduction of airborne radioactive dust by means of a charged water spray.

    Science.gov (United States)

    Bigu, J; Grenier, M G

    1989-07-01

    An electrostatic precipitator based on charged water spray technology has been used in an underground uranium mine to control long-lived radioactive dust and short-lived aerosol concentration in a mine gallery where dust from a rock breaking/ore transportation operation was discharged. Two main sampling stations were established: one upstream of the dust precipitator and one downstream. In addition, dust samplers were placed at different locations between the dust discharge and the end of the mine gallery. Long-lived radioactive dust was measured using cascade impactors and nylon cyclone dust samplers, and measurement of the radioactivity on the samples was carried out by conventional methods. Radon and thoron progeny were estimated using standard techniques. Experiments were conducted under a variety of airflow conditions. A maximum radioactive dust reduction of about 40% (approximately 20% caused by gravitational settling) at a ventilation rate of 0.61 m3/sec was obtained as a result of the combined action of water scrubbing and electrostatic precipitation by the charged water spray electrostatic precipitator. This represents the optimum efficiency attained within the range of ventilation rates investigated. The dust reduction efficiency of the charged water spray decreased with increasing ventilation rate, i.e., decreasing air residence time, and hence, reduced dust cloud/charged water droplets mixing time.

  13. Susceptibility of quagga mussels (Dreissena rostriformis bugensis) to hot-water sprays as a means of watercraft decontamination.

    Science.gov (United States)

    Comeau, Sean; Rainville, Scott; Baldwin, Wen; Austin, Emily; Gerstenberger, Shawn; Cross, Chad; Wong, Wai Hing

    2011-03-01

    The recent spread of dreissenid mussels to various bodies of water in the western US has sparked interest by many state and federal agencies to develop protocols to stop further expansion. Quagga mussels (Dreissena rostriformis bugensis) are of particular importance as they are currently the most widespread dreissenid species in the region. This project examined the susceptibility of quagga mussels to hot-water sprays at different temperatures and durations of spray contact at Lake Mead (Nevada-Arizona, USA). Emersed adult quagga mussels were exposed to hot-water sprays at 20, 40, 50, 54, 60, 70, and 80°C for 1, 2, 5, 10, 20, 40, 80, and 160 s. Sprays at ≥60°C for 5 s were shown to be 100% lethal. Sprays of 54°C for 10 s, 50°C for 20 s, and 40°C for 40 s also resulted in 100% mortality. A spray temperature of 60°C for 5 s is recommended for mitigating fouling by quagga mussels.

  14. Assessment of differences between products obtained in conventional and vacuum spray dryer

    Directory of Open Access Journals (Sweden)

    Fernanda de Melo RAMOS

    Full Text Available Abstract In this work, an experimental unit of a vacuum spray dryer was built. This prototype attempted to combine the advantages of freeze-drying (drying at low temperatures due to vacuum and spray drying (increase of surface area aiming the improvement of heat transfer efficiency. Maltodextrin solutions were dried in the vacuum operated equipment and in conventional spray dryer. The vacuum spray dryer system allowed obtaining powder at low temperatures due to the lowering of pressure conditions (2-5 kPa inside the drying chamber. The products obtained in the two systems were characterized and compared for particle size distribution, moisture content, water activity, bulk density and solubility in water. The processes yields were also evaluated and compared. The vacuum spray dryer system allowed the production of larger, more soluble and less dense particles than those obtained in the conventional configuration of the equipment, resulting in drier and, therefore, with lower water activity particles. Thus, the use of the vacuum spray dryer as a drying technique may be an alternative for the production of powder rich in thermosensitive compounds.

  15. Microcontainers as an oral delivery system for spray dried cubosomes containing ovalbumin

    DEFF Research Database (Denmark)

    Nielsen, Line Hagner; Rades, Thomas; Boyd, Ben

    2017-01-01

    The purpose of this study was to prepare cubosomes encapsulating the model antigen ovalbumin (OVA) via spray drying, and to characterise such cubosomes with a view for their potential application in oral vaccine delivery. Furthermore the cubosome formulation was loaded into polymeric...... microcontainers intended as an oral drug delivery system. The cubosomes consisted of commercial glyceryl monooleate, Dimodan®, containing OVA and were surrounded with a dextran shell prepared by spray drying. Cryo-TEM was used to confirm that cubosomes were formed after hydration of the spray dried precursor...... the cubosomes and microcontainers occurred at pH 6.8, releasing 44.1±5.6% of the OVA in 96h. Small-angle X-ray scattering (SAXS) revealed that the 'dry' particles possessed an internal ordered lipid structure (lamellar and inverse micellar phase) by virtue of a small amount of residual water, and after...

  16. Investigation of vortex clouds and droplet sizes in heated water spray patterns generated by axisymmetric full cone nozzles.

    Science.gov (United States)

    Naz, M Y; Sulaiman, S A; Ariwahjoedi, B; Ku Shaari, Ku Zilati

    2013-01-01

    The hot water sprays are an important part of many industrial processes, where the detailed knowledge of physical phenomena involved in jet transportation, interaction, secondary breakup, evaporation, and coalescence of droplets is important to reach more efficient processes. The objective of the work was to study the water spray jet breakup dynamics, vortex cloud formation, and droplet size distribution under varying temperature and load pressure. Using a high speed camera, the spray patterns generated by axisymmetric full cone nozzles were visualized as a function water temperature and load pressure. The image analysis confirmed that the spray cone angle and width do not vary significantly with increasing Reynolds and Weber numbers at early injection phases leading to increased macroscopic spray propagation. The formation and decay of semitorus like vortex clouds were also noticed in spray structures generated at near water boiling point temperature. For the nozzle with smallest orifice diameter (1.19 mm), these vortex clouds were very clear at 90°C heating temperature and 1 bar water load pressure. In addition, the sauter mean diameter (SMD) of the spray droplets was also measured by using Phase Doppler Anemometry (PDA) at different locations downstream of the nozzle exit. It was noticed that SMD varies slightly w.r.t. position when measured at room temperature whereas at higher temperature values, it became almost constant at distance of 55 mm downstream of the nozzle exit.

  17. Investigation of Vortex Clouds and Droplet Sizes in Heated Water Spray Patterns Generated by Axisymmetric Full Cone Nozzles

    Directory of Open Access Journals (Sweden)

    M. Y. Naz

    2013-01-01

    Full Text Available The hot water sprays are an important part of many industrial processes, where the detailed knowledge of physical phenomena involved in jet transportation, interaction, secondary breakup, evaporation, and coalescence of droplets is important to reach more efficient processes. The objective of the work was to study the water spray jet breakup dynamics, vortex cloud formation, and droplet size distribution under varying temperature and load pressure. Using a high speed camera, the spray patterns generated by axisymmetric full cone nozzles were visualized as a function water temperature and load pressure. The image analysis confirmed that the spray cone angle and width do not vary significantly with increasing Reynolds and Weber numbers at early injection phases leading to increased macroscopic spray propagation. The formation and decay of semitorus like vortex clouds were also noticed in spray structures generated at near water boiling point temperature. For the nozzle with smallest orifice diameter (1.19 mm, these vortex clouds were very clear at 90°C heating temperature and 1 bar water load pressure. In addition, the sauter mean diameter (SMD of the spray droplets was also measured by using Phase Doppler Anemometry (PDA at different locations downstream of the nozzle exit. It was noticed that SMD varies slightly w.r.t. position when measured at room temperature whereas at higher temperature values, it became almost constant at distance of 55 mm downstream of the nozzle exit.

  18. Head spray nozzle in reactor pressure vessel

    International Nuclear Information System (INIS)

    Hatano, Shun-ichi.

    1990-01-01

    In a reactor pressure vessel of a BWR type reactor, a head spray nozzle is used for cooling the head of the pressure vessel and, in view of the thermal stresses, it is desirable that cooling is applied as uniformly as possible. A conventional head spray is constituted by combining full cone type nozzles. Since the sprayed water is flown down upon water spraying and the sprayed water in the vertical direction is overlapped, the flow rate distribution has a high sharpness to form a shape as having a maximum value near the center and it is difficult to obtain a uniform flow rate distribution in the circumferential direction. Then, in the present invention, flat nozzles each having a spray water cross section of laterally long shape, having less sharpness in the circumferential distribution upon spraying water to the inner wall of the pressure vessel and having a wide angle of water spray are combined, to make the flow rate distribution of spray water uniform in the inner wall of the pressure vessel. Accordingly, the pressure vessel can be cooled uniformly and thermal stresses upon cooling can be decreased. (N.H.)

  19. Spray drying of bead resins: feasibility tests

    International Nuclear Information System (INIS)

    Gay, R.L.; Grantham, L.F.; Jones, L.J.

    1984-01-01

    Rockwell International has developed a volume reduction system for low-level reactor wastes based on drying the wastes in a heated-air spray dryer. The drying of slurries of sodium sulfate, boric acid, and powdered ion exchange resins was demonstrated in previous tests. The drying of bead ion exchange resins can be especially difficult due to the relatively large size of bead resins (about 500 to 800 microns) and their natural affinity for water. This water becomes part of the pore structure of the resins and normally comprises 50 t 60 wt % of the resin weight. A 76-cm-diameter spray dryer was used for feasibility tests of spray drying of cation and anion bead resins. These resins were fed to the dryer in the as-received form (similar to dewatered resins) and as slurries. A dry, free-flowing product was produced in all the tests. The volume of the spray-dried product was one-half to one-third the volume of the as-received material. An economic analysis was made of the potential cost savings that can be achieved using the Rockwel spray dryer system. In-plant costs, transportation costs, and burial costs of spray-dried resins were compared to similar costs for disposal of dewatered resins. A typical utility producing 170 m 3 (6,000 ft 3 ) per year of dewatered resins can save $600,000 to $700,000 per year using this volume reduction system

  20. Suspensions Plasma Spraying of Ceramics with Hybrid Water-Stabilized Plasma Technology

    Czech Academy of Sciences Publication Activity Database

    Mušálek, Radek; Medřický, Jan; Tesař, T.; Kotlan, Jiří; Pala, Zdeněk; Lukáč, František; Chráska, Tomáš; Curry, N.

    2017-01-01

    Roč. 26, 1-2 (2017), s. 37-46 ISSN 1059-9630. [ISTC 2016: International Thermal Spray Conference. Shanghai, 10.05.2016-12.05.2016] R&D Projects: GA ČR GA15-12145S Institutional support: RVO:61389021 Keywords : alumina * ceramics * dense * hybrid plasma torch * suspension plasma spraying * water-stabilized plasma * yttria-stabilized zirconia (YSZ) Subject RIV: JK - Corrosion ; Surface Treatment of Materials OBOR OECD: Coating and films Impact factor: 1.488, year: 2016 http://link.springer.com/article/10.1007/s11666-016-0493-6

  1. Efficacy of water spray protection against propane and butane jet fires impinging on LPG storage tanks

    Energy Technology Data Exchange (ETDEWEB)

    Shirvill, L.C. [Shell Global Solutions (UK), Chester (United Kingdom)

    2004-03-01

    Liquefied petroleum gas (LPG) storage tanks are often provided with water sprays to protect them in the event of a fire. This protection has been shown to be effective in a hydrocarbon pool fire but uncertainties remained regarding the degree of protection afforded in a jet fire resulting from a liquid or two-phase release of LPG. Two projects, sponsored by the Health and Safety Executive, have been undertaken to study, at full scale, the performance of a water spray system on an empty 13 tonne LPG vessel under conditions of jet fire impingement from nearby releases of liquid propane and butane. The results showed that a typical water deluge system found on an LPG storage vessel cannot be relied upon to maintain a water film over the whole vessel surface in an impinging propane or butane jet fire scenario. The deluge affects the fire itself, reducing the luminosity and smoke, resulting in a lower rate of wall temperature rise at the dry patches, when compared with the undeluged case. The results of these studies will be used by the HSE in assessing the risk of accidental fires on LPG installations leading to boiling liquid expanding vapour explosion (BLEVE) incidents. (Author)

  2. Heat Transfer Modeling of an Annular On-Line Spray Water Cooling Process for Electric-Resistance-Welded Steel Pipe.

    Science.gov (United States)

    Chen, Zejun; Han, Huiquan; Ren, Wei; Huang, Guangjie

    2015-01-01

    On-line spray water cooling (OSWC) of electric-resistance-welded (ERW) steel pipes can replace the conventional off-line heat treatment process and become an important and critical procedure. The OSWC process improves production efficiency, decreases costs, and enhances the mechanical properties of ERW steel pipe, especially the impact properties of the weld joint. In this paper, an annular OSWC process is investigated based on an experimental simulation platform that can obtain precise real-time measurements of the temperature of the pipe, the water pressure and flux, etc. The effects of the modes of annular spray water cooling and related cooling parameters on the mechanical properties of the pipe are investigated. The temperature evolutions of the inner and outer walls of the pipe are measured during the spray water cooling process, and the uniformity of mechanical properties along the circumferential and longitudinal directions is investigated. A heat transfer coefficient model of spray water cooling is developed based on measured temperature data in conjunction with simulation using the finite element method. Industrial tests prove the validity of the heat transfer model of a steel pipe undergoing spray water cooling. The research results can provide a basis for the industrial application of the OSWC process in the production of ERW steel pipes.

  3. Heat Transfer Modeling of an Annular On-Line Spray Water Cooling Process for Electric-Resistance-Welded Steel Pipe

    Science.gov (United States)

    Chen, Zejun; Han, Huiquan; Ren, Wei; Huang, Guangjie

    2015-01-01

    On-line spray water cooling (OSWC) of electric-resistance-welded (ERW) steel pipes can replace the conventional off-line heat treatment process and become an important and critical procedure. The OSWC process improves production efficiency, decreases costs, and enhances the mechanical properties of ERW steel pipe, especially the impact properties of the weld joint. In this paper, an annular OSWC process is investigated based on an experimental simulation platform that can obtain precise real-time measurements of the temperature of the pipe, the water pressure and flux, etc. The effects of the modes of annular spray water cooling and related cooling parameters on the mechanical properties of the pipe are investigated. The temperature evolutions of the inner and outer walls of the pipe are measured during the spray water cooling process, and the uniformity of mechanical properties along the circumferential and longitudinal directions is investigated. A heat transfer coefficient model of spray water cooling is developed based on measured temperature data in conjunction with simulation using the finite element method. Industrial tests prove the validity of the heat transfer model of a steel pipe undergoing spray water cooling. The research results can provide a basis for the industrial application of the OSWC process in the production of ERW steel pipes. PMID:26201073

  4. Cold sprayed WO3 and TiO2 electrodes for photoelectrochemical water and methanol oxidation in renewable energy applications.

    Science.gov (United States)

    Haisch, Christoph; Schneider, Jenny; Fleisch, Manuel; Gutzmann, Henning; Klassen, Thomas; Bahnemann, Detlef W

    2017-10-03

    Films prepared by cold spray have potential applications as photoanodes in electrochemical water splitting and waste water purification. In the present study cold sprayed photoelectrodes produced with WO 3 (active under visible light illumination) and TiO 2 (active under UV illumination) on titanium metal substrates were investigated as photoanodes for the oxidation of water and methanol, respectively. Methanol was chosen as organic model pollutant in acidic electrolytes. Main advantages of the cold sprayed photoelectrodes are the improved metal-semiconductor junctions and the superior mechanical stability. Additionally, the cold spray method can be utilized as a large-scale electrode fabrication technique for photoelectrochemical applications. Incident photon to current efficiencies reveal that cold sprayed TiO 2 /WO 3 photoanodes exhibit the best photoelectrochemical properties with regard to the water and methanol oxidation reactions in comparison with the benchmark photocatalyst Aeroxide TiO 2 P25 due to more efficient harvesting of the total solar light irradiation related to their smaller band gap energies.

  5. A Numerical Comparison of Spray Combustion between Raw and Water-in-Oil Emulsified Fuel

    Directory of Open Access Journals (Sweden)

    D. Tarlet

    2010-03-01

    Full Text Available Heavy fuel-oils, used engine oils and animal fat can be used as dense, viscous combustibles within industrial boilers. Burning these combustibles in the form of an emulsion with water enables to decrease the flame length and the formation of carbonaceous residue, in comparison with raw combustibles. These effects are due to the secondary atomization among the spray, which is a consequence of the micro-explosion phenomenon. This phenomenon acts in a single emulsion droplet by the fast (< 0.1 ms vaporization of the inside water droplets, leading to complete disintegration of the whole emulsion droplet. First, the present work demonstrates a model of spray combustion of raw fuel. Secondly, the spray combustion of water-in-oil emulsified fuel is exposed to the same burning conditions, taking into account the micro-explosion phenomenon. Finally, the comparison between the results with and without second atomization shows some similar qualitative tendencies with experimental measurements from the literature.

  6. 30 CFR 75.1101-1 - Deluge-type water spray systems.

    Science.gov (United States)

    2010-07-01

    ... discharge from the nozzles. (b) Nozzles attached to the branch lines shall be full cone, corrosion resistant and provided with blow-off dust covers. The spray application rate shall not be less than 0.25 gallon...

  7. 14 CFR 29.239 - Spray characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Spray characteristics. 29.239 Section 29... AIRWORTHINESS STANDARDS: TRANSPORT CATEGORY ROTORCRAFT Flight Ground and Water Handling Characteristics § 29.239 Spray characteristics. If certification for water operation is requested, no spray characteristics...

  8. 14 CFR 27.239 - Spray characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Spray characteristics. 27.239 Section 27... AIRWORTHINESS STANDARDS: NORMAL CATEGORY ROTORCRAFT Flight Ground and Water Handling Characteristics § 27.239 Spray characteristics. If certification for water operation is requested, no spray characteristics...

  9. Development of chemistry support programme for algae control in spray pond waters of CIRUS reactor

    International Nuclear Information System (INIS)

    Ramabhadran, S.; Ghosh, S.; Bose, H.

    2008-01-01

    A major problem in any open recirculating cooling water system, is the growth of micro-organisms, especially algae, which adversely affects the efficient and safe operation of the plant. The algae control depends to a great extent, on the selection of an effective algaecide and on the adoption of proper dose and dosing frequency of the algaecide. The present paper describes the development of (i) a generally applicable analytical method for comparing the algicidal efficacies of available commercial algaecides, for the specific local strains of algae in the spray pond waters of CIRUS reactor at Trombay, and (ii) a procedure for assessing 'algicide demand' in open recirculating cooling water systems, which can be used to establish an effective and efficient algae control programme. (author)

  10. Numerical modeling of water spray suppression of conveyor belt fires in a large-scale tunnel.

    Science.gov (United States)

    Yuan, Liming; Smith, Alex C

    2015-05-01

    Conveyor belt fires in an underground mine pose a serious life threat to miners. Water sprinkler systems are usually used to extinguish underground conveyor belt fires, but because of the complex interaction between conveyor belt fires and mine ventilation airflow, more effective engineering designs are needed for the installation of water sprinkler systems. A computational fluid dynamics (CFD) model was developed to simulate the interaction between the ventilation airflow, the belt flame spread, and the water spray system in a mine entry. The CFD model was calibrated using test results from a large-scale conveyor belt fire suppression experiment. Simulations were conducted using the calibrated CFD model to investigate the effects of sprinkler location, water flow rate, and sprinkler activation temperature on the suppression of conveyor belt fires. The sprinkler location and the activation temperature were found to have a major effect on the suppression of the belt fire, while the water flow rate had a minor effect.

  11. Numerical modeling of water spray suppression of conveyor belt fires in a large-scale tunnel

    Science.gov (United States)

    Yuan, Liming; Smith, Alex C.

    2015-01-01

    Conveyor belt fires in an underground mine pose a serious life threat to miners. Water sprinkler systems are usually used to extinguish underground conveyor belt fires, but because of the complex interaction between conveyor belt fires and mine ventilation airflow, more effective engineering designs are needed for the installation of water sprinkler systems. A computational fluid dynamics (CFD) model was developed to simulate the interaction between the ventilation airflow, the belt flame spread, and the water spray system in a mine entry. The CFD model was calibrated using test results from a large-scale conveyor belt fire suppression experiment. Simulations were conducted using the calibrated CFD model to investigate the effects of sprinkler location, water flow rate, and sprinkler activation temperature on the suppression of conveyor belt fires. The sprinkler location and the activation temperature were found to have a major effect on the suppression of the belt fire, while the water flow rate had a minor effect. PMID:26190905

  12. Droplets Behavior of Hollow-Cone Spray in a Non-Condensable Environment

    International Nuclear Information System (INIS)

    Minoru Takahashi; Shin-ichi Kitagawa; Suizheng Qiu

    2002-01-01

    The characteristics of droplets in a water hollow-cone spray from nozzles 1.1 mm and 3.6 mm in diameter in an air environment have been investigated experimentally. The dual phase Doppler anemometry (PDA) system was used to measure the size and two velocity components of individual spherical particles. The liquid spray geometry, including spray breakup length and spray angle were also obtained experimentally. The mechanism and the influence of these parameters on a hollow cone spray flow were described. (authors)

  13. Note: Automatic layer-by-layer spraying system for functional thin film coatings

    Science.gov (United States)

    Seo, Seongmin; Lee, Sangmin; Park, Yong Tae

    2016-03-01

    In this study, we have constructed an automatic spray machine for producing polyelectrolyte multilayer films containing various functional materials on wide substrates via the layer-by-layer (LbL) assembly technique. The proposed machine exhibits advantages in terms of automation, process speed, and versatility. Furthermore, it has several features that allow a fully automated spraying operation, such as various two-dimensional spraying paths, control of the flow rate and operating speed, air-assist fan-shaped twin-fluid nozzles, and an optical display. The robot uniformly sprays aqueous mixtures containing complementary (e.g., oppositely charged, capable of hydrogen bonding, or capable of covalent bonding) species onto a large-area substrate. Between each deposition of opposite species, samples are spray-rinsed with deionized water and blow-dried with air. The spraying, rinsing, and drying areas and times are adjustable by a computer program. Twenty-bilayer flame-retardant thin films were prepared in order to compare the performance of the spray-assisted LbL assembly with a sample produced by conventional dipping. The spray-coated film exhibited a reduction of afterglow time in vertical flame tests, indicating that the spray-LbL technique is a simple method to produce functional thin film coatings.

  14. Residual stress determination in thermally sprayed metallic deposits by neutron diffraction

    International Nuclear Information System (INIS)

    Keller, Thomas; Margadant, Nikolaus; Pirling, Thilo; Riegert-Escribano, Maria J.; Wagner, Werner

    2004-01-01

    Neutron diffraction was used to obtain spatially resolved strain and stress profiles in thermally sprayed metallic 'NiCrAlY' deposits (chemical composition 67 wt.% Ni, 22 wt.% Cr, 10 wt.% Al, 1 wt.% Y) and the underlying steel substrates. Samples of four different spray techniques were analyzed: atmospheric and water stabilized plasma spraying (APS and WSP), flame spraying (FS) and wire arc spraying (WAS). The results are quantitatively compared with the average in-plane residual stress determined by complementary bending tests and the hole drilling technique. While the stress profiles from the surface to the interface in the deposits are similar for all investigated spray techniques, their absolute values and gradients vary strongly. This is attributed to different quenching stresses from the impinging particles, different thermal histories the deposit/substrate systems undergo during the spraying and subsequent cooling, and also to different coating properties. In the water stabilized plasma sprayed and the wire arc sprayed deposits, a gradient in the stress-free lattice parameter was observed. Crack formation is found to be a dominant mechanism for stress relaxation in the surface plane

  15. SprayWall, Cured-In-Placed Method for Manhole Rehabilitation

    OpenAIRE

    ECT Team, Purdue

    2007-01-01

    Manholes and other underground structures commonly account for 25-30 % of infiltration and up to 70% of inflow in sanitary sewer collection systems. These will cause sewer overflow and endanger the nearby environment. SprayWall is a spray-applied, cured-in-place method of construction and is primarily used in manholes. It uses urethane material that provides excellent corrosion resistance. SprayWall is structural and can withstand ground water loads on a long-term basis.

  16. Effect of Spray System on Fission Product Distribution in Containment During a Severe Accident in a Two-Loop Pressurized Water Reactor

    Directory of Open Access Journals (Sweden)

    Mehdi Dehjourian

    2016-08-01

    Full Text Available The containment response during the first 24 hours of a low-pressure severe accident scenario in a nuclear power plant with a two-loop Westinghouse-type pressurized water reactor was simulated with the CONTAIN 2.0 computer code. The accident considered in this study is a large-break loss-of-coolant accident, which is not successfully mitigated by the action of safety systems. The analysis includes pressure and temperature responses, as well as investigation into the influence of spray on the retention of fission products and the prevention of hydrogen combustion in the containment.

  17. GO evaluation of a PWR spray system. Final report

    International Nuclear Information System (INIS)

    Long, W.T.

    1975-08-01

    GO is a reliability analysis methodology developed over the years from 1960 to the present by Kaman Sciences Corporation, Colorado Springs, Colorado. In this report the GO methodology is presented and its application demonstrated by performing a reliability analysis of a conceptual PWR Containment Spray System. Certain numerical results obtained are compared with those of a prior fault tree analysis of the same system as documented in the 11 January 1973 draft report, A Fault Tree Evaluation of a PWR Spray System

  18. Elimination of the containment spray additive for Vogtle electric generating plant

    International Nuclear Information System (INIS)

    Lowery, K.G.

    1995-01-01

    This paper discusses the details for elimination of the spray additive portion of the containment spray system (CSS) in a pressurized water reactor (PWR) power plant. A particular emphasis is placed on nuclear power plant design associated with operation and maintenance (O and M), cost control strategies, and reliability initiatives. The CSS is an engineered safeguard system that functions to reduce reactor containment building pressure and temperature and the quantity of airborne fission products in the containment atmosphere subsequent to a loss-of-coolant accident (LOCA). Pressure and temperature reduction is accomplished by spraying water into the containment building atmosphere. Sodium hydroxide (NaOH) is added to the containment spray water to increase its pH. Results of recent studies on the behavior of fission products in the post-LOCA containment environment have demonstrated that the iodine removal can be effectively performed by boric acid sprays without the NaOH additive and by deposition on the internal surfaces of the containment building. Thus, the NaOH, the SAT, the chemical injection system (eductor) which delivers the additive to the spray system, and the related testing and maintenance required by the Technical Specifications can be eliminated. The NaOH will be replaced by TSP in baskets in the containment sump area. The TSP is needed for pH control during the recirculation phase following a LOCA. The deletion of the requirement for the SAT will result in a reduction of regulatory requirements in that the level of surveillance will be reduced. The safety analysis acceptance limits will still be met

  19. Feasibility of suspension spraying of yttria-stabilized zirconia with water-stabilized plasma torch

    Czech Academy of Sciences Publication Activity Database

    Mušálek, Radek; Bertolissi, Gabriele; Medřický, J.; Kotlan, Jiří; Pala, Zdeněk; Curry, N.

    2015-01-01

    Roč. 268, April (2015), s. 58-62 ISSN 0257-8972. [Rencontres Internationales de la Projection Thermique/6./. Limoges, 11.12.2013-13.12.2013] R&D Projects: GA ČR(CZ) GPP108/12/P552 Institutional support: RVO:61389021 Keywords : Thermal spray coating * Suspension spray ing * Thermal barrier coating * Water-stabilized plasma * High enthalpy plasma Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 2.139, year: 2015 http://www.sciencedirect.com/science/article/pii/S025789721400680X

  20. The Role of Spraying Parameters and Inert Gas Shrouding in Hybrid Water-Argon Plasma Spraying of Tungsten and Copper for Nuclear Fusion Applications

    Czech Academy of Sciences Publication Activity Database

    Matějíček, Jiří; Kavka, Tetyana; Bertolissi, Gabriele; Ctibor, Pavel; Vilémová, Monika; Mušálek, Radek; Nevrlá, Barbara

    2013-01-01

    Roč. 22, č. 5 (2013), s. 744-755 ISSN 1059-9630 R&D Projects: GA MPO FR-TI2/702; GA TA ČR TA01010300 Institutional support: RVO:61389021 Keywords : plasma spraying * tungsten * copper * inert gas shrouding * water-argon plasma torch * gas shroud * hybrid plasma torch * influence of spray parameters * nuclear fusion * oxidation Subject RIV: JG - Metallurgy Impact factor: 1.491, year: 2013 http://link.springer.com/content/pdf/10.1007%2Fs11666-013-9895-x.pdf

  1. SPRAYTRAN USER'S GUIDE: A GIS-BASED ATMOSPHERIC SPRAY DROPLET DISPERSION MODELING SYSTEM

    Science.gov (United States)

    The offsite drift of pesticide from spray operations is an ongoing source of concern. The SPRAY TRANsport (SPRAYTRAN) system, documented in this report, incorporates the near-field spray application model, AGDISP, into a meso-scale atmospheric transport model. The AGDISP model ...

  2. Measurement of Spray Drift with a Specifically Designed Lidar System.

    Science.gov (United States)

    Gregorio, Eduard; Torrent, Xavier; Planas de Martí, Santiago; Solanelles, Francesc; Sanz, Ricardo; Rocadenbosch, Francesc; Masip, Joan; Ribes-Dasi, Manel; Rosell-Polo, Joan R

    2016-04-08

    Field measurements of spray drift are usually carried out by passive collectors and tracers. However, these methods are labour- and time-intensive and only provide point- and time-integrated measurements. Unlike these methods, the light detection and ranging (lidar) technique allows real-time measurements, obtaining information with temporal and spatial resolution. Recently, the authors have developed the first eye-safe lidar system specifically designed for spray drift monitoring. This prototype is based on a 1534 nm erbium-doped glass laser and an 80 mm diameter telescope, has scanning capability, and is easily transportable. This paper presents the results of the first experimental campaign carried out with this instrument. High coefficients of determination (R² > 0.85) were observed by comparing lidar measurements of the spray drift with those obtained by horizontal collectors. Furthermore, the lidar system allowed an assessment of the drift reduction potential (DRP) when comparing low-drift nozzles with standard ones, resulting in a DRP of 57% (preliminary result) for the tested nozzles. The lidar system was also used for monitoring the evolution of the spray flux over the canopy and to generate 2-D images of these plumes. The developed instrument is an advantageous alternative to passive collectors and opens the possibility of new methods for field measurement of spray drift.

  3. Residual stress determination in thermally sprayed metallic deposits by neutron diffraction

    Energy Technology Data Exchange (ETDEWEB)

    Keller, Thomas; Margadant, Nikolaus; Pirling, Thilo; Riegert-Escribano, Maria J.; Wagner, Werner

    2004-05-25

    Neutron diffraction was used to obtain spatially resolved strain and stress profiles in thermally sprayed metallic 'NiCrAlY' deposits (chemical composition 67 wt.% Ni, 22 wt.% Cr, 10 wt.% Al, 1 wt.% Y) and the underlying steel substrates. Samples of four different spray techniques were analyzed: atmospheric and water stabilized plasma spraying (APS and WSP), flame spraying (FS) and wire arc spraying (WAS). The results are quantitatively compared with the average in-plane residual stress determined by complementary bending tests and the hole drilling technique. While the stress profiles from the surface to the interface in the deposits are similar for all investigated spray techniques, their absolute values and gradients vary strongly. This is attributed to different quenching stresses from the impinging particles, different thermal histories the deposit/substrate systems undergo during the spraying and subsequent cooling, and also to different coating properties. In the water stabilized plasma sprayed and the wire arc sprayed deposits, a gradient in the stress-free lattice parameter was observed. Crack formation is found to be a dominant mechanism for stress relaxation in the surface plane.

  4. Preparation of flame sprayed poly(tetrafluoroethylene-co-hexafluoropropylene) coatings and their tribological properties under water lubrication

    International Nuclear Information System (INIS)

    Feng Zhizhong; Xu Haiyan; Yan Fengyuan

    2008-01-01

    Poly(tetrafluoroethylene-co-hexafluoropropylene) (FEP) coatings were prepared on AISI-1045 steel via flame spraying. The chemical changes of the FEP powder occurring during the spraying process were analyzed by means of Fourier transformation infrared spectroscopy. The flame spraying of the FEP powders under the chosen conditions did not lead to structural changes related to degradation and oxidation. The friction and wear behaviors of the FEP coatings sliding against AISI-52100 steel ball under dry- and water-lubricated conditions were investigated using a ball-on-disc test rig, and the worn surface morphologies of the coatings were also observed using the scanning electron microscope. The FEP coatings recorded smaller friction coefficients under water lubrication than under dry sliding. However, the wear rate of the coating under water lubrication was about two times of that under dry sliding. This indicated that water as a lubricant was able to effectively reduce the friction coefficient but it led to an increased wear rate of the FEP coatings/steel sliding pairs. X-ray photoelectron spectroscope (XPS) results illustrate that the transfer film did formed during the dry sliding but it is hindered under water lubrication, and it might be the major cause of the larger wear rate under the water lubrication.

  5. Fault tree analysis on BWR core spray system

    International Nuclear Information System (INIS)

    Watanabe, Norio

    1982-06-01

    Fault Trees which describe the failure modes for the Core Spray System function in the Browns Ferry Nuclear Plant (BWR 1065MWe) were developed qualitatively and quantitatively. The unavailability for the Core Spray System was estimated to be 1.2 x 10 - 3 /demand. It was found that the miscalibration of four reactor pressure sensors or the failure to open of the two inboard valves (FCV 75-25 and 75-53) could reduce system reliability significantly. It was recommended that the pressure sensors would be calibrated independently. The introduction of the redundant inboard valves could improve the system reliability. Thus this analysis method was verified useful for system analysis. The detailed test and maintenance manual and the informations on the control logic circuits of each active component are necessary for further analysis. (author)

  6. A simplified model of aerosol removal by containment sprays

    Energy Technology Data Exchange (ETDEWEB)

    Powers, D.A. (Sandia National Labs., Albuquerque, NM (United States)); Burson, S.B. (Nuclear Regulatory Commission, Washington, DC (United States). Div. of Safety Issue Resolution)

    1993-06-01

    Spray systems in nuclear reactor containments are described. The scrubbing of aerosols from containment atmospheres by spray droplets is discussed. Uncertainties are identified in the prediction of spray performance when the sprays are used as a means for decontaminating containment atmospheres. A mechanistic model based on current knowledge of the physical phenomena involved in spray performance is developed. With this model, a quantitative uncertainty analysis of spray performance is conducted using a Monte Carlo method to sample 20 uncertain quantities related to phenomena of spray droplet behavior as well as the initial and boundary conditions expected to be associated with severe reactor accidents. Results of the uncertainty analysis are used to construct simplified expressions for spray decontamination coefficients. Two variables that affect aerosol capture by water droplets are not treated as uncertain; they are (1) [open quote]Q[close quote], spray water flux into the containment, and (2) [open quote]H[close quote], the total fall distance of spray droplets. The choice of values of these variables is left to the user since they are plant and accident specific. Also, they can usually be ascertained with some degree of certainty. The spray decontamination coefficients are found to be sufficiently dependent on the extent of decontamination that the fraction of the initial aerosol remaining in the atmosphere, m[sub f], is explicitly treated in the simplified expressions. The simplified expressions for the spray decontamination coefficient are given. Parametric values for these expressions are found for median, 10 percentile, and 90 percentile values in the uncertainty distribution for the spray decontamination coefficient. Examples are given to illustrate the utility of the simplified expressions to predict spray decontamination of an aerosol-laden atmosphere.

  7. Eco-friendly spray coating of organic solar cells through water-based nanoparticles ink (Presentation Recording)

    Science.gov (United States)

    Stryckers, Jeroen; D'Olieslaeger, Lien; Manca, Jean; Ethirajan, Anitha; Deferme, Wim

    2015-09-01

    Ultrasonic spray coating is currently proven to be a reliable, flexible and cost efficient fabrication method for printed electronics [1-2]. Ultrasonic nozzles are by design especially well-suited to deposit nano-suspension dispersions. Due to the ultrasonic vibration of the nozzle, droplets having a median diameter of 20 μm are created in a homogeneous droplet cloud and directed towards the substrate. When one prepares an ink having the right wetting properties, thin and homogeneous layers, fully covering the surface, can be achieved. Together with conjugated polymer nanoparticles (NPs), emerging as a new class of nanomaterials, [3] it opens possibilities towards eco-friendly roll-to-roll processing of state-of-the-art organic bulk heterojunction solar cells. A ultrasonic spray coater was used to print the conjugated polymer NP layers under different conditions. A first optimization of the spray coater settings (flow rate, spray speed and temperature) and the ink formulation (water and co-solvent mixture and NP content) was performed for polystyrene particles dissolved in a water-ethanol mixture. As a next step, the low bandgap donor polymer poly[9-(1-octylnonyl)-9H-carbazole-2,7-diyl]-2,5-thiophenediyl-2,1,3-benzothiadiazole-4,7-diyl-2,5-thiophene-diyl] (PCDTBT) [4] and the fullerene acceptor phenyl-C71-butyric acid methyl ester (PCBM[70]) were combined in a water-based blend NP dispersion which was prepared using the mini-emulsion technique. [5,6] Optical Microscopy, profilometry and Scanning Electron Microscopy (SEM) are performed to study the roughness, surface structure, thickness and coverage of the spray coated layers. Finally the printed NP layers are integrated in organic bulk heterojunction solar cells and compared to spin coated reference devices.

  8. Experimental Studies of Spray Deposition on a Flat Surface in a Vacuum Environment

    Science.gov (United States)

    Golliher, Eric L.; Yao, S. C.

    2015-01-01

    Cooling of spacecraft components in the space environment is an on-going research effort. The electronics used in modern spacecraft are always changing and the heat flux is increasing. New, one-of-a-kind missions require new approaches to thermal control. In this research, under vacuum conditions, a pulsed water spray impinged on a small disc, while a high speed data acquisition system recorded the temperature histories of this copper disc. The water droplets froze quickly and accumulated on the disc as the spray continued. After the spray stopped, the frozen water that remained on the disc then sublimated into the vacuum environment and cooled the disc. This paper examines two important aspects of this process: 1) the difference in spray start up and shutdown in a vacuum environment versus in a standard atmospheric pressure environment, and 2) the water utilization efficiency in a vacuum environment due to the effects of drop trajectories and drop bouncing on the surface. Both phenomena play a role during spray cooling in a vacuum. This knowledge should help spacecraft designers plan for spray cooling as an option to cool spacecraft electronics, human metabolic generated heat, and heat from other sources.

  9. Strontium Zirconate TBC Sprayed by a High Feed-Rate Water-Stabilized Plasma Torch

    Science.gov (United States)

    Ctibor, P.; Nevrla, B.; Cizek, J.; Lukac, F.

    2017-12-01

    A novel thermal barrier coating (TBC) material, strontium zirconate SrZrO3, was sprayed by a high feed-rate water-stabilized plasma torch WSP 500. Stainless steel coupons were used as substrates. Coatings with a thickness of about 1.2 mm were produced, whereas the substrates were preheated over 450 °C. The torch worked at 150 kW power and was able to spray SrZrO3 with a high spray rate over 10 kg per hour. Microstructure and microhardness, phase composition, adhesion, thermal conductivity and thermal expansion were evaluated. The coating has low thermal conductivity under 1 W/m K in the interval from room temperature up to 1200 °C. Its crystallite size is slightly over 400 nm and thermal expansion 12.3 µm K-1 in the similar temperature range.

  10. Investigation of Water-spray Cooling of Turbine Blades in a Turbojet Engine

    Science.gov (United States)

    Freche, John C; Stelpflug, William J

    1953-01-01

    An analytical and experimental investigation was made with a J33-A-9 engine to determine the effectiveness of spray cooling as a means of increasing thrust by permitting engine operation at inlet-gas temperatures and speeds above rated. With the assumption of adequate spray cooling at a coolant-to-gas flow ratio of 3 percent, calculations for the sea-level static condition indicated a thrust may be achieved by engine operation at an inlet-gas temperature of 2000 degrees F and an overspeed of 10 percent. Of the water-injection configurations investigated experimentally, those located in the inner ring of the stator diaphragm provided the best cooling at rated engine speed.

  11. Status of emergency spray modelling in the integral code ASTEC

    International Nuclear Information System (INIS)

    Plumecocq, W.; Passalacqua, R.

    2001-01-01

    Containment spray systems are emergency systems that would be used in very low probability events which may lead to severe accidents in Light Water Reactors. In most cases, the primary function of the spray would be to remove heat and condense steam in order to reduce pressure and temperature in the containment building. Spray would also wash out fission products (aerosols and gaseous species) from the containment atmosphere. The efficiency of the spray system in the containment depressurization as well as in the removal of aerosols, during a severe accident, depends on the evolution of the spray droplet size distribution with the height in the containment, due to kinetic and thermal relaxation, gravitational agglomeration and mass transfer with the gas. A model has been developed taking into account all of these phenomena. This model has been implemented in the ASTEC code with a validation of the droplets relaxation against the CARAIDAS experiment (IPSN). Applications of this modelling to a PWR 900, during a severe accident, with special emphasis on the effect of spray on containment hydrogen distribution have been performed in multi-compartment configuration with the ASTEC V0.3 code. (author)

  12. Spray characteristics and spray cooling heat transfer in the non-boiling regime

    International Nuclear Information System (INIS)

    Cheng, Wen-Long; Han, Feng-Yun; Liu, Qi-Nie; Fan, Han-Lin

    2011-01-01

    Spray cooling is an effective method for dissipating high heat fluxes in the field of electronics thermal control. In this study, experiments were performed with distilled water as a test liquid to study the spray cooling heat transfer in non-boiling regime. A Phase Doppler Anemometry (PDA) was used to study the spray characteristics. The effects of spray flow rate, spray height, and inlet temperature on spray cooling heat transfer were investigated. It was found that the parameters affect heat transfer of spray cooling in non-boiling regime by the spray characteristics and working fluid thermophysical properties. Then the corresponding droplet axial velocity and Sauter mean diameter (SMD) were successfully correlated with mean absolute error of 15%, which were based upon the orifice diameter, the Weber and Reynolds numbers of the orifice flow prior to liquid breakup, dimensionless spray height and spray cross-section radius. The heat transfer in non-boiling regime was correlated with a mean absolute error of 7%, which was mainly associated with the working fluid thermophysical properties, the Weber and Reynolds numbers hitting the heating surface, dimensionless heating surface temperature and diameter. -- Highlights: → The spray flow rate, spray height, and inlet temperature affect heat transfer of spray cooling in non-boiling regime by the spray characteristics and the working fluid thermophysical properties. → Then the corresponding droplet axial velocity and Sauer mean diameter (SMD) were successfully correlated with mean absolute error of 15%. → The heat transfer in non-boiling regime was correlated with a mean absolute error of 7%.

  13. Development of spraying methods for high density bentonite barriers. Part 3. Field investigation of spraying methods

    International Nuclear Information System (INIS)

    Tanaka, Toshiyuki; Nakajima, Makoto; Kobayashi, Ichizo; Toida, Masaru; Fukuda, Katsumi; Sato, Tatsuro; Nonaka, Katsumi; Gozu, Keisuke

    2007-01-01

    The authors have developed a new method of constructing high density bentonite barriers by means of a wet spraying method. Using this method, backfill material can be placed in narrow upper and side parts in a low-level radioactive waste disposal facility. Using a new supplying machine for bentonite, spraying tests were conducted to investigate the conditions during construction. On the basis of the test results, the various parameters for the spraying method were investigated. The test results are summarized as follows: 1. The new machine supplied about twice the weight of material supplied by a screw conveyor. A dry density of spraying bentonite 0.05 Mg/m 3 higher than that of a screw conveyor with the same water content could be achieved. 2. The dry density of sprayed bentonite at a boundary with concrete was the same as that at the center of the cross section. 3. The variation in densities of bentonite sprayed in the vertical downward and horizontal directions was small. Also, density reduction due to rebound during spraying was not seen. 4. Bentonite controlled by water content could be sprayed smoothly in the horizontal direction by a small machine. Also rebound could be collected by a machine conveying air. (author)

  14. Antibacterial characteristics of thermal plasma spray system.

    Science.gov (United States)

    Goudarzi, M; Saviz, Sh; Ghoranneviss, M; Salar Elahi, A

    2018-03-15

    The objective of this study is to investigate antibacterial characteristics of a thermal plasma spray system. For this purpose, copper powder was coated on a handmade atmospheric plasma spraying system made by the stainless steel 316 substrate, which is preheated at different temperatures before spraying. A number of deposition characteristics such as antibacterial characteristics, adhesion strength and hardness of coating, was investigated. All of the spray parameters are fixed except the substrate temperature. The chemical composition was analyzed by X-ray diffraction (XRD). A scanning electron microscopy (SEM) and back scattering electron microscopy (BSE) were used to show the coating microstructure, its thickness and also the powder micrograph. The energy dispersive X-ray spectroscopy (EDX) was used to analyze the coating particles. Hardness of the deposition was examined by Vickers tester (HV0.1). Its adhesion strength was declared by cross cut tester (TQC). In addition, the percentage of bactericidal coating was evidenced with Staphylococcus aurous and Escherichia coli bacteria. Study results show that as the substrates temperature increases, the number of splats in the shape of pancake increases, the greatness and percentage of the deposition porosity both decrease. The increment of the substrate temperature leads to more oxidation and makes thicker dendrites on the splat. The enhancement of the substrate temperature also enlarges thickness and efficiency of coating. The interesting results are that antibacterial properties of coatings against the Escherichia coli are more than Staphylococcus aurous bacteria. However the bactericidal percentage of the coatings against Staphylococcus aurous and Escherichia coli bacteria roughly does not change with increasing the substrate temperature. Furthermore, by increment of the substrate temperature, coatings with both high adhesion and hardness are obtained. Accordingly, the temperature of substrate can be an

  15. Comparison of the CAS-POL and IOM samplers for determining the knockdown efficiencies of water sprays on float coal dust.

    Science.gov (United States)

    Seaman, Clara E; Shahan, Michael R; Beck, Timothy W; Mischler, Steven E

    2018-03-01

    Float coal dust, generated by mining operations, is distributed throughout mine airways by ventilating air designed to purge gases and respirable dust. Float coal dust poses an explosion hazard in the event of a methane ignition. Current regulation requires the application of inert rock dust in areas subjected to float coal dust in order to mitigate the hazard. An alternate method using water sprays, which have been effective in controlling respirable dust hazards, has been proposed as a way to control float coal dust generated on longwall faces. However, the knockdown efficiency of the proposed water sprays on float coal dust needs to be verified. This study used gravimetric isokinetic Institute of Occupational Medicine (IOM) samplers alongside a real-time aerosol monitor (Cloud Aerosol Spectrometer with polarization; CAS-POL) to study the effects of spray type, operating pressure, and spray orientation on knockdown efficiencies for seven different water sprays. Because the CAS-POL has not been used to study mining dust, the CAS-POL measurements were validated with respect to the IOM samplers. This study found that the CAS-POL was able to resolve the same trends measured by the IOM samplers, while providing additional knockdown information for specific particle size ranges and locations in the test area. In addition, the CAS-POL data was not prone to the same process errors, which may occur due to the handling of the IOM filter media, and was able to provide a faster analysis of the data after testing. This study also determined that pressure was the leading design criteria influencing spray knockdown efficiency, with spray type also having some effect and orientation having little to no effect. The results of this study will be used to design future full-scale float coal dust capture tests involving multiple sprays, which will be evaluated using the CAS-POL.

  16. Detachment of sprayed colloidal copper oxychloride-metalaxyl fungicides by a shallow water flow.

    Science.gov (United States)

    Pose-Juan, Eva; Paradelo-Pérez, Marcos; Rial-Otero, Raquel; Simal-Gándara, Jesus; López-Periago, José E

    2009-06-01

    Flow shear stress induced by rainfall promotes the loss of the pesticides sprayed on crops. Some of the factors influencing the losses of colloidal-size particulate fungicides are quantified by using a rotating shear system model. With this device it was possible to analyse the flow shear influencing washoff of a commercial fungicide formulation based on a copper oxychloride-metalaxyl mixture that was sprayed on a polypropylene surface. A factor plan with four variables, i.e. water speed and volume (both variables determining flow boundary stress in the shear device), formulation dosage and drying temperature, was set up to monitor colloid detachment. This experimental design, together with sorption experiments of metalaxyl on copper oxychloride, and the study of the dynamics of metalaxyl and copper oxychloride washoff, made it possible to prove that metalaxyl washoff from a polypropylene surface is controlled by transport in solution, whereas that of copper oxychloride occurs by particle detachment and transport of particles. Average losses for metalaxyl and copper oxychloride were, respectively, 29 and 50% of the quantity applied at the usual recommended dosage for crops. The key factors affecting losses were flow shear and the applied dosage. Empirical models using these factors provided good estimates of the percentage of fungicide loss. From the factor analysis, the main mechanism for metalaxyl loss induced by a shallow water flow is solubilisation, whereas copper loss is controlled by erosion of copper oxychloride particles.

  17. Sea Spray Aerosols

    DEFF Research Database (Denmark)

    Butcher, Andrew Charles

    emissions produced directly from bubble bursting as the result of air entrainment from breaking waves and particles generated from secondary emissions of volatile organic compounds. In the first paper, we study the chemical properties of particles produced from several sea water proxies with the use...... of a cloud condensation nuclei ounter. Proxy solutions with high inorganic salt concentrations and some organics produce sea spray aerosol particles with little change in cloud condensation activity relative to pure salts. Comparison is made between a frit based method for bubble production and a plunging...... a relationship between plunging jet particle ux, oceanic particle ux, and energy dissipation rate in both systems. Previous sea spray aerosol studies dissipate an order of magnitude more energy for the same particle ux production as the open ocean. A scaling factor related to the energy expended in air...

  18. Numerical model of sprayed air cooled condenser coupled to refrigerating system

    International Nuclear Information System (INIS)

    Youbi-Idrissi, M.; Macchi-Tejeda, H.; Fournaison, L.; Guilpart, J.

    2007-01-01

    Because of technological, economic and environmental constraints, many refrigeration and air conditioning units are equipped with a simple air cooled condenser. Spraying the condenser seems to be an original solution to improve the energetic performances of such systems. To characterise this energetic benefit, a semi-local mathematical model was developed and applied to a refrigerating machine with and without spraying its air cooled condenser. It is found that, compared to a dry air cooled condenser, both the calorific capacity and machine COP increase by 13% and 55%, respectively. Furthermore, the model shows that a spray flow rate threshold occurs. It should not be exceeded to assure an effective and rational spray use

  19. Experiments and modeling of discharge characteristics in water-mist sprays generated by pressure-swirl atomizers

    Science.gov (United States)

    Santangelo, Paolo E.

    2012-12-01

    Pressure-swirl atomizers are often employed to generate a water-mist spray, typically employed in fire suppression. In the present study, an experimental characterization of dispersion (velocity and cone angle) and atomization (drop-size axial evolution) was carried out following a previously developed methodology, with specific reference to the initial region of the spray. Laser-based techniques were used to quantitatively evaluate the considered phenomena: velocity field was reconstructed through a Particle Image Velocimetry analysis; drop-size distribution was measured by a Malvern Spraytec device, highlighting secondary atomization and subsequent coalescence along the spray axis. Moreover, a comprehensive set of relations was validated as predictive of the involved parameters, following an inviscid-fluid approach. The proposed model pertains to early studies on pressure-swirl atomizers and primarily yields to determine both initial velocity and cone angle. The spray thickness is also predicted and a classic correlation for Sauter Mean Diameter is shown to provide good agreement with experimental results. The analysis was carried out at the operative pressure of 80 bar; two injectors were employed featuring different orifice diameters and flow numbers, as a sort of parametric approach to this spray typology.

  20. Programmable Ultrasonic Sensing System for Targeted Spraying in Orchards

    Directory of Open Access Journals (Sweden)

    Marko Hočevar

    2012-11-01

    Full Text Available This research demonstrates the basic elements of a prototype automated orchard sprayer which delivers pesticide spray selectively with respect to the characteristics of the targets. The density of an apple tree canopy was detected by PROWAVE 400EP250 ultrasound sensors controlled by a Cypress PSOC CY8C29466 microcontroller. The ultrasound signal was processed with an embedded computer built around a LPC1343 microcontroller and fed in real time to electro-magnetic valves which open/close spraying nozzles in relation to the canopy structure. The analysis focuses on the detection of appropriate thresholds on 15 cm ultrasound bands, which correspond to maximal response to tree density, and this was selected for accurate spraying guidance. Evaluation of the system was performed in an apple orchard by detecting deposits of tartrazine dye (TD on apple leaves. The employment of programmable microcontrollers and electro-magnetic valves decreased the amount of spray delivered by up to 48.15%. In contrast, the reduction of TD was only up to 37.7% at some positions within the tree crown and 65.1% in the gaps between trees. For all these reasons, this concept of precise orchard spraying can contribute to a reduction of costs and environmental pollution, while obtaining similar or even better leaf deposits.

  1. Programmable Ultrasonic Sensing System for Targeted Spraying in Orchards

    Science.gov (United States)

    Stajnko, Denis; Berk, Peter; Lešnik, Mario; Jejčič, Viktor; Lakota, Miran; Štrancar, Andrej; Hočevar, Marko; Rakun, Jurij

    2012-01-01

    This research demonstrates the basic elements of a prototype automated orchard sprayer which delivers pesticide spray selectively with respect to the characteristics of the targets. The density of an apple tree canopy was detected by PROWAVE 400EP250 ultrasound sensors controlled by a Cypress PSOC CY8C29466 microcontroller. The ultrasound signal was processed with an embedded computer built around a LPC1343 microcontroller and fed in real time to electro-magnetic valves which open/close spraying nozzles in relation to the canopy structure. The analysis focuses on the detection of appropriate thresholds on 15 cm ultrasound bands, which correspond to maximal response to tree density, and this was selected for accurate spraying guidance. Evaluation of the system was performed in an apple orchard by detecting deposits of tartrazine dye (TD) on apple leaves. The employment of programmable microcontrollers and electro-magnetic valves decreased the amount of spray delivered by up to 48.15%. In contrast, the reduction of TD was only up to 37.7% at some positions within the tree crown and 65.1% in the gaps between trees. For all these reasons, this concept of precise orchard spraying can contribute to a reduction of costs and environmental pollution, while obtaining similar or even better leaf deposits. PMID:23202220

  2. Experiments on the spray nozzles used in the pressurizer of power reactor

    International Nuclear Information System (INIS)

    Diao Wentang

    1989-04-01

    The spray nozzle, which is used in the pressurizer of pressurized water reactor system, usually uses a less differential pressure between the reactor inlet and outlet as the spray drive pressure, but its flow rate is relatively larger. It is difficult to obtain a optimum spray performance of such a nozzle. The experimental results of five types of twenty seven spray nozzles in different structures and sizes with the range of the spray drive pressure from 0.127 to 0.245 MPa and the flow rates from 5 to 50 t/h are given. The main factors affecting spray performances and their distribution characteristics have been found. And some relatively suitable spray structures have been recommended, which can be used as references for improving the spray nozzles used in the pressurizers of existing PWRs or of the PWRs to be built

  3. Regimes of spray formation in gas-centered swirl coaxial atomizers

    Energy Technology Data Exchange (ETDEWEB)

    Sivakumar, D.; Kulkarni, V. [Indian Institute of Science, Department of Aerospace Engineering, Bangalore (India)

    2011-09-15

    Spray formation in ambient atmosphere from gas-centered swirl coaxial atomizers is described by carrying out experiments in a spray test facility. The atomizer discharges a circular air jet and an axisymmetric swirling water sheet from its coaxially arranged inner and outer orifices. A high-speed digital imaging system along with a backlight illumination arrangement is employed to record the details of liquid sheet breakup and spray development. Spray regimes exhibiting different sheet breakup mechanisms are identified and their characteristic features presented. The identified spray regimes are wave-assisted sheet breakup, perforated sheet breakup, segmented sheet breakup, and pulsation spray regime. In the regime of wave-assisted sheet breakup, the sheet breakup shows features similar to the breakup of two-dimensional planar air-blasted liquid sheets. At high air-to-liquid momentum ratios, the interaction process between the axisymmetric swirling liquid sheet and the circular air jet develops spray processes which are more specific to the atomizer studied here. The spray exhibits a periodic ejection of liquid masses whose features are dominantly controlled by the central air jet. (orig.)

  4. Determine spray droplets on water sensitive paper (WSP) for low pressure deflector nozzle using image J

    Science.gov (United States)

    Sies, M. F.; Madzlan, N. F.; Asmuin, N.; Sadikin, A.; Zakaria, H.

    2017-09-01

    In this study, determine of spray droplets size (SMD) using water sensitive paper (WSP) at low fluid pressure with deflector nozzle or tangential flow nozzle model Delavan AL75 and New Design Nozzle with two different type of swirl (ND2.5 A1.0 & ND2.5 B1.0). These three deflected flat sprays have used at different liquid mixing ratio. These liquid mixture ratios are pure water, 10% of lime juice + 90% of water (L10W90) and 30% of lime juice + 70% of water (L30W70). WSP is used to collect the spray droplets from nozzles. The operational liquid pressure of each nozzle is 3 bar, while air operational pressures are 3 bar and 6 bar. Then, the WSP were scanned using scanner then it was analyzed using ImageJ software. ImageJ can be used for determining the diameter of droplets size on the WSP. As the results from an experiment, the AL75 nozzle recorded the lowest Sauter mean diameter which is 193.69μm at 6 bar of pressurized air while ND2.5 A1.0 recorded the highest Sauter mean diameter which is 353.61µm at 3 bar of pressurized air. Summary from the experiment shows that the higher of droplet size is because of the lower air pressure (3 Bar). Then, increasing of liquid viscosity also increase the SMD. The orifice diameter for New Design nozzle (ND-2.5) is smaller than AL75, which are 2.5mm and 2.8mm respectively. The different nozzle design also gives effect the SMD. WSP is an alternative method to determine SMD for spray droplets with the low cost if compared to Phase Doppler Anemometry (PDA).

  5. Thermal spray for commercial shipbuilding

    Science.gov (United States)

    Rogers, F. S.

    1997-09-01

    Thermal spraying of steel with aluminum to protect it from corrosion is a technology that has been proven to work in the marine environment. The thermal spray coating system includes a paint sealer that is applied over the thermally sprayed aluminum. This extends the service life of the coating and provides color to the end product. The thermal spray system protects steel both through the principle of isolation (as in painting) and galvanizing. With this dual protection mechanism, steel is protected from corrosion even when the coating is damaged. The thermal- sprayed aluminum coating system has proved the most cost- effective corrosion protection system for the marine environment. Until recently, however, the initial cost of application has limited its use for general application. Arc spray technology has reduced the application cost of thermal spraying of aluminum to below that of painting. Commercial shipbuilders could use this technology to enhance their market position in the marine industry.

  6. Numerical case studies of vertical wall fire protection using water spray

    Directory of Open Access Journals (Sweden)

    L.M. Zhao

    2014-11-01

    Full Text Available Studies of vertical wall fire protection are evaluated with numerical method. Typical fire cases such as heated dry wall and upward flame spread have been validated. Results predicted by simulations are found to agree with experiment results. The combustion behavior and flame development of vertical polymethylmethacrylate slabs with different water flow rates are explored and discussed. Water spray is found to be capable of strengthening the fire resistance of combustible even under high heat flux radiation. Provided result and data are expected to provide reference for fire protection methods design and development of modern buildings.

  7. Spray-on transdermal drug delivery systems.

    Science.gov (United States)

    Ibrahim, Sarah A

    2015-02-01

    Transdermal drug delivery possesses superior advantages over other routes of administration, particularly minimizing first-pass metabolism. Transdermal drug delivery is challenged by the barrier nature of skin. Numerous technologies have been developed to overcome the relatively low skin permeability, including spray-on transdermal systems. A transdermal spray-on system (TSS) usually consists of a solution containing the drug, a volatile solvent and in many cases a chemical penetration enhancer. TSS promotes drug delivery via the complex interplay between solvent evaporation and drug-solvent drag into skin. The volatile solvent carries the drug into the upper layers of the stratum corneum, and as the volatile solvent evaporates, an increase in the thermodynamic activity of the drug occurs resulting in an increased drug loading in skin. TSS is easily applied, delivering flexible drug dosage and associated with lower incidence of skin irritation. TSS provides a fast-drying product where the volatile solvent enables uniform drug distribution with minimal vehicle deposition on skin. TSS ensures precise dose administration that is aesthetically appealing and eliminates concerns of residual drug associated with transdermal patches. Furthermore, it provides a better alternative to traditional transdermal products due to ease of product development and manufacturing.

  8. Hard tissue ablation with a spray-assisted mid-IR laser

    International Nuclear Information System (INIS)

    Kang, H W; Rizoiu, I; Welch, A J

    2007-01-01

    The objective of this study was to understand the dominant mechanism(s) for dental enamel ablation with the application of water spray. A free-running Er,Cr:YSGG (yttrium, scandium, gallium, garnet) laser was used to ablate human enamel tissue at various radiant exposures. During dental ablation, distilled water was sprayed on the sample surface, and these results were compared to ablation without a spray (dry ablation). In order to identify dominant ablation mechanisms, transient acoustic waves were compared to ablation thresholds and the volume of material removed. The ablation profile and depth were measured using optical coherence tomography (OCT). Irregular surface modification, charring and peripheral cracks were associated with dry ablation, whereas craters for spray samples were relatively clean without thermal damage. In spite of a 60% higher ablation threshold for spray associated irradiations owing to water absorption, acoustic peak pressures were six times higher and ablation volume was up to a factor of 2 larger compared to dry ablation. The enhanced pressure and ablation performance of the spray-assisted process was the result of rapid water vaporization, material ejection with recoil stress, interstitial water explosion and possibly liquid-jet formation. With water cooling and abrasive/disruptive mechanical effects, the spray ablation can be a safe and efficient modality for dental treatment

  9. Hard tissue ablation with a spray-assisted mid-IR laser

    Science.gov (United States)

    Kang, H. W.; Rizoiu, I.; Welch, A. J.

    2007-12-01

    The objective of this study was to understand the dominant mechanism(s) for dental enamel ablation with the application of water spray. A free-running Er,Cr:YSGG (yttrium, scandium, gallium, garnet) laser was used to ablate human enamel tissue at various radiant exposures. During dental ablation, distilled water was sprayed on the sample surface, and these results were compared to ablation without a spray (dry ablation). In order to identify dominant ablation mechanisms, transient acoustic waves were compared to ablation thresholds and the volume of material removed. The ablation profile and depth were measured using optical coherence tomography (OCT). Irregular surface modification, charring and peripheral cracks were associated with dry ablation, whereas craters for spray samples were relatively clean without thermal damage. In spite of a 60% higher ablation threshold for spray associated irradiations owing to water absorption, acoustic peak pressures were six times higher and ablation volume was up to a factor of 2 larger compared to dry ablation. The enhanced pressure and ablation performance of the spray-assisted process was the result of rapid water vaporization, material ejection with recoil stress, interstitial water explosion and possibly liquid-jet formation. With water cooling and abrasive/disruptive mechanical effects, the spray ablation can be a safe and efficient modality for dental treatment.

  10. Dissolution enhancement of a poorly water-soluble antimalarial drug by means of a modified multi-fluid nozzle pilot spray drier

    International Nuclear Information System (INIS)

    Sahoo, Nanda Gopal; Kakran, Mitali; Li Lin; Judeh, Zaher; Mueller, Rainer H.

    2011-01-01

    A spray drier with a modified multi-fluid nozzle was used to prepare microparticles of a poorly water-soluble antimalarial drug, artemisinin (ART), with the aim of improving its dissolution in water. ART was co-spray dried with a hydrophilic polymer, polyethylene glycol (PEG). The differential scanning calorimetry and X-ray diffraction studies showed that the crystallinity of ART decreased after spray drying. Compared to the physical mixture of ART and PEG, the amorphous phase of ART in the spray dried ART-PEG composites increased, which depended on the weight ratio of drug to polymer. The phase-solubility studies revealed that the aqueous solubility of ART was improved by the presence of PEG. The dissolution of ART from the spray dried ART-PEG composites was more rapid than that from their respective physical mixture and the original ART powder. For example, the dissolution of ART from the spray dried ART-PEG composite (1:6) was 6.5 times higher than that from the original ART powder in the first 30 min. In the mathematical modeling, the Weibull and Korsemeyer-Peppas models were found to best fit to the in vitro dissolution data and then the drug release mechanism was considered as the Fickian diffusion.

  11. Fabrication of Water Jet Resistant and Thermally Stable Superhydrophobic Surfaces by Spray Coating of Candle Soot Dispersion.

    Science.gov (United States)

    Qahtan, Talal F; Gondal, Mohammed A; Alade, Ibrahim O; Dastageer, Mohammed A

    2017-08-08

    A facile synthesis method for highly stable carbon nanoparticle (CNP) dispersion in acetone by incomplete combustion of paraffin candle flame is presented. The synthesized CNP dispersion is the mixture of graphitic and amorphous carbon nanoparticles of the size range of 20-50 nm and manifested the mesoporosity with an average pore size of 7 nm and a BET surface area of 366 m 2 g -1 . As an application of this material, the carbon nanoparticle dispersion was spray coated (spray-based coating) on a glass surface to fabricate superhydrophobic (water contact angle > 150° and sliding angle fabricated from direct candle flame soot deposition (candle-based coating). This study proved that water jet resistant and thermally stable superhydrophobic surfaces can be easily fabricated by simple spray coating of CNP dispersion gathered from incomplete combustion of paraffin candle flame and this technique can be used for different applications with the potential for the large scale fabrication.

  12. SPRAYTRAN 1.0 User’s Guide: A GIS-Based Atmospheric Spray Droplet Dispersion Modeling System

    Energy Technology Data Exchange (ETDEWEB)

    Allwine, K Jerry; Rutz, Frederick C.; Droppo, James G.; Rishel, Jeremy P.; Chapman, Elaine G.; Bird, S. L.; Thistle, Harold W.

    2006-09-20

    SPRAY TRANsport (SPRAYTRAN) is a comprehensive dispersion modeling system that is used to simulate the offsite drift of pesticides from spray applications. SPRAYTRAN functions as a console application within Environmental System Research Institute’s ArcMap Geographic Information System (Version 9.x) and integrates the widely-used, U.S. Environmental Protection Agency (EPA)-approved CALifornia PUFF (CALPUFF) dispersion model and model components to simulate longer-range transport and diffusion in variable terrain and spatially/temporally varying meteorological (e.g., wind) fields. Area sources, which are used to define spray blocks in SPRAYTRAN, are initialized using output files generated from a separate aerial-spray-application model called AGDISP (AGricultural DISPersal). The AGDISP model is used for estimating the amount of pesticide deposited to the spray block based on spraying characteristics (e.g., pesticide type, spray nozzles, and aircraft type) and then simulating the near-field (less than 300-m) drift from a single pesticide application. The fraction of pesticide remaining airborne from the AGDISP near-field simulation is then used by SPRAYTRAN for simulating longer-range (greater than 300 m) drift and deposition of the pesticide.

  13. Containment atmosphere response to external sprays

    International Nuclear Information System (INIS)

    Green, J.; Almenas, K.

    1995-01-01

    The application of external sprays to a containment steel shell can be an effective energy removal method and has been proposed in the passive AP-600 design. Reduction of the steel shell temperature in contact with the containment atmosphere enhances both heat and mass transfer driving forces. Large scale experimental data in this area is scarce, therefore the measurements obtained from the E series tests conducted at the German HDR facility deserve special attention. These long term tests simulated various severe accident conditions, including external spraying of the hemispherical steel shell. This investigation focuses upon the integral response of the HDR containment atmosphere during spray periods and upon methods by which lumped parameter system codes, like CONTAIN, model the underlying condensation phenomena. Increases in spray water flowrates above a minimum value were ineffective at improving containment pressure reduction since the limiting resistance for energy transfer lies in the noncondensable-vapor boundary layer at the inner condensing surface. The spray created an unstable condition by cooling the upper layers of a heated atmosphere and thus inducing global natural circulation flows in the facility and subsequently, abrupt changes in lighter-than-air noncondensable (J 2 /He) concentrations. Modeling results using the CONTAIN code are outlined and code limitations are delineated

  14. Containment atmosphere response to external sprays

    Energy Technology Data Exchange (ETDEWEB)

    Green, J.; Almenas, K. [Univ. of Maryland, College Park, MD (United States)

    1995-09-01

    The application of external sprays to a containment steel shell can be an effective energy removal method and has been proposed in the passive AP-600 design. Reduction of the steel shell temperature in contact with the containment atmosphere enhances both heat and mass transfer driving forces. Large scale experimental data in this area is scarce, therefore the measurements obtained from the E series tests conducted at the German HDR facility deserve special attention. These long term tests simulated various severe accident conditions, including external spraying of the hemispherical steel shell. This investigation focuses upon the integral response of the HDR containment atmosphere during spray periods and upon methods by which lumped parameter system codes, like CONTAIN, model the underlying condensation phenomena. Increases in spray water flowrates above a minimum value were ineffective at improving containment pressure reduction since the limiting resistance for energy transfer lies in the noncondensable-vapor boundary layer at the inner condensing surface. The spray created an unstable condition by cooling the upper layers of a heated atmosphere and thus inducing global natural circulation flows in the facility and subsequently, abrupt changes in lighter-than-air noncondensable (J{sub 2}/He) concentrations. Modeling results using the CONTAIN code are outlined and code limitations are delineated.

  15. ROTARY SPRAY DUSTER

    Directory of Open Access Journals (Sweden)

    E. S. Nechaeva

    2013-01-01

    Full Text Available Results of researches of hydraulic resistance, ablation of splashes and efficiency of dedusting in the rotor spray dust collector are given. Influence of frequency of rotation of the spray, the specified speed of gas and diameter of spattering holes on hydraulic resistance, size ablation of splashes and efficiency of a dedusting the device by diameter 0,25 m is investigated. As model liquid water is used. Results of mathematical processing are presented.

  16. Deposition of Coating to Protect Waste Water Reservoir in Acidic Solution by Arc Thermal Spray Process

    Directory of Open Access Journals (Sweden)

    Han-Seung Lee

    2018-01-01

    Full Text Available The corrosion characteristics of 304 stainless steel (SS and titanium (Ti coatings deposited by the arc thermal spray process in pH 4 solution were assessed. The Ti-sprayed coating exhibits uniform, less porous, and adherent coating morphology compared to the SS-sprayed coating. The electrochemical study, that is, electrochemical impedance spectroscopy (EIS, revealed that as exposure periods to solution were increased, the polarization resistance (Rp decreased and the charge transfer resistance (Rct increased owing to corrosion of the metallic surface and simultaneously at the same time the deposition of oxide films/corrosion on the SS-sprayed surface, while Ti coating transformed unstable oxides into the stable phase. Potentiodynamic studies confirmed that both sprayed coatings exhibited passive tendency attributed due to the deposition of corrosion products on SS samples, whereas the Ti-sprayed sample formed passive oxide films. The Ti coating reduced the corrosion rate by more than six times compared to the SS coating after 312 h of exposure to sulfuric acid- (H2SO4- contaminated water solution, that is, pH 4. Scanning electron microscope (SEM results confirmed the uniform and globular morphology of the passive film on the Ti coating resulting in reduced corrosion. On the other hand, the corrosion products formed on SS-sprayed coating exhibit micropores with a net-like microstructure. X-ray diffraction (XRD revealed the presence of the composite oxide film on Ti-sprayed samples and lepidocrocite (γ-FeOOH on the SS-coated surface. The transformation of TiO and Ti3O into TiO2 (rutile and anatase and Ti3O5 after 312 h of exposure to H2SO4 acid reveals the improved corrosion resistance properties of Ti-sprayed coating.

  17. Development of Cold Spray Coatings for Accident-Tolerant Fuel Cladding in Light Water Reactors

    Science.gov (United States)

    Maier, Benjamin; Yeom, Hwasung; Johnson, Greg; Dabney, Tyler; Walters, Jorie; Romero, Javier; Shah, Hemant; Xu, Peng; Sridharan, Kumar

    2018-02-01

    The cold spray coating process has been developed at the University of Wisconsin-Madison for the deposition of oxidation-resistant coatings on zirconium alloy light water reactor fuel cladding with the goal of improving accident tolerance during loss of coolant scenarios. Coatings of metallic (Cr), alloy (FeCrAl), and ceramic (Ti2AlC) materials were successfully deposited on zirconium alloy flats and cladding tube sections by optimizing the powder size, gas preheat temperature, pressure and composition, and other process parameters. The coatings were dense and exhibited excellent adhesion to the substrate. Evaluation of the samples after high-temperature oxidation tests at temperatures up to 1300°C showed that the cold spray coatings significantly mitigate oxidation kinetics because of the formation of thin passive oxide layers on the surface. The results of the study indicate that the cold spray coating process is a viable near-term option for developing accident-tolerant zirconium alloy fuel cladding.

  18. Optical fuel spray measurements

    Energy Technology Data Exchange (ETDEWEB)

    Hillamo, H.

    2011-07-01

    Diesel fuel sprays, including fuel/air mixing and the physics of two-phase jet formation, are discussed in the thesis. The fuel/air mixing strongly affects emissions formation in spray combustion processes where the local combustion conditions dictate the emission formation. This study comprises optical measurements both in pressurized spray test rigs and in a running engine.The studied fuel injection was arranged with a common rail injection system and the injectors were operated with a solenoid-based injection valve. Both marine and heavy-duty diesel engine injectors were used in the study. Optical fuel spray measurements were carried out with a laser-based double-framing camera system. This kind of equipments is usually used for flow field measurements with Particle Image Velocimetry technique (PIV) as well as for backlight imaging. Fundamental fuel spray properties and spray formation were studied in spray test rigs. These measurements involved studies of mixing, atomization, and the flow field. Test rig measurements were used to study the effect of individual injection parameters and component designs. Measurements of the fuel spray flow field, spray penetration, spray tip velocity, spray angle, spray structure, droplet accumulation, and droplet size estimates are shown. Measurement campaign in a running optically accessible large-bore medium-speed engine was also carried out. The results from engine tests were compared with equivalent test rig measurements, as well as computational results, to evaluate the level of understanding of sprays. It was shown that transient spray has an acceleration and a deceleration phase. Successive flow field measurements (PIV) in optically dense diesel spray resulted in local and average velocity data of diesel sprays. Processing fuel spray generates a flow field to surrounding gas and entrainment of surrounding gas into fuel jet was also seen at the sides of the spray. Laser sheet imaging revealed the inner structure of diesel

  19. Integrated thermal control and system assessment in plug-chip spray cooling enclosure

    International Nuclear Information System (INIS)

    Zhang, Wei-Wei; Cheng, Wen-Long; Shao, Shi-Dong; Jiang, Li-Jia; Hong, Da-Liang

    2016-01-01

    Highlights: • A novel multi-heat source plug-chip spray cooling enclosure was designed. • Enhanced surfaces with different geometric were analyzed in integrated enclosure. • Overall thermal control with adjustable parameters in enclosure was studied. • Temperature disequilibrium of multi-heat source in enclosure was tested. • A comprehensive assessment system used to evaluate the practicality was proposed. - Abstract: Practical and integrated spray cooling system is urgently needed for the cooling of high-performance electronic chips due to the growth requirements of thermal management in workstation. The integration of multi heat sources and the management of integral system are particularly lacking. In order to fill the vacancies in the study of plug-chip spray cooling, an integrated cooling enclosure was designed in this paper. Multi heat sources were placed in sealed space and the heat was removed by spray. The printed circuit board plug-ins and radio frequency resistors were used as analog motherboards and chips, respectively. The enhanced surfaces with four different geometries and the plain surface were studied under the conditions of different inclination angles. The results were compared and the maximum critical heat flux (CHF) was obtained. Moreover, with the intention of the overall management of multi-heat source in integrated enclosure, the effect of the flow rate and the temperature disequilibrium, and the pulse heating in the process of transient cooling were also analyzed. In addition, a comprehensive assessment system, used to evaluate the practicality of spray cooling experimental devices, was proposed and the performance of enclosure was evaluated.

  20. Water Content Effect on Oxides Yield in Gas and Liquid Phase Using DBD Arrays in Mist Spray

    International Nuclear Information System (INIS)

    Chen Bingyan; Zhu Changping; He Xiang; Yin Cheng; Fei Juntao; Wang Yuan; Jiang Yongfeng; Chen Longwei; Gao Yuan; Han Qingbang

    2016-01-01

    Electric discharge in and in contact with water can accompany ultraviolet (UV) radiation and electron impact, which can generate a large number of active species such as hydroxyl radicals (OH), oxygen radical (O), ozone (O 3 ) and hydrogen peroxide (H 2 O 2 ). In this paper, a nonthermal plasma processing system was established by means of dielectric barrier discharge (DBD) arrays in water mist spray. The relationship between droplet size and water content was examined, and the effects of the concentrations of oxides in both treated water and gas were investigated under different water content and discharge time. The relative intensity of UV spectra from DBD in water mist was a function of water content. The concentrations of both O 3 and nitrogen dioxide (NO 2 ) in DBD room decreased with increasing water content. Moreover, the concentrations of H 2 O 2 , O 3 and nitrogen oxides (NO x ) in treated water decreased with increasing water content, and all the ones enhanced after discharge. The experimental results were further analyzed by chemical reaction equations and commented by physical principles as much as possible. At last, the water containing phenol was tested in this system for the concentration from 100 mg/L to 9.8 mg/L in a period of 35 min. (paper)

  1. Mechanical response of local rapid cooling by spray water on constrained steel frame structure at high temperature in fire

    Directory of Open Access Journals (Sweden)

    Xia Yunchun

    2015-01-01

    Full Text Available Locally rapid cooling of spray water had strong impact on high temperature steel structure. When temperature of beam reached 600°C and cooling rate was more than 20°C/s, the maximum axial tension could reach more than 5 times of the originally compressive force. The compressive bending moment at joint of beam-to-column changed to tensile bending moment, and the maximum bending moment could reach above 4 times as that when heated. After rapid cooling by spray water, deflection at mid-span increased slightly.

  2. The Investigation of pH Variation of Water in Spray Tank on Glyphosate and Nicosulfuron Performance on Barnyardgrass and Velvetleaf Control

    Directory of Open Access Journals (Sweden)

    K. Hajmohammadnia Ghalibaf

    2016-03-01

    Full Text Available Introduction: Many factors affect the absorption, transport and performance of herbicides, include; physical factors (such as the orientation, shape, size, cuticle thickness, and its amount downy of the plant leaves, physiological factors (such as the growth stage and its succulence, environmental factors (like rainfall after spraying, relative humidity, wind, and temperature, as well as water quality in spray tank (32. The quality of natural water resources is very important, because the water passes through soil and rocks and dissolve natural salts and transfer them to groundwater reserves (12. pH is a chemical scale for measuring the concentration of hydrogen ions (H+ in the water (21. When pH of solution is less than herbicides pKa (ionic dissociation constant, increasing pH can increase the solubility of herbicides, especially when the absorption limitation of herbicide is because of its solubility (14. To investigate the effect of water pH in herbicide spray tank, testing the effectiveness of weed control is appropriate method. The different species of weeds may have different amounts of ions in the tissue that showed different responses to herbicide solution (14. Accordingly, these basic experiment conducted to study the pH variation of water in spray tank on glyphosate (Roundup® and nicosulfuron (Cruse® performance on barnyardgrass [Echinochloa crus-galli (L. P. Beauv.] and velvetleaf (Abutilon theophrasti Medicus. control in the greenhouse condition. Materials and Methods: Two separate experiments were performed as factorial arrangement of treatments 2×7 based on completely randomized design with six replications at Research Greenhouse of the Ferdowsi University of Mashhad in 2010. Factors included were: pH at 7 levels (4, 5, 6, 7, 8, 9, and 10 obtained by using buffer prepared solutions (+3 control pots for each pH level, and two weeds (barnyardgrass and velvetleaf. Glyphosate and nicosulfuron herbicides were applied post emergent

  3. Development of a model for spray evaporation based on droplet analysis

    KAUST Repository

    Chen, Q.

    2016-08-20

    Extreme flash evaporation occurs when superheated liquid is sprayed into a low pressure zone. This method has high potential to improve the performance of thermally-driven desalination plants. To enable a more in-depth understanding on flash evaporation of a superheated feed water spray, a theoretical model has been developed with key considerations given to droplet motion and droplet size distribution. The model has been validated against 14 experimental data sets from literature sources to within 12% discrepancy. This model is capable of accurately predicting the water productivity and thermal efficiency of existing spray evaporator under specific operating conditions. Employing this model, the effect of several design parameters on system performance was investigated. Key results revealed that smaller droplet enabled faster evaporation process while higher initial droplet velocity promoted water productivity. Thermal utilization marginally changes with the degree of superheat, which renders a quick design calculation of the brine temperature without the need for iterations. © 2016 Elsevier B.V.

  4. Development of a model for spray evaporation based on droplet analysis

    KAUST Repository

    Chen, Q.; Thu, K.; Bui, T.D.; Li, Y.; Ng, Kim Choon; Chua, K.J.

    2016-01-01

    Extreme flash evaporation occurs when superheated liquid is sprayed into a low pressure zone. This method has high potential to improve the performance of thermally-driven desalination plants. To enable a more in-depth understanding on flash evaporation of a superheated feed water spray, a theoretical model has been developed with key considerations given to droplet motion and droplet size distribution. The model has been validated against 14 experimental data sets from literature sources to within 12% discrepancy. This model is capable of accurately predicting the water productivity and thermal efficiency of existing spray evaporator under specific operating conditions. Employing this model, the effect of several design parameters on system performance was investigated. Key results revealed that smaller droplet enabled faster evaporation process while higher initial droplet velocity promoted water productivity. Thermal utilization marginally changes with the degree of superheat, which renders a quick design calculation of the brine temperature without the need for iterations. © 2016 Elsevier B.V.

  5. Engineering Task Plan for Water Supply for Spray Washers on the Support Trucks

    International Nuclear Information System (INIS)

    BOGER, R.M.

    2000-01-01

    This Engineering Task Plan (ETP) defines the task and deliverables associated with the design, fabrication and testing of an improved spray wash system for the Rotary Mode Core Sampling (RMCS) System Support Trucks

  6. Fixed automated spray technology.

    Science.gov (United States)

    2011-04-19

    This research project evaluated the construction and performance of Boschungs Fixed Automated : Spray Technology (FAST) system. The FAST system automatically sprays de-icing material on : the bridge when icing conditions are about to occur. The FA...

  7. Spray nozzle pattern test for the DWPF HEME Task QA Plan

    International Nuclear Information System (INIS)

    Lee, L.

    1991-01-01

    The DWPF melter off-gas systems have two High Efficiency Mist Eliminators (HEME) upstream of the High-Efficiency Particulates Air filters (HEPA) to remove fine mists and particulates from the off-gas. To have an acceptable filter life and an efficient operation, an air atomized water is spray on the HEME. The water spray keeps the HEME wet and dissolves the soluble particulates and enhances and HEME efficiency. DWPF Technical asked SRL to determine the conditions which will give satisfactory atomization and distribution of water so that the HEME will operate efficiently. The purpose of this document is to identify, QA controls to be applied in the pursuit of this task (WSRC-RP-91-1151)

  8. Spray-coated ligand-free Cu2ZnSnS4 nanoparticle thin films

    DEFF Research Database (Denmark)

    Engberg, Sara Lena Josefin; Murthy, Swathi; Kofod, Guggi

    We have fabricated Cu2ZnSnS4 (CZTS) thin films from spray-coating ligand-free nanoparticle inks. The as-synthesized CZTS nanoparticles were inherently ligand-free [1], which allows the use of polar solvents, such as water and ethanol. Another advantage of these particles is that user- and environ......We have fabricated Cu2ZnSnS4 (CZTS) thin films from spray-coating ligand-free nanoparticle inks. The as-synthesized CZTS nanoparticles were inherently ligand-free [1], which allows the use of polar solvents, such as water and ethanol. Another advantage of these particles is that user......- and environmentally-friendly alkali metal chloride salts can be directly dissolved in controllable amounts. The homogeneous distribution of alkali metals in the ink allows uniform grain growth within the deposited absorber layer as a result of liquid phase assisted sintering. We find that particularly beneficial...... as an unquantifiable amount of ZnS. A Sono-tek spray-coating system is used which utilizes ultrasonic atomization. We investigate the effect of different binders, ink concentration, and spray-coating conditions, i.e. spray power, flow rate from syringe pump, distance between spray nozzle and the substrate, and time...

  9. Development and Preliminary Evaluation of a Spray Deposition Sensing System for Improving Pesticide Application.

    Science.gov (United States)

    Kesterson, Melissa A; Luck, Joe D; Sama, Michael P

    2015-12-17

    An electronic, resistance-based sensor array and data acquisition system was developed to measure spray deposition from hydraulic nozzles. The sensor surface consisted of several parallel tin plated copper traces of varying widths with varying gap widths. The system contained an embedded microprocessor to monitor output voltage corresponding to spray deposition every second. In addition, a wireless module was used to transmit the voltage values to a remote laptop. Tests were conducted in two stages to evaluate the performance of the sensor array in an attempt to quantify the spray deposition. Initial tests utilized manual droplet placement on the sensor surface to determine the effects of temperature and droplet size on voltage output. Secondary testing utilized a spray chamber to pass nozzles at different speeds above the sensor surface to determine if output varied based on different application rates or spray droplet classification. Results from this preliminary analysis indicated that manual droplets of 5 and 10 μL resulted in significantly different values from the sensors while temperature did not consistently affect output. Spray chamber test results indicated that different application rates and droplet sizes could be determined using the sensor array.

  10. Bacterial community diversity and variation in spray water sources and the tomato fruit surface.

    Science.gov (United States)

    Telias, Adriana; White, James R; Pahl, Donna M; Ottesen, Andrea R; Walsh, Christopher S

    2011-04-21

    Tomato (Solanum lycopersicum) consumption has been one of the most common causes of produce-associated salmonellosis in the United States. Contamination may originate from animal waste, insects, soil or water. Current guidelines for fresh tomato production recommend the use of potable water for applications coming in direct contact with the fruit, but due to high demand, water from other sources is frequently used. We sought to describe the overall bacterial diversity on the surface of tomato fruit and the effect of two different water sources (ground and surface water) when used for direct crop applications by generating a 454-pyrosequencing 16S rRNA dataset of these different environments. This study represents the first in depth characterization of bacterial communities in the tomato fruit surface and the water sources commonly used in commercial vegetable production. The two water sources tested had a significantly different bacterial composition. Proteobacteria was predominant in groundwater samples, whereas in the significantly more diverse surface water, abundant phyla also included Firmicutes, Actinobacteria and Verrucomicrobia. The fruit surface bacterial communities on tomatoes sprayed with both water sources could not be differentiated using various statistical methods. Both fruit surface environments had a high representation of Gammaproteobacteria, and within this class the genera Pantoea and Enterobacter were the most abundant. Despite the major differences observed in the bacterial composition of ground and surface water, the season long use of these very different water sources did not have a significant impact on the bacterial composition of the tomato fruit surface. This study has provided the first next-generation sequencing database describing the bacterial communities living in the fruit surface of a tomato crop under two different spray water regimes, and therefore represents an important step forward towards the development of science

  11. Bacterial community diversity and variation in spray water sources and the tomato fruit surface

    Directory of Open Access Journals (Sweden)

    Ottesen Andrea R

    2011-04-01

    Full Text Available Abstract Background Tomato (Solanum lycopersicum consumption has been one of the most common causes of produce-associated salmonellosis in the United States. Contamination may originate from animal waste, insects, soil or water. Current guidelines for fresh tomato production recommend the use of potable water for applications coming in direct contact with the fruit, but due to high demand, water from other sources is frequently used. We sought to describe the overall bacterial diversity on the surface of tomato fruit and the effect of two different water sources (ground and surface water when used for direct crop applications by generating a 454-pyrosequencing 16S rRNA dataset of these different environments. This study represents the first in depth characterization of bacterial communities in the tomato fruit surface and the water sources commonly used in commercial vegetable production. Results The two water sources tested had a significantly different bacterial composition. Proteobacteria was predominant in groundwater samples, whereas in the significantly more diverse surface water, abundant phyla also included Firmicutes, Actinobacteria and Verrucomicrobia. The fruit surface bacterial communities on tomatoes sprayed with both water sources could not be differentiated using various statistical methods. Both fruit surface environments had a high representation of Gammaproteobacteria, and within this class the genera Pantoea and Enterobacter were the most abundant. Conclusions Despite the major differences observed in the bacterial composition of ground and surface water, the season long use of these very different water sources did not have a significant impact on the bacterial composition of the tomato fruit surface. This study has provided the first next-generation sequencing database describing the bacterial communities living in the fruit surface of a tomato crop under two different spray water regimes, and therefore represents an

  12. Particle size distribution of aerosols sprayed from household hand-pump sprays containing fluorine-based and silicone-based compounds.

    Science.gov (United States)

    Kawakami, Tsuyoshi; Isama, Kazuo; Ikarashi, Yoshiaki

    2015-01-01

    Japan has published safety guideline on waterproof aerosol sprays. Furthermore, the Aerosol Industry Association of Japan has adopted voluntary regulations on waterproof aerosol sprays. Aerosol particles of diameter less than 10 µm are considered as "fine particles". In order to avoid acute lung injury, this size fraction should account for less than 0.6% of the sprayed aerosol particles. In contrast, the particle size distribution of aerosols released by hand-pump sprays containing fluorine-based or silicone-based compounds have not been investigated in Japan. Thus, the present study investigated the aerosol particle size distribution of 16 household hand-pump sprays. In 4 samples, the ratio of fine particles in aerosols exceeded 0.6%. This study confirmed that several hand-pump sprays available in the Japanese market can spray fine particles. Since the hand-pump sprays use water as a solvent and their ingredients may be more hydrophilic than those of aerosol sprays, the concepts related to the safety of aerosol-sprays do not apply to the hand pump sprays. Therefore, it may be required for the hand-pump spray to develop a suitable method for evaluating the toxicity and to establish the safety guideline.

  13. Uniform-droplet spray forming

    Energy Technology Data Exchange (ETDEWEB)

    Blue, C.A.; Sikka, V.K. [Oak Ridge National Lab., TN (United States); Chun, Jung-Hoon [Massachusetts Institute of Technology, Cambridge, MA (United States); Ando, T. [Tufts Univ., Medford, MA (United States)

    1997-04-01

    The uniform-droplet process is a new method of liquid-metal atomization that results in single droplets that can be used to produce mono-size powders or sprayed-on to substrates to produce near-net shapes with tailored microstructure. The mono-sized powder-production capability of the uniform-droplet process also has the potential of permitting engineered powder blends to produce components of controlled porosity. Metal and alloy powders are commercially produced by at least three different methods: gas atomization, water atomization, and rotating disk. All three methods produce powders of a broad range in size with a very small yield of fine powders with single-sized droplets that can be used to produce mono-size powders or sprayed-on substrates to produce near-net shapes with tailored microstructures. The economical analysis has shown the process to have the potential of reducing capital cost by 50% and operating cost by 37.5% when applied to powder making. For the spray-forming process, a 25% savings is expected in both the capital and operating costs. The project is jointly carried out at Massachusetts Institute of Technology (MIT), Tuffs University, and Oak Ridge National Laboratory (ORNL). Preliminary interactions with both finished parts and powder producers have shown a strong interest in the uniform-droplet process. Systematic studies are being conducted to optimize the process parameters, understand the solidification of droplets and spray deposits, and develop a uniform-droplet-system (UDS) apparatus appropriate for processing engineering alloys.

  14. Effectiveness of containment sprays in containment management

    International Nuclear Information System (INIS)

    Nourbakhsh, H.P.; Perez, S.E.; Lehner, J.R.

    1993-05-01

    A limited study has been performed assessing the effectiveness of containment sprays-to mitigate particular challenges which may occur during a severe accident. Certain aspects of three specific topics related to using sprays under severe accident conditions were investigated. The first was the effectiveness of sprays connected to an alternate water supple and pumping source because the actual containment spray pumps are inoperable. This situation could occur during a station blackout. The second topic concerned the adverse as well as beneficial effects of using containment sprays during severe accident scenario where the containment atmosphere contains substantial quantities of hydrogen along with steam. The third topic was the feasibility of using containment sprays to moderate the consequences of DCH

  15. Unit thermal performance of atmospheric spray cooling systems

    International Nuclear Information System (INIS)

    Porter, R.W.; Jain, M.; Chaturvedi, S.K.

    1980-01-01

    Thermal performance of an open atmospheric spray pond or canal depends on the direct-contact evaporative cooling of an individual spray unit (spray nozzle or module) and the interference caused by local heating and humidification. Droplet parameters may be combined into a dimensionless group, number of transfer units (NTU) or equivalent, whereas large-scale air-vapor dynamics determine interference through the local wet-bulb temperature. Quantity NTU were implied from field experiments for a floating module used in steam-condenser spray canals. Previous data were available for a fixed-pipe nozzle assembly used in spray ponds. Quantity NTU were also predicted using the Ranz-Marshall correlations with the Sauter-mean diameter used as the characteristic length. Good agreement with experiments was shown for diameters of 1--1.1 cm (module) and 1.9 mm

  16. Fabrication of gas turbine water-cooled composite nozzle and bucket hardware employing plasma spray process

    Science.gov (United States)

    Schilke, Peter W.; Muth, Myron C.; Schilling, William F.; Rairden, III, John R.

    1983-01-01

    In the method for fabrication of water-cooled composite nozzle and bucket hardware for high temperature gas turbines, a high thermal conductivity copper alloy is applied, employing a high velocity/low pressure (HV/LP) plasma arc spraying process, to an assembly comprising a structural framework of copper alloy or a nickel-based super alloy, or combination of the two, and overlying cooling tubes. The copper alloy is plamsa sprayed to a coating thickness sufficient to completely cover the cooling tubes, and to allow for machining back of the copper alloy to create a smooth surface having a thickness of from 0.010 inch (0.254 mm) to 0.150 inch (3.18 mm) or more. The layer of copper applied by the plasma spraying has no continuous porosity, and advantageously may readily be employed to sustain a pressure differential during hot isostatic pressing (HIP) bonding of the overall structure to enhance bonding by solid state diffusion between the component parts of the structure.

  17. Vaccination of commercial broiler chicks against avian metapneumovirus infection: a comparison of drinking-water, spray and oculo-oral delivery methods.

    Science.gov (United States)

    Ganapathy, Kannan; Bufton, Andrew; Pearson, Andrew; Lemiere, Stephane; Jones, Richard C

    2010-05-21

    Avian metapneumovirus (aMPV) has become an important cause of viral respiratory infections in turkey and chickens. Live and inactivated vaccinations are available worldwide for prevention of disease and economic losses caused by this pathogen. The efficacy of these vaccines is vigorously tested under laboratory conditions prior to use in the field. In this study, a live subtype B aMPV vaccine was administered by spray, drinking water or oculo-oral methods to separate groups of broiler chicks under field conditions. Following this, the chicks were immediately transferred to separate rooms in an experimental isolation house, monitored and challenged with virulent subtype B aMPV. No clinical signs were recorded following the vaccination methods. In the oculo-oral vaccinated chicks, 40-60% of the birds were vaccine virus positive by RT-PCR. In addition, in comparison to other groups, statistically higher levels of aMPV ELISA antibodies were detected. After spray vaccination, the number of chicks positive for the vaccine virus increased gradually from 10% at one week to 30% by 3 weeks post vaccination. Following drinking water vaccination, 30% of chicks were aMPV positive at 1 week but negative by 3 weeks post vaccination. In both, spray and drinking water vaccinated groups, no ELISA antibodies were detected, but when challenged all chicks were protected against disease. At 5 days post challenge, 100% of chicks in the unvaccinated and those vaccinated by spray or drinking water routes but only 20% of the oculo-oral-vaccinated chicks were aMPV positive by RT-PCR. At 10 days post challenge, 10% of chicks in each group were aMPV RT-PCR positive. On challenge, all vaccinated chicks were protected against disease. It appears that when aMPV vaccine is accurately applied to chicks by spray or drinking water routes, both are capable of giving protection against clinical disease equal to that induced in those chicks vaccinated individually by the oculo-oral route. Copyright 2010

  18. Cooling cows efficiently with water spray: Behavioral, physiological, and production responses to sprinklers at the feed bunk.

    Science.gov (United States)

    Chen, Jennifer M; Schütz, Karin E; Tucker, Cassandra B

    2016-06-01

    Dairies commonly mount nozzles above the feed bunk that intermittently spray cows to dissipate heat. These sprinklers use potable water-an increasingly scarce resource-but there is little experimental evidence for how much is needed to cool cows in loose housing. Sprinkler flow rate may affect the efficacy of heat abatement, cattle avoidance of spray (particularly on the head), and water waste. Our objectives were to determine how sprinkler flow rate affects cattle behavioral, physiological, and production responses when cows are given 24-h access to spray in freestall housing, and to evaluate heat abatement in relation to water use. We compared 3 treatments: sprinklers that delivered 1.3 or 4.9L/min (both 3min on and 9min off, 24h/d) and an unsprayed control. Nine pairs of high-producing lactating Holstein cows received each treatment at a shaded feed bunk for 2d in a replicated 3×3 Latin square design [air temperature (T): 24-h maximum=33±3°C, mean ± SD]. Cows spent 5.8±0.9h/24h (mean ± SD) at the feed bunk overall, regardless of treatment. With few exceptions, cows responded similarly to the 1.3 and 4.9L/min flow rates. Sprinklers resulted in visits to the feed bunk that were on average 23 to 27% longer and 13 to 16% less frequent compared with the control, perhaps because cows avoided walking through spray. Indeed, when the sprinklers were on, cows left the feed bunk half as often as expected by chance, and when cows chose to walk through spray, they lowered their heads on average 1.7- to 3-fold more often than in the control. Despite possible reluctance to expose their heads to spray, cows did not avoid sprinklers overall. In warmer weather, cows spent more time at the feed bunk when it had sprinklers (on average 19 to 21min/24h for each 1°C increase in T), likely for heat abatement benefits. Compared with the control, sprinklers resulted in 0.3 to 0.7°C lower body temperature from 1300 to 1500h and 1700 to 2000h overall and attenuated the rise in this

  19. Effect of spray on performance of the hydrogen mitigation system during LB-LOCA for CPR1000 NPP

    International Nuclear Information System (INIS)

    Huang, X.G.; Yang, Y.H.; Cheng, X.; Al-Hawshabi, N.H.A.; Casey, S.P.

    2011-01-01

    Highlights: → This paper presents the spray effect on HMS during LB-LOCA by using GASFLOW. → The positive and negative effects of spray are summarized. → And the combination of DIS and PAR system is suggested as reasonable countermeasures. → This research is an important work aimed at the study of spray and hydrogen mitigation. → The contents of this paper should become a required part of the safety analysis of Chinese NPPs. - Abstract: During the course of the hypothetical large break loss-of-coolant accident (LB-LOCA) in a nuclear power plant (NPP), hydrogen is generated by a reaction between steam and the fuel-cladding inside the reactor pressure vessel (RPV). It is then ejected from the break into the containment along with a large amount of steam. Management of hydrogen safety and prevention of over-pressurization could be implemented through a hydrogen mitigation system (HMS) and spray system in CPR1000 NPP. The computational fluid dynamics (CFD) code GASFLOW is utilized in this study to analyze the spray effect on the performance of HMS during LB-LOCA. Results show that as a kind of HMS, deliberate igniter system (DIS) could initiate hydrogen combustion immediately after the flammability limit of the gas mixture has been reached. However, it will increase the temperature and pressure drastically. Operating the DIS under spray condition could result in hydrogen combustion being suppressed by suspended droplets inside the containment. Furthermore, the droplets could also mitigate local the temperature rise. Operation of a PAR system, another kind of HMS, consumes hydrogen steadily with a lower recombination rate which is not affected noticeably by the spray system. Numerical results indicate that the dual concept, namely the integrated application of DIS and PAR systems, is a constructive improvement for hydrogen safety under spray condition during LB-LOCA.

  20. The design and scale-up of spray dried particle delivery systems.

    Science.gov (United States)

    Al-Khattawi, Ali; Bayly, Andrew; Phillips, Andrew; Wilson, David

    2018-01-01

    The rising demand for pharmaceutical particles with tailored physicochemical properties has opened new markets for spray drying especially for solubility enhancement, improving inhalation medicines and stabilization of biopharmaceuticals. Despite this, the spray drying literature is scattered and often does not address the principles underpinning robust development of pharmaceuticals. It is therefore necessary to present clearer picture of the field and highlight the factors influencing particle design and scale-up. Areas covered: The review presents a systematic analysis of the trends in development of particle delivery systems using spray drying. This is followed by exploring the mechanisms governing particle formation in the process stages. Particle design factors including those of equipment configurations and feed/process attributes were highlighted. Finally, the review summarises the current industrial approaches for upscaling pharmaceutical spray drying. Expert opinion: Spray drying provides the ability to design particles of the desired functionality. This greatly benefits the pharmaceutical sector especially as product specifications are becoming more encompassing and exacting. One of the biggest barriers to product translation remains one of scale-up/scale-down. A shift from trial and error approaches to model-based particle design helps to enhance control over product properties. To this end, process innovations and advanced manufacturing technologies are particularly welcomed.

  1. 30 CFR 75.1101 - Deluge-type water sprays, foam generators; main and secondary belt-conveyor drives.

    Science.gov (United States)

    2010-07-01

    ... and secondary belt-conveyor drives. 75.1101 Section 75.1101 Mineral Resources MINE SAFETY AND HEALTH... Fire Protection § 75.1101 Deluge-type water sprays, foam generators; main and secondary belt-conveyor... be installed at main and secondary belt-conveyor drives. ...

  2. Characterization of Liquid Fuel Evaporation of a Lifted Methanol Spray Flame in a Vitiated Coflow Burner

    Science.gov (United States)

    Cabra, Ricardo; Dibble, Robert W.; Chen, Jyh-Yuan

    2002-01-01

    An experimental investigation of lifted spray flames in a coflow of hot, vitiated gases is presented. The vitiated coflow burner is a spray flame that issues into a coaxial flow of hot combustion products from a lean, premixed H2/Air flame. The spray flame in a vitiated coflow emulates the combustion that occurs in many advanced combustors without the detailed fluid mechanics. Two commercially available laser diagnostic systems are used to characterize the spray flame and to demonstrate the vitiated coflow burner's amenability to optical investigation. The Ensemble Particle Concentration and Size (EPCS) system is used to measure the path-average droplet size distribution and liquid volume fraction at several axial locations while an extractive probe instrument named the Real-time Fuel-air Analyzer (RFA) is used to measure the air to fuel ratio downstream of the spray nozzle with high temporal and spatial resolution. The effect of coflow conditions (stoichiometry) and dilution of the fuel with water was studied with the EPCS optical system. As expected, results show that water retards the evaporation and combustion of fuels. Measurements obtained by the RFA extractive probe show that while the Delavan manufactured nozzle does distribute the fuel over the manufacturer specified spray angle, it unfortunately does not distribute the fuel uniformly, providing conditions that may result in the production of unwanted NOx. Despite some limitations due to the inherent nature of the experimental techniques, the two diagnostics can be readily applied to spray flames in the vitiated coflow environment.

  3. Effects of nozzle type and spray angle on spray deposition in ivy pot plants.

    Science.gov (United States)

    Foqué, Dieter; Nuyttens, David

    2011-02-01

    Fewer plant protection products are now authorised for use in ornamental growings. Frequent spraying with the same product or a suboptimal technique can lead to resistance in pests and diseases. Better application techniques could improve the sustainable use of the plant protection products still available. Spray boom systems--instead of the still predominantly used spray guns--might improve crop protection management in greenhouses considerably. The effect of nozzle type, spray pressure and spray angle on spray deposition and coverage in ivy pot plants was studied, with a focus on crop penetration and spraying the bottom side of the leaves in this dense crop. The experiments showed a significant and important effect of collector position on deposition and coverage in the plant. Although spray deposition and coverage on the bottom side of the leaves are generally low, they could be improved 3.0-4.9-fold using the appropriate application technique. When using a spray boom in a dense crop, the nozzle choice, spray pressure and spray angle should be well considered. The hollow-cone, the air-inclusion flat-fan and the standard flat-fan nozzle with an inclined spray angle performed best because of the effect of swirling droplets, droplets with a high momentum and droplet direction respectively. Copyright © 2010 Society of Chemical Industry.

  4. Experimental characterisation of sprays resulting from impacts of liquid-containing projectiles

    Energy Technology Data Exchange (ETDEWEB)

    Hostikka, Simo, E-mail: simo.hostikka@aalto.fi [Aalto University, Espoo (Finland); Silde, Ari; Sikanen, Topi; Vepsä, Ari; Paajanen, Antti [VTT Technical Research Centre of Finland Ltd, Espoo (Finland); Honkanen, Markus [Pixact Oy, Tampere (Finland)

    2015-12-15

    Highlights: • Detailed characterisation of sprays resulting from the impacts of water-filled metal projectiles on a hard wall. • Experimental measurements of spray speed, direction and droplet size. • Detailed analysis of overall spray evolution. • The spray characterisation information can be used in CFD analyses of aircraft impact fires. - Abstract: Modelling and analysing fires following aircraft impacts requires information about the behaviour of liquid fuel. In this study, we investigated sprays resulting from the impacts of water-filled metal projectiles on a hard wall. The weights of the projectiles were in the range of 38–110 kg, with 8.6–68 kg water, and the impact speeds varied between 96 and 169 m/s. The overall spray behaviour was observed with high-speed video cameras. Ultra-high-speed cameras were used in backlight configuration for measuring the droplet size and velocity distributions. The results indicate that the liquid leaves the impact position as a thin sheet of spray in a direction perpendicular to the projectile velocity. The initial spray speeds were 1.5–2.5 times the impact speed, and the Sauter mean diameters were in the 147–344 μm range. This data can be used as boundary conditions in CFD fire analyses, considering the two-phase fuel flow. The overall spray observations, including the spray deceleration rate, can be used for validating the model.

  5. Comparison of skin hydration in combination and single use of common moisturizers (cream, toner, and spray water).

    Science.gov (United States)

    Yuanxi, Li; Wei, Hua; Lidan, Xiiong; Li, Li

    2016-01-01

    This study aims to assess the moisturization in combination or single use (including seven general applications) of three common moisturizers: cream, toner, and spray water. Groups were set as C: cream only; T: toner only; C+T, T+C: cream or toner applied successively within a few minutes; C-T, C-S: cream applied with repeated toner or spray water every 2 h; T-T: toner applied with repeated toner every 2 h; and N: untreated group. Outcomes were the change in skin hydration from baseline at 2, 4, 6, and 8 h after applications. All treated zones displayed a significantly higher degree of hydration compared with the untreated zone ( p skin (hydration value at baseline >35 a.u.), C-T led to greatest hydration change rate compared with others, followed by C+T, T+C, and C. Those three applications exhibited analogous hydration at each test point ( p > 0.05). The hydration rate of C-S differed slightly from T-T, followed by those four mentioned above, with T being the last. For dry skin (hydration value at baseline 0.05), the other results were identical. When cream and toner were applied successively, the application order has little effect on skin hydration. The application of cream only was an effective and brief way to achieve favorable moisturization especially for dry skin. As a complement, repeated application of toner rather than spray water is efficacious for skin hydration.

  6. A study on the macroscopic spray behavior and atomization characteristics of biodiesel and dimethyl ether sprays under increased ambient pressure

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyung Jun; Park, Su Han [Graduate School of Hanyang University, 17 Haengdang-dong, Seoungdong-gu, Seoul 133-791 (Korea); Lee, Chang Sik [Department of Mechanical Engineering, Hanyang University, 17 Haengdang-dong, Seongdong-gu, Seoul 133-791 (Korea)

    2010-03-15

    The aim of this work is to investigate the spray behaviors of biodiesel and dimethyl ether (DME) fuels using image processing and atomization performance analysis of the two fuel sprays injected through a common-rail injection system under various ambient pressure conditions in a high pressure chamber. In order to observe the biodiesel and DME fuel spray behaviors under various ambient pressures, the spray images were analyzed at various times after the start of energization using a visualization system consisting of a high speed camera and two metal halide light sources. In addition, a high pressure chamber that can withstand a pressure of 4 MPa was used for adjusting the ambient pressure. From the spray images, spray characteristics such as the spray tip penetration, cone angle, area, and contour plot at various light intensity levels were analyzed using image conversion processing. Also, the local Sauter mean diameters (SMD) were measured at various axial/radial distances from the nozzle tip by a droplet measuring system to compare the atomization performances of the biodiesel and DME sprays. The results showed that the ambient pressure had a significant effect on the spray characteristics of the fuels at the various experimental conditions. The spray tip penetration and spray area decreased as the ambient pressure increased. The contour plot of the biodiesel and DME sprays showed a high light intensity level in the center regions of the sprays. In addition, it was revealed that the atomization performance of the biodiesel spray was inferior to that of the DME spray at the same injection and ambient conditions. (author)

  7. Potential effects of the fire protection system sprays at Browns Ferry on fission product transport

    International Nuclear Information System (INIS)

    Niemczyk, S.J.

    1983-01-01

    The fire protection system (FPS) sprays within any nuclear plant are not intended to mitigate radioactive releases to the environment resulting from severe core-damage accidents. However, it has been shown here that during certain postulated severe accident scenarios at the Browns Ferry Nuclear Plant, the functioning of FPS sprays could have a significant impact on the radioactive releases. Thus the effects of those sprays need to be taken into account for realistic estimation of source terms for some accident scenarios. The effects would include direct ones such as cooling of the reactor building atmosphere and scrubbing of radioactivity from it, as well as indirect effects such as an altered likelihood of hydrogen burning and flooding of various safety-related pumps in the reactor building basement. Thus some of the impacts of the sprays would be beneficial with respect to mitigating releases to the environment but some others might not be. The effects of the FPS would be very scenario dependent with a wide range of potential effects often existing for a given accident sequence. Any generalization of the specific results presented here for Browns Ferry to other nuclear plants must be done cautiously, as it appears from a preliminary investigation that the relevant physical and operational characteristics of FPS spray systems differ widely among even otherwise apparently similar plants. Likewise the standby gas treatment systems, which substantially impact the effects of the FPS, differ significantly among plants. More work for both Mark I plants and other plants, BWRs and PWRs alike, is indicated so the potential effects of FPS spray systems during severe accidents can be at least ball-parked for more realistic accident analyses

  8. Study of Multi-Function Micro-Plasma Spraying Technology

    International Nuclear Information System (INIS)

    Wang Liuying; Wang Hangong; Hua Shaochun; Cao Xiaoping

    2007-01-01

    A multi-functional micro-arc plasma spraying system was developed according to aerodynamics and plasma spray theory. The soft switch IGBT (Insulated Gate Bipolar Transistor) invert technique, micro-computer control technique, convergent-divergent nozzle structure and axial powder feeding techniques have been adopted in the design of the micro-arc plasma spraying system. It is not only characterized by a small volume, a light weight, highly accurate control, high deposition efficiency and high reliability, but also has multi-functions in plasma spraying, welding and quenching. The experimental results showed that the system can produce a supersonic flame at a low power, spray Al 2 O 3 particles at an average speed up to 430 m/s, and make nanostructured AT13 coatings with an average bonding strength of 42.7 MPa. Compared to conventional 9M plasma spraying with a higher power, the coatings with almost the same properties as those by conventional plasma spray can be deposited by multi-functional micro-arc plasma spraying with a lower power plasma arc due to an improved power supply design, spray gun structure and powder feeding method. Moreover, this system is suitable for working with thin parts and undertaking on site repairs, and as a result, the application of plasma spraying will be greatly extended

  9. Simulation of Spray Injection in the Pressurizer Using RELAP5

    Directory of Open Access Journals (Sweden)

    S. Dibyo

    2017-08-01

    Full Text Available A modeling research using Relap5 to assess the pressurizer of a pressurized water reactor(PWR power plant has been performed. The heater and water injection systems in the pressurizer system of the PWRare of greatimportance for system pressure control.The heater is designed to increase the pressure while the water sprayer injection is to perform depressurization. Most of studies conducted in the past mainly focused on determining the effects of nozzle spray design and droplet size using testing loops. The purpose of this simulation is to analyze the spray injection flow rate against the pressure characteristics of the pressurizer using RELAP5. Through this approach, the optimum injection flow rate of full scale plant pressurizer can be analyzed. The parameters investigated are pressure and temperature.In RELAP5, the pressurizer tank wasmodeled with six volume nodes and the heater was modeled by using heat structure. In the model, the sprayer takes water from the cold leg to inject it into the top of tank region.The resultsshowedthat the mass flow of about 4 kg/s is the mosteffectivevalueto limit pressure in the pressurizer to below 15.7 MPa. However, the flow rates of 8 kg/s and more cause overpressure. This simulation is usefulto complement the data related to the water flow rate injection systems of the pressurizer. Normal 0 false false false EN-US X-NONE X-NONE Macro controlling of copper oxide deposition processes and spray mode by using home-made fully computerized spray pyrolysis system

    Science.gov (United States)

    Essa, Mohammed Sh.; Chiad, Bahaa T.; Shafeeq, Omer Sh.

    2017-09-01

    Thin Films of Copper Oxide (CuO) absorption layer have been deposited using home-made Fully Computerized Spray Pyrolysis Deposition system FCSPD on glass substrates, at the nozzle to substrate distance equal to 20,35 cm, and computerized spray mode (continues spray, macro-control spray). The substrate temperature has been kept at 450 °c with the optional user can enter temperature tolerance values ± 5 °C. Also that fixed molar concentration of 0.1 M, and 2D platform speed or deposition platform speed of 4mm/s. more than 1000 instruction program code, and specific design of graphical user interface GUI to fully control the deposition process and real-time monitoring and controlling the deposition temperature at every 200 ms. The changing in the temperature has been recorded during deposition processes, in addition to all deposition parameters. The films have been characterized to evaluate the thermal distribution over the X, Y movable hot plate, the structure and optical energy gap, thermal and temperature distribution exhibited a good and uniform distribution over 20 cm2 hot plate area, X-ray diffraction (XRD) measurement revealed that the films are polycrystalline in nature and can be assigned to monoclinic CuO structure. Optical band gap varies from 1.5-1.66 eV depending on deposition parameter.

  10. Development of process data capturing, analysis and controlling for thermal spray techniques - SprayTracker

    Science.gov (United States)

    Kelber, C.; Marke, S.; Trommler, U.; Rupprecht, C.; Weis, S.

    2017-03-01

    Thermal spraying processes are becoming increasingly important in high-technology areas, such as automotive engineering and medical technology. The method offers the advantage of a local layer application with different materials and high deposition rates. Challenges in the application of thermal spraying result from the complex interaction of different influencing variables, which can be attributed to the properties of different materials, operating equipment supply, electrical parameters, flow mechanics, plasma physics and automation. In addition, spraying systems are subject to constant wear. Due to the process specification and the high demands on the produced coatings, innovative quality assurance tools are necessary. A central aspect, which has not yet been considered, is the data management in relation to the present measured variables, in particular the spraying system, the handling system, working safety devices and additional measuring sensors. Both the recording of all process-characterizing variables, their linking and evaluation as well as the use of the data for the active process control presuppose a novel, innovative control system (hardware and software) that was to be developed within the scope of the research project. In addition, new measurement methods and sensors are to be developed and qualified in order to improve the process reliability of thermal spraying.

  11. Design Optimization of Liquid Fueled High Velocity Oxy- Fuel Thermal Spraying Technique for Durable Coating for Fossil Power Systems

    Energy Technology Data Exchange (ETDEWEB)

    Choudhuri, Ahsan [Univ. of Texas, El Paso, TX (United States); Love, Norman [Univ. of Texas, El Paso, TX (United States)

    2016-11-04

    High-velocity oxy–fuel (HVOF) thermal spraying was developed in 1930 and has been commercially available for twenty-five years. HVOF thermal spraying has several benefits over the more conventional plasma spray technique including a faster deposition rate which leads to quicker turn-around, with more durable coatings and higher bond strength, hardness and wear resistance due to a homogeneous distribution of the sprayed particles. HVOF thermal spraying is frequently used in engineering to deposit cermets, metallic alloys, composites and polymers, to enhance product life and performance. HVOF thermal spraying system is a highly promising technique for applying durable coatings on structural materials for corrosive and high temperature environments in advanced ultra-supercritical coal- fired (AUSC) boilers, steam turbines and gas turbines. HVOF thermal spraying is the preferred method for producing coatings with low porosity and high adhesion. HVOF thermal spray process has been shown to be one of the most efficient techniques to deposit high performance coatings at moderate cost. Variables affecting the deposit formation and coating properties include hardware characteristics such as nozzle geometry and spraying distance and process parameters such as equivalence ratio, gas flow density, and powder feedstock. In the spray process, the powder particles experience very high speeds combined with fast heating to the powder material melting point or above. This high temperature causes evaporation of the powder, dissolution, and phase transformations. Due to the complex nature of the HVOF technique, the control and optimization of the process is difficult. In general, good coating quality with suitable properties and required performance for specific applications is the goal in producing thermal spray coatings. In order to reach this goal, a deeper understanding of the spray process as a whole is needed. Although many researchers studied commercial HVOF thermal spray

  12. Testing of a Spray-bar Thermodynamic Vent System in Liquid Nitrogen

    Science.gov (United States)

    Flachbart, R. H.; Hastings, L. J.; Hedayat, A.; Nelson, S. L.; Tucker, S. P.

    2005-01-01

    To support development of a microgravity pressure control capability for liquid oxygen, thermodynamic vent system (TVS) testing was conducted at Marshall Space Flight Center (MSFC) using liquid nitrogen (LN2) as a LOX simulant. The spray bar TVS hardware used was originally designed by the Boeing Company for testing in liquid hydrogen (LH2). With this concept, a small portion of the tank fluid is passed through a Joule-Thomson (J-T) device, and then through a longitudinal spray bar mixed-heat exchanger in order to cool the bulk fluid. To accommodate the larger mass flow rates associated with LN2, the TVS hardware was modified by replacing the recirculation pump with an LN2 compatible pump and replacing the J-T valve. The primary advantage of the spray-bar configuration is that tank pressure control can be achieved independent of liquid and vapor location, enhancing the applicability of ground test data to microgravity conditions. Performance testing revealed that the spray-bar TVS was effective in controlling tank pressure within a 6.89 kPa band for fill levels of 90%, 50%, and 25%. Tests were also conducted with gaseous helium (GHe) in the ullage. The TVS operated nominally with GHe in the ullage, with performance similar to the tests with gaseous nitrogen (GN2). Testing demonstrated that the spray-bar TVS design was flexible enough for use in two different propellants with minimal hardware modifications.

  13. Spray drying of fenofibrate loaded nanostructured lipid carriers

    DEFF Research Database (Denmark)

    Xia, Dengning; Shrestha, Neha; van de Streek, Jacco

    2016-01-01

    into dry, easily reconstitutable powder using spray drying. A central composite face centered design (CCFD) was used to investigate the influence of the ratio of lipid to protectant (mannitol and trehalose) and crystallinity of spray-dried powder on the particle size, yield and residual moisture content...... of the dried powder. A linear relationship (R2 = 0.9915) was established between the crystalline content of the spray-dried powders against the ratio of mannitol to trehalose from 3:7 to 10:0 (w/w). Spray drying of NLC aqueous dispersion using a mannitol and trehalose mixture resulted in an increase...... in particle size of the NLCs after reconstitution in water as compared to that in the initial aqueous dispersion. The decrease in crystallinity of the dry powder by reducing the ratio of mannitol to trehalose could improve the reconstitution of the NLCs in water. However the yield and residual moisture...

  14. Assessment of pepper spray product potency in Asian and Caucasian forearm skin using transepidermal water loss, skin temperature and reflectance colorimetry.

    Science.gov (United States)

    Pershing, Lynn K; Reilly, Christopher A; Corlett, Judy L; Crouch, Dennis J

    2006-01-01

    Historically, pepper spray product potency has been established using a taste test evaluation. A taste test is subjective and may not be appropriate for assessing pepper potency in skin. The current study evaluated chemically diverse pepper sprays in human forearm skin using three objective, noninvasive parameters: transepidermal water loss, skin surface temperature and erythema, as a means for assessing dermal pharmacology, toxicology and product potency. Five commercial pepper spray products containing various capsaicinoid analogs at various concentrations were evaluated in duplicate on volar forearms of six Caucasians and six Asians using a 10 min exposure. Mean surface skin temperature, transepidermal water loss results were highly variable and therefore did not demonstrate dose responsive behavior to increasing capsaicinoid concentrations. Erythema, as measured by increases in a* (reflected light in the red-to-green color spectrum) of the L*a*b* uniform color scale, was superior among parameters evaluated in discriminating pepper spray potency and correlated well with the relative and total capsaicinoid concentration in the products. Products containing greater than 16 mg ml(-1) capsaicinoid concentration produced greater erythema responses in Caucasians than Asians. Asians responded greater to the synthetic analog, nonivamide, than to mixtures of capsaicinoids, while Caucasians responded equally to both capsaicinoid analogs. Thus, pepper spray product potency in human skin reflects the total capsaicinoid concentration, the specific capsaicin analog(s) present, and the race of the individual exposed. The finding that the reflectance colorimeter a* scale can differentiate these parameters in skin will have a significant impact on evaluating the use and efficacy of pepper spray products in humans. 2005 John Wiley & Sons, Ltd.

  15. Investigation of temperature fluctuation phenomena in a stratified steam-water two-phase flow in a simulating pressurizer spray pipe of a pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Miyoshi, Koji, E-mail: miyoshi.koj@inss.co.jp; Takenaka, Nobuyuki; Ishida, Taisuke; Sugimoto, Katsumi

    2017-05-15

    Highlights: • Thermal hydraulics phenomena were discussed in a spray pipe of pressurizer. • Temperature fluctuation was investigated in a stratified steam-water two-phase. • Remarkable liquid temperature fluctuations were observed in the liquid layer. • The observed temperature fluctuations were caused by the internal gravity wave. • The temperature fluctuations decreased with increasing dissolved oxygen. - Abstract: Temperature fluctuation phenomena in a stratified steam-water two-phase flow in a horizontal rectangular duct, which simulate a pressurizer spray pipe of a pressurized water reactor, were studied experimentally. Vertical distributions of the temperature and the liquid velocity were measured with water of various dissolved oxygen concentrations. Large liquid temperature fluctuations were observed when the water was deaerated well and dissolved oxygen concentration was around 10 ppb. The large temperature fluctuations were not observed when the oxygen concentration was higher. It was shown that the observed temperature fluctuations were caused by the internal gravity wave since the Richardson numbers were larger than 0.25 and the temperature fluctuation frequencies were around the Brunt-Väisälä frequencies in the present experimental conditions. The temperature fluctuations decreased by the non-condensable gas since the non-condensable gas suppressed the condensation and the temperature difference in the liquid layer was small.

  16. Comparison of spray congealing and melt emulsification methods for the incorporation of the water-soluble salbutamol sulphate in lipid microparticles.

    Science.gov (United States)

    Scalia, Santo; Traini, Daniela; Young, Paul M; Di Sabatino, Marcello; Passerini, Nadia; Albertini, Beatrice

    2013-02-01

    Salbutamol sulphate is widely used as bronchodilator for the treatment of asthma. Its use is limited by the relatively short duration of action and hence sustained delivery of salbutamol sulphate offers potential benefits to patients. This study explores the preparation of lipid microparticles (LMs) as biocompatible carrier for the prolonged release of salbutamol sulphate. The LMs were produced using different lipidic materials and surfactants, by classical melt emulsification-based methods (oil-in-water and water-in-oil-in-water emulsions) and the spray congealing technique. For the LMs obtained by melt emulsification a lack of release modulation was observed. On the other hand, the sustained release of salbutamol sulphate was achieved with glyceryl behenate microparticles prepared by spray congealing. These LMs were characterized by scanning electron microscopy, X-ray diffractometry and differential scanning calorimetry. The drug loading was 4.72% (w/w). The particle size distribution measured by laser diffraction and electrical zone sensing was represented by a volume median diameter (Dv(50)) of 51.7-71.4 µm. Increasing the atomization air pressure from 4 to 8 bar produced a decrease of the Dv(50) to 12.7-17.5 µm. Incorporation of the hydrophilic salbutamol sulphate into LMs with sustained release characteristics was achieved by spray congealing.

  17. CONCHAS-SPRAY, Reactive Flows with Fuel Sprays

    International Nuclear Information System (INIS)

    Cloutman, L.D.; Dukowicz, J.K.; Ramshaw, J.D.; Amsden, A.A.

    2001-01-01

    Description of program or function: CONCHAS-SPRAY solves the equations of transient, multicomponent, chemically reactive fluid dynamics, together with those for the dynamics of an evaporating liquid spray. The program was developed with applications to internal combustion engines in mind. The formulation is spatially two-dimensional, and encompasses both planar and axisymmetric geometries. In the latter case, the flow is permitted to swirl about the axis of symmetry. CONCHAS-SPRAY is a time-marching, finite- difference program that uses a partially implicit numerical scheme. Spatial differences are formed with respect to a generalized two- dimensional mesh of arbitrary quadrilaterals whose corner locations are specified functions of time. This feature allows a Lagrangian, Eulerian, or mixed description, and is particularly useful for representing curved or moving boundary surfaces. Arbitrary numbers of species and chemical reactions are allowed. The latter are subdivided into kinetic and equilibrium reactions, which are treated by different algorithms. A turbulent law-of-the-wall boundary layer option is provided. CONCHAS-SPRAY calls a number of LANL system subroutines to display graphic or numerical information on microfiche. These routines are not included, but are described in the reference report. Several routines called from LINPACK and SLATEC1.0 are included

  18. Distance based control system for machine vision-based selective spraying

    NARCIS (Netherlands)

    Steward, B.L.; Tian, L.F.; Tang, L.

    2002-01-01

    For effective operation of a selective sprayer with real-time local weed sensing, herbicides must be delivered, accurately to weed targets in the field. With a machine vision-based selective spraying system, acquiring sequential images and switching nozzles on and off at the correct locations are

  19. Making Aircraft Vortices Visible to Radar by Spraying Water into the Wake

    Science.gov (United States)

    Shariff, Karim

    2016-01-01

    Aircraft trailing vortices pose a danger to following aircraft during take-off and landing. This necessitates spacing rules, based on aircraft type, to be enforced during approach in IFR (Instrument Flight Regulations) conditions; this can limit airport capacity. To help choose aircraft spacing based on the actual location and strength of the wake, it is proposed that wake vortices can be detected using conventional precipitation and cloud radars. This is enabled by spraying a small quantity water into the wake from near the wing. The vortex strength is revealed by the doppler velocity of the droplets. In the present work, droplet size distributions produced by nozzles used for aerial spraying are considered. Droplet trajectory and evaporation in the flow-field is numerically calculated for a heavy aircraft, followed by an evaluation of radar reflectivity at 6 nautical miles behind the aircraft. Small droplets evaporate away while larger droplets fall out of the wake. In the humid conditions that typically prevail during IFR, a sufficient number of droplets remain in the wake and give good signal-to-noise ratios (SNR). For conditions of average humidity, higher frequency radars combined with spectral processing gives good SNR.

  1. Effect of flow conditions on spray cone angle of a two-fluid atomizer

    Energy Technology Data Exchange (ETDEWEB)

    Shafaee, Maziar; Banitabaei, Sayed Abdolhossein; Ashjaee, Mehdi; Esfahanian, Vahid [Tehran University, Tehran (Iran, Islamic Republic of)

    2011-02-15

    A visual study is conducted to determine the effects of operating conditions on the spray cone angle of a two-fluid atomizer. The liquid (water) jets exit from peripheral inclined orifices and are introduced into a high-speed gas (air) stream in the gravitational direction. Using a high-speed imaging system, the spray cone angle is determined for Reynolds numbers ranging from 4x10{sup 4} to 9x10{sup 4} and different Weber numbers up to 140. The droplet sizes (Sauter mean diameter) and their distributions are determined using a Malvern Mastersizer X. The results show that the spray cone angle depends on the operating conditions, especially in lower values of Reynolds and Weber numbers. An empirical correlation is also obtained to predict the spray cone angle in terms of these two parameters.

  2. WWER-type NPP spray ponds screen

    International Nuclear Information System (INIS)

    Nikolova, M.; Jordanov, M.; Denev, J.; Markov, D.

    2003-01-01

    The objective of this study is to develop a protection screen of WWER-type NPP spray ponds. The screen design is to ensure reduction of the water droplets blown by the wind and, if possible, their return back to the spray ponds. The cooling capacity of the ponds is not to be changed below the design level for safety reasons. Computational fluid dynamics analysis is used to assess the influence of each design variant on the behavior of the water droplets distribution. Two variants are presented here. The one with plants is found not feasible. The second variant, with steel screen and terrain profile modification is selected for implementation. (author)

  3. Theoretical Design and First Test in Laboratory of a Composite Visual Servo-Based Target Spray Robotic System

    Directory of Open Access Journals (Sweden)

    Dongjie Zhao

    2016-01-01

    Full Text Available In order to spray onto the canopy of interval planting crop, an approach of using a target spray robot with a composite vision servo system based on monocular scene vision and monocular eye-in-hand vision was proposed. Scene camera was used to roughly locate target crop, and then the image-processing methods for background segmentation, crop canopy centroid extraction, and 3D positioning were studied. Eye-in-hand camera was used to precisely determine spray position of each crop. Based on the center and area of 2D minimum-enclosing-circle (MEC of crop canopy, a method to calculate spray position and spray time was determined. In addition, locating algorithm for the MEC center in nozzle reference frame and the hand-eye calibration matrix were studied. The processing of a mechanical arm guiding nozzle to spray was divided into three stages: reset, alignment, and hovering spray, and servo method of each stage was investigated. For preliminary verification of the theoretical studies on the approach, a simplified experimental prototype containing one spray mechanical arm was built and some performance tests were carried out under controlled environment in laboratory. The results showed that the prototype could achieve the effect of “spraying while moving and accurately spraying on target.”

  4. An experimental methodology to quantify the spray cooling event at intermittent spray impact

    International Nuclear Information System (INIS)

    Moreira, Antonio L.N.; Carvalho, Joao; Panao, Miguel R.O.

    2007-01-01

    The present paper describes an experimental methodology devised to study spray cooling with multiple-intermittent sprays as those found in fuel injection systems of spark-ignition and diesel engines, or in dermatologic surgery applications. The spray characteristics and the surface thermal behaviour are measured by combining a two-component phase-Doppler anemometer with fast response surface thermocouples. The hardware allows simultaneous acquisition of Doppler and thermocouple signals which are processed in Matlab to estimate the time-varying heat flux and fluid-dynamic characteristics of the spray during impact. The time resolution of the acquisition system is limited by the data rate of validation of the phase-Doppler anemometer, but it has been shown to be accurate for the characterization of spray-cooling processes with short spurt durations for which the transient period of spray injection plays an important role. The measurements are processed in terms of the instantaneous heat fluxes, from which phase-average values of the boiling curves are obtained. Two of the characteristic parameters used in the thermal analysis of stationary spray cooling events, the critical heat flux (CHF) and Leidenfrost phenomenon, are then inferred in terms of operating conditions of the multiple-intermittent injections, such as the frequency, duration and pressure of injection. An integral method is suggested to describe the overall process of heat transfer, which accounts for the fluid-dynamic heterogeneities induced by multiple and successive droplet interactions within the area of spray impact. The method considers overall boiling curves dependant on the injection conditions and provides an empirical tool to characterize the heat transfer processes on the impact of multiple-intermittent sprays. The methodology is tested in a preliminary study of the effect of injection conditions on the heat removed by a fuel spray striking the back surface of the intake valve as in spark

  5. Sea spray production by bag breakup mode of fragmentation of the air-water interface at strong and hurricane wind

    Science.gov (United States)

    Troitskaya, Yuliya; Kandaurov, Alexander; Ermakova, Olga; Kozlov, Dmitry; Sergeev, Daniil; Zilitinkevich, Sergej

    2016-04-01

    Sea sprays is a typical element of the marine atmospheric boundary layer (MABL) of large importance for marine meteorology, atmospheric chemistry and climate studies. They are considered as a crucial factor in the development of hurricanes and severe extratropical storms, since they can significantly enhance exchange of mass, heat and momentum between the ocean and the atmosphere. This exchange is directly provided by spume droplets with the sizes from 10 microns to a few millimeters mechanically torn off the crests of a breaking waves and fall down to the ocean due to gravity. The fluxes associated with the spray are determined by the rate of droplet production at the surface quantified by the sea spray generation function (SSGF), defined as the number of spray particles of radius r produced from the unit area of water surface in unit time. However, the mechanism of spume droplets' formation is unknown and empirical estimates of SSGF varied over six orders of magnitude; therefore, the production rate of large sea spray droplets is not adequately described and there are significant uncertainties in estimations of exchange processes in hurricanes. Experimental core of our work comprise laboratory experiments employing high-speed video-filming, which have made it possible to disclose how water surface looks like at extremely strong winds and how exactly droplets are torn off wave crests. We classified events responsible for spume droplet, including bursting of submerged bubbles, generation and breakup of "projections" or liquid filaments (Koa, 1981) and "bag breakup", namely, inflating and consequent blowing of short-lived, sail-like pieces of the water-surface film, "bags". The process is similar to "bag-breakup" mode of fragmentation of liquid droplets and jets in gaseous flows. Basing on statistical analysis of results of these experiments we show that the main mechanism of spray-generation is attributed to "bag-breakup mechanism On the base of general principles

  6. Production of amorphous starch powders by solution spray drying

    NARCIS (Netherlands)

    Niazi, Muhammad B. K.; Broekhuis, Antonius A.

    2012-01-01

    The spray drying of starch/maltodextrin formulations was evaluated as a potential technology for the manufacturing of amorphous thermoplastic starches. Mixtures of starches with high to low amylose (Am)amylopectin (Ap) ratios were spray-dried from water-based solutions and granular dispersions. The

  7. Effects of spray axis incident angle on heat transfer performance of rhombus-pitch shell-and-tube interior spray evaporator

    International Nuclear Information System (INIS)

    Lin, Ru-Li; Chang, Tong-Bou; Liang, Chih-Chang

    2012-01-01

    An interior spray method is proposed for enhancing the heat transfer performance of a compact rhombus-pitch shell-and-tube spray evaporator. The experimental results show that the shell-side heat transfer coefficient obtained using the proposed spray method is significantly higher than that achieved in a conventional flooded-type evaporator. Four different spray axis incident angles (0 .deg., 45 .deg., 60 .deg. and 75 .deg.) are tested in order to investigate the effect of the spray inclination angle on the heat transfer performance of the spray evaporator system. It is shown that the optimal heat transfer performance is obtained using a spray axis incident angle of 60 .deg.

  8. A study on hydrogen burn due to the operation of containment spray system

    International Nuclear Information System (INIS)

    Park, S.Y.; Kim, D.H.; Jin, Y.; Park, C.K.

    1995-01-01

    The bounding calculation for inflammable gas combustion due to the steam condensation by the operation of the containment spray system was performed. Sensitivity study was performed for two initiating events, station blackout and loss of coolant accident. The parameters for sensitivity study are the condition of cavity, wet or dry, and the timing of operation of the containment spray system. It is shown, based on MAAP4 analyses, that: for dry cavity, auto-ignition burn and hydrogen laden jet burn due to the high temperature in the reactor cavity consumes large amount of burnable gas in the containment and reduces the peak pressure at the global burn by flammability criteria; for wet cavity, large amount of hydrogen and carbon monoxide are generated after dryout of the reactor cavity, but burn is prohibited due to the low gas temperature in the high concentration of the steam. The late operation of the containment spray system condenses the steam rapidly, which results in the global burn at high concentration of burnable gas in the containment. The containment peak pressure from this burn is determined to be high enough to threaten the containment integrity significantly. (author). 3 refs., 3 tabs

  9. Optical monitoring systems for thermal spray processes: droplets behavior and substrate pre-treatments

    Science.gov (United States)

    Kawaguchi, Y.; Kobayashi, N.; Yamagata, Y.; Miyazaki, F.; Yamasaki, M.; Tanaka, J.; Muraoka, K.

    2017-11-01

    Thermal spray is a technique to form molten droplets using either plasma- or combustion-heating, which impinge upon substrates to form coating layers for various purposes, such as anti-corrosion and anti-wear layers. Although it is an established technique having a history of more than a century, operations of spray guns together with preparing suitable substrate surfaces for obtaining good coating layers still rely on experienced technicians. Because of the necessity of meeting more and more stringent requirements for coating quality and cost from customers, there has been a strong need to try to monitor spray processes, so as to obtain the best possible spray coating layers. The basic requirements for such monitoring systems are *reasonably cheap, *easy operation for laypersons, *easy access to targets to be investigated, and *an in-situ capability. The purpose of the present work is to provide suitable optical monitoring systems for (1) droplets behavior and (2) substrate pre-treatments. For the former (1), the first result was already presented at the 17th laser-aided plasma diagnostics meeting (LAPD17) in 2015 in Sapporo, and the results of its subsequent applications into real spray environments are shown in this article in order to validate the previous proposal. Topic (2) is new in the research program, and the proof-of-principle experiment for the proposed method yielded a favorable result. Based on this positive result, an overall strategy is being planned to fulfill the final objective of the optical monitoring of substrate pre-treatments. Details of these two programs (1) and (2) together with the present status are described.

  10. 1994 Thermal spray industrial applications: Proceedings

    International Nuclear Information System (INIS)

    Berndt, C.C.; Sampath, S.

    1994-01-01

    The 7th National Thermal Spray Conference met on June 20--24, 1994, in Boston, Massachusetts. The conference was sponsored by the Thermal Spray Division of ASM International and co-sponsored by the American Welding Society, Deutscher Verband fur Schweisstechnik e.V., High Temperature Society of Japan, International Thermal Spray Association, and Japanese Thermal Spraying Society. The conference covered applications for automobiles, aerospace, petrochemicals, power generation, and biomedical needs. Materials included metals, ceramics, and composites with a broad range of process developments and diagnostics. Other sections included modeling and systems control; spray forming and reactive spraying; post treatment; process, structure and property relationships; mechanical properties; and testing, characterization and wear. One hundred and seventeen papers have been processed separately for inclusion on the data base

  11. Formation of hydrotalcite coating on the aluminum alloy 6060 in spray system

    DEFF Research Database (Denmark)

    Zhou, Lingli; Friis, Henrik; Roefzaad, Melanie

    2016-01-01

    Coatings with the composition of Li-Al-NO3 hydrotalcite were formed on the Al alloy 6060 using a spray system. The coatings consist of crystals with a typical hydrotalcite structure. Dense, uniform and blade-like flakes cover completely the surface of the Al substrate. The coatings display a multi......-layer structure with average thickness of ∼1000 nm. The hydrotalcite-coated samples performed better than those without coatings in salt-spray and filiform-corrosion tests, and further treatment involving sealing with a Mg acetate solution and dipping in a H2O2 + Ce-based solution improved the corrosion...

  12. Biofouling of Cr-Nickel Spray Coated Films on Steel Surfaces

    International Nuclear Information System (INIS)

    Yoshida, Kento; Kanematsu, Hideyuki; Kuroda, Daisuke; Ikigai, Hajime; Kogo, Takeshi; Yokoyama, Seiji

    2012-01-01

    Nowadays, corrosion of metals brings us serious economic loss and it often reaches several percentage of GNP. Particularly the marine corrosion was serious and the counter measure was very hard to be established, since the number of factors is huge and complicated. One of the complicated factors in marine corrosion is biofouling. Biofouling was classified into two main categories, microfouling and macrofouling. The former is composed of biofilm formation mainly. Marine bacteria are attached to material surfaces, seeking for nutrition in oligotrophic environment and they excrete polysaccharide to form biofilm on metal surfaces. Then larger living matters are attached on the biofilms to develop biofouling on metal surfaces, which often lead loss and failures of metals in marine environments. From the viewpoint of corrosion protection and maintenance of marine structures, biofouling should be mitigated as much as possible. In this study, we applied spray coating to steels and investigated if chromium-nickel spray coating could mitigate the biofouling, being compared with the conventional aluminium-zinc spray coating in marine environments. The specimens used for this investigation are aluminium, zinc, aluminium-zinc, stacked chromium/nickel and those films were formed on carbon steel (JIS SS400). And the pores formed by spray coating were sealed by a commercial reagent for some specimens. All of those specimens were immersed into sea water located at Marina Kawage (854-3, Chisato, Tsu, Mie Prefecture) in Ise Bay for two weeks. The depth of the specimen was two meter from sea water surface and the distance was always kept constant, since they were suspended from the floating pier. The temperature in sea water changed from 10 to 15 degrees Celsius during the immersion test. The biofouling behavior was investigated by low vacuum SEM (Hitachi Miniscope TM1000) and X-ray fluorescent analysis. When the spray coated specimens with and without sealing agents were compared

  13. Electrostatically atomised hydrocarbon sprays

    Energy Technology Data Exchange (ETDEWEB)

    Yule, A.J.; Shrimpton, J.S.; Watkins, A.P.; Balachandran, W.; Hu, D. [UMIST, Manchester (United Kingdom). Thermofluids Division, Dept. of Mechanical Engineering

    1995-07-01

    A burner using an electrostatic method to produce and control a fuel spray is investigated for non-burning sprays. The burner has a charge injection nozzle and the liquid flow rate and charge injection rate are varied using hydrocarbon liquids of differing viscosities, surface tensions and electrical conductivities (kerosene, white spirit and diesel oil). Droplet size distributions are measured and it is shown how the dropsize, spray pattern, breakup mechanism and breakup length depend on the above variables, and in particular on the specific charge achieved in the spray. The data are valuable for validating two computer models under development. One predicts the electric field and flow field inside the nozzle as a function of emitter potential, geometry and flow rate. The other predicts the effect of charge on spray dispersion, with a view to optimizing spray combustion. It is shown that electrostatic disruptive forces can be used to atomize oils at flow rates commensurate with practical combustion systems and that the charge injection technique is particularly suitable for highly resistive liquids. Possible limitations requiring further research include the need to control the wide spray angle, which may provide fuel-air mixtures too lean near the nozzle, and the need to design for maximum charge injection rate, which is thought to be limited by corona breakdown in the gas near the nozzle orifice. 30 refs., 15 figs., 1 tab.

  14. Fission product aerosol removal test by containment spray under accident management conditions (3)

    International Nuclear Information System (INIS)

    Watanabe, Atsushi; Nagasaka, Hideo; Yokobori, Seiichi; Akinaga, Makoto

    2000-01-01

    In order to demonstrate the effective FP aerosol removal by containment spray under Japanese AM conditions, two system integral tests and two separate effect tests were carried out using a full-height simulation test facility. In case of PWR LOCA, aerosol concentration in the upper containment vessel decreased even under low spray flow rate. In case of BWR LOCA with water injection into RPV, the aerosol concentration in the entire vessel also decreased rapidly after aerosol supply stopping. In both cases, the removal rate estimated from the NUREG-1465 was coincided with test results. The aerosol washing effect by spray was confirmed to be predominant by conducting suppression chamber isolation test. It turned out that the effect of aerosol solubility and density on aerosol removal by spray was quite small by conducting insoluble aerosol injection test. After the modification of aerosol removal model by the spray and hygroscopic aerosol model in original MELCOR 1.8.4, calculated aerosol concentration transient in the containment vessel agreed well with the test data. (author)

  15. Two intelligent spraying systems developed for tree crop production

    Science.gov (United States)

    Precision pesticide application technologies are needed to achieve efficient and effective spray deposition on target areas and minimize off-target losses. Two variable-rate intelligent sprayers were developed as an introduction of new generation sprayers for tree crop applications. The first spraye...

  16. Plasma Spraying and Characterization of Tungsten Carbide-Cobalt Coatings by the Water-Stabilized System WSP

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Kašparová, M.; Bellin, J.; Le Guen, E.; Zahálka, F.

    2009-01-01

    Roč. 2009, - (2009), s. 1-11 ISSN 1687-8434 R&D Projects: GA AV ČR 1QS200430560 Institutional research plan: CEZ:AV0Z20430508 Keywords : Tungsten karbide – cobalt, cermet * wear resistance * abrasion * plasma spraying Subject RIV: JG - Metallurgy http://www.hindawi.com/journals/amse/2009/254848.html

  17. Production of cocrystals in an excipient matrix by spray drying.

    Science.gov (United States)

    Walsh, David; Serrano, Dolores R; Worku, Zelalem Ayenew; Norris, Brid A; Healy, Anne Marie

    2018-01-30

    Spray drying is a well-established scale-up technique for the production of cocrystals. However, to the best of our knowledge, the effect of introducing a third component into the feed solution during the spray drying process has never been investigated. Cocrystal formation in the presence of a third component by a one-step spray drying process has the potential to reduce the number of unit operations which are required to produce a final pharmaceutical product (e.g. by eliminating blending with excipient). Sulfadimidine (SDM), a poorly water soluble active pharmaceutical ingredient (API), and 4-aminosalicylic acid (4ASA), a hydrophilic molecule, were used as model drug and coformer respectively to form cocrystals by spray drying in the presence of a third component (excipient). The solubility of the cocrystal in the excipient was measured using a thermal analysis approach. Trends in measured solubility were in agreement with those determined by calculated Hansen Solubility Parameter (HSP) values. The ratio of cocrystal components to excipient was altered and cocrystal formation at different weight ratios was assessed. Cocrystal integrity was preserved when the cocrystal components were immiscible with the excipient, based on the difference in Hansen Solubility Parameters (HSP). For immiscible systems (difference in HSP > 9.6 MPa 0.5 ), cocrystal formation occurred even when the proportion of excipient was high (90% w/w). When the excipient was partly miscible with the cocrystal components, cocrystal formation was observed post spray drying, but crystalline API and coformer were also recovered in the processed powder. An amorphous dispersion was formed when the excipient was miscible with the cocrystal components even when the proportion of excipient used as low (10% w/w excipient). For selected spray dried cocrystal-excipient systems an improvement in tableting characteristics was observed, relative to equivalent physical mixtures. Copyright © 2017 Elsevier

  18. Theoretical analysis and experimental study of spray degassing method

    International Nuclear Information System (INIS)

    Wu Ruizhi; Shu Da; Sun Baode; Wang Jun; Li Fei; Chen Haiyan; Lu YanLing

    2005-01-01

    A new hydrogen-removal method of aluminum melt, spray degassing, is presented. The thermodynamic and kinetic analysis of the method are discussed. A comparison between the thermodynamics and kinetics of the spray degassing method and rotary impellor degassing method is made. The thermodynamic analysis shows that the relationship between the final hydrogen content of the aluminum melt and the ratio of purge gas flow rate to melt flow rate is linear. The result of thermodynamic calculation shows that, in spray degassing, when the ratio of G/q is larger than 2.2 x 10 -6 , the final hydrogen content will be less than 0.1 ml/100 g Al. From the kinetic analysis, the degassing effect is affected by both the size of melt droplets and the time that melt droplets move from sprayer to the bottom of the treatment tank. In numerical calculation, the hydrogen in aluminum melt can be degassed to 0.05 ml/100 g Al from 0.2 ml/100 g Al in 0.02 s with the spray degassing method. Finally, the water-model experiments are presented with the spray degassing method and rotary impellor degassing method. Melt experiments are also presented. Both the water-model experiments and the melt experiments show that the degassing effect of the spray degassing method is better than that of the rotary impeller method

  19. SPRAY CASTING

    OpenAIRE

    SALAMCI, Elmas

    2010-01-01

    ABSTRACT This paper is designed to provide a basic review of spray casting. A brief overview of the historical development of spray  casting and the description of plant and equipment have been given. Following metallurgical characteristics of spray formed alloys, process parameters and solidification mechanism of spray deposition have been discussed in detail. Finally, microstructure and mechanical properties of the selected spray cast Al-Zn-Mg-Cu alloys have been presented and comp...

  20. Spot Spraying Reduces Herbicide Concentrations in Runoff.

    Science.gov (United States)

    Melland, Alice R; Silburn, D Mark; McHugh, Allen D; Fillols, Emilie; Rojas-Ponce, Samuel; Baillie, Craig; Lewis, Stephen

    2016-05-25

    Rainfall simulator trials were conducted on sugar cane paddocks across dry-tropical and subtropical Queensland, Australia, to examine the potential for spot spraying to reduce herbicide losses in runoff. Recommended rates of the herbicides glyphosate, 2,4-D, fluoroxypyr, atrazine, and diuron were sprayed onto 0, 20, 40, 50, 70, or 100% of the area of runoff plots. Simulated rainfall was applied 2 days after spraying to induce runoff at one plant cane and three ratoon crop sites. Over 50% of all herbicides were transported in the dissolved phase of runoff, regardless of the herbicide's sediment-water partition coefficient. For most sites and herbicides, runoff herbicide concentrations decreased with decreasing spray coverage and with decreasing herbicide load in the soil and cane residues. Importantly, sites with higher infiltration prior to runoff and lower total runoff had lower runoff herbicide concentrations.

  1. An experimental study of injection and spray characteristics of diesel and gasoline blends on a common rail injection system

    International Nuclear Information System (INIS)

    Han, Dong; Wang, Chunhai; Duan, Yaozong; Tian, Zhisong; Huang, Zhen

    2014-01-01

    The injection and spray characteristics of diesel and gasoline blends are investigated on a common rail injection system. The injection rate, fuel spray evolution process (tip penetration distance, spray cone angle, projected spray area and relative brightness intensity contour) and microscopic droplet features are analyzed. The results show that diesel and gasoline blends have higher volumetric injection rates, earlier starts of injection and shorter injection delays, but little variances are observed in the mass injection rates for different test fuels. Increased gasoline proportion in the test blends causes slightly decreased spray tip penetration distance but increased spray cone angle. Also, more smaller-size droplets are observed in the fuel jet of the diesel and gasoline blends, indicating that the spray breakup and atomization processes are promoted. - Highlights: • Injection rate and spray characteristics of diesel and gasoline blends are studied. • Diesel and gasoline blends have higher volumetric injection rates. • Earlier starts of injection are found when using diesel and gasoline blends. • Diesel and gasoline blends produce shorter spray penetration but higher cone angle. • The number of small droplets increases in the spray of diesel and gasoline blends

  2. Effect of W/O Emulsion Fuel Properties on Spray Combustion

    Science.gov (United States)

    Ida, Tamio; Fuchihata, Manabu; Takeda, Shuuco

    This study proposes a realizable technology for an emulsion combustion method that can reduce environmental loading. This paper discusses the effect on spray combustion for W/O emulsion fuel properties with an added agent, and the ratio between water and emulsifier added to a liquid fuel. The addition of water or emulsifier to a liquid fuel affected the spray combustion by causing micro-explosions in the flame due to geometric changes in the sprayed flame and changes to the temperature distribution. Experimental results revealed that the flame length shortened by almost 40% upon the addition of the water. Furthermore, it was found that water was effective in enhancing combustion due to its promoting micro-explosions. Results also showed that when the emulsifier was added to the spray flame, the additive burned in the flame's wake, producing a bright red flame. The flame length was observed to be long as a result. The micro-explosion phenomenon, caused by emulsifier dosage differences, was observed using time-dependent images at a generated frequency and an explosion scale with a high-speed photography method. Results indicated that the micro-explosion phenomenon in the W/O emulsion combustion method effectively promoted the combustion reaction and suppressed soot formation.

  3. Hydrosorb® versus control (water based spray) in the management of radio-induced skin toxicity: Results of multicentre controlled randomized trial.

    Science.gov (United States)

    Bazire, Louis; Fromantin, Isabelle; Diallo, Alhassane; de la Lande, Brigitte; Pernin, Victor; Dendale, Remi; Fourquet, Alain; Savignoni, Alexia; Kirova, Youlia M

    2015-11-01

    To report the efficacy of Hydrosorb® versus control (water based spray) as topical treatment of grade 1-2 radiodermatitis in patients (pts) treated for early stage breast cancer (BC) with normo fractionated radiotherapy (RT). BC pts were randomized to receive either Hydrosorb® (A) or water based spray (B). The primary endpoint was local treatment failure defined as interruption of RT because of skin radiotoxicity or change of local care because of skin alteration. Secondary endpoints were: evaluation of skin colorimetry, pain, quality of life. Two-hundred seventy-eight pts were enrolled. There were 186 successfully treated pts. There were 60 "failures" in the Hydrosorb® arm, and 62 in the control arm (p=0.72), but mostly without interruption of the RT. Twenty-four pts stopped RT for local care. The average absolute reduction of colorimetric levels between day 28 and day 0 was 4 in the Hydrosorb®, and 4.2 in the water spray groups, respectively (p=0.36). Forty-eight patients in the Hydrosorb® arm had a VAS >2 versus 51 pts in the placebo arm, i.e. 34% and 38%, respectively (p=0.45). A significant reduction of pain was observed on D7 and D21 in the Hydrosorb® arm. The present study showed no significant difference between Hydrosorb® and simple water spray in the treatment of acute radio-induced dermatitis even if there was a trend to an improvement in pain at the first weeks after the treatment. Systematic prevention measures and modern breast cancer radiotherapy techniques now allow excellent tolerability, but the place of topical treatment to optimize this tolerability has yet to be defined. It seems that the most important part of the skin care is the prevention of skin reactions using new adapted techniques, as well as strict hygiene. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  4. Development and Application of Binary Suspensions in the Ternary System Cr2O3-TiO2-Al2O3 for S-HVOF Spraying

    Science.gov (United States)

    Potthoff, Annegret; Kratzsch, Robert; Barbosa, Maria; Kulissa, Nick; Kunze, Oliver; Toma, Filofteia-Laura

    2018-04-01

    Compositions in the system Cr2O3-TiO2-Al2O3 are among the most used ceramic materials for thermally sprayed coating solutions. Cr2O3 coatings present good sliding wear resistance; Al2O3 coatings show excellent insulation behavior and TiO2 striking corrosion properties. In order to combine these properties, coatings containing more than one oxide are highly interesting. The conventional spraying process is limited to the availability of binary feedstock powders with defined compositions. The use of suspensions offers the opportunity for tailor-made chemical compositions: within the triangle of Cr2O3-TiO2-Al2O3, each mixture of oxides can be created. Criteria for the selection of raw materials as well as the relevant aspects for the development of binary suspensions in the Cr2O3-TiO2-Al2O3 system to be used as feedstock for thermal spraying are presented. This formulation of binary suspensions required the development of water-based single-oxide suspensions with suitable behavior; otherwise, the interaction between the particles while mixing could lead up to a formation of agglomerates, which affect both the stability of the spray process and the coating properties. For the validation of this formulation procedure, binary Cr2O3-TiO2 and Al2O3-TiO2 suspensions were developed and sprayed using the S-HVOF process. The binary coatings were characterized and discussed in terms of microstructure and microhardness.

  5. Development and Application of Binary Suspensions in the Ternary System Cr2O3-TiO2-Al2O3 for S-HVOF Spraying

    Science.gov (United States)

    Potthoff, Annegret; Kratzsch, Robert; Barbosa, Maria; Kulissa, Nick; Kunze, Oliver; Toma, Filofteia-Laura

    2018-03-01

    Compositions in the system Cr2O3-TiO2-Al2O3 are among the most used ceramic materials for thermally sprayed coating solutions. Cr2O3 coatings present good sliding wear resistance; Al2O3 coatings show excellent insulation behavior and TiO2 striking corrosion properties. In order to combine these properties, coatings containing more than one oxide are highly interesting. The conventional spraying process is limited to the availability of binary feedstock powders with defined compositions. The use of suspensions offers the opportunity for tailor-made chemical compositions: within the triangle of Cr2O3-TiO2-Al2O3, each mixture of oxides can be created. Criteria for the selection of raw materials as well as the relevant aspects for the development of binary suspensions in the Cr2O3-TiO2-Al2O3 system to be used as feedstock for thermal spraying are presented. This formulation of binary suspensions required the development of water-based single-oxide suspensions with suitable behavior; otherwise, the interaction between the particles while mixing could lead up to a formation of agglomerates, which affect both the stability of the spray process and the coating properties. For the validation of this formulation procedure, binary Cr2O3-TiO2 and Al2O3-TiO2 suspensions were developed and sprayed using the S-HVOF process. The binary coatings were characterized and discussed in terms of microstructure and microhardness.

  6. Direct morphological comparison of vacuum plasma sprayed and detonation gun sprayed hydroxyapatite coatings for orthopaedic applications.

    Science.gov (United States)

    Gledhill, H C; Turner, I G; Doyle, C

    1999-02-01

    Hydroxyapatite coatings on titanium substrates were produced using two thermal spray techniques vacuum plasma spraying and detonation gun spraying. X-ray diffraction was used to compare crystallinity and residual stresses in the coatings. Porosity was measured using optical microscopy in conjunction with an image analysis system. Scanning electron microscopy and surface roughness measurements were used to characterise the surface morphologies of the coatings. The vacuum plasma sprayed coatings were found to have a lower residual stress, a higher crystallinity and a higher level of porosity than the detonation gun coatings. It is concluded that consideration needs to be given to the significance of such variations within the clinical context.

  7. Spray deposition of water-soluble multiwall carbon nanotube and Cu2ZnSnSe4 nanoparticle composites as highly efficient counter electrodes in a quantum dot-sensitized solar cell system

    Science.gov (United States)

    Zeng, Xianwei; Xiong, Dehua; Zhang, Wenjun; Ming, Liqun; Xu, Zhen; Huang, Zhanfeng; Wang, Mingkui; Chen, Wei; Cheng, Yi-Bing

    2013-07-01

    In this paper, low-cost counter electrodes (CEs) based on water-soluble multiwall carbon nanotube (MWCNT) and Cu2ZnSnSe4 nanoparticle (CZTSe NP) composites have been successfully introduced into a quantum dot-sensitized solar cell (QDSC) system. Suitable surface modification allows the MWCNTs and CZTSe NPs to be homogeneously dispersed in water, facilitating the subsequent low-temperature spray deposition of high quality composite films with different composite ratios. The electrochemical catalytic activity of the composite CEs has been critically compared by electrochemical impedance spectroscopy and Tafel-polarization analysis. It is found that the composite CE at the MWCNT : CZTSe ratio of 0.1 offers the best performance, leading to an optimal solar cell efficiency of 4.60%, which is 50.8% higher than that of the Pt reference CE. The as-demonstrated higher catalytic activity of the composite CEs compared to their single components could be ascribed to the combination of the fast electron transport of the MWCNTs and the high catalytic activity of CZTSe NPs.In this paper, low-cost counter electrodes (CEs) based on water-soluble multiwall carbon nanotube (MWCNT) and Cu2ZnSnSe4 nanoparticle (CZTSe NP) composites have been successfully introduced into a quantum dot-sensitized solar cell (QDSC) system. Suitable surface modification allows the MWCNTs and CZTSe NPs to be homogeneously dispersed in water, facilitating the subsequent low-temperature spray deposition of high quality composite films with different composite ratios. The electrochemical catalytic activity of the composite CEs has been critically compared by electrochemical impedance spectroscopy and Tafel-polarization analysis. It is found that the composite CE at the MWCNT : CZTSe ratio of 0.1 offers the best performance, leading to an optimal solar cell efficiency of 4.60%, which is 50.8% higher than that of the Pt reference CE. The as-demonstrated higher catalytic activity of the composite CEs compared to

  8. Sea water Corrosion of Nickel based Plasma Spray Coating

    Science.gov (United States)

    Parida, M.; Nanda, S. P.; Bhuyan, S. K.; Mishra, S. C.

    2018-03-01

    Different types of erosion resistant coatings are applied/deposited on aero components, depending on the operating/working temperatures. Nickel based coating are applied on the air craft (compressor) components, which can sustain up to working temperature of 650°C. In the present investigation, to improve the compatibility between substrate (i.e. the machine component) and the top coat, application of bond coat is there. The application of Nickel based coating by thermal plasma spray technique has proven to be a satisfactory means of producing acceptable sealing surface with excellent abradability. Before the corrosion study, coated sample is subjected to hardness, thickness and porosity testing. Hence the result is being evaluated. The corrosion behavior of coating was studied by sea water immersion with a time period of 16 weeks. It is observed that, up to 9 weeks increase in weight of coating occurs in a sharp trend and then takes a decreasing trend. The weight gain of the samples has varied from 37.23% (with one week immersion in sea water) to a maximum of about 64.36% for six weeks immersion. Coating morphology and composition analysis of the coatings are studied using SEM and EDS. This behavior shows adsorption/deposition of the foreign particles with polygonal shape on the coating surface by sea water interaction. Foreign particles with polygonal shape deposited on the coating and with increase in immersion/treatment time, washing out of the deposited materials starts, which reflects the decreasing trend of weight gain of the specimen.

  9. Open-air sprays for capturing and controlling airborne float coal dust on longwall faces

    Science.gov (United States)

    Beck, T.W.; Seaman, C.E.; Shahan, M.R.; Mischler, S.E.

    2018-01-01

    Float dust deposits in coal mine return airways pose a risk in the event of a methane ignition. Controlling airborne dust prior to deposition in the return would make current rock dusting practices more effective and reduce the risk of coal-dust-fueled explosions. The goal of this U.S. National Institute for Occupational Safety and Health study is to determine the potential of open-air water sprays to reduce concentrations of airborne float coal dust, smaller than 75 µm in diameter, in longwall face airstreams. This study evaluated unconfined water sprays in a featureless tunnel ventilated at a typical longwall face velocity of 3.6 m/s (700 fpm). Experiments were conducted for two nozzle orientations and two water pressures for hollow cone, full cone, flat fan, air atomizing and hydraulic atomizing spray nozzles. Gravimetric samples show that airborne float dust removal efficiencies averaged 19.6 percent for all sprays under all conditions. The results indicate that the preferred spray nozzle should be operated at high fluid pressures to produce smaller droplets and move more air. These findings agree with past respirable dust control research, providing guidance on spray selection and spray array design in ongoing efforts to control airborne float dust over the entire longwall ventilated opening. PMID:29348700

  10. Open-air sprays for capturing and controlling airborne float coal dust on longwall faces.

    Science.gov (United States)

    Beck, T W; Seaman, C E; Shahan, M R; Mischler, S E

    2018-01-01

    Float dust deposits in coal mine return airways pose a risk in the event of a methane ignition. Controlling airborne dust prior to deposition in the return would make current rock dusting practices more effective and reduce the risk of coal-dust-fueled explosions. The goal of this U.S. National Institute for Occupational Safety and Health study is to determine the potential of open-air water sprays to reduce concentrations of airborne float coal dust, smaller than 75 µm in diameter, in longwall face airstreams. This study evaluated unconfined water sprays in a featureless tunnel ventilated at a typical longwall face velocity of 3.6 m/s (700 fpm). Experiments were conducted for two nozzle orientations and two water pressures for hollow cone, full cone, flat fan, air atomizing and hydraulic atomizing spray nozzles. Gravimetric samples show that airborne float dust removal efficiencies averaged 19.6 percent for all sprays under all conditions. The results indicate that the preferred spray nozzle should be operated at high fluid pressures to produce smaller droplets and move more air. These findings agree with past respirable dust control research, providing guidance on spray selection and spray array design in ongoing efforts to control airborne float dust over the entire longwall ventilated opening.

  11. DepositScan, a Scanning Program to Measure Spray Deposition Distributions

    Science.gov (United States)

    DepositScan, a scanning program was developed to quickly measure spray deposit distributions on water sensitive papers or Kromekote cards which are widely used for determinations of pesticide spray deposition quality on target areas. The program is installed in a portable computer and works with a ...

  12. Spray drying formulation of amorphous solid dispersions.

    Science.gov (United States)

    Singh, Abhishek; Van den Mooter, Guy

    2016-05-01

    Spray drying is a well-established manufacturing technique which can be used to formulate amorphous solid dispersions (ASDs) which is an effective strategy to deliver poorly water soluble drugs (PWSDs). However, the inherently complex nature of the spray drying process coupled with specific characteristics of ASDs makes it an interesting area to explore. Numerous diverse factors interact in an inter-dependent manner to determine the final product properties. This review discusses the basic background of ASDs, various formulation and process variables influencing the critical quality attributes (CQAs) of the ASDs and aspects of downstream processing. Also various aspects of spray drying such as instrumentation, thermodynamics, drying kinetics, particle formation process and scale-up challenges are included. Recent advances in the spray-based drying techniques are mentioned along with some future avenues where major research thrust is needed. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. Health risks from exposure to Legionella in reclaimed water aerosols: Toilet flushing, spray irrigation, and cooling towers.

    Science.gov (United States)

    Hamilton, Kerry A; Hamilton, Mark T; Johnson, William; Jjemba, Patrick; Bukhari, Zia; LeChevallier, Mark; Haas, Charles N

    2018-05-01

    The use of reclaimed water brings new challenges for the water industry in terms of maintaining water quality while increasing sustainability. Increased attention has been devoted to opportunistic pathogens, especially Legionella pneumophila, due to its growing importance as a portion of the waterborne disease burden in the United States. Infection occurs when a person inhales a mist containing Legionella bacteria. The top three uses for reclaimed water (cooling towers, spray irrigation, and toilet flushing) that generate aerosols were evaluated for Legionella health risks in reclaimed water using quantitative microbial risk assessment (QMRA). Risks are compared using data from nineteen United States reclaimed water utilities measured with culture-based methods, quantitative PCR (qPCR), and ethidium-monoazide-qPCR. Median toilet flushing annual infection risks exceeded 10 -4 considering multiple toilet types, while median clinical severity infection risks did not exceed this value. Sprinkler and cooling tower risks varied depending on meteorological conditions and operational characteristics such as drift eliminator performance. However, the greatest differences between risk scenarios were due to 1) the dose response model used (infection or clinical severity infection) 2) population at risk considered (residential or occupational) and 3) differences in laboratory analytical method. Theoretical setback distances necessary to achieve a median annual infection risk level of 10 -4 are proposed for spray irrigation and cooling towers. In both cooling tower and sprinkler cases, Legionella infection risks were non-trivial at potentially large setback distances, and indicate other simultaneous management practices could be needed to manage risks. The sensitivity analysis indicated that the most influential factors for variability in risks were the concentration of Legionella and aerosol partitioning and/or efficiency across all models, highlighting the importance of

  14. Influence of Solvent Composition on the Performance of Spray-Dried Co-Amorphous Formulations

    DEFF Research Database (Denmark)

    Mishra, Jaya; Rades, Thomas; Löbmann, Korbinian

    2018-01-01

    Ball-milling is usually used to prepare co-amorphous drug–amino acid (AA) mixtures. In this study, co-amorphous drug–AA mixtures were produced using spray-drying, a scalable industrially preferred preparation method. The influence of the solvent type and solvent composition was investigated....... Mixtures of indomethacin (IND) and each of the three AAs arginine, histidine, and lysine were ball-milled and spray-dried at a 1:1 molar ratio, respectively. Spray-drying was performed at different solvent ratios in (a) ethanol and water mixtures and (b) acetone and water mixtures. Different ratios...... that using spray-drying as a preparation method, all IND–AA mixtures could be successfully converted into the respective co-amorphous forms, irrespective of the type of solvent used, but depending on the solvent mixture ratios. Both ball-milled and spray-dried co-amorphous samples showed an enhanced...

  15. Improvement of the inlet system for the spray-jet technique for use in spectroscopic studies and molecular deposition

    International Nuclear Information System (INIS)

    Yamada, Toshiki; Shinohara, Hidenori; Mashiko, Shinro

    2006-01-01

    We previously developed a molecular beam apparatus with a spray-jet technique in order to produce a molecular beam of non-volatile molecules in vacuum from the sprayed mist of a sample solution. The apparatus is for use in spectroscopic studies or a means of molecular deposition. The spray-jet inlet system consisted of an ultrasonic nebulizer, an inlet chamber and a pulsed nozzle. In the present paper, further improvements to the spray-jet inlet system are reported. The main improvement is the introduction of a pneumatic nebulizer to replace the previous ultrasonic nebulizer. The efficiency of molecular beam generation was evaluated on the basis of the signal intensity of the resonantly enhanced multiphoton ionization time-of-flight mass (REMPI-TOFMS) spectra for a Rhodamine B/methanol solution and the amount of sample consumed. The introduction of the pneumatic nebulizer increased the efficiency by a factor of 20

  16. Formation of ROS and RNS in Water Electro-Sprayed through Transient Spark Discharge in Air and their Bactericidal Effects

    Czech Academy of Sciences Publication Activity Database

    Machala, Z.; Tarabová, B.; Hensel, K.; Doležalová, Eva; Šikurová, L.; Lukeš, Petr

    2013-01-01

    Roč. 10, č. 7 (2013), s. 649-659 ISSN 1612-8850 R&D Projects: GA AV ČR IAAX00430802; GA ČR(CZ) GD104/09/H080; GA MŠk(CZ) MEB0810116 Institutional support: RVO:61389021 Keywords : Plasma electrospray * water * bacteria * hydrogen peroxide * peroxynitrite * cold plasma * water electro-spray Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 2.964, year: 2013 http://dx.doi.org/10.1002/ppap.201200113

  17. Center for Cold Spray Research and Development

    Data.gov (United States)

    Federal Laboratory Consortium — This is the only DoD facility capable of cold spray research and development, production, and field-repair. It features three stationary cold spray systems used for...

  18. Humidification-Dehumidification (HDH) Spray Column Direct Contact Condenser Part I: Countercurrent Flow

    International Nuclear Information System (INIS)

    Karameldin, A.; Shouman, L.; Fadel, D.

    2016-01-01

    Humidification-De humidification (HDH) is a low grade energy desalination technology. Hot humid air and cooling spray water in counter current flow with direct contact is theoretically analyzed in the present work. Direct contact spray condenser is studied to obtain the effect of various parameters on its performance. A computer program describing the theoretical model is designed to solve one-dimensional differential equations by using Rung-Kutta method. The results show that the column length has a great effect on the performance of the spray condenser. At a column height of 2, 5,10, and 20 m the humidity of the outlet air decreases by 72, 89, 97, and 99% respectively. The humid air temperature has a great influence on the productivity; me an while the temperature difference between the humid air and sprayed water has less effect. A case study of a contiguous co-generation electricity and water in Nuclear Power Plants (NPP) shows that the optimal productivity by HDH is feasible and can reach more than 15 m"3 /day.m"2, enabling a total productivity that varied from 120,000 to 300,000 m"3 /day. The design curves describing the process are obtained together in addition to a formula for the optimal productivity in terms of humid air and sprayed water fluxes at different humid air temperatures is derived

  19. Effect of spray volume on the deposition, viability and infectivity of entomopathogenic nematodes in a foliar spray on vegetables.

    Science.gov (United States)

    Brusselman, Eva; Beck, Bert; Pollet, Sabien; Temmerman, Femke; Spanoghe, Pieter; Moens, Maurice; Nuyttens, David

    2012-10-01

    Spray volume can influence the amount of free water on the leaf surface and subsequently the ability of entomopathogenic nematodes (EPNs) to move. In this study, an investigation was made of the effect of spray volume (548, 730 and 1095 L ha(-1) ) on the deposition, viability and infectivity of EPNs against Galleria mellonella on savoy cabbage, cauliflower and leek. Increasing spray volume decreased nematode deposition on 7.1 cm2 leek leaf discs at a 15° angle with the spray nozzle. Although the number of living nematodes observed on leek after 240 min of exposure was not significantly different between the low-volume application (548 L ha(-1) ) and the high-volume application (1095 L ha(-1) ), a greater infectivity was obtained in the latter application. The higher number of droplets deposited on the leek discs in the high-volume application may have stimulated nematode movement. No significant effect of spray volume was observed on the relative deposition of Steinernema carpocapsae on the bottom side of cauliflower and savoy cabbage leaf discs. In spite of the low S. carpocapsae deposition on the bottom side of the savoy cabbage discs, high infectivity was obtained against G. mellonella. Using the lowest spray volume on savoy cabbage, infectivity decreased with increasing exposure time, while infectivity was not affected by exposure time when a spray volume of 730 L ha(-1) or more was used. Spray volume is an important application parameter, as it affects nematode infectivity. Future research should investigate the effect of spray volume in the field and its influence on the effect of adjuvants. Copyright © 2012 Society of Chemical Industry.

  20. PIV measurements of flow structures in a spray dryer

    DEFF Research Database (Denmark)

    Meyer, Knud Erik; Velte, Clara Marika; Ullum, Thorvald

    2011-01-01

    Stereoscopic Particle Image Velocimetry (PIV) measurements are made in horizontal planes in a simplified scale model of a spray dryer using water as fluid. The sample rate was sufficient to resolve phenomena at lower frequencies. Data reveal asymmetric velocity fields in both mean fields and dyna......Stereoscopic Particle Image Velocimetry (PIV) measurements are made in horizontal planes in a simplified scale model of a spray dryer using water as fluid. The sample rate was sufficient to resolve phenomena at lower frequencies. Data reveal asymmetric velocity fields in both mean fields...

  1. The detailed analysis of the spray time effects of the aluminium coating using self-generated atmospheric plasma spray system on the microstructure and corrosion behaviour

    Directory of Open Access Journals (Sweden)

    Sh. Khandanjou

    Full Text Available In the present paper our aim is to investigate the effect of the spray time of the aluminium coated layers on the microstructure and corrosion behaviour. For this purpose we use the self-generated atmospheric plasma spray system for coating of aluminium on the carbon steel substrate. The different thicknesses of coating are created. To evaluate this effect we use the several analyses such as X-ray diffraction, scanning electron microscope, Micro hardness analysis by Vickers method, Adhesion strength analysis and electrochemical polarization test. The results are very interesting and show that due to low porosity, thicker layers are more homogeneous. The nanoparticles are observed in the thicker layers. The micro hardness tests show that the thicker layers have the better micro hardness value. Next, the adhesion strength tests illustrate that the highest adhesion strength are for longer spray times. On the other hand, the corrosion resistance behaviour of the coating is investigated by electrochemical polarization test. It is shown that the corrosion resistance increases by increasing the thickness due to low percentage of porosity. Keywords: Plasma spray, Thickness, Aluminium, Micro hardness, Corrosion resistance

  2. High mobility organic field-effect transistor based on water-soluble deoxyribonucleic acid via spray coating

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Wei; Han, Shijiao; Huang, Wei; Yu, Junsheng, E-mail: jsyu@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)

    2015-01-26

    High mobility organic field-effect transistors (OFETs) by inserting water-soluble deoxyribonucleic acid (DNA) buffer layer between electrodes and pentacene film through spray coating process were fabricated. Compared with the OFETs incorporated with DNA in the conventional organic solvents of ethanol and methanol: water mixture, the water-soluble DNA based OFET exhibited an over four folds enhancement of field-effect mobility from 0.035 to 0.153 cm{sup 2}/Vs. By characterizing the surface morphology and the crystalline structure of pentacene active layer through atomic force microscope and X-ray diffraction, it was found that the adoption of water solvent in DNA solution, which played a key role in enhancing the field-effect mobility, was ascribed to both the elimination of the irreversible organic solvent-induced bulk-like phase transition of pentacene film and the diminution of a majority of charge trapping at interfaces in OFETs.

  3. An evaluation of the electric arc spray and (HPPS) processes for the manufacturing of high power plasma spraying MCrAIY coatings

    Science.gov (United States)

    Sacriste, D.; Goubot, N.; Dhers, J.; Ducos, M.; Vardelle, A.

    2001-06-01

    The high power plasma torch (PlazJet) can be used to spray refractory ceramics with high spray rates and deposition efficiency. It can provide dense and hard coating with high bond strengths. When manufacturing thermal barrier coatings, the PlazJet gun is well adapted to spraying the ceramic top coat but not the MCrAIY materials that are used as bond coat. Arc spraying can compete with plasma spraying for metallic coatings since cored wires can be used to spray alloys and composites. In addition, the high production rate of arc spraying enables a significant decrease in coating cost. This paper discusses the performances of the PlazJet gun, and a twin-wire are spray system, and compares the properties and cost of MCrAIY coatings made with these two processes. For arc spraying, the use of air or nitrogen as atomizing gas is also investigated.

  4. Spray casting project final report

    International Nuclear Information System (INIS)

    Churnetski, S.R.; Thompson, J.E.

    1996-08-01

    Lockheed Martin Energy Systems, Inc. (Energy Systems), along with other participating organizations, has been exploring the feasibility of spray casting depleted uranium (DU) to near-net shape as a waste minimization effort. Although this technology would be useful in a variety of applications where DU was the material of choice, this effort was aimed primarily at gamma-shielding components for use in storage and transportation canisters for high-level radioactive waste, particularly in the Multipurpose Canister (MPC) application. In addition to the waste-minimization benefits, spray casting would simplify the manufacturing process by allowing the shielding components for MPC to be produced as a single component, as opposed to multiple components with many fabrication and assembly steps. In earlier experiments, surrogate materials were used to simulate the properties (specifically reactivity and density) of DU. Based on the positive results from those studies, the project participants decided that further evaluation of the issues and concerns that would accompany spraying DU was warranted. That evaluation occupied substantially all of Fiscal Year 1995, yielding conceptual designs for both an intermediate facility and a production facility and their associated engineering estimates. An intermediate facility was included in this study to allow further technology development in spraying DU. Although spraying DU to near-net shape seems to be feasible, a number of technical, engineering, and safety issues would need to be evaluated before proceeding with a production facility. This report is intended to document the results from the spray-casting project and to provide information needed by anyone interested in proceeding to the next step

  5. Spermidine sprays alleviate the water deficit-induced oxidative stress in finger millet (Eleusine coracana L. Gaertn.) plants.

    Science.gov (United States)

    Satish, Lakkakula; Rency, Arockiam Sagina; Ramesh, Manikandan

    2018-01-01

    Severe drought stress (water deficit) in finger millet ( Eleusine coracana L. Gaertn.) plants significantly reduced total leaf chlorophyll and relative water content in shoots and roots, whereas electrolyte leakage, concentrations of proline and hydrogen peroxide, as well as caspase-like activity were significantly increased. The role of spermidine in plant defence to water-stress was investigated after subjected to various drought treatments. Three weeks of daily spermidine sprays (0.2 mM) at early flowering stage significantly changed shoot and root growth, in both fresh and dry weights terms. At 75% of water deficit stress, leaves accumulated twice as much proline as unstressed plants, and roots accumulated thrice. Plants treated with spermidine under water stress showed lower electrolyte leakage, hydrogen peroxide and caspase-like activity than unstressed and untreated control.

  6. Mathematical Methodology for New Modeling of Water Hammer in Emergency Core Cooling System

    International Nuclear Information System (INIS)

    Lee, Seungchan; Yoon, Dukjoo; Ha, Sangjun

    2013-01-01

    In engineering insight, the water hammer study has carried out through the experimental work and the fluid mechanics. In this study, a new access methodology is introduced by Newton mechanics and a mathematical method. Also, NRC Generic Letter 2008-01 requires nuclear power plant operators to evaluate the effect of water-hammer for the protection of pipes of the Emergency Core Cooling System, which is related to the Residual Heat Removal System and the Containment Spray System. This paper includes modeling, the processes of derivation of the mathematical equations and the comparison with other experimental work. To analyze the effect of water-hammer, this mathematical methodology is carried out. This study is in good agreement with other experiment results as above. This method is very efficient to explain the water-hammer phenomena

  7. Mathematical Methodology for New Modeling of Water Hammer in Emergency Core Cooling System

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seungchan; Yoon, Dukjoo; Ha, Sangjun [Korea Hydro Nuclear Power Co. Ltd, Daejeon (Korea, Republic of)

    2013-05-15

    In engineering insight, the water hammer study has carried out through the experimental work and the fluid mechanics. In this study, a new access methodology is introduced by Newton mechanics and a mathematical method. Also, NRC Generic Letter 2008-01 requires nuclear power plant operators to evaluate the effect of water-hammer for the protection of pipes of the Emergency Core Cooling System, which is related to the Residual Heat Removal System and the Containment Spray System. This paper includes modeling, the processes of derivation of the mathematical equations and the comparison with other experimental work. To analyze the effect of water-hammer, this mathematical methodology is carried out. This study is in good agreement with other experiment results as above. This method is very efficient to explain the water-hammer phenomena.

  8. Nuclear reactor safety system

    International Nuclear Information System (INIS)

    Sato, Takashi.

    1979-01-01

    Purpose: To allow sufficient removal of radioactive substance released in the reactor containment shell upon loss of coolants accidents thus to sufficiently decrease the exposure dose to human body. Constitution: A clean-up system is provided downstream of a heat exchanger and it is branched into a pipeway to be connected to a spray nozzle and further connected by way of a valve to a reactor container. After the end of sudden transient changes upon loss of coolants accidents, the pool water stored in the pressure suppression chamber is purified in the clean-up system and then sprayed in the dry-well by way of a spray nozzle. The sprayed water dissolves to remove water soluble radioactive substances floating in the dry-well and then returns to the pressure suppression chamber. Since radioactive substances in the dry-well can thus removed rapidly and effectively and the pool water can be reused, public hazard can also be decreased. (Horiuchi, T.)

  9. Calcium titanate (CaTiO{sub 3}) dielectrics prepared by plasma spray and post-deposition thermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Ctibor, Pavel [Materials Engineering Department, Institute of Plasma Physics ASCR, v.v.i., Za Slovankou 3, Prague 8 (Czech Republic); Kotlan, Jiri, E-mail: kotlan@ipp.cas.cz [Materials Engineering Department, Institute of Plasma Physics ASCR, v.v.i., Za Slovankou 3, Prague 8 (Czech Republic); Department of Electrotechnology, Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, Prague 6 (Czech Republic); Pala, Zdenek [Materials Engineering Department, Institute of Plasma Physics ASCR, v.v.i., Za Slovankou 3, Prague 8 (Czech Republic); Sedlacek, Josef [Department of Electrotechnology, Faculty of Electrical Engineering, Czech Technical University in Prague, Technicka 2, Prague 6 (Czech Republic); Hajkova, Zuzana; Grygar, Tomas Matys [Institute of Inorganic Chemistry ASCR, v.v.i., Husinec-Rez 1001, Rez (Czech Republic)

    2015-12-15

    Highlights: • Calcium titanate was sprayed by two different plasma spray systems. • Significant improvement of dielectric properties after annealing was observed. • Calcium titanate self-supporting parts can be fabricated by plasma spraying. - Abstract: This paper studies calcium titanate (CaTiO{sub 3}) dielectrics prepared by plasma spray technology. A water stabilized plasma gun (WSP) as well as a widely used gas stabilized plasma gun (GSP) were employed in this study to deposit three sample sets at different spray conditions. Prepared specimens were annealed in air at atmospheric pressure for 2 h at various temperatures from 530 to 1170 °C. X-ray diffraction (XRD), Raman spectroscopy and porosity measurements were used for sample characterization. Dielectric spectroscopy was applied to obtain relative permittivity, conductivity and loss factor frequency dependence. Band gap energy was estimated from reflectance measurements. The work is focused on the explanation of changes in microstructure and properties of a plasma sprayed deposit after thermal annealing. Obtained results show significant improvement of dielectric properties after thermal annealing.

  10. Testing of a Spray-Bar Zero Gravity Cryogenic Vent System for Upper Stages

    Science.gov (United States)

    Lak, Tibor; Flachbart, Robin; Nguyen, Han; Martin, James

    1999-01-01

    The capability to vent in zero gravity without resettling is a fundamental technology need that involves practically all uses of subcritical cryogenics in space. Venting without resettling would extend cryogenic orbital transfer vehicle capabilities. However, the lack of definition regarding liquid/ullage orientation coupled with the somewhat random nature of the thermal stratification and resulting pressure rise rates, lead to significant technical challenges. Typically a zero gravity vent concept, termed a thermodynamic vent system (TVS), consists of a tank mixer to destratify the propellant, combined with a Joule- Thomson (J-T) valve to extract then-nal energy from the propellant. In a cooperative effort, Marshall Space Flight Center's (MSFC's) Multipurpose Hydrogen Test Bed (N4HTB) was used to test a unique "spray bar" TVS system developed by Boeing. A schematic of this system is included in Figure 1. The system consists of a recirculation pump, a parallel flow concentric tube, heat exchanger, and a spray bar positioned close to the longitudinal axis of the tank. In the mixing mode, the recirculation pump withdraws liquid from the tank and sprays it radially into the tank liquid, ullage, and exposed tank surfaces. When energy extraction is required, a small portion of the recirculated liquid is passed sequentially through the J-T expansion valve, the spray bar heat exchanger element, and is vented overboard. The vented vapor cools the circulated bulk fluid, thereby removing thermal energy and reducing tank pressure. Figure 2 is a plot of ullage pressure (P4) and liquid vapor pressure (PSAI) versus time. The pump operates alone, cycling on and off, to destratify the tank liquid and ullage until the liquid vapor pressure reaches the lower set point. At that point, the J-T valve begins to cycle on and off with the pump. Thus, for short duration missions, only the mixer may operate, thus minimizing or even eliminating boil-off losses. The primary advantage of the

  11. Spray drying of budesonide, formoterol fumarate and their composites-II. Statistical factorial design and in vitro deposition properties.

    Science.gov (United States)

    Tajber, L; Corrigan, O I; Healy, A M

    2009-02-09

    The aim of this study was to investigate the effect of changing spray drying parameters on the production of a budesonide/formoterol fumarate 100:6 (w/w) composite. The systems were spray dried as solutions from 95% ethanol/5% water (v/v) using a Büchi 191-Mini Spray Dryer. A 2(5-1) factorial design study was undertaken to assess the consequence of altering spray drying processing variables on particle characteristics. The processing parameters that were studied were inlet temperature, spray drier airflow rate, pump rate, aspirator setting and feed concentration. Each batch of the resulting powder was characterised in terms of thermal and micromeritic properties as well as an in vitro deposition by twin impinger analysis. Overall, the parameter that had the greatest influence on each response investigated was production yield - airflow (higher airflow giving greater yields), median particle size - airflow (higher airflow giving smaller particle sizes) and Carr's compressibility index - feed concentration (lower feed concentration giving smaller Carr's indices). A six- to seven-fold difference in respirable fraction can be observed by changing the spray drying process parameters. The co-spray dried composite system which displayed best in vitro deposition characteristics, showed a 2.6-fold increase in respirable fraction in the twin impinger experiments and better dose uniformity compared with the physical mix of micronised powders.

  12. Helicopter Icing Spray System (HISS) Evaluation and Improvement

    Science.gov (United States)

    1986-04-01

    the Small , inteligient Icing D)ata System (SIIDiS) puckage obtained HISS spray cloud measurements on fltights intended for clr-ud calibration and in con...HISS flew at aI constanlt airsl.Led~ between 80 and 120 knots true. air- speed (KTAS) throughout thle immersion, and attempted to maintain constant air...0 C -- 1 0) ’IL 1-4 WC .4w4 0 44 9i Photo 18. Natural Ice. F~orma~tion on• Riv.ct. Aoug Side of F useta),c (1111-60). ,P ho to 11) . A r ti l ic i aI

  13. Comparison of a novel spray congealing procedure with emulsion-based methods for the micro-encapsulation of water-soluble drugs in low melting point triglycerides.

    Science.gov (United States)

    McCarron, Paul A; Donnelly, Ryan F; Al-Kassas, Rasil

    2008-09-01

    The particle size characteristics and encapsulation efficiency of microparticles prepared using triglyceride materials and loaded with two model water-soluble drugs were evaluated. Two emulsification procedures based on o/w and w/o/w methodologies were compared to a novel spray congealing procedure. After extensive modification of both emulsification methods, encapsulation efficiencies of 13.04% tetracycline HCl and 11.27% lidocaine HCl were achievable in a Witepsol-based microparticle. This compares to much improved encapsulation efficiencies close to 100% for the spray congealing method, which was shown to produce spherical particles of approximately 58 microm. Drug release studies from a Witepsol formulation loaded with lidocaine HCl showed a temperature-dependent release mechanism, which displayed diffusion-controlled kinetics at temperatures approximately 25 degrees C, but exhibited almost immediate release when triggered using temperatures close to that of skin. Therefore, such a system may find application in topical semi-solid formulations, where a temperature-induced burst release is preferred.

  14. Application of Constrained Linear MPC to a Spray Dryer

    DEFF Research Database (Denmark)

    Petersen, Lars Norbert; Poulsen, Niels Kjølstad; Niemann, Hans Henrik

    2014-01-01

    In this paper we develop a linear model predictive control (MPC) algorithm for control of a two stage spray dryer. The states are estimated by a stationary Kalman filter. A non-linear first-principle engineering model is developed to simulate the spray drying process. The model is validated against...... experimental data and able to precisely predict the temperatures, the air humidity and the residual moisture in the dryer. The MPC controls these variables to the target and reject disturbances. Spray drying is a cost-effective method to evaporate water from liquid foods and produces a free flowing powder...

  15. High quality ceramic coatings sprayed by high efficiency hypersonic plasma spraying gun

    International Nuclear Information System (INIS)

    Zhu Sheng; Xu Binshi; Yao JiuKun

    2005-01-01

    This paper introduced the structure of the high efficiency hypersonic plasma spraying gun and the effects of hypersonic plasma jet on the sprayed particles. The optimised spraying process parameters for several ceramic powders such as Al 2 O 3 , Cr 2 O 3 , ZrO 2 , Cr 3 C 2 and Co-WC were listed. The properties and microstructure of the sprayed ceramic coatings were investigated. Nano Al 2 O 3 -TiO 2 ceramic coating sprayed by using the high efficiency hypersonic plasma spraying was also studied. Compared with the conventional air plasma spraying, high efficiency hypersonic plasma spraying improves greatly the ceramic coatings quality but at low cost. (orig.)

  16. Spraying of metallic powders by hybrid gas/water torch and the effects of inert gas shrouding

    Czech Academy of Sciences Publication Activity Database

    Kavka, Tetyana; Matějíček, Jiří; Ctibor, Pavel; Hrabovský, Milan

    2012-01-01

    Roč. 21, 3-4 (2012), s. 695-705 ISSN 1059-9630 R&D Projects: GA MPO FR-TI2/702; GA MPO FR-TI2/561 Institutional research plan: CEZ:AV0Z20430508 Keywords : copper * tungsten * hybrid water-gas torch * plasma facing materials * plasma spraying * gas shroud Subject RIV: BL - Plasma and Gas Discharge Physics Impact factor: 1.481, year: 2012 http://www.springerlink.com/content/j07t3222hnv87882/fulltext.pdf

  17. Lecithin/TPGS-based spray-dried self-microemulsifying drug delivery systems: In vitro pulmonary deposition and cytotoxicity.

    Science.gov (United States)

    Ishak, Rania A H; Osman, Rihab

    2015-05-15

    The aim of the present work was to develop a new solid self-microemulsifying drug delivery system (SMEDDS) for the pulmonary delivery of the poorly water-soluble anti-cancer drug atorvastatin (AVT). Microemulsion (ME) was first developed using isopropyl myristate (IPM), a combination of 2 biocompatible surfactants: lecithin/d-α-tocopheryl polyethylene glycol succinate (TPGS) and ethanol as co-surfactant. Two types of lecithin with different phosphatidylcholine (PC) contents were compared. Phase diagram, physico-chemical characterization and stability studies were used to investigate ME region. Solid SMEDDS were then prepared by spray-drying the selected ME using a combination of carriers composed of sugars, leucine as dispersibility enhancer with or without polyethylene glycol (PEG) 6000. Yield, flow properties, particle size and in vitro pulmonary deposition were used to characterize the spray-dried powders. Reconstituted MEs were characterized in terms of morphology, particle size and size distribution. In vitro cytotoxicity study was undertaken on lung cancer cell line for the selected MEs and SD-SMEDDS formulae. Results showed that the most satisfactory MEs properties were obtained with 1:3 lecithin/TPGS, 1:1 lecithin/oil and 1:1 surfactant/co-surfactant ratios. A larger ME area was obtained with lecithin containing 100% PC compared to the less expensive lecithin containing 20% PC. By manipulating spray drying parameters, carrier composition and ratio of ME lipids to carrier, microparticles with more than 70% of respirable fraction could be prepared. The ME was efficiently recovered in simulated lung fluid even after removal of alcohol. The concurrent delivery of AVT with TPGS in solid SMEDDS greatly enhanced the cytotoxic activity on lung cancer cells. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Emulsions from Aerosol Sprays

    Science.gov (United States)

    Hengelmolen; Vincent; Hassall

    1997-12-01

    An electrostatic emulsification apparatus has been designed for the purpose of studying diffusion from oil droplets which have a mean size in the range of approximately 1.5-3.5 &mgr;m, with standard deviations of 40-50%. The emulsification technique involves the collection of a spray of electrically charged oil droplets onto a rotating water film which is sustained from a reservoir. In this way, emulsions with volume fractions of approximately 10(-3) are produced within several minutes at oil flow rates of around 10(-2) ml min-1. Phase-Doppler anemometry (PDA) was used to assess droplet size distributions for the sprays and emulsions. Results show that the mean emulsion droplet size was smaller than the mean spray droplet size by several orders of magnitude. At flow rates around 10(-2) ml min-1, the spray droplet size distribution was little affected by the applied potential between about -4.20 and -4.65 kV (mean droplet size between approximately 7.6 and 7.8 &mgr;m, with standard deviations of approximately 20%), whereas the mean droplet size of the corresponding emulsion decreased more rapidly with applied potential. Above an applied potential of approximately -4.30 kV, which corresponded to an emulsion droplet size below approximately 2 &mgr;m, the measured volume fraction of the emulsion decreased with respect to the volume fraction as calculated on the basis of total amount of injected oil. Copyright 1997 Academic Press. Copyright 1997Academic Press

  19. Spray drying of liquid radioactive wastes

    International Nuclear Information System (INIS)

    Abrams, R.F.; Monat, J.P.

    1984-01-01

    Full scale performance tests of a Koch spray dryer were conducted on simulated liquid radioactive waste streams. The liquid feeds simulated the solutions that result from radwaste incineration of DAW an ion exchange resins, as well as evaporator bottoms. The integration of the spray dryer into a complete system is discussed

  20. Sustainability assessment of heat exchanger units for spray dryers

    International Nuclear Information System (INIS)

    Caglayan, Hasan; Caliskan, Hakan

    2017-01-01

    In this study, the sustainability assessment is performed to the system known as heat exchanger unit with spray dryer. The five-different dead state temperatures (0-5-10-15-20 °C) are considered. It is found that the heat exchanger has the highest energy efficiency (63.32%), while the overall system has the lowest one (5.56%). So, the combination of the spray dryer with the heat exchanger is more effective. On the other hand, the overall exergy efficiency of the system is lower than the heat exchanger and spray dryer for all of the dead state (environmental) temperatures. The exergy efficiency of the heat exchanger is inversely proportional to the dead state temperature, and the maximum rate is found as 49.65% at 0 °C. Furthermore, the exergy efficiencies of the spray dryer and overall system are directly proportional to the dead state temperatures, and the corresponding maximum rates are found to be 26.41% and 24.32% at 20 °C, respectively. Also, the exergy destruction is directly proportional to the dead state temperatures. The minimum and maximum exergy destruction rates are found at the dead state temperatures of 0 °C and 20 °C, respectively. Furthermore, the most sustainable system is found as the heat exchanger unit. - Highlights: • Thermodynamic analyses of industrial heat exchangers and spray dryers. • Sustainability of heat exchangers for spray dryers. • Dead state temperature effects on exergy efficiencies of heat exchangers and spray dryers.

  1. Water extraction from high moisture lignite by means of efficient integration of waste heat and water recovery technologies with flue gas pre-drying system

    International Nuclear Information System (INIS)

    Han, Xiaoqu; Yan, Junjie; Karellas, Sotirios; Liu, Ming; Kakaras, Emmanuel; Xiao, Feng

    2017-01-01

    Highlights: • Energy-saving potential of FPLPS in different cold-ends and lignite types is evaluated. • Water-saving of FPLPS is realized through recovery of water extracted from lignite. • Integrations of low pressure economizer and spray tower with FPLPS are proposed. • Thermodynamic and economic performances of different schemes are investigated. - Abstract: The flue gas pre-dried lignite-fired power system (FPLPS) integrates the fan mill flue gas dryer with an open pulverizing system and yields an increase of the boiler efficiency. Particularly, the dryer exhaust gas contains a large amount of vapor removed from high moisture lignite, which exhibits great potential for waste heat and water recovery. Two available options are considered to realize the extraction of water from lignite: the low pressure economizer (LPE) for water-cooled units and the spray tower (SPT) integrated with heat pump for air-cooled units. This paper aims at evaluating the energy saving and water recovery potentials of the FPLPS integrated with both schemes. Results showed that the plant efficiency improvement of the FPLPS at base case varied from 1.14% to 1.47% depending on the moisture content of raw lignite. The water recovery ratio and plant efficiency improvement in the optimal LPE scheme were 39.4% and 0.20%, respectively. In contrast, 83.3% of water recover ratio and 110.6 MW_t_h heat supply were achieved in the SPT system. Both schemes were economically feasible with discounted payback periods of around 3 years. Moreover, parametric analysis was conducted to examine the economic viability of both schemes with different lignite types and market factors.

  2. Spray drying of beryllium oxide powder

    International Nuclear Information System (INIS)

    Sepulveda, J.L.; Kahler, D.A.

    1991-01-01

    Forming of beryllia ceramics through dry pressing requires the agglomeration of the powder through spray drying. To produce high quality fired ceramics it is necessary to disperse/grind the primary powder prior to binder addition. Size reduction of the powder is accomplished using an aqueous system in Vibro-Energy mills (VEM) charged with beryllia media to minimize contamination. Two VEM mills of different size were used to characterize the grinding operation. Details of the grinding kinetics are described within the context of the Macroscopic Population Balance Model approach. Spray drying of the ceramic slurry was accomplished with both a centrifugal atomizer and a two fluid nozzle atomizer. Two different spray dryers were used. Important operating parameters affecting the size distribution of the spray dried powder are discussed

  3. Layered growth with bottom-spray granulation for spray deposition of drug.

    Science.gov (United States)

    Er, Dawn Z L; Liew, Celine V; Heng, Paul W S

    2009-07-30

    The gap in scientific knowledge on bottom-spray fluidized bed granulation has emphasized the need for more studies in this area. This paper comparatively studied the applicability of a modified bottom-spray process and the conventional top-spray process for the spray deposition of a micronized drug during granulation. The differences in circulation pattern, mode of growth and resultant granule properties between the two processes were highlighted. The more ordered and consistent circulation pattern of particles in a bottom-spray fluidized bed was observed to give rise to layered granule growth. This resulted in better drug content uniformity among the granule batches and within a granule batch. The processes' sensitivities to wetting and feed material characteristics were also compared and found to differ markedly. Less robustness to differing process conditions was observed for the top-spray process. The resultant bottom-spray granules formed were observed to be less porous, more spherical and had good flow properties. The bottom-spray technique can thus be potentially applied for the spray deposition of drug during granulation and was observed to be a good alternative to the conventional technique for preparing granules.

  4. Sensitivity evaluation of human factors for reliability of the containment spray system

    International Nuclear Information System (INIS)

    Tsujimura, Yasuhiro; Suzuki, Eiji

    1988-01-01

    Evaluation of the human reliability is one of the most difficult problems that deal with the safety and reliability of large systems, especially of the Engineered Safety Features (ESF) of the nuclear power plant. Influences of human factors on the reliability of the Containment Spray System in the ESF were estimated by using the FTA method in this paper. As a result, the adequacy of the system structure and the effects of human factors on variations of the design of the system structure were explained. (author)

  5. Fine Sprays for Disinfection within Healthcare

    Directory of Open Access Journals (Sweden)

    G Nasr

    2016-09-01

    Full Text Available Problems exist worldwide with Hospital Acquired Infections (HAI's. The Spray Research Group (SRG have been working with relevant industries in developing a product which can provide a delivery system for treatment chemicals for surfaces, including the design and testing of a novel Spill-Return Atomiser (SRA for this purpose. A comprehensive description of this atomiser has already been given. This paper reports on a new application of this atomiser and discusses the problem of spray coating for disinfection that has been considered very little in previous work. The related spray coating performance tests in developing the product are thus provided. The experimental work includes determining the required spray duration and the coverage area produced by different sprays, including the analysis of the effects of atomiser positions, configurations, and the required number of atomisers. Comparison is made with the efficacy of an ultrasonic gas atomiser that is currently used for this purpose. The investigation has found that the utilisation of fine sprays (10μm>D32>25μm at high liquid pressure (<12MPa and low flow rates (<0.3 l/min is suitable for surface disinfection in healthcare applications (i.e. MRSA, VRSA etc.

  6. Corrosion characteristics of several thermal spray cermet-coating/alloy systems

    International Nuclear Information System (INIS)

    Ashary, A.A.; Tucker, R.C. Jr.

    1991-01-01

    The corrosion characteristics of a thermal spray multiphase cermet coating can be quite complex. Factors such as porosity and galvanic effects between different phases in the coating and the substrate, as well as the inherent general and localized corrosion resistance of each phase, can play an important role. The present paper describes the corrosion of several cermet-coating/alloy systems as studied by a potentiodynamic cyclic polarization technique. The corrosion of these coating systems was found to be most often dominated by corrosion of the metallic phases in the coating or of the substrate alloy. (orig.)

  7. Data report on spray cooling test by ROSA-III, (1)

    International Nuclear Information System (INIS)

    Sobajima, Makoto; Murata, Hideo; Shiba, Masayoshi

    1980-03-01

    A separate effect test on spray cooling was carried out using one core channel of ROSA-III BWR LOCA test facility. This report describes a heating experiment in the series of runs. (1) The cooling from top of the core by spray easily causes countercurrent flow limit due to the vaparization of falling water itself, so it becomes in effective. (2) The cooling by falling water is irregular and unstable. Therefore, the cooling by the falling water is not to be relied on. (3) CCFL at porous plate is hard to occur, compared with single pipe. A quantitative study of this is desired to evaluate reflooding rate. Some suggestions for ROSA-III design are also made. (author)

  8. Effect of spray application technique on spray deposition in greenhouse strawberries and tomatoes.

    Science.gov (United States)

    Braekman, Pascal; Foque, Dieter; Messens, Winy; Van Labeke, Marie-Christine; Pieters, Jan G; Nuyttens, David

    2010-02-01

    Increasingly, Flemish greenhouse growers are using spray booms instead of spray guns to apply plant protection products. Although the advantages of spray booms are well known, growers still have many questions concerning nozzle choice and settings. Spray deposition using a vertical spray boom in tomatoes and strawberries was compared with reference spray equipment. Five different settings of nozzle type, size and pressure were tested with the spray boom. In general, the standard vertical spray boom performed better than the reference spray equipment in strawberries (spray gun) and in tomatoes (air-assisted sprayer). Nozzle type and settings significantly affected spray deposition and crop penetration. Highest overall deposits in strawberries were achieved using air-inclusion or extended-range nozzles. In tomatoes, the extended-range nozzles and the twin air-inclusion nozzles performed best. Using smaller-size extended-range nozzles above the recommended pressure range resulted in lower deposits, especially inside the crop canopy. The use of a vertical spray boom is a promising technique for applying plant protection products in a safe and efficient way in tomatoes and strawberries, and nozzle choice and setting should be carefully considered.

  9. No Heat Spray Drying Technology

    Energy Technology Data Exchange (ETDEWEB)

    Beetz, Charles [ZoomEssence, Inc., Hebron, KY (United States)

    2016-06-15

    No Heat Spray Drying Technology. ZoomEssence has developed our Zooming™ spray drying technology that atomizes liquids to powders at ambient temperature. The process of drying a liquid into a powder form has been traditionally achieved by mixing a heated gas with an atomized (sprayed) fluid within a vessel (drying chamber) causing the solvent to evaporate. The predominant spray drying process in use today employs air heated up to 400° Fahrenheit to dry an atomized liquid into a powder. Exposing sensitive, volatile liquid ingredients to high temperature causes molecular degradation that negatively impacts solubility, stability and profile of the powder. In short, heat is detrimental to many liquid ingredients. The completed award focused on several areas in order to advance the prototype dryer to a commercial scale integrated pilot system. Prior to the award, ZoomEssence had developed a prototype ‘no-heat’ dryer that firmly established the feasibility of the Zooming™ process. The award focused on three primary areas to improve the technology: (1) improved ability to formulate emulsions for specific flavor groups and improved understanding of the relationship of emulsion properties to final dry particle properties, (2) a new production atomizer, and (3) a dryer controls system.

  10. Protection of Reinforced Concrete Structures of Waste Water Treatment Reservoirs with Stainless Steel Coating Using Arc Thermal Spraying Technique in Acidified Water

    Directory of Open Access Journals (Sweden)

    Han-Seung Lee

    2016-09-01

    Full Text Available Waste water treatment reservoirs are contaminated with many hazardous chemicals and acids. Reservoirs typically comprise concrete and reinforcement steel bars, and the main elements responsible for their deterioration are hazardous chemicals, acids, and ozone. Currently, a variety of techniques are being used to protect reservoirs from exposure to these elements. The most widely used techniques are stainless steel plating and polymeric coating. In this study, a technique known as arc thermal spraying was used. It is a more convenient and economical method for protecting both concrete and reinforcement steel bar from deterioration in waste water treatment reservoirs. In this study, 316L stainless steel coating was applied to a concrete surface, and different electrochemical experiments were performed to evaluate the performance of coatings in different acidic pH solutions. The coating generated from the arc thermal spraying process significantly protected the concrete surface from corrosion in acidic pH solutions, owing to the formation of a double layer capacitance—a mixture of Cr3+ enriched with Cr2O3 and Cr-hydroxide in inner and Fe3+ oxide on the outer layer of the coating. The formation of this passive film is defective owing to the non-homogeneous 316L stainless steel coating surface. In the pH 5 solution, the growth of a passive film is adequate due to the presence of un-dissociated water molecules in the aqueous sulfuric acid solution. The coated surface is sealed with alkyl epoxide, which acts as a barrier against the penetration of acidic solutions. This coating exhibits higher impedance values among the three studied acidic pH solutions.

  11. Fluctuations of a spray generated by an airblast atomizer

    Energy Technology Data Exchange (ETDEWEB)

    Batarseh, Feras Z.; Gnirss, Markus; Roisman, Ilia V.; Tropea, Cameron [Technische Universitaet Darmstadt (Germany). Chair of Fluid Mechanics and Aerodynamics

    2009-06-15

    This paper is devoted to the study of the aerodynamic instability of the spray generated by an airblast atomizer. As a result of this instability the spray shape and its velocity fluctuate with a certain frequency, which depends on the operational parameters of the atomizer. The effect of three parameters, namely; chamber pressure, liquid phase flow rate and the gas phase flow rate on the spray fluctuating frequency are investigated. The velocity vector of the drops in the spray and the arrival times to the detection volume are measured using the laser Doppler instrument. The slotting technique is applied to the data of axial velocity and arrival times of the drops in order to estimate the dominating spray frequencies. Additionally, the shape of the spray has been observed using the high-speed video system. The frequencies of the shape fluctuations are estimated using proper orthogonal decomposition of the time-resolved images of the spray. We show that the frequencies of the spray velocity and those exhibited by spray shape coincide over a wide range of spray parameters. Finally, a simple scaling for the spray frequency is proposed and validated by the experimental data. (orig.)

  12. Modification of the solid-state nature of sulfathiazole and sulfathiazole sodium by spray drying.

    Science.gov (United States)

    Bianco, Stefano; Caron, Vincent; Tajber, Lidia; Corrigan, Owen I; Nolan, Lorraine; Hu, Yun; Healy, Anne Marie

    2012-06-01

    Solid-state characterisation of a drug following pharmaceutical processing and upon storage is fundamental to successful dosage form development. The aim of the study was to investigate the effects of using different solvents, feed concentrations and spray drier configuration on the solid-state nature of the highly polymorphic model drug, sulfathiazole (ST) and its sodium salt (STNa). The drugs were spray-dried from ethanol, acetone and mixtures of these organic solvents with water. Additionally, STNa was spray-dried from pure water. The physicochemical properties including the physical stability of the spray-dried powders were compared to the unprocessed materials. Spray drying of ST from either acetonic or ethanolic solutions with the spray drier operating in a closed cycle mode yielded crystalline powders. In contrast, the powders obtained from ethanolic solutions with the spray drier operating in an open cycle mode were amorphous. Amorphous ST crystallised to pure form I at ≤35 % relative humidity (RH) or to polymorphic mixtures at higher RH values. The usual crystal habit of form I is needle-like, but spherical particles of this polymorph were generated by spray drying. STNa solutions resulted in an amorphous material upon processing, regardless of the solvent and the spray drier configuration employed. Moisture induced crystallisation of amorphous STNa to a sesquihydrate, whilst crystallisation upon heating gave rise to a new anhydrous polymorph. This study indicated that control of processing and storage parameters can be exploited to produce drugs with a specific/desired solid-state nature.

  13. Indoor spray measurement of spray drift potential using a spray drift test bench : effect of drift-reducing nozzle types, spray boom height, nozzle spacing and forward speed

    NARCIS (Netherlands)

    Moreno Ruiz, J.R.

    2014-01-01

    In a series of indoor experiments spray drift potential was assessed when spraying over a spray drift testbench with two different driving speeds, 2m/s and 4m/s, two different spray boom heights, 30 cm and 50 cm, and two different nozzle spacing, 25 cm and 50 cm, for six different nozzle types. The

  14. Quantitative spray analysis of diesel fuel and its emulsions using digital image processing

    Directory of Open Access Journals (Sweden)

    Faik Ahmad Muneer El-Deen

    2015-01-01

    Full Text Available In the present work, an experimental investigation of spray atomization of different liquids has been carried out. An air-assist atomizer operating at low injection pressures valued (4 and 6 bar has been used to generate sprays of (diesel fuel, 5, 10, and 15% water-emulsified-diesel, respectively. A Photron-SA4 high speed camera has been used for spray imaging at 2000 fps. 20 time intervals (from 5 to 100 ms with 5 ms time difference are selected for analysis and comparison. Spray macroscopic characteristics (spray penetration, dispersion, cone angle, axial and dispersion velocities have been extracted by a proposed technique based on image processing using Matlab, where the maximum and minimum (horizontal and vertical boundaries of the spray are detected, from which the macroscopic spray characteristics are evaluated. The maximum error of this technique is (1.5% for diesel spray and a little bit higher for its emulsions.

  15. The system uranyl nitrate-dietyl ether-water. Extraction by water in spray and packed columns from uranyl nitrate-either solutions

    International Nuclear Information System (INIS)

    Perez Luina, A.; Gutierrez Jodra, L.

    1960-01-01

    This paper is a continuation of the one published in Chemical Engineering Progress. Symposium Series, 50, n. 12, 127 (1954). New runs for spray columns, are given and other concentrations in uranyl nitrate for the packed columns. New correlations for the overall H.T.U. are also given. The individual H.T.U. have been grapycally calculated and show that the film resistances have similar values, being independent of the concentration of the ether phase. (Author) 24 refs

  16. Demands, Potentials, and Economic Aspects of Thermal Spraying with Suspensions: A Critical Review

    Science.gov (United States)

    Toma, Filofteia-Laura; Potthoff, Annegret; Berger, Lutz-Michael; Leyens, Christoph

    2015-10-01

    Research and development work for about one decade have demonstrated many unique thermal spray coating properties, particularly for oxide ceramic coatings by using suspensions of fine powders as feedstock in APS and HVOF processes. Some particular advantages are direct feeding of fine nano- and submicron-scale particles avoiding special feedstock powder preparation, ability to produce coating thicknesses ranging from 10 to 50 µm, homogeneous microstructure with less anisotropy and lower surface roughness compared to conventional coatings, possibility of retention of the initial crystalline phases, and others. This paper discusses the main aspects of thermal spraying with suspensions which have been taken into account in order to produce these coatings on an economical way. The economic efficiency of the process depends on the availability of suitable additional system components (suspension feeder, injectors), on the development and handling of stable suspensions, as well as on the high process stability for acceptance at industrial scale. Special focus is made on the development and processability of highly concentrated water-based suspensions. While costs and operational safety clearly speak for use of water as a liquid media for preparing suspensions on an industrial scale, its use is often critically discussed due to the required higher heat input during spraying compared to alcoholic suspensions.

  17. Exergoeconomic optimization of an ammonia-water hybrid heat pump for heat supply in a spray drying facility

    DEFF Research Database (Denmark)

    Jensen, Jonas Kjær; Markussen, Wiebke Brix; Reinholdt, Lars

    2014-01-01

    Spray drying facilities are among the most energy intensive industrial processes. Using a heat pump to recover waste heat and replace gas combustion has the potential to attain both economic and emissions savings. In the case examined a drying gas of ambient air is heated to 200 XC. The inlet flow...... rate is 100,000 m3/h which yields a heat load of 6.1 MW. The exhaust air from the drying process is 80 XC. The implementation of an ammonia-water hybrid absorption-compression heat pump to partly cover the heat load is investigated. A thermodynamic analysis is applied to determine optimal circulation...... ratios for a number of ammonia mass fractions and heat pump loads. An exergoeconomic optimization is applied to minimize the lifetime cost of the system. Technological limitations are applied to constrain the solution to commercial components. The best possible implementation is identified in terms...

  18. Yttria-stabilized zirkonia / gadolinium zirconate double-layer plasma-sprayed thermal barrier coating systems (TBCs)

    International Nuclear Information System (INIS)

    Bakan, Emine

    2015-01-01

    Thermal barrier coating (TBC) research and development is driven by the desirability of further increasing the maximum inlet temperature in a gas turbine engine. A number of new top coat ceramic materials have been proposed during the last decades due to limited temperature capability (1200 C) of the state-of-the-art yttria-stabilized zirconia (7 wt. % Y 2 O 3 -ZrO 2 , YSZ) at long term operation. Zirconate pyrochlores of the large lanthanides((Gd → La) 2 Zr 2 O 7 ) have been particularly attractive due to their higher temperature phase stability than that of the YSZ. Nonetheless, the issues related with the implementation of pyrochlores such as low fracture toughness and formation of deleterious interphases with thermally grown oxide (TGO, Al 2 O 3 ) were reported. The implication was the requirement of an interlayer between the pyrochlores and TGO, which introduced double-layer systems to the TBC literature. Furthermore, processability issues of pyrochlores associated with the different evaporation rates of lanthanide oxides and zirconia resulting in unfavorable composition variations in the coatings were addressed in different studies. After all, although the material properties are available, there is a paucity of data in the literature concerning the properties of the coatings made of pyrochlores. From the processability point of view the most reported pyrochlore is La 2 Zr 2 O 7 . Hence, the goal of this research was to investigate plasma-sprayed Gd 2 Zr 2 O 7 (GZO) coatings and YSZ/GZO double-layer TBC systems. Three main topics were examined based on processing, performance and properties: (i) the plasma spray processing of the GZO and its impact on the microstructural and compositional properties of the GZO coatings; (ii) the cycling lifetime of the YSZ/GZO double-layer systems under thermal gradient at a surface temperature of 1400 C; (iii) the properties of the GZO and YSZ coatings such as thermal conductivity, coefficient of thermal expansion as well

  19. Operating experience feedback report: Service water system failures and degradations: Volume 3

    International Nuclear Information System (INIS)

    Lam, P.; Leeds, E.

    1988-11-01

    A comprehensive review and evaluation of service water system failures and degradations observed in operating events in light water reactors from 1980 to 1987 has been conducted. The review and evaluation focused on the identification of causes of system failures and degradations, the adequacy of corrective actions implemented and planned, and the safety significance of the operating events. The results of this review and evaluation indicate that the service water system failures and degradations have significant safety implications. These system failures and degradations are attributable to a great variety of causes, and have adverse impact on a large number of safety-related systems and components which are required to mitigate reactor accidents. Specifically, the causes of failures and degradations include various fouling mechanisms (sediment deposition, biofouling, corrosion and erosion, pipe coating failure, calcium carbonate, foreign material and debris intrusion); single failures and other design deficiencies; flooding; multiple equipment failures; personnel and procedural errors; and seismic deficiencies. Systems and components adversely impacted by a service water system failure or degradation include the component cooling water system, emergency diesel generators, emergency core cooling system pumps and heat exchangers, the residual heat removal system, containment spray and fan coolers, control room chillers, and reactor building cooling units. 44 refs., 10 figs., 5 tabs

  20. THE EFFECTS OF SPRAY-CHILLING ASSOCIATED TO CONVENTIONAL CHILLING ON MASS LOSS, BACTERIOLOGYCAL AND PHYSICO-CHEMICAL QUALITY OF BEEF CARCASS

    Directory of Open Access Journals (Sweden)

    Moacir Evandro Lage

    2006-10-01

    Full Text Available The purpose of this study was to verify the effect of conventional air chilling associated to intermittent spray-chilling treatment, on weight loss, physico-chemical and bacteriological quality of beef carcasses. Two plants of commercial beef slaughterhouse located in Goiânia and fiscalized by the Federal Inspection Service were used to develop the research. The spray-chilling treatment was accomplished in an intermittent way, commanded by acontrolled logical program, with cycles of 90 seconds, in intervals of 30 minutes, during the first 4 hours of the chilling process. Physico-chemical and bacteriological analysis were made in spray-chilled water and carcasses samples, according to recommendation of the effective legislation.The average values of carcasses weight loss of treatment group were lower to the ones verified for the control group,in both plants, A and B, (P < 0,001, showing a high economic potential. As a conclusion of physico-chemical and bacteriological analysis results of water and meat samples, it is clear that the technology of chilling beef carcasses inthe conventional system associated to spraying did not interfere in the quality of meat, and it can become an analysis object on part of official organs for sanitary regulation and fiscalization, for its definitive adoption. KEY WORDS: Spray-chilling, shrinkage, beef carcass.

  1. Analysis of Water Mist Suppression with Foam Additive in Wind Generator

    Institute of Scientific and Technical Information of China (English)

    Chen-Wei Chiu[1; Yin-Tsz Lin[1; Yi-Liang Shu[2

    2015-01-01

    The study adopted a 20-foot long container to simulate the situation inside a turbine cabin. Water mist sprays were installed internally and used to perform fire extinguishing tests. Under these different scenarios, several operating factors were adjusted with the results of each adjustment subsequently measured. The operating factors studied included: operating pressures, foam concentrations, cabin opening issues, and obstacles. Each of the factors was compared with the others so as to find out which combinations would be most suitable for a water mist spray system installed inside a wind turbine cabin. The presence of obstructions hinders the direct impact of the mist spray on the fire source and in average an additional 2 to 3 minutes is required to put out the fire. This study found that the effect of the foam-water ratio is linear. Regardless of the scenario, the optimum mixture ratio is 3%. The line graph shows that the most unsuitable aqueous film-forming mixture ratio is 6%. This experiment found that the main fire extinguishing mechanism of water mist spray is the cooling of a large area via water droplets. This system is very effective in bringing down the temperature. The addition of foam in water mist spray, however, impaired the effectiveness of the cooling effect although the fire control mechanism via emulsification markedly reduced the time required to put out the fire. The increase in foam magnification will considerably enhance the fire extinguishing efficiency.

  2. Development of cold sprayed Cu coating for canister

    International Nuclear Information System (INIS)

    Kim, Hyung Jun; Kang, Yoon Ha

    2010-01-01

    Cold sprayed Cu deposition was studied for the application of outer part of canister for high level nuclear waste. Five commercially available pure Cu powders were analyzed and sprayed by high pressure cold spray system. Electrochemical corrosion test using potentiostat in 3.5% NaCl solution was conducted as well as microstructural analysis including hardness and oxygen content measurements. Overall evaluation of corrosion performance of cold sprayed Cu deposition is inferior to forged and extruded Cu plates, but some of Cu depositions are comparable to Cu plates. The simulated corrosion test in 200m underground cave is still in progress. The effect of cold spray process parameters was also studied and the results show that the type of nozzle is the most important other than powder feed rate, spray distance, and scan speed. 1/10 scale miniature of canister was manufactured confirming that the production of full scale canister is possible

  3. Spray cooling heat transfer: Technology overview and assessment of future challenges for micro-gravity application

    International Nuclear Information System (INIS)

    Silk, Eric A.; Golliher, Eric L.; Paneer Selvam, R.

    2008-01-01

    Advanced on-board flight systems for future NASA space exploration programs consist of components such as laser-diode arrays (LDA's) and multi-chip modules (MCM's). Thermal management of these systems require high heat flux cooling capability (≥100 W/cm 2 ), tight temperature control (approx. ±2 deg. C), reliable start-up (on demand) and long term stability. Traditional multiphase thermal control technologies for space flight (e.g., loop heat pipes, capillary pumped loops, etc.) satisfy the temperature control, start-up and stability requirements, but their heat flux removal capabilities are limited. Spray cooling can provide high heat fluxes in excess of 100 W/cm 2 using fluorinerts and over 1000 W/cm 2 with water while allowing tight temperature control at low coolant fluid flow rates. Spray cooling has been flight proven in an open loop configuration through the Space shuttle's flash evaporator system (FES). However, several closed system issues require investigation to further advance the technology to a technology readiness level (TRL) appropriate for closed system space flight application. This paper provides a discussion of the current status of spray cooling technology as well as NASA's goals, current direction, and challenges associated with the implementation and practice of this technology in the micro-gravity environment

  4. The impact of atomization on the surface composition of spray-dried milk droplets.

    Science.gov (United States)

    Foerster, Martin; Gengenbach, Thomas; Woo, Meng Wai; Selomulya, Cordelia

    2016-04-01

    The dominant presence of fat at the surface of spray-dried milk powders has been widely reported in the literature and described as resulting in unfavourable powder properties. The mechanism(s) causing this phenomenon are yet to be clearly identified. A systematic investigation of the component distribution in atomized droplets and spray-dried particles consisting of model milk systems with different fat contents demonstrated that atomization strongly influences the final surface composition. Cryogenic flash-freezing of uniform droplets from a microfluidic jet nozzle directly after atomization helped to distinguish the influence of the atomization stage from the drying stage. It was confirmed that the overrepresentation of fat on the surface is independent of the atomization technique, including a pressure-swirl single-fluid spray nozzle and a pilot-scale rotary disk spray dryer commonly used in industry. It is proposed that during the atomization stage a disintegration mechanism along the oil-water interface of the fat globules causes the surface predominance of fat. X-ray photoelectron spectroscopic measurements detected the outermost fat layer and some adjacent protein present on both atomized droplets and spray-dried particles. Confocal laser scanning microscopy gave a qualitative insight into the protein and fat distribution throughout the cross-sections, and confirmed the presence of a fat film along the particle surface. The film remained on the surface in the subsequent drying stage, while protein accumulated underneath, driven by diffusion. The results demonstrated that atomization induces component segregation and fat-rich surfaces in spray-dried milk powders, and thus these cannot be prevented by adjusting the spray drying conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Emergency core cooling system in BWR type reactors

    International Nuclear Information System (INIS)

    Takizawa, Yoji

    1981-01-01

    Purpose: To rapidly recover the water level in the reactor upon occurrence of slight leakages in the reactor coolant pressure boundary, by promoting the depressurization in the reactor to thereby rapidly increase the high pressure core spray flow rate. Constitution: Upon occurrence of reactor water level reduction, a reactor isolation cooling system and a high pressure core spray system are actuated to start the injection of coolants into a reactor pressure vessel. In this case, if the isolation cooling system is failed to decrease the flow rate in a return pipeway, flow rate indicators show a lower value as compared with a predetermined value. The control device detects it and further confirms the rotation of a high pressure spray pump to open a valve. By the above operation, coolants pumped by the high pressure spray pump is flown by way of a communication pipeway to the return pipeway and sprayed from the top of the pressure vessel. This allows the vapors on the water surface in the pressure vessel to be cooled rapidly and increases the depressurization effects. (Horiuchi, T.)

  6. Spray boom for selectively spraying a herbicidal composition onto dicots

    DEFF Research Database (Denmark)

    2012-01-01

    There is provided a method and spray boom for discriminating cereal crop (monocot) and weeds (dicots). The spray boom includes means for digitally recording an image of a selected area to be treated by a nozzle on the spray boom, whereby a plant material is identified based on a segmentation proc...

  7. Evaluation of Watershed-Scale Simulations of In-Stream Pesticide Concentrations from Off-Target Spray Drift.

    Science.gov (United States)

    Winchell, Michael F; Pai, Naresh; Brayden, Benjamin H; Stone, Chris; Whatling, Paul; Hanzas, John P; Stryker, Jody J

    2018-01-01

    The estimation of pesticide concentrations in surface water bodies is a critical component of the environmental risk assessment process required by regulatory agencies in North America, the European Union, and elsewhere. Pesticide transport to surface waters via deposition from off-field spray drift can be an important route of potential contamination. The spatial orientation of treated fields relative to receiving water bodies make prediction of off-target pesticide spray drift deposition and resulting aquatic estimated environmental concentrations (EECs) challenging at the watershed scale. The variability in wind conditions further complicates the simulation of the environmental processes leading to pesticide spray drift contributions to surface water. This study investigates the use of the Soil Water Assessment Tool (SWAT) for predicting concentrations of malathion (O,O-deimethyl thiophosphate of diethyl mercaptosuccinate) in a flowing water body when exposure is a result of off-target spray drift, and assesses the model's performance using a parameterization typical of a screening-level regulatory assessment. Six SWAT parameterizations, each including incrementally more site-specific data, are then evaluated to quantify changes in model performance. Results indicate that the SWAT model is an appropriate tool for simulating watershed scale concentrations of pesticides resulting from off-target spray drift deposition. The model predictions are significantly more accurate when the inputs and assumptions accurately reflect application practices and environmental conditions. Inclusion of detailed wind data had the most significant impact on improving model-predicted EECs in comparison to observed concentrations. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  8. Processamento de achocolatado de cupuaçu por spray-dryer Cupuassu chocolate drink powder processed by spray-dryer

    Directory of Open Access Journals (Sweden)

    Suzana Caetano da Silva Lannes

    2003-03-01

    Full Text Available O achocolatado de cupuaçu é uma mistura do pó de cupuaçu, açúcar, aroma e outros ingredientes constantes da formulação. Este produto formulado foi processado por spray-dryer, gerando um produto seco, pulverizado e instantaneizado. O achocolatado acrescido de água (concentrado passa pelo spray-dryer formando glóbulos de pequeno diâmetro que são arrastados por uma corrente de ar quente. A rápida evaporação de líquido permite manter baixa a temperatura do ar na secagem, não afetando o produto. O pó de cupuaçu não dispersa prontamente em água devido ao seu conteúdo de óleo. Conseqüentemente, necessita-se de uma forma desengordurada para se obter instantaneização. A secagem por spray-dryer reúne as melhores condições de rendimento técnico em comparação com outros processos. Obtiveram rendimentos de processo acima de 20% e a instantaneização completa do produto.Cupuassu chocolate drink powder is a mixture of cupuassu powder, sugar, flavour and other ingredients of formulation. The product was processed by spray-dryer, leading a dry, pulverized and instantised product. The chocolate drink powder with water (concentrated pass through spray-dryer forming small diameter globules that are arrested by a hot air stream. The rapid evaporation allows keeping low temperature at drying air, and no affecting the product. The process is a set of better conditions of technique and economical efficiency in comparison to other process. Cupuassu powder does not disperse readily in water owing to its oil content. Consequently, a form of cocoa with the oil removed is needed to produce an acceptably instant drink. The results obtained were satisfactory, due to the complete instantisation of the product after processing.

  9. Effect for Recovery of the Containment Spray System to the Release of Cesium

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Mi Ro [KHNP CRI, Daejeon (Korea, Republic of)

    2016-10-15

    In the perspective of the amount of Cs-137, the mass of Cs-137 correspondent with the 100TBq is calculated as 32g. However, during the severe accident, if the containment has been failed, it is generally expected that the mass of Cs-137 released to the environment is more than 1kg for most accident sequences So, the review and improvement of the PSA model in order to reduce containment failure frequency should be needed. Actually, the current PSA model is known to be constructed by the conservative assumptions, especially in the view point of Level 2 PSA model. Therefore, it is necessary to find this conservatism and to improve the Model using the reasonable assumptions. All of the domestic operating nuclear power plants are required to prepare the Accident Management Plan within 3 years and this Accident Management Plan should have to meet the New Safety Goal including the requirement that the sum of the accident frequency that the release of the radioactive nuclide Cs-137 to the environment exceeds the 100TBq should be less than 1.0E-6/RY. The containment spray system is the only facility that mitigates the containment over-pressurization in the operating nuclear power plants, such as Westinghouse type or OPR1000 type. In this study, the effects of the containment spray system recovery on the amount of Cesium released to the environment were analyzed. If the recovery of the containment spray system can be applied to the PSA model, it is expected that the containment failure frequency and also the amount of cesium released to the environment can be greatly reduced.

  10. Spray deposition of water-soluble multiwall carbon nanotube and Cu2ZnSnSe4 nanoparticle composites as highly efficient counter electrodes in a quantum dot-sensitized solar cell system.

    Science.gov (United States)

    Zeng, Xianwei; Xiong, Dehua; Zhang, Wenjun; Ming, Liqun; Xu, Zhen; Huang, Zhanfeng; Wang, Mingkui; Chen, Wei; Cheng, Yi-Bing

    2013-08-07

    In this paper, low-cost counter electrodes (CEs) based on water-soluble multiwall carbon nanotube (MWCNT) and Cu2ZnSnSe4 nanoparticle (CZTSe NP) composites have been successfully introduced into a quantum dot-sensitized solar cell (QDSC) system. Suitable surface modification allows the MWCNTs and CZTSe NPs to be homogeneously dispersed in water, facilitating the subsequent low-temperature spray deposition of high quality composite films with different composite ratios. The electrochemical catalytic activity of the composite CEs has been critically compared by electrochemical impedance spectroscopy and Tafel-polarization analysis. It is found that the composite CE at the MWCNT : CZTSe ratio of 0.1 offers the best performance, leading to an optimal solar cell efficiency of 4.60%, which is 50.8% higher than that of the Pt reference CE. The as-demonstrated higher catalytic activity of the composite CEs compared to their single components could be ascribed to the combination of the fast electron transport of the MWCNTs and the high catalytic activity of CZTSe NPs.

  11. Aerosol Formation from High-Pressure Sprays for Supporting the Safety Analysis for the Hanford Waste Treatment and Immobilization Plant - 13183

    Energy Technology Data Exchange (ETDEWEB)

    Gauglitz, P.A.; Mahoney, L.A.; Schonewill, P.P.; Bontha, J.R.; Blanchard, J.; Kurath, D.E.; Daniel, R.C.; Song, C. [Pacific Northwest National Laboratory, PO Box 999, Richland WA 99352 (United States)

    2013-07-01

    The Waste Treatment and Immobilization Plant (WTP) at Hanford is being designed and built to pretreat and vitrify waste currently stored in underground tanks at Hanford. One of the postulated events in the hazard analysis for the WTP is a breach in process piping that produces a pressurized spray with small droplets that can be transported into ventilation systems. Literature correlations are currently used for estimating the generation rate and size distribution of aerosol droplets in postulated releases. These correlations, however, are based on results obtained from small engineered nozzles using Newtonian liquids that do not contain slurry particles and thus do not represent the fluids and breaches in the WTP. A test program was developed to measure the generation rate, and the release fraction which is the ratio of generation rate to spray flow rate, of droplets suspended in a test chamber and droplet size distribution from prototypic sprays. A novel test method was developed to allow measurement of sprays from small to large breaches and also includes the effect of aerosol generation from splatter when the spray impacts on walls. Results show that the release fraction decreases with increasing orifice area, though with a weaker dependence on orifice area than the currently-used correlation. A comparison of water sprays to slurry sprays with 8 to 20 wt% gibbsite or boehmite particles shows that the presence of slurry particles depresses the release fraction compared to water for droplets above 10 μm and increases the release fraction below this droplet size. (authors)

  12. Effect of spray drying on the properties of amylose-hexadecylammonium chloride inclusion complexes

    Science.gov (United States)

    Water soluble amylose-hexadecyl ammonium chloride complexes were prepared from high amylose corn starch and hexadecyl ammonium chloride by excess steam jet cooking. Amylose inclusion complexes were spray dried to determine the viability of spray drying as a production method. The variables tested in...

  13. Reduction of spray pressure leads to less emission and better deposition of spray liquid at high-volume spraying in greenhouse tomato

    NARCIS (Netherlands)

    Os, van E.A.; Michielsen, J.M.G.P.; Corver, F.J.M.; Berg, van den J.V.; Bruins, M.A.; Porskamp, H.A.J.; Zande, van de J.C.

    2005-01-01

    In an experimental greenhouse, growing a tomato crop, it was investigated if a reduction in spray pressure could improve the spray result, while, simultaneously, emission to the ground could be reduced. Spray deposition on the leaves and the emission to the ground was evaluated at different spray

  14. Plasma spray technology process parameters and applications

    International Nuclear Information System (INIS)

    Sreekumar, K.P.; Karthikeyan, J.; Ananthapadmanabhan, P.V.; Venkatramani, N.; Chatterjee, U.K.

    1991-01-01

    The current trend in the structural design philosophy is based on the use of substrate with the necessary mechanical properties and a thin coating to exhibit surface properties. Plasma spray process is a versatile surface coating technique which finds extensive application in meeting advance technologies. This report describes the plasma spray technique and its use in developing coatings for various applications. The spray system is desribed in detail including the different variables such as power input to the torch, gas flow rate, powder properties, powder injection, etc. and their interrelation in deciding the quality of the coating. A brief write-up on the various plasma spray coatings developed for different applications is also included. (author). 15 refs., 15 figs., 2 tabs

  15. A new method for thermal spraying of Zn-Al coatings

    International Nuclear Information System (INIS)

    Gorlach, I.A.

    2009-01-01

    This paper presents the development of the thermal spraying system built on the principles of the high velocity air flame (HVAF) process. HVAF sprayed coatings showed considerably higher bond strength than coatings obtained by the conventional methods, indicating the advantage of this method in areas where the adhesion strength is critically important. The highly dense structure of the coating obtained with HVAF eliminates a need for a top paint coat, which is typically applied on metal sprayed coatings to extend service life. The thermal sprayed coatings were characterized by the standard techniques, such as light microscopy, scanning electron microscopy with energy-dispersive spectroscopy, X-ray diffraction, salt spray and bond strength tests. The results show that thermal sprayed coatings have a dense structure, low presence of oxides and high resistance to corrosion. High spray rate and good coating quality make the HVAF thermal spray method a viable alternative to the conventional thermal spraying technologies, such as Wire Flame and Twin-Wire Arc.

  16. An Augmented γ-Spray System to Visualize Biological Effects for Human Body

    Science.gov (United States)

    Manabe, Seiya; Tenzou, Hideki; Kasuga, Takaaki; Iwakura, Yukiko; Johnston, Robert

    2017-09-01

    The purpose of this study was to develop a new educational system with an easy-to-use interface in order to support comprehension of the biological effects of radiation on the human body within a short period of time. A paint spray-gun was used as a gamma rays source mock-up for the system. The application screen shows the figure of a human body for radiation deposition using the γ-Sprayer, a virtual radiation source, as well as equivalent dosage and a panel for setting the irradiation conditions. While the learner stands in front of the PC monitor, the virtual radiation source is used to deposit radiation on the graphic of the human body that is displayed. Tissue damage is calculated using an interpolation method from the data calculated by the PHITS simulation code in advance while the learner is pulling the trigger with respect to the irradiation time, incident position, and distance from the screen. It was confirmed that the damage was well represented by the interpolation method. The augmented ?-Spray system was assessed by questionnaire. Pre-post questionnaire was taken for our 41 students in National Institute of Technology, Kagawa College. It was also confirmed that the system has a capability of teaching the basic radiation protection concept, quantitative feeling of the radiation dose, and the biological effects

  17. High-Performance Molybdenum Coating by Wire–HVOF Thermal Spray Process

    Science.gov (United States)

    Tailor, Satish; Modi, Ankur; Modi, S. C.

    2018-04-01

    Coating deposition on many industrial components with good microstructural, mechanical properties, and better wear resistance is always a challenge for the thermal spray community. A number of thermal spray methods are used to develop such promising coatings for many industrial applications, viz. arc spray, flame spray, plasma, and HVOF. All these processes have their own limitations to achieve porous free, very dense, high-performance wear-resistant coatings. In this work, an attempt has been made to overcome this limitation. Molybdenum coatings were deposited on low-carbon steel substrates using wire-high-velocity oxy-fuel (W-HVOF; WH) thermal spray system (trade name HIJET 9610®). For a comparison, Mo coatings were also fabricated by arc spray, flame spray, plasma spray, and powder-HVOF processes. As-sprayed coatings were analyzed using x-ray diffraction, scanning electron microscopy for phase, and microstructural analysis, respectively. Coating microhardness, surface roughness, and porosity were also measured. Adhesion strength and wear tests were conducted to determine the mechanical and wear properties of the as-sprayed coatings. Results show that the coatings deposited by W-HVOF have better performance in terms of microstructural, mechanical, and wear resistance properties, in comparison with available thermal spray process (flame spray and plasma spray).

  18. Economic Optimization of Spray Dryer Operation using Nonlinear Model Predictive Control

    DEFF Research Database (Denmark)

    Petersen, Lars Norbert; Poulsen, Niels Kjølstad; Niemann, Hans Henrik

    2014-01-01

    In this paper we investigate an economically optimizing Nonlinear Model Predictive Control (E-NMPC) for a spray drying process. By simulation we evaluate the economic potential of this E-NMPC compared to a conventional PID based control strategy. Spray drying is the preferred process to reduce...... the water content for many liquid foodstuffs and produces a free flowing powder. The main challenge in controlling the spray drying process is to meet the residual moisture specifications and avoid that the powder sticks to the chamber walls of the spray dryer. We present a model for a spray dryer that has...... been validated on experimental data from a pilot plant. We use this model for simulation as well as for prediction in the E-NMPC. The E-NMPC is designed with hard input constraints and soft output constraints. The open-loop optimal control problem in the E-NMPC is solved using the single...

  19. Droplet size effects on NO/x/ formation in a one-dimensional monodisperse spray combustion system

    Science.gov (United States)

    Sarv, H.; Nizami, A. A.; Cernansky, N. P.

    1982-01-01

    A one-dimensional monodisperse aerosol spray combustion facility is described and experimental results of post flame NO/NO(x) emissions are presented. Four different hydrocarbon fuels were studied: isopropanol, methanol, n-heptane, and n-octane. The results indicate an optimum droplet size in the range of 48-58 microns for minimizing NO/NO(x) production for all of the test fuels. This NO(x) behavior is associated with droplet interactions and the transition from diffusive type of spray burning to that of a prevaporized and premixed case. Decreasing the droplet size results in a trend of increasing droplet interactions, which suppresses temperatures and reduces NO(x). This trend continues until prevaporization effects begin to dominate and the system tends towards the premixed limit. The occurrence of the minimum NO(x) point at different droplet diameters for the different fuels appears to be governed by the extent of prevaporization of the fuel in the spray, and is consistent with theoretical calculations based on each fuel's physical properties.

  20. Spray pond design for nuclear power plants

    International Nuclear Information System (INIS)

    Codell, R.B.; Asce, A.M.

    1986-01-01

    This paper presents a complex methodology for assessing the performance of spray ponds in ultimate heat sink service at nuclear power plants. A spray pond performance model, developed in the companion paper, is used in conjunction with on-site and off-site meteorological data to predict the highest temperature and greatest 30 day water loss which can reasonable be expected to occur during the lifetime of the plant. The performance model for heat and mass transfer is used to develop an efficient phenomenological model used to scan the long-term meteorological records. Refined estimates of temperature or water loss may then be based on more complicated models if necessary. Short-term onsite data are correlated to the long-term off-site data to formulate correction factors for the difference in location. Cumulative distribution functions for temperature and water loss are determined from the long-term meteorological records to predict the occurrence of these quantities which are less severe that the peak. The methodology is demonstrated using data and parameters from the Palo Verde nuclear plant as an example

  1. Measurement of Ambient Air Motion of D. I. Gasoline Spray by LIF-PIV

    Science.gov (United States)

    Yamakawa, Masahisa; Isshiki, Seiji; Yoshizaki, Takuo; Nishida, Keiya

    Ambient air velocity distributions in and around a D. I. gasoline spray were measured using a combination of LIF and PIV techniques. A rhodamine and water solution was injected into ambient air to disperse the fine fluorescent liquid particles used as tracers. A fuel spray was injected into the fluorescent tracer cloud and was illuminated by an Nd: YAG laser light sheet (532nm). The scattered light from the spray droplets and tracers was cut off by a high-pass filter (>560nm). As the fluorescence (>600nm) was transmitted through the high-pass filter, the tracer images were captured using a CCD camera and the ambient air velocity distribution could be obtained by PIV based on the images. This technique was applied to a D. I. gasoline spray. The ambient air flowed up around the spray and entered into the tail of the spray. Furthermore, the relative velocity between the spray and ambient air was investigated.

  2. Thermal performance experiments on ultimate heat sinks, spray ponds, and cooling ponds

    International Nuclear Information System (INIS)

    Hadlock, R.K.

    1976-12-01

    A program of measurement on a Battelle-Northwest (BNW) spray pond has been completed to prove an integrated instrumentation system for application in future field experiments. The measurement programs in the field will produce data of relevance to the design and understanding of performance for ultimate heat sinks as components of emergency core cooling systems. In the absence of active emergency cooling systems, the data will be obtained on analog systems--prime candidates among these are the naturally-occurring hot ponds at Yellowstone National Park and man-made hot cooling ponds at Savannah River National Laboratory as well as spray ponds at various industrial facilities. The proof experiment has provided data that not only illustrate the effectiveness of the instrumentation system but also display interesting site-specific heat transfer processes. The data to be obtained in the field will also be site specific but must be of generic applicability in modeling for design and performance purposes. The integrated instrumentation system will evolve, through modest modifications and substantial supplementation, to provide the requisite data for the more demanding situation of work in and about hot water

  3. Fundamental Study on the Effect of Spray Parameters on Characteristics of P3HT:PCBM Active Layers Made by Spray Coating

    Directory of Open Access Journals (Sweden)

    Yu Xie

    2015-08-01

    Full Text Available This paper is an attempt to elucidate the effects of the important spray characteristics on the surface morphology and light absorbance of spray-on P3HT:PCBM thin-films, used as an active layer in polymer solar cells (PSCs. Spray coating or deposition is a viable scalable technique for the large-scale, fast, and low-cost fabrication of solution-processed solar cells, and has been widely used for device fabrication, although the fundamental understanding of the underlying and controlling parameters, such as spray characteristics, droplet dynamics, and surface wettability, is still limited, making the results on device fabrication not reproducible and unreliable. In this paper, following the conventional PSC architecture, a PEDOT:PSS layer is first spin-coated on glass substrates, followed by the deposition of P3HT:PCBM using an automatic ultrasonic spray coating system, with a movable nozzle tip, to mimic an industrial manufacturing process. To gain insight, the effects of the spray carrier air pressure, the number of spray passes, the precursor flow rate, and precursor concentration are studied on the surface topography and light absorbance spectra of the spray-on films. Among the results, it is found that despite the high roughness of spray-on films, the light absorbance of the film is satisfactory. It is also found that the absorbance of spray-on films is a linear function of the number of spray passes or deposition layers, based on which an effective film thickness is defined for rough spray-on films. The effective thickness of a rough spray-on P3HT:PCBM film was found to be one-quarter of that of a flat film predicted by a simple mass balance.

  4. Metallization of Various Polymers by Cold Spray

    Science.gov (United States)

    Che, Hanqing; Chu, Xin; Vo, Phuong; Yue, Stephen

    2018-01-01

    Previous results have shown that metallic coatings can be successfully cold sprayed onto polymeric substrates. This paper studies the cold sprayability of various metal powders on different polymeric substrates. Five different substrates were used, including carbon fiber reinforced polymer (CFRP), acrylonitrile butadiene styrene (ABS), polyether ether ketone (PEEK), polyethylenimine (PEI); mild steel was also used as a benchmark substrate. The CFRP used in this work has a thermosetting matrix, and the ABS, PEEK and PEI are all thermoplastic polymers, with different glass transition temperatures as well as a number of distinct mechanical properties. Three metal powders, tin, copper and iron, were cold sprayed with both a low-pressure system and a high-pressure system at various conditions. In general, cold spray on the thermoplastic polymers rendered more positive results than the thermosetting polymers, due to the local thermal softening mechanism in the thermoplastics. Thick copper coatings were successfully deposited on PEEK and PEI. Based on the results, a method is proposed to determine the feasibility and deposition window of cold spraying specific metal powder/polymeric substrate combinations.

  5. Effect of spray-drying with organic solvents on the encapsulation, release and stability of fish oil.

    Science.gov (United States)

    Encina, Cristian; Márquez-Ruiz, Gloria; Holgado, Francisca; Giménez, Begoña; Vergara, Cristina; Robert, Paz

    2018-10-15

    Fish-oil (FO) was encapsulated with hydroxypropylcelullose (HPC) by conventional spray-drying with water (FO-water) and solvent spray-drying with ethanol (FO-EtOH), methanol (FO-MeOH) and acetone (FO-Acet) in order to study the effect of the solvent on the encapsulation efficiency (EE), microparticle properties and stability of FO during storage at 40 °C. Results showed that FO-Acet presented the highest EE of FO (92.0%), followed by FO-EtOH (80.4%), FO-MeOH (75.0%) and FO-water (71.1%). A decrease of the dielectric constant increased the EE of FO, promoting triglyceride-polymer interactions instead of oil-in-water emulsion retention. FO release profile in aqueous model was similar for all FO-microparticles, releasing only the surface FO, according to Higuchi model. Oxidative stability of FO significantly improved by spray-drying with MeOH, both in surface and encapsulated oil fractions. In conclusion, encapsulation of FO by solvent spray-drying can be proposed as an alternative technology for encapsulation of hydrophobic molecules. Copyright © 2018 Elsevier Ltd. All rights reserved.

  6. Development of systematic models for aerosol agglomeration and spray removal under severe accident conditions

    International Nuclear Information System (INIS)

    Kajimoto, Mitsuhiro

    2008-01-01

    Radionuclide behavior during various severe accident conditions has been addressed as one of the important issues to discuss environmental safety in nuclear power plants. The present paper deals with the development of analytical models and their validations for the agglomeration of multiple-component aerosol and spray removal that controls source terms to the environment of both aerosols and gaseous radionuclides during recirculation mode operation in a containment system for a light water reactor. As for aerosol agglomeration, the single collision kernel model that can cover all types of two-body collision of aerosol was developed. In addition, the dynamic model that can treat aerosol and vapor transfer leading to the equilibrium condition under the containment spray operation was developed. The validations of the present models for multiple-component aerosol growth by agglomeration were performed by comparisons with Nuclear Safety Pilot Plant (NSPP) experiments at Oak Ridge National Laboratory (ORNL) and AB experiments at Hanford Engineering National Laboratory (HEDL). In addition, the spray removal models were applied to the analysis of containment spray experiment (CSE) at HEDL. The results calculated by the models showed good agreements with experimental results. (author)

  7. Hydrogels containing redispersible spray-dried melatonin-loaded nanocapsules: a formulation for transdermal-controlled delivery

    Science.gov (United States)

    Hoffmeister, Cristiane RD; Durli, Taís L.; Schaffazick, Scheila R.; Raffin, Renata P.; Bender, Eduardo A.; Beck, Ruy CR; Pohlmann, Adriana R.; Guterres, Sílvia S.

    2012-05-01

    The aim of the present study was to develop a transdermal system for controlled delivery of melatonin combining three strategies: nanoencapsulation of melatonin, drying of melatonin-loaded nanocapsules, and incorporation of nanocapsules in a hydrophilic gel. Nanocapsules were prepared by interfacial deposition of the polymer and were spray-dried using water-soluble excipients. In vitro drug release profiles were evaluated by the dialysis bag method, and skin permeation studies were carried out using Franz cells with porcine skin as the membrane. The use of 10% ( w/ v) water-soluble excipients (lactose or maltodextrin) as spray-drying adjuvants furnished redispersible powders (redispersibility index approximately 1.0) suitable for incorporation into hydrogels. All formulations showed a better controlled in vitro release of melatonin compared with the melatonin solution. The best controlled release results were achieved with hydrogels prepared with dried nanocapsules (hydrogels > redispersed dried nanocapsules > nanocapsule suspension > melatonin solution). The skin permeation studies demonstrated a significant modulation of the transdermal melatonin permeation for hydrogels prepared with redispersible nanocapsules. In this way, the additive effect of the different approaches used in this study (nanoencapsulation, spray-drying, and preparation of semisolid dosage forms) allows not only the control of melatonin release, but also transdermal permeation.

  8. Yttria-stabilized zirkonia / gadolinium zirconate double-layer plasma-sprayed thermal barrier coating systems (TBCs)

    Energy Technology Data Exchange (ETDEWEB)

    Bakan, Emine

    2015-07-01

    Thermal barrier coating (TBC) research and development is driven by the desirability of further increasing the maximum inlet temperature in a gas turbine engine. A number of new top coat ceramic materials have been proposed during the last decades due to limited temperature capability (1200 C) of the state-of-the-art yttria-stabilized zirconia (7 wt. % Y{sub 2}O{sub 3}-ZrO{sub 2}, YSZ) at long term operation. Zirconate pyrochlores of the large lanthanides((Gd → La){sub 2}Zr{sub 2}O{sub 7}) have been particularly attractive due to their higher temperature phase stability than that of the YSZ. Nonetheless, the issues related with the implementation of pyrochlores such as low fracture toughness and formation of deleterious interphases with thermally grown oxide (TGO, Al{sub 2}O{sub 3}) were reported. The implication was the requirement of an interlayer between the pyrochlores and TGO, which introduced double-layer systems to the TBC literature. Furthermore, processability issues of pyrochlores associated with the different evaporation rates of lanthanide oxides and zirconia resulting in unfavorable composition variations in the coatings were addressed in different studies. After all, although the material properties are available, there is a paucity of data in the literature concerning the properties of the coatings made of pyrochlores. From the processability point of view the most reported pyrochlore is La{sub 2}Zr{sub 2}O{sub 7}. Hence, the goal of this research was to investigate plasma-sprayed Gd{sub 2}Zr{sub 2}O{sub 7} (GZO) coatings and YSZ/GZO double-layer TBC systems. Three main topics were examined based on processing, performance and properties: (i) the plasma spray processing of the GZO and its impact on the microstructural and compositional properties of the GZO coatings; (ii) the cycling lifetime of the YSZ/GZO double-layer systems under thermal gradient at a surface temperature of 1400 C; (iii) the properties of the GZO and YSZ coatings such as

  9. Automated Plasma Spray (APS) process feasibility study: Plasma spray process development and evaluation

    Science.gov (United States)

    Fetheroff, C. W.; Derkacs, T.; Matay, I. M.

    1979-01-01

    An automated plasma spray (APS) process was developed to apply two layer (NiCrAlY and ZrO2-12Y2O3) thermal-barrier coatings to aircraft gas turbine engine blade airfoils. The APS process hardware consists of four subsystems: a mechanical blade positioner incorporating two interlaced six-degree-of-freedom assemblies; a noncoherent optical metrology subsystem; a microprocessor-based adaptive system controller; and commercial plasma spray equipment. Over fifty JT9D first stage turbine blades specimens were coated with the APS process in preliminary checkout and evaluation studies. The best of the preliminary specimens achieved an overall coating thickness uniformity of + or - 53 micrometers, much better than is achievable manually. Factors limiting this performance were identified and process modifications were initiated accordingly. Comparative evaluations of coating thickness uniformity for manually sprayed and APS coated specimens were initiated. One of the preliminary evaluation specimens was subjected to a torch test and metallographic evaluation.

  10. Optimization of the spray application technology in bay laurel (Laurus nobilis).

    Science.gov (United States)

    Nuyttens, D; Braekman, P; Foque, D

    2009-01-01

    Bay laurel is an evergreen, commercially grown and expensive ornamental pot plant, which is susceptible to different pests like aphids, scale and lerp insects, thrips, caterpillars of codling moth and sooty moulds. Recently, caterpillars of the Mediterranean carnation leafroller (Cacoecimorpha pronubana) cause more and more problems. These pests can lead to important financial losses for the growers. During summer the individual pot plants are placed on a field-container in a fairly dense configuration. Crop protection is traditionally done by moving with a spray lance between the rows of pot plants and treating each individual plant from bottom to top. Good penetration is clearly an important advantages of this spray technique but it is very time-consuming, unhealthy and laborious. Some other growers use a 'spray platform' on a high-clearance tractor. Plants sprayed from this platform are exclusively approached from above resulting in an inferior spray deposition on the lower parts of the plants. To overcome the disadvantages of both available techniques, the potential of an automated tunnel sprayer was investigated. Five different nozzle types were evaluated under laboratory conditions i.e. hollow cone, standard flat fan, air inclusion flat fan, deflector flat fan and twin air inclusion flat fan at spray pressures varying from 3.0 to 7.0 bar depending on the type of nozzle. For each nozzle type, three nozzle sizes were included in the experiments which resulted in 15 different spray application techniques. All experiments were done at a speed of 2.5 km x h(-1). This resulted in three different application volumes: 2450, 4900 and 7300 l x ha(-1). After optimizing the nozzle configuration (distance and orientation) using water-sensitive paper, deposition tests with five different mineral chelates as tracer elements were performed. Filter papers were used as collectors at 20 different positions to measure spray deposition, distribution and penetration in the canopy

  11. Exergy analysis of encapsulation of photochromic dye by spray drying

    Science.gov (United States)

    Çay, A.; Akçakoca Kumbasar, E. P.; Morsunbul, S.

    2017-10-01

    Application of exergy analysis methodology for encapsulation of photochromic dyes by spray drying was presented. Spray drying system was investigated considering two subsystems, the heater and the dryer sections. Exergy models for each subsystem were proposed and exergy destruction rate and exergy efficiency of each subsystem and the whole system were computed. Energy and exergy efficiency of the system were calculated to be 5.28% and 3.40%, respectively. It was found that 90% of the total exergy inlet was destroyed during encapsulation by spray drying and the exergy destruction of the heater was found to be higher.

  12. Influence of Solvent Composition on the Performance of Spray-Dried Co-Amorphous Formulations

    Directory of Open Access Journals (Sweden)

    Jaya Mishra

    2018-04-01

    Full Text Available Ball-milling is usually used to prepare co-amorphous drug–amino acid (AA mixtures. In this study, co-amorphous drug–AA mixtures were produced using spray-drying, a scalable industrially preferred preparation method. The influence of the solvent type and solvent composition was investigated. Mixtures of indomethacin (IND and each of the three AAs arginine, histidine, and lysine were ball-milled and spray-dried at a 1:1 molar ratio, respectively. Spray-drying was performed at different solvent ratios in (a ethanol and water mixtures and (b acetone and water mixtures. Different ratios of these solvents were chosen to study the effect of solvent mixtures on co-amorphous formulation. Residual crystallinity, thermal properties, salt/partial salt formation, and powder dissolution profiles of the IND–AA mixtures were investigated and compared to pure crystalline and amorphous IND. It was found that using spray-drying as a preparation method, all IND–AA mixtures could be successfully converted into the respective co-amorphous forms, irrespective of the type of solvent used, but depending on the solvent mixture ratios. Both ball-milled and spray-dried co-amorphous samples showed an enhanced dissolution rate and maintained supersaturation compared to the crystalline and amorphous IND itself. The spray-dried samples resulting in co-amorphous samples were stable for at least seven months of storage.

  13. Engineering spray-dried rosemary extracts with improved physicomechanical properties: a design of experiments issue

    Directory of Open Access Journals (Sweden)

    Luiza T. Chaul

    Full Text Available ABSTRACT A 33 Box–Behnken design and Response Surface Methodology were performed to evaluate the influence of extract feed rate, drying air inlet temperature and spray nozzle airflow rate on the process yield, stability parameters (moisture content and water activity and on several physicomechanical properties of spray-dried rosemary extracts. Powder yield ranged from 17.1 to 74.96%. The spray-dried rosemary extracts showed moisture content and water activity below 5% and 0.5%, respectively, which indicate their chemical and microbiological stabilities. Even without using drying aids, some sets of experimental conditions rendered dried products with suitable flowability and compressibility characteristics for direct preparation of solid dosage forms. Analysis of variance and Response Surface Methodology proved that studied factors significantly affected most of the spray-dried rosemary extract quality indicators at different levels. The main processing parameter affecting the spray-dried rosemary extract characteristics was inlet temperature. The best combination of parameters used to obtain a reasonable yield of stable dry rosemary extracts with adequate technological properties for pharmaceutical purpose involves an extract feed rate of 2 ml/min, 80 °C inlet temperature and 40 l/min SA. The design of experiments approach is an interesting strategy for engineering spray-dried rosemary extracts with improved characteristics for pharmaceutical industrial purpose.

  14. Retrofitting a spent fuel pool spray system for alternative cooling as a strategy for beyond design basis events

    Energy Technology Data Exchange (ETDEWEB)

    Hartmann, Christoph; Vujic, Zoran [Westinghouse Electric Germany GmbH, Mannheim (Germany)

    2017-06-15

    Due to requirements for nuclear power plants to withstand beyond design basis accidents, including events such as happened in 2011 in the Fukushima Daiichi Nuclear Power Plant in Japan, alternative cooling of spent fuel is needed. Alternative spent fuel cooling can be provided by a retrofitted spent fuel pool spray system based on the AP1000 plant design. As part of Krsko Nuclear Power Plant's Safety Upgrade Program, Krsko Nuclear Power Plant decided on, and Westinghouse successfully designed a retrofit of the AP1000 {sup registered} plant spent fuel pool spray system to provide alternative spent fuel cooling.

  15. Preparation, in-vitro and in-vivo evaluation of spray-dried ternary solid dispersion of biopharmaceutics classification system class II model drug.

    Science.gov (United States)

    Paidi, Sharan K; Jena, Sunil K; Ahuja, Bhupesh K; Devasari, Naresh; Suresh, Sarasija

    2015-05-01

    The objective of this study was to investigate the impact of a novel spray-dried ternary solid dispersion (TSD) on the dissolution rate and bioavailability of a biopharmaceutics classification system (BCS) class II model drug, atorvastatin calcium trihydrate (ATC), and evaluate its in-vitro and in-vivo performance. TSD of ATC was prepared by spray-drying method employing ethanol/water solvent systems. The TSD formulations, composed of hydroxypropyl methylcellulose (HPMC E5) and nicotinamide, were optimized by rotatable central composite design. Physicochemical characterization along with dissolution, stability and pharmacokinetic study of optimized TSD was evaluated. The optimized TSD was found to be amorphous with spherical shape morphology. It exhibited a fourfold increase in dissolution rate in comparison to ATC, with a considerable enhancement in oral bioavailability (relative bioavailability of 134.11%). Physicochemical characterization and dissolution study of optimized TSD at the end of stability studies clearly indicated that the stability of optimized TSD was due to hydrogen bonding between drug and HPMC E5 and nicotinamide. This bonding remained unaffected even under stressful conditions of high temperature and humidity. The TSD exhibits a significant increase in dissolution rate, and for this reason should be useful as an efficacious tool to enhance the bioavailability of BCS class II drug molecule, ATC. © 2015 Royal Pharmaceutical Society.

  16. Dissolved organic matter in sea spray: a transfer study from marine surface water to aerosols

    Science.gov (United States)

    Schmitt-Kopplin, P.; Liger-Belair, G.; Koch, B. P.; Flerus, R.; Kattner, G.; Harir, M.; Kanawati, B.; Lucio, M.; Tziotis, D.; Hertkorn, N.; Gebefügi, I.

    2012-04-01

    Atmospheric aerosols impose direct and indirect effects on the climate system, for example, by absorption of radiation in relation to cloud droplets size, on chemical and organic composition and cloud dynamics. The first step in the formation of Organic primary aerosols, i.e. the transfer of dissolved organic matter from the marine surface into the atmosphere, was studied. We present a molecular level description of this phenomenon using the high resolution analytical tools of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) and nuclear magnetic resonance spectroscopy (NMR). Our experiments confirm the chemoselective transfer of natural organic molecules, especially of aliphatic compounds from the surface water into the atmosphere via bubble bursting processes. Transfer from marine surface water to the atmosphere involves a chemical gradient governed by the physicochemical properties of the involved molecules when comparing elemental compositions and differentiating CHO, CHNO, CHOS and CHNOS bearing compounds. Typical chemical fingerprints of compounds enriched in the aerosol phase were CHO and CHOS molecular series, smaller molecules of higher aliphaticity and lower oxygen content, and typical surfactants. A non-targeted metabolomics analysis demonstrated that many of these molecules corresponded to homologous series of oxo-, hydroxy-, methoxy-, branched fatty acids and mono-, di- and tricarboxylic acids as well as monoterpenes and sugars. These surface active biomolecules were preferentially transferred from surface water into the atmosphere via bubble bursting processes to form a significant fraction of primary organic aerosols. This way of sea spray production leaves a selective biological signature of the surface water in the corresponding aerosol that may be transported into higher altitudes up to the lower atmosphere, thus contributing to the formation of secondary organic aerosol on a global scale or transported laterally with

  17. An in vitro Method for Predicting Inhalation Toxicity of Impregnation Spray Products

    DEFF Research Database (Denmark)

    Sørli, Jorid B.; Hansen, Jitka S.; Nørgaard, Asger Wisti

    2015-01-01

    Impregnation spray products are used for making surfaces water and dirt repellent. The products are composed of one or more active film-forming components dissolved or suspended in an appropriate solvent mixture. Exposure to impregnation spray products may cause respiratory distress and new cases...

  18. 29 CFR 1910.107 - Spray finishing using flammable and combustible materials.

    Science.gov (United States)

    2010-07-01

    ... drying apparatus and electrical connections and wiring thereto shall not be located within spray... apparatus, the drying apparatus, and the ventilating system of the spray enclosure shall be equipped with... 29 Labor 5 2010-07-01 2010-07-01 false Spray finishing using flammable and combustible materials...

  19. Reactor Containment Spray Technology Program

    Energy Technology Data Exchange (ETDEWEB)

    Row, T. H. [Oak Ridge National Laboratory, Oak Ridge, TN (United States)

    1968-12-15

    The design basis accident in water moderated power reactors is a loss-of-coolant accident in which water sprays are generally employed to control the containment pressure transient by condensing the released steam-air mixture. Additives to the spray have been proposed as a way to increase their usefulness by enhancing the removal of various forms of radioiodine from the containment atmosphere. A program to investigate the gas-liquid systems involved is co-ordinated by ORNL for the US Atomic Energy Commission. A basic part of the program is the search for various chemical additives that will increase the spray affinity for molecular iodine and methyl iodide. A method for evaluating additives was developed that measures equilibrium distribution coefficients for iodine between air and aqueous solutions. Additives selected are used in single drop-wind tunnel experiments where the circulating gas contains iodine or CH{sub 3}I. Mass transfer coefficients and transient distribution coefficients have been determined as a function of relative humidity, temperature, drop size, and solution pH and concentration. Tests have shown that surfactants and organic amines increase the solution ability to getter CH{sub 3}l. Results from single drop tests help in planning spray experiments in the Nuclear Safety Pilot Plant, a large ({approx}38 m{sup 3}) facility, where accident conditions are closely simulated. Iodine and CH{sub 3}I removal rates have been determined for a number of solutions, including 1 wt% Na{sub 2}S{sub 2}O{sub 3} + 3000 ppm B + 0.153 M NaOH and 3000 ppm B + 0.153 M NaOH. The additive has very little effect in removal of I{sub 2} with half-lives of less than 1 mm typical for any aqueous solution. These same solutions remove CH{sub 3}I with a half-life of one hour. Analytical models for the removal processes have been developed. Consideration is also being given to corrosion, thermal and radiation stability of the solutions. Radiation studies have indicated the loss

  20. Effects of Spray-Drying and Choice of Solid Carriers on Concentrations of Labrasol® and Transcutol® in Solid Self-Microemulsifying Drug Delivery Systems (SMEDDS

    Directory of Open Access Journals (Sweden)

    Christopher Wai-Kei Lam

    2013-01-01

    Full Text Available Solid self-microemulsifying drug delivery systems (SMEDDS have been used increasingly for improving the bioavailability of hydrophobic drugs. Labrasol® and Transcutol® are used widely as surfactant and solubilizer in the formulation of solid SMEDDS. We investigated the effects of spray-drying and the use of different solid carriers on concentrations of Labrasol® and Transcutol® in solid SMEDDS with scutellarin as the formulated drug. Liquid and gas chromatography tandem mass spectrometry (LC-MS and GC-MS methods were developed for measuring low concentrations of Labrasol® and Transcutol®. In the preparation of solid SMEDDS, lactose, hydroxypropylmethyl cellulose (HPMC and microcrystalline cellulose (MCC were used as solid carriers. Judging from the retention ratios of Labrasol® and Transcutol®, the droplet size of solid SMEDDS increased after spray-drying of liquid SMEDDS, and concentrations of these excipients decreased after the solidifying procedure. In such reduction, Lactose and HPMC were found to preserve Labrasol® and Transcutol® better than MCC during spray-drying, and the resultant droplet sizes were smaller than that of MCC. Labrasol® and Transcutol® showed good thermal stability at 60 °C degree for 10 days. It can be concluded that spray-drying could increase the droplet size of solid SMEDDS and decreased the concentration of Labrasol® and Transcutol® therein, while water-soluble solid carriers could preserve Labrasol® and Transcutol® better than insoluble carriers in the solid SMEDDS.

  1. Radiometric investigation of factors, influencing the spray characteristics of aerosol flasks filled with propellants

    International Nuclear Information System (INIS)

    Benkoe, Gy.; Stampf, Gy.; Csontos, A.; Gyarmati, L.

    1976-01-01

    The role of 16 sprayheads, 5 valve systems and 3 propellant mixtures has been investigated in influencing the spray characteristics of pharmaceuticals. The distribution of matter has been determined with the aid of radiometry. The 14 C activity of spray spots has been measured in a mosaic-like way determining the activity of each area of 1 cm 2 in the right-angles spot-coordinate system. A Frieseke-Hoepfner type, PB gas current scaler has been used for measuring activity. According to the results spray heads play a decisive role in influencing the spray characteristics of aerosol flasks filled with propellants. The different propellant mixtures and valve systems influence the spray characteristics only in a small degree and only when adjusted to a given spray head. The method is well applicable for qualification of spray heads in practice of both factories and hospitals. (K.A.)

  2. REVIEW ON SPRAY DRIED SOLID DISPERSION

    OpenAIRE

    Zambre Radhika Ashok, Dr. Shendge R.S, Narode Pravin Ravindra, Sonawane Swapnil Prakash

    2018-01-01

    The drug solubility is the most challenging aspect for the formulation development. The poorly soluble drug has poor dissolution and absorption of drug. The low aqueous solubility of drug is required to formulate the drug into more soluble and hence bioavailable drug product. The different technique is being used to enhance the solubility of poorly water soluble drugs. Spray dried solid dispersion of drug is one of the most widely used technology to enhance the solubility of the poorly water ...

  3. Production of press moulds by plasma spray forming process

    International Nuclear Information System (INIS)

    Borisov, Y.; Myakota, I.; Polyakov, S.

    2001-01-01

    Plasma spray forming process for production of press moulds which are used for manufacture of articles from plastics was developed. The press moulds were produced by plasma spraying of Cu-Al-Fe-alloy powder on surface of a master model. The master models were made from non-metallic materials with heat resistance below 70 C (wood, gypsum etc). Double cooling system which provides for a control of surface model temperature and quenching conditions of sprayed material was designed. It made possible on the one hand to support model surface temperature below 70 C and on the other hand to provide for temperature conditions of martensite transformation in Cu-Al-system with a fixation of metastable ductile α + β 1 -phase. This allowed to decrease residual stresses in sprayed layer (up to 0,5-2,5 MPa), to increase microhardness of the coating material (up to 1200-1800 MPa) and its ductility (σ B = 70-105 MPa, δ = 6-12 %). This plasma spray forming process makes possible to spray thick layers (5-20 mm and more) without their cracking and deformation. The process is used for a production of press moulds which are applied in shoes industry, for fabrication of toys, souvenirs etc. (author)

  4. Consolidation of tungsten disilicide by plasma spraying

    Czech Academy of Sciences Publication Activity Database

    Brožek, Vlastimil; Ctibor, Pavel; Matějíček, Jiří; Rohan, Pavel; Janča, J.

    2007-01-01

    Roč. 52, č. 3 (2007), s. 311-320 ISSN 0001-7043 R&D Projects: GA ČR(CZ) GA104/05/0540 Institutional research plan: CEZ:AV0Z20430508 Keywords : Water stabilized plasma * tungsten disilicide * plasma deposition * thermal spray coatings Subject RIV: JJ - Other Materials

  5. Checking technical measurements on climatic data during sand blasting and spraying work in the condensation chamber of the boiling water reactor Gundremmingen

    International Nuclear Information System (INIS)

    Rausch, D.; Unte, U.

    1986-01-01

    During sand blasting and spraying work in the condensation chambers of boiling water reactors prescribed climatic data must be adhered to. For this purpose temporary air conditioners are used. The technical measurement examination here should provide information as to whether the air conditioners used were to fulfill the parameter curve specifications. (orig.) [de

  6. Simulation of exhaust gas heat recovery from a spray dryer

    International Nuclear Information System (INIS)

    Golman, Boris; Julklang, Wittaya

    2014-01-01

    This study explored various alternatives in improving the energy utilization of spray drying process through the exhaust gas heat recovery. Extensible and user-friendly simulation code was written in Visual Basic for Applications within Microsoft Excel for this purpose. The effects of process parameters were analyzed on the energy efficiency and energy saving in the industrial-scale spray drying system with exhaust gas heat recovery in an air-to-air heat exchanger and in the system with partial recirculation of exhaust air. The spray dryer is equipped with an indirect heater for heating the drying air. The maximum gains of 16% in energy efficiency and 50% in energy saving were obtained for spray drying system equipped with heat exchanger for exhaust air heat recovery. In addition, 34% in energy efficiency and 61% in energy saving for system with recirculation of exhaust air in the present range of process parameters. The high energy efficiency was obtained during drying of large amount of dilute slurry. The energy saving was increased using the large amount of hot drying air. - Highlights: • We model industrial-scale spray drying process with the exhaust gas heat recovery. • We develop an Excel VBA computer program to simulate spray dryer with heat recovery. • We examine effects of process parameters on energy efficiency and energy saving. • High energy efficiency is obtained during drying of large amount of dilute slurry. • Energy saving is increased using the large amount of hot drying air

  7. Study on Electric field assisted low frequency (20 kHz) ultrasonic spray

    Science.gov (United States)

    Chae, Ilkyeong; Seong, Baekhoon; Marten, Darmawan; Byun, Doyoung

    2015-11-01

    Ultrasonic spray is one of the fabulous techniques to discharge small size of droplets because it utilizes ultrasonic vibration on nozzle. However, spray patterns and size of ejected droplet is hardly controlled in conventional ultrasonic spray method. Therefore, here we present electric field assisted ultrasonic spray, which combined conventional technique with electric field in order to control spray pattern and droplet size precisely. Six kinds of various liquid (D.I water, Ethanol, Acetone, Iso-propanol, Toluene, Hexane) with various dielectric constants were used to investigate the mechanism of this method. Also, PIV (Particle Image Velocimetry) was used and various variables were obtained including spray angle, amplitude of liquid vibration, current, and size distribution of ejected droplets. Our electric field assisted ultrasonic spray show that the standard deviation of atomized droplet was decreased up to 39.6%, and it shows the infinite possibility to be utilized in various applications which require precise control of high transfer efficiency. This work was supported by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2014-023284).

  8. Alpha-tocopherol alters endogenous oxidative defense system in mungbean plants under water-deficit condition

    International Nuclear Information System (INIS)

    Sadiq, M.; Akram, N.A.; Javed, M.T.

    2016-01-01

    Foliar spray of plant growth regulating compounds including antioxidants is an effective strategy to overcome the adverse effects of environmental constraints on different plants. A pot experiment was conducted to assess the influence of exogenously applied alpha-tocopherol (Toc) in up-regulating the oxidative defense system in two mungbean cultivars (Cyclone 7008 and Cyclone 8009) grown under normal and water deficit conditions. After 30-day of water deficit treatment, four levels of Toc (0 (non spray), 100, 200 and 300 mg L-1) were applied as a foliage application (at vegetative growth stage). A significant reduction was observed in plant height and total soluble proteins, while an increase was observed in the levels of hydrogen peroxide (H/sub 2/O/sub 2/), ascorbic acid, total phenolics, malondialdehyde (MDA), total free amino acids and the activities of enzymatic (SOD, POD and CAT) antioxidants in both mungbean cultivars under drought conditions. Foliar spray of Toc was effective in improving plant height, AsA, total soluble proteins, total free amino acids, and activities of POD and CAT enzymes, but reduced MDA under water stress conditions. However, no prominent change was observed on the concentrations of H/sub 2/O/sub 2/, phenolics, and SOD enzyme due to foliar-applied Toc in both mungbean cultivars under both water regimes. Both mungbean cultivars were almost similar in all attributes measured except that cv. Cyclone 7008 was higher in the levels of H/sub 2/O/sub 2/ and TSP while cv. Cyclone 8009 in phenolics. So, from the results of this study we can suggest that exogenous application of Toc is effective in improving growth and antioxidative potential of mungbean plants under dry arid environment. (author)

  9. Development and application of the global rainbow refractometry for the study of heat and mass transfers in a spray; Developpement et application de la refractometrie arc-en-ciel global pour l'etude des transferts massique et thermique dans un spray

    Energy Technology Data Exchange (ETDEWEB)

    Lemaitre, P

    2004-12-15

    During the course of an hypothetical severe accident in a Pressure Water Reactor (PWR), hydrogen produced by the degradation and oxidation of the reactor core and high pressure water vapor can be released into the reactor containment. The repartition of the hydrogen in the reactor containment is then dependent of the forced (mixed or natural) convection flows which will be established. This type of accidental scenario will lead then to the pressurization of the reactor containment and to a potential risk of hydrogen combustion, able to prejudice to the integrity of the reactor. One of the means of PWR safety, called spraying, consists to release cold water sprays in the reactor containment, with the aim to make its internal pressure and its temperature decrease, on account of the condensation of water vapor on the injected water droplets. Moreover, the spraying leads to a mixing of the gaseous mixture containing air, water vapor and hydrogen, and contributes to make the hydrogen local concentration decreased. The TOSQAN experiment, developed at the IRSN, allows to reproduce the thermal-hydraulic conditions which represent accidental sequences able to happen in a PWR. In the frame of the current program consecrated to the spraying study, an innovating optical technique has been implemented on the TOSQAN experiment to finely characterize the mass and heat transfers between a spray and the surrounding atmosphere. This work gives into details the development of the global rainbow technique which allows to measure, in a non intrusive way, the temperature of the droplets during their fall. This technique has been coupled with others optical diagnoses such as the spontaneous Raman diffusion spectrometry, the PIV (Particle Image Velocimetry) and the implementation imagery, to respectively measure the water vapor parts as well as the velocities and the droplets sizes. The obtained experimental results have led to a global and local analysis of the interaction between the

  10. Cleansing technique using high-velocity steam-air micromist jet spray.

    Science.gov (United States)

    Fukuda, Koichi; Ishihara, Masayuki; Murakami, Kaoru; Nakamura, Shingo; Sato, Yoko; Kuwabara, Masahiro; Fujita, Masanori; Kiyosawa, Tomoharu; Yokoe, Hidetaka

    2017-10-01

    Application of a high-velocity steam-air micromist jet spray (HVS-AMJS; micromist average diameter: 2.4 μm) for cleansing the skin is proposed. Low-pressure steam is mixed with compressed air (pH 6.5) in a nozzle, and then sprayed at a pressure of ≦0.25 MPa and a velocity of ≧0.34 m/s on the skin or surface of material located approximately 5-10 cm from the nozzle. The temperature on the sprayed surface and water flow rate could be controlled between 42 °C and 46 °C and at approximately 50 mL/min, respectively. Compared with ultrasonic cleansing with tap water and rubbing with only tap water, the HVS-AMJS successfully removed fluorescent lotion covering pieces of wood and significantly reduced both the number of coliforms and the total viable counts on pieces of wood and gauze. Furthermore, the HVS-AMJS effectively removed oily ink from the skin of hairless rats, and temporarily elevated the skin temperature and blood flow, indicating massage effects. The striking characteristics of this cleansing technique using HVS-AMJS are not only its ability to remove microbes and residue without using any chemicals or detergents but also its massage effects.

  11. Plasma spraying of cerium-doped YAG

    Czech Academy of Sciences Publication Activity Database

    Ctibor, Pavel; Kubát, J.; Pala, Zdeněk; Nevrlá, Barbara

    2014-01-01

    Roč. 29, č. 19 (2014), s. 2344-2351 ISSN 0884-2914 R&D Projects: GA ČR(CZ) GAP108/12/1872 Institutional support: RVO:61389021 Keywords : plasma spraying * water-stabilized plasma Subject RIV: JK - Corrosion ; Surface Treatment of Materials Impact factor: 1.647, year: 2014 http://dx.doi.org/10.1557/jmr.2014.251

  12. Preparation of NaTaO3 by Spray Pyrolysis and Evaluation of Apparent Photocatalytic Activity for Hydrogen Production from Water

    Directory of Open Access Journals (Sweden)

    Hyun Woo Kang

    2008-01-01

    Full Text Available NaTaO3 photocatalyst was prepared by spray pyrolysis process and tested as photocatalyst for water splitting under UV light. Precursor solution was prepared from NaNO3 and Ta(OC2H55 in nitric acid solution and spray-pyrolyzed in air at between 973 and 1273 K. Considerable enhancement of photocatalytic activity was achieved by loading 0.05∼0.2 wt% of NiO on the surface of NaTaO3. The NiO loading was more effective on the NaTaO3 synthesized by spray pyrolysis in comparison with that synthesized by solid-state reaction. The quantum yield (QY of NiO/NaTaO3 photocatalyst was measured by chemical actinometry using potassium ferrioxalate and compared with the apparent photocatalytic activities (APA which would be more useful for the purpose of photocatalytic reactor design than the quantum yield. The apparent photocatalytic activity (APA was defined by the rate of hydrogen production divided by weight of catalyst, volume of reactant mixture, duration of irradiation, and power of UV lamp. The validity of the apparent photocatalytic activity (APA was discussed based on our results and reported activities of NaTaO3 photocatalyst loaded with or without NiO.

  13. Fine Sprays for Disinfection within Healthcare

    OpenAIRE

    G Nasr; A Whitehead; A Yule

    2016-01-01

    Problems exist worldwide with Hospital Acquired Infections (HAI's). The Spray Research Group (SRG) have been working with relevant industries in developing a product which can provide a delivery system for treatment chemicals for surfaces, including the design and testing of a novel Spill-Return Atomiser (SRA) for this purpose. A comprehensive description of this atomiser has already been given. This paper reports on a new application of this atomiser and discusses the problem of spray coatin...

  14. Fabrication of ZnO nanorod using spray-pyrolysis and chemical bath deposition method

    Energy Technology Data Exchange (ETDEWEB)

    Ramadhani, Muhammad F., E-mail: brian@tf.itb.ac.id; Pasaribu, Maruli A. H., E-mail: brian@tf.itb.ac.id; Yuliarto, Brian, E-mail: brian@tf.itb.ac.id; Nugraha, E-mail: brian@tf.itb.ac.id [Advanced Functional Materials Laboratory, Engineering Physics Department Faculty of Industrial Technology, Institut Teknologi Bandung (Indonesia)

    2014-02-24

    ZnO thin films with nanorod structure were deposited using Ultrasonic Spray Pyrolysis method for seed growth, and Chemical Bath Deposition (CBD) for nanorod growth. High purity Zn-hydrate and Urea are used to control Ph were dissolved in ethanol and aqua bidest in Ultrasonic Spray Pyrolysis process. Glass substrate was placed above the heater plate of reaction chamber, and subsequently sprayed with the range duration of 5, 10 and 20 minutes at the temperatures of 3500 C. As for the Chemical Bath Deposition, the glass substrate with ZnO seed on the surface was immerse to Zn-hydrate, HMTA (Hexa Methylene Tetra Amine) and deionized water solution for duration of 3, 5 and 7 hour and temperatures of 600 C, washed in distilled water, dried, and annealed at 3500 C for an hour. The characterization of samples was carried out to reveal the surface morphology using Scanning Electron Microscopy (SEM). From the data, the combination of 5 minutes of Ultrasonic Spray Pyrolysis process and 3 hour of CBD has showed the best structure of nanorod. Meanwhile the longer Spraying process and CBD yield the bigger nanorod structure that have been made, and it makes the films more dense which make the nanorod collide each other and as a result produce unsymetric nanorod structure.

  15. Effects of aging in containment spray injection system of PWR reactor containment

    International Nuclear Information System (INIS)

    Borges, Diogo da S.; Lava, Deise D.; Affonso, Renato R.W.; Guimaraes, Antonio C.F.; Moreira, Maria de L.

    2014-01-01

    This paper presents a contribution to the study of the components aging process in commercial plants of Pressurized Water Reactors (PWR). The analysis is done by applying the method of Fault trees, Monte Carlo Method and Fussell-Vesely Importance Measurement. The study on the aging of nuclear plants, is related to economic factors involved directly with the extent of their operational life, and also provides important data on issues of safety. The most recent case involving the process of extending the life of a PWR plant can be seen in Angra 1 Nuclear Power Plant by investing $ 27 million in the installation of a new reactor cover. The corrective action generated an extension of the useful life of Angra 1 estimated in twenty years, and a great savings compared to the cost of building a new plant and the decommissioning of the first, if it had reached the operation time out 40 years. The extension of the lifetime of a nuclear power plant must be accompanied by special attention from the most sensitive components of the systems to the aging process. After the application of the methodology (aging analysis of Containment Spray Injection System (CSIS)) proposed in this paper, it can be seen that increasing the probability of failure of each component, due to the aging process, generate an increased general unavailability of the system that contains these basic components. The final results obtained were as expected and can contribute to the maintenance policy, preventing premature aging in nuclear power systems

  16. Plasma sprayed coatings on crankshaft used steels

    Science.gov (United States)

    Mahu, G.; Munteanu, C.; Istrate, B.; Benchea, M.

    2017-08-01

    Plasma spray coatings may be an alternative to conventional heat treatment of main journals and crankpins of the crankshaft. The applications of plasma coatings are various and present multiple advantages compared to electric arc wire spraying or flame spraying. The study examines the layers sprayed with the following powders: Cr3C2- 25(Ni 20Cr), Al2O3- 13TiO2, Cr2O3-SiO2- TiO2 on the surface of steels used in the construction of a crankshaft (C45). The plasma spray coatings were made with the Spray wizard 9MCE facility at atmospheric pressure. The samples were analyzed in terms of micro and morphological using optical microscopy, scanning electron microscopy and X-ray diffraction. Wear tests on samples that have undergone simulates extreme working conditions of the crankshafts. In order to emphasize adherence to the base material sprayed layer, were carried out tests of microscratches and micro-indentation. Results have showed a relatively compact morphological aspect given by the successive coatings with splat-like specific structures. Following the microscratch analysis it can be concluded that Al2O3-13TiO2 coating has a higher purpose in terms of hardness compared to Cr3C2-(Ni 20Cr) and Cr2O3-SiO2- TiO2 powders. Thermal coatings of the deposited powders have increased the mechanical properties of the material. The results stand to confirm that plasma sprayed Al2O3-13TiO2 powder is in fact a efficient solution for preventing mechanical wear, even with a faulty lubrication system.

  17. Slurry spray distribution within a simulated laboratory scale spray dryer

    International Nuclear Information System (INIS)

    Bertone, P.C.

    1979-01-01

    It was found that the distribution of liquid striking the sides of a simulated room temperature spray dryer was not significantly altered by the choice of nozles, nor by a variation in nozzle operating conditions. Instead, it was found to be a function of the spray dryer's configuration. A cocurrent flow of air down the drying cylinder, not possible with PNL's closed top, favorably altered the spray distribution by both decreasing the amount of liquid striking the interior of the cylinder from 72 to 26% of the feed supplied, and by shifting the zone of maximum impact from 1.0 to 1.7 feet from the nozzle. These findings led to the redesign of the laboratory scale spray dryer to be tested at the Savannah River Plant. The diameter of the drying chamber was increased from 5 to 8 inches, and a cocurrent flow of air was established with a closed recycle. Finally, this investigation suggested a drying scheme which offers all the advantages of spray drying without many of its limitations

  18. Plasma Sprayed Hydroxyapatite Coatings: Influence of Spraying Power on Microstructure

    International Nuclear Information System (INIS)

    Mohd, S. M.; Abd, M. Z.; Abd, A. N.

    2010-01-01

    The plasma sprayed hydroxyapatite (HA) coatings are used on metallic implants to enhance the bonding between the implant and bone in human body. The coating process was implemented at different spraying power for each spraying condition. The coatings formed from a rapid solidification of molten and partly molten particles that impact on the surface of substrate at high velocity and high temperature. The study was concentrated on different spraying power that is between 23 to 31 kW. The effect of different power on the coatings microstructure was investigated using scanning electron microscope (SEM) and phase composition was evaluated using X-ray diffraction (XRD) analysis. The coatings surface morphology showed distribution of molten, partially melted particles and some micro-cracks. The produced coatings were found to be porous as observed from the cross-sectional morphology. The coatings XRD results indicated the presence of crystalline phase of HA and each of the patterns was similar to the initial powder. Regardless of different spraying power, all the coatings were having similar XRD patterns.

  19. Verification on spray simulation of a pintle injector for liquid rocket engine

    Science.gov (United States)

    Son, Min; Yu, Kijeong; Radhakrishnan, Kanmaniraja; Shin, Bongchul; Koo, Jaye

    2016-02-01

    The pintle injector used for a liquid rocket engine is a newly re-attracted injection system famous for its wide throttle ability with high efficiency. The pintle injector has many variations with complex inner structures due to its moving parts. In order to study the rotating flow near the injector tip, which was observed from the cold flow experiment using water and air, a numerical simulation was adopted and a verification of the numerical model was later conducted. For the verification process, three types of experimental data including velocity distributions of gas flows, spray angles and liquid distribution were all compared using simulated results. The numerical simulation was performed using a commercial simulation program with the Eulerian multiphase model and axisymmetric two dimensional grids. The maximum and minimum velocities of gas were within the acceptable range of agreement, however, the spray angles experienced up to 25% error when the momentum ratios were increased. The spray density distributions were quantitatively measured and had good agreement. As a result of this study, it was concluded that the simulation method was properly constructed to study specific flow characteristics of the pintle injector despite having the limitations of two dimensional and coarse grids.

  20. Spray-formed tooling

    Science.gov (United States)

    McHugh, K. M.; Key, J. F.

    The United States Council for Automotive Research (USCAR) has formed a partnership with the Idaho National Engineering Laboratory (INEL) to develop a process for the rapid production of low-cost tooling based on spray forming technology developed at the INEL. Phase 1 of the program will involve bench-scale system development, materials characterization, and process optimization. In Phase 2, prototype systems will be designed, constructed, evaluated, and optimized. Process control and other issues that influence commercialization will be addressed during this phase of the project. Technology transfer to USCAR, or a tooling vendor selected by USCAR, will be accomplished during Phase 3. The approach INEL is using to produce tooling, such as plastic injection molds and stamping dies, combines rapid solidification processing and net-shape materials processing into a single step. A bulk liquid metal is pressure-fed into a de Laval spray nozzle transporting a high velocity, high temperature inert gas. The gas jet disintegrates the metal into fine droplets and deposits them onto a tool pattern made from materials such as plastic, wax, clay, ceramics, and metals. The approach is compatible with solid freeform fabrication techniques such as stereolithography, selective laser sintering, and laminated object manufacturing. Heat is extracted rapidly, in-flight, by convection as the spray jet entrains cool inert gas to produce undercooled and semi-solid droplets. At the pattern, the droplets weld together while replicating the shape and surface features of the pattern. Tool formation is rapid; deposition rates in excess of 1 ton/h have been demonstrated for bench-scale nozzles.

  1. Hydrogen evolution from aluminium in reactor containment spray solutions

    International Nuclear Information System (INIS)

    Karlberg, G.; Sundvall, S.-B.

    1982-01-01

    Three different aluminium alloys were exposed to conditions similar to BWR and PWR containment spray waters at 50, 100 and 150 0 C. BWR deionized water gives corrosion rates of at most 0.05 mm/year and hydrogen concentrations less than 0.1-1%. On the contrary PWR alkaline solutions give very high corrosion rates and hydrogen contents. (Auth.)

  2. 29 CFR 1926.66 - Criteria for design and construction of spray booths.

    Science.gov (United States)

    2010-07-01

    ...) Conformance. Drying, curing, or fusion apparatus in connection with spray application of flammable and... drying apparatus and electrical connections and wiring thereto shall not be located within spray... apparatus, the drying apparatus, and the ventilating system of the spray enclosure shall be equipped with...

  3. Influence of travel speed on spray deposition uniformity from an air-assisted variable-rate sprayer

    Science.gov (United States)

    A newly developed LiDAR-guided air-assisted variable-rate sprayer for nursery and orchard applications was tested at various travel speeds to compare its spray deposition and coverage uniformity with constant-rate applications. Spray samplers, including nylon screens and water-sensitive papers (WSP)...

  4. Superhydrophobic Ceramic Coatings by Solution Precursor Plasma Spray

    Science.gov (United States)

    Cai, Yuxuan

    Superhydrophobic surfaces exhibit superior water repellent properties, and they have remarkable potential to improve current energy infrastructure. Substantial research has been performed on the production of superhydrophobic coatings. However, superhydrophobic coatings have not yet been adopted in many industries where potential applications exist due to the limited durability of the coating materials and the complex and costly fabrication processes. Here presented a novel coating technique to manufacture ceramic superhydrophobic coatings rapidly and economically. A rare earth oxide (REO) was selected as the coating material due to its hydrophobic nature and strong mechanical properties, and deposited on stainless steel substrates by solution precursor plasma spray (SPPS). The as-sprayed coating demonstrated a hierarchically structured coating topography, which closely resembles superhydrophobic surfaces in nature. Compared to smooth REO surfaces, the SPPS superhydrophobic coating improved the water contact angle by as much as 65° after vacuum treatment at 1 Pa for 48 hours.

  5. Potentials of spray-guided combustion systems in combination with downsizing concepts; Potenziale strahlgefuehrter Brennverfahren in Verbindung mit Downsizing-Konzepten

    Energy Technology Data Exchange (ETDEWEB)

    Lueckert, Peter; Breitbach, Hermann; Waltner, Anton; Merdes, Norbert; Weller, Ralph [Daimler AG, Stuttgart (Germany)

    2011-07-01

    In 2006, Mercedes-Benz was the world's first manufacturer to introduce a spray-guided lean-burn combustion system to the gasoline engine, combining high specific engine output with exceptional fuel consumption values. After presenting the technology in the M272 DE six-cylinder engine in 2006, the spray-guided combustion system was introduced in 2010, starting with the new 4.6l biturbo V8 engine as a homogeneous application, followed by the new M276 DE six-cylinder engine with an enhanced lean-burn combustion process as part of the new BlueDIRECT engine generation [3,4]. In the future, the technology will be rolled out with all new 4-cylinder engines. The advantages of the spray-guided lean-burn combustion system are clearly apparent during part load operation of the gasoline engine, both from reduction of throttling losses as well as the improved efficiency of the thermodynamic process. Early on, Mercedes- Benz investigated, whether in conjunction with downsizing the advantages of this combustion system could be retained, if downsizing led to reduction of throttling losses through an increase of the specific output of the engine in the NEDC. Clarification was also required regarding the extent to which turbocharging the engine would create new challenges for the combustion process. This question is discussed on the basis of combustion and emissions investigations. The paper also focuses in particular on the requirements pertaining to the components in the injection system and to the turbocharger in order to achieve the optimum efficiency of the overall system. Likewise, attention is devoted to the challenges regarding the stability and accuracy of the components. As the investigations show, downsizing by means of turbocharging is ideally suitable for combination with the spray-guided lean-burn combustion system. The use of evolved concepts has made it possible to extend the operating range of the stratified combustion system to higher loads, such that even

  6. Effects of Bell Speed and Flow Rate on Evaporation of Water Spray from a Rotary Bell Atomizer

    Directory of Open Access Journals (Sweden)

    Rajan Ray

    2015-05-01

    Full Text Available A phase doppler anemometer (PDA was used to determine the effects of evaporation on water spray for three rotary bell atomizer operational variable parameters: shaping air, bell speed and liquid flow. Shaping air was set at either 200 standard liters per minute (L/min or 300 L/min, bell speed was set to 30, 40 or 50 thousand rotations per minute (krpm and water flow rate was varied between 100, 200 or 300 cubic centimeters per minute (cm3/min. The total evaporation between 22.5 and 37.5 cm from the atomizer (cm3/s was calculated for all the combinations of those variables. Evaporation rate increased with higher flow rate and bell speed but no statistically significant effects were obtained for variable shaping air on interactions between parameters.

  7. Evaluation of effervescent atomizer internal design on the spray unsteadiness using a phase/Doppler particle analyzer

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Meng; Duan, YuFeng; Zhang, TieNan [School of Energy and Environment, Southeast University, Sipailou 2, Nanjing 210096 (China)

    2010-09-15

    The purpose of this research was to investigate the dependence of effervescent spray unsteadiness on operational conditions and atomizer internal design by the ideal spray theory of Edwards and Marx. The convergent-divergent effervescent atomizer spraying water with air as atomizing medium in the ''outside-in'' gas injection was used in this study. Results demonstrated that droplet formation process at various air to liquid ratio (ALR) led to the spray unsteadiness and all droplet size classes exhibited unsteadiness behavior in spray. The spray unsteadiness reduced quickly at ALR of 3% and decreased moderately at ALR of other values as the axial distance increased. When the axial distance was 200 mm, the spray unsteadiness reduced dramatically with the increase in radial distance, but lower spray unsteadiness at the center of spray and higher spray unsteadiness at the edge of spray were shown as the axial distance increased. The spray unsteadiness at the center region of spray increased with the injection pressure. Low spray unsteadiness and good atomization performance can be obtained when the diameter of incline aeration holes increased at ALR of 10%. Although short mixing chamber with large discharge orifice diameter for convergent-divergent effervescent atomizer produced good atomization, the center region of spay showed high spray unsteadiness and maybe formed the droplet clustering. (author)

  8. Numerical modelling of fuel sprays

    Energy Technology Data Exchange (ETDEWEB)

    Bergstroem, C.

    1999-06-01

    The way the fuel is introduced into the combustion chamber is one of the most important parameters for the power output and the generation of emissions in the combustion of liquid fuels. The interaction between the turbulent gas flow field and the liquid fuel droplets, the vaporisation of them and the mixing of the gaseous fuel with the ambient air that are vital parameters in the combustion process. The use of numerical calculations is an important tool to better understand these complex interacting phenomena. This thesis reports on the numerical modelling of fuel sprays in non-reacting cases using an own developed spray module. The spray module uses the stochastic parcel method to represent the spray. The module was made in such manner that it could by coupled with different gas flow solver. Results obtained from four different gas flow solvers are presented in the thesis, including the use of two different kinds of turbulence models. In the first part the spray module is coupled with a k-{eta} based 2-D cylindrical gas flow solver. A thorough sensitivity analysis was performed on the spray and gas flow solver parameters, such as grid size dependence and sensitivity to initial values of k-{eta}. The results of the spray module were also compared to results from other spray codes, e.g. the well known KIVA code. In the second part of this thesis the spray was injected into a turbulent and fully developed crossflow studied. The spray module was attached to a LES (Large Eddy Simulation) based flow solvers enabling the study of the complex structures and time dependent phenomena involved in spray in crossflows. It was found that the spray performs an oscillatory motion and that the Strouhal number in the wake was about 0.1. Different spray breakup models were evaluated by comparing with experimental results 66 refs, 56 figs

  9. High-power electronics thermal management with intermittent multijet sprays

    International Nuclear Information System (INIS)

    Panão, Miguel R.O.; Correia, André M.; Moreira, António L.N.

    2012-01-01

    Thermal management plays a crucial role in the development of high-power electronics devices, e.g. in electric vehicles. The greatest energy demands occur during power peaks, implying dynamic thermal losses within the vehicle’s driving cycle. Therefore, the need for devising intelligent thermal management systems able to efficiently respond to these power peaks has become a technological challenge. Experiments have been performed with methanol in order to quantify the maximum heat flux removed by a multijet spray to keep the 4 cm 2 surface temperature stabilized and below the threshold of 125 °C. A multijet atomization strategy consists in producing a spray through the multiple and simultaneous impact of N j cylindrical jets. Moreover, the spray intermittency is expressed through the duty cycle (DC), which depends on the frequency and duration of injection. Results evidence that: i) a shorter time between consecutive injection cycles enables a better distribution of the mass flow rate, resulting in larger heat transfer coefficient values, as well as higher cooling efficiencies; ii) compared with continuous sprays, the analysis evidences that an intermittent spray allows benefiting more from phase-change convection. Moreover, the mass flux is mainly affecting heat transfer rather than differences induced in the spray structure by using different multijet configurations. - Highlights: ► Intermittent spray cooling (ISC) is advantageous for intelligent thermal management. ► Distributing the mass flow rate through ISC improves heat transfer. ► Multijet sprays with increasing number of jets have higher heat transfer rates. ► ISC with multijet sprays benefit more from phase-change than continuous sprays.

  10. Countercurrent air/water and steam/water flow above a perforated plate. Report for October 1978-October 1979

    International Nuclear Information System (INIS)

    Hsieh, C.; Bankoff, S.G.; Tankin, R.S.; Yuen, M.C.

    1980-11-01

    The perforated plate weeping phenomena have been studied in both air/water and steam/cold water systems. The air/water experiment is designed to investigate the effect of geometric factors of the perforated plate on the rate of weeping. A new dimensionless flow rate in the form of H star is suggested. The data obtained are successfully correlated by this H star scaling in the conventional flooding equation. The steam/cold water experiment is concentrated on locating the boundary between weeping and no weeping. The effects of water subcooling, water inlet flow rate, and position of water spray are investigated. Depending on the combination of these factors, several types of weeping were observed. The data obtained at high water spray position can be related to the air/water flooding correlation by replacing the stream flow rate to an effective stream flow rate, which is determined by the mixing efficiency above the plate

  11. Thermal Arc Spray Overview

    Science.gov (United States)

    Hafiz Abd Malek, Muhamad; Hayati Saad, Nor; Kiyai Abas, Sunhaji; Mohd Shah, Noriyati

    2013-06-01

    Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.

  12. Thermal Arc Spray Overview

    International Nuclear Information System (INIS)

    Malek, Muhamad Hafiz Abd; Saad, Nor Hayati; Abas, Sunhaji Kiyai; Shah, Noriyati Mohd

    2013-01-01

    Usage of protective coating for corrosion protection was on highly demand during the past decade; and thermal spray coating played a major part during that time. In recent years, the thermal arc spray coating becomes a popular coating. Many big players in oil and gas such as PETRONAS, EXXON MOBIL and SHELL in Malaysia tend to use the coating on steel structure as a corrosion protection. Further developments in coating processes, the devices, and raw materials have led to expansion of functional coatings and applications scope from conventional coating to specialized industries. It is widely used because of its ability to withstand high process temperature, offer advantages in efficiency, lower cost and acts as a corrosion protection. Previous research also indicated that the thermal arc spray offers better coating properties compared to other methods of spray. This paper reviews some critical area of thermal spray coating by discussing the process/parameter of thermal arc spray technology and quality control of coating. Coating performance against corrosion, wear and special characteristic of coating are also described. The field application of arc spray technology are demonstrated and reviewed.

  13. Regulatory Concerns on the In-Containment Water Storage System of the Korean Next Generation Reactor

    International Nuclear Information System (INIS)

    Ahn, Hyung-Joon; Lee, Jae-Hun; Bang, Young-Seok; Kim, Hho-Jung

    2002-01-01

    The in-containment water storage system (IWSS) is a newly adopted system in the design of the Korean Next Generation Reactor (KNGR). It consists of the in-containment refueling water storage tank, holdup volume tank, and cavity flooding system (CFS). The IWSS has the function of steam condensation and heat sink for the steam release from the pressurizer and provides cooling water to the safety injection system and containment spray system in an accident condition and to the CFS in a severe accident condition. With the progress of the KNGR design, the Korea Institute of Nuclear Safety has been developing Safety and Regulatory Requirements and Guidances for safety review of the KNGR. In this paper, regarding the IWSS of the KNGR, the major contents of the General Safety Criteria, Specific Safety Requirements, Safety Regulatory Guides, and Safety Review Procedures were introduced, and the safety review items that have to be reviewed in-depth from the regulatory viewpoint were also identified

  14. An investigation on effect of geometrical parameters on spray cone angle and droplet size distribution of a two-fluid atomizer

    Energy Technology Data Exchange (ETDEWEB)

    Shafaee, Maziar; Banitabaei, Sayed Abdolhossein; Esfahanian, Vahid; Ashjaee, Mehdi [Tehran University, Tehran (Iran, Islamic Republic of)

    2011-12-15

    A visual study is conducted to determine the effect of geometrical parameters of a two-fluid atomizer on its spray cone angle. The liquid (water) jets exit from six peripheral inclined orifices and are introduced to a high speed gas (air) stream in the gravitational direction. Using a high speed imaging system, the spray cone angle has been determined in constant operational conditions, i.e., Reynolds and Weber numbers for different nozzle geometries. Also, the droplet sizes (Sauter mean diameter) and their distributions have been determined using Malvern Master Sizer x. The investigated geometrical parameters are the liquid jet diameter, liquid port angle and the length of the gas-liquid mixing chamber. The results show that among these parameters, the liquid jet diameter has a significant effect on spray cone angle. In addition, an empirical correlation has been obtained to predict the spray cone angle of the present two-fluid atomizer in terms of nozzle geometries.

  15. Improving Tolerance of Faba Bean during Early Growth Stages to Salinity through Micronutrients Foliar Spray

    Directory of Open Access Journals (Sweden)

    Mohamed M. EL FOULY

    2010-06-01

    Full Text Available Salinity, either of soil or of irrigation water, causes disturbances in plant growth and nutrient balance. Previous work indicates that applying nutrients by foliar application increases tolerance to salinity. A pot experiment with three replicates was carried out in the green house of NRC, Cairo, Egypt, to study the effect of micronutrients foliar application on salt tolerance of faba bean. Two concentrations of a micronutrient compound (0.1% and 0.15% were sprayed in two different treatments prior to or after the salinity treatments. Levels of NaCl (0.00-1000-2000-5000 ppm were supplied to irrigation water. Results indicated that 2000 and 5000 ppm NaCl inhibited growth and nutrient uptake. Spraying micronutrients could restore the negative effect of salinity on dry weight and nutrients uptake, when sprayed either before or after the salinity treatments. It is suggested that micronutrient foliar sprays could be used to improve plant tolerance to salinity.

  16. Box-Behnken analysis and storage of spray-dried collagenolytic proteases from Myceliophthora thermophila submerged bioprocess.

    Science.gov (United States)

    Hamin Neto, Youssef Ali Abou; Coitinho, Luciana Barbosa; de Freitas, Luis Alexandre Pedro; Cabral, Hamilton

    2017-05-28

    Enzymes do not have long-term storage stability in soluble forms, thus drying methods could minimize the loss of enzymatic activity, the spray dryer removes water under high temperatures and little time. The aims of this study were to improve the stability of enzymatic extract from Myceliophthora thermophila for potential applications in industry and to evaluate the best conditions to remove the water by spray drying technique. The parameters were tested according to Box-Behnken and evaluated by analysis of variance (ANOVA), all the parameters measured were found to influence the final enzyme activity and spray drying process yield ranged from 38.65 to 63.75%. Enzyme powders showed increased storage stability than extract and maintained about 100% of collagenolytic activity after 180 days of storage at 30°C. The results showed that the microbial enzymes maintained activity during the spray drying process and were stable during long-term storage; these are promising characteristics for industrial applications.

  17. Design of the containment spray system

    International Nuclear Information System (INIS)

    1985-12-01

    RFS or Regles Fondamentales de Surete (Basic Safety Rules) applicable to certain types of nuclear facilities lay down requirements with which compliance, for the type of facilities and within the scope of application covered by the RFS, is considered to be equivalent to compliance with technical French regulatory practice. The object of the RFS is to take advantage of standardization in the field of safety, while allowing for technical progress in that field. They are designed to enable the operating utility and contractors to know the rules pertaining to various subjects which are considered to be acceptable by the Service Central de Surete des Installations Nucleaires, or the SCSIN (Central Department for the Safety of Nuclear Facilities). These RFS should make safety analysis easier and lead to better understanding between experts and individuals concerned with the problems of nuclear safety. The SCSIN reserves the right to modify, when considered necessary, any RFS and specify, if need be, the terms under which a modification is deemed retroactive. The present RFS defines the functional requirements of the containment spray system and proposes certain complementary criteria or methods to be used in its equipment design

  18. Development and application of the global rainbow refractometry for the study of heat and mass transfers in a spray

    International Nuclear Information System (INIS)

    Lemaitre, P.

    2004-12-01

    During the course of an hypothetical severe accident in a Pressure Water Reactor (PWR), hydrogen produced by the degradation and oxidation of the reactor core and high pressure water vapor can be released into the reactor containment. The repartition of the hydrogen in the reactor containment is then dependent of the forced (mixed or natural) convection flows which will be established. This type of accidental scenario will lead then to the pressurization of the reactor containment and to a potential risk of hydrogen combustion, able to prejudice to the integrity of the reactor. One of the means of PWR safety, called spraying, consists to release cold water sprays in the reactor containment, with the aim to make its internal pressure and its temperature decrease, on account of the condensation of water vapor on the injected water droplets. Moreover, the spraying leads to a mixing of the gaseous mixture containing air, water vapor and hydrogen, and contributes to make the hydrogen local concentration decreased. The TOSQAN experiment, developed at the IRSN, allows to reproduce the thermal-hydraulic conditions which represent accidental sequences able to happen in a PWR. In the frame of the current program consecrated to the spraying study, an innovating optical technique has been implemented on the TOSQAN experiment to finely characterize the mass and heat transfers between a spray and the surrounding atmosphere. This work gives into details the development of the global rainbow technique which allows to measure, in a non intrusive way, the temperature of the droplets during their fall. This technique has been coupled with others optical diagnoses such as the spontaneous Raman diffusion spectrometry, the PIV (Particle Image Velocimetry) and the implementation imagery, to respectively measure the water vapor parts as well as the velocities and the droplets sizes. The obtained experimental results have led to a global and local analysis of the interaction between the

  19. Hair spray poisoning

    Science.gov (United States)

    ... this page: //medlineplus.gov/ency/article/002705.htm Hair spray poisoning To use the sharing features on this page, please enable JavaScript. Hair spray poisoning occurs when someone breathes in (inhales) ...

  20. Spray rolling aluminum alloy strip

    Energy Technology Data Exchange (ETDEWEB)

    McHugh, Kevin M.; Delplanque, J.-P.; Johnson, S.B.; Lavernia, E.J.; Zhou, Y.; Lin, Y

    2004-10-10

    Spray rolling combines spray forming with twin-roll casting to process metal flat products. It consists of atomizing molten metal with a high velocity inert gas, cooling the resultant droplets in flight and directing the spray between mill rolls. In-flight convection heat transfer from atomized droplets teams with conductive cooling at the rolls to rapidly remove the alloy's latent heat. Hot deformation of the semi-solid material in the rolls results in fully consolidated, rapidly solidified product. While similar in some ways to twin-roll casting, spray rolling has the advantage of being able to process alloys with broad freezing ranges at high production rates. This paper describes the process and summarizes microstructure and tensile properties of spray-rolled 2124 and 7050 aluminum alloy strips. A Lagrangian/Eulerian poly-dispersed spray flight and deposition model is described that provides some insight into the development of the spray rolling process. This spray model follows droplets during flight toward the rolls, through impact and spreading, and includes oxide film formation and breakup when relevant.

  1. Some features of spray breakup in effervescent atomizers

    Energy Technology Data Exchange (ETDEWEB)

    Gadgil, Hrishikesh P.; Raghunandan, B.N. [Indian Institute of Science, Department of Aerospace Engineering, Bangalore (India)

    2011-02-15

    The near orifice spray breakup at low GLR (gas to liquid ratio by mass) values in an effervescent atomizer is studied experimentally using water as a simulant and air as atomizing gas. From the visualizations, the near orifice spray structures are classified into three modes: discrete bubble explosions, continuous bubble explosions and annular conical spray. The breakup of the spray is quantified in terms of the mean bubble bursting distance from the orifice. The parametric study indicates that the mean bubble bursting distance mainly depends on airflow rate, jet diameter and mixture velocity. It is also observed that the jet diameter has a dominant effect on the bubble bursting distance when compared to mixture velocity at a given airflow rate. The mean bubble bursting distance is shown to be governed by a nondimensional two-phase flow number consisting of all the aforementioned parameters. The location of bubble bursting is found to be highly unsteady spatially, which is influenced by flow dynamics inside the injector. It is proposed that this unsteadiness in jet breakup length is a consequence of varying degree of bubble expansion caused due to the intermittent occurrence of single phase and two-phase flow inside the orifice. (orig.)

  2. Spray drying test of simulated borated waste solutions

    International Nuclear Information System (INIS)

    An Hongxiang; Zhou Lianquan; Fan Zhiwen; Sun Qi; Lin Xiaolong

    2007-01-01

    Performance and the effecting factors of spray drying of simulated borated waste solutions is studied for three contaeting methods between the atomized beads and the heated air, in which boron concentration is around 21000 ppm. The contacting modes are centrifugal atomizing co-current flow, pneumatic atomizing co-current flow and mixed flow. The results show that a free-flowing product in all these tests when the temperature of the solutions is between 62 degree C and 64 degree C, the inlet temperature of the spray drying chamber is between 210 degree C and 220 degree C, the temperature of the outlet of the spray drying chamber is between 110 and 120 degree C, the flow rate of the pressure air is 8.0 m 3 /h, the rotational speed of the centrifugal atomizer is 73.0 m/s. The diameters of the powder product which account for 95% of the feed range from 0.356 mm to 0.061 mm. The production capacity and water content in the powder increase in the order of pneumatic atomizing co-current flow, mixed flow and centrifugal atomizing co-current flow. The volume reduction coeffecient of spray drying is in the ranged of 0.22 and 0.27. (authors)

  3. Reducing the 2, 4 D+MCPA Antagonism from Hard Spray Waters by Ammonium Sulfate

    Directory of Open Access Journals (Sweden)

    Seyed Hossein Torabi

    2017-03-01

    Full Text Available Introduction: Water is the main carrier of herbicides (HC that its quality plays an important role in herbicide performance hard water has a high concentration of Ca++ and Mg++ and reviews have shown that calcium, manganese and zinc are the main factors reducing the effectiveness of weak acid herbicides. Weak acid herbicides such as glyphosate, paraquat, clethodim and 2, 4 D are compounds that release the H+ ions once dissolved in water, but just slightly. Therefore, herbicides that are weak acids partially dissociate. Herbicides not dissociated (the compound remains whole are more readily absorbed by plant foliage than those that dissociate. Dissociated herbicide molecules have a negative charge. After being dissociated, herbicides might remain as negatively charged molecules, or they might bind with other positively charged cations. Binding to some cations improves herbicide uptake and absorption, binding to others such as Ca++ and Mg++ antagonizes herbicide activity by decreasing absorption or activity in the cell. To correct such carriers, the use of adjuvants, such as ammonium sulphate (AMS, is recommended, which can reduce the use of herbicides and cause economic savings. The aim of this study was to investigate the simple effects and interactions between different amounts of AMS and carrier hardness (CH levels on 2, 4 D + MCPA herbicide efficacy in controlling white clover (Trifolium repens L. in turf grass. Materials and Methods: The experiment was laid out in a RCBD with three replications for each treatment during spring-summer 2013 in 10 years old mixed cold season turf grass (Festuca rubra + Poa pratensis + Poa pratensis dominated by white clover in Mashhad (Iran. The treatments were the factorial combination of four carrier hardness (CH rates (Deionized, 45, 90 and 180 ppm of Ca++ +Mg++ and three Ammonium Sulfate (AMS rates (0, 2, 3 and 4 Kg per100 L of carrier water were studied. The turf was sprayed with 2, 4 D + MCPA (67.5% SL at

  4. Remotely controlled spray gun

    Science.gov (United States)

    Cunningham, William C. (Inventor)

    1987-01-01

    A remotely controlled spray gun is described in which a nozzle and orifice plate are held in precise axial alignment by an alignment member, which in turn is held in alignment with the general outlet of the spray gun by insert. By this arrangement, the precise repeatability of spray patterns is insured.

  5. Parameters of electrostatic spraying and its influence on the application efficiency

    Directory of Open Access Journals (Sweden)

    Robson Shigueaki Sasaki

    2013-08-01

    Full Text Available When the electrostatic spraying is used correctly, it provides advantages over conventional systems, however many factors can affect the system efficiency. Therefore, the objective of this study was to evaluate the charge/mass ratio (Q/M at different spraying distances (0, 1, 2, 3, 4 and 5 m, and the liquid deposition efficiency on the target. Evaluating the Q/M ratio the Faraday cage method was used and to evaluate the liquid deposition efficiency the artificial targets were positioned longitudinally and transversely to the spray jet. It was found that the spraying distance affects the Q/M ratio, consequently, the liquid deposition efficiency. For the closest distance to the target the Q/M ratio was 4.11 mC kg-1, and at distances of 1, 2, 3, 4 and 5 m, the ratio decreased to 1.38, 0.64, 0.31, 0.17 and 0.005 mC kg-1, respectively. For the liquid deposition, the electrostatic system was affected by the target orientation and spraying distance. The target transversely to the jet of liquid did not improve the liquid deposition, but longitudinally increased the deposition up to 3 meters of distance.

  6. Effects of Chitosan Spraying on Physiological Characteristics of Ferula flabelliloba (Apiaceae Under Drought Stress

    Directory of Open Access Journals (Sweden)

    Gh. Taheri

    2016-02-01

    Full Text Available Introduction Ferula flabelliloba Rech. F. & Aell., (Apiaceae, a perennial plant with medicinal value, is one of important soil protective grown in Binalood mountains. Decreased precipitation in the previous years caused plants subjected to drought stress condition. Drought stress limits the growth and productivity of plants more than any other environmental factors. Drought stress can alter plant light absorption and consumption processes and increases production of reactive oxygen species (ROS. ROS is responsible for lipid peroxidation and associated injury to membranes, nucleic acids, proteins and enzymes. To detoxify ROS, plants develop different types of antioxidants to reduce oxidative damage and confer drought tolerance. ROS scavengers are either non- enzymatic (ascorbate, glutathione, flavonoids, alkaloids, carotenoids and phenolic compound or enzymatic containing superoxide dismutase, catalase, ascorbate peroxidase, and glutathione reductase. The activity of these antioxidants and enzymes allows short-term acclimation to temporary water deficit, but these biochemicals cannot overcome the effects of extreme or prolonged drought. Chitosan is a natural biopolymer formed by low alkaline deacetylation of chitin, an important component of the exoskeletons of crustaceans such as crab, crawfish and shrimp. Chitosan can affect plant physiology and gene expression, hence these materials can increase the plant resistant to many unfavorable environmental condition. The biological properties of chitosan have led to use it for various purposes. Chitosan has been used as plant protectant against fungi, bacteria and viruses, to improve soil fertility and to stimulate plant defense system. Thus, it seems that chitosan is a promising material for improving plant growth, especially under drought stress conditions where water deficit limits plant growth and establishment. In the present study, the effects of chitosan as foliar spraying of F. flabelliloba

  7. Spray structure of a pressure-swirl atomizer for combustion applications

    Directory of Open Access Journals (Sweden)

    Jicha Miroslav

    2012-04-01

    Full Text Available In the present work, global as well as spatially resolved parameters of a spray produced by a pressure-swirl atomizer are obtained. Small pressure-swirl atomizer for aircraft combustion chambers was run on a newly designed test bench with Jet A-1 kerosene type aviation fuel. The atomizer was tested in four regimes based on typical operation conditions of the engine. Spray characteristics were studied using two optical measurement systems, Particle Image velocimetry (PIV and Phase-Doppler Particle Analyzer (P/DPA. The results obtained with P/DPA include information about Sauter Mean Diameter of droplets and spray velocity profiles in one plane perpendicular to the spray axis. Velocity magnitudes of droplets in an axial section of the spray were obtained using PIV. The experimental outputs also show a good confirmation of velocity profiles obtained with both instruments in the test plane. These data together will elucidate impact of the spray quality on the whole combustion process, its efficiency and exhaust gas emissions.

  8. Spray structure of a pressure-swirl atomizer for combustion applications

    Science.gov (United States)

    Durdina, Lukas; Jedelsky, Jan; Jicha, Miroslav

    2012-04-01

    In the present work, global as well as spatially resolved parameters of a spray produced by a pressure-swirl atomizer are obtained. Small pressure-swirl atomizer for aircraft combustion chambers was run on a newly designed test bench with Jet A-1 kerosene type aviation fuel. The atomizer was tested in four regimes based on typical operation conditions of the engine. Spray characteristics were studied using two optical measurement systems, Particle Image velocimetry (PIV) and Phase-Doppler Particle Analyzer (P/DPA). The results obtained with P/DPA include information about Sauter Mean Diameter of droplets and spray velocity profiles in one plane perpendicular to the spray axis. Velocity magnitudes of droplets in an axial section of the spray were obtained using PIV. The experimental outputs also show a good confirmation of velocity profiles obtained with both instruments in the test plane. These data together will elucidate impact of the spray quality on the whole combustion process, its efficiency and exhaust gas emissions.

  9. Spray Formation of Herschel-Bulkley Fluids using Impinging Jets

    Science.gov (United States)

    Rodrigues, Neil; Gao, Jian; Chen, Jun; Sojka, Paul E.

    2015-11-01

    The impinging jet spray formation of two non-Newtonian, shear-thinning, Herschel-Bulkley fluids was investigated in this work. The water-based gelled solutions used were 1.0 wt.-% agar and 1.0 wt.-% kappa carrageenan. A rotational rheometer and a capillary viscometer were used to measure the strain-rate dependency of viscosity and the Herschel-Bulkley Extended (HBE) rheological model was used to characterize the shear-thinning behavior. A generalized HBE jet Reynolds number Rej , gen - HBE was used as the primary parameter to characterize the spray formation. A like-on-like impinging jet doublet was used to produce atomization. Shadowgraphs were captured in the plane of the sheet formed by the two jets using a CCD camera with an Nd:YAG laser beam providing the back-illumination. Typical behavior for impinging jet atomization using Newtonian liquids was not generally observed due to the non-Newtonian, viscous properties of the agar and kappa carrageenan gels. Instead various spray patterns were observed depending on Rej , gen - HBE. Spray characteristics of maximum instability wavelength and sheet breakup length were extracted from the shadowgraphs. Multi-University Research Initiative Grant Number W911NF-08-1-0171.

  10. Spray From a Rolling Tire: Mechanics of Droplet Formation

    Science.gov (United States)

    Plocher, Dennis; Browand, Fred

    2010-11-01

    The spray pattern immediately behind a single-groove tire rolling on a wet surface is produced in the laboratory using a specially designed tire spray simulator. The spray development is examined using high speed video. Water from the groove forms a liquid sheet as the tire-tread lifts away from the surface. The sheet is not of uniform thickness, but it remains attached to the tread. The thinner portions of the sheet become even thinner as the tire rotates, and eventually break to produce holes near the tire surface. The holes grow as the sheet margins surrounding the holes retract into the thicker portions of the sheet which become roughly cylindrical "ligaments" aligned at right angles to the direction of spray motion. The ligaments break into large droplets via a Rayleigh instability. The smallest droplets form when the margins of two holes collide. As Weber number, We = ρU^2w/2σ , based on tire groove half width, w/2, varies by a factor of 25, the sheet-ligament structure persists, but ligaments become less organized, and more small droplets appear in the pattern.

  11. Drop formation of black liquor spraying; Mustalipeaen pisaroituminen

    Energy Technology Data Exchange (ETDEWEB)

    Fogelholm, C J; Kankkunen, A; Nieminen, K; Laine, J; Miikkulainen, P [Helsinki Univ. of Technology, Otaniemi (Finland): Lab. of Energy Technology and Environmental Protection

    1997-10-01

    Black liquor is a spent liquor of the pulp and paper industry. It is burned in kraft recovery boilers for chemical and energy recovery. The high dry solids content and viscosity of black liquor require a high spraying temperature. This affects the performance of the boiler. Kraft recovery boiler deposit formation, emissions and chemical recovery are strongly affected by the drop size and the velocity of the black liquor spray formed by a splashplate nozzle. The sheet breakup mechanism is studied with a system based on a video and image-analysis. The drop size of mill-scale nozzles was measured also with an image-analysis-system. Measurements were carried out in a spray test chamber. The sheet breakup mechanism and drop size tests were carried out both below and over the boiling point of black liquor. Special attention was paid to the effect of flashing on drop formation. Temperature increase normally decreases drop size. In the temperature where the wavy-sheet disintegration changes to perforated-sheet disintegration the drop size increases. Spray velocity rises when the temperature is increased above the boiling point. (orig.)

  12. Comparision on dynamic behavior of diesel spray and rapeseed oil spray in diesel engine

    Science.gov (United States)

    Sapit, Azwan; Azahari Razali, Mohd; Faisal Hushim, Mohd; Jaat, Norrizam; Nizam Mohammad, Akmal; Khalid, Amir

    2017-04-01

    Fuel-air mixing is important process in diesel combustion. It significantly affects the combustion and emission of diesel engine. Biomass fuel has high viscosity and high distillation temperature and may negatively affect the fuel-air mixing process. Thus, study on the spray development and atomization of this type of fuel is important. This study investigates the atomization characteristics and droplet dynamic behaviors of diesel engine spray fuelled by rapeseed oil (RO) and comparison to diesel fuel (GO). Optical observation of RO spray was carried out using shadowgraph photography technique. Single nano-spark photography technique was used to study the characteristics of the spray while dual nano-spark shadowgraph technique was used to study the spray droplet behavior. Using in-house image processing algorithm, the images were processed and the boundary condition of each spray was also studied. The results show that RO has very poor atomization due to the high viscosity nature of the fuel when compared to GO. This is in agreement with the results from spray droplet dynamic behavior studies that shows due to the high viscosity, the RO spray droplets are large in size and travel downward, with very little influence of entrainment effect due to its large kinematic energy.

  13. Washout study of fission products under aerosol form by a droplets pulverization of PWR water spray containment

    International Nuclear Information System (INIS)

    Marchand, Denis

    2008-05-01

    The study investigated the physical phenomena involved in the aerosols washout by water droplets for thermal hydraulic conditions representative of a severe accident in a PWR simulated into the TOSQAN vessel. A aerosols characterization (WELAS, turbidity-meter) coupled with the spray characteristics measurements (PDA, PIV), provided detailed information allowing to obtain reproducible results showing that aerosols collection dynamics has two phases characterized by two distinct removal rates. The average elementary collection efficiency per aerosols class was estimated according to the water flow rates and the droplets temperature injection. The comparison between the numerical approach (ASTEC's code) and the experimental results on the collected mass by the droplets showed a good agreement at the test beginning, then a light dissension after a certain time related on the experimental limits of measurement and the limits of the code. (author)

  14. Effect of emulsification and spray-drying microencapsulation on the antilisterial activity of transcinnamaldehyde.

    Science.gov (United States)

    Trinh, Nga-Thi-Thanh; Lejmi, Raja; Gharsallaoui, Adem; Dumas, Emilie; Degraeve, Pascal; Thanh, Mai Le; Oulahal, Nadia

    2015-01-01

    Spray-dried redispersible transcinnamaldehyde (TC)-in-water emulsions were prepared in order to preserve its antibacterial activity; 5% (w/w) TC emulsions were first obtained with a rotor-stator homogeniser in the presence of either soybean lecithin or sodium caseinate as emulsifiers. These emulsions were mixed with a 30% (w/w) maltodextrin solution before feeding a spray-dryer. The antibacterial activity of TC alone, TC emulsions with and without maltodextrin before and after spray-drying were assayed by monitoring the growth at 30 °C of Listeria innocua in their presence and in their absence (control). Whatever the emulsifier used, antilisterial activity of TC was increased following its emulsification. However, reconstituted spray-dried emulsions stabilised by sodium caseinate had a higher antibacterial activity suggesting that they better resisted to spray-drying. This was consistent with observation that microencapsulation efficiencies were 27.6% and 78.7% for emulsions stabilised by lecithin and sodium caseinate, respectively.

  15. Novel Online Diagnostic Analysis for In-Flight Particle Properties in Cold Spraying

    Science.gov (United States)

    Koivuluoto, Heli; Matikainen, Ville; Larjo, Jussi; Vuoristo, Petri

    2018-02-01

    In cold spraying, powder particles are accelerated by preheated supersonic gas stream to high velocities and sprayed on a substrate. The particle velocities depend on the equipment design and process parameters, e.g., on the type of the process gas and its pressure and temperature. These, in turn, affect the coating structure and the properties. The particle velocities in cold spraying are high, and the particle temperatures are low, which can, therefore, be a challenge for the diagnostic methods. A novel optical online diagnostic system, HiWatch HR, will open new possibilities for measuring particle in-flight properties in cold spray processes. The system employs an imaging measurement technique called S-PTV (sizing-particle tracking velocimetry), first introduced in this research. This technique enables an accurate particle size measurement also for small diameter particles with a large powder volume. The aim of this study was to evaluate the velocities of metallic particles sprayed with HPCS and LPCS systems and with varying process parameters. The measured in-flight particle properties were further linked to the resulting coating properties. Furthermore, the camera was able to provide information about variations during the spraying, e.g., fluctuating powder feeding, which is important from the process control and quality control point of view.

  16. Digital image processing techniques for the analysis of fuel sprays global pattern

    Science.gov (United States)

    Zakaria, Rami; Bryanston-Cross, Peter; Timmerman, Brenda

    2017-12-01

    We studied the fuel atomization process of two fuel injectors to be fitted in a new small rotary engine design. The aim was to improve the efficiency of the engine by optimizing the fuel injection system. Fuel sprays were visualised by an optical diagnostic system. Images of fuel sprays were produced under various testing conditions, by changing the line pressure, nozzle size, injection frequency, etc. The atomisers were a high-frequency microfluidic dispensing system and a standard low flow-rate fuel injector. A series of image processing procedures were developed in order to acquire information from the laser-scattering images. This paper presents the macroscopic characterisation of Jet fuel (JP8) sprays. We observed the droplet density distribution, tip velocity, and spray-cone angle against line-pressure and nozzle-size. The analysis was performed for low line-pressure (up to 10 bar) and short injection period (1-2 ms). Local velocity components were measured by applying particle image velocimetry (PIV) on double-exposure images. The discharge velocity was lower in the micro dispensing nozzle sprays and the tip penetration slowed down at higher rates compared to the gasoline injector. The PIV test confirmed that the gasoline injector produced sprays with higher velocity elements at the centre and the tip regions.

  17. Microalgal cell disruption via ultrasonic nozzle spraying.

    Science.gov (United States)

    Wang, M; Yuan, W

    2015-01-01

    The objective of this study was to understand the effect of operating parameters, including ultrasound amplitude, spraying pressure, nozzle orifice diameter, and initial cell concentration on microalgal cell disruption and lipid extraction in an ultrasonic nozzle spraying system (UNSS). Two algal species including Scenedesmus dimorphus and Nannochloropsis oculata were evaluated. Experimental results demonstrated that the UNSS was effective in the disruption of microalgal cells indicated by significant changes in cell concentration and Nile red-stained lipid fluorescence density between all treatments and the control. It was found that increasing ultrasound amplitude generally enhanced cell disruption and lipid recovery although excessive input energy was not necessary for best results. The effect of spraying pressure and nozzle orifice diameter on cell disruption and lipid recovery was believed to be dependent on the competition between ultrasound-induced cavitation and spraying-generated shear forces. Optimal cell disruption was not always achieved at the highest spraying pressure or biggest nozzle orifice diameter; instead, they appeared at moderate levels depending on the algal strain and specific settings. Increasing initial algal cell concentration significantly reduced cell disruption efficiency. In all UNSS treatments, the effectiveness of cell disruption and lipid recovery was found to be dependent on the algal species treated.

  18. Spray solidification of nuclear waste

    International Nuclear Information System (INIS)

    Bonner, W.F.; Blair, H.T.; Romero, L.S.

    1976-08-01

    The spray calciner is a relatively simple machine. Operation is simple and is easily automated. Startup and shutdown can be performed in less than an hour. A wide variety of waste compositions and concentrations can be calcined under easily maintainable conditions. Spray calcination of high-level and mixed high- and intermediate-level liquid wastes has been demonstrated. Waste concentrations of from near infinite dilution to less than 225 liters per tonne of fuel are calcinable. Wastes have been calcined containing over 2M sodium. Feed concentration, composition, and flowrate can vary rapidly by over a factor of two without requiring operator action. Wastes containing mainly sodium cations can be spray calcined by addition of finely divided silica to the feedstock. A remotely replaceable atomizing nozzle has been developed for use in plant-scale equipment. Calciner capacity of over 75 l/h has been demonstrated in pilot-scale equipment. Sintered stainless steel filters are effective in deentraining over 99.9 percent of the solids that result from calcining the feedstock. The volume of recycle required from the effluent treatment system is very small. Vibrator action maintains the calcine holdup in the calciner at less than 1 kg. Successful remote operation and maintenance of a heated-wall spray calciner have been demonstrated while processing high-level waste. Radionuclide volatilization was acceptably low

  19. Simple and double microencapsulation of Lactobacillus acidophilus with chitosan using spray drying

    Directory of Open Access Journals (Sweden)

    Isela A. Flores-Belmont

    2015-10-01

    Full Text Available The aim of this study was to evaluate the survival of Lactobacillus acidophilus that had been simple or double spray dried using chitosan to cause microencapsulation and which had been exposed to model gastrointestinal conditions. In addition, the study also determined the physicochemical properties of the powder containing the microencapsulated probiotic.Chitosan-inulin or chitosan-maltodextrin (1:15 or 1:25 solutions were inoculated with 1012 cfu mL-1 of L. acidophilus, for simple microencapsulation. The different solutions were dried using a spray dryer with an inlet air temperature of 130°C and a solution flux of 4.8 g min-1. A two-step process was used for the double microencapsulation. In the first step, the probiotic was added to a gelatin-maltodextrin (1:25 solution and then spray dried; for the second step, the microencapsulated probiotic was added to a chitosan-inulin or chitosan-maltodextrin (1:25 solution and then it was spray dried again.With the simple microencapsulated probiotic, a microbial reduction of 7 log cycles was obtained. With the double microencapsulated probiotic only 3 log reductions were achieved. The double microencapsulated probiotic thus demonstrated greater resistance to simulated gastrointestinal conditions. The powders produced were shown to have water activity values of 0.176 - 0.261 at 25 °C and moisture content of 0.8 – 1.0%, which are characteristic of spray dried products. The bulk density was significantly (p < 0.05 lower (300 kg m-3 for simple than for double (400 kg m-3 microencapsulated probiotic powders. Solubility and dispersibility of the powder microcapsules were better at lower pH values.Double microencapsulation using a process of spray drying is therefore recommended for probiotics, thus exploiting chitosan’s insolubility in water, which can be applied for the of development food products.

  20. A Novel Machine Vision System for the Inspection of Micro-Spray Nozzle

    Directory of Open Access Journals (Sweden)

    Kuo-Yi Huang

    2015-06-01

    Full Text Available In this study, we present an application of neural network and image processing techniques for detecting the defects of an internal micro-spray nozzle. The defect regions were segmented by Canny edge detection, a randomized algorithm for detecting circles and a circle inspection (CI algorithm. The gray level co-occurrence matrix (GLCM was further used to evaluate the texture features of the segmented region. These texture features (contrast, entropy, energy, color features (mean and variance of gray level and geometric features (distance variance, mean diameter and diameter ratio were used in the classification procedures. A back-propagation neural network classifier was employed to detect the defects of micro-spray nozzles. The methodology presented herein effectively works for detecting micro-spray nozzle defects to an accuracy of 90.71%.

  1. Dynamic Simulation of the Water-steam System in Once-through Boilers - Sub-critical Power Boiler Case -

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Seongil; Choi, Sangmin [Korea Advanced Institute of Science and Technology, Daejeon (Korea, Republic of)

    2017-05-15

    The dynamics of a water-steam system in a once-through boiler was simulated based on the physics-based modeling approach, representing the system in response to large load change or scale disturbance simulations. The modeling considered the mass, energy conservation, and momentum equation in the water pipe and the focus was limited to the sub-critical pressure region. An evaporator tube modeling was validated against the reference data. A simplified boiler system consisting of economizer, evaporator, and superheater was constructed to match a 500 MW power boiler. The dynamic response of the system following a disturbance was discussed along with the quantitative response characteristics. The dynamic response of the boiler system was further evaluated by checking the case of an off-design point operation of the feedwater-to-fuel supply ratio. The results re-emphasized the significance of controlling the feedwater-to-fuel supply ratio and additional design requirements of the water-steam separator and spray attemperator.

  2. Dynamic Simulation of the Water-steam System in Once-through Boilers - Sub-critical Power Boiler Case -

    International Nuclear Information System (INIS)

    Kim, Seongil; Choi, Sangmin

    2017-01-01

    The dynamics of a water-steam system in a once-through boiler was simulated based on the physics-based modeling approach, representing the system in response to large load change or scale disturbance simulations. The modeling considered the mass, energy conservation, and momentum equation in the water pipe and the focus was limited to the sub-critical pressure region. An evaporator tube modeling was validated against the reference data. A simplified boiler system consisting of economizer, evaporator, and superheater was constructed to match a 500 MW power boiler. The dynamic response of the system following a disturbance was discussed along with the quantitative response characteristics. The dynamic response of the boiler system was further evaluated by checking the case of an off-design point operation of the feedwater-to-fuel supply ratio. The results re-emphasized the significance of controlling the feedwater-to-fuel supply ratio and additional design requirements of the water-steam separator and spray attemperator.

  3. Online characterization of nano-aerosols released by commercial spray products using SMPS–ICPMS coupling

    Energy Technology Data Exchange (ETDEWEB)

    Losert, Sabrina; Hess, Adrian [Empa Swiss Federal Laboratories for Materials Science and Technology, Laboratory for Analytical Chemistry (Switzerland); Ilari, Gabriele [Empa Swiss Federal Laboratories for Materials Science and Technology, Electron Microscopy Center (Switzerland); Goetz, Natalie von, E-mail: natalie.von.goetz@chem.ethz.ch; Hungerbuehler, Konrad [ETH Zürich Swiss Federal Institute of Technology Zürich, Institute for Chemical and Bioengineering (Switzerland)

    2015-07-15

    Nanoparticle-containing sprays are a critical class of consumer products, since human exposure may occur by inhalation of nanoparticles (NP) in the generated aerosols. In this work, the suspension and the released aerosol of six different commercially available consumer spray products were analyzed. Next to a broad spectrum of analytical methods for the characterization of the suspension, a standardized setup for the analysis of aerosol has been used. In addition, a new online coupling technique (SMPS–ICPMS) for the simultaneous analysis of particle size and elemental composition of aerosol particles has been applied. Results obtained with this new method were confirmed by other well-established techniques. Comparison of particles in the original suspensions and in the generated aerosol showed that during spraying single particles of size less than 20 nm had been formed, even though in none of the suspensions particles of size less than 280 nm were present (Aerosol size range scanned: 7–300 nm). Both pump sprays and propellant gas sprays were analyzed and both released particles in the nm size range. Also, both water-based and organic solvent-based sprays released NP. However, a trend was observed that spraying an aqueous suspension contained in a pump spray dispenser after drying resulted in bigger agglomerates than spraying organic suspensions in propellant gas dispensers.

  4. Investigation of corrosion experienced in a spray calciner/ceramic melter vitrification system

    International Nuclear Information System (INIS)

    Dierks, R.D.; Mellinger, G.B.; Miller, F.A.; Nelson, T.A.; Bjorklund, W.J.

    1980-08-01

    After periodic testing of a large-scale spray calciner/ceramic melter vitrification system over a 2-yr period, sufficient corrosion was noted on various parts of the vitrification system to warrant its disassembly and inspection. A majority of the 316 SS sintered metal filters on the spray calciner were damaged by chemical corrosion and/or high temperature oxidation. Inconel-601 portions of the melter lid were attacked by chlorides and sulfates which volatilized from the molten glass. The refractory blocks, making up the walls of the melter, were attacked by the waste glass. This attack was occurring when operating temperatures were >1200 0 C. The melter floor was protected by a sludge layer and showed no corrosion. Corrosion to the Inconel-690 electrodes was minimal, and no corrosion was noted in the offgas treatment system downstream of the sintered metal filters. It is believed that most of the melter corrosion occurred during one specific operating period when the melter was operated at high temperatures in an attempt to overcome glass foaming behavior. These high temperatures resulted in a significant release of volatile elements from the molten glass, and also created a situation where the glass was very fluid and convective, which increased the corrosion rate of the refractories. Specific corrosion to the calciner components cannot be proven to have occurred during a specific time period, but the mechanisms of attack were all accelerated under the high-temperature conditions that were experienced with the melter. A review of the materials of construction has been made, and it is concluded that with controlled operating conditions and better protection of some materials of construction corrosion of these systems will not cause problems. Other melter systems operating under similar strenuous conditions have shown a service life of 3 yr

  5. Optimization of the Automated Spray Layer-by-Layer Technique for Thin Film Deposition

    Science.gov (United States)

    2010-06-01

    air- pumped spray-paint cans 17,18 to fully automated systems using high pressure gas .7’ 19 This work uses the automated spray system previously...spray solutions were delivered by ultra high purity nitrogen gas (AirGas) regulated to 25psi, except when examining air pressure effects . The PAH solution...polyelectrolyte solution feed tube, the resulting Venturi effect causes the liquid solution to be drawn up into the airbrush nozzle, where it is

  6. Influence of fuel temperature on dispersion and decay of BDE sprays; Einfluss der Kraftstofftemperatur auf die Ausbreitung und den Zerfall von BDE-Sprays

    Energy Technology Data Exchange (ETDEWEB)

    Schmitz, I.; Beyrau, F.; Leipertz, A. [Erlangen-Nuernberg Univ., Erlangen (Germany). Lehrstuhl fuer Technische Thermodynamik

    2007-07-01

    As an example for a highly - developed technical spray system, the spray vaporization of a multi - hole injector used for the gasoline direct injection (GDI) has been investigated. Experiments were conducted in a heated injection chamber for different chamber pressures, fuels and fuel temperatures. In this investigation pure rotational coherent anti-Stokes Raman spectroscopy (RCARS) has been applied to the study of vaporizing sprays in combination with other laser techniques. Gas phase temperatures inside the sprays have been determined with high spatial and temporal resolution. A temperature drop of about 30 K was measured for all fuel temperatures studied. Droplet sizes and number densities have been measured using phase Doppler anemometry, and the correlation of these results with two - dimensional laser sheet Mie scattering images and laser-induced exciplex fluorescence allows an improved interpretation of the spray vaporization process. Furthermore under the influence of flash boiling a reduction of the mean drop size D10 up to 30% could be observed. (orig.)

  7. Spray and atomization of diesel fuel and its alternatives from a single-hole injector using a common rail fuel injection system

    KAUST Repository

    Chen, PinChia

    2013-01-01

    Fuel spray and atomization characteristics play an important role in the performance of internal combustion engines. As the reserves of petroleum fuel are expected to be depleted within a few decades, finding alternative fuels that are economically viable and sustainable to replace the petroleum fuel has attracted much research attention. In this work, the spray and atomization characteristics were investigated for commercial No. 2 diesel fuel, biodiesel (FAME) derived from waste cooking oil (B100), 20% biodiesel blended diesel fuel (B20), renewable diesel fuel produced in house, and civil aircraft jet fuel (Jet-A). Droplet diameters and particle size distributions were measured by a laser diffraction particle analyzing system and the spray tip penetrations and cone angles were acquired using a high speed imaging technique. All experiments were conducted by employing a common-rail high-pressure fuel injection system with a single-hole nozzle under room temperature and pressure. The experimental results showed that biodiesel and jet fuel had different features compared with diesel. Longer spray tip penetration and larger droplet diameters were observed for B100. The smaller droplet size of the Jet-A were believed to be caused by its relatively lower viscosity and surface tension. B20 showed similar characteristics to diesel but with slightly larger droplet sizes and shorter tip penetration. Renewable diesel fuel showed closer droplet size and spray penetration to Jet-A with both smaller than diesel. As a result, optimizing the trade-off between spray volume and droplet size for different fuels remains a great challenge. However, high-pressure injection helps to optimize the trade-off of spray volume and droplet sizes. Furthermore, it was observed that the smallest droplets were within a region near the injector nozzle tip and grew larger along the axial and radial direction. The variation of droplet diameters became smaller with increasing injection pressure.

  8. Influence of spray parameters on the microstructure and mechanical properties of gas-tunnel plasma sprayed hydroxyapatite coatings

    International Nuclear Information System (INIS)

    Morks, M.F.; Kobayashi, Akira

    2007-01-01

    For biomedical applications, hydroxyapatite (HA) coatings were deposited on 304 stainless steel substrate by using a gas tunnel type plasma spraying process. The influences of spraying distances and plasma arc currents on the microstructure, hardness and adhesion properties of HA coatings were investigated. Microstructure observation by SEM showed that HA coatings sprayed at low plasma power have a porous structure and poor hardness. HA coatings sprayed at high plasma power and short spraying distance are characterized by good adhesion and low porosity with dense structure. Hardness increased for HA coatings sprayed at shorter spraying distance and higher plasma power, mainly due to the formation of dense coatings

  9. Preparation of polymer-organo clay nano composites through the spray drying process

    International Nuclear Information System (INIS)

    Bernardo, Paulo R.A.; Pessan, Luiz A.; Carvalho, Antonio J.F. de; Vidotti, Suel E.

    2011-01-01

    The objective of the work was the study and preparation of polymer nano composites with montmorillonite organo clays (MMT) through the spray drying process. A new technique was proposed and tested to obtaining polymer nano composites, based on the use of the spray drying process to produce a nano composite with high clay content. The process consisted of the following stages: clay intercalation in water solution, with after addition of polyvinyl alcohol (PVOH) and a hydro soluble polyester ionomer (GEROLPS20) as exfoliation agents; spray drying the mixture obtained; incorporation powder in EVOH, PET e PP matrix. The effects of exfoliation agent on morphological and thermal properties of the nano composites were studied by XRD, transmission electron microscopy (TEM) and TGA. The results demonstrate that the process of spray drying is an innovative way to obtain a nano composite with high clay content. (author)

  10. The effect of vehicles on spray drying of rifampicin inhalable microparticles: In vitro and in vivo evaluation

    Directory of Open Access Journals (Sweden)

    2008-08-01

    Full Text Available Backgrond and the purpose of the study: The aim of this study was to evaluate the effect of solvents used in the spray drying and the aerodynamic properties of the rifampicin microparticles and pulmonary absorption of the microparticles. Methods: Different mixtures of dichloromethane and water were used as solvents for spray drying of rifampicin microparticles. The water to dichloromethane ratios were 25:75, 50:50, 75:25, 80:20, 90:10 and 100:0.   The solutions were dried at inlet temperature of 70 °C. The powder properties of the samples were examined by laser diffraction, scanning electron microscopy (SEM, helium densitometer and infrared spectroscopy (IR. The aerosolization performance of these formulations was investigated using an Andersen cascade impactor. Pulmonary absorptions of formulations were examined by the in situ pulmonary absorption described by Enna and Schanker method. The plasma concentration time profiles of rifampicin were constructed 8 hours following the intravenous and the intrapulmonary administrations. The pharmacokinetics parameters, Cmax, Tmax, t1/2, AUC, mean residence time (MRT, Ka and Ke were determined for each formulations. Results and major conclusions: The Tmax values for the samples decreased by increase in the amount of water in the initial feed. The Tmax values for the spray dried samples from the different mixtures of   dichloromethane and water were 60(min and 30(min respectively. The solvent mixture as the spray drying vehicle played an important role in the in vitro and in vivo lung deposition. The type of spray drying vehicle showed significant effect on the aerodynamic behavior and pharmacokinetic parameters of the particles. The pulmonary absorption of drug revealed the possibility of achieving the minimal inhibitory concentration (MIC of the antibiotics. The spray drying vehicle only affected absorption patterns of the formulations and it did not have any effect on the elimination rat of

  11. Sensors Based Measurement Techniques of Fuel Injection and Ignition Characteristics of Diesel Sprays in DI Combustion System

    Directory of Open Access Journals (Sweden)

    S. Rehman

    2016-09-01

    Full Text Available Innovative sensor based measurement techniques like needle lift sensor, photo (optical sensor and piezoresistive pressure transmitter are introduced and used to measure the injection and combustion characteristics in direct injection combustion system. Present experimental study is carried out in the constant volume combustion chamber to study the ignition, combustion and injection characteristics of the solid cone diesel fuel sprays impinging on the hot surface. Hot surface ignition approach has been used to create variety of advanced combustion systems. In the present study, the hot surface temperatures were varied from 623 K to 723 K. The cylinder air pressures were 20, 30 and 40 bar and fuel injection pressures were 100, 200 and 300 bar. It is found that ignition delay of fuel sprays get reduced with the rise in injection pressure. The ignition characteristics of sprays much less affected at high fuel injection pressures and high surface temperatures. The fuel injection duration reduces with the increase in fuel injection pressures. The rate of heat release becomes high at high injection pressures and it decreases with the increase in injection duration. It is found that duration of burn/combustion decrease with the increase in injection pressure. The use of various sensors is quite effective, reliable and accurate in measuring the various fuel injection and combustion characteristics. The study simulates the effect of fuel injection system parameters on combustion performance in large heavy duty engines.

  12. An Experimental Study on the Macroscopic Spray Characteristics of Biodiesel and Diesel in a Constant Volume Chamber

    Directory of Open Access Journals (Sweden)

    Hongzhan Xie

    2015-06-01

    Full Text Available The objective of this study was to investigate the macroscopic spray characteristics of different 0%–100% blends of biodiesel derived from drainage oil and diesel (BD0, BD20, BD50, BD80, BD100, such as spray tip penetration, average tip velocity at penetration, spray angle, average spray angle, spray evolution process, spray area and spray volume under different injection pressures (60, 70, 80, 90, 100 MPa and ambient pressures (0.1, 0.3, 0.5, 0.7, 0.9 MPa using a common rail system equipped with a constant volume chamber. The characteristic data was extracted from spray images grabbed by a high speed visualization system. The results showed that the ambient pressure and injection pressure had significant effects on the spray characteristics. As the ambient pressure increased, the spray angle increased, while the spray tip penetration and the peak of average tip velocity decreased. As the injection pressure increased, the spray tip penetration, spray angle, spray area and spray volume increased. The increasing blend ratio of biodiesel brought about a shorter spray tip penetration and a smaller spray angle compared with those of diesel. This is due to the comparatively higher viscosity and surface tension of biodiesel, which enhanced the friction effect between fuel and the injector nozzle surface and inhibited the breakup of the liquid jet.

  13. Industrial-scale spray layer-by-layer assembly for production of biomimetic photonic systems.

    Science.gov (United States)

    Krogman, K C; Cohen, R E; Hammond, P T; Rubner, M F; Wang, B N

    2013-12-01

    Layer-by-layer assembly is a powerful and flexible thin film process that has successfully reproduced biomimetic photonic systems such as structural colour. While most of the seminal work has been carried out using slow and ultimately unscalable immersion assembly, recent developments using spray layer-by-layer assembly provide a platform for addressing challenges to scale-up and manufacturability. A series of manufacturing systems has been developed to increase production throughput by orders of magnitude, making commercialized structural colour possible. Inspired by biomimetic photonic structures we developed and demonstrated a heat management system that relies on constructive reflection of near infrared radiation to bring about dramatic reductions in heat content.

  14. Optimization of Acetalated Dextran-Based Nanocomposite Microparticles for Deep Lung Delivery of Therapeutics via Spray-Drying.

    Science.gov (United States)

    Wang, Zimeng; Meenach, Samantha A

    2017-12-01

    Nanocomposite microparticle (nCmP) systems exhibit promising potential in the application of therapeutics for pulmonary drug delivery. This work aimed at identifying the optimal spray-drying condition(s) to prepare nCmP with specific drug delivery properties including small aerodynamic diameter, effective nanoparticle (NP) redispersion upon nCmP exposure to an aqueous solution, high drug loading, and low water content. Acetalated dextran (Ac-Dex) was used to form NPs, curcumin was used as a model drug, and mannitol was the excipient in the nCmP formulation. Box-Behnken design was applied using Design-Expert software for nCmP parameter optimization. NP ratio (NP%) and feed concentration (Fc) are significant parameters that affect the aerodynamic diameters of nCmP systems. NP% is also a significant parameter that affects the drug loading. Fc is the only parameter that influenced the water content of the particles significantly. All nCmP systems could be completely redispersed into the parent NPs, indicating that none of the factors have an influence on this property within the design range. The optimal spray-drying condition to prepare nCmP with a small aerodynamic diameter, redispersion of the NPs, low water content, and high drug loading is 80% NP%, 0.5% Fc, and an inlet temperature lower than 130°C. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  15. Measuring Spray Droplet Size from Agricultural Nozzles Using Laser Diffraction

    Science.gov (United States)

    Fritz, Bradley K.; Hoffmann, W. Clint

    2016-01-01

    When making an application of any crop protection material such as an herbicide or pesticide, the applicator uses a variety of skills and information to make an application so that the material reaches the target site (i.e., plant). Information critical in this process is the droplet size that a particular spray nozzle, spray pressure, and spray solution combination generates, as droplet size greatly influences product efficacy and how the spray moves through the environment. Researchers and product manufacturers commonly use laser diffraction equipment to measure the spray droplet size in laboratory wind tunnels. The work presented here describes methods used in making spray droplet size measurements with laser diffraction equipment for both ground and aerial application scenarios that can be used to ensure inter- and intra-laboratory precision while minimizing sampling bias associated with laser diffraction systems. Maintaining critical measurement distances and concurrent airflow throughout the testing process is key to this precision. Real time data quality analysis is also critical to preventing excess variation in the data or extraneous inclusion of erroneous data. Some limitations of this method include atypical spray nozzles, spray solutions or application conditions that result in spray streams that do not fully atomize within the measurement distances discussed. Successful adaption of this method can provide a highly efficient method for evaluation of the performance of agrochemical spray application nozzles under a variety of operational settings. Also discussed are potential experimental design considerations that can be included to enhance functionality of the data collected. PMID:27684589

  16. Refined Source Terms in WAVEWATCH III with Wave Breaking and Sea Spray Forecasts

    Science.gov (United States)

    2015-09-30

    dissipation and breaking, nonlinear wave-wave interaction, bottom friction, wave-mud interaction, wave-current interaction as well as sea spray flux. These...shallow water outside the surf zone. After careful testing within a comprehensive suite of test bed cases, these refined source terms will be...aim to refine the parameterization of air-sea and upper ocean fluxes, including wind input and sea spray as well as dissipation, and hence improve

  17. Lambda-cyhalothrin efficiency on fruit borer control and quali-quantitative spraying aspects in a pinecone crop

    Directory of Open Access Journals (Sweden)

    Jacqueline Lavinscky Costa Morais

    2016-06-01

    Full Text Available ABSTRACT In Brazil, the state of Bahia is one of the largest pinecone (Annona squamosa L. growers; nevertheless, fruit borer (Cerconota anonella L. presence limits production. This research aimed to test the efficiency of lambda-cyhalothrin in controlling fruit borer using different spray volumes; additionally, this research tested qualitative and quantitative operational aspects. Trials were carried out in pinecone orchards in Caraíbas-BA, Brazil. Pesticide efficiency was tested by a randomized block experiment with six treatments and five replications. Treatments consisted of lambda-cyhalothrin application (1.5 g a.i. 100 L-1 water with a surfactant (0.03% v v-1 at spray volumes of 100, 200, 268, 382 and 488 L ha-1 and one control (without spray. Pest infestation was assessed by counting symptomatic fruits for further percentage calculation. Five treatments with five replications were developed to evaluate spraying performance. These treatments consisted of an aqueous solution with a Brilliant Blue tracer at 0.15% (p v-1 and a surfactant at 0.03% (v v-1, using the same spray volumes as the first experiment. Qualitative assessments were performed on water-sensitive paper cards and were quantified through tracer deposit levels on leaves. Spray volumes between 100 and 382 L ha-1 with lambda-cyhalothrin were efficient to control Cerconota anonella in the pinecone crop, providing good quality application.

  18. Advanced Microstructural Study of Suspension Plasma Sprayed Hydroxyapatite Coatings

    Science.gov (United States)

    Podlesak, Harry; Pawlowski, Lech; D'Haese, Romain; Laureyns, Jacky; Lampke, Thomas; Bellayer, Severine

    2010-03-01

    Fine, home-synthesized, hydroxyapatite powder was formulated with water and alcohol to obtain a suspension used to plasma spray coatings onto a titanium substrate. The deposition process was optimized using statistical design of 2 n experiments with two variables: spray distance and electric power input to plasma. X-ray diffraction (XRD) was used to determine quantitatively the phase composition of obtained deposits. Raman microscopy and electron probe microanalysis (EPMA) enabled localization of the phases in different positions of the coating cross sections. Transmission electron microscopic (TEM) study associated with energy-dispersive x-ray spectroscopy (EDS) enabled visualization and analysis of a two-zone microstructure. One zone contained crystals of hydroxyapatite, tetracalcium phosphate, and a phase rich in calcium oxide. This zone included lamellas, usually observed in thermally sprayed coatings. The other zone contained fine hydroxyapatite grains that correspond to nanometric and submicrometric solids from the suspension that were agglomerated and sintered in the cold regions of plasma jet and on the substrate.

  19. Spray Behavior and Atomization Characteristics of Biodiesel

    Science.gov (United States)

    Choi, Seung-Hun; Oh, Young-Taig

    Biodiesel has large amount of oxygen in itself, which make it very efficient in reducing exhaust emission by improving combustion inside an engine. But biodiesel has a low temperature flow problem because it has a high viscosity. In this study, the spray behavior and atomization characteristics were investigated to confirm of some effect for the combination of non-esterification biodiesel and fuel additive WDP and IPA. The process of spray was visualized through the visualization system composed of a halogen lamp and high speed camera, and atomization characteristics were investigated through LDPA. When blending WDP and IPA with biodiesel, atomization and spray characteristics were improved. Through this experimental result, SMD of blended fuel, WDP 25% and biodiesel 75%, was 33.9% reduced at distance 6cm from a nozzle tip under injection pressure 30MPa.

  20. Impact of sophisticated fog spray models on accident analyses

    International Nuclear Information System (INIS)

    Roblyer, S.P.; Owzarski, P.C.

    1978-01-01

    The N-Reactor confinement system release dose to the public in a postulated accident is reduced by washing the confinement atmosphere with fog sprays. This allows a low pressure release of confinement atmosphere containing fission products through filters and out an elevated stack. The current accident analysis required revision of the CORRAL code and other codes such as CONTEMPT to properly model the N Reactor confinement into a system of multiple fog-sprayed compartments. In revising these codes, more sophisticated models for the fog sprays and iodine plateout were incorporated to remove some of the conservatism of steam condensing rate, fission product washout and iodine plateout than used in previous studies. The CORRAL code, which was used to describe the transport and deposition of airborne fission products in LWR containment systems for the Rasmussen Study, was revised to describe fog spray removal of molecular iodine (I 2 ) and particulates in multiple compartments for sprays having individual characteristics of on-off times, flow rates, fall heights, and drop sizes in changing containment atmospheres. During postulated accidents, the code determined the fission product removal rates internally rather than from input decontamination factors. A discussion is given of how the calculated plateout and washout rates vary with time throughout the analysis. The results of the accident analyses indicated that more credit could be given to fission product washout and plateout. An important finding was that the release of fission products to the atmosphere and adsorption of fission products on the filters were significantly lower than previous studies had indicated

  1. NACOM - a code for sodium spray fire analysis

    International Nuclear Information System (INIS)

    Rao, P.M.; Kannan, S.E.

    2002-01-01

    Full text: In liquid metal fast breeder reactors (LMFBR), leakage of sodium can result in a spray fire. Because of higher burning rates in droplet form combustion of sodium in spray fire, thermal consequences are more severe than that in a sodium pool fire. The code NACOM was developed for the analysis of sodium spray fires in LMFBRs facilities. The code uses the validated model for estimating the falling droplet burning rates in pre-ignition and vapour phase combustion stages. It uses a distribution system to generate the droplet groups of different diameters that represent the spray. The code requires about 20 input parameters like sodium leak rates, sodium temperature, initial cell conditions like oxygen concentration, temperature and dimensions. NACOM is a validated code based on experiments with sodium inventory up to 650 kg in 0 to 21 % O 2 atmospheres. The paper brings out the salient features of the code along with the sensitivity analysis of the main input parameters like spray volume mean diameter, oxygen concentration etc. based on the results obtained. The limitations of the code and the confidence margins applicable to results obtained are also brought out

  2. Design and performance of a full-scale spray calciner for nonradioactive high-level-waste-vitrification studies

    International Nuclear Information System (INIS)

    Miller, F.A.

    1981-06-01

    In the spray calcination process, liquid waste is spray-dried in a heated-wall spray dryer (termed a spray calciner), and then it may be combined in solid form with a glass-forming frit. This mixture is then melted in a continuous ceramic melter or in an in-can melter. Several sizes of spray calciners have been tested at PNL- laboratory scale, pilot scale and full scale. Summarized here is the experience gained during the operation of PNL's full-scale spray calciner, which has solidified approx. 38,000 L of simulated acid wastes and approx. 352,000 L of simulated neutralized wastes in 1830 h of processing time. Operating principles, operating experience, design aspects, and system descriptions of a full-scale spray calciner are discussed. Individual test run summaries are given in Appendix A. Appendices B and C are studies made by Bechtel Inc., under contract by PNL. These studies concern, respectively, feed systems for the spray calciner process and a spray calciner vibration analysis. Appendix D is a detailed structural analysis made at PNL of the spray calciner. These appendices are included in the report to provide a complete description of the spray calciner and to include all major studies made concerning PNL's full-scale spray calciner

  3. Computational Analysis of Spray Jet Flames

    Science.gov (United States)

    Jain, Utsav

    There is a boost in the utilization of renewable sources of energy but because of high energy density applications, combustion will never be obsolete. Spray combustion is a type of multiphase combustion which has tremendous engineering applications in different fields, varying from energy conversion devices to rocket propulsion system. Developing accurate computational models for turbulent spray combustion is vital for improving the design of combustors and making them energy efficient. Flamelet models have been extensively used for gas phase combustion because of their relatively low computational cost to model the turbulence-chemistry interaction using a low dimensional manifold approach. This framework is designed for gas phase non-premixed combustion and its implementation is not very straight forward for multiphase and multi-regime combustion such as spray combustion. This is because of the use of a conserved scalar and various flamelet related assumptions. Mixture fraction has been popularly employed as a conserved scalar and hence used to parameterize the characteristics of gaseous flamelets. However, for spray combustion, the mixture fraction is not monotonic and does not give a unique mapping in order to parameterize the structure of spray flames. In order to develop a flamelet type model for spray flames, a new variable called the mixing variable is introduced which acts as an ideal conserved scalar and takes into account the convection and evaporation of fuel droplets. In addition to the conserved scalar, it has been observed that though gaseous flamelets can be characterized by the conserved scalar and its dissipation, this might not be true for spray flamelets. Droplet dynamics has a significant influence on the spray flamelet and because of effects such as flame penetration of droplets and oscillation of droplets across the stagnation plane, it becomes important to accommodate their influence in the flamelet formulation. In order to recognize the

  4. Experimental and theoretical study on spray behaviors of modified bio-ethanol fuel employing direct injection system

    Directory of Open Access Journals (Sweden)

    Ghahremani Amirreza

    2017-01-01

    Full Text Available One of the key solutions to improve engine performance and reduce exhaust emissions of internal combustion engines is direct injection of bio-fuels. A new modified bio-ethanol is produced to be substituted by fossil fuels in gasoline direct injection engines. The key advantages of modified bio-ethanol fuel as an alternative fuel are higher octane number and oxygen content, a long-chain hydro-carbon fuel, and lower emissions compared to fossil fuels. In the present study spray properties of a modified bio-ethanol and its atomization behaviors have been studied experimentally and theoretically. Based on atomization physics of droplets dimensional analysis has been performed to develop a new non-dimensional number namely atomization index. This number determines the atomization level of the spray. Applying quasi-steady jet theory, air entrainment and fuel-air mixing studies have been performed. The spray atomization behaviors such as atomization index number, Ohnesorge number, and Sauter mean diameter have been investigated employing atomization model. The influences of injection and ambient conditions on spray properties of different blends of modified bio-ethanol and gasoline fuels have been investigated performing high-speed visualization technique. Results indicate that decreasing the difference of injection and ambient pressures increases spray cone angle and projected area, and decreases spray tip penetration length. As expected, increasing injection pressure improves atomization behaviors of the spray. Increasing percentage of modified bio-ethanol in the blend, increases spray tip penetration and decreases the projected area as well.

  5. Field experiment on spray drift: deposition and airborne drift during application to a winter wheat crop.

    Science.gov (United States)

    Wolters, André; Linnemann, Volker; van de Zande, Jan C; Vereecken, Harry

    2008-11-01

    A field experiment was performed to evaluate various techniques for measuring spray deposition and airborne drift during spray application to a winter wheat crop. The application of a spraying agent containing the fluorescent dye Brilliant Sulfo Flavine by a conventional boom sprayer was done according to good agricultural practice. Deposition was measured by horizontal collectors in various arrangements in and outside the treated area. Airborne spray drift was measured both with a passive and an active air collecting system. Spray deposits on top of the treated canopy ranged between 68 and 71% of the applied dose and showed only small differences for various arrangements of the collectors. Furthermore, only small variations were measured within the various groups of collectors used for these arrangements. Generally, the highest spray deposition outside the treated area was measured close to the sprayed plot and was accompanied by a high variability of values, while a rapid decline of deposits was detected in more remote areas. Estimations of spray deposits with the IMAG Drift Calculator were in accordance with experimental findings only for areas located at a distance of 0.5-4.5 m from the last nozzle, while there was an overestimation of a factor of 4 at a distance of 2.0-3.0 m, thus revealing a high level of uncertainty of the estimation of deposition for short distances. Airborne spray drift measured by passive and active air collecting systems was approximately at the same level, when taking into consideration the collector efficiency of the woven nylon wire used as sampling material for the passive collecting system. The maximum value of total airborne spray drift for both spray applications (0.79% of the applied dose) was determined by the active collecting system. However, the comparatively high variability of measurements at various heights above the soil by active and passive collecting systems revealed need for further studies to elucidate the spatial

  6. Gas Dynamic Spray Technology Demonstration Project Management. Joint Test Report

    Science.gov (United States)

    Lewis, Pattie

    2011-01-01

    The standard practice for protecting metallic substrates in atmospheric environments is the use of an applied coating system. Current coating systems used across AFSPC and NASA contain volatile organic compounds (VOCs) and hazardous air pollutants (HAPs). These coatings are sUbject to environmental regulations at the Federal and State levels that limit their usage. In addition, these coatings often cannot withstand the high temperatures and exhaust that may be experienced by Air Force Space Command (AFSPC) and NASA structures. In response to these concerns, AFSPC and NASA have approved the use of thermal spray coatings (TSCs). Thermal spray coatings are extremely durable and environmentally friendly coating alternatives, but utilize large cumbersome equipment for application that make the coatings difficult and time consuming to repair. Other concerns include difficulties coating complex geometries and the cost of equipment, training, and materials. Gas Dynamic Spray (GOS) technology (also known as Cold Spray) was evaluated as a smaller, more maneuverable repair method as well as for areas where thermal spray techniques are not as effective. The technology can result in reduced maintenance and thus reduced hazardous materials/wastes associated with current processes. Thermal spray and GOS coatings also have no VOCs and are environmentally preferable coatings. The primary objective of this effort was to demonstrate GDS technology as a repair method for TSCs. The aim was that successful completion of this project would result in approval of GDS technology as a repair method for TSCs at AFSPC and NASA installations to improve corrosion protection at critical systems, facilitate easier maintenance activity, extend maintenance cycles, eliminate flight hardware contamination, and reduce the amount of hazardous waste generated.

  7. Spray pesticide applications in Mediterranean citrus orchards: Canopy deposition and off-target losses.

    Science.gov (United States)

    Garcerá, Cruz; Moltó, Enrique; Chueca, Patricia

    2017-12-01

    Only a portion of the water volume sprayed is deposited on the target when applying plant protection products with air-assisted axial-fan airblast sprayers in high growing crops. A fraction of the off-target losses deposits on the ground, but droplets also drift away from the site. This work aimed at assessing the spray distribution to different compartments (tree canopy, ground and air) during pesticide applications in a Mediterranean citrus orchard. Standard cone nozzles (Teejet D3 DC35) and venturi drift reducing nozzles (Albuz TVI 80 03) were compared. Applications were performed with a conventional air-assisted sprayer, with a spray volume of around 3000lha -1 in a Navel orange orchard. Brilliant Sulfoflavine (BSF) was used as a tracer. Results showed that only around 46% of the applied spray was deposited on the target trees and around 4% of the spray was deposited on adjacent trees from adjoining rows independently of the nozzle type. Applications with standard nozzles produced more potential airborne spray drift (23%) than those with the drift reducing nozzles (17%) but fewer direct losses to the ground (22% vs. 27%). Indirect losses (sedimenting spray drift) to the ground of adjacent paths were around 7-9% in both cases. The important data set of spray distribution in the different compartments around sprayed orchard (air, ground, vegetation) generated in this work is highly useful as input source of exposure to take into account for the risk assessment in Mediterranean citrus scenario. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Microstructure formation and corrosion behaviour in HVOF-sprayed Inconel 625 coatings

    International Nuclear Information System (INIS)

    Zhang, D.; Harris, S.J.; McCartney, D.G.

    2003-01-01

    The nickel-based alloy Inconel 625 was thermally sprayed by two different variants of the high velocity oxy-fuel process. In this study, coatings deposited by a liquid-fuelled gun were compared with those produced by a gas-fuelled system; in general, the former generates higher particle velocities but lower particle temperatures. Investigations into the microstructural evolution of the coatings, using scanning electron microscopy and X-ray diffraction, are presented along with results on their aqueous corrosion behaviour, obtained from salt spray and potentiodynamic tests. It is inferred from coating microstructures that, during spraying, powder particles generally comprised three separate zones as follows: fully melted regions; partially melted zones; and an unmelted core. However, the relative proportions formed in an individual powder particle depended on its size, trajectory through the gun, the gas dynamics (velocity/temperature) of the thermal spray gun and the type of gun employed. Cr 2 O 3 was the principal oxide phase formed during spraying and the quantity appeared to be directly related to the degree to which particles were melted. The salt spray test provides a sensitive means of determining the presence of interconnected porosity in coatings and those produced with the liquid-fuelled gun exhibited reduced interconnected porosity and increased corrosion resistance compared with deposits obtained from the gas-fuelled system. In addition, potentiodynamic tests revealed that passive current densities are 10-20 times lower in liquid-fuel coatings than in those sprayed with the gas-fuelled gun

  9. Effect of airstream velocity on mean drop diameters of water sprays produced by pressure and air atomizing nozzles

    Science.gov (United States)

    Ingebo, R. D.

    1977-01-01

    A scanning radiometer was used to determine the effect of airstream velocity on the mean drop diameter of water sprays produced by pressure atomizing and air atomizing fuel nozzles used in previous combustion studies. Increasing airstream velocity from 23 to 53.4 meters per second reduced the Sauter mean diameter by approximately 50 percent with both types of fuel nozzles. The use of a sonic cup attached to the tip of an air assist nozzle reduced the Sauter mean diameter by approximately 40 percent. Test conditions included airstream velocities of 23 to 53.4 meters per second at 293 K and atmospheric pressure.

  10. Modifications Of A Commercial Spray Gun

    Science.gov (United States)

    Allen, Peter B.

    1993-01-01

    Commercial spray gun modified to increase spray rate and make sprayed coats more nearly uniform. Consists of gun head and pneumatic actuator. Actuator opens valves for two chemical components, called "A" and "B," that react to produce foam. Components flow through orifices, into mixing chamber in head. Mixture then flows through control orifice to spray tip. New spray tip tapered to reduce area available for accumulation of foam and makes tip easier to clean.

  11. Optimization of spray deposition and Tetranychus urticae control with air assisted and electrostatic sprayer

    Directory of Open Access Journals (Sweden)

    Denise Tourino Rezende de Cerqueira

    Full Text Available ABSTRACT: Improved spray deposition can be attained by electrostatically charging spray droplets, which increases the attraction of droplets to plants and decreases operator exposure to pesticide and losses to the environment. However, this technique alone is not sufficient to achieve desirable penetration of the spray solution into the crop canopy; thus, air assistance can be added to the electrostatic spraying to further improve spray deposition. This study was conducted to compare different spraying technologies on spray deposition and two-spotted spider mite control in cut chrysanthemum. Treatments included in the study were: conventional TJ 8003 double flat fan nozzles, conventional TXVK-3 hollow cone nozzles, semi-stationary motorized jet launched spray with electrostatic spray system (ESS and air assistance (AA, and semi-stationary motorized jet launched spray with AA only (no ESS. To evaluate the effect of these spraying technologies on the control of two-spotted spider mite, a control treatment was included that did not receive an acaricide application. The AA spraying technology, with or without ESS, optimized spray deposition and provided satisfactory two-spotted spider mite control up to 4 days after application.

  12. Effect of ethanol as a co-solvent on the aerosol performance and stability of spray-dried lysozyme

    DEFF Research Database (Denmark)

    Ji, Shuying; Thulstrup, Peter Waaben; Mu, Huiling

    2016-01-01

    In the spray drying process, organic solvents can be added to facilitate drying, accommodate certain functional excipients, and modify the final particle characteristics. In this study, lysozyme was used as a model pharmaceutical protein to study the effect of ethanol as a co...... the spray drying process. The enzymatic activities of the spray-dried lysozyme showed no significant impact of ethanol; however, the lysozyme enzymatic activity was ca. 25% lower compared to the starting material. In conclusion, the addition of ethanol as a co-solvent in the spray drying feed for lysozyme......-solvent on the stability and aerosol performance of spray-dried protein. Lysozyme was dissolved in solutions with various ratios of ethanol and water, and subsequently spray-dried. A change from spherical particles into wrinkled and folded particles was observed upon increasing the ratio of ethanol in the feed...

  13. Regulatory analysis for the resolution of Generic Issue 130: Essential service water system failures at multi-unit sites

    International Nuclear Information System (INIS)

    Leung, V.; Basdekas, D.; Mazetis, G.

    1991-06-01

    The essential service water system (ESWS) is required to provide cooling in nuclear power plants during normal operation and accident conditions. The ESWS typically supports component cooling water heat exchangers, containment spray heat exchangers, high-pressure injection pump oil coolers, emergency diesel generators, and auxiliary building ventilation coolers. Failure of the ESWS function could lead to severe consequences. This report presents the regulatory analysis for GI-130, ''Essential Service Water System Failures at Multi-Unit Sites.'' The risk reduction estimates, cost/benefit analyses, and other insights gained during this effort have shown that implementation of the recommendations will significantly reduce risk and that these improvements are warranted in accordance with the backfit rule, 10 CFR 50.109(a)(3). 19 refs., 16 tabs

  14. Characterization of Sodium Spray Aerosols

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, C. T.; Koontz, R. L.; Silberberg, M. [Atomics International, North American Rockwell Corporation, Canoga Park, CA (United States)

    1968-12-15

    The consequences of pool and spray fires require evaluation in the safety analysis of liquid metal-cooled fast breeder reactors. Sodium spray fires are characterized by high temperature and pressure, produced during the rapid combustion of sodium in air. Following the initial energy release, some fraction of the reaction products are available as aerosols which follow the normal laws of agglomeration, growth, settling, and plating. An experimental study is underway at Atomics International to study the characteristics of high concentration sprays of liquid sodium in reduced oxygen atmospheres and in air. The experiments are conducted in a 31.5 ft{sup 3} (2 ft diam. by 10 ft high) vessel, certified for a pressure of 100 lb/in{sup 2} (gauge). The spray injection apparatus consists of a heated sodium supply pot and a spray nozzle through which liquid sodium is driven by nitrogen pressure. Spray rate and droplet size can be varied by the injection velocity (nozzle size, nitrogen pressure, and sodium temperature). Aerosols produced in 0, 4, and 10 vol. % oxygen environments have been studied. The concentration and particle size distribution of the material remaining in the air after the spray injection and reaction period are measured. Fallout rates are found to be proportional to the concentration of aerosol which remains airborne following the spray period. (author)

  15. Handheld and automated ultrasonic spray deposition of conductive PEDOT:PSS films and their application in AC EL devices

    NARCIS (Netherlands)

    Ely, Fernando; Matsumoto, Agatha; Zoetebier, Bram; Peressinotto, Valdirene S.; Hirata, Marcelo Kioshi; de Sousa, Douglas A.; Maciel, Rubens

    2014-01-01

    In this contribution we explore the spray deposition technique to achieve smooth films based on the conductive polymer PEDOT:PSS. Two different spray systems were used and compared namely: (a) handheld airbrush and (b) automated ultrasonic spray system. For each system a number of parameters were

  16. Water environment and water preservation technology

    Energy Technology Data Exchange (ETDEWEB)

    Yoda, M.; Ofuchi, M.; Tsuzuki, K. (Hitachi, Ltd., Tokyo (Japan))

    1993-12-01

    Technologies on monitoring, purification, and simulation were described concerning water quality preservation, especially in closed water bodies such as lakes. In order to detect an increase in plankton bloom causing unpleasant taste and order, a water quality monitoring system using image analysis was developed. The main feature of this system is the use of a microscope to obtain images of plankton, coupled with a high speed image processor containing VLSI circuits used exclusively for image processing. The original gray image, obtained from the ITV in the microscope, is treated in the image processor, which extracts the features of isolated plankton, then classifies them, based on data previously input into the memory. As one of the water purification measures for lakes, a sprinkler system was developed. The sprinkler system has a pump in a boat-like structure set on a lake. It pumps up large quantities of cold water from depth of 10 m, then jets and sprays it from many nozzles after pressurization. In addition, a simulation technique was developed which can forecast the extent of water pollution and the effects of purification systems using the finite element method. 6 figs., 2 tabs.

  17. Approximate computation of hydrothermal conditions of nuclear reactor spray ponds

    International Nuclear Information System (INIS)

    Yarkho, A.A.; Borshchev, V.A.

    1990-01-01

    An algorithm is presented for determining the evaporation numbers of nuclear reactor spray ponds which provide necessary reactor cooling during its normal operation under given meteorological conditions with account of restrictions on the cooled water temperature at the reactor entrance

  18. MELCOR 1.8.3 assessment: CSE containment spray experiments

    International Nuclear Information System (INIS)

    Kmetyk, L.N.

    1994-12-01

    MELCOR is a fully integrated, engineering-level computer code, being developed at Sandia National Laboratories for the USNRC, that models the entire spectrum of severe accident phenomena in a unified framework for both BWRs and PWRS. As part, of an ongoing assessment program, the MELCOR computer code has been used to analyze a series of containment spray tests performed in the Containment Systems Experiment (CSE) vessel to evaluate the performance of aqueous sprays as a means of decontaminating containment atmospheres. Basecase MELCOR results are compared with test data, and a number of sensitivity studies on input modelling parameters and options in both the spray package and the associated aerosol washout and atmosphere decontamination by sprays modelled in the radionuclide package have been done. Time-step and machine-dependency calculations were done to identify whether any numeric effects exist in these CSE assessment analyses. A significant time-step dependency due to an error in the spray package coding was identified and eliminated. A number of other code deficiencies and inconveniences also are noted

  19. A spray flamelet/progress variable approach combined with a transported joint PDF model for turbulent spray flames

    Science.gov (United States)

    Hu, Yong; Olguin, Hernan; Gutheil, Eva

    2017-05-01

    A spray flamelet/progress variable approach is developed for use in spray combustion with partly pre-vaporised liquid fuel, where a laminar spray flamelet library accounts for evaporation within the laminar flame structures. For this purpose, the standard spray flamelet formulation for pure evaporating liquid fuel and oxidiser is extended by a chemical reaction progress variable in both the turbulent spray flame model and the laminar spray flame structures, in order to account for the effect of pre-vaporised liquid fuel for instance through use of a pilot flame. This new approach is combined with a transported joint probability density function (PDF) method for the simulation of a turbulent piloted ethanol/air spray flame, and the extension requires the formulation of a joint three-variate PDF depending on the gas phase mixture fraction, the chemical reaction progress variable, and gas enthalpy. The molecular mixing is modelled with the extended interaction-by-exchange-with-the-mean (IEM) model, where source terms account for spray evaporation and heat exchange due to evaporation as well as the chemical reaction rate for the chemical reaction progress variable. This is the first formulation using a spray flamelet model considering both evaporation and partly pre-vaporised liquid fuel within the laminar spray flamelets. Results with this new formulation show good agreement with the experimental data provided by A.R. Masri, Sydney, Australia. The analysis of the Lagrangian statistics of the gas temperature and the OH mass fraction indicates that partially premixed combustion prevails near the nozzle exit of the spray, whereas further downstream, the non-premixed flame is promoted towards the inner rich-side of the spray jet since the pilot flame heats up the premixed inner spray zone. In summary, the simulation with the new formulation considering the reaction progress variable shows good performance, greatly improving the standard formulation, and it provides new

  20. Simultaneous Polymerization and Polypeptide Particle Production via Reactive Spray-Drying.

    Science.gov (United States)

    Glavas, Lidija; Odelius, Karin; Albertsson, Ann-Christine

    2016-09-12

    A method for producing polypeptide particles via in situ polymerization of N-carboxyanhydrides during spray-drying has been developed. This method was enabled by the development of a fast and robust synthetic pathway to polypeptides using 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU) as an initiator for the ring-opening polymerization of N-carboxyanhydrides. The polymerizations finished within 5 s and proved to be very tolerant toward impurities such as amino acid salts and water. The formed particles were prepared by mixing the monomer, N-carboxyanhydride of l-glutamic acid benzyl ester (NCAGlu) and the initiator (DBU) during the atomization process in the spray-dryer and were spherical with a size of ∼1 μm. This method combines two steps; making it a straightforward process that facilitates the production of polypeptide particles. Hence, it furthers the use of spray-drying and polypeptide particles in the pharmaceutical industry.

  1. Swelling behavior of γ-ray irradiated elastomers in boiling spray solution

    International Nuclear Information System (INIS)

    Yagi, Toshiaki; Kusama, Yasuo; Ito, Masayuki; Okada, Sohei; Yoshikawa, Masahito; Yoshida, Kenzo

    1983-05-01

    Elastomers swelled significantly by water sorption during a simulated LOCA test, and this phenomenon could cause the deterioration of their mechanical and electrical properties. Many factors like as radiation, heat, the composition of spray solution, types of elastomers and their formulation, related to the phenomenon. A relationship between swelling properties of the formulation-known various elastomers and the pre-aging conditions such as radiation dose and thermal aging period was studied by measuring their swelling behaviors in boiling spray solution (water and chemical solution). All eight elastomers tested showed remarkable swelling with an increase of radiation dose when they irradiated in air. A swelling in boiling water was about twice of in chemical solution. Some types of Neoprene and Hypalons had an optimum swelling dose where they showed the maxima. Over this dose, the swelling ratio decreased with dose. When irradiated under vacuum, its swelling ratio became significantly lower than that of exposed in air. This attributed the swelling phenomena closely related to radiation oxidation degradation. (author)

  2. Effects of Spray Drying on Physicochemical Properties of Chitosan Acid Salts

    OpenAIRE

    Cervera, Mirna Fernández; Heinämäki, Jyrki; de la Paz, Nilia; López, Orestes; Maunu, Sirkka Liisa; Virtanen, Tommi; Hatanpää, Timo; Antikainen, Osmo; Nogueira, Antonio; Fundora, Jorge; Yliruusi, Jouko

    2011-01-01

    The effects of spray-drying process and acidic solvent system on physicochemical properties of chitosan salts were investigated. Chitosan used in spray dryings was obtained by deacetylation of chitin from lobster (Panulirus argus) origin. The chitosan acid salts were prepared in a laboratory-scale spray drier, and organic acetic acid, lactic acid, and citric acid were used as solvents in the process. The physicochemical properties of chitosan salts were investigated by means of solid-state CP...

  3. Applicability of fan spray nozzles to stripping insoluble gases from viscous liquids

    International Nuclear Information System (INIS)

    Tseng, H.H.; Johnson, E.F.

    1983-08-01

    Fan spray nozzle stripping appears to be a practical technique for separating dilute volatile solutes from nonvolatile solvents. In particular this technique can be used to strip molecular tritium and tritium fluoride at extremely small concentration (in the parts per million range) from molten salts used as blanket materials in a fusion reactor. Under adjusted operating conditions of the fan spray as it leaves the nozzle, a high percentage of the theoretically maximum achievable stripping would take place from the expanding sheet of the fan spray as it leaves the nozzle and before it breaks up. Although the only available experimental data are for aqueous solutions, a new theoretical analysis of the fan spray sheet demonstrates the applicability of this technique to nonaqueous liquids. The equation derived from this analysis relates the theoretically achievable mass transfer efficiency to the properties of the liquid flowing through the fan spray nozzle and to the operating conditions of the nozzle. Any fluid with viscosity higher than or equal to that of water would be expected to follow this equation as long as a fan-shaped sheet is formed under the operating conditions of the nozzle

  4. Characterization of silica and titania nanoparticles synthesized in a spray flame reactor

    Energy Technology Data Exchange (ETDEWEB)

    Cignoli, F.; Maffi, S.; Bellomunno, C.; De Iuliis, S.; Zizak, G. [CNR-IENI, Milano (Italy)

    2009-07-01

    Nanostructured materials represent nowadays a wide and largely unexplored field of potential applications. This is a research topic in high and rapid development, both at a basic level and under the point of view of potential practical applications, leaving large space for a thorough scientific analysis, which requires a significant amount of time for ultimate conclusions. This paper dealt with the preliminary work performed in the field of frame spray pyrolysis synthesis for nanoparticles, using an external mixing gas assisted nozzle. An experimental apparatus was designed, realized, and characterized for the synthesis of nanoparticles by the flame spray pyrolysis method. The presentation discussed the advantages of the flame spray pyrolysis technique and the experimental set-up including an image of the water spray and discussion of phase doppler anemometry and visualizations to investigate the flow field and the dimensional distribution of the droplets generated by the atomizer. The presentation also discussed the selection of precursor and dispersion fuel for nanoparticles synthesis through flame spray pyrolysis and transmission electron microscopy for dimensional analysis of nanoparticles. It was concluded that the apparatus demonstrated good stability and reproducibility of the reaction flame and, therefore, of the material produced. figs.

  5. Application of finite inverse gas chromatography in hypromellose acetate succinate-water-acetone systems.

    Science.gov (United States)

    Chiu, Sheng-Wei; Sturm, Derek R; Moser, Justin D; Danner, Ronald P

    2016-09-30

    A modification of a GC was developed to investigate both infinitely dilute and finite concentrations of solvents in polymers. Thermodynamic properties of hypromellose acetate succinate (HPMCAS-L)-acetone-water systems are important for the optimization of spray-drying processes used in pharmaceutical manufacturing of solid dispersion formulations. These properties, at temperatures below the glass transition temperature, were investigated using capillary column inverse gas chromatography (CCIGC). Water was much less soluble in the HPMCAS-L than acetone. Experiments were also conducted at infinitely dilute concentrations of one of the solvents in HPMCAS-L that was already saturated with the other solvent. Overall the partitioning of the water was not significantly affected by the presence of either water or acetone in the polymer. The acetone partition coefficient decreased as either acetone or water was added to the HPMCAS-L. A representation of the HPMCAS-L structure in terms of UNIFAC groups has been developed. With these groups, the UNIFAC-vdw-FV model did a reasonable job of predicting the phase equilibria in the binary and ternary systems. The Flory-Huggins correlation with fitted interaction parameters represented the data well. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Water spray-induced grooming is negatively correlated with depressive behavior in the forced swimming test in rats.

    Science.gov (United States)

    Shiota, Noboru; Narikiyo, Kimiya; Masuda, Akira; Aou, Shuji

    2016-05-01

    Rodents show grooming, a typical self-care behavior, under stress and non-stress conditions. Previous studies revealed that grooming under stress conditions such as the open-field test (OFT) or the elevated plus-maze test (EPM) is associated with anxiety, but the roles of grooming under non-stress conditions are not well understood. Here, we examined spray-induced grooming as a model of grooming under a non-stress condition to investigate the relationship between this grooming and depression-like behavior in the forced swim test (FST) and tail suspension test, and we compared spray-induced grooming with OFT- and EPM-induced grooming. The main finding was that the duration of spray-induced grooming, but not that of OFT/EPM-induced grooming, was negatively correlated with the duration of immobility in the FST, an index of depression-like behavior. The results suggest that spray-induced grooming is functionally different from the grooming in the OFT and EPM and is related to reduction of depressive behavior.

  7. Utilization of spray drying technique for improvement of dissolution and anti-inflammatory effect of Meloxicam.

    Science.gov (United States)

    Shazly, Gamal; Badran, Mohamed; Zoheir, Khairy; Alomrani, Abdullah

    2015-01-01

    Meloxicam (MLX) is a poorly water-soluble non steroidal anti-inflammatory drug (NSAID). The main objective of the present work was to enhance the dissolution of MLX and thus its bioavailability by the aid of additives. The novelty of this work rises from the utilization of spray drying technology to produce micro particulates solid dispersion systems containing MLX in the presence of small amount of additives. Differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FT-IR), and Scan Electron Microscope (SEM) were used for studying the physico-chemical and morphological properties of MLX samples. The dissolution of MLX samples was investigated in two different pH media. The morphology of MLX solid dispersion micro-particles was spherical in shape according to SEM. FT-IR profiles indicated that a complex was formed between MLX and the additives. DSC patterns of the MLX micro-particles suggested a reduction in the crystallinity of MLX and probability of presence of an interaction between MLX and the additives. The rate of dissolution of the spray-dried MLX enhanced as compared with the unprocessed MLX in both acidic and neutral media. It was found that 100% of the added MLX released within 5 min in phosphate buffer dissolution medium (pH 7.4) compared to that of the unprocessed MLX (15% in 60 min). Such increase rate in the dissolution of the spray dried MLX could be attributed to the increase in wettability of MLX particles and the hydrophilic nature of the additives. The anti-inflammatory effect of the spray dried MLX was explored using formalin induced rat paw edema model. The spray-dried samples showed an increase in the anti-inflammatory activity of MLX as compared to the unprocessed MLX. This work reveals that the spray drying technique is suitable for preparation of micro-particles with improved dissolution and anti-inflammatory effect of MLX.

  8. Transdermal Spray in Hormone Delivery

    African Journals Online (AJOL)

    market for the delivery system and ongoing development of transdermal sprays for hormone ... (DOAJ), African Journal Online, Bioline International, Open-J-Gate and Pharmacy Abstracts ... patches and gels have been very popular owing ... This product was developed for ... In a safety announcement, the US Food and.

  9. Superhydrophobic hybrid inorganic-organic thiol-ene surfaces fabricated via spray-deposition and photopolymerization.

    Science.gov (United States)

    Sparks, Bradley J; Hoff, Ethan F T; Xiong, Li; Goetz, James T; Patton, Derek L

    2013-03-13

    We report a simple and versatile method for the fabrication of superhydrophobic inorganic-organic thiol-ene coatings via sequential spray-deposition and photopolymerization under ambient conditions. The coatings are obtained by spray-deposition of UV-curable hybrid inorganic-organic thiol-ene resins consisting of pentaerythritol tetra(3-mercaptopropionate) (PETMP), triallyl isocyanurate (TTT), 2,4,6,8-tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxane (TMTVSi), and hydrophobic fumed silica nanoparticles. The spray-deposition process and nanoparticle agglomeration/dispersion provide surfaces with hierarchical morphologies exhibiting both micro- and nanoscale roughness. The wetting behavior, dependent on the concentration of TMTVSi and hydrophobic silica nanoparticles, can be varied over a broad range to ultimately provide coatings with high static water contact angles (>150°), low contact angle hysteresis, and low roll off angles (spray-deposition and UV-cure process on a variety of substrate surfaces including glass, paper, stone, and cotton fabric.

  10. Dynamics of flare sprays

    International Nuclear Information System (INIS)

    Tandberg-Hanssen, E.; Hansen, R.T.

    1980-01-01

    During solar cycle No. 20 new insight into the flare-spray phenomenon has been attained due to several innovations in solar optical-observing techniques (higher spatial resolution cinema-photography, tunable pass-band filters, multi-slit spectroscopy and extended angular field coronographs). From combined analysis of 13 well-observed sprays which occured between 1969-1974 we conclude that (i) the spray material originates from a preexisting active region filament which undergoes increased absorption some tens of minutes prior to the abrupt chromospheric brightening at the 'flare-start', and (ii) the spray material is confined within a steadily expanding, loop-shaped (presumably magnetically controlled) envelope with part of the material draining back down along one or both legs of the loop. (orig.)

  11. Absorption/desorption in sprays

    International Nuclear Information System (INIS)

    Naimpally, A.

    1987-01-01

    This survey paper shall seek to present the present state of knowledge concerning absorption and desorption in spray chambers. The first part of the paper presents the theories and formulas for the atomization and break-up of sprays in nozzles. Formulas for the average (sauter-mean) diameters are then presented. For the case of absorption processes, the formulas for the dimensionless mass transfer coefficients is in drops. The total; mass transfer is the total of the transfer in individual drops. For the case of desorption of sparingly soluble gases from liquids in a spray chamber, the mass transfer occurs in the spray just at the point of break-up of the jet. Formulas for the desorption of gases are presented

  12. Vapocoolant Spray Effectiveness on Arterial Puncture Pain: A Randomized Controlled Clinical Trial

    Directory of Open Access Journals (Sweden)

    Shervin Farahmand

    2017-02-01

    Full Text Available Arterial blood gas (ABG sampling is a painful procedure with no perfect technique for quelling the discomfort. An ideal local anesthesia should be rapid, easy to learn, inexpensive, and noninvasive. This study was aimed to compare pain levels from ABG sampling performed with vapocoolant spray in comparison to placebo. We hypothesized that pretreatment with the vapocoolant would reduce the pain of arterial puncture by at least 1 point on a 10 point verbal numeric scale. We have evaluated the effectiveness of a vapocoolant spray in achieving satisfactory pain control in patients undergoing ABG sampling in this randomized placebo controlled trial. Eighty patients were randomized to 2 groups: group A, who received vapocoolant spray, and group B, who received water spray as placebo (Control group. Puncture and spray application pain was assessed with numerical rating scale (0, the absence of pain; 10, greatest imaginable pain and number of attempts was recorded. The pain score during ABG sampling was not lower in group A compared with group B significantly (4.78±1.761 vs. 4.90±1.837; P:0.945. This study showed that while the spray exerts more application pain, the number of attempts required for ABG sampling was not significantly lower in group A compared with group B (1.38±0.54 vs. 1.53±0.68; P=0.372. Vapocoolant spray was not effective in ABG pain reduction, had milder application pain compared to placebo (P<0.05, but did not reduce sampling attempts. At present, this spray cannot be recommended for arterial puncture anesthesia, and further study on different timing is necessary.

  13. Evaluation of droplet velocity and size from nasal spray devices using phase Doppler anemometry (PDA).

    Science.gov (United States)

    Liu, Xiaofei; Doub, William H; Guo, Changning

    2010-03-30

    To determine aerosol deposition during the inhalation drug delivery, it is important to understand the combination of velocity and droplet size together. In this study, phase Doppler anemometry (PDA) was used to simultaneously characterize the aerosol velocity and droplet size distribution (DSD) of three nasal spray pumps filled with water. Thirteen sampling positions were located in the horizontal cross-sectional area of the nasal spray plumes at a distance of 3cm from the pump orifice. The results showed droplet velocities near the center of the spray plume were higher and more consistent than those near the edge. The pumps examined showed significant differences in their aerosol velocity at the center of the spray plume, which suggest that this metric might be used as a discriminating parameter for in vitro testing of nasal sprays. Droplet size measurements performed using PDA were compared with results from laser light scattering measurements. The ability of PDA to provide simultaneous measurements of aerosol velocity and size makes it a powerful tool for the detailed investigation of nasal spray plume characteristics. Published by Elsevier B.V.

  14. Mobile soak pits improve spray team mobility, productivity and safety of PMI malaria control programs.

    Science.gov (United States)

    Mitchell, David F; Brown, Annie S; Bouare, Sory Ibrahima; Belemvire, Allison; George, Kristen; Fornadel, Christen; Norris, Laura; Longhany, Rebecca; Chandonait, Peter J

    2016-09-15

    In the President's Malaria Initiative (PMI)-funded Africa Indoor Residual Spraying Project (AIRS), end-of-day clean-up operations require the safe disposal of wash water resulting from washing the exterior of spray tanks and spray operators' personal protective equipment. Indoor residual spraying (IRS) programs typically use soak pits - large, in-ground filters - to adsorb, filter and then safely degrade the traces of insecticide found in the wash water. Usually these soak pits are permanent installations serving 30 or more operators, located in a central area that is accessible to multiple spray teams at the end of their workday. However, in remote areas, it is often impractical for teams to return to a central soak pit location for cleanup. To increase operational efficiency and improve environmental compliance, the PMI AIRS Project developed and tested mobile soak pits (MSP) in the laboratory and in field applications in Madagascar, Mali, Senegal, and Ethiopia where the distance between villages can be substantial and the road conditions poor. Laboratory testing confirmed the ability of the easily-assembled MSP to reduce effluent concentrations of two insecticides (Actellic 300-CS and Ficam VC) used by the PMI AIRS Project, and to generate the minimal practicable environmental "footprint" in these remote areas. Field testing in the Mali 2014 IRS campaign demonstrated ease of installation and use, resulted in improved and more consistent standards of clean-up, decreased transportation requirements, improved spray team working conditions, and reduced potential for operator exposure to insecticide. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Encapsulation of black carrot juice using spray and freeze drying.

    Science.gov (United States)

    Murali, S; Kar, Abhijit; Mohapatra, Debabandya; Kalia, Pritam

    2015-12-01

    Black carrot juice extracted using pectinase enzyme was encapsulated in three different carrier materials (maltodextrin 20DE, gum arabic and tapioca starch) using spray drying at four inlet temperatures (150, 175, 200 and 225 ℃) and freeze drying at a constant temperature of - 53 ℃ and vacuum of 0.22-0.11 mbar with the constant feed mixture. The products were analyzed for total anthocyanin content, antioxidant activity, water solubility index, encapsulation efficiency and total colour change. For both the drying methods followed in this study, maltodextrin 20DE as the carrier material has proven to be better in retaining maximum anthocyanin and antioxidant activity compared to gum arabic and tapioca starch. The best spray dried product, was obtained at 150 ℃. The most acceptable was the freeze dried product with maximum anthocyanin content, antioxidant activity, water solubility index, encapsulation efficiency and colour change. © The Author(s) 2014.

  16. In-Swath Spray Deposition Characteristics of a Low Drift Nozzle for Low Volume Aerial Application - Preliminary Results.

    Science.gov (United States)

    CP flat-fan nozzles with selectable tips were evaluated for droplet spectra and coverage using water sensitive papers placed in the spray swath. This study used low application volumes (1, 2, and 3 GPA) at a certain spray application height as measured precisely by laser mounted in the aircraft. No...

  17. Hot Melt Extrusion and Spray Drying of Co-amorphous Indomethacin-Arginine With Polymers

    DEFF Research Database (Denmark)

    Lenz, Elisabeth; Löbmann, Korbinian; Rades, Thomas

    2017-01-01

    Co-amorphous drug-amino acid systems have gained growing interest as an alternative to common amorphous formulations which contain polymers as stabilizers. Several preparation methods have recently been investigated, including vibrational ball milling on a laboratory scale or spray drying......, and stability. Results were compared to those of spray-dried formulations with the same compositions and to spray-dried indomethacin-copovidone. Overall, stable co-amorphous systems could be prepared by extrusion without or with copovidone, which exhibited comparable molecular interaction properties...... to the respective spray-dried products, while phase separation was detected by differential scanning calorimetry in several cases. The formulations containing indomethacin in combination with arginine and copovidone showed enhanced dissolution behavior over the formulations with only copovidone or arginine....

  18. Spray structure as generated under homogeneous flash boiling nucleation regime

    International Nuclear Information System (INIS)

    Levy, M.; Levy, Y.; Sher, E.

    2014-01-01

    We show the effect of the initial pressure and temperature on the spatial distribution of droplets size and their velocity profile inside a spray cloud that is generated by a flash boiling mechanism under homogeneous nucleation regime. We used TSI's Phase Doppler Particle Analyzer (PDPA) to characterize the spray. We conclude that the homogeneous nucleation process is strongly affected by the initial liquid temperature while the initial pressure has only a minor effect. The spray shape is not affected by temperature or pressure under homogeneous nucleation regime. We noted that the only visible effect is in the spray opacity. Finally, homogeneous nucleation may be easily achieved by using a simple atomizer construction, and thus is potentially suitable for fuel injection systems in combustors and engines. - Highlights: • We study the characteristics of a spray that is generated by a flash boiling process. • In this study, the flash boiling process occurs under homogeneous nucleation regime. • We used Phase Doppler Particle Analyzer (PDPA) to characterize the spray. • The SMD has been found to be strongly affected by the initial liquid temperature. • Homogeneous nucleation may be easily achieved by using a simple atomizer unit

  19. Nanostructured Electrodes Via Electrostatic Spray Deposition for Energy Storage System

    KAUST Repository

    Chen, C.

    2014-10-02

    Energy storage systems such as Li-ion batteries and supercapacitors are extremely important in today’s society, and have been widely used as the energy and power sources for portable electronics, electrical vehicles and hybrid electrical vehicles. A lot of research has focused on improving their performance; however, many crucial challenges need to be addressed to obtain high performance electrode materials for further applications. Recently, the electrostatic spray deposition (ESD) technique has attracted great interest to satisfy the goals. Due to its many advantages, the ESD technique shows promising prospects compared to other conventional deposition techniques. In this paper, our recent research outcomes related to the ESD derived anodes for Li-ion batteries and other applications is summarized and discussed.

  20. Characteristics of wetting temperature during spray cooling

    International Nuclear Information System (INIS)

    Mitsutake, Yuichi; Monde, Masanori; Hidaka, Shinichirou

    2006-01-01

    An experimental study has been done to elucidate the effects of mass flux and subcooling of liquid and thermal properties of solid on the wetting temperature during cooling of a hot block with spray. A water spray was impinged at one of the end surfaces of a cylindrical block initially heated at 400 or 500degC. The experimental condition was mass fluxes G=1-9 kg/m 2 s and degrees of subcooling ΔT sub =20, 50, 80 K. Three blocks of copper, brass and carbon steel were prepared. During spray cooling internal block temperature distribution and sputtering sound pressure level were recorded and the surface temperature and heat flux were evaluated with 2D inverse heat conducting analysis. Cooling process on cooling curves is divided into four regimes categorized by change in a flow situation and the sound level. The wetting temperature defined as the wall temperature at a minimum heat flux point was measured over an extensive experimental range. The wetting wall temperature was correlated well with the parameter of GΔT sub . The wetting wall temperature increases as GΔT sub increases and reaches a constant value depending on the material of the surface at higher region of GΔT sub . (author)

  1. Presence of electrostatically adsorbed polysaccharides improves spray drying of liposomes.

    Science.gov (United States)

    Karadag, Ayse; Özçelik, Beraat; Sramek, Martin; Gibis, Monika; Kohlus, Reinhard; Weiss, Jochen

    2013-02-01

    Spray drying of liposomes with conventional wall materials such as maltodextrins often yields nonfunctional powders, that is, liposomes break down during drying and rehydration. Electrostatically coating the surface of liposomes with a charged polymer prior to spray drying may help solve this problem. Anionic lecithin liposomes (approximately 400 nm) were coated with lower (approximately 500 kDa, LMW-C) or higher (approximately 900 kDa, HMW-C) molecular weight cationic chitosan using the layer-by-layer depositing method. Low (DE20, LMW-MD) or high molecular weight (DE2, HMW-MD) maltodextrin was added as wall material to facilitate spray drying. If surfaces of liposomes (1%) were completely covered with chitosan (0.4%), no bridging or depletion flocculation would occur, and mean particle diameters would be approximately 500 nm. If maltodextrins (20%) were added to uncoated liposomes, extensive liposomal breakdown would occur making the system unsuitable for spray drying. No such aggregation or breakdown was observed when maltodextrin was added to chitosan-coated liposomes. Size changed little or even decreased slightly depending on the molecular weight of maltodextrin added. Scanning electron microscopy images of powders containing chitosan-coated liposomes revealed that their morphologies depended on the type of maltodextrin added. Powders prepared with LMW-MD contained mostly spherical particles while HMW-MD powders contained particles with concavities and dents. Upon redispersion, coated liposomes yielded back dispersions with particle size distributions similar to the original ones, except for LMW-C coated samples that had been spray dried with HMW-MD which yielded aggregates (approximately 30 μm). Results show that coating of liposomes with an absorbing polymer allows them to be spray dried with conventional maltodextrin wall materials. Liposomes have attracted considerable attention in the food and agricultural, biomedical industries for the delivery of

  2. Wind tunnel measurement of spray drift from on-off controlled sprayer nozzles

    DEFF Research Database (Denmark)

    Lund, Ivar; Jensen, Peter Kryger; Miller, Paul

    wide surface area with a length of 200 mm. The test was conducted in the wind tunnel at Silsoe Spray Applications Unit in the UK. The measurements consisted of two test series; airborne drift was collected on polyethylene lines more than 375 mm away from the centerline of the nozzle and ground deposits...... and arranged to deliver a pulse of spray using the WeedSeeker valve. The tests were conducted to determine accumulated spray deposit at different crosswind and forward speeds. In general, the deposits, especially those measured downwind close to the target zone showed significant increase as the crosswind......Sensor-based precision weed control system at a high resolution requires a high spray application accuracy to keep the spray in a small target zone. The objective of this research was to investigate the target accuracy and spray drift from individual controlled sprayer nozzles targeting a 250 mm...

  3. Effects of self-pulsation on the spray characteristics of gas-liquid swirl coaxial injector

    Science.gov (United States)

    Kang, Zhongtao; Li, Qinglian; Cheng, Peng; Zhang, Xinqiao; Wang, Zhen-guo

    2016-10-01

    To understand the influence of self-pulsation on the spray characteristics of gas-liquid swirl coaxial injector, a back-lighting photography technique has been employed to capture the instantaneous self-pulsated spray and stable spray images with a high speed camera. The diameter and velocity of the droplets in the spray have been characterized with a Dantec Phase Doppler Anemometry (PDA) system. The effects of self-pulsation on the spray pattern, primary breakup, spray angle, diameter and velocity distribution and mass flow rate distribution are analyzed and discussed. The results show that the spray morphology is greatly influenced by self-pulsation. The stable spray has a cone shape, while the self-pulsated spray looks like a Christmas tree. The main difference of these two sprays is the primary breakup. The liquid film of stable spray keeps stable while that of self-pulsated spray oscillates periodically. The film width of self-pulsated spray varies in a large range with 'neck' and 'shoulder' features existing. The liquid film of self-pulsated spray breaks up at the second neck, and then the second shoulder begins to breakup into ligaments. The self-pulsated spray produces droplet clusters periodically, varies horizontal spray width and mass flux periodically. From the point of spatial distribution, self-pulsation is good for the spray, it uniformizes the mass flux along radius and increases the spray angle. However, when self-pulsation occurs, the SMD distribution varies from an inverted V shape to a hollow cone shape, and SMD increases at all the measuring points. Namely, from the point of atomization performance, self-pulsation has negative effects even when the breakup length is smaller. The effects of self-pulsation on the diameter and velocity distributions of the spray are mainly in the center part of the spray. The periphery of stable and self-pulsated spray has similar diameter and velocity distribution.

  4. Identifying the Physical Properties of Showers That Influence User Satisfaction to Aid in Developing Water-Saving Showers

    Directory of Open Access Journals (Sweden)

    Minami Okamoto

    2015-07-01

    Full Text Available This research was conducted with the goal of clarifying the required conditions of water-saving showerheads. In order to this, the research analyzes the mutual relationship between water usage flow, the level of satisfaction and the physical properties of spray of showerheads. The physical properties of spray were measured using physical properties test apparatus of standard or scheme for water-saving showerheads issued in several water-saving countries, and satisfaction evaluation data was acquired through bathing experiments. The evaluated showerheads were separated into three groups according to usage water flow and the level of satisfaction. The relationships between usage water flow, the level of satisfaction and physical properties were compared. The results identified that Spray Force and Spray Force-per-Hole were physical properties that influence usage water flow. Spray force-per-hole, water volume ratio in Spray Patterns within φ 100 and φ 150, Temperature Drop and Spray Angle were identified as physical properties that influenced the level of satisfaction. The level of satisfaction and usage water flow has a spurious correlation through the physical properties of Spray Force-per-Hole and Temperature Drop. It is possible to improve the level of satisfaction independent of amount of water usage through designs that set an appropriate value for water volume ratio and Spray Angle for Spray Patterns within φ 100 and φ 150.

  5. Plasma sprayed samarium--cobalt permanent magnets

    International Nuclear Information System (INIS)

    Willson, M.C.; Janowiecki, R.J.

    1975-01-01

    Samarium--cobalt permanent magnets were fabricated by arc plasma spraying. This process involves the injection of relatively coarse powder particles into a high-temperature gas for melting and spraying onto a substrate. The technique is being investigated as an economical method for fabricating cobalt--rare earth magnets for advanced traveling wave tubes and cross-field amplifiers. Plasma spraying permits deposition of material at high rates over large areas with optional direct bonding to the substrate, and offers the ability to fabricate magnets in a variety of shapes and sizes. Isotropic magnets were produced with high coercivity and good reproducibility in magnetic properties. Post-spray thermal treatments were used to enhance the magnetic properties of sprayed deposits. Samarium--cobalt magnets, sprayed from samarium-rich powder and subjected to post-spray heat treatment, displayed energy products in excess of 9 million gauss-oersteds and coercive forces of approximately 6000 oersteds. Bar magnet arrays were constructed by depositing magnets on ceramic substrates. (auth)

  6. Plasma sprayed samarium--cobalt permanent magnets

    International Nuclear Information System (INIS)

    Willson, M.C.; Janowiecki, R.J.

    1975-01-01

    Samarium--Co permanent magnets were fabricated by arc plasma spraying. This process involves the injection of relatively coarse powder particles into a high temperature gas for melting and spraying onto a substrate. The technique is being investigated as an economical method for fabricating Co--rare earth magnets for advanced traveling wave tubes and cross-field amplifiers. Plasma spraying permits deposition of material at high rates over large areas with optional direct bonding to the substrate, and offers the ability to fabricate magnets in a variety of shapes and sizes. Isotropic magnets were produced with high coercivity and good reproducibility in magnetic properties. Post-spray thermal treatments were used to enhance the magnetic properties of sprayed deposits. Samarium--Co magnets, sprayed from Sm-rich powder and subjected to post-spray heat treatment, displayed energy products in excess of 9 million G-Oe and coercive forces of approximately 6000 Oe. Bar magnet arrays were constructed by depositing magnets on ceramic substrates

  7. Methods and means for reducing pressure in systems for fire fighting and water spraying in mines

    Energy Technology Data Exchange (ETDEWEB)

    Kozlyuk, A I; Grin' , G V; Yushchenko, Yu N

    1986-01-01

    Valves are evaluated used in water systems for fire fighting and dust suppression in underground black coal mines in the USSR. Specifications of the KR-2, the KR-3 and the R-86 pressure-reducing valves used in deep mines are analyzed. The valves are characterized by low reliability, low capacity and low pressure reducing range. Therefore groups (parallel arrangement) of pressure-reducing valves are used. Using valve groups increases equipment cost. The pressure-reducing systems should consist of no more than 2 valves. The VNIIGD Institute developed the RKGD pressure-reducing valve with the following specifications: inlet pressure 6.87 MPa, outlet pressure from 0.98 to 2.45 MPa, water discharge 100 m/sup 3//h). The RKGD valves are characterized by high reliability but extremely high weight. Therefore, the VNIIGD Institute developed a modified version of pressure-reducing valve, called the PRK (with maximum inlet pressure of 5 MPa, outlet pressure ranging from 0.5 to 1.5 MPa, water discharge 80 m/sup 3//h and weighing 5 kg). Design of the PRK pressure-reducing valve is shown.

  8. Outdoor spatial spraying against dengue: A false sense of security among inhabitants of Hermosillo, Mexico.

    Directory of Open Access Journals (Sweden)

    Pablo A Reyes-Castro

    2017-05-01

    Full Text Available Government-administered adulticiding is frequently conducted in response to dengue transmission worldwide. Anecdotal evidence suggests that spraying may create a "false sense of security" for residents. Our objective was to determine if there was an association between residents' reporting outdoor spatial insecticide spraying as way to prevent dengue transmission and both their reported frequency of dengue prevention practices and household entomological indices in Hermosillo, Mexico.A non-probabilistic survey of 400 households was conducted in August 2014. An oral questionnaire was administered to an adult resident and the outer premises of the home were inspected for water-holding containers and presence of Ae. aegypti larvae and pupae. Self-reported frequency of prevention practices were assessed among residents who reported outdoor spatial spraying as a strategy to prevent dengue (n = 93 and those who did not (n = 307. Mixed effects negative binomial regression was used to assess associations between resident's reporting spraying as a means to prevent dengue and container indices. Mixed effects logistic regression was used to determine associations with presence/absence of larvae and pupae. Those reporting spatial spraying disposed of trash less frequently and spent less time indoors to avoid mosquitoes. They also used insecticides and larvicides more often and covered their water containers more frequently. Their backyards had more containers positive for Ae. aegypti (RR = 1.92 and there was a higher probability of finding one or more Ae. aegypti pupae (OR = 2.20. Survey respondents that reported spatial spraying prevented dengue were more likely to be older and were exposed to fewer media sources regarding prevention.The results suggest that the perception that outdoor spatial spraying prevents dengue is associated with lower adoption of prevention practices and higher entomological risk. This provides some support to the hypothesis that

  9. Failure analysis of cracked head spray piping from the Dresden Unit 2 Boiling Water Reactor

    International Nuclear Information System (INIS)

    Diercks, D.R.; Dragel, G.M.

    1983-07-01

    Several sections of Type 304 stainless steel head spray piping, 6.25 cm (2.5 in.) in diameter, from the Dresden Unit 2 Boiling Water Reactor were examined to determine the nature and causes of coolant leakages detected during hydrostatic tests. Extensive pitting was observed on the outside surface of the piping, and three cracks, all located at a helical stripe apparently rubbed onto the outer surface of the piping, were also noted. Metallographic examination revealed that the cracking had initiated at the outer surface of the pipe, and showed it to be transgranular and highly branched, characteristic of chloride stress corrosion cracking. The surface pitting also appeared to have been caused by chlorides. A scanning electron microprobe x-ray analysis of the corrosion product in the cracks confirmed the presence of chlorides and also indicated the presence of calcium

  10. Spray Drift Reduction Evaluations of Spray Nozzles Using a Standardized Testing Protocol

    Science.gov (United States)

    2010-07-01

    Drop Size Characteristics in a Spray Using Optical Nonimaging Light-Scattering Instruments,” Annual Book of ASTM Standards, Vol. 14-02, ASTM...Test Method for Determining Liquid Drop Size Characteristics in a Spray Using Optical Non- imaging Light-Scattering Instruments 22. AGDISP Model

  11. Process-based quality for thermal spray via feedback control

    Science.gov (United States)

    Dykhuizen, R. C.; Neiser, R. A.

    2006-09-01

    Quality control of a thermal spray system manufacturing process is difficult due to the many input variables that need to be controlled. Great care must be taken to ensure that the process remains constant to obtain a consistent quality of the parts. Control is greatly complicated by the fact that measurement of particle velocities and temperatures is a noisy stochastic process. This article illustrates the application of quality control concepts to a wire flame spray process. A central feature of the real-time control system is an automatic feedback control scheme that provides fine adjustments to ensure that uncontrolled variations are accommodated. It is shown how the control vectors can be constructed from simple process maps to independently control particle velocity and temperature. This control scheme is shown to perform well in a real production environment. We also demonstrate that slight variations in the feed wire curvature can greatly influence the process. Finally, the geometry of the spray system and sensor must remain constant for the best reproducibility.

  12. Internal Diameter HVAF Spraying for Wear and Corrosion Applications

    Science.gov (United States)

    Lyphout, C.; Björklund, S.

    2015-01-01

    Electrolytic hard chrome (EHC) methods are still widely utilized in the printing, automotive and off-shore industries. Alternative methods to EHC have been widely developed in the past decade by conventional HVOF processes and more recently HVAF systems, which are processing at higher kinetic energy and more particularly at lower temperature, significantly increasing wear and corrosion resistance properties. A dedicated internal diameter HVAF system is here presented, and coatings characteristics are compared to the one obtained by standard HVAF coatings. Specially R&D designed fixtures with inside bore of 200 mm have been manufactured for this purpose, with a possibility to spray samples at increasing depth up to 400 mm while simulating closed bottom bore spraying. WC-based and Cr3C2-based powder feedstock materials have been deposited onto high-strength steel substrates. Respective coating microstructures, thermally induced stresses and corrosion resistance are discussed for further optimization of coating performances. The fact that the ID-HVAF system is utilized both for spraying and gritblasting procedures is also given a particular interest.

  13. Flame spraying of polymers

    International Nuclear Information System (INIS)

    Varacalle, D.J. Jr.; Zeek, D.P.; Couch, K.W.; Benson, D.M.; Kirk, S.M.

    1997-01-01

    Statistical design-of-experiment studies of the thermal spraying of polymer powders are presented. Studies of the subsonic combustion (i.e., Flame) process were conducted in order to determine the quality and economics of polyester and urethane coatings. Thermally sprayed polymer coatings are of interest to several industries for anticorrosion applications, including the chemical, automotive, and aircraft industries. In this study, the coating design has been optimized for a site-specific application using Taguchi-type fractional-factorial experiments. Optimized coating designs are presented for the two powder systems. A substantial range of thermal processing conditions and their effect on the resultant polymer coatings is presented. The coatings were characterized by optical metallography, hardness testing, tensile testing, and compositional analysis. Characterization of the coatings yielded the thickness, bond strength, Knoop microhardness, roughness, deposition efficiency, and porosity. Confirmation testing was accomplished to verify the coating designs

  14. Post-treatment of Plasma-Sprayed Amorphous Ceramic Coatings by Spark Plasma Sintering

    Science.gov (United States)

    Chraska, T.; Pala, Z.; Mušálek, R.; Medřický, J.; Vilémová, M.

    2015-04-01

    Alumina-zirconia ceramic material has been plasma sprayed using a water-stabilized plasma torch to produce free standing coatings. The as-sprayed coatings have very low porosity and are mostly amorphous. The amorphous material crystallizes at temperatures above 900 °C. A spark plasma sintering apparatus has been used to heat the as-sprayed samples to temperatures above 900 °C to induce crystallization, while at the same time, a uniaxial pressure of 80 MPa has been applied to their surface. After such post-treatment, the ceramic samples are crystalline and have very low open porosity. The post-treated material exhibits high hardness and significantly increased flexural strength. The post-treated samples have a microstructure that is best described as nanocomposite with the very small crystallites embedded in an amorphous matrix.

  15. Analysis of heat recovery from a spray dryer by recirculation of exhaust air

    International Nuclear Information System (INIS)

    Golman, Boris; Julklang, Wittaya

    2014-01-01

    Highlights: • We study a spray dryer with heat recovery by partial recirculation of exhaust air. • We examine effects of process parameters on energy efficiency and energy savings. • Decreasing drying air temperature and flow rate will increase energy efficiency. • Increasing recirculation ratio and slurry feed rate will increase energy efficiency. - Abstract: Model simulations were employed to investigate the influences of process parameters on the energy recovery in spray drying process that partially recycle the exhaust drying gas. The energy efficiency and energy saving were studied for various values of recirculation ratios with respect to the temperature and flow rate of the drying air, slurry feed rate and concentration of slurry in spray drying of advanced ceramic materials. As a result, significant gains in energy efficiency and energy saving were obtained for a spray drying system with high recirculation ratio of exhaust air. The high slurry feed rate and the low slurry concentration, inlet drying air temperature and drying air flow rate enhanced the energy efficiency of spray drying system. However, the high energy saving was obtained in spray dryers operating at low slurry feed rate and high slurry concentration

  16. Effect of epoxy resin sealing on corrosion resistance of arc spraying aluminium coating using cathode electrophoresis method

    Science.gov (United States)

    Pang, Xuming; Wang, Runqiu; Wei, Qian; Zhou, Jianxin

    2018-01-01

    Arc-sprayed Al coating was sealed with epoxy resin using the cathode electrophoresis method. The anti-corrosion performance of the coatings sealed with epoxy resin was studied by means of a 3.5 wt.% NaCl solution test at 40 °C. For comparison, the anti-corrosion performance of Al coating sealed with boiling water was also performed under the same conditions. The results show that epoxy resin with a thickness of about 20 microns can entirely cover open pores and decreases the surface roughness of the as-sprayed Al coating, and the epoxy resin even permeates into the gaps among lamellar splats from open pores. After corrosion, the thickness of the epoxy resin layer is unchanged and can still cover the as-sprayed Al coating entirely. However, the thickness of Al coating sealed with boiling water decreases from 100 to 40 microns, which indicates that the arc-sprayed Al coating has much better corrosion resistance than the Al coating sealed with boiling water. Meanwhile, the content of substituted benzene ring in the epoxy resin increases, but aromatic ring decreases according to the fourier transform infrared spectra, which will cause the rigidity of the epoxy resin to increase, but the toughness slightly decreases after corrosion.

  17. Study of ethanol and gasoline fuel sprays using mie-scatter and schlieren imaging

    Science.gov (United States)

    Bouchard, Lauren; Bittle, Joshua; Puzinauskas, Paul

    2016-11-01

    Many cars today are capable of running on both gasoline and ethanol, however it is not clear how well optimized the engines are for the multiple fuels. This experiment looks specifically at the fuel spray in a direct injection system. The length and angle of direct injection sprays were characterized and a comparison between ethanol and gasoline sprays was made. Fuels were tested using a modified diesel injector in a test chamber at variable ambient pressures and temperatures in order to simulate both high and low load combustion chamber conditions. Rainbow schlieren and mie-scatter imaging were both used to investigate the liquid and vapor portions of the sprays. The sprays behaved as expected with temperature and pressure changes. There was no noticeable fuel effect on the liquid portion of the spray (mie-scatter), though the gasoline vapor spray angles were wider than ethanol spray angles (possible a result of the distillation curves of the two fuels). Funding from NSF REU site Grant EEC 1358991 is greatly appreciated.

  18. Effect of laser induced plasma ignition timing and location on Diesel spray combustion

    International Nuclear Information System (INIS)

    Pastor, José V.; García-Oliver, José M.; García, Antonio; Pinotti, Mattia

    2017-01-01

    Highlights: • Laser plasma ignition is applied to a direct injection Diesel spray, compared with auto-ignition. • Critical local fuel/air ratio for LIP provoked ignition is obtained. • The LIP system is able to stabilize Diesel combustion compared to auto-ignition cases. • Varying LIP position along spray axis directly affects Ignition-delay. • Premixed combustion is reduced both by varying position and delay of the LIP ignition system. - Abstract: An experimental study about the influence of the local conditions at the ignition location on combustion development of a direct injection spray is carried out in an optical engine. A laser induced plasma ignition system has been used to force the spray ignition, allowing comparison of combustion’s evolution and stability with the case of conventional autoignition on the Diesel fuel in terms of ignition delay, rate of heat release, spray penetration and soot location evolution. The local equivalence ratio variation along the spray axis during the injection process was determined with a 1D spray model, previously calibrated and validated. Upper equivalence ratios limits for the ignition event of a direct injected Diesel spray, both in terms of ignition success possibilities and stability of the phenomena, could been determined thanks to application of the laser plasma ignition system. In all laser plasma induced ignition cases, heat release was found to be higher than for the autoignition reference cases, and it was found to be linked to a decrease of ignition delay, with the premixed peak in the rate of heat release curve progressively disappearing as the ignition delay time gets shorter. Ignition delay has been analyzed as a function of the laser position, too. It was found that ignition delay increases for plasma positions closer to the nozzle, indicating that the amount of energy introduced by the laser induced plasma is not the only parameter affecting combustion initiation, but local equivalence ratio

  19. Free chlorine loss during spraying of membraneless acidic electrolyzed water and its antimicrobial effect on airborne bacteria from poultry house

    Directory of Open Access Journals (Sweden)

    Yang Zhao

    2014-06-01

    Full Text Available introduction. Spray-application of membraneless acidic electrolyzed water (MLAEW is a novel technique for disinfection in livestock houses. This study investigated the loss of free chlorine (FC – the major germicidal component in MLAEW over distance during spraying, as affected by air temperature and initial FC concentration. The anti-microbial effect of MLAEW on airborne bacteria from an aviary laying-hen house was examined. materials and methods. MLAEW was prepared at two FC concentrations: app. 15 and 60 mg L -1 , and sprayed at three air temperatures (18, 25, 32 °C. The original MLAEW solution and MLAEW aerosols collected at 0, 25, and 50 cm from the spray nozzle were analyzed for FC concentrations. Bacteria were immersed into these MLAEW samples and numerated for viable count after 0.5, 2 and 5-min treatments. results. MLAEW aerosols collected at 0 cm lost 11.7–13.2% FC, compared with the original MLAEW solution. This initial loss was affected neither by the initial FC concentration (P = 0.13 nor by air temperature (P = 0.57. The rate of FC loss during travelling was 0.79–0.87 % per cm of aerosol travel distance (% cm -1 at 18 °C, 1.08–1.15 % cm -1 at 25 °C, and 1.35–1.49% cm -1 at 32 °C. This travelling loss was affected by air temperature (P = 0.02, but not by initial FC concentration (P = 0.38. Bacteria were completely inactivated at 0.5 min when treated with MLAEW samples with FC > 16.8 mg L -1 , in 2 min when FC > 13.8 mg L -1 , and in 5 min when FC > 7.2 mg L -1 . conclusion. Airborne bacteria from aviary hen house can be effectively inactivated by MLAEW with adequate FC concentration and contact time. During spraying, the anti-microbial efficacy of MLAEW aerosols decreased over distance due to FC loss which exacerbated at higher air temperatures.

  20. The effect of coarse-droplet spraying with double flat fan air induction nozzle and spray volume adjustment model on the efficiency of fungicides and residues in processing tomato

    Directory of Open Access Journals (Sweden)

    Henryk Ratajkiewicz

    2018-04-01

    Full Text Available The study was conducted for the purpose of improving the application of fungicides against potato late blight (Phytophthora infestans (Mont. de Bary (PLB in processing tomato. The usability of coarse spray quality with double flat fan air induction IDKT12003 nozzle and the impact of fixed and variable spray volume and adjuvants during alternate application of azoxystrobin and chlorothalonil were analysed on the basis of plant infestation and fungicide residues. The variable spray volume was calculated based on the number of leaves on a plant. The study was conducted during three vegetation seasons. Spraying of plants with significantly flattened canopies during the peak of the fructification season using an IDKT12003 nozzle was as effective as in the case of fine spraying performed with an XR11003 nozzle and facilitated the increase of fungicides residue. In the case of plants with high-spreading canopy at the beginning of fructification, XR11003 nozzle favoured the reduction of PLB infestation. Both spray volume adjustment systems enabled the same level of protection of tomato against PLB, which could result from alternate application of systemic and contact fungicides. Polyalkyleneoxide modified heptamethyltrisiloxane adjuvant, which causes siginificant increase in wetting and droplet spreading, facilitated the reduction of tomato PLB infestation during the application of fungicides using an IDKT12003 nozzle.

  1. A LIF-PIV investigation of turbulence induced by sprays

    Science.gov (United States)

    van der Voort, Dennis; Dam, Nico; van de Water, Willem; Clercx, Herman

    2017-11-01

    During the breakup of a high-speed liquid jet, it drags along and mixes the air surrounding it, creating turbulence. This turbulence can, in turn, influence the dispersion of the droplets in the resulting spray. Very little is known about the small-scale characteristics of the ambient turbulent flow. This work investigated spray-induced turbulence using (gas-phase) laser-induced fluorescent tracer particle image velocimetry (LIF-PIV), which suppresses the strong light scattering of jet and droplets on the images. The results for both a heptane (h) and water (w) spray (135 m/s and 125 m/s respectively) show that the heptane spray generates stronger turbulence due to the difference in breakup between the two fluids. Using a large-eddy estimation, carefully compensating for the finite size of the PIV windows, the dissipation rate ɛ and the small-scale turbulence characteristics are estimated as ɛh = 190 +/-25 m2s-3, ɛw = 120 +/-30 m2s-3, Reλ,h = 380 +/-40, Reλ,w = 290 +/-40, ηh = 65 +/-3 μm, and ηw = 75 +/-5 μm. We will discuss the influence of the turbulent fluctuations in the surrounding air on the dispersion of droplets. This work is part of the research programme of the Foundation for Fundamental Research on Matter (FOM), which is part of the Dutch Organisation for Scientific Research (NWO).

  2. Development of high-density bentonite barriers by means of spraying methods. Part 2. Investigation of field conditions

    International Nuclear Information System (INIS)

    Tanaka, Toshiyuki; Kobayashi, Ichizo; Nakajima, Makoto; Toida, Masaru

    2006-01-01

    The authors have developed a method of constructing high-density bentonite by means of wet spraying to act as a backfill material in narrow places in radioactive waste disposal facilities. On the basis of the results of laboratory tests, they conducted field spraying tests to investigate the field conditions. The results of these tests are summarized as follows: 1) The bentonite could be sprayed smoothly by using a rotary spraying machine and a screw conveyor. 2) Provided that the air flow was at least 18.5 m 3 /min and the nozzle diameter did not exceed 25 mm, an average dry density of bentonite of 1.6 Mg/m 3 or higher could be achieved. 3) The dry density was constant within the spraying distance range 500 mm ∼ 2000 mm. 4) With a nozzle diameter of 19 mm, a spraying distance of 1000 mm, and a water content of 19.5%, an average dry density of the sprayed bentonite of 1.6 Mg/m 3 or higher and a rebound ratio not exceeding 30% was achieved. 5) The dry density of the sprayed bentonite decreased as the volume of bentonite supplied was increased, and it was shows to be closely related to the rotational speed of the spraying machine and the volume of bentonite sprayed from each hole. (author)

  3. Spray layer-by-layer films based on phospholipid vesicles aiming sensing application via e-tongue system

    International Nuclear Information System (INIS)

    Aoki, P.H.B.; Volpati, D.; Cabrera, F.C.; Trombini, V.L.; Riul, A.; Constantino, C.J.L.

    2012-01-01

    The Layer-by-Layer (LbL) technique via spraying (spray-LbL) has been applied as new and alternative methodology to fabricate ultrathin films due to its versatility in relation to the conventional dipping-LbL method, mainly in terms of faster layer deposition and larger coated area. In this work, the possibility of immobilizing vesicles of dipalmitoyl phosphatidyl glycerol (DPPG) phospholipid onto alternating layers of the polyelectrolyte poly(allylamine hydrochloride) (PAH) using the spray-LbL method was investigated, being the results compared to the conventional dipping-LbL method. The growth of (PAH/DPPG) n spray-LbL films was systematically monitored by quartz crystal microbalance (QCM) and ultraviolet–visible (UV–vis) absorption spectroscopy, revealing a linear increase of the absorbance vs deposited layers. In relation to a possible electrostatic interaction between the groups PO 4 − (DPPG) and NH 3 + (PAH), it was observed through Fourier transform infrared (FTIR) absorption spectroscopy that the spectrum recorded for the spray-LbL film is basically a simple superposition of the FTIR spectra from PAH and DPPG casting films. The latter indicates a weak interaction between both materials, differently of the trend observed for (PAH/DPPG) n grown via dipping-LbL method. Atomic force microscopy (AFM) images of spray-LbL films showed evidences that the DPPG vesicles present in the aqueous dispersion are not destroyed when submitted to pressure conditions during the spray deposition. However, comparing to dipping-LbL, the DPPG vesicles do not cover completely the PAH layer for the spray-LbL film, which was further confirmed by surface-enhanced Raman scattering (SERS) measurements. Moreover, the AFM analysis showed that the spray-LbL deposition led to thicker PAH/DPPG bilayers in average than via dipping-LbL for the same concentrations of PAH solution and DPPG dispersion, which is consistent with QCM and UV–vis absorption results. PAH/DPPG films deposited by

  4. Photosynthetic and antioxidative alterations in coffee leaves caused by epoxiconazole and pyraclostrobin sprays and Hemileia vastatrix infection.

    Science.gov (United States)

    Honorato Júnior, J; Zambolim, L; Aucique-Pérez, C E; Resende, R S; Rodrigues, F A

    2015-09-01

    Coffee leaf rust (CLR), caused by Hemileia vastatrix, is a major disease affecting coffee production worldwide. In this study, an in-depth analysis of the photosynthetic performance of coffee leaves challenged or not with H. vastatrix and sprayed with either epoxiconazole (EPO) or pyraclostrobin (PYR) was performed by combining chlorophyll a fluorescence images, photosynthetic pigment pools and the activities of chitinase (CHI), β-1,3-glucanase (GLU), peroxidase (POX) and catalase (CAT). The CLR severity was higher in the control plants, but reduced in plants sprayed with both PYR and EPO. Also, the CLR severity was reduced in plants sprayed with PYR compared with plants sprayed with EPO. Plants sprayed with either EPO or PYR showed maximal photosystem II quantum efficiency (Fv/Fm) values ranging from 0.78 to 0.80, which were quite similar to those obtained with inoculated plants (values ranging from 0.74 to 0.77). The decreases in the Fv/Fm ratio values and parallel increases in the F0 values in the inoculated plants, which were not observed in the control plants (sprayed with water) and were confirmed by images of the initial fluorescence (F0) and Fv/Fm parameters in the regions of the leaf tissue containing pustules and in the asymptomatic leaf tissue, indicated that photosynthesis was negatively impacted. When effective photosystem II quantum yield (Y(II)) values approached zero with a high photosynthetic photon flux density, high values of quantum yield of regulated energy dissipation (Y(NPQ)) in association with a high carotenoid concentration were noted in the inoculated plants sprayed either with PYR or EPO. The increased CLR severity in inoculated plants in contrast to inoculated plants sprayed with either PYR or EPO was associated with greater POX activity and a reduced photosynthetic pigment concentration. POX and CAT activities were increased in inoculated plants sprayed with either EPO or PYR when compared with control plants. CHI and GLU activities

  5. Corrosion prevention of the rail by thermal spray coating of Zn-Al alloy; Zn-Al gokin yosha hifuku ni yoru reru no boshoku

    Energy Technology Data Exchange (ETDEWEB)

    Mizoguchi, S. [Nippon Steel Corp., Kitakyushu (Japan)] Urashima, C. [Kyushu Techno Research Corp., Fukuoka (Japan); Itai, K. [Nippon Steel Corp., Kitakyushu, Fukuoka (Japan). Technical Research Inst. of Yawata Works; Ichiriki, T.; Nishiki, M. [Kyushu Rail way comdany, Fukuoka (Japan)

    1997-03-30

    Replacement of the rail in under-sea tunnel such as the Kammon Tunnel is carried out very five years because of the severe corrosion caused by the humid state due to the leakage of sea water or the mist of sea water swept up by the passing trains. In this study, salt water spraying or sea water spraying test is carried out using Zn-Al alloy with the corrosion resistance and thermal spray efficiency even higher than those of Zn or Al. A rail coated by thermal spray of Zn-15mass%Al alloy has been laid by trial in the practical rail road of Kammon Tunnel for 5 years and 3 months, the deterioration degree of the coating, pitting depth, actual fatigue strength, etc. are evaluated. Further, these factors of a rail re-coated by Zincrich Primer+Tar Epoxy and a bare rail laid at the same time are evaluated for comparison. It is presumed by the results of the examination about the service life of a rail coated by the thermal spray of Zn-Al alloy based on the pitting depth in the rail base that the service life of such coated rail is more than twice as that of the bare rails used currently. 5 refs., 14 figs., 3 tabs.

  6. Ketorolac Tromethamine Spray Prevents Postendotracheal-Intubation-Induced Sore Throat after General Anesthesia

    Directory of Open Access Journals (Sweden)

    H. L. Yang

    2016-01-01

    Full Text Available Background. Postoperative sore throat is one of the major complaints of general anesthesia in the postanesthesia care unit. This prospective study investigated the preventive effect of ketorolac tromethamine spray in postendotracheal-intubation-induced sore throat after general anesthesia. Methods. Surgical patients undergoing general anesthesia with endotracheal intubation were recruited from a medical center. Patients were randomly assigned to group K (treated with 5% ketorolac tromethamine spray or group D (treated with distilled water spray. Before intubation, each endotracheal tube was sprayed with the appropriate solution by physicians over the 20 cm length of the cuff. Each group comprised 95 patients fitting the inclusion and exclusion criteria for whom complete data sets were collected. The intensity of the sore throat was measured at 1, 3, 6, and 24 h after surgery, and data were compared. Results. The two groups had similar characteristics. Postoperative sore throat was significantly less frequent in group K than in group D (p<0.001 and the pain intensity was significantly lower in group K than in group D at each time point (all p<0.001. Conclusions. This study demonstrated that preanesthesia 5% ketorolac tromethamine spray could effectively decrease postendotracheal-intubation-induced sore throat in patients undergoing general anesthesia.

  7. LSPRAY-IV: A Lagrangian Spray Module

    Science.gov (United States)

    Raju, M. S.

    2012-01-01

    LSPRAY-IV is a Lagrangian spray solver developed for application with parallel computing and unstructured grids. It is designed to be massively parallel and could easily be coupled with any existing gas-phase flow and/or Monte Carlo Probability Density Function (PDF) solvers. The solver accommodates the use of an unstructured mesh with mixed elements of either triangular, quadrilateral, and/or tetrahedral type for the gas flow grid representation. It is mainly designed to predict the flow, thermal and transport properties of a rapidly vaporizing spray. Some important research areas covered as a part of the code development are: (1) the extension of combined CFD/scalar-Monte- Carlo-PDF method to spray modeling, (2) the multi-component liquid spray modeling, and (3) the assessment of various atomization models used in spray calculations. The current version contains the extension to the modeling of superheated sprays. The manual provides the user with an understanding of various models involved in the spray formulation, its code structure and solution algorithm, and various other issues related to parallelization and its coupling with other solvers.

  8. Droplets and sprays

    CERN Document Server

    Sazhin, Sergei

    2014-01-01

    Providing a clear and systematic description of droplets and spray dynamic models, this book maximises reader insight into the underlying physics of the processes involved, outlines the development of new physical and mathematical models, and broadens understanding of interactions between the complex physical processes which take place in sprays. Complementing approaches based on the direct application of computational fluid dynamics (CFD), Droplets and Sprays treats both theoretical and practical aspects of internal combustion engine process such as the direct injection of liquid fuel, subcritical heating and evaporation. Includes case studies that illustrate the approaches relevance to automotive applications,  it is also anticipated that the described models can find use in other areas such as in medicine and environmental science.

  9. Use of wet concrete spraying in building technology of reinforced-concrete fiber slabs according to «Monofant» system

    OpenAIRE

    BUGAYEVSKIY S.

    2016-01-01

    Technology of cementation of reinforced-concrete slabs with non-extractable-liners for the «Monofant» system, using wet concrete spraying is implemented. A compression test for obtained columns made of fiber concrete is carried out.

  10. SprayQc: a real-time LC-MS/MS quality monitoring system to maximize uptime using off the shelf components.

    Science.gov (United States)

    Scheltema, Richard A; Mann, Matthias

    2012-06-01

    With the advent of high-throughput mass spectrometry (MS)-based proteomics, the magnitude and complexity of the performed experiments has increased dramatically. Likewise, investments in chromatographic and MS instrumentation are a large proportion of the budget of proteomics laboratories. Guarding measurement quality and maximizing uptime of the LC-MS/MS systems therefore requires constant care despite automated workflows. We describe a real-time surveillance system, called SprayQc, that continuously monitors the status of the peripheral equipment to ensure that operational parameters are within an acceptable range. SprayQc is composed of multiple plug-in software components that use computer vision to analyze electrospray conditions, monitor the chromatographic device for stable backpressure, interact with a column oven to control pressure by temperature, and ensure that the mass spectrometer is still acquiring data. Action is taken when a failure condition has been detected, such as stopping the column oven and the LC flow, as well as automatically notifying the appropriate operator. Additionally, all defined metrics can be recorded synchronized on retention time with the MS acquisition file, allowing for later inspection and providing valuable information for optimization. SprayQc has been extensively tested in our laboratory, supports third-party plug-in development, and is freely available for download from http://sourceforge.org/projects/sprayqc .

  11. Development of design solutions for spray ponds

    International Nuclear Information System (INIS)

    Omel'chenko, M.P.; Minasyan, R.G.; Kranzfeld, Ja.L.; Zaruba, V.C.; Baranov, Yu.A.; Sorokin, M.Ja.; Jegorov, A.V.; Khashchina, M.V.

    1990-01-01

    The principles of process design of spray cooling systems for responsible consumers of up-to-date reactor building are discussed in this paper. Development in design principles with respect to problem solving of operational reliability increase and ecological efficiency of nuclear power equipment is shown. The structural solutions of basin antifiltration shield are spoken in detail. The results of experimental physical-mathematical and climatic studies as well as comparative tests of bituminous asphalt emulsive mastic and mushy asphalt are reported. The directions of up-to-date researches on improvement of concept of spray coolers are indicated

  12. Vitrification of radioactive high-level waste by spray calcination and in-can melting

    Science.gov (United States)

    Hanson, M. S.; Bjorklund, W. J.

    1980-07-01

    After several nonradioactive test runs, radioactive waste from the processing of 1.5 t of spent, light water reactor fuel was successfully concentrated, dried and converted to a vitreous product. A total of 97 L of waste glass (in two stainless steel canisters) was produced. The spray calcination process coupled to the in-can melting process, as developed at Pacific Northwest Labortory, was used to vitrify the waste. An effluent system consisting of a variety of condensation of scrubbing steps more than adequately decontaminated the process off gas before it was released to the atmosphere.

  13. Microencapsulation of Garcinia fruit extract by spray drying and its effect on bread quality.

    Science.gov (United States)

    Ezhilarasi, Perumal Natarajan; Indrani, Dasappa; Jena, Bhabani Sankar; Anandharamakrishnan, Chinnaswamy

    2014-04-01

    (-)-Hydroxycitric acid (HCA) is the major acid present in the fruit rinds of certain species of Garcinia. HCA has been reported to have several health benefits. As HCA is highly hygroscopic in nature and thermally sensitive, it is difficult to incorporate in foodstuffs. Hence, Garcinia cowa fruit extract was microencapsulated using three different wall materials such as whey protein isolate (WPI), maltodextrin (MD) and a combination of whey protein isolate and maltodextrin (WPI + MD) by spray drying. Further, these microencapsulated powders were evaluated for their impact on bread quality and HCA retention. Maltodextrin (MD) encapsulates had higher free (86%) and net HCA (90%) recovery. Microencapsulates incorporated breads had enhanced qualitative characteristics and higher HCA content than water extract incorporated bread due to efficient encapsulation during bread baking. Comparatively, bread with MD encapsulates showed softer crumb texture, desirable sensory attributes with considerable volume and higher HCA content. The higher HCA contents of encapsulate incorporated breads were sufficient to claim for functionality of HCA in bread. Comparatively, MD had efficiently encapsulated Garcinia fruit extract during spray drying and bread baking. Spray drying proved to be an excellent encapsulation technique for incorporation into the food system. © 2013 Society of Chemical Industry.

  14. Machinability of Al 6061 Deposited with Cold Spray Additive Manufacturing

    Science.gov (United States)

    Aldwell, Barry; Kelly, Elaine; Wall, Ronan; Amaldi, Andrea; O'Donnell, Garret E.; Lupoi, Rocco

    2017-10-01

    Additive manufacturing techniques such as cold spray are translating from research laboratories into more mainstream high-end production systems. Similar to many additive processes, finishing still depends on removal processes. This research presents the results from investigations into aspects of the machinability of aluminum 6061 tubes manufactured with cold spray. Through the analysis of cutting forces and observations on chip formation and surface morphology, the effect of cutting speed, feed rate, and heat treatment was quantified, for both cold-sprayed and bulk aluminum 6061. High-speed video of chip formation shows changes in chip form for varying material and heat treatment, which is supported by the force data and quantitative imaging of the machined surface. The results shown in this paper demonstrate that parameters involved in cold spray directly impact on machinability and therefore have implications for machining parameters and strategy.

  15. Vapor generator steam drum spray heat

    International Nuclear Information System (INIS)

    Fasnacht, F.A. Jr.

    1978-01-01

    A typical embodiment of the invention provides a combination feedwater and cooldown water spray head that is centrally disposed in the lower portion of a nuclear power plant steam drum. This structure not only discharges the feedwater in the hottest part of the steam drum, but also increases the time required for the feedwater to reach the steam drum shell, thereby further increasing the feedwater temperature before it contacts the shell surface, thus reducing thermal shock to the steam drum structure

  16. COUPLED ATOMIZATION AND SPRAY MODELLING IN THE SPRAY FORMING PROCESS USING OPENFOAM

    DEFF Research Database (Denmark)

    Gjesing, Rasmus; Hattel, Jesper Henri; Fritsching, Udo

    2009-01-01

    The paper presents a numerical model capable of simulating the atomization, break-up and in-flight spray phenomena in the spray forming process. The model is developed and implemented in the freeware code openFOAM. The focus is on studying the coupling effect of the melt break-up phenomena...

  17. Study of factors governing oil-water separation process using TiO₂ films prepared by spray deposition of nanoparticle dispersions.

    Science.gov (United States)

    Gondal, Mohammed A; Sadullah, Muhammad S; Dastageer, Mohamed A; McKinley, Gareth H; Panchanathan, Divya; Varanasi, Kripa K

    2014-08-27

    Surfaces which possess extraordinary water attraction or repellency depend on surface energy, surface chemistry, and nano- and microscale surface roughness. Synergistic superhydrophilic-underwater superoleophobic surfaces were fabricated by spray deposition of nanostructured TiO2 on stainless steel mesh substrates. The coated meshes were then used to study gravity driven oil-water separation, where only the water from the oil-water mixture is allowed to permeate through the mesh. Oil-water separation efficiencies of up to 99% could be achieved through the coated mesh of pore sizes 50 and 100 μm, compared to no separation at all, that was observed in the case of uncoated meshes of the same material and pore sizes. An adsorbed water on the TiO2 coated surface, formation of a water-film between the wires that form the mesh and the underwater superoleophobicity of the structured surface are the key factors that contribute to the enhanced efficiency observed in oil-water separation. The nature of the oil-water separation process using this coated mesh (in which the mesh allows water to pass through the porous structure but resists wetting by the oil phase) minimizes the fouling of mesh so that the need for frequent replacement of the separating medium is reduced. The fabrication approach presented here can be applied for coating large surface areas and to develop a large-scale oil-water separation facility for oil-field applications and petroleum industries.

  18. Microstructural characteristics of spray formed and heat treated Al–(Y, La)–Ni–Co system

    International Nuclear Information System (INIS)

    Srivastava, V.C.; Surreddi, K.B.; Scudino, S.; Schowalter, M.; Uhlenwinkel, V.; Schulz, A.; Eckert, J.; Rosenauer, A.; Zoch, H.-W.

    2013-01-01

    Highlights: •Al–(La, Y)–Ni–Co based alloys are spray formed to thickness 10–12 mm. •XRD and DSC confirms the presence of large fraction of amorphous phase. •Optical, SEM and TEM studies corroborated the observations made. Mechanism of microstructural evolution brought out. •Heat treatment of spray deposited materials showed increased hardness which decreased at high temperature annealing. •La containing system showed better thermal stability than that without La. -- Abstract: Recent studies on the synthesis of bulk Al–RE (Rare Earth)-TM (Transition Metal) based materials, from melt spun ribbons and gas atomized powders, have shown that partially amorphous or nano-crystalline structures lead to a high specific strength. In the present study, therefore, spray atomization and deposition process has been used to produce plates of Al 85 Y 8 Ni 5 Co 2 (deposit D1) and Al 83 Y 5 La 5 Ni 5 Co 2 (deposit D2) systems so as to synthesize bulk deposit of nano-crystalline and/or partially amorphous materials in a single step. The rapid solidification and high undercooling of droplets during atomization and the chilling effect on undercooled liquid upon deposition give rise to the above microstructural features. The microstructural features of deposits as well as overspray powders were studied using optical, scanning and transmission electron microscope. The alloys invariably showed a large fraction of nano-crystalline structure and amorphous features, characterized by featureless regions at optical resolution, along with distribution of primary equilibrium phases. The differential scanning calorimetric (DSC) analysis of the deposits showed similar crystallization features as observed during crystallization of fully amorphous melt spun ribbons of respective compositions. The transmission electron microscopy of deposit D1 showed the presence of 50–100 nm size fcc-Al precipitates in an amorphous matrix decorated with 5–20 nm fcc-Al crystallites. The

  19. Research on electrostatic electrification during jet kerosene spraying

    International Nuclear Information System (INIS)

    Liu, Quanzhen; Li, Yipeng; Zhang, Wentian; Sun, Keping

    2013-01-01

    Multiple electrostatic electrifications during aircraft fuelling process may cause a fire disaster or explosion, so study on the protection measure for electrostatic electrification is very important for the security of aircraft fuelling. This paper investigated the electrostatic voltage and charge of the fuel nozzle and metal parts during the fuel spraying by self-designed jet kerosene spraying electrostatic electrification test system. The experimental results indicate that the voltage on the fuel nozzle and metal parts is very dangerous for electrostatic safety if they are not reliably grounded.

  20. Spray freeze drying to produce a stable Delta(9)-tetrahydrocannabinol containing inulin-based solid dispersion powder suitable for inhalation

    NARCIS (Netherlands)

    van Drooge, Dirk-Jan; Hinrichs, Wouter L J; Dickhoff, Bastiaan H J; Elli, Marco N A; Visser, Marinella R; Zijlstra, Gerrit S; Frijlink, Henderik W

    2005-01-01

    The purpose of this study is to investigate whether spray freeze drying produces an inhalable solid dispersion powder in which Delta(9)-tetrahydrocannabinol (THC) is stabilised. Solutions of THC and inulin in a mixture of tertiary butanol (TBA) and water were spray freeze dried. Drug loads varied

  1. Comparative Study of the Corrosion Resistance of Air-Plasma-Sprayed Ca2SiO4 and Al2O3 Coatings in Salt Water

    Directory of Open Access Journals (Sweden)

    Yuan Xiao

    2018-03-01

    Full Text Available In this study, Ca2SiO4 coating was sprayed on stainless steel substrate and the corrosion resistance of the as-sprayed coating was studied in salt water. At the same time, Al2O3 coatings were produced by air-plasma-sprayed technology as comparison. Immersion test was carried out to evaluate the protection performance of coatings. Potentiodynamic polarization curves and electrochemical impedance spectroscopy (EIS plots were also analyzed. The results indicated that Ca2SiO4 coatings showed a better protection performance than Al2O3 coatings. During the immersion, various calcium carbonate crystals appeared on the surface of Ca2SiO4 coatings. Ca(OH2 was released from Ca2SiO4 coatings into NaCl aqueous solution, increasing the alkalinity, which is in favor of the formation of passivation film, and thus improves the corrosion resistance. Ca2SiO4 coatings became denser after immersion due to the fact that the pores and micro cracks were filled with hydration products i.e., hydrated calcium silicate (C–S–H gel. On the contrary, the microstructure of Al2O3 coatings became loose and obvious rusty spots were observed on the surface after the immersion test.

  2. Positioning system of a torch used in thermal spray coatings applications

    Directory of Open Access Journals (Sweden)

    Edgar Absalón Torres-Barahona

    2016-07-01

    Full Text Available This paper presents the design, construction and performance evaluation of a positioning system used for the deposition of coatings with molten particles, by using a torch CastoDyn Ds 8000 thermal spray with oxyacetylene combustion. The design has been done with parameters obtained in the laboratory of materials of the Universidad Pedagógica y Tecnológica de Colombia, and the information determined from the evaluation of the device, allows to control the main process variables as the projection distance, flow powder, torch speed and rotation speed of the sample holder; this has been seen in coatings made in application tests zirconia / nickel on a carbon steel substrate and analyzed with Scanning Electron Microscopy - SEM.

  3. Use of Trichoderma fungi in spray solutions to reduce Moniliophthora roreri infection of Theobroma cacao fruits in Northeastern Costa Rica.

    Science.gov (United States)

    Seng, John; Herrera, Geovanny; Vaughan, Christopher S; McCoy, Michael B

    2014-09-01

    Cacao (Theobroma cacao) is an important cash crop in tropical climates such as that of Latin America. Over the past several decades, the infection of cultivated cacao by Moniliophthllora roreri, known commonly as "monilia", has significantly hindered cacao production in Latin America. Studies have proposed the use of Trichoderma sp. fungi in biocontrol treatments to prevent and reduce monilia infection, yet tests of Trichoderma-containing spray treatments on cacao agroforests have produced mixed results. Researchers and agricultural workers have suggested that addition of soil, fly ash, or other carbon sources to a Trichoderma spray may improve its efficacy in fighting monilia. To test these suggestions, we designed a series of spray mixtures including Thichoderma cultures, soil, and all necessary controls. We applied the spray mixtures to 80 cacao trees (20 trees for each of four resistant-selected clones to monilia) at the FINMAC organic cacao plantation in Pueblo Nuevo de Guacimo, Limón Province, in northeastern Costa Rica in March-April 2013. Five treatments were applied (control, water, water plus sterilized soil, water plus Trichoderma, and water plus sterilized soil plus Trichoderma). Each treatment was applied to four trees of each clone. We monitored the incidence of monilia infection under each spray treatment over the course of 35d. We found that spraying entire cacao trees two times with a mixture containing Trichoderma and sterilized soil significantly reduced the incidence of monilia infection by 11% (p ≤ 0.05) in only 35d, as compared to the control. This reduction in loss of cacao pods translates into an increase of plantation mean productivity of 1,500 kg dried beans/ha by 198 kg/ha up to 1,698 kg/ha or by a total increase over the whole 110 ha plantation by 21,780 kg. We propose that using such an antifungal spray over the whole course of a crop cycle (120 days) would decrease infection incidence even more. Application of this fungal control

  4. Thermal Spray Applications in Electronics and Sensors: Past, Present, and Future

    Science.gov (United States)

    Sampath, Sanjay

    2010-09-01

    Thermal spray has enjoyed unprecedented growth and has emerged as an innovative and multifaceted deposition technology. Thermal spray coatings are crucial to the enhanced utilization of various engineering systems. Industries, in recognition of thermal spray's versatility and economics, have introduced it into manufacturing environments. The majority of modern thermal spray applications are "passive" protective coatings, and they rarely perform an electronic function. The ability to consolidate dissimilar material multilayers without substrate thermal loading has long been considered a virtue for thick-film electronics. However, the complexity of understanding/controlling materials functions especially those resulting from rapid solidification and layered assemblage has stymied expansion into electronics. That situation is changing: enhancements in process/material science are allowing reconsideration for novel electronic/sensor devices. This review critically examines past efforts in terms of materials functionality from a device perspective, along with ongoing/future concepts addressing the aforementioned deficiencies. The analysis points to intriguing future possibilities for thermal spray technology in the world of thick-film sensors.

  5. Diesel spray characterization; Dieselmoottorin polttoainesuihkujen ominaisuudet

    Energy Technology Data Exchange (ETDEWEB)

    Pitkaenen, J.; Turunen, R.; Paloposki, T.; Rantanen, P.; Virolainen, T. [Helsinki Univ. of Technology, Otaniemi (Finland). Internal Combustion Engine Lab.

    1997-10-01

    Fuel injection of diesel engines will be studied using large-scale models of fuel injectors. The advantage of large-scale models is that the measurement of large-scale diesel sprays will be easier than the measurement of actual sprays. The objective is to study the break-up mechanism of diesel sprays and to measure drop size distributions in the inner part of the spray. The results will be used in the development of diesel engines and diesel fuels. (orig.)

  6. Multiple-Nozzle Spray Head Applies Foam Insulation

    Science.gov (United States)

    Walls, Joe T.

    1993-01-01

    Spray head equipped with four-nozzle turret mixes two reactive components of polyurethane and polyisocyanurate foam insulating material and sprays reacting mixture onto surface to be insulated. If nozzle in use becomes clogged, fresh one automatically rotated into position, with minimal interruption of spraying process. Incorporates features recirculating and controlling pressures of reactive components to maintain quality of foam by ensuring proper blend at outset. Also used to spray protective coats on or in ships, aircraft, and pipelines. Sprays such reactive adhesives as epoxy/polyurethane mixtures. Components of spray contain solid-particle fillers for strength, fire retardance, toughness, resistance to abrasion, or radar absorption.

  7. Plasma spraying of zirconium carbide – hafnium carbide – tungsten cermets

    Czech Academy of Sciences Publication Activity Database

    Brožek, Vlastimil; Ctibor, Pavel; Cheong, D.-I.; Yang, S.-H.

    2009-01-01

    Roč. 9, č. 1 (2009), s. 49-64 ISSN 1335-8987 Institutional research plan: CEZ:AV0Z20430508 Keywords : Plasma spraying * cermet coatings * microhardness * zirconium carbide * hafnium carbide * tungsten * water stabilized plasma Subject RIV: JH - Ceramics, Fire-Resistant Materials and Glass

  8. Crop adapted spray application (CASA) - precise and safe plant protection in fruit growing

    NARCIS (Netherlands)

    Doruchowski, G.; Balsari, P.; Marucco, P.; Zande, van de J.C.; Wenneker, M.

    2012-01-01

    The Crop Adapted Spray Application (CASA) system for orchards integrates disease detection based on reflectance imaging, crop identification with ultrasonic sensors, wind measurement and DGPS navigation. Through the automatic adjustment of spray application parameters according to the crop

  9. Modeling ethanol spray jet flame in hot-diluted coflow with transported PDF

    OpenAIRE

    Ma, L.; Naud, B.; Roekaerts, D.J.E.M.

    2014-01-01

    MILD Combustion, also known as flameless combustion, is attracting wide scientific interest due to its potential of high efficiency and low NOx emission. This paper focuses on the numerical modeling of one of the ethanol spray flame cases from the Delft Spray-in-Hot-Coflow (DSHC) burner, which has been used to study MILD oxidation of liquid fuels. The study has been carried out following the approach of dilute spray simulation. To properly account the turbulent two-phase flow system, a joint ...

  10. Gas entrainment by one single French PWR spray, SARNET-2 spray benchmark

    Energy Technology Data Exchange (ETDEWEB)

    Malet, J., E-mail: jeanne.malet@irsn.fr [Institut de Radioprotection et de Sûreté Nucléaire, Saclay (France); Mimouni, S., E-mail: stephane.mimouni@edf.fr [Electricité de France, EDF MF2E, Chatou (France); Manzini, G., E-mail: giovanni.manzini@rse-web.it [RSE, Milano (Italy); Xiao, J., E-mail: jianjun.xiao@kit.edu [IKET, KIT, Karlsruhe (Germany); Vyskocil, L., E-mail: vyl@ujv.cz [UJV Rez (Czech Republic); Siccama, N.B., E-mail: siccama@nrg.eu [NRG, Safety and Power (Netherlands); Huhtanen, R., E-mail: risto.huhtanen@vtt.fi [VTT, PO Box 1000, FI-02044 VTT (Finland)

    2015-02-15

    Highlights: • This paper presents a benchmark performed in the frame of the SARNET-2 EU project. • It concerns momentum transfer between a PWR spray and the surrounding gas. • The entrained gas velocities can vary up to 100% from one code to another. • Simplified boundary conditions for sprays are generally used by the code users. • It is shown how these simplified conditions impact the gas entrainment. - Abstract: This paper presents a benchmark performed in the frame of the SARNET-2 EU project, dealing with momentum transfer between a real-scale PWR spray and the surrounding gas. It presents a description of the IRSN tests on the CALIST facility, the participating codes (8 contributions), code-experiment and code-to-code comparisons. It is found that droplet velocities are almost well calculated one meter below the spray nozzle, even if the spread of the spray is not recovered and the values of the entrained gas velocity vary up to 100% from one code to another. Concerning sensitivity analysis, several ‘simplifications’ have been made by the contributors, especially based on the boundary conditions applied at the location where droplets are injected. It is shown here that such simplifications influence droplet and entrained gas characteristics. The next step will be to translate these conclusions in terms of variables representative of interesting parameters for nuclear safety.

  11. Gas entrainment by one single French PWR spray, SARNET-2 spray benchmark

    International Nuclear Information System (INIS)

    Malet, J.; Mimouni, S.; Manzini, G.; Xiao, J.; Vyskocil, L.; Siccama, N.B.; Huhtanen, R.

    2015-01-01

    Highlights: • This paper presents a benchmark performed in the frame of the SARNET-2 EU project. • It concerns momentum transfer between a PWR spray and the surrounding gas. • The entrained gas velocities can vary up to 100% from one code to another. • Simplified boundary conditions for sprays are generally used by the code users. • It is shown how these simplified conditions impact the gas entrainment. - Abstract: This paper presents a benchmark performed in the frame of the SARNET-2 EU project, dealing with momentum transfer between a real-scale PWR spray and the surrounding gas. It presents a description of the IRSN tests on the CALIST facility, the participating codes (8 contributions), code-experiment and code-to-code comparisons. It is found that droplet velocities are almost well calculated one meter below the spray nozzle, even if the spread of the spray is not recovered and the values of the entrained gas velocity vary up to 100% from one code to another. Concerning sensitivity analysis, several ‘simplifications’ have been made by the contributors, especially based on the boundary conditions applied at the location where droplets are injected. It is shown here that such simplifications influence droplet and entrained gas characteristics. The next step will be to translate these conclusions in terms of variables representative of interesting parameters for nuclear safety

  12. 14 CFR 23.239 - Spray characteristics.

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false Spray characteristics. 23.239 Section 23.239 Aeronautics and Space FEDERAL AVIATION ADMINISTRATION, DEPARTMENT OF TRANSPORTATION AIRCRAFT... Handling Characteristics § 23.239 Spray characteristics. Spray may not dangerously obscure the vision of...

  13. Probabilistic safety analysis of the containment spray system of Angra-1 reactor

    International Nuclear Information System (INIS)

    Gibelli, S.M.O.

    1981-02-01

    The calculation of the unavailability of the containment spray system of Angra-1, is done. The referred system has two different modes of operation (injection and recirculation) which were separately studied using the fault tree methodology. Besides equipment and human error failures, the contributions of test, maintenance and common-mode failures have also been considered. The quantitative evaluation was carried out by the computer code SAMPLE, which considers the uncertainties in the failures data and gives a distribution for the top event unavailability. The input data were obtained from the well-known Rasmussen Report. An importance analysis of the basic events of the trees was performed and a study of the viability of some suggestions for system design modification was also conducted. A comparison between the results obtained in this work and the corresponding ones in the Rasmussen Report has shown the fact that the unavailability of both systems are of the same order of magnitude. (Author) [pt

  14. Reliability analysis of the containment spray system of Angra-1 : the injection phase

    International Nuclear Information System (INIS)

    Gibelli, S.M.O.; Oliveira, L.F.S. de.

    1981-12-01

    The system studied is projected to perform two basic functions : to reduce the pressure and temperature in the containment after a LOCA (loss of coolant accident), to break the main steam line or the main feed line in the containment after a LOCA (loss of coolant accident), to break the main steam line or the main feed line in the containment and to remove the fission products, mainly the iodine of the containment atmosphere. The spray system was analyzed concerning the probability of non-acomplishment of both functions at the same time; therefore the failure of the components of the chemical aditions subsystem are included in the failure tree shown here. (E.G.) [pt

  15. Study of Cooling Characteristic of The Containment APWR Model Using Laminar Subcooled Water Film

    International Nuclear Information System (INIS)

    Diah Hidayanti; Aryadi Suwono; Nathanael P Tandian; Ari Darmawan Pasek; Efrizon Umar

    2009-01-01

    One of mechanism utilized by the next-generation pressurized water reactor for cooling its containment passively is gravitationally falling water spray cooling. This paper focuses on the characteristic study using Fluent 5/6 program for the case of the containment outer wall cooling by laminar sub-cooled water film. The cooling system characteristics which will be discussed consist of water film thickness and temperature on all parts of the containment wall as well as the effect of water spray volume flow rate on the water film thickness and convection heat transfer capability from the containment wall to the film bulk. In addition, some kinds of non dimensional numbers involved in the film heat transfer correlation will be presented in this paper. (author)

  16. Endospore production allows using spray-drying as a possible formulation system of the biocontrol agent Bacillus subtilis CPA-8.

    Science.gov (United States)

    Yánez-Mendizabal, V; Viñas, I; Usall, J; Cañamás, T; Teixidó, N

    2012-04-01

    The role of endospore production by Bacillus subtilis CPA-8 on survival during spray-drying was investigated by comparison with a non-spore-forming biocontrol agent Pantoea agglomerans CPA-2. Endospore formation promoted heat resistance in CPA-8 depending on growth time (72 h cultures were more resistant than 24 h ones). The survival of CPA-8 and CPA-2 after spray-drying was determined after being grown in optimised media for 24 and 72 h. Spray-dried 72 h CPA-8 had the best survival (32%), while CPA-2 viability was less than 2%. CPA-8 survival directly related with its ability to produce endospores. Spray-dried CPA-8 reduced Monilinia fructicola conidia germination similarly to fresh cells, demonstrating that spray-drying did not adversely affect biocontrol efficacy. Endospore production thus improves CPA-8 resistance to spray-drying. These results can provide a reliable basis for optimising of the spray-drying formulation process for CPA-8 and other microorganisms.

  17. A comparison of biological effect and spray liquid distribution and deposition for different spray application techniques in different crops

    OpenAIRE

    Larsolle, Anders; Wretblad, Per; Westberg, Carl

    2002-01-01

    The objective of this study was to compare a selection of spray application techniques with different application volumes, with respect to the spray liquid distribution on flat surfaces, the deposition in fully developed crops and the biological effect. The spray application techniques in this study were conventional spray technique with three different nozzles: Teelet XR, Lechler ID and Lurmark DriftBeta, and also AirTec, Danfoil, Hardi Twin, Kyndestoit and Släpduk. The dynamic spray liquid ...

  18. Transient analysis of intermittent multijet sprays

    Energy Technology Data Exchange (ETDEWEB)

    Panao, Miguel R.O.; Moreira, Antonio Luis N. [Universidade Tecnica de Lisboa, IN, Center for Innovation, Technology and Policy Research, Instituto Superior Tecnico, Lisboa (Portugal); Durao, Diamantino G. [Universidade Lusiada, Lisboa (Portugal)

    2012-07-15

    This paper analyzes the transient characteristics of intermittent sprays produced by the single-point impact of multiple cylindrical jets. The aim is to perform a transient analysis of the intermittent atomization process to study the effect of varying the number of impinging jets in the hydrodynamic mechanisms of droplet formation. The results evidence that hydrodynamic mechanisms underlying the physics of ligament fragmentation in 2-impinging jets sprays also apply to sprays produced with more than 2 jets during the main period of injection. Ligaments detaching from the liquid sheet, as well as from its bounding rim, have been identified and associated with distinct droplet clusters, which become more evident as the number of impinging jets increases. Droplets produced by detached ligaments constitute the main spray, and their axial velocity becomes more uniformly distributed with 4-impinging jets because of a delayed ligament fragmentation. Multijet spray dispersion patterns are geometric depending on the number of impinging jets. Finally, an analysis on the Weber number of droplets suggests that multijet sprays are more likely to deposit on interposed surfaces, thus becoming a promising and competitive atomization solution for improving spray cooling. (orig.)

  19. Effect of the spray application technique on the deposition of entomopathogenic nematodes in vegetables.

    Science.gov (United States)

    Brusselman, Eva; Beck, Bert; Pollet, Sabien; Temmerman, Femke; Spanoghe, Pieter; Moens, Maurice; Nuyttens, David

    2012-03-01

    The present study compared entomopathogenic nematode delivery at the base of savoy cabbage and cauliflower, at the lower side of savoy cabbage and cauliflower leaves and in leek stems and the ground deposition using a five-nozzle spray boom equipped with an ISO 08 flat fan, an air induction flat fan and Twinjet spray nozzles. Additionally, an air support system and a row application system were evaluated. Approximately 40% of the applied nematodes did not reach the foot of the cabbage plants. The use of an air support system or a row application system improved nematode deposition at the savoy cabbage base. Relative nematode deposition on the lower side of savoy cabbage leaves was 27.20%, while only 2.64% of the applied nematodes reached the lower side of cauliflower leaves. After spraying leek with a standard boom, a low relative nematode deposition (26.64%) was measured in the leek stem. Nozzle type affected the distribution of nematodes in droplet spots. Nozzle type has a minor effect on the number of entomopathogenic nematodes delivered on difficult-to-reach targets. The use of modified spray application techniques directing the spray to the target site are necessary to increase the chances of contact of entomopathogenic nematodes with their target. Copyright © 2011 Society of Chemical Industry.

  20. Preliminary calculation with code CONTEMPT-LT for spray cooling tests with JAERI model containment vessel

    International Nuclear Information System (INIS)

    Tanaka, Mitsugu

    1978-01-01

    LWR plants have a containment spray system to reduce the escape of radioactive material to the environment in a loss-of-coolant accident (LOCA) by washing out fission products, especially radioiodine, and condensing the steam to lower the pressure. For carrying out the containment spray tests, pressure and temperature behaviour of the JAERI Model Containment Vessel in spray cooling has been calculated with computer program CONTEMPT-LT. The following could be studied quantitatively: (1) pressure and temperature raise rates for steam addition rate and (2) pressure fall rate for spray flow rate and spray heat transfer efficiency. (auth.)

  1. Optical and electrical characteristics of zirconium oxide thin films deposited on silicon substrates by spray pyrolysis

    International Nuclear Information System (INIS)

    Aguilar-Frutis, M.; Araiza, J.J.; Falcony, C.; Garcia, M.

    2002-01-01

    The optical and electrical characteristics of zirconium oxide thin films deposited by spray pyrolysis on silicon substrates are reported. The films were deposited from a spraying solution of zirconium acetylacetonate in N,N-dimethylformamide using an ultrasonic mist generator on (100) Si substrates. The substrate temperature during deposition was in the range of 400 to 600 grad C. Deposition rates up to 16 A/sec were obtained depending on the spraying solution concentration and on the substrate temperature. A refraction index of the order of 2.0 was measured on these films by ellipsometry. The electrical characteristics of the films were determined from the capacitance and current versus voltage measurements. The addition of water mist during the spraying deposition process was also studied in the characteristics of the films. (Authors)

  2. Vision-aided Monitoring and Control of Thermal Spray, Spray Forming, and Welding Processes

    Science.gov (United States)

    Agapakis, John E.; Bolstad, Jon

    1993-01-01

    Vision is one of the most powerful forms of non-contact sensing for monitoring and control of manufacturing processes. However, processes involving an arc plasma or flame such as welding or thermal spraying pose particularly challenging problems to conventional vision sensing and processing techniques. The arc or plasma is not typically limited to a single spectral region and thus cannot be easily filtered out optically. This paper presents an innovative vision sensing system that uses intense stroboscopic illumination to overpower the arc light and produce a video image that is free of arc light or glare and dedicated image processing and analysis schemes that can enhance the video images or extract features of interest and produce quantitative process measures which can be used for process monitoring and control. Results of two SBIR programs sponsored by NASA and DOE and focusing on the application of this innovative vision sensing and processing technology to thermal spraying and welding process monitoring and control are discussed.

  3. Humidification Dehumidification Spray Column Direct Contact Condenser Part I: Countercurrent Flow

    International Nuclear Information System (INIS)

    Shouman, L.; Karameldin, A.; Fadel, D.

    2015-01-01

    Humidification-dehumidification (HDH) is a low grade energy desalination technology. The waste heat from power plant (such NPP) can be used as heat source to preheat water (in evaporator) and air (in condenser) . Hot humid air and cooled spray water in counter current flow with direct contact is theoretically analyzing in the present work. Direct contact spray condenser is studied to provide the effect of various parameters on its performance. A computer programme describing the theoretical model is designed to solve a one-dimensional differential equations by using Rung–Kutta method. The programme predicts the droplet radius, velocity and temperature, besides, the humidity and temperature of air. The results show that, the length of column has great effect on the performance of spray condenser. At column height of 0.762, 2, 5, 10, and 20 m the humidity of the output air decreases by 50%, 72%, 89%, 97%, and 99% respectively. The condensate increases about 35% when the length increase from 5 to 10 m at ΔT = 25°C while increase only 18% at ΔT = 30°C. Also, it is found that, at ΔT = 25°C the condensate decrease from H = 10 to 5 m about 31% and increases from 10 to 20 m about 32%. While these results for ΔT = 25°C are 32% from H = 10 to 5 m and 36% from 10 to 20 m.The increase of both water and air mass fluxes increases the condensate mass flow rate. (author)

  4. The Influence of Ammonium Sulphate added to the Spray Solution of Calcium Carbonate-Containing Glyphosate and Nicosulfuron on Barnyardgrass and Velvetleaf Control

    Directory of Open Access Journals (Sweden)

    kamal hajmohamadnia

    2016-09-01

    Full Text Available Introduction: There are many reasons for no effectiveness of herbicides on weeds, including the incorrect herbicide, the insufficient use of herbicide, the unprincipled sprayer, spraying at the wrong time especially adverse weather conditions, and a factor that often overlooked is the "water quality in herbicide spray tank". Most of the herbicides are mixed with water and applied as a spray. Obviously water quality is an extremely important issue. Water quality factors in this regard that effect on uptake and translocation of herbicides included as water hardness, pH, bicarbonate ion concentration, turbidity, organic matter and other substances. Hardness is determined by the amount of calcium and magnesium present and is expressed as calcium carbonate (CaCO3 equivalent in parts per million. Petroff (27 classified water based on hardness: water with a hardness 0-75 ppm is considered “soft” water, 75-150 ppm is “medium hard”, 150-300 ppm is considered “hard”, and more than 300 ppm is “very hard”. Hard water is a problem in over 85% of the United States according to the US Geological Survey. The contrast between the herbicides and dissolved ions depend on amount and type of minerals in the spray tank. So that different herbicide may show different responses to the same action. If soft water is not available, surfactant and chemicals additives such as ammonium sulfate (AMS, ammonium nitrate (AMN and urea- ammonium nitrate can be added to the spray tank to increase herbicide efficacy (7. These compounds prevent from the adverse effects of the ions in water. Glyphosate and nicosulfuron belong to two different chemical families of herbicides and are soluble in water. Therefore, water quality such as the presence of calcium carbonate may have a significant effect on these herbicide performances, while removing the inhibitory effect of water hardness by adding nitrogen compounds such as ammonium sulfate need to experiment. According to

  5. Application of Spray Foam Insulation Under Plywood and Oriented Strand Board Roof Sheathing

    Energy Technology Data Exchange (ETDEWEB)

    Grin, A. [Building Science Corporation, Somerville, MA (United States); Smegal, J. [Building Science Corporation, Somerville, MA (United States); Lstiburek, J. [Building Science Corporation, Somerville, MA (United States)

    2013-10-01

    Unvented roof strategies with open cell and closed cell spray polyurethane foam insulation sprayed to the underside of roof sheathing have been used since the mid-1990's to provide durable and efficient building enclosures. However, there have been isolated moisture related incidents reported anecdotally that raise potential concerns about the overall hygrothermal performance of these systems. This project involved hygrothermal modeling of a range of rainwater leakage and field evaluations of in-service residential roofs using spray foam insulation. All of the roof assemblies modeled exhibited drying capacity to handle minor rainwater leakage. All field evaluation locations of in-service residential roofs had moisture contents well within the safe range for wood-based sheathing. Explorations of eleven in-service roof systems were completed. The exploration involved taking a sample of spray foam from the underside of the roof sheathing, exposing the sheathing, then taking a moisture content reading. All locations had moisture contents well within the safe range for wood-based sheathing. One full-roof failure was reviewed, as an industry partner was involved with replacing structurally failed roof sheathing. In this case the manufacturer's investigation report concluded that the spray foam was installed on wet OSB based on the observation that the spray foam did not adhere well to the substrate and the pore structure of the closed cell spray foam at the ccSPF/OSB interface was indicative of a wet substrate.

  6. Size-fractionated characterization and quantification of nanoparticle release rates from a consumer spray product containing engineered nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Hagendorfer, Harald, E-mail: Harald.Hagendorfer@empa.c [EMPA, Swiss Federal Laboratories for Materials Testing and Research (Switzerland); Lorenz, Christiane, E-mail: Christiane.Lorenz@chem.ethz.c [ETHZ, Swiss Federal Institute of Technology Zurich (Switzerland); Kaegi, Ralf, E-mail: Ralf.Kaegi@eawag.ch; Sinnet, Brian, E-mail: Brian.Sinnet@eawag.c [EAWAG, Swiss Federal Institute of Aquatic Science and Technology (Switzerland); Gehrig, Robert, E-mail: Robert.Gehrig@empa.c [EMPA, Swiss Federal Laboratories for Materials Testing and Research (Switzerland); Goetz, Natalie V., E-mail: Natalie.vonGoetz@chem.ethz.ch; Scheringer, Martin, E-mail: Martin.Scheringer@chem.ethz.c [ETHZ, Swiss Federal Institute of Technology Zurich (Switzerland); Ludwig, Christian, E-mail: Christian.Ludwig@psi.c [PSI, Paul Scherrer Institue (Switzerland); Ulrich, Andrea, E-mail: Andrea.Ulrich@empa.c [EMPA, Swiss Federal Laboratories for Materials Testing and Research (Switzerland)

    2010-09-15

    This study describes methods developed for reliable quantification of size- and element-specific release of engineered nanoparticles (ENP) from consumer spray products. A modified glove box setup was designed to allow controlled spray experiments in a particle-minimized environment. Time dependence of the particle size distribution in a size range of 10-500 nm and ENP release rates were studied using a scanning mobility particle sizer (SMPS). In parallel, the aerosol was transferred to a size-calibrated electrostatic TEM sampler. The deposited particles were investigated using electron microscopy techniques in combination with image processing software. This approach enables the chemical and morphological characterization as well as quantification of released nanoparticles from a spray product. The differentiation of solid ENP from the released nano-sized droplets was achieved by applying a thermo-desorbing unit. After optimization, the setup was applied to investigate different spray situations using both pump and gas propellant spray dispensers for a commercially available water-based nano-silver spray. The pump spray situation showed no measurable nanoparticle release, whereas in the case of the gas spray, a significant release was observed. From the results it can be assumed that the homogeneously distributed ENP from the original dispersion grow in size and change morphology during and after the spray process but still exist as nanometer particles of size <100 nm. Furthermore, it seems that the release of ENP correlates with the generated aerosol droplet size distribution produced by the spray vessel type used. This is the first study presenting results concerning the release of ENP from spray products.

  7. Size-fractionated characterization and quantification of nanoparticle release rates from a consumer spray product containing engineered nanoparticles

    International Nuclear Information System (INIS)

    Hagendorfer, Harald; Lorenz, Christiane; Kaegi, Ralf; Sinnet, Brian; Gehrig, Robert; Goetz, Natalie V.; Scheringer, Martin; Ludwig, Christian; Ulrich, Andrea

    2010-01-01

    This study describes methods developed for reliable quantification of size- and element-specific release of engineered nanoparticles (ENP) from consumer spray products. A modified glove box setup was designed to allow controlled spray experiments in a particle-minimized environment. Time dependence of the particle size distribution in a size range of 10-500 nm and ENP release rates were studied using a scanning mobility particle sizer (SMPS). In parallel, the aerosol was transferred to a size-calibrated electrostatic TEM sampler. The deposited particles were investigated using electron microscopy techniques in combination with image processing software. This approach enables the chemical and morphological characterization as well as quantification of released nanoparticles from a spray product. The differentiation of solid ENP from the released nano-sized droplets was achieved by applying a thermo-desorbing unit. After optimization, the setup was applied to investigate different spray situations using both pump and gas propellant spray dispensers for a commercially available water-based nano-silver spray. The pump spray situation showed no measurable nanoparticle release, whereas in the case of the gas spray, a significant release was observed. From the results it can be assumed that the homogeneously distributed ENP from the original dispersion grow in size and change morphology during and after the spray process but still exist as nanometer particles of size <100 nm. Furthermore, it seems that the release of ENP correlates with the generated aerosol droplet size distribution produced by the spray vessel type used. This is the first study presenting results concerning the release of ENP from spray products.

  8. Preparation of cellulose based microspheres by combining spray coagulating with spray drying.

    Science.gov (United States)

    Wang, Qiao; Fu, Aiping; Li, Hongliang; Liu, Jingquan; Guo, Peizhi; Zhao, Xiu Song; Xia, Lin Hua

    2014-10-13

    Porous microspheres of regenerated cellulose with size in range of 1-2 μm and composite microspheres of chitosan coated cellulose with size of 1-3 μm were obtained through a two-step spray-assisted approach. The spray coagulating process must combine with a spray drying step to guarantee the formation of stable microspheres of cellulose. This approach exhibits the following two main virtues. First, the preparation was performed using aqueous solution of cellulose as precursor in the absence of organic solvent and surfactant; Second, neither crosslinking agent nor separated crosslinking process was required for formation of stable microspheres. Moreover, the spray drying step also provided us with the chance to encapsulate guests into the resultant cellulose microspheres. The potential application of the cellulose microspheres acting as drug delivery vector has been studied in two PBS (phosphate-buffered saline) solution with pH values at 4.0 and 7.4 to mimic the environments of stomach and intestine, respectively. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Plasma sprayed alumina-titania coatings

    International Nuclear Information System (INIS)

    Steeper, T.J.; Rotolico, A.J.; Nerz, J.E.; Riggs, W.L. II; Varacalle, D.J. Jr.; Wilson, G.C.

    1992-01-01

    This paper presents an experimental study of the air plasma spraying (APS) of alumina-titania powder using argon-hydrogen working gases. This powder system is being used in the fabrication of heater tubes that emulate nuclear fuel tubes for use in thermal-hydraulic testing. Experiments were conducted using a Taguchi fractional-factorial design parametric study. Operating parameters were varied around the typical spray parameters in a systematic design of experiments in order to display the range of plasma processing conditions and their effect on the resultant coatings. The coatings were characterized by hardness and electrical tests, surface profilometry, image analysis, optical metallography, and x-ray diffraction. Coating qualities are discussed with respect to dielectric strength, hardness, porosity, surface roughness, deposition efficiency, and microstructure. attempts are made to correlate the features of the coatings with the changes in operating parameters

  10. Metallic copper spray--a new control technique to combat invasive container-inhabiting mosquitoes.

    Science.gov (United States)

    Becker, Norbert; Oo, Thin Thin; Schork, Nino

    2015-11-09

    The control of container-inhabiting mosquitoes is mainly based on environmental management with special emphasis on community participation e.g. source reduction by elimination or modification of water bodies. However, citizens are often not aware of the problems related to urban mosquito control or just ignore the advice provided during anti-mosquito control campaigns. In particular, cemeteries contain favourite breeding sites for container-inhabiting mosquitoes like Ochlerotatus j. japonicus, Culex pipiens s.l./Cx. torrentium, Aedes aegypti or Aedes albopictus. In our study, we investigated whether metallic copper e.g. in form of copper spray can be a suitable and cost-effective tool to combat mosquito breeding in vases or other similar small containers where no commonly used insecticides can be applied. The effect of metallic copper spray in comparison to 5 Euro cent coins or copper tubes at different dosages and water qualities applied in small water collections such as widely used plastic grave vases were evaluated by assessing the mortality rates of larvae of Oc.j. japonicus, Cx. pipiens s.l./Cx. torrentium and Ae.aegypti. Different water qualities were tested to assess the influence of pH on the solubility of the copper ions. The copper concentrations were quantified using ICP/MS (Inductively coupled plasma/Mass spectrometry) in relation to the exposure time and mortality rates of mosquito larvae. All statistical analyses were computed using JMP 10.0.2 (SAS Institute Inc., 2012, Cary, NC, USA). Dosages of less than 500 ppb of copper in the water of small containers led to a 100% mortality rate after 2 weeks for all tested mosquito species by using one or more 5 Euro cent coins/vase. When the interior surface of plastic grave vases was covered by metallic copper spray, all of the tested larvae died after 7-10 days in the laboratory and under field conditions the reduction rate was 99.44% for Oc.j. japonicus and 99.6% for Culex pipiens s.l./Cx. torrentium

  11. Drying of α-amylase by spray drying and freeze-drying - a comparative study

    Directory of Open Access Journals (Sweden)

    S. S. de Jesus

    2014-09-01

    Full Text Available This study is aimed at comparing two traditional methods of drying of enzymes and at verifying the efficiency of each one and their advantages and disadvantages. The experiments were performed with a laboratory spray dryer and freeze-dryer using α-amylase as the model enzyme. An experimental design in star revealed that spray drying is mainly influenced by the inlet air temperature and feed flow rate, which were considered to be the main factors influencing the enzymatic activity and water activity; the long period of material exposure to high temperatures causes a partial activity loss. In the experiments of freeze drying, three methods of freezing were used (freezer, acetone and dry ice, and liquid nitrogen and samples subsequently freeze-dried for times ranging between 0-24 hours. The product obtained from the two techniques showed high enzymatic activity and low water activity. For the drying of heat-resistant enzymes, in which the product to be obtained does not have high added value, spray drying may be more economically viable because, in the freeze drying process, the process time can be considered as a limiting factor when choosing a technique.

  12. Impact of alternative fuel rheology on spraying process of small pressure-swirl atomizer

    Energy Technology Data Exchange (ETDEWEB)

    Malý, Milan, E-mail: milan.maly@vutbr.cz; Janáčková, Lada; Jedelský, Jan, E-mail: jedelsky@vutbr.cz; Jícha, Miroslav [Brno University of Technology, Faculty of Mechanical Engineering, Energy Institute, Technická 2896/2, 61669 Brno (Czech Republic)

    2016-06-30

    A systematic investigation was made to analyse the atomizing performance of a small pressure-swirl atomizer with different crude-oil based fuels and water. The atomizer performance is characterized in terms of discharge coefficient, droplet Sauter mean diameter and nozzle efficiency. Phase-Doppler anemometry was used to measure droplets sizes and velocities and to determine the mean structure of the developed spray. A strong dependence of liquid viscosity on the mass flow rate through the atomizer as well as on the spray quality was found and discussed in comparison with relevant literature.

  13. Impact of alternative fuel rheology on spraying process of small pressure-swirl atomizer

    Science.gov (United States)

    Malý, Milan; Janáčková, Lada; Jedelský, Jan; Jícha, Miroslav

    2016-06-01

    A systematic investigation was made to analyse the atomizing performance of a small pressure-swirl atomizer with different crude-oil based fuels and water. The atomizer performance is characterized in terms of discharge coefficient, droplet Sauter mean diameter and nozzle efficiency. Phase-Doppler anemometry was used to measure droplets sizes and velocities and to determine the mean structure of the developed spray. A strong dependence of liquid viscosity on the mass flow rate through the atomizer as well as on the spray quality was found and discussed in comparison with relevant literature.

  14. Impact of alternative fuel rheology on spraying process of small pressure-swirl atomizer

    International Nuclear Information System (INIS)

    Malý, Milan; Janáčková, Lada; Jedelský, Jan; Jícha, Miroslav

    2016-01-01

    A systematic investigation was made to analyse the atomizing performance of a small pressure-swirl atomizer with different crude-oil based fuels and water. The atomizer performance is characterized in terms of discharge coefficient, droplet Sauter mean diameter and nozzle efficiency. Phase-Doppler anemometry was used to measure droplets sizes and velocities and to determine the mean structure of the developed spray. A strong dependence of liquid viscosity on the mass flow rate through the atomizer as well as on the spray quality was found and discussed in comparison with relevant literature.

  15. Manganese concentrations in drinking water from villages near banana plantations with aerial mancozeb spraying in Costa Rica: Results from the Infants' Environmental Health Study (ISA).

    Science.gov (United States)

    van Wendel de Joode, Berna; Barbeau, Benoit; Bouchard, Maryse F; Mora, Ana María; Skytt, Åsa; Córdoba, Leonel; Quesada, Rosario; Lundh, Thomas; Lindh, Christian H; Mergler, Donna

    2016-08-01

    Elevated manganese (Mn) in drinking water has been reported worldwide. While, naturally occurring Mn in groundwater is generally the major source, anthropogenic contamination by Mn-containing fungicides such as mancozeb may also occur. The main objective of this study was to examine factors associated with Mn and ethylenethiourea (ETU), a degradation product of mancozeb, in drinking water samples from villages situated near banana plantations with aerial spraying of mancozeb. Drinking water samples (n = 126) were obtained from 124 homes of women participating in the Infants' Environmental Health Study (ISA, for its acronym in Spanish), living nearby large-scale banana plantations. Concentrations of Mn, iron (Fe), arsenic (As), lead (Pb), cadmium (Cd) and ethylenethiourea (ETU), a degradation product of mancozeb, were measured in water samples. Only six percent of samples had detectable ETU concentrations (limit of detection (LOD) = 0.15 μg/L), whereas 94% of the samples had detectable Mn (LOD = 0.05 μg/L). Mn concentrations were higher than 100 and 500 μg/L in 22% and 7% of the samples, respectively. Mn was highest in samples from private and banana farm wells. Distance from a banana plantation was inversely associated with Mn concentrations, with a 61.5% decrease (95% CI: -97.0, -26.0) in Mn concentrations for each km increase in distance. Mn concentrations in water transported with trucks from one village to another were almost 1000 times higher than Mn in water obtained from taps in houses supplied by the same well but not transported, indicating environmental Mn contamination. Elevated Mn in drinking water may be partly explained by aerial spraying of mancozeb; however, naturally occurring Mn in groundwater, and intensive agriculture may also contribute. Drinking water risk assessment for mancozeb should consider Mn as a health hazard. The findings of this study evidence the need for health-based World Health Organization (WHO) guidelines on Mn in

  16. A Planar-Fluorescence Imaging Technique for Studying Droplet-Turbulence Interactions in Vaporizing Sprays

    Science.gov (United States)

    Santavicca, Dom A.; Coy, E.

    1990-01-01

    Droplet turbulence interactions directly affect the vaporization and dispersion of droplets in liquid sprays and therefore play a major role in fuel oxidizer mixing in liquid fueled combustion systems. Proper characterization of droplet turbulence interactions in vaporizing sprays require measurement of droplet size velocity and size temperature correlations. A planar, fluorescence imaging technique is described which is being developed for simultaneously measuring the size, velocity, and temperature of individual droplets in vaporizing sprays. Preliminary droplet size velocity correlation measurements made with this technique are presented. These measurements are also compared to and show very good agreement with measurements made in the same spray using a phase Doppler particle analyzer.

  17. Generation of 1:1 Carbamazepine:Nicotinamide cocrystals by spray drying.

    Science.gov (United States)

    Patil, Shashank P; Modi, Sameer R; Bansal, Arvind K

    2014-10-01

    The present study investigates the potential of spray drying as a technique for generation of pharmaceutical cocrystals. Carbamazepine-Nicotinamide cocrystal (CNC) was chosen as model cocrystal system for this study. Firstly, CNC was generated using liquid assisted grinding and used for generation of phase solubility diagram (PSD) and ternary phase diagram (TPD). Both PSD and TPD were carefully evaluated for phase behavior of CNC when equilibrated with solvent. The undersaturated region with respect to CNC, as depicted by TPD, was selected as target region to initiate cocrystallization experiments. Various points in this region, representative of different compositions of Carbamazepine, Nicotinamide and CNC, were selected and spray drying was carried out. The spray dried product was characterized for solid state properties and was compared with CNC generated by liquid assisted grinding. Spray drying successfully generated CNC of similar quality as those generated by liquid assisted grinding. Moreover, there was no significant impact of process variables on formation of CNC. Spray drying, owing to its simplicity and industrial scalability, can be a promising method for large scale cocrystal generation. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. The influence of selected spraying parameters on two formulation of sulfonylurea herbicides effect

    Directory of Open Access Journals (Sweden)

    Renata KIELOCH

    2013-03-01

    Full Text Available The objective of this study was the evaluation of spray volume and nozzle type effect on different formulation (water dispersible granules - WG and oil dispersion - OD of two sulfonylurea herbicides: the mixture iodosulfuron methyl sodium + amidosulfuron and iodosulfuron methyl sodium + mesosulfuron methyl efficacy. There were investigated three levels of spray volume (125 l*ha-1, 250 l*ha-1 and 350 l*ha-1 and two types of nozzle (extended range flat nozzle TeeJet XR 11003-VS and drift guard flat nozzle TeeJet DG 11003-VS. Each herbicide was used at recommended dose and reduced by half. Spray volume and nozzle type did not affect activity of the mixture iodosulfuron methyl sodium + amidosulfuron, but differentiated the efficacy of OD formulation of iodosulfuron methyl sodium + mesosulfuron methyl, when it was applied at lowered dose. As spray volume rose, herbicide efficacy decreased. Nozzle type influenced OD formulation of the mixture iodosulfuron methyl sodium + mesosulfuron methyl, independently on dose. Significantly weaker efficacy was obtained when drift guard nozzle was used.

  19. Comparison of microscopic method and computational program for pesticide deposition evaluation of spraying

    Directory of Open Access Journals (Sweden)

    Chaim Aldemir

    2002-01-01

    Full Text Available The main objective of this work was to compare two methods to estimate the deposition of pesticide applied by aerial spraying. Hundred and fifty pieces of water sensitive paper were distributed over an area of 50 m length by 75 m width for sampling droplets sprayed by an aircraft calibrated to apply a spray volume of 32 L/ha. The samples were analysed by visual microscopic method using NG 2 Porton graticule and by an image analyser computer program. The results reached by visual microscopic method were the following: volume median diameter, 398±62 mum; number median diameter, 159±22 mum; droplet density, 22.5±7.0 droplets/cm² and estimated deposited volume, 22.2±9.4 L/ha. The respective ones reached with the computer program were: 402±58 mum, 161±32 mum, 21.9±7.5 droplets/cm² and 21.9±9.2 L/ha. Graphs of the spatial distribution of droplet density and deposited spray volume on the area were produced by the computer program.

  20. CFD simulation of pesticide spray from air-assisted sprayers in an apple orchard: tree deposition and off-target losses

    Science.gov (United States)

    The ultimate goal of a pesticide spraying system is to provide adequate coverage on intended canopies with a minimum amount of spray materials and off-target waste. Better spray coverage requires an understanding of the fate and transport of spray droplets carried by turbulent airflows in orchards. ...