WorldWideScience

Sample records for water soluble self-assembled

  1. Monoglyceride-based self-assembling copolymers as carriers for poorly water-soluble drugs.

    Science.gov (United States)

    Rouxhet, L; Dinguizli, M; Latere Dwan'isa, J P; Ould-Ouali, L; Twaddle, P; Nathan, A; Brewster, M E; Rosenblatt, J; Ariën, A; Préat, V

    2009-12-01

    To develop self-assembling polymers forming polymeric micelles and increasing the solubility of poorly soluble drugs, amphiphilic polymers containing a hydrophilic PEG moiety and a hydrophobic moiety derived from monoglycerides and polyethers were designed. The biodegradable copolymers were obtained via a polycondensation reaction of polyethylene glycol (PEG), monooleylglyceride (MOG) and succinic anhydride (SA). Polymers with molecular weight below 10,000 g/mol containing a minimum of 40 mol% PEG and a maximum of 10 mol% MOG self-assembled spontaneously in aqueous media upon gentle mixing. They formed particles with a diameter of 10 nm although some aggregation was evident. The critical micellar concentration varied between 3x10(-4) and 4x10(-3) g/ml, depending on the polymer. The cloud point (> or = 66 degrees C) and flocculation point (> or = 0.89 M) increased with the PEG chain length. At a 1% concentration, the polymers increased the solubility of poorly water-soluble drug candidates up to 500-fold. Drug solubility increased as a function of the polymer concentration. HPMC capsules filled with these polymers disintegrated and released model drugs rapidly. Polymer with long PEG chains had a lower cytotoxicity (MTT test) on Caco-2 cells. All of these data suggest that the object polymers, in particular PEG1000/MOG/SA (45/5/50) might be potential candidates for improving the oral biopharmaceutical performance of poorly soluble drugs.

  2. Fluorescent polystyrene photonic crystals self-assembled with water-soluble conjugated polyrotaxanes

    Directory of Open Access Journals (Sweden)

    Francesco Di Stasio

    2013-10-01

    Full Text Available We demonstrate control of the photoluminescence spectra and decay rates of water-soluble green-emitting conjugated polyrotaxanes by incorporating them in polystyrene opals with a stop-band spectrally tuned on the rotaxane emission (405–650 nm. We observe a suppression of the luminescence within the photonic stop-band and a corresponding enhancement of the high-energy edge (405–447 nm. Time-resolved measurements reveal a wavelength-dependent modification of the emission lifetime, which is shortened at the high-energy edge (by ∼11%, in the range 405–447 nm, but elongated within the stop-band (by ∼13%, in the range 448–482 nm. We assign both effects to the modification of the density of photonic states induced by the photonic crystal band structure. We propose the growth of fluorescent composite photonic crystals from blends of “solvent-compatible” non-covalently bonded nanosphere-polymer systems as a general method for achieving a uniform distribution of polymeric dopants in three-dimensional self-assembling photonic structures.

  3. A Water-Soluble Cyclotriveratrylene-Based Supra-amphiphile: Synthesis, pH-Responsive Self-Assembly in Water, and Its Application in Controlled Drug Release.

    Science.gov (United States)

    Xia, Danyu; Li, Yang; Jie, Kecheng; Shi, Bingbing; Yao, Yong

    2016-06-17

    A new water-soluble cyclotriveratrylene (WCTV) was designed and synthesized, and benzyldimethyldodecylammonium chloride (G) was chosen as the guest molecule to construct a supra-amphiphile by the host-guest interaction between WCTV and G in water, which is pH responsive. The supra-amphiphiles self-assembled into vesicles in water. When the pH of the solution was below 7.0, the supra-amphiphile disassociated, and the vesicles collapsed. Then, the pH-responsive self-assembly system was utilized for controlled drug release.

  4. Water-Soluble Pd8L4 Self-assembled Molecular Barrel as an Aqueous Carrier for Hydrophobic Curcumin.

    Science.gov (United States)

    Bhat, Imtiyaz Ahmad; Jain, Ruchi; Siddiqui, Mujahuddin M; Saini, Deepak K; Mukherjee, Partha Sarathi

    2017-05-01

    A tetrafacial water-soluble molecular barrel (1) was synthesized by coordination driven self-assembly of a symmetrical tetrapyridyl donor (L) with a cis-blocked 90° acceptor [cis-(en)Pd(NO 3 ) 2 ] (en = ethane-1,2-diamine). The open barrel structure of (1) was confirmed by single crystal X-ray diffraction. The presence of a hydrophobic cavity with large windows makes it an ideal candidate for encapsulation and carrying hydrophobic drug like curcumin in an aqueous medium. The barrel (1) encapsulates curcumin inside its molecular cavity and protects highly photosensitive curcumin from photodegradation. The photostability of encapsulated curcumin is due to the absorption of a high proportion of the incident photons by the aromatic walls of 1 with a high absorption cross-sectional area, which helps the walls to shield the guest even against sunlight/UV radiations. As compared to free curcumin in water, we noticed a significant increase in solubility as well as cellular uptake of curcumin upon encapsulation inside the water-soluble molecular barrel (1) in aqueous medium. Fluorescence imaging confirmed that curcumin was delivered into HeLa cancer cells by the aqueous barrel (1) with the retention of its potential anticancer activity. While free curcumin is inactive toward cancer cells in aqueous medium at room temperature due to negligible solubility, the determined IC 50 value of ∼14 μM for curcumin in aqueous medium in the presence of the barrel (1) reflects the efficiency of the barrel as a potential curcumin carrier in aqueous medium without any other additives. Thus, two major challenges of increasing the bioavailability and stability of curcumin in aqueous medium even in the presence of UV light have been addressed by using a new supramolecular water-soluble barrel (1) as a drug carrier.

  5. Electrochemical characterization of mixed self-assembled films of water-soluble single-walled carbon nanotube-poly(m-aminobenzene sulfonic acid) and Iron(II) tetrasulfophthalocyanine

    CSIR Research Space (South Africa)

    Agboola, BO

    2010-09-01

    Full Text Available The redox activities of water-soluble iron(II) tetrasulfophthalocyanine (FeTSPc) and single-walled carbon nanotube-poly(m-aminobenzene sulfonic acid) (SWCNT-PABS) adsorbed on a gold surface precoated with a self-assembled monolayer (SAM) of 2...

  6. The fabrication and enhanced nonlinear optical properties of electrostatic self-assembled film containing water-soluble chiral polymers

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang Qiuyun, E-mail: qyouyang7823@yahoo.cn [College of Science, Harbin Engineering University, Harbin 150001 (China); Chen Yujin; Li Chunyan [College of Science, Harbin Engineering University, Harbin 150001 (China)

    2012-05-15

    Highlights: Black-Right-Pointing-Pointer The ultra-thin film containing the chiral PPV and oligo-thiophene derivatives was fabricated. Black-Right-Pointing-Pointer The third-order NLO properties were studied of the ultra-thin film. Black-Right-Pointing-Pointer The reverse saturable absorption and self-defocusing were observed. Black-Right-Pointing-Pointer The nonlinear optical mechanism was discussed. - Abstract: An ultra-thin film containing a water-soluble chiral PPV derivative and oligo-thiophene derivative was fabricated through the electrostatic self-assembly technique. The PPV and thiophene derivatives are poly{l_brace}(2,5-bis(3-bromotrimethylammoniopropoxy)-phenylene-1,4-divinylene) -alt-1,4-(2,5-bis((3-hydroxy-2-(S)-methyl)propoxy)phenylenevinylene) (BHP-PPV) and 4 Prime ,3 Double-Prime -dipentyl-5,2 Prime :5 Prime ,2 Double-Prime :5 Double-Prime ,2 Double-Prime Prime -quaterthiophene-2,5 Double-Prime Prime -dicarboxylic acid (QTDA), respectively. The circular dichroism (CD) spectrum of BHP-PPV cast film on quartz substrate proved the chirality of BHP-PPV. The UV-vis spectra showed a continuous deposition process of BHP-PPV and QTDA. The film structure was characterized by small angle X-ray diffraction (XRD) measurement and atomic force microscopy (AFM) images. The nonlinear optical (NLO) properties of BHP-PPV/QTDA ultra-thin film with different number of bilayers were investigated by the Z-scan technique with 8 ns laser pulse at 532 nm. The Z-scan experimental data were analyzed with the double-sided film Z-scan theory. The BHP-PPV/QTDA film exhibits enhanced reverse saturable absorption (RSA) and self-defocusing effects, which may be attributed to the conjugated strength, chirality and well-ordered film structure. The chirality may lead to the RSA of BHP-PPV/QTDA film contrary to the SA of the other electrostatic self-assembled films without chiral units. The self-defocusing effect should be due to the thermal effect.

  7. A New Water-Soluble Nanomicelle Formed through Self-Assembly of Pectin-Curcumin Conjugates: Preparation, Characterization, and Anticancer Activity Evaluation.

    Science.gov (United States)

    Bai, Feng; Diao, Jiajing; Wang, Ying; Sun, Shixin; Zhang, Hongmei; Liu, Yunyun; Wang, Yanqing; Cao, Jian

    2017-08-16

    Curcumin is a dominating active component of Curcuma longa and has been studied widely because of its prominent biological activities. The extremely low aqueous solubility, stability, and bioavailability of curcumin limit its application in the field of medicine. In this study, we developed pectin-curcumin (PEC-CCM) conjugates that could self-assemble water-soluble nanomicelles in aqueous solution. The structure of PEC-CCM conjugates was characterized by ultraviolet-visible spectra, fluorescence spectra, Fourier transform infrared spectroscopy, and 1 H nuclear magnetic resonance spectroscopy. The thermal property of PEC-CCM conjugates was investigated by thermogravimetric analysis. It was found that PEC-CCM conjugates had formed nanomicelles in aqueous medium via self-assembly. These nanomicelles were observed as small spheres or ellipsoids and aggregated with a size range of 70-190 nm by transmission electron microscopy analysis. In a solution of nanomicelles, the stability of curcumin was improved, and its antioxidant property was preserved. The anticancer activity of PEC-CCM conjugates was quantified by the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay using a hepatic cancer cell line (HepG2), a breast cancer cell line (MCF-7), a cervical cancer cell line (HeLa), and a human normal kidney cell line (293A). It was found that the curcumin of PEC-CCM conjugates had a more significant inhibitory effect on cancer cells and was less cytotoxic to normal cells than free curcumin was. PEC-CCM conjugates have great potential for some food and pharmaceutical applications.

  8. Water-soluble light-emitting nanoparticles prepared by non-covalent bond self-assembly of a hydroxyl group functionalized oligo(p-phenyleneethynylene) with different water-soluble polymers

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Water-soluble light-emitting nanoparticles were prepared from hydroxyl group functionalized oligos(p-phenyleneethynylene) (OHOPEL) and water-soluble polymers(PEG,PAA,and PG) by non-covalent bond self-assembly.Their structure and optoelectronic properties were investigated through dynamic light scattering(DLS) ,UV and PL spectroscopy.The optical properties of OHOPEL-based water-soluble nanoparticles exhibited the same properties as that found in OHOPEL films,indicating the existence of interchain-aggregation of OHOPELs in the nanoparticles.OHOPEL-based nanoparticles prepared from conjugated oligomers show smaller size and lower dispersity than nanoparticles from conjugated polymers,which means that the structures of water-soluble nanoparticles are linked to the conjugated length.Furthermore,the OHOPEL/PG and OHOPEL/PAA systems produced smaller particles and lower polydispersity than the OHOPEL/PEG system,indicating that there may exist influence of the strength of non-covalent bonds on the size and degree of dispersity of the nanoparticles.

  9. Ternary self-assemblies in water

    DEFF Research Database (Denmark)

    Hill, Leila R.; Blackburn, Octavia A.; Jones, Michael W.

    2013-01-01

    The self-assembly of higher order structures in water is realised by using the association of 1,3-biscarboxylates to binuclear meta-xylyl bridged DO3A complexes. Two dinicotinate binding sites are placed at a right-angle in a rhenium complex, which is shown to form a 1 : 2 complex with α,α'-bis(E......The self-assembly of higher order structures in water is realised by using the association of 1,3-biscarboxylates to binuclear meta-xylyl bridged DO3A complexes. Two dinicotinate binding sites are placed at a right-angle in a rhenium complex, which is shown to form a 1 : 2 complex with α...

  10. Novel in situ self-assembly nanoparticles for formulating a poorly water-soluble drug in oral solid granules, improving stability, palatability, and bioavailability

    Directory of Open Access Journals (Sweden)

    Guo S

    2016-04-01

    Full Text Available Shujie Guo,1 Kevin Pham,2 Diana Li,2 Scott R Penzak,3 Xiaowei Dong2 1State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China; 2Department of Pharmaceutical Sciences, 3Department of Pharmacotherapy, University of North Texas Health Science Center, Fort Worth, TX, USA Purpose: The purpose of this study was to develop a novel lipid-based nanotechnology to formulate poorly water-soluble drugs in oral solid granules to improve stability, palatability, and bioavailability. Materials and methods: In one method, we prepared ritonavir (RTV nanoparticles (NPs by a microemulsion-precursor method and then converted the RTV NPs to solid granules by wet granulation to produce RTV NP-containing granules. In the other innovative method, we did not use water in the formulation preparation, and discovered novel in situ self-assembly nanoparticles (ISNPs. We prepared RTV ISNP granules that did not initially contain NPs, but spontaneously produced RTV ISNPs when the granules were introduced to water with gentle agitation. We fully characterized these RTV nanoformulations. We also used rats to test the bioavailability of RTV ISNP granules. Finally, an Astree electronic tongue was used to assess the taste of the RTV ISNP granules. Results: RTV NP-containing granules only had about 1% drug loading of RTV in the solid granules. In contrast, RTV ISNP granules achieved over 16% drug loading and were stable at room temperature over 24 weeks. RTV ISNPs had particle size between 160 nm and 300 nm with narrow size distribution. RTV ISNPs were stable in simulated gastric fluid for 2 hours and in simulated intestinal fluid for another 6 hours. The data from the electronic tongue showed that the RTV ISNP granules were similar in taste to blank ISNP granules, but were much different from RTV solution. RTV ISNP granules increased RTV bioavailability

  11. Controlling water evaporation through self-assembly.

    Science.gov (United States)

    Roger, Kevin; Liebi, Marianne; Heimdal, Jimmy; Pham, Quoc Dat; Sparr, Emma

    2016-09-13

    Water evaporation concerns all land-living organisms, as ambient air is dryer than their corresponding equilibrium humidity. Contrarily to plants, mammals are covered with a skin that not only hinders evaporation but also maintains its rate at a nearly constant value, independently of air humidity. Here, we show that simple amphiphiles/water systems reproduce this behavior, which suggests a common underlying mechanism originating from responding self-assembly structures. The composition and structure gradients arising from the evaporation process were characterized using optical microscopy, infrared microscopy, and small-angle X-ray scattering. We observed a thin and dry outer phase that responds to changes in air humidity by increasing its thickness as the air becomes dryer, which decreases its permeability to water, thus counterbalancing the increase in the evaporation driving force. This thin and dry outer phase therefore shields the systems from humidity variations. Such a feedback loop achieves a homeostatic regulation of water evaporation.

  12. Preparation and characterization of highly water-soluble magnetic Fe{sub 3}O{sub 4} nanoparticles via surface double-layered self-assembly method of sodium alpha-olefin sulfonate

    Energy Technology Data Exchange (ETDEWEB)

    Li, Honghong; Qin, Li [School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China); Feng, Ying [Department of Bridge Engineering, Shanxi Railway Institute, Weinan 714000 (China); Hu, Lihua [School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China); Zhou, Chunhua, E-mail: chm_zhouch@ujn.edu.cn [School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 (China)

    2015-06-15

    A kind of double-layered self-assembly sodium alpha-olefin sulfonate (AOS) capped Fe{sub 3}O{sub 4} magnetic nanoparticles (Fe{sub 3}O{sub 4}-AOS-MN) with highly water-solubility was prepared by a wet co-precipitation method with a pH of 4.8. The resulting Fe{sub 3}O{sub 4}-AOS-MN could be dispersed into water to form stable magnetic fluid without other treatments. The result of X-ray diffraction (XRD) indicated that the Fe{sub 3}O{sub 4}-AOS-MN maintained original crystalline structure and exhibited a diameter of about 7.5 nm. The iron oxide phase of nanoparticles determined by Raman spectroscopy is Fe{sub 3}O{sub 4}. Transmission electron microscopy (TEM) analysis confirmed that the Fe{sub 3}O{sub 4}-AOS-MN with spherical morphology were uniformly dispersed in water. FT-IR spectroscopy (FT-IR) and thermo-gravimetric analysis (TGA) verified the successful preparation of Fe{sub 3}O{sub 4}-AOS-MN capped with double-layered self-assembled AOS. The corresponding capacities of monolayer chemical absorption and the second-layer self-assembly absorption were respectively 4.07 and 14.71 wt% of Fe{sub 3}O{sub 4}-MN, which were much lower than those of other surfactants. Vibrating sample magnetometer (VSM) test result showed Fe{sub 3}O{sub 4}-AOS-MN possessed superparamagnetic behavior with the saturation magnetization value of about 44.45 emu/g. The blocking temperature T{sub B} of Fe{sub 3}O{sub 4}-AOS-MN capped with double-layered AOS is 170 K. - Highlights: • Double-layered self-assembly sodium alpha-olefin sulfonate (AOS) capped Fe{sub 3}O{sub 4} magnetic nanoparticles are prepared by a wet co-precipitation method. • Double-layered Fe{sub 3}O{sub 4}-AOS-MN exhibits highly water-solubility. • The iron oxide phase is determined by Raman spectroscopy. • Fe{sub 3}O{sub 4}-AOS-MN capped with double-layered AOS possesses super-paramagnetic behavior. • The blocking temperature T{sub B} of Fe{sub 3}O{sub 4}-AOS-MN capped with double-layered AOS is 170 K.

  13. Preparation and characterization of highly water-soluble magnetic Fe3O4 nanoparticles via surface double-layered self-assembly method of sodium alpha-olefin sulfonate

    International Nuclear Information System (INIS)

    Li, Honghong; Qin, Li; Feng, Ying; Hu, Lihua; Zhou, Chunhua

    2015-01-01

    A kind of double-layered self-assembly sodium alpha-olefin sulfonate (AOS) capped Fe 3 O 4 magnetic nanoparticles (Fe 3 O 4 -AOS-MN) with highly water-solubility was prepared by a wet co-precipitation method with a pH of 4.8. The resulting Fe 3 O 4 -AOS-MN could be dispersed into water to form stable magnetic fluid without other treatments. The result of X-ray diffraction (XRD) indicated that the Fe 3 O 4 -AOS-MN maintained original crystalline structure and exhibited a diameter of about 7.5 nm. The iron oxide phase of nanoparticles determined by Raman spectroscopy is Fe 3 O 4 . Transmission electron microscopy (TEM) analysis confirmed that the Fe 3 O 4 -AOS-MN with spherical morphology were uniformly dispersed in water. FT-IR spectroscopy (FT-IR) and thermo-gravimetric analysis (TGA) verified the successful preparation of Fe 3 O 4 -AOS-MN capped with double-layered self-assembled AOS. The corresponding capacities of monolayer chemical absorption and the second-layer self-assembly absorption were respectively 4.07 and 14.71 wt% of Fe 3 O 4 -MN, which were much lower than those of other surfactants. Vibrating sample magnetometer (VSM) test result showed Fe 3 O 4 -AOS-MN possessed superparamagnetic behavior with the saturation magnetization value of about 44.45 emu/g. The blocking temperature T B of Fe 3 O 4 -AOS-MN capped with double-layered AOS is 170 K. - Highlights: • Double-layered self-assembly sodium alpha-olefin sulfonate (AOS) capped Fe 3 O 4 magnetic nanoparticles are prepared by a wet co-precipitation method. • Double-layered Fe 3 O 4 -AOS-MN exhibits highly water-solubility. • The iron oxide phase is determined by Raman spectroscopy. • Fe 3 O 4 -AOS-MN capped with double-layered AOS possesses super-paramagnetic behavior. • The blocking temperature T B of Fe 3 O 4 -AOS-MN capped with double-layered AOS is 170 K

  14. Self-assembly behaviour of conjugated terthiophene surfactants in water

    NARCIS (Netherlands)

    van Rijn, Patrick; Janeliunas, Dainius; Brizard, Aurelie M.; Stuart, Marc C. A.; Koper, Ger J. M.; Eelkema, Rienk; van Esch, Jan H.

    2011-01-01

    Conjugated self-assembled systems in water are of great interest because of their potential application in biocompatible supramolecular electronics, but so far their supramolecular chemistry remains almost unexplored. Here we present amphiphilic terthiophenes as a general self-assembling platform

  15. Heme-Protein Active Site Models via Self-Assembly in Water

    NARCIS (Netherlands)

    Fiammengo, R.; Wojciechowski, Kamil; Crego Calama, Mercedes; Figoli, A.; Wessling, Matthias; Reinhoudt, David; Timmerman, P.

    2003-01-01

    Water-soluble models of heme-protein active sites are obtained via the self-assembly of cationic porphyrins 1 and tetrasulfonato calix[4]arene 2 (K1·2 = 105 M-1). Selective binding of ligands either outside or inside the cavity of assemblies 1·2 via coordination to the zinc center has been observed.

  16. Self Assembly of Ionic Liquids at the Air/Water Interface

    Czech Academy of Sciences Publication Activity Database

    Minofar, Babak

    2015-01-01

    Roč. 3, aug (2015), s. 27-40 ISSN 2245-4551 Institutional support: RVO:67179843 Keywords : Ionic liquids * air/water interface * self assembly * ion-water interaction * ion-ion interaction Subject RIV: CE - Biochemistry

  17. Synergistic Effect of Binary Mixed-Pluronic Systems on Temperature Dependent Self-assembly Process and Drug Solubility

    Directory of Open Access Journals (Sweden)

    Chin-Fen Lee

    2018-01-01

    Full Text Available Mixed Pluronic micelles from very hydrophobic and very hydrophilic copolymers were selected to scrutinize the synergistic effect on the self-assembly process as well as the solubilization capacity of ibuprofen. The tendency of mixing behavior between parent copolymers was systematically examined from two perspectives: different block chain lengths at same hydrophilicity (L92 + F108, +F98, +F88, and +F68, as well as various hydrophobicities at the same PPO moiety (L92 + F88, +F87, and +P84. Temperature-dependent micellization in these binary systems was clearly inspected by the combined use of high sensitivity differential scanning calorimeter (HSDSC and dynamic light scattering (DLS. Changes in heat capacity and size of aggregates at different temperatures during the whole micellization process were simultaneously observed and examined. While distinction of block chain length between parent copolymers increases, the monodispersity of the binary Pluronic systems decreases. However, parent copolymers with distinct PPO moieties do not affirmatively lead to non-cooperative binding, such as the L92 + P84 system. The addition of ibuprofen promotes micellization as well as stabilizes aggregates in the solution. The partial replacement of the hydrophilic Pluronic by a more hydrophobic Pluronic L92 would increase the total hydrophobicity of mixed Pluronics used in the system to substantially enhance the solubility of ibuprofen. The solubility of ibuprofen in the 0.5 wt % L92 + 0.368 wt % P84 system is as high as 4.29 mg/mL, which is 1.4 times more than that of the 0.868 wt % P84 system and 147 times more than that in pure water at 37 °C.

  18. A Self-Assembled Trigonal Prismatic Molecular Vessel for Catalytic Dehydration Reactions in Water.

    Science.gov (United States)

    Das, Paramita; Kumar, Atul; Howlader, Prodip; Mukherjee, Partha Sarathi

    2017-09-12

    A water-soluble Pd 6 trigonal prism (A) was synthesized by two-component coordination-driven self-assembly of a Pd II 90° acceptor with a tetraimidazole donor. The walls of the prism are constructed by three conjugated aromatic building blocks, which means that the confined pocket of the prism is hydrophobic. In addition to the hydrophobic cavity, large product egress windows make A an ideal molecular vessel to catalyze otherwise challenging pseudo-multicomponent dehydration reactions in its confined nanospace in aqueous medium. This study is an attempt at selective generation of the intermediate tetraketones and xanthenes by fine-tuning the reaction conditions employing a supramolecular molecular vessel. Moreover, either poor or no yield of the dehydrated products in the absence of A under similar reaction conditions supports the ability of the confined space of the barrel to promote such reactions in water. Furthermore, we focused on the rigidification of the tetraphenylethylene-based tetraimidazole unit anchored within the Pd II coordination architecture; enabling counter-anion dependent aggregation induced emission in the presence of water. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Self-Assembled Polymeric Micellar Nanoparticles as Nanocarriers for Poorly Soluble Anticancer Drug Ethaselen

    Directory of Open Access Journals (Sweden)

    Yang Zhuoli

    2009-01-01

    Full Text Available Abstract A series of monomethoxy poly(ethylene glycol-poly(lactide (mPEG-PLA diblock copolymers were synthesized, and mPEG-PLA micelle was fabricated and used as a nanocarrier for solubilization and delivery of a promising anticancer drug ethaselen. Ethaselen was efficiently encapsulated into the micelles by the dialysis method, and the solubility of ethaselen in water was remarkably increased up to 82 μg/mL before freeze-drying. The mean diameter of ethaselen-loaded micelles ranged from 51 to 98 nm with a narrow size distribution and depended on the length of PLA block. In vitro hemolysis study indicated that mPEG-PLA copolymers and ethaselen-loaded polymeric micelles had no hemolytic effect on the erythrocyte. The enhanced antitumor efficacy and reduced toxic effect of ethaselen-loaded polymeric micelle when compared with ethaselen-HP-β-CD inclusion were observed at the same dose in H22human liver cancer cell bearing mouse models. These suggested that mPEG-PLA polymeric micelle nanoparticles had great potential as nanocarriers for effective solubilization of poorly soluble ethaselen and further reducing side effects and toxicities of the drug.

  20. Construction and Self-Assembly of Single-Chain Polymer Nanoparticles via Coordination Association and Electrostatic Repulsion in Water.

    Science.gov (United States)

    Zhu, Zhengguang; Xu, Na; Yu, Qiuping; Guo, Lei; Cao, Hui; Lu, Xinhua; Cai, Yuanli

    2015-08-01

    Simultaneous coordination-association and electrostatic-repulsion interactions play critical roles in the construction and stabilization of enzymatic function metal centers in water media. These interactions are promising for construction and self-assembly of artificial aqueous polymer single-chain nanoparticles (SCNPs). Herein, the construction and self-assembly of dative-bonded aqueous SCNPs are reported via simultaneous coordination-association and electrostatic-repulsion interactions within single chains of histamine-based hydrophilic block copolymer. The electrostatic-repulsion interactions are tunable through adjusting the imidazolium/imidazole ratio in response to pH, and in situ Cu(II)-coordination leads to the intramolecular association and single-chain collapse in acidic water. SCNPs are stabilized by the electrostatic repulsion of dative-bonded block and steric shielding of nonionic water-soluble block, and have a huge specific surface area of function metal centers accessible to substrates in acidic water. Moreover, SCNPs can assemble into micelles, networks, and large particles programmably in response to the solution pH. These unique media-sensitive phase-transformation behaviors provide a general, facile, and versatile platform for the fabrication of enzyme-inspired smart aqueous catalysts. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Robust aqua material. A pressure-resistant self-assembled membrane for water purification

    International Nuclear Information System (INIS)

    Cohen, Erez; Weissman, Haim; Rybtchinski, Boris; Shimoni, Eyal; Kaplan-Ashiri, Ifat; Werle, Kai; Wohlleben, Wendel

    2017-01-01

    ''Aqua materials'' that contain water as their major component and are as robust as conventional plastics are highly desirable. Yet, the ability of such systems to withstand harsh conditions, for example, high pressures typical of industrial applications has not been demonstrated. We show that a hydrogel-like membrane self-assembled from an aromatic amphiphile and colloidal Nafion is capable of purifying water from organic molecules, including pharmaceuticals, and heavy metals in a very wide range of concentrations. Remarkably, the membrane can sustain high pressures, retaining its function. The robustness and functionality of the water-based self-assembled array advances the idea that aqua materials can be very strong and suitable for demanding industrial applications. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  2. Robust aqua material. A pressure-resistant self-assembled membrane for water purification

    Energy Technology Data Exchange (ETDEWEB)

    Cohen, Erez; Weissman, Haim; Rybtchinski, Boris [Department of Organic Chemistry, Weizmann Institute of Science, 234 Herzl Street, Rehovot, 7610001 (Israel); Shimoni, Eyal; Kaplan-Ashiri, Ifat [Department of Chemical Research Support, Weizmann Institute of Science, 234 Herzl Street, Rehovot, 7610001 (Israel); Werle, Kai; Wohlleben, Wendel [Department of Material Physics, Materials and Systems Research, BASF SE, 67056, Ludwigshafen (Germany)

    2017-02-13

    ''Aqua materials'' that contain water as their major component and are as robust as conventional plastics are highly desirable. Yet, the ability of such systems to withstand harsh conditions, for example, high pressures typical of industrial applications has not been demonstrated. We show that a hydrogel-like membrane self-assembled from an aromatic amphiphile and colloidal Nafion is capable of purifying water from organic molecules, including pharmaceuticals, and heavy metals in a very wide range of concentrations. Remarkably, the membrane can sustain high pressures, retaining its function. The robustness and functionality of the water-based self-assembled array advances the idea that aqua materials can be very strong and suitable for demanding industrial applications. (copyright 2017 Wiley-VCH Verlag GmbH and Co. KGaA, Weinheim)

  3. New amphiphilic glycopolypeptide conjugate capable of self-assembly in water into reduction-sensitive micelles for triggered drug release

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hui-Kang [DSAPM Lab and PCFM Lab, Department of Polymer and Materials Science, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Zhang, Li-Ming, E-mail: ceszhlm@mail.sysu.edu.cn [DSAPM Lab and PCFM Lab, Department of Polymer and Materials Science, School of Chemistry and Chemical Engineering, Sun Yat-sen University, Guangzhou 510275 (China); Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou 510006 (China)

    2014-08-01

    For the development of biomimetic carriers for stimuli-sensitive delivery of anticancer drugs, a novel amphiphilic glycopolypeptide conjugate containing the disulfide bond was prepared for the first time by the ring-opening polymerization of benzyl glutamate N-carboxy anhydride in the presence of (propargyl carbamate)ethyl dithio ethylamine and then click conjugation with α-azido dextran. Its structure was characterized by Fourier-transform infrared spectroscopy and nuclear magnetic resonance analyses. Owing to its amphiphilic nature, such a conjugate could self assemble into nanosize micelles in aqueous medium, as confirmed by fluorometry, transmission electron microscopy and dynamic light scattering. For the resultant micelles, it was found to encapsulate poorly water-soluble anticancer drug (methotrexate, MTX) with the loading efficiency of 45.2%. By the in vitro drug release tests, the release rate of encapsulated MTX was observed to be accelerated significantly in the presence of 10 mM 1,4-dithio-DL-threitol (DTT), analogous to the intracellular redox potential. - Graphical abstract: New amphiphilic glycopolypeptide conjugate containing the disulfide bond could self-assemble in aqueous solution into reduction-sensitive micelles for triggered release of an anticancer drug (methotrexate, MTX) in the presence of 10 mM 1,4-dithio-DL-threitol (DTT). - Highlights: • Amphiphilic glycopolypeptide conjugate containing disulfide bond was prepared. • Such a conjugate self assembled in aqueous solution into nanosize micelles. • The resultant micelles could encapsulate effectively methotrexate drug. • The drug-loaded micelles showed a reduction-sensitive drug release behavior.

  4. New amphiphilic glycopolypeptide conjugate capable of self-assembly in water into reduction-sensitive micelles for triggered drug release

    International Nuclear Information System (INIS)

    Yang, Hui-Kang; Zhang, Li-Ming

    2014-01-01

    For the development of biomimetic carriers for stimuli-sensitive delivery of anticancer drugs, a novel amphiphilic glycopolypeptide conjugate containing the disulfide bond was prepared for the first time by the ring-opening polymerization of benzyl glutamate N-carboxy anhydride in the presence of (propargyl carbamate)ethyl dithio ethylamine and then click conjugation with α-azido dextran. Its structure was characterized by Fourier-transform infrared spectroscopy and nuclear magnetic resonance analyses. Owing to its amphiphilic nature, such a conjugate could self assemble into nanosize micelles in aqueous medium, as confirmed by fluorometry, transmission electron microscopy and dynamic light scattering. For the resultant micelles, it was found to encapsulate poorly water-soluble anticancer drug (methotrexate, MTX) with the loading efficiency of 45.2%. By the in vitro drug release tests, the release rate of encapsulated MTX was observed to be accelerated significantly in the presence of 10 mM 1,4-dithio-DL-threitol (DTT), analogous to the intracellular redox potential. - Graphical abstract: New amphiphilic glycopolypeptide conjugate containing the disulfide bond could self-assemble in aqueous solution into reduction-sensitive micelles for triggered release of an anticancer drug (methotrexate, MTX) in the presence of 10 mM 1,4-dithio-DL-threitol (DTT). - Highlights: • Amphiphilic glycopolypeptide conjugate containing disulfide bond was prepared. • Such a conjugate self assembled in aqueous solution into nanosize micelles. • The resultant micelles could encapsulate effectively methotrexate drug. • The drug-loaded micelles showed a reduction-sensitive drug release behavior

  5. Self assembling nanocomposites for protein delivery: supramolecular interactions of soluble polymers with protein drugs.

    Science.gov (United States)

    Salmaso, Stefano; Caliceti, Paolo

    2013-01-02

    Translation of therapeutic proteins to pharmaceutical products is often encumbered by their inadequate physicochemical and biopharmaceutical properties, namely low stability and poor bioavailability. Over the last decades, several academic and industrial research programs have been focused on development of biocompatible polymers to produce appropriate formulations that provide for enhanced therapeutic performance. According to their physicochemical properties, polymers have been exploited to obtain a variety of formulations including biodegradable microparticles, 3-dimensional hydrogels, bioconjugates and soluble nanocomposites. Several soluble polymers bearing charges or hydrophobic moieties along the macromolecular backbone have been found to physically associate with proteins to form soluble nanocomplexes. Physical complexation is deemed a valuable alternative tool to the chemical bioconjugation. Soluble protein/polymer nanocomplexes formed by physical specific or unspecific interactions have been found in fact to possess peculiar physicochemical, and biopharmaceutical properties. Accordingly, soluble polymeric systems have been developed to increase the protein stability, enhance the bioavailability, promote the absorption across the biological barriers, and prolong the protein residence in the bloodstream. Furthermore, a few polymers have been found to favour the protein internalisation into cells or boost their immunogenic potential by acting as immunoadjuvant in vaccination protocols. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Oligomerization of hydrophobin SC3 in solution : From soluble state to self-assembly

    NARCIS (Netherlands)

    Wang, Xiaoqin; Graveland-Bikker, Johanna F.; Kruif, Cornelis G. de; Robillard, George T.

    2004-01-01

    Hydrophobin SC3 is a protein with special self-association properties that differ depending on whether it is in solution, on an air/water interface or on a solid surface. Its self-association on an air/water interface and solid surface have been extensively characterized. The current study focuses

  7. Crystalline mono- and multilayer self-assemblies of oligothiophenes at the air-water interface

    DEFF Research Database (Denmark)

    Isz, S.; Weissbuch, I.; Kjær, K.

    1997-01-01

    The formation of Langmuir monolayers at the air-water interface has long been believed to be limited to amphiphilic molecules containing a hydrophobic chain and a hydrophilic headgroup. Here we report the formation of crystalline mono- and multilayer self-assemblies of oligothiophenes, a class...... of aromatic nonamphiphilic molecules, self-aggregated at the air-water interface. As model systems we have examined the deposition of quaterthiophene (S-4), quinquethiophene (S-5). and sexithiophene (S-6) from chloroform solutions on the water surface. The structures of the films were determined by surface...... surface. S-5 self-ageregates at the water surface to form mixtures of monolayers and bilayers of the beta polymorph; S-6 forms primarily crystalline monolayers of both alpha and beta forms. The crystalline assemblies preserve their integrity during transfer from the water surface onto solid supports...

  8. Self-Assembled Amphiphilic Water Oxidation Catalysts: Control of O-O Bond Formation Pathways by Different Aggregation Patterns.

    Science.gov (United States)

    Yang, Bing; Jiang, Xin; Guo, Qing; Lei, Tao; Zhang, Li-Ping; Chen, Bin; Tung, Chen-Ho; Wu, Li-Zhu

    2016-05-17

    The oxidation of water to molecular oxygen is the key step to realize water splitting from both biological and chemical perspective. In an effort to understand how water oxidation occurs on a molecular level, a large number of molecular catalysts have been synthesized to find an easy access to higher oxidation states as well as their capacity to make O-O bond. However, most of them function in a mixture of organic solvent and water and the O-O bond formation pathway is still a subject of intense debate. Herein, we design the first amphiphilic Ru-bda (H2 bda=2,2'-bipyridine-6,6'-dicarboxylic acid) water oxidation catalysts (WOCs) of formula [Ru(II) (bda)(4-OTEG-pyridine)2 ] (1, OTEG=OCH2 CH2 OCH2 CH2 OCH3 ) and [Ru(II) (bda)(PySO3 Na)2 ] (2, PySO3 (-) =pyridine-3-sulfonate), which possess good solubility in water. Dynamic light scattering (DLS), scanning electron microscope (SEM), critical aggregation concentration (CAC) experiments and product analysis demonstrate that they enable to self-assemble in water and form the O-O bond through different routes even though they have the same bda(2-) backbone. This work illustrates for the first time that the O-O bond formation pathway can be regulated by the interaction of ancillary ligands at supramolecular level. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Dynamics of nanoparticle self-assembly into superhydrophobic liquid marbles during water condensation.

    Science.gov (United States)

    Rykaczewski, Konrad; Chinn, Jeff; Walker, Marlon L; Scott, John Henry J; Chinn, Amy; Jones, Wanda

    2011-12-27

    Nanoparticles adsorbed onto the surface of a drop can fully encapsulate the liquid, creating a robust and durable soft solid with superhydrophobic characteristics referred to as a liquid marble. Artificially created liquid marbles have been studied for about a decade but are already utilized in some hair and skin care products and have numerous other potential applications. These soft solids are usually formed in small quantity by depositing and rolling a drop of liquid on a layer of hydrophobic particles but can also be made in larger quantities in an industrial mixer. In this work, we demonstrate that microscale liquid marbles can also form through self-assembly during water condensation on a superhydrophobic surface covered with a loose layer of hydrophobic nanoparticles. Using in situ environmental scanning electron microscopy and optical microscopy, we study the dynamics of liquid marble formation and evaporation as well as their interaction with condensing water droplets. We demonstrate that the self-assembly of nanoparticle films into three-dimensional liquid marbles is driven by multiple coalescence events between partially covered droplets and is aided by surface flows causing rapid nanoparticle film redistribution. We also show that droplet and liquid marble coalescence can occur due to liquid-to-liquid contact or squeezing of the two objects into each other as a result of compressive forces from surrounding droplets and marbles. Irrelevant of the mechanism, coalescence of marbles and drops can cause their rapid movement across and rolling off the edge of the surface. We also demonstrate that the liquid marbles randomly moving across the surface can be captured and immobilized by hydrophilic surface patterns.

  10. Isoporous PS-b-PEO ultrafiltration membranes via self-assembly and water-induced phase separation

    KAUST Repository

    Karunakaran, Madhavan; Nunes, Suzana Pereira; Qiu, Xiaoyan; Yu, Haizhou; Peinemann, Klaus-Viktor

    2014-01-01

    A simple and efficient approach towards the fabrication of a skinned membrane with highly ordered pores in the nanometer range is presented here. We successfully combined the self-assembly of PS-b-PEO block copolymer and water induced phase

  11. Formation of linear and crosslinked polyurethane nanoparticles that self-assemble differently in acetone and in water

    Czech Academy of Sciences Publication Activity Database

    Serkis-Rodzen, Magdalena; Špírková, Milena; Matějíček, P.; Štěpánek, M.

    2017-01-01

    Roč. 106, May (2017), s. 119-127 ISSN 0300-9440 R&D Projects: GA ČR(CZ) GA13-06700S Institutional support: RVO:61389013 Keywords : polyurethane water dispersion * nanoparticles * self-assembly Subject RIV: CD - Macromolecular Chemistry OBOR OECD: Polymer science Impact factor: 2.858, year: 2016

  12. Ag nanoparticles formed by femtosecond pulse laser ablation in water: self-assembled fractal structures

    Energy Technology Data Exchange (ETDEWEB)

    Santillán, Jesica M. J. [CONICET La Plata-CIC, Centro de Investigaciones Ópticas (CIOp) (Argentina); Fernández van Raap, Marcela B., E-mail: raap@fisica.unlp.edu.ar; Mendoza Zélis, Pedro; Coral, Diego [CONICET, Instituto de Física La Plata (IFLP) (Argentina); Muraca, Diego [Universidade Estadual de Campinas, Instituto de Física “Gleb Wataghin” (IFGW) (Brazil); Schinca, Daniel C.; Scaffardi, Lucía B., E-mail: lucias@ciop.unlp.edu.ar [CONICET La Plata-CIC, Centro de Investigaciones Ópticas (CIOp) (Argentina)

    2015-02-15

    We report for the first time on the formation of self-assembled fractals of spherical Ag nanoparticles (Nps) fabricated by femtosecond pulse laser ablation of a solid silver target in water. Fractal structures grew both in two and three Euclidean dimensions (d). Ramified-fractal assemblies of 2 nm height and 5–14 μm large, decorated with Ag Nps of 3 nm size, were obtained in a 2d geometry when highly diluted drops of colloidal suspension were dried at a fast heating rate over a mica substrate. When less-diluted drops were dried at slow heating rate, isolated single Nps or rosette-like structures were formed. Fractal aggregates about 31 nm size in 3d geometry were observed in the as-prepared colloidal suspension. Electron diffraction and optical extinction spectroscopy (OES) analyses performed on the samples confirmed the presence of Ag and Ag{sub 2}O. The analysis of the optical extinction spectrum, using the electrostatic approximation of Mie theory for small spheres, showed the existence of Ag bare core, Ag–Ag{sub 2}O and air–Ag core–shell Nps, Ag–Ag{sub 2}O being the most frequent type [69 % relative abundance (r.a.)]. Core-size and shell-thickness distribution was derived from OES. In situ scattering measurements of the Ag colloidal suspension, carried out by small-angle X-ray scattering, indicate a mass fractal composed of packaged 〈D{sub SAXS}〉 = (5 ± 1) nm particles and fractal dimension d{sub f} = 2.5. Ex situ atomic force microscopy imaging displayed well-ramified structures, which, analyzed with box-counting method, yield a fractal dimension d{sub f} = 1.67. The growing behavior of these 2d and 3d self-assembled fractals is consistent with the diffusion-limited aggregation model.

  13. Water ordering controls the dynamic equilibrium of micelle-fibre formation in self-assembly of peptide amphiphiles.

    Science.gov (United States)

    Deshmukh, Sanket A; Solomon, Lee A; Kamath, Ganesh; Fry, H Christopher; Sankaranarayanan, Subramanian K R S

    2016-08-24

    Understanding the role of water in governing the kinetics of the self-assembly processes of amphiphilic peptides remains elusive. Here, we use a multistage atomistic-coarse-grained approach, complemented by circular dichroism/infrared spectroscopy and dynamic light scattering experiments to highlight the dual nature of water in driving the self-assembly of peptide amphiphiles (PAs). We show computationally that water cage formation and breakage near the hydrophobic groups control the fusion dynamics and aggregation of PAs in the micellar stage. Simulations also suggest that enhanced structural ordering of vicinal water near the hydrophilic amino acids shifts the equilibrium towards the fibre phase and stimulates structure and order during the PA assembly into nanofibres. Experiments validate our simulation findings; the measured infrared O-H bond stretching frequency is reminiscent of an ice-like bond which suggests that the solvated water becomes increasingly ordered with time in the assembled peptide network, thus shedding light on the role of water in a self-assembly process.

  14. Compartmentalization Technologies via Self-Assembly and Cross-Linking of Amphiphilic Random Block Copolymers in Water.

    Science.gov (United States)

    Matsumoto, Mayuko; Terashima, Takaya; Matsumoto, Kazuma; Takenaka, Mikihito; Sawamoto, Mitsuo

    2017-05-31

    Orthogonal self-assembly and intramolecular cross-linking of amphiphilic random block copolymers in water afforded an approach to tailor-make well-defined compartments and domains in single polymer chains and nanoaggregates. For a double compartment single-chain polymer, an amphiphilic random block copolymer bearing hydrophilic poly(ethylene glycol) (PEG) and hydrophobic dodecyl, benzyl, and olefin pendants was synthesized by living radical polymerization (LRP) and postfunctionalization; the dodecyl and benzyl units were incorporated into the different block segments, whereas PEG pendants were statistically attached along a chain. The copolymer self-folded via the orthogonal self-assembly of hydrophobic dodecyl and benzyl pendants in water, followed by intramolecular cross-linking, to form a single-chain polymer carrying double yet distinct hydrophobic nanocompartments. A single-chain cross-linked polymer with a chlorine terminal served as a globular macroinitiator for LRP to provide an amphiphilic tadpole macromolecule comprising a hydrophilic nanoparticle and a hydrophobic polymer tail; the tadpole thus self-assembled into multicompartment aggregates in water.

  15. Comparing and correlating solubility parameters governing the self-assembly of molecular gels using 1,3:2,4-dibenzylidene sorbitol as the gelator.

    Science.gov (United States)

    Lan, Yaqi; Corradini, Maria G; Liu, Xia; May, Tim E; Borondics, Ferenc; Weiss, Richard G; Rogers, Michael A

    2014-12-02

    Solvent properties play a central role in mediating the aggregation and self-assembly of molecular gelators and their growth into fibers. Numerous attempts have been made to correlate the solubility parameters of solvents and gelation abilities of molecular gelators, but a comprehensive comparison of the most important parameters has yet to appear. Here, the degree to which partition coefficients (log P), Henry's law constants (HLC), dipole moments, static relative permittivities (ε(r)), solvatochromic E(T)(30) parameters, Kamlet-Taft parameters (β, α, and π), Catalan's solvatochromic parameters (SPP, SB, and SA), Hildebrand solubility parameters (δ(i)), and Hansen solubility parameters (δ(p), δ(d), δ(h)) and the associated Hansen distance (R(ij)) of 62 solvents (covering a wide range of properties) can be correlated with the self-assembly and gelation of 1,3:2,4-dibenzylidene sorbitol (DBS) gelation, a classic molecular gelator, is assessed systematically. The approach presented describes the basis for each of the parameters and how it can be applied. As such, it is an instructional blueprint for how to assess the appropriate type of solvent parameter for use with other molecular gelators as well as with molecules forming other types of self-assembled materials. The results also reveal several important insights into the factors favoring the gelation of solvents by DBS. The ability of a solvent to accept or donate a hydrogen bond is much more important than solvent polarity in determining whether mixtures with DBS become solutions, clear gels, or opaque gels. Thermodynamically derived parameters could not be correlated to the physical properties of the molecular gels unless they were dissected into their individual HSPs. The DBS solvent phases tend to cluster in regions of Hansen space and are highly influenced by the hydrogen-bonding HSP, δ(h). It is also found that the fate of this molecular gelator, unlike that of polymers, is influenced not only by

  16. Encapsulation of Polythiophene by Glycopolymer for Water Soluble Nano-wire

    Energy Technology Data Exchange (ETDEWEB)

    T Fukuda; Y Inoue; T Koga; M Matsuoka; Y Miura

    2011-12-31

    A water-soluble polythiophene (PT) was prepared by the self-assembling complex with a glycopolymer. The glycopolymer of poly(N-p-vinylbenzyl-D-lactonamide) (PVLA) formed self-assembling cylindrical structure based on the amphiphilicity even after the complexation with PT. We confirmed the improved optical functionality of PT due to the longer conjugated {pi}-orbital. It suggested that PT behaved like molecular nanowire with the self-assembled structure in the hydrophobic core of PVLA. PVLA-PT also showed specific biorecognition against corresponding lectin. These results suggested that the bioactive nanowire formation of PT with the glycopolymer was developed.

  17. Self-Assembled Nanocomposite Organic Polymers with Aluminum and Scandium as Heterogeneous Water-Compatible Lewis Acid Catalysts.

    Science.gov (United States)

    Miyamura, Hiroyuki; Sonoyama, Arisa; Hayrapetyan, Davit; Kobayashi, Shū

    2015-09-01

    While water-compatible Lewis acids have great potential as accessible and environmentally benign catalysts for various organic transformations, efficient immobilization of such Lewis acids while keeping high activity and without leaching of metals even under aqueous conditions is a challenging task. Self-assembled nanocomposite catalysts of organic polymers, carbon black, aluminum reductants, and scandium salts as heterogeneous water-compatible Lewis acid catalysts are described. These catalysts could be successfully applied to various C-C bond-forming reactions without leaching of metals. Scanning transmission electron microscopy analyses revealed that the nanocomposite structure of Al and Sc was fabricated in these heterogeneous catalysts. It is noted that Al species, which are usually decomposed rapidly in the presence of water, are stabilized under aqueous conditions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Isoporous PS-b-PEO ultrafiltration membranes via self-assembly and water-induced phase separation

    KAUST Repository

    Karunakaran, Madhavan

    2014-03-01

    A simple and efficient approach towards the fabrication of a skinned membrane with highly ordered pores in the nanometer range is presented here. We successfully combined the self-assembly of PS-b-PEO block copolymer and water induced phase separation for the preparation of isoporous PS-b-PEO block copolymer membranes. We produced for the first time asymmetric isoporous PS-b-PEO membranes with a 100nm thin isoporous separating layer using water at room temperature as coagulant. This was possible by careful selection of the block lengths and the solvent system. FESEM, AFM and TEM measurements were employed to characterize the nanopores of membranes. The pure water fluxes were measured and the flux of membrane was exceptionally high (around 800Lm-2h-1bar-1). Protein rejection measurements were carried out for this membrane and the membrane had a retention of about 67% of BSA and 99% of γ-globulin. © 2013 Elsevier B.V.

  19. Bola-amphiphile self-assembly

    DEFF Research Database (Denmark)

    Svaneborg, Carsten

    2012-01-01

    Bola-amphiphiles are rod-like molecules where both ends of the molecule likes contact with water, while the central part of the molecule dislikes contact with water. What do such molecules do when they are dissolved in water? They self-assemble into micelles. This is a Dissipartive particle...... dynamics simulation of this self-assembly behaviour....

  20. Nanoparticles with high payloads of pipemidic acid, a poorly soluble crystalline drug: drug-initiated polymerization and self-assembly approach

    Directory of Open Access Journals (Sweden)

    Elisabetta Pancani

    2018-05-01

    Full Text Available Nowadays, biodegradable polymers such as poly(lactic acid (PLA, poly(D,L-lactic-co-glycolic acid (PLGA and poly(ε-caprolactone (PCL remain the most common biomaterials to produce drug-loaded nanoparticles (NPs. Pipemidic acid (PIP is a poorly soluble antibiotic with a strong tendency to crystallize. PIP incorporation in PLA/PLGA NPs was challenging because of PIP crystals formation and burst release. As PIP had a poor affinity for the NPs, an alternative approach to encapsulation was used, consisting in coupling PIP to PCL. Thus, a PCL–PIP conjugate was successfully synthesized by an original drug-initiated polymerization in a single step without the need of catalyst. PCL–PIP was characterized by NMR, IR, SEC and mass spectrometry. PCL–PIP was used to prepare self-assembled NPs with PIP contents as high as 27% (w/w. The NPs were characterized by microscopy, DLS, NTA and TRPS. This study paves the way towards the production of NPs with high antibiotic payloads by drug-initiated polymerization. Further studies will deal with the synthesis of novel polymer–PIP conjugates with ester bonds between the drug and PCL. PIP can be considered as a model drug and the strategy developed here could be extended to other challenging antibiotics or anticancer drugs and employed to efficiently incorporate them in NPs. KEY WORDS: Pipemidic acid, Nanoparticle, Antibiotic, Nanoprecipitation, Crystalline drug, Drug-initiated   polymerization

  1. Adsorption at air-water and oil-water interfaces and self-assembly in aqueous solution of ethoxylated polysorbate nonionic surfactants.

    Science.gov (United States)

    Penfold, Jeffrey; Thomas, Robert K; Li, Peixun X; Petkov, Jordan T; Tucker, Ian; Webster, John R P; Terry, Ann E

    2015-03-17

    The Tween nonionic surfactants are ethoxylated sorbitan esters, which have 20 ethylene oxide groups attached to the sorbitan headgroup and a single alkyl chain, lauryl, palmityl, stearyl, or oleyl. They are an important class of surfactants that are extensively used in emulsion and foam stabilization and in applications associated with foods, cosmetics and pharmaceuticals. A range of ethoxylated polysorbate surfactants, with differing degrees of ethoxylation from 3 to 50 ethylene oxide groups, have been synthesized and characterized by neutron reflection, small-angle neutron scattering, and surface tension. In conjunction with different alkyl chain groups, this provides the opportunity to modify their surface properties, their self-assembly in solution, and their interaction with macromolecules, such as proteins. Adsorption at the air-water and oil-water interfaces and solution self-assembly of the range of ethoxylated polysorbate surfactants synthesized are presented and discussed.

  2. Ionic self-assembly of surface functionalized metal-organic polyhedra nanocages and their ordered honeycomb architecture at the air/water interface.

    Science.gov (United States)

    Li, Yantao; Zhang, Daojun; Gai, Fangyuan; Zhu, Xingqi; Guo, Ya-nan; Ma, Tianliang; Liu, Yunling; Huo, Qisheng

    2012-08-18

    Metal-organic polyhedra (MOP) nanocages were successfully surface functionalized via ionic self-assembly and the ordered honeycomb architecture of the encapsulated MOP nanocages was also fabricated at the air/water surface. The results provide a novel synthetic method and membrane processing technique of amphiphilic MOP nanocages for various applications.

  3. Effect of water on self-assembled tubules in β-sitosterol + γ-oryzanol-based organogels

    Science.gov (United States)

    den Adel, Ruud; Heussen, Patricia C. M.; Bot, Arjen

    2010-10-01

    Mixtures of β-sitosterol and γ-oryzanol form a network in triglyceride oil that may serve as an alternative to the network of small crystallites of triglycerides occurring in regular oil structuring. The present x-ray diffraction study investigates the relation between the crystal forms of the individual compounds and the mixture in oil, water and emulsion. β-Sitosterol and γ-oryzanol form normal crystals in oil, in water, or in emulsions. The crystals are sensitive to the presence of water. The mixture of β-sitosterol + γ-oryzanol forms crystals in water and emulsions that can be traced back to the crystals of the pure compounds. Only in oil, a completely different structure emerges in the mixture of β-sitosterol + γ-oryzanol, which bears no relation to the structures that are formed by both individual compounds, and which can be identified as a self-assembled tubule (diameter 7.2±0.1 nm, wall thickness 0.8±0.2 nm).

  4. Effect of water on self-assembled tubules in {beta}-sitosterol + {gamma}-oryzanol-based organogels

    Energy Technology Data Exchange (ETDEWEB)

    Adel, Ruud den; Heussen, Patricia C M; Bot, Arjen, E-mail: ruud-den.adel@unilever.co [Unilever Research and Development Vlaardingen, Olivier van Noortlaan 120, NL-3133 AT Vlaardingen (Netherlands)

    2010-10-01

    Mixtures of {beta}-sitosterol and {gamma}-oryzanol form a network in triglyceride oil that may serve as an alternative to the network of small crystallites of triglycerides occurring in regular oil structuring. The present x-ray diffraction study investigates the relation between the crystal forms of the individual compounds and the mixture in oil, water and emulsion. {beta}-Sitosterol and {gamma}-oryzanol form normal crystals in oil, in water, or in emulsions. The crystals are sensitive to the presence of water. The mixture of {beta}-sitosterol + {gamma}-oryzanol forms crystals in water and emulsions that can be traced back to the crystals of the pure compounds. Only in oil, a completely different structure emerges in the mixture of {beta}-sitosterol + {gamma}-oryzanol, which bears no relation to the structures that are formed by both individual compounds, and which can be identified as a self-assembled tubule (diameter 7.2{+-}0.1 nm, wall thickness 0.8{+-}0.2 nm).

  5. Effect of water on self-assembled tubules in β-sitosterol + γ-oryzanol-based organogels

    International Nuclear Information System (INIS)

    Adel, Ruud den; Heussen, Patricia C M; Bot, Arjen

    2010-01-01

    Mixtures of β-sitosterol and γ-oryzanol form a network in triglyceride oil that may serve as an alternative to the network of small crystallites of triglycerides occurring in regular oil structuring. The present x-ray diffraction study investigates the relation between the crystal forms of the individual compounds and the mixture in oil, water and emulsion. β-Sitosterol and γ-oryzanol form normal crystals in oil, in water, or in emulsions. The crystals are sensitive to the presence of water. The mixture of β-sitosterol + γ-oryzanol forms crystals in water and emulsions that can be traced back to the crystals of the pure compounds. Only in oil, a completely different structure emerges in the mixture of β-sitosterol + γ-oryzanol, which bears no relation to the structures that are formed by both individual compounds, and which can be identified as a self-assembled tubule (diameter 7.2±0.1 nm, wall thickness 0.8±0.2 nm).

  6. Haemozoin (B-haematin) biomineralization occurs by self-assembly near the lipid/water interface

    CSIR Research Space (South Africa)

    Egan, TJ

    2006-09-01

    Full Text Available remained unknown, although lipids or proteins have been suggested to catalyse its formation. We have found that B-haematin (synthetic haemozoin) forms rapidly under physiologically realistic conditions near octanol/water, pentanol/water and lipid...

  7. Water-soluble vitamins.

    Science.gov (United States)

    Konings, Erik J M

    2006-01-01

    Simultaneous Determination of Vitamins.--Klejdus et al. described a simultaneous determination of 10 water- and 10 fat-soluble vitamins in pharmaceutical preparations by liquid chromatography-diode-array detection (LC-DAD). A combined isocratic and linear gradient allowed separation of vitamins in 3 distinct groups: polar, low-polar, and nonpolar. The method was applied to pharmaceutical preparations, fortified powdered drinks, and food samples, for which results were in good agreement with values claimed. Heudi et al. described a separation of 9 water-soluble vitamins by LC-UV. The method was applied for the quantification of vitamins in polyvitaminated premixes used for the fortification of infant nutrition products. The repeatability of the method was evaluated at different concentration levels and coefficients of variation were based on, for example, LC. Koontz et al. showed results of total folate concentrations measured by microbiological assay in a variety of foods. Samples were submitted in a routine manner to experienced laboratories that regularly perform folate analysis fee-for-service basis in the United States. Each laboratory reported the use of a microbiological method similar to the AOAC Official Method for the determination of folic acid. Striking was, the use of 3 different pH extraction conditions by 4 laboratories. Only one laboratory reported using a tri-enzyme extraction. Results were evaluated. Results for folic acid fortified foods had considerably lower between-laboratory variation, 9-11%, versus >45% for other foods. Mean total folate ranged from 14 to 279 microg/100 g for a mixed vegetable reference material, from 5 to 70 microg/100 g for strawberries, and from 28 to 81 microg/100 g for wholemeal flour. One should realize a large variation in results, which might be caused by slight modifications in the microbiological analysis of total folate in foods or the analysis in various (unfortified) food matrixes. Furthermore, optimal

  8. Chiral amplification of oligopeptides in two-dimensional crystalline self-assemblies on water

    DEFF Research Database (Denmark)

    Zepik, H.; Shavit, E.; Tang, M.

    2002-01-01

    from chiral nonracemic mixtures. The crystalline structures on the water surface were determined by grazing incidence x-ray diffraction and the diastereomeric composition of the oligopeptides by matrix-assisted laser desorption time-of-flight mass spectrometry with enantio-labeling. These results...

  9. Self-Assembly of Peptides at the Air/Water Interface

    Science.gov (United States)

    Sayar, Mehmet

    2013-03-01

    Peptides are commonly used as building blocks for design and development of novel materials with a variety of application areas ranging from drug design to biotechnology. The precise control of molecular architecture and specific nature of the nonbonded interactions among peptides enable aggregates with well defined structural and functional properties. The interaction of peptides with interfaces leads to dramatic changes in their conformational and aggregation behavior. In this talk, I will discuss our research on the interplay of intermolecular forces and influence of interfaces. In the first part the amphiphilic nature of short peptide oligomers and their behavior at the air/water interface will be discussed. The surface driving force and its decomposition will be analyzed. In the second part aggregation of peptides in bulk water and at an interface will be discussed. Different design features which can be tuned to control aggregation behavior will be analyzed.

  10. Electrostatic Interactions Govern "Odd/Even" Effects in Water-Induced Gemini Surfactant Self-Assembly.

    Science.gov (United States)

    Mantha, Sriteja; McDaniel, Jesse G; Perroni, Dominic V; Mahanthappa, Mahesh K; Yethiraj, Arun

    2017-01-26

    Gemini surfactants comprise two single-tailed surfactants connected by a linker at or near the hydrophilic headgroup. They display a variety of water-concentration-dependent lyotropic liquid crystal morphologies that are sensitive to surfactant molecular structure and the nature of the headgroups and counterions. Recently, an interesting dependence of the aqueous-phase behavior on the length of the linker has been discovered; odd-numbered linker length surfactants exhibit characteristically different phase diagrams than even-numbered linker surfactants. In this work, we investigate this "odd/even effect" using computer simulations, focusing on experimentally studied gemini dicarboxylates with Na + counterions, seven nonterminal carbon atoms in the tails, and either three, four, five, or six carbon atoms in the linker (denoted Na-73, Na-74, Na-75, and Na-76, respectively). We find that the relative electrostatic repulsion between headgroups in the different morphologies is correlated with the qualitative features of the experimental phase diagrams, predicting destabilization of hexagonal phases as the cylinders pack close together at low water content. Significant differences in the relative headgroup orientations of Na-74 and Na-76 compared to those of Na-73 and Na-75 surfactants lead to differences in linker-linker packing and long-range headgroup-headgroup electrostatic repulsion, which affects the delicate electrostatic balance between the hexagonal and gyroid phases. Much of the fundamental insight presented in this work is enabled by the ability to computationally construct and analyze metastable phases that are not observable in experiments.

  11. Towards field detection of polycyclic aromatic hydrocarbons (PAHs) in environment water using a self-assembled SERS sensor

    Science.gov (United States)

    Yan, Xia; Shi, Xiaofeng; Yang, Jie; Zhang, Xu; Jia, Wenjie; Ma, Jun

    2017-10-01

    A self-assembled surface enhanced Raman scattering (SERS) sensor is reported in this paper. To achieve high sensitivity, a high sensitive SERS substrate and a high efficient self-constructed light path were made. The SERS substrate was composed by gold nanoparticles (AuNPs, pH=13), glycidyl methacrylate-ethylene dimethacrylate (GMA-EDMA) porous material and syringe filter. The substrate had a good repeatability, and the relative standard deviation (RSD) of the same substrate was less than 5%. The efficiency of the self-constructed light path is about two times better than RPB Y type reflection fiber when the energy density was roughly equal on samples. The size of the SERS sensor is 350×300×180 mm and the weight is 15 kg. Its miniaturization and portable can comply with the requirements of field detection. Besides, it has good sensitivity, stability and selectivity. For lab experiments, strong enhancements of Raman scattering from organic pollutant polycyclic aromatic hydrocarbons (PAHs) molecules were exhibited. The dependences of SERS intensities on concentrations of PAHs were investigated, and the results indicated that they revealed a satisfactory linear relationship in low concentrations. The limits of detection (LODs) of PAHs phenanthrene and fluorene are 8.3×10-10 mol/L and 7.1×10-10 mol/L respectively [signal to noise ratio (S/N) =3]. Based on this SERS sensor, signals of benzo (a) pyrene and pyrene were found in environmental water and the sensor would be an ideal candidate for field detection of PAHs.

  12. Self-assembled systems of water soluble metal 8-hydroxyquinolates with surfactants and conjugated polyelectrolytes

    DEFF Research Database (Denmark)

    Burrows, Hugh D.; Costa, Telma; Luisa Ramos, M.

    2016-01-01

    We have studied the interaction of 8-hydroxyquinoline-5-sulfonate (8-HQS) with the metal ions Al(III) and Zn(II) in aqueous solution in the presence of tetraalkylammonium surfactants using UV/vis absorption, fluorescence, NMR spectroscopy and electrical conductivity measurements, complemented by ...... assembly between the conjugated polyelectrolyte and the metal/8-HQS complex, as demonstrated by electronic energy transfer. The potential of these systems in sensing, light harvesting, and electron injection/transport layers in organic semiconductor devices is discussed....

  13. On nitrogen solubility in water

    International Nuclear Information System (INIS)

    Kalajda, Yu.A.; Katkov, Yu.D.; Kuznetsov, V.A.; Lastovtsev, A.Yu.; Lastochkin, A.P.; Susoev, V.S.

    1980-01-01

    Presented are the results of experimental investigations on nitrogen solubility in water under 0-15 MPa pressure, at the temperature of 100-340 deg C and nitrogen concentration of 0-5000 n.ml. N 2 /kg H 2 O. Empiric equations are derived and a diagram of nitrogen solubility in water is developed on the basis of the experimental data, as well as critically evaluated published data. The investigation results can be used in analyzing water-gas regime of a primary heat carrier in stream-generating plants with water-water reactors

  14. Noble gases solubility in water

    International Nuclear Information System (INIS)

    Crovetto, Rosa; Fernandez Prini, Roberto.

    1980-07-01

    The available experimental data of solubility of noble gases in water for temperatures smaller than 330 0 C have been critically surveyed. Due to the unique structure of the solvent, the solubility of noble gases in water decreases with temperature passing through a temperature of minimum solubility which is different for each gas, and then increases at higher temperatures. As aresult of the analysis of the experimental data and of the features of the solute-solvent interaction, a generalized equation is proposed which enables thecalculation of Henry's coefficient at different temperatures for all noble gases. (author) [es

  15. Self-assembled nanostructures

    CERN Document Server

    Zhang, Jin Z; Liu, Jun; Chen, Shaowei; Liu, Gang-yu

    2003-01-01

    Nanostructures refer to materials that have relevant dimensions on the nanometer length scales and reside in the mesoscopic regime between isolated atoms and molecules in bulk matter. These materials have unique physical properties that are distinctly different from bulk materials. Self-Assembled Nanostructures provides systematic coverage of basic nanomaterials science including materials assembly and synthesis, characterization, and application. Suitable for both beginners and experts, it balances the chemistry aspects of nanomaterials with physical principles. It also highlights nanomaterial-based architectures including assembled or self-assembled systems. Filled with in-depth discussion of important applications of nano-architectures as well as potential applications ranging from physical to chemical and biological systems, Self-Assembled Nanostructures is the essential reference or text for scientists involved with nanostructures.

  16. Monosaccharides as Versatile Units for Water-Soluble Supramolecular Polymers.

    Science.gov (United States)

    Leenders, Christianus M A; Jansen, Gijs; Frissen, Martijn M M; Lafleur, René P M; Voets, Ilja K; Palmans, Anja R A; Meijer, E W

    2016-03-18

    We introduce monosaccharides as versatile water-soluble units to compatibilise supramolecular polymers based on the benzene-1,3,5-tricarboxamide (BTA) moiety with water. A library of monosaccharide-based BTAs is evaluated, varying the length of the alkyl chain (hexyl, octyl, decyl and dodecyl) separating the BTA and saccharide units, as well as the saccharide units (α-glucose, β-glucose, α-mannose and α-galactose). In all cases, the monosaccharides impart excellent water compatibility. The length of the alkyl chain is the determining factor to obtain either long, one-dimensional supramolecular polymers (dodecyl spacer), small aggregates (decyl spacer) or molecularly dissolved (octyl and hexyl) BTAs in water. For the BTAs comprising a dodecyl spacer, our results suggest that a cooperative self-assembly process is operative and that the introduction of different monosaccharides does not significantly change the self- assembly behaviour. Finally, we investigate the potential of post-assembly functionalisation of the formed supramolecular polymers by taking advantage of dynamic covalent bond formation between the monosaccharides and benzoxaboroles. We observe that the supramolecular polymers readily react with a fluorescent benzoxaborole derivative permitting imaging of these dynamic complexes by confocal fluorescence microscopy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Grafting C8-C16 alkyl groups altered the self-assembly and curcumin -loading properties of sodium caseinate in water.

    Science.gov (United States)

    Zhang, Yaqiong; Yang, Puyu; Yao, Fangyi; Liu, Jie; Yu, Liangli Lucy

    2018-02-01

    The data presented here are related to the research article entitled "Synthesis and characterization of alkylated caseinate, and its structure-curcumin loading property relationship in water" (Zhang et al., 2018) [1]. This data article reports the detailed spectra information for 1 H NMR, 13 C NMR and UPLC-Q-TOF MS of the N-succinimidyl fatty acid esters with various alkyl chain lengths (Cn-NHSs, n = 8, 12, 14 and 16). 1 H NMR, 13 C NMR and UPLC-Q-TOF MS spectra for C16-NHS are shown as an example. Then the stacked 1 H NMR spectra of the obtained alkylated caseinates (Cn-caseinates, n = 8, 12, 14 and 16) are provided. The surface hydrophobicity index (S 0 ) of Cn-caseinates with different substitution degrees (SD) of alkyl groups is shown. Additionally, Visual appearances for the formed aqueous dispersions of curcumin-loaded native caseinate (NaCas) and Cn-caseinates self-assemblies are shown. X-ray diffraction patterns of curcumin, C16-caseinate, its physical mixture and curcumin-loaded C16-caseinate self-assemblies are examined. The re-dispersibility and short-term storage stability of the curcumin-loaded NaCas and C16-caseinate self-assemblies are also studied.

  18. Macroscopic magnetic Self assembly

    NARCIS (Netherlands)

    Löthman, Per Arvid

    2018-01-01

    Exploring the macroscopic scale's similarities to the microscale is part and parcel of this thesis as reflected in the research question: what can we learn about the microscopic scale by studying the macroscale? Investigations of the environment in which the self-assembly takes place, and the

  19. General Mechanism of Morphology Transition and Spreading Area-dependent Phase Diagram of Block Copolymer Self-assembly at the Air/Water Interface

    Science.gov (United States)

    Kim, Dong Hyup; Kim, So Youn

    Block copolymers (BCPs) can be self-assembled forming periodic nanostructures, which have been employed in many applications. While general agreements exist for the phase diagrams of BCP self-assembly in bulk or thin films, a fundamental understanding of BCP structures at the air/water interface still remain elusive. The current study explains morphology transition of BCPs with relative fraction of each block at the air/water interface: block fraction is the only parameter to control the morphology. In this study, we show morphology transitions from spherical to cylindrical and planar structures with neat polystyrene-b-poly(2-vinylpyridine) (PS-b-P2VP) via reducing the spreading area of BCP solution at the air/water interface. For example, PS-b-P2VP in a fixed block fraction known to form only spheres can experience sphere to cylinder or lamellar transitions depending on the spreading area at the air/water interface. Suggesting a new parameter to control the interfacial assembly of BCPs, a complete phase diagram is drawn with two paramters: relative block fraction and spreading area. We also explain the morphology transition with the combinational description of dewetting mechanism and spring effect of hydrophilic block.

  20. AFM investigation of effect of absorbed water layer structure on growth mechanism of octadecyltrichlorosilane self-assembled monolayer on oxidized silicon

    International Nuclear Information System (INIS)

    Li, Shaowei; Zheng, Yanjun; Chen, Changfeng

    2016-01-01

    The growth mechanism of an octadecyltrichlorosilane (OTS) self-assembled monolayer on a silicon oxide surface at various relative humidities has been investigated. Atomic force microscopy images show that excess water may actually hinder the nucleation and growth of OTS islands. A moderate amount of water is favorable for the nucleation and growth of OTS islands in the initial stage; however, the completion of the monolayer is very slow in the final stage. The growth of OTS islands on a low-water-content surface maintains a relatively constant speed and requires the least amount of time. The mobility of water molecules is thought to play an important role in the OTS monolayers, and a low-mobility water layer provides a steady condition for OTS monolayer growth.

  1. Self-assembled ZnGa2O4–RGO nanocomposites and their enhanced adsorption and photocatalytic performance in water treatment

    International Nuclear Information System (INIS)

    Huang, K.; Zhao, X.S.; Li, Y.F.; Xu, X.; Liang, C.; Fan, D.Y.; Yang, H.J.; Zhang, R.; Wang, Y.G.; Lei, M.

    2014-01-01

    Highlights: • ZnGa 2 O 4 –RGO nanocomposites by a self-assembly approach under facile solvothermal condition. • ZnGa 2 O 4 NPs have a well-controlled size and uniform distribution. • The water treatment process is formed by two successive parts: adsorption and photocatalytic degradation. • The content of RGO sheets is crucial for optimizing the photocatalytic activity with a key value of 5%. - Abstract: ZnGa 2 O 4 nanoparticles (NPs) have been successfully anchored onto reduced graphene oxide (RGO) nanosheets by a self-assembly approach under facile solvothermal condition. The as-synthesized ZnGa 2 O 4 –RGO nanocomposites were investigated by X-ray diffraction (XRD), field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM). The results reveal that ZnGa 2 O 4 NPs with a well-controlled size and uniform distribution were successfully assembled onto RGO sheets. Moreover, both methylene blue (MB) and rhodamine B (RhB) were employed as model pollutants to evaluate the ability of as-prepared ZnGa 2 O 4 –RGO nanocomposites for wastewater treatment. The content of RGO sheets was found to be crucial for optimizing the photocatalytic activity of various nanocomposites with a key value of 5% beyond which the adsorption ability of ZnGa 2 O 4 –RGO nanocomposites for dyes dominates the process of water treatment

  2. Electrochemical detection of Hg(II in water using self-assembled single walled carbon nanotube-poly(m-amino benzene sulfonic acid on gold electrode

    Directory of Open Access Journals (Sweden)

    Gauta Gold Matlou

    2016-09-01

    Full Text Available This work reports on the detection of mercury using single walled carbon nanotube-poly (m-amino benzene sulfonic acid (SWCNT-PABS modified gold electrode by self-assembled monolayers (SAMs technique. A thiol containing moiety (dimethyl amino ethane thiol (DMAET was used to facilitate the assembly of the SWCNT-PABS molecules onto the Au electrode surface. The successfully assembled monolayers were characterised using atomic force microscopy (AFM. Cyclic voltammetric and electrochemical impedance spectroscopic studies of the modified electrode (Au-DMAET-(SWCNT-PABS showed improved electron transfer over the bare Au electrode and the Au-DMAET in [Fe (CN6]3−/4− solution. The Au-DMAET-(SWCNT-PABS was used for the detection of Hg in water by square wave anodic stripping voltammetry (SWASV analysis at the following optimized conditions: deposition potential of −0.1 V, deposition time of 30 s, 0.1 M HCl electrolyte and pH 3. The sensor showed a good sensitivity and a limit of detection of 0.06 μM with a linear concentration range of 20 ppb to 250 ppb under the optimum conditions. The analytical applicability of the proposed method with the sensor electrode was tested with real water sample and the method was validated with inductively coupled plasma – optical emission spectroscopy. Keywords: Self-assembly, Gold electrode, Carbon nanotubes, Electrochemical detection, Mercury

  3. Modelling Polar Self Assembly

    Science.gov (United States)

    Olvera de La Cruz, Monica; Sayar, Mehmet; Solis, Francisco J.; Stupp, Samuel I.

    2001-03-01

    Recent experimental studies in our group have shown that self assembled thin films of noncentrosymmetric supramolecular objects composed of triblock rodcoil molecules exhibit finite polar order. These aggregates have both long range dipolar and short range Ising-like interactions. We study the ground state of a simple model with these competing interactions. We find that the competition between Ising-like and dipolar forces yield a periodic domain structure, which can be controlled by adjusting the force constants and film thickness. When the surface forces are included in the potential, the system exhibits a finite macroscopic polar order.

  4. Silk-collagen-like block copolymers with charged blocks : self-assembly into nanosized ribbons and macroscopic gels

    NARCIS (Netherlands)

    Martens, A.A.

    2008-01-01

    The research described in this thesis concerns the design, biotechnological production, and physiochemical study of large water-soluble (monodisperse) protein triblock-copolymers with sequential blocks, some of which are positively or negatively charged and self-assemble in response to a change in

  5. Self-Assembly, Surface Activity and Structure of n-Octyl-β-D-thioglucopyranoside in Ethylene Glycol-Water Mixtures

    Directory of Open Access Journals (Sweden)

    Cristóbal Carnero Ruiz

    2013-02-01

    Full Text Available The effect of the addition of ethylene glycol (EG on the interfacial adsorption and micellar properties of the alkylglucoside surfactant n-octyl-β-D-thioglucopyranoside (OTG has been investigated. Critical micelle concentrations (cmc upon EG addition were obtained by both surface tension measurements and the pyrene 1:3 ratio method. A systematic increase in the cmc induced by the presence of the co-solvent was observed. This behavior was attributed to a reduction in the cohesive energy of the mixed solvent with respect to pure water, which favors an increase in the solubility of the surfactant with EG content. Static light scattering measurements revealed a decrease in the mean aggregation number of the OTG micelles with EG addition. Moreover, dynamic light scattering data showed that the effect of the surfactant concentration on micellar size is also controlled by the content of the co-solvent in the system. Finally, the effect of EG addition on the microstructure of OTG micelles was investigated using the hydrophobic probe Coumarin 153 (C153. Time-resolved fluorescence anisotropy decay curves of the probe solubilized in micelles were analyzed using the two-step model. The results indicate a slight reduction of the average reorientation time of the probe molecule with increasing EG in the mixed solvent system, thereby suggesting a lesser compactness induced by the presence of the co-solvent.

  6. Debye ring diffraction elucidation of 2D photonic crystal self-assembly and ordering at the air-water interface.

    Science.gov (United States)

    Smith, N L; Coukouma, A; Dubnik, S; Asher, S A

    2017-12-06

    We fabricate 2D photonic crystals (2DPC) by spreading a dispersion of charged colloidal particles (diameters = 409, 570, and 915 nm) onto the surface of electrolyte solutions using a needle tip flow method. When the interparticle electrostatic interaction potential is large, particles self-assemble into highly ordered hexagonal close packed (hcp) monolayers. Ordered 2DPC efficiently forward diffract monochromatic light to produce a Debye ring on a screen parallel to the 2DPC. The diameter of the Debye ring is inversely proportional to the 2DPC particle spacing, while the Debye ring brightness and thickness depends on the 2DPC ordering. The Debye ring thickness increases as the 2DPC order decreases. The Debye ring ordering measurements of 2DPC attached to glass slides track measurements of the 2D pair correlation function order parameter calculated from SEM micrographs. The Debye ring method was used to investigate the 2DPC particle spacing, and ordering at the air-solution interface of NaCl solutions, and for 2DPC arrays attached to glass slides. Surprisingly, the 2DPC ordering does not monotonically decrease as the salt concentration increases. This is because of chloride ion adsorption onto the anionic particle surfaces. This adsorption increases the particle surface charge and compensates for the decreased Debye length of the electric double layer when the NaCl concentration is below a critical value.

  7. Self-assembly of self-assembled molecular triangles

    Indian Academy of Sciences (India)

    While the solution state structure of 1 can be best described as a trinuclear complex, in the solidstate well-fashioned intermolecular - and CH- interactions are observed. Thus, in the solid-state further self-assembly of already self-assembled molecular triangle is witnessed. The triangular panels are arranged in a linear ...

  8. Highly efficient removal of Malachite green from water by a magnetic reduced graphene oxide/zeolitic imidazolate framework self-assembled nanocomposite

    International Nuclear Information System (INIS)

    Lin, Kun-Yi Andrew; Lee, Wei-Der

    2016-01-01

    Graphical abstract: - Highlights: • MRGO/ZIF nanocomposite was prepared via self-assembly and used for MG adsorption. • MRGO/ZIF can exhibit an ultra-high adsorption capacity for MG of ∼3000 mg g −1 . • Adsorption isotherm was properly fitted to the Langmuir–Freundlich isotherm model. • Effects of temperature, pH and co-existing compounds were investigated. • Recyclability of MRGO/ZIF for MG adsorption was highly efficient and stable. - Abstract: Compared to the relatively low adsorption capacities of conventional adsorbents for Malachite Green (MG) (i.e., ∼500 mg g −1 ), zeolitic imidazolate framework (ZIF) appears to be a promising adsorbent considering its significantly high adsorption capacity (i.e., >2000 mg g −1 ). Nevertheless, using such a nano-scale ZIF material for adsorption may lead to secondary contamination from the release of nanomaterials to the environment. Thus, ZIF has to be recovered conveniently to prevent the secondary contamination and facilitate the separation of adsorbent from water after adsorption. To this end, in this study ZIF nanocrystals were loaded on the sheet-like magnetic reduced graphene oxide (MRGO) to form a self-assembled MRGO/ZIF. The self-assembly of MRGO/ZIF was achieved possibly via the electrostatic attraction and the π–π stacking interaction between MRGO and ZIF. The resultant MRGO/ZIF exhibited an ultra-high adsorption capacity for MG (∼3000 mg g −1 ). The adsorption kinetics, isotherm, activation and thermodynamics were also determined. Other factors affecting the adsorption were examined including temperature, pH and co-existing ions/compound. To demonstrate that MRGO/ZIF can be recovered and reused, a multiple-cycle of MG adsorption using the regenerated MRGO/ZIF was revealed and the recyclability remained highly efficient and stable. The highly-effective, recoverable and re-usable features enable MRGO/ZIF a promising adsorbent to remove MG from water.

  9. Thermosensitive Self-Assembling Block Copolymers as Drug Delivery Systems

    Directory of Open Access Journals (Sweden)

    Giovanni Filippo Palmieri

    2011-04-01

    Full Text Available Self-assembling block copolymers (poloxamers, PEG/PLA and PEG/PLGA diblock and triblock copolymers, PEG/polycaprolactone, polyether modified poly(Acrylic Acid with large solubility difference between hydrophilic and hydrophobic moieties have the property of forming temperature dependent micellar aggregates and, after a further temperature increase, of gellifying due to micelle aggregation or packing. This property enables drugs to be mixed in the sol state at room temperature then the solution can be injected into a target tissue, forming a gel depot in-situ at body temperature with the goal of providing drug release control. The presence of micellar structures that give rise to thermoreversible gels, characterized by low toxicity and mucomimetic properties, makes this delivery system capable of solubilizing water-insoluble or poorly soluble drugs and of protecting labile molecules such as proteins and peptide drugs.

  10. Multivalent protein assembly using monovalent self-assembling building blocks

    NARCIS (Netherlands)

    Petkau - Milroy, K.; Sonntag, M.H.; Colditz, A.; Brunsveld, L.

    2013-01-01

    Discotic molecules, which self-assemble in water into columnar supramolecular polymers, emerged as an alternative platform for the organization of proteins. Here, a monovalent discotic decorated with one single biotin was synthesized to study the self-assembling multivalency of this system in regard

  11. Valence States Modulation Strategy for Picomole Level Assay of Hg2+ in Drinking and Environmental Water by Directional Self-Assembly of Gold Nanorods.

    Science.gov (United States)

    Chen, Lu; Lu, Linlin; Wang, Sufan; Xia, Yunsheng

    2017-06-23

    In this study, we present a valence states modulation strategy for picomole level assay of Hg 2+ using directional self-assembly of gold nanorods (AuNRs) as signal readout. Hg 2+ ions are first controllably reduced to Hg + ions by appropriate ascorbic acid, and the reduced Hg + ions react with the tips of the preadded AuNRs and form gold amalgam. Such Hg + decorated AuNRs then end-to-end self-assemble into one-dimensional architectures by the bridging effects of lysine based on the high affinity of NH 2 -Hg + interactions. Correspondingly, the AuNRs' longitudinal surface plasmon resonance is gradually reduced and a new broad band appears at 900-1100 nm region simultaneously. The resulting distinctly ratiometric signal output is not only favorable for Hg 2+ ions detection but competent for their quantification. Under optimal conditions, the linear range is 22.8 pM to 11.4 nM, and the detection limit is as low as 8.7 pM. Various transition/heavy metal ions, such as Pb 2+ , Ti 2+ , Co 2+ , Fe 3+ , Mn 2+ , Ba 2+ , Fe 2+ , Ni 2+ , Al 3+ , Cu 2+ , Ag + , and Au 3+ , do not interfere with the assay. Because of ultrahigh sensitivity and excellent selectivity, the proposed system can be employed for assaying ultratrace of Hg 2+ containing in drinking and commonly environmental water samples, which is difficult to be achieved by conventional colorimetric systems. These results indicate that the present platform possesses specific advantages and potential applications in the assay of ultratrace amounts of Hg 2+ ions.

  12. New self-assembled material based on Ru nanoparticles and 4-sulfocalix[4]arene as an efficient and recyclable catalyst for reduction of brilliant yellow azo dye in water: a new model catalytic reaction

    Energy Technology Data Exchange (ETDEWEB)

    Rambabu, Darsi; Pradeep, Chullikkattil P.; Dhir, Abhimanew, E-mail: abhimanew@iitmandi.ac.in [Indian Institute of Technology (India)

    2016-12-15

    New self-assembled material (Ru@SC) with ruthenium nanoparticles (Ru NPs) and 4-sulfocalix[4]arene (SC) is synthesized in water at room temperature. Ru@SC is characterized by thermal gravimetric analysis, FT-IR, powder x-ray diffraction, TEM and SEM analysis. The size of Ru nanoparticles in the self-assembly is approximately 5 nm. The self-assembled material Ru@SC shows an efficient catalytic reduction of toxic ‘brilliant yellow’ (BY) azo dye. The reduced amine products were successfully separated and confirmed by single-crystal XRD, NMR and UV-Vis spectroscopy. Ru@SC showed a better catalytic activity in comparison with commercial catalysts Ru/C (ruthenium on charcoal 5 %) and Pd/C (palladium on charcoal 5 and 10 %). The catalyst also showed a promising recyclability and heterogeneous nature as a catalyst for reduction of ‘BY’ azo dye.

  13. Self-assembled Nanomaterials for Chemotherapeutic Applications

    Science.gov (United States)

    Shieh, Aileen

    The self-assembly of short designed peptides into functional nanostructures is becoming a growing interest in a wide range of fields from optoelectronic devices to nanobiotechnology. In the medical field, self-assembled peptides have especially attracted attention with several of its attractive features for applications in drug delivery, tissue regeneration, biological engineering as well as cosmetic industry and also the antibiotics field. We here describe the self-assembly of peptide conjugated with organic chromophore to successfully deliver sequence independent micro RNAs into human non-small cell lung cancer cell lines. The nanofiber used as the delivery vehicle is completely non-toxic and biodegradable, and exhibit enhanced permeability effect for targeting malignant tumors. The transfection efficiency with nanofiber as the delivery vehicle is comparable to that of the commercially available RNAiMAX lipofectamine while the toxicity is significantly lower. We also conjugated the peptide sequence with camptothecin (CPT) and observed the self-assembly of nanotubes for chemotherapeutic applications. The peptide scaffold is non-toxic and biodegradable, and drug loading of CPT is high, which minimizes the issue of systemic toxicity caused by extensive burden from the elimination of drug carriers. In addition, the peptide assembly drastically increases the solubility and stability of CPT under physiological conditions in vitro, while active CPT is gradually released from the peptide chain under the slight acidic tumor cell environment. Cytotoxicity results on human colorectal cancer cells and non-small cell lung cancer cell lines display promising anti-cancer properties compared to the parental CPT drug, which cannot be used clinically due to its poor solubility and lack of stability in physiological conditions. Moreover, the peptide sequence conjugated with 5-fluorouracil formed a hydrogel with promising topical chemotherapeutic applications that also display

  14. Self-assembling of poly(ε-caprolactone)-b-poly(ethylene oxide) diblock copolymers in aqueous solution and at the silica-water interface

    International Nuclear Information System (INIS)

    Leyh, B.; Vangeyte, P.; Heinrich, M.; Auvray, L.; De Clercq, C.; Jerome, R.

    2004-01-01

    Small-angle neutron scattering is used to investigate the self-assembling behaviour of poly(ε-caprolactone)-b-poly(ethylene oxide) diblock copolymers with various block lengths (i) in aqueous solution, (ii) in aqueous solution with the addition of sodium dodecyl sulphate (SDS) and (iii) at the silica-water interface. Micelles are observed under our experimental conditions due to the very small critical micellar concentration of these copolymers (0.01 g/l). The poly(ε-caprolactone) core is surrounded by a poly(ethylene oxide) corona. The micellar form factors have been measured at low copolymer concentrations (0.2 wt%) under selected contrast matching conditions. The data have been fitted to various analytical models to extract the micellar core and corona sizes. SDS is shown to induce partial micelle disruption together with an increase of the poly(ethylene oxide) corona extension from 25% (without SDS) to 70% (with SDS) of a completely extended PEO 114 chain. Our data at the silica-water interface are compatible with the adsorption of micelles

  15. Self-assembled magnetic nanoparticle supported zeolitic imidazolate framework-8: An efficient adsorbent for the enrichment of triazine herbicides from fruit, vegetables, and water.

    Science.gov (United States)

    Zhou, Lian; Su, Ping; Deng, Yulan; Yang, Yi

    2017-02-01

    Zeolitic imidazolate frameworks have positive surface charges and high adsorption capabilities. In this work, zeolitic imidazolate frameworks-8 and negatively charged magnetic nanoparticles were self-assembled by electrostatic attraction under sonication. The extraction performance of the synthesized hybrid material was evaluated by using it as a magnetic adsorbent for the enrichment of triazine herbicides in various sample matrices prior to analysis using ultrafast liquid chromatography. The main parameters, that is, extraction time, adsorbent dosage, salt concentration, and desorption conditions, were evaluated. Under the optimum conditions, good linear responses from 2.5 to 200 ng/mL for atrazine (simazine) and 1 to 200 ng/mL for prometryn (ametryn), with correlation coefficients (R 2 ) higher than 0.9992 were obtained. The detection limits of the method (S/N = 3) were 0.18-0.72 ng/mL. The proposed method was successfully used to determine triazine herbicides in six samples, namely, apple, pear, strawberry, pakchoi, lettuce, and water. The amounts of simazine in all the fruit and vegetable samples were 10.8-25.2 ng/mL. The recoveries of all the analytes were 88.0-101.9%, with relative standard deviations of less than 8.8%. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Equation of State for Phospholipid Self-Assembly

    DEFF Research Database (Denmark)

    Marsh, Derek

    2016-01-01

    Phospholipid self-assembly is the basis of biomembrane stability. The entropy of transfer from water to self-assembled micelles of lysophosphatidylcholines and diacyl phosphatidylcholines with different chain lengths converges to a common value at a temperature of 44°C. The corresponding enthalpies...... of transfer converge at ∼-18°C. An equation of state for the free energy of self-assembly formulated from this thermodynamic data depends on the heat capacity of transfer as the sole parameter needed to specify a particular lipid. For lipids lacking calorimetric data, measurement of the critical micelle...

  17. Self-alignment of RFID dies on four-pad patterns with water droplet for sparse self-assembly

    International Nuclear Information System (INIS)

    Chang, Bo; Routa, Iiris; Sariola, Veikko; Zhou, Quan

    2011-01-01

    This paper reports an in-depth study of a water-droplet-assisted self-alignment technique that self-aligns radio frequency identification (RFID) dies on four-pad patterns. The segmented structure of four hydrophilic pads on a hydrophobic substrate brings freedom to the design of the electrical functionality and the surface functionality. The paper investigates the influence of the key parameters that may affect the self-alignment in theory and experiment. The theoretical model justifies that RFID dies can be reliably aligned on the segmented four-pad pattern even when the initial placement error is as large as 50% of the size of the die and the gap between the four pads is about 10% of the size of the die. A method has been introduced to estimate the sufficient droplet volume for self-alignment. A series of experiments have been carried out to verify the results of the model. The experiments indicate that the self-alignment between the 730 × 730 µm RFID dies and the pattern occurs reliably when the releasing bias between the RFID die and antenna is less than 400 µm for patterns with 50 and 100 µm gaps, and successful self-alignment is possible even with greater bias of 500 µm

  18. L-Arginine-Triggered Self-Assembly of CeO2 Nanosheaths on Palladium Nanoparticles in Water.

    Science.gov (United States)

    Wang, Xiao; Zhang, Yibo; Song, Shuyan; Yang, Xiangguang; Wang, Zhuo; Jin, Rongchao; Zhang, Hongjie

    2016-03-24

    Pd@CeO2 core-shell nanostructures with a tunable Pd core size, shape, and nanostructure as well as a tunable CeO2 sheath thickness were obtained by a biomolecule-assisted method. The synthetic process is simple and green, as it involves only the heating of a mixture of Ce(NO3 )3 , l-arginine, and preformed Pd seeds in water without additives. Importantly, the synthesis is free of thiol groups and halide ions, thus providing a possible solution to the problem of secondary pollution by Pd nanoparticles in the sheath-coating process. The Pd/CeO2 nanostructures can be composited well with γ-Al2 O3 to create a heterogeneous catalyst. In subsequent tests of catalytic NO reduction by CO, Pd@CeO2 /Al2 O3 samples based on Pd cubes (6, 10, and 18 nm), Pd octahedra (6 nm), and Pd cuboctahedra (9 nm) as well as a simply loaded Pd cube (6 nm)-CeO2 /Al2 O3 sample were used as catalysts to investigate the effects of the Pd core size and shape and the hybrid nanostructure on the catalytic performance. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Onset of self-assembly

    International Nuclear Information System (INIS)

    Chitanvis, S.M.

    1998-01-01

    We have formulated a theory of self-assembly based on the notion of local gauge invariance at the mesoscale. Local gauge invariance at the mesoscale generates the required long-range entropic forces responsible for self-assembly in binary systems. Our theory was applied to study the onset of mesostructure formation above a critical temperature in estane, a diblock copolymer. We used diagrammatic methods to transcend the Gaussian approximation and obtain a correlation length ξ∼(c-c * ) -γ , where c * is the minimum concentration below which self-assembly is impossible, c is the current concentration, and γ was found numerically to be fairly close to 2/3. The renormalized diffusion constant vanishes as the critical concentration is approached, indicating the occurrence of critical slowing down, while the correlation function remains finite at the transition point. copyright 1998 The American Physical Society

  20. Self-assembling peptide semiconductors

    Science.gov (United States)

    Tao, Kai; Makam, Pandeeswar; Aizen, Ruth; Gazit, Ehud

    2017-01-01

    Semiconductors are central to the modern electronics and optics industries. Conventional semiconductive materials bear inherent limitations, especially in emerging fields such as interfacing with biological systems and bottom-up fabrication. A promising candidate for bioinspired and durable nanoscale semiconductors is the family of self-assembled nanostructures comprising short peptides. The highly ordered and directional intermolecular π-π interactions and hydrogen-bonding network allow the formation of quantum confined structures within the peptide self-assemblies, thus decreasing the band gaps of the superstructures into semiconductor regions. As a result of the diverse architectures and ease of modification of peptide self-assemblies, their semiconductivity can be readily tuned, doped, and functionalized. Therefore, this family of electroactive supramolecular materials may bridge the gap between the inorganic semiconductor world and biological systems. PMID:29146781

  1. Water Soluble Polymers for Pharmaceutical Applications

    Directory of Open Access Journals (Sweden)

    Veeran Gowda Kadajji

    2011-11-01

    Full Text Available Advances in polymer science have led to the development of novel drug delivery systems. Some polymers are obtained from natural resources and then chemically modified for various applications, while others are chemically synthesized and used. A large number of natural and synthetic polymers are available. In the present paper, only water soluble polymers are described. They have been explained in two categories (1 synthetic and (2 natural. Drug polymer conjugates, block copolymers, hydrogels and other water soluble drug polymer complexes have also been explained. The general properties and applications of different water soluble polymers in the formulation of different dosage forms, novel delivery systems and biomedical applications will be discussed.

  2. Solution self-assembly and adsorption at the air-water interface of the monorhamnose and dirhamnose rhamnolipids and their mixtures.

    Science.gov (United States)

    Chen, M L; Penfold, J; Thomas, R K; Smyth, T J P; Perfumo, A; Marchant, R; Banat, I M; Stevenson, P; Parry, A; Tucker, I; Grillo, I

    2010-12-07

    The self-assembly in solution and adsorption at the air-water interface, measured by small-angle neutron scattering, SANS, and neutron reflectivity, NR, of the monorhamnose and dirhamnose rhamnolipids (R1, R2) and their mixtures, are discussed. The production of the deuterium-labeled rhamnolipids (required for the NR studies) from a Pseudomonas aeruginosa culture and their separation into the pure R1 and R2 components is described. At the air-water interface, R1 and R2 exhibit Langmuir-like adsorption isotherms, with saturated area/molecule values of about 60 and 75 Å(2), respectively. In R1/R2 mixtures, there is a strong partitioning of R1 to the surface and R2 competes less favorably because of the steric or packing constraints of the larger R2 dirhamnose headgroup. In dilute solution (<20 mM), R1 and R2 form small globular micelles, L(1), with aggregation numbers of about 50 and 30, respectively. At higher solution concentrations, R1 has a predominantly planar structure, L(α) (unilamellar, ULV, or bilamellar, BLV, vesicles) whereas R2 remains globular, with an aggregation number that increases with increasing surfactant concentration. For R1/R2 mixtures, solutions rich in R2 are predominantly micellar whereas solutions rich in R1 have a more planar structure. At an intermediate composition (60 to 80 mol % R1), there are mixed L(α)/L(1) and L(1)/L(α) regions. However, the higher preferred curvature associated with R2 tends to dominate the mixed R1/R2 microstructure and its associated phase behavior.

  3. Self-assembly of cyclodextrins

    DEFF Research Database (Denmark)

    Fülöp, Z.; Kurkov, S.V.; Nielsen, T.T.

    2012-01-01

    The design of functional cyclodextrin (CD) nanoparticles is a developing area in the field of nanomedicine. CDs can not only help in the formation of drug carriers but also increase the local concentration of drugs at the site of action. CD monomers form aggregates by self-assembly, a tendency...... that increases upon formation of inclusion complexes with lipophilic drugs. However, the stability of such aggregates is not sufficient for parenteral administration. In this review CD polymers and CD containing nanoparticles are categorized, with focus on self-assembled CD nanoparticles. It is described how...

  4. An oil-in-water self-assembly synthesis, characterization and photocatalytic properties of nano Ag@AgCl surface-sensitized K2Ti4O9

    International Nuclear Information System (INIS)

    Liang, Yinghua; Lin, Shuanglong; Liu, Li; Hu, Jinshan; Cui, Wenquan

    2014-01-01

    Highlights: • The plasmatic Ag@AgCl surface-sensitized K 2 Ti 4 O 9 composite photocatalysts. • Ag@AgCl greatly increased visible light absorption for K 2 Ti 4 O 9 . • The photocatalysts exhibited enhanced photocatalytic dye degradation. - Abstract: Nano-sized plasmonic Ag@AgCl surface-sensitized K 2 Ti 4 O 9 composite photocatalysts (hereafter designated as Ag@AgCl/K 2 Ti 4 O 9 ) was synthesized via a facile oil-in-water self-assembly method. The photocatalytic activity of the prepared materials for RhB (Rhodamine B) degradation was examined under visible light irradiation. The results reveal that the size of Ag@AgCl, which evenly dispersed on the surface of K 2 Ti 4 O 9 , distributes about 20–50 nm. The UV–vis diffuse reflectance spectra indicate that Ag@AgCl/K 2 Ti 4 O 9 samples have a significantly enhanced optical absorption in 380–700 nm. The photocatalytic activities of the Ag@AgCl/K 2 Ti 4 O 9 samples increase first and then decrease with increasing amount of loading Ag@AgCl and the Ag@AgCl(20 wt.%)/K 2 Ti 4 O 9 sample exhibits the best photocatalytic activity and 94.47% RhB was degraded after irradiation for 2 h. Additionally, studies performed using radical scavengers indicated that O 2 · − and Cl 0 acted as the main reactive species. The electronic interaction was systematically studied and confirmed by the photo-electrochemical measurements

  5. Grafting C8-C16 alkyl groups altered the self-assembly and curcumin –loading properties of sodium caseinate in water

    Directory of Open Access Journals (Sweden)

    Yaqiong Zhang

    2018-02-01

    Full Text Available The data presented here are related to the research article entitled “Synthesis and characterization of alkylated caseinate, and its structure-curcumin loading property relationship in water” (Zhang et al., 2018 [1]. This data article reports the detailed spectra information for 1H NMR, 13C NMR and UPLC-Q-TOF MS of the N-succinimidyl fatty acid esters with various alkyl chain lengths (Cn-NHSs, n = 8, 12, 14 and 16. 1H NMR, 13C NMR and UPLC-Q-TOF MS spectra for C16-NHS are shown as an example. Then the stacked 1H NMR spectra of the obtained alkylated caseinates (Cn-caseinates, n = 8, 12, 14 and 16 are provided. The surface hydrophobicity index (S0 of Cn-caseinates with different substitution degrees (SD of alkyl groups is shown. Additionally, Visual appearances for the formed aqueous dispersions of curcumin-loaded native caseinate (NaCas and Cn-caseinates self-assemblies are shown. X-ray diffraction patterns of curcumin, C16-caseinate, its physical mixture and curcumin-loaded C16-caseinate self-assemblies are examined. The re-dispersibility and short-term storage stability of the curcumin-loaded NaCas and C16-caseinate self-assemblies are also studied. Keywords: Caseinate, Alkylated caseinate, Self-assembly, Curcumin-loading property

  6. Biomedical Applications of Self-Assembling Peptides

    NARCIS (Netherlands)

    Radmalekshahi, Mazda; Lempsink, Ludwijn; Amidi, Maryam; Hennink, Wim E.; Mastrobattista, Enrico

    2016-01-01

    Self-assembling peptides have gained increasing attention as versatile molecules to generate diverse supramolecular structures with tunable functionality. Because of the possibility to integrate a wide range of functional domains into self-assembling peptides including cell attachment sequences,

  7. Solubilities of boric acid in heavy water

    International Nuclear Information System (INIS)

    Nakai, Shigetsugu; Aoi, Hideki; Hayashi, Ken-ichi; Katoh, Taizo; Watanabe, Takashi.

    1988-01-01

    A gravimetric analysis using meta-boric acid (HBO 2 or DBO 2 ) as a weighing form has been developed for solubility measurement. The method gave satisfactory results in preliminary measurement of solubilities of boric acid in light water. By using this method, the solubilities of 10 B enriched D 3 BO 3 in heavy water were measured. The results are as follows; 2.67 (7deg C), 3.52 (15deg C), 5.70 (30deg C), 8.87 (50deg C) and 12.92 (70deg C) w/o, respectively. These values are about 10% lower than those in light water. Thermodynamical consideration based on the data shows that boric acid is the water structure breaker. (author)

  8. 3D Programmable Micro Self Assembly

    National Research Council Canada - National Science Library

    Bohringer, Karl F; Parviz, Babak A; Klavins, Eric

    2005-01-01

    .... We have developed a "self assembly tool box" consisting of a range of methods for micro-scale self-assembly in 2D and 3D We have shown physical demonstrations of simple 3D self-assemblies which lead...

  9. Self-assembled nanoparticles of glycol chitosan – Ergocalciferol succinate conjugate, for controlled release

    DEFF Research Database (Denmark)

    Quinones, Javier Perez; Gothelf, Kurt Vesterager; Kjems, Jørgen

    2012-01-01

    Glycol chitosan was linked to vitamin D2 hemisuccinate (ergocalciferol hemisuccinate) for controlled release through water-soluble carbodiimide activation. The resulting conjugate formed self-assembled nanoparticles in aqueous solution with particle size of 279 nm and ergocalciferol hemisuccinate...... content of 8.4% (w/w). Almost spherical 50–90 nm nanoparticles were observed by scanning and transmission electron microscopy upon drying. Drug linking to glycol chitosan was confirmed by FTIR spectroscopy and proton NMR. Particles were also characterized by differential scanning calorimetry and wide...

  10. Solubility of carbohydrates in heavy water.

    Science.gov (United States)

    Cardoso, Marcus V C; Carvalho, Larissa V C; Sabadini, Edvaldo

    2012-05-15

    The solubility of several mono-(glucose and xylose), di-(sucrose and maltose), tri-(raffinose) and cyclic (α-cyclodextrin) saccharides in H(2)O and in D(2)O were measured over a range of temperatures. The solution enthalpies for the different carbohydrates in the two solvents were determined using the vant' Hoff equation and the values in D(2)O are presented here for the first time. Our findings indicate that the replacement of H(2)O by D(2)O remarkably decreases the solubilities of the less soluble carbohydrates, such as maltose, raffinose and α-cyclodextrin. On the other hand, the more soluble saccharides, glucose, xylose, and sucrose, are practically insensitive to the H/D replacement in water. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. One-step self-assembled nanomicelles for improving the oral bioavailability of nimodipine.

    Science.gov (United States)

    Luo, Jing-Wen; Zhang, Zhi-Rong; Gong, Tao; Fu, Yao

    2016-01-01

    Our study aimed to develop a self-assembled nanomicelle for oral administration of nimodipine (NIM) with poor water solubility. Using Solutol(®) HS15, the NIM-loaded self-assembled nanomicelles displayed a near-spherical morphology with a narrow size distribution of 12.57 ± 0.21 nm (polydispersity index =0.071 ± 0.011). Compared with Nimotop(®) (NIM tablets), the intestinal absorption of NIM from NIM nanomicelle in rats was improved by 3.13- and 2.25-fold in duodenum and jejunum at 1 hour after oral administration. The cellular transport of NIM nanomicelle in Caco-2 cell monolayers was significantly enhanced compared to that of Nimotop(®). Regarding the transport pathways, clathrin, lipid raft/caveolae, and macropinocytosis mediated the cell uptake of NIM nanomicelles, while P-glycoprotein and endoplasmic reticulum/Golgi complex (ER/Golgi) pathways were involved in exocytosis. Pharmacokinetic studies in our research laboratory have showed that the area under the plasma concentration-time curve (AUC0-∞) of NIM nanomicelles was 3.72-fold that of Nimotop(®) via oral administration in rats. Moreover, the NIM concentration in the brain from NIM nanomicelles was dramatically improved. Therefore, Solutol(®) HS15-based self-assembled nanomicelles represent a promising delivery system to enhance the oral bioavailability of NIM.

  12. Radiculography with water-soluble contraste medium

    International Nuclear Information System (INIS)

    Araujo Pinheiro, R.S. de

    1987-01-01

    The etiologic diagnosis of the lumbar pain is discussed. The radiculography with water-soluble contrast medium is used and 250 cases are studied. Some practical criteria of indication executation and interpretation of the examination are reported. (M.A.C.) [pt

  13. Formation of mixed and patterned self-assembled films of alkylphosphonates on commercially pure titanium surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Rudzka, Katarzyna; Sanchez Treviño, Alda Y.; Rodríguez-Valverde, Miguel A., E-mail: marodri@ugr.es; Cabrerizo-Vílchez, Miguel A.

    2016-12-15

    Highlights: • Chemically-tailored titanium surfaces were prepared by self-assembly of alkylphosphonates. • Mixed self-assembled films were prepared with aqueous mixtures of two alkylphosphonates. • Single self-assembled films were altered by laser abrasion. • Mixed and patterned self-assembled films on titanium may guide the bone-like formation. - Abstract: Titanium is extensively employed in biomedical devices, in particular as implant. The self-assembly of alkylphosphonates on titanium surfaces enable the specific adsorption of biomolecules to adapt the implant response against external stimuli. In this work, chemically-tailored cpTi surfaces were prepared by self-assembly of alkylphosphonate molecules. By bringing together attributes of two grafting molecules, aqueous mixtures of two alkylphosphonates were used to obtain mixed self-assembled films. Single self-assembled films were also altered by laser abrasion to produce chemically patterned cpTi surfaces. Both mixed and patterned self-assembled films were confirmed by AFM, ESEM and X-ray photoelectron spectroscopy. Water contact angle measurements also revealed the composition of the self-assembly films. Chemical functionalization with two grafting phosphonate molecules and laser surface engineering may be combined to guide the bone-like formation on cpTi, and the future biological response in the host.

  14. Multilayer encapsulated mesoporous silica nanospheres as an oral sustained drug delivery system for the poorly water-soluble drug felodipine

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Liang [Department of Pharmaceutics, Shenyang Pharmaceutical University, P.O. Box 32, Liaoning Province, Shenyang 110016 (China); Sun, Hongrui [English Teaching Department, School of Basic Courses, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016 (China); Zhao, Qinfu; Han, Ning; Bai, Ling; Wang, Ying; Jiang, Tongying [Department of Pharmaceutics, Shenyang Pharmaceutical University, P.O. Box 32, Liaoning Province, Shenyang 110016 (China); Wang, Siling, E-mail: silingwang@syphu.edu.cn [Department of Pharmaceutics, Shenyang Pharmaceutical University, P.O. Box 32, Liaoning Province, Shenyang 110016 (China)

    2015-02-01

    We used a combination of mesoporous silica nanospheres (MSN) and layer-by-layer (LBL) self-assembly technology to establish a new oral sustained drug delivery system for the poorly water-soluble drug felodipine. Firstly, the model drug was loaded into MSN, and then the loaded MSN were repeatedly encapsulated by chitosan (CHI) and acacia (ACA) via LBL self-assembly method. The structural features of the samples were studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen adsorption. The encapsulating process was monitored by zeta-potential and surface tension measurements. The physical state of the drug in the samples was characterized by differential scanning calorimetry (DSC) and X-ray diffractometry (XRD). The influence of the multilayer with different number of layers on the drug release rate was studied using thermal gravimetric analysis (TGA) and surface tension measurement. The swelling effect and the structure changes of the multilayer were investigated to explore the relationship between the drug release behavior and the state of the multilayer under different pH conditions. The stability and mucosa adhesive ability of the prepared nanoparticles were also explored. After multilayer coating, the drug release rate was effectively controlled. The differences in drug release behavior under different pH conditions could be attributed to the different states of the multilayer. And the nanoparticles possessed good stability and strong mucosa adhesive ability. We believe that this combination offers a simple strategy for regulating the release rate of poorly water-soluble drugs and extends the pharmaceutical applications of inorganic materials and polymers. - Highlights: • A combination of inorganic and organic materials was applied. • Mesoporous silica nanospheres (MSN) were used as drug carriers. • Chitosan and acacia were encapsulated through layer-by-layer self-assembly. • The release rate of the poorly

  15. Multilayer encapsulated mesoporous silica nanospheres as an oral sustained drug delivery system for the poorly water-soluble drug felodipine

    International Nuclear Information System (INIS)

    Hu, Liang; Sun, Hongrui; Zhao, Qinfu; Han, Ning; Bai, Ling; Wang, Ying; Jiang, Tongying; Wang, Siling

    2015-01-01

    We used a combination of mesoporous silica nanospheres (MSN) and layer-by-layer (LBL) self-assembly technology to establish a new oral sustained drug delivery system for the poorly water-soluble drug felodipine. Firstly, the model drug was loaded into MSN, and then the loaded MSN were repeatedly encapsulated by chitosan (CHI) and acacia (ACA) via LBL self-assembly method. The structural features of the samples were studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen adsorption. The encapsulating process was monitored by zeta-potential and surface tension measurements. The physical state of the drug in the samples was characterized by differential scanning calorimetry (DSC) and X-ray diffractometry (XRD). The influence of the multilayer with different number of layers on the drug release rate was studied using thermal gravimetric analysis (TGA) and surface tension measurement. The swelling effect and the structure changes of the multilayer were investigated to explore the relationship between the drug release behavior and the state of the multilayer under different pH conditions. The stability and mucosa adhesive ability of the prepared nanoparticles were also explored. After multilayer coating, the drug release rate was effectively controlled. The differences in drug release behavior under different pH conditions could be attributed to the different states of the multilayer. And the nanoparticles possessed good stability and strong mucosa adhesive ability. We believe that this combination offers a simple strategy for regulating the release rate of poorly water-soluble drugs and extends the pharmaceutical applications of inorganic materials and polymers. - Highlights: • A combination of inorganic and organic materials was applied. • Mesoporous silica nanospheres (MSN) were used as drug carriers. • Chitosan and acacia were encapsulated through layer-by-layer self-assembly. • The release rate of the poorly

  16. Direct imaging by atomic force microscopy of surface-localized self-assembled monolayers on a cuprate superconductor and surface X-ray scattering analysis of analogous monolayers on the surface of water

    DEFF Research Database (Denmark)

    Schougaard, Steen B.; Reitzel, Niels; Bjørnholm, Thomas

    2007-01-01

    A self-assembled monolayer of CF3(CF2)(3)(CH2)(11)NH2 atop the (001) surface of the high-temperature superconductor YBa2Cu3O7-x was imaged by atomic force microscopy (AFM). The AFM images provide direct 2D-structural evidence for the epitaxial 5.5 angstrom square root 2 x root 2R45 degrees unit...... was studied by grazing-incidence X-ray diffraction and specular X-ray reflectivity. Structural differences and similarities between the water-supported and superconductor-localized monolayers are discussed....

  17. Prodrugs as self-assembled hydrogels: a new paradigm for biomaterials.

    Science.gov (United States)

    Vemula, Praveen Kumar; Wiradharma, Nikken; Ankrum, James A; Miranda, Oscar R; John, George; Karp, Jeffrey M

    2013-12-01

    Prodrug-based self-assembled hydrogels represent a new class of active biomaterials that can be harnessed for medical applications, in particular the design of stimuli responsive drug delivery devices. In this approach, a promoiety is chemically conjugated to a known-drug to generate an amphiphilic prodrug that is capable of forming self-assembled hydrogels. Prodrug-based self-assembled hydrogels are advantageous as they alter the solubility of the drug, enhance drug loading, and eliminate the use of harmful excipients. In addition, self-assembled prodrug hydrogels can be designed to undergo controlled drug release or tailored degradation in response to biological cues. Herein we review the development of prodrug-based self-assembled hydrogels as an emerging class of biomaterials that overcome several common limitations encountered in conventional drug delivery. Published by Elsevier Ltd.

  18. Morphology and Pattern Control of Diphenylalanine Self-Assembly via Evaporative Dewetting.

    Science.gov (United States)

    Chen, Jiarui; Qin, Shuyu; Wu, Xinglong; Chu, And Paul K

    2016-01-26

    Self-assembled peptide nanostructures have unique physical and biological properties and promising applications in electrical devices and functional molecular recognition. Although solution-based peptide molecules can self-assemble into different morphologies, it is challenging to control the self-assembly process. Herein, controllable self-assembly of diphenylalanine (FF) in an evaporative dewetting solution is reported. The fluid mechanical dimensionless numbers, namely Rayleigh, Marangoni, and capillary numbers, are introduced to control the interaction between the solution and FF molecules in the self-assembly process. The difference in the film thickness reflects the effects of Rayleigh and Marangoni convection, and the water vapor flow rate reveals the role of viscous fingering in the emergence of aligned FF flakes. By employing dewetting, various FF self-assembled patterns, like concentric and spokelike, and morphologies, like strips and hexagonal tubes/rods, can be produced, and there are no significant lattice structural changes in the FF nanostructures.

  19. Characterization of Soluble Organics in Produced Water

    Energy Technology Data Exchange (ETDEWEB)

    Bostick, D.T.

    2002-01-16

    Soluble organics in produced water and refinery effluents represent treatment problems for the petroleum industry. Neither the chemistry involved in the production of soluble organics nor the impact of these chemicals on total effluent toxicity is well understood. The U.S. Department of Energy provides funding for Oak Ridge National Laboratory (ORNL) to support a collaborative project with Shell, Chevron, Phillips, and Statoil entitled ''Petroleum and Environmental Research Forum project (PERF 9844: Manage Water-Soluble Organics in Produced Water''). The goal of this project, which involves characterization and evaluation of these water-soluble compounds, is aimed at reducing the future production of such contaminants. To determine the effect that various drilling conditions might have on water-soluble organics (WSO) content in produced water, a simulated brine water containing the principal inorganic components normally found in Gulf of Mexico (GOM) brine sources was prepared. The GOM simulant was then contacted with as-received crude oil from a deep well site to study the effects of water cut, produced-water pH, salinity, pressure, temperature, and crude oil sources on the type and content of the WSO in produced water. The identities of individual semivolatile organic compounds (SVOCs) were determined in all as-received crude and actual produced water samples using standard USEPA Method (8270C) protocol. These analyses were supplemented with the more general measurements of total petroleum hydrocarbon (TPH) content in the gas (C{sub 6}-C{sub 10}), diesel (C{sub 10}-C{sub 20}), and oil (C{sub 20}-C{sub 28}) carbon ranges as determined by both gas chromatographic (GC) and infrared (IR) analyses. An open liquid chromatographic procedure was also used to differentiate the saturated hydrocarbon, aromatic hydrocarbon, and polar components within the extractable TPH. Inorganic constituents in the produced water were analyzed by ion

  20. Chemical reactions directed Peptide self-assembly.

    Science.gov (United States)

    Rasale, Dnyaneshwar B; Das, Apurba K

    2015-05-13

    Fabrication of self-assembled nanostructures is one of the important aspects in nanoscience and nanotechnology. The study of self-assembled soft materials remains an area of interest due to their potential applications in biomedicine. The versatile properties of soft materials can be tuned using a bottom up approach of small molecules. Peptide based self-assembly has significant impact in biology because of its unique features such as biocompatibility, straight peptide chain and the presence of different side chain functionality. These unique features explore peptides in various self-assembly process. In this review, we briefly introduce chemical reaction-mediated peptide self-assembly. Herein, we have emphasised enzymes, native chemical ligation and photochemical reactions in the exploration of peptide self-assembly.

  1. Film self-assembly properties of vacuum residua from crude oil and correlation to the stability of water/crude oil emulsions[Supercritical fluid extraction and fractional technology (SFEF)

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Bo

    2005-07-01

    In this thesis, SFEF technology has been used to obtain a fine separation of vacuum residua. Three kinds of vacuum residua from Iranian Heavy Crude Oil, Iranian Light Crude Oil and Daqing Crude Oil have been separated respectively into three series narrow cut fractions as a function of the average molecular weight. And their molecular parameters have been characterized by Vapour Pressure Osmometry(VPO) system, Ultraviolet(UV) spectroscopy, Infrared(IR) spectroscopy as well as by elemental analysis. The various fractions of vacuum residua have been added to an oil/water model system. The oil phase used was pure heptane, pure toluene, a mixture of heptane and toluene etc. Various properties of the interfacial film have been studied such as the self-assembly properties, interfacial tension and interfacial viscosity, etc. The self-assembly procedure of interfacial film of vacuum residua fractions were focused by means of the Wilhelmy plate method (Paper 1). The self-assembly states of interfacial film of vacuum residua fraction from Iranian Heavy and Daqing crude oil have been revealed by using Langmuir-Blodgett technology respectively (Paper II and Paper III). From measurement of the interfacial shear viscosity, the mechanical strength of the interfacial film formed by the vacuum residua fraction has been described (Paper IV) and the roles of the surfactants added in the interfacial film have been confirmed (Paper V). At the same time, the oil/water interfacial tensions of vacuum residua fractions from the three kinds of crude oil have been studied and compared (Paper VI and Paper VII). Characteristic properties of emulsions stabilized by the vacuum residua, such as Zeta potential (Paper VIII) and particle size distribution (Paper IX), have also been studied. An attempt has been made to explain the variations of emulsion properties in terms of the interfacial self-assembly of vacuum residua fractions. Finally, based up the above research and using chemometric methods

  2. Biochemical synthesis of water soluble conducting polymers

    Science.gov (United States)

    Bruno, Ferdinando F.; Bernabei, Manuele

    2016-05-01

    An efficient biomimetic route for the synthesis of conducting polymers/copolymers complexed with lignin sulfonate and sodium (polystyrenesulfonate) (SPS) will be presented. This polyelectrolyte assisted PEG-hematin or horseradish peroxidase catalyzed polymerization of pyrrole (PYR), 3,4 ethyldioxithiophene (EDOT) and aniline has provided a route to synthesize water-soluble conducting polymers/copolymers under acidic conditions. The UV-vis, FTIR, conductivity and cyclic voltammetry studies for the polymers/copolymer complex indicated the presence of a thermally stable and electroactive polymers. Moreover, the use of water-soluble templates, used as well as dopants, provided a unique combination of properties such as high electronic conductivity, and processability. These polymers/copolymers are nowadays tested/evaluated for antirust features on airplanes and helicopters. However, other electronic applications, such as photovoltaics, for transparent conductive polyaniline, actuators, for polypyrrole, and antistatic films, for polyEDOT, will be proposed.

  3. Biochemical synthesis of water soluble conducting polymers

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Ferdinando F., E-mail: Ferdinando-Bruno@uml.edu [US Army Natick Soldier Research, Development and Engineering Center, Natick, MA 01760 (United States); Bernabei, Manuele [ITAF, Test Flight Centre, Chemistry Dept. Pratica di Mare AFB, 00071 Pomezia (Rome), Italy (UE) (Italy)

    2016-05-18

    An efficient biomimetic route for the synthesis of conducting polymers/copolymers complexed with lignin sulfonate and sodium (polystyrenesulfonate) (SPS) will be presented. This polyelectrolyte assisted PEG-hematin or horseradish peroxidase catalyzed polymerization of pyrrole (PYR), 3,4 ethyldioxithiophene (EDOT) and aniline has provided a route to synthesize water-soluble conducting polymers/copolymers under acidic conditions. The UV-vis, FTIR, conductivity and cyclic voltammetry studies for the polymers/copolymer complex indicated the presence of a thermally stable and electroactive polymers. Moreover, the use of water-soluble templates, used as well as dopants, provided a unique combination of properties such as high electronic conductivity, and processability. These polymers/copolymers are nowadays tested/evaluated for antirust features on airplanes and helicopters. However, other electronic applications, such as photovoltaics, for transparent conductive polyaniline, actuators, for polypyrrole, and antistatic films, for polyEDOT, will be proposed.

  4. Biochemical synthesis of water soluble conducting polymers

    International Nuclear Information System (INIS)

    Bruno, Ferdinando F.; Bernabei, Manuele

    2016-01-01

    An efficient biomimetic route for the synthesis of conducting polymers/copolymers complexed with lignin sulfonate and sodium (polystyrenesulfonate) (SPS) will be presented. This polyelectrolyte assisted PEG-hematin or horseradish peroxidase catalyzed polymerization of pyrrole (PYR), 3,4 ethyldioxithiophene (EDOT) and aniline has provided a route to synthesize water-soluble conducting polymers/copolymers under acidic conditions. The UV-vis, FTIR, conductivity and cyclic voltammetry studies for the polymers/copolymer complex indicated the presence of a thermally stable and electroactive polymers. Moreover, the use of water-soluble templates, used as well as dopants, provided a unique combination of properties such as high electronic conductivity, and processability. These polymers/copolymers are nowadays tested/evaluated for antirust features on airplanes and helicopters. However, other electronic applications, such as photovoltaics, for transparent conductive polyaniline, actuators, for polypyrrole, and antistatic films, for polyEDOT, will be proposed.

  5. Water Soluble Polymers for Pharmaceutical Applications

    OpenAIRE

    Veeran Gowda Kadajji; Guru V. Betageri

    2011-01-01

    Advances in polymer science have led to the development of novel drug delivery systems. Some polymers are obtained from natural resources and then chemically modified for various applications, while others are chemically synthesized and used. A large number of natural and synthetic polymers are available. In the present paper, only water soluble polymers are described. They have been explained in two categories (1) synthetic and (2) natural. Drug polymer conjugates, block copolymers, hydrogel...

  6. Nanoscale isoindigo-carriers: self-assembly and tunable properties

    Directory of Open Access Journals (Sweden)

    Tatiana N. Pashirova

    2017-02-01

    Full Text Available Over the last decade isoindigo derivatives have attracted much attention due to their high potential in pharmacy and in the chemistry of materials. In addition, isoindigo derivatives can be modified to form supramolecular structures with tunable morphologies for the use in drug delivery. Amphiphilic long-chain dialkylated isoindigos have the ability to form stable solid nanoparticles via a simple nanoprecipitation technique. Their self-assembly was investigated using tensiometry, dynamic light scattering, spectrophotometry, and fluorometry. The critical association concentrations and aggregate sizes were measured. The hydrophilic–lipophilic balance of alkylated isoindigo derivatives strongly influences aggregate morphology. In the case of short-chain dialkylated isoindigo derivatives, supramolecular polymers of 200 to 700 nm were formed. For long-chain dialkylated isoindigo derivatives, micellar aggregates of 100 to 200 nm were observed. Using micellar surfactant water-soluble forms of monosubstituted 1-hexadecylisoindigo as well as 1,1′-dimethylisoindigo were prepared for the first time. The formation of mixed micellar structures of different types in micellar anionic surfactant solutions (sodium dodecyl sulfate was determined. These findings are of practical importance and are of potential interest for the design of drug delivery systems and new nanomaterials.

  7. Self-Assembly of Infinite Structures

    Directory of Open Access Journals (Sweden)

    Scott M. Summers

    2009-06-01

    Full Text Available We review some recent results related to the self-assembly of infinite structures in the Tile Assembly Model. These results include impossibility results, as well as novel tile assembly systems in which shapes and patterns that represent various notions of computation self-assemble. Several open questions are also presented and motivated.

  8. Self-assembled nanomaterials for photoacoustic imaging

    Science.gov (United States)

    Wang, Lei; Yang, Pei-Pei; Zhao, Xiao-Xiao; Wang, Hao

    2016-01-01

    In recent years, extensive endeavors have been paid to construct functional self-assembled nanomaterials for various applications such as catalysis, separation, energy and biomedicines. To date, different strategies have been developed for preparing nanomaterials with diversified structures and functionalities via fine tuning of self-assembled building blocks. In terms of biomedical applications, bioimaging technologies are urgently calling for high-efficient probes/contrast agents for high-performance bioimaging. Photoacoustic (PA) imaging is an emerging whole-body imaging modality offering high spatial resolution, deep penetration and high contrast in vivo. The self-assembled nanomaterials show high stability in vivo, specific tolerance to sterilization and prolonged half-life stability and desirable targeting properties, which is a kind of promising PA contrast agents for biomedical imaging. Herein, we focus on summarizing recent advances in smart self-assembled nanomaterials with NIR absorption as PA contrast agents for biomedical imaging. According to the preparation strategy of the contrast agents, the self-assembled nanomaterials are categorized into two groups, i.e., the ex situ and in situ self-assembled nanomaterials. The driving forces, assembly modes and regulation of PA properties of self-assembled nanomaterials and their applications for long-term imaging, enzyme activity detection and aggregation-induced retention (AIR) effect for diagnosis and therapy are emphasized. Finally, we conclude with an outlook towards future developments of self-assembled nanomaterials for PA imaging.

  9. Self-assembled nanomaterials for photoacoustic imaging.

    Science.gov (United States)

    Wang, Lei; Yang, Pei-Pei; Zhao, Xiao-Xiao; Wang, Hao

    2016-02-07

    In recent years, extensive endeavors have been paid to construct functional self-assembled nanomaterials for various applications such as catalysis, separation, energy and biomedicines. To date, different strategies have been developed for preparing nanomaterials with diversified structures and functionalities via fine tuning of self-assembled building blocks. In terms of biomedical applications, bioimaging technologies are urgently calling for high-efficient probes/contrast agents for high-performance bioimaging. Photoacoustic (PA) imaging is an emerging whole-body imaging modality offering high spatial resolution, deep penetration and high contrast in vivo. The self-assembled nanomaterials show high stability in vivo, specific tolerance to sterilization and prolonged half-life stability and desirable targeting properties, which is a kind of promising PA contrast agents for biomedical imaging. Herein, we focus on summarizing recent advances in smart self-assembled nanomaterials with NIR absorption as PA contrast agents for biomedical imaging. According to the preparation strategy of the contrast agents, the self-assembled nanomaterials are categorized into two groups, i.e., the ex situ and in situ self-assembled nanomaterials. The driving forces, assembly modes and regulation of PA properties of self-assembled nanomaterials and their applications for long-term imaging, enzyme activity detection and aggregation-induced retention (AIR) effect for diagnosis and therapy are emphasized. Finally, we conclude with an outlook towards future developments of self-assembled nanomaterials for PA imaging.

  10. Molecular self-assembly advances and applications

    CERN Document Server

    Dequan, Alex Li

    2012-01-01

    In the past several decades, molecular self-assembly has emerged as one of the main themes in chemistry, biology, and materials science. This book compiles and details cutting-edge research in molecular assemblies ranging from self-organized peptide nanostructures and DNA-chromophore foldamers to supramolecular systems and metal-directed assemblies, even to nanocrystal superparticles and self-assembled microdevices

  11. Dynamics of self-assembled cytosine nucleobases on graphene

    Science.gov (United States)

    Saikia, Nabanita; Johnson, Floyd; Waters, Kevin; Pandey, Ravindra

    2018-05-01

    Molecular self-assembly of cytosine (C n ) bases on graphene was investigated using molecular dynamics methods. For free-standing C n bases, simulation conditions (gas versus aqueous) determine the nature of self-assembly; the bases prefer to aggregate in the gas phase and are stabilized by intermolecular H-bonds, while in the aqueous phase, the water molecules disrupt base-base interactions, which facilitate the formation of π-stacked domains. The substrate-induced effects, on the other hand, find the polarity and donor-acceptor sites of the bases to govern the assembly process. For example, in the gas phase, the assembly of C n bases on graphene displays short-range ordered linear arrays stabilized by the intermolecular H-bonds. In the aqueous phase, however, there are two distinct configurations for the C n bases assembly on graphene. For the first case corresponding to low surface coverage, the bases are dispersed on graphene and are isolated. The second configuration archetype is disordered linear arrays assembled with medium and high surface coverage. The simulation results establish the role of H-bonding, vdW π-stacking, and the influence of graphene surface towards the self-assembly. The ability to regulate the assembly into well-defined patterns can aid in the design of self-assembled nanostructures for the next-generation DNA based biosensors and nanoelectronic devices.

  12. Biocompatible and Biomimetic Self-Assembly of Functional Nanostructures

    Science.gov (United States)

    2010-02-28

    evaporation induced self-assembly of aqueous silica precursors with a biologically compatible surfactant, glycerol monooleate ( GMO ) via dip-coating...film is first deposited, it has a relatively low contact angle with water and remains in a semi-solid state. Upon exposure to UV/ozone, the GMO begins...Figure 8. A) Water contact angle of a GMO -templated silica film as a function of UV light and ozone exposure time, B) Localization of fluorescently

  13. One-step self-assembled nanomicelles for improving the oral bioavailability of nimodipine

    Directory of Open Access Journals (Sweden)

    Luo JW

    2016-03-01

    Full Text Available Jing-Wen Luo, Zhi-Rong Zhang, Tao Gong, Yao Fu Key Laboratory of Drug Targeting and Drug Delivery Systems, Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, People’s Republic of China Abstract: Our study aimed to develop a self-assembled nanomicelle for oral administration of nimodipine (NIM with poor water solubility. Using Solutol® HS15, the NIM-loaded self-assembled nanomicelles displayed a near-spherical morphology with a narrow size distribution of 12.57±0.21 nm (polydispersity index =0.071±0.011. Compared with Nimotop® (NIM tablets, the intestinal absorption of NIM from NIM nanomicelle in rats was improved by 3.13- and 2.25-fold in duodenum and jejunum at 1 hour after oral administration. The cellular transport of NIM nanomicelle in Caco-2 cell monolayers was significantly enhanced compared to that of Nimotop®. Regarding the transport pathways, clathrin, lipid raft/caveolae, and macropinocytosis mediated the cell uptake of NIM nanomicelles, while P-glycoprotein and endoplasmic reticulum/Golgi complex (ER/Golgi pathways were involved in exocytosis. Pharmacokinetic studies in our research laboratory have showed that the area under the plasma concentration–time curve (AUC0–∞ of NIM nanomicelles was 3.72-fold that of Nimotop® via oral administration in rats. Moreover, the NIM concentration in the brain from NIM nanomicelles was dramatically improved. Therefore, Solutol® HS15-based self-assembled nanomicelles represent a promising delivery system to enhance the oral bioavailability of NIM. Keywords: nanomicelles, stability, nimodipine, oral bioavailability, transport mechanism 

  14. Self-Assembly of Colloidal Particles

    Indian Academy of Sciences (India)

    is self-assembly where one engineers interaction between nanoscopic building blocks so ..... big question in the field how this microscopic chirality of the virus gets translated ... shape emerges due to a competition between the surface tension.

  15. Indomethacin solubility estimation in 1,4-dioxane + water mixtures by the extended hildebrand solubility approach

    Directory of Open Access Journals (Sweden)

    Miller A Ruidiaz

    2011-09-01

    Full Text Available Extended Hildebrand Solubility Approach (EHSA was successfully applied to evaluate the solubility of Indomethacin in 1,4-dioxane + water mixtures at 298.15 K. An acceptable correlation-performance of EHSA was found by using a regular polynomial model in order four of the W interaction parameter vs. solubility parameter of the mixtures (overall deviation was 8.9%. Although the mean deviation obtained was similar to that obtained directly by means of an empiric regression of the experimental solubility vs. mixtures solubility parameters, the advantages of EHSA are evident because it requires physicochemical properties easily available for drugs.

  16. Polymorphism of lipid self-assembly systems

    International Nuclear Information System (INIS)

    Takahashi, Hiroshi

    2002-01-01

    When lipid molecules are dispersed into an aqueous medium, various self-organized structures are formed, depending on conditions (temperature, concentration, etc), in consequence of the amphipathic nature of the molecules. In addition, lipid self-assembly systems exhibit polymorphic phase transition behavior. Since lipids are one of main components of biomembranes, studies on the structure and thermodynamic properties of lipid self-assembly systems are fundamentally important for the consideration of the stability of biomembranes. (author)

  17. Directed Self-Assembly of Nanodispersions

    Energy Technology Data Exchange (ETDEWEB)

    Furst, Eric M [University of Delaware

    2013-11-15

    Directed self-assembly promises to be the technologically and economically optimal approach to industrial-scale nanotechnology, and will enable the realization of inexpensive, reproducible and active nanostructured materials with tailored photonic, transport and mechanical properties. These new nanomaterials will play a critical role in meeting the 21st century grand challenges of the US, including energy diversity and sustainability, national security and economic competitiveness. The goal of this work was to develop and fundamentally validate methods of directed selfassembly of nanomaterials and nanodispersion processing. The specific aims were: 1. Nanocolloid self-assembly and interactions in AC electric fields. In an effort to reduce the particle sizes used in AC electric field self-assembly to lengthscales, we propose detailed characterizations of field-driven structures and studies of the fundamental underlying particle interactions. We will utilize microscopy and light scattering to assess order-disorder transitions and self-assembled structures under a variety of field and physicochemical conditions. Optical trapping will be used to measure particle interactions. These experiments will be synergetic with calculations of the particle polarizability, enabling us to both validate interactions and predict the order-disorder transition for nanocolloids. 2. Assembly of anisotropic nanocolloids. Particle shape has profound effects on structure and flow behavior of dispersions, and greatly complicates their processing and self-assembly. The methods developed to study the self-assembled structures and underlying particle interactions for dispersions of isotropic nanocolloids will be extended to systems composed of anisotropic particles. This report reviews several key advances that have been made during this project, including, (1) advances in the measurement of particle polarization mechanisms underlying field-directed self-assembly, and (2) progress in the

  18. Syntheses and Self-assembling Behaviors of Pentagonal Conjugates of Tryptophane Zipper-Forming Peptide

    Directory of Open Access Journals (Sweden)

    Nobuo Kimizuka

    2011-08-01

    Full Text Available Pentagonal conjugates of tryptophane zipper-forming peptide (CKTWTWTE with a pentaazacyclopentadecane core (Pentagonal-Gly-Trpzip and Pentagonal-Ala-Trpzip were synthesized and their self-assembling behaviors were investigated in water. Pentagonal-Gly-Trpzip self-assembled into nanofibers with the width of about 5 nm in neutral water (pH 7 via formation of tryptophane zipper, which irreversibly converted to nanoribbons by heating. In contrast, Pentagonal-Ala-Trpzip formed irregular aggregates in water.

  19. Mechanical Self-Assembly Science and Applications

    CERN Document Server

    2013-01-01

    Mechanical Self-Assembly: Science and Applications introduces a novel category of self-assembly driven by mechanical forces. This book discusses self-assembly in various types of small material structures including thin films, surfaces, and micro- and nano-wires, as well as the practice's potential application in micro and nanoelectronics, MEMS/NEMS, and biomedical engineering. The mechanical self-assembly process is inherently quick, simple, and cost-effective, as well as accessible to a large number of materials, such as curved surfaces for forming three-dimensional small structures. Mechanical self-assembly is complementary to, and sometimes offer advantages over, the traditional micro- and nano-fabrication. This book also: Presents a highly original aspect of the science of self-assembly Describes the novel methods of mechanical assembly used to fabricate a variety of new three-dimensional material structures in simple and cost-effective ways Provides simple insights to a number of biological systems and ...

  20. On the solubility of plutonium in water

    International Nuclear Information System (INIS)

    Naegele, G.

    1977-12-01

    In a theoretical study, the chemical equilibrium state of saturated Pu solutions in water was determined and the effect of the addition of EDTA on the solubility of Pu estimated. Concentrations of Plutonium in true solution in the range of grams/litre seem to be achievable, at least in principle. The amount of EDTA necessary is not larger than the total amount of Pu. It is however questionable, specially after taking into account all possible effects of reaction kinetics, whether such high concentrations can be achieved at all under normal environmental conditions. Only experiments under real world conditions can give an answer to this question. (orig./HK) 891 HK 892 AP [de

  1. Encapsulation of Curcumin in Self-Assembling Peptide Hydrogels as Injectable Drug Delivery Vehicles

    Science.gov (United States)

    Altunbas, Aysegul; Lee, Seung Joon; Rajasekaran, Sigrid A.; Schneider, Joel P.; Pochan, Darrin J.

    2011-01-01

    Curcumin, a hydrophobic polyphenol, is an extract of turmeric root with antioxidant, anti-inflammatory and anti-tumorigenic properties. Its lack of water solubility and relatively low bioavailability set major limitations for its therapeutic use. In this study, a self-assembling peptide hydrogel is demonstrated to be an effective vehicle for the localized delivery of curcumin over sustained periods of time. The curcumin-hydrogel is prepared in-situ where curcumin encapsulation within the hydrogel network is accomplished concurrently with peptide self-assembly. Physical and in vitro biological studies were used to demonstrate the effectiveness of curcumin-loaded β-hairpin hydrogels as injectable agents for localized curcumin delivery. Notably, rheological characterization of the curcumin loaded hydrogel before and after shear flow have indicated solid-like properties even at high curcumin payloads. In vitro experiments with a medulloblastoma cell line confirm that the encapsulation of the curcumin within the hydrogel does not have an adverse effect on its bioactivity. Most importantly, the rate of curcumin release and its consequent therapeutic efficacy can be conveniently modulated as a function of the concentration of the MAX8 peptide. PMID:21601921

  2. Impact of cationic surfactant on the self-assembly of sodium caseinate.

    Science.gov (United States)

    Vinceković, Marko; Curlin, Marija; Jurašin, Darija

    2014-08-27

    The impact of a cationic surfactant, dodecylammonium chloride (DDACl), on the self-assembly of sodium caseinate (SC) has been investigated by light scattering, zeta potential, and rheological measurements as well as by microscopy (transmission electron and confocal laser scanning microscopy). In SC dilute solutions concentration-dependent self-assembly proceeds through the formation of spherical associates and their aggregation into elongated structures composed of connected spheres. DDACl interacts with SC via its hydrophilic and hydrophobic groups, inducing changes in SC self-assembled structures. These changes strongly depend on the surfactant aggregation states (monomeric or micellar) as well as concentration ratio of both components, leading to the formation of soluble and insoluble complexes of nano- to microdimensions. DDACl monomers interact with SC self-assembled entities in a different way compared to their micelles. Surfactant monomers form soluble complexes (similar to surfactant mixed micelles) at lower SC concentration but insoluble gelatinous complexes at higher SC concentration. At surfactant micellar concentration soluble complexes with casein chains wrapped around surfactant micelles are formed. This study suggests that the use of proper cationic surfactant concentration will allow modification and control of structural changes of SC self-assembled entities.

  3. Self-assembled biomimetic superhydrophobic hierarchical arrays.

    Science.gov (United States)

    Yang, Hongta; Dou, Xuan; Fang, Yin; Jiang, Peng

    2013-09-01

    Here, we report a simple and inexpensive bottom-up technology for fabricating superhydrophobic coatings with hierarchical micro-/nano-structures, which are inspired by the binary periodic structure found on the superhydrophobic compound eyes of some insects (e.g., mosquitoes and moths). Binary colloidal arrays consisting of exemplary large (4 and 30 μm) and small (300 nm) silica spheres are first assembled by a scalable Langmuir-Blodgett (LB) technology in a layer-by-layer manner. After surface modification with fluorosilanes, the self-assembled hierarchical particle arrays become superhydrophobic with an apparent water contact angle (CA) larger than 150°. The throughput of the resulting superhydrophobic coatings with hierarchical structures can be significantly improved by templating the binary periodic structures of the LB-assembled colloidal arrays into UV-curable fluoropolymers by a soft lithography approach. Superhydrophobic perfluoroether acrylate hierarchical arrays with large CAs and small CA hysteresis can be faithfully replicated onto various substrates. Both experiments and theoretical calculations based on the Cassie's dewetting model demonstrate the importance of the hierarchical structure in achieving the final superhydrophobic surface states. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Self-Assembled Nanoparticles of Glycyrrhetic Acid-Modified Pullulan as a Novel Carrier of Curcumin

    Directory of Open Access Journals (Sweden)

    Roufen Yuan

    2014-08-01

    Full Text Available Glycyrrhetic acid (GA-modified pullulan nanoparticles (GAP NPs were synthesized as a novel carrier of curcumin (CUR with a degree of substitution (DS of GA moieties within the range of 1.2–6.2 groups per hundred glucose units. In the present study, we investigated the physicochemical characteristics, release behavior, in vitro cytotoxicity and cellular uptake of the particles. Self-assembled GAP NPs with spherical shapes could readily improve the water solubility and stability of CUR. The CUR release was sustained and pH-dependent. The cellular uptake of CUR-GAP NPs was confirmed by green fluorescence in the cells. An MTT study showed CUR-GAP NPs with higher cytotoxicity in HepG2 cells than free CUR, but GAP NPs had no significant cytotoxicity. GAP is thus an excellent carrier for the solubilization, stabilization, and controlled delivery of CUR.

  5. Self-assembling graphene-anthraquinone-2-sulphonate supramolecular nanostructures with enhanced energy density for supercapacitors

    Science.gov (United States)

    Gao, Lifang; Gan, Shiyu; Li, Hongyan; Han, Dongxue; Li, Fenghua; Bao, Yu; Niu, Li

    2017-07-01

    Boosting the energy density of capacitive energy storage devices remains a crucial issue for facilitating applications. Herein, we report a graphene-anthraquinone supramolecular nanostructure by self-assembly for supercapacitors. The sulfonated anthraquinone exhibits high water solubility, a π-conjugated structure and redox active features, which not only serve as a spacer to interact with and stabilize graphene but also introduce extra pseudocapacitance contributions. The formed nest-like three-dimensional (3D) nanostructure with further hydrothermal treatment enhances the accessibility of ion transfer and exposes the redox-active quinone groups in the electrolytes. A fabricated all-solid-state flexible symmetric device delivers a high specific capacitance of 398.5 F g-1 at 1 A g-1 (1.5 times higher than graphene), superior energy density (52.24 Wh kg-1 at about 1 kW kg-1) and good stability (82% capacitance retention after 10 000 cycles).

  6. Interlaboratory validation of small-scale solubility and dissolution measurements of poorly water-soluble drugs

    DEFF Research Database (Denmark)

    Andersson, Sara B. E.; Alvebratt, Caroline; Bevernage, Jan

    2016-01-01

    The purpose of this study was to investigate the interlaboratory variability in determination of apparent solubility (Sapp) and intrinsic dissolution rate (IDR) using a miniaturized dissolution instrument. Three poorly water-soluble compounds were selected as reference compounds and measured at m...

  7. Self-assembled DNA Structures for Nanoconstruction

    Science.gov (United States)

    Yan, Hao; Yin, Peng; Park, Sung Ha; Li, Hanying; Feng, Liping; Guan, Xiaoju; Liu, Dage; Reif, John H.; LaBean, Thomas H.

    2004-09-01

    In recent years, a number of research groups have begun developing nanofabrication methods based on DNA self-assembly. Here we review our recent experimental progress to utilize novel DNA nanostructures for self-assembly as well as for templates in the fabrication of functional nano-patterned materials. We have prototyped a new DNA nanostructure known as a cross structure. This nanostructure has a 4-fold symmetry which promotes its self-assembly into tetragonal 2D lattices. We have utilized the tetragonal 2D lattices as templates for highly conductive metallic nanowires and periodic 2D protein nano-arrays. We have constructed and characterized a DNA nanotube, a new self-assembling superstructure composed of DNA tiles. We have also demonstrated an aperiodic DNA lattice composed of DNA tiles assembled around a long scaffold strand; the system translates information encoded in the scaffold strand into a specific and reprogrammable barcode pattern. We have achieved metallic nanoparticle linear arrays templated on self-assembled 1D DNA arrays. We have designed and demonstrated a 2-state DNA lattice, which displays expand/contract motion switched by DNA nanoactuators. We have also achieved an autonomous DNA motor executing unidirectional motion along a linear DNA track.

  8. Thermomechanical Response of Self-Assembled Nanoparticle Membranes

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Yifan [Department; James; Chan, Henry [Center; Narayanan, Badri [Center; McBride, Sean P. [Department; Sankaranarayanan, Subramanian K. R. S. [Center; Lin, Xiao-Min [Center; Jaeger, Heinrich M. [Department; James

    2017-07-21

    Monolayers composed of colloidal nanoparticles, with a thickness of less than 10 nm, have remarkable mechanical moduli and can suspend over micrometer-sized holes to form free-standing membranes. In this paper, we discuss experiment's and coarse-grained molecular dynamics simulations characterizing the thermomechanical properties of these self-assembled nanoparticle membranes. These membranes remain strong and resilient up to temperatures much higher than previous simulation predictions and exhibit an unexpected hysteretic behavior during the first heating cooling cycle. We show this hysteretic behavior can be explained by an asymmetric ligand configuration from the self assembly process and can be controlled by changing the ligand coverage or cross-linking the ligand molecules. Finally, we show the screening effect of water molecules on the ligand interactions can strongly affect the moduli and thermomechanical behavior.

  9. Water-soluble resorcin[4]arene based cavitands

    NARCIS (Netherlands)

    Grote gansey, M.H.B.; Grote Gansey, Marcel H.B.; Bakker, Frank K.G.; Feiters, Martinus C.; Geurts, Hubertus P.M.; Verboom, Willem; Reinhoudt, David

    1998-01-01

    Water-soluble resorcin[4]arene based cavitands were obtained in good yields by reaction of bromomethylcavitands with pyridine. Their solubility was determined by conductometry. The behaviour in water depends on the alkyl chain length; the methylcavitand does not aggregate, whereas the pentyl- and

  10. Leaching behavior of water-soluble carbohydrates from almond hulls

    Science.gov (United States)

    Over 58% of the dry matter content of the hulls from the commercial almond (Prunus dulcis (Miller) D.A. Webb) is soluble in warm water (50-70°C) extraction. The water-soluble extractables include useful amounts of fermentable sugars (glucose, fructose, sucrose), sugar alcohols (inositol and sorbito...

  11. Self-assembled coordination nanoparticles from nucleotides and lanthanide ions with doped-boronic acid-fluorescein for detection of cyanide in the presence of Cu2+ in water.

    Science.gov (United States)

    Kulchat, Sirinan; Chaicham, Anusak; Ekgasit, Sanong; Tumcharern, Gamolwan; Tuntulani, Thawatchai; Tomapatanaget, Boosayarat

    2012-01-30

    The sensor molecule, F-oBOH, containing boronic acid-linked hydrazide and fluorescein moieties was synthesized. For anion sensing applications, F-oBOH was studied in aqueous media. Unfortunately, F-oBOH was found to be hydrolyzed in water. Therefore, a new strategy was developed to prevent the hydrolysis of F-oBOH by applying self-assembly coordination nanoparticles network (F-oBOH-AMP/Gd(3+) CNPs). Interestingly, the nanoparticles network displayed the enhancement of fluorescent signal after adding Cu(2+) following by CN(-). The network, therefore, possessed a high selectivity for detection of CN(-) compared to other competitive anions in the presence of Cu(2+). Cyanide ion could promote the Cu(2+) binding to F-oBOH incorporated in AMP/Gd(3+) CNPs to give the opened-ring form of spirolactam resulting in the fourfold of fluorescence enhancement compared to Cu(2+) complexation without CN(-). Additionally, the log K value of F-oBOH-AMP/Gd(3+) CNPs⊂Cu(2+) toward CN(-) was 3.97 and the detection limits obtained from naked-eye and spectrofluorometry detections were 20μM and 4.03μM, respectively. The proposed method was demonstrated to detect CN(-) in drinking water with high accuracy. Copyright © 2011 Elsevier B.V. All rights reserved.

  12. Self-assembling segmented coiled tubing

    Science.gov (United States)

    Raymond, David W.

    2016-09-27

    Self-assembling segmented coiled tubing is a concept that allows the strength of thick-wall rigid pipe, and the flexibility of thin-wall tubing, to be realized in a single design. The primary use is for a drillstring tubular, but it has potential for other applications requiring transmission of mechanical loads (forces and torques) through an initially coiled tubular. The concept uses a spring-loaded spherical `ball-and-socket` type joint to interconnect two or more short, rigid segments of pipe. Use of an optional snap ring allows the joint to be permanently made, in a `self-assembling` manner.

  13. A novel pH sensitive water soluble fluorescent nanomicellar sensor for potential biomedical applications.

    Science.gov (United States)

    Georgiev, Nikolai I; Bryaskova, Rayna; Tzoneva, Rumiana; Ugrinova, Iva; Detrembleur, Christophe; Miloshev, Stoyan; Asiri, Abdullah M; Qusti, Abdullah H; Bojinov, Vladimir B

    2013-11-01

    Herein we report on the synthesis and sensor activity of a novel pH sensitive probe designed as highly water-soluble fluorescent micelles by grafting of 1,8-naphthalimide-rhodamine bichromophoric FRET system (RNI) to the PMMA block of a well-defined amphiphilic diblock copolymer-poly(methyl methacrylate)-b-poly(methacrylic acid) (PMMA48-b-PMAA27). The RNI-PMMA48-b-PMAA27 adduct is capable of self-assembling into micelles with a hydrophobic PMMA core, containing the anchored fluorescent probe, and a hydrophilic shell composed of PMAA block. Novel fluorescent micelles are able to serve as a highly sensitive pH probe in water and to internalize successfully HeLa and HEK cells. Furthermore, they showed cell specificity and significantly higher photostability than that of a pure organic dye label such as BODIPY. The valuable properties of the newly prepared fluorescent micelles indicate the high potential of the probe for future biological and biomedical applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. Investigation of water-soluble elastin as a multifunctional cosmetic material: Moisturizing and whitening effects.

    Science.gov (United States)

    Inoue, Asako; Hikima, Tomohiro; Taniguchi, Suguru; Nose, Takeru; Maeda, Iori

    Elastin and collagen are extracellular matrix proteins that are widely distributed in the body. Although elastin essentially functions as a skin moisturizer, there have been few reports on its other fundamental chemical and biological functions. In this study, we investigated the moisturizing and whitening (tyrosinase inhibition) effects of elastin to examine its usefulness as a cosmetic material. Water-soluble hot alkali pig aorta (HAPA)-elastin was prepared from pig aorta using the hot alkali method. HAPA-elastin showed a widely distributed molecular weight and had a coacervation property that mediated reversible self-assembly of its molecules with increasing temperature. Amino acid analysis of HAPA-elastin showed a high content (81.5%) of hydrophobic amino acids such as Gly, Ala, Val, and Pro. Des (desmosine) and Ide (isodesmosine), which are characteristic amino acids of elastin, accounted for more than 0.4% of the total amino acid content. HAPA-elastin showed a moisture-retaining property. The water content of skin samples treated with and without HAPA-elastin was 77.2% ± 7.8% and 49.4% ± 10.1%, respectively. HAPA-elastin also inhibited tyrosinase activity by 11.3% ± 3.9%. The results obtained indicate that elastin has a useful function as a cosmetic material.

  15. Particle self-assembly at ionic liquid-based interfaces.

    Science.gov (United States)

    Frost, Denzil S; Nofen, Elizabeth M; Dai, Lenore L

    2014-04-01

    This review presents an overview of the nature of ionic liquid (IL)-based interfaces and self-assembled particle morphologies of IL-in-water, oil- and water-in-IL, and novel IL-in-IL Pickering emulsions with emphasis on their unique phenomena, by means of experimental and computational studies. In IL-in-water Pickering emulsions, particles formed monolayers at ionic liquid-water interfaces and were close-packed on fully covered emulsion droplets or aggregated on partially covered droplets. Interestingly, other than equilibrating at the ionic liquid-water interfaces, microparticles with certain surface chemistries were extracted into the ionic liquid phase with a high efficiency. These experimental findings were supported by potential of mean force calculations, which showed large energy drops as hydrophobic particles crossed the interface into the IL phase. In the oil- and water-in-IL Pickering emulsions, microparticles with acidic surface chemistries formed monolayer bridges between the internal phase droplets rather than residing at the oil/water-ionic liquid interfaces, a significant deviation from traditional Pickering emulsion morphology. Molecular dynamics simulations revealed aspects of the mechanism behind this bridging phenomenon, including the role of the droplet phase, surface chemistry, and inter-particle film. Novel IL-in-IL Pickering emulsions exhibited an array of self-assembled morphologies including the previously observed particle absorption and bridging phenomena. The appearance of these morphologies depended on the particle surface chemistry as well as the ILs used. The incorporation of particle self-assembly with ionic liquid science allows for new applications at the intersection of these two fields, and have the potential to be numerous due to the tunability of the ionic liquids and particles incorporated, as well as the particle morphology by combining certain groups of particle surface chemistry, IL type (protic or aprotic), and whether oil

  16. Uranium solubility and speciation in ground water

    International Nuclear Information System (INIS)

    Ollila, K.

    1985-04-01

    The purpose of this study has been to assess the solubility and possible species of uranium in groundwater at the disposal conditions of spent fuel. The effects of radiolysis and bentonite are considered. The assessment is based on the theoretical calculations found in the literature. The Finnish experimental results are included. The conservative estimate for uranium solubility under the oxidizing conditions caused by alpha radiolysis is based on the oxidation of uranium to the U(VI) state and formation of carbonate complex. For the groundwater with the typical carbonate content of 275 mg/l and the high carbonate content of 485 mg/l due to bentonite, the solubility values of 360 mg u/l and 950 mg U/l, are obtained, respectively. The experimental results predict considerably lower values, 0.5-20 mg U/l. The solubility of uranium under the undisturbed reducing conditions may be calculated based on the hydrolysis, carbonate complexation and redox reactions. The results vary considerably depending on the thermodynamic data used. The wide ranges of the most important groundwater parameters are seen in the solubility values. The experimental results show the same trends. As a conservative value for the solubility in reducing groundwater 50-500 μg U/l is estimated. (author)

  17. Solubility of corrosion products in high temperature water

    International Nuclear Information System (INIS)

    Srinivasan, M.P.; Narasimhan, S.V.

    1995-01-01

    A short review of solubility of corrosion products at high temperature in either neutral or alkaline water as encountered in BWR, PHWR and PWR primary coolant reactor circuits is presented in this report. Based on the available literature, various experimental techniques involved in the study of the solubility, theory for fitting the solubility data to the thermodynamic model and discussion of the published results with a scope for future work have been brought out. (author). 17 refs., 7 figs

  18. Water-soluble dietary fibers and cardiovascular disease.

    Science.gov (United States)

    Theuwissen, Elke; Mensink, Ronald P

    2008-05-23

    One well-established way to reduce the risk of developing cardiovascular disease (CVD) is to lower serum LDL cholesterol levels by reducing saturated fat intake. However, the importance of other dietary approaches, such as increasing the intake of water-soluble dietary fibers is increasingly recognized. Well-controlled intervention studies have now shown that four major water-soluble fiber types-beta-glucan, psyllium, pectin and guar gum-effectively lower serum LDL cholesterol concentrations, without affecting HDL cholesterol or triacylglycerol concentrations. It is estimated that for each additional gram of water-soluble fiber in the diet serum total and LDL cholesterol concentrations decrease by -0.028 mmol/L and -0.029 mmol/L, respectively. Despite large differences in molecular structure, no major differences existed between the different types of water-soluble fiber, suggesting a common underlying mechanism. In this respect, it is most likely that water-soluble fibers lower the (re)absorption of in particular bile acids. As a result hepatic conversion of cholesterol into bile acids increases, which will ultimately lead to increased LDL uptake by the liver. Additionally, epidemiological studies suggest that a diet high in water-soluble fiber is inversely associated with the risk of CVD. These findings underlie current dietary recommendations to increase water-soluble fiber intake.

  19. Amphiphilic invertible polymers: Self-assembly into functional materials driven by environment polarity

    Science.gov (United States)

    Hevus, Ivan

    Stimuli-responsive polymers adapt to environmental changes by adjusting their chain conformation in a fast and reversible way. Responsive polymeric materials have already found use in electronics, coatings industry, personal care, and bio-related areas. The current work aims at the development of novel responsive functional polymeric materials by manipulating environment-dependent self-assembly of a new class of responsive macromolecules strategically designed in this study,—amphiphilic invertible polymers (AIPs). Environment-dependent micellization and self-assembly of three different synthesized AIP types based on poly(ethylene glycol) as a hydrophilic fragment and varying hydrophobic constituents was demonstrated in polar and nonpolar solvents, as well as on the surfaces and interfaces. With increasing concentration, AIP micelles self-assemble into invertible micellar assemblies composed of hydrophilic and hydrophobic domains. Polarity-responsive properties of AIPs make invertible micellar assemblies functional in polar and nonpolar media including at interfaces. Thus, invertible micellar assemblies solubilize poorly soluble substances in their interior in polar and nonpolar solvents. In a polar aqueous medium, a novel stimuli-responsive mechanism of drug release based on response of AIP-based drug delivery system to polarity change upon contact with the target cell has been established using invertible micellar assemblies loaded with curcumin, a phytochemical drug. In a nonpolar medium, invertible micellar assemblies were applied simultaneously as nanoreactors and stabilizers for size-controlled synthesis of silver nanoparticles stable in both polar and nonpolar media. The developed amphiphilic nanosilver was subsequently used as seeds to promote anisotropic growth of CdSe semiconductor nanoparticles that have potential in different applications ranging from physics to medicine. Amphiphilic invertible polymers were shown to adsorb on the surface of silica

  20. Large branched self-assembled DNA complexes

    International Nuclear Information System (INIS)

    Tosch, Paul; Waelti, Christoph; Middelberg, Anton P J; Davies, A Giles

    2007-01-01

    Many biological molecules have been demonstrated to self-assemble into complex structures and networks by using their very efficient and selective molecular recognition processes. The use of biological molecules as scaffolds for the construction of functional devices by self-assembling nanoscale complexes onto the scaffolds has recently attracted significant attention and many different applications in this field have emerged. In particular DNA, owing to its inherent sophisticated self-organization and molecular recognition properties, has served widely as a scaffold for various nanotechnological self-assembly applications, with metallic and semiconducting nanoparticles, proteins, macromolecular complexes, inter alia, being assembled onto designed DNA scaffolds. Such scaffolds may typically contain multiple branch-points and comprise a number of DNA molecules selfassembled into the desired configuration. Previously, several studies have used synthetic methods to produce the constituent DNA of the scaffolds, but this typically constrains the size of the complexes. For applications that require larger self-assembling DNA complexes, several tens of nanometers or more, other techniques need to be employed. In this article, we discuss a generic technique to generate large branched DNA macromolecular complexes

  1. Self-assembled nanogaps for molecular electronics.

    Science.gov (United States)

    Tang, Qingxin; Tong, Yanhong; Jain, Titoo; Hassenkam, Tue; Wan, Qing; Moth-Poulsen, Kasper; Bjørnholm, Thomas

    2009-06-17

    A nanogap for molecular devices was realized using solution-based self-assembly. Gold nanorods were assembled to gold nanoparticle-coated conducting SnO2:Sb nanowires via thiol end-capped oligo(phenylenevinylene)s (OPVs). The molecular gap was easily created by the rigid molecule itself during self-assembly and the gap length was determined by the molecule length. The gold nanorods and gold nanoparticles, respectively covalently bonded at the two ends of the molecule, had very small dimensions, e.g. a width of approximately 20 nm, and hence were expected to minimize the screening effect. The ultra-long conducting SnO2:Sb nanowires provided the bridge to connect one of the electrodes of the molecular device (gold nanoparticle) to the external circuit. The tip of the atomic force microscope (AFM) was contacted onto the other electrode (gold nanorod) for the electrical measurement of the OPV device. The conductance measurement confirmed that the self-assembly of the molecules and the subsequent self-assembly of the gold nanorods was a feasible method for the fabrication of the nanogap of the molecular devices.

  2. Self-assembled nanogaps for molecular electronics

    DEFF Research Database (Denmark)

    Tang, Qingxin; Tong, Yanhong; Jain, Titoo

    2009-01-01

    A nanogap for molecular devices was realized using solution-based self-assembly. Gold nanorods were assembled to gold nanoparticle-coated conducting SnO2:Sb nanowires via thiol end-capped oligo(phenylenevinylene)s (OPVs). The molecular gap was easily created by the rigid molecule itself during se...

  3. Self-assembly of patchy colloidal dumbbells

    NARCIS (Netherlands)

    Avvisati, Guido|info:eu-repo/dai/nl/407630198; Vissers, Teun|info:eu-repo/dai/nl/304829943; Dijkstra, Marjolein|info:eu-repo/dai/nl/123538807

    2015-01-01

    We employ Monte Carlo simulations to investigate the self-assembly of patchy colloidal dumbbells interacting via a modified Kern-Frenkel potential by probing the system concentration and dumbbell shape. We consider dumbbells consisting of one attractive sphere with diameter sigma(1) and one

  4. Inverse Problem in Self-assembly

    Science.gov (United States)

    Tkachenko, Alexei

    2012-02-01

    By decorating colloids and nanoparticles with DNA, one can introduce highly selective key-lock interactions between them. This leads to a new class of systems and problems in soft condensed matter physics. In particular, this opens a possibility to solve inverse problem in self-assembly: how to build an arbitrary desired structure with the bottom-up approach? I will present a theoretical and computational analysis of the hierarchical strategy in attacking this problem. It involves self-assembly of particular building blocks (``octopus particles''), that in turn would assemble into the target structure. On a conceptual level, our approach combines elements of three different brands of programmable self assembly: DNA nanotechnology, nanoparticle-DNA assemblies and patchy colloids. I will discuss the general design principles, theoretical and practical limitations of this approach, and illustrate them with our simulation results. Our crucial result is that not only it is possible to design a system that has a given nanostructure as a ground state, but one can also program and optimize the kinetic pathway for its self-assembly.

  5. Self-assembled nanogaps for molecular electronics

    International Nuclear Information System (INIS)

    Tang Qingxin; Tong Yanhong; Jain, Titoo; Hassenkam, Tue; Moth-Poulsen, Kasper; Bjoernholm, Thomas; Wan Qing

    2009-01-01

    A nanogap for molecular devices was realized using solution-based self-assembly. Gold nanorods were assembled to gold nanoparticle-coated conducting SnO 2 :Sb nanowires via thiol end-capped oligo(phenylenevinylene)s (OPVs). The molecular gap was easily created by the rigid molecule itself during self-assembly and the gap length was determined by the molecule length. The gold nanorods and gold nanoparticles, respectively covalently bonded at the two ends of the molecule, had very small dimensions, e.g. a width of ∼20 nm, and hence were expected to minimize the screening effect. The ultra-long conducting SnO 2 :Sb nanowires provided the bridge to connect one of the electrodes of the molecular device (gold nanoparticle) to the external circuit. The tip of the atomic force microscope (AFM) was contacted onto the other electrode (gold nanorod) for the electrical measurement of the OPV device. The conductance measurement confirmed that the self-assembly of the molecules and the subsequent self-assembly of the gold nanorods was a feasible method for the fabrication of the nanogap of the molecular devices.

  6. Fluorescent Self-Assembled Polyphenylene Dendrimer Nanofibers

    NARCIS (Netherlands)

    Liu, Daojun; Feyter, Steven De; Cotlet, Mircea; Wiesler, Uwe-Martin; Weil, Tanja; Herrmann, Andreas; Müllen, Klaus; Schryver, Frans C. De

    2003-01-01

    A second-generation polyphenylene dendrimer 1 self-assembles into nanofibers on various substrates such as HOPG, silicon, glass, and mica from different solvents. The investigation with noncontact atomic force microscopy (NCAFM) and scanning electron microscopy (SEM) shows that the morphology of the

  7. Solubility and physical properties of sugars in pressurized water

    International Nuclear Information System (INIS)

    Saldaña, Marleny D.A.; Alvarez, Víctor H.; Haldar, Anupam

    2012-01-01

    Highlights: ► Sugar solubility in pressurized water and density at high pressures were measured. ► Glucose solubility was higher than that of lactose as predicted by their σ-profiles. ► Sugar aqueous solubility decreased with an increase in pressure from 15 to 120 bar. ► Aqueous glucose molecular packing shows high sensitivity to pressure. ► The COSMO-SAC model qualitatively predicted the sugar solubility data. - Abstract: In this study, the solubility, density, and refractive index of glucose and lactose in water as a function of temperature were measured. For solubility of sugars in pressurized water, experimental data were obtained at pressures of (15 to 120) bar and temperatures of (373 to 433) K using a dynamic flow high pressure system. Density data for aqueous sugar solutions were obtained at pressures of (1 to 300) bar and temperatures of (298 to 343) K. The refractive index of aqueous sugar solutions was obtained at 293 K and atmospheric pressure. Activity coefficient models, Van Laar and the Conductor-like Screening Model-Segment Activity Coefficient (COSMO-SAC), were used to fit and predict the experimental solubility data, respectively. The results obtained showed that the solubility of both sugars in pressurized water increase with an increase in temperature. However, with the increase of pressure from 15 bar to 120 bar, the solubility of both sugars in pressurized water decreased. The Van Laar model fit the experimental aqueous solubility data with deviations lower than 13 and 53% for glucose and lactose, respectively. The COSMO-SAC model predicted qualitatively the aqueous solubility of these sugars.

  8. Self-assembled Block Copolymer Membranes with Bioinspired Artificial Channels

    KAUST Repository

    Sutisna, Burhannudin

    2018-04-01

    Nature is an excellent design that inspires scientists to develop smart systems. In the realm of separation technology, biological membranes have been an ideal model for synthetic membranes due to their ultrahigh permeability, sharp selectivity, and stimuliresponse. In this research, fabrications of bioinspired membranes from block copolymers were studied. Membranes with isoporous morphology were mainly prepared using selfassembly and non-solvent induced phase separation (SNIPS). An effective method that can dramatically shorten the path for designing new isoporous membranes from block copolymers via SNIPS was first proposed by predetermining a trend line computed from the solvent properties, interactions and copolymer block sizes of previously-obtained successful systems. Application of the method to new copolymer systems and fundamental studies on the block copolymer self-assembly were performed. Furthermore, the manufacture of bioinspired membranes was explored using (1) poly(styrene-b-4-hydroxystyrene-b-styrene) (PS-b-PHS-b-PS), (2) poly(styrene-bbutadiene- b-styrene) (PS-b-PB-b-PS) and (3) poly(styrene-b-γ-benzyl-L-glutamate) (PSb- PBLG) copolymers via SNIPS. The structure formation was investigated using smallangle X-ray scattering (SAXS) and time-resolved grazing-Incidence SAXS. The PS-b- PHS-b-PS membranes showed preferential transport for proteins, presumably due to the hydrogen bond interactions within the channels, electrostatic attraction, and suitable pore dimension. Well-defined nanochannels with pore sizes of around 4 nm based on PS-b- PB-b-PS copolymers could serve as an excellent platform to fabricate bioinspired channels due to the modifiable butadiene blocks. Photolytic addition of thioglycolic acid was demonstrated without sacrificing the self-assembled morphology, which led to a five-fold increase in water permeance compared to that of the unmodified. Membranes with a unique feather-like structure and a lamellar morphology for dialysis and

  9. Homochiral oligopeptides by chiral amplification within two-dimensional crystalline self-assemblies at the air-water interface; Relevance to biomolecular handedness

    DEFF Research Database (Denmark)

    Weissbuch, I.; Zepik, H.; Bolbach, G.

    2003-01-01

    -assembled into two-dimensional (2D) ordered crystallites at the air-aqueous solution interface. As model systems we studied NE-stearoyl-lysine thioethyl ester (C-18-TE-Lys), gamma-stearyl-glutamic thioethyl ester (C-18-TE-Glu), N-alpha-carboxyanhydride of gamma-stearyl-glutamic acid (C-18-Glu NCA) and gamma......-aqueous solution interface after injection of appropriate catalysts into the water subphase. The experimental relative abundance of oligopeptides with homochiral sequence generated from (R,S)-C-18-TE-Lys and (R,S)-C-18-TE-Glu, as determined by mass spectrometry on enantioselectively deuterium-labeled samples...

  10. Designing thiophene-based azomethine oligomers with tailored properties: Self-assembly and charge carrier mobility

    DEFF Research Database (Denmark)

    Kiriy, N.; Bocharova, V.; Kiriy, A.

    2004-01-01

    This paper describes synthesis and characterization of two thiophene-based azomethines designed to optimize solubility, self-assembly, and charge carrier mobility. We found that incorporation of azomethine and amide moieties in the alpha,omega-position, and hexyl chains in the beta-position of th...... with the mobilities of the best organic semiconductors. All these significant differences in properties of related compounds can be attributed to the hydrogen bonding between QT-amide molecules responsible for the observed self-assembly....

  11. Synthesis of Water-Soluble Antimony Sulfide Quantum Dots and Their Photoelectric Properties.

    Science.gov (United States)

    Zhu, Jiang; Yan, Xuelian; Cheng, Jiang

    2018-01-15

    Antimony sulfide (Sb 2 S 3 ) has been applied in photoelectric devices for a long time. However, there was lack of information about Sb 2 S 3 quantum dots (QDs) because of the synthesis difficulties. To fill this vacancy, water-soluble Sb 2 S 3 QDs were prepared by hot injection using hexadecyltrimethylammonium bromide (CTAB) and sodium dodecyl sulfate (SDS) mixture as anionic-cationic surfactant, alkanol amide (DEA) as stabilizer, and ethylenediaminetetraacetic acid (EDTA) as dispersant. Photoelectric properties including absorbing and emission were characterized by UV-Vis-IR spectrophotometer and photoluminescence (PL) spectroscopic technique. An intensive PL emission at 880 nm was found, indicating Sb 2 S 3 QDs have good prospects in near-infrared LED and near-infrared laser application. Sb 2 S 3 QD thin films were prepared by self-assembly growth and then annealed in argon or selenium vapor. Their band gaps (E g s) were calculated according to transmittance spectra. The E g of Sb 2 S 3 QD thin film has been found to be tunable from 1.82 to 1.09 eV via annealing or selenylation, demonstrating the good prospects in photovoltaic application.

  12. Template occluded SBA-15: An effective dissolution enhancer for poorly water-soluble drug

    Energy Technology Data Exchange (ETDEWEB)

    Fu Tingming, E-mail: futingming@gmail.com [College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029 (China); Guo Liwei; Le Kang; Wang Tianyao; Lu Jin [College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210029 (China)

    2010-09-15

    The aim of the present work was to improve the dissolution rate of piroxicam by inclusion into template occluded SBA-15. Our strategy involves directly introducing piroxicam into as-prepared SBA-15 occluded with P123 (EO{sub 20}PO{sub 70}EO{sub 20}) by self assembling method in acetonitrile/methylene chloride mixture solution. Ultraviolet spectrometry experiment and thermogravimetric analysis-differential scanning calorimetry (TG-DSC) profiles show that the piroxicam and P123 contents in the inclusion compound are 12 wt% and 28 wt%, respectively. X-ray powder diffraction and DSC analysis reveal that the included piroxicam is arranged in amorphous form. N{sub 2} adsorption-desorption experiment indicates that the piroxicam has been introduced to the mesopores instead of precipitating at the outside of the silica material. The inclusion compound was submitted to in vitro dissolution tests, the results show that the piroxicam dissolve from template occluded inclusion compound more rapidly, than these from the piroxicam crystalline and template removed samples in all tested conditions. Thus a facile method to improve the dissolution rate of poorly water-soluble drug was established, and this discovery opens a new avenue for the utilization of templates used for the synthesis of mesoporous materials.

  13. Template occluded SBA-15: An effective dissolution enhancer for poorly water-soluble drug

    International Nuclear Information System (INIS)

    Fu Tingming; Guo Liwei; Le Kang; Wang Tianyao; Lu Jin

    2010-01-01

    The aim of the present work was to improve the dissolution rate of piroxicam by inclusion into template occluded SBA-15. Our strategy involves directly introducing piroxicam into as-prepared SBA-15 occluded with P123 (EO 20 PO 70 EO 20 ) by self assembling method in acetonitrile/methylene chloride mixture solution. Ultraviolet spectrometry experiment and thermogravimetric analysis-differential scanning calorimetry (TG-DSC) profiles show that the piroxicam and P123 contents in the inclusion compound are 12 wt% and 28 wt%, respectively. X-ray powder diffraction and DSC analysis reveal that the included piroxicam is arranged in amorphous form. N 2 adsorption-desorption experiment indicates that the piroxicam has been introduced to the mesopores instead of precipitating at the outside of the silica material. The inclusion compound was submitted to in vitro dissolution tests, the results show that the piroxicam dissolve from template occluded inclusion compound more rapidly, than these from the piroxicam crystalline and template removed samples in all tested conditions. Thus a facile method to improve the dissolution rate of poorly water-soluble drug was established, and this discovery opens a new avenue for the utilization of templates used for the synthesis of mesoporous materials.

  14. Hematite photoanode co-functionalized with self-assembling melanin and C-phycocyanin for solar water splitting at neutral pH

    Energy Technology Data Exchange (ETDEWEB)

    Schrantz, Krisztina; Wyss, Pradeep P.; Ihssen, Julian; Toth, Rita; Bora, Debajeet K.; Vitol, Elina A.; Rozhkova, Elena A.; Pieles, Uwe; Thöny-Meyer, Linda; Braun, Artur

    2017-04-01

    tNature provides functional units which can be integrated in inorganic solar cell materials, such as lightharvesting antenna proteins and photosynthetic molecular machineries, and thus help in advancing artifi-cial photosynthesis. Their integration needs to address mechanical adhesion, light capture, charge transferand corrosion resistance. We showed recently how enzymatic polymerization of melanin can immobi-lize the cyanobacterial light harvesting protein C-phycocyanin on the surface of hematite, a prospectivemetal oxide photoanode for solar hydrogen production by water splitting in photoelectrochemical cells.After the optimization of the functionalization procedure, in this work we show reproducible hydrogenproduction, measured parallel to the photocurrent on this bio-hybrid electrode in benign neutral pHphosphate. Over 90% increase compared to the photocurrent of the pristine hematite could be achieved.The hydrogen evolution was monitored during the photoelectrochemical measurement in an improvedphotoelectrochemical cell. The C-phycocyanin-melanin coating on the hematite was shown to exhibit acomb-like fractal pattern. Raman spectroscopy supported the presence of the protein on the hematiteanode surface. The stability of the protein coating is demonstrated during the 2 h GC measurement andthe 24 h operando current density measurement

  15. Self-assembled nanomaterials based on beta (β"3) tetrapeptides

    International Nuclear Information System (INIS)

    Seoudi, Rania S; Hinds, Mark G; Wilson, David J D; Adda, Christopher G; Mechler, Adam; Del Borgo, Mark; Aguilar, Marie-Isabel; Perlmutter, Patrick

    2016-01-01

    β "3-amino acid based polypeptides offer a unique starting material for the design of self-assembled nanostructures such as fibres and hierarchical dendritic assemblies, due to their well-defined helical geometry in which the peptide side chains align at 120° due to the 3.0–3.1 residue pitch of the helix. In a previous work we have described the head-to-tail self-assembly of N-terminal acetylated β "3-peptides into infinite helical nanorods that was achieved by designing a bioinspired supramolecular self-assembly motif. Here we describe the effect of consecutively more polar side chains on the self-assembly characteristics of β "3-tetrapeptides Ac-β "3Ala-β "3Leu-β "3Ile-β "3Ala (Ac-β"3[ALIA]), Ac-β "3Ser-β "3Leu-β "3Ile-β "3Ala (Ac-β"3[SLIA]) and Ac-β "3Lys-β "3Leu-β "3Ile-β "3Glu (Ac-β"3[KLIE]). β "3-tetrapeptides complete 1 1/3 turns of the helix: thus in the oligomeric form the side chain positions shift 120° with each added monomer, forming a regular periodic pattern along the nanorod. Dynamic light scattering (DLS) measurements confirmed that these peptides self-assemble even in highly polar solvents such as water and DMSO, while diffusion-ordered NMR spectroscopy revealed the presence of a substantial monomeric population. Temperature dependence of the size distribution in DLS measurements suggests a dynamic equilibrium between monomers and oligomers. Solution casting produced distinct fibrillar deposits after evaporating the solvent. In the case of the apolar Ac-β "3[ALIA] the longitudinal helix morphology gives rise to geometrically defined (∼70°) junctions between fibres, forming a mesh that opens up possibilities for applications e.g. in tissue scaffolding. The deposits of polar Ac-β "3[SLIA] and Ac-β "3[KLIE] exhibit fibres in regular parallel alignment over surface areas in the order of 10 μm. (paper)

  16. Study on REE bound water-soluble polysaccharides in plant

    International Nuclear Information System (INIS)

    Wang Yuqi; Guo Fanqing; Xu Lei; Chen Hongmin; Sun Jingxin; Cao Guoyin

    1999-01-01

    The binding of REE with water-soluble polysaccharides (PSs) in leaves of fern Dicranopteris Dichotoma (DD) has been studied by molecular activation analysis. The cold-water-soluble and hot-water-soluble PSs in leaves of DD were obtained by using biochemical separation techniques. The PSs of non-deproteinization and deproteinization, were separated on Sephadex G-200 gel permeation chromatography. The absorption curves of elution for the PSs were obtained by colorimetry, and the proteins were detected using Coomassic brilliant G-250. Eight REEs (La, Ce, Nd, Sm, Eu, Tb, Yb and Lu) in these PSs were determined by instrumental neutron activation analysis. The results obtained show that the REEs are bound firmly with the water-soluble PSs in the plant. A measurement demonstrates that the PSs bound with REEs are mainly of smaller molecular weight (10,000 to 20,000 Dalton)

  17. Determination of Carboxylic Acids and Water-soluble Inorganic Ions ...

    African Journals Online (AJOL)

    NICO

    radiation balance.4,5 Major water-soluble inorganic ions are associated with atmospheric ... molecular weight carboxylic acids in aerosol samples collected from a rural ... include biomass burning, agriculture, livestock and soil dust. Tropical ...

  18. Effect of water deficit stress on proline contents, soluble sugars ...

    African Journals Online (AJOL)

    Effect of water deficit stress on proline contents, soluble sugars, chlorophyll and grain yield of sunflower ... Journal Home > Vol 11, No 1 (2012) > ... The objective of the present work was to determine the mechanisms of tolerance of four ...

  19. Solubility and degradation of paracetamol in subcritical water

    Directory of Open Access Journals (Sweden)

    Emire Zuhal

    2017-01-01

    Full Text Available In this study, solubility and degradation of paracetamol were examined using subcritical water. Effect of temperature and static time was investigated during solubility process in subcritical water at constant pressure (50 bar. Experimental results show that temperature and static time have crucial effect on the degradation and solubility rates. Maximum mole fraction for solubility of paracetamol was obtained at 403 K as (14.68 ± 0.74×103. Approximation model for solubility of paracetamol was proposed. O2 and H2O2 were used in degradation process of paracetamol. Maximum degradation rate was found as 68.66 ± 1.05 and 100 ± 0.00 % using O2 and H2O2, respectively.

  20. Characterization of Gasolines, Diesel Fuels and Their Water Soluble Fractions

    Science.gov (United States)

    1983-09-01

    Hutchinson, et al.,1979 ) with the marine algae, Chlorella vulgaris and Chlamydomonas angulosa, suggests that the toxicity of hydrocarbons is a...water-soluble petroleum components on the growth of Chlorella vulgaris Beijernck. Environ. Poll. 9: 157. Morrow, J.E., et al. 1975. Effects of some...P.B., and T.C. Hutchison. 1975. The effects of water-soluble petroleum components on the growth of Chlorella vulqaris Beijerinck. Environ. Poll. 9

  1. A Novel Strategy for Synthesis of Gold Nanoparticle Self Assemblies

    NARCIS (Netherlands)

    Verma, Jyoti; Lal, Sumit; van Veen, Henk A.; van Noorden, Cornelis J. F.

    2014-01-01

    Gold nanoparticle self assemblies are one-dimensional structures of gold nanoparticles. Gold nanoparticle self assemblies exhibit unique physical properties and find applications in the development of biosensors. Methodologies currently available for lab-scale and commercial synthesis of gold

  2. Cooperative effects of fibronectin matrix assembly and initial cell-substrate adhesion strength in cellular self-assembly.

    Science.gov (United States)

    Brennan, James R; Hocking, Denise C

    2016-03-01

    The cell-dependent polymerization of intercellular fibronectin fibrils can stimulate cells to self-assemble into multicellular structures. The local physical cues that support fibronectin-mediated cellular self-assembly are largely unknown. Here, fibronectin matrix analogs were used as synthetic adhesive substrates to model cell-matrix fibronectin fibrils having different integrin-binding specificity, affinity, and/or density. We utilized this model to quantitatively assess the relationship between adhesive forces derived from cell-substrate interactions and the ability of fibronectin fibril assembly to induce cellular self-assembly. Results indicate that the strength of initial, rather than mature, cell-substrate attachments correlates with the ability of substrates to support fibronectin-mediated cellular self-assembly. The cellular response to soluble fibronectin was bimodal and independent of the integrin-binding specificity of the substrate; increasing soluble fibronectin levels above a critical threshold increased aggregate cohesion on permissive substrates. Once aggregates formed, continuous fibronectin polymerization was necessary to maintain cohesion. During self-assembly, soluble fibronectin decreased cell-substrate adhesion strength and induced aggregate cohesion via a Rho-dependent mechanism, suggesting that the balance of contractile forces derived from fibronectin fibrils within cell-cell versus cell-substrate adhesions controls self-assembly and aggregate cohesion. Thus, initial cell-substrate attachment strength may provide a quantitative basis with which to build predictive models of fibronectin-mediated microtissue fabrication on a variety of substrates. Cellular self-assembly is a process by which cells and extracellular matrix (ECM) proteins spontaneously organize into three-dimensional (3D) tissues in the absence of external forces. Cellular self-assembly can be initiated in vitro, and represents a potential tool for tissue engineers to

  3. Amphiphilic building blocks for self-assembly: from amphiphiles to supra-amphiphiles.

    Science.gov (United States)

    Wang, Chao; Wang, Zhiqiang; Zhang, Xi

    2012-04-17

    The process of self-assembly spontaneously creates well-defined structures from various chemical building blocks. Self-assembly can include different levels of complexity: it can be as simple as the dimerization of two small building blocks driven by hydrogen bonding or as complicated as a cell membrane, a remarkable supramolecular architecture created by a bilayer of phospholipids embedded with functional proteins. The study of self-assembly in simple systems provides a fundamental understanding of the driving forces and cooperativity behind these processes. Once the rules are understood, these guidelines can facilitate the research of highly complex self-assembly processes. Among the various components for self-assembly, an amphiphilic molecule, which contains both hydrophilic and hydrophobic parts, forms one of the most powerful building blocks. When amphiphiles are dispersed in water, the hydrophilic component of the amphiphile preferentially interacts with the aqueous phase while the hydrophobic portion tends to reside in the air or in the nonpolar solvent. Therefore, the amphiphiles aggregate to form different molecular assemblies based on the repelling and coordinating forces between the hydrophilic and hydrophobic parts of the component molecules and the surrounding medium. In contrast to conventional amphiphiles, supra-amphiphiles are constructed on the basis of noncovalent interactions or dynamic covalent bonds. In supra-amphiphiles, the functional groups can be attached to the amphiphiles by noncovalent synthesis, greatly speeding their construction. The building blocks for supra-amphiphiles can be either small organic molecules or polymers. Advances in the development of supra-amphiphiles will not only enrich the family of conventional amphiphiles that are based on covalent bonds but will also provide a new kind of building block for the preparation of complex self-assemblies. When polymers are used to construct supra-amphiphiles, the resulting

  4. Novel electrosprayed nanospherules for enhanced aqueous solubility and oral bioavailability of poorly water-soluble fenofibrate.

    Science.gov (United States)

    Yousaf, Abid Mehmood; Mustapha, Omer; Kim, Dong Wuk; Kim, Dong Shik; Kim, Kyeong Soo; Jin, Sung Giu; Yong, Chul Soon; Youn, Yu Seok; Oh, Yu-Kyoung; Kim, Jong Oh; Choi, Han-Gon

    2016-01-01

    The purpose of the present research was to develop a novel electrosprayed nanospherule providing the most optimized aqueous solubility and oral bioavailability for poorly water-soluble fenofibrate. Numerous fenofibrate-loaded electrosprayed nanospherules were prepared with polyvinylpyrrolidone (PVP) and Labrafil(®) M 2125 as carriers using the electrospray technique, and the effect of the carriers on drug solubility and solvation was assessed. The solid state characterization of an optimized formulation was conducted by scanning electron microscopy, powder X-ray diffraction, differential scanning calorimetry, and Fourier transform infrared spectroscopic analyses. Oral bioavailability in rats was also evaluated for the formulation of an optimized nanospherule in comparison with free drug and a conventional fenofibrate-loaded solid dispersion. All of the electrosprayed nanospherule formulations had remarkably enhanced aqueous solubility and dissolution compared with free drug. Moreover, Labrafil M 2125, a surfactant, had a positive influence on the solubility and dissolution of the drug in the electrosprayed nanospherule. Increases were observed as the PVP/drug ratio increased to 4:1, but higher ratios gave no significant increases. In particular, an electrosprayed nanospherule composed of fenofibrate, PVP, and Labrafil M 2125 at the weight ratio of 1:4:0.5 resulted in a particle size of water-soluble fenofibrate.

  5. Self-assembling membranes and related methods thereof

    Science.gov (United States)

    Capito, Ramille M; Azevedo, Helena S; Stupp, Samuel L

    2013-08-20

    The present invention relates to self-assembling membranes. In particular, the present invention provides self-assembling membranes configured for securing and/or delivering bioactive agents. In some embodiments, the self-assembling membranes are used in the treatment of diseases, and related methods (e.g., diagnostic methods, research methods, drug screening).

  6. Mechanisms for oral absorption of poorly water-soluble compounds

    DEFF Research Database (Denmark)

    Lind, Marianne Ladegaard

    Abstract A large part of the new drug candidates discovered by the pharmaceutical industry have poor solubility in aqueous media. The preferred route of drug administration is the oral route, but for these poorly water-soluble drug candidates the oral bioavailability can be low and variable. Often......, phospholipids) and exogenous surfactants used in pharmaceutical formulations on the oral absorption of poorly water-soluble drug substances. Three different models were used for this purpose. The first model was the in vitro Caco-2 cell model. Simulated intestinal fluids which did not decrease cellular...... products are important for the solubilization of poorly water-soluble drug substances and thus absorption. The second model used was the lipoprotein secreting Caco-2 cell model, which was used to simulate intestinal lymphatic transport in vitro. Various simulated intestinal fluids were composed...

  7. Centrioles: Some Self-Assembly Required

    OpenAIRE

    Song, Mi Hye; Miliaras, Nicholas B.; Peel, Nina; O'Connell, Kevin F.

    2008-01-01

    Centrioles play an important role in organizing microtubules and are precisely duplicated once per cell cycle. New (daughter) centrioles typically arise in association with existing (mother) centrioles (canonical assembly), suggesting that mother centrioles direct the formation of daughter centrioles. However, under certain circumstances, centrioles can also self-assemble free of an existing centriole (de novo assembly). Recent work indicates that the canonical and de novo pathways utilize a ...

  8. 环己烷/水界面自组装纳米银膜及性能研究%The Properties Researched Based on the Prepared Cyclohexane/Water Interface Self-Assembly Nanometer Silver Film

    Institute of Scientific and Technical Information of China (English)

    杨开青; 刘越峰; 毛艳丽

    2017-01-01

    在环己烷/水界面以自组装的方式将单层密排的银纳米粒子膜转移到亲水性的硅片上,以罗丹明6G(R6G)为探针分子,通过与直接滴加银胶溶液和混合R6G后的银胶溶液得到的两种SERS基底对比,密排银纳米粒子膜展现了极高的灵敏度(R6G的检测极限为10-9mol/L)和信号再现性.结合有限时域差分法(FDTD)对其增强原因进行了模拟分析,实验结果与理论模拟基本相符.%A homogeneous monolayer film of the silver nanoparticles was prepared by self-assembly in cyclohexane / water interface.Using rhodamine 6G(R6G) as a probe molecule,the SERS characteristic of the silver nanoparticles monolayer film was compared with both SERS substrates by direct dropping silver colloid mixing with and without R6G,respectively.It was found that the monolayer film exhibited a high sensitivity(The detection limit of R6G was 10-9 mol/L)and reproducibility.The enhanced reason was analyzed by finite difference time domain(FDTD)method.The results showed that the experimental results and theoretical simulation were in line.

  9. Novel in situ self-assembly nanoparticles for formulating a poorly water-soluble drug in oral solid granules, improving stability, palatability, and bioavailability

    OpenAIRE

    Dong, Xiaowei; Guo,Shujie; Pham,Kevin; Li,Diana; Penzak,Scott

    2016-01-01

    Shujie Guo,1 Kevin Pham,2 Diana Li,2 Scott R Penzak,3 Xiaowei Dong2 1State Key Laboratory of Medical Genomics, Shanghai Key Laboratory of Hypertension, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China; 2Department of Pharmaceutical Sciences, 3Department of Pharmacotherapy, University of North Texas Health Science Center, Fort Worth, TX, USA Purpose: The purpose of this study was to develop a novel lipid-based nanotechnology to...

  10. Studies on the effect of solvents on self-assembly of thioctic acid and Mercaptohexanol on gold

    Energy Technology Data Exchange (ETDEWEB)

    Li Zhiguo; Niu Tianxing [School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry of China and Key Laboratory of MOE for Life Science, Nanjing University, Nanjing 210093 (China); Zhang Zhenjiang [School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry of China and Key Laboratory of MOE for Life Science, Nanjing University, Nanjing 210093 (China); College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215006 (China); Feng Guiying [School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry of China and Key Laboratory of MOE for Life Science, Nanjing University, Nanjing 210093 (China); Bi Shuping, E-mail: bisp@nju.edu.c [School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry of China and Key Laboratory of MOE for Life Science, Nanjing University, Nanjing 210093 (China)

    2011-04-29

    In this article we investigated the effect of solvents (CCl{sub 4}, CH{sub 3}CN, DMF, ethanol, ethanol-H{sub 2}O and H{sub 2}O) on self-assembly of Thioctic acid (TA) and Mercaptohexanol (MCH) on gold by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). Electrochemical characteristics of TA and MCH self-assembled monolayers (SAMs) formed in different solvents were evaluated by inspecting the ions permeability (interfacial capacitance C and phase angle {phi}{sub 1Hz}) and electron transfer capability (current density difference {Delta}i and charge transfer resistance R{sub ct}). Experimental results indicated that the ability of solvents availing the ordering of SAMs was: for TA, CCl{sub 4} > ethanol > CH{sub 3}CN > ethanol-H{sub 2}O > DMF; for MCH, H{sub 2}O > ethanol-H{sub 2}O {approx} CCl{sub 4} > ethanol {approx} CH{sub 3}CN > DMF. Through relating the C, {phi}{sub 1Hz}, {Delta}i and R{sub ct} of SAMs (TA and MCH) with parameters of solvent (polarity E{sub T}{sup N}, solubility parameter {delta} and octanol/water partition coefficients logP{sub ow}), it was found that solvents with bigger logP{sub ow} (smaller E{sub T}{sup N} and {delta}) availed the ordering of TA-SAMs but the effect of solvents on MCH self-assembly was complex and MCH-SAMs formed in H{sub 2}O (the biggest E{sub T}{sup N}, {delta} and the smallest logP{sub ow}) and CCl{sub 4} (the smallest E{sub T}{sup N}, {delta} and the biggest logP{sub ow}) were more ordered than in other solvents.

  11. Self-assembled biomimetic nanoreactors I: Polymeric template

    Science.gov (United States)

    McTaggart, Matt; Malardier-Jugroot, Cecile; Jugroot, Manish

    2015-09-01

    The variety of nanoarchitectures made feasible by the self-assembly of alternating copolymers opens new avenues for biomimicry. Indeed, self-assembled structures allow the development of nanoreactors which combine the efficiency of high surface area metal active centres to the effect of confinement due to the very small cavities generated by the self-assembly process. A novel self-assembly of high molecular weight alternating copolymers is characterized in the present study. The self-assembly is shown to organize into nanosheets, providing a 2 nm hydrophobic cavity with a 1D confinement.

  12. Static and dynamic investigations of poly(aspartic acid) and Pluronic F127 complex prepared by self-assembling in aqueous solution

    Science.gov (United States)

    Nita, Loredana E.; Chiriac, Aurica P.; Bercea, Maria; Nistor, Manuela T.

    2015-12-01

    The present investigation is focused on evaluation of self-assembling ability in aqueous solutions of two water soluble polymers: poly(aspartic acid) (PAS) and Pluronic F127 (PL). The intermolecular complexes, realized between polyacid and neutral copolymer surfactant in different ratios, have been studied by combining various characterization techniques as rheology, DLS, spectroscopy, microscopy, chemical imaging, and zeta potential determination, measurements performed in static and/or dynamic conditions. In static conditions, when the equilibrium state between PAS/PL polymeric pair was reached, and depending on the polymers mixture composition, and of experimental rheological conditions, positive or negative deviations from the additive rule are registered. Conformational changes of the macromolecular chains and correspondingly physical interactions are generated between PL and PAS for self-assembly and the formation of interpolymer complex as suprastructure with micellar configuration. The phenomenon was better evidenced in case of 1/1 wt ratio between the two polymers. In dynamic conditions of determination, during ;in situ; evaluation of the hydrodynamic diameter, zeta potential and conductivity, when the equilibrium state is not reached and as result either the intermolecular bonds are not achieved, the self-assembling process is not so obvious evidenced.

  13. Monitoring the hydration of DNA self-assembled monolayers using an extensional nanomechanical resonator

    DEFF Research Database (Denmark)

    Cagliani, Alberto; Kosaka, Priscila; Tamayo, Javier

    2012-01-01

    We have fabricated an ultrasensitive nanomechanical resonator based on the extensional vibration mode to weigh the adsorbed water on self-assembled monolayers of DNA as a function of the relative humidity. The water adsorption isotherms provide the number of adsorbed water molecules per nucleotid...

  14. Self-assembly of silk fibroin under osmotic stress

    Science.gov (United States)

    Sohn, Sungkyun

    The supramolecular self-assembly behavior of silk fibroin was investigated using osmotic stress technique. In Chapter 2, a ternary phase diagram of water-silk-LiBr was constructed based on X-ray results on the osmotically stressed regenerated silk fibroin of Bombyx mori silkworm. Microscopic data indicated that silk I is a hydrated structure and a rough estimate of the number of water molecules lost by the structure upon converting from silk I to silk II has been made, and found to be about 2.2 per [GAGAGS] hexapeptide. In Chapter 3, wet-spinning of osmotically stressed, regenerated silk fibroin was performed, based on the prediction that the enhanced control over structure and phase behavior using osmotic stress method helps improve the physical properties of wet-spun regenerated silk fibroin fibers. The osmotic stress was applied in order to pre-structure the regenerated silk fibroin molecule from its original random coil state to more oriented state, manipulating the phase of the silk solution in the phase diagram before the start of spinning. Monofilament fiber with a diameter of 20 microm was produced. In Chapter 4, we investigated if there is a noticeable synergistic osmotic pressure increase between co-existing polymeric osmolyte and salt when extremely highly concentrated salt molecules are present both at sample subphase and stressing subphase, as is the case of silk fibroin self-assembly. The equilibration method that measures osmotic pressure relative to a reference with known osmotic pressure was introduced. Osmotic pressure of aqueous LiBr solution up to 2.75M was measured and it was found that the synergistic effect was insignificant up to this salt concentration. Solution parameters of stressing solutions and Arrhenius kinetics based on time-temperature relationship for the equilibration process were derived as well. In Chapter 5, self-assembly behavior of natural silk fibroin within the gland of Bombyx mori silkworm was investigated using osmotic

  15. The solubilities of benzene polycarboxylic acids in water

    International Nuclear Information System (INIS)

    Apelblat, Alexander; Manzurola, Emanuel; Abo Balal, Nazmia

    2006-01-01

    The solubilities in water of all benzene polycarboxylic acids are discussed, using data determined in this work (benzoic, terephthalic, trimellitic, trimesic, and pyromellitic acids) and available from the literature (benzoic, phthalic, isophthalic, terephthalic, hemimellitic, trimelitic, trimesic, mellophanic, prehnitic, pyromellitic, benzene-pentacarboxylic and mellitic acids). The apparent molar enthalpies of solution at the saturation point for these benzene polycarboxylic acids were determined from the temperature dependence of the solubilities

  16. Synthesis and self-assembling of responsive polysaccharide-based copolymers in aqueous media

    Energy Technology Data Exchange (ETDEWEB)

    Marques, Nivia do N.; Balaban, Rosangela de C. [Universidade Federal do Rio Grande do Norte (UFRN), Natal, RN (Brazil); Halila, Sami; Borsali, Redouane, E-mail: borsali@cermav.cnrs.fr, E-mail: halila@cermav.cnrs.fr [Centre de Recherche sur les Macromolecules Vegetales (CERMAV), Grenoble (France)

    2015-07-01

    This work reports the synthesis and the thermoresponsive self-assembly behavior of carboxymethylcellulose-g-JeffamineM2070 and carboxymethylcellulose-g-JeffamineM600 copolymers in aqueous media. They were prepared through the grafting of two different types of amino-terminated poly(ethylene oxide-co-propylene oxide) chains onto the carboxylate groups of carboxymethylcellulose, by using water-soluble carbodiimide derivative and N-hydroxysuccinimide as coupling reagents. The grafting efficiency was confirmed by infrared and the degree of substitution by {sup 1}H NMR integrations. The salt effect on cloud point temperature was evaluated into different solvents (Milli-Q water, 0.5M NaCl, synthetic sea water (SSW) and 0.5M K{sub 2}CO{sub 3}) by UV-Vis and dynamic light scattering (DLS) measurements. Both copolymers showed lower cloud point temperature in 0.5M K2CO3 than in 0.5M NaCl and in SSW, which was attributed to the higher ionic strength for K{sub 2}CO{sub 3} combined to the ability of CO{sub 3}{sup 2-} to decrease polymer-water interactions. Copolymers chains displayed higher hydrodynamic radii than CMC precursor at 25 and 60 °C in saline solutions, and self-associations changed as a function of the environment and copolymer composition. (author)

  17. Synthesis and self-assembling of responsive polysaccharide-based copolymers in aqueous media

    International Nuclear Information System (INIS)

    Marques, Nivia do N.; Balaban, Rosangela de C.; Halila, Sami; Borsali, Redouane

    2015-01-01

    This work reports the synthesis and the thermoresponsive self-assembly behavior of carboxymethylcellulose-g-JeffamineM2070 and carboxymethylcellulose-g-JeffamineM600 copolymers in aqueous media. They were prepared through the grafting of two different types of amino-terminated poly(ethylene oxide-co-propylene oxide) chains onto the carboxylate groups of carboxymethylcellulose, by using water-soluble carbodiimide derivative and N-hydroxysuccinimide as coupling reagents. The grafting efficiency was confirmed by infrared and the degree of substitution by "1H NMR integrations. The salt effect on cloud point temperature was evaluated into different solvents (Milli-Q water, 0.5M NaCl, synthetic sea water (SSW) and 0.5M K_2CO_3) by UV-Vis and dynamic light scattering (DLS) measurements. Both copolymers showed lower cloud point temperature in 0.5M K2CO3 than in 0.5M NaCl and in SSW, which was attributed to the higher ionic strength for K_2CO_3 combined to the ability of CO_3"2"- to decrease polymer-water interactions. Copolymers chains displayed higher hydrodynamic radii than CMC precursor at 25 and 60 °C in saline solutions, and self-associations changed as a function of the environment and copolymer composition. (author)

  18. Quantitative analysis of soluble elements in environmental waters by PIXE

    International Nuclear Information System (INIS)

    Niizeki, T.; Kawasaki, K.; Adachi, M.; Tsuji, M.; Hattori, T.

    1999-01-01

    We have started PIXE research for environmental science at Van de Graaff accelerator facility in Tokyo Institute of Technology. Quantitative measurements of soluble fractions in river waters have been carried out using the preconcentrate method developed in Tohoku University. We reveal that this PIXE target preparation can be also applied to waste water samples. (author)

  19. Combretastatin A4/poly(L-glutamic acid-graft-PEG conjugates self-assembled to nanoparticles

    Directory of Open Access Journals (Sweden)

    Yang Ou

    2018-03-01

    Full Text Available Combretastatin A4 (CA4 possesses varying ability to cause vascular disruption in tumors, while the short half-life, low water solubility and deactivation of many CA4 analogs during storage limited its antitumor efficacy and drug stability. A novel macromolecular conjugate of CA4 (CA4-PL was synthesized by covalent bonding of CA4 onto poly(L-glutamic acid-graft-polyethylene glycol (PLG-g-PEG via Yamaguchi reaction. The obtained CA4-PL was characterized by 1H NMR, GPC, and UV methods, and the properties of the nanoparticles composed of CA4-PL, including critical aggregation concentration, size and size distribution, and morphology, were investigated. CA4-PL can self-assemble to form micelle-like nanoparticles of 80~120 nm in diameter, which may have potential to improve the blood circulation period as well as the targetability of CA4, and find applications to treat various tumors when combined with traditional chemotherapy or radio therapy. Keywords: Combretastatin A4, Macromolecular conjugate, Poly(L-glutamic acid-graft-polyethylene glycol, Self-assemble, Nanoparticles

  20. Enhancing the solubility and bioavailability of poorly water-soluble drugs using supercritical antisolvent (SAS) process.

    Science.gov (United States)

    Abuzar, Sharif Md; Hyun, Sang-Min; Kim, Jun-Hee; Park, Hee Jun; Kim, Min-Soo; Park, Jeong-Sook; Hwang, Sung-Joo

    2018-03-01

    Poor water solubility and poor bioavailability are problems with many pharmaceuticals. Increasing surface area by micronization is an effective strategy to overcome these problems, but conventional techniques often utilize solvents and harsh processing, which restricts their use. Newer, green technologies, such as supercritical fluid (SCF)-assisted particle formation, can produce solvent-free products under relatively mild conditions, offering many advantages over conventional methods. The antisolvent properties of the SCFs used for microparticle and nanoparticle formation have generated great interest in recent years, because the kinetics of the precipitation process and morphologies of the particles can be accurately controlled. The characteristics of the supercritical antisolvent (SAS) technique make it an ideal tool for enhancing the solubility and bioavailability of poorly water-soluble drugs. This review article focuses on SCFs and their properties, as well as the fundamentals of overcoming poorly water-soluble drug properties by micronization, crystal morphology control, and formation of composite solid dispersion nanoparticles with polymers and/or surfactants. This article also presents an overview of the main aspects of the SAS-assisted particle precipitation process, its mechanism, and parameters, as well as our own experiences, recent advances, and trends in development. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs.

    Science.gov (United States)

    Lukyanov, Anatoly N; Torchilin, Vladimir P

    2004-05-07

    Polymeric micelles have a whole set of unique characteristics, which make them very promising drug carriers, in particular, for poorly soluble drugs. Our review article focuses on micelles prepared from conjugates of water-soluble polymers, such as polyethylene glycol (PEG) or polyvinyl pyrrolidone (PVP), with phospholipids or long-chain fatty acids. The preparation of micelles from certain polymer-lipid conjugates and the loading of these micelles with various poorly soluble anticancer agents are discussed. The data on the characterization of micellar preparations in terms of their morphology, stability, longevity in circulation, and ability to spontaneously accumulate in experimental tumors via the enhanced permeability and retention (EPR) effect are presented. The review also considers the preparation of targeted immunomicelles with specific antibodies attached to their surface. Available in vivo results on the efficiency of anticancer drugs incorporated into plain micelles and immunomicelles in animal models are also discussed.

  2. Removal of soluble toxic metals from water

    International Nuclear Information System (INIS)

    Buckley, L.P.; Vijayan, S.; McConeghy, G.J.; Maves, S.R.; Martin, J.F.

    1990-05-01

    The removal of selected, soluble toxic metals from aqueous solutions has been accomplished using a combination of chemical treatment and ultrafiltration. The process has been evaluated at the bench-scale and is undergoing pilot-scale testing. Removal efficiencies in excess of 95-99% have been realized. The test program at the bench-scale investigated the limitations and established the optimum range of operating parameters for the process, while the tests conducted with the pilot-scale process equipment are providing information on longer-term process efficiencies, effective processing rates, and fouling potential of the membranes. With the typically found average concentrations of the toxic metals in groundwaters at Superfund sites used as the feed solution, the process has decreased levels up to 100-fold or more. Experiments were also conducted with concentrated solutions to determine their release from silica-based matrices. The solidified wastes were subjected to EP Toxicity test procedures and met the criteria successfully. The final phase of the program involving a field demonstration at a uranium tailings site will be outlined

  3. Carcinogenicity assessment of water-soluble nickel compounds.

    Science.gov (United States)

    Goodman, Julie E; Prueitt, Robyn L; Dodge, David G; Thakali, Sagar

    2009-01-01

    IARC is reassessing the human carcinogenicity of nickel compounds in 2009. To address the inconsistencies among results from studies of water-soluble nickel compounds, we conducted a weight-of-evidence analysis of the relevant epidemiological, toxicological, and carcinogenic mode-of-action data. We found the epidemiological evidence to be limited, in that some, but not all, data suggest that exposure to soluble nickel compounds leads to increased cancer risk in the presence of certain forms of insoluble nickel. Although there is no evidence that soluble nickel acts as a complete carcinogen in animals, there is limited evidence that suggests it may act as a tumor promoter. The mode-of-action data suggest that soluble nickel compounds will not be able to cause genotoxic effects in vivo because they cannot deliver sufficient nickel ions to nuclear sites of target cells. Although the mode-of-action data suggest several possible non-genotoxic effects of the nickel ion, it is unclear whether soluble nickel compounds can elicit these effects in vivo or whether these effects, if elicited, would result in tumor promotion. The mode-of-action data equally support soluble nickel as a promoter or as not being a causal factor in carcinogenesis at all. The weight of evidence does not indicate that soluble nickel compounds are complete carcinogens, and there is only limited evidence that they could act as tumor promoters.

  4. Solubility studies of Np(V) in simulated underground water

    International Nuclear Information System (INIS)

    Zhang Yingjie; Ren Lilong; Jiao Haiyang; Yao Jun; Su Xiguang; Fan Xianhua

    2004-01-01

    The solubility of Np(V) in simulated underground water has been measured with the variation of pH, storage time (0-100 days). All experiments were performed in an Ar glove box which contained high purity Ar, with an oxygen content of less than 5ppm. Experimental results show that the solubility of Np(V) in simulated underground water decreased with increasing pH value of solution; the solubility of Np(V) in simulated underground water determined at different pH is : pH=6.96, [Np(V)]=(3.52±0.37) x 10 -4 mol/L; pH=8.04, [Np(V)]=(8.24±0.32) x 10 -5 mol/L; pH=9.01, [Np(V)]=(3.04±0.48) x 10'- 5 mol/L, respectively. (author)

  5. Oral formulation strategies to improve solubility of poorly water-soluble drugs.

    Science.gov (United States)

    Singh, Abhishek; Worku, Zelalem Ayenew; Van den Mooter, Guy

    2011-10-01

    In the past two decades, there has been a spiraling increase in the complexity and specificity of drug-receptor targets. It is possible to design drugs for these diverse targets with advances in combinatorial chemistry and high throughput screening. Unfortunately, but not entirely unexpectedly, these advances have been accompanied by an increase in the structural complexity and a decrease in the solubility of the active pharmaceutical ingredient. Therefore, the importance of formulation strategies to improve the solubility of poorly water-soluble drugs is inevitable, thus making it crucial to understand and explore the recent trends. Drug delivery systems (DDS), such as solid dispersions, soluble complexes, self-emulsifying drug delivery systems (SEDDS), nanocrystals and mesoporous inorganic carriers, are discussed briefly in this review, along with examples of marketed products. This article provides the reader with a concise overview of currently relevant formulation strategies and proposes anticipated future trends. Today, the pharmaceutical industry has at its disposal a series of reliable and scalable formulation strategies for poorly soluble drugs. However, due to a lack of understanding of the basic physical chemistry behind these strategies, formulation development is still driven by trial and error.

  6. Centrioles: some self-assembly required.

    Science.gov (United States)

    Song, Mi Hye; Miliaras, Nicholas B; Peel, Nina; O'Connell, Kevin F

    2008-12-01

    Centrioles play an important role in organizing microtubules and are precisely duplicated once per cell cycle. New (daughter) centrioles typically arise in association with existing (mother) centrioles (canonical assembly), suggesting that mother centrioles direct the formation of daughter centrioles. However, under certain circumstances, centrioles can also selfassemble free of an existing centriole (de novo assembly). Recent work indicates that the canonical and de novo pathways utilize a common mechanism and that a mother centriole spatially constrains the self-assembly process to occur within its immediate vicinity. Other recently identified mechanisms further regulate canonical assembly so that during each cell cycle, one and only one daughter centriole is assembled per mother centriole.

  7. Surfaces wettability and morphology modulation in a fluorene derivative self-assembly system

    Energy Technology Data Exchange (ETDEWEB)

    Cao, Xinhua, E-mail: caoxhchem@163.com; Gao, Aiping; Zhao, Na; Yuan, Fangyuan; Liu, Chenxi; Li, Ruru

    2016-04-15

    Graphical abstract: - Highlights: • The different structures could be obtained in this self-assembly system. • A water-drop could freely roll on the xerogel film with the sliding angle of 15.0. • The superhydrophobic surface can be obtained via supramolecular self-assembly. - Abstract: A new organogelator based on fluorene derivative (gelator 1) was designed and synthesized. Organogels could be obtained via the self-assembly of the derivative in acetone, toluene, ethyl acetate, hexane, DMSO and petroleum ether. The self-assembly process was thoroughly characterized using field-emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), UV–vis, FT-IR and the contact angle. Surfaces with different morphologies and wetting properties were formed via the self-assembly of gelator 1 in the six different solvents. Interestingly, a superhydrophobic surface with a contact angle of 150° was obtained from organogel 1 in DMSO and exhibited the lotus-effect. The sliding angle necessary for a water droplet to move on the glass was only 15°. Hydrogen bonding and van der Waals forces were attributed as the main driving forces for gel formation.

  8. Self-assembly of poly(ionic liquid) (PIL)-based amphiphilic homopolymers into vesicles and supramolecular structures with dyes and silver nanoparticles

    KAUST Repository

    Manojkumar, Kasina

    2017-04-27

    The incorporation of both hydrophilic and hydrophobic segments in homopolymers leads to their self-assembly into nanostructures in selective solvents, owing to their amphiphilic character. Here we report the RAFT polymerization of N-imidazole-3-propylmethacrylamide and the further quaternization of the resulting polymer with different alkyl bromides of a varying chain length, which afforded well-defined polymeric ionic liquids (PILs) 1-4. These PILs are characterized by the presence of both hydrophobic alkyl chains and hydrophilic ionic moieties, allowing their spontaneous self-assembly in water, forming distinct polymeric vesicles (= polymersomes) the size of which can be varied as a function of alkyl chain length. As demonstrated by the dye-encapsulation study, a particular organic-soluble PIL, 3, consisting of a dodecyl side-chain enabled the transfer of the water-soluble Rose Bengal dye, from an aqueous solution to the organic phase. In addition, polymersomes obtained from a PIL (2) featuring butyl side chains were used as templates and polymeric stabilizers of silver nanoparticles (NPs), i.e. leading to AgNP@PIL hybrids, as observed by transmission electron microscopy (TEM). It was found that the extent of functionalization of polymersomes by the Ag-based NPs varied greatly before and after the end-group removal of the PIL. Altogether, this report emphasizes the facile synthesis of amphiphilic homoPILs and their manipulation in water for dye encapsulation and for stabilization of silver NPs.

  9. Self-assembly of poly(ionic liquid) (PIL)-based amphiphilic homopolymers into vesicles and supramolecular structures with dyes and silver nanoparticles

    KAUST Repository

    Manojkumar, Kasina; Mecerreyes, David; Taton, Daniel; Gnanou, Yves; Vijayakrishna, Kari

    2017-01-01

    The incorporation of both hydrophilic and hydrophobic segments in homopolymers leads to their self-assembly into nanostructures in selective solvents, owing to their amphiphilic character. Here we report the RAFT polymerization of N-imidazole-3-propylmethacrylamide and the further quaternization of the resulting polymer with different alkyl bromides of a varying chain length, which afforded well-defined polymeric ionic liquids (PILs) 1-4. These PILs are characterized by the presence of both hydrophobic alkyl chains and hydrophilic ionic moieties, allowing their spontaneous self-assembly in water, forming distinct polymeric vesicles (= polymersomes) the size of which can be varied as a function of alkyl chain length. As demonstrated by the dye-encapsulation study, a particular organic-soluble PIL, 3, consisting of a dodecyl side-chain enabled the transfer of the water-soluble Rose Bengal dye, from an aqueous solution to the organic phase. In addition, polymersomes obtained from a PIL (2) featuring butyl side chains were used as templates and polymeric stabilizers of silver nanoparticles (NPs), i.e. leading to AgNP@PIL hybrids, as observed by transmission electron microscopy (TEM). It was found that the extent of functionalization of polymersomes by the Ag-based NPs varied greatly before and after the end-group removal of the PIL. Altogether, this report emphasizes the facile synthesis of amphiphilic homoPILs and their manipulation in water for dye encapsulation and for stabilization of silver NPs.

  10. Self-Assembled Asymmetric Block Copolymer Membranes: Bridging the Gap from Ultra- to Nanofiltration

    KAUST Repository

    Yu, Haizhou

    2015-09-21

    The self-assembly of block copolymers is an emerging strategy to produce isoporous ultrafiltration membranes. However, thus far, it has not been possible to bridge the gap from ultra- to nanofiltration and decrease the pore size of self-assembled block copolymer membranes to below 5 nm without post-treatment. It is now reported that the self-assembly of blends of two chemically interacting copolymers can lead to highly porous membranes with pore diameters as small as 1.5 nm. The membrane containing an ultraporous, 60 nm thin separation layer can fully reject solutes with molecular weights of 600 g mol−1 in aqueous solutions with a water flux that is more than one order of magnitude higher than the permeance of commercial nanofiltration membranes. Simulations of the membrane formation process by dissipative particle dynamics (DPD) were used to explain the dramatic observed pore size reduction combined with an increase in water flux.

  11. OCTANOL/WATER PARTITION COEFFICIENTS AND WATER SOLUBILITIES OF PHTHALATE ESTERS

    Science.gov (United States)

    Measurements of the octanol/water partition coefficients (K-ow) and water solubilities of di-n-octyl phthalate (DnOP) and di-n-decyl phthalate (DnDP) by the slow-stirring method are reported. The water solubility was also measured for di-n-hexyl phthalate (DnHP). The log K-ow val...

  12. Self-assembled nanogaps via seed-mediated growth of end-to-end linked gold nanorods

    DEFF Research Database (Denmark)

    Jain, Titoo; Westerlund, Axel Rune Fredrik; Johnson, Erik

    2009-01-01

    Gold nanorods (AuNRs) are of interest for a wide range of applications, ranging from imaging to molecular electronics, and they have been studied extensively for the past decade. An important issue in AuNR applications is the ability to self-assemble the rods in predictable structures...... on the nanoscale. We here present a new way to end-to-end link AuNRs with a single or few linker molecules. Whereas methods reported in the literature so far rely on modification of the AuNRs after the synthesis, we here dimerize gold nanoparticle seeds with a water-soluble dithiol-functionalized polyethylene...... that a large fraction of the rods are flexible around the hinging molecule in solution, as expected for a molecularly linked nanogap. By using excess of gold nanoparticles relative to the linking dithiol molecule, this method can provide a high probability that a single molecule is connecting the two rods...

  13. Novel electrosprayed nanospherules for enhanced aqueous solubility and oral bioavailability of poorly water-soluble fenofibrate

    Directory of Open Access Journals (Sweden)

    Yousaf AM

    2016-01-01

    Full Text Available Abid Mehmood Yousaf,1,2 Omer Mustapha,1 Dong Wuk Kim,1 Dong Shik Kim,1 Kyeong Soo Kim,1 Sung Giu Jin,1 Chul Soon Yong,3 Yu Seok Youn,4 Yu-Kyoung Oh,5 Jong Oh Kim,3 Han-Gon Choi1 1College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi, South Korea; 2Faculty of Pharmacy, University of Central Punjab, Johar, Lahore, Pakistan; 3College of Pharmacy, Yeungnam University, Gyongsan, North Gyeongsang, 4School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi, 5College of Pharmacy, Seoul National University, Seoul, South Korea Purpose: The purpose of the present research was to develop a novel electrosprayed nanospherule providing the most optimized aqueous solubility and oral bioavailability for poorly water-soluble fenofibrate.Methods: Numerous fenofibrate-loaded electrosprayed nanospherules were prepared with polyvinylpyrrolidone (PVP and Labrafil® M 2125 as carriers using the electrospray technique, and the effect of the carriers on drug solubility and solvation was assessed. The solid state characterization of an optimized formulation was conducted by scanning electron microscopy, powder X-ray diffraction, differential scanning calorimetry, and Fourier transform infrared spectroscopic analyses. Oral bioavailability in rats was also evaluated for the formulation of an optimized nanospherule in comparison with free drug and a conventional fenofibrate-loaded solid dispersion.Results: All of the electrosprayed nanospherule formulations had remarkably enhanced aqueous solubility and dissolution compared with free drug. Moreover, Labrafil M 2125, a surfactant, had a positive influence on the solubility and dissolution of the drug in the electrosprayed nanospherule. Increases were observed as the PVP/drug ratio increased to 4:1, but higher ratios gave no significant increases. In particular, an electrosprayed nanospherule composed of fenofibrate, PVP, and Labrafil M 2125 at the weight ratio of 1

  14. Self-assembling layers created by membrane proteins on gold.

    Science.gov (United States)

    Shah, D S; Thomas, M B; Phillips, S; Cisneros, D A; Le Brun, A P; Holt, S A; Lakey, J H

    2007-06-01

    Membrane systems are based on several types of organization. First, amphiphilic lipids are able to create monolayer and bilayer structures which may be flat, vesicular or micellar. Into these structures membrane proteins can be inserted which use the membrane to provide signals for lateral and orientational organization. Furthermore, the proteins are the product of highly specific self-assembly otherwise known as folding, which mostly places individual atoms at precise places in three dimensions. These structures all have dimensions in the nanoscale, except for the size of membrane planes which may extend for millimetres in large liposomes or centimetres on planar surfaces such as monolayers at the air/water interface. Membrane systems can be assembled on to surfaces to create supported bilayers and these have uses in biosensors and in electrical measurements using modified ion channels. The supported systems also allow for measurements using spectroscopy, surface plasmon resonance and atomic force microscopy. By combining the roles of lipids and proteins, highly ordered and specific structures can be self-assembled in aqueous solution at the nanoscale.

  15. Silver nanoprisms self-assembly on differently functionalized silica surface

    International Nuclear Information System (INIS)

    Pilipavicius, J; Chodosovskaja, A; Beganskiene, A; Kareiva, A

    2015-01-01

    In this work colloidal silica/silver nanoprisms (NPRs) composite coatings were made. Firstly colloidal silica sols were synthesized by sol-gel method and produced coatings on glass by dip-coating technique. Next coatings were silanized by (3-Aminopropyl)triethoxysilane (APTES), N-[3-(Trimethoxysilyl)propyl]ethylenediamine (AEAPTMS), (3- Mercaptopropyl)trimethoxysilane (MPTMS). Silver NPRs where synthesized via seed-mediated method and high yield of 94±15 nm average edge length silver NPRs were obtained with surface plasmon resonance peak at 921 nm. Silica-Silver NPRs composite coatings obtained by selfassembly on silica coated-functionalized surface. In order to find the most appropriate silanization way for Silver NPRs self-assembly, the composite coatings were characterized by scanning electron microscopy (SEM), dynamic light scattering (DLS), water contact angle (CA) and surface free energy (SFE) methods. Results have showed that surface functionalization is necessary to achieve self-assembled Ag NPRs layer. MPTMS silanized coatings resulted sparse distribution of Ag NPRs. Most homogeneous, even distribution composite coatings obtained on APTES functionalized silica coatings, while AEAPTMS induced strong aggregation of Silver NPRs

  16. Structural Diversity of Self-Assembled Iridescent Arthropod Biophotonic Nanostructures

    Science.gov (United States)

    Saranathan, Vinod Kumar; Prum, Richard O.

    2015-03-01

    Many organisms, especially arthropods, produce vivid interference colors using diverse mesoscopic (100-350 nm) integumentary biophotonic nanostructures that are increasingly being investigated for technological applications. Despite a century of interest, we lack precise structural knowledge of many biophotonic nanostructures and mechanisms controlling their development, when such knowledge can open novel biomimetic routes to facilely self-assemble tunable, multi-functional materials. Here, we use synchrotron small angle X-ray scattering and electron microscopy to characterize the photonic nanostructure of 140 iridescent integumentary scales and setae from 127 species of terrestrial arthropods in 85 genera from 5 orders. We report a rich nanostructural diversity, including triply-periodic bicontinuous networks, close-packed spheres, inverse columnar, perforated lamellar, and disordered sponge-like morphologies, commonly observed as stable phases of amphiphilic surfactants, block copolymer, and lyotropic lipid-water systems. Diverse arthropod lineages appear to have independently evolved to utilize the self-assembly of infolding bilayer membranes to develop biophotonic nanostructures that span the phase-space of amphiphilic morphologies, but at optical length scales.

  17. Self-assembled cellulose materials for biomedicine: A review.

    Science.gov (United States)

    Yang, Jisheng; Li, Jinfeng

    2018-02-01

    Cellulose-based materials have reached a growing interest for the improvement of biomedicine, due to their good biocompatibility, biodegradability, and low toxicity. Self-assembly is a spontaneous process by which organized structures with particular functions and properties could be obtained without additional complicated processing steps. This article describes the modifications, properties and applications of cellulose and its derivatives, which including a detailed review of representative types of solvents such as NMMO, DMAc/LiCl, some molten salt hydrates, some aqueous solutions of metal complexes, ionic liquids and NaOH-water system etc. The modifications were frequently performed by esterification, etherification, ATRP, RAFT, ROP and other novel methods. Stimuli-responsive cellulose-based materials, such as temperature-, pH-, light- and redox-responsive, were synthesized for their superior performance. Additionally, the applications of cellulose-based materials which can self-assemble into micelles, vesicles and other aggregates, for drug/gene delivery, bioimaging, biosensor, are also discussed. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Liposomes self-assembled from electrosprayed composite microparticles

    International Nuclear Information System (INIS)

    Yu Dengguang; Yang Junhe; Wang Xia; Tian Feng

    2012-01-01

    Composite microparticles, consisting of polyvinylpyrrolidone (PVP), naproxen (NAP) and lecithin (PC), have been successfully prepared using an electrospraying process and exploited as templates to manipulate molecular self-assembly for the synthesis of liposomes in situ. Field emission scanning electron microscope (FESEM) and transmission electron microscope (TEM) observations demonstrate that the microparticles have an average diameter of 960 ± 140 nm and a homogeneous structure. X-ray diffraction (XRD) patterns, differential scanning calorimetry (DSC) and attenuated total reflectance-Fourier transform infrared (ATR-FTIR) results verify that the building blocks NAP and PC are scattered in the polymer matrix in a molecular way owing to the very fast drying of the electrospraying process and the favorable secondary interactions among the components. FESEM, scanning probe microscope (SPM) and TEM observations demonstrate that the liposomes can be achieved through molecular self-assembly in situ when the microparticles contact water thanks to ‘like prefers like’ and by means of the confinement effect of the microparticles. The liposomes have an encapsulation rate of 91.3%, and 80.7% of the drug in the liposomes can be freed into the dissolution medium in a sustained way and by a diffusion mechanism over a period of 24 h. The developed strategy not only provides a new, facile, and effective method to assemble and organize molecules of multiple components into liposomes with electrosprayed microparticles as templates, but also opens a new avenue for nanofabrication in a step-by-step and controllable way. (paper)

  19. Quantifying quality in DNA self-assembly

    Science.gov (United States)

    Wagenbauer, Klaus F.; Wachauf, Christian H.; Dietz, Hendrik

    2014-01-01

    Molecular self-assembly with DNA is an attractive route for building nanoscale devices. The development of sophisticated and precise objects with this technique requires detailed experimental feedback on the structure and composition of assembled objects. Here we report a sensitive assay for the quality of assembly. The method relies on measuring the content of unpaired DNA bases in self-assembled DNA objects using a fluorescent de-Bruijn probe for three-base ‘codons’, which enables a comparison with the designed content of unpaired DNA. We use the assay to measure the quality of assembly of several multilayer DNA origami objects and illustrate the use of the assay for the rational refinement of assembly protocols. Our data suggests that large and complex objects like multilayer DNA origami can be made with high strand integration quality up to 99%. Beyond DNA nanotechnology, we speculate that the ability to discriminate unpaired from paired nucleic acids in the same macromolecule may also be useful for analysing cellular nucleic acids. PMID:24751596

  20. Oxide nanostructures through self-assembly

    Science.gov (United States)

    Aggarwal, S.; Ogale, S. B.; Ganpule, C. S.; Shinde, S. R.; Novikov, V. A.; Monga, A. P.; Burr, M. R.; Ramesh, R.; Ballarotto, V.; Williams, E. D.

    2001-03-01

    A prominent theme in inorganic materials research is the creation of uniformly flat thin films and heterostructures over large wafers, which can subsequently be lithographically processed into functional devices. This letter proposes an approach that will lead to thin film topographies that are directly counter to the above-mentioned philosophy. Recent years have witnessed considerable research activity in the area of self-assembly of materials, stimulated by observations of self-organized behavior in biological systems. We have fabricated uniform arrays of nonplanar surface features by a spontaneous assembly process involving the oxidation of simple metals, especially under constrained conditions on a variety of substrates, including glass and Si. In this letter we demonstrate the pervasiveness of this process through examples involving the oxidation of Pd, Cu, Fe, and In. The feature sizes can be controlled through the grain size and thickness of the starting metal thin film. Finally, we demonstrate how such submicron scale arrays can serve as templates for the design and development of self-assembled, nanoelectronic devices.

  1. Stereochemistry in subcomponent self-assembly.

    Science.gov (United States)

    Castilla, Ana M; Ramsay, William J; Nitschke, Jonathan R

    2014-07-15

    CONSPECTUS: As Pasteur noted more than 150 years ago, asymmetry exists in matter at all organization levels. Biopolymers such as proteins or DNA adopt one-handed conformations, as a result of the chirality of their constituent building blocks. Even at the level of elementary particles, asymmetry exists due to parity violation in the weak nuclear force. While the origin of homochirality in living systems remains obscure, as does the possibility of its connection with broken symmetries at larger or smaller length scales, its centrality to biomolecular structure is clear: the single-handed forms of bio(macro)molecules interlock in ways that depend upon their handednesses. Dynamic artificial systems, such as helical polymers and other supramolecular structures, have provided a means to study the mechanisms of transmission and amplification of stereochemical information, which are key processes to understand in the context of the origins and functions of biological homochirality. Control over stereochemical information transfer in self-assembled systems will also be crucial for the development of new applications in chiral recognition and separation, asymmetric catalysis, and molecular devices. In this Account, we explore different aspects of stereochemistry encountered during the use of subcomponent self-assembly, whereby complex structures are prepared through the simultaneous formation of dynamic coordinative (N → metal) and covalent (N═C) bonds. This technique provides a useful method to study stereochemical information transfer processes within metal-organic assemblies, which may contain different combinations of fixed (carbon) and labile (metal) stereocenters. We start by discussing how simple subcomponents with fixed stereogenic centers can be incorporated in the organic ligands of mononuclear coordination complexes and communicate stereochemical information to the metal center, resulting in diastereomeric enrichment. Enantiopure subcomponents were then

  2. Solubilization of poorly water-soluble drugs using solid dispersions.

    Science.gov (United States)

    Tran, Thao T-D; Tran, Phuong H-L; Khanh, Tran N; Van, Toi V; Lee, Beom-Jin

    2013-08-01

    Many new drugs have been discovered in pharmaceutical industry and exposed their surprised potential therapeutic effects. Unfortunately, these drugs possess low absorption and bioavailability since their solubility limitation in water. Solid dispersion (SD) is the current technique gaining so many attractions from scientists due to its effect on improving solubility and dissolution rate of poorly water-soluble drugs. A number of patents including the most recent inventions have been undertaken in this review to address various respects of this strategy in solubilization of poorly watersoluble drugs including type of carriers, preparation methods and view of technologies used to detect SD properties and mechanisms with the aim to accomplish a SD not only effective on enhanced bioavailability but also overcome difficulties associated with stability and production. Future prospects are as well discussed with an only hope that many developments and researches in this field will be successfully reached and contributed to commercial use for treatment as much as possible.

  3. Solubility of magnetite in high temperature water and an approach to generalized solubility computations

    International Nuclear Information System (INIS)

    Dinov, K.; Ishigure, K.; Matsuura, C.; Hiroishi, D.

    1993-01-01

    Magnetite solubility in pure water was measured at 423 K in a fully teflon-covered autoclave system. A fairly good agreement was found to exist between the experimental data and calculation results obtained from the thermodynamical model, based on the assumption of Fe 3 O 4 dissolution and Fe 2 O 3 deposition reactions. A generalized thermodynamical approach to the solubility computations under complex conditions on the basis of minimization of the total system Gibbs free energy was proposed. The forms of the chemical equilibria were obtained for various systems initially defined and successfully justified by the subsequent computations. A [Fe 3+ ] T -[Fe 2+ ] T phase diagram was introduced as a tool for systematic understanding of the magnetite dissolution phenomena in pure water and under oxidizing and reducing conditions. (orig.)

  4. Vortex-Induced Alignment of a Water Soluble Supramolecular Nanofiber Composed of an Amphiphilic Dendrimer

    Directory of Open Access Journals (Sweden)

    Akihiko Tsuda

    2013-06-01

    Full Text Available We have synthesized a novel amphiphilic naphthalene imide bearing a cationic dendrimer wedge (NID. NID molecules in water self-assemble to form a two-dimensional ribbon, which further coils to give a linear supramolecular nanofiber. The sample solution showed linear dichroism (LD upon stirring of the solution, where NID nanofibers dominantly align at the center of vortex by hydrodynamic interaction with the downward torsional flows.

  5. Solubility study of Tc(IV) in a granitic water

    International Nuclear Information System (INIS)

    Liu, D.J.; Yao, J.; Wang, B.; Bruggeman, C.; Maes, N.

    2007-01-01

    The deep geological disposal of the high level radioactive wastes is expected to be a safe disposal method in most countries. The long-lived fission product 99 Tc is present in large quantities in nuclear wastes and its chemical behavior in aqueous solution is of considerable interest. Under oxidizing conditions technetium exists as the anionic species TcO 4 - whereas under the reducing conditions, expected to exist in a deep geological repository, it is generally predicted that technetium will be present as TcO 2 .nH 2 O. Hence, the mobility of Tc(IV) in reducing groundwater may be limited by the solubility of TcO 2 .nH 2 O under these conditions. Due to this fact it is important to investigate the solubility of TcO 2 .nH 2 O. The solubility determines the release of radionuclides from waste form and is used as a source term in radionuclide migration analysis in performance assessment of radioactive waste repository. Technetium(IV) was prepared by reduction of a technetate solution with Sn 2+ . The solubility of Tc(IV) has been determined in simulated groundwater and redistilled water under aerobic and anaerobic conditions. The effects of pH and CO 3 2- concentration of solution on solubility of Tc(IV) were studied. The concentration of total technetium and Tc(IV) species in the solutions were periodically determined by separating the oxidized and reduced technetium species using a solvent extraction procedure and counting the beta activity of the 99 Tc with a liquid scintillation counter. The experimental results show that the rate of oxidation of Tc(IV) in simulated groundwater and redistilled water is about (1.49 ∝ 1.86) x 10 -9 mol L -1 d -1 under aerobic conditions, while no Tc(IV) oxidation was detected in simulated groundwater and redistilled water under anaerobic conditions. Under aerobic or anaerobic conditions the solubility of Tc(IV) in simulated groundwater and redistilled water is equal on the whole after centrifugation or ultrafiltration. The

  6. IMPROVEMENT OF SOLUBILITY OF BADLY WATER SOLUBLE DRUG (IBUPROFEN) BY USING SURFACTANTS AND CARRIERS

    OpenAIRE

    Md. Zakaria Faruki*, Rishikesh, Elizabeth Razzaque, Mohiuddin Ahmed Bhuiyan

    2013-01-01

    ABSTRACT: Although there was a great interest in solid dispersion systems during the past four decades to increase dissolution rate and bioavailability of badly water-soluble drugs, their profitable use has been very limited, primarily because of manufacturing difficulties and stability problems. In this study solid solutions of drugs were generally produced by fusion method. The drug along with the excipients (surfactants and carriers) was heated first and then hardened by cooling to room te...

  7. Physical and ionic characteristics in water soluble fraction (WSF) of ...

    African Journals Online (AJOL)

    The values of ionic and physical characteristics at 25, 50 and 100% water soluble fraction (WSF) of Olomoro well-head crude oil before and after exposure to Azolla africana were investigated. The WSF values before and after exposure to the plants showed that more ions were available after the introduction of the test plant.

  8. Bioremediation prospects of fungi isolated from water soluble ...

    African Journals Online (AJOL)

    The fungi associated with water soluble fraction (WSF) of crude oil from two different locations were investigated. The samples were collected from Ezibin oil well (Sample A), Okwagbe village in Ughelli South Local Government Area of Delta State and from NPDC laboratory (Sample B) in Benin City, Oredo Local ...

  9. Process for radiation cocrosslinking water soluble polymers and products thereof

    International Nuclear Information System (INIS)

    Assarsson, P.G.; King, P.A.

    1976-01-01

    Poly(ethylene oxide) and at least one other water soluble polymer are conveniently cocrosslinked by exposing aqueous systems of the polymers to high energy irradiation. The resulting products are insoluble hydrophilic gels which can contain or when dried absorb large quantities of aqueous fluids and hence are useful as absorbing media for disposable absorbent articles, agricultural applications and the like

  10. Water-soluble diphosphadiazacyclooctanes as ligands for aqueous organometallic catalysis

    KAUST Repository

    Boulanger, Jérôme

    2012-12-01

    Two new water-soluble diphosphacyclooctanes been synthesized and characterized by NMR and surface tension measurements. Both phosphanes proved to coordinate rhodium in a very selective way as well-defined bidentates were obtained. When used in Rh-catalyzed hydroformylation of terminal alkenes, both ligands positively impacted the reaction chemoselectivity. © 2012 Elsevier B.V.

  11. Determination of Carboxylic Acids and Water-soluble Inorganic Ions ...

    African Journals Online (AJOL)

    Atmospheric aerosol samples of PM2.5 and PM10 were collected in April–May 2011 from a rural site in Tanzania and analyzed for water-soluble inorganic ions and low molecular weight carboxylic acids using ion chromatography. PM2.5 and PM10 low-volume samplers with quartz fibre filters were deployed and aerosol ...

  12. Plasma concentrations of water.soluble vitamins in metabolic ...

    African Journals Online (AJOL)

    Context: Vitamins B1 (thiamine), B3 (niacin), B6 (pyridoxine), and C (ascorbic acid) are vital for energy, carbohydrate, lipid, and amino acid metabolism and in the regulation of the cellular redox state. Some studies have associated low levels of water.soluble vitamins with metabolic syndrome and its various components.

  13. Aggregation and Photophysical Properties of Water-Soluble Sapphyrins

    Czech Academy of Sciences Publication Activity Database

    Kubát, Pavel; Lang, Kamil; Zelinger, Zdeněk; Král, V.

    2004-01-01

    Roč. 395, - (2004), s. 82-86 ISSN 0009-2614 R&D Projects: GA AV ČR KSK4040110 Keywords : water-soluble * sapphyrins * photophysical Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.438, year: 2004

  14. Short Communication Relationships between the water solubility of ...

    African Journals Online (AJOL)

    132. Short Communication. Relationships between the water solubility of roughage dry matter and certain chemical characteristics. J.W. Cilliers- and H.J. Cilliers. North West Agricultural Development lnstitute, Private. Bag X804, Potchefstroom, 2520 Republic of South Africa. Received 17 May 1995; accepted 8 August 1995.

  15. Synthesis of water soluble photo-initiators of thioxanthone derivatives

    International Nuclear Information System (INIS)

    Qi Guozhen; Wang Jindi; Lin Yiqing

    1999-01-01

    Eight new photo-initiators of water-soluble thioxanthone derivatives were prepared. These compounds were identified by IR, NMR, MS and elemental analysis etc. The UV absorption wavelength, molar absorption coefficient and fluorescent quantum yield were determined. Furthermore, the relationship between structure and properties was discussed

  16. Synthesis of water soluble photo-initiators of thioxanthone derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Guozhen, Qi; Jindi, Wang; Yiqing, Lin [Inst. of Fine Chemicals ECUST, Shanghai (China)

    1999-07-01

    Eight new photo-initiators of water-soluble thioxanthone derivatives were prepared. These compounds were identified by IR, NMR, MS and elemental analysis etc. The UV absorption wavelength, molar absorption coefficient and fluorescent quantum yield were determined. Furthermore, the relationship between structure and properties was discussed.

  17. Water-soluble diphosphadiazacyclooctanes as ligands for aqueous organometallic catalysis

    KAUST Repository

    Boulanger, Jé rô me; Bricout, Hervé ; Tilloy, Sé bastien; Fihri, Aziz; Len, Christophe; Hapiot, Fré dé ric; Monflier, É ric

    2012-01-01

    Two new water-soluble diphosphacyclooctanes been synthesized and characterized by NMR and surface tension measurements. Both phosphanes proved to coordinate rhodium in a very selective way as well-defined bidentates were obtained. When used in Rh-catalyzed hydroformylation of terminal alkenes, both ligands positively impacted the reaction chemoselectivity. © 2012 Elsevier B.V.

  18. Selective Photooxidation Reactions using Water-Soluble Anthraquinone Photocatalysts

    NARCIS (Netherlands)

    Zhang, W.; Gacs, Jenő; Arends, I.W.C.E.; Hollmann, F.

    2017-01-01

    The aerobic organocatalytic oxidation of alcohols was achieved by using water-soluble sodium anthraquinone sulfonate. Under visible-light activation, this catalyst mediated the aerobic oxidation of alcohols to aldehydes and ketones. The photo-oxyfunctionalization of alkanes was also possible

  19. The self-assembly of monodisperse nanospheres within microtubes

    International Nuclear Information System (INIS)

    Zheng Yuebing; Juluri, Bala Krishna; Huang, Tony Jun

    2007-01-01

    Self-assembled monodisperse nanospheres within microtubes have been fabricated and characterized. In comparison with colloidal crystals formed on planar substrates, colloidal nanocrystals self-assembled in microtubes demonstrate high spatial symmetry in their optical transmission and reflection properties. The dynamic self-assembly process inside microtubes is investigated by combining temporal- and spatial-spectrophotometric measurements. The understanding of this process is achieved through both experimentally recorded reflection spectra and finite difference time domain (FDTD)-based simulation results

  20. Magnetic self-assembly of small parts

    Science.gov (United States)

    Shetye, Sheetal B.

    Modern society's propensity for miniaturized end-user products is compelling electronic manufacturers to assemble and package different micro-scale, multi-technology components in more efficient and cost-effective manners. As the size of the components gets smaller, issues such as part sticking and alignment precision create challenges that slow the throughput of conventional robotic pick-n-place systems. As an alternative, various self-assembly approaches have been proposed to manipulate micro to millimeter scale components in a parallel fashion without human or robotic intervention. In this dissertation, magnetic self-assembly (MSA) is demonstrated as a highly efficient, completely parallel process for assembly of millimeter scale components. MSA is achieved by integrating permanent micromagnets onto component bonding surfaces using wafer-level microfabrication processes. Embedded bonded powder methods are used for fabrication of the magnets. The magnets are then magnetized using pulse magnetization methods, and the wafers are then singulated to form individual components. When the components are randomly mixed together, self-assembly occurs when the intermagnetic forces overcome the mixing forces. Analytical and finite element methods (FEM) are used to study the force interactions between the micromagnets. The multifunctional aspects of MSA are presented through demonstration of part-to-part and part-to-substrate assembly of 1 mm x 1mm x 0.5 mm silicon components. Part-to-part assembly is demonstrated by batch assembly of free-floating parts in a liquid environment with the assembly yield of different magnetic patterns varying from 88% to 90% in 20 s. Part-to-substrate assembly is demonstrated by assembling an ordered array onto a fixed substrate in a dry environment with the assembly yield varying from 86% to 99%. In both cases, diverse magnetic shapes/patterns are used to control the alignment and angular orientation of the components. A mathematical model is

  1. Self-assembly of nitrogen-doped carbon nanoparticles: a new ratiometric UV-vis optical sensor for the highly sensitive and selective detection of Hg(2+) in aqueous solution.

    Science.gov (United States)

    Ruan, Yudi; Wu, Lie; Jiang, Xiue

    2016-05-23

    Water-soluble nitrogen-doped carbon nanoparticles (N-CNPs) prepared by the one-step hydrothermal treatment of uric acid were found to show ratiometric changes in their UV-vis spectra due to Hg(2+)-mediated self-assembly. For the first time, such a property was developed into a UV-vis optical sensor for detecting Hg(2+) in aqueous solutions with high sensitively and selectively (detection limit = 1.4 nM). More importantly, this novel sensor exhibits a higher linear sensitivity over a wider concentration range compared with the fluorescence sensor based on the same N-CNPs. This work opens an exciting new avenue to explore the use of carbon nanoparticles in constructing UV-vis optical sensors for the detection of metal ions and the use of carbon nanoparticles as a new building block to self-assemble into superlattices.

  2. Multifunctional Materials Based on Self Assembly of Molecular Nanostructures

    National Research Council Canada - National Science Library

    Stupp, Samuel

    2001-01-01

    .... The objective was to integrate self assembly, encoded in the triblock structure, luminescent properties, and the properties characteristic of materials that have macroscopically polar structure...

  3. Self-assembled software and method of overriding software execution

    Science.gov (United States)

    Bouchard, Ann M.; Osbourn, Gordon C.

    2013-01-08

    A computer-implemented software self-assembled system and method for providing an external override and monitoring capability to dynamically self-assembling software containing machines that self-assemble execution sequences and data structures. The method provides an external override machine that can be introduced into a system of self-assembling machines while the machines are executing such that the functionality of the executing software can be changed or paused without stopping the code execution and modifying the existing code. Additionally, a monitoring machine can be introduced without stopping code execution that can monitor specified code execution functions by designated machines and communicate the status to an output device.

  4. Some physicochemical aspects of water-soluble mineral flotation.

    Science.gov (United States)

    Wu, Zhijian; Wang, Xuming; Liu, Haining; Zhang, Huifang; Miller, Jan D

    2016-09-01

    Some physicochemical aspects of water-soluble mineral flotation including hydration phenomena, associations and interactions between collectors, air bubbles, and water-soluble mineral particles are presented. Flotation carried out in saturated salt solutions, and a wide range of collector concentrations for effective flotation of different salts are two basic aspects of water-soluble mineral flotation. Hydration of salt ions, mineral particle surfaces, collector molecules or ions, and collector aggregates play an important role in water-soluble mineral flotation. The adsorption of collectors onto bubble surfaces is suggested to be the precondition for the association of mineral particles with bubbles. The association of collectors with water-soluble minerals is a complicated process, which may include the adsorption of collector molecules or ions onto such surfaces, and/or the attachment of collector precipitates or crystals onto the mineral surfaces. The interactions between the collectors and the minerals include electrostatic and hydrophobic interactions, hydrogen bonding, and specific interactions, with electrostatic and hydrophobic interactions being the common mechanisms. For the association of ionic collectors with minerals with an opposite charge, electrostatic and hydrophobic interactions could have a synergistic effect, with the hydrophobic interactions between the hydrophobic groups of the previously associated collectors and the hydrophobic groups of oncoming collectors being an important attractive force. Association between solid particles and air bubbles is the key to froth flotation, which is affected by hydrophobicity of the mineral particle surfaces, surface charges of mineral particles and bubbles, mineral particle size and shape, temperature, bubble size, etc. The use of a collector together with a frother and the use of mixed surfactants as collectors are suggested to improve flotation. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Nanonization strategies for poorly water-soluble drugs.

    Science.gov (United States)

    Chen, Huabing; Khemtong, Chalermchai; Yang, Xiangliang; Chang, Xueling; Gao, Jinming

    2011-04-01

    Poor water solubility for many drugs and drug candidates remains a major obstacle to their development and clinical application. Conventional formulations to improve solubility suffer from low bioavailability and poor pharmacokinetics, with some carriers rendering systemic toxicities (e.g. Cremophor(®) EL). In this review, several major nanonization techniques that seek to overcome these limitations for drug solubilization are presented. Strategies including drug nanocrystals, nanoemulsions and polymeric micelles are reviewed. Finally, perspectives on existing challenges and future opportunities are highlighted. Published by Elsevier Ltd.

  6. Constructing aptamer anchored nanovesicles for enhanced tumor penetration and cellular uptake of water soluble chemotherapeutics.

    Science.gov (United States)

    Li, Xin; Zhu, Xiumei; Qiu, Liyan

    2016-04-15

    Polymersomes represent a promising pharmaceutical vehicle for the delivery of hydrophilic therapeutic agents. However, modification of polymersomes with molecules that confer targeting functions remains challenging because of the strict requirements regarding the weight fractions of the hydrophilic and hydrophobic block polymers. In this study, based on the compatibility between cholesterol and polymeric carriers, polymersomes self-assembled by amphiphilic graft polyphosphazenes were endowed with a targeting function by incorporating the cholesterol-linked aptamer through a simple dialysis method. The aqueous interior of the polymersomes was employed to encapsulate water-soluble doxorubicin hydrochloride. In vivo experiments in tumor-bearing mice showed that the aptamer-anchored vesicle targeted accumulation at the tumor site, favorable penetration through tumor tissue, and incremental endocytosis into tumor cells. Correspondingly, the aptamer-anchored vesicle decreased systemic toxicity and effectively suppressed the growth of subcutaneous MCF-7 xenografts. These findings suggested that vesicles modified with targeted groups via hydrophobic supermolecular interactions could provide a platform for selective delivery of hydrophilic drug. Polymersomes have represented a promising type of pharmaceutical vehicles due to their predominant physical properties. However, it is still a challenge to endow polymersomes with active target function because of strict requirements of the weight fractions of hydrophilic polymer block to hydrophobic one. In this research, by taking advantage of the supermolecular interactions between amphiphilic graft polyphosphazene and cholesterol which was linked to aptamer AS1411, we prepared a targeted functional polymersome (PEP-DOX·HCl-Ap) through a simple method with high loading of water soluble anti-cancer drug doxorubicin hydrochloride. The in vivo experiments in MCF-7 tumor-bearing mice demonstrated several advantages of PEP

  7. Solubility of the Proteinogenic α-Amino Acids in Water, Ethanol, and Ethanol-Water Mixtures

    NARCIS (Netherlands)

    Bowden, Nathan A.; Sanders, Johan P.M.; Bruins, Marieke E.

    2018-01-01

    The addition of organic solvents to α-amino acids in aqueous solution could be an effective method in crystallization. We reviewed the available data on the solubility of α-amino acids in water, water-ethanol mixtures, and ethanol at 298.15 K and 0.1 MPa. The solubility of l-alanine, l-proline,

  8. Water-Soluble Vitamin E-Tocopheryl Phosphate.

    Science.gov (United States)

    Zingg, Jean-Marc

    The hydrophobicity of vitamin E poses transport and metabolic challenges to regulate its bioavailability and to prevent its accumulation in lipid-rich tissues such as adipose tissue, brain, and liver. Water-soluble precursors of vitamin E (α-tocopherol, αT), such as its esters with acetate (αTA), succinate (αTS), or phosphate (αTP), have increased solubility in water and stability against reaction with free radicals, but they are rapidly converted during their uptake into the lipid-soluble vitamin E. Therefore, the bioavailability of these precursors as intact molecules is low; nevertheless, at least for αTS and αTP, the recent research has revealed unique regulatory effects on signal transduction and gene expression and the modulation of cellular events ranging from proliferation, survival/apoptosis, lipid uptake and metabolism, phagocytosis, long term potentiation, cell migration, telomere maintenance, and angiogenesis. Moreover, water-soluble derivatives of vitamin E including some based on αTP are increasingly used as components of nanocarriers for enhanced and targeted delivery of drugs and other molecules (vitamins, including αT and αTP itself, vitamin D3, carnosine, caffeine, docosahexaenoic acid (DHA), insulin) and cofactors such as coenzyme Q10. In this review, the chemical characteristics, transport, metabolic pathways, and molecular mechanisms of action of αTP in cells and tissues are summarized and put into perspective with its possible role in the prevention of a number of diseases. © 2018 Elsevier Inc. All rights reserved.

  9. Heterogeneous self-assembled media for biopolymerization

    DEFF Research Database (Denmark)

    Monnard, Pierre-Alain

    2011-01-01

    Heterogeneous media, such as micro-structured aqueous environments, could offer an alternative approach to the synthesis of biopolymers with novel functions. Structured media are here defined as specialized, self-assembled structures that are formed, e.g, by amphiphiles, such as liposomes, emulsion...... polymerization, the initial elongation rates clearly depended on the complementarity of the monomers with the templating nucleobases3. However, metal-ion catalyzed reactions deliver RNA analogs with heterogeneous linkages. Moreover, the usefulness of this medium in the form of quasi-compartmentalization extends...... beyond metal-ion catalysis reactions, as we have recently demonstrated the catalytic power of a dipeptide, SerHis, for the regioselective formation of phosphodiester bonds. These results in conjonction with the synthesis of nucleobases at -78˚C, the demonstration of ribozyme activity (RNA ligase ribozyme...

  10. Beam damage of self-assembled monolayers

    International Nuclear Information System (INIS)

    Rieke, P.C.; Baer, D.R.; Fryxell, G.E.; Engelhard, M.H.; Porter, M.S.

    1993-01-01

    X-ray and electron beam damage studies were performed on Br-terminated and methyl-terminated alkylsilane self-assembled monolayers. X-ray beam initiated damage was primarily limited to removal of the labile Br group and did not significantly damage the hydrocarbon chain. Some of the x-ray beam damage could be attributed to low-energy electrons emitted by the non-monochromatic source, but further damage was attributed to secondary electrons produced in the sample by x-ray exposure. Electron beams caused significant damage to the hydrocarbon chains. Maximum damage occurred with a beam energy of 600 eV and a dosage of 6x10 -3 C/cm 2

  11. Preparation and evaluation of curcumin-loaded self-assembled micelles.

    Science.gov (United States)

    Wang, Lu-Lu; He, Dan-Dan; Wang, Shu-Xia; Dai, Yun-Hao; Ju, Jian-Ming; Zhao, Cheng-Lei

    2018-04-01

    Curcumin being used to treat various chronic diseases while its poor bioavailability issue limited its wide clinical application as a therapeutic agent. The aim of this work was to prepare curcumin-loaded self-assembled micelles using soluplus and solutol ® HS15 (SSCMs) to enhance curcumin's solubility and thus oral bioavailability. Optimum formulation was investigated and the optimized ratio of drugs and excipients was obtained and the SSCMs were prepared via ethanol solvent evaporation method. The optimal SSCMs were characterized by transmission electron microscopy, drug content analysis including loading efficiency (LE%) and entrapment efficiency (EE%), and the cumulative amount of curcumin released from the micelles were all calculated using HPLC method. The in vitro cytotoxicity and the permeability of SSCMs were measured by Caco-2 cell monolayers and the oral bioavailability was evaluated by SD rats. The solubility of curcumin in self-assembled micelles was dramatically increased by 4200 times as compared to free curcumin. Caco-2 cells transport experiment exhibited that while soluplus and solutol ® HS15 were self-assembled into micelles, it could not only promote the permeability of curcumin across membrane for better absorption, but also could restrain the curcumin pumped outside due to the role of P-gp efflux mechanism of soluplus and solutol ® HS15. Furthermore, the prepared SSCMs formulation was almost nontoxic and had safety performance on Caco-2 cells model. Moreover, curcumin's oral bioavailability of SSCMs formulation in SD rats had doubled than that of free curcumin. The prepared SSCMs were characterized by PS, PDI, LE%, EE% data analysis. After the soluplus and solutol ® HS15 were self assembled into micelles, both the solubility and membrane permeability of curcumin were evaluated to have been enhanced, as well as the effect of efflux pump of curcumin was inhibited, hence to promote oral absorption and generate an increased bioavailability.

  12. OZONE TREATMENT OF SOLUBLE ORGANICS IN PRODUCED WATER

    Energy Technology Data Exchange (ETDEWEB)

    Klasson, KT

    2002-03-14

    This project was an extension of previous research to improve the applicability of ozonation and will help address the petroleum-industry problem of treating produced water containing soluble organics. The goal of this project was to maximize oxidation of hexane-extractable organics during a single-pass operation. The project investigated: (1) oxidant production by electrochemical and sonochemical methods, (2) increasing the mass transfer rate in the reactor by forming microbubbles during ozone injection into the produced water, and (3) using ultraviolet irradiation to enhance the reaction if needed. Several types of methodologies for treatment of soluble organics in synthetic and actual produced waters have been performed. The technologies tested may be categorized as follows: (1) Destruction via sonochemical oxidation at different pH, salt concentration, ultraviolet irradiation, and ferrous iron concentrations. (2) Destruction via ozonation at different pH, salt concentration, hydrogen peroxide concentrations, ultraviolet irradiation, temperature, and reactor configurations.

  13. Solubility effects in waste-glass/demineralized-water systems

    International Nuclear Information System (INIS)

    Fullam, H.T.

    1981-06-01

    Aqueous systems involving demineralized water and four glass compositions (including standins for actinides and fission products) at temperatures of up to 150 0 C were studied. Two methods were used to measure the solubility of glass components in demineralized water. One method involved approaching equilibrium from subsaturation, while the second method involved approaching equilibrium from supersaturation. The aqueous solutions were analyzed by induction-coupled plasma spectrometry (ICP). Uranium was determined using a Scintrex U-A3 uranium analyzer and zinc and cesium were determined by atomic absorption. The system that results when a waste glass is contacted with demineralized water is a complex one. The two methods used to determine the solubility limits gave very different results, with the supersaturation method yielding much higher solution concentrations than the subsaturation method for most of the elements present in the waste glasses. The results show that it is impossible to assign solubility limits to the various glass components without thoroughly describing the glass-water systems. This includes not only defining the glass type and solution temperature, but also the glass surface area-to-water volume ratio (S/V) of the system and the complete thermal history of the system. 21 figures, 22 tables

  14. Phase Diagrams of Electrostatically Self-Assembled Amphiplexes

    Energy Technology Data Exchange (ETDEWEB)

    V Stanic; M Mancuso; W Wong; E DiMasi; H Strey

    2011-12-31

    We present the phase diagrams of electrostatically self-assembled amphiplexes (ESA) comprised of poly(acrylic acid) (PAA), cetyltrimethylammonium chloride (CTACl), dodecane, pentanol, and water at three different NaCl salt concentrations: 100, 300, and 500 mM. This is the first report of phase diagrams for these quinary complexes. Adding a cosurfactant, we were able to swell the unit cell size of all long-range ordered phases (lamellar, hexagonal, Pm3n, Ia3d) by almost a factor of 2. The added advantage of tuning the unit cell size makes such complexes (especially the bicontinuous phases) attractive for applications in bioseparation, drug delivery, and possibly in oil recovery.

  15. Charged triblock copolymer self-assembly into charged micelles

    Science.gov (United States)

    Chen, Yingchao; Zhang, Ke; Zhu, Jiahua; Wooley, Karen; Pochan, Darrin; Department of Material Science; Engineering University of Delaware Team; Department of Chemistry Texas A&M University Collaboration

    2011-03-01

    Micelles were formed through the self-assembly of amphiphlic block copolymer poly(acrylic acid)-block-poly(methyl acrylate)-block-polystyrene (PAA-PMA-PS). ~Importantly, the polymer is complexed with diamine molecules in pure THF solution prior to water titration solvent processing-a critical aspect in the control of final micelle geometry. The addition of diamine triggers acid-base complexation ~between the carboxylic acid PAA side chains and amines. ~Remarkably uniform spheres were found to form close-packed patterns when forced into dried films and thin, solvated films when an excess of amine was used in the polymer assembly process. Surface properties and structural features of these hexagonal-packed spherical micelles with charged corona have been explored by various characterization methods including Transmission Electron Microscopy (TEM), cryogenic TEM, z-potential analysis and Dynamic Light Scattering. The forming mechanism for this pattern and morphology changes against external stimulate such as salt will be discussed.

  16. Folate mediated self-assembled phytosterol-alginate nanoparticles for targeted intracellular anticancer drug delivery.

    Science.gov (United States)

    Wang, Jianting; Wang, Ming; Zheng, Mingming; Guo, Qiong; Wang, Yafan; Wang, Heqing; Xie, Xiangrong; Huang, Fenghong; Gong, Renmin

    2015-05-01

    Self-assembled core/shell nanoparticles (NPs) were synthesized from water-soluble alginate substituted by hydrophobic phytosterols. Folate, a cancer-cell-specific ligand, was conjugated to the phytosterol-alginate (PA) NPs for targeting folate-receptor-overexpressing cancer cells. The physicochemical properties of folate-phytosterol-alginate (FPA) NPs were characterized by nuclear magnetic resonance, transmission electron microscopy, dynamic light scattering, electrophoretic light scattering, and fluorescence spectroscopy. Doxorubicin (DOX), an anticancer drug, was entrapped inside prepared NPs by dialysis method. The identification of prepared FPA NPs to folate-receptor-overexpressing cancer cells (KB cells) was confirmed by cytotoxicity and folate competition assays. Compared to the pure DOX and DOX/PA NPs, the DOX/FPA NPs had lower IC50 value to KB cells because of folate-receptor-mediated endocytosis process and the cytotoxicity of DOX/FPA NPs to KB cells could be competitively inhibited by free folate. The cellular uptake and internalization of pure DOX and DOX/FPA NPs was confirmed by confocal laser scanning microscopy image and the higher intracellular uptake of drug for DOX/FPA NPs over pure DOX was observed. The FPA NPs had the potential as a promising carrier to target drugs to cancer cells overexpressing folate receptors and avoid cytotoxicity to normal tissues. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Self-Assembled Nanocarriers Based on Amphiphilic Natural Polymers for Anti- Cancer Drug Delivery Applications.

    Science.gov (United States)

    Sabra, Sally; Abdelmoneem, Mona; Abdelwakil, Mahmoud; Mabrouk, Moustafa Taha; Anwar, Doaa; Mohamed, Rania; Khattab, Sherine; Bekhit, Adnan; Elkhodairy, Kadria; Freag, May; Elzoghby, Ahmed

    2017-01-01

    Micellization provides numerous merits for the delivery of water insoluble anti-cancer therapeutic agents including a nanosized 'core-shell' drug delivery system. Recently, hydrophobically-modified polysaccharides and proteins are attracting much attention as micelle forming polymers to entrap poorly soluble anti-cancer drugs. By virtue of their small size, the self-assembled micelles can passively target tumor tissues via enhanced permeation and retention effect (EPR). Moreover, the amphiphilic micelles can be exploited for active-targeted drug delivery by attaching specific targeting ligands to the outer micellar hydrophilic surface. Here, we review the conjugation techniques, drug loading methods, physicochemical characteristics of the most important amphiphilic polysaccharides and proteins used as anti-cancer drug delivery systems. Attention focuses on the mechanisms of tumor-targeting and enhanced anti-tumor efficacy of the encapsulated drugs. This review will highlight the remarkable advances of hydrophobized polysaccharide and protein micelles and their potential applications as anti-cancer drug delivery nanosystems. Micellar nanocarriers fabricated from amphiphilic natural polymers hold great promise as vehicles for anti-cancer drugs. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  18. Side-chain-controlled self-assembly of polystyrene-polypeptide miktoarm star copolymers

    KAUST Repository

    Junnila, Susanna

    2012-03-27

    We show how the self-assembly of miktoarm star copolymers can be controlled by modifying the side chains of their polypeptide arms, using A 2B and A 2B 2 type polymer/polypeptide hybrids (macromolecular chimeras). Initially synthesized PS 2PBLL and PS 2PBLL 2 (PS, polystyrene; PBLL, poly(ε-tert-butyloxycarbonyl-l-lysine) ) miktoarms were first deprotected to PS 2PLLHCl and PS 2PLLHCl 2 miktoarms (PLLHCl, poly(l-lysine hydrochloride)) and then complexed ionically with sodium dodecyl sulfonate (DS) to give the supramolecular complexes PS 2PLL(DS) and PS 2(PLL(DS)) 2. The solid-state self-assemblies of these six miktoarm systems were studied by transmission electron microscopy (TEM), Fourier transform infrared spectroscopy (FTIR), and small- and wide-angle X-ray scattering (SAXS, WAXS). The side chains of the polypeptide arms were observed to have a large effect on the solubility, polypeptide conformation, and self-assembly of the miktoarms. Three main categories were observed: (i) lamellar self-assemblies at the block copolymer length scale with packed layers of α-helices in PS 2PBLL and PS 2PBLL 2; (ii) charge-clustered polypeptide micelles with less-defined conformations in a nonordered lattice within a PS matrix in PS 2PLLHCl and PS 2PLLHCl 2; (iii) lamellar polypeptide-surfactant self-assemblies with β-sheet conformation in PS 2PLL(DS) and PS 2(PLL(DS)) 2 which dominate over the formation of block copolymer scale structures. Differences between the 3- and 4-arm systems illustrate how packing frustration between the coil-like PS arms and rigid polypeptide conformations can be relieved by the right number of arms, leading to differences in the extent of order. © 2012 American Chemical Society.

  19. Multicomponent and Dissipative Self-Assembly Approaches : Towards functional materials

    NARCIS (Netherlands)

    Boekhoven, J.

    2012-01-01

    The use of self-assembly has proven to be a powerful approach to create smart and functional materials and has led to a vast variety of successful examples. However, the full potential of self-assembly has not been reached. Despite the number of successful artificial materials based on

  20. Synthetic Self-Assembled Materials in Biological Environments

    NARCIS (Netherlands)

    Versluis, F.; van Esch, J.H.; Eelkema, R.

    2016-01-01

    Synthetic self-assembly has long been recognized as an excellent approach for the formation of ordered structures on the nanoscale. Although the development of synthetic self-assembling materials has often been inspired by principles observed in nature (e.g., the assembly of lipids, DNA,

  1. Equilibrium polymerization models of re-entrant self-assembly

    Science.gov (United States)

    Dudowicz, Jacek; Douglas, Jack F.; Freed, Karl F.

    2009-04-01

    As is well known, liquid-liquid phase separation can occur either upon heating or cooling, corresponding to lower and upper critical solution phase boundaries, respectively. Likewise, self-assembly transitions from a monomeric state to an organized polymeric state can proceed either upon increasing or decreasing temperature, and the concentration dependent ordering temperature is correspondingly called the "floor" or "ceiling" temperature. Motivated by the fact that some phase separating systems exhibit closed loop phase boundaries with two critical points, the present paper analyzes self-assembly analogs of re-entrant phase separation, i.e., re-entrant self-assembly. In particular, re-entrant self-assembly transitions are demonstrated to arise in thermally activated equilibrium self-assembling systems, when thermal activation is more favorable than chain propagation, and in equilibrium self-assembly near an adsorbing boundary where strong competition exists between adsorption and self-assembly. Apparently, the competition between interactions or equilibria generally underlies re-entrant behavior in both liquid-liquid phase separation and self-assembly transitions.

  2. Freezing-induced self-assembly of amphiphilic molecules

    Science.gov (United States)

    Albouy, P. A.; Deville, S.; Fulkar, A.; Hakouk, K.; Impéror-Clerc, M.; Klotz, M.; Liu, Q.; Marcellini, M.; Perez, J.

    The self-assembly of amphiphilic molecules usually takes place in a liquid phase, near room temperature. Here, using small angle X-ray scattering (SAXS) experiments performed in real time, we show that freezing of aqueous solutions of copolymer amphiphilic molecules can induce self-assembly below 0{\\deg}C.

  3. Enhancing the Solubility and Oral Bioavailability of Poorly Water-Soluble Drugs Using Monoolein Cubosomes.

    Science.gov (United States)

    Ali, Md Ashraf; Kataoka, Noriko; Ranneh, Abdul-Hackam; Iwao, Yasunori; Noguchi, Shuji; Oka, Toshihiko; Itai, Shigeru

    2017-01-01

    Monoolein cubosomes containing either spironolactone (SPI) or nifedipine (NI) were prepared using a high-pressure homogenization technique and characterized in terms of their solubility and oral bioavailability. The mean particle size, polydispersity index (PDI), zeta potential, solubility and encapsulation efficiency (EE) values of the SPI- and NI-loaded cubosomes were determined to be 90.4 nm, 0.187, -13.4 mV, 163 µg/mL and 90.2%, and 91.3 nm, 0.168, -12.8 mV, 189 µg/mL and 93.0%, respectively, which were almost identical to those of the blank cubosome. Small-angle X-ray scattering analyses confirmed that the SPI-loaded, NI-loaded and blank cubosomes existed in the cubic space group Im3̄m. The lattice parameters of the SPI- and NI-loaded cubosomes were 147.6 and 151.6 Å, respectively, making them almost identical to that of blank cubosome (151.0 Å). The in vitro release profiles of the SPI- and NI-loaded cubosomes showed that they released less than 5% of the drugs into various media over 12-48 h, indicating that most of the drug remained encapsulated within the cubic phase of their lipid bilayer. Furthermore, the in vivo pharmacokinetic results suggested that these cubosomes led to a considerable increase in the systemic oral bioavailability of the drugs compared with pure dispersions of the same materials. Notably, the stability results indicated that the mean particle size and PDI values of these cubosomes were stable for at least 4 weeks. Taken together, these results demonstrate that monoolein cubosomes represent promising drug carriers for enhancing the solubility and oral bioavailability of poorly water-soluble drugs.

  4. Water insoluble and soluble lipids for gene delivery.

    Science.gov (United States)

    Mahato, Ram I

    2005-04-05

    Among various synthetic gene carriers currently in use, liposomes composed of cationic lipids and co-lipids remain the most efficient transfection reagents. Physicochemical properties of lipid/plasmid complexes, such as cationic lipid structure, cationic lipid to co-lipid ratio, charge ratio, particle size and zeta potential have significant influence on gene expression and biodistribution. However, most cationic lipids are toxic and cationic liposomes/plasmid complexes do not disperse well inside the target tissues because of their large particle size. To overcome the problems associated with cationic lipids, we designed water soluble lipopolymers for gene delivery to various cells and tissues. This review provides a critical discussion on how the components of water insoluble and soluble lipids affect their transfection efficiency and biodistribution of lipid/plasmid complexes.

  5. Femtosecond study of laser dyes soluble in water: coumarins

    International Nuclear Information System (INIS)

    Cassara, Laurence

    1996-01-01

    Coumarins build up one of the great families of laser dyes, and this research thesis addresses the study of four water-soluble coumarins (ATC, DMATC, DATC, and CHOS) which are analogue to conventional coumarins (C120, C311, C1, and C102). These molecules are made water-soluble by substitution of the methyl group in position 4 by a polyether group. Mechanisms of deactivation are studied by means of time-resolved fluorescence and transient adsorption methods which allow the reaction dynamics of coumarins after light excitation to be studied. Several time scales, from femto- to nano-second, have been reached and allowed various processes to be studied: relaxation, solvation dynamics, solute orientation diffusion, process of deactivation of radiative and non-radiative relaxation in various solvents [fr

  6. Preparation of water soluble chitosan by hydrolysis using hydrogen peroxide.

    Science.gov (United States)

    Xia, Zhenqiang; Wu, Shengjun; Chen, Jinhua

    2013-08-01

    Chitosan is not soluble in water, which limits its wide application particularly in the medicine and food industry. In the present study, water soluble chitosan (WSC) was prepared by hydrolyzing chitosan using hydrogen peroxide under the catalysis of phosphotungstic acid in homogeneous phase. Factors affecting hydrolysis were investigated and the optimal hydrolysis conditions were determined. The WSC structure was characterized by Fourier transform infrared spectroscopy. The resulting products were composed of chitooligosaccharides of DP 2-9. The WSC content of the product and the yield were 94.7% and 92.3% (w/w), respectively. The results indicate that WSC can be effectively prepared by hydrolysis of chitosan using hydrogen peroxide under the catalysis of phosphotungstic acid. Copyright © 2013 Elsevier B.V. All rights reserved.

  7. Solubility study of Tc(Ⅳ) in a granitic water

    International Nuclear Information System (INIS)

    Liu Dejun; Yao Jun; Wang Bo

    2008-01-01

    The deep geological disposal of the high level radioactive wastes is expected to be a safe disposal method in most countries. The long-lived fission product 99 Tc is present in large quantities in nuclear wastes and its chemical behavior in aqueous solution is of considerable interest. Under oxidizing conditions technetium exists as the anionic species TcO 4 - whereas under the reducing conditions, expected to exist in a deep geological repository, it is generally predicted that technetium will be present as TcO 2 -nH 2 O. Hence, the mobility of Tc(Ⅳ) in reducing groundwater may be limited by the solubility of TcO 2 ·nH 2 O under these conditions. Due to this fact it is important to investigate the solubility of TcO 2 ·nH 2 O. The solubility determines the release of radionuclides from waste form and is used as a source term in radionuclide migration analysis in performance assessment of radioactive waste repository. Technetium (Ⅳ) was prepared by reduction of a technetate solution with Sn 2+ . The solubility of Tc(Ⅳ) has been determined in simulated groundwater and redistilled water under aerobic and anaerobic conditions. The effects of pH and CO 3 2- concentration of solution on solubility of Tc(Ⅳ) were studied. The concentration of total technetium and Tc(Ⅳ) species in the solutions were periodically determined by separating the oxidized and reduced technetium species using a solvent extraction procedure and counting the beta activity of the 99 Tc with a liquid scintillation counter. The experimental results show that the rate of oxidation of Tc(Ⅳ) in simulated groundwater and redistilled water is about (1.49-1.86)x10 -9 mol·L -1 d -1 under aerobic conditions, while no Tc(Ⅳ) oxidation was detected in simulated groundwater and redistilled water under anaerobic conditions. Under aerobic or anaerobic conditions the solubility of Tc(Ⅳ) in simulated groundwater and redistilled water is equal on the whole after centrifugation or ultrafiltration. The

  8. Application of various water soluble polymers in gas hydrate inhibition

    DEFF Research Database (Denmark)

    Kamal, Muhammad Shahzad; Hussein, Ibnelwaleed A.; Sultan, Abdullah S.

    2016-01-01

    . This review presents the various types of water soluble polymers used for hydrate inhibition, including conventional and novel polymeric inhibitors along with their limitations. The review covers the relevant properties of vinyl lactam, amide, dendrimeric, fluorinated, and natural biodegradable polymers....... The factors affecting the performance of these polymers and the structure-property relationships are reviewed. A comprehensive review of the techniques used to evaluate the performance of the polymeric inhibitors is given. This review also addresses recent developments, current and future challenges...

  9. Solubility of solid ferrocene in pressurized hot water

    Czech Academy of Sciences Publication Activity Database

    Karásek, Pavel; Hohnová, Barbora; Planeta, Josef; Roth, Michal

    2010-01-01

    Roč. 55, č. 8 (2010), s. 2866-2869 ISSN 0021-9568 R&D Projects: GA ČR GA203/07/0886; GA ČR GA203/08/1465; GA ČR GA203/08/1536 Institutional research plan: CEZ:AV0Z40310501 Keywords : pressurized hot water * ferrocene * solubility Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.089, year: 2010

  10. Extraction vitamins of group B water-soluble polymers

    Directory of Open Access Journals (Sweden)

    Y. I. Korenman

    2012-01-01

    Full Text Available General lows of extraction of B vitamins in aquatic environments of the solution of polymers (poly-N-vinylpyrrolidone, poly-N-vinilkaprolaktam has been studied. The influence of polymer concentration and structure on the distribution coefficients and degree of extraction of vitamins has been established. As a result, the direct search of a stable two-phase systems based on water-soluble polymers has been developed effective systems for the extraction of vitamin B from aqueous salt solutions.

  11. Water soluble vitamins and peritoneal dialysis - State of the art.

    Science.gov (United States)

    Jankowska, Magdalena; Lichodziejewska-Niemierko, Monika; Rutkowski, Bolesław; Dębska-Ślizień, Alicja; Małgorzewicz, Sylwia

    2017-12-01

    This review presents the results of a systematic literature search concerning water soluble vitamins and peritoneal dialysis modality. We provide an overview of the data available on vitamin requirements, dietary intake, dialysis related losses, metabolism and the benefits of supplementation. We also summarise the current recommendations concerning the supplementation of vitamins in peritoneal dialysis and discuss the safety of an administration of vitamins in pharmacological doses. Copyright © 2016 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  12. Solubilities of oxygenated aromatic solids in pressurized hot water

    Czech Academy of Sciences Publication Activity Database

    Karásek, Pavel; Planeta, Josef; Roth, Michal

    2009-01-01

    Roč. 54, č. 5 (2009), s. 1457-1461 ISSN 0021-9568 R&D Projects: GA ČR GA203/07/0886; GA ČR GA203/08/1536 Institutional research plan: CEZ:AV0Z40310501 Keywords : oxygenated aromatics * solubility * pressurized hot water Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.695, year: 2009

  13. Toward a molecular programming language for algorithmic self-assembly

    Science.gov (United States)

    Patitz, Matthew John

    Self-assembly is the process whereby relatively simple components autonomously combine to form more complex objects. Nature exhibits self-assembly to form everything from microscopic crystals to living cells to galaxies. With a desire to both form increasingly sophisticated products and to understand the basic components of living systems, scientists have developed and studied artificial self-assembling systems. One such framework is the Tile Assembly Model introduced by Erik Winfree in 1998. In this model, simple two-dimensional square 'tiles' are designed so that they self-assemble into desired shapes. The work in this thesis consists of a series of results which build toward the future goal of designing an abstracted, high-level programming language for designing the molecular components of self-assembling systems which can perform powerful computations and form into intricate structures. The first two sets of results demonstrate self-assembling systems which perform infinite series of computations that characterize computably enumerable and decidable languages, and exhibit tools for algorithmically generating the necessary sets of tiles. In the next chapter, methods for generating tile sets which self-assemble into complicated shapes, namely a class of discrete self-similar fractal structures, are presented. Next, a software package for graphically designing tile sets, simulating their self-assembly, and debugging designed systems is discussed. Finally, a high-level programming language which abstracts much of the complexity and tedium of designing such systems, while preventing many of the common errors, is presented. The summation of this body of work presents a broad coverage of the spectrum of desired outputs from artificial self-assembling systems and a progression in the sophistication of tools used to design them. By creating a broader and deeper set of modular tools for designing self-assembling systems, we hope to increase the complexity which is

  14. Self-assembled nanostructures in oxide ceramics

    Science.gov (United States)

    Ansari, Haris Masood

    Self-assembled nanoislands in the gadolinia-doped ceria (GDC)/ yttria-stabilized zirconia (YSZ) system have recently been discovered. This dissertation is an attempt to study the mechanism by which these nanoislands form. Nanoislands in the GDC/YSZ system form via a strain based mechanism whereby the stress accumulated in the GDC-doped surface layer on the YSZ substrate is relieved by creation of self-assembled nanoislands by a mechanism similar to the ATG instability. Unlike what was previously believed, a modified surface layer is not required prior to annealing, that is, this modification can occur during annealing by surface diffusion of dopants from the GDC sources (distributed on the YSZ surface in either lithographically defined patch or powder form) with simultaneous breakup, which occurs at the hold temperature independent of the subsequent cooling. Additionally, we have developed a simple powder based process of producing nanoislands which bypasses lithography and thin film deposition setups. The versatility of the process is apparent in the fact that it allows us to study the effect of experimental parameters such as soak time, temperature, cooling rate and the effect of powder composition on nanoisland properties in a facile way. With the help of this process, we have shown that nanoislands are not peculiar to Gd containing oxide source materials on YSZ substrates and can also be produced with other source materials such as La2O3, Nd2O3, Sm 2O3, Eu2O3, Tb2O3 and even Y2O3, which is already present in the substrate and hence simplifies the system further. We have extended our work to include YSZ substrates of the (110) surface orientation and have found that instead of nanoisland arrays, we obtain an array of parallel nanobars which have their long axes oriented along the [1-10] direction on the YSZ-(110) surface. STEM EDS performed on both the bars and the nanoislands has revealed that they are solid YSZ-rich solid solutions with the dopant species and

  15. Polyelectrolyte microcapsules for sustained delivery of water-soluble drugs

    Energy Technology Data Exchange (ETDEWEB)

    Anandhakumar, S.; Debapriya, M. [Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012 (India); Nagaraja, V. [Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012 (India); Raichur, Ashok M., E-mail: amr@materials.iisc.ernet.in [Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012 (India)

    2011-03-12

    Polyelectrolyte capsules composed of weak polyelectrolytes are introduced as a simple and efficient system for spontaneous encapsulation of low molecular weight water-soluble drugs. Polyelectrolyte capsules were prepared by layer-by-layer (LbL) assembling of weak polyelectrolytes, poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) on polystyrene sulfonate (PSS) doped CaCO{sub 3} particles followed by core removal with ethylene-diaminetetraacetic acid (EDTA). The loading process was observed by confocal laser scanning microscopy (CLSM) using tetramethylrhodamineisothiocyanate labeled dextran (TRITC-dextran) as a fluorescent probe. The intensity of fluorescent probe inside the capsule decreased with increase in cross-linking time. Ciprofloxacin hydrochloride (a model water-soluble drug) was spontaneously deposited into PAH/PMA capsules and their morphological changes were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The quantitative study of drug loading was also elucidated which showed that drug loading increased with initial drug concentration, but decreased with increase in pH. The loaded drug was released in a sustained manner for 6 h, which could be further extended by cross-linking the capsule wall. The released drug showed significant antibacterial activity against E. coli. These findings indicate that such capsules can be potential carriers for water-soluble drugs in sustained/controlled drug delivery applications.

  16. Polyelectrolyte microcapsules for sustained delivery of water-soluble drugs

    International Nuclear Information System (INIS)

    Anandhakumar, S.; Debapriya, M.; Nagaraja, V.; Raichur, Ashok M.

    2011-01-01

    Polyelectrolyte capsules composed of weak polyelectrolytes are introduced as a simple and efficient system for spontaneous encapsulation of low molecular weight water-soluble drugs. Polyelectrolyte capsules were prepared by layer-by-layer (LbL) assembling of weak polyelectrolytes, poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) on polystyrene sulfonate (PSS) doped CaCO 3 particles followed by core removal with ethylene-diaminetetraacetic acid (EDTA). The loading process was observed by confocal laser scanning microscopy (CLSM) using tetramethylrhodamineisothiocyanate labeled dextran (TRITC-dextran) as a fluorescent probe. The intensity of fluorescent probe inside the capsule decreased with increase in cross-linking time. Ciprofloxacin hydrochloride (a model water-soluble drug) was spontaneously deposited into PAH/PMA capsules and their morphological changes were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The quantitative study of drug loading was also elucidated which showed that drug loading increased with initial drug concentration, but decreased with increase in pH. The loaded drug was released in a sustained manner for 6 h, which could be further extended by cross-linking the capsule wall. The released drug showed significant antibacterial activity against E. coli. These findings indicate that such capsules can be potential carriers for water-soluble drugs in sustained/controlled drug delivery applications.

  17. 40 CFR 799.6784 - TSCA water solubility: Column elution method; shake flask method.

    Science.gov (United States)

    2010-07-01

    ... in water is a significant parameter because: (A) The spatial and temporal movement (mobility) of a... Solubility in Water of Slightly Soluble, Low Volatility Organic Substances ER15DE00.054 1 = Leveling vessel...

  18. Effect of surfactants on the fluorescence spectra of water-soluble ...

    Indian Academy of Sciences (India)

    TECS

    Effect of surfactants on the fluorescence spectra of water-soluble. MEHPPV ... polyacrylic acid (PAA) chains grafted onto their backbone were found to be water soluble, and they exhi- ..... in other words the variation of emission intensity.

  19. Ultrathin self-assembled anionic polymer membranes for superfast size-selective separation

    Science.gov (United States)

    Deng, Chao; Zhang, Qiu Gen; Han, Guang Lu; Gong, Yi; Zhu, Ai Mei; Liu, Qing Lin

    2013-10-01

    Nanoporous membranes with superior separation performance have become more crucial with increasing concerns in functional nanomaterials. Here novel ultrahigh permeable nanoporous membranes have been fabricated on macroporous supports by self-assembly of anionic polymer on copper hydroxide nanostrand templates in organic solution. This facile approach has a great potential for the fabrication of ultrathin anionic polymer membranes as a general method. The as-fabricated self-assembled membranes have a mean pore size of 5-12 nm and an adjustable thickness as low as 85 nm. They allow superfast permeation of water, and exhibit excellent size-selective separation properties and good fouling resistance for negatively-charged solutes during filtration. The 85 nm thick membrane has an ultrahigh water flux (3306 l m-2 h-1 bar-1) that is an order of magnitude larger than commercial membranes, and can highly efficiently separate 5 and 15 nm gold nanoparticles from their mixtures. The newly developed nanoporous membranes have a wide application in separation and purification of biomacromolecules and nanoparticles.Nanoporous membranes with superior separation performance have become more crucial with increasing concerns in functional nanomaterials. Here novel ultrahigh permeable nanoporous membranes have been fabricated on macroporous supports by self-assembly of anionic polymer on copper hydroxide nanostrand templates in organic solution. This facile approach has a great potential for the fabrication of ultrathin anionic polymer membranes as a general method. The as-fabricated self-assembled membranes have a mean pore size of 5-12 nm and an adjustable thickness as low as 85 nm. They allow superfast permeation of water, and exhibit excellent size-selective separation properties and good fouling resistance for negatively-charged solutes during filtration. The 85 nm thick membrane has an ultrahigh water flux (3306 l m-2 h-1 bar-1) that is an order of magnitude larger than

  20. Fabrication of bioinspired nanostructured materials via colloidal self-assembly

    Science.gov (United States)

    Huang, Wei-Han

    Through millions of years of evolution, nature creates unique structures and materials that exhibit remarkable performance on mechanicals, opticals, and physical properties. For instance, nacre (mother of pearl), bone and tooth show excellent combination of strong minerals and elastic proteins as reinforced materials. Structured butterfly's wing and moth's eye can selectively reflect light or absorb light without dyes. Lotus leaf and cicada's wing are superhydrophobic to prevent water accumulation. The principles of particular biological capabilities, attributed to the highly sophisticated structures with complex hierarchical designs, have been extensively studied. Recently, a large variety of novel materials have been enabled by natural-inspired designs and nanotechnologies. These advanced materials will have huge impact on practical applications. We have utilized bottom-up approaches to fabricate nacre-like nanocomposites with "brick and mortar" structures. First, we used self-assembly processes, including convective self-assembly, dip-coating, and electrophoretic deposition to form well oriented layer structure of synthesized gibbsite (aluminum hydroxide) nanoplatelets. Low viscous monomer was permeated into layered nanoplatelets and followed by photo-curing. Gibbsite-polymer composite displays 2 times higher tensile strength and 3 times higher modulus when compared with pure polymer. More improvement occurred when surface-modified gibbsite platelets were cross-linked with the polymer matrix. We observed ˜4 times higher strength and nearly 1 order of magnitude higher modulus than pure polymer. To further improve the mechanical strength and toughness of inorganicorganic nanocomposites, we exploited ultrastrong graphene oxide (GO), a single atom thick hexagonal carbon sheet with pendant oxidation groups. GO nanocomposite is made by co-filtrating GO/polyvinyl alcohol suspension on 0.2 im pore-sized membrane. It shows ˜2 times higher strength and ˜15 times higher

  1. Comparison of two self-assembled macromolecular prodrug micelles with different conjugate positions of SN38 for enhancing antitumor activity

    Directory of Open Access Journals (Sweden)

    Liu Y

    2015-03-01

    Full Text Available Yi Liu,1 Hongyu Piao,1 Ying Gao,1 Caihong Xu,2 Ye Tian,1 Lihong Wang,1 Jinwen Liu,1 Bo Tang,1 Meijuan Zou,1 Gang Cheng1 1Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, Liaoning Province, People’s Republic of China; 2Department of Food Science, Shenyang Normal University, Shenyang, Liaoning Province, People’s Republic of China Abstract: 7-Ethyl-10-hydroxycamptothecin (SN38, an active metabolite of irinotecan (CPT-11, is a remarkably potent antitumor agent. The clinical application of SN38 has been extremely restricted by its insolubility in water. In this study, we successfully synthesized two macromolecular prodrugs of SN38 with different conjugate positions (chitosan-(C10-OHSN38 and chitosan-(C20-OHSN38 to improve the water solubility and antitumor activity of SN38. These prodrugs can self-assemble into micelles in aqueous medium. The particle size, morphology, zeta potential, and in vitro drug release of SN38 and its derivatives, as well as their cytotoxicity, pharmacokinetics, and in vivo antitumor activity in a xenograft BALB/c mouse model were studied. In vitro, chitosan-(C10-OHSN38 (CS-(10sSN38 and chitosan-(C20-OHSN38 (CS-(20sSN38 were 13.3- and 25.9-fold more potent than CPT-11 in the murine colon adenocarcinoma cell line CT26, respectively. The area under the curve (AUC0–24 of SN38 after intravenously administering CS-(10sSN38 and CS-(20sSN38 to Sprague Dawley rats was greatly improved when compared with CPT-11 (both P<0.01. A larger AUC0–24 of CS-(20sSN38 was observed when compared to CS-(10sSN38 (P<0.05. Both of the novel self-assembled chitosan-SN38 prodrugs demonstrated superior anticancer activity to CPT-11 in the CT26 xenograft BALB/c mouse model. We have also investigated the differences between these macromolecular prodrug micelles with regards to enhancing the antitumor activity of SN38. CS-(20sSN38 exhibited better in vivo antitumor activity than CS-(10sSN38 at a dose of 2.5 mg/kg (P<0

  2. Signatures of self-assembly in size distributions of wood members in dam structures of Castor canadensis

    Directory of Open Access Journals (Sweden)

    David M. Blersch

    2014-12-01

    Full Text Available Beavers (Castor canadensis construct dams on rivers throughout most of their historical range in North America, and their impact on water patterns in the landscape is considerable. Dam formation by beavers involves two processes: (1 intentional construction through the selection and placement of wood and sediment, which facilitates (2 the passive capture and accretion of suspended wood and sediment. The second process is a self-assembly mechanism that the beavers leverage by utilizing energy subsidies of watershed transport processes. The relative proportion of beaver activity to self-assembly processes in dam construction, however, is unknown. Here we show that lotic self-assembly processes account for a substantial portion of the work expended in beaver dam construction. We found through comprehensive measurement of the stick dimensions that the distributions for diameter, length, and volume are log-normal. By noting evidence of teeth markings, we determined that size distributions skewed significantly larger for wood handled by beavers compared to those that were not. Subsequent mass calculations suggest that beavers perform 50%–70% of the work of wood member placement for dam assembly, with riparian self-assembly processes contributing the remainder. Additionally, our results establish a benchmark for assessing the proportion of self-assembly work in similar riparian structures. Keywords: Beaver dam, Construction, Castor canadensis, Self-assembly, Distribution, Wood

  3. Lipid nanoparticles for administration of poorly water soluble neuroactive drugs.

    Science.gov (United States)

    Esposito, Elisabetta; Drechsler, Markus; Mariani, Paolo; Carducci, Federica; Servadio, Michela; Melancia, Francesca; Ratano, Patrizia; Campolongo, Patrizia; Trezza, Viviana; Cortesi, Rita; Nastruzzi, Claudio

    2017-09-01

    This study describes the potential of solid lipid nanoparticles and nanostructured lipid carriers as nano-formulations to administer to the central nervous system poorly water soluble drugs. Different neuroactive drugs, i.e. dimethylfumarate, retinyl palmitate, progesterone and the endocannabinoid hydrolysis inhibitor URB597 have been studied. Lipid nanoparticles constituted of tristearin or tristearin in association with gliceryl monoolein were produced. The nanoencapsulation strategy allowed to obtain biocompatible and non-toxic vehicles, able to increase the solubility of the considered neuroactive drugs. To improve URB597 targeting to the brain, stealth nanoparticles were produced modifying the SLN surface with polysorbate 80. A behavioural study was conducted in rats to test the ability of SLN containing URB597 given by intranasal administration to alter behaviours relevant to psychiatric disorders. URB597 maintained its activity after nanoencapsulation, suggesting the possibility to propose this kind of vehicle as alternative to unphysiological mixtures usually employed for animal and clinical studies.

  4. Formulation of poorly water-soluble Gemfibrozil applying power ultrasound.

    Science.gov (United States)

    Ambrus, R; Naghipour Amirzadi, N; Aigner, Z; Szabó-Révész, P

    2012-03-01

    The dissolution properties of a drug and its release from the dosage form have a basic impact on its bioavailability. Solubility problems are a major challenge for the pharmaceutical industry as concerns the development of new pharmaceutical products. Formulation problems may possibly be overcome by modification of particle size and morphology. The application of power ultrasound is a novel possibility in drug formulation. This article reports on solvent diffusion and melt emulsification, as new methods supplemented with drying in the field of sonocrystallization of poorly water-soluble Gemfibrozil. During thermoanalytical characterization, a modified structure was detected. The specific surface area of the drug was increased following particle size reduction and the poor wettability properties could also be improved. The dissolution rate was therefore significantly increased. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Solubility of Aragonite in Subduction Water-Rich Fluids

    Science.gov (United States)

    Daniel, I.; Facq, S.; Petitgirard, S.; Cardon, H.; Sverjensky, D. A.

    2017-12-01

    Carbonate dissolution in subduction zone fluids is critical to the carbon budget in subduction zones. Depending on the solubility of carbonate minerals in aqueous fluids, the subducting lithosphere may be either strongly depleted and the mantle metasomatized if the solubility is high, as recently suggested by natural samples or transport carbon deeper into the Earth's mantle if the solubility is low enough [1, 2]. Dissolution of carbonate minerals strongly depends on pressure and temperature as well as on the chemistry of the fluid, leading to a highly variable speciation of aqueous carbon. Thanks to recent advances in theoretical aqueous geochemistry [3, 4], combined experimental and theoretical efforts now allow the investigation of speciation and solubility of carbonate minerals in aqueous fluids at PT conditions higher than previously feasible [4, 5]. In this study, we present new in situ X-ray fluorescence measurements of aragonite dissolution up to 5 GPa and 500°C and the subsequent thermodynamic model of aragonite solubility in aqueous fluids thanks to the Deep Earth Water model. The amount of dissolved aragonite in the fluid was calculated from challenging and unprecedented measurements of the Ca fluorescence K-lines at low-energy. Experiments were performed at the ESRF, beamline ID27 using a dedicated design of an externally-heated diamond anvil cell and an incident high-flux and highly focused monochromatic X-Ray beam at 20 keV. The results show a spectacularly high solubility of aragonite at HP-HT in water, further enhanced in presence of NaCl and silica in the solution. [1] Frezzotti, M. L. et al. (2011) doi:10.1038/ngeo1246. [2] Ague, J. J. and Nicolescu, S. (2014) doi:10.1038/ngeo2143. [3] Pan, D. et al. (2013) doi: 10.1073/pnas.1221581110. [4] Sverjensky, D. A et al. (2014) doi: 10.1016/j.gca.2013.12.019. [5] Facq, S. et al. (2014) doi: 10.1016/j.gca.2014.01.030.

  6. Novel water-soluble polyurethane nanomicelles for cancer chemotherapy: physicochemical characterization and cellular activities

    Directory of Open Access Journals (Sweden)

    Khosroushahi Ahmad

    2012-01-01

    Full Text Available Abstract Background Efficient delivery of anticancer chemotherapies such as paclitaxel (PTX can improve treatment strategy in a variety of tumors such as breast and ovarian cancers. Accordingly, researches on polymeric nanomicelles continue to find suitable delivery systems. However, due to biocompatibility concerns, a few micellar nanoformulations have exquisitely been translated into clinical uses. Here, we report the synthesis of novel water-soluble nanomicelles using bioactive polyurethane (PU polymer and efficient delivery of PTX in the human breast cancer MCF-7 cells. Results The amphiphilic polyurethane was prepared through formation of urethane bounds between hydroxyl groups in poly (tetramethylene ether glycol (PTMEG and dimethylol propionic acid with isocyanate groups in toluene diisocyanate (TDI. The free isocyanate groups were blocked with phenol, while the free carboxyl groups of dimethylol propionic acid were reacted with triethylamine to attain ionic centers in the polymer backbone. These hydrophobic PTMEG blocks displayed self-assembly forming polymeric nanomicelles in water. The PTX loaded PU nanomicelles showed suitable physical stability, negative zeta potential charge (-43 and high loading efficiency (80% with low level of critical micelle concentration (CMC. In vitro drug release profile showed a faster rate of drug liberation at pH 5.4 as compared to that of pH 7.4, implying involvement of a pH-sensitive mechanism for drug release from the nanomicelles. The kinetic of release exquisitely obeyed the Higuchi model, confirming involvement of diffusion and somewhat erosion at pH 5.4. These nanomicelles significantly inhibited the growth and proliferation of the human breast cancer MCF-7 cells, leading them to apoptosis. The real time RT-PCR analysis confirmed the activation of apoptosis as result of liberation of cytochrome c in the cells treated with the PTX loaded PU nanomicelles. The comet assay analysis showed somewhat DNA

  7. Basic building units, self-assembly and crystallization in the ...

    Indian Academy of Sciences (India)

    Unknown

    Careful investigations of open-framework metal phosphates reveal that .... water soluble, are generally ignored since the preoccupation of most workers in the field ... hydrothermal reaction conditions and carry out simple test tube reactions ...

  8. Functional self-assembled lipidic systems derived from renewable resources.

    Science.gov (United States)

    Silverman, Julian R; Samateh, Malick; John, George

    2016-01-01

    Self-assembled lipidic amphiphile systems can create a variety of multi-functional soft materials with value-added properties. When employing natural reagents and following biocatalytic syntheses, self-assembling monomers may be inherently designed for degradation, making them potential alternatives to conventional and persistent polymers. By using non-covalent forces, self-assembled amphiphiles can form nanotubes, fibers, and other stimuli responsive architectures prime for further applied research and incorporation into commercial products. By viewing these lipid derivatives under a lens of green principles, there is the hope that in developing a structure-function relationship and functional smart materials that research may remain safe, economic, and efficient.

  9. Dynamic stability of nano-fibers self-assembled from short amphiphilic A6D peptides.

    Science.gov (United States)

    Nikoofard, Narges; Maghsoodi, Fahimeh

    2018-04-07

    Self-assembly of A 6 D amphiphilic peptides in explicit water is studied by using coarse-grained molecular dynamics simulations. It is observed that the self-assembly of randomly distributed A 6 D peptides leads to the formation of a network of nano-fibers. Two other simulations with cylindrical nano-fibers as the initial configuration show the dynamic stability of the self-assembled nano-fibers. As a striking feature, notable fluctuations occur along the axes of the nano-fibers. Depending on the number of peptides per unit length of the nano-fiber, flat-shaped bulges or spiral shapes along the nano-fiber axis are observed at the fluctuations. Analysis of the particle distribution around the nano-fiber indicates that the hydrophobic core and the hydrophilic shell of the nano-structure are preserved in both simulations. The size of the deformations and their correlation times are different in the two simulations. This study gives new insights into the dynamics of the self-assembled nano-structures of short amphiphilic peptides.

  10. Dynamic stability of nano-fibers self-assembled from short amphiphilic A6D peptides

    Science.gov (United States)

    Nikoofard, Narges; Maghsoodi, Fahimeh

    2018-04-01

    Self-assembly of A6D amphiphilic peptides in explicit water is studied by using coarse-grained molecular dynamics simulations. It is observed that the self-assembly of randomly distributed A6D peptides leads to the formation of a network of nano-fibers. Two other simulations with cylindrical nano-fibers as the initial configuration show the dynamic stability of the self-assembled nano-fibers. As a striking feature, notable fluctuations occur along the axes of the nano-fibers. Depending on the number of peptides per unit length of the nano-fiber, flat-shaped bulges or spiral shapes along the nano-fiber axis are observed at the fluctuations. Analysis of the particle distribution around the nano-fiber indicates that the hydrophobic core and the hydrophilic shell of the nano-structure are preserved in both simulations. The size of the deformations and their correlation times are different in the two simulations. This study gives new insights into the dynamics of the self-assembled nano-structures of short amphiphilic peptides.

  11. Physicochemical characterization of cellulose nanocrystal and nanoporous self-assembled CNC membrane derived from Ceiba pentandra.

    Science.gov (United States)

    Mohamed, Mohamad Azuwa; W Salleh, W N; Jaafar, Juhana; Ismail, A F; Abd Mutalib, Muhazri; Mohamad, Abu Bakar; M Zain, M F; Awang, Nor Asikin; Mohd Hir, Zul Adlan

    2017-02-10

    This research involves the rare utilisation of the kapok fibre (Ceiba pentandra) as a raw material for the fabrication of cellulose nanocrystal (CNC) and self-assembled CNC membranes. The isolation of CNC from Ceiba pentandra began with the extraction of cellulose via the chemical alkali extraction by using 5wt% NaOH, followed by the typical acidified bleaching method and, finally, the CNC production through acid hydrolysis with 60wt% H 2 SO 4 at the optimum time of 60min. The prepared CNC was then employed for the preparation of self-assembled membrane through the water suspension casting evaporation technique. The obtained CNC membrane was characterised in terms of its composition, crystallinity, thermal stability, as well as, structural and morphological features with the use of several techniques including FTIR, XRD, AFM, TEM, FESEM, and TGA. The FESEM and AFM analyses had illustrated the achievement of a self-assembled CNC membrane with a smooth surface and a well-distributed nano-porous structure, with the porosity of 52.82±7.79%. In addition, the findings proved that the self-assembled CNC membrane displayed good adsorption capability indicated by the recorded efficiency of 79% and 85% for 10mg/L and 5mg/L of methylene blue in an aqueous solution, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Facile preparation of luminescent and intelligent gold nanodots based on supramolecular self-assembly

    International Nuclear Information System (INIS)

    Shi Yunfeng; Li Sujuan; Zhou Yahui; Zhai Qingpan; Hu Mengyue; Cai Fensha; Du Jimin; Liang Jiamiao; Zhu Xinyuan

    2012-01-01

    A new strategy for preparing luminescent and intelligent gold nanodots based on supramolecular self-assembly is described in this paper. The supramolecular self-assembly was initiated through electrostatic interactions and ion pairing between palmitic acid and hyperbranched poly(ethylenimine). The resulting structures not only have the dynamic reversible properties of supramolecules but also possess torispherical and highly branched architectures. Thus they can be regarded as a new kind of ideal nanoreactor for preparing intelligent Au nanodots. By preparing Au nanodots within this kind of supramolecular self-assembly, the environmental sensitivity of intelligent polymers and the optical, electrical properties of Au nanodots can be combined, endowing the Au nanodots with intelligence. In this paper, a supramolecular self-assembly process based on dendritic poly(ethylenimine) and palmitic acid was designed and then applied to prepare fluorescent and size-controlled Au nanodots. The pH response of Au nanodots embodied by phase transfer from oil phase to water phase was also investigated. (paper)

  13. Onset wear in self-assembled monolayers

    International Nuclear Information System (INIS)

    D'Acunto, Mario

    2006-01-01

    Self-assembled monolayers (SAMs) are very useful for the systematic modification of the physical, chemical and structural properties of a surface by varying the chain length, tail group and composition. Many of these properties can be studied making use of atomic force microscopy (AFM), and the interaction between the AFM probe tip and the SAMs can also be considered an excellent reference to study the fundamental properties of dissipation phenomena and onset wear for viscoelastic materials on the nanoscale. We have performed a numerical study showing that the fundamental mechanism for the onset wear is a process of nucleation of domains starting from initial defects. An SAM surface repeatedly sheared by an AFM probe tip with enough applied loads shows the formation of progressive damages nucleating in domains. The AFM induced surface damages involve primarily the formation of radicals from the carbon chain backbones, but the deformations of the chains resulting in changes of period lattice also have to be taken into consideration. The nucleation of the wear domains generally starts at the initial surface defects where the energy cohesion between chains is lower. Moreover, the presence of surface defects is consistent with the changes in lateral force increasing the probability of the activation for the removal of carbon debris from the chain backbone. The quantification of the progressive worn area is performed making use of the Kolmogorov-Johnson-Mehl-Avrami (KJMA) theory for phase transition kinetic processes. The advantage of knowing the general conditions for onset wear on the SAM surfaces can help in studying the fundamental mechanisms for the tribological properties of viscoelastic materials, in solid lubrication applications and biopolymer mechanics

  14. Optical orientation in self assembled quantum dots

    International Nuclear Information System (INIS)

    Stevens, Gregory C.

    2002-01-01

    We examined Zeeman splitting in a series of ln x Ga (1-x) As/GaAs self assembled quantum dots (SAQD's) with different pump polarisations. All these measurements were made in very low external magnetic fields where direct determination of the Zeeman splitting energy is impossible due to its small value in comparison to the photoluminescence linewidths. The use of a technique developed by M. J. Snelling allowed us to obtain the Zeeman splitting and hence the excitonic g-factors indirectly. We observed a linear low field splitting, becoming increasingly non-linear at higher fields. We attribute this non-linearity to field induced level mixing. It is believed these are the first low field measurements in these structures. A number of apparent nuclear effects in the Zeeman splitting measurements led us onto the examination of nuclear effects in these structures. The transverse and oblique Hanie effects then allowed us to obtain the sign of the electronic g-factors in two of our samples, for one sample, a (311) grown In 0.5 Ga 0.5 As/GaAs SAQD sample, we were able to ascertain the spin relaxation time, the maximum value of the nuclear field, and provide evidence of the existence of nuclear spin freezing in at least one of our samples. We have then used a novel technique investigated by D. J. Guerrier, to examine optically detected nuclear magnetic resonance in our samples. We believe this is the first such study on these structures. We could not ascertain the dipolar indium resonance signal, even though all other isotopes were seen. We have therefore suggested a number of possible mechanisms that may be responsible for the lack of an indium resonance signal. (author)

  15. Self-assembling surfactant-like peptide A6K as potential delivery system for hydrophobic drugs

    Directory of Open Access Journals (Sweden)

    Chen Y

    2015-01-01

    Full Text Available Yongzhu Chen,1 Chengkang Tang,2 Jie Zhang,2 Meng Gong,3 Bo Su,2 Feng Qiu4 1Periodical Press, 2Core Facility of West China Hospital, 3Laboratory of Endocrinology and Metabolism, West China Hospital, 4Laboratory of Anaesthesia and Critical Care Medicine, Translational Neuroscience Centre, West China Hospital, Sichuan University, Chengdu, People’s Republic of China Background: Finding a suitable delivery system to improve the water solubility of hydrophobic drugs is a critical challenge in the development of effective formulations. In this study, we used A6K, a self-assembling surfactant-like peptide, as a carrier to encapsulate and deliver hydrophobic pyrene.Methods: Pyrene was mixed with A6K by magnetic stirring to form a suspension. Confocal laser scanning microscopy, transmission electron microscopy, dynamic light scattering, atomic force microscopy, fluorescence, and cell uptake measurements were carried out to study the features and stability of the nanostructures, the state and content of pyrene, as well as the pyrene release profile.Results: The suspension formed contained pyrene monomers trapped in the hydrophobic cores of the micellar nanofibers formed by A6K, as well as nanosized pyrene crystals wrapped up and stabilized by the nanofibers. The two different encapsulation methods greatly increased the concentration of pyrene in the suspension, and formation of pyrene crystals wrapped up by A6K nanofibers might be the major contributor to this effect. Furthermore, the suspension system could readily release and transfer pyrene into living cells.Conclusion: A6K could be further exploited as a promising delivery system for hydrophobic drugs. Keywords: pyrene, self-assembling peptide, micelles, nanofibers, drug delivery  

  16. Chelating water-soluble polymers for waste minimization

    International Nuclear Information System (INIS)

    Smith, B.; Cournoyer, M.; Duran, B.; Ford, D.; Gibson, R.; Lin, M.; Meck, A.; Robinson, P.; Robison, T.

    1996-01-01

    Within the DOE complex and in industry there is a tremendous need for advanced metal ion recovery and waste minimization techniques. This project sought to employ capabilities for ligand-design and separations chemistry in which one can develop and evaluate water- soluble chelating polymers for recovering actinides and toxic metals from various process streams. Focus of this work was (1) to develop and select a set of water-soluble polymers suitable for a selected waste stream and (2) demonstrate this technology in 2 areas: removal of (a) actinides and toxic RCRA metals from waste water and (b) recovery of Cu and other precious metals from industrial process streams including from solid catalysts and aqueous waste streams. The R ampersand D was done in 4 phases for each of the 2 target areas: polymer synthesis for scaleup, equipment assembly, process demonstration at a DOE or industrial site, and advanced ligand/polymer synthesis. The TA- 50 site at Los Alamos was thought to be appropriate due to logistics and to its being representative of similar problems throughout the DOE complex

  17. Detection of trace microcystin-LR on a 20 MHz QCM sensor coated with in situ self-assembled MIPs.

    Science.gov (United States)

    He, Hao; Zhou, Lianqun; Wang, Yi; Li, Chuanyu; Yao, Jia; Zhang, Wei; Zhang, Qingwen; Li, Mingyu; Li, Haiwen; Dong, Wen-fei

    2015-01-01

    A 20 MHz quartz crystal microbalance (QCM) sensor coated with in situ self-assembled molecularly imprinted polymers (MIPs) was presented for the detection of trace microcystin-LR (MC-LR) in drinking water. The sensor performance obtained using the in situ self-assembled MIPs was compared with traditionally synthesized MIPs on 20 MHz and normal 10 MHz QCM chip. The results show that the response increases by more than 60% when using the in situ self-assembly method compared using the traditionally method while the 20 MHz QCM chip provides four-fold higher response than the 10 MHz one. Therefore, the in situ self-assembled MIPs coated on a high frequency QCM chip was used in the sensor performance test to detect MC-LR in tap water. It showed a limit of detection (LOD) of 0.04 nM which is lower than the safety guideline level (1 nM MC-LR) of drinking water in China. The low sensor response to other analogs indicated the high specificity of the sensor to MC-LR. The sensor showed high stability and low signal variation less than 2.58% after regeneration. The lake water sample analysis shows the sensor is possible for practical use. The combination of the higher frequency QCM with the in situ self-assembled MIPs provides a good candidate for the detection of other small molecules. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Antibacterial Characteristics and Activity of Water-Soluble Chitosan Derivatives Prepared by the Maillard Reaction

    Directory of Open Access Journals (Sweden)

    Ying-Chien Chung

    2011-10-01

    Full Text Available The antibacterial activity of water-soluble chitosan derivatives prepared by Maillard reactions against Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus, Escherichia coli, Shigella dysenteriae, and Salmonella typhimurium was examined. Relatively high antibacterial activity against various microorganisms was noted for the chitosan-glucosamine derivative as compared to the acid-soluble chitosan. In addition, it was found that the susceptibility of the test organisms to the water-soluble chitosan derivative was higher in deionized water than in saline solution. Metal ions were also found to reduce the antibacterial activity of the water-soluble chitosan derivative on S. aureus. The marked increase in glucose level, protein content and lactate dehydrogenase (LDH activity was observed in the cell supernatant of S. aureus exposed to the water-soluble chitosan derivative in deionized water. The results suggest that the water-soluble chitosan produced by Maillard reaction may be a promising commercial substitute for acid-soluble chitosan.

  19. Self-Assembled Nanostructured Health Monitoring Sensors, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The objective of the proposed NASA SBIR program is to design, fabricate and evaluate the performance of self-assembled nanostructured sensors for the health...

  20. Self-Assembling Wireless Autonomous Reconfigurable Modules (SWARM), Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — Payload Systems Inc. and the MIT Space Systems Laboratory propose Self-assembling, Wireless, Autonomous, Reconfigurable Modules (SWARM) as an innovative approach to...

  1. Self-Assembly of Rod-Coil Block Copolymers

    National Research Council Canada - National Science Library

    Jenekhe, S

    1999-01-01

    ... the self-assembly of new rod-coil diblock, rod- coil-rod triblock, and coil-rod-coil triblock copolymers from solution and the resulting discrete and periodic mesostmctares with sizes in the 100...

  2. Preparation and self-assembly of amphiphilic polylysine dendrons

    DEFF Research Database (Denmark)

    Mirsharghi, Sahar; Knudsen, Kenneth D.; Bagherifam, Shahla

    2016-01-01

    Polylysine dendrons with lipid tails prepared by divergent solid-phase synthesis showed self-assembling properties in aqueous solutions., Herein, we present the synthesis of new amphiphilic polylysine dendrons with variable alkyl chain lengths (C1–C18) at the C-terminal. The dendrons were...... synthesized in moderate to quantitative yields by divergent solid-phase synthesis (SPS) employing an aldehyde linker. The self-assembling properties of the dendrons in aqueous solutions were studied by small angle neutron scattering (SANS) and dynamic light scattering (DLS). The self-assembling properties...... were influenced by the length of the alkyl chain and the generation number (Gn). Increasing the temperature and concentration did not have significant impact on the hydrodynamic diameter, but the self-assembling properties were influenced by the pH value. This demonstrated the need for positively...

  3. Enabling complex nanoscale pattern customization using directed self-assembly.

    Science.gov (United States)

    Doerk, Gregory S; Cheng, Joy Y; Singh, Gurpreet; Rettner, Charles T; Pitera, Jed W; Balakrishnan, Srinivasan; Arellano, Noel; Sanders, Daniel P

    2014-12-16

    Block copolymer directed self-assembly is an attractive method to fabricate highly uniform nanoscale features for various technological applications, but the dense periodicity of block copolymer features limits the complexity of the resulting patterns and their potential utility. Therefore, customizability of nanoscale patterns has been a long-standing goal for using directed self-assembly in device fabrication. Here we show that a hybrid organic/inorganic chemical pattern serves as a guiding pattern for self-assembly as well as a self-aligned mask for pattern customization through cotransfer of aligned block copolymer features and an inorganic prepattern. As informed by a phenomenological model, deliberate process engineering is implemented to maintain global alignment of block copolymer features over arbitrarily shaped, 'masking' features incorporated into the chemical patterns. These hybrid chemical patterns with embedded customization information enable deterministic, complex two-dimensional nanoscale pattern customization through directed self-assembly.

  4. Understanding emergent functions in self-assembled fibrous networks

    Science.gov (United States)

    Sinko, Robert; Keten, Sinan

    2015-09-01

    Understanding self-assembly processes of nanoscale building blocks and characterizing their properties are both imperative for designing new hierarchical, network materials for a wide range of structural, optoelectrical, and transport applications. Although the characterization and choices of these material building blocks have been well studied, our understanding of how to precisely program a specific morphology through self-assembly still must be significantly advanced. In the recent study by Xie et al (2015 Nanotechnology 26 205602), the self-assembly of end-functionalized nanofibres is investigated using a coarse-grained molecular model and offers fundamental insight into how to control the structural morphology of nanofibrous networks. Varying nanoscale networks are observed when the molecular interaction strength is changed and the findings suggest that self-assembly through the tuning of molecular interactions is a key strategy for designing nanostructured networks with specific topologies.

  5. Synthesis and self-assembly of complex hollow materials

    KAUST Repository

    Zeng, Hua Chun

    2011-01-01

    aspects of this field of development. The synthetic methodologies can be broadly divided into three major categories: (i) template-assisted synthesis, (ii) self-assembly with primary building blocks, and (iii) induced matter relocations. In most cases

  6. RT Self-assembly of Silica Nanoparticles on Optical Fibres

    DEFF Research Database (Denmark)

    Canning, John; Lindoy, Lachlan; Huyang, George

    2013-01-01

    The room temperature deposition of self-assembling silica nanoparticles onto D-shaped optical fibres x201c;D-fibrex201d;), drawn from milled preforms fabricated by modified chemical vapor deposition, is studied and preliminary results reported here.......The room temperature deposition of self-assembling silica nanoparticles onto D-shaped optical fibres x201c;D-fibrex201d;), drawn from milled preforms fabricated by modified chemical vapor deposition, is studied and preliminary results reported here....

  7. Mesoscopic Self-Assembly: A Shift to Complexity

    Directory of Open Access Journals (Sweden)

    Massimo eMastrangeli

    2015-06-01

    Full Text Available By focusing on the construction of thermodynamically stable structures, the self-assembly of mesoscopic systems has proven capable of formidable achievements in the bottom-up engineering of micro- and nanosystems. Yet, inspired by an analogous evolution in supramolecular chemistry, synthetic mesoscopic self-assembly may have a lot more ahead, within reach of a shift toward fully three-dimensional architectures, collective interactions of building blocks and kinetic control. All over these challenging fronts, complexity holds the key.

  8. Construction of Supramolecular Architectures via Self-assembly

    Institute of Scientific and Technical Information of China (English)

    Takeharu; Haino

    2007-01-01

    1 Results In this paper we report supramolecular polymeric nano networks formed by the molecular-recognition-directed self-assembly between a calix[5]arene and C60[1]. Covalently-linked double-calix[5]arenes take up C60 into their cavities[2]. This complementary interaction creates a strong non-covalent bonding; thus,the iterative self-assembly between dumbbell fullerene 1 and ditopic host 2 can produce the supramolecular polymer networks (See Fig.1).

  9. Structural Polymorphism in a Self-Assembled Tri-Aromatic Peptide System.

    Science.gov (United States)

    Brown, Noam; Lei, Jiangtao; Zhan, Chendi; Shimon, Linda J W; Adler-Abramovich, Lihi; Wei, Guanghong; Gazit, Ehud

    2018-04-24

    Self-assembly is a process of key importance in natural systems and in nanotechnology. Peptides are attractive building blocks due to their relative facile synthesis, biocompatibility, and other unique properties. Diphenylalanine (FF) and its derivatives are known to form nanostructures of various architectures and interesting and varied characteristics. The larger triphenylalanine peptide (FFF) was found to self-assemble as efficiently as FF, forming related but distinct architectures of plate-like and spherical nanostructures. Here, to understand the effect of triaromatic systems on the self-assembly process, we examined carboxybenzyl-protected diphenylalanine (z-FF) as a minimal model for such an arrangement. We explored different self-assembly conditions by changing solvent compositions and peptide concentrations, generating a phase diagram for the assemblies. We discovered that z-FF can form a variety of structures, including nanowires, fibers, nanospheres, and nanotoroids, the latter were previously observed only in considerably larger or co-assembly systems. Secondary structure analysis revealed that all assemblies possessed a β-sheet conformation. Additionally, in solvent combinations with high water ratios, z-FF formed rigid and self-healing hydrogels. X-ray crystallography revealed a "wishbone" structure, in which z-FF dimers are linked by hydrogen bonds mediated by methanol molecules, with a 2-fold screw symmetry along the c-axis. All-atom molecular dynamics (MD) simulations revealed conformations similar to the crystal structure. Coarse-grained MD simulated the assembly of the peptide into either fibers or spheres in different solvent systems, consistent with the experimental results. This work thus expands the building block library for the fabrication of nanostructures by peptide self-assembly.

  10. Design strategies for self-assembly of discrete targets

    International Nuclear Information System (INIS)

    Madge, Jim; Miller, Mark A.

    2015-01-01

    Both biological and artificial self-assembly processes can take place by a range of different schemes, from the successive addition of identical building blocks to hierarchical sequences of intermediates, all the way to the fully addressable limit in which each component is unique. In this paper, we introduce an idealized model of cubic particles with patterned faces that allows self-assembly strategies to be compared and tested. We consider a simple octameric target, starting with the minimal requirements for successful self-assembly and comparing the benefits and limitations of more sophisticated hierarchical and addressable schemes. Simulations are performed using a hybrid dynamical Monte Carlo protocol that allows self-assembling clusters to rearrange internally while still providing Stokes-Einstein-like diffusion of aggregates of different sizes. Our simulations explicitly capture the thermodynamic, dynamic, and steric challenges typically faced by self-assembly processes, including competition between multiple partially completed structures. Self-assembly pathways are extracted from the simulation trajectories by a fully extendable scheme for identifying structural fragments, which are then assembled into history diagrams for successfully completed target structures. For the simple target, a one-component assembly scheme is most efficient and robust overall, but hierarchical and addressable strategies can have an advantage under some conditions if high yield is a priority

  11. Biological properties of water-soluble phosphorhydrazone dendrimers

    Directory of Open Access Journals (Sweden)

    Anne-Marie Caminade

    2013-01-01

    Full Text Available Dendrimers are hyperbranched and perfectly defined macromolecules, constituted of branches emanating from a central core in an iterative fashion. Phosphorhydrazone dendrimers constitute a special family of dendrimers, possessing one phosphorus atom at each branching point. The internal structure of these dendrimers is hydrophobic, but hydrophilic terminal groups can induce the solubility of the whole structure in water. Indeed, the properties of these compounds are mainly driven by the type of terminal groups their bear; this is especially true for the biological properties. For instance, positively charged terminal groups are efficient for transfection experiments, as drug carriers, as anti-prion agents, and as inhibitor of the aggregation of Alzheimer's peptides, whereas negatively charged dendrimers have anti-HIV properties and can influence the human immune system, leading to anti-inflammatory properties usable against rheumatoid arthritis. This review will give the most representative examples of the biological properties of water-soluble phosphorhydrazone dendrimers, organized depending on the type of terminal groups they bear.

  12. Water-soluble, triflate-based, pyrrolidinium ionic liquids

    International Nuclear Information System (INIS)

    Moreno, M.; Montanino, M.; Carewska, M.; Appetecchi, G.B.; Jeremias, S.; Passerini, S.

    2013-01-01

    Highlights: • Water-soluble, pyrrolidinium triflate ILs as solvents for extraction processes. • Electrolyte components for high safety, electrochemical devices. • Effect of the oxygen atom in the alkyl main side chain of pyrrolidinium cation. -- Abstract: The physicochemical and electrochemical properties of the water-soluble, N-methoxyethyl-N-methylpyrrolidinium trifluoromethanesulfonate (PYR 1(2O1) OSO 2 CF 3 ) ionic liquid (IL) were investigated and compared with those of commercial N-butyl-N-methylpyrrolidinium trifluoromethanesulfonate (PYR 14 OSO 2 CF 3 ). The results have shown that the transport properties are well correlated with the rheological and thermal behavior. The incorporation of an oxygen atom in the pyrrolidinium cation aliphatic side chain resulted in enhanced flexibility of the ether side chain, this supporting for the higher ionic conductivity, self-diffusion coefficient and density of PYR 1(2O1) OSO 2 CF 3 with respect to PYR 14 OSO 2 CF 3 , whereas no relevant effect on the crystallization of the ionic liquid was found. Finally, the presence of the ether side chain material in the pyrrolidinium cation led to a reduction in electrochemical stability, particularly on the cathodic verse

  13. Facile synthesis of water-soluble curcumin nanocrystals

    Directory of Open Access Journals (Sweden)

    Marković Zoran M.

    2015-01-01

    Full Text Available In this paper, facile synthesis of water soluble curcumin nanocrystals is reported. Solvent exchange method was applied to synthesize curcumin nanocrystals. Different techniques were used to characterize the structural and photophysical properties of curcumin nanocrystals. We found that nanocurcumin prepared by this method had good chemical and physical stability, could be stored in the powder form at room temperature, and was freely dispersible in water. It was established that the size of curcumin nanocrystals was varied in the range of 20-500 nm. Fourier transform infrared spectroscopy and UV-Vis analyses showed the presence of tetrahydrofuran inside the curcumin nanocrystals. Also, it was found that nanocurcumin emitted photoluminescencewith yellow-green colour. [Projekat Ministarstva nauke Republike Srbije, br. 172003

  14. SOLUBILITY AND BIOAVAILABILITY ENHANCEMENT STRATEGIES FOR EFFECTIVE DELIVERY OF POORLY WATER SOLUBLE DRUGS BY NANO FORMULATIONS AND SOLID DISPERSIONS

    OpenAIRE

    Rayapolu Ranga Goud*, Gunnala Krishnaveni, Girija Prasad Patro

    2018-01-01

    For the ancient few years, there has been a substantial research done on diverse methodologies for poorly water soluble and lipophilic drugs. More in modern times voluminous molecules cannot be distributed due to low solubility. Now a day frequently, particulate vesicle systems such as nanoparticles, liposomes, microspheres, niosomes, pronisomes, ethosomes, and proliposomes have been used as drug carriers. Drug delivery designates the technique and methodology to conveying medications or drug...

  15. The Self-Assembly of Nanogold for Optical Metamaterials

    Science.gov (United States)

    Nidetz, Robert A.

    2011-12-01

    Optical metamaterials are an emerging field that enables manipulation of light like never before. Producing optical metamaterials requires sub-wavelength building blocks. The focus here was to develop methods to produce building blocks for metamaterials from nanogold. Electron-beam lithography was used to define an aminosilane patterned chemical template in order to electrostatically self-assemble citrate-capped gold nanoparticles. Equilibrium self-assembly was achieved in 20 minutes by immersing chemical templates into gold nanoparticle solutions. The number of nanoparticles that self-assembled on an aminosilane dot was controlled by manipulating the diameters of the dots and nanoparticles. Adding salt to the nanoparticle solution enabled the nanoparticles to self-assemble in greater numbers on the same sized dot. However, the preparation of the nanoparticle solution containing salt was sensitive to spikes in the salt concentration which led to aggregation of the nanoparticles and non-specific deposition. Gold nanorods were also electrostatically self-assembled. Polyelectrolyte-coated gold nanorods were patterned with limited success. A polyelectrolyte chemical template also patterned gold nanorods, but the gold nanorods preferred to pattern on the edges of the pattern. Ligand-exchanged gold nanorods displayed the best self-assembly, but suffered from slow kinetics. Self-assembled gold nanoparticles were cross-linked with poly(diallyldimethylammonium chloride). The poly(diallyldimethylammonium chloride) allowed additional nanoparticles to pattern on top of the already patterned nanoparticles. Cross-linked nanoparticles were lifted-off of the substrate by sonication in a sodium hydroxide solution. The presence of van der Waals forces and/or amine bonding prevent the nanogold from lifting-off without sonication. A good-solvent evaporation process was used to self-assemble poly(styrene) coated gold nanoparticles into spherical microbead assemblies. The use of larger

  16. Impact of fog processing on water soluble organic aerosols.

    Science.gov (United States)

    Tripathi, S. N.; Chakraborty, A.; Gupta, T.

    2017-12-01

    Fog is a natural meteorological phenomenon that occurs all around the world, and contains a substantial quantity of liquid water. Fog is generally seen as a natural cleansing agent but can also form secondary organic aerosols (SOA) via aqueous processing of ambient organics. Few field studies have reported elevated O/C ratio and SOA mass during or after fog events. However, mechanism behind aqueous SOA formation and its contribution to total organic aerosols (OA) still remains unclear. In this study we have tried to explore the impact of fog/aqueous processing on the characteristics of water soluble organic aerosols (WSOC), which to our knowledge has not been studied before. To assess this, both online (using HR-ToF-AMS) and offline (using a medium volume PM2.5 sampler and quartz filter) aerosol sampling were carried out at Kanpur, India from 15 December 2014 - 10 February 2015. Further, offline analysis of the aqueous extracts of the collected filters were carried out by AMS to characterize the water soluble OA (WSOA). Several (17) fog events occurred during the campaign and high concentrations of OA (151 ± 68 µg/m3) and WSOA (47 ± 19 µg/m3) were observed. WSOA/OA ratios were similar during fog (0.36 ± 0.14) and nofog (0.34 ± 0.15) periods. WSOA concentrations were also similar (slightly higher) during foggy (49 ± 18 µg/m3) and non-foggy periods (46 ± 20 µg/m3), in spite of fog scavenging. However, WSOA was more oxidized during foggy period (average O/C = 0.81) than non foggy periods (average O/C = 0.70). Like WSOA, OA was also more oxidized during foggy periods (average O/C = 0.64) than non foggy periods (average O/C = 0.53). During fog, WSOA to WIOA (water insoluble OA) ratios were higher (0.65 ± 0.16) compared to non foggy periods (0.56 ± 0.15). These observations clearly showed that WSOA become more dominant and processed during fog events, possibly due to the presence of fog droplets. This study highlights that fog processing of soluble organics

  17. Water-soluble resist for environmentally friendly lithography

    Science.gov (United States)

    Lin, Qinghuang; Simpson, Logan L.; Steinhaeusler, Thomas; Wilder, Michelle; Willson, C. Grant; Havard, Jennifer M.; Frechet, Jean M. J.

    1996-05-01

    This paper describes an 'environmentally friendly,' water castable, water developable photoresist system. The chemically amplified negative-tone resist system consists of three water-soluble components: a polymer, poly(methyl acrylamidoglycolate methyl ether), [poly(MAGME)]; a photoacid generator, dimethyl dihydroxyphenylsulfonium triflate and a crosslinker, butanediol. Poly(MAGME) was synthesized by solution free radical polymerization. In the three-component resist system, the acid generated by photolysis of the photoacid generator catalyzes the crosslinking of poly(MAGME) in the exposed regions during post-exposure baking, thus rendering the exposed regions insoluble in water. Negative tone relief images are obtained by developing with pure water. The resist is able to resolve 1 micrometer line/space features (1:1 aspect ratio) with an exposure dose of 100 mJ/cm2 at 248 nm. The resist can be used to generate etched copper relief images on printed circuit boards using aqueous sodium persulfate as the etchant. The crosslinking mechanism has been investigated by model compound studies using 13C NMR. These studies have revealed that the acid catalyzed reaction of the poly(MAGME) with butanediol proceeds via both transesterification and transacetalization (transaminalization) reactions at low temperatures, and also via transamidation at high temperatures.

  18. Solubility of the Proteinogenic α-Amino Acids in Water, Ethanol, and Ethanol–Water Mixtures

    Science.gov (United States)

    2018-01-01

    The addition of organic solvents to α-amino acids in aqueous solution could be an effective method in crystallization. We reviewed the available data on the solubility of α-amino acids in water, water–ethanol mixtures, and ethanol at 298.15 K and 0.1 MPa. The solubility of l-alanine, l-proline, l-arginine, l-cysteine, and l-lysine in water and ethanol mixtures and the solubility of l-alanine, l-proline, l-arginine, l-cysteine, l-lysine, l-asparagine, l-glutamine, l-histidine, and l-leucine in pure ethanol systems were measured and are published here for the first time. The impact on the solubility of amino acids that can convert in solution, l-glutamic acid and l-cysteine, was studied. At lower concentrations, only the ninhydrin method and the ultraperfomance liquid chromatography (UPLC) method yield reliable results. In the case of α-amino acids that convert in solution, only the UPLC method was able to discern between the different α-amino acids and yields reliable results. Our results demonstrate that α-amino acids with similar physical structures have similar changes in solubility in mixed water/ethanol mixtures. The solubility of l-tryptophan increased at moderate ethanol concentrations. PMID:29545650

  19. Evaporation, diffusion and self-assembly at drying interfaces.

    Science.gov (United States)

    Roger, K; Sparr, E; Wennerström, H

    2018-04-18

    Water evaporation from complex aqueous solutions leads to the build-up of structure and composition gradients at their interface with air. We recently introduced an experimental setup for quantitatively studying such gradients and discussed how structure formation can lead to a self-regulation mechanism for controlling water evaporation through self-assembly. Here, we provide a detailed theoretical analysis using an advection/diffusion transport equation that takes into account thermodynamically non-ideal conditions and we directly relate the theoretical description to quantitative experimental data. We derive that the concentration profile develops according to a general square root of time scaling law, which fully agrees with experimental observations. The evaporation rate notably decreases with time as t-1/2, which shows that diffusion in the liquid phase is the rate limiting step for this system, in contrast to pure water evaporation. For the particular binary system that was investigated experimentally, which is composed of water and a sugar-based surfactant (α-dodecylmaltoside), the interfacial layer consists in a sequence of liquid crystalline phases of different mesostructures. We extract values for mutual diffusion coefficients of lamellar, hexagonal and micellar cubic phases, which are consistent with previously reported values and simple models. We thus provide a method to estimate the transport properties of oriented mesophases. The macroscopic humidity-independence of the evaporation rate up to 85% relative humidities is shown to result from both an extremely low mutual diffusion coefficient and the large range of water activities corresponding to relative humidities below 85%, at which the lamellar phase exists. Such a humidity self-regulation mechanism is expected for a large variety of complex system.

  20. Self-assembled tethered bimolecular lipid membranes.

    Science.gov (United States)

    Sinner, Eva-Kathrin; Ritz, Sandra; Naumann, Renate; Schiller, Stefan; Knoll, Wolfgang

    2009-01-01

    This chapter describes some of the strategies developed in our group for designing, constructing and structurally and functionally characterizing tethered bimolecular lipid membranes (tBLM). We introduce this platform as a novel model membrane system that complements the existing ones, for example, Langmuir monolayers, vesicular liposomal dispersions and bimolecular ("black") lipid membranes. Moreover, it offers the additional advantage of allowing for studies of the influence of membrane structure and order on the function of integral proteins, for example, on how the composition and organization of lipids in a mixed membrane influence the ion translocation activity of integral channel proteins. The first strategy that we introduce concerns the preparation of tethered monolayers by the self-assembly of telechelics. Their molecular architecture with a headgroup, a spacer unit (the "tether") and the amphiphile that mimics the lipid molecule allows them to bind specifically to the solid support thus forming the proximal layer of the final architecture. After fusion of vesicles that could contain reconstituted proteins from a liposomal dispersion in contact to this monolayer the tethered bimolecular lipid membrane is obtained. This can then be characterized by a broad range of surface analytical techniques, including surface plasmon spectroscopies, the quartz crystal microbalance, fluorescence and IR spectroscopies, and electrochemical techniques, to mention a few. It is shown that this concept allows for the construction of tethered lipid bilayers with outstanding electrical properties including resistivities in excess of 10 MOmega cm2. A modified strategy uses the assembly of peptides as spacers that couple covalently via their engineered sulfhydryl or lipoic acid groups at the N-terminus to the employed gold substrate, while their C-terminus is being activated afterward for the coupling of, for example, dimyristoylphosphatidylethanol amine (DMPE) lipid molecules

  1. Synthesis and solution self-assembly of side-chain cobaltocenium-containing block copolymers.

    Science.gov (United States)

    Ren, Lixia; Hardy, Christopher G; Tang, Chuanbing

    2010-07-07

    The synthesis of side-chain cobaltocenium-containing block copolymers and their self-assembly in solution was studied. Highly pure monocarboxycobaltocenium was prepared and subsequently attached to side chains of poly(tert-butyl acrylate)-block-poly(2-hydroxyethyl acrylate), yielding poly(tert-butyl acrylate)-block-poly(2-acryloyloxyethyl cobaltoceniumcarboxylate). The cobaltocenium block copolymers exhibited vesicle morphology in the mixture of acetone and water, while micelles of nanotubes were formed in the mixture of acetone and chloroform.

  2. Self-assembling bubble carriers for oral protein delivery.

    Science.gov (United States)

    Chuang, Er-Yuan; Lin, Kun-Ju; Lin, Po-Yen; Chen, Hsin-Lung; Wey, Shiaw-Pyng; Mi, Fwu-Long; Hsiao, Hsu-Chan; Chen, Chiung-Tong; Sung, Hsing-Wen

    2015-09-01

    Successful oral delivery of therapeutic proteins such as insulin can greatly improve the quality of life of patients. This study develops a bubble carrier system by loading diethylene triamine pentaacetic acid (DTPA) dianhydride, a foaming agent (sodium bicarbonate; SBC), a surfactant (sodium dodecyl sulfate; SDS), and a protein drug (insulin) in an enteric-coated gelatin capsule. Following oral administration to diabetic rats, the intestinal fluid that has passed through the gelatin capsule saturates the mixture; concomitantly, DTPA dianhydride produces an acidic environment, while SBC decomposes to form CO2 bubbles at acidic pH. The gas bubbles grow among the surfactant molecules (SDS) owing to the expansion of the generated CO2. The walls of the CO2 bubbles consist of a self-assembled film of water that is in nanoscale and may serve as a colloidal carrier to transport insulin and DTPA. The grown gas bubbles continue to expand until they bump into the wall and burst, releasing their transported insulin, DTPA, and SDS into the mucosal layer. The released DTPA and SDS function as protease inhibitors to protect the insulin molecules as well as absorption enhancers to augment their epithelial permeability and eventual absorption into systemic circulation, exerting their hypoglycemic effects. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Anisotropic Self-Assembly of Organic–Inorganic Hybrid Microtoroids

    KAUST Repository

    Al-Rehili, Safa’a

    2016-10-24

    Toroidal structures based on self-assembly of predesigned building blocks are well-established in the literature, but spontaneous self-organization to prepare such structures has not been reported to date. Here, organic–inorganic hybrid microtoroids synthesized by simultaneous coordination-driven assembly of amphiphilic molecules and hydrophilic polymers are reported. Mixing amphiphilic molecules with iron(III) chloride and hydrophilic polymers in water leads, within minutes, to the formation of starlike nanostructures. A spontaneous self-organization of these nanostructures is then triggered to form stable hybrid microtoroids. Interestingly, the toroids exhibit anisotropic hierarchical growth, giving rise to a layered toroidal framework. These microstructures are mechanically robust and can act as templates to host metallic nanoparticles such as gold and silver. Understanding the nature of spontaneous assembly driven by coordination multiple non-covalent interactions can help explain the well-ordered complexity of many biological organisms in addition to expanding the available tools to mimic such structures at a molecular level.

  4. Hematite Thin Films with Various Nanoscopic Morphologies Through Control of Self-Assembly Structures

    Science.gov (United States)

    Liu, Jingling; Kim, Yong-Tae; Kwon, Young-Uk

    2015-05-01

    Hematite (α-Fe2O3) thin films with various nanostructures were synthesized through self-assembly between iron oxide hydroxide particles, generated by hydrolysis and condensation of Fe(NO3)3 · 6H2O, and a Pluronic triblock copolymer (F127, (EO)106(PO)70(EO)106, EO = ethylene oxide, PO = propylene oxide), followed by calcination. The self-assembly structure can be tuned by introducing water in a controlled manner through the control of the humidity level in the surrounding of the as-cast films during aging stage. For the given Fe(NO3)3 · 6H2O:F127 ratio, there appear to be three different thermodynamically stable self-assembly structures depending on the water content in the film material, which correspond to mesoporous, spherical micellar, and rod-like micellar structures after removal of F127. Coupled with the thermodynamic driving forces, the kinetics of the irreversible reactions of coalescence of iron oxide hydroxide particles into larger ones induce diverse nanostructures of the resultant films. The length scale of so-obtained nanostructures ranges from 6 nm to a few hundred nanometers. In addition to water content, the effects of other experimental parameters such as aging temperature, spin rate during spin coating, type of substrate, and type of iron reagent were investigated.

  5. Fluid-Mediated Stochastic Self-Assembly at Centimetric and Sub-Millimetric Scales: Design, Modeling, and Control

    Directory of Open Access Journals (Sweden)

    Bahar Haghighat

    2016-08-01

    Full Text Available Stochastic self-assembly provides promising means for building micro-/nano-structures with a variety of properties and functionalities. Numerous studies have been conducted on the control and modeling of the process in engineered self-assembling systems constituted of modules with varied capabilities ranging from completely reactive nano-/micro-particles to intelligent miniaturized robots. Depending on the capabilities of the constituting modules, different approaches have been utilized for controlling and modeling these systems. In the quest of a unifying control and modeling framework and within the broader perspective of investigating how stochastic control strategies can be adapted from the centimeter-scale down to the (sub-millimeter-scale, as well as from mechatronic to MEMS-based technology, this work presents the outcomes of our research on self-assembly during the past few years. As the first step, we leverage an experimental platform to study self-assembly of water-floating passive modules at the centimeter scale. A dedicated computational framework is developed for real-time tracking, modeling and control of the formation of specific structures. Using a similar approach, we then demonstrate controlled self-assembly of microparticles into clusters of a preset dimension in a microfluidic chamber, where the control loop is closed again through real-time tracking customized for a much faster system dynamics. Finally, with the aim of distributing the intelligence and realizing programmable self-assembly, we present a novel experimental system for fluid-mediated programmable stochastic self-assembly of active modules at the centimeter scale. The system is built around the water-floating 3-cm-sized Lily robots specifically designed to be operative in large swarms and allows for exploring the whole range of fully-centralized to fully-distributed control strategies. The outcomes of our research efforts extend the state-of-the-art methodologies

  6. Catalytic hydrotreating of lignin with water-soluble molybdenum catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Osmaa, A.; Johansson, A. (Technical Research Centre of Finland, Espoo (Finland). Lab. of Fuel and Process Technology)

    High yields (61% of the original lignin) of low molecular weight oil (84% of the oil eluted through GC) have been obtained by hydrotreating kraft pine lignin with a water-soluble molybdenum catalyst at 430[degree]C for 60 min. The main compounds in the product oil were phenols (8.7% of the original lignin), cyclohexanes (5.0%), benzenes (3.8%), naphthalenes (4.0%), and phenanthrenes (1.2%). The degree of hydrodeoxygenation was 98%. The quality (measured by GPC and GC) of the product was as good as when using more expensive solid NiMo-CR[sub 2]O[sub 3] catalysts. 30 refs., 6 tabs.

  7. Lumbar myelography using water-soluble contrast media

    International Nuclear Information System (INIS)

    Langlotz, M.

    1981-01-01

    With the new water-soluble contrast media developed in the last 10 years, lumbar myelography has become a simple and low-risk diagnostic method of great value which is hardly ever omitted before surgery is undertaken. The book attempts a synopsis of radiology and clinical examinations. In its first part, the pathological, clinical, and radiological aspects of diseases of the lumbosacral spinal duct are reviewed. The second part contains more than 300 myelographic pictures in original size. Each of the myelograms is supplemented by the case history of the patient (anamnesis, neurological examination, therapy and course). Interpretation is facilitated by drawings at the beginning of each chapter which show the major pathological and radiological changes. (orig./MG) [de

  8. Novel tumor-targeting, self-assembling peptide nanofiber as a carrier for effective curcumin delivery

    Directory of Open Access Journals (Sweden)

    Liu J

    2013-12-01

    Full Text Available Jianfeng Liu, Jinjian Liu, Hongyan Xu, Yumin Zhang, Liping Chu, Qingfen Liu, Naling Song, Cuihong YangTianjin Key Laboratory of Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, People's Republic of ChinaAbstract: The poor aqueous solubility and low bioavailability of curcumin restrict its clinical application for cancer treatment. In this study, a novel tumor-targeting nanofiber carrier was developed to improve the solubility and tumor-targeting ability of curcumin using a self-assembled Nap-GFFYG-RGD peptide. The morphologies of the peptide nanofiber and the curcumin-encapsulated nanofiber were visualized by transmission electron microscopy. The tumor-targeting activity of the curcumin-encapsulated Nap-GFFYG-RGD peptide nanofiber (f-RGD-Cur was studied in vitro and in vivo, using Nap-GFFYG-RGE peptide nanofiber (f-RGE-Cur as the control. Curcumin was encapsulated into the peptide nanofiber, which had a diameter of approximately 10–20 nm. Curcumin showed sustained-release behavior from the nanofibers in vitro. f-RGD-Cur showed much higher cellular uptake in αvβ3 integrin-positive HepG2 liver carcinoma cells than did non-targeted f-RGE-Cur, thereby leading to significantly higher cytotoxicity. Ex vivo studies further demonstrated that curcumin could accumulate markedly in mouse tumors after administration of f-RGD-Cur via the tail vein. These results indicate that Nap-GFFYG-RGD peptide self-assembled nanofibers are a promising hydrophobic drug delivery system for targeted treatment of cancer.Keywords: nanofiber, tumor-targeting, self-assembling, curcumin, drug delivery

  9. Aerosolized droplet mediated self-assembly of photosynthetic pigment analogues and deposition onto substrates.

    Science.gov (United States)

    Shah, Vivek B; Biswas, Pratim

    2014-02-25

    Self-assembled photosynthetic molecules have a high extinction coefficient and a broad absorption in the infrared region, and these properties can be used to improve the efficiency of solar cells. We have developed a single-step method for the self-assembly of synthetic chlorin molecules (analogues of native bacteriochlorophylls) in aerosolized droplets, containing a single solvent and two solvents, to synthesize biomimetic light-harvesting structures. In the single-solvent approach, assembly is promoted by a concentration-driven process due to evaporation of the solvent. The peak absorbance of Zn(II) 3-(1-hydroxyethyl)-10-phenyl-13(1)-oxophorbine (1) in methanol shifted from 646 nm to 725 nm (∼ 80 nm shift) after assembly, which is comparable to the shift observed in the naturally occurring assembly of bacteriochlorophyll c. Although assembly is thermodynamically favorable, the kinetics of self-assembly play an important role, and this was demonstrated by varying the initial concentration of the pigment monomer. To overcome kinetic limitations, a two-solvent approach using a volatile solvent (tetrahydrofuran) in which the dye is soluble and a less volatile solvent (ethanol) in which the dye is sparingly soluble was demonstrated to be effective. The effect of molecular structure is demonstrated by spraying the sterically hindered Zn(II) 3-(1-hydroxyethyl)-10-mesityl-13(1)-oxophorbine (2), which is an analogue of 1, under similar conditions. The results illustrate a valuable and facile aerosol-based method for the formation of films of supramolecular assemblies.

  10. Novel water-soluble curcumin derivative mediating erectile signaling.

    Science.gov (United States)

    Abdel Aziz, Mohamed Talaat; El Asmer, Mohammed F; Rezq, Ameen; Kumosani, Taha Abdullah; Mostafa, Samya; Mostafa, Taymour; Atta, Hazem; Abdel Aziz Wassef, Mohamed; Fouad, Hanan H; Rashed, Laila; Sabry, Dina; Hassouna, Amira A; Senbel, Amira; Abdel Aziz, Ahmed

    2010-08-01

    Curcumin is an inducer of heme oxygenase enzyme-1 (HO-1) that is involved in erectile signaling via elevating cyclic guanosine monophosphate (cGMP)levels. To assess the effect of oral administration of a water-soluble long-acting curcumin derivative on erectile signaling. Two hundred and thirty six male white albino rats were divided into four groups; group 1 (N = 20) includes control. Group 2 (N = 72) was equally divided into four subgroups; subgroup 1 received pure curcumin (10 mg/kg), subgroup 2 received the long-acting curcumin derivative (2 mg/kg), subgroup 3 received the long-acting curcumin derivative (10 mg/kg), and subgroup 4 received sildenafil (4 mg/kg). Subgroups were sacrificed after the first, second, and third hour. Group 3 (N = 72) was equally divided into the same four subgroups already mentioned and were sacrificed after 24 hours, 48 hours, and 1 week. Group 4 (N = 72) was subjected to intracavernosal pressure (ICP) measurements 1 hour following oral administration of the same previous doses in the same rat subgroups. Cavernous tissue HO enzyme activity, cGMP, and ICP. In group 2, there was a significant progressive maintained elevation of HO activity and cGMP tissue levels starting from the first hour in subgroups 3 and 4, whereas, the rise in HO activity and cGMP started from second hour regarding the other rat subgroups. Sildenafil effect decreased after 3 hours. In group 3, there was a significant maintained elevation of HO activity and cGMP tissue levels extended to 1 week as compared to controls for all rat subgroups that received both forms of curcumin. In group 4, long-acting curcumin derivative exhibited more significant potentiation of intracavernosal pressure as compared to control and to the pure curcumin. Water-soluble long-acting curcumin derivative could mediate erectile function via upregulating cavernous tissue cGMP. © 2009 International Society for Sexual Medicine.

  11. Spectrofluorimetric determination of some water-soluble vitamins.

    Science.gov (United States)

    Mohamed, Abdel-Maaboud I; Mohamed, Horria A; Abdel-Latif, Niveen M; Mohamed, Marwa R

    2011-01-01

    Two simple and sensitive spectrofluorimetric methods were developed for determination of three water-soluble vitamins (B1, B2, and B6) in mixtures in the presence of cyanocobalamin. The first one was for thiamine determination, which depends on the oxidation of thiamine HCl to thiochrome by iodine in an alkaline medium. The method was applied accurately to determine thiamine in binary, ternary, and quaternary mixtures with pyridoxine HCl, riboflavin, and cyanocobalamin without interference. In the second method, riboflavin and pyridoxine HCl were determined fluorimetrically in acetate buffer, pH 6. The three water-soluble vitamins (B1, B2, and B6) were determined spectrofluorimetrically in binary, ternary, and quaternary mixtures in the presence of cyanocobalamin. All variables were studied in order to optimize the reaction conditions. Linear relationship was obeyed for all studied vitamins by the proposed methods at their corresponding lambda(exc) or lambda(em). The linear calibration curves were obtained from 10 to 500 ng/mL; the correlation ranged from 0.9991 to 0.9999. The suggested procedures were applied to the analysis of the investigated vitamins in their laboratory-prepared mixtures and pharmaceutical dosage forms from different manufacturers. The RSD range was 0.46-1.02%, which indicates good precision. No interference was observed from common pharmaceutical additives. Good recoveries (97.6 +/- 0.7-101.2 +/- 0.8%) were obtained. Statistical comparison of the results with reported methods shows excellent agreement and indicates no significant difference in accuracy and precision.

  12. Selective inhibition of MG-63 osteosarcoma cell proliferation induced by curcumin-loaded self-assembled arginine-rich-RGD nanospheres.

    Science.gov (United States)

    Chang, Run; Sun, Linlin; Webster, Thomas J

    2015-01-01

    Osteosarcoma is the most frequent primary malignant form of bone cancer, comprising 30% of all bone cancer cases. The objective of this in vitro study was to develop a treatment against osteosarcoma with higher selectivity toward osteosarcoma cells and lower cytotoxicity toward normal healthy osteoblast cells. Curcumin (or diferuloylmethane) has been found to have antioxidant and anticancer effects by multiple cellular pathways. However, it has lower water solubility and a higher degradation rate in alkaline conditions. In this study, the amphiphilic peptide C18GR7RGDS was used as a curcumin carrier in aqueous solution. This peptide contains a hydrophobic aliphatic tail group leading to their self-assembly by hydrophobic interactions, as well as a hydrophilic head group composed of an arginine-rich and an arginine-glycine-aspartic acid structure. Through characterization by transmission electron microscopy, self-assembled structures of spherical amphiphilic nanoparticles (APNPs) with diameters of 10-20 nm in water and phosphate-buffered saline were observed, but this structure dissociated when the pH value was reduced to 4. Using a method of codissolution with acetic acid and dialysis tubing, the solubility of curcumin was enhanced and a homogeneous solution was formed in the presence of APNPs. Successful encapsulation of curcumin in APNPs was then confirmed by Fourier transform infrared and X-ray diffraction analyses. The cytotoxicity and cellular uptake of the APNP/curcumin complexes on both osteosarcoma and normal osteoblast cell lines were also evaluated by methyl-thiazolyl-tetrazolium assays and confocal fluorescence microscopy. The results showed that the curcumin-loaded APNPs had significant selective cytotoxicity against MG-63 osteosarcoma cells when compared with normal osteoblasts. We have demonstrated for the first time that APNPs can encapsulate hydrophobic curcumin in their hydrophobic cores, and curcumin-loaded APNPs could be an innovative treatment

  13. Three-Dimensional Self-Assembled Photonic Crystal Waveguide

    Science.gov (United States)

    Baek, Kang-Hyun

    Photonic crystals (PCs), two- or three-dimensionally periodic, artificial, and dielectric structures, have a specific forbidden band for electromagnetic waves, referred to as photonic bandgap (PBG). The PBG is analogous to the electronic bandgap in natural crystal structures with periodic atomic arrangement. A well-defined and embedded planar, line, or point defect within the PCs causes a break in its structural periodicity, and introduces a state in the PBG for light localization. It offers various applications in integrated optics and photonics including optical filters, sharp bending light guides and very low threshold lasers. Using nanofabrication processes, PCs of the 2-D slab-type and 3-D layer-by-layer structures have been investigated widely. Alternatively, simple and low-cost self-assembled PCs with full 3-D PBG, inverse opals, have been suggested. A template with face centered cubic closed packed structure, opal, may initially be built by self-assembly of colloidal spheres, and is selectively removed after infiltrating high refractive index materials into the interstitials of spheres. In this dissertation, the optical waveguides utilizing the 3-D self-assembled PCs are discussed. The waveguides were fabricated by microfabrication technology. For high-quality colloidal silica spheres and PCs, reliable synthesis, self-assembly, and characterization techniques were developed. Its theoretical and experimental demonstrations are provided and correlated. They suggest that the self-assembled PCs with PBG are feasible for the applications in integrated optics and photonics.

  14. Physical principles for DNA tile self-assembly.

    Science.gov (United States)

    Evans, Constantine G; Winfree, Erik

    2017-06-19

    DNA tiles provide a promising technique for assembling structures with nanoscale resolution through self-assembly by basic interactions rather than top-down assembly of individual structures. Tile systems can be programmed to grow based on logical rules, allowing for a small number of tile types to assemble large, complex assemblies that can retain nanoscale resolution. Such algorithmic systems can even assemble different structures using the same tiles, based on inputs that seed the growth. While programming and theoretical analysis of tile self-assembly often makes use of abstract logical models of growth, experimentally implemented systems are governed by nanoscale physical processes that can lead to very different behavior, more accurately modeled by taking into account the thermodynamics and kinetics of tile attachment and detachment in solution. This review discusses the relationships between more abstract and more physically realistic tile assembly models. A central concern is how consideration of model differences enables the design of tile systems that robustly exhibit the desired abstract behavior in realistic physical models and in experimental implementations. Conversely, we identify situations where self-assembly in abstract models can not be well-approximated by physically realistic models, putting constraints on physical relevance of the abstract models. To facilitate the discussion, we introduce a unified model of tile self-assembly that clarifies the relationships between several well-studied models in the literature. Throughout, we highlight open questions regarding the physical principles for DNA tile self-assembly.

  15. Novel micellar systems for the formulation of poorly water soluble drugs : biocompatibility aspects and pharmaceutical applications

    OpenAIRE

    Dumontet Mondon, Karine

    2010-01-01

    Amongst the large number of novel drugs, 95% are lipophilic and poorly water soluble. Particularly, this renders their aqueous formulation very difficult. In this regard this thesis focused on polymeric micelles based on novel MPEG-hexPLA copolymers forming a hydrophilic shell and a very hydrophobic core that favors the incorporation of poorly water soluble drugs. Although the drug hydrophobicity and water solubility are the main parameters in respect to their incorporation efficiency, struct...

  16. Ceramic membrane ozonator for soluble organics removal from produced water

    Science.gov (United States)

    Siagian, U. W. R.; Dwipramana, A. S.; Perwira, S. B.; Khoiruddin; Wenten, I. G.

    2018-01-01

    In this work, the performance of ozonation for degradation of soluble organic compounds in produced water was investigated. Tubular ceramic membrane diffuser (with and without a static mixer in the lumen side) was used to facilitate contact between ozone and produced water. The ozonation was conducted at ozone flow rate of 8 L.min-1, ozone concentration of 0.4 ppm, original pH of the solution, and pressure of 1.2 bar, while the flow rates of the produced water were varied (192, 378 and 830 mL.min-1). It was found that the reduction of benzene, toluene, ethylbenzene, and xylene were 85%, 99%, 85%, and 95%, respectively. A lower liquid flow rate in a laminar state showed a better component reduction due to the longer contacting time between the liquid and the gas phase. The introduction of the static mixer in the lumen side of the membrane as a turbulence promoter provided a positive effect on the performance of the membrane diffuser. The twisted static mixer exhibited the better removal rate than the spiral static mixer.

  17. Unfolding a molecular trefoil derived from a zwitterionic metallopeptide to form self-assembled nanostructures

    KAUST Repository

    Zhang, Ye; Zhou, Ning; Shi, Junfeng; Pochapsky, Susan Sondej; Pochapsky, Thomas C.; Zhang, Bei; Zhang, Xixiang; Xu, Bing

    2015-01-01

    While used extensively by nature to control the geometry of protein structures, and dynamics of proteins, such as self-organization, hydration forces and ionic interactions received less attention for controlling the behaviour of small molecules. Here we describe the synthesis and characterization of a novel zwitterionic metallopeptide consisting of a cationic core and three distal anionic groups linked by self-assembling peptide motifs. 2D NMR spectra, total correlated spectroscopy and nuclear Overhauser effect spectroscopy, show that the molecule exhibits a three-fold rotational symmetry and adopts a folded conformation in dimethyl sulfoxide due to Coulombic forces. When hydrated in water, the molecule unfolds to act as a self-assembling building block of supramolecular nanostructures. By combining ionic interactions with the unique geometry from metal complex and hydrophobic interactions from simple peptides, we demonstrate a new and effective way to design molecules for smart materials through mimicking a sophisticated biofunctional system using a conformational switch.

  18. Unfolding a molecular trefoil derived from a zwitterionic metallopeptide to form self-assembled nanostructures

    KAUST Repository

    Zhang, Ye

    2015-02-19

    While used extensively by nature to control the geometry of protein structures, and dynamics of proteins, such as self-organization, hydration forces and ionic interactions received less attention for controlling the behaviour of small molecules. Here we describe the synthesis and characterization of a novel zwitterionic metallopeptide consisting of a cationic core and three distal anionic groups linked by self-assembling peptide motifs. 2D NMR spectra, total correlated spectroscopy and nuclear Overhauser effect spectroscopy, show that the molecule exhibits a three-fold rotational symmetry and adopts a folded conformation in dimethyl sulfoxide due to Coulombic forces. When hydrated in water, the molecule unfolds to act as a self-assembling building block of supramolecular nanostructures. By combining ionic interactions with the unique geometry from metal complex and hydrophobic interactions from simple peptides, we demonstrate a new and effective way to design molecules for smart materials through mimicking a sophisticated biofunctional system using a conformational switch.

  19. Aqueous dispersion polymerization: a new paradigm for in situ block copolymer self-assembly in concentrated solution.

    Science.gov (United States)

    Sugihara, Shinji; Blanazs, Adam; Armes, Steven P; Ryan, Anthony J; Lewis, Andrew L

    2011-10-05

    Reversible addition-fragmentation chain transfer polymerization has been utilized to polymerize 2-hydroxypropyl methacrylate (HPMA) using a water-soluble macromolecular chain transfer agent based on poly(2-(methacryloyloxy)ethylphosphorylcholine) (PMPC). A detailed phase diagram has been elucidated for this aqueous dispersion polymerization formulation that reliably predicts the precise block compositions associated with well-defined particle morphologies (i.e., pure phases). Unlike the ad hoc approaches described in the literature, this strategy enables the facile, efficient, and reproducible preparation of diblock copolymer spheres, worms, or vesicles directly in concentrated aqueous solution. Chain extension of the highly hydrated zwitterionic PMPC block with HPMA in water at 70 °C produces a hydrophobic poly(2-hydroxypropyl methacrylate) (PHPMA) block, which drives in situ self-assembly to form well-defined diblock copolymer spheres, worms, or vesicles. The final particle morphology obtained at full monomer conversion is dictated by (i) the target degree of polymerization of the PHPMA block and (ii) the total solids concentration at which the HPMA polymerization is conducted. Moreover, if the targeted diblock copolymer composition corresponds to vesicle phase space at full monomer conversion, the in situ particle morphology evolves from spheres to worms to vesicles during the in situ polymerization of HPMA. In the case of PMPC(25)-PHPMA(400) particles, this systematic approach allows the direct, reproducible, and highly efficient preparation of either block copolymer vesicles at up to 25% solids or well-defined worms at 16-25% solids in aqueous solution.

  20. Positron annihilation lifetime spectroscopy (PALS) as a characterization technique for nanostructured self-assembled amphiphile systems.

    Science.gov (United States)

    Dong, Aurelia W; Pascual-Izarra, Carlos; Pas, Steven J; Hill, Anita J; Boyd, Ben J; Drummond, Calum J

    2009-01-08

    Positron annihilation lifetime spectroscopy (PALS) has potential as a novel rapid characterization method for self-assembly amphiphile systems; however, a lack of systematic correlation of PALS parameters with structural attributes has limited its more widespread application. In this study, using the well-characterized phytantriol/water and the phytantriol/vitamin E acetate/water self-assembly amphiphile systems, the impact of systematic structural changes controlled by changes in composition and temperature on PALS parameters has been studied. The PALS parameters (orthopositronium (oPs) lifetime and intensity signatures) were shown to be sensitive to the molecular packing and mobility of the self-assembled lipid molecules in various lyotropic liquid crystalline phases, enabling differentiation between liquid crystalline structures. The oPs lifetime, related to the molecular packing and mobility, is correlated with rheological properties of the individual mesophases. The oPs lifetime links the lipid chain packing and mobility in the various mesophases to resultant macroscopic properties, such as permeability, which is critical for the use of these mesophase structures as diffusion-controlled release matrices for active liposoluble compounds.

  1. Self-Assembly of Diblock Molecular Polymer Brushes in the Spherical Confinement of Nanoemulsion Droplets.

    Science.gov (United States)

    Steinhaus, Andrea; Pelras, Théophile; Chakroun, Ramzi; Gröschel, André H; Müllner, Markus

    2018-05-02

    Understanding the self-assembly behavior of polymers of various topologies is key to a reliable design of functional polymer materials. Self-assembly under confinement conditions emerges as a versatile avenue to design polymer particles with complex internal morphologies while simultaneously facilitating scale-up. However, only linear block copolymers have been studied to date, despite the increasing control over macromolecule composition and architecture available. This study extends the investigation of polymer self-assembly in confinement from regular diblock copolymers to diblock molecular polymer brushes (MPBs). Block-type MPBs with polystyrene (PS) and polylactide (PLA) compartments of different sizes are incorporated into surfactant-stabilized oil-in-water (chloroform/water) emulsions. The increasing confinement in the nanoemulsion droplets during solvent evaporation directs the MPBs to form solid nano/microparticles. Microscopy studies reveal an intricate internal particle structure, including interpenetrating networks and axially stacked lamellae of PS and PLA, depending on the PS/PLA ratio of the brushes. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Bioprinting synthetic self-assembling peptide hydrogels for biomedical applications

    International Nuclear Information System (INIS)

    Loo, Yihua; Hauser, Charlotte A E

    2016-01-01

    Three-dimensional (3D) bioprinting is a disruptive technology for creating organotypic constructs for high-throughput screening and regenerative medicine. One major challenge is the lack of suitable bioinks. Short synthetic self-assembling peptides are ideal candidates. Several classes of peptides self-assemble into nanofibrous hydrogels resembling the native extracellular matrix. This is a conducive microenvironment for maintaining cell survival and physiological function. Many peptides also demonstrate stimuli-responsive gelation and tuneable mechanical properties, which facilitates extrusion before dispensing and maintains the shape fidelity of the printed construct in aqueous media. The inherent biocompatibility and biodegradability bodes well for in vivo applications as implantable tissues and drug delivery matrices, while their short length and ease of functionalization facilitates synthesis and customization. By applying self-assembling peptide inks to bioprinting, the dynamic complexity of biological tissue can be recreated, thereby advancing current biomedical applications of peptide hydrogel scaffolds. (paper)

  3. Regulating DNA Self-assembly by DNA-Surface Interactions.

    Science.gov (United States)

    Liu, Longfei; Li, Yulin; Wang, Yong; Zheng, Jianwei; Mao, Chengde

    2017-12-14

    DNA self-assembly provides a powerful approach for preparation of nanostructures. It is often studied in bulk solution and involves only DNA-DNA interactions. When confined to surfaces, DNA-surface interactions become an additional, important factor to DNA self-assembly. However, the way in which DNA-surface interactions influence DNA self-assembly is not well studied. In this study, we showed that weak DNA-DNA interactions could be stabilized by DNA-surface interactions to allow large DNA nanostructures to form. In addition, the assembly can be conducted isothermally at room temperature in as little as 5 seconds. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Actinide Sequestration Using Self-Assembled Monolayers on Mesoporous Supports

    International Nuclear Information System (INIS)

    Fryxell, Glen E.; Lin, Yuehe; Fiskum, Sandra K.; Birnbaum, Jerome C.; Wu, Hong; Kemner, K. M.; Kelly, Shelley

    2005-01-01

    Surfactant templated synthesis of mesoporous ceramics provides a versatile foundation upon which to create high efficiency environmental sorbents. These nanoporous ceramic oxides condense a huge amount of surface area into a very small volume. The ceramic oxide interface is receptive to surface functionalization through molecular self-assembly. The marriage of mesoporous ceramics with self-assembled monolayer chemistry creates a powerful new class of environmental sorbent materials called self-assembled monolayers on mesoporous supports (SAMMS). These SAMMS materials are highly efficient sorbents, whose interfacial chemistry can be fine-tuned to selectively sequester a specific target species, such as heavy metals, tetrahedral oxometallate anions and radionuclides. Details addressing the design, synthesis and characterization of SAMMS materials specifically designed to sequester actinides, of central importance to the environmental clean-up necessary after 40 years of weapons grade plutonium production, as well as evaluation of their binding affinities and kinetics are presented

  5. Selective inhibition of MG-63 osteosarcoma cell proliferation induced by curcumin-loaded self-assembled arginine-rich-RGD nanospheres

    Directory of Open Access Journals (Sweden)

    Chang R

    2015-05-01

    Full Text Available Run Chang,1 Linlin Sun,1 Thomas J Webster1,2 1Department of Chemical Engineering, Northeastern University, Boston, MA, USA; 2Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah, Saudi Arabia Abstract: Osteosarcoma is the most frequent primary malignant form of bone cancer, comprising 30% of all bone cancer cases. The objective of this in vitro study was to develop a treatment against osteosarcoma with higher selectivity toward osteosarcoma cells and lower cytotoxicity toward normal healthy osteoblast cells. Curcumin (or diferuloylmethane has been found to have antioxidant and anticancer effects by multiple cellular pathways. However, it has lower water solubility and a higher degradation rate in alkaline conditions. In this study, the amphiphilic peptide C18GR7RGDS was used as a curcumin carrier in aqueous solution. This peptide contains a hydrophobic aliphatic tail group leading to their self-assembly by hydrophobic interactions, as well as a hydrophilic head group composed of an arginine-rich and an arginine-glycine-aspartic acid structure. Through characterization by transmission electron microscopy, self-assembled structures of spherical amphiphilic nanoparticles (APNPs with diameters of 10–20 nm in water and phosphate-buffered saline were observed, but this structure dissociated when the pH value was reduced to 4. Using a method of codissolution with acetic acid and dialysis tubing, the solubility of curcumin was enhanced and a homogeneous solution was formed in the presence of APNPs. Successful encapsulation of curcumin in APNPs was then confirmed by Fourier transform infrared and X-ray diffraction analyses. The cytotoxicity and cellular uptake of the APNP/curcumin complexes on both osteosarcoma and normal osteoblast cell lines were also evaluated by methyl-thiazolyl-tetrazolium assays and confocal fluorescence microscopy. The results showed that the curcumin-loaded APNPs had significant selective

  6. Study on Mixed Solvency Concept in Formulation Development of Aqueous Injection of Poorly Water Soluble Drug

    Directory of Open Access Journals (Sweden)

    Shailendra Singh Solanki

    2013-01-01

    Full Text Available In the present investigation, mixed-solvency approach has been applied for the enhancement of aqueous solubility of a poorly water- soluble drug, zaltoprofen (selected as a model drug, by making blends (keeping total concentrations 40% w/v, constant of selected water-soluble substances from among the hydrotropes (urea, sodium benzoate, sodium citrate, nicotinamide; water-soluble solids (PEG-4000, PEG-6000; and co-solvents (propylene glycol, glycerine, PEG-200, PEG-400, PEG-600. Aqueous solubility of drug in case of selected blends (12 blends ranged from 9.091 ± 0.011 mg/ml–43.055 ± 0.14 mg/ml (as compared to the solubility in distilled water 0.072 ± 0.012 mg/ml. The enhancement in the solubility of drug in a mixed solvent containing 10% sodium citrate, 5% sodium benzoate and 25 % S cosolvent (25% S cosolvent contains PEG200, PEG 400, PEG600, Glycerine and Propylene glycol was more than 600 fold. This proved a synergistic enhancement in solubility of a poorly water-soluble drug due to mixed cosolvent effect. Each solubilized product was characterized by ultraviolet and infrared techniques. Various properties of solution such as pH, viscosity, specific gravity and surface tension were studied. The developed formulation was studied for physical and chemical stability. This mixed solvency shall prove definitely a boon for pharmaceutical industries for the development of dosage form of poorly water soluble drugs.

  7. Hydrazine-mediated construction of nanocrystal self-assembly materials.

    Science.gov (United States)

    Zhou, Ding; Liu, Min; Lin, Min; Bu, Xinyuan; Luo, Xintao; Zhang, Hao; Yang, Bai

    2014-10-28

    Self-assembly is the basic feature of supramolecular chemistry, which permits to integrate and enhance the functionalities of nano-objects. However, the conversion of self-assembled structures to practical materials is still laborious. In this work, on the basis of studying one-pot synthesis, spontaneous assembly, and in situ polymerization of aqueous semiconductor nanocrystals (NCs), NC self-assembly materials are produced and applied to design high performance white light-emitting diode (WLED). In producing self-assembly materials, the additive hydrazine (N2H4) is curial, which acts as the promoter to achieve room-temperature synthesis of aqueous NCs by favoring a reaction-controlled growth, as the polyelectrolyte to weaken inter-NC electrostatic repulsion and therewith facilitate the one-dimensional self-assembly, and in particular as the bifunctional monomers to polymerize with mercapto carboxylic acid-modified NCs via in situ amidation reaction. This strategy is versatile for mercapto carboxylic acid-modified aqueous NCs, for example CdS, CdSe, CdTe, CdSe(x)Te(1-x), and Cd(y)Hg(1-y)Te. Because of the multisite modification with carboxyl, the NCs act as macromonomers, thus producing cross-linked self-assembly materials with excellent thermal, solvent, and photostability. The assembled NCs preserve strong luminescence and avoid unpredictable fluorescent resonance energy transfer, the main problem in design WLED from multiple NC components. These advantages allow the fabrication of NC-based WLED with high color rendering index (86), high luminous efficacy (41 lm/W), and controllable color temperature.

  8. Self-Assembly of Charged Amphiphilic Diblock Copolymers with Insoluble Blocks of Decreasing Hydrophobicity: From Kinetically Frozen Colloids to Macrosurfactants

    Energy Technology Data Exchange (ETDEWEB)

    M Jacquin; P Muller; H Cottet; O Theodoly

    2011-12-31

    We have investigated the self-assembly properties in aqueous solution of amphiphilic diblock copolymers with insoluble blocks of different hydrophobicity and demonstrated that the condition to obtain dynamic micelles is to design samples with insoluble blocks of low enough hydrophobicity. We focus here on results with new water-soluble amphiphilic diblock copolymers poly(diethyleneglycol ethylether acrylate)-b-poly(acrylic acid), or PDEGA-b-PAA. The physical characteristics of PDEGA-b-PAA micelles at high ionization have been determined by small angle neutron scattering (SANS). We show that PDEGA-b-PAA samples form micelles at thermodynamic equilibrium. The critical micelle concentrations (CMCs) decrease strongly with ionic strength and temperature due to a solvent quality decrease for, respectively, the corona and the core. This behavior of reversible aggregation is remarkable as compared to the behavior of kinetically frozen aggregation that has been widely observed with samples of similar architecture and different hydrophobic blocks, for example, poly(styrene)-b-poly(acrylic acid), PS-b-PAA, and poly(butyl acrylate)-b-poly(acrylic acid), PBA-b-PAA. We have measured the interfacial tension between water and the homopolymers PDEGA and PBA at, respectively, 3 and 20 mN/m at room temperature, which permits one to estimate the energy cost to extract a unimer from a micelle. The results are consistent with a micelle association that is fast for PDEGA-b-PAA and kinetically frozen PBA-b-PAA. Hence, PDEGA-b-PAA samples form a new system of synthetic charged macrosurfactant with unique properties of fast dynamic association, tunable charge, and water solubility even at temperatures and NaCl concentrations as high as 65 C and 1 M.

  9. Sambot II: A self-assembly modular swarm robot

    Science.gov (United States)

    Zhang, Yuchao; Wei, Hongxing; Yang, Bo; Jiang, Cancan

    2018-04-01

    The new generation of self-assembly modular swarm robot Sambot II, based on the original generation of self-assembly modular swarm robot Sambot, adopting laser and camera module for information collecting, is introduced in this manuscript. The visual control algorithm of Sambot II is detailed and feasibility of the algorithm is verified by the laser and camera experiments. At the end of this manuscript, autonomous docking experiments of two Sambot II robots are presented. The results of experiments are showed and analyzed to verify the feasibility of whole scheme of Sambot II.

  10. Self-assembled three-dimensional chiral colloidal architecture

    Science.gov (United States)

    Ben Zion, Matan Yah; He, Xiaojin; Maass, Corinna C.; Sha, Ruojie; Seeman, Nadrian C.; Chaikin, Paul M.

    2017-11-01

    Although stereochemistry has been a central focus of the molecular sciences since Pasteur, its province has previously been restricted to the nanometric scale. We have programmed the self-assembly of micron-sized colloidal clusters with structural information stemming from a nanometric arrangement. This was done by combining DNA nanotechnology with colloidal science. Using the functional flexibility of DNA origami in conjunction with the structural rigidity of colloidal particles, we demonstrate the parallel self-assembly of three-dimensional microconstructs, evincing highly specific geometry that includes control over position, dihedral angles, and cluster chirality.

  11. Ultrafine luminescent structures through nanoparticle self-assembly

    International Nuclear Information System (INIS)

    Prabhakaran, K; Goetzinger, S; Shafi, K V P M; Mazzei, A; Schietinger, S; Benson, O

    2006-01-01

    We report the fabrication of ultrafine structures consisting of regular arrays of nanoemitters through the self-assembly of luminescent nanoparticles on a silicon wafer. Nanoparticles of yttrium aluminium garnet (YAG) doped with Eu 3+ ions were synthesized by a sonochemical technique. These particles, suspended in ethanol, are introduced onto a pre-patterned silicon wafer, covered with a thin oxide layer. On annealing the sample in an ultrahigh-vacuum chamber, the nanoparticles self-assemble along the pattern. We demonstrate this 'chemical lithography' by assembling the nanoparticles along a variety of patterns. We believe that such self-organized nanopatterning of functional structures is important for the realization of nanodevices

  12. Self-assembly of active amphiphilic Janus particles

    Science.gov (United States)

    Mallory, S. A.; Alarcon, F.; Cacciuto, A.; Valeriani, C.

    2017-12-01

    In this article, we study the phenomenology of a two dimensional dilute suspension of active amphiphilic Janus particles. We analyze how the morphology of the aggregates emerging from their self-assembly depends on the strength and the direction of the active forces. We systematically explore and contrast the phenomenologies resulting from particles with a range of attractive patch coverages. Finally, we illustrate how the geometry of the colloids and the directionality of their interactions can be used to control the physical properties of the assembled active aggregates and suggest possible strategies to exploit self-propulsion as a tunable driving force for self-assembly.

  13. Electrostatic Force Microscopy of Self Assembled Peptide Structures

    DEFF Research Database (Denmark)

    Clausen, Casper Hyttel; Dimaki, Maria; Pantagos, Spyros P.

    2011-01-01

    In this report electrostatic force microscopy (EFM) is used to study different peptide self-assembled structures, such as tubes and particles. It is shown that not only geometrical information can be obtained using EFM, but also information about the composition of different structures. In partic......In this report electrostatic force microscopy (EFM) is used to study different peptide self-assembled structures, such as tubes and particles. It is shown that not only geometrical information can be obtained using EFM, but also information about the composition of different structures...

  14. Self-Assembled Hydrogel Nanoparticles for Drug Delivery Applications

    Directory of Open Access Journals (Sweden)

    Miguel Gama

    2010-02-01

    Full Text Available Hydrogel nanoparticles—also referred to as polymeric nanogels or macromolecular micelles—are emerging as promising drug carriers for therapeutic applications. These nanostructures hold versatility and properties suitable for the delivery of bioactive molecules, namely of biopharmaceuticals. This article reviews the latest developments in the use of self-assembled polymeric nanogels for drug delivery applications, including small molecular weight drugs, proteins, peptides, oligosaccharides, vaccines and nucleic acids. The materials and techniques used in the development of self-assembling nanogels are also described.

  15. [Emission Characteristics of Water-Soluble Ions in Fumes of Coal Fired Boilers in Beijing].

    Science.gov (United States)

    Hu, Yue-qi; Ma, Zhao-hui; Feng, Ya-jun; Wang, Chen; Chen, Yuan-yuan; He, Ming

    2015-06-01

    Selecting coal fired boilers with typical flue gas desulfurization and dust extraction systems in Beijing as the study objects, the issues and characteristics of the water-soluble ions in fumes of coal fired boilers and theirs influence factors were analyzed and evaluated. The maximum mass concentration of total water-soluble ions in fumes of coal fired boilers in Beijing was 51.240 mg x m(-3) in the benchmark fume oxygen content, the minimum was 7.186 mg x m(-3), and the issues of the water-soluble ions were uncorrelated with the fume moisture content. SO4(2-) was the primary characteristic water-soluble ion for desulfurization reaction, and the rate of contribution of SO4(2-) in total water-soluble ions ranged from 63.8% to 81.0%. F- was another characteristic water-soluble ion in fumes of thermal power plant, and the rate of contribution of F- in total water-soluble ions ranged from 22.2% to 32.5%. The fume purification technologies significantly influenced the issues and the emission characteristics of water-soluble ions in fumes of coal fired boilers. Na+ was a characteristic water-soluble ion for the desulfurizer NaOH, NH4+ and NO3+ were characteristic for the desulfurizer NH4HCO3, and Mg2+ was characteristic for the desulfurizer MgO, but the Ca2+ emission was not increased by addition of the desulfurizer CaO or CaCO3 The concentrations of NH4+ and NO3- in fumes of thermal power plant were lower than those in fumes of industrial or heating coal fired boilers. The form of water-soluble ions was significantly correlated with fume temperature. The most water-soluble ions were in superfine state at higher fume temperature and were not easily captured by the filter membrane.

  16. Disassembly of Bacterial Biofilms by the Self-Assembled Glycolipids Derived from Renewable Resources.

    Science.gov (United States)

    Prasad, Yadavali Siva; Miryala, Sandeep; Lalitha, Krishnamoorthy; Ranjitha, K; Barbhaiwala, Shehnaz; Sridharan, Vellaisamy; Maheswari, C Uma; Srinandan, C S; Nagarajan, Subbiah

    2017-11-22

    More than 80% of chronic infections of bacteria are caused by biofilms. It is also a long-term survival strategy of the pathogens in a nonhost environment. Several amphiphilic molecules have been used in the past to potentially disrupt biofilms; however, the involvement of multistep synthesis, complicated purification and poor yield still remains a major problem. Herein, we report a facile synthesis of glycolipid based surfactant from renewable feedstocks in good yield. The nature of carbohydrate unit present in glycolipid influence the ring chain tautomerism, which resulted in the existence of either cyclic structure or both cyclic and acyclic structures. Interestingly, these glycolipids self-assemble into gel in highly hydrophobic solvents and vegetable oils, and displayed foam formation in water. The potential application of these self-assembled glycolipids to disrupt preformed biofilm was examined against various pathogens. It was observed that glycolipid 6a disrupts Staphylococcus aureus and Listeria monocytogenes biofilm, while the compound 6c was effective in disassembling uropathogenic E. coli and Salmonella enterica Typhimurium biofilms. Altogether, the supramolecular self-assembled materials, either as gel or as surfactant solution could be potentially used for surface cleansing in hospital environments or the food processing industries to effectively reduce pathogenic biofilms.

  17. Spontaneous phase separation during self-assembly in bi-dispersed spherical iron oxide nanoparticle monolayers

    International Nuclear Information System (INIS)

    Stanley, Jacob; Boucheron, Leandra; Shpyrko, Oleg; Lin, Binhua; Meron, Mati

    2015-01-01

    Recent developments in the synthesis of iron oxide nanoparticles have resulted in the ability to fabricate roughly spherical particles with extremely high size uniformity (low polydispersity). These particles can form self-assembled monolayer films at an air-water interface. When the polydispersity of the particles is low, these monolayers can be well-ordered over a length scale dozens of times the particle size. The van der Waals force between the particles is what drives this self-assembly. Through the use of Grazing Incidence X-Ray Diffraction we demonstrate that, when these films are formed at the liquid surface from bi-dispersed solutions containing 10 and 20 nm spherical particles suspended in chloroform, the particles phase separate into well-ordered patches during the self-assembly process. Furthermore, the domain sizes of these phase separated regions are at most 2–3 times smaller than that of a film comprising only mono-dispersed particles and their degree of disorder is comparable. This is shown for multiple solutions with differing ratios of 10 and 20 nm particles

  18. Ultrasmall Peptides Self-Assemble into Diverse Nanostructures: Morphological Evaluation and Potential Implications

    Directory of Open Access Journals (Sweden)

    Charlotte A.E. Hauser

    2011-09-01

    Full Text Available In this study, we perform a morphological evaluation of the diverse nanostructures formed by varying concentration and amino acid sequence of a unique class of ultrasmall self-assembling peptides. We modified these peptides by replacing the aliphatic amino acid at the C-aliphatic terminus with different aromatic amino acids. We tracked the effect of introducing aromatic residues on self-assembly and morphology of resulting nanostructures. Whereas aliphatic peptides formed long, helical fibers that entangle into meshes and entrap >99.9% water, the modified peptides contrastingly formed short, straight fibers with a flat morphology. No helical fibers were observed for the modified peptides. For the aliphatic peptides at low concentrations, different supramolecular assemblies such as hollow nanospheres and membrane blebs were found. Since the ultrasmall peptides are made of simple, aliphatic amino acids, considered to have existed in the primordial soup, study of these supramolecular assemblies could be relevant to understanding chemical evolution leading to the origin of life on Earth. In particular, we propose a variety of potential applications in bioengineering and nanotechnology for the diverse self-assembled nanostructures.

  19. Spontaneous phase separation during self-assembly in bi-dispersed spherical iron oxide nanoparticle monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Stanley, Jacob; Boucheron, Leandra; Shpyrko, Oleg, E-mail: lin@cars.uchicago.edu, E-mail: oshpyrko@physics.ucsd.edu [Department of Physics, University of California, San Diego, La Jolla, California 92093 (United States); Lin, Binhua, E-mail: lin@cars.uchicago.edu, E-mail: oshpyrko@physics.ucsd.edu; Meron, Mati [Center for Advanced Radiation Sources (CARS), University of Chicago, Chicago, Illinois 60637 (United States)

    2015-04-20

    Recent developments in the synthesis of iron oxide nanoparticles have resulted in the ability to fabricate roughly spherical particles with extremely high size uniformity (low polydispersity). These particles can form self-assembled monolayer films at an air-water interface. When the polydispersity of the particles is low, these monolayers can be well-ordered over a length scale dozens of times the particle size. The van der Waals force between the particles is what drives this self-assembly. Through the use of Grazing Incidence X-Ray Diffraction we demonstrate that, when these films are formed at the liquid surface from bi-dispersed solutions containing 10 and 20 nm spherical particles suspended in chloroform, the particles phase separate into well-ordered patches during the self-assembly process. Furthermore, the domain sizes of these phase separated regions are at most 2–3 times smaller than that of a film comprising only mono-dispersed particles and their degree of disorder is comparable. This is shown for multiple solutions with differing ratios of 10 and 20 nm particles.

  20. Enhancing Self-Assembly in Cellulose Nanocrystal Suspensions Using High-Permittivity Solvents.

    Science.gov (United States)

    Bruckner, Johanna R; Kuhnhold, Anja; Honorato-Rios, Camila; Schilling, Tanja; Lagerwall, Jan P F

    2016-09-27

    Helical liquid crystal self-assembly in suspensions of cellulose nanocrystals (CNCs), bioderived nanorods exhibiting excellent mechanical and optical properties, opens attractive routes to sustainable production of advanced functional materials. For convenience, in most studies until now, the CNCs were suspended in water, leaving a knowledge gap concerning the influence of the solvent. Using a novel approach for aggregation-free solvent exchange in CNC suspensions, here we show that protic solvents with a high dielectric permittivity εr significantly speed up self-assembly (from days to hours) at high CNC mass fraction and reduce the concentration dependence of the helix period (variation reducing from more than 30 μm to less than 1 μm). Moreover, our computer simulations indicate that the degree of order at constant CNC content increases with increasing εr, leading to a shorter pitch and a reduced threshold for liquid crystallinity. In low-εr solvents, the onset of long-range orientational order is coupled to kinetic arrest, preventing the formation of a helical superstructure. Our results show that the choice of solvent is a powerful parameter for tuning the behavior of CNC suspensions, enhancing our ability to control the self-assembly and thereby harvesting valuable novel cellulose-based materials.

  1. Solubility isotherms in ternary systems of samarium nitrate, water and nitrates of amidopyrine, benzotriazole

    International Nuclear Information System (INIS)

    Starikova, L.I.

    1991-01-01

    Solubility in the system of samarium nitrate-amidopyrine nitrate-water at 25 and 50 deg C was studied. Solubility isotherms consist of three branches, corresponding to crystallization of samarium nitrate tetrahydrate, amidopyrine nitrate and congruently soluble compounds of Sm(NO 3 ) 3 · 2C 13 H 17 ON 3 ·HNO 3 composition. Its thermal behaviour was studied. The system of samarium nitrate-benzotriazole nitrate-water is referred to eutonic type

  2. Proton Mediated Chemistry and Catalysis in a Self-Assembled Supramolecular Host

    Energy Technology Data Exchange (ETDEWEB)

    Pluth, Michael; Bergman, Robert; Raymond, Kenneth

    2009-04-10

    Synthetic supramolecular host assemblies can impart unique reactivity to encapsulated guest molecules. Synthetic host molecules have been developed to carry out complex reactions within their cavities, despite the fact that they lack the type of specifically tailored functional groups normally located in the analogous active sites of enzymes. Over the past decade, the Raymond group has developed a series of self-assembled supramolecules and the Bergman group has developed and studied a number of catalytic transformations. In this Account, we detail recent collaborative work between these two groups, focusing on chemical catalysis stemming from the encapsulation of protonated guests and expanding to acid catalysis in basic solution. We initially investigated the ability of a water-soluble, self-assembled supramolecular host molecule to encapsulate protonated guests in its hydrophobic core. Our study of encapsulated protonated amines revealed rich host-guest chemistry. We established that self-exchange (that is, in-out guest movement) rates of protonated amines were dependent on the steric bulk of the amine rather than its basicity. The host molecule has purely rotational tetrahedral (T) symmetry, so guests with geminal N-methyl groups (and their attendant mirror plane) were effectively desymmetrized; this allowed for the observation and quantification of the barriers for nitrogen inversion followed by bond rotation. Furthermore, small nitrogen heterocycles, such as N-alkylaziridines, N-alkylazetidines, and N-alkylpyrrolidines, were found to be encapsulated as proton-bound homodimers or homotrimers. We further investigated the thermodynamic stabilization of protonated amines, showing that encapsulation makes the amines more basic in the cavity. Encapsulation raises the effective basicity of protonated amines by up to 4.5 pK{sub a} units, a difference almost as large as that between the moderate and strong bases carbonate and hydroxide. The thermodynamic stabilization

  3. Proton-Mediated Chemistry and Catalysis in a Self-Assembled Supramolecular Host

    International Nuclear Information System (INIS)

    Pluth, Michael; Bergman, Robert; Raymond, Kenneth

    2009-01-01

    Synthetic supramolecular host assemblies can impart unique reactivity to encapsulated guest molecules. Synthetic host molecules have been developed to carry out complex reactions within their cavities, despite the fact that they lack the type of specifically tailored functional groups normally located in the analogous active sites of enzymes. Over the past decade, the Raymond group has developed a series of self-assembled supramolecules and the Bergman group has developed and studied a number of catalytic transformations. In this Account, we detail recent collaborative work between these two groups, focusing on chemical catalysis stemming from the encapsulation of protonated guests and expanding to acid catalysis in basic solution. We initially investigated the ability of a water-soluble, self-assembled supramolecular host molecule to encapsulate protonated guests in its hydrophobic core. Our study of encapsulated protonated amines revealed rich host-guest chemistry. We established that self-exchange (that is, in-out guest movement) rates of protonated amines were dependent on the steric bulk of the amine rather than its basicity. The host molecule has purely rotational tetrahedral (T) symmetry, so guests with geminal N-methyl groups (and their attendant mirror plane) were effectively desymmetrized; this allowed for the observation and quantification of the barriers for nitrogen inversion followed by bond rotation. Furthermore, small nitrogen heterocycles, such as N-alkylaziridines, N-alkylazetidines, and N-alkylpyrrolidines, were found to be encapsulated as proton-bound homodimers or homotrimers. We further investigated the thermodynamic stabilization of protonated amines, showing that encapsulation makes the amines more basic in the cavity. Encapsulation raises the effective basicity of protonated amines by up to 4.5 pK a units, a difference almost as large as that between the moderate and strong bases carbonate and hydroxide. The thermodynamic stabilization of

  4. New self-assembled nanocrystal micelles for biolabels and biosensors.

    Energy Technology Data Exchange (ETDEWEB)

    Tallant, David Robert; Wilson, Michael C. (University of New Mexico, Albuquerque, NM); Leve, Erik W. (University of New Mexico, Albuquerque, NM); Fan, Hongyou; Brinker, C. Jeffrey; Gabaldon, John (University of New Mexico, Albuquerque, NM); Scullin, Chessa (University of New Mexico, Albuquerque, NM)

    2005-12-01

    The ability of semiconductor nanocrystals (NCs) to display multiple (size-specific) colors simultaneously during a single, long term excitation holds great promise for their use in fluorescent bio-imaging. The main challenges of using nanocrystals as biolabels are achieving biocompatibility, low non-specific adsorption, and no aggregation. In addition, functional groups that can be used to further couple and conjugate with biospecies (proteins, DNAs, antibodies, etc.) are required. In this project, we invented a new route to the synthesis of water-soluble and biocompatible NCs. Our approach is to encapsulate as-synthesized, monosized, hydrophobic NCs within the hydrophobic cores of micelles composed of a mixture of surfactants and phospholipids containing head groups functionalized with polyethylene glycol (-PEG), -COOH, and NH{sub 2} groups. PEG provided biocompatibility and the other groups were used for further biofunctionalization. The resulting water-soluble metal and semiconductor NC-micelles preserve the optical properties of the original hydrophobic NCs. Semiconductor NCs emit the same color; they exhibit equal photoluminescence (PL) intensity under long-time laser irradiation (one week) ; and they exhibit the same PL lifetime (30-ns). The results from transmission electron microscopy and confocal fluorescent imaging indicate that water-soluble semiconductor NC-micelles are biocompatible and exhibit no aggregation in cells. We have extended the surfactant/lipid encapsulation techniques to synthesize water-soluble magnetic NC-micelles. Transmission electron microscopy results suggest that water-soluble magnetic NC-micelles exhibit no aggregation. The resulting NC-micelles preserve the magnetic properties of the original hydrophobic magnetic NCs. Viability studies conducted using yeast cells suggest that the magnetic nanocrystal-micelles are biocompatible. We have demonstrated, for the first time, that using external oscillating magnetic fields to manipulate

  5. Water uptake by fresh Indonesian peat burning particles is limited by water-soluble organic matter

    Science.gov (United States)

    Chen, Jing; Hapsari Budisulistiorini, Sri; Itoh, Masayuki; Lee, Wen-Chien; Miyakawa, Takuma; Komazaki, Yuichi; Qing Yang, Liu Dong; Kuwata, Mikinori

    2017-09-01

    The relationship between hygroscopic properties and chemical characteristics of Indonesian biomass burning (BB) particles, which are dominantly generated from peatland fires, was investigated using a humidified tandem differential mobility analyzer. In addition to peat, acacia (a popular species at plantation) and fern (a pioneering species after disturbance by fire) were used for experiments. Fresh Indonesian peat burning particles are almost non-hygroscopic (mean hygroscopicity parameter, κ octanol-water partitioning method. κ values for the water extracts are high, especially for peat burning particles (A0 (a whole part of the water-soluble fraction): κ = 0.18, A1 (highly water-soluble fraction): κ = 0.30). This result stresses the importance of both the WSOC fraction and κ of the water-soluble fraction in determining the hygroscopicity of organic aerosol particles. Values of κ correlate positively (R = 0.89) with the fraction of m/z 44 ion signal quantified using a mass spectrometric technique, demonstrating the importance of highly oxygenated organic compounds to the water uptake by Indonesian BB particles. These results provide an experimentally validated reference for hygroscopicity of organics-dominated particles, thus contributing to more accurate estimation of environmental and climatic impacts driven by Indonesian BB particles on both regional and global scales.

  6. Process for the production of furfural from pentoses and/or water soluble pentosans

    NARCIS (Netherlands)

    De Jong, W.; Marcotullio, G.

    2012-01-01

    The invention is directed to a process for the production of furfural from pentoses and/or water soluble pentosans, said process comprising converting the said pentoses and/or water soluble pentosans in aqueous solution in a first step to furfural and in a second step feeding the aqueous solution

  7. Analyzing water soluble soil organics as Trifluoroacetyl derivatives by liquid state proton nuclear magnetic resonance

    Science.gov (United States)

    Felipe Garza Sanchez; Zakiya Holmes Leggett; Sabapathy Sankar

    2005-01-01

    In forested ecosystems, water soluble organics play an important role in soil processes including carbon and nutrient turnover, microbial activity and pedogenesis. The quantity and quality (i.e., chemistry) of these materials is sensitive to land management practices. Monitoring alterations in the chemistry of water soluble organics resulting from land management...

  8. PEGylated Self-Assembled Nano-Bacitracin A: Probing the Antibacterial Mechanism and Real-Time Tracing of Target Delivery in Vivo.

    Science.gov (United States)

    Hong, Wei; Zhao, Yining; Guo, Yuru; Huang, Chengcheng; Qiu, Peng; Zhu, Jia; Chu, Chun; Shi, Hong; Liu, Mingchun

    2018-04-04

    Although nano-self-assemblies of hydrophobic-modified bacitracin A with poly(d,l-lactic- co-glycolic acid) (PLGA) (nano-BA PLGA ) have demonstrated promising antibacterial activities, the application of nano-BA PLGA was severely compromised by low water solubility. In this study, a series of PEGylated PLGA copolymers were selected to conjugate with the N-terminus of bacitracin A to construct PEGylated self-assembled nano-BAs and to further develop nano-self-assemblies of bacitracin A with strong antibacterial potency and high solubility. Compared with nano-BA PLGA , all PEGylated nano-BAs, except nano-BA 5k , exhibited strong antibacterial efficiency against both Gram-positive and Gram-negative bacteria by inducing loss of cytoplasmic membrane potential, membrane permeabilization, and leakage of calcein from artificial cell membranes. Studies elucidating the underlying mechanism of PEGylated nano-BAs against Gram-negative bacteria indicated that the strong hydrophobic and van der Waals interactions between PLGA and lipopolysaccharide (LPS) could bind, neutralize, and disassociate LPS, facilitating cellular uptake of the nanoparticles, which could destabilize the membrane, resulting in cell death. Moreover, PEGylated nano-BAs (nano-BA 12k ) with a longer PLGA block were expected to occupy a higher local density of BA mass on the surface and result in stronger hydrophobic and van der Waals interactions with LPS, which were responsible for the enhanced antibacterial activity against Gram-positive and emerging antibacterial activity against Gram-negative bacteria, respectively. In vivo imaging verified that PEGylated nano-BAs exhibited higher inflammatory tissue distribution and longer circulation time than nano-BA PLGA . Therefore, although PEGylation did not affect antibacterial activity, it is necessary for target delivery and resistance to clearance of the observed PEGylated nano-BAs. In vivo, nano-BA 12k also showed the highest therapeutic index against infection

  9. Self-Assembly of Facial Oligothiophene Amphiphiles

    NARCIS (Netherlands)

    Janeliunas, D.

    2014-01-01

    Organized ?-conjugated oligothiophene structures in water are highly promising building blocks to create a vast variety of smart and functional electronic systems. Such materials already found application in biological and chemical sensors, organic light-emitting diodes and photovoltaic devices. The

  10. Self-assembly from milli- to nanoscales: methods and applications

    International Nuclear Information System (INIS)

    Mastrangeli, M; Celis, J-P; Abbasi, S; Varel, C; Böhringer, K F; Van Hoof, C

    2009-01-01

    The design and fabrication techniques for microelectromechanical systems (MEMS) and nanodevices are progressing rapidly. However, due to material and process flow incompatibilities in the fabrication of sensors, actuators and electronic circuitry, a final packaging step is often necessary to integrate all components of a heterogeneous microsystem on a common substrate. Robotic pick-and-place, although accurate and reliable at larger scales, is a serial process that downscales unfavorably due to stiction problems, fragility and sheer number of components. Self-assembly, on the other hand, is parallel and can be used for device sizes ranging from millimeters to nanometers. In this review, the state-of-the-art in methods and applications for self-assembly is reviewed. Methods for assembling three-dimensional (3D) MEMS structures out of two-dimensional (2D) ones are described. The use of capillary forces for folding 2D plates into 3D structures, as well as assembling parts onto a common substrate or aggregating parts to each other into 2D or 3D structures, is discussed. Shape matching and guided assembly by magnetic forces and electric fields are also reviewed. Finally, colloidal self-assembly and DNA-based self-assembly, mainly used at the nanoscale, are surveyed, and aspects of theoretical modeling of stochastic assembly processes are discussed. (topical review)

  11. Tuning of metal work functions with self-assembled monolayers

    NARCIS (Netherlands)

    de Boer, B; Hadipour, A; Mandoc, MM; van Woudenbergh, T; Blom, PWM

    2005-01-01

    Work functions of gold and silver are varied by over 1.4 and 1.7 eV, respectively, by using self-assembled monolayers. Using these modified electrodes, the hole current in a poly(2-methoxy-5-(2'-ethylhexyloxy)- 1,4-phenylene vinylene) light-emitting diode is tuned by more than six orders of

  12. Applications of self-assembled monolayers in materials chemistry

    Indian Academy of Sciences (India)

    Unknown

    Physical and Materials Chemistry Division, National Chemical Laboratory,. Pune 411 008, India e-mail: viji@ems.ncl.res.in. Abstract. Self-assembly provides a simple route to organise suitable organic molecules on noble metal and selected nanocluster surfaces by using monolayers of long chain organic molecules with ...

  13. Synthesis, characterization and self-assembly with gold nanoparticles

    Indian Academy of Sciences (India)

    Administrator

    characterization and self-assembly with gold nanoparticles. JUN-BO LI. 1, ... gold surface lead to the enhancement of device prop- erties. 36,37 ... Reactions were monitored by thin-layer ..... plasmon (SP) absorption band (figure 5) of TOAB-.

  14. Complex Colloidal Structures by Self-assembly in Electric Fields

    NARCIS (Netherlands)

    Vutukuri, H.R.

    2012-01-01

    The central theme of this thesis is exploiting the directed self-assembly of both isotropic and anisotropic colloidal particles to achieve the fabrication of one-, two-, and three-dimensional complex colloidal structures using external electric fields and/or a simple in situ thermal annealing

  15. Self-assembled domain structures: From micro- to nanoscale

    Directory of Open Access Journals (Sweden)

    Vladimir Shur

    2015-06-01

    Full Text Available The recent achievements in studying the self-assembled evolution of micro- and nanoscale domain structures in uniaxial single crystalline ferroelectrics lithium niobate and lithium tantalate have been reviewed. The results obtained by visualization of static domain patterns and kinetics of the domain structure by different methods from common optical microscopy to more sophisticated scanning probe microscopy, scanning electron microscopy and confocal Raman microscopy, have been discussed. The kinetic approach based on various nucleation processes similar to the first-order phase transition was used for explanation of the domain structure evolution scenarios. The main mechanisms of self-assembling for nonequilibrium switching conditions caused by screening ineffectiveness including correlated nucleation, domain growth anisotropy, and domain–domain interaction have been considered. The formation of variety of self-assembled domain patterns such as fractal-type, finger and web structures, broad domain boundaries, and dendrites have been revealed at each of all five stages of domain structure evolution during polarization reversal. The possible applications of self-assembling for micro- and nanodomain engineering were reviewed briefly. The review covers mostly the results published by our research group.

  16. Characterization of self-assembled monolayers on a ruthenium surface

    NARCIS (Netherlands)

    Shaheen, Amrozia; Sturm, Jacobus Marinus; Ricciardi, R.; Huskens, Jurriaan; Lee, Christopher James; Bijkerk, Frederik

    2017-01-01

    We have modified and stabilized the ruthenium surface by depositing a self-assembled monolayer (SAM) of 1-hexadecanethiol on a polycrystalline ruthenium thin film. The growth mechanism, dynamics, and stability of these monolayers were studied. SAMs, deposited under ambient conditions, on

  17. Self-assembled fluorescent organic nanoparticles for live cell imaging

    NARCIS (Netherlands)

    Fischer, I.; Petkau, K.; Dorland, Y.L.; Schenning, A.P.H.J.; Brunsveld, L.

    2013-01-01

    Fluorescent, cell-permeable, organic nanoparticles based on self-assembled p-conjugated oligomers with high absorption cross-sections and high quantum yields have been developed. The nanoparticles are generated with a tuneable density of amino groups for charge-mediated cellular uptake by a

  18. Encapsulation of gold nanoparticles into self-assembling protein nanoparticles

    OpenAIRE

    Yang Yongkun; Burkhard Peter

    2012-01-01

    Abstract Background Gold nanoparticles are useful tools for biological applications due to their attractive physical and chemical properties. Their applications can be further expanded when they are functionalized with biological molecules. The biological molecules not only provide the interfaces for interactions between nanoparticles and biological environment, but also contribute their biological functions to the nanoparticles. Therefore, we used self-assembling protein nanoparticles (SAPNs...

  19. Self-assembly of concentric quantum double rings.

    Science.gov (United States)

    Mano, Takaaki; Kuroda, Takashi; Sanguinetti, Stefano; Ochiai, Tetsuyuki; Tateno, Takahiro; Kim, Jongsu; Noda, Takeshi; Kawabe, Mitsuo; Sakoda, Kazuaki; Kido, Giyuu; Koguchi, Nobuyuki

    2005-03-01

    We demonstrate the self-assembled formation of concentric quantum double rings with high uniformity and excellent rotational symmetry using the droplet epitaxy technique. Varying the growth process conditions can control each ring's size. Photoluminescence spectra emitted from an individual quantum ring complex show peculiar quantized levels that are specified by the carriers' orbital trajectories.

  20. Oscillatory persistent currents in self-assembled quantum rings

    NARCIS (Netherlands)

    Kleemans, N.A.J.M.; Bominaar-Silkens, I.M.A.; Fomin, V.; Gladilin, V.N.; Granados, D.; Taboada, A.G.; Garcia, J.M.; Offermans, P.; Zeitler, U.; Christianen, P.C.M.; Maan, J.C.; Devreese, J.T.; Koenraad, P.M.

    2007-01-01

    We report the direct measurement of the persistent current carried by a single electron by means of magnetization experiments on self-assembled InAs/GaAs quantum rings. We measured the first Aharonov-Bohm oscillation at a field of 14 T, in perfect agreement with our model based on the structural

  1. Long lived coherence in self-assembled quantum dots

    DEFF Research Database (Denmark)

    Birkedal, Dan; Leosson, Kristjan; Hvam, Jørn Märcher

    2001-01-01

    We report measurements of ultralong coherence in self-assembled quantum dots. Transient four-wave mixing experiments at 5 K show an average dephasing time of 372 ps, corresponding to a homogeneous linewidth of 3.5 mu eV, which is significantly smaller than the linewidth observed in single...

  2. Multiphonon capture processes in self-assembled quantum dots

    DEFF Research Database (Denmark)

    Magnúsdóttir, Ingibjörg; Uskov, A.; Bischoff, Svend

    2001-01-01

    We investigate capture of carriers from states in the continuous part of the energy spectrum into the discrete states of self-assembled InAs/GaAs QDs via emission of one or two phonons. We are not aware of any other investigations of two-phonon mediated capture processes in QDs, but we show...

  3. Coherence and dephasing in self-assembled quantum dots

    DEFF Research Database (Denmark)

    Hvam, Jørn Märcher; Leosson, K.; Birkedal, Dan

    2003-01-01

    We measured dephasing times in InGaAl/As self-assembled quantum dots at low temperature using degenerate four-wave mixing. At 0K, the coherence time of the quantum dots is lifetime limited, whereas at finite temperatures pure dephasing by exciton-phonon interactions governs the quantum dot...

  4. Extending the self-assembly of coiled-coil hybrids

    NARCIS (Netherlands)

    Robson Marsden, Hana

    2009-01-01

    Of the various biomolecular building blocks in use in nature, coiled-coil forming peptides are amongst those with the most potential as building blocks for the synthetic self-assembly of nanostructures. Native coiled coils have the ability to function in, and influence, complex systems composed of

  5. Electrostatic Self-Assembly of Polysaccharides into Nanofibers

    DEFF Research Database (Denmark)

    Mendes, Ana Carina Loureiro; Strohmenger, Timm; Goycoolea, Francisco

    2017-01-01

    In this study, the anionic polysaccharide Xanthan gum (X) was mixed with positively charged Chitosan oligomers (ChO), and used as building blocks, to generate novel nanofibers by electrostatic self-assembly in aqueous conditions. Different concentrations, ionic strength and order of mixing of both...

  6. Self-assembly of hydrofluorinated Janus graphene monolayer

    DEFF Research Database (Denmark)

    Jin, Yakang; Xue, Qingzhong; Zhu, Lei

    2016-01-01

    With remarkably interesting surface activities, two-dimensional Janus materials arouse intensive interests recently in many fields. We demonstrate by molecular dynamic simulations that hydrofluorinated Janus graphene (J-GN) can self-assemble into Janus nanoscroll (J-NS) at room temperature. The van...

  7. Nanoporous Network Channels from Self-Assembled Triblock Copolymer Supramolecules

    NARCIS (Netherlands)

    du Sart, Gerrit Gobius; Vukovic, Ivana; Vukovic, Zorica; Polushkin, Evgeny; Hiekkataipale, Panu; Ruokolainen, Janne; Loos, Katja; ten Brinke, Gerrit

    2011-01-01

    Supramolecular complexes of a poly(tert-butoxystyrene)-block-polystyrene-block-poly(4-vinylpyridine) triblock copolymers and less than stoichiometric amounts of pentadecylphenol (PDP) are shown to self-assemble into a core-shell gyroid morphology with the core channels formed by the hydrogen-bonded

  8. Self-assembling bilayers of palladiumthiolates in organic media

    Indian Academy of Sciences (India)

    Unknown

    applications in catalytic systems, solubalizing agents and drug delivery matrices. Following the pioneering efforts of ... In this context, self-assembly of amphipiles in nonpolar organic media assumes significance 8 since .... structures in clear contrast to lamellar phases formed by the higher members. We sought to image the ...

  9. Self-assembling electroactive hydrogels for flexible display technology

    Energy Technology Data Exchange (ETDEWEB)

    Jones, Scott L; Wong, Kok Hou; Ladouceur, Francois [School of Electrical Engineering and Telecommunications, University of NSW, Sydney, NSW, 2052 (Australia); Thordarson, Pall, E-mail: f.ladouceur@unsw.edu.a [School of Chemistry, University of NSW, Sydney, NSW, 2052 (Australia)

    2010-12-15

    We have assessed the potential of self-assembling hydrogels for use in conformal displays. The self-assembling process can be used to alter the transparency of the material to all visible light due to scattering by fibres. The reversible transition is shown to be of low energy by differential scanning calorimetry. For use in technology it is imperative that this transition is controlled electrically. We have thus synthesized novel self-assembling hydrogelator molecules which contain an electroactive group. The well-known redox couple of anthraquinone/anthrahydroquinone has been used as the hydrophobic component for a series of small molecule gelators. They are further functionalized with peptide combinations of L-phenylalanine and glycine to provide the hydrophilic group to complete 'head-tail' models of self-assembling gels. The gelation and electroactive characteristics of the series were assessed. Cyclic voltammetry shows the reversible redox cycle to be only superficially altered by functionalization. Additionally, spectroelectrochemical measurements show a reversible transparency and colour change induced by the redox process.

  10. Self-assembled monolayers on metal oxides : applications in nanotechnology

    NARCIS (Netherlands)

    Yildirim, O.

    2010-01-01

    The thesis describes the use of phosph(on)ate-based self-assembled monolayers (SAMs) to modify and pattern metal oxides. Metal oxides have interesting electronic and magnetic properties such as insulating, semiconducting, metallic, ferromagnetic etc. and SAMs can tailor the surface properties. FePt

  11. Self-assembling electroactive hydrogels for flexible display technology

    International Nuclear Information System (INIS)

    Jones, Scott L; Wong, Kok Hou; Ladouceur, Francois; Thordarson, Pall

    2010-01-01

    We have assessed the potential of self-assembling hydrogels for use in conformal displays. The self-assembling process can be used to alter the transparency of the material to all visible light due to scattering by fibres. The reversible transition is shown to be of low energy by differential scanning calorimetry. For use in technology it is imperative that this transition is controlled electrically. We have thus synthesized novel self-assembling hydrogelator molecules which contain an electroactive group. The well-known redox couple of anthraquinone/anthrahydroquinone has been used as the hydrophobic component for a series of small molecule gelators. They are further functionalized with peptide combinations of L-phenylalanine and glycine to provide the hydrophilic group to complete 'head-tail' models of self-assembling gels. The gelation and electroactive characteristics of the series were assessed. Cyclic voltammetry shows the reversible redox cycle to be only superficially altered by functionalization. Additionally, spectroelectrochemical measurements show a reversible transparency and colour change induced by the redox process.

  12. Calorimetric measurements on slightly soluble gases in water

    International Nuclear Information System (INIS)

    Olofsson, G.; Oshodj, A.A.; Qvarnstroem, E.; Wadsoe, I.

    1984-01-01

    Calorimetric measurements have been made of enthalpies of solution Δsub(sol)Hsub(m)sup(infinity) in water of helium, neon, argon, krypton, xenon, methane, ethane, propane, n-butane, and oxygen at 288.15, 298.15, and 308.15 K. Values of the heat-capacity changes Δsub(sol)Csub(p,m)sup(infinity) have been derived. The found values for both the enthalpy and heat-capacity changes for the rare gases and for oxygen fully confirm the values derived by Benson and Krause, Jr. (1976), and Benson, Krause, Jr., and Peterson (1979) from the results of their very careful gas-solubility measurements. The partial molar heat capacities Csub(p,2)sup(infinity) of the hydrocarbons studied were derived. The group-additivity schemes that have been used successfully for the estimation of values for Csub(p,2)sup(infinity) for various non-ionic organic compounds do not correctly predict values of Csub(p,2)sup(infinity) for the hydrocarbons in the present study. (author)

  13. Water Soluble Polymers as Proton Exchange Membranes for Fuel Cells

    Directory of Open Access Journals (Sweden)

    Bing-Joe Hwang

    2012-03-01

    Full Text Available The relentless increase in the demand for useable power from energy-hungry economies continues to drive energy-material related research. Fuel cells, as a future potential power source that provide clean-at-the-point-of-use power offer many advantages such as high efficiency, high energy density, quiet operation, and environmental friendliness. Critical to the operation of the fuel cell is the proton exchange membrane (polymer electrolyte membrane responsible for internal proton transport from the anode to the cathode. PEMs have the following requirements: high protonic conductivity, low electronic conductivity, impermeability to fuel gas or liquid, good mechanical toughness in both the dry and hydrated states, and high oxidative and hydrolytic stability in the actual fuel cell environment. Water soluble polymers represent an immensely diverse class of polymers. In this comprehensive review the initial focus is on those members of this group that have attracted publication interest, principally: chitosan, poly (ethylene glycol, poly (vinyl alcohol, poly (vinylpyrrolidone, poly (2-acrylamido-2-methyl-1-propanesulfonic acid and poly (styrene sulfonic acid. The paper then considers in detail the relationship of structure to functionality in the context of polymer blends and polymer based networks together with the effects of membrane crosslinking on IPN and semi IPN architectures. This is followed by a review of pore-filling and other impregnation approaches. Throughout the paper detailed numerical results are given for comparison to today’s state-of-the-art Nafion® based materials.

  14. Aerobic Biodegradation Characteristic of Different Water-Soluble Azo Dyes

    Directory of Open Access Journals (Sweden)

    Shixiong Sheng

    2017-12-01

    Full Text Available This study investigated the biodegradation performance and characteristics of Sudan I and Acid Orange 7 (AO7 to improve the biological dye removal efficiency in wastewater and optimize the treatment process. The dyes with different water-solubility and similar molecular structure were biologically treated under aerobic condition in parallel continuous-flow mixed stirred reactors. The biophase analysis using microscopic examination suggested that the removal process of the two azo dyes is different. Removal of Sudan I was through biosorption, since it easily assembled and adsorbed on the surface of zoogloea due to its insolubility, while AO7 was biodegraded incompletely and bioconverted, the AO7 molecule was decomposed to benzene series and inorganic ions, since it could reach the interior area of zoogloea due to the low oxidation-reduction potential conditions and corresponding anaerobic microorganisms. The transformation of NH3-N, SO42− together with the presence of tryptophan-like components confirm that AO7 can be decomposed to non-toxic products in an aerobic bioreactor. This study provides a theoretical basis for the use of biosorption or biodegradation mechanisms for the treatment of different azo dyes in wastewater.

  15. Enhancement of carvedilol solubility by solid dispersion technique using cyclodextrins, water soluble polymers and hydroxyl acid.

    Science.gov (United States)

    Yuvaraja, K; Khanam, Jasmina

    2014-08-05

    Aim of the present work is to enhance aqueous solubility of carvedilol (CV) by solid dispersion technique using wide variety of carriers such as: β-cyclodextrin (βCD), hydroxypropyl-β-cyclodextrin (HPβCD), tartaric acid (TA), polyvinyl pyrrolidone K-30 (PVP K-30) and poloxamer-407 (PLX-407). Various products of 'CV-solid dispersion' had been studied extensively in various pH conditions to check enhancement of solubility and dissolution characteristics of carvedilol. Any physical change upon interaction between CV and carriers was confirmed by instrumental analysis: XRD, DSC, FTIR and SEM. Negative change of Gibb's free energy and complexation constants (Kc, 75-240M(-1), for cyclodextrins and 1111-20,365M(-1), for PVP K-30 and PLX-407) were the evidence of stable nature of the binding between CV and carriers. 'Solubility enhancement factor' of ionized-CV was found high enough (340 times) with HPβCD in presence of TA. TA increases the binding efficiency of cyclodextrin and changing the pH of microenvironment in dissolution medium. In addition, ionization process was used to increase the apparent intrinsic solubility of drug. In vitro, dissolution time of CV was remarkably reduced in the solid dispersion system compared to that of pure drug. This may be attributed to increased wettability, dispersing ability and transformation of crystalline state of drug to amorphous one. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Overview of milling techniques for improving the solubility of poorly water-soluble drugs

    Directory of Open Access Journals (Sweden)

    Zhi Hui Loh

    2015-07-01

    Full Text Available Milling involves the application of mechanical energy to physically break down coarse particles to finer ones and is regarded as a “top–down” approach in the production of fine particles. Fine drug particulates are especially desired in formulations designed for parenteral, respiratory and transdermal use. Most drugs after crystallization may have to be comminuted and this physical transformation is required to various extents, often to enhance processability or solubility especially for drugs with limited aqueous solubility. The mechanisms by which milling enhances drug dissolution and solubility include alterations in the size, specific surface area and shape of the drug particles as well as milling-induced amorphization and/or structural disordering of the drug crystal (mechanochemical activation. Technology advancements in milling now enable the production of drug micro- and nano-particles on a commercial scale with relative ease. This review will provide a background on milling followed by the introduction of common milling techniques employed for the micronization and nanonization of drugs. Salient information contained in the cited examples are further extracted and summarized for ease of reference by researchers keen on employing these techniques for drug solubility and bioavailability enhancement.

  17. Study on spraying water soluble resin to reduce pollution for Fukushima daiichi NPP accident

    International Nuclear Information System (INIS)

    Zhang Qiong; Guo Ruiping; Zhang Chunming; Han Fujuan; Hua Jie; Zhang Jiankui

    2012-01-01

    After Fukushima nuclear accident, Tokyo electric power company used the method of spraying water soluble resin synthesis at the scene of the accident, to restrain and control the spread of the radioactive dust, by forming consolidation layer in pollution area surface. This paper briefly introduced the accident, motivation of spraying water soluble resin, spraying range and implementation process. According to the relevant report on Fukushima nuclear accident, the effect of spraying water soluble resin for reducing pollution was analyzed. The mechanism of reducing pollution for water soluble resin and the application prospect were discussed. Spraying water soluble resin for fixing radioactive dust has reasonable reducing pollution effect. It is worth to use as reference and study in China. (authors)

  18. Predicting water solubility of congeners: Chloronaphthalenes-A case study

    Energy Technology Data Exchange (ETDEWEB)

    Puzyn, Tomasz, E-mail: puzi@qsar.eu.org [Faculty of Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Mostrag, Aleksandra; Falandysz, Jerzy [Faculty of Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Kholod, Yana; Leszczynski, Jerzy [NSF CREST Nanotoxicity Center, Department of Chemistry, Jackson State University, 1325 Lynch St, Jackson, MS 39217-0510 (United States)

    2009-10-30

    Since the important physicochemical data for chloronaphtalenes (PCNs) are still scarce, we have predicted water solubility (log S) of all 75 congeners with the Quantitative Structure-Property Relationship (QSPR) scheme. The values of log S, predicted by the most efficient model, varied from 0.01 to 1660 {mu}g dm{sup -3} (2.85 x 10{sup -11}-1.02 x 10{sup -5} mol dm{sup -3}), depending on the number of chlorine atoms present in the molecule and the substitution pattern. We found that the main factor determining relative differences in solubility between the congeners is the solvent accessible volume related to the cavitation process occurring in the solvent. The results are presented as a case study of QSPR modeling for those Persistent Organic Pollutants (POPs) that exist as families of congeners. By investigating the impact of (i) the way of the molecular descriptors' calculation, (ii) the size of applied database and (iii) chemometric method of modeling (Multiple Linear Regression, MLR, and/or Partial Least Squares regression, PLS) on the quality of the models we proposed general recommendations for dealing with congeners. We found that the combination of the B3LYP functional with 6-311++G(d,p) basis set was the most optimal technique of the molecular descriptors' calculation for congeners when comparing with semi-empirical PM3, ab initio Hartee-Fock (HF), and Moller-Pleset 2 (MP2) method carried out with different-size basis sets. Moreover, the model developed with a larger and more general database that includes chloronaphthalenes, polychlorinated dibezno-p-dioxins, furans and biphenyls predicted the values of log S for PCNs noticeable worse than the model calibrated only on PCNs. In the later case it was possible to obtain satisfactory results by employing even the simplest MLR method and only one molecular descriptor. The values of log S were also calculated with the WSKOWIN and COSMO-RS models as the reference techniques and then compared to our

  19. Predicting water solubility of congeners: Chloronaphthalenes-A case study

    International Nuclear Information System (INIS)

    Puzyn, Tomasz; Mostrag, Aleksandra; Falandysz, Jerzy; Kholod, Yana; Leszczynski, Jerzy

    2009-01-01

    Since the important physicochemical data for chloronaphtalenes (PCNs) are still scarce, we have predicted water solubility (log S) of all 75 congeners with the Quantitative Structure-Property Relationship (QSPR) scheme. The values of log S, predicted by the most efficient model, varied from 0.01 to 1660 μg dm -3 (2.85 x 10 -11 -1.02 x 10 -5 mol dm -3 ), depending on the number of chlorine atoms present in the molecule and the substitution pattern. We found that the main factor determining relative differences in solubility between the congeners is the solvent accessible volume related to the cavitation process occurring in the solvent. The results are presented as a case study of QSPR modeling for those Persistent Organic Pollutants (POPs) that exist as families of congeners. By investigating the impact of (i) the way of the molecular descriptors' calculation, (ii) the size of applied database and (iii) chemometric method of modeling (Multiple Linear Regression, MLR, and/or Partial Least Squares regression, PLS) on the quality of the models we proposed general recommendations for dealing with congeners. We found that the combination of the B3LYP functional with 6-311++G(d,p) basis set was the most optimal technique of the molecular descriptors' calculation for congeners when comparing with semi-empirical PM3, ab initio Hartee-Fock (HF), and Moller-Pleset 2 (MP2) method carried out with different-size basis sets. Moreover, the model developed with a larger and more general database that includes chloronaphthalenes, polychlorinated dibezno-p-dioxins, furans and biphenyls predicted the values of log S for PCNs noticeable worse than the model calibrated only on PCNs. In the later case it was possible to obtain satisfactory results by employing even the simplest MLR method and only one molecular descriptor. The values of log S were also calculated with the WSKOWIN and COSMO-RS models as the reference techniques and then compared to our results.

  20. Self-assembling peptide hydrogels immobilized on silicon surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Franchi, Stefano; Battocchio, Chiara; Galluzzi, Martina; Navisse, Emanuele [Department of Sciences, University “Roma Tre”, Via della Vasca Navale 79, Roma, 00146 (Italy); Zamuner, Annj; Dettin, Monica [Department of Industrial Engineering, University of Padua, Via Marzolo, 9, Padua, 35131 (Italy); Iucci, Giovanna, E-mail: giovanna.iucci@uniroma3.it [Department of Sciences, University “Roma Tre”, Via della Vasca Navale 79, Roma, 00146 (Italy)

    2016-12-01

    The hydrogels of self-assembling ionic complementary peptides have collected in the scientific community increasing consensus as mimetics of the extracellular matrix that can offer 3D supports for cell growth or be vehicles for the delivery of stem cells or drugs. Such scaffolds have also been proposed as bone substitutes for small defects as they promote beneficial effects on human osteoblasts. In this context, our research deals with the introduction of a layer of self-assembling peptides on a silicon surface by covalent anchoring and subsequent physisorption. In this work, we present a spectroscopic investigation of the proposed bioactive scaffolds, carried out by surface-sensitive spectroscopic techniques such as XPS (X-ray photoelectron spectroscopy) and RAIRS (Reflection Absorption Infrared Spectroscopy) and by state-of-the-art synchrotron radiation methodologies such as angle dependent NEXAFS (Near Edge X-ray Absorption Fine Structure). XPS studies confirmed the change in the surface composition in agreement with the proposed enrichments, and led to assess the self-assembling peptide chemical stability. NEXAFS spectra, collected in angular dependent mode at the N K-edge, allowed to investigate the self-assembling behavior of the macromolecules, as well as to determine their molecular orientation on the substrate. Furthermore, Infrared Spectroscopy measurements demonstrated that the peptide maintains its secondary structure (β-sheet anti-parallel) after deposition on the silicon surface. The complementary information acquired by means of XPS, NEXAFS and RAIRS lead to hypothesize a “layer-by-layer” arrangement of the immobilized peptides, giving rise to an ordered 3D nanostructure. - Highlights: • A self-assembling peptide (SAP) was covalently immobilized of on a flat silicon surface. • A physisorbed SAP layer was grown on top of the covalently immobilized peptide layer. • Molecular order and orientation of the peptide overlayer on the flat silicon

  1. Self-assembling peptide hydrogels immobilized on silicon surfaces

    International Nuclear Information System (INIS)

    Franchi, Stefano; Battocchio, Chiara; Galluzzi, Martina; Navisse, Emanuele; Zamuner, Annj; Dettin, Monica; Iucci, Giovanna

    2016-01-01

    The hydrogels of self-assembling ionic complementary peptides have collected in the scientific community increasing consensus as mimetics of the extracellular matrix that can offer 3D supports for cell growth or be vehicles for the delivery of stem cells or drugs. Such scaffolds have also been proposed as bone substitutes for small defects as they promote beneficial effects on human osteoblasts. In this context, our research deals with the introduction of a layer of self-assembling peptides on a silicon surface by covalent anchoring and subsequent physisorption. In this work, we present a spectroscopic investigation of the proposed bioactive scaffolds, carried out by surface-sensitive spectroscopic techniques such as XPS (X-ray photoelectron spectroscopy) and RAIRS (Reflection Absorption Infrared Spectroscopy) and by state-of-the-art synchrotron radiation methodologies such as angle dependent NEXAFS (Near Edge X-ray Absorption Fine Structure). XPS studies confirmed the change in the surface composition in agreement with the proposed enrichments, and led to assess the self-assembling peptide chemical stability. NEXAFS spectra, collected in angular dependent mode at the N K-edge, allowed to investigate the self-assembling behavior of the macromolecules, as well as to determine their molecular orientation on the substrate. Furthermore, Infrared Spectroscopy measurements demonstrated that the peptide maintains its secondary structure (β-sheet anti-parallel) after deposition on the silicon surface. The complementary information acquired by means of XPS, NEXAFS and RAIRS lead to hypothesize a “layer-by-layer” arrangement of the immobilized peptides, giving rise to an ordered 3D nanostructure. - Highlights: • A self-assembling peptide (SAP) was covalently immobilized of on a flat silicon surface. • A physisorbed SAP layer was grown on top of the covalently immobilized peptide layer. • Molecular order and orientation of the peptide overlayer on the flat silicon

  2. Building polyhedra by self-assembly: theory and experiment.

    Science.gov (United States)

    Kaplan, Ryan; Klobušický, Joseph; Pandey, Shivendra; Gracias, David H; Menon, Govind

    2014-01-01

    We investigate the utility of a mathematical framework based on discrete geometry to model biological and synthetic self-assembly. Our primary biological example is the self-assembly of icosahedral viruses; our synthetic example is surface-tension-driven self-folding polyhedra. In both instances, the process of self-assembly is modeled by decomposing the polyhedron into a set of partially formed intermediate states. The set of all intermediates is called the configuration space, pathways of assembly are modeled as paths in the configuration space, and the kinetics and yield of assembly are modeled by rate equations, Markov chains, or cost functions on the configuration space. We review an interesting interplay between biological function and mathematical structure in viruses in light of this framework. We discuss in particular: (i) tiling theory as a coarse-grained description of all-atom models; (ii) the building game-a growth model for the formation of polyhedra; and (iii) the application of these models to the self-assembly of the bacteriophage MS2. We then use a similar framework to model self-folding polyhedra. We use a discrete folding algorithm to compute a configuration space that idealizes surface-tension-driven self-folding and analyze pathways of assembly and dominant intermediates. These computations are then compared with experimental observations of a self-folding dodecahedron with side 300 μm. In both models, despite a combinatorial explosion in the size of the configuration space, a few pathways and intermediates dominate self-assembly. For self-folding polyhedra, the dominant intermediates have fewer degrees of freedom than comparable intermediates, and are thus more rigid. The concentration of assembly pathways on a few intermediates with distinguished geometric properties is biologically and physically important, and suggests deeper mathematical structure.

  3. Image Charge Effects in the Wetting Behavior of Alkanes on Water with Accounting for Water Solubility

    Directory of Open Access Journals (Sweden)

    Kirill A. Emelyanenko

    2016-03-01

    Full Text Available Different types of surface forces, acting in the films of pentane, hexane, and heptane on water are discussed. It is shown that an important contribution to the surface forces originates from the solubility of water in alkanes. The equations for the distribution of electric potential inside the film are derived within the Debye-Hückel approximation, taking into account the polarization of the film boundaries by discrete charges at water-alkane interface and by the dipoles of water molecules dissolved in the film. On the basis of above equations we estimate the image charge contribution to the surface forces, excess free energy, isotherms of water adsorption in alkane film, and the total isotherms of disjoining pressure in alkane film. The results indicate the essential influence of water/alkane interface charging on the disjoining pressure in alkane films, and the wettability of water surface by different alkanes is discussed.

  4. Water uptake by fresh Indonesian peat burning particles is limited by water-soluble organic matter

    Directory of Open Access Journals (Sweden)

    J. Chen

    2017-09-01

    Full Text Available The relationship between hygroscopic properties and chemical characteristics of Indonesian biomass burning (BB particles, which are dominantly generated from peatland fires, was investigated using a humidified tandem differential mobility analyzer. In addition to peat, acacia (a popular species at plantation and fern (a pioneering species after disturbance by fire were used for experiments. Fresh Indonesian peat burning particles are almost non-hygroscopic (mean hygroscopicity parameter, κ < 0.06 due to predominant contribution of water-insoluble organics. The range of κ spans from 0.02 to 0.04 (dry diameter = 100 nm, hereinafter for Riau peat burning particles, while that for Central Kalimantan ranges from 0.05 to 0.06. Fern combustion particles are more hygroscopic (κ = 0. 08, whereas the acacia burning particles have a mediate κ value (0.04. These results suggest that κ is significantly dependent on biomass types. This variance in κ is partially determined by fractions of water-soluble organic carbon (WSOC, as demonstrated by a correlation analysis (R = 0.65. κ of water-soluble organic matter is also quantified, incorporating the 1-octanol–water partitioning method. κ values for the water extracts are high, especially for peat burning particles (A0 (a whole part of the water-soluble fraction: κ = 0.18, A1 (highly water-soluble fraction: κ = 0.30. This result stresses the importance of both the WSOC fraction and κ of the water-soluble fraction in determining the hygroscopicity of organic aerosol particles. Values of κ correlate positively (R = 0.89 with the fraction of m∕z 44 ion signal quantified using a mass spectrometric technique, demonstrating the importance of highly oxygenated organic compounds to the water uptake by Indonesian BB particles. These results provide an experimentally validated reference for hygroscopicity of organics-dominated particles, thus contributing to more accurate

  5. Dual Activity of Hydroxypropyl-β-Cyclodextrin and Water-Soluble Carriers on the Solubility of Carvedilol.

    Science.gov (United States)

    Zoghbi, Abdelmoumin; Geng, Tianjiao; Wang, Bo

    2017-11-01

    Carvedilol (CAR) is a non-selective α and β blocker categorized as class II drug with low water solubility. Several recent studies have investigated ways to overcome this problem. The aim of the present study was to combine two of these methods: the inclusion complex using hydroxypropyl-β-cyclodextrin (HPβCD) with solid dispersion using two carriers: Poloxamer 188 (PLX) and Polyvinylpyrrolidone K-30 (PVP) to enhance the solubility, bioavailability, and the stability of CAR. Kneading method was used to prepare CAR-HPβCD inclusion complex (KD). The action of different carriers separately and in combination on Carvedilol solubility was investigated in three series. CAR-carrier and KD-carrier solid dispersions were prepared by solvent evaporation method. In vitro dissolution test was conducted in three different media: double-distilled water (DDW), simulative gastric fluid (SGF), and PBS pH 6.8 (PBS). The interactions between CAR, HPβCD, and different carriers were explored by Fourier transform infrared spectroscopy (FTIR), powder X-ray diffractometry (XRD), and differential scanning colorimetry (DSC). The results showed higher solubility of CAR in KD-PVP solid dispersions up to 70, 25, and 22 fold compared to pure CAR in DDW, SGF, and PBS, respectively. DSC and XRD analyses indicated an improved degree of transformation of CAR in KD-PVP solid dispersion from crystalline to amorphous state. This study provides a new successful combination of two polymers with the dual action of HPβCD and PLX/PVP on water solubility and bioavailability of CAR.

  6. Thin film formation at the air-water interface and on solid substrates of soluble axial substituted cis-bis-decanoate tin phthalocyanine

    Energy Technology Data Exchange (ETDEWEB)

    Campos-Teran, Jose, E-mail: jcampos@correo.cua.uam.mx [Departamento de Procesos y Tecnologia, DCNI, Universidad Autonoma Metropolitana-Cuajimalpa, Artificios 40-sexto piso, Col. Hidalgo, D. F., 001120 (Mexico); Garza, Cristina [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, P. O. Box 20-364, D. F., 01000 (Mexico); Beltran, Hiram I. [Departamento de Ciencias Naturales, DCNI, Universidad Autonoma Metropolitana-Cuajimalpa, Artificios 40-sexto piso, Col. Hidalgo, D. F., 001120 (Mexico); Castillo, Rolando [Instituto de Fisica, Universidad Nacional Autonoma de Mexico, P. O. Box 20-364, D. F., 01000 (Mexico)

    2012-01-01

    Herein we study thin films of a recent kind of soluble axial substituted cis-bis-decanoate-tin{sup IV} phthalocyanine (PcSn10) at the air/water interface, which were compressed isothermally and observed with Brewster Angle Microscopy. The air/water interfacial behavior of the films suggests that there are strong interactions among the PcSn10 molecules, which produces multilayers and 3D self-assemblies that prevent the formation of a Langmuir monolayer. Langmuir-Blodgett deposits of these films on both mica (negatively charged) and mild steel (positively charged) surfaces were developed. Information about the morphology of the film was obtained by using atomic force microscopy. We found structural differences in the PcSn10 thin films deposited on both substrates, suggesting that a combination of {pi}-{pi}, {sigma}-{pi} and Van der Waals interactions are the leading factors for the deposition, and consequently, for the control of supramolecular order. Our findings provide insights in the design of phthalocyanine molecules for the development of highly ordered and reproducible thin films.

  7. Thin film formation at the air–water interface and on solid substrates of soluble axial substituted cis-bis-decanoate tin phthalocyanine

    International Nuclear Information System (INIS)

    Campos-Terán, José; Garza, Cristina; Beltrán, Hiram I.; Castillo, Rolando

    2012-01-01

    Herein we study thin films of a recent kind of soluble axial substituted cis-bis-decanoate-tin IV phthalocyanine (PcSn10) at the air/water interface, which were compressed isothermally and observed with Brewster Angle Microscopy. The air/water interfacial behavior of the films suggests that there are strong interactions among the PcSn10 molecules, which produces multilayers and 3D self-assemblies that prevent the formation of a Langmuir monolayer. Langmuir–Blodgett deposits of these films on both mica (negatively charged) and mild steel (positively charged) surfaces were developed. Information about the morphology of the film was obtained by using atomic force microscopy. We found structural differences in the PcSn10 thin films deposited on both substrates, suggesting that a combination of π–π, σ–π and Van der Waals interactions are the leading factors for the deposition, and consequently, for the control of supramolecular order. Our findings provide insights in the design of phthalocyanine molecules for the development of highly ordered and reproducible thin films.

  8. Solubility of gases in water at high temperature

    International Nuclear Information System (INIS)

    Crovetto, Rosa; Fernandez Prini, R.J.; Japas, M.L.

    1981-01-01

    In the primary circuits of the PWR, it is usual to find apolar gases such as the noble gases like, nitrogen, hydrogen (deuterium) and oxygen. These gases enter into the circuit partly due to failures in the fuel elements, accidental entries of air into the system and corrosion processes and radiolisis in the coolant media. For the operation of several auxiliary systems in the primary circuit, it is important to know the solubility of these gases in the flux of the circuit and the evaluation of physicochemical processes that take place. A cell has been built that allows to carry out determinations of solubility in the range of 350 deg C and 100 Mega Pascal. Three alternative experimental techniques have been developed to determine the solubility of the gases which are compared to each other. Measures of solubility of argon in H2O and D2O have been made in a wide range of temperatures. (V.B.) [es

  9. Investigation of Self-Assembly Processes for Chitosan-Based Coagulant-Flocculant Systems: A Mini-Review

    Directory of Open Access Journals (Sweden)

    Savi Bhalkaran

    2016-09-01

    Full Text Available The presence of contaminants in wastewater poses significant challenges to water treatment processes and environmental remediation. The use of coagulation-flocculation represents a facile and efficient way of removing charged particles from water. The formation of stable colloidal flocs is necessary for floc aggregation and, hence, their subsequent removal. Aggregation occurs when these flocs form extended networks through the self-assembly of polyelectrolytes, such as the amine-based polysaccharide (chitosan, which form polymer “bridges” in a floc network. The aim of this overview is to evaluate how the self-assembly process of chitosan and its derivatives is influenced by factors related to the morphology of chitosan (flocculant and the role of the solution conditions in the flocculation properties of chitosan and its modified forms. Chitosan has been used alone or in conjunction with a salt, such as aluminum sulphate, as an aid for the removal of various waterborne contaminants. Modified chitosan relates to grafted anionic or cationic groups onto the C-6 hydroxyl group or the amine group at C-2 on the glucosamine monomer of chitosan. By varying the parameters, such as molecular weight and the degree of deacetylation of chitosan, pH, reaction and settling time, dosage and temperature, self-assembly can be further investigated. This mini-review places an emphasis on the molecular-level details of the flocculation and the self-assembly processes for the marine-based biopolymer, chitosan.

  10. Click functionalization of phenyl-capped bithiophene on azide-terminated self-assembled monolayers

    International Nuclear Information System (INIS)

    Zheng, Yijun; Cui, Jiaxi; Ikeda, Taichi

    2015-01-01

    Graphical abstract: - Highlights: • Electrochemically-active self-assembled monolayers with phenyl-capped bithiophene were prepared. • Post-functionalization method based on click chemistry solved the solubility issue of phenyl-capped thiophene alkanethiol. • The capture and release of the counter anions during the redox reaction were detectable by E-QCM. - Abstract: We immobilized tetra(ethylene glycol)-substituted phenyl-capped bithiophene with alkyne terminals (Ph2TPh-alkyne) on azide-terminated self-assembled monolayers (N 3 -SAMs) by Cu-catalyzed azide-alkyne cycloaddition reaction. Ph2TPh-functionalized SAMs on a gold substrate showed reversible electrochemical response. The surface densities of the azide groups in N 3 -SAMs and Ph2TPh units in Ph2TPh-functionalized SAMs were estimated to be 7.3 ± 0.3 × 10 −10 mol cm −2 and 4.6 ± 0.3 × 10 −10 mol cm −2 , respectively, by quartz crystal microbalance (QCM). Most of Ph2TPh-alkynes are considered to be anchored on N 3 -SAMs via both terminal groups. Ph2TPh-functionalized SAMs exhibited reversible redox peaks in cyclic voltammetry (CV). In redox reaction, reversible capture and release of the counter anion could be monitored by electrochemical QCM (E-QCM).

  11. Click functionalization of phenyl-capped bithiophene on azide-terminated self-assembled monolayers

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Yijun; Cui, Jiaxi [Max Planck Institute for Polymer Research (MPIP), Ackermannweg 10, Mainz 55128 (Germany); Ikeda, Taichi, E-mail: IKEDA.Taichi@nims.go.jp [Max Planck Institute for Polymer Research (MPIP), Ackermannweg 10, Mainz 55128 (Germany); Polymer Materials Unit, National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044 (Japan)

    2015-11-15

    Graphical abstract: - Highlights: • Electrochemically-active self-assembled monolayers with phenyl-capped bithiophene were prepared. • Post-functionalization method based on click chemistry solved the solubility issue of phenyl-capped thiophene alkanethiol. • The capture and release of the counter anions during the redox reaction were detectable by E-QCM. - Abstract: We immobilized tetra(ethylene glycol)-substituted phenyl-capped bithiophene with alkyne terminals (Ph2TPh-alkyne) on azide-terminated self-assembled monolayers (N{sub 3}-SAMs) by Cu-catalyzed azide-alkyne cycloaddition reaction. Ph2TPh-functionalized SAMs on a gold substrate showed reversible electrochemical response. The surface densities of the azide groups in N{sub 3}-SAMs and Ph2TPh units in Ph2TPh-functionalized SAMs were estimated to be 7.3 ± 0.3 × 10{sup −10} mol cm{sup −2} and 4.6 ± 0.3 × 10{sup −10} mol cm{sup −2}, respectively, by quartz crystal microbalance (QCM). Most of Ph2TPh-alkynes are considered to be anchored on N{sub 3}-SAMs via both terminal groups. Ph2TPh-functionalized SAMs exhibited reversible redox peaks in cyclic voltammetry (CV). In redox reaction, reversible capture and release of the counter anion could be monitored by electrochemical QCM (E-QCM).

  12. Molecular Design of Bioinspired Nanostructures for Biomedical Applications: Synthesis, Self-Assembly and Functional Properties

    Science.gov (United States)

    Xu, Hesheng Victor; Zheng, Xin Ting; Mok, Beverly Yin Leng; Ibrahim, Salwa Ali; Yu, Yong; Tan, Yen Nee

    2016-08-01

    Biomolecules are the nanoscale building blocks of cells, which play multifaceted roles in the critical biological processes such as biomineralization in a living organism. In these processes, the biological molecules such as protein and nucleic acids use their exclusive biorecognition properties enabled from their unique chemical composition, shape and function to initiate a cascade of cellular events. The exceptional features of these biomolecules, coupled with the recent advancement in nanotechnology, have led to the emergence of a new research field that focuses on the molecular design of bioinspired nanostructures that inherit the extraordinary function of natural biomaterials. These “bioinspired” nanostructures could be formulated by biomimetic approaches through either self-assembling of biomolecules or acting as a biomolecular template/precursor to direct the synthesis of nanocomposite. In either situation, the resulting nanomaterials exhibit phenomenal biocompatibility, superb aqueous solubility and excellent colloidal stability, branding them exceptionally desirable for both in vitro and in vivo biomedical applications. In this review, we will present the recent developments in the preparation of “bioinspired” nanostructures through biomimetic self-assembly and biotemplating synthesis, as well as highlight their functional properties and potential applications in biomedical diagnostics and therapeutic delivery. Lastly, we will conclude this topic with some personal perspective on the challenges and future outlooks of the “bioinspired” nanostructures for nanomedicine.

  13. Electrochemical detection of dopamine using water-soluble sulfonated graphene

    International Nuclear Information System (INIS)

    Li, Su-Juan; He, Jun-Zhi; Zhang, Meng-Jie; Zhang, Rong-Xia; Lv, Xia-Lei; Li, Shao-Hua; Pang, Huan

    2013-01-01

    Graphical abstract: DPV responses of dopamine (DA) at sulfonated graphene based glassy carbon electrode in the presence of ascorbic acid (AA) and uric acid (UA). The separation of the oxidation peak potentials for AA-DA, DA-UA and UA-AA was about 227 mV, 125 mV and 352 mV, which allowed selectively determining DA. -- Abstract: In the present study, a biosensor was prepared using the water-soluble sulfonated graphene with the aim of achieving the selective and sensitive determination of dopamine (DA) in the presence of ascorbic acid (AA) and uric acid (UA). The aromatic π–π stacking and electrostatic attraction between positively charged DA and negatively charged sulfonated graphene can accelerate the electron transfer whereas weakening AA and UA oxidation on the sulfonated graphene-modified electrode. Fourier transform infrared spectra (FTIR), energy dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to characterize the successful synthesis of sulfonated graphene sheets. Differential pulse voltammetry was used for electrochemical detection, the separation of the oxidation peak potentials for AA-DA, DA-UA and UA-AA was about 227 mV, 125 mV and 352 mV, which allowed selectively determining DA. A broad linear range, low detection limit, along with good ability to suppress the background current from large excess ascorbic acid (AA) and uric acid (UA) were obtained. The as-prepared sulfonated graphene sheets exhibited superior performance over conventional negatively charged Nafion films, such as flexible film thickness, unique nanostructure, excellent anti-interference ability, high sensitivity and selectivity. The proposed method was used to detect DA in real hydrochloride injection sample, human urine and serum samples with satisfactory recovery results

  14. Water soluble vitamin E (TMG) as a radioprotector.

    Science.gov (United States)

    Nair, Cherupally Krishnan K; Devi, Pathirissery Uma; Shimanskaya, R; Kunugita, N; Murase, Hironobu; Gu, Yeun-Hwa; Kagiya, Tsutomu V

    2003-12-01

    Tocopherol monoglucoside (TMG), a water soluble derivative of vitamin E offers protection against deleterious effects of ionizing radiation, both under in vivo and in vitro conditions, to biological systems. TMG was found to be a potent antioxidant and an effective free radical scavenger. It forms a phenoxyl radical similar to trolox upon reaction with various one-electron oxidants. TMG protected DNA from radiation-induced strand breaks. It also protected thymine glycol formation induced by gamma-radiation. Gamma-radiation-induced loss of viability of EL-tumor cells and peroxidation of lipids in microsomal and mitochondrial membranes were prevented by TMG. TMG was nontoxic to mice when administered orally up to 7.0 g/kg body weight. The LD50 dose of TMG for ip administration in mice was 1.15 g/kg body wt. In rats, following oral and ip administration of TMG, the absorption (distribution) half lives were 5.8 and 3.0 min respectively and elimination half lives were 6.7 and 3.1 min respectively. Embryonic mortality resulting from exposure of pregnant mice to ionizing radiation (2 Gy) was reduced by 75% by ip administration of TMG (0.6 g/kg, body wt) prior to irradiation. TMG offered protection to mice against whole body gamma-radiation-induced lethality and weight loss. The LD50(30) of mice increased from 6 to 6.72 Gy upon post irradiation administration of a single dose of TMG (0.6 g/kg, body wt) by ip.

  15. Solubility of daidzin in different organic solvents and (ethyl alcohol + water) mixed solvents

    International Nuclear Information System (INIS)

    Fan, Jie-Ping; Yang, Dan; Xu, Xiao-Kang; Guo, Xiao-Jie; Zhang, Xue-Hong

    2015-01-01

    Highlights: • The solubilities of daidzin were measured in various solvents. • The solubility data were correlated by three models. • The thermodynamic properties of the dissolution process were also determined. - Abstract: The solubility of daidzin in different organic solvents and (ethyl alcohol + water) mixed solvents was measured by high performance liquid chromatography (HPLC) analysis method from T = (283.2 to 323.2) K at atmosphere pressure. The results show that at higher temperature more daidzin dissolves, and moreover, the solubility increases with the ethyl alcohol mole fraction increase in the (ethyl alcohol + water) mixed solvents. The experimental solubility values were correlated by a simplified thermodynamic equation, λh equation and modified Apelblat equation. Based on the solubility of daidzin, the enthalpy and entropy of solution were also evaluated by van’t Hoff equation. The results illustrated that the dissolution process of daidzin is endothermic and entropy driven

  16. Formation of active inclusion bodies induced by hydrophobic self-assembling peptide GFIL8.

    Science.gov (United States)

    Wang, Xu; Zhou, Bihong; Hu, Weike; Zhao, Qing; Lin, Zhanglin

    2015-06-16

    In the last few decades, several groups have observed that proteins expressed as inclusion bodies (IBs) in bacteria could still be biologically active when terminally fused to an appropriate aggregation-prone partner such as pyruvate oxidase from Paenibacillus polymyxa (PoxB). More recently, we have demonstrated that three amphipathic self-assembling peptides, an alpha helical peptide 18A, a beta-strand peptide ELK16, and a surfactant-like peptide L6KD, have properties that induce target proteins into active IBs. We have developed an efficient protein expression and purification approach for these active IBs by introducing a self-cleavable intein molecule. In this study, the self-assembling peptide GFIL8 (GFILGFIL) with only hydrophobic residues was analyzed, and this peptide effectively induced the formation of cytoplasmic IBs in Escherichia coli when terminally attached to lipase A and amadoriase II. The protein aggregates in cells were confirmed by transmission electron microscopy analysis and retained ~50% of their specific activities relative to the native counterparts. We constructed an expression and separation coupled tag (ESCT) by incorporating an intein molecule, the Mxe GyrA intein. Soluble target proteins were successfully released from active IBs upon cleavage of the intein between the GFIL8 tag and the target protein, which was mediated by dithiothreitol. A variant of GFIL8, GFIL16 (GFILGFILGFILGFIL), improved the ESCT scheme by efficiently eliminating interference from the soluble intein-GFIL8 molecule. The yields of target proteins at the laboratory scale were 3.0-7.5 μg/mg wet cell pellet, which is comparable to the yields from similar ESCT constructs using 18A, ELK16, or the elastin-like peptide tag scheme. The all-hydrophobic self-assembling peptide GFIL8 induced the formation of active IBs in E. coli when terminally attached to target proteins. GFIL8 and its variant GFIL16 can act as a "pull-down" tag to produce purified soluble proteins with

  17. Determination of water-soluble vitamins using a colorimetric microbial viability assay based on the reduction of water-soluble tetrazolium salts.

    Science.gov (United States)

    Tsukatani, Tadayuki; Suenaga, Hikaru; Ishiyama, Munetaka; Ezoe, Takatoshi; Matsumoto, Kiyoshi

    2011-07-15

    A method for the determination of water-soluble vitamins using a colorimetric microbial viability assay based on the reduction of the tetrazolium salt {2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt (WST-8)} via 2-methyl-1,4-napthoquinone (NQ) was developed. Measurement conditions were optimized for the microbiological determination of water-soluble vitamins, such as vitamin B(6), biotin, folic acid, niacin, and pantothenic acid, using microorganisms that have a water-soluble vitamin requirement. A linear relationship between absorbance and water-soluble vitamin concentration was obtained. The proposed method was applied to determine the concentration of vitamin B(6) in various foodstuffs. There was good agreement between vitamin B(6) concentrations determined after 24h using the WST-8 colorimetric method and those obtained after 48h using a conventional method. The results suggest that the WST-8 colorimetric assay is a useful method for the rapid determination of water-soluble vitamins in a 96-well microtiter plate. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. Predicting supramolecular self-assembly on reconstructed metal surfaces

    Science.gov (United States)

    Roussel, Thomas J.; Barrena, Esther; Ocal, Carmen; Faraudo, Jordi

    2014-06-01

    The prediction of supramolecular self-assembly onto solid surfaces is still challenging in many situations of interest for nanoscience. In particular, no previous simulation approach has been capable to simulate large self-assembly patterns of organic molecules over reconstructed surfaces (which have periodicities over large distances) due to the large number of surface atoms and adsorbing molecules involved. Using a novel simulation technique, we report here large scale simulations of the self-assembly patterns of an organic molecule (DIP) over different reconstructions of the Au(111) surface. We show that on particular reconstructions, the molecule-molecule interactions are enhanced in a way that long-range order is promoted. Also, the presence of a distortion in a reconstructed surface pattern not only induces the presence of long-range order but also is able to drive the organization of DIP into two coexisting homochiral domains, in quantitative agreement with STM experiments. On the other hand, only short range order is obtained in other reconstructions of the Au(111) surface. The simulation strategy opens interesting perspectives to tune the supramolecular structure by simulation design and surface engineering if choosing the right molecular building blocks and stabilising the chosen reconstruction pattern.The prediction of supramolecular self-assembly onto solid surfaces is still challenging in many situations of interest for nanoscience. In particular, no previous simulation approach has been capable to simulate large self-assembly patterns of organic molecules over reconstructed surfaces (which have periodicities over large distances) due to the large number of surface atoms and adsorbing molecules involved. Using a novel simulation technique, we report here large scale simulations of the self-assembly patterns of an organic molecule (DIP) over different reconstructions of the Au(111) surface. We show that on particular reconstructions, the molecule

  19. Towards improved solubility of poorly water-soluble drugs: cryogenic co-grinding of piroxicam with carrier polymers.

    Science.gov (United States)

    Penkina, Anna; Semjonov, Kristian; Hakola, Maija; Vuorinen, Sirpa; Repo, Timo; Yliruusi, Jouko; Aruväli, Jaan; Kogermann, Karin; Veski, Peep; Heinämäki, Jyrki

    2016-01-01

    Amorphous solid dispersions (SDs) open up exciting opportunities in formulating poorly water-soluble active pharmaceutical ingredients (APIs). In the present study, novel catalytic pretreated softwood cellulose (CPSC) and polyvinylpyrrolidone (PVP) were investigated as carrier polymers for preparing and stabilizing cryogenic co-ground SDs of poorly water-soluble piroxicam (PRX). CPSC was isolated from pine wood (Pinus sylvestris). Raman and Fourier transform infrared (FTIR) spectroscopy, X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) were used for characterizing the solid-state changes and drug-polymer interactions. High-resolution scanning electron microscope (SEM) was used to analyze the particle size and surface morphology of starting materials and final cryogenic co-ground SDs. In addition, the molecular aspects of drug-polymer interactions and stabilization mechanisms are presented. The results showed that the carrier polymer influenced both the degree of amorphization of PRX and stabilization against crystallization. The cryogenic co-ground SDs prepared from PVP showed an enhanced dissolution rate of PRX, while the corresponding SDs prepared from CPSC exhibited a clear sustained release behavior. In conclusion, cryogenic co-grinding provides a versatile method for preparing amorphous SDs of poorly water-soluble APIs. The solid-state stability and dissolution behavior of such co-ground SDs are to a great extent dependent on the carrier polymer used.

  20. The water-soluble fraction of potentially toxic elements in contaminated soils: relationships between ecotoxicity, solubility and geochemical reactivity.

    Science.gov (United States)

    Rocha, L; Rodrigues, S M; Lopes, I; Soares, A M V M; Duarte, A C; Pereira, E

    2011-09-01

    To better understand the impacts posed by soil contamination to aquatic ecosystems it is crucial to characterise the links between ecotoxicity, chemical availability and geochemical reactivity of potentially toxic elements (PTE's) in soils. We evaluated the adverse effects of water extracts obtained from soils contaminated by chemical industry and mining, using a test battery including organisms from different trophic levels (bacteria, algae and daphnids). These tests provided a quick assessment of the ecotoxicity of soils with respect to possible adverse effects on aquatic organisms although the ecotoxicological responses could be related to the solubility of PTE's only to a limited extent. The analysis of results of bioassays together with the chemical characterisation of water extracts provided additional relevant insight into the role of conductivity, pH, Al, Fe, and Mn of soil extracts on toxicity to organisms. Furthermore, an important conclusion of this study was that the toxicity of extracts to the aquatic organisms could also be related to the soil properties (pH, Org C and Fe(ox)) and to the reactivity of PTE's in soils which in fact control the soluble fraction of the contaminants. The combined assessment of ecotoxicity in water fractions, solubility and geochemical reactivity of PTE's in soils provided a more comprehensive understanding of the bioavailability of inorganic contaminants than ecotoxicological or chemical studies alone and can therefore be most useful for environmental risks assessment of contaminated soils. Copyright © 2011 Elsevier Ltd. All rights reserved.

  1. One-Dimensional Multichromophor Arrays Based on DNA: From Self-Assembly to Light-Harvesting.

    Science.gov (United States)

    Ensslen, Philipp; Wagenknecht, Hans-Achim

    2015-10-20

    Light-harvesting complexes collect light energy and deliver it by a cascade of energy and electron transfer processes to the reaction center where charge separation leads to storage as chemical energy. The design of artificial light-harvesting assemblies faces enormous challenges because several antenna chromophores need to be kept in close proximity but self-quenching needs to be avoided. Double stranded DNA as a supramolecular scaffold plays a promising role due to its characteristic structural properties. Automated DNA synthesis allows incorporation of artificial chromophore-modified building blocks, and sequence design allows precise control of the distances and orientations between the chromophores. The helical twist between the chromophores, which is induced by the DNA framework, controls energy and electron transfer and thereby reduces the self-quenching that is typically observed in chromophore aggregates. This Account summarizes covalently multichromophore-modified DNA and describes how such multichromophore arrays were achieved by Watson-Crick-specific and DNA-templated self-assembly. The covalent DNA systems were prepared by incorporation of chromophores as DNA base substitutions (either as C-nucleosides or with acyclic linkers as substitutes for the 2'-deoxyribofuranoside) and as DNA base modifications. Studies with DNA base substitutions revealed that distances but more importantly relative orientations of the chromophores govern the energy transfer efficiencies and thereby the light-harvesting properties. With DNA base substitutions, duplex stabilization was faced and could be overcome, for instance, by zipper-like placement of the chromophores in both strands. For both principal structural approaches, DNA-based light-harvesting antenna could be realized. The major disadvantages, however, for covalent multichromophore DNA conjugates are the poor yields of synthesis and the solubility issues for oligonucleotides with more than 5-10 chromophore

  2. Bioassay using the water soluble fraction of a Nigerian Light Crude ...

    African Journals Online (AJOL)

    Summary: A 96-hour bioassay was conducted using the water soluble fraction of a Nigerian light crude oil sample on Clarias gariepinus fingerlings. 0, 2.5, 5.0, 7.5 and 10 mls of water soluble fractions (WSF) of the oil were added to 1000 litres of de-chlorinated tap water to form 0, 25, 50 , 75 and 100 parts per million ...

  3. Study of the synthesis and self-assembly of CO2-philic copolymers with complexing groups: application to decontamination in supercritical CO2 medium

    International Nuclear Information System (INIS)

    Ribaut, T.

    2009-10-01

    In the frame of sustainable development, a priority is to decrease the volume of nuclear wastes. The use of supercritical carbon dioxide (scCO 2 ) could allow to solve this problem. The aim of this study is to extract an ionic or particle cobalt contamination deposited on textile lab coats. The strategy uses CO 2 -philic/CO 2 -phobic copolymers soluble in scCO 2 and containing complexing groups. This approach combines the use of amphiphilic copolymers for steric stabilization of particles, of surfactants able to self-assemble to promote extraction and of ligands. Controlled radical polymerization is used to synthesize fluorinated gradient or block copolymers. Cloud point curves of the copolymers are determined experimentally in scCO 2 . Prediction of polymer/scCO 2 phase diagrams was assessed by Perturbed-Chain Statistical Associating Fluid Theory (PC-SAFT) modeling. Gradient copolymers appear more advantageous than block copolymers due to their solubility in much milder conditions of pressure and temperature. Small-angle neutron scattering (SANS) allowed us to evidence the pressure-induced aggregation of the gradient copolymers in scCO 2 . Their interface properties were demonstrated: they allow to form water-in-CO 2 microemulsions and to stabilize cobalt hydroxide dispersions in scCO 2 . Lastly, in presence of a very low quantity of water, Co 2+ ions were removed with a rate of 37 % from a cotton/polyester matrix by a gradient copolymer. (author)

  4. Development and in vivo evaluation of child-friendly lopinavir/ritonavir pediatric granules utilizing novel in situ self-assembly nanoparticles.

    Science.gov (United States)

    Pham, Kevin; Li, Diana; Guo, Shujie; Penzak, Scott; Dong, Xiaowei

    2016-03-28

    The aim of this study was to develop a nanotechnology to formulate a fixed-dose combination of poorly water-soluble drugs in a children-friendly, flexible solid dosage form. For diseases like HIV, pediatric patients are taking multiple drugs for effective treatments. Fixed-dose combinations could reduce pill burdens and costs as well as improving patient adherence. However, development of fixed-dose combinations of poorly water-soluble drugs for pediatric formulations is very challenging. We discovered a novel nanotechnology that produced in situ self-assembly nanoparticles (ISNPs) when the ISNP granules were introduced to water. In this study, antiretroviral drug granules, including lopinavir (LPV) ISNP granules and a fixed-dose combination of LPV/ritonavir (RTV) ISNP granules, were prepared using the ISNP nanotechnology, which spontaneously produced drug-loaded ISNPs in contact with water. Drug-loaded ISNPs had particle size less than 158nm with mono-dispersed distribution, over 95% entrapment efficiency for both LPV and RTV and stability over 8h in simulated physiological conditions. Drug-loaded ISNP granules with about 16% of LPV and 4% of RTV were palatable and stable at room temperature over 6months. Furthermore, LPV/RTV ISNP granules displayed a 2.56-fold increase in bioavailability and significantly increased LPV concentrations in tested tissues, especially in HIV sanctuary sites, as compared to the commercial LPV/RTV tablet (Kaletra®) in rats. Overall, the results demonstrated that the novel ISNP nanotechnology is a promising platform to manufacture palatable, "heat" stable, and flexible pediatric granules for fixed-dose combinations that can be used as sachets and sprinkles. To the best of our knowledge, this is the first report on this kind of novel nanotechnology for pediatric fixed-dose combinations of poorly water-soluble drugs. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Polymer-assisted synthesis of water-soluble PbSe quantum dots

    International Nuclear Information System (INIS)

    Melnig, V.; Apostu, M.-O.; Foca, N.

    2008-01-01

    Stable PbSe quantum dots were synthesised in water-based media using poly(amidehydroxyurethane) water-soluble polymer. The polymer acts like a precursor carrier, blocks the particles aggregation and assures their solubility. Atomic force microscopy data show that the particle radius is smaller than the Bohr radius of PbSe. Interactions studies, performed by Fourier transform IR spectroscopy, show that the quantum dots are capped with poly(amidehydroxyurethane). The proposed synthesis was realised in the absence of any organic solvent. As a result, the produced particles have good water solubility, stability and good arguments to be biologically compatible.

  6. The synthesis of a water-soluble derivative of rutin as an antiradical agent

    Energy Technology Data Exchange (ETDEWEB)

    Pedriali, Carla Aparecida; Fernandes, Adjaci Uchoa [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Quimica. Dept. de Bioquimica]. E-mail: capedriali@hotmail.com; Bernusso, Leandra de Cassia; Polakiewicz, Bronislaw [Universidade de Sao Paulo (USP), SP (Brazil). Faculdade de Ciencias Farmaceuticas. Dept. de Tecnologia Bioquimico-Farmaceutica

    2008-07-01

    The purpose of this study was to synthesize a water-soluble derivative of rutin (compound 2) by introducing carboxylate groups on rutin's sugar moiety. The rutin derivative showed an almost 100-fold solubility increase in water. The antiradical capacity of compound 2 was evaluated using the luminol/AAPH system, and the derivative's activity was 1.5 times greater than that of Trolox. Despite the derivative's high solubility in water (log P = -1.13), lipid peroxidation of brain homogenate membranes was very efficiently inhibited (inhibition values were only 19% lower than the inhibition values of rutin). (author)

  7. The synthesis of a water-soluble derivative of rutin as an antiradical agent

    International Nuclear Information System (INIS)

    Pedriali, Carla Aparecida; Fernandes, Adjaci Uchoa; Bernusso, Leandra de Cassia; Polakiewicz, Bronislaw

    2008-01-01

    The purpose of this study was to synthesize a water-soluble derivative of rutin (compound 2) by introducing carboxylate groups on rutin's sugar moiety. The rutin derivative showed an almost 100-fold solubility increase in water. The antiradical capacity of compound 2 was evaluated using the luminol/AAPH system, and the derivative's activity was 1.5 times greater than that of Trolox. Despite the derivative's high solubility in water (log P = -1.13), lipid peroxidation of brain homogenate membranes was very efficiently inhibited (inhibition values were only 19% lower than the inhibition values of rutin). (author)

  8. Self-Assembly of Molecular Threads into Reversible Gels

    Science.gov (United States)

    Sayar, Mehmet; Stupp, Samuel I.

    2001-03-01

    Reversible gels formed by low concentrations of molecular gelators that self-assemble into fibers with molecular width and extremely long length have been studied via Monte Carlo simulations. The gelators of interest have two kinds of interactions, one governs self-assembly into fibers and the other provides inter-fiber connectivity to drive the formation of a network. The off-lattice Monte Carlo simulation presented here is based on a point particle representation of gelators. In this model each particle can form only two strong bonds, that enable linear fiber formation, but a variable number of weak bonds which provide inter-fiber connectivity. The gel formation has been studied as a function of concentration of monomers, the strength of interactions, number of bonding sites per particle for weak interactions, and the stiffness of the fibers. The simulation results are compared with two experimental systems synthesized in our group in order to understand gelation mechanisms.

  9. DNA Self-Assembly: From Chirality to Evolution

    Directory of Open Access Journals (Sweden)

    Youri Timsit

    2013-04-01

    Full Text Available Transient or long-term DNA self-assembly participates in essential genetic functions. The present review focuses on tight DNA-DNA interactions that have recently been found to play important roles in both controlling DNA higher-order structures and their topology. Due to their chirality, double helices are tightly packed into stable right-handed crossovers. Simple packing rules that are imposed by DNA geometry and sequence dictate the overall architecture of higher order DNA structures. Close DNA-DNA interactions also provide the missing link between local interactions and DNA topology, thus explaining how type II DNA topoisomerases may sense locally the global topology. Finally this paper proposes that through its influence on DNA self-assembled structures, DNA chirality played a critical role during the early steps of evolution.

  10. DNA-Based Self-Assembly of Fluorescent Nanodiamonds.

    Science.gov (United States)

    Zhang, Tao; Neumann, Andre; Lindlau, Jessica; Wu, Yuzhou; Pramanik, Goutam; Naydenov, Boris; Jelezko, Fedor; Schüder, Florian; Huber, Sebastian; Huber, Marinus; Stehr, Florian; Högele, Alexander; Weil, Tanja; Liedl, Tim

    2015-08-12

    As a step toward deterministic and scalable assembly of ordered spin arrays we here demonstrate a bottom-up approach to position fluorescent nanodiamonds (NDs) with nanometer precision on DNA origami structures. We have realized a reliable and broadly applicable surface modification strategy that results in DNA-functionalized and perfectly dispersed NDs that were then self-assembled in predefined geometries. With optical studies we show that the fluorescence properties of the nitrogen-vacancy color centers in NDs are preserved during surface modification and DNA assembly. As this method allows the nanoscale arrangement of fluorescent NDs together with other optically active components in complex geometries, applications based on self-assembled spin lattices or plasmon-enhanced spin sensors as well as improved fluorescent labeling for bioimaging could be envisioned.

  11. The self-assembling process and applications in tissue engineering

    Science.gov (United States)

    Lee, Jennifer K.; Link, Jarrett M.; Hu, Jerry C. Y.; Athanasiou, Kyriacos A.

    2018-01-01

    Tissue engineering strives to create neotissues capable of restoring function. Scaffold-free technologies have emerged that can recapitulate native tissue function without the use of an exogenous scaffold. This chapter will survey, in particular, the self-assembling and self-organization processes as scaffold-free techniques. Characteristics and benefits of each process are described, and key examples of tissues created using these scaffold-free processes are examined to provide guidance for future tissue engineering developments. This chapter aims to explore the potential of self-assembly and self-organization scaffold-free approaches, detailing the recent progress in the in vitro tissue engineering of biomimetic tissues with these methods, toward generating functional tissue replacements. PMID:28348174

  12. Quantitative self-assembly prediction yields targeted nanomedicines

    Science.gov (United States)

    Shamay, Yosi; Shah, Janki; Işık, Mehtap; Mizrachi, Aviram; Leibold, Josef; Tschaharganeh, Darjus F.; Roxbury, Daniel; Budhathoki-Uprety, Januka; Nawaly, Karla; Sugarman, James L.; Baut, Emily; Neiman, Michelle R.; Dacek, Megan; Ganesh, Kripa S.; Johnson, Darren C.; Sridharan, Ramya; Chu, Karen L.; Rajasekhar, Vinagolu K.; Lowe, Scott W.; Chodera, John D.; Heller, Daniel A.

    2018-02-01

    Development of targeted nanoparticle drug carriers often requires complex synthetic schemes involving both supramolecular self-assembly and chemical modification. These processes are generally difficult to predict, execute, and control. We describe herein a targeted drug delivery system that is accurately and quantitatively predicted to self-assemble into nanoparticles based on the molecular structures of precursor molecules, which are the drugs themselves. The drugs assemble with the aid of sulfated indocyanines into particles with ultrahigh drug loadings of up to 90%. We devised quantitative structure-nanoparticle assembly prediction (QSNAP) models to identify and validate electrotopological molecular descriptors as highly predictive indicators of nano-assembly and nanoparticle size. The resulting nanoparticles selectively targeted kinase inhibitors to caveolin-1-expressing human colon cancer and autochthonous liver cancer models to yield striking therapeutic effects while avoiding pERK inhibition in healthy skin. This finding enables the computational design of nanomedicines based on quantitative models for drug payload selection.

  13. Molecular Gels Materials with Self-Assembled Fibrillar Networks

    CERN Document Server

    Weiss, Richard G

    2006-01-01

    Molecular gels and fibrillar networks – a comprehensive guide to experiment and theory Molecular Gels: Materials with Self-Assembled Fibrillar Networks provides a comprehensive treatise on gelators, especially low molecular-mass gelators (LMOGs), and the properties of their gels. The structures and modes of formation of the self-assembled fibrillar networks (SAFINs) that immobilize the liquid components of the gels are discussed experimentally and theoretically. The spectroscopic, rheological, and structural features of the different classes of LMOGs are also presented. Many examples of the application of the principal analytical techniques for investigation of molecular gels (including SANS, SAXS, WAXS, UV-vis absorption, fluorescence and CD spectroscopies, scanning electron, transmission electron and optical microscopies, and molecular modeling) are presented didactically and in-depth, as are several of the theories of the stages of aggregation of individual LMOG molecules leading to SAFINs. Several actua...

  14. Understanding the self-assembly of TCNQ on Cu(111)

    DEFF Research Database (Denmark)

    Stradi, Daniele; Borca, Bogdana; Barja, Sara

    2016-01-01

    The structure of self-assembled monolayers of 7,7',8,8'-tetracyano-p-quinodimethane (TCNQ) adsorbed on Cu(111) has been studied using a combination of scanning tunnelling microscopy (STM) experiments and density functional theory (DFT) calculations. We show that the polymorphism of the self......-assembled molecular layer can be controlled by tuning of the experimental conditions under which the deposition is carried out. When the Cu(111) substrate is held above room temperature (T-Cu(111) = 350 K) during deposition, a structure is formed in which the two molecules in the unit cell are oriented one...... perpendicular to the other. Conversely, when the substrate is held at room temperature during deposition and slightly annealed afterwards, a more complex structure with five molecules per unit cell is formed. DFT calculations complement the experimental results by revealing that the building blocks of the two...

  15. Self-assembling enzymes and the origins of the cytoskeleton

    Science.gov (United States)

    Barry, Rachael; Gitai, Zemer

    2011-01-01

    The bacterial cytoskeleton is composed of a complex and diverse group of proteins that self-assemble into linear filaments. These filaments support and organize cellular architecture and provide a dynamic network controlling transport and localization within the cell. Here, we review recent discoveries related to a newly appreciated class of self-assembling proteins that expand our view of the bacterial cytoskeleton and provide potential explanations for its evolutionary origins. Specifically, several types of metabolic enzymes can form structures similar to established cytoskeletal filaments and, in some cases, these structures have been repurposed for structural uses independent of their normal role. The behaviors of these enzymes suggest that some modern cytoskeletal proteins may have evolved from dual-role proteins with catalytic and structural functions. PMID:22014508

  16. Cross-linking of wheat gluten using a water-soluble carbodiimide

    NARCIS (Netherlands)

    Tropini, V.; Lens, J.P.; Mulder, W.J.; Silvestre, F.

    2000-01-01

    Wheat gluten was cross-linked using water-soluble 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide HCl (EDC). To enhance cross-linking, N-hydroxysuccinimide (NHS) was added to the reaction mixture. The cross-linking efficiency was evaluated by the decrease in the amount of amino groups, the solubility

  17. Solubility of corrosion products of plain steel in oxygen-containing water solutions at high parameters

    International Nuclear Information System (INIS)

    Martynova, O.I.; Samojlov, Yu.F.; Petrova, T.I.; Kharitonova, N.L.

    1983-01-01

    Technique for calculation of solubility of iron corrosion products in oxygen-containing aqueous solutions in the 298-573 K temperature range is presented. Solubility of corrosion products of plain steel in deeply-desalinizated water in the presence of oxygen for the such range of the temperatures is experimentally determined. Rather good convergence between calculated and experimental data is noted

  18. Colloidal Self-Assembly Driven by Deformability & Near-Critical Phenomena

    NARCIS (Netherlands)

    Evers, C.H.J.|info:eu-repo/dai/nl/338775188

    2016-01-01

    Self-assembly is the spontaneous formation of patterns or structures without human intervention. This thesis aims to increase our understanding of self-assembly. In self-assembly of proteins, the building blocks are very small and complex. Consequently, grasping the basic principles that drive the

  19. Self-Assembled Monolayers of CdSe Nanocrystals on Doped GaAs Substrates

    DEFF Research Database (Denmark)

    Marx, E.; Ginger, D.S.; Walzer, Karsten

    2002-01-01

    This letter reports the self-assembly and analysis of CdSe nanocrystal monolayers on both p- and a-doped GaAs substrates. The self-assembly was performed using a 1,6-hexanedithiol self-assembled monolayer (SAM) to link CdSe nanocrystals to GaAs substrates. Attenuated total reflection Fourier tran...

  20. Formulation of a poorly water-soluble drug in sustained-release hollow granules with a high viscosity water-soluble polymer using a fluidized bed rotor granulator.

    Science.gov (United States)

    Asada, Takumi; Yoshihara, Naoki; Ochiai, Yasushi; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru

    2018-04-25

    Water-soluble polymers with high viscosity are frequently used in the design of sustained-release formulations of poorly water-soluble drugs to enable complete release of the drug in the gastrointestinal tract. Tablets containing matrix granules with a water-soluble polymer are preferred because tablets are easier to handle and the multiple drug-release units of the matrix granules decreases the influences of the physiological environment on the drug. However, matrix granules with a particle size of over 800 μm sometimes cause a content uniformity problem in the tableting process because of the large particle size. An effective method of manufacturing controlled-release matrix granules with a smaller particle size is desired. The aim of this study was to develop tablets containing matrix granules with a smaller size and good controlled-release properties, using phenytoin as a model poorly water-soluble drug. We adapted the recently developed hollow spherical granule granulation technology, using water-soluble polymers with different viscosities. The prepared granules had an average particle size of 300 μm and sharp particle size distribution (relative width: 0.52-0.64). The values for the particle strength of the granules were 1.86-1.97 N/mm 2 , and the dissolution profiles of the granules were not affected by the tableting process. The dissolution profiles and the blood concentration levels of drug released from the granules depended on the viscosity of the polymer contained in the granules. We succeeded in developing the desired controlled-release granules, and this study should be valuable in the development of sustained-release formulations of poorly water-soluble drugs. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. Dispersion of nanoparticulate suspensions using self-assembled surfactant aggregates

    Science.gov (United States)

    Singh, Pankaj Kumar

    The dispersion of particles is critical for several industrial applications such as paints, inks, coatings, and cosmetics. Several emerging applications such as abrasives for precision polishing, and drug delivery systems are increasingly relying on nanoparticulates to achieve the desired performance. In the case of nanoparticles, the dispersion becomes more challenging because of the lack of fundamental understanding of dispersant adsorption and interparticle force prediction. Additionally, many of these processes use severe processing environments such as high normal forces (>100 mN/m), high shear forces (>10,000 s -1), and high ionic strengths (>0.1 M). Under such processing conditions, traditionally used dispersants based on electrostatics, and steric force repulsion mechanism may not be adequate. Hence, the development of optimally performing dispersants requires a fundamental understanding of the dispersion mechanism at the atomic/molecular scale. This study explores the use of self-assembled surfactant aggregates at the solid-liquid interface for dispersing nanoparticles in severe processing environments. Surfactant molecules can provide a feasible alternative to polymeric or inorganic dispersants for stabilizing ultrafine particles. The barrier to aggregation in the presence of surfactant molecules was measured using atomic force microscopy. The barrier heights correlated to suspension stability. To understand the mechanism for nanoparticulate suspension stability in the presence of surfactant films, the interface was characterized using zeta potential, contact angle, adsorption, and FT-IR (adsorbed surfactant film structure measurements). The effect of solution conditions such as pH and ionic strength on the suspension stability, and the self-assembled surfactant films was also investigated. It was determined that a transition from a random to an ordered orientation of the surfactant molecules at the interface was responsible for stability of

  2. Microtubule dynamics. II. Kinetics of self-assembly

    DEFF Research Database (Denmark)

    Flyvbjerg, H.; Jobs, E.

    1997-01-01

    Inverse scattering theory describes the conditions necessary and sufficient to determine an unknown potential from known scattering data. No similar theory exists for when and how one may deduce the kinetics of an unknown chemical reaction from quantitative information about its final state and i...... to analyze the self-assembly of microtubules from tubulin are general, and many other reactions and processes may be studied as inverse problems with these methods when enough experimental data are available....

  3. Fabrication of Nanostructures Using Self-Assembled Peptides as Templates

    DEFF Research Database (Denmark)

    Castillo, Jaime

    2015-01-01

    the advantages of diphenylalanine are explained step by step offering new alternatives to fabricate nanostructures in a simple and rapid way. The chapter is complemented with techniques to manipulate the self-assembled diphenylalanine nanostructures without changing its properties during the manipulation process.......This chapter evaluates the use of a short-aromatic dipeptide, diphenylalanine, as a template in the fabrication of new nanostructures (nanowires, coaxial nanocables, nanochannels) using materials such as silicon, conducting and non-conducting polymers. Diphenylalanine self...

  4. Spin State As a Probe of Vesicle Self-Assembly.

    Science.gov (United States)

    Kim, Sanghoon; Bellouard, Christine; Eastoe, Julian; Canilho, Nadia; Rogers, Sarah E; Ihiawakrim, Dris; Ersen, Ovidiu; Pasc, Andreea

    2016-03-02

    A novel system of paramagnetic vesicles was designed using ion pairs of iron-containing surfactants. Unilamellar vesicles (diameter ≈ 200 nm) formed spontaneously and were characterized by cryogenic transmission electron microscopy, nanoparticle tracking analysis, and light and small-angle neutron scattering. Moreover, for the first time, it is shown that magnetization measurements can be used to investigate self-assembly of such functionalized systems, giving information on the vesicle compositions and distribution of surfactants between the bilayers and the aqueous bulk.

  5. Spin State As a Probe of Vesicle Self-Assembly

    OpenAIRE

    Kim, Sanghoon; Bellouard, Christine; Eastoe, Julian; Canilho, Nadia; Rogers, Sarah E; Ihiawakrim, Dris; Ersen, Ovidiu; Pasc, Andreea

    2016-01-01

    A novel system of paramagnetic vesicles was designed using ion pairs of iron-containing surfactants. Unilamellar vesicles (diameter ≈ 200 nm) formed spontaneously and were characterized by cryogenic transmission electron microscopy, nanoparticle tracking analysis, and light and small-angle neutron scattering. Moreover, for the first time, it is shown that magnetization measurements can be used to investigate self-assembly of such functionalized systems, giving information on the vesicle compo...

  6. Phosphorylation Modulates Ameloblastin Self-assembly and Ca2+ Binding

    Czech Academy of Sciences Publication Activity Database

    Stakkestad, O.; Lyngstadaas, S. P.; Thiede, B.; Vondrášek, Jiří; Skalhegg, B. S.; Reseland, J. E.

    2017-01-01

    Roč. 8, Jul 27 (2017), č. článku 531. ISSN 1664-042X Institutional support: RVO:61388963 Keywords : ameloblastin * phosphorylation * self-assembly * Ca2+-binding * enamel * intrinsically disordered proteins Subject RIV: CE - Biochemistry OBOR OECD: Biochemistry and molecular biology Impact factor: 4.134, year: 2016 http://journal.frontiersin.org/article/10.3389/fphys.2017.00531/full

  7. Self-assembled containers based on extended tetrathiafulvalene.

    Science.gov (United States)

    Bivaud, Sébastien; Goeb, Sébastien; Croué, Vincent; Dron, Paul I; Allain, Magali; Sallé, Marc

    2013-07-10

    Two original self-assembled containers constituted each by six electroactive subunits are described. They are synthesized from a concave tetratopic π-extended tetrathiafulvalene ligand bearing four pyridyl units and cis-M(dppf)(OTf)2 (M = Pd or Pt; dppf = 1,1'-bis(diphenylphosphino)ferrocene; OTf = trifluoromethane-sulfonate) complexes. Both fully characterized assemblies present an oblate spheroidal cavity that can incorporate one perylene molecule.

  8. Self-assembly and speed distributions of active granular particles

    Science.gov (United States)

    Sánchez, R.; Díaz-Leyva, P.

    2018-06-01

    The relationship between the dynamics of self-propelled systems and the self-assembly of structured clusters are studied via the experimental speed distributions of submonolayers of self-propelled granular particles. A distribution developed for non-self-propelled granular particles describes the speed distributions remarkably well, despite some of the assumptions behind its original derivation not being applicable. This is explained in terms of clustering and dissipation being the key phenomena governing this regime.

  9. Low temperature self-assembled growth of rutile TiO2/manganese oxide nanocrystalline films

    Science.gov (United States)

    Sun, Zhenya; Zhou, Daokun; Du, Jianhua; Xie, Yuxing

    2017-10-01

    We report formation of rutile TiO2 nanocrystal at low temperature range in the presence of α-MnO2 which self-assembled onto sulfanyl radical activated silicon oxide substrate. SEM, HRTEM, XPS and Raman spectroscopy were used to study the morphology and oxidation state of synthesised crystals. The results showed that when the α-MnO2 was reduced to Mn3O4, it induced the formation of rutile instead of anatase phase in the TiCl4-HCl aqueous system. The finding will promote the understanding of phase transformation mechanism when manganese oxide and titanium oxide co-exist in soil and water environment.

  10. Infrared Absorption Spectroscopic Study on Reaction between Self-Assembled Monolayers and Atmospheric-Pressure Plasma

    Directory of Open Access Journals (Sweden)

    Masanori Shinohara

    2015-01-01

    Full Text Available Plasma is becoming increasingly adopted in bioapplications such as plasma medicine and agriculture. This study investigates the interaction between plasma and molecules in living tissues, focusing on plasma-protein interactions. To this end, the reaction of air-pressure air plasma with NH2-terminated self-assembled monolayer is investigated by infrared spectroscopy in multiple internal reflection geometry. The atmospheric-pressure plasma decomposed the NH2 components, the characteristic units of proteins. The decomposition is attributed to water clusters generated in the plasma, indicating that protein decomposition by plasma requires humid air.

  11. Controlled modification of octadecyltrichlorosilane self-assembled monolayer by CO2 plasma

    International Nuclear Information System (INIS)

    Delorme, Nicolas; Bardeau, Jean-Francois; Bulou, Alain; Poncin-Epaillard, Fabienne

    2006-01-01

    CO 2 -plasma is used to introduce functional groups on the uppermost surface of an alkoxy silane self-assembled monolayer (Sam). The structural and chemical modifications of the material surface were monitored by X-ray reflectometry, atomic force microscopy, X-ray photoelectrons spectroscopy and water contact angle measurements. Optimization of the plasma parameters is performed in order to achieve a maximum functionalization and to prevent degradation of the SAM. Finally, the ability of grafting organic compounds onto the plasma modified SAMS was demonstrated by the formation of an alkoxysilane bilayer

  12. Self-Assembling Biological Springs Force Transducers on the Micron Nanoscale

    Energy Technology Data Exchange (ETDEWEB)

    Benedek, George [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Casparay, Alfred H. [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2016-08-19

    In this project, we are developing a new system for measuring forces within and between nanoscale biological molecules based on mesoscopic springs made of cholesterol helical ribbons. These ribbons self-assemble in a wide variety of complex fluids containing sterol, a mixture of surfactants and water [1] and have spring constants in the range from 0.5 to 500 pN/nm [2-4]. By the end of this project, we have demonstrated that the cholesterol helical ribbons can be used for measuring forces between biological objects and for mapping the strain fields in hydrogels.

  13. Formulation of a Novel Nano emulsion System for Enhanced Solubility of a Sparingly Water Soluble Antibiotic, Clarithromycin

    International Nuclear Information System (INIS)

    Vatsraj, S.; Pathak, H.; Chauhan, K.

    2014-01-01

    The sparingly water soluble property of majority of medicinally significant drugs acts as a potential barrier towards its utilization for therapeutic purpose. The present study was thus aimed at development of a novel oil-in-water (o/w) nano emulsion (NE) system having ability to function as carrier for poorly soluble drugs with clarithromycin as a model antibiotic. The therapeutically effective concentration of clarithromycin, 5 mg/mL, was achieved using polysorbate 80 combined with olive oil as lipophilic counterion. A three-level three-factorial central composite experimental design was utilized to conduct the experiments. The effects of selected variables, polysorbate 80 and olive oil content and concentration of polyvinyl alcohol, were investigated. The particle size of clarithromycin for the optimized formulation was observed to be 30 nm. The morphology of the nano emulsion was explored using transmission electron microscopy (TEM). The emulsions prepared with the optimized formula demonstrated good physical stability during storage at room temperature. Antibacterial activity was conducted with the optimized nano emulsion NESH 01 and compared with free clarithromycin. Zone of inhibition was larger for NESH 01 as compared to that with free clarithromycin. This implies that the solubility and hence the bioavailability of clarithromycin has increased in the formulated nano emulsion system.

  14. Self-assembly of inorganic nanoparticles: Ab ovo

    Science.gov (United States)

    Kotov, Nicholas A.

    2017-09-01

    There are numerous remarkable studies related to the self-organization of polymers, coordination compounds, microscale particles, biomolecules, macroscale particles, surfactants, and reactive molecules on surfaces. The focus of this paper is on the self-organization of nanoscale inorganic particles or simply nanoparticles (NPs). Although there are fascinating and profound discoveries made with other self-assembling structures, the ones involving NPs deserve particular attention because they (a) are omnipresent in Nature; (b) have relevance to numerous disciplines (physics, chemistry, biology, astronomy, Earth sciences, and others); (c) embrace most of the features, geometries, and intricacies observed for the self-organization of other chemical species; (d) offer new tools for studies of self-organization phenomena; and (e) have a large economic impact, extending from energy and construction industries, to optoelectronics, biomedical technologies, and food safety. Despite the overall success of the field it is necessary to step back from its multiple ongoing research venues and consider two questions: What is self-assembly of nanoparticles? and Why do we need to study it? The reason to bring them up is to achieve greater scientific depth in the understanding of these omnipresent phenomena and, perhaps, deepen their multifaceted impact. Contribution to the Focus Issue Self-assemblies of Inorganic and Organic Nanomaterials edited by Marie-Paule Pileni.

  15. Supramolecular ribbons from amphiphilic trisamides self-assembly.

    Science.gov (United States)

    García, Fátima; Buendía, Julia; Sánchez, Luis

    2011-08-05

    Two amphiphilic C(3)-symmetric OPE-based trisamides have been synthesized and their self-assembling features investigated in solution and on surface. Variable-temperature UV-vis experiments demonstrate the cooperative supramolecular polymerization of these trisamides that self-assemble by the operation of triple C═O···H-N H-bonding arrays between the amide functional groups and π-π stacking between the aromatic units. The helical organization of the aggregates has been demonstrated by circular dichroism at a concentration as low as 1 × 10(-4) M in acetonitrile. In the reported trisamides, the large hydrophobic aromatic core acts as a solvophobic module impeding the interaction between the polar TEG chains and the amide H-bonds. This strategy makes unnecessary the separation of the amide functional groups to the polar tri(ethylene glycol) chains by paraffinic fragments. Achiral trisamide 1 self-assembles into flat ribbon-like structures that experience an amplification of chirality by the addition of a small amount of chiral 2 that generates twisted stripes.

  16. Molecular Motions in Functional Self-Assembled Nanostructures

    Directory of Open Access Journals (Sweden)

    Jean-Marc Saiter

    2013-01-01

    Full Text Available The construction of “smart” materials able to perform specific functions at the molecular scale through the application of various stimuli is highly attractive but still challenging. The most recent applications indicate that the outstanding flexibility of self-assembled architectures can be employed as a powerful tool for the development of innovative molecular devices, functional surfaces and smart nanomaterials. Structural flexibility of these materials is known to be conferred by weak intermolecular forces involved in self-assembly strategies. However, some fundamental mechanisms responsible for conformational lability remain unexplored. Furthermore, the role played by stronger bonds, such as coordination, ionic and covalent bonding, is sometimes neglected while they can be employed readily to produce mechanically robust but also chemically reversible structures. In this review, recent applications of structural flexibility and molecular motions in self-assembled nanostructures are discussed. Special focus is given to advanced materials exhibiting significant performance changes after an external stimulus is applied, such as light exposure, pH variation, heat treatment or electromagnetic field. The crucial role played by strong intra- and weak intermolecular interactions on structural lability and responsiveness is highlighted.

  17. Self-assembled magnetic filter for highly efficient immunomagnetic separation.

    Science.gov (United States)

    Issadore, David; Shao, Huilin; Chung, Jaehoon; Newton, Andita; Pittet, Mikael; Weissleder, Ralph; Lee, Hakho

    2011-01-07

    We have developed a compact and inexpensive microfluidic chip, the self-assembled magnetic filter, to efficiently remove magnetically tagged cells from suspension. The self-assembled magnetic filter consists of a microfluidic channel built directly above a self-assembled NdFeB magnet. Micrometre-sized grains of NdFeB assemble to form alternating magnetic dipoles, creating a magnetic field with a very strong magnitude B (from the material) and field gradient ▽B (from the configuration) in the microfluidic channel. The magnetic force imparted on magnetic beads is measured to be comparable to state-of-the-art microfabricated magnets, allowing for efficient separations to be performed in a compact, simple device. The efficiency of the magnetic filter is characterized by sorting non-magnetic (polystyrene) beads from magnetic beads (iron oxide). The filter enriches the population of non-magnetic beads to magnetic beads by a factor of >10(5) with a recovery rate of 90% at 1 mL h(-1). The utility of the magnetic filter is demonstrated with a microfluidic device that sorts tumor cells from leukocytes using negative immunomagnetic selection, and concentrates the tumor cells on an integrated membrane filter for optical detection.

  18. Chitosan Based Self-Assembled Nanoparticles in Drug Delivery

    Directory of Open Access Journals (Sweden)

    Javier Pérez Quiñones

    2018-02-01

    Full Text Available Chitosan is a cationic polysaccharide that is usually obtained by alkaline deacetylation of chitin poly(N-acetylglucosamine. It is biocompatible, biodegradable, mucoadhesive, and non-toxic. These excellent biological properties make chitosan a good candidate for a platform in developing drug delivery systems having improved biodistribution, increased specificity and sensitivity, and reduced pharmacological toxicity. In particular, chitosan nanoparticles are found to be appropriate for non-invasive routes of drug administration: oral, nasal, pulmonary and ocular routes. These applications are facilitated by the absorption-enhancing effect of chitosan. Many procedures for obtaining chitosan nanoparticles have been proposed. Particularly, the introduction of hydrophobic moieties into chitosan molecules by grafting to generate a hydrophobic-hydrophilic balance promoting self-assembly is a current and appealing approach. The grafting agent can be a hydrophobic moiety forming micelles that can entrap lipophilic drugs or it can be the drug itself. Another suitable way to generate self-assembled chitosan nanoparticles is through the formation of polyelectrolyte complexes with polyanions. This paper reviews the main approaches for preparing chitosan nanoparticles by self-assembly through both procedures, and illustrates the state of the art of their application in drug delivery.

  19. DNA assisted self-assembly of PAMAM dendrimers.

    Science.gov (United States)

    Mandal, Taraknath; Kumar, Mattaparthi Venkata Satish; Maiti, Prabal K

    2014-10-09

    We report DNA assisted self-assembly of polyamidoamine (PAMAM) dendrimers using all atom Molecular Dynamics (MD) simulations and present a molecular level picture of a DNA-linked PAMAM dendrimer nanocluster, which was first experimentally reported by Choi et al. (Nano Lett., 2004, 4, 391-397). We have used single stranded DNA (ssDNA) to direct the self-assembly process. To explore the effect of pH on this mechanism, we have used both the protonated (low pH) and nonprotonated (high pH) dendrimers. In all cases studied here, we observe that the DNA strand on one dendrimer unit drives self-assembly as it binds to the complementary DNA strand present on the other dendrimer unit, leading to the formation of a DNA-linked dendrimer dimeric complex. However, this binding process strongly depends on the charge of the dendrimer and length of the ssDNA. We observe that the complex with a nonprotonated dendrimer can maintain a DNA length dependent inter-dendrimer distance. In contrast, for complexes with a protonated dendrimer, the inter-dendrimer distance is independent of the DNA length. We attribute this observation to the electrostatic complexation of a negatively charged DNA strand with the positively charged protonated dendrimer.

  20. Controlling Self-Assembly in Al(110) Homoepitaxy

    Science.gov (United States)

    Tiwary, Yogesh; Fichthorn, Kristen

    2010-03-01

    Homoepitaxial growth on Al(110) exhibits nanoscale self-assembly into huts with well-defined (100) and (111) facets [1]. Although some of the diffusion mechanisms underlying this kinetic self-assembly were identified and incorporated into a two-dimensional model [2], we used density-functional theory (DFT) to identify many other mechanisms that are needed to describe the three-dimensional assembly seen experimentally [3]. We developed a three-dimensional kinetic Monte Carlo (KMC) model of Al(110) homoepitaxy. The inputs to the model were obtained from DFT [3,4]. Our model is in agreement with experimentally observed trends for this system. We used KMC to predict self-assembly under various growth conditions. To achieve precise placement of Al nanohuts, we simulated thermal-field-directed assembly [5]. Our results indicate that this technique can be used to create uniform arrays of nanostructures. [1] F. Buatier de Mongeot, W. Zhu, A. Molle, R. Buzio, C. Boragno, U. Valbusa, E. Wang, and Z. Zhang, Phys. Rev. Lett. 91, 016102 (2003). [2] W. Zhu, F. Buatier de Mongeot, U. Valbusa, E. G. Wang, and Z. Y. Zhang, Phys. Rev. Lett. 92, 106102 (2004). [3] Y. Tiwary and K. A. Fichthorn, submitted to Phys. Rev. B. [4] Y. Tiwary and K. A. Fichthorn, Phys. Rev. B 78, 205418 (2008). [5] C. Zhang and R. Kalyanaraman, Appl. Phys. Lett. 83, 4827 (2003).

  1. N-succinyl-chitosan as a drug carrier: water-insoluble and water-soluble conjugates.

    Science.gov (United States)

    Kato, Yoshinori; Onishi, Hiraku; Machida, Yoshiharu

    2004-02-01

    N-succinyl-chitosan (Suc-Chi) has favourable properties as a drug carrier such as biocompatibility, low toxicity and long-term retention in the body. It was long retained in the systemic circulation after intravenous administration, and the plasma half-lives of Suc-Chi (MW: 3.4 x 10(5); succinylation degree: 0.81 mol/sugar unit; deacetylation degree: 1.0 mol/sugar unit) were ca. 100.3h in normal mice and 43 h in Sarcoma 180-bearing mice. The biodistribution of Suc-Chi into other tissues was trace apart from the prostate and lymph nodes. The maximum tolerable dose for the intraperitoneal injection of Suc-Chi to mice was greater than 2 g/kg. The water-insoluble and water-soluble conjugates could be prepared using a water-soluble carbodiimide and mitomycin C (MMC) or using an activated ester of glutaric MMC. In vitro release characteristics of these conjugates showed similar patterns, i.e. a pH-dependent manner, except that water-insoluble conjugates showed a slightly slower release of MMC than water-soluble ones. The conjugates of MMC with Suc-Chi showed good antitumour activities against various tumours such as murine leukaemias (L1210 and P388), B16 melanoma, Sarcoma 180 solid tumour, a murine liver metastatic tumour (M5076) and a murine hepatic cell carcinoma (MH134). This review summarizes the utilization of Suc-Chi as a drug carrier for macromolecular conjugates of MMC and the therapeutic efficacy of the conjugates against various tumours.

  2. Membrane protein resistance of oligo(ethylene oxide) self-assembled monolayers.

    Science.gov (United States)

    Vaish, Amit; Vanderah, David J; Vierling, Ryan; Crawshaw, Fay; Gallagher, D Travis; Walker, Marlon L

    2014-10-01

    As part of an effort to develop biointerfaces for structure-function studies of integral membrane proteins (IMPs) a series of oligo(ethylene oxide) self-assembled monolayers (OEO-SAMs) were evaluated for their resistance to protein adsorption (RPA) of IMPs on Au and Pt. Spectroscopic ellipsometry (SE) was used to determine SAM thicknesses and compare the RPA of HS(CH2)3O(CH2CH2O)6CH3 (1), HS(CH2)3O(CH2CH2O)6H (2), [HS(CH2)3]2CHO(CH2CH2O)6CH3 (3) and [HS(CH2)3]2CHO(CH2CH2O)6H (4), assembled from water. For both substrates, SAM thicknesses for 1 to 4 were found to be comparable indicating SAMs with similar surface coverages and OEO chain order and packing densities. Fibrinogen (Fb), a soluble plasma protein, and rhodopsin (Rd), an integral membrane G-protein coupled receptor, adsorbed to the SAMs of 1, as expected from previous reports, but not to the hydroxy-terminated SAMs of 2 and 4. The methoxy-terminated SAMs of 3 were resistant to Fb but, surprisingly, not to Rd. The stark difference between the adsorption of Rd to the SAMs of 3 and 4 clearly indicate that a hydroxy-terminus of the OEO chain is essential for high RPA of IMPs. The similar thicknesses and high RPA of the SAMs of 2 and 4 show the conditions of protein resistance (screening the underlying substrate, packing densities, SAM order, and conformational mobility of the OEO chains) defined from previous studies on Au are applicable to Pt. In addition, the SAMs of 4, exhibiting the highest resistance to Fb and Rd, were placed in contact with undiluted fetal bovine serum for 2h. Low protein adsorption (≈12.4ng/cm(2)), obtained under these more challenging conditions, denote a high potential of the SAMs of 4 for various applications requiring the suppression of non-specific protein adsorption. Published by Elsevier B.V.

  3. On the solubility of nicotinic acid and isonicotinic acid in water and organic solvents

    International Nuclear Information System (INIS)

    Abraham, Michael H.; Acree, William E.

    2013-01-01

    Highlights: ► Solubilities of nicotinic acid and isonicotinic acids in organicsolvents have been determined. ► Solubilities are used to calculate Abraham descriptors for the two acids. ► These descriptors then yield water-solvent and gas-solvent partitions into numerous solvents. ► The solubility of the neutral acids in water is obtained. ► The method is straightforward and can be applied to any set of compound solubilities. -- Abstract: We have determined the solubility of nicotinic acid in four solvents and the solubility of isonicotinic acid in another four solvents. These results, together with literature data on the solubility of nicotinic acid in five other organic solvents and isonicotinic acid in four other organic solvents, have been analyzed through two linear Gibbs energy relationships in order to extract compound properties, or descriptors, that encode various solute–solvent interactions. The descriptors for nicotinic acid and isonicotinic acid can then be used in known equations for partition of solutes between water and organic solvents to predict partition coefficients and then further solubility in a host of organic solvents, as well as to predict a number of other physicochemical properties

  4. Review: kinetics of water-soluble contrast media in the central nervous system

    International Nuclear Information System (INIS)

    Sage, M.R.

    1983-01-01

    In neuroradiology, intraarterial, intravenous, and intrathecal injections of water-soluble contrast media are made. With the growing importance of water-soluble myelography, interventional angiography, and enhanced computed tomography (CT), it is essential to have a clear understanding of the response of the nervous system to such procedures. The blood, cerebrospinal fluid (CSF), and extracellular fluid of the parenchyma form the fluid compartments of the brain with three interfaces between, namely, the blood-brain interface, the CSF-brain interface, and the blood-CSF interface. One of more of these interfaces are exposed to water-soluble contrast media after intraarterial, intravenous, or intrathecal administration. The behavior of water-soluble contrast media at these interfaces is discussed on the basis of local experience and a review of the literature

  5. Comparative toxicity of water soluble fractions of four oils on the growth of a Microalga

    Digital Repository Service at National Institute of Oceanography (India)

    Phatarpekar, P.V.; Ansari, Z.A.

    Toxic effects of water soluble fractions (WSF) of four different fuel oils on a microalga. Tetraselmis gracilis, were examined and compared. On applying different concentrations of WSF, a decrease in cell population was observed. Depending...

  6. Application of spray-drying and electrospraying/electospinning for poorly water-soluble drugs

    DEFF Research Database (Denmark)

    Bohr, Adam; Boetker, Johan P; Rades, Thomas

    2014-01-01

    Solid dispersions have been widely studied as an attractive formulation strategy for the increasingly prevalent poorly water-soluble drug compounds, including herbal medicines, often leading to improvements in drug dissolution rate and bioavailability. However, several challenges are encountered...

  7. Calculated solubility isotherm of a system of alkaline earth sulfates and hydroxides in water

    International Nuclear Information System (INIS)

    MOshinskii, A.S.; TIkomirova, K.A.

    1986-01-01

    Tis paper examines the calculation of the isothermal solubility diagram of a system of alkaline earth sulfates and hydroxides in water which makes it possible to substantiate, to a considerable extent, the natural physicochemical mineralization of natural waters, in particular water from geochemical sources. The present paper investigates the solubility of the equilibrium solid phases of a system of alkaline earth sulfates and hydroxides in water. A projection is shown of the composition prism of the quinary reciprocal system with demarcation of the crystallization areas of each sulfate and hydroxide of the component subsystems. The computational formulas for calculating solubility were derived from the solubility product principle, with allowance for ion activity coefficients in saturated hydroxide solutions

  8. A Theoretical and Experimental Study of DNA Self-assembly

    Science.gov (United States)

    Chandran, Harish

    The control of matter and phenomena at the nanoscale is fast becoming one of the most important challenges of the 21st century with wide-ranging applications from energy and health care to computing and material science. Conventional top-down approaches to nanotechnology, having served us well for long, are reaching their inherent limitations. Meanwhile, bottom-up methods such as self-assembly are emerging as viable alternatives for nanoscale fabrication and manipulation. A particularly successful bottom up technique is DNA self-assembly where a set of carefully designed DNA strands form a nanoscale object as a consequence of specific, local interactions among the different components, without external direction. The final product of the self-assembly process might be a static nanostructure or a dynamic nanodevice that performs a specific function. Over the past two decades, DNA self-assembly has produced stunning nanoscale objects such as 2D and 3D lattices, polyhedra and addressable arbitrary shaped substrates, and a myriad of nanoscale devices such as molecular tweezers, computational circuits, biosensors and molecular assembly lines. In this dissertation we study multiple problems in the theory, simulations and experiments of DNA self-assembly. We extend the Turing-universal mathematical framework of self-assembly known as the Tile Assembly Model by incorporating randomization during the assembly process. This allows us to reduce the tile complexity of linear assemblies. We develop multiple techniques to build linear assemblies of expected length N using far fewer tile types than previously possible. We abstract the fundamental properties of DNA and develop a biochemical system, which we call meta-DNA, based entirely on strands of DNA as the only component molecule. We further develop various enzyme-free protocols to manipulate meta-DNA systems and provide strand level details along with abstract notations for these mechanisms. We simulate DNA circuits by

  9. Intestinal absorption of water-soluble vitamins in health and disease

    OpenAIRE

    Said, Hamid M.

    2011-01-01

    Our knowledge of the mechanisms and regulation of intestinal absorption of water-soluble vitamins under normal physiological conditions, and of the factors/conditions that affect and interfere with theses processes has been significantly expanded in recent years as a result of the availability of a host of valuable molecular/cellular tools. Although structurally and functionally unrelated, the water-soluble vitamins share the feature of being essential for normal cellular functions, growth an...

  10. The role of vitamins in the diet of the elderly II. Water-soluble vitamins

    OpenAIRE

    Csapó J.; Albert Cs.; Prokisch J.

    2017-01-01

    Following a presentation of humans’ water-soluble vitamin requirements, the authors will discuss in detail the role these vitamins play in human organism and outline those major biochemical processes that are negatively affected in the body in case of vitamin deficiency. They point out that in the elderly population of developed countries cases of water-soluble vitamin deficiency are extremely rare and they are due to the lack of dietary vitamin, but mostly to the vitamin being released from ...

  11. Effect of fasting on the urinary excretion of water-soluble vitamins in humans and rats.

    Science.gov (United States)

    Fukuwatari, Tsutomu; Yoshida, Erina; Takahashi, Kei; Shibata, Katsumi

    2010-01-01

    Recent studies showed that the urinary excretion of the water-soluble vitamins can be useful as a nutritional index. To determine how fasting affects urinary excretion of water-soluble vitamins, a human study and an animal experiment were conducted. In the human study, the 24-h urinary excretion of water-soluble vitamins in 12 healthy Japanese adults fasting for a day was measured. One-day fasting drastically decreased urinary thiamin content to 30%, and increased urinary riboflavin content by 3-fold. Other water-soluble vitamin contents did not show significant change by fasting. To further investigate the alterations of water-soluble vitamin status by starvation, rats were starved for 3 d, and water-soluble vitamin contents in the liver, blood and urine were measured during starvation. Urinary excretion of thiamin, riboflavin, vitamin B(6) metabolite 4-pyridoxic acid, nicotinamide metabolites and folate decreased during starvation, but that of vitamin B(12), pantothenic acid and biotin did not. As for blood vitamin levels, only blood vitamin B(1), plasma PLP and plasma folate levels decreased with starvation. All water-soluble vitamin contents in the liver decreased during starvation, whereas vitamin concentrations in the liver did not decrease. Starvation decreased only concentrations of vitamin B(12) and folate in the skeletal muscle. These results suggest that water-soluble vitamins were released from the liver, and supplied to the peripheral tissues to maintain vitamin nutrition. Our human study also suggested that the effect of fasting should be taken into consideration for subjects showing low urinary thiamin and high urinary riboflavin.

  12. Evaluation of ammonium nitrate phosphate (Suphala) having different water soluble phosphorus levels on black soils

    International Nuclear Information System (INIS)

    Deo Dutt; Mutatkar, V.K.; Chapke, V.G.

    1974-01-01

    Efficiency of the laboratory prepared 32 P tagged ammonium nitrate phosphate (Suphala) varying in water soluble P was studied both on calcareous and non-calcareous soils of Maharashtra for bajra and wheat crops under greenhouse conditions. The results revealed a significant increase in dry matter production and uptake of total and fertilizer P with Suphala containing 30-32% water-soluble phosphorus. (author)

  13. Abalone water-soluble matrix for self-healing biomineralization of tooth defects

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Zhenliang [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Chen, Jingdi, E-mail: ibptcjd@fzu.edu.cn [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Wang, Hailiang [The Affiliated Stomatological Hospital, Fujian Medical University, Fuzhou 350002 (China); Zhong, Shengnan; Hu, Yimin; Wang, Zhili [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Zhang, Qiqing, E-mail: zhangqiq@126.com [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192 (China)

    2016-10-01

    Enamel cannot heal by itself if damaged. Hydroxyapatite (HAP) is main component of human enamel. Formation of enamel-like materials for healing enamel defects remains a challenge. In this paper, we successfully isolated the abalone water-soluble matrix (AWSM) with 1.53 wt% the abalone water-soluble protein (AWSPro) and 2.04 wt% the abalone water-soluble polysaccharide (AWSPs) from abandoned abalone shell, and self-healing biomineralization of tooth defects was successfully achieved in vitro. Based on X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), hot field emission scanning electron microscopy (HFESEM) and energy dispersive spectrometer (EDS) analysis, the results showed that the AWSM can efficiently induce remineralization of HAP. The enamel-like HAP was successfully achieved onto etched enamel's surface due to the presence of the AWSM. Moreover, the remineralized effect of eroded enamel was growing with the increase of the AWSM. This study provides a solution to the resource waste and environmental pollution caused by abandoned abalone shell, and we provides a new method for self-healing remineralization of enamel defects by AWSM and develops a novel dental material for potential clinical dentistry application. - Graphical abstract: In this paper, we successfully isolated the abalone water-soluble matrix (AWSM) with 1.53 wt% abalone water-soluble protein (AWSPro) and 2.04 wt% abalone water-soluble polysaccharide (AWSPs) from abandoned abalone shell, and self-healing biomineralization of tooth defects was successfully achieved in vitro by self-organized. Display Omitted - Highlights: • Provides a solution to the resource waste and environmental pollution caused by abandoned abalone shell. • The abalone shell water-soluble matrix contains protein and polysaccharide. • The abalone water-soluble matrix can efficiently induce remineralization of HAP by self-organized. • Achieved self-healing biomineralization of tooth defects in

  14. Water soluble organic aerosols in the Colorado Rocky Mountains, USA: composition, sources and optical properties

    OpenAIRE

    Xie, Mingjie; Mladenov, Natalie; Williams, Mark W.; Neff, Jason C.; Wasswa, Joseph; Hannigan, Michael P.

    2016-01-01

    Atmospheric aerosols have been shown to be an important input of organic carbon and nutrients to alpine watersheds and influence biogeochemical processes in these remote settings. For many remote, high elevation watersheds, direct evidence of the sources of water soluble organic aerosols and their chemical and optical characteristics is lacking. Here, we show that the concentration of water soluble organic carbon (WSOC) in the total suspended particulate (TSP) load at a high elevation site in...

  15. Abalone water-soluble matrix for self-healing biomineralization of tooth defects

    International Nuclear Information System (INIS)

    Wen, Zhenliang; Chen, Jingdi; Wang, Hailiang; Zhong, Shengnan; Hu, Yimin; Wang, Zhili; Zhang, Qiqing

    2016-01-01

    Enamel cannot heal by itself if damaged. Hydroxyapatite (HAP) is main component of human enamel. Formation of enamel-like materials for healing enamel defects remains a challenge. In this paper, we successfully isolated the abalone water-soluble matrix (AWSM) with 1.53 wt% the abalone water-soluble protein (AWSPro) and 2.04 wt% the abalone water-soluble polysaccharide (AWSPs) from abandoned abalone shell, and self-healing biomineralization of tooth defects was successfully achieved in vitro. Based on X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), hot field emission scanning electron microscopy (HFESEM) and energy dispersive spectrometer (EDS) analysis, the results showed that the AWSM can efficiently induce remineralization of HAP. The enamel-like HAP was successfully achieved onto etched enamel's surface due to the presence of the AWSM. Moreover, the remineralized effect of eroded enamel was growing with the increase of the AWSM. This study provides a solution to the resource waste and environmental pollution caused by abandoned abalone shell, and we provides a new method for self-healing remineralization of enamel defects by AWSM and develops a novel dental material for potential clinical dentistry application. - Graphical abstract: In this paper, we successfully isolated the abalone water-soluble matrix (AWSM) with 1.53 wt% abalone water-soluble protein (AWSPro) and 2.04 wt% abalone water-soluble polysaccharide (AWSPs) from abandoned abalone shell, and self-healing biomineralization of tooth defects was successfully achieved in vitro by self-organized. Display Omitted - Highlights: • Provides a solution to the resource waste and environmental pollution caused by abandoned abalone shell. • The abalone shell water-soluble matrix contains protein and polysaccharide. • The abalone water-soluble matrix can efficiently induce remineralization of HAP by self-organized. • Achieved self-healing biomineralization of tooth defects in vitro.

  16. Impact of bleaching agents on water sorption and solubility of resin luting cements.

    Science.gov (United States)

    Torabi Ardakani, Mahshid; Atashkar, Berivan; Bagheri, Rafat; Burrow, Michael F

    2017-08-01

    The aim of the present study was to evaluate the effect of distilled water and home and office bleaching agents on the sorption and solubility of resin luting cements. A total of 18 disc-shaped specimens were prepared from each of four resin cements: G-CEM LinkAce, Panavia F, Rely X Unicem, and seT. Specimens were cured according to the manufacturers' instructions and randomly divided into three groups of six, where they were treated with either an office or home bleaching agent or immersed in distilled water (control). Water sorption and solubility were measured by weighing the specimens before and after immersion and desiccation. Data were analyzed using Pearson correlation coefficient, two-way analysis of variance (ANOVA) and Tukey's test. There was a significant, positive correlation between sorption and solubility. Two-way anova showed significant differences among all resin cements tested for either sorption or solubility. Water sorption and solubility of all cements were affected significantly by office bleaching, and even more by home bleaching agents. Sorption and solubility behavior of the studied cements were highly correlated and significantly affected by applying either office or home bleaching agents; seT showed the highest sorption and solubility, whereas Rely X Unicem revealed the lowest. © 2016 John Wiley & Sons Australia, Ltd.

  17. Physical characterization and in vivo pharmacokinetic study of self-assembling amphotericin B-loaded lecithin-based mixed polymeric micelles.

    Science.gov (United States)

    Chen, Ying-Chen; Su, Chia-Yu; Jhan, Hua-Jun; Ho, Hsiu-O; Sheu, Ming-Thau

    2015-01-01

    To alleviate the inherent problems of amphotericin B (AmB), such as poor water solubility and nephrotoxicity, a novel self-assembling mixed polymeric micelle delivery system based on lecithin and combined with amphiphilic polymers, Pluronic(®), Kolliphor(®), d-alpha tocopheryl polyethylene glycol succinate, and 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-methoxy(poly(ethylene glycol)-2000 (DSPE-PEG2K) was developed. An optimal formulation (Ambicelles) composed of AmB:lecithin:DSPE-PEG2K in a 1:1:10 weight ratio was obtained. The particle size, polydispersion index, drug encapsulation efficiency, and drug loading were 187.20±10.55 nm, 0.51±0.017, 90.14%, and 7.51%, respectively, and the solubility was increased from 0.001 to 5 mg/mL. Compared with that of Fungizone(®), the bioavailability of Ambicelles administered intravenously and orally increased 2.18- and 1.50-fold, respectively. Regarding the in vitro cytotoxicity, Ambicelles had a higher cell viability than free AmB solution or Fungizone(®) did. With pretreatment of 50 μg/mL ethanolic extract of Taiwanofungus camphoratus followed by AmB to HT29 colon cancer cells, the 50% inhibitory concentration of AmB solution was 12 μg/mL, whereas that of Ambicelles was 1 μg/mL, indicating that Ambicelles exerted a greater synergistic anticancer effect.

  18. Solubility of Stevioside and Rebaudioside A in water, ethanol and their binary mixtures

    Directory of Open Access Journals (Sweden)

    Liliana S. Celaya

    2016-10-01

    Full Text Available In order to investigate the solubility of Stevioside and Rebaudioside A in different solvents (ethanol, water, ethanol:water 30:70 and ethanol:water 70:30, supersaturated solutions of pre-crystalized steviol glycosides were maintained at different temperatures (from 5 °C to 50 °C to reach equilibrium. Under these conditions significant differences were found in the extent of solubility. Rebaudioside A was poorly soluble in ethanol and water, and Stevioside was poorly soluble in water. Solvent mixtures more effectively promoted solubilisation, and a significant effect of temperature on solubility was observed. The two steviol glycosides showed higher solubilities and this behavior was promoted by the presence of the other sweetener. The polarity indices of the solvents were determined, and helped to explain the observed behavior. Several solute-solvent and solute-solute interactions can occur, along with the incidence of a strong affinity between solvents. The obtained results are in accordance with technological applications of ethanol, water and their binary mixtures for Stevioside and Rebaudioside A separations.

  19. Buckminsterfullerene's (C60) octanol-water partition coefficient (Kow) and aqueous solubility.

    Science.gov (United States)

    Jafvert, Chad T; Kulkarni, Pradnya P

    2008-08-15

    To assess the risk and fate of fullerene C60 in the environment, its water solubility and partition coefficients in various systems are useful. In this study, the log Kow of C60 was measured to be 6.67, and the toluene-water partition coefficient was measured at log Ktw = 8.44. From these values and the respective solubilities of C60 in water-saturated octanol and water-saturated toluene, C60's aqueous solubility was calculated at 7.96 ng/L(1.11 x 10(-11) M) for the organic solvent-saturated aqueous phase. Additionally, the solubility of C60 was measured in mixtures of ethanol-water and tetrahydrofuran-water and modeled with Wohl's equation to confirm the accuracy of the calculated solubility value. Results of a generator column experiment strongly support the hypothesis that clusters form at aqueous concentrations below or near this calculated solubility. The Kow value is compared to those of other hydrophobic organic compounds, and bioconcentration factors for C60 were estimated on the basis of Kow.

  20. Oral water soluble contrast for malignant bowel obstruction.

    Science.gov (United States)

    Syrmis, William; Richard, Russell; Jenkins-Marsh, Sue; Chia, Siew C; Good, Phillip

    2018-03-07

    Malignant bowel obstruction (MBO) is a common problem in patients with intra-abdominal cancer. Oral water soluble contrast (OWSC) has been shown to be useful in the management of adhesive small bowel obstruction in identifying patients who will recover with conservative management alone and also in reducing the length of hospital stay. It is not clear whether the benefits of OWSC in adhesive small bowel obstruction are also seen in patients with MBO. To determine the reliability of OWSC media and follow-up abdominal radiographs in predicting the success of conservative treatment in resolving inoperable MBO with conservative management.To determine the efficacy and safety of OWSC media in reducing the duration of obstruction and reducing hospital stay in people with MBO. We identified studies from searching Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE and MEDLINE in Process, Embase, CINAHL, Science Citation Index (Web of Science) and Conference Proceedings Citation Index - Science (Web of Science). We also searched registries of clinical trials and the CareSearch Grey Literature database. The date of the search was the 6 June 2017. Randomised controlled trials (RCTs), or prospective controlled studies, that evaluated the diagnostic potential of OWSC in predicting which malignant bowel obstructions will resolve with conservative treatment.RCTs, or prospective controlled studies, that assessed the therapeutic potential of OWSC in managing MBO at any level compared with placebo, no intervention or usual treatment or supportive care. We used standard methodological procedures expected by Cochrane. We assessed risk of bias and assessed the evidence using GRADE and created a 'Summary of findings' table. We found only one RCT meeting the selection criteria for the second objective (therapeutic potential) of this review. This study recruited nine participants. It compared the use of gastrografin versus placebo in adult patients with MBO with no

  1. Nootkatone encapsulation by cyclodextrins: Effect on water solubility and photostability.

    Science.gov (United States)

    Kfoury, Miriana; Landy, David; Ruellan, Steven; Auezova, Lizette; Greige-Gerges, Hélène; Fourmentin, Sophie

    2017-12-01

    Nootkatone (NO) is a sesquiterpenoid volatile flavor, used in foods, cosmetics and pharmaceuticals, possessing also insect repellent activity. Its application is limited because of its low aqueous solubility and stability; this could be resolved by encapsulation in cyclodextrins (CDs). This study evaluated the encapsulation of NO by CDs using phase solubility studies, Isothermal Titration Calorimetry, Nuclear Magnetic Resonance spectroscopy and molecular modeling. Solid CD/NO inclusion complex was prepared and characterized for encapsulation efficiency and loading capacity using UV-Visible. Thermal properties were investigated by thermogravimetric-differential thermal analysis and release studies were performed using multiple headspace extraction. Formation constants (K f ) proved the formation of stable inclusion complexes. NO aqueous solubility, photo- and thermal stability were enhanced and the release could be insured from solid complex in aqueous solution. This suggests that CDs are promising carrier to improve NO properties and, consequently, to enlarge its use in foods, cosmetics, pharmaceuticals and agrochemicals preparations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Simulation of macromolecule self-assembly in solution: A multiscale approach

    Energy Technology Data Exchange (ETDEWEB)

    Lavino, Alessio D., E-mail: alessiodomenico.lavino@studenti.polito.it; Barresi, Antonello A., E-mail: antonello.barresi@polito.it; Marchisio, Daniele L., E-mail: daniele.marchisio@polito.it [Dipartimento di Scienza Applicata e Tecnologia, Istituto di Ingegneria Chimica, Politecnico di Torino, C.so Duca degli Abruzzi 24, 10129 Torino (Italy); Pasquale, Nicodemo di, E-mail: nicodemo.dipasquale@manchester.ac.uk [School of Chemistry, The University of Manchester, Oxford Road, Manchester M13 9PL, UnitedKingdom (United Kingdom); Carbone, Paola, E-mail: paola.carbone@manchester.ac.uk [School of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UnitedKingdom (United Kingdom)

    2015-12-17

    One of the most common processes to produce polymer nanoparticles is to induce self-assembly by using the solvent-displacement method, in which the polymer is dissolved in a “good” solvent and the solution is then mixed with an “anti-solvent”. The polymer ability to self-assemble in solution is therefore determined by its structural and transport properties in solutions of the pure solvents and at the intermediate compositions. In this work, we focus on poly-ε-caprolactone (PCL) which is a biocompatible polymer that finds widespread application in the pharmaceutical and biomedical fields, performing simulation at three different scales using three different computational tools: full atomistic molecular dynamics (MD), population balance modeling (PBM) and computational fluid dynamics (CFD). Simulations consider PCL chains of different molecular weight in solution of pure acetone (good solvent), of pure water (anti-solvent) and their mixtures, and mixing at different rates and initial concentrations in a confined impinging jets mixer (CIJM). Our MD simulations reveal that the nano-structuring of one of the solvents in the mixture leads to an unexpected identical polymer structure irrespectively of the concentration of the two solvents. In particular, although in pure solvents the behavior of the polymer is, as expected, very different, at intermediate compositions, the PCL chain shows properties very similar to those found in pure acetone as a result of the clustering of the acetone molecules in the vicinity of the polymer chain. We derive an analytical expression to predict the polymer structural properties in solution at different solvent compositions and use it to formulate an aggregation kernel to describe the self-assembly in the CIJM via PBM and CFD. Simulations are eventually validated against experiments.

  3. WATER ACTIVITY DATA ASSESSMENT TO BE USED IN HANFORD WASTE SOLUBILITY CALCULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    DISSELKAMP RS

    2011-01-06

    The purpose of this report is to present and assess water activity versus ionic strength for six solutes:sodium nitrate, sodium nitrite, sodium chloride, sodium carbonate, sodium sulfate, and potassium nitrate. Water activity is given versus molality (e.g., ionic strength) and temperature. Water activity is used to estimate Hanford crystal hydrate solubility present in the waste.

  4. WATER ACTIVITY DATA ASSESSMENT TO BE USED IN HANFORD WASTE SOLUBILITY CALCULATIONS

    International Nuclear Information System (INIS)

    Disselkamp, R.S.

    2011-01-01

    The purpose of this report is to present and assess water activity versus ionic strength for six solutes:sodium nitrate, sodium nitrite, sodium chloride, sodium carbonate, sodium sulfate, and potassium nitrate. Water activity is given versus molality (e.g., ionic strength) and temperature. Water activity is used to estimate Hanford crystal hydrate solubility present in the waste.

  5. Prediction of solubilities for ginger bioactive compounds in hot water by the COSMO-RS method

    Science.gov (United States)

    Zaimah Syed Jaapar, Syaripah; Azian Morad, Noor; Iwai, Yoshio

    2013-04-01

    The solubilities in water of four main ginger bioactives, 6-gingerol, 6-shogaol, 8-gingerol and 10-gingerol, were predicted using a conductor-like screening model for real solvent (COSMO-RS) calculations. This study was conducted since no experimental data are available for ginger bioactive solubilities in hot water. The σ-profiles of these selected molecules were calculated using Gaussian software and the solubilities were calculated using the COSMO-RS method. The solubilities of these ginger bioactives were calculated at 50 to 200 °C. In order to validate the accuracy of the COSMO-RS method, the solubilities of five hydrocarbon molecules were calculated using the COSMO-RS method and compared with the experimental data in the literature. The selected hydrocarbon molecules were 3-pentanone, 1-hexanol, benzene, 3-methylphenol and 2-hydroxy-5-methylbenzaldehyde. The calculated results of the hydrocarbon molecules are in good agreement with the data in the literature. These results confirm that the solubilities of ginger bioactives can be predicted using the COSMO-RS method. The solubilities of the ginger bioactives are lower than 0.0001 at temperatures lower than 130 °C. At 130 to 200 °C, the solubilities increase dramatically with the highest being 6-shogaol, which is 0.00037 mole fraction, and the lowest is 10-gingerol, which is 0.000039 mole fraction at 200 °C.

  6. Prediction of solubilities for ginger bioactive compounds in hot water by the COSMO-RS method

    International Nuclear Information System (INIS)

    Jaapar, Syaripah Zaimah Syed; Iwai, Yoshio; Morad, Noor Azian

    2013-01-01

    The solubilities in water of four main ginger bioactives, 6-gingerol, 6-shogaol, 8-gingerol and 10-gingerol, were predicted using a conductor-like screening model for real solvent (COSMO-RS) calculations. This study was conducted since no experimental data are available for ginger bioactive solubilities in hot water. The σ-profiles of these selected molecules were calculated using Gaussian software and the solubilities were calculated using the COSMO-RS method. The solubilities of these ginger bioactives were calculated at 50 to 200 °C. In order to validate the accuracy of the COSMO-RS method, the solubilities of five hydrocarbon molecules were calculated using the COSMO-RS method and compared with the experimental data in the literature. The selected hydrocarbon molecules were 3-pentanone, 1-hexanol, benzene, 3-methylphenol and 2-hydroxy-5-methylbenzaldehyde. The calculated results of the hydrocarbon molecules are in good agreement with the data in the literature. These results confirm that the solubilities of ginger bioactives can be predicted using the COSMO-RS method. The solubilities of the ginger bioactives are lower than 0.0001 at temperatures lower than 130 °C. At 130 to 200 °C, the solubilities increase dramatically with the highest being 6-shogaol, which is 0.00037 mole fraction, and the lowest is 10-gingerol, which is 0.000039 mole fraction at 200 °C.

  7. Synthesis, characterization and fluorescent properties of water-soluble glycopolymer bearing curcumin pendant residues.

    Science.gov (United States)

    Zhang, Haisong; Yu, Meng; Zhang, Hailei; Bai, Libin; Wu, Yonggang; Wang, Sujuan; Ba, Xinwu

    2016-08-01

    Curcumin is a potential natural anticancer drug with low oral bioavailability because of poor water solubility. The aqueous solubility of curcumin is enhanced by means of modification with the carbohydrate units. Polymerization of the curcumin-containing monomer with carbohydrate-containing monomer gives the water-soluble glycopolymer bearing curcumin pendant residues. The obtained copolymers (P1 and P2) having desirable water solubility were well-characterized by infrared spectroscopy (IR), nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), UV-Vis absorption spectroscopy, and photoluminescence spectroscopy. The copolymer P2 with a molar ratio of 1:6 (curcumin/carbohydrate) calculated from the proton NMR results exhibits a similar anticancer activity compared to original curcumin, which may serve as a potential chemotherapeutic agent in the field of anticancer medicine.

  8. A facile physical approach to make chitosan soluble in acid-free water.

    Science.gov (United States)

    Fu, Yinghao; Xiao, Congming

    2017-10-01

    We changed the situation that chitosan was only dissolved in diluted acid through mild physical treatment. In viewing of the usual methods to modify chitosan are chemical ones, we established the approach by using a water-soluble chitosan derivative as the model polymer. Its water-solubility was modulated via changing the concentration of solution and varying the precipitants. Such a physical method was adopted to treat chitiosan. One gram chitosan was dissolved in a mixture of 100mL 10% acetic acid and 50mL methanol, and then precipitated from a precipitant consisted of 10mL ethanol and 90mL acetate ester. The treated chitosan became soluble in acid-free water completely, and its solubility was 8.02mg/mL. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Amelioration of radiation induced oxidative stress using water soluble chitosan produced by Aspergillus niger

    International Nuclear Information System (INIS)

    EL-Sonbaty, S.M.; Swailam, H.M.; Noaman, E.

    2012-01-01

    Chitosan is a natural polysaccharide synthesized by a great number of living organisms and considered as a source of potential bioactive material and has many biological applications which are greatly affected by its solubility in neutral ph. In this study low molecular weight water soluble chitosan was prepared by chemical degradation of chitosan produced by Aspergillus niger using H 2 O 2 . Chitosan chemical structure was detected before and after treatment using FTIR spectrum, and its molecular weight was determined by its viscosity using viscometer. Its antioxidant activity against gamma radiation was evaluated in vivo using rats. Rats were divided into 4 groups; group 1: control, group 2: exposed to acute dose of gamma radiation (6 Gy), group 3: received water soluble chitosan, group 4: received water soluble chitosan then exposed to gamma radiation as group 2. Gamma radiation significantly increased malonaldehyde, decreased glutathione concentration, activity of superoxide dismutase, catalase, and glutatione peroxidase, while significantly increase the activity of alanine transferase, aspartate transferase, urea and creatinine concentration. Administration of water soluble chitosan has ameliorated induced changes caused by gamma radiation. It could be concluded that water soluble chitosan by scavenging free radicals directly or indirectly may act as a potent radioprotector against ionizing irradiation.

  10. Understanding the structure and performance of self-assembled triblock terpolymer membranes

    KAUST Repository

    Pendergast, MaryTheresa M.; Mika Dorin, Rachel; Phillip, William A.; Wiesner, Ulrich; Hoek, Eric M.V.

    2013-01-01

    Nanoporous membranes represent a possible route towards more precise particle and macromolecular separations, which are of interest across many industries. Here, we explored membranes with vertically-aligned nanopores formed from a poly(isoprene-. b-styrene-. b-4 vinyl pyridine) (ISV) triblock terpolymer via a hybrid self-assembly/nonsolvent induced phase separation process (S-NIPS). ISV concentration, solvent composition, and evaporation time in the S-NIPS process were varied to tailor ordering of the selective layer and produce enhanced water permeability. Here, water permeability was doubled over previous versions of ISV membranes. This was achieved by increasing volatile solvent concentration, thereby decreasing the evaporation period required for self-assembly. Fine-tuning was required, however, since overly-rapid evaporation did not yield the desired pore structure. Transport models, used to relate the in-. situ structure to the performance of these materials, revealed narrowing of pores and blocking by the dense region below. It was shown that these vertically aligned nanoporous membranes compare favorably with commercial ultrafiltration membranes formed by NIPS and track-etching processes, which suggests that there is practical value in further developing and optimizing these materials for specific industrial separations. © 2013 Elsevier B.V.

  11. Self-Assembly of Discrete Metal Complexes in Aqueous Solution via Block Copolypeptide Amphiphiles

    Directory of Open Access Journals (Sweden)

    Timothy J. Deming

    2013-01-01

    Full Text Available The integration of discrete metal complexes has been attracting significant interest due to the potential of these materials for soft metal-metal interactions and supramolecular assembly. Additionally, block copolypeptide amphiphiles have been investigated concerning their capacity for self-assembly into structures such as nanoparticles, nanosheets and nanofibers. In this study, we combined these two concepts by investigating the self-assembly of discrete metal complexes in aqueous solution using block copolypeptides. Normally, discrete metal complexes such as [Au(CN2]−, when molecularly dispersed in water, cannot interact with one another. Our results demonstrated, however, that the addition of block copolypeptide amphiphiles such as K183L19 to [Au(CN2]− solutions induced one-dimensional integration of the discrete metal complex, resulting in photoluminescence originating from multinuclear complexes with metal-metal interactions. Transmission electron microscopy (TEM showed a fibrous nanostructure with lengths and widths of approximately 100 and 20 nm, respectively, which grew to form advanced nanoarchitectures, including those resembling the weave patterns of Waraji (traditional Japanese straw sandals. This concept of combining block copolypeptide amphiphiles with discrete coordination compounds allows the design of flexible and functional supramolecular coordination systems in water.

  12. Understanding the structure and performance of self-assembled triblock terpolymer membranes

    KAUST Repository

    Pendergast, MaryTheresa M.

    2013-10-01

    Nanoporous membranes represent a possible route towards more precise particle and macromolecular separations, which are of interest across many industries. Here, we explored membranes with vertically-aligned nanopores formed from a poly(isoprene-. b-styrene-. b-4 vinyl pyridine) (ISV) triblock terpolymer via a hybrid self-assembly/nonsolvent induced phase separation process (S-NIPS). ISV concentration, solvent composition, and evaporation time in the S-NIPS process were varied to tailor ordering of the selective layer and produce enhanced water permeability. Here, water permeability was doubled over previous versions of ISV membranes. This was achieved by increasing volatile solvent concentration, thereby decreasing the evaporation period required for self-assembly. Fine-tuning was required, however, since overly-rapid evaporation did not yield the desired pore structure. Transport models, used to relate the in-. situ structure to the performance of these materials, revealed narrowing of pores and blocking by the dense region below. It was shown that these vertically aligned nanoporous membranes compare favorably with commercial ultrafiltration membranes formed by NIPS and track-etching processes, which suggests that there is practical value in further developing and optimizing these materials for specific industrial separations. © 2013 Elsevier B.V.

  13. Linear correlation of interfacial tension at water-solvent interface, solubility of water in organic solvents, and SE* scale parameters

    International Nuclear Information System (INIS)

    Mezhov, E.A.; Khananashvili, N.L.; Shmidt, V.S.

    1988-01-01

    A linear correlation has been established between the solubility of water in water-immiscible organic solvents and the interfacial tension at the water-solvent interface on the one hand and the parameters of the SE* and π* scales for these solvents on the other hand. This allows us, using the known tabulated SE* or π* parameters for each solvent, to predict the values of the interfacial tension and the solubility of water for the corresponding systems. We have shown that the SE* scale allows us to predict these values more accurately than other known solvent scales, since in contrast to other scales it characterizes solvents found in equilibrium with water

  14. Self-assembly of amorphous biophotonic nanostructures by phase separation

    Energy Technology Data Exchange (ETDEWEB)

    Dufresne, Eric R.; Noh, Heeso; Saranathan, Vinodkumar; Mochrie, Simon G.J.; Cao, Hui; Prum, Richard O.; (Yale)

    2009-04-23

    Some of the most vivid colors in the animal kingdom are created not by pigments, but by wavelength-selective scattering of light from nanostructures. Here we investigate quasi-ordered nanostructures of avian feather barbs which produce vivid non-iridescent colors. These {beta}-keratin and air nanostructures are found in two basic morphologies: tortuous channels and amorphous packings of spheres. Each class of nanostructure is isotropic and has a pronounced characteristic length scale of variation in composition. These local structural correlations lead to strong backscattering over a narrow range of optical frequencies and little variation with angle of incidence. Such optical properties play important roles in social and sexual communication. To be effective, birds need to precisely control the development of these nanoscale structures, yet little is known about how they grow. We hypothesize that multiple lineages of birds have convergently evolved to exploit phase separation and kinetic arrest to self-assemble spongy color-producing nanostructures in feather barbs. Observed avian nanostructures are strikingly similar to those self-assembled during the phase separation of fluid mixtures; the channel and sphere morphologies are characteristic of phase separation by spinodal decomposition and nucleation and growth, respectively. These unstable structures are locked-in by the kinetic arrest of the {beta}-keratin matrix, likely through the entanglement or cross-linking of supermolecular {beta}-keratin fibers. Using the power of self-assembly, birds can robustly realize a diverse range of nanoscopic morphologies with relatively small physical and chemical changes during feather development.

  15. Matrix development in self-assembly of articular cartilage.

    Directory of Open Access Journals (Sweden)

    Gidon Ofek

    2008-07-01

    Full Text Available Articular cartilage is a highly functional tissue which covers the ends of long bones and serves to ensure proper joint movement. A tissue engineering approach that recapitulates the developmental characteristics of articular cartilage can be used to examine the maturation and degeneration of cartilage and produce fully functional neotissue replacements for diseased tissue.This study examined the development of articular cartilage neotissue within a self-assembling process in two phases. In the first phase, articular cartilage constructs were examined at 1, 4, 7, 10, 14, 28, 42, and 56 days immunohistochemically, histologically, and through biochemical analysis for total collagen and glycosaminoglycan (GAG content. Based on statistical changes in GAG and collagen levels, four time points from the first phase (7, 14, 28, and 56 days were chosen to carry into the second phase, where the constructs were studied in terms of their mechanical characteristics, relative amounts of collagen types II and VI, and specific GAG types (chondroitin 4-sulfate, chondroitin 6-sulfate, dermatan sulfate, and hyaluronan. Collagen type VI was present in initial abundance and then localized to a pericellular distribution at 4 wks. N-cadherin activity also spiked at early stages of neotissue development, suggesting that self-assembly is mediated through a minimization of free energy. The percentage of collagen type II to total collagen significantly increased over time, while the proportion of collagen type VI to total collagen decreased between 1 and 2 wks. The chondroitin 6- to 4- sulfate ratio decreased steadily during construct maturation. In addition, the compressive properties reached a plateau and tensile characteristics peaked at 4 wks.The indices of cartilage formation examined in this study suggest that tissue maturation in self-assembled articular cartilage mirrors known developmental processes for native tissue. In terms of tissue engineering, it is

  16. Chemical solution route to self-assembled epitaxial oxide nanostructures.

    Science.gov (United States)

    Obradors, X; Puig, T; Gibert, M; Queraltó, A; Zabaleta, J; Mestres, N

    2014-04-07

    Self-assembly of oxides as a bottom-up approach to functional nanostructures goes beyond the conventional nanostructure formation based on lithographic techniques. Particularly, chemical solution deposition (CSD) is an ex situ growth approach very promising for high throughput nanofabrication at low cost. Whereas strain engineering as a strategy to define nanostructures with tight control of size, shape and orientation has been widely used in metals and semiconductors, it has been rarely explored in the emergent field of functional complex oxides. Here we will show that thermodynamic modeling can be very useful to understand the principles controlling the growth of oxide nanostructures by CSD, and some attractive kinetic features will also be presented. The methodology of strain engineering is applied in a high degree of detail to form different sorts of nanostructures (nanodots, nanowires) of the oxide CeO2 with fluorite structure which then is used as a model system to identify the principles controlling self-assembly and self-organization in CSD grown oxides. We also present, more briefly, the application of these ideas to other oxides such as manganites or BaZrO3. We will show that the nucleation and growth steps are essentially understood and manipulated while the kinetic phenomena underlying the evolution of the self-organized networks are still less widely explored, even if very appealing effects have been already observed. Overall, our investigation based on a CSD approach has opened a new strategy towards a general use of self-assembly and self-organization which can now be widely spread to many functional oxide materials.

  17. Self-assembly of silver nanoparticles and bacteriophage

    Directory of Open Access Journals (Sweden)

    Santi Scibilia

    2016-03-01

    Full Text Available Biohybrid nanostructured materials, composed of both inorganic nanoparticles and biomolecules, offer prospects for many new applications in extremely diverse fields such as chemistry, physics, engineering, medicine and nanobiotechnology. In the recent years, Phage display technique has been extensively used to generate phage clones displaying surface peptides with functionality towards organic materials. Screening and selection of phage displayed material binding peptides has attracted great interest because of their use for development of hybrid materials with multiple functionalities. Here, we present a self-assembly approach for the construction of hybrid nanostructured networks consisting of M13 P9b phage clone, specific for Pseudomonas aeruginosa, selected by Phage display technology, directly assembled with silver nanoparticles (AgNPs, previously prepared by pulsed laser ablation. These networks are characterized by UV–vis optical spectroscopy, scanning/transmission electron microscopies and Raman spectroscopy. We investigated the influence of different ions and medium pH on self-assembly by evaluating different phage suspension buffers. The assembly of these networks is controlled by electrostatic interactions between the phage pVIII major capsid proteins and the AgNPs. The formation of the AgNPs-phage networks was obtained only in two types of tested buffers at a pH value near the isoelectric point of each pVIII proteins displayed on the surface of the clone. This systematic study allowed to optimize the synthesis procedure to assembly AgNPs and bacteriophage. Such networks find application in the biomedical field of advanced biosensing and targeted gene and drug delivery. Keywords: Phage display, Silver nanoparticles, Self-assembly, Hybrid architecture, Raman spectroscopy

  18. Encapsulation of gold nanoparticles into self-assembling protein nanoparticles

    Directory of Open Access Journals (Sweden)

    Yang Yongkun

    2012-10-01

    Full Text Available Abstract Background Gold nanoparticles are useful tools for biological applications due to their attractive physical and chemical properties. Their applications can be further expanded when they are functionalized with biological molecules. The biological molecules not only provide the interfaces for interactions between nanoparticles and biological environment, but also contribute their biological functions to the nanoparticles. Therefore, we used self-assembling protein nanoparticles (SAPNs to encapsulate gold nanoparticles. The protein nanoparticles are formed upon self-assembly of a protein chain that is composed of a pentameric coiled-coil domain at the N-terminus and trimeric coiled-coil domain at the C-terminus. The self-assembling protein nanoparticles form a central cavity of about 10 nm in size, which is ideal for the encapsulation of gold nanoparticles with similar sizes. Results We have used SAPNs to encapsulate several commercially available gold nanoparticles. The hydrodynamic size and the surface coating of gold nanoparticles are two important factors influencing successful encapsulation by the SAPNs. Gold nanoparticles with a hydrodynamic size of less than 15 nm can successfully be encapsulated. Gold nanoparticles with citrate coating appear to have stronger interactions with the proteins, which can interfere with the formation of regular protein nanoparticles. Upon encapsulation gold nanoparticles with polymer coating interfere less strongly with the ability of the SAPNs to assemble into nanoparticles. Although the central cavity of the SAPNs carries an overall charge, the electrostatic interaction appears to be less critical for the efficient encapsulation of gold nanoparticles into the protein nanoparticles. Conclusions The SAPNs can be used to encapsulate gold nanoparticles. The SAPNs can be further functionalized by engineering functional peptides or proteins to either their N- or C-termini. Therefore encapsulation of gold

  19. Biomimetic self-assembly of a functional asymmetrical electronic device.

    Science.gov (United States)

    Boncheva, Mila; Gracias, David H; Jacobs, Heiko O; Whitesides, George M

    2002-04-16

    This paper introduces a biomimetic strategy for the fabrication of asymmetrical, three-dimensional electronic devices modeled on the folding of a chain of polypeptide structural motifs into a globular protein. Millimeter-size polyhedra-patterned with logic devices, wires, and solder dots-were connected in a linear string by using flexible wire. On self-assembly, the string folded spontaneously into two domains: one functioned as a ring oscillator, and the other one as a shift register. This example demonstrates that biomimetic principles of design and self-organization can be applied to generate multifunctional electronic systems of complex, three-dimensional architecture.

  20. Self-assembly of heterogeneous supramolecular structures with uniaxial anisotropy.

    Science.gov (United States)

    Ruiz-Osés, M; Gonzalez-Lakunza, N; Silanes, I; Gourdon, A; Arnau, A; Ortega, J E

    2006-12-28

    Uniaxial anisotropy in two-dimensional self-assembled supramolecular structures is achieved by the coadsorption of two different linear molecules with complementary amine and imide functionalization. The two-dimensional monolayer is defined by a one-dimensional stack of binary chains, which can be forced to line up along steps in vicinal surfaces. The competing driving forces in the self-organization process are discussed in light of the structures observed during single molecule adsorption and coadsorption on flat and vicinal surfaces and the corresponding theoretical calculations.

  1. Passivation effects in B doped self-assembled Si nanocrystals

    International Nuclear Information System (INIS)

    Puthen Veettil, B.; Wu, Lingfeng; Jia, Xuguang; Lin, Ziyun; Zhang, Tian; Yang, Terry; Johnson, Craig; Conibeer, Gavin; Perez-Würfl, Ivan; McCamey, Dane

    2014-01-01

    Doping of semiconductor nanocrystals has enabled their widespread technological application in optoelectronics and micro/nano-electronics. In this work, boron-doped self-assembled silicon nanocrystal samples have been grown and characterised using Electron Spin Resonance and photoluminescence spectroscopy. The passivation effects of boron on the interface dangling bonds have been investigated. Addition of boron dopants is found to compensate the active dangling bonds at the interface, and this is confirmed by an increase in photoluminescence intensity. Further addition of dopants is found to reduce the photoluminescence intensity by decreasing the minority carrier lifetime as a result of the increased number of non-radiative processes

  2. A 3D Optical Metamaterial Made by Self-Assembly

    KAUST Repository

    Vignolini, Silvia

    2011-10-24

    Optical metamaterials have unusual optical characteristics that arise from their periodic nanostructure. Their manufacture requires the assembly of 3D architectures with structure control on the 10-nm length scale. Such a 3D optical metamaterial, based on the replication of a self-assembled block copolymer into gold, is demonstrated. The resulting gold replica has a feature size that is two orders of magnitude smaller than the wavelength of visible light. Its optical signature reveals an archetypal Pendry wire metamaterial with linear and circular dichroism. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. A 3D Optical Metamaterial Made by Self-Assembly

    KAUST Repository

    Vignolini, Silvia; Yufa, Nataliya A.; Cunha, Pedro S.; Guldin, Stefan; Rushkin, Ilia; Stefik, Morgan; Hur, Kahyun; Wiesner, Ulrich; Baumberg, Jeremy J.; Steiner, Ullrich

    2011-01-01

    Optical metamaterials have unusual optical characteristics that arise from their periodic nanostructure. Their manufacture requires the assembly of 3D architectures with structure control on the 10-nm length scale. Such a 3D optical metamaterial, based on the replication of a self-assembled block copolymer into gold, is demonstrated. The resulting gold replica has a feature size that is two orders of magnitude smaller than the wavelength of visible light. Its optical signature reveals an archetypal Pendry wire metamaterial with linear and circular dichroism. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Oscillatory persistent currents in self-assembled quantum rings.

    Science.gov (United States)

    Kleemans, N A J M; Bominaar-Silkens, I M A; Fomin, V M; Gladilin, V N; Granados, D; Taboada, A G; García, J M; Offermans, P; Zeitler, U; Christianen, P C M; Maan, J C; Devreese, J T; Koenraad, P M

    2007-10-05

    We report the direct measurement of the persistent current carried by a single electron by means of magnetization experiments on self-assembled InAs/GaAs quantum rings. We measured the first Aharonov-Bohm oscillation at a field of 14 T, in perfect agreement with our model based on the structural properties determined by cross-sectional scanning tunneling microscopy measurements. The observed oscillation magnitude of the magnetic moment per electron is remarkably large for the topology of our nanostructures, which are singly connected and exhibit a pronounced shape asymmetry.

  5. Microcolumns with self-assembled particle frits for proteomics

    DEFF Research Database (Denmark)

    Ishihama, Yasushi; Rappsilber, Juri; Andersen, Jens S

    2002-01-01

    LC-MS-MS experiments in proteomics are usually performed with packed microcolumns employing frits or outlets smaller than the particle diameter to retain the packing material. We have developed packed microcolumns using self-assembled particles (SAPs) as frits that are smaller than the size...... of the outlet. A five to one ratio of outlet size to particle diameter appears to be the upper maximum. In these situations the particles assembled into an arch over the outlet like the stones in a stone bridge. When 3 microm particles were packed into a tapered column with an 8 microm outlet, two particles...

  6. Directed Formation of DNA Nanoarrays through Orthogonal Self-Assembly

    Directory of Open Access Journals (Sweden)

    Eugen Stulz

    2011-06-01

    Full Text Available We describe the synthesis of terpyridine modified DNA strands which selectively form DNA nanotubes through orthogonal hydrogen bonding and metal complexation interactions. The short DNA strands are designed to self-assemble into long duplexes through a sticky-end approach. Addition of weakly binding metals such as Zn(II and Ni(II induces the formation of tubular arrays consisting of DNA bundles which are 50-200 nm wide and 2-50 nm high. TEM shows additional long distance ordering of the terpy-DNA complexes into fibers.

  7. Rapid self-assembly of block copolymers to photonic crystals

    Science.gov (United States)

    Xia, Yan; Sveinbjornsson, Benjamin R; Grubbs, Robert H; Weitekamp, Raymond; Miyake, Garret M; Atwater, Harry A; Piunova, Victoria; Daeffler, Christopher Scot; Hong, Sung Woo; Gu, Weiyin; Russell, Thomas P.

    2016-07-05

    The invention provides a class of copolymers having useful properties, including brush block copolymers, wedge-type block copolymers and hybrid wedge and polymer block copolymers. In an embodiment, for example, block copolymers of the invention incorporate chemically different blocks comprising polymer size chain groups and/or wedge groups that significantly inhibit chain entanglement, thereby enhancing molecular self-assembly processes for generating a range of supramolecular structures, such as periodic nanostructures and microstructures. The present invention also provides useful methods of making and using copolymers, including block copolymers.

  8. Light-assisted templated self assembly using photonic crystal slabs.

    Science.gov (United States)

    Mejia, Camilo A; Dutt, Avik; Povinelli, Michelle L

    2011-06-06

    We explore a technique which we term light-assisted templated self-assembly. We calculate the optical forces on colloidal particles over a photonic crystal slab. We show that exciting a guided resonance mode of the slab yields a resonantly-enhanced, attractive optical force. We calculate the lateral optical forces above the slab and predict that stably trapped periodic patterns of particles are dependent on wavelength and polarization. Tuning the wavelength or polarization of the light source may thus allow the formation and reconfiguration of patterns. We expect that this technique may be used to design all-optically reconfigurable photonic devices.

  9. Nanoporous network channels from self-assembled triblock copolymer supramolecules.

    Science.gov (United States)

    du Sart, Gerrit Gobius; Vukovic, Ivana; Vukovic, Zorica; Polushkin, Evgeny; Hiekkataipale, Panu; Ruokolainen, Janne; Loos, Katja; ten Brinke, Gerrit

    2011-02-16

    Supramolecular complexes of a poly(tert-butoxystyrene)-block-polystyrene-block-poly(4-vinylpyridine) triblock copolymers and less than stoichiometric amounts of pentadecylphenol (PDP) are shown to self-assemble into a core-shell gyroid morphology with the core channels formed by the hydrogen-bonded P4VP(PDP)complexes. After structure formation, PDP was removed using a simple washing procedure, resulting in well-ordered nanoporous films that were used as templates for nickel plating. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Self-Assembled Supramolecular Architectures Lyotropic Liquid Crystals

    CERN Document Server

    Garti, Nissim

    2012-01-01

    This book will describe fundamentals and recent developments in the area of Self-Assembled Supramolecular Architecture and their relevance to the  understanding of the functionality of  membranes  as delivery systems for active ingredients. As the heirarchial architectures determine their performance capabilities, attention will be paid to theoretical and design aspects related to the construction of lyotropic liquid crystals: mesophases such as lamellar, hexagonal, cubic, sponge phase micellosomes. The book will bring to the reader mechanistic aspects, compositional c

  11. Exploring the properties and possibilities of self-assembling

    DEFF Research Database (Denmark)

    Andersen, Karsten Brandt; Castillo, Jaime

    2013-01-01

    structures ranging from piezo electricity over semi conductance to fluorescence. If such peptide nanotubes could be controlled and incorporated in sensors such as a biological field effect transistor it would greatly reduce the fabrication costs while at the same time providing researchers with new...... and exciting possibilities. The major driving forces supporting the interest in the peptide nanotubes is the fast and simple assembly process combined with their remarkable stability towards alcohols, organic solvents, and biological analytes that was presented shortly after the self-assembling properties...... and illustrated their potential use as sensitive temperature sensor....

  12. Self-assembled manganese oxide structures through direct oxidation

    KAUST Repository

    Zhao, Chao; Wang, Qingxiao; Yang, Yang; Zhang, Bei; Zhang, Xixiang

    2012-01-01

    The morphology and phase of self-assembled manganese oxides during different stages of thermal oxidation were studied. Very interesting morphological patterns of Mn oxide films were observed. At the initial oxidation stage, the surface was characterized by the formation of ring-shaped patterns. As the oxidation proceeded to the intermediate stage, concentric plates formed to relax the compressive stress. Our experimental results gave a clear picture of the evolution of the structures. We also examined the properties of the structures. © 2012 Elsevier B.V.

  13. Self-assembled manganese oxide structures through direct oxidation

    KAUST Repository

    Zhao, Chao

    2012-12-01

    The morphology and phase of self-assembled manganese oxides during different stages of thermal oxidation were studied. Very interesting morphological patterns of Mn oxide films were observed. At the initial oxidation stage, the surface was characterized by the formation of ring-shaped patterns. As the oxidation proceeded to the intermediate stage, concentric plates formed to relax the compressive stress. Our experimental results gave a clear picture of the evolution of the structures. We also examined the properties of the structures. © 2012 Elsevier B.V.

  14. Surfactant self-assembly in alcohol-rich solutions

    International Nuclear Information System (INIS)

    Bouguerra, N.; Jebari, M.M.; Gomati, R.; Gharbi, A.

    2005-01-01

    Ionic conductivity and viscosity measurements are achieved along alcohol dilution lines of a single-isotropic phase domain, which extends from the alcohol corner to sponge phase domain to brine corner, of an alcohol-surfactant-brine phase diagram. The results are discussed in terms of amphiphilic self-assembly which leads to stable mixtures of the slightly miscible alcohol and brine used. We show the formation of reverse micelles, whose cores are either dry or charged of brine according to the samples composition, and whose sizes remain small near the sponge phase structure

  15. Biomimetic engineering: towards a self-assembled nanotechnology

    International Nuclear Information System (INIS)

    Braach-Maksvytis, V.

    2002-01-01

    Full text: The Nanoscience and Systems program was set up within CSIRO Telecommunications and Industrial Physics three years ago with an emphasis on biomimetic engineering, with the aim of developing new cross-disciplinary research in traditional physics areas. By combining expertise in experimental and theoretical physics with biology and chemistry, new approaches towards understanding and using nanoscale systems and devices are being explored. Research in the program ranges from using self-assembled lipid membranes for surface passivation of GaAs transistors to the electrical properties of nanoparticle films and devices. An overview of the research will be given, highlighting the diversity of nanotechnology applications

  16. Correlations between water-soluble organic aerosol and water vapor: a synergistic effect from biogenic emissions?

    Science.gov (United States)

    Hennigan, Christopher J; Bergin, Michael H; Weber, Rodney J

    2008-12-15

    Ground-based measurements of meteorological parameters and water-soluble organic carbon in the gas(WSOCg) and particle (WSOCp) phases were carried out in Atlanta, Georgia, from May to September 2007. Fourteen separate events were observed throughout the summer in which WSOCp and water vapor concentrations were highly correlated (average WSOCp-water vapor r = 0.92); however, for the entire summer, no well-defined relationship existed between the two. The correlation events, which lasted on average 19 h, were characterized by a wide range of WSOCp and water vapor concentrations. Several hypotheses for the correlation are explored, including heterogeneous liquid phase SOA formation and the co-emission of biogenic VOCs and water vapor. The data provide supporting evidence for contributions from both and suggest the possibility of a synergistic effect between the co-emission of water vapor and VOCs from biogenic sources on SOA formation. Median WSOCp concentrations were also correlated with elemental carbon (EC), although this correlation extended over the entire summer. Despite the emission of water vapor from anthropogenic mobile sources and the WSOCp-EC correlation, mobile sources were not considered a potential cause for the WSOCp-water vapor correlations because of their low contribution to the water vapor budget. Meteorology could perhaps have influenced the WSOCp-EC correlation, but other factors are implicated as well. Overall, the results suggest that the temperature-dependent co-emission of water vapor through evapotranspiration and SOA precursor-VOCs by vegetation may be an important process contributing to SOA in some environments.

  17. Solubility of hydrogen in water in a broad temperature and pressure range

    International Nuclear Information System (INIS)

    Baranenko, V.I.; Kirov, V.S.

    1989-01-01

    In the coolant of water-water reactors, as a result of radiolytic decomposition of water and chemical additives (hydrazine and ammonia) and saturation of the make-up water of the first loop with free hydrogen in order to suppress radiolysis, 30-60 ml/kg of hydrogen is present in normal conditions. On being released from the water, it is free to accumulate in micropores of the metals, resulting in hydrogen embrittlement; gas accumulates in stagnant zones, with deterioration in heat transfer in the first loop and corresponding difficulty in the use of the reactor and the whole reactor loop. To determine the amount of free hydrogen and hydrogen dissolved in water in different elements of the first loop, it is necessary to know the limiting solubility of hydrogen in water at different temperatures and pressures, and also to have the corresponding theoretical dependences. The experimental data on the solubility of hydrogen in water are nonsystematic and do not cover the parameter ranges of modern nuclear power plants (P = 10-30 MPa, T = 260-370C). Therefore, the aim of the present work is to establish a well-founded method of calculating the limiting solubility of hydrogen in water and, on this basis, to compile tables of the limiting solubility of hydrogen in water at pressures 0.1-50 MPa and temperatures 0-370C

  18. Organic compounds in hot-water-soluble fractions from water repellent soils

    Science.gov (United States)

    Atanassova, Irena; Doerr, Stefan

    2014-05-01

    Water repellency (WR) is a soil property providing hydrophobic protection and preventing rapid microbial decomposition of organic matter entering the soil with litter or plant residues. Global warming can cause changes in WR, thus influencing water storage and plant productivity. Here we assess two different approaches for analysis of organic compounds composition in hot water extracts from accelerated solvent extraction (ASE) of water repellent soils. Extracts were lyophilized, fractionated on SiO2 (sand) and SPE cartridge, and measured by GC/MS. Dominant compounds were aromatic acids, short chain dicarboxylic acids (C4-C9), sugars, short chain fatty acids (C8-C18), and esters of stearic and palmitic acids. Polar compounds (mainly sugars) were adsorbed on applying SPE clean-up procedure, while esters were highly abundant. In addition to the removal of polar compounds, hydrophobic esters and hydrocarbons (alkanes and alkenes particle wettability and C dynamics in soils. Key words: soil water repellency, hot water soluble carbon (HWSC), GC/MS, hydrophobic compounds

  19. Heterojunction nanowires having high activity and stability for the reduction of oxygen: Formation by self-assembly of iron phthalocyanine with single walled carbon nanotubes (FePc/SWNTs)

    KAUST Repository

    Zhu, Jia; Jia, Nana; Yang, Lijun; Su, Dong; Park, Jinseong; Choi, YongMan; Gong, Kuanping

    2014-01-01

    A self-assembly approach to preparing iron phthalocyanine/single-walled carbon nanotube (FePc/SWNT) heterojunction nanowires as a new oxygen reduction reaction (ORR) electrocatalyst has been developed by virtue of water-adjusted dispersing in 1

  20. [Determination of equilibrium solubility and n-octanol/water partition coefficient of pulchinenosiden D by HPLC].

    Science.gov (United States)

    Rao, Xiao-Yong; Yin, Shan; Zhang, Guo-Song; Luo, Xiao-Jian; Jian, Hui; Feng, Yu-Lin; Yang, Shi-Lin

    2014-05-01

    To determine the equilibrium solubility of pulchinenosiden D in different solvents and its n-octanol/water partition coefficients. Combining shaking flask method and high performance liquid chromatography (HPLC) to detect the n-octanol/water partition coefficients of pulchinenosiden D, the equilibrium solubility of pulchinenosiden D in six organic solvents and different pH buffer solution were determined by HPLC analysis. n-Octanol/water partition coefficients of pulchinenosiden D in different pH were greater than zero, the equilibrium solubility of pulchinenosiden D was increased with increase the pH of the buffer solution. The maximum equilibrium solubility of pulchinenosiden D was 255.89 g x L(-1) in methanol, and minimum equilibrium solubility of pulchinenosiden D was 0.20 g x L(-1) in acetonitrile. Under gastrointestinal physiological conditions, pulchinenosiden D exists in molecular state and it has good absorption but poor water-solubility, so increasing the dissolution rate of pulchinenosiden D may enhance its bioavailability.