WorldWideScience

Sample records for water soluble organics

  1. Characterization of Soluble Organics in Produced Water

    Energy Technology Data Exchange (ETDEWEB)

    Bostick, D.T.

    2002-01-16

    Soluble organics in produced water and refinery effluents represent treatment problems for the petroleum industry. Neither the chemistry involved in the production of soluble organics nor the impact of these chemicals on total effluent toxicity is well understood. The U.S. Department of Energy provides funding for Oak Ridge National Laboratory (ORNL) to support a collaborative project with Shell, Chevron, Phillips, and Statoil entitled ''Petroleum and Environmental Research Forum project (PERF 9844: Manage Water-Soluble Organics in Produced Water''). The goal of this project, which involves characterization and evaluation of these water-soluble compounds, is aimed at reducing the future production of such contaminants. To determine the effect that various drilling conditions might have on water-soluble organics (WSO) content in produced water, a simulated brine water containing the principal inorganic components normally found in Gulf of Mexico (GOM) brine sources was prepared. The GOM simulant was then contacted with as-received crude oil from a deep well site to study the effects of water cut, produced-water pH, salinity, pressure, temperature, and crude oil sources on the type and content of the WSO in produced water. The identities of individual semivolatile organic compounds (SVOCs) were determined in all as-received crude and actual produced water samples using standard USEPA Method (8270C) protocol. These analyses were supplemented with the more general measurements of total petroleum hydrocarbon (TPH) content in the gas (C{sub 6}-C{sub 10}), diesel (C{sub 10}-C{sub 20}), and oil (C{sub 20}-C{sub 28}) carbon ranges as determined by both gas chromatographic (GC) and infrared (IR) analyses. An open liquid chromatographic procedure was also used to differentiate the saturated hydrocarbon, aromatic hydrocarbon, and polar components within the extractable TPH. Inorganic constituents in the produced water were analyzed by ion

  2. OZONE TREATMENT OF SOLUBLE ORGANICS IN PRODUCED WATER

    Energy Technology Data Exchange (ETDEWEB)

    Klasson, KT

    2002-03-14

    This project was an extension of previous research to improve the applicability of ozonation and will help address the petroleum-industry problem of treating produced water containing soluble organics. The goal of this project was to maximize oxidation of hexane-extractable organics during a single-pass operation. The project investigated: (1) oxidant production by electrochemical and sonochemical methods, (2) increasing the mass transfer rate in the reactor by forming microbubbles during ozone injection into the produced water, and (3) using ultraviolet irradiation to enhance the reaction if needed. Several types of methodologies for treatment of soluble organics in synthetic and actual produced waters have been performed. The technologies tested may be categorized as follows: (1) Destruction via sonochemical oxidation at different pH, salt concentration, ultraviolet irradiation, and ferrous iron concentrations. (2) Destruction via ozonation at different pH, salt concentration, hydrogen peroxide concentrations, ultraviolet irradiation, temperature, and reactor configurations.

  3. Impact of fog processing on water soluble organic aerosols.

    Science.gov (United States)

    Tripathi, S. N.; Chakraborty, A.; Gupta, T.

    2017-12-01

    Fog is a natural meteorological phenomenon that occurs all around the world, and contains a substantial quantity of liquid water. Fog is generally seen as a natural cleansing agent but can also form secondary organic aerosols (SOA) via aqueous processing of ambient organics. Few field studies have reported elevated O/C ratio and SOA mass during or after fog events. However, mechanism behind aqueous SOA formation and its contribution to total organic aerosols (OA) still remains unclear. In this study we have tried to explore the impact of fog/aqueous processing on the characteristics of water soluble organic aerosols (WSOC), which to our knowledge has not been studied before. To assess this, both online (using HR-ToF-AMS) and offline (using a medium volume PM2.5 sampler and quartz filter) aerosol sampling were carried out at Kanpur, India from 15 December 2014 - 10 February 2015. Further, offline analysis of the aqueous extracts of the collected filters were carried out by AMS to characterize the water soluble OA (WSOA). Several (17) fog events occurred during the campaign and high concentrations of OA (151 ± 68 µg/m3) and WSOA (47 ± 19 µg/m3) were observed. WSOA/OA ratios were similar during fog (0.36 ± 0.14) and nofog (0.34 ± 0.15) periods. WSOA concentrations were also similar (slightly higher) during foggy (49 ± 18 µg/m3) and non-foggy periods (46 ± 20 µg/m3), in spite of fog scavenging. However, WSOA was more oxidized during foggy period (average O/C = 0.81) than non foggy periods (average O/C = 0.70). Like WSOA, OA was also more oxidized during foggy periods (average O/C = 0.64) than non foggy periods (average O/C = 0.53). During fog, WSOA to WIOA (water insoluble OA) ratios were higher (0.65 ± 0.16) compared to non foggy periods (0.56 ± 0.15). These observations clearly showed that WSOA become more dominant and processed during fog events, possibly due to the presence of fog droplets. This study highlights that fog processing of soluble organics

  4. Ceramic membrane ozonator for soluble organics removal from produced water

    Science.gov (United States)

    Siagian, U. W. R.; Dwipramana, A. S.; Perwira, S. B.; Khoiruddin; Wenten, I. G.

    2018-01-01

    In this work, the performance of ozonation for degradation of soluble organic compounds in produced water was investigated. Tubular ceramic membrane diffuser (with and without a static mixer in the lumen side) was used to facilitate contact between ozone and produced water. The ozonation was conducted at ozone flow rate of 8 L.min-1, ozone concentration of 0.4 ppm, original pH of the solution, and pressure of 1.2 bar, while the flow rates of the produced water were varied (192, 378 and 830 mL.min-1). It was found that the reduction of benzene, toluene, ethylbenzene, and xylene were 85%, 99%, 85%, and 95%, respectively. A lower liquid flow rate in a laminar state showed a better component reduction due to the longer contacting time between the liquid and the gas phase. The introduction of the static mixer in the lumen side of the membrane as a turbulence promoter provided a positive effect on the performance of the membrane diffuser. The twisted static mixer exhibited the better removal rate than the spiral static mixer.

  5. Analyzing water soluble soil organics as Trifluoroacetyl derivatives by liquid state proton nuclear magnetic resonance

    Science.gov (United States)

    Felipe Garza Sanchez; Zakiya Holmes Leggett; Sabapathy Sankar

    2005-01-01

    In forested ecosystems, water soluble organics play an important role in soil processes including carbon and nutrient turnover, microbial activity and pedogenesis. The quantity and quality (i.e., chemistry) of these materials is sensitive to land management practices. Monitoring alterations in the chemistry of water soluble organics resulting from land management...

  6. Water uptake by fresh Indonesian peat burning particles is limited by water-soluble organic matter

    Science.gov (United States)

    Chen, Jing; Hapsari Budisulistiorini, Sri; Itoh, Masayuki; Lee, Wen-Chien; Miyakawa, Takuma; Komazaki, Yuichi; Qing Yang, Liu Dong; Kuwata, Mikinori

    2017-09-01

    The relationship between hygroscopic properties and chemical characteristics of Indonesian biomass burning (BB) particles, which are dominantly generated from peatland fires, was investigated using a humidified tandem differential mobility analyzer. In addition to peat, acacia (a popular species at plantation) and fern (a pioneering species after disturbance by fire) were used for experiments. Fresh Indonesian peat burning particles are almost non-hygroscopic (mean hygroscopicity parameter, κ octanol-water partitioning method. κ values for the water extracts are high, especially for peat burning particles (A0 (a whole part of the water-soluble fraction): κ = 0.18, A1 (highly water-soluble fraction): κ = 0.30). This result stresses the importance of both the WSOC fraction and κ of the water-soluble fraction in determining the hygroscopicity of organic aerosol particles. Values of κ correlate positively (R = 0.89) with the fraction of m/z 44 ion signal quantified using a mass spectrometric technique, demonstrating the importance of highly oxygenated organic compounds to the water uptake by Indonesian BB particles. These results provide an experimentally validated reference for hygroscopicity of organics-dominated particles, thus contributing to more accurate estimation of environmental and climatic impacts driven by Indonesian BB particles on both regional and global scales.

  7. Water soluble organic aerosols in the Colorado Rocky Mountains, USA: composition, sources and optical properties

    OpenAIRE

    Xie, Mingjie; Mladenov, Natalie; Williams, Mark W.; Neff, Jason C.; Wasswa, Joseph; Hannigan, Michael P.

    2016-01-01

    Atmospheric aerosols have been shown to be an important input of organic carbon and nutrients to alpine watersheds and influence biogeochemical processes in these remote settings. For many remote, high elevation watersheds, direct evidence of the sources of water soluble organic aerosols and their chemical and optical characteristics is lacking. Here, we show that the concentration of water soluble organic carbon (WSOC) in the total suspended particulate (TSP) load at a high elevation site in...

  8. Water uptake by fresh Indonesian peat burning particles is limited by water-soluble organic matter

    Directory of Open Access Journals (Sweden)

    J. Chen

    2017-09-01

    Full Text Available The relationship between hygroscopic properties and chemical characteristics of Indonesian biomass burning (BB particles, which are dominantly generated from peatland fires, was investigated using a humidified tandem differential mobility analyzer. In addition to peat, acacia (a popular species at plantation and fern (a pioneering species after disturbance by fire were used for experiments. Fresh Indonesian peat burning particles are almost non-hygroscopic (mean hygroscopicity parameter, κ < 0.06 due to predominant contribution of water-insoluble organics. The range of κ spans from 0.02 to 0.04 (dry diameter = 100 nm, hereinafter for Riau peat burning particles, while that for Central Kalimantan ranges from 0.05 to 0.06. Fern combustion particles are more hygroscopic (κ = 0. 08, whereas the acacia burning particles have a mediate κ value (0.04. These results suggest that κ is significantly dependent on biomass types. This variance in κ is partially determined by fractions of water-soluble organic carbon (WSOC, as demonstrated by a correlation analysis (R = 0.65. κ of water-soluble organic matter is also quantified, incorporating the 1-octanol–water partitioning method. κ values for the water extracts are high, especially for peat burning particles (A0 (a whole part of the water-soluble fraction: κ = 0.18, A1 (highly water-soluble fraction: κ = 0.30. This result stresses the importance of both the WSOC fraction and κ of the water-soluble fraction in determining the hygroscopicity of organic aerosol particles. Values of κ correlate positively (R = 0.89 with the fraction of m∕z 44 ion signal quantified using a mass spectrometric technique, demonstrating the importance of highly oxygenated organic compounds to the water uptake by Indonesian BB particles. These results provide an experimentally validated reference for hygroscopicity of organics-dominated particles, thus contributing to more accurate

  9. On the solubility of nicotinic acid and isonicotinic acid in water and organic solvents

    International Nuclear Information System (INIS)

    Abraham, Michael H.; Acree, William E.

    2013-01-01

    Highlights: ► Solubilities of nicotinic acid and isonicotinic acids in organicsolvents have been determined. ► Solubilities are used to calculate Abraham descriptors for the two acids. ► These descriptors then yield water-solvent and gas-solvent partitions into numerous solvents. ► The solubility of the neutral acids in water is obtained. ► The method is straightforward and can be applied to any set of compound solubilities. -- Abstract: We have determined the solubility of nicotinic acid in four solvents and the solubility of isonicotinic acid in another four solvents. These results, together with literature data on the solubility of nicotinic acid in five other organic solvents and isonicotinic acid in four other organic solvents, have been analyzed through two linear Gibbs energy relationships in order to extract compound properties, or descriptors, that encode various solute–solvent interactions. The descriptors for nicotinic acid and isonicotinic acid can then be used in known equations for partition of solutes between water and organic solvents to predict partition coefficients and then further solubility in a host of organic solvents, as well as to predict a number of other physicochemical properties

  10. Solubility of daidzin in different organic solvents and (ethyl alcohol + water) mixed solvents

    International Nuclear Information System (INIS)

    Fan, Jie-Ping; Yang, Dan; Xu, Xiao-Kang; Guo, Xiao-Jie; Zhang, Xue-Hong

    2015-01-01

    Highlights: • The solubilities of daidzin were measured in various solvents. • The solubility data were correlated by three models. • The thermodynamic properties of the dissolution process were also determined. - Abstract: The solubility of daidzin in different organic solvents and (ethyl alcohol + water) mixed solvents was measured by high performance liquid chromatography (HPLC) analysis method from T = (283.2 to 323.2) K at atmosphere pressure. The results show that at higher temperature more daidzin dissolves, and moreover, the solubility increases with the ethyl alcohol mole fraction increase in the (ethyl alcohol + water) mixed solvents. The experimental solubility values were correlated by a simplified thermodynamic equation, λh equation and modified Apelblat equation. Based on the solubility of daidzin, the enthalpy and entropy of solution were also evaluated by van’t Hoff equation. The results illustrated that the dissolution process of daidzin is endothermic and entropy driven

  11. Processes controlling the production of aromatic water-soluble organic matter during litter decomposition

    NARCIS (Netherlands)

    Klotzbücher, T.; Kaiser, K.; Filley, T.R.; Kalbitz, K.

    2013-01-01

    Dissolved organic matter (DOM) plays a fundamental role for many soil processes. For instance, production, transport, and retention of DOM control properties and long-term storage of organic matter in mineral soils. Production of water-soluble compounds during the decomposition of plant litter is a

  12. Organic compounds in hot-water-soluble fractions from water repellent soils

    Science.gov (United States)

    Atanassova, Irena; Doerr, Stefan

    2014-05-01

    Water repellency (WR) is a soil property providing hydrophobic protection and preventing rapid microbial decomposition of organic matter entering the soil with litter or plant residues. Global warming can cause changes in WR, thus influencing water storage and plant productivity. Here we assess two different approaches for analysis of organic compounds composition in hot water extracts from accelerated solvent extraction (ASE) of water repellent soils. Extracts were lyophilized, fractionated on SiO2 (sand) and SPE cartridge, and measured by GC/MS. Dominant compounds were aromatic acids, short chain dicarboxylic acids (C4-C9), sugars, short chain fatty acids (C8-C18), and esters of stearic and palmitic acids. Polar compounds (mainly sugars) were adsorbed on applying SPE clean-up procedure, while esters were highly abundant. In addition to the removal of polar compounds, hydrophobic esters and hydrocarbons (alkanes and alkenes particle wettability and C dynamics in soils. Key words: soil water repellency, hot water soluble carbon (HWSC), GC/MS, hydrophobic compounds

  13. Correlations between water-soluble organic aerosol and water vapor: a synergistic effect from biogenic emissions?

    Science.gov (United States)

    Hennigan, Christopher J; Bergin, Michael H; Weber, Rodney J

    2008-12-15

    Ground-based measurements of meteorological parameters and water-soluble organic carbon in the gas(WSOCg) and particle (WSOCp) phases were carried out in Atlanta, Georgia, from May to September 2007. Fourteen separate events were observed throughout the summer in which WSOCp and water vapor concentrations were highly correlated (average WSOCp-water vapor r = 0.92); however, for the entire summer, no well-defined relationship existed between the two. The correlation events, which lasted on average 19 h, were characterized by a wide range of WSOCp and water vapor concentrations. Several hypotheses for the correlation are explored, including heterogeneous liquid phase SOA formation and the co-emission of biogenic VOCs and water vapor. The data provide supporting evidence for contributions from both and suggest the possibility of a synergistic effect between the co-emission of water vapor and VOCs from biogenic sources on SOA formation. Median WSOCp concentrations were also correlated with elemental carbon (EC), although this correlation extended over the entire summer. Despite the emission of water vapor from anthropogenic mobile sources and the WSOCp-EC correlation, mobile sources were not considered a potential cause for the WSOCp-water vapor correlations because of their low contribution to the water vapor budget. Meteorology could perhaps have influenced the WSOCp-EC correlation, but other factors are implicated as well. Overall, the results suggest that the temperature-dependent co-emission of water vapor through evapotranspiration and SOA precursor-VOCs by vegetation may be an important process contributing to SOA in some environments.

  14. Linear correlation of interfacial tension at water-solvent interface, solubility of water in organic solvents, and SE* scale parameters

    International Nuclear Information System (INIS)

    Mezhov, E.A.; Khananashvili, N.L.; Shmidt, V.S.

    1988-01-01

    A linear correlation has been established between the solubility of water in water-immiscible organic solvents and the interfacial tension at the water-solvent interface on the one hand and the parameters of the SE* and π* scales for these solvents on the other hand. This allows us, using the known tabulated SE* or π* parameters for each solvent, to predict the values of the interfacial tension and the solubility of water for the corresponding systems. We have shown that the SE* scale allows us to predict these values more accurately than other known solvent scales, since in contrast to other scales it characterizes solvents found in equilibrium with water

  15. Hygroscopic behavior of atmospheric aerosols containing nitrate salts and water-soluble organic acids

    Science.gov (United States)

    Jing, Bo; Wang, Zhen; Tan, Fang; Guo, Yucong; Tong, Shengrui; Wang, Weigang; Zhang, Yunhong; Ge, Maofa

    2018-04-01

    While nitrate salts have critical impacts on environmental effects of atmospheric aerosols, the effects of coexisting species on hygroscopicity of nitrate salts remain uncertain. The hygroscopic behaviors of nitrate salt aerosols (NH4NO3, NaNO3, Ca(NO3)2) and their internal mixtures with water-soluble organic acids were determined using a hygroscopicity tandem differential mobility analyzer (HTDMA). The nitrate salt / organic acid mixed aerosols exhibit varying phase behavior and hygroscopic growth depending upon the type of components in the particles. Whereas pure nitrate salt particles show continuous water uptake with increasing relative humidity (RH), the deliquescence transition is still observed for ammonium nitrate particles internally mixed with organic acids such as oxalic acid and succinic acid with a high deliquescence point. The hygroscopicity of submicron aerosols containing sodium nitrate and an organic acid is also characterized by continuous growth, indicating that sodium nitrate tends to exist in a liquid-like state under dry conditions. It is observed that in contrast to the pure components, the water uptake is hindered at low and moderate RH for calcium nitrate particles containing malonic acid or phthalic acid, suggesting the potential effects of mass transfer limitation in highly viscous mixed systems. Our findings improve fundamental understanding of the phase behavior and water uptake of nitrate-salt-containing aerosols in the atmospheric environment.

  16. Hygroscopic behavior of atmospheric aerosols containing nitrate salts and water-soluble organic acids

    Directory of Open Access Journals (Sweden)

    B. Jing

    2018-04-01

    Full Text Available While nitrate salts have critical impacts on environmental effects of atmospheric aerosols, the effects of coexisting species on hygroscopicity of nitrate salts remain uncertain. The hygroscopic behaviors of nitrate salt aerosols (NH4NO3, NaNO3, Ca(NO32 and their internal mixtures with water-soluble organic acids were determined using a hygroscopicity tandem differential mobility analyzer (HTDMA. The nitrate salt ∕ organic acid mixed aerosols exhibit varying phase behavior and hygroscopic growth depending upon the type of components in the particles. Whereas pure nitrate salt particles show continuous water uptake with increasing relative humidity (RH, the deliquescence transition is still observed for ammonium nitrate particles internally mixed with organic acids such as oxalic acid and succinic acid with a high deliquescence point. The hygroscopicity of submicron aerosols containing sodium nitrate and an organic acid is also characterized by continuous growth, indicating that sodium nitrate tends to exist in a liquid-like state under dry conditions. It is observed that in contrast to the pure components, the water uptake is hindered at low and moderate RH for calcium nitrate particles containing malonic acid or phthalic acid, suggesting the potential effects of mass transfer limitation in highly viscous mixed systems. Our findings improve fundamental understanding of the phase behavior and water uptake of nitrate-salt-containing aerosols in the atmospheric environment.

  17. Study of N-cinnamoylphenylhydroxylaminate solubility in water and organic solvents

    International Nuclear Information System (INIS)

    Pilipenko, A.T.; Shpak, Eh.A.; Samchuk, A.I.

    1975-01-01

    The composition of complexes of N-cinnamoylphenylhydroxylamine with copper, cadmium, lead, indium, iron, gallium, titanium, zirconium, hafnium, niobium, tantalum, tungsten, molybdenum and vanadium was determined. The solubility products of the N-cinnamoylphenylhydroxylaminates of copper, cadmium, indium, gallium and iron were determined by the method of measuring the solubility of precipitates in acid. The solubility of N-cinnamoylphenylhydroxalaminates of cadmium, indium, iron, titanium, zirconium, hafnium, niobium, tantalum, vanadium, molybdenum and tungsten in organic solvents was studied. Two-phase constants for the stability of the complexes were calculated. (author)

  18. High mobility organic field-effect transistor based on water-soluble deoxyribonucleic acid via spray coating

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Wei; Han, Shijiao; Huang, Wei; Yu, Junsheng, E-mail: jsyu@uestc.edu.cn [State Key Laboratory of Electronic Thin Films and Integrated Devices, School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu 610054 (China)

    2015-01-26

    High mobility organic field-effect transistors (OFETs) by inserting water-soluble deoxyribonucleic acid (DNA) buffer layer between electrodes and pentacene film through spray coating process were fabricated. Compared with the OFETs incorporated with DNA in the conventional organic solvents of ethanol and methanol: water mixture, the water-soluble DNA based OFET exhibited an over four folds enhancement of field-effect mobility from 0.035 to 0.153 cm{sup 2}/Vs. By characterizing the surface morphology and the crystalline structure of pentacene active layer through atomic force microscope and X-ray diffraction, it was found that the adoption of water solvent in DNA solution, which played a key role in enhancing the field-effect mobility, was ascribed to both the elimination of the irreversible organic solvent-induced bulk-like phase transition of pentacene film and the diminution of a majority of charge trapping at interfaces in OFETs.

  19. Case study of water-soluble metal containing organic constituents of biomass burning aerosol

    Science.gov (United States)

    Alexandra L. Chang-Graham; Luisa T. M. Profeta; Timothy J. Johnson; Robert J. Yokelson; Alexander Laskin; Julia Laskin

    2011-01-01

    Natural and prescribed biomass fires are a major source of aerosols that may persist in the atmosphere for several weeks. Biomass burning aerosols (BBA) can be associated with long-range transport of water-soluble N-, S-, P-, and metal-containing species. In this study, BBA samples were collected using a particle-into-liquid sampler (PILS) from laboratory burns of...

  20. Spectroscopic study of the water-soluble organic matter isolated from atmospheric aerosols collected under different atmospheric conditions

    International Nuclear Information System (INIS)

    Duarte, Regina M.B.O.; Pio, Casimiro A.; Duarte, Armando C.

    2005-01-01

    The composition of the water-soluble organic matter from fine aerosols collected in a rural location during two different meteorological conditions (summer and autumn) was investigated by UV-vis, synchronous fluorescence (with Δλ = 20 nm), FT-IR and CPMAS- 13 C NMR spectroscopies. A seasonal variation in the concentration of total carbon, organic carbon and water-soluble organic carbon was confirmed, with higher values during the autumn and lower values during the summer season. The chemical characterisation of the water-soluble organic matter showed that both samples are dominated by a high content of aliphatic structures, carboxyl groups and aliphatic carbons single bonded to one oxygen or nitrogen atom. However, the autumn sample exhibits a higher aromatic content than the summer sample, plus signals due to carbons of phenol, ketones and methoxyl groups. These signals were attributed to lignin breakdown products which are likely to be released during wood combustion processes. The obtained results put into evidence the major contribution of biomass burning processes in domestic fireplaces during low temperature conditions into both the concentration and the bulk chemical properties of the WSOC from fine aerosols

  1. Application of ion chromatography to the determination of water-soluble inorganic and organic ions in atmospheric aerosols.

    Science.gov (United States)

    Yu, Xue-Chun; He, Ke-Bin; Ma, Yong-Liang; Yang, Fu-Mo; Duan, Feng-Kui; Zheng, Ai-Hua; Zhao, Cheng-Yi

    2004-01-01

    A simple, sensitive and convenient ion chromatography(IC) method was established for the simultaneous determination of twelve water-soluble inorganic anions(F- , Cl- , NO2(-), NO3(-), SO3(2-), SO4(2-) , PO4(3-)), and fifteen water-soluble organic ions(formate, acetate, MSA, oxalate, malonate, succinate, phthalates, etc.) in atmospheric aerosols. The linear concentrations ranged from 0.005 microg/m3 to 500 microg/m3 ( r = 0.999-0.9999). The relative standard deviation (RSD) were 0.43%-2.00% and the detection limits were from 2.7 ng/m3 to 88 ng/m3. The proposed method was successfully applied to the simultaneous determination of those inorganic ions and organic ions in PM2.5 of Beijing.

  2. On linear correlation between interfacial tension of water-solvent interface solubility of water in organic solvents and parameters of diluent effect scale

    International Nuclear Information System (INIS)

    Mezhov, Eh.A.; Khananashvili, N.L.; Shmidt, V.S.

    1988-01-01

    Presence of linear correlation between water solubility in nonmiscible with it organic solvents, interfacial tension of water-solvent interface, on the one hand, and solvent effect scale parameters and these solvents π* - on the other hand, is established. It allows, using certain tabular parameters of solvent effect or each solvent π*, to predict values of interfacial tension and water solubility for corresponding systems. It is shown, that solvent effect scale allows to predict values more accurately, than other known solvent scales, as it in contrast to other scales characterizes solvents, which are in equilibrium with water

  3. Determination of the solubility of low volatility liquid organic compounds in water using volatile-tracer assisted headspace gas chromatography.

    Science.gov (United States)

    Zhang, Shu-Xin; Chai, Xin-Sheng; Barnes, Donald G

    2016-02-26

    This study reports a new headspace gas chromatographic method (HS-GC) for the determination of water solubility of low volatility liquid organic compounds (LVLOs). The HS-GC analysis was performed on a set of aqueous solutions containing a range of concentrations of toluene-spiked (as a tracer) LVLOs, from under-saturation to over-saturation. A plot of the toluene tracer GC signal vs. the concentration of the LVLO results in two lines of different slopes that intersect at the concentration corresponding to the compound's solubility in water. The results showed that the HS-GC method has good precision (RSD waters of environmental and biological systems. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Large contribution of fossil fuel derived secondary organic carbon to water soluble organic aerosols in winter haze in China

    Directory of Open Access Journals (Sweden)

    Y.-L. Zhang

    2018-03-01

    Full Text Available Water-soluble organic carbon (WSOC is a large fraction of organic aerosols (OA globally and has significant impacts on climate and human health. The sources of WSOC remain very uncertain in polluted regions. Here we present a quantitative source apportionment of WSOC, isolated from aerosols in China using radiocarbon (14C and offline high-resolution time-of-flight aerosol mass spectrometer measurements. Fossil emissions on average accounted for 32–47 % of WSOC. Secondary organic carbon (SOC dominated both the non-fossil and fossil derived WSOC, highlighting the importance of secondary formation to WSOC in severe winter haze episodes. Contributions from fossil emissions to SOC were 61 ± 4 and 50 ± 9 % in Shanghai and Beijing, respectively, significantly larger than those in Guangzhou (36 ± 9 % and Xi'an (26 ± 9 %. The most important primary sources were biomass burning emissions, contributing 17–26 % of WSOC. The remaining primary sources such as coal combustion, cooking and traffic were generally very small but not negligible contributors, as coal combustion contribution could exceed 10 %. Taken together with earlier 14C source apportionment studies in urban, rural, semi-urban and background regions in Asia, Europe and the USA, we demonstrated a dominant contribution of non-fossil emissions (i.e., 75 ± 11 % to WSOC aerosols in the Northern Hemisphere; however, the fossil fraction is substantially larger in aerosols from East Asia and the eastern Asian pollution outflow, especially during winter, due to increasing coal combustion. Inclusion of our findings can improve a modelling of effects of WSOC aerosols on climate, atmospheric chemistry and public health.

  5. Large contribution of fossil fuel derived secondary organic carbon to water soluble organic aerosols in winter haze in China

    Science.gov (United States)

    Zhang, Yan-Lin; El-Haddad, Imad; Huang, Ru-Jin; Ho, Kin-Fai; Cao, Jun-Ji; Han, Yongming; Zotter, Peter; Bozzetti, Carlo; Daellenbach, Kaspar R.; Slowik, Jay G.; Salazar, Gary; Prévôt, André S. H.; Szidat, Sönke

    2018-03-01

    Water-soluble organic carbon (WSOC) is a large fraction of organic aerosols (OA) globally and has significant impacts on climate and human health. The sources of WSOC remain very uncertain in polluted regions. Here we present a quantitative source apportionment of WSOC, isolated from aerosols in China using radiocarbon (14C) and offline high-resolution time-of-flight aerosol mass spectrometer measurements. Fossil emissions on average accounted for 32-47 % of WSOC. Secondary organic carbon (SOC) dominated both the non-fossil and fossil derived WSOC, highlighting the importance of secondary formation to WSOC in severe winter haze episodes. Contributions from fossil emissions to SOC were 61 ± 4 and 50 ± 9 % in Shanghai and Beijing, respectively, significantly larger than those in Guangzhou (36 ± 9 %) and Xi'an (26 ± 9 %). The most important primary sources were biomass burning emissions, contributing 17-26 % of WSOC. The remaining primary sources such as coal combustion, cooking and traffic were generally very small but not negligible contributors, as coal combustion contribution could exceed 10 %. Taken together with earlier 14C source apportionment studies in urban, rural, semi-urban and background regions in Asia, Europe and the USA, we demonstrated a dominant contribution of non-fossil emissions (i.e., 75 ± 11 %) to WSOC aerosols in the Northern Hemisphere; however, the fossil fraction is substantially larger in aerosols from East Asia and the eastern Asian pollution outflow, especially during winter, due to increasing coal combustion. Inclusion of our findings can improve a modelling of effects of WSOC aerosols on climate, atmospheric chemistry and public health.

  6. Photochemical Degradation of Petroleum-Derived Water-Soluble Organics into the Background Dissolved Organic Carbon Pool

    Science.gov (United States)

    Podgorski, D. C.; Ray, P. Z.; Roland, N. V.; Corilo, Y. E.; Tarr, M. A.; Guillemette, F.; Spencer, R. G.

    2016-02-01

    Water-soluble organic (WSO) photoproducts produced from Macondo crude oil (MC252) and a heavy fuel oil (HFO), a surrogate for that which was spilled into the San Francisco Bay by the M/V Cosco Busan, were isolated and irradiated with simulated sunlight to examine the photochemical fate of the products in aquatic ecosystems. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) reveals marked transformations in the elemental composition of WSOs at specific irradiation periods across a time series that correspond with shifts in bulk properties determined with optical measurements. Blue shifts in EEMs spectra correlate with an increase in formulas classified as unsaturated, high oxygen while the polyphenols and unsaturated, low oxygen compounds decrease. The characteristic A and C humic- and fulvic-like FDOM signatures begin to appear in the EEM spectra of WSOs that were irradiated for as little as 8 to 12 hours, the equivalent of 2 to 3 days of natural sunlight. The presence of the A and C signatures correlate to elemental compositions that exhibit a further decrease in the unsaturated, low oxygen and subsequent increase of unsaturated, high oxygen and highly oxygenated aliphatic compounds. Furthermore, van Krevelen plots reveal a shift toward the compositional space associated with carboxyl-rich aromatic moieties (CRAM) as a function of irradiation period and the appearance of the humic- and fulvic-like FDOM signatures in the EEM spectra. Although the photodegraded WSO products show similarities in FDOM and elemental composition to representative natural dissolved organic matter from their respective pools, persistent petroleum signatures that are not photoactive are still detected. Future studies are required to examine the bioavailability of these photodegraded WSO products to determine if they degrade or persist in the environment.

  7. Extending the analytical window for water-soluble organic matter in sediments by aqueous Soxhlet extraction

    Science.gov (United States)

    Schmidt, Frauke; Koch, Boris P.; Witt, Matthias; Hinrichs, Kai-Uwe

    2014-09-01

    Dissolved organic matter (DOM) in marine sediments is a complex mixture of thousands of individual constituents that participate in biogeochemical reactions and serve as substrates for benthic microbes. Knowledge of the molecular composition of DOM is a prerequisite for a comprehensive understanding of the biogeochemical processes in sediments. In this study, interstitial water DOM was extracted with Rhizon samplers from a sediment core from the Black Sea and compared to the corresponding water-extractable organic matter fraction (Soxhlet extraction, which mobilizes labile particulate organic matter and DOM. After solid phase extraction (SPE) of DOM, samples were analyzed for the molecular composition by Fourier Transform Ion-Cyclotron Resonance Mass Spectrometry (FT-ICR MS) with electrospray ionization in negative ion mode. The average SPE extraction yield of the dissolved organic carbon (DOC) in interstitial water was 63%, whereas less than 30% of the DOC in Soxhlet-extracted organic matter was recovered. Nevertheless, Soxhlet extraction yielded up to 4.35% of the total sedimentary organic carbon, which is more than 30-times the organic carbon content of the interstitial water. While interstitial water DOM consisted primarily of carbon-, hydrogen- and oxygen-bearing compounds, Soxhlet extracts yielded more complex FT-ICR mass spectra with more peaks and higher abundances of nitrogen- and sulfur-bearing compounds. The molecular composition of both sample types was affected by the geochemical conditions in the sediment; elevated concentrations of HS- promoted the early diagenetic sulfurization of organic matter. The Soxhlet extracts from shallow sediment contained specific three- and four-nitrogen-bearing molecular formulas that were also detected in bacterial cell extracts and presumably represent proteinaceous molecules. These compounds decreased with increasing sediment depth while one- and two-nitrogen-bearing molecules increased, resulting in a higher

  8. Investigation of water-soluble organic matter extracted from shales during leaching experiments

    Science.gov (United States)

    Zhu, Yaling; Vieth-Hillebrand, Andrea; Wilke, Franziska D. H.; Horsfield, Brian

    2017-04-01

    The huge volumes and unknown composition of flowback and produced waters cause major public concerns about the environmental and social compatibility of hydraulic fracturing and the exploitation of gas from unconventional reservoirs. Flowback and produced waters contain not only residues of fracking additives but also chemical species that are dissolved from the shales themselves during fluid-rock interaction. Knowledge of the composition, size and structure of dissolved organic carbon (DOC) as well as the main controls on the release of DOC are a prerequisite for a better understanding of these interactions and its effects on composition of flowback and produced water. Black shales from four different geological settings and covering a maturity range Ro = 0.3-2.6% were extracted with deionized water. The DOC yields were found to decrease rapidly with increasing diagenesis and remain low throughout catagenesis. Four DOC fractions have been qualitatively and quantitatively characterized using size-exclusion chromatography. The concentrations of individual low molecular weight organic acids (LMWOA) decrease with increasing maturity of the samples except for acetate extracted from the overmature Posidonia shale, which was influenced by hydrothermal brines. The oxygen content of the shale organic matter also shows a significant influence on the release of organic acids, which is indicated by the positive trend between oxygen index (OI) and the concentrations of formate and acetate. Based on our experiments, both the properties of the organic matter source and the thermal maturation progress of the shale organic matter significantly influence the amount and quality of extracted organic compounds during the leaching experiments.

  9. Hygroscopic growth of water soluble organic carbon isolated from atmospheric aerosol collected at US national parks and Storm Peak Laboratory

    Science.gov (United States)

    Taylor, Nathan F.; Collins, Don R.; Lowenthal, Douglas H.; McCubbin, Ian B.; Gannet Hallar, A.; Samburova, Vera; Zielinska, Barbara; Kumar, Naresh; Mazzoleni, Lynn R.

    2017-02-01

    Due to the atmospheric abundance and chemical complexity of water soluble organic carbon (WSOC), its contribution to the hydration behavior of atmospheric aerosol is both significant and difficult to assess. For the present study, the hygroscopicity and CCN activity of isolated atmospheric WSOC particulate matter was measured without the compounding effects of common, soluble inorganic aerosol constituents. WSOC was extracted with high purity water from daily high-volume PM2.5 filter samples and separated from water soluble inorganic constituents using solid-phase extraction. The WSOC filter extracts were concentrated and combined to provide sufficient mass for continuous generation of the WSOC-only aerosol over the combined measurement time of the tandem differential mobility analyzer and coupled scanning mobility particle sizer-CCN counter used for the analysis. Aerosol samples were taken at Great Smoky Mountains National Park during the summer of 2006 and fall-winter of 2007-2008; Mount Rainier National Park during the summer of 2009; Storm Peak Laboratory (SPL) near Steamboat Springs, Colorado, during the summer of 2010; and Acadia National Park during the summer of 2011. Across all sampling locations and seasons, the hygroscopic growth of WSOC samples at 90 % RH, expressed in terms of the hygroscopicity parameter, κ, ranged from 0.05 to 0.15. Comparisons between the hygroscopicity of WSOC and that of samples containing all soluble materials extracted from the filters implied a significant modification of the hydration behavior of inorganic components, including decreased hysteresis separating efflorescence and deliquescence and enhanced water uptake between 30 and 70 % RH.

  10. pH-potentiometric determination of solubility of barely soluble organic extracting agents in water and aqueous solutions of neutral salts

    International Nuclear Information System (INIS)

    Pavlovskaya, E.M.; Charykov, A.K.; Tikhomirov, V.I.

    1977-01-01

    A pH-potentiometric method has been used to estimate the solubility of chloroform, benzene and nitrobenzene in water. The desalting effect is studied of alkali metal chlorides on chloroform solubility to establish the following phenomenological series of alkali metal cations by their desalting action: Li + + + + + . The non-conformity of chloroform solubility values in water-isoactive solutions of different salts is indicative of the high specificity of desalting processes with respect to the chemical nature of the desalting cation. Salt effects also essentially depend on the chemical nature of the desalted substance, particularly on its acid-base properties

  11. Partitioning of semi-soluble organic compounds between the water phase and oil droplets in produced water

    Energy Technology Data Exchange (ETDEWEB)

    Faksness, Liv-Guri; Grini, Per Gerhard; Daling, Per S

    2004-04-01

    When selecting produced water treatment technologies, one should focus on reducing the major contributors to the total environmental impact. These are dispersed oil and semi-soluble hydrocarbons, alkylated phenols, and added chemicals. Experiments with produced water have been performed offshore on the Statoil operated platforms Gullfaks C and Statfjord B. These experiments were designed to find how much of the environmentally relevant compounds were dissolved in the water phase and not associated to the dispersed oil in the produced water. Results show that the distribution between the dispersed oil and the water phase varies highly for the different components groups. For example the concentration of PAHs and the C6-C9 alkylated phenols is strongly correlated to the content of dispersed oil. Therefore, the technologies enhancing the removal of dispersed oil have a higher potential for reducing the environmental impact of the produced water than previously considered.

  12. Partitioning of semi-soluble organic compounds between the water phase and oil droplets in produced water

    International Nuclear Information System (INIS)

    Faksness, Liv-Guri; Grini, Per Gerhard; Daling, Per S.

    2004-01-01

    When selecting produced water treatment technologies, one should focus on reducing the major contributors to the total environmental impact. These are dispersed oil and semi-soluble hydrocarbons, alkylated phenols, and added chemicals. Experiments with produced water have been performed offshore on the Statoil operated platforms Gullfaks C and Statfjord B. These experiments were designed to find how much of the environmentally relevant compounds were dissolved in the water phase and not associated to the dispersed oil in the produced water. Results show that the distribution between the dispersed oil and the water phase varies highly for the different components groups. For example the concentration of PAHs and the C6-C9 alkylated phenols is strongly correlated to the content of dispersed oil. Therefore, the technologies enhancing the removal of dispersed oil have a higher potential for reducing the environmental impact of the produced water than previously considered

  13. Selective Organic and Organometallic Reactions in Water-Soluble Host-Guest Supramolecular Systems

    Energy Technology Data Exchange (ETDEWEB)

    Pluth, Michael D.; Raymond, Kenneth N.; Bergman, Robert G.

    2008-02-16

    Inspired by the efficiency and selectivity of enzymes, synthetic chemists have designed and prepared a wide range of host molecules that can bind smaller molecules with their cavities; this area has become known as 'supramolecular' or 'host-guest' chemistry. Pioneered by Lehn, Cram, Pedersen, and Breslow, and followed up by a large number of more recent investigators, it has been found that the chemical environment in each assembly - defined by the size, shape, charge, and functional group availability - greatly influences the guest-binding characteristics of these compounds. In contrast to the large number of binding studies that have been carried out in this area, the exploration of chemistry - especially catalytic chemistry - that can take place inside supramolecular host cavities is still in its infancy. For example, until the work described here was carried out, very few examples of organometallic reactivity inside supramolecular hosts were known, especially in water solution. For that reason, our group and the group directed by Kenneth Raymond decided to take advantage of our complementary expertise and attempt to carry out metal-mediated C-H bond activation reactions in water-soluble supramolecular systems. This article begins by providing background from the Raymond group in supramolecular coordination chemistry and the Bergman group in C-H bond activation. It goes on to report the results of our combined efforts in supramolecular C-H activation reactions, followed by extensions of this work into a wider range of intracavity transformations.

  14. Linear solvation energy relationships: 36. Molecular properties governing solubilities of organic nonelectrolytes in water.

    Science.gov (United States)

    Kamlet, M J; Doherty, R M; Abboud, J L; Abraham, M H; Taft, R W

    1986-04-01

    Molar solubilities of non-hydrogen bond donor and weak hydrogen bond donor liquid aliphatic solutes in water, or the nearly equivalent quantities, Sg/Kgw, where Kgw is the gas-water partition coefficient and Sg is the solute concentration in the solute saturated vapor (Sg = Patm/24.5) are well correlated by the equation: log Sw congruent to log (Sg/Kgw) = 0.54 - 3.32V/100 + 0.46 pi* + 5.17 (beta or beta m) (at 25 degrees C) n = 105, r = 0.9954, SD = 0.137 V is the solute molar volume (the molecular weight divided by the liquid density at 20 degrees C), and pi* and beta are the solvatochromic parameters that are measures of solute dipolarity-polarizability and hydrogen bond acceptor basicity. The equation, which applies to liquid monofunctional aliphatic solutes is used to calculate additional new beta and beta m values. The beta m values, which are intended to apply to self-associated compounds when acting as "monomer" solutes, are: methanol, 0.42; all primary alkanols, 0.45; all secondary alkanols, 0.51; and all tertiary alkanols, 0.57.

  15. Soluble organic nutrient fluxes

    Science.gov (United States)

    Robert G. Qualls; Bruce L. Haines; Wayne Swank

    2014-01-01

    Our objectives in this study were (i) compare fluxes of the dissolved organic nutrients dissolved organic carbon (DOC), DON, and dissolved organic phosphorus (DOP) in a clearcut area and an adjacent mature reference area. (ii) determine whether concentrations of dissolved organic nutrients or inorganic nutrients were greater in clearcut areas than in reference areas,...

  16. Solubility of Benzo[a]pyrene and Organic Matter of Soil in Subcritical Water

    Directory of Open Access Journals (Sweden)

    Svetlana Sushkova

    2015-12-01

    Full Text Available A dynamic subcritical water extraction method of benzo[a]pyrene from soils is under consideration. The optimum conditions for benzo[a]pyrene extraction from soil are described including the soil treatment by subcritical water at 250 °C and 100 atm for 30 min. The effectiveness of developed method was determined using the matrix spiking recovery technique. A comparative analysis was made to evaluate the results of benzo[a]pyrene extraction from soils using the subcritical water and organic solvents. The advantages of the subcritical water extraction involve the use of ecologically friendly solvent, a shorter time for the analysis and a higher amount of benzo[a]pyrene extracted from soil (96 %. The influence of subcritical water extraction on soil properties was measured the investigation of the processes occurring within soil under the influence the high temperature and pressure. Under appropriate conditions of the experiment there is the destruction of the soil organic matter while the composition of the soil mineral fraction remains practically unchanged.

  17. Extractability of water-soluble soil organic matter as monitored by spectroscopic and chromatographic analyses.

    Science.gov (United States)

    Nkhili, Ezzhora; Guyot, Ghislain; Vassal, Nathalie; Richard, Claire

    2012-07-01

    Cold and hot water processes have been intensively used to recover soil organic matter, but the effect of extraction conditions on the composition of the extracts were not well investigated. Our objective was to optimize the extraction conditions (time and temperature) to increase the extracted carbon efficiency while minimizing the possible alteration of water extractable organic matter of soil (WEOM). WEOM were extracted at 20°C, 60°C, or 80°C for 24 h, 10-60 min, and 20 min, respectively. The different processes were compared in terms of pH of suspensions, yield of organic carbon, spectroscopic properties (ultraviolet-visible absorption and fluorescence), and by chromatographic analyses. For extraction at 60°C, the time 30 min was optimal in terms of yield of organic carbon extracted and concentration of absorbing and fluorescent species. The comparison of WEOM 20°C, 24 h; 60°C, 30 min; and 80°C, 20 min highlighted significant differences. The content of total organic carbon, the value of specific ultraviolet absorbance (SUVA(254)), the absorbance ratio at 254 and 365 nm (E (2)/E (3)), and the humification index varied in the order: WEOM (20°C, 24 h) < WEOM (80°C, 20 min) < WEOM (60°C, 30 min). The three WEOM contained common fluorophores associated with simple aromatic structures and/or fulvic-like and common peaks of distinct polarity as detected by ultra performance liquid chromatography. For the soil chosen, extraction at 60°C for 30 min is the best procedure for enrichment in organic chemicals and minimal alteration of the organic matter.

  18. Case study of water-soluble metal containing organic constituents of biomass burning aerosol.

    Science.gov (United States)

    Chang-Graham, Alexandra L; Profeta, Luisa T M; Johnson, Timothy J; Yokelson, Robert J; Laskin, Alexander; Laskin, Julia

    2011-02-15

    Natural and prescribed biomass fires are a major source of aerosols that may persist in the atmosphere for several weeks. Biomass burning aerosols (BBA) can be associated with long-range transport of water-soluble N-, S-, P-, and metal-containing species. In this study, BBA samples were collected using a particle-into-liquid sampler (PILS) from laboratory burns of vegetation collected on military bases in the southeastern and southwestern United States. The samples were then analyzed using high resolution electrospray ionization mass spectrometry (ESI/HR-MS) that enabled accurate mass measurements for hundreds of species with m/z values between 70 and 1000 and assignment of elemental formulas. Mg, Al, Ca, Cr, Mn, Fe, Ni, Cu, Zn, and Ba-containing organometallic species were identified. The results suggest that the biomass may have accumulated metal-containing species that were re-emitted during biomass burning. Further research into the sources, dispersion, and persistence of metal-containing aerosols, as well as their environmental effects, is needed.

  19. Water-soluble vitamins.

    Science.gov (United States)

    Konings, Erik J M

    2006-01-01

    Simultaneous Determination of Vitamins.--Klejdus et al. described a simultaneous determination of 10 water- and 10 fat-soluble vitamins in pharmaceutical preparations by liquid chromatography-diode-array detection (LC-DAD). A combined isocratic and linear gradient allowed separation of vitamins in 3 distinct groups: polar, low-polar, and nonpolar. The method was applied to pharmaceutical preparations, fortified powdered drinks, and food samples, for which results were in good agreement with values claimed. Heudi et al. described a separation of 9 water-soluble vitamins by LC-UV. The method was applied for the quantification of vitamins in polyvitaminated premixes used for the fortification of infant nutrition products. The repeatability of the method was evaluated at different concentration levels and coefficients of variation were based on, for example, LC. Koontz et al. showed results of total folate concentrations measured by microbiological assay in a variety of foods. Samples were submitted in a routine manner to experienced laboratories that regularly perform folate analysis fee-for-service basis in the United States. Each laboratory reported the use of a microbiological method similar to the AOAC Official Method for the determination of folic acid. Striking was, the use of 3 different pH extraction conditions by 4 laboratories. Only one laboratory reported using a tri-enzyme extraction. Results were evaluated. Results for folic acid fortified foods had considerably lower between-laboratory variation, 9-11%, versus >45% for other foods. Mean total folate ranged from 14 to 279 microg/100 g for a mixed vegetable reference material, from 5 to 70 microg/100 g for strawberries, and from 28 to 81 microg/100 g for wholemeal flour. One should realize a large variation in results, which might be caused by slight modifications in the microbiological analysis of total folate in foods or the analysis in various (unfortified) food matrixes. Furthermore, optimal

  20. Atmospheric water-soluble organic nitrogen (WSON) in the eastern Mediterranean: origin and ramifications regarding marine productivity

    Science.gov (United States)

    Nehir, Münevver; Koçak, Mustafa

    2018-03-01

    Aerosol and rain sampling in two size fractions was carried out at a rural site located on the coast of the eastern Mediterranean, Erdemli, Turkey (36°33'54'' N, 34°15'18'' E). A total of 674 aerosol samples in two size fractions (337 coarse, 337 fine) and 23 rain samples were collected between March 2014 and April 2015. Samples were analyzed for NO3-, NH4+ and ancillary water-soluble ions using ion chromatography and water-soluble total nitrogen (WSTN) by applying a high-temperature combustion method. The mean aerosol water-soluble organic nitrogen (WSON) was 23.8 ± 16.3 nmol N m-3, reaching a maximum of 79 nmol N m-3, with about 66 % being associated with coarse particles. The volume weighted mean (VWM) concentration of WSON in rain was 21.5 µmol N L-1. The WSON contributed 37 and 29 % to the WSTN in aerosol and rainwater, respectively. Aerosol WSON concentrations exhibited large temporal variation, mainly due to meteorology and the origin of air mass flow. The highest mean aerosol WSON concentration was observed in the summer and was attributed to the absence of rain and resuspension of cultivated soil in the region. The mean concentration of WSON during dust events (38.2 ± 17.5 nmol N m-3) was 1.3 times higher than that of non-dust events (29.4 ± 13.9 nmol N m-3). Source apportionment analysis demonstrated that WSON was originated from agricultural activities (43 %), secondary aerosol (20 %), nitrate (22 %), crustal material (10 %) and sea salt (5 %). The dry and wet depositions of WSON were equivalent and amounted to 36 % of the total atmospheric WSTN flux.

  1. Bis[(lprolinate-N,O]Zn: A water-soluble and recycle catalyst for various organic transformations

    Directory of Open Access Journals (Sweden)

    Roona Poddar

    2017-05-01

    Full Text Available Under the green chemistry perspective, bis[(lprolinate-N,O]Zn (also called zinc–proline or Zn[(l-pro]2 has proven its competence as a promising alternative in a plethora of applications such as catalyst or promoter. Owing to its biodegradable and non-toxic nature of bis[(lprolinate-N,O]Zn, it is being actively investigated as a water soluble green catalyst for synthetic chemistry. Bis[(lprolinate-N,O]Zn are readily utilized under mild conditions and have high selectivity and reactivity with broad range of substrate acceptance to make it better reaction medium for a wide variety of organic transformations. This Review summarizes the till date literature on its synthesis, characterization, and its catalytic role in various organic reactions.

  2. Impact of tree cutting on water-soluble organic compounds in podzolic soils of the European North-East

    Science.gov (United States)

    Lapteva, Elena; Bondarenko, Natalia; Shamrikova, Elena; Kubik, Olesya; Punegov, Vasili

    2016-04-01

    Water-soluble organic compounds (WOCs) and their single components, i.e. low-molecular organic acids, alcohols, and carbohydrates, attain a great deal of attention among soil scientists. WOCs are an important component of soil organic matter (SOM) and form as a results of different biological and chemical processes in soils. These processes are mainly responsible for formation and development of soils in aboveground ecosystems. The purpose of the work was identifying qualitative and quantitative composition of low-molecular organic substances which form in podzolic loamy soils against natural reforestation after spruce forest cutting. The studies were conducted on the territory of the European North-East of Russia, in the middle taiga subzone (Komi Republic, Ust-Kulom region). The study materials were soil of undisturbed bilberry spruce forest (Sample Plot 1 (SP1)) and soils of different-aged tree stands where cutting activities took place in winter 2001/2002 (SP2) and 1969/1970 (SP3). Description of soils and vegetation cover on the plots is given in [1]. Low-molecular organic compounds in soil water extracts were identified by the method of gas chromatography mass-spectrometry [2, 3]. Finally, reforestationafterspruceforestcutting was found to be accompanied by different changes in soil chemical composition. In contrast with soils under undisturbed spruce forest, organic soil horizons under different-aged cuts decreased in organic carbon reserves and production of low-molecular organic compounds, changed in soil acidity. Within the soil series of SP1→SP2→SP3, the highest content of WOCs was identified for undisturbed spruce forest (738 mg kg-1 soil). In soils of coniferous-deciduous forests on SP1 and SP3, WOC content was 294 and 441 mg kg-1 soil, correspondingly. Soils at cuts decreased in concentration of any water-soluble low-molecular SOM components as low-molecular acids, alcohols, and carbohydrates. Structure of low-molecular WOCs in the study podzolic

  3. Water Soluble Organic Nitrogen (WSON) in Ambient Fine Particles Over a Megacity in South China: Spatiotemporal Variations and Source Apportionment

    Science.gov (United States)

    Yu, Xu; Yu, Qingqing; Zhu, Ming; Tang, Mingjin; Li, Sheng; Yang, Weiqiang; Zhang, Yanli; Deng, Wei; Li, Guanghui; Yu, Yuegang; Huang, Zhonghui; Song, Wei; Ding, Xiang; Hu, Qihou; Li, Jun; Bi, Xinhui; Wang, Xinming

    2017-12-01

    Organic nitrogen aerosols are complex mixtures and important compositions in ambient fine particulate matters (PM2.5), yet their sources and spatiotemporal patterns are not well understood particularly in regions influenced by intensive human activities. In this study, filter-based ambient PM2.5 samples at four stations (one urban, two rural, plus one urban roadside) and PM samples from combustion sources (vehicle exhaust, ship emission, and biomass burning) were collected in the coastal megacity Guangzhou, south China, for determining water soluble organic nitrogen (WSON) along with other organic and inorganic species. The annual average WSON concentrations, as well as the ratios of WSON to water soluble total nitrogen, were all significantly higher at rural sites than urban sites. Average WSON concentrations at the four sites during the wet season were quite near each other, ranging from 0.41 to 0.49 μg/m3; however, they became 2 times higher at the rural sites than at the urban sites during the dry season. Five major sources for WSON were identified through positive matrix factorization analysis. Vehicle emission (29.3%), biomass burning (22.8%), and secondary formation (20.2%) were three dominant sources of WSON at the urban station, while vehicle emission (45.4%) and dust (28.6%) were two dominant sources at the urban roadside station. At the two rural sites biomass burning (51.1% and 34.1%, respectively) and secondary formation (17.8% and 30.5%, respectively) were dominant sources of WSON. Ship emission contributed 8-12% of WSON at the four sites. Natural vegetation seemed to have very minor contribution to WSON.

  4. Characterization of water-soluble organic aerosol in coastal New England: Implications of variations in size distribution

    Science.gov (United States)

    Ziemba, L. D.; Griffin, R. J.; Whitlow, S.; Talbot, R. W.

    2011-12-01

    Size distributions up to 10-micron aerosol diameter ( DP) of organic carbon (OC) and water-soluble organic carbon (WSOC) were measured at two sites in coastal New England, slightly inland at Thompson Farm (TF) and offshore at Isles of Shoals (IOS). Significant OC concentrations were measured across the full size distribution at TF and IOS, respectively. The WSOC fraction (WSOC/OC) was largest in the accumulation mode with values of 0.86 and 0.93 and smallest in the coarse mode with values of 0.61 and 0.79 at TF and IOS, respectively. Dicarboxylic acids containing up to five carbon atoms (C 5) were concentrated in droplet and accumulation mode aerosol with only minor contributions in the coarse mode. C 1-C 3 monocarboxylic acids were generally near or below detection limits. Results from proton nuclear magnetic resonance (H +-NMR) spectroscopy analyses showed that the organic functional group characterized by protons in the alpha position to an unsaturated carbon atoms ([H-C-C dbnd ]) was the dominant WSOC functionality at both TF and IOS, constituting 34 and 43% of carbon-weighted H +-NMR signal, respectively. Size distributions of each H +-NMR-resolved organic functionality are presented. Source apportionment using H +-NMR fingerprints is also presented, and results indicate that nearly all of the WSOC at TF and IOS spectroscopically resembled secondary organic aerosol, regardless of DP.

  5. Hygroscopic properties of internally mixed particles composed of NaCl and water-soluble organic acids.

    Science.gov (United States)

    Ghorai, Suman; Wang, Bingbing; Tivanski, Alexei; Laskin, Alexander

    2014-02-18

    Atmospheric aging of naturally emitted marine aerosol often leads to formation of internally mixed particles composed of sea salts and water-soluble organic compounds of anthropogenic origin. Mixing of sea salt and organic components has profound effects on the evolving chemical composition and hygroscopic properties of the resulted particles, which are poorly understood. Here, we have studied chemical composition and hygroscopic properties of laboratory generated NaCl particles mixed with malonic acid (MA) and glutaric acid (GA) at different molar ratios using micro-FTIR spectroscopy, atomic force microscopy, and X-ray elemental microanalysis. Hygroscopic properties of internally mixed NaCl and organic acid particles were distinctly different from pure components and varied significantly with the type and amount of organic compound present. Experimental results were in a good agreement with the AIM modeling calculations of gas/liquid/solid partitioning in studied systems. X-ray elemental microanalysis of particles showed that Cl/Na ratio decreased with increasing organic acid component in the particles with MA yielding lower ratios relative to GA. We attribute the depletion of chloride to the formation of sodium malonate and sodium glutarate salts resulted by HCl evaporation from dehydrating particles.

  6. Water-soluble Organic Components in Aerosols Associated with Savanna Fires in Southern Africa: Identification, Evolution and Distribution

    Science.gov (United States)

    Gao, Song; Hegg, Dean A.; Hobbs, Peter V.; Kirchstetter, Thomas W.; Magi, Brian I.; Sadilek, Martin

    2003-01-01

    During the SAFARI 2000 field campaign, both smoke aerosols from savanna fires and haze aerosols in the boundary layer and in the free troposphere were collected from an aircraft in southern Africa. These aerosol samples were analyzed for their water-soluble chemical components, particularly the organic species. A novel technique, electrospray ionization-ion trap mass spectrometry, was used concurrently with an ion chromatography system to analyze for carbohydrate species. Seven carbohydrates, seven organic acids, five metallic elements, and three inorganic anions were identified and quantified. On the average, these 22 species comprised 36% and 27% of the total aerosol mass in haze and smoke aerosols, respectively. For the smoke aerosols, levoglucosan was the most abundant carbohydrate species, while gluconic acid was tentatively identified as the most abundant organic acid. The mass abundance and possible source of each class of identified species are discussed, along with their possible formation pathways. The combustion phase of a fire had an impact on the chemical composition of the emitted aerosols. Secondary formation of sulfate, nitrate, levoglucosan, and several organic acids occurred during the initial aging of smoke aerosols. It is likely that under certain conditions, some carbohydrate species in smoke aerosols, such as levoglucosan, were converted to organic acids during upward transport.

  7. On nitrogen solubility in water

    International Nuclear Information System (INIS)

    Kalajda, Yu.A.; Katkov, Yu.D.; Kuznetsov, V.A.; Lastovtsev, A.Yu.; Lastochkin, A.P.; Susoev, V.S.

    1980-01-01

    Presented are the results of experimental investigations on nitrogen solubility in water under 0-15 MPa pressure, at the temperature of 100-340 deg C and nitrogen concentration of 0-5000 n.ml. N 2 /kg H 2 O. Empiric equations are derived and a diagram of nitrogen solubility in water is developed on the basis of the experimental data, as well as critically evaluated published data. The investigation results can be used in analyzing water-gas regime of a primary heat carrier in stream-generating plants with water-water reactors

  8. Noble gases solubility in water

    International Nuclear Information System (INIS)

    Crovetto, Rosa; Fernandez Prini, Roberto.

    1980-07-01

    The available experimental data of solubility of noble gases in water for temperatures smaller than 330 0 C have been critically surveyed. Due to the unique structure of the solvent, the solubility of noble gases in water decreases with temperature passing through a temperature of minimum solubility which is different for each gas, and then increases at higher temperatures. As aresult of the analysis of the experimental data and of the features of the solute-solvent interaction, a generalized equation is proposed which enables thecalculation of Henry's coefficient at different temperatures for all noble gases. (author) [es

  9. Fragmentation analysis of water-soluble atmospheric organic matter using ultrahigh-resolution FT-ICR mass spectrometry.

    Science.gov (United States)

    Leclair, Jeffrey P; Collett, Jeffrey L; Mazzoleni, Lynn R

    2012-04-17

    Isolated water-soluble atmospheric organic matter (AOM) analytes extracted from radiation fogwater samples were analyzed using collision induced dissociation with ultrahigh-resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Tandem mass analysis was performed on several mass ranges between 100 and 400 Da to characterize the functional groups of AOM species. Compounds containing nitrogen and/or sulfur were targeted because of the high number of oxygen atoms contained in their molecular formulas. Due to the large number of isobaric ions in the precursor isolation ranges, large numbers of product ions resulted from collision induced dissociation. Common neutral losses were assigned by matching the molecular formulas of the expected product ions with the detected product ions within the appropriate mass spectra. Since polar functional groups are expected to affect the hygroscopic properties of aerosols, the losses of H(2)O, CO(2), CH(3)OH, HNO(3), CH(3)NO(3), SO(3), SO(4) and combinations of these were specifically targeted. Among the 421 compounds studied, the most frequently observed neutral losses were CO(2) (54%), H(2)O (43%) and CH(3)OH (40%). HNO(3) losses were observed for 63% of the studied nitrogen containing compounds and 33% of the studied compounds containing both nitrogen and sulfur. SO(3) losses were observed for 85% of the studied sulfur containing compounds and 42% of studied compounds containing both nitrogen and sulfur. A number of molecular formulas matching those of monoterpene ozonolysis SOA were observed; they include organonitrates, organosulfates, and nitroxy-organosulfates. Overall, the results of fragmentation analysis of 400+ individual molecular precursors elucidate the complexity and multifunctional nature of the isolated water-soluble AOM.

  10. Structural signatures of water-soluble organic aerosols in contrasting environments in South America and Western Europe.

    Science.gov (United States)

    Duarte, Regina M B O; Matos, João T V; Paula, Andreia S; Lopes, Sónia P; Pereira, Guilherme; Vasconcellos, Pérola; Gioda, Adriana; Carreira, Renato; Silva, Artur M S; Duarte, Armando C; Smichowski, Patricia; Rojas, Nestor; Sanchez-Ccoyllo, Odon

    2017-08-01

    This study describes and compares the key structural units present in water-soluble organic carbon (WSOC) fraction of atmospheric aerosols collected in different South American (Colombia - Medellín and Bogotá, Peru - Lima, Argentina - Buenos Aires, and Brazil - Rio de Janeiro, São Paulo, and Porto Velho, during moderate (MBB) and intense (IBB) biomass burning) and Western European (Portugal - Aveiro and Lisbon) locations. Proton nuclear magnetic resonance ( 1 H NMR) spectroscopy was employed to assess the relative distribution of non-exchangeable proton functional groups in aerosol WSOC of diverse origin, for the first time to the authors' knowledge in South America. The relative contribution of the proton functional groups was in the order H-C > H-C-C= > H-C-O > Ar-H, except in Porto Velho during MBB, Medellín, Bogotá, and Buenos Aires, for which the relative contribution of H-C-O was higher than that of H-C-C=. The 1 H NMR source attribution confirmed differences in aging processes or regional sources between the two geographic regions, allowing the differentiation between urban combustion-related aerosol and biological particles. The aerosol WSOC in Aveiro, Lisbon, and Rio de Janeiro during summer are more oxidized than those from the remaining locations, indicating the predominance of secondary organic aerosols. Fresh emissions, namely of smoke particles, becomes important during winter in Aveiro and São Paulo, and in Porto Velho during IBB. The biosphere is an important source altering the chemical composition of aerosol WSOC in South America locations. The source attribution in Medellín, Bogotá, Buenos Aires, and Lima confirmed the mixed contributions of biological material, secondary formation, as well as urban and biomass burning emissions. Overall, the information and knowledge acquired in this study provide important diagnostic tools for future studies aiming at understanding the water-soluble organic aerosol problem, their sources and

  11. Advanced oxidation of water soluble organics (WSO) from near- and supercritical hydrothermal liquefaction (HTL) of biomass

    DEFF Research Database (Denmark)

    Arturi, Katarzyna Ratajczyk; Nielsen, Rudi Pankratz; Muff, Jens

    plant at Aalborg University, Denmark. The effectiveness of each process was evaluated concerning the organic content (TOC and COD) as well as the detailed composition of the samples (GCMS). Chosen process parameters were varied in the experiments (electric current - EO, concentration of H2O2 - FO...

  12. Functional characterization of the water-soluble organic carbon of size-fractionated aerosol in the southern Mississippi Valley

    Science.gov (United States)

    Chalbot, M.-C. G.; Brown, J.; Chitranshi, P.; Gamboa da Costa, G.; Pollock, E. D.; Kavouras, I. G.

    2014-06-01

    The chemical content of water-soluble organic carbon (WSOC) as a function of particle size was characterized in Little Rock, Arkansas in winter and spring 2013. The objectives of this study were to (i) compare the functional characteristics of coarse, fine and ultrafine WSOC and (ii) reconcile the sources of WSOC for periods when carbonaceous aerosol was the most abundant particulate component. The WSOC accounted for 5% of particle mass for particles with dp > 0.96 μm and 10% of particle mass for particles with dp magnetic resonance (1H-NMR). The total non-exchangeable organic hydrogen concentrations varied from 4.1 ± 0.1 nmol m-3 for particles with 1.5 fingerprints of fine particles. Sucrose, fructose, glucose, formate and acetate were associated with coarse particles. These qualitative differences of 1H-NMR profiles for different particle sizes indicated the possible contribution of biological aerosols and a mixture of aliphatic and oxygenated compounds from biomass burning and traffic exhausts. The concurrent presence of ammonium and amines also suggested the presence of ammonium/aminium nitrate and sulfate secondary aerosol. The size-dependent origin of WSOC was further corroborated by the increasing δ13C abundance from -26.81 ± 0.18‰ for the smallest particles to -25.93 ± 0.31‰ for the largest particles and the relative distribution of the functional groups as compared to those previously observed for marine, biomass burning and secondary organic aerosol. The latter also allowed for the differentiation of urban combustion-related aerosol and biological particles. The five types of organic hydrogen accounted for the majority of WSOC for particles with dp > 3.0 μm and dp < 0.96 μm.

  13. Functional characterization of the water-soluble organic carbon of size fractionated aerosol in the Southern Mississippi Valley

    Science.gov (United States)

    Chalbot, M.-C. G.; Brown, J.; Chitranshi, P.; Gamboa da Costa, G.; Pollock, E. D.; Kavouras, I. G.

    2014-02-01

    The chemical content of the water soluble organic carbon (WSOC) as a function of particle size was characterized in Little Rock, Arkansas in winter and spring 2013. The objectives of this study were to: (i) compare the functional characteristics of coarse, fine and ultrafine WSOC and (ii) reconcile the sources of WSOC for the period when carbonaceous aerosol was the most abundant particulate component. The WSOC accounted for 5% of particle mass for particles with dp > 0.96 μm and 10% of particle mass for particles with dp magnetic resonance. The total non-exchangeable organic hydrogen concentrations varied from 4.1 ± 0.1 nmol m-3 for particles with 0.96 fingerprints of fine particles. Sucrose, fructose, glucose, formate and acetate were associated with coarse particles. These qualitative differences of 1H-NMR profiles for different particle sizes indicated the possible contribution of biological aerosol and a mixture of aliphatic and oxygenated compounds from biomass burning and traffic exhausts. The concurrent presence of ammonium and amines also suggested the presence of ammonium/aminium nitrate and sulfate secondary aerosol. The size-dependent origin of WSOC was further corroborated by the increasing δ13C abundance from -26.81 ± 0.18‰ for the smallest particles to -25.93 ± 0.31‰ for the largest particles and the relative distribution of the functional groups as compared to those previously observed for marine, biomass burning and secondary organic aerosol. The latter also allowed for the differentiation of urban combustion-related aerosol and biological particles. The five types of organic hydrogen accounted for the majority of WSOC for particles with dp > 3.0 μm and dp < 0.96 μm.

  14. Size distributions of hydrophilic and hydrophobic fractions of water-soluble organic carbon in an urban atmosphere in Hong Kong

    Science.gov (United States)

    Wang, Nijing; Yu, Jian Zhen

    2017-10-01

    Water-soluble organic carbon (WSOC) is a significant part of ambient aerosol and plays an active role in contributing to aerosol's effect on visibility degradation and radiation budget through its interactions with atmospheric water. Size-segregated aerosol samples in the range of 0.056-18 μm were collected using a ten-stage impactor sampler at an urban site in Hong Kong over one-year period. The WSOC samples were separated into hydrophilic (termed WSOC_h) and hydrophobic fractions (i.e., the humic-like substances (HULIS) fraction) through solid-phase extraction procedure. Carbon in HULIS accounted for 40 ± 14% of WSOC. The size distribution of HULIS was consistently characterized in all seasons with a dominant droplet mode (46-71%) and minor condensation (9.0-18%) and coarse modes (20-35%). The droplet mode had a mass median aerodynamic diameter in the range of 0.7-0.8 μm. This size mode showed the largest seasonal variation in abundance, lowest in the summer (0.41 μg/m3) and highest in the winter (3.3 μg/m3). WSOC_h also had a dominant droplet mode, but was more evenly distributed among different size modes. Inter-species correlations within the same size mode suggest that the condensation-mode HULIS was partly associated with combustion sources and the droplet-mode was strongly associated with secondary sulfate formation and biomass burning particle aging processes. There is evidence to suggest that the coarse-mode HULIS largely originated from coagulation of condensation-mode HULIS with coarse soil/sea salt particles. The formation process and possible sources of WSOC_h was more complicated and multiple than HULIS and need further investigation. Our measurements indicate that WSOC components contributed a dominant fraction of water-soluble aerosol mass in particles smaller than 0.32 μm while roughly 20-30% in the larger particles.

  15. Molecular characterization of water soluble organic nitrogen in marine rainwater by ultra-high resolution electrospray ionization mass spectrometry

    Directory of Open Access Journals (Sweden)

    K. E. Altieri

    2012-04-01

    Full Text Available Atmospheric water soluble organic nitrogen (WSON is a subset of the complex organic matter in aerosols and rainwater, which impacts cloud condensation processes and aerosol chemical and optical properties and may play a significant role in the biogeochemical cycle of N. However, its sources, composition, connections to inorganic N, and variability are largely unknown. Rainwater samples were collected on the island of Bermuda (32.27° N, 64.87° W, which experiences both anthropogenic and marine influenced air masses. Samples were analyzed by ultra-high resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry to chemically characterize the WSON. Elemental compositions of 2281 N containing compounds were determined over the mass range m/z+ 50 to 500. The five compound classes with the largest number of elemental formulas identified, in order from the highest number of formulas to the lowest, contained carbon, hydrogen, oxygen, and nitrogen (CHON+, CHON compounds that contained sulfur (CHONS+, CHON compounds that contained phosphorus (CHONP+, CHON compounds that contained both sulfur and phosphorus (CHONSP+, and compounds that contained only carbon, hydrogen, and nitrogen (CHN+. Compared to rainwater collected in the continental USA, average O:C ratios of all N containing compound classes were lower in the marine samples whereas double bond equivalent values were higher, suggesting a reduced role of secondary formation mechanisms. Despite their prevalence in continental rainwater, no organonitrates or nitrooxy-organosulfates were detected, but there was an increased presence of organic S and organic P containing compounds in the marine rainwater. Cluster analysis showed a clear chemical distinction between samples collected during the cold season (October to March which have anthropogenic air mass origins and samples collected during the warm season (April to September with remote

  16. Profiling contents of water-soluble metabolites and mineral nutrients to evaluate the effects of pesticides and organic and chemical fertilizers on tomato fruit quality.

    Science.gov (United States)

    Watanabe, Masami; Ohta, Yuko; Licang, Sun; Motoyama, Naoki; Kikuchi, Jun

    2015-02-15

    In this study, the contents of water-soluble metabolites and mineral nutrients were measured in tomatoes cultured using organic and chemical fertilizers, with or without pesticides. Mineral nutrients and water-soluble metabolites were determined by inductively coupled plasma-atomic emission spectrometry and (1)H nuclear magnetic resonance spectrometry, respectively, and results were analysed by principal components analysis (PCA). The mineral nutrient and water-soluble metabolite profiles differed between organic and chemical fertilizer applications, which accounted for 88.0% and 55.4%, respectively, of the variation. (1)H-(13)C-hetero-nuclear single quantum coherence experiments identified aliphatic protons that contributed to the discrimination of PCA. Pesticide application had little effect on mineral nutrient content (except Fe and P), but affected the correlation between mineral nutrients and metabolites. Differences in the content of mineral nutrients and water-soluble metabolites resulting from different fertilizer and pesticide applications probably affect tomato quality. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Comparison of structural features of water-soluble organic matter from atmospheric aerosols with those of aquatic humic substances

    Science.gov (United States)

    Duarte, Regina M. B. O.; Santos, Eduarda B. H.; Pio, Casimiro A.; Duarte, Armando C.

    Elemental analysis, Fourier transform infrared coupled to attenuated total reflectance (FTIR-ATR) and solid-state cross polarization with magic angle spinning- 13C-nuclear magnetic resonance (CPMAS 13C NMR) spectroscopies were used to compare the chemical features of water-soluble organic compounds (WSOC) from atmospheric aerosols with those of aquatic humic and fulvic acids. The influence of different meteorological conditions on the structural composition of aerosol WSOC was also evaluated. Prior to the structural characterisation, the WSOC samples were separated into hydrophobic acids and hydrophilic acids fractions by using a XAD-8/XAD-4 isolation procedure. Results showed that WSOC hydrophobic acids are mostly aliphatic (40-62% of total NMR peak area), followed by oxygenated alkyls (15-21%) and carboxylic acid (5.4-13.4%) functional groups. Moreover, the aromatic content of aerosol WSOC samples collected between autumn and winter seasons is higher (˜18-19%) than that of samples collected during warmer periods (˜6-10%). The presence of aromatic signals typical of lignin-derived structures in samples collected during low-temperature conditions highlights the major contribution of wood burning processes in domestic fireplaces into the bulk chemical properties of WSOC from aerosols. According to our investigations, aerosol WSOC hydrophobic acids and aquatic fulvic and humic acids hold similar carbon functional groups; however, they differ in terms of the relative carbon distribution. Elemental analysis indicates that H and N contents of WSOC hydrophobic acids samples surpass those of aquatic fulvic and humic acids. In general, the obtained results suggest that WSOC hydrophobic acids have a higher aliphatic character and a lower degree of oxidation than those of standard fulvic and humic acids. The study here reported suggests that aquatic fulvic and humic acids may not be good models for WSOC from airborne particulate matter.

  18. Source identification of water-soluble organic aerosols at a roadway site using a positive matrix factorization analysis.

    Science.gov (United States)

    Park, Seungshik; Cho, Sung Yong; Bae, Min-Suk

    2015-11-15

    Daily PM2.5 measurements were carried out at a local roadway every sixth day from May 2011 to August 2013 to obtain seasonal quantitative information on the primary and secondary sources of two water-soluble organic carbon (WSOC) fractions. Filter samples were analyzed for OC, elemental carbon (EC), WSOC, hydrophilic and hydrophobic WSOC fractions (WSOC(HPI) and WSOC(HPO)), and ionic species. An XAD solid phase extraction method and a total organic carbon analyzer were used to isolate the two WSOC fractions and determine their amounts, respectively. The WSOC/OC and WSOC(HPI)/WSOC ratios were 0.62±0.13 and 0.47±0.14, respectively. Similar seasonal profiles in EC, OC, and WSOC concentrations were observed, with higher concentrations occurring in the cold season and lower concentrations in the warm season. However, opposite results were obtained in WSOC/OC and WSOC(HPI)/WSOC ratios, with the higher in the warm season and the lower in the cold season. Correlation analyses indicated that two WSOC fractions in winter were likely attributed to secondary formation processes, biomass burning (BB), and traffic emissions, while WSOC(HPI) observed in other seasons were associated with secondary formation processes similar to those of oxalate and secondary inorganic species. A positive matrix factorization (PMF) model was employed to investigate the sources of two WSOC fractions. PMF indicated that concentrations of WSOC fractions were affected by five sources: secondary NO3(-) related, secondary SO4(2-) and oxalate related, traffic emissions, BB emissions, and sea-salt. Throughout the study period, secondary organic aerosols were estimated to be the most dominant contributor of WSOC fractions, with higher contributions occurring in the warm seasons. The contribution of secondary aerosol formation processes (NO3(-) related+SO4(2-) and oxalate related) to WSOC(HPI) and WSOC(HPO) was on an average 56.2% (45.0-73.8%) and 47.7% (39.6-52.1%), respectively. The seasonal average

  19. On the water-soluble organic nitrogen concentration and mass size distribution during the fog season in the Po Valley, Italy.

    Science.gov (United States)

    Montero-Martínez, Guillermo; Rinaldi, Matteo; Gilardoni, Stefania; Giulianelli, Lara; Paglione, Marco; Decesari, Stefano; Fuzzi, Sandro; Facchini, Maria Cristina

    2014-07-01

    The study of organic nitrogen gained importance in recent decades due to its links with acid rain, pollution, and eutrophication. In this study, aerosol and fog water samples collected from two sites in Italy during November 2011 were analyzed to characterize their organic nitrogen content. Organic nitrogen contributed 19-25% of the total soluble nitrogen in the aerosol and around 13% in fog water. The largest water soluble organic nitrogen concentrations in the PM1.2 fraction occurred during the diurnal period with mean values of 2.03 and 2.16 μg-N m(-3) (154 and 145 nmol-N m(-3)) at Bologna and San Pietro Capofiume (SPC), respectively. The mean PM10 WSON concentration during diurnal periods at SPC was 2.30 μg-N m(-3) (164 nmol-N m(-3)) while it was 1.34 and 0.82 μg-N m(-3) (95.7 and 58.5 nmol-N m(-3)) in the night and fog water samples, respectively. Aerosol mass distribution profiles obtained during fog changed significantly with respect to those estimated in periods without fog periods due to fog scavenging, which proved to be over 80% efficient. Linear correlations suggested secondary processes related to combustion and, to a lesser extent, biomass burning, as plausible sources of WSON. Regarding the inorganic nitrogen fraction, the results showed that ammonium was the largest soluble inorganic nitrogen component in the samples. Copyright © 2014 Elsevier B.V. All rights reserved.

  20. Identification of water-soluble heavy crude oil organic-acids, bases, and neutrals by electrospray ionization and field desorption ionization fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Stanford, Lateefah A; Kim, Sunghwan; Klein, Geoffrey C; Smith, Donald F; Rodgers, Ryan P; Marshall, Alan G

    2007-04-15

    We identify water-soluble (23 degrees C) crude oil NSO nonvolatile acidic, basic, and neutral crude oil hydrocarbons by negative-ion ESI and continuous flow FD FT-ICR MS at an average mass resolving power, m/deltam50% = 550,000. Of the 7000+ singly charged acidic species identified in South American crude oil, surprisingly, many are water-soluble, and much more so in pure water than in seawater. The truncated m/z distributions for water-soluble components exhibit preferential molecular weight, size, and heteroatom class influences on hydrocarbon solubility. Acidic water-soluble heteroatomic classes detected at >1% relative abundance include O, O2, O3, O4, OS, O2S, O3S, O4S, NO2, NO3, and NO4. Parent oil class abundance does not directly relate to abundance in the water-soluble fraction. Acidic oxygen-containing classes are most prevalent in the water-solubles, whereas acidic nitrogen-containing species are least soluble. In contrast to acidic nitrogen-containing heteroatomic classes, basic nitrogen classes are water-soluble. Water-soluble heteroatomic basic classes detected at >1% relative abundance include N, NO, NO2, NS, NS2, NOS, NO2S, N2, N2O, N2O2, OS, O2S, and O2S2.

  1. A Colorful Solubility Exercise for Organic Chemistry

    Science.gov (United States)

    Shugrue, Christopher R.; Mentzen, Hans H., II; Linton, Brian R.

    2015-01-01

    A discovery chemistry laboratory has been developed for the introductory organic chemistry student to investigate the concepts of polarity, miscibility, solubility, and density. The simple procedure takes advantage of the solubility of two colored dyes in a series of solvents or solvent mixtures, and the diffusion of colors can be easily…

  2. 40 CFR 799.6784 - TSCA water solubility: Column elution method; shake flask method.

    Science.gov (United States)

    2010-07-01

    ... in water is a significant parameter because: (A) The spatial and temporal movement (mobility) of a... Solubility in Water of Slightly Soluble, Low Volatility Organic Substances ER15DE00.054 1 = Leveling vessel...

  3. Water Soluble Polymers for Pharmaceutical Applications

    Directory of Open Access Journals (Sweden)

    Veeran Gowda Kadajji

    2011-11-01

    Full Text Available Advances in polymer science have led to the development of novel drug delivery systems. Some polymers are obtained from natural resources and then chemically modified for various applications, while others are chemically synthesized and used. A large number of natural and synthetic polymers are available. In the present paper, only water soluble polymers are described. They have been explained in two categories (1 synthetic and (2 natural. Drug polymer conjugates, block copolymers, hydrogels and other water soluble drug polymer complexes have also been explained. The general properties and applications of different water soluble polymers in the formulation of different dosage forms, novel delivery systems and biomedical applications will be discussed.

  4. Soluble organic nanotubes for catalytic systems

    Science.gov (United States)

    Xiong, Linfeng; Yang, Kunran; Zhang, Hui; Liao, Xiaojuan; Huang, Kun

    2016-03-01

    In this paper, we report a novel method for constructing a soluble organic nanotube supported catalyst system based on single-molecule templating of core-shell bottlebrush copolymers. Various organic or metal catalysts, such as sodium prop-2-yne-1-sulfonate (SPS), 1-(2-(prop-2-yn-1-yloxy)ethyl)-1H-imidazole (PEI) and Pd(OAc)2 were anchored onto the tube walls to functionalize the organic nanotubes via copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Depending on the ‘confined effect’ and the accessible cavity microenvironments of tubular structures, the organic nanotube catalysts showed high catalytic efficiency and site-isolation features. We believe that the soluble organic nanotubes will be very useful for the development of high performance catalyst systems due to their high stability of support, facile functionalization and attractive textural properties.

  5. Soluble organic nanotubes for catalytic systems.

    Science.gov (United States)

    Xiong, Linfeng; Yang, Kunran; Zhang, Hui; Liao, Xiaojuan; Huang, Kun

    2016-03-18

    In this paper, we report a novel method for constructing a soluble organic nanotube supported catalyst system based on single-molecule templating of core–shell bottlebrush copolymers. Various organic or metal catalysts, such as sodium prop-2-yne-1-sulfonate (SPS), 1-(2-(prop-2-yn-1-yloxy)ethyl)-1H-imidazole (PEI) and Pd(OAc)2 were anchored onto the tube walls to functionalize the organic nanotubes via copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Depending on the 'confined effect' and the accessible cavity microenvironments of tubular structures, the organic nanotube catalysts showed high catalytic efficiency and site-isolation features. We believe that the soluble organic nanotubes will be very useful for the development of high performance catalyst systems due to their high stability of support, facile functionalization and attractive textural properties.

  6. Water soluble organic carbon in aerosols (PM1, PM2.5, PM10) and various precipitation forms (rain, snow, mixed) over the southern Baltic Sea station.

    Science.gov (United States)

    Witkowska, Agnieszka; Lewandowska, Anita U

    2016-12-15

    In the urbanized coastal zone of the Southern Baltic, complex measurements of water soluble organic carbon (WSOC) were conducted between 2012 and 2015, involving atmospheric precipitation in its various forms (rain, snow, mixed) and PM1, PM2.5 and PM10 aerosols. WSOC constituted about 60% of the organic carbon mass in aerosols of various sizes. The average concentration of WSOC was equal to 2.6μg∙m -3 in PM1, 3.6μg∙m -3 in PM2.5 and 4.4μg∙m -3 in PM10. The lowest concentration of WSOC was noted in summer as a result of effective removal of this compound with rainfall. The highest WSOC concentrations in PM2.5 and PM10 aerosols were measured in spring, which should be associated with developing vegetation on land and in the sea. On the other hand, the highest WSOC concentrations in PM1 occurred in winter at low air temperatures and greatest atmospheric stability, when there were increased carbon emissions from fuel combustion in the communal-utility sector and from transportation. WSOC concentrations in precipitation were determined by its form. Mixed precipitation turned out to be the richest in soluble organic carbon (5.1mg·dm -3 ), while snow contained the least WSOC (1.7mg·dm -3 ). Snow and rain cleaned carbon compounds from the atmosphere more effectively when precipitation lasted longer than 24h, while in the case of mixed precipitation WSOC was removed most effectively within the first 24h. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Seasonal variability of carbon in humic-like matter of ambient size-segregated water soluble organic aerosols from urban background environment

    Science.gov (United States)

    Frka, Sanja; Grgić, Irena; Turšič, Janja; Gini, Maria I.; Eleftheriadis, Konstantinos

    2018-01-01

    Long-term measurements of carbon in HUmic-LIke Substances (HULIS-C) of ambient size-segregated water soluble organic aerosols were performed using a ten-stage low-pressure Berner impactor from December 2014 to November 2015 at an urban background environment in Ljubljana, Slovenia. The mass size distribution patterns of measured species (PM - particulate matter, WSOC - water-soluble organic carbon and HULIS-C) for all seasons were generally tri-modal (primarily accumulation mode) but with significant seasonal variability. HULIS-C was found to have similar distributions as WSOC, with nearly the same mass median aerodynamic diameters (MMADs), except for winter when the HULIS-C size distribution was bimodal. In autumn and winter, the dominant accumulation mode with MMAD at ca. 0.65 μm contributed 83 and 97% to the total HULIS-C concentration, respectively. HULIS-C accounted for a large fraction of WSOC, averaging more than 50% in autumn and 40% in winter. Alternatively, during warmer periods the contributions of ultrafine (27% in summer) and coarse mode (27% in spring) were also substantial. Based on mass size distribution characteristics, HULIS-C was found to be of various sources. In colder seasons, wood burning was confirmed as the most important HULIS source; secondary formation in atmospheric liquid water also contributed significantly, as revealed by the MMADs of the accumulation mode shifting to larger sizes. The distinct difference between the spring and summer ratios of HULIS-C/WSOC in fine particles (ca. 50% in spring, but only 10% in summer) indicated different sources and chemical composition of WSOC in summer (e.g., SOA formation from biogenic volatile organic compounds (BVOCs) via photochemistry). The enlarged amount of HULIS-C in the ultrafine mode in summer suggests that the important contribution was most likely from new particle formation during higher emissions of BVOC due to the vicinity of a mixed deciduous forest; the higher contribution of

  8. Solubility of the Proteinogenic α-Amino Acids in Water, Ethanol, and Ethanol-Water Mixtures

    NARCIS (Netherlands)

    Bowden, Nathan A.; Sanders, Johan P.M.; Bruins, Marieke E.

    2018-01-01

    The addition of organic solvents to α-amino acids in aqueous solution could be an effective method in crystallization. We reviewed the available data on the solubility of α-amino acids in water, water-ethanol mixtures, and ethanol at 298.15 K and 0.1 MPa. The solubility of l-alanine, l-proline,

  9. Preparation of detergent-lipase complexes utilizing water-soluble amphiphiles in single aqueous phase and catalysis of transesterifications in homogeneous organic solvents.

    Science.gov (United States)

    Mine, Y; Fukunaga, K; Maruoka, N; Nakao, K; Sugimura, Y

    2000-01-01

    A novel method of preparing detergent-enzyme complexes that can be employed in organic media was developed utilizing newly synthesized water-soluble nonionic gemini-type detergents, N,N-bis(3-D-gluconamidopropyl)-3-(dialkyl-L-glutamatecarbonyl)propanamides (BIG2CnCA: n = 10,12,14,16,18) and N,N-bis(3-D-lactonamidopropyl)-3-(dialkyl-L-glutamatecarbonyl)propanamides (BIL2CnCA: n = 16,18), and nonionic twin-headed detergents, N,N-bis(3-D-gluconamidopropyl)alkanamides (BIG1Cn: n = 12,14,16,18,delta9). This method simply entails mixing a selected enzyme with an appropriate detergent in an aqueous solution followed by lyophilization, and it offers the advantages of enhanced enzymatic activity in organic solvents and eliminates both enzyme loss and the necessity for an organic solvent in the preparation stage. Using various modified lipases originating from Aspergillus niger (Lipase A), Candida rugosa (Lipase C), Pseudomonas cepacia (Lipase P), and porcine pancreas (PPL), prepared using the novel method and detergents, including conventional synthesized nonionic detergents such as dialkyl N-D-glucona-L-glutamates (2CnGE: n = 12,18delta9) and octanoyl-N-methylglucamide (MEGA-8), enantioselective transesterifications of 6-methyl-5-hepten-2-ol (sulcatol) and 2,2-dimethyl-1,3-dioxolane-4-methanol (solketal) with a vinyl or isopropenyl carboxylate were carried out in an organic solvent. The modified lipase activity was influenced by both the lipases and the structure of the detergents. The value for the hydrophile-lipophile balance (HLB) of the detergent provided a means of correlating the structure and the obtained modified lipase activity. For detergents of the same class with a HLB value of approximately 9 and 12, the highest activity was obtained for Lipase A and Lipase P, and Lipase C and PPL, respectively. Among detergents of the same HLB value tested, the gemini-type detergents possessing the most bulky head and tail were most effective as a modifier for lipases of all

  10. The effect of tree species on seasonal fluctuations in water-soluble and hot water-extractable organic matter at post-mining sites

    Czech Academy of Sciences Publication Activity Database

    Cepáková, Šárka; Tošner, Z.; Frouz, Jan

    2016-01-01

    Roč. 275, August (2016), s. 19-27 ISSN 0016-7061 Grant - others:GA ČR(CZ) GAP504/12/1288; GAJU(CZ) GAJU/04-146/2013/P Program:GA Institutional support: RVO:60077344 Keywords : HWC * liquid-state 1H NMR * seasonality * soil organic carbon * water-extractable organic matter Subject RIV: DF - Soil Science Impact factor: 4.036, year: 2016

  11. Solubilities of boric acid in heavy water

    International Nuclear Information System (INIS)

    Nakai, Shigetsugu; Aoi, Hideki; Hayashi, Ken-ichi; Katoh, Taizo; Watanabe, Takashi.

    1988-01-01

    A gravimetric analysis using meta-boric acid (HBO 2 or DBO 2 ) as a weighing form has been developed for solubility measurement. The method gave satisfactory results in preliminary measurement of solubilities of boric acid in light water. By using this method, the solubilities of 10 B enriched D 3 BO 3 in heavy water were measured. The results are as follows; 2.67 (7deg C), 3.52 (15deg C), 5.70 (30deg C), 8.87 (50deg C) and 12.92 (70deg C) w/o, respectively. These values are about 10% lower than those in light water. Thermodynamical consideration based on the data shows that boric acid is the water structure breaker. (author)

  12. Water soluble two-photon fluorescent organic probes for long-term imaging of lysosomes in live cells and tumor spheroids.

    Science.gov (United States)

    Kumari, Pratibha; Verma, Sanjay K; Mobin, Shaikh M

    2018-01-11

    The morphological alteration of lysosomes is a powerful indicator of various pathological disorders. In this regard, we have designed and synthesized a new water soluble fluorescent Schiff-base ligand (L-lyso) containing two hydroxyl groups. L-lyso exhibits excellent two-photon properties with tracking of lysosomes in live cells as well as in 3D tumor spheroids. Furthermore, it can label lysosomes for more than 3 days. Thus, L-lyso has an edge over the commercially available expensive LysoTracker probes and also over other reported probes in terms of its long-term imaging, water solubility and facile synthesis.

  13. Recent advances in transport of water-soluble vitamins in organs of the digestive system: a focus on the colon and the pancreas.

    Science.gov (United States)

    Said, Hamid M

    2013-11-01

    This review focuses on recent advances in our understanding of the mechanisms and regulation of water-soluble vitamin (WSV) transport in the large intestine and pancreas, two important organs of the digestive system that have only recently received their fair share of attention. WSV, a group of structurally unrelated compounds, are essential for normal cell function and development and, thus, for overall health and survival of the organism. Humans cannot synthesize WSV endogenously; rather, WSV are obtained from exogenous sources via intestinal absorption. The intestine is exposed to two sources of WSV: a dietary source and a bacterial source (i.e., WSV generated by the large intestinal microbiota). Contribution of the latter source to human nutrition/health has been a subject of debate and doubt, mostly based on the absence of specialized systems for efficient uptake of WSV in the large intestine. However, recent studies utilizing a variety of human and animal colon preparations clearly demonstrate that such systems do exist in the large intestine. This has provided strong support for the idea that the microbiota-generated WSV are of nutritional value to the host, and especially to the nutritional needs of the local colonocytes and their health. In the pancreas, WSV are essential for normal metabolic activities of all its cell types and for its exocrine and endocrine functions. Significant progress has also been made in understanding the mechanisms involved in the uptake of WSV and the effect of chronic alcohol exposure on the uptake processes.

  14. Profiling of the Contents of Amino Acids, Water-Soluble Vitamins, Minerals, Sugars and Organic Acids in Turkish Hazelnut Varieties

    Directory of Open Access Journals (Sweden)

    Taş Neslihan Göncüoğlu

    2018-09-01

    Full Text Available Proximate composition, profiles of amino acids, sugars, organic acids, vitamins and minerals of fourteen Turkish hazelnut varieties harvested in 2013 and 2014 were investigated. Glutamic acid, arginine and aspartic acid were the most predominant amino acids, representing of about 50% of hazelnut protein. Individual amino acid profiles showed significant differences depending upon the harvest year (p<0.05. Concentration of sucrose was the highest followed by fructose, glucose, stachyose, raffinose and myo-inositol, respectively. Phytic acid was predominant organic acid in all varieties, followed by malic acid. Independent of the variety, hazelnuts were rich in pantothenic acid, nicotinic acid, pyridoxal, biotin, thiamine, nicotinamide. Pantothenic and nicotinic acid were significantly higher in most of the varieties in harvest year 2014. Potassium was the most predominant mineral, followed by magnesium, calcium, sodium, manganese, zinc, iron and copper, respectively.

  15. Differences in fluorescence characteristics and bioavailability of water-soluble organic matter (WSOM) in sediments and suspended solids in Lihu Lake, China.

    Science.gov (United States)

    Wang, Wenwen; Wang, Shuhang; Jiang, Xia; Zheng, Binghui; Zhao, Li; Zhang, Bo; Chen, Junyi

    2018-05-01

    The spectral characteristics, spatial distribution, and bioavailability of water-soluble organic matter (WSOM) in suspended solids and surface sediments of Lihu Lake, China, were investigated through excitation-emission matrix spectra and parallel factor analysis. The average content of dissolved organic carbon (DOC) in the sediments reached 643.28 ± 58.34 mg C/kg and that in suspended solids was 714.87 ± 69.24 mg C/kg. The fluorescence intensity of WSOM totaled 90.87 ± 5.65 and 115.42 ± 8.02 RU/g for the sediments and suspended solids, respectively. The DOC and fluorescence intensity of the WSOM showed an increasing trend moving from the west to the east of the lake. The WSOM in sediments and suspended solids contained two humic-like (C1 and C2) and one tryptophan-like (C3) components. These components had different fluorescent peaks and relative proportions. In the sediments, the relative proportions of C1, C2, and C3 were 33.71% ± 0.71, 26.83% ± 0.68, and 39.50% ± 0.71%, respectively. Meanwhile, C1 (35.77 ± 0.84%), C2 (34.07 ± 0.61%), and C3 (30.16 ± 0.75%) had similar relative percentages in suspended solids. The sediments had a lower humification index (3.02 ± 0.08) than the suspended solids (4.04 ± 0.15). Exchangeable nitrogen for the sediments and suspended solids was dominated by exchangeable ammonium nitrogen and soluble organic nitrogen, respectively. WSOM plays an important role in migration and transformation of nitrogen in sediments and suspended solids. The sediment-derived WSOM exhibited higher lability and biological activity than did the suspended solid-derived WSOM. The relative ratio of the intensity of protein-like fluorescent component to that of the humic-like one can be used as a reference index to evaluate the lability and biological activity of WSOM in sediments and suspended solids.

  16. Solubility of carbohydrates in heavy water.

    Science.gov (United States)

    Cardoso, Marcus V C; Carvalho, Larissa V C; Sabadini, Edvaldo

    2012-05-15

    The solubility of several mono-(glucose and xylose), di-(sucrose and maltose), tri-(raffinose) and cyclic (α-cyclodextrin) saccharides in H(2)O and in D(2)O were measured over a range of temperatures. The solution enthalpies for the different carbohydrates in the two solvents were determined using the vant' Hoff equation and the values in D(2)O are presented here for the first time. Our findings indicate that the replacement of H(2)O by D(2)O remarkably decreases the solubilities of the less soluble carbohydrates, such as maltose, raffinose and α-cyclodextrin. On the other hand, the more soluble saccharides, glucose, xylose, and sucrose, are practically insensitive to the H/D replacement in water. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Radiculography with water-soluble contraste medium

    International Nuclear Information System (INIS)

    Araujo Pinheiro, R.S. de

    1987-01-01

    The etiologic diagnosis of the lumbar pain is discussed. The radiculography with water-soluble contrast medium is used and 250 cases are studied. Some practical criteria of indication executation and interpretation of the examination are reported. (M.A.C.) [pt

  18. Technical Note: Molecular characterization of aerosol-derived water soluble organic carbon using ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry

    Directory of Open Access Journals (Sweden)

    R. M. Dickhut

    2008-09-01

    Full Text Available Despite the acknowledged relevance of aerosol-derived water-soluble organic carbon (WSOC to climate and biogeochemical cycling, characterization of aerosol WSOC has been limited. Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS was utilized in this study to provide detailed molecular level characterization of the high molecular weight (HMW; m/z>223 component of aerosol-derived WSOC collected from rural sites in Virginia and New York, USA. More than 3000 peaks were detected by ESI FT-ICR MS within a m/z range of 223–600 for each sample. Approximately 86% (Virginia and 78% (New York of these peaks were assigned molecular formulas using only carbon (C, hydrogen (H, oxygen (O, nitrogen (N, and sulfur (S as elemental constituents. H/C and O/C molar ratios were plotted on van Krevelen diagrams and indicated a strong contribution of lignin-like and lipid-like compounds to the aerosol-derived WSOC samples. Approximately 1–4% of the peaks in the aerosol-derived WSOC mass spectra were classified as black carbon (BC on the basis of double bond equivalents calculated from the assigned molecular formulas. In addition, several high-magnitude peaks in the mass spectra of samples from both sites corresponded to molecular formulas proposed in previous secondary organic aerosol (SOA laboratory investigations indicating that SOAs are important constituents of the WSOC. Overall, ESI FT-ICR MS provides a level of resolution adequate for detailed compositional and source information of the HMW constituents of aerosol-derived WSOC.

  19. Antibacterial Characteristics and Activity of Water-Soluble Chitosan Derivatives Prepared by the Maillard Reaction

    Directory of Open Access Journals (Sweden)

    Ying-Chien Chung

    2011-10-01

    Full Text Available The antibacterial activity of water-soluble chitosan derivatives prepared by Maillard reactions against Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus, Escherichia coli, Shigella dysenteriae, and Salmonella typhimurium was examined. Relatively high antibacterial activity against various microorganisms was noted for the chitosan-glucosamine derivative as compared to the acid-soluble chitosan. In addition, it was found that the susceptibility of the test organisms to the water-soluble chitosan derivative was higher in deionized water than in saline solution. Metal ions were also found to reduce the antibacterial activity of the water-soluble chitosan derivative on S. aureus. The marked increase in glucose level, protein content and lactate dehydrogenase (LDH activity was observed in the cell supernatant of S. aureus exposed to the water-soluble chitosan derivative in deionized water. The results suggest that the water-soluble chitosan produced by Maillard reaction may be a promising commercial substitute for acid-soluble chitosan.

  20. Biochemical synthesis of water soluble conducting polymers

    Science.gov (United States)

    Bruno, Ferdinando F.; Bernabei, Manuele

    2016-05-01

    An efficient biomimetic route for the synthesis of conducting polymers/copolymers complexed with lignin sulfonate and sodium (polystyrenesulfonate) (SPS) will be presented. This polyelectrolyte assisted PEG-hematin or horseradish peroxidase catalyzed polymerization of pyrrole (PYR), 3,4 ethyldioxithiophene (EDOT) and aniline has provided a route to synthesize water-soluble conducting polymers/copolymers under acidic conditions. The UV-vis, FTIR, conductivity and cyclic voltammetry studies for the polymers/copolymer complex indicated the presence of a thermally stable and electroactive polymers. Moreover, the use of water-soluble templates, used as well as dopants, provided a unique combination of properties such as high electronic conductivity, and processability. These polymers/copolymers are nowadays tested/evaluated for antirust features on airplanes and helicopters. However, other electronic applications, such as photovoltaics, for transparent conductive polyaniline, actuators, for polypyrrole, and antistatic films, for polyEDOT, will be proposed.

  1. Biochemical synthesis of water soluble conducting polymers

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Ferdinando F., E-mail: Ferdinando-Bruno@uml.edu [US Army Natick Soldier Research, Development and Engineering Center, Natick, MA 01760 (United States); Bernabei, Manuele [ITAF, Test Flight Centre, Chemistry Dept. Pratica di Mare AFB, 00071 Pomezia (Rome), Italy (UE) (Italy)

    2016-05-18

    An efficient biomimetic route for the synthesis of conducting polymers/copolymers complexed with lignin sulfonate and sodium (polystyrenesulfonate) (SPS) will be presented. This polyelectrolyte assisted PEG-hematin or horseradish peroxidase catalyzed polymerization of pyrrole (PYR), 3,4 ethyldioxithiophene (EDOT) and aniline has provided a route to synthesize water-soluble conducting polymers/copolymers under acidic conditions. The UV-vis, FTIR, conductivity and cyclic voltammetry studies for the polymers/copolymer complex indicated the presence of a thermally stable and electroactive polymers. Moreover, the use of water-soluble templates, used as well as dopants, provided a unique combination of properties such as high electronic conductivity, and processability. These polymers/copolymers are nowadays tested/evaluated for antirust features on airplanes and helicopters. However, other electronic applications, such as photovoltaics, for transparent conductive polyaniline, actuators, for polypyrrole, and antistatic films, for polyEDOT, will be proposed.

  2. Biochemical synthesis of water soluble conducting polymers

    International Nuclear Information System (INIS)

    Bruno, Ferdinando F.; Bernabei, Manuele

    2016-01-01

    An efficient biomimetic route for the synthesis of conducting polymers/copolymers complexed with lignin sulfonate and sodium (polystyrenesulfonate) (SPS) will be presented. This polyelectrolyte assisted PEG-hematin or horseradish peroxidase catalyzed polymerization of pyrrole (PYR), 3,4 ethyldioxithiophene (EDOT) and aniline has provided a route to synthesize water-soluble conducting polymers/copolymers under acidic conditions. The UV-vis, FTIR, conductivity and cyclic voltammetry studies for the polymers/copolymer complex indicated the presence of a thermally stable and electroactive polymers. Moreover, the use of water-soluble templates, used as well as dopants, provided a unique combination of properties such as high electronic conductivity, and processability. These polymers/copolymers are nowadays tested/evaluated for antirust features on airplanes and helicopters. However, other electronic applications, such as photovoltaics, for transparent conductive polyaniline, actuators, for polypyrrole, and antistatic films, for polyEDOT, will be proposed.

  3. Water Soluble Polymers for Pharmaceutical Applications

    OpenAIRE

    Veeran Gowda Kadajji; Guru V. Betageri

    2011-01-01

    Advances in polymer science have led to the development of novel drug delivery systems. Some polymers are obtained from natural resources and then chemically modified for various applications, while others are chemically synthesized and used. A large number of natural and synthetic polymers are available. In the present paper, only water soluble polymers are described. They have been explained in two categories (1) synthetic and (2) natural. Drug polymer conjugates, block copolymers, hydrogel...

  4. The search for reliable aqueous solubility (Sw) and octanol-water partition coefficient (Kow) data for hydrophobic organic compounds; DDT and DDE as a case study

    Science.gov (United States)

    Pontolillo, James; Eganhouse, R.P.

    2001-01-01

    The accurate determination of an organic contaminant?s physico-chemical properties is essential for predicting its environmental impact and fate. Approximately 700 publications (1944?2001) were reviewed and all known aqueous solubilities (Sw) and octanol-water partition coefficients (Kow) for the organochlorine pesticide, DDT, and its persistent metabolite, DDE were compiled and examined. Two problems are evident with the available database: 1) egregious errors in reporting data and references, and 2) poor data quality and/or inadequate documentation of procedures. The published literature (particularly the collative literature such as compilation articles and handbooks) is characterized by a preponderance of unnecessary data duplication. Numerous data and citation errors are also present in the literature. The percentage of original Sw and Kow data in compilations has decreased with time, and in the most recent publications (1994?97) it composes only 6?26 percent of the reported data. The variability of original DDT/DDE Sw and Kow data spans 2?4 orders of magnitude, and there is little indication that the uncertainty in these properties has declined over the last 5 decades. A criteria-based evaluation of DDT/DDE Sw and Kow data sources shows that 95?100 percent of the database literature is of poor or unevaluatable quality. The accuracy and reliability of the vast majority of the data are unknown due to inadequate documentation of the methods of determination used by the authors. [For example, estimates of precision have been reported for only 20 percent of experimental Sw data and 10 percent of experimental Kow data.] Computational methods for estimating these parameters have been increasingly substituted for direct or indirect experimental determination despite the fact that the data used for model development and validation may be of unknown reliability. Because of the prevalence of errors, the lack of methodological documentation, and unsatisfactory data

  5. Bismuth solubility through binding by various organic compounds and naturally occurring soil organic matter.

    Science.gov (United States)

    Murata, Tomoyoshi

    2010-01-01

    The present study was performed to examine the effects of soluble organic matter and pH on the solubility of Bi in relation to inference with the behavior of metallic Bi dispersed in soil and water environments using EDTA, citric acid, tartaric acid, L-cysteine, soil humic acids (HA), and dissolved organic matter (DOM) derived from the soil organic horizon. The solubility of Bi by citric acid, tartaric acid, L-cysteine, HA, and DOM showed pH dependence, while that by EDTA did not. Bi solubility by HA seemed to be related to the distribution of pKa (acid dissociation constant) values of acidic functional groups in their molecules. That is, HA extracted at pH 3.2 solubilized Bi preferentially in the acidic range, while HA extracted at pH 8.4 showed preferential solubilization at neutral and alkaline pH. This was related to the dissociation characteristics of functional groups, their binding capacity with Bi, and precipitation of Bi carbonate or hydroxides. In addition to the dissociation characteristics of functional groups, the unique structural configuration of the HA could also contribute to Bi-HA complex formation. The solubility of Bi by naturally occurring DOM derived from the soil organic horizon (Oi) and its pH dependence were different from those associated with HA and varied among tree species.

  6. Indomethacin solubility estimation in 1,4-dioxane + water mixtures by the extended hildebrand solubility approach

    Directory of Open Access Journals (Sweden)

    Miller A Ruidiaz

    2011-09-01

    Full Text Available Extended Hildebrand Solubility Approach (EHSA was successfully applied to evaluate the solubility of Indomethacin in 1,4-dioxane + water mixtures at 298.15 K. An acceptable correlation-performance of EHSA was found by using a regular polynomial model in order four of the W interaction parameter vs. solubility parameter of the mixtures (overall deviation was 8.9%. Although the mean deviation obtained was similar to that obtained directly by means of an empiric regression of the experimental solubility vs. mixtures solubility parameters, the advantages of EHSA are evident because it requires physicochemical properties easily available for drugs.

  7. On the solubility of plutonium in water

    International Nuclear Information System (INIS)

    Naegele, G.

    1977-12-01

    In a theoretical study, the chemical equilibrium state of saturated Pu solutions in water was determined and the effect of the addition of EDTA on the solubility of Pu estimated. Concentrations of Plutonium in true solution in the range of grams/litre seem to be achievable, at least in principle. The amount of EDTA necessary is not larger than the total amount of Pu. It is however questionable, specially after taking into account all possible effects of reaction kinetics, whether such high concentrations can be achieved at all under normal environmental conditions. Only experiments under real world conditions can give an answer to this question. (orig./HK) 891 HK 892 AP [de

  8. Solubility of the Proteinogenic α-Amino Acids in Water, Ethanol, and Ethanol–Water Mixtures

    Science.gov (United States)

    2018-01-01

    The addition of organic solvents to α-amino acids in aqueous solution could be an effective method in crystallization. We reviewed the available data on the solubility of α-amino acids in water, water–ethanol mixtures, and ethanol at 298.15 K and 0.1 MPa. The solubility of l-alanine, l-proline, l-arginine, l-cysteine, and l-lysine in water and ethanol mixtures and the solubility of l-alanine, l-proline, l-arginine, l-cysteine, l-lysine, l-asparagine, l-glutamine, l-histidine, and l-leucine in pure ethanol systems were measured and are published here for the first time. The impact on the solubility of amino acids that can convert in solution, l-glutamic acid and l-cysteine, was studied. At lower concentrations, only the ninhydrin method and the ultraperfomance liquid chromatography (UPLC) method yield reliable results. In the case of α-amino acids that convert in solution, only the UPLC method was able to discern between the different α-amino acids and yields reliable results. Our results demonstrate that α-amino acids with similar physical structures have similar changes in solubility in mixed water/ethanol mixtures. The solubility of l-tryptophan increased at moderate ethanol concentrations. PMID:29545650

  9. Interlaboratory validation of small-scale solubility and dissolution measurements of poorly water-soluble drugs

    DEFF Research Database (Denmark)

    Andersson, Sara B. E.; Alvebratt, Caroline; Bevernage, Jan

    2016-01-01

    The purpose of this study was to investigate the interlaboratory variability in determination of apparent solubility (Sapp) and intrinsic dissolution rate (IDR) using a miniaturized dissolution instrument. Three poorly water-soluble compounds were selected as reference compounds and measured at m...

  10. Water-soluble resorcin[4]arene based cavitands

    NARCIS (Netherlands)

    Grote gansey, M.H.B.; Grote Gansey, Marcel H.B.; Bakker, Frank K.G.; Feiters, Martinus C.; Geurts, Hubertus P.M.; Verboom, Willem; Reinhoudt, David

    1998-01-01

    Water-soluble resorcin[4]arene based cavitands were obtained in good yields by reaction of bromomethylcavitands with pyridine. Their solubility was determined by conductometry. The behaviour in water depends on the alkyl chain length; the methylcavitand does not aggregate, whereas the pentyl- and

  11. Leaching behavior of water-soluble carbohydrates from almond hulls

    Science.gov (United States)

    Over 58% of the dry matter content of the hulls from the commercial almond (Prunus dulcis (Miller) D.A. Webb) is soluble in warm water (50-70°C) extraction. The water-soluble extractables include useful amounts of fermentable sugars (glucose, fructose, sucrose), sugar alcohols (inositol and sorbito...

  12. Polymer-assisted synthesis of water-soluble PbSe quantum dots

    International Nuclear Information System (INIS)

    Melnig, V.; Apostu, M.-O.; Foca, N.

    2008-01-01

    Stable PbSe quantum dots were synthesised in water-based media using poly(amidehydroxyurethane) water-soluble polymer. The polymer acts like a precursor carrier, blocks the particles aggregation and assures their solubility. Atomic force microscopy data show that the particle radius is smaller than the Bohr radius of PbSe. Interactions studies, performed by Fourier transform IR spectroscopy, show that the quantum dots are capped with poly(amidehydroxyurethane). The proposed synthesis was realised in the absence of any organic solvent. As a result, the produced particles have good water solubility, stability and good arguments to be biologically compatible.

  13. Compostos orgânicos hidrossolúveis de resíduos vegetais e seus efeitos nos atributos químicos do solo Water-soluble organic compounds in plant residue and the effects on soil chemical properties

    Directory of Open Access Journals (Sweden)

    Raquel Cátia Diehl

    2008-12-01

    Full Text Available Compostos orgânicos hidrossolúveis de resíduos vegetais depositados na superfície do solo podem melhorar a fertilidade do subsolo, pela neutralização da acidez e transporte de Ca e Mg. Com o objetivo de avaliar o efeito dos compostos orgânicos hidrossolúveis de materiais vegetais nos atributos químicos de um Latossolo Vermelho distroférrico, foi desenvolvido um experimento no Instituto Agronômico do Paraná (IAPAR, Londrina, com amostras de solo acondicionadas em colunas nas quais se aplicaram os tratamentos: água destilada, calcário incorporado na camada 0-5 cm de profundidade, calcário e percolação com extratos de nabo forrageiro, aveia preta, palha de trigo, milho e soja. No extrato percolado, foram determinados os teores de ligantes orgânicos hidrossolúveis (LOH por potenciometria com eletrodo seletivo de Cu2+; ácidos orgânicos tituláveis (AOT por titulação ácido-base e ânions orgânicos (AO pela soma de bases. As concentrações de AO e AOT variaram de 7,0 a 32,0 mmol L-1 e de LOH de 0,60 a 2,23 mmol L-1. Todos os extratos vegetais aumentaram o pH, os teores de Ca, Mg e K trocável e diminuíram a acidez potencial e o Al trocável até 15 cm de profundidade, enquanto o efeito da calagem sem extrato foi observado somente até 10 cm de profundidade. A concentração de compostos orgânicos solúveis oriundos dos materiais vegetais correlacionou-se com o pH, Al trocável, H+Al e V % do solo na camada de 0-20 cm, confirmando a participação destes na melhoria dos atributos químicos do solo e ação da calagem superficial quando o material vegetal está presente.The water-soluble organic compounds of plant residues released on the soil surface can improve the subsoil fertility, due to the neutralization of acidity and Ca and Mg transport. An experiment was conducted at the Instituto Agronomico do Parana (IAPAR, Londrina, to evaluate the effect of water-soluble organic compounds of plant extracts on the chemical

  14. Influence of calcium and phosphorus, lactose, and salt-to-moisture ratio on Cheddar cheese quality: changes in residual sugars and water-soluble organic acids during ripening.

    Science.gov (United States)

    Upreti, P; McKay, L L; Metzger, L E

    2006-02-01

    Cheddar cheese ripening involves the conversion of lactose to glucose and galactose or galactose-6-phosphate by starter and nonstarter lactic acid bacteria. Under ideal conditions (i.e., where bacteria grow under no stress of pH, water activity, and salt), these sugars are mainly converted to lactic acid. However, during ripening of cheese, survival and growth of bacteria occurs under the stressed condition of low pH, low water activity, and high salt content. This forces bacteria to use alternate biochemical pathways resulting in production of other organic acids. The objective of this study was to determine if the level and type of organic acids produced during ripening was influenced by calcium (Ca) and phosphorus (P), residual lactose, and salt-to-moisture ratio (S/M) of cheese. Eight cheeses with 2 levels of Ca and P (0.67 and 0.47% vs. 0.53 and 0.39%, respectively), lactose at pressing (2.4 vs. 0.78%), and S/M (6.4 vs. 4.8%) were manufactured. The cheeses were analyzed for organic acids (citric, orotic, pyruvic, lactic, formic, uric, acetic, propanoic, and butyric acids) and residual sugars (lactose, galactose) during 48 wk of ripening using an HPLC-based method. Different factors influenced changes in concentration of residual sugars and organic acids during ripening and are discussed in detail. Our results indicated that the largest decrease in lactose and the largest increase in lactic acid occurred between salting and d 1 of ripening. It was interesting to observe that although the lactose content in cheese was influenced by several factors (Ca and P, residual lactose, and S/M), the concentration of lactic acid was influenced only by S/M. More lactic acid was produced in low S/M treatments compared with high S/M treatments. Although surprising for Cheddar cheese, a substantial amount (0.2 to 0.4%) of galactose was observed throughout ripening in all treatments. Minor changes in the levels of citric, uric, butyric, and propanoic acids were observed during

  15. Uranium solubility and speciation in ground water

    International Nuclear Information System (INIS)

    Ollila, K.

    1985-04-01

    The purpose of this study has been to assess the solubility and possible species of uranium in groundwater at the disposal conditions of spent fuel. The effects of radiolysis and bentonite are considered. The assessment is based on the theoretical calculations found in the literature. The Finnish experimental results are included. The conservative estimate for uranium solubility under the oxidizing conditions caused by alpha radiolysis is based on the oxidation of uranium to the U(VI) state and formation of carbonate complex. For the groundwater with the typical carbonate content of 275 mg/l and the high carbonate content of 485 mg/l due to bentonite, the solubility values of 360 mg u/l and 950 mg U/l, are obtained, respectively. The experimental results predict considerably lower values, 0.5-20 mg U/l. The solubility of uranium under the undisturbed reducing conditions may be calculated based on the hydrolysis, carbonate complexation and redox reactions. The results vary considerably depending on the thermodynamic data used. The wide ranges of the most important groundwater parameters are seen in the solubility values. The experimental results show the same trends. As a conservative value for the solubility in reducing groundwater 50-500 μg U/l is estimated. (author)

  16. Binary systems solubilities of inorganic and organic compounds

    CERN Document Server

    Stephen, H

    1963-01-01

    Solubilities of Inorganic and Organic Compounds, Volume 1: Binary Systems, Part 1 is part of an approximately 5,500-page manual containing a selection from the International Chemical Literature on the Solubilities of Elements, Inorganic Compounds, Metallo-organic and Organic Compounds in Binary, Ternary and Multi-component Systems. A careful survey of the literature in all languages by a panel of scientists specially appointed for the task by the U.S.S.R. Academy of Sciences, Moscow, has made the compilation of this work possible. The complete English edition in five separately bound volumes w

  17. Solubility of corrosion products in high temperature water

    International Nuclear Information System (INIS)

    Srinivasan, M.P.; Narasimhan, S.V.

    1995-01-01

    A short review of solubility of corrosion products at high temperature in either neutral or alkaline water as encountered in BWR, PHWR and PWR primary coolant reactor circuits is presented in this report. Based on the available literature, various experimental techniques involved in the study of the solubility, theory for fitting the solubility data to the thermodynamic model and discussion of the published results with a scope for future work have been brought out. (author). 17 refs., 7 figs

  18. The role of vitamins in the diet of the elderly II. Water-soluble vitamins

    OpenAIRE

    Csapó J.; Albert Cs.; Prokisch J.

    2017-01-01

    Following a presentation of humans’ water-soluble vitamin requirements, the authors will discuss in detail the role these vitamins play in human organism and outline those major biochemical processes that are negatively affected in the body in case of vitamin deficiency. They point out that in the elderly population of developed countries cases of water-soluble vitamin deficiency are extremely rare and they are due to the lack of dietary vitamin, but mostly to the vitamin being released from ...

  19. Water-soluble dietary fibers and cardiovascular disease.

    Science.gov (United States)

    Theuwissen, Elke; Mensink, Ronald P

    2008-05-23

    One well-established way to reduce the risk of developing cardiovascular disease (CVD) is to lower serum LDL cholesterol levels by reducing saturated fat intake. However, the importance of other dietary approaches, such as increasing the intake of water-soluble dietary fibers is increasingly recognized. Well-controlled intervention studies have now shown that four major water-soluble fiber types-beta-glucan, psyllium, pectin and guar gum-effectively lower serum LDL cholesterol concentrations, without affecting HDL cholesterol or triacylglycerol concentrations. It is estimated that for each additional gram of water-soluble fiber in the diet serum total and LDL cholesterol concentrations decrease by -0.028 mmol/L and -0.029 mmol/L, respectively. Despite large differences in molecular structure, no major differences existed between the different types of water-soluble fiber, suggesting a common underlying mechanism. In this respect, it is most likely that water-soluble fibers lower the (re)absorption of in particular bile acids. As a result hepatic conversion of cholesterol into bile acids increases, which will ultimately lead to increased LDL uptake by the liver. Additionally, epidemiological studies suggest that a diet high in water-soluble fiber is inversely associated with the risk of CVD. These findings underlie current dietary recommendations to increase water-soluble fiber intake.

  20. Solubility and physical properties of sugars in pressurized water

    International Nuclear Information System (INIS)

    Saldaña, Marleny D.A.; Alvarez, Víctor H.; Haldar, Anupam

    2012-01-01

    Highlights: ► Sugar solubility in pressurized water and density at high pressures were measured. ► Glucose solubility was higher than that of lactose as predicted by their σ-profiles. ► Sugar aqueous solubility decreased with an increase in pressure from 15 to 120 bar. ► Aqueous glucose molecular packing shows high sensitivity to pressure. ► The COSMO-SAC model qualitatively predicted the sugar solubility data. - Abstract: In this study, the solubility, density, and refractive index of glucose and lactose in water as a function of temperature were measured. For solubility of sugars in pressurized water, experimental data were obtained at pressures of (15 to 120) bar and temperatures of (373 to 433) K using a dynamic flow high pressure system. Density data for aqueous sugar solutions were obtained at pressures of (1 to 300) bar and temperatures of (298 to 343) K. The refractive index of aqueous sugar solutions was obtained at 293 K and atmospheric pressure. Activity coefficient models, Van Laar and the Conductor-like Screening Model-Segment Activity Coefficient (COSMO-SAC), were used to fit and predict the experimental solubility data, respectively. The results obtained showed that the solubility of both sugars in pressurized water increase with an increase in temperature. However, with the increase of pressure from 15 bar to 120 bar, the solubility of both sugars in pressurized water decreased. The Van Laar model fit the experimental aqueous solubility data with deviations lower than 13 and 53% for glucose and lactose, respectively. The COSMO-SAC model predicted qualitatively the aqueous solubility of these sugars.

  1. The water-soluble fraction of potentially toxic elements in contaminated soils: relationships between ecotoxicity, solubility and geochemical reactivity.

    Science.gov (United States)

    Rocha, L; Rodrigues, S M; Lopes, I; Soares, A M V M; Duarte, A C; Pereira, E

    2011-09-01

    To better understand the impacts posed by soil contamination to aquatic ecosystems it is crucial to characterise the links between ecotoxicity, chemical availability and geochemical reactivity of potentially toxic elements (PTE's) in soils. We evaluated the adverse effects of water extracts obtained from soils contaminated by chemical industry and mining, using a test battery including organisms from different trophic levels (bacteria, algae and daphnids). These tests provided a quick assessment of the ecotoxicity of soils with respect to possible adverse effects on aquatic organisms although the ecotoxicological responses could be related to the solubility of PTE's only to a limited extent. The analysis of results of bioassays together with the chemical characterisation of water extracts provided additional relevant insight into the role of conductivity, pH, Al, Fe, and Mn of soil extracts on toxicity to organisms. Furthermore, an important conclusion of this study was that the toxicity of extracts to the aquatic organisms could also be related to the soil properties (pH, Org C and Fe(ox)) and to the reactivity of PTE's in soils which in fact control the soluble fraction of the contaminants. The combined assessment of ecotoxicity in water fractions, solubility and geochemical reactivity of PTE's in soils provided a more comprehensive understanding of the bioavailability of inorganic contaminants than ecotoxicological or chemical studies alone and can therefore be most useful for environmental risks assessment of contaminated soils. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Biological properties of water-soluble phosphorhydrazone dendrimers

    Directory of Open Access Journals (Sweden)

    Anne-Marie Caminade

    2013-01-01

    Full Text Available Dendrimers are hyperbranched and perfectly defined macromolecules, constituted of branches emanating from a central core in an iterative fashion. Phosphorhydrazone dendrimers constitute a special family of dendrimers, possessing one phosphorus atom at each branching point. The internal structure of these dendrimers is hydrophobic, but hydrophilic terminal groups can induce the solubility of the whole structure in water. Indeed, the properties of these compounds are mainly driven by the type of terminal groups their bear; this is especially true for the biological properties. For instance, positively charged terminal groups are efficient for transfection experiments, as drug carriers, as anti-prion agents, and as inhibitor of the aggregation of Alzheimer's peptides, whereas negatively charged dendrimers have anti-HIV properties and can influence the human immune system, leading to anti-inflammatory properties usable against rheumatoid arthritis. This review will give the most representative examples of the biological properties of water-soluble phosphorhydrazone dendrimers, organized depending on the type of terminal groups they bear.

  3. Study on REE bound water-soluble polysaccharides in plant

    International Nuclear Information System (INIS)

    Wang Yuqi; Guo Fanqing; Xu Lei; Chen Hongmin; Sun Jingxin; Cao Guoyin

    1999-01-01

    The binding of REE with water-soluble polysaccharides (PSs) in leaves of fern Dicranopteris Dichotoma (DD) has been studied by molecular activation analysis. The cold-water-soluble and hot-water-soluble PSs in leaves of DD were obtained by using biochemical separation techniques. The PSs of non-deproteinization and deproteinization, were separated on Sephadex G-200 gel permeation chromatography. The absorption curves of elution for the PSs were obtained by colorimetry, and the proteins were detected using Coomassic brilliant G-250. Eight REEs (La, Ce, Nd, Sm, Eu, Tb, Yb and Lu) in these PSs were determined by instrumental neutron activation analysis. The results obtained show that the REEs are bound firmly with the water-soluble PSs in the plant. A measurement demonstrates that the PSs bound with REEs are mainly of smaller molecular weight (10,000 to 20,000 Dalton)

  4. Determination of Carboxylic Acids and Water-soluble Inorganic Ions ...

    African Journals Online (AJOL)

    NICO

    radiation balance.4,5 Major water-soluble inorganic ions are associated with atmospheric ... molecular weight carboxylic acids in aerosol samples collected from a rural ... include biomass burning, agriculture, livestock and soil dust. Tropical ...

  5. Effect of water deficit stress on proline contents, soluble sugars ...

    African Journals Online (AJOL)

    Effect of water deficit stress on proline contents, soluble sugars, chlorophyll and grain yield of sunflower ... Journal Home > Vol 11, No 1 (2012) > ... The objective of the present work was to determine the mechanisms of tolerance of four ...

  6. Solubility and degradation of paracetamol in subcritical water

    Directory of Open Access Journals (Sweden)

    Emire Zuhal

    2017-01-01

    Full Text Available In this study, solubility and degradation of paracetamol were examined using subcritical water. Effect of temperature and static time was investigated during solubility process in subcritical water at constant pressure (50 bar. Experimental results show that temperature and static time have crucial effect on the degradation and solubility rates. Maximum mole fraction for solubility of paracetamol was obtained at 403 K as (14.68 ± 0.74×103. Approximation model for solubility of paracetamol was proposed. O2 and H2O2 were used in degradation process of paracetamol. Maximum degradation rate was found as 68.66 ± 1.05 and 100 ± 0.00 % using O2 and H2O2, respectively.

  7. Characterization of Gasolines, Diesel Fuels and Their Water Soluble Fractions

    Science.gov (United States)

    1983-09-01

    Hutchinson, et al.,1979 ) with the marine algae, Chlorella vulgaris and Chlamydomonas angulosa, suggests that the toxicity of hydrocarbons is a...water-soluble petroleum components on the growth of Chlorella vulgaris Beijernck. Environ. Poll. 9: 157. Morrow, J.E., et al. 1975. Effects of some...P.B., and T.C. Hutchison. 1975. The effects of water-soluble petroleum components on the growth of Chlorella vulqaris Beijerinck. Environ. Poll. 9

  8. Buckminsterfullerene's (C60) octanol-water partition coefficient (Kow) and aqueous solubility.

    Science.gov (United States)

    Jafvert, Chad T; Kulkarni, Pradnya P

    2008-08-15

    To assess the risk and fate of fullerene C60 in the environment, its water solubility and partition coefficients in various systems are useful. In this study, the log Kow of C60 was measured to be 6.67, and the toluene-water partition coefficient was measured at log Ktw = 8.44. From these values and the respective solubilities of C60 in water-saturated octanol and water-saturated toluene, C60's aqueous solubility was calculated at 7.96 ng/L(1.11 x 10(-11) M) for the organic solvent-saturated aqueous phase. Additionally, the solubility of C60 was measured in mixtures of ethanol-water and tetrahydrofuran-water and modeled with Wohl's equation to confirm the accuracy of the calculated solubility value. Results of a generator column experiment strongly support the hypothesis that clusters form at aqueous concentrations below or near this calculated solubility. The Kow value is compared to those of other hydrophobic organic compounds, and bioconcentration factors for C60 were estimated on the basis of Kow.

  9. Abalone water-soluble matrix for self-healing biomineralization of tooth defects

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Zhenliang [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Chen, Jingdi, E-mail: ibptcjd@fzu.edu.cn [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Wang, Hailiang [The Affiliated Stomatological Hospital, Fujian Medical University, Fuzhou 350002 (China); Zhong, Shengnan; Hu, Yimin; Wang, Zhili [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Zhang, Qiqing, E-mail: zhangqiq@126.com [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192 (China)

    2016-10-01

    Enamel cannot heal by itself if damaged. Hydroxyapatite (HAP) is main component of human enamel. Formation of enamel-like materials for healing enamel defects remains a challenge. In this paper, we successfully isolated the abalone water-soluble matrix (AWSM) with 1.53 wt% the abalone water-soluble protein (AWSPro) and 2.04 wt% the abalone water-soluble polysaccharide (AWSPs) from abandoned abalone shell, and self-healing biomineralization of tooth defects was successfully achieved in vitro. Based on X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), hot field emission scanning electron microscopy (HFESEM) and energy dispersive spectrometer (EDS) analysis, the results showed that the AWSM can efficiently induce remineralization of HAP. The enamel-like HAP was successfully achieved onto etched enamel's surface due to the presence of the AWSM. Moreover, the remineralized effect of eroded enamel was growing with the increase of the AWSM. This study provides a solution to the resource waste and environmental pollution caused by abandoned abalone shell, and we provides a new method for self-healing remineralization of enamel defects by AWSM and develops a novel dental material for potential clinical dentistry application. - Graphical abstract: In this paper, we successfully isolated the abalone water-soluble matrix (AWSM) with 1.53 wt% abalone water-soluble protein (AWSPro) and 2.04 wt% abalone water-soluble polysaccharide (AWSPs) from abandoned abalone shell, and self-healing biomineralization of tooth defects was successfully achieved in vitro by self-organized. Display Omitted - Highlights: • Provides a solution to the resource waste and environmental pollution caused by abandoned abalone shell. • The abalone shell water-soluble matrix contains protein and polysaccharide. • The abalone water-soluble matrix can efficiently induce remineralization of HAP by self-organized. • Achieved self-healing biomineralization of tooth defects in

  10. Abalone water-soluble matrix for self-healing biomineralization of tooth defects

    International Nuclear Information System (INIS)

    Wen, Zhenliang; Chen, Jingdi; Wang, Hailiang; Zhong, Shengnan; Hu, Yimin; Wang, Zhili; Zhang, Qiqing

    2016-01-01

    Enamel cannot heal by itself if damaged. Hydroxyapatite (HAP) is main component of human enamel. Formation of enamel-like materials for healing enamel defects remains a challenge. In this paper, we successfully isolated the abalone water-soluble matrix (AWSM) with 1.53 wt% the abalone water-soluble protein (AWSPro) and 2.04 wt% the abalone water-soluble polysaccharide (AWSPs) from abandoned abalone shell, and self-healing biomineralization of tooth defects was successfully achieved in vitro. Based on X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), hot field emission scanning electron microscopy (HFESEM) and energy dispersive spectrometer (EDS) analysis, the results showed that the AWSM can efficiently induce remineralization of HAP. The enamel-like HAP was successfully achieved onto etched enamel's surface due to the presence of the AWSM. Moreover, the remineralized effect of eroded enamel was growing with the increase of the AWSM. This study provides a solution to the resource waste and environmental pollution caused by abandoned abalone shell, and we provides a new method for self-healing remineralization of enamel defects by AWSM and develops a novel dental material for potential clinical dentistry application. - Graphical abstract: In this paper, we successfully isolated the abalone water-soluble matrix (AWSM) with 1.53 wt% abalone water-soluble protein (AWSPro) and 2.04 wt% abalone water-soluble polysaccharide (AWSPs) from abandoned abalone shell, and self-healing biomineralization of tooth defects was successfully achieved in vitro by self-organized. Display Omitted - Highlights: • Provides a solution to the resource waste and environmental pollution caused by abandoned abalone shell. • The abalone shell water-soluble matrix contains protein and polysaccharide. • The abalone water-soluble matrix can efficiently induce remineralization of HAP by self-organized. • Achieved self-healing biomineralization of tooth defects in vitro.

  11. Novel electrosprayed nanospherules for enhanced aqueous solubility and oral bioavailability of poorly water-soluble fenofibrate.

    Science.gov (United States)

    Yousaf, Abid Mehmood; Mustapha, Omer; Kim, Dong Wuk; Kim, Dong Shik; Kim, Kyeong Soo; Jin, Sung Giu; Yong, Chul Soon; Youn, Yu Seok; Oh, Yu-Kyoung; Kim, Jong Oh; Choi, Han-Gon

    2016-01-01

    The purpose of the present research was to develop a novel electrosprayed nanospherule providing the most optimized aqueous solubility and oral bioavailability for poorly water-soluble fenofibrate. Numerous fenofibrate-loaded electrosprayed nanospherules were prepared with polyvinylpyrrolidone (PVP) and Labrafil(®) M 2125 as carriers using the electrospray technique, and the effect of the carriers on drug solubility and solvation was assessed. The solid state characterization of an optimized formulation was conducted by scanning electron microscopy, powder X-ray diffraction, differential scanning calorimetry, and Fourier transform infrared spectroscopic analyses. Oral bioavailability in rats was also evaluated for the formulation of an optimized nanospherule in comparison with free drug and a conventional fenofibrate-loaded solid dispersion. All of the electrosprayed nanospherule formulations had remarkably enhanced aqueous solubility and dissolution compared with free drug. Moreover, Labrafil M 2125, a surfactant, had a positive influence on the solubility and dissolution of the drug in the electrosprayed nanospherule. Increases were observed as the PVP/drug ratio increased to 4:1, but higher ratios gave no significant increases. In particular, an electrosprayed nanospherule composed of fenofibrate, PVP, and Labrafil M 2125 at the weight ratio of 1:4:0.5 resulted in a particle size of water-soluble fenofibrate.

  12. Mechanisms for oral absorption of poorly water-soluble compounds

    DEFF Research Database (Denmark)

    Lind, Marianne Ladegaard

    Abstract A large part of the new drug candidates discovered by the pharmaceutical industry have poor solubility in aqueous media. The preferred route of drug administration is the oral route, but for these poorly water-soluble drug candidates the oral bioavailability can be low and variable. Often......, phospholipids) and exogenous surfactants used in pharmaceutical formulations on the oral absorption of poorly water-soluble drug substances. Three different models were used for this purpose. The first model was the in vitro Caco-2 cell model. Simulated intestinal fluids which did not decrease cellular...... products are important for the solubilization of poorly water-soluble drug substances and thus absorption. The second model used was the lipoprotein secreting Caco-2 cell model, which was used to simulate intestinal lymphatic transport in vitro. Various simulated intestinal fluids were composed...

  13. Effect of atmospheric organic complexation on iron-bearing dust solubility

    Directory of Open Access Journals (Sweden)

    R. Paris

    2013-05-01

    Full Text Available Recent studies reported that the effect of organic complexation may be a potentially important process to be considered by models estimating atmospheric iron flux to the ocean. In this study, we investigated this process effect by a series of dissolution experiments on iron-bearing dust in the presence or the absence of various organic compounds (acetate, formate, oxalate, malonate, succinate, glutarate, glycolate, lactate, tartrate and humic acid as an analogue of humic like substances, HULIS typically found in atmospheric waters. Only 4 of tested organic ligands (oxalate, malonate, tartrate and humic acid caused an enhancement of iron solubility which was associated with an increase of dissolved Fe(II concentrations. For all of these organic ligands, a positive linear dependence of iron solubility to organic concentrations was observed and showed that the extent of organic complexation on iron solubility decreased in the following order: oxalate >malonate = tartrate > humic acid. This was attributed to the ability of electron donors of organic ligands and implies a reductive ligand-promoted dissolution. This study confirms that among the known atmospheric organic binding ligands of Fe, oxalate is the most effective ligand promoting dust iron solubility and showed, for the first time, the potential effect of HULIS on iron dissolution under atmospheric conditions.

  14. The solubilities of benzene polycarboxylic acids in water

    International Nuclear Information System (INIS)

    Apelblat, Alexander; Manzurola, Emanuel; Abo Balal, Nazmia

    2006-01-01

    The solubilities in water of all benzene polycarboxylic acids are discussed, using data determined in this work (benzoic, terephthalic, trimellitic, trimesic, and pyromellitic acids) and available from the literature (benzoic, phthalic, isophthalic, terephthalic, hemimellitic, trimelitic, trimesic, mellophanic, prehnitic, pyromellitic, benzene-pentacarboxylic and mellitic acids). The apparent molar enthalpies of solution at the saturation point for these benzene polycarboxylic acids were determined from the temperature dependence of the solubilities

  15. Quantitative analysis of soluble elements in environmental waters by PIXE

    International Nuclear Information System (INIS)

    Niizeki, T.; Kawasaki, K.; Adachi, M.; Tsuji, M.; Hattori, T.

    1999-01-01

    We have started PIXE research for environmental science at Van de Graaff accelerator facility in Tokyo Institute of Technology. Quantitative measurements of soluble fractions in river waters have been carried out using the preconcentrate method developed in Tohoku University. We reveal that this PIXE target preparation can be also applied to waste water samples. (author)

  16. Salinity impacts on water solubility and n-octanol/water partition coefficients of selected pesticides and oil constituents.

    Science.gov (United States)

    Saranjampour, Parichehr; Vebrosky, Emily N; Armbrust, Kevin L

    2017-09-01

    Salinity has been reported to influence the water solubility of organic chemicals entering marine ecosystems. However, limited data are available on salinity impacts for chemicals potentially entering seawater. Impacts on water solubility would correspondingly impact chemical sorption as well as overall bioavailability and exposure estimates used in the regulatory assessment. The pesticides atrazine, fipronil, bifenthrin, and cypermethrin, as well as the crude oil constituent dibenzothiophene together with 3 of its alkyl derivatives, all have different polarities and were selected as model compounds to demonstrate the impact of salinity on their solubility and partitioning behavior. The n-octanol/water partition coefficient (K OW ) was measured in both distilled-deionized water and artificial seawater (3.2%). All compounds had diminished solubility and increased K OW values in artificial seawater compared with distilled-deionized water. A linear correlation curve estimated salinity may increase the log K OW value by 2.6%/1 log unit increase in distilled water (R 2  = 0.97). Salinity appears to generally decrease the water solubility and increase the partitioning potential. Environmental fate estimates based on these parameters indicate elevated chemical sorption to sediment, overall bioavailability, and toxicity in artificial seawater. These dramatic differences suggest that salinity should be taken into account when exposure estimates are made for marine organisms. Environ Toxicol Chem 2017;36:2274-2280. © 2017 SETAC. © 2017 SETAC.

  17. Enhancing the solubility and bioavailability of poorly water-soluble drugs using supercritical antisolvent (SAS) process.

    Science.gov (United States)

    Abuzar, Sharif Md; Hyun, Sang-Min; Kim, Jun-Hee; Park, Hee Jun; Kim, Min-Soo; Park, Jeong-Sook; Hwang, Sung-Joo

    2018-03-01

    Poor water solubility and poor bioavailability are problems with many pharmaceuticals. Increasing surface area by micronization is an effective strategy to overcome these problems, but conventional techniques often utilize solvents and harsh processing, which restricts their use. Newer, green technologies, such as supercritical fluid (SCF)-assisted particle formation, can produce solvent-free products under relatively mild conditions, offering many advantages over conventional methods. The antisolvent properties of the SCFs used for microparticle and nanoparticle formation have generated great interest in recent years, because the kinetics of the precipitation process and morphologies of the particles can be accurately controlled. The characteristics of the supercritical antisolvent (SAS) technique make it an ideal tool for enhancing the solubility and bioavailability of poorly water-soluble drugs. This review article focuses on SCFs and their properties, as well as the fundamentals of overcoming poorly water-soluble drug properties by micronization, crystal morphology control, and formation of composite solid dispersion nanoparticles with polymers and/or surfactants. This article also presents an overview of the main aspects of the SAS-assisted particle precipitation process, its mechanism, and parameters, as well as our own experiences, recent advances, and trends in development. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Amelioration of radiation induced oxidative stress using water soluble chitosan produced by Aspergillus niger

    International Nuclear Information System (INIS)

    EL-Sonbaty, S.M.; Swailam, H.M.; Noaman, E.

    2012-01-01

    Chitosan is a natural polysaccharide synthesized by a great number of living organisms and considered as a source of potential bioactive material and has many biological applications which are greatly affected by its solubility in neutral ph. In this study low molecular weight water soluble chitosan was prepared by chemical degradation of chitosan produced by Aspergillus niger using H 2 O 2 . Chitosan chemical structure was detected before and after treatment using FTIR spectrum, and its molecular weight was determined by its viscosity using viscometer. Its antioxidant activity against gamma radiation was evaluated in vivo using rats. Rats were divided into 4 groups; group 1: control, group 2: exposed to acute dose of gamma radiation (6 Gy), group 3: received water soluble chitosan, group 4: received water soluble chitosan then exposed to gamma radiation as group 2. Gamma radiation significantly increased malonaldehyde, decreased glutathione concentration, activity of superoxide dismutase, catalase, and glutatione peroxidase, while significantly increase the activity of alanine transferase, aspartate transferase, urea and creatinine concentration. Administration of water soluble chitosan has ameliorated induced changes caused by gamma radiation. It could be concluded that water soluble chitosan by scavenging free radicals directly or indirectly may act as a potent radioprotector against ionizing irradiation.

  19. Micelles from lipid derivatives of water-soluble polymers as delivery systems for poorly soluble drugs.

    Science.gov (United States)

    Lukyanov, Anatoly N; Torchilin, Vladimir P

    2004-05-07

    Polymeric micelles have a whole set of unique characteristics, which make them very promising drug carriers, in particular, for poorly soluble drugs. Our review article focuses on micelles prepared from conjugates of water-soluble polymers, such as polyethylene glycol (PEG) or polyvinyl pyrrolidone (PVP), with phospholipids or long-chain fatty acids. The preparation of micelles from certain polymer-lipid conjugates and the loading of these micelles with various poorly soluble anticancer agents are discussed. The data on the characterization of micellar preparations in terms of their morphology, stability, longevity in circulation, and ability to spontaneously accumulate in experimental tumors via the enhanced permeability and retention (EPR) effect are presented. The review also considers the preparation of targeted immunomicelles with specific antibodies attached to their surface. Available in vivo results on the efficiency of anticancer drugs incorporated into plain micelles and immunomicelles in animal models are also discussed.

  20. Removal of soluble toxic metals from water

    International Nuclear Information System (INIS)

    Buckley, L.P.; Vijayan, S.; McConeghy, G.J.; Maves, S.R.; Martin, J.F.

    1990-05-01

    The removal of selected, soluble toxic metals from aqueous solutions has been accomplished using a combination of chemical treatment and ultrafiltration. The process has been evaluated at the bench-scale and is undergoing pilot-scale testing. Removal efficiencies in excess of 95-99% have been realized. The test program at the bench-scale investigated the limitations and established the optimum range of operating parameters for the process, while the tests conducted with the pilot-scale process equipment are providing information on longer-term process efficiencies, effective processing rates, and fouling potential of the membranes. With the typically found average concentrations of the toxic metals in groundwaters at Superfund sites used as the feed solution, the process has decreased levels up to 100-fold or more. Experiments were also conducted with concentrated solutions to determine their release from silica-based matrices. The solidified wastes were subjected to EP Toxicity test procedures and met the criteria successfully. The final phase of the program involving a field demonstration at a uranium tailings site will be outlined

  1. Carcinogenicity assessment of water-soluble nickel compounds.

    Science.gov (United States)

    Goodman, Julie E; Prueitt, Robyn L; Dodge, David G; Thakali, Sagar

    2009-01-01

    IARC is reassessing the human carcinogenicity of nickel compounds in 2009. To address the inconsistencies among results from studies of water-soluble nickel compounds, we conducted a weight-of-evidence analysis of the relevant epidemiological, toxicological, and carcinogenic mode-of-action data. We found the epidemiological evidence to be limited, in that some, but not all, data suggest that exposure to soluble nickel compounds leads to increased cancer risk in the presence of certain forms of insoluble nickel. Although there is no evidence that soluble nickel acts as a complete carcinogen in animals, there is limited evidence that suggests it may act as a tumor promoter. The mode-of-action data suggest that soluble nickel compounds will not be able to cause genotoxic effects in vivo because they cannot deliver sufficient nickel ions to nuclear sites of target cells. Although the mode-of-action data suggest several possible non-genotoxic effects of the nickel ion, it is unclear whether soluble nickel compounds can elicit these effects in vivo or whether these effects, if elicited, would result in tumor promotion. The mode-of-action data equally support soluble nickel as a promoter or as not being a causal factor in carcinogenesis at all. The weight of evidence does not indicate that soluble nickel compounds are complete carcinogens, and there is only limited evidence that they could act as tumor promoters.

  2. Solubility studies of Np(V) in simulated underground water

    International Nuclear Information System (INIS)

    Zhang Yingjie; Ren Lilong; Jiao Haiyang; Yao Jun; Su Xiguang; Fan Xianhua

    2004-01-01

    The solubility of Np(V) in simulated underground water has been measured with the variation of pH, storage time (0-100 days). All experiments were performed in an Ar glove box which contained high purity Ar, with an oxygen content of less than 5ppm. Experimental results show that the solubility of Np(V) in simulated underground water decreased with increasing pH value of solution; the solubility of Np(V) in simulated underground water determined at different pH is : pH=6.96, [Np(V)]=(3.52±0.37) x 10 -4 mol/L; pH=8.04, [Np(V)]=(8.24±0.32) x 10 -5 mol/L; pH=9.01, [Np(V)]=(3.04±0.48) x 10'- 5 mol/L, respectively. (author)

  3. Uncertainty assessment of source attribution of PM(2.5) and its water-soluble organic carbon content using different biomass burning tracers in positive matrix factorization analysis--a case study in Beijing, China.

    Science.gov (United States)

    Tao, Jun; Zhang, Leiming; Zhang, Renjian; Wu, Yunfei; Zhang, Zhisheng; Zhang, Xiaoling; Tang, Yixi; Cao, Junji; Zhang, Yuanhang

    2016-02-01

    Daily PM2.5 samples were collected at an urban site in Beijing during four one-month periods in 2009-2010, with each period in a different season. Samples were subject to chemical analysis for various chemical components including major water-soluble ions, organic carbon (OC) and water-soluble organic carbon (WSOC), element carbon (EC), trace elements, anhydrosugar levoglucosan (LG), and mannosan (MN). Three sets of source profiles of PM2.5 were first identified through positive matrix factorization (PMF) analysis using single or combined biomass tracers - non-sea salt potassium (nss-K(+)), LG, and a combination of nss-K(+) and LG. The six major source factors of PM2.5 included secondary inorganic aerosol, industrial pollution, soil dust, biomass burning, traffic emission, and coal burning, which were estimated to contribute 31±37%, 39±28%, 14±14%, 7±7%, 5±6%, and 4±8%, respectively, to PM2.5 mass if using the nss-K(+) source profiles, 22±19%, 29±17%, 20±20%, 13±13%, 12±10%, and 4±6%, respectively, if using the LG source profiles, and 21±17%, 31±18%, 19±19%, 11±12%, 14±11%, and 4±6%, respectively, if using the combined nss-K(+) and LG source profiles. The uncertainties in the estimation of biomass burning contributions to WSOC due to the different choices of biomass burning tracers were around 3% annually and up to 24% seasonally in terms of absolute percentage contributions, or on a factor of 1.7 annually and up to a factor of 3.3 seasonally in terms of the actual concentrations. The uncertainty from the major source (e.g. industrial pollution) was on a factor of 1.9 annually and up to a factor of 2.5 seasonally in the estimated WSOC concentrations. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Oral formulation strategies to improve solubility of poorly water-soluble drugs.

    Science.gov (United States)

    Singh, Abhishek; Worku, Zelalem Ayenew; Van den Mooter, Guy

    2011-10-01

    In the past two decades, there has been a spiraling increase in the complexity and specificity of drug-receptor targets. It is possible to design drugs for these diverse targets with advances in combinatorial chemistry and high throughput screening. Unfortunately, but not entirely unexpectedly, these advances have been accompanied by an increase in the structural complexity and a decrease in the solubility of the active pharmaceutical ingredient. Therefore, the importance of formulation strategies to improve the solubility of poorly water-soluble drugs is inevitable, thus making it crucial to understand and explore the recent trends. Drug delivery systems (DDS), such as solid dispersions, soluble complexes, self-emulsifying drug delivery systems (SEDDS), nanocrystals and mesoporous inorganic carriers, are discussed briefly in this review, along with examples of marketed products. This article provides the reader with a concise overview of currently relevant formulation strategies and proposes anticipated future trends. Today, the pharmaceutical industry has at its disposal a series of reliable and scalable formulation strategies for poorly soluble drugs. However, due to a lack of understanding of the basic physical chemistry behind these strategies, formulation development is still driven by trial and error.

  5. The role of vitamins in the diet of the elderly II. Water-soluble vitamins

    Directory of Open Access Journals (Sweden)

    Csapó J.

    2017-10-01

    Full Text Available Following a presentation of humans’ water-soluble vitamin requirements, the authors will discuss in detail the role these vitamins play in human organism and outline those major biochemical processes that are negatively affected in the body in case of vitamin deficiency. They point out that in the elderly population of developed countries cases of water-soluble vitamin deficiency are extremely rare and they are due to the lack of dietary vitamin, but mostly to the vitamin being released from its bindings, the difficulty of free vitamin absorption, gastrointestinal problems, medication, and often alcoholism. Among water-soluble vitamins, B12 is the only one with a sufficient storage level in the body, capable of preventing deficiency symptoms for a long period of time in cases of vitamin-deficient nutrition. Each type of vitamin is dealt with separately in discussing the beneficial outcomes of their overconsumption regarding health, while the authors of the article also present cases with contradictory results. Daily requirements are set forth for every water-soluble vitamin and information is provided on the types of nutrients that help us to the water-soluble vitamins essential for the organism.

  6. OCTANOL/WATER PARTITION COEFFICIENTS AND WATER SOLUBILITIES OF PHTHALATE ESTERS

    Science.gov (United States)

    Measurements of the octanol/water partition coefficients (K-ow) and water solubilities of di-n-octyl phthalate (DnOP) and di-n-decyl phthalate (DnDP) by the slow-stirring method are reported. The water solubility was also measured for di-n-hexyl phthalate (DnHP). The log K-ow val...

  7. Water-soluble highly fluorinated graphite oxide

    Czech Academy of Sciences Publication Activity Database

    Jankovský, O.; Šimek, P.; Sedmidubský, D.; Matějková, Stanislava; Janoušek, Zbyněk; Šembera, Filip; Pumera, M.; Sofer, Z.

    2014-01-01

    Roč. 4, č. 3 (2014), s. 1378-1387 ISSN 2046-2069 Institutional support: RVO:61388963 Keywords : graphene oxide * electronic- properties * monolayer graphene * raman-spectroscopy Subject RIV: CC - Organic Chemistry Impact factor: 3.840, year: 2014

  8. [Determination of equilibrium solubility and n-octanol/water partition coefficient of pulchinenosiden D by HPLC].

    Science.gov (United States)

    Rao, Xiao-Yong; Yin, Shan; Zhang, Guo-Song; Luo, Xiao-Jian; Jian, Hui; Feng, Yu-Lin; Yang, Shi-Lin

    2014-05-01

    To determine the equilibrium solubility of pulchinenosiden D in different solvents and its n-octanol/water partition coefficients. Combining shaking flask method and high performance liquid chromatography (HPLC) to detect the n-octanol/water partition coefficients of pulchinenosiden D, the equilibrium solubility of pulchinenosiden D in six organic solvents and different pH buffer solution were determined by HPLC analysis. n-Octanol/water partition coefficients of pulchinenosiden D in different pH were greater than zero, the equilibrium solubility of pulchinenosiden D was increased with increase the pH of the buffer solution. The maximum equilibrium solubility of pulchinenosiden D was 255.89 g x L(-1) in methanol, and minimum equilibrium solubility of pulchinenosiden D was 0.20 g x L(-1) in acetonitrile. Under gastrointestinal physiological conditions, pulchinenosiden D exists in molecular state and it has good absorption but poor water-solubility, so increasing the dissolution rate of pulchinenosiden D may enhance its bioavailability.

  9. Novel electrosprayed nanospherules for enhanced aqueous solubility and oral bioavailability of poorly water-soluble fenofibrate

    Directory of Open Access Journals (Sweden)

    Yousaf AM

    2016-01-01

    Full Text Available Abid Mehmood Yousaf,1,2 Omer Mustapha,1 Dong Wuk Kim,1 Dong Shik Kim,1 Kyeong Soo Kim,1 Sung Giu Jin,1 Chul Soon Yong,3 Yu Seok Youn,4 Yu-Kyoung Oh,5 Jong Oh Kim,3 Han-Gon Choi1 1College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi, South Korea; 2Faculty of Pharmacy, University of Central Punjab, Johar, Lahore, Pakistan; 3College of Pharmacy, Yeungnam University, Gyongsan, North Gyeongsang, 4School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi, 5College of Pharmacy, Seoul National University, Seoul, South Korea Purpose: The purpose of the present research was to develop a novel electrosprayed nanospherule providing the most optimized aqueous solubility and oral bioavailability for poorly water-soluble fenofibrate.Methods: Numerous fenofibrate-loaded electrosprayed nanospherules were prepared with polyvinylpyrrolidone (PVP and Labrafil® M 2125 as carriers using the electrospray technique, and the effect of the carriers on drug solubility and solvation was assessed. The solid state characterization of an optimized formulation was conducted by scanning electron microscopy, powder X-ray diffraction, differential scanning calorimetry, and Fourier transform infrared spectroscopic analyses. Oral bioavailability in rats was also evaluated for the formulation of an optimized nanospherule in comparison with free drug and a conventional fenofibrate-loaded solid dispersion.Results: All of the electrosprayed nanospherule formulations had remarkably enhanced aqueous solubility and dissolution compared with free drug. Moreover, Labrafil M 2125, a surfactant, had a positive influence on the solubility and dissolution of the drug in the electrosprayed nanospherule. Increases were observed as the PVP/drug ratio increased to 4:1, but higher ratios gave no significant increases. In particular, an electrosprayed nanospherule composed of fenofibrate, PVP, and Labrafil M 2125 at the weight ratio of 1

  10. Antimicrobial and Antifungal Effects of Acid and Water-Soluble Chitosan Extracted from Indian Shrimp (Fenneropenaeus indicus Shell

    Directory of Open Access Journals (Sweden)

    Ali Taheri

    2013-06-01

    Full Text Available Background & Objective : Currently, efforts are underway to seek new and effective antimicrobial agents, and marine resources are potent candidates for this aim. The following study was conducted to investigate the efficacy of water-soluble and acid-soluble chitosan against some pathogenic organisms.   Materials & Method s: Inhibition zone of different concentrations (5, 7.5, and 10 mg/ml of acid- soluble and water-soluble chitosan were examined for in vitro antibacterial activity against 4 kinds of hospital bacteria and penicillium sp. Results were compared with 4 standard antibiotics: streptomycin, gentamicin, tetracycline, and erythromycin. Furthermore, minimum inhibitory concentration and minimum lethal concentration were determined.   Results: Inhibition activity of acid-soluble chitosan (10% showed the best result (p value < 0.05, whereas water-soluble chitosan exhibited the least antibacterial effects (p value < 0.05. Chitosan demonstrated maximum effect on V. cholera cerotype ogava , and the least effect was seen on E. coli (p value < 0.05. Acid-soluble chitosan had a more potent effect than the standard antibiotics. Also, acid-soluble chitosan (10% and water-soluble chitosan showed maximum inhibitory effects on penicillium sp.   Conclusion: Chitosan showed maximum antibacterial effect against S. aureus, V. cholerae cerotype ogava, and water-soluble chitosan demonstrated good antifungal effects, revealing a statistically significant difference with common antibacterial and antifungal medicines.

  11. Solubilization of poorly water-soluble drugs using solid dispersions.

    Science.gov (United States)

    Tran, Thao T-D; Tran, Phuong H-L; Khanh, Tran N; Van, Toi V; Lee, Beom-Jin

    2013-08-01

    Many new drugs have been discovered in pharmaceutical industry and exposed their surprised potential therapeutic effects. Unfortunately, these drugs possess low absorption and bioavailability since their solubility limitation in water. Solid dispersion (SD) is the current technique gaining so many attractions from scientists due to its effect on improving solubility and dissolution rate of poorly water-soluble drugs. A number of patents including the most recent inventions have been undertaken in this review to address various respects of this strategy in solubilization of poorly watersoluble drugs including type of carriers, preparation methods and view of technologies used to detect SD properties and mechanisms with the aim to accomplish a SD not only effective on enhanced bioavailability but also overcome difficulties associated with stability and production. Future prospects are as well discussed with an only hope that many developments and researches in this field will be successfully reached and contributed to commercial use for treatment as much as possible.

  12. Solubility of magnetite in high temperature water and an approach to generalized solubility computations

    International Nuclear Information System (INIS)

    Dinov, K.; Ishigure, K.; Matsuura, C.; Hiroishi, D.

    1993-01-01

    Magnetite solubility in pure water was measured at 423 K in a fully teflon-covered autoclave system. A fairly good agreement was found to exist between the experimental data and calculation results obtained from the thermodynamical model, based on the assumption of Fe 3 O 4 dissolution and Fe 2 O 3 deposition reactions. A generalized thermodynamical approach to the solubility computations under complex conditions on the basis of minimization of the total system Gibbs free energy was proposed. The forms of the chemical equilibria were obtained for various systems initially defined and successfully justified by the subsequent computations. A [Fe 3+ ] T -[Fe 2+ ] T phase diagram was introduced as a tool for systematic understanding of the magnetite dissolution phenomena in pure water and under oxidizing and reducing conditions. (orig.)

  13. Solubility study of Tc(IV) in a granitic water

    International Nuclear Information System (INIS)

    Liu, D.J.; Yao, J.; Wang, B.; Bruggeman, C.; Maes, N.

    2007-01-01

    The deep geological disposal of the high level radioactive wastes is expected to be a safe disposal method in most countries. The long-lived fission product 99 Tc is present in large quantities in nuclear wastes and its chemical behavior in aqueous solution is of considerable interest. Under oxidizing conditions technetium exists as the anionic species TcO 4 - whereas under the reducing conditions, expected to exist in a deep geological repository, it is generally predicted that technetium will be present as TcO 2 .nH 2 O. Hence, the mobility of Tc(IV) in reducing groundwater may be limited by the solubility of TcO 2 .nH 2 O under these conditions. Due to this fact it is important to investigate the solubility of TcO 2 .nH 2 O. The solubility determines the release of radionuclides from waste form and is used as a source term in radionuclide migration analysis in performance assessment of radioactive waste repository. Technetium(IV) was prepared by reduction of a technetate solution with Sn 2+ . The solubility of Tc(IV) has been determined in simulated groundwater and redistilled water under aerobic and anaerobic conditions. The effects of pH and CO 3 2- concentration of solution on solubility of Tc(IV) were studied. The concentration of total technetium and Tc(IV) species in the solutions were periodically determined by separating the oxidized and reduced technetium species using a solvent extraction procedure and counting the beta activity of the 99 Tc with a liquid scintillation counter. The experimental results show that the rate of oxidation of Tc(IV) in simulated groundwater and redistilled water is about (1.49 ∝ 1.86) x 10 -9 mol L -1 d -1 under aerobic conditions, while no Tc(IV) oxidation was detected in simulated groundwater and redistilled water under anaerobic conditions. Under aerobic or anaerobic conditions the solubility of Tc(IV) in simulated groundwater and redistilled water is equal on the whole after centrifugation or ultrafiltration. The

  14. IMPROVEMENT OF SOLUBILITY OF BADLY WATER SOLUBLE DRUG (IBUPROFEN) BY USING SURFACTANTS AND CARRIERS

    OpenAIRE

    Md. Zakaria Faruki*, Rishikesh, Elizabeth Razzaque, Mohiuddin Ahmed Bhuiyan

    2013-01-01

    ABSTRACT: Although there was a great interest in solid dispersion systems during the past four decades to increase dissolution rate and bioavailability of badly water-soluble drugs, their profitable use has been very limited, primarily because of manufacturing difficulties and stability problems. In this study solid solutions of drugs were generally produced by fusion method. The drug along with the excipients (surfactants and carriers) was heated first and then hardened by cooling to room te...

  15. Studeis on the immobilization of water soluble phosphatic fertilizer in some soils with 32P

    International Nuclear Information System (INIS)

    Zhang Yumei; Li Rensheng; Xu Xinyu

    1985-01-01

    Using superphosphate lablled with 32 P, we studied immobilization of water-soluble phosphatic fertilizer on 12 typies of soil. The experimental result showed that major factors to govern immobilization of water-soluble phosphatic fertilizer are: quickly availible Fe that showed positive correlation with the immobilization when it was 4.64-65.72 ppm; and pH that showed negative correlation with the immobilization when it was between 5.35 and 8.88. CaCO 3 and organic matter showed a great effect on the immobilization though there wasn't obvious correlation among them

  16. Influence of organic matter on the solubility of ThO2 and geochemical modeling

    International Nuclear Information System (INIS)

    Liu Dejun; Luo Tian; Maes, N.; Bruggeman, C.

    2014-01-01

    Thorium (IV) is widely considered in laboratory experiments as a suitable chemical analogue for long-lived tetravalent actinides. Th (IV) is redox-insensitive, as an analogue for U (IV) to study the influence of natural organic matter on the solubility. The solubility of crystalline ThO 2 (cr) has been measured under geochemical conditions representative for the Boom Clay using Real Boom Clay Water containing organic matter to assess its influence on the ThO 2 (cr) solubility. For the purpose of comparison, Aldrich Humic Acid was also investigated. Solubility measurements of ThO 2 (cr) were approached from under-saturation in an anaerobic glove box with a controlled Ar0.4%CO 2 atmosphere. Th concentration is determined after 30000 MWCO, 300000 MWCO, and 0.45 μm filtration to distinguish solid (0.45 μm), larger colloids (300000 MWCO), and small dissolved species(30000 MWCO). X-ray diffraction was carried out to investigate the transformation of ThO 2 (cr) phase during the contact with Boom Clay Water. In Synthetic Boom Clay Water (without organic matter) the concentrations of Th (IV) are 5 × l0 -ll mol/L, 4 × lO -10 mol/L, and 8 × lO -8 mol/L after 30000 MWCO, 300000 MWCO, and 0. 45 μm filtration, respectively. It indicated the existence of inorganic colloids in solution. The increase of the total Th solution concentration with increasing organic matter concentration revealed a complexation-like interaction between Th and organic matter. All the experimental data could be modeled by Tipping humic ion-binding model VI using a combination of solubility calculations and complexation reactions between Th (IV) and organic matter functional groups. Similar to the investigation of Eu 3+ solubility, the affinity of organic matter for Th was higher for Aldrich humic acid compared to Boom Clay organic matter. However, Boom Clay organic matter with different size had the similar complexation affinity with Th (IV). (authors)

  17. Physical and ionic characteristics in water soluble fraction (WSF) of ...

    African Journals Online (AJOL)

    The values of ionic and physical characteristics at 25, 50 and 100% water soluble fraction (WSF) of Olomoro well-head crude oil before and after exposure to Azolla africana were investigated. The WSF values before and after exposure to the plants showed that more ions were available after the introduction of the test plant.

  18. Bioremediation prospects of fungi isolated from water soluble ...

    African Journals Online (AJOL)

    The fungi associated with water soluble fraction (WSF) of crude oil from two different locations were investigated. The samples were collected from Ezibin oil well (Sample A), Okwagbe village in Ughelli South Local Government Area of Delta State and from NPDC laboratory (Sample B) in Benin City, Oredo Local ...

  19. Process for radiation cocrosslinking water soluble polymers and products thereof

    International Nuclear Information System (INIS)

    Assarsson, P.G.; King, P.A.

    1976-01-01

    Poly(ethylene oxide) and at least one other water soluble polymer are conveniently cocrosslinked by exposing aqueous systems of the polymers to high energy irradiation. The resulting products are insoluble hydrophilic gels which can contain or when dried absorb large quantities of aqueous fluids and hence are useful as absorbing media for disposable absorbent articles, agricultural applications and the like

  20. Water-soluble diphosphadiazacyclooctanes as ligands for aqueous organometallic catalysis

    KAUST Repository

    Boulanger, Jérôme

    2012-12-01

    Two new water-soluble diphosphacyclooctanes been synthesized and characterized by NMR and surface tension measurements. Both phosphanes proved to coordinate rhodium in a very selective way as well-defined bidentates were obtained. When used in Rh-catalyzed hydroformylation of terminal alkenes, both ligands positively impacted the reaction chemoselectivity. © 2012 Elsevier B.V.

  1. Determination of Carboxylic Acids and Water-soluble Inorganic Ions ...

    African Journals Online (AJOL)

    Atmospheric aerosol samples of PM2.5 and PM10 were collected in April–May 2011 from a rural site in Tanzania and analyzed for water-soluble inorganic ions and low molecular weight carboxylic acids using ion chromatography. PM2.5 and PM10 low-volume samplers with quartz fibre filters were deployed and aerosol ...

  2. Plasma concentrations of water.soluble vitamins in metabolic ...

    African Journals Online (AJOL)

    Context: Vitamins B1 (thiamine), B3 (niacin), B6 (pyridoxine), and C (ascorbic acid) are vital for energy, carbohydrate, lipid, and amino acid metabolism and in the regulation of the cellular redox state. Some studies have associated low levels of water.soluble vitamins with metabolic syndrome and its various components.

  3. Aggregation and Photophysical Properties of Water-Soluble Sapphyrins

    Czech Academy of Sciences Publication Activity Database

    Kubát, Pavel; Lang, Kamil; Zelinger, Zdeněk; Král, V.

    2004-01-01

    Roč. 395, - (2004), s. 82-86 ISSN 0009-2614 R&D Projects: GA AV ČR KSK4040110 Keywords : water-soluble * sapphyrins * photophysical Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 2.438, year: 2004

  4. Short Communication Relationships between the water solubility of ...

    African Journals Online (AJOL)

    132. Short Communication. Relationships between the water solubility of roughage dry matter and certain chemical characteristics. J.W. Cilliers- and H.J. Cilliers. North West Agricultural Development lnstitute, Private. Bag X804, Potchefstroom, 2520 Republic of South Africa. Received 17 May 1995; accepted 8 August 1995.

  5. Synthesis of water soluble photo-initiators of thioxanthone derivatives

    International Nuclear Information System (INIS)

    Qi Guozhen; Wang Jindi; Lin Yiqing

    1999-01-01

    Eight new photo-initiators of water-soluble thioxanthone derivatives were prepared. These compounds were identified by IR, NMR, MS and elemental analysis etc. The UV absorption wavelength, molar absorption coefficient and fluorescent quantum yield were determined. Furthermore, the relationship between structure and properties was discussed

  6. Synthesis of water soluble photo-initiators of thioxanthone derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Guozhen, Qi; Jindi, Wang; Yiqing, Lin [Inst. of Fine Chemicals ECUST, Shanghai (China)

    1999-07-01

    Eight new photo-initiators of water-soluble thioxanthone derivatives were prepared. These compounds were identified by IR, NMR, MS and elemental analysis etc. The UV absorption wavelength, molar absorption coefficient and fluorescent quantum yield were determined. Furthermore, the relationship between structure and properties was discussed.

  7. Water-soluble diphosphadiazacyclooctanes as ligands for aqueous organometallic catalysis

    KAUST Repository

    Boulanger, Jé rô me; Bricout, Hervé ; Tilloy, Sé bastien; Fihri, Aziz; Len, Christophe; Hapiot, Fré dé ric; Monflier, É ric

    2012-01-01

    Two new water-soluble diphosphacyclooctanes been synthesized and characterized by NMR and surface tension measurements. Both phosphanes proved to coordinate rhodium in a very selective way as well-defined bidentates were obtained. When used in Rh-catalyzed hydroformylation of terminal alkenes, both ligands positively impacted the reaction chemoselectivity. © 2012 Elsevier B.V.

  8. Selective Photooxidation Reactions using Water-Soluble Anthraquinone Photocatalysts

    NARCIS (Netherlands)

    Zhang, W.; Gacs, Jenő; Arends, I.W.C.E.; Hollmann, F.

    2017-01-01

    The aerobic organocatalytic oxidation of alcohols was achieved by using water-soluble sodium anthraquinone sulfonate. Under visible-light activation, this catalyst mediated the aerobic oxidation of alcohols to aldehydes and ketones. The photo-oxyfunctionalization of alkanes was also possible

  9. Some physicochemical aspects of water-soluble mineral flotation.

    Science.gov (United States)

    Wu, Zhijian; Wang, Xuming; Liu, Haining; Zhang, Huifang; Miller, Jan D

    2016-09-01

    Some physicochemical aspects of water-soluble mineral flotation including hydration phenomena, associations and interactions between collectors, air bubbles, and water-soluble mineral particles are presented. Flotation carried out in saturated salt solutions, and a wide range of collector concentrations for effective flotation of different salts are two basic aspects of water-soluble mineral flotation. Hydration of salt ions, mineral particle surfaces, collector molecules or ions, and collector aggregates play an important role in water-soluble mineral flotation. The adsorption of collectors onto bubble surfaces is suggested to be the precondition for the association of mineral particles with bubbles. The association of collectors with water-soluble minerals is a complicated process, which may include the adsorption of collector molecules or ions onto such surfaces, and/or the attachment of collector precipitates or crystals onto the mineral surfaces. The interactions between the collectors and the minerals include electrostatic and hydrophobic interactions, hydrogen bonding, and specific interactions, with electrostatic and hydrophobic interactions being the common mechanisms. For the association of ionic collectors with minerals with an opposite charge, electrostatic and hydrophobic interactions could have a synergistic effect, with the hydrophobic interactions between the hydrophobic groups of the previously associated collectors and the hydrophobic groups of oncoming collectors being an important attractive force. Association between solid particles and air bubbles is the key to froth flotation, which is affected by hydrophobicity of the mineral particle surfaces, surface charges of mineral particles and bubbles, mineral particle size and shape, temperature, bubble size, etc. The use of a collector together with a frother and the use of mixed surfactants as collectors are suggested to improve flotation. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Nanonization strategies for poorly water-soluble drugs.

    Science.gov (United States)

    Chen, Huabing; Khemtong, Chalermchai; Yang, Xiangliang; Chang, Xueling; Gao, Jinming

    2011-04-01

    Poor water solubility for many drugs and drug candidates remains a major obstacle to their development and clinical application. Conventional formulations to improve solubility suffer from low bioavailability and poor pharmacokinetics, with some carriers rendering systemic toxicities (e.g. Cremophor(®) EL). In this review, several major nanonization techniques that seek to overcome these limitations for drug solubilization are presented. Strategies including drug nanocrystals, nanoemulsions and polymeric micelles are reviewed. Finally, perspectives on existing challenges and future opportunities are highlighted. Published by Elsevier Ltd.

  11. Calorimetric measurements on slightly soluble gases in water

    International Nuclear Information System (INIS)

    Olofsson, G.; Oshodj, A.A.; Qvarnstroem, E.; Wadsoe, I.

    1984-01-01

    Calorimetric measurements have been made of enthalpies of solution Δsub(sol)Hsub(m)sup(infinity) in water of helium, neon, argon, krypton, xenon, methane, ethane, propane, n-butane, and oxygen at 288.15, 298.15, and 308.15 K. Values of the heat-capacity changes Δsub(sol)Csub(p,m)sup(infinity) have been derived. The found values for both the enthalpy and heat-capacity changes for the rare gases and for oxygen fully confirm the values derived by Benson and Krause, Jr. (1976), and Benson, Krause, Jr., and Peterson (1979) from the results of their very careful gas-solubility measurements. The partial molar heat capacities Csub(p,2)sup(infinity) of the hydrocarbons studied were derived. The group-additivity schemes that have been used successfully for the estimation of values for Csub(p,2)sup(infinity) for various non-ionic organic compounds do not correctly predict values of Csub(p,2)sup(infinity) for the hydrocarbons in the present study. (author)

  12. Effects of organic matters coming from Chinese tea on soluble copper release from copper teapot

    International Nuclear Information System (INIS)

    Ni Lixiao; Li Shiyin

    2008-01-01

    The morphology and elemental composition of the corrosion products of copper teapot's inner-surface were characterized by the scanning electron microscopy and energy dispersive X-ray surface analysis (SEM/EDS), X-ray powder diffraction (XRD) and X-ray photon spectroscopy (XPS) analysis. It was revealed that Cu, Fe, Ca, P, Si and Al were the main elements of corrosion by-products, and the α-SiO 2 , Cu 2 O and CaCO 3 as the main mineral components on the inner-surface of copper teapot. The effects of organic matters coming from Chinese tea on soluble copper release from copper teapots in tap water were also investigated. The results showed that the doses of organic matter (as TOC), temperate and stagnation time have significant effects on the concentration of soluble copper released from copper teapots in tap water

  13. Water-Soluble Vitamin E-Tocopheryl Phosphate.

    Science.gov (United States)

    Zingg, Jean-Marc

    The hydrophobicity of vitamin E poses transport and metabolic challenges to regulate its bioavailability and to prevent its accumulation in lipid-rich tissues such as adipose tissue, brain, and liver. Water-soluble precursors of vitamin E (α-tocopherol, αT), such as its esters with acetate (αTA), succinate (αTS), or phosphate (αTP), have increased solubility in water and stability against reaction with free radicals, but they are rapidly converted during their uptake into the lipid-soluble vitamin E. Therefore, the bioavailability of these precursors as intact molecules is low; nevertheless, at least for αTS and αTP, the recent research has revealed unique regulatory effects on signal transduction and gene expression and the modulation of cellular events ranging from proliferation, survival/apoptosis, lipid uptake and metabolism, phagocytosis, long term potentiation, cell migration, telomere maintenance, and angiogenesis. Moreover, water-soluble derivatives of vitamin E including some based on αTP are increasingly used as components of nanocarriers for enhanced and targeted delivery of drugs and other molecules (vitamins, including αT and αTP itself, vitamin D3, carnosine, caffeine, docosahexaenoic acid (DHA), insulin) and cofactors such as coenzyme Q10. In this review, the chemical characteristics, transport, metabolic pathways, and molecular mechanisms of action of αTP in cells and tissues are summarized and put into perspective with its possible role in the prevention of a number of diseases. © 2018 Elsevier Inc. All rights reserved.

  14. Solubility effects in waste-glass/demineralized-water systems

    International Nuclear Information System (INIS)

    Fullam, H.T.

    1981-06-01

    Aqueous systems involving demineralized water and four glass compositions (including standins for actinides and fission products) at temperatures of up to 150 0 C were studied. Two methods were used to measure the solubility of glass components in demineralized water. One method involved approaching equilibrium from subsaturation, while the second method involved approaching equilibrium from supersaturation. The aqueous solutions were analyzed by induction-coupled plasma spectrometry (ICP). Uranium was determined using a Scintrex U-A3 uranium analyzer and zinc and cesium were determined by atomic absorption. The system that results when a waste glass is contacted with demineralized water is a complex one. The two methods used to determine the solubility limits gave very different results, with the supersaturation method yielding much higher solution concentrations than the subsaturation method for most of the elements present in the waste glasses. The results show that it is impossible to assign solubility limits to the various glass components without thoroughly describing the glass-water systems. This includes not only defining the glass type and solution temperature, but also the glass surface area-to-water volume ratio (S/V) of the system and the complete thermal history of the system. 21 figures, 22 tables

  15. Rapid determination of water- and fat-soluble vitamins with microemulsion electrokinetic chromatography.

    Science.gov (United States)

    Yin, Changna; Cao, Yuhua; Ding, Shaodong; Wang, Yun

    2008-06-06

    A rapid, reliable and reproducible method based on microemulsion electrokinetic chromatography (MEEKC) for simultaneous determination of 13 kinds of water- and fat-soluble vitamins has been developed in this work. A novel microemulsion system consisting of 1.2% (w/w) sodium lauryl sulphate (SDS), 21% (v/v) 1-butanol, 18% (v/v) acetonitrile, 0.8% (w/w) n-hexane, 20mM borax buffer (pH 8.7) was applied to improve selectivity and efficiency, as well as shorten analysis time. The composition of microemulsion used as the MEEKC running buffer was investigated thoroughly to obtain stable separation medium, as well as the optimum determination conditions. Acetonitrile as the organic solvent modifier, pH of the running buffer and 1-butanol as the co-surfactant played the most important roles for the separation of the fat-soluble vitamins, water-soluble vitamins and stabilization of system, respectively. The 13 water- and fat-soluble vitamins were baseline separated within 30 min. The system was applied to determine water- and fat-soluble vitamins in commercial multivitamin pharmaceutical formulation, good accuracy and precision were obtained with recoveries between 97% and 105%, relative standard derivations (RSDs) less than 1.8% except vitamin C, and acceptable quantitative results corresponding to label claim.

  16. Predicting water solubility of congeners: Chloronaphthalenes-A case study

    Energy Technology Data Exchange (ETDEWEB)

    Puzyn, Tomasz, E-mail: puzi@qsar.eu.org [Faculty of Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Mostrag, Aleksandra; Falandysz, Jerzy [Faculty of Chemistry, University of Gdansk, Sobieskiego 18, 80-952 Gdansk (Poland); Kholod, Yana; Leszczynski, Jerzy [NSF CREST Nanotoxicity Center, Department of Chemistry, Jackson State University, 1325 Lynch St, Jackson, MS 39217-0510 (United States)

    2009-10-30

    Since the important physicochemical data for chloronaphtalenes (PCNs) are still scarce, we have predicted water solubility (log S) of all 75 congeners with the Quantitative Structure-Property Relationship (QSPR) scheme. The values of log S, predicted by the most efficient model, varied from 0.01 to 1660 {mu}g dm{sup -3} (2.85 x 10{sup -11}-1.02 x 10{sup -5} mol dm{sup -3}), depending on the number of chlorine atoms present in the molecule and the substitution pattern. We found that the main factor determining relative differences in solubility between the congeners is the solvent accessible volume related to the cavitation process occurring in the solvent. The results are presented as a case study of QSPR modeling for those Persistent Organic Pollutants (POPs) that exist as families of congeners. By investigating the impact of (i) the way of the molecular descriptors' calculation, (ii) the size of applied database and (iii) chemometric method of modeling (Multiple Linear Regression, MLR, and/or Partial Least Squares regression, PLS) on the quality of the models we proposed general recommendations for dealing with congeners. We found that the combination of the B3LYP functional with 6-311++G(d,p) basis set was the most optimal technique of the molecular descriptors' calculation for congeners when comparing with semi-empirical PM3, ab initio Hartee-Fock (HF), and Moller-Pleset 2 (MP2) method carried out with different-size basis sets. Moreover, the model developed with a larger and more general database that includes chloronaphthalenes, polychlorinated dibezno-p-dioxins, furans and biphenyls predicted the values of log S for PCNs noticeable worse than the model calibrated only on PCNs. In the later case it was possible to obtain satisfactory results by employing even the simplest MLR method and only one molecular descriptor. The values of log S were also calculated with the WSKOWIN and COSMO-RS models as the reference techniques and then compared to our

  17. Predicting water solubility of congeners: Chloronaphthalenes-A case study

    International Nuclear Information System (INIS)

    Puzyn, Tomasz; Mostrag, Aleksandra; Falandysz, Jerzy; Kholod, Yana; Leszczynski, Jerzy

    2009-01-01

    Since the important physicochemical data for chloronaphtalenes (PCNs) are still scarce, we have predicted water solubility (log S) of all 75 congeners with the Quantitative Structure-Property Relationship (QSPR) scheme. The values of log S, predicted by the most efficient model, varied from 0.01 to 1660 μg dm -3 (2.85 x 10 -11 -1.02 x 10 -5 mol dm -3 ), depending on the number of chlorine atoms present in the molecule and the substitution pattern. We found that the main factor determining relative differences in solubility between the congeners is the solvent accessible volume related to the cavitation process occurring in the solvent. The results are presented as a case study of QSPR modeling for those Persistent Organic Pollutants (POPs) that exist as families of congeners. By investigating the impact of (i) the way of the molecular descriptors' calculation, (ii) the size of applied database and (iii) chemometric method of modeling (Multiple Linear Regression, MLR, and/or Partial Least Squares regression, PLS) on the quality of the models we proposed general recommendations for dealing with congeners. We found that the combination of the B3LYP functional with 6-311++G(d,p) basis set was the most optimal technique of the molecular descriptors' calculation for congeners when comparing with semi-empirical PM3, ab initio Hartee-Fock (HF), and Moller-Pleset 2 (MP2) method carried out with different-size basis sets. Moreover, the model developed with a larger and more general database that includes chloronaphthalenes, polychlorinated dibezno-p-dioxins, furans and biphenyls predicted the values of log S for PCNs noticeable worse than the model calibrated only on PCNs. In the later case it was possible to obtain satisfactory results by employing even the simplest MLR method and only one molecular descriptor. The values of log S were also calculated with the WSKOWIN and COSMO-RS models as the reference techniques and then compared to our results.

  18. Enhancing the Solubility and Oral Bioavailability of Poorly Water-Soluble Drugs Using Monoolein Cubosomes.

    Science.gov (United States)

    Ali, Md Ashraf; Kataoka, Noriko; Ranneh, Abdul-Hackam; Iwao, Yasunori; Noguchi, Shuji; Oka, Toshihiko; Itai, Shigeru

    2017-01-01

    Monoolein cubosomes containing either spironolactone (SPI) or nifedipine (NI) were prepared using a high-pressure homogenization technique and characterized in terms of their solubility and oral bioavailability. The mean particle size, polydispersity index (PDI), zeta potential, solubility and encapsulation efficiency (EE) values of the SPI- and NI-loaded cubosomes were determined to be 90.4 nm, 0.187, -13.4 mV, 163 µg/mL and 90.2%, and 91.3 nm, 0.168, -12.8 mV, 189 µg/mL and 93.0%, respectively, which were almost identical to those of the blank cubosome. Small-angle X-ray scattering analyses confirmed that the SPI-loaded, NI-loaded and blank cubosomes existed in the cubic space group Im3̄m. The lattice parameters of the SPI- and NI-loaded cubosomes were 147.6 and 151.6 Å, respectively, making them almost identical to that of blank cubosome (151.0 Å). The in vitro release profiles of the SPI- and NI-loaded cubosomes showed that they released less than 5% of the drugs into various media over 12-48 h, indicating that most of the drug remained encapsulated within the cubic phase of their lipid bilayer. Furthermore, the in vivo pharmacokinetic results suggested that these cubosomes led to a considerable increase in the systemic oral bioavailability of the drugs compared with pure dispersions of the same materials. Notably, the stability results indicated that the mean particle size and PDI values of these cubosomes were stable for at least 4 weeks. Taken together, these results demonstrate that monoolein cubosomes represent promising drug carriers for enhancing the solubility and oral bioavailability of poorly water-soluble drugs.

  19. Water insoluble and soluble lipids for gene delivery.

    Science.gov (United States)

    Mahato, Ram I

    2005-04-05

    Among various synthetic gene carriers currently in use, liposomes composed of cationic lipids and co-lipids remain the most efficient transfection reagents. Physicochemical properties of lipid/plasmid complexes, such as cationic lipid structure, cationic lipid to co-lipid ratio, charge ratio, particle size and zeta potential have significant influence on gene expression and biodistribution. However, most cationic lipids are toxic and cationic liposomes/plasmid complexes do not disperse well inside the target tissues because of their large particle size. To overcome the problems associated with cationic lipids, we designed water soluble lipopolymers for gene delivery to various cells and tissues. This review provides a critical discussion on how the components of water insoluble and soluble lipids affect their transfection efficiency and biodistribution of lipid/plasmid complexes.

  20. Femtosecond study of laser dyes soluble in water: coumarins

    International Nuclear Information System (INIS)

    Cassara, Laurence

    1996-01-01

    Coumarins build up one of the great families of laser dyes, and this research thesis addresses the study of four water-soluble coumarins (ATC, DMATC, DATC, and CHOS) which are analogue to conventional coumarins (C120, C311, C1, and C102). These molecules are made water-soluble by substitution of the methyl group in position 4 by a polyether group. Mechanisms of deactivation are studied by means of time-resolved fluorescence and transient adsorption methods which allow the reaction dynamics of coumarins after light excitation to be studied. Several time scales, from femto- to nano-second, have been reached and allowed various processes to be studied: relaxation, solvation dynamics, solute orientation diffusion, process of deactivation of radiative and non-radiative relaxation in various solvents [fr

  1. Preparation of water soluble chitosan by hydrolysis using hydrogen peroxide.

    Science.gov (United States)

    Xia, Zhenqiang; Wu, Shengjun; Chen, Jinhua

    2013-08-01

    Chitosan is not soluble in water, which limits its wide application particularly in the medicine and food industry. In the present study, water soluble chitosan (WSC) was prepared by hydrolyzing chitosan using hydrogen peroxide under the catalysis of phosphotungstic acid in homogeneous phase. Factors affecting hydrolysis were investigated and the optimal hydrolysis conditions were determined. The WSC structure was characterized by Fourier transform infrared spectroscopy. The resulting products were composed of chitooligosaccharides of DP 2-9. The WSC content of the product and the yield were 94.7% and 92.3% (w/w), respectively. The results indicate that WSC can be effectively prepared by hydrolysis of chitosan using hydrogen peroxide under the catalysis of phosphotungstic acid. Copyright © 2013 Elsevier B.V. All rights reserved.

  2. Solubility study of Tc(Ⅳ) in a granitic water

    International Nuclear Information System (INIS)

    Liu Dejun; Yao Jun; Wang Bo

    2008-01-01

    The deep geological disposal of the high level radioactive wastes is expected to be a safe disposal method in most countries. The long-lived fission product 99 Tc is present in large quantities in nuclear wastes and its chemical behavior in aqueous solution is of considerable interest. Under oxidizing conditions technetium exists as the anionic species TcO 4 - whereas under the reducing conditions, expected to exist in a deep geological repository, it is generally predicted that technetium will be present as TcO 2 -nH 2 O. Hence, the mobility of Tc(Ⅳ) in reducing groundwater may be limited by the solubility of TcO 2 ·nH 2 O under these conditions. Due to this fact it is important to investigate the solubility of TcO 2 ·nH 2 O. The solubility determines the release of radionuclides from waste form and is used as a source term in radionuclide migration analysis in performance assessment of radioactive waste repository. Technetium (Ⅳ) was prepared by reduction of a technetate solution with Sn 2+ . The solubility of Tc(Ⅳ) has been determined in simulated groundwater and redistilled water under aerobic and anaerobic conditions. The effects of pH and CO 3 2- concentration of solution on solubility of Tc(Ⅳ) were studied. The concentration of total technetium and Tc(Ⅳ) species in the solutions were periodically determined by separating the oxidized and reduced technetium species using a solvent extraction procedure and counting the beta activity of the 99 Tc with a liquid scintillation counter. The experimental results show that the rate of oxidation of Tc(Ⅳ) in simulated groundwater and redistilled water is about (1.49-1.86)x10 -9 mol·L -1 d -1 under aerobic conditions, while no Tc(Ⅳ) oxidation was detected in simulated groundwater and redistilled water under anaerobic conditions. Under aerobic or anaerobic conditions the solubility of Tc(Ⅳ) in simulated groundwater and redistilled water is equal on the whole after centrifugation or ultrafiltration. The

  3. Prediction of the solubility of selected pharmaceuticals in water and alcohols with a group contribution method

    International Nuclear Information System (INIS)

    Pelczarska, Aleksandra; Ramjugernath, Deresh; Rarey, Jurgen; Domańska, Urszula

    2013-01-01

    Highlights: ► The prediction of solubility of pharmaceuticals in water and alcohols was presented. ► Improved group contribution method UNIFAC was proposed for 42 binary mixtures. ► Infinite activity coefficients were used in a model. ► A semi-predictive model with one experimental point was proposed. ► This model qualitatively describes the temperature dependency of Pharms. -- Abstract: An improved group contribution approach using activity coefficients at infinite dilution, which has been proposed by our group, was used for the prediction of the solubility of selected pharmaceuticals in water and alcohols [B. Moller, Activity of complex multifunctional organic compounds in common solvents, PhD Thesis, Chemical Engineering, University of KwaZulu-Natal, 2009]. The solubility of 16 different pharmaceuticals in water, ethanol and octan-1-ol was predicted over a fairly wide range of temperature with this group contribution model. The predicted values, along with values computed with the Schroeder-van Laar equation, are compared to experimental results published by us previously for 42 binary mixtures. The predicted solubility values were lower than those from the experiments for most of the mixtures. In order to improve the prediction method, a semi-predictive calculation using one experimental solubility value was implemented. This one point prediction has given acceptable results when comparison is made to experimental values

  4. Application of various water soluble polymers in gas hydrate inhibition

    DEFF Research Database (Denmark)

    Kamal, Muhammad Shahzad; Hussein, Ibnelwaleed A.; Sultan, Abdullah S.

    2016-01-01

    . This review presents the various types of water soluble polymers used for hydrate inhibition, including conventional and novel polymeric inhibitors along with their limitations. The review covers the relevant properties of vinyl lactam, amide, dendrimeric, fluorinated, and natural biodegradable polymers....... The factors affecting the performance of these polymers and the structure-property relationships are reviewed. A comprehensive review of the techniques used to evaluate the performance of the polymeric inhibitors is given. This review also addresses recent developments, current and future challenges...

  5. Solubility of solid ferrocene in pressurized hot water

    Czech Academy of Sciences Publication Activity Database

    Karásek, Pavel; Hohnová, Barbora; Planeta, Josef; Roth, Michal

    2010-01-01

    Roč. 55, č. 8 (2010), s. 2866-2869 ISSN 0021-9568 R&D Projects: GA ČR GA203/07/0886; GA ČR GA203/08/1465; GA ČR GA203/08/1536 Institutional research plan: CEZ:AV0Z40310501 Keywords : pressurized hot water * ferrocene * solubility Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.089, year: 2010

  6. Extraction vitamins of group B water-soluble polymers

    Directory of Open Access Journals (Sweden)

    Y. I. Korenman

    2012-01-01

    Full Text Available General lows of extraction of B vitamins in aquatic environments of the solution of polymers (poly-N-vinylpyrrolidone, poly-N-vinilkaprolaktam has been studied. The influence of polymer concentration and structure on the distribution coefficients and degree of extraction of vitamins has been established. As a result, the direct search of a stable two-phase systems based on water-soluble polymers has been developed effective systems for the extraction of vitamin B from aqueous salt solutions.

  7. Water soluble vitamins and peritoneal dialysis - State of the art.

    Science.gov (United States)

    Jankowska, Magdalena; Lichodziejewska-Niemierko, Monika; Rutkowski, Bolesław; Dębska-Ślizień, Alicja; Małgorzewicz, Sylwia

    2017-12-01

    This review presents the results of a systematic literature search concerning water soluble vitamins and peritoneal dialysis modality. We provide an overview of the data available on vitamin requirements, dietary intake, dialysis related losses, metabolism and the benefits of supplementation. We also summarise the current recommendations concerning the supplementation of vitamins in peritoneal dialysis and discuss the safety of an administration of vitamins in pharmacological doses. Copyright © 2016 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.

  8. Solubilities of oxygenated aromatic solids in pressurized hot water

    Czech Academy of Sciences Publication Activity Database

    Karásek, Pavel; Planeta, Josef; Roth, Michal

    2009-01-01

    Roč. 54, č. 5 (2009), s. 1457-1461 ISSN 0021-9568 R&D Projects: GA ČR GA203/07/0886; GA ČR GA203/08/1536 Institutional research plan: CEZ:AV0Z40310501 Keywords : oxygenated aromatics * solubility * pressurized hot water Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 1.695, year: 2009

  9. Polyelectrolyte microcapsules for sustained delivery of water-soluble drugs

    Energy Technology Data Exchange (ETDEWEB)

    Anandhakumar, S.; Debapriya, M. [Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012 (India); Nagaraja, V. [Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012 (India); Raichur, Ashok M., E-mail: amr@materials.iisc.ernet.in [Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012 (India)

    2011-03-12

    Polyelectrolyte capsules composed of weak polyelectrolytes are introduced as a simple and efficient system for spontaneous encapsulation of low molecular weight water-soluble drugs. Polyelectrolyte capsules were prepared by layer-by-layer (LbL) assembling of weak polyelectrolytes, poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) on polystyrene sulfonate (PSS) doped CaCO{sub 3} particles followed by core removal with ethylene-diaminetetraacetic acid (EDTA). The loading process was observed by confocal laser scanning microscopy (CLSM) using tetramethylrhodamineisothiocyanate labeled dextran (TRITC-dextran) as a fluorescent probe. The intensity of fluorescent probe inside the capsule decreased with increase in cross-linking time. Ciprofloxacin hydrochloride (a model water-soluble drug) was spontaneously deposited into PAH/PMA capsules and their morphological changes were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The quantitative study of drug loading was also elucidated which showed that drug loading increased with initial drug concentration, but decreased with increase in pH. The loaded drug was released in a sustained manner for 6 h, which could be further extended by cross-linking the capsule wall. The released drug showed significant antibacterial activity against E. coli. These findings indicate that such capsules can be potential carriers for water-soluble drugs in sustained/controlled drug delivery applications.

  10. Polyelectrolyte microcapsules for sustained delivery of water-soluble drugs

    International Nuclear Information System (INIS)

    Anandhakumar, S.; Debapriya, M.; Nagaraja, V.; Raichur, Ashok M.

    2011-01-01

    Polyelectrolyte capsules composed of weak polyelectrolytes are introduced as a simple and efficient system for spontaneous encapsulation of low molecular weight water-soluble drugs. Polyelectrolyte capsules were prepared by layer-by-layer (LbL) assembling of weak polyelectrolytes, poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) on polystyrene sulfonate (PSS) doped CaCO 3 particles followed by core removal with ethylene-diaminetetraacetic acid (EDTA). The loading process was observed by confocal laser scanning microscopy (CLSM) using tetramethylrhodamineisothiocyanate labeled dextran (TRITC-dextran) as a fluorescent probe. The intensity of fluorescent probe inside the capsule decreased with increase in cross-linking time. Ciprofloxacin hydrochloride (a model water-soluble drug) was spontaneously deposited into PAH/PMA capsules and their morphological changes were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The quantitative study of drug loading was also elucidated which showed that drug loading increased with initial drug concentration, but decreased with increase in pH. The loaded drug was released in a sustained manner for 6 h, which could be further extended by cross-linking the capsule wall. The released drug showed significant antibacterial activity against E. coli. These findings indicate that such capsules can be potential carriers for water-soluble drugs in sustained/controlled drug delivery applications.

  11. Effect of surfactants on the fluorescence spectra of water-soluble ...

    Indian Academy of Sciences (India)

    TECS

    Effect of surfactants on the fluorescence spectra of water-soluble. MEHPPV ... polyacrylic acid (PAA) chains grafted onto their backbone were found to be water soluble, and they exhi- ..... in other words the variation of emission intensity.

  12. Studies on dissolution enhancement and mathematical modeling of drug release of a poorly water-soluble drug using water-soluble carriers.

    Science.gov (United States)

    Ahuja, Naveen; Katare, Om Prakash; Singh, Bhupinder

    2007-01-01

    Role of various water-soluble carriers was studied for dissolution enhancement of a poorly soluble model drug, rofecoxib, using solid dispersion approach. Diverse carriers viz. polyethylene glycols (PEG 4000 and 6000), polyglycolized fatty acid ester (Gelucire 44/14), polyvinylpyrollidone K25 (PVP), poloxamers (Lutrol F127 and F68), polyols (mannitol, sorbitol), organic acid (citric acid) and hydrotropes (urea, nicotinamide) were investigated for the purpose. Phase-solubility studies revealed AL type of curves for each carrier, indicating linear increase in drug solubility with carrier concentration. The sign and magnitude of the thermodynamic parameter, Gibbs free energy of transfer, indicated spontaneity of solubilization process. All the solid dispersions showed dissolution improvement vis-à-vis pure drug to varying degrees, with citric acid, PVP and poloxamers as the most promising carriers. Mathematical modeling of in vitro dissolution data indicated the best fitting with Korsemeyer-Peppas model and the drug release kinetics primarily as Fickian diffusion. Solid state characterization of the drug-poloxamer binary system using XRD, FTIR, DSC and SEM techniques revealed distinct loss of drug crystallinity in the formulation, ostensibly accounting for enhancement in dissolution rate.

  13. Lipid nanoparticles for administration of poorly water soluble neuroactive drugs.

    Science.gov (United States)

    Esposito, Elisabetta; Drechsler, Markus; Mariani, Paolo; Carducci, Federica; Servadio, Michela; Melancia, Francesca; Ratano, Patrizia; Campolongo, Patrizia; Trezza, Viviana; Cortesi, Rita; Nastruzzi, Claudio

    2017-09-01

    This study describes the potential of solid lipid nanoparticles and nanostructured lipid carriers as nano-formulations to administer to the central nervous system poorly water soluble drugs. Different neuroactive drugs, i.e. dimethylfumarate, retinyl palmitate, progesterone and the endocannabinoid hydrolysis inhibitor URB597 have been studied. Lipid nanoparticles constituted of tristearin or tristearin in association with gliceryl monoolein were produced. The nanoencapsulation strategy allowed to obtain biocompatible and non-toxic vehicles, able to increase the solubility of the considered neuroactive drugs. To improve URB597 targeting to the brain, stealth nanoparticles were produced modifying the SLN surface with polysorbate 80. A behavioural study was conducted in rats to test the ability of SLN containing URB597 given by intranasal administration to alter behaviours relevant to psychiatric disorders. URB597 maintained its activity after nanoencapsulation, suggesting the possibility to propose this kind of vehicle as alternative to unphysiological mixtures usually employed for animal and clinical studies.

  14. Formulation of poorly water-soluble Gemfibrozil applying power ultrasound.

    Science.gov (United States)

    Ambrus, R; Naghipour Amirzadi, N; Aigner, Z; Szabó-Révész, P

    2012-03-01

    The dissolution properties of a drug and its release from the dosage form have a basic impact on its bioavailability. Solubility problems are a major challenge for the pharmaceutical industry as concerns the development of new pharmaceutical products. Formulation problems may possibly be overcome by modification of particle size and morphology. The application of power ultrasound is a novel possibility in drug formulation. This article reports on solvent diffusion and melt emulsification, as new methods supplemented with drying in the field of sonocrystallization of poorly water-soluble Gemfibrozil. During thermoanalytical characterization, a modified structure was detected. The specific surface area of the drug was increased following particle size reduction and the poor wettability properties could also be improved. The dissolution rate was therefore significantly increased. Copyright © 2011 Elsevier B.V. All rights reserved.

  15. Solubility of Aragonite in Subduction Water-Rich Fluids

    Science.gov (United States)

    Daniel, I.; Facq, S.; Petitgirard, S.; Cardon, H.; Sverjensky, D. A.

    2017-12-01

    Carbonate dissolution in subduction zone fluids is critical to the carbon budget in subduction zones. Depending on the solubility of carbonate minerals in aqueous fluids, the subducting lithosphere may be either strongly depleted and the mantle metasomatized if the solubility is high, as recently suggested by natural samples or transport carbon deeper into the Earth's mantle if the solubility is low enough [1, 2]. Dissolution of carbonate minerals strongly depends on pressure and temperature as well as on the chemistry of the fluid, leading to a highly variable speciation of aqueous carbon. Thanks to recent advances in theoretical aqueous geochemistry [3, 4], combined experimental and theoretical efforts now allow the investigation of speciation and solubility of carbonate minerals in aqueous fluids at PT conditions higher than previously feasible [4, 5]. In this study, we present new in situ X-ray fluorescence measurements of aragonite dissolution up to 5 GPa and 500°C and the subsequent thermodynamic model of aragonite solubility in aqueous fluids thanks to the Deep Earth Water model. The amount of dissolved aragonite in the fluid was calculated from challenging and unprecedented measurements of the Ca fluorescence K-lines at low-energy. Experiments were performed at the ESRF, beamline ID27 using a dedicated design of an externally-heated diamond anvil cell and an incident high-flux and highly focused monochromatic X-Ray beam at 20 keV. The results show a spectacularly high solubility of aragonite at HP-HT in water, further enhanced in presence of NaCl and silica in the solution. [1] Frezzotti, M. L. et al. (2011) doi:10.1038/ngeo1246. [2] Ague, J. J. and Nicolescu, S. (2014) doi:10.1038/ngeo2143. [3] Pan, D. et al. (2013) doi: 10.1073/pnas.1221581110. [4] Sverjensky, D. A et al. (2014) doi: 10.1016/j.gca.2013.12.019. [5] Facq, S. et al. (2014) doi: 10.1016/j.gca.2014.01.030.

  16. Spray Freeze-drying - The Process of Choice for Low Water Soluble Drugs?

    International Nuclear Information System (INIS)

    Leuenberger, H.

    2002-01-01

    Most of the novel highly potent drugs, developed on the basis of modern molecular medicine, taking into account cell surface recognition techniques, show poor water solubility. A chemical modification of the drug substance enhancing the solubility often decreases the pharmacological activity. Thus, as an alternative an increase of the solubility can be obtained by the reduction of the size of the drug particles. Unfortunately, it is often difficult to obtain micro or nanosized drug particles by classical or more advanced crystallization using supercritical gases or by milling techniques. In addition, nanosized particles are often not physically stable and need to be stabilized in an appropriate matrix. Thus, it may be of interest to manufacture directly nanosized drug particles stabilized in an inert hydrophilic matrix, i.e. nanostructured and nanocomposite systems. Solid solutions and solid dispersions represent nanostructured and nanocomposite systems. In this context, the use of the vacuum-fluidized-bed technique for the spray-drying of a low water soluble drug cosolubilized with a hydrophilic excipient in a polar organic solvent is discussed. In order to avoid the use of organic solvents, a special spray-freeze-drying technique working at atmospheric pressure is presented. This process is very suitable for temperature and otherwise sensitive drugs such as pharmaproteins

  17. Characterization of soluble microbial products as precursors of disinfection byproducts in drinking water supply.

    Science.gov (United States)

    Liu, Jin-Lin; Li, Xiao-Yan; Xie, Yue-Feng; Tang, Hao

    2014-02-15

    Water pollution by wastewater discharge can cause the problem of disinfection byproducts (DBPs) in drinking water supply. In this study, DBP formation characteristics of soluble microbial products (SMPs) as the main products of wastewater organic biodegradation were investigated. The results show that SMPs can act as DBP precursors in simulated wastewater biodegradation process. Under the experimental conditions, stabilized SMPs had DBPFP (DBP formation potential) yield of around 5.6 μmol mmol(-1)-DOC (dissolved organic carbon) and DBP speciation profile different from that of the conventional precursor, natural organic matter (NOM). SMPs contained polysaccharides, proteins, and humic-like substances, and the latter two groups can act as reactive DBP precursors. SMP fraction with molecular weight of water treatment processes, more efforts are needed to control wastewater-derived DBP problem in water resource management. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. The influence of soluble organic matter on shale reservoir characterization

    Directory of Open Access Journals (Sweden)

    Lei Pan

    2016-06-01

    Full Text Available Shale with a maturity within the “oil window” contains a certain amount of residual soluble organic matter (SOM. This SOM have an important influence on characterization of shale reservoir. In this study, two shale samples were collected from the Upper Permian Dalong Formation in the northwestern boundary of Sichuan Basin. Their geochemistry, mineral composition, and pore structure (surface area and pore volume were investigated before and after removing the SOM by means of extraction via dichloromethane or trichloromethane. The results show that the TOC, S1, S2, and IH of the extracted samples decrease significantly, but the mineral composition has no evident change as compared with their raw samples. Thus, we can infer that the original pore structure is thought to be unaffected from the extraction. The SOM occupies pore volume and hinders pores connectivity. The extraction greatly increases the surface area and pore volume of the samples. The residual SOM in the shale samples occur mainly in the micropores and smaller mesopores, and their occupied pore size range seems being constrained by the maturity. For the lower mature shale samples, the SOM is mainly hosted in organic pores that are less than 5 nm in size. For the middle mature shale samples, the micropores and some mesopores ranging between 2 and 20 nm in size are the main storage space for the SOM.

  19. Chelating water-soluble polymers for waste minimization

    International Nuclear Information System (INIS)

    Smith, B.; Cournoyer, M.; Duran, B.; Ford, D.; Gibson, R.; Lin, M.; Meck, A.; Robinson, P.; Robison, T.

    1996-01-01

    Within the DOE complex and in industry there is a tremendous need for advanced metal ion recovery and waste minimization techniques. This project sought to employ capabilities for ligand-design and separations chemistry in which one can develop and evaluate water- soluble chelating polymers for recovering actinides and toxic metals from various process streams. Focus of this work was (1) to develop and select a set of water-soluble polymers suitable for a selected waste stream and (2) demonstrate this technology in 2 areas: removal of (a) actinides and toxic RCRA metals from waste water and (b) recovery of Cu and other precious metals from industrial process streams including from solid catalysts and aqueous waste streams. The R ampersand D was done in 4 phases for each of the 2 target areas: polymer synthesis for scaleup, equipment assembly, process demonstration at a DOE or industrial site, and advanced ligand/polymer synthesis. The TA- 50 site at Los Alamos was thought to be appropriate due to logistics and to its being representative of similar problems throughout the DOE complex

  20. Determination and correlation of solubility and solution thermodynamics of oxiracetam in three (alcohol + water) binary solvents

    International Nuclear Information System (INIS)

    Li, Kangli; Du, Shichao; Wu, Songgu; Cai, Dongchen; Wang, Jinxu; Zhang, Dejiang; Zhao, Kaifei; Yang, Peng; Yu, Bo; Guo, Baisong; Li, Daixi; Gong, Junbo

    2016-01-01

    Highlights: • The solubility of racemic oxiracetam in three binary solvents were determined. • The experimental solubility of racemic oxiracetam were correlated by four models. • The dissolution thermodynamic properties of racemic oxiracetam were calculated. - Abstract: In this paper, we proposed a static analysis method to experimentally determine the (solid + liquid) equilibrium of racemic oxiracetam in (methanol + water), (ethanol + water) and (isopropanol + water) binary solvents with alcohol mole fraction ranging from 0.30 to 0.90 at atmosphere pressure (p = 0.1 MPa). For the experiments, the temperatures range from (283.15 to 308.15) K. The results showed that the solubility of oxiracetam increased with the increasing temperature, while decreased with the increasing organic solvent fraction in all three tested binary solvent systems. The modified Apelblat model, the CNIBS/Redlich–Kister model, the combined version of Jouyban–Acree model and the NRTL model were employed to correlate the measured solubility values, respectively. Additionally, some of the thermodynamic properties which can help to evaluate its dissolution behavior were obtained based on the NRTL model.

  1. Wintertime water-soluble aerosol composition and particle water content in Fresno, California

    Science.gov (United States)

    Parworth, Caroline L.; Young, Dominique E.; Kim, Hwajin; Zhang, Xiaolu; Cappa, Christopher D.; Collier, Sonya; Zhang, Qi

    2017-03-01

    The composition and concentrations of water-soluble gases and ionic aerosol components were measured from January to February 2013 in Fresno, CA, with a particle-into-liquid sampler with ion chromatography and annular denuders. The average (±1σ) ionic aerosol mass concentration was 15.0 (±9.4) µg m-3, and dominated by nitrate (61%), followed by ammonium, sulfate, chloride, potassium, nitrite, and sodium. Aerosol-phase organic acids, including formate and glycolate, and amines including methylaminium, triethanolaminium, ethanolaminium, dimethylaminium, and ethylaminium were also detected. Although the dominant species all came from secondary aerosol formation, there were primary sources of ionic aerosols as well, including biomass burning for potassium and glycolate, sea spray for sodium, chloride, and dimethylamine, and vehicles for formate. Particulate methanesulfonic acid was also detected and mainly associated with terrestrial sources. On average, the molar concentration of ammonia was 49 times greater than nitric acid, indicating that ammonium nitrate formation was limited by nitric acid availability. Particle water was calculated based on the Extended Aerosol Inorganics Model (E-AIM) thermodynamic prediction of inorganic particle water and κ-Köhler theory approximation of organic particle water. The average (±1σ) particle water concentration was 19.2 (±18.6) µg m-3, of which 90% was attributed to inorganic species. The fractional contribution of particle water to total fine particle mass averaged at 36% during this study and was greatest during early morning and night and least during the day. Based on aqueous-phase concentrations of ions calculated by using E-AIM, the average (±1σ) pH of particles in Fresno during the winter was estimated to be 4.2 (±0.2).

  2. Water purification using organic salts

    Science.gov (United States)

    Currier, Robert P.

    2004-11-23

    Water purification using organic salts. Feed water is mixed with at least one organic salt at a temperature sufficiently low to form organic salt hydrate crystals and brine. The crystals are separated from the brine, rinsed, and melted to form an aqueous solution of organic salt. Some of the water is removed from the aqueous organic salt solution. The purified water is collected, and the remaining more concentrated aqueous organic salt solution is reused.

  3. Water-soluble, triflate-based, pyrrolidinium ionic liquids

    International Nuclear Information System (INIS)

    Moreno, M.; Montanino, M.; Carewska, M.; Appetecchi, G.B.; Jeremias, S.; Passerini, S.

    2013-01-01

    Highlights: • Water-soluble, pyrrolidinium triflate ILs as solvents for extraction processes. • Electrolyte components for high safety, electrochemical devices. • Effect of the oxygen atom in the alkyl main side chain of pyrrolidinium cation. -- Abstract: The physicochemical and electrochemical properties of the water-soluble, N-methoxyethyl-N-methylpyrrolidinium trifluoromethanesulfonate (PYR 1(2O1) OSO 2 CF 3 ) ionic liquid (IL) were investigated and compared with those of commercial N-butyl-N-methylpyrrolidinium trifluoromethanesulfonate (PYR 14 OSO 2 CF 3 ). The results have shown that the transport properties are well correlated with the rheological and thermal behavior. The incorporation of an oxygen atom in the pyrrolidinium cation aliphatic side chain resulted in enhanced flexibility of the ether side chain, this supporting for the higher ionic conductivity, self-diffusion coefficient and density of PYR 1(2O1) OSO 2 CF 3 with respect to PYR 14 OSO 2 CF 3 , whereas no relevant effect on the crystallization of the ionic liquid was found. Finally, the presence of the ether side chain material in the pyrrolidinium cation led to a reduction in electrochemical stability, particularly on the cathodic verse

  4. Facile synthesis of water-soluble curcumin nanocrystals

    Directory of Open Access Journals (Sweden)

    Marković Zoran M.

    2015-01-01

    Full Text Available In this paper, facile synthesis of water soluble curcumin nanocrystals is reported. Solvent exchange method was applied to synthesize curcumin nanocrystals. Different techniques were used to characterize the structural and photophysical properties of curcumin nanocrystals. We found that nanocurcumin prepared by this method had good chemical and physical stability, could be stored in the powder form at room temperature, and was freely dispersible in water. It was established that the size of curcumin nanocrystals was varied in the range of 20-500 nm. Fourier transform infrared spectroscopy and UV-Vis analyses showed the presence of tetrahydrofuran inside the curcumin nanocrystals. Also, it was found that nanocurcumin emitted photoluminescencewith yellow-green colour. [Projekat Ministarstva nauke Republike Srbije, br. 172003

  5. SOLUBILITY AND BIOAVAILABILITY ENHANCEMENT STRATEGIES FOR EFFECTIVE DELIVERY OF POORLY WATER SOLUBLE DRUGS BY NANO FORMULATIONS AND SOLID DISPERSIONS

    OpenAIRE

    Rayapolu Ranga Goud*, Gunnala Krishnaveni, Girija Prasad Patro

    2018-01-01

    For the ancient few years, there has been a substantial research done on diverse methodologies for poorly water soluble and lipophilic drugs. More in modern times voluminous molecules cannot be distributed due to low solubility. Now a day frequently, particulate vesicle systems such as nanoparticles, liposomes, microspheres, niosomes, pronisomes, ethosomes, and proliposomes have been used as drug carriers. Drug delivery designates the technique and methodology to conveying medications or drug...

  6. Water-soluble resist for environmentally friendly lithography

    Science.gov (United States)

    Lin, Qinghuang; Simpson, Logan L.; Steinhaeusler, Thomas; Wilder, Michelle; Willson, C. Grant; Havard, Jennifer M.; Frechet, Jean M. J.

    1996-05-01

    This paper describes an 'environmentally friendly,' water castable, water developable photoresist system. The chemically amplified negative-tone resist system consists of three water-soluble components: a polymer, poly(methyl acrylamidoglycolate methyl ether), [poly(MAGME)]; a photoacid generator, dimethyl dihydroxyphenylsulfonium triflate and a crosslinker, butanediol. Poly(MAGME) was synthesized by solution free radical polymerization. In the three-component resist system, the acid generated by photolysis of the photoacid generator catalyzes the crosslinking of poly(MAGME) in the exposed regions during post-exposure baking, thus rendering the exposed regions insoluble in water. Negative tone relief images are obtained by developing with pure water. The resist is able to resolve 1 micrometer line/space features (1:1 aspect ratio) with an exposure dose of 100 mJ/cm2 at 248 nm. The resist can be used to generate etched copper relief images on printed circuit boards using aqueous sodium persulfate as the etchant. The crosslinking mechanism has been investigated by model compound studies using 13C NMR. These studies have revealed that the acid catalyzed reaction of the poly(MAGME) with butanediol proceeds via both transesterification and transacetalization (transaminalization) reactions at low temperatures, and also via transamidation at high temperatures.

  7. Determination of water-soluble forms of oxalic and formic acids in soils by ion chromatography

    Science.gov (United States)

    Karicheva, E.; Guseva, N.; Kambalina, M.

    2016-03-01

    Carboxylic acids (CA) play an important role in the chemical composition origin of soils and migration of elements. The content of these acids and their salts is one of the important characteristics for agrochemical, ecological, ameliorative and hygienic assessment of soils. The aim of the article is to determine water-soluble forms of same carboxylic acids — (oxalic and formic acids) in soils by ion chromatography with gradient elution. For the separation and determination of water-soluble carboxylic acids we used reagent-free gradient elution ion-exchange chromatography ICS-2000 (Dionex, USA), the model solutions of oxalate and formate ions, and leachates from soils of the Kola Peninsula. The optimal gradient program was established for separation and detection of oxalate and formate ions in water solutions by ion chromatography. A stability indicating method was developed for the simultaneous determination of water-soluble organic acids in soils. The method has shown high detection limits such as 0.03 mg/L for oxalate ion and 0.02 mg/L for formate ion. High signal reproducibility was achieved in wide range of intensities which correspond to the following ion concentrations: from 0.04 mg/g to 10 mg/L (formate), from 0.1 mg/g to 25 mg/L (oxalate). The concentration of formate and oxalate ions in soil samples is from 0.04 to 0.9 mg/L and 0.45 to 17 mg/L respectively.

  8. Comparison of Passive Samplers for Monitoring Dissolved Organic Contaminants in Water Column Deployments

    Science.gov (United States)

    Nonionic organic contaminants (NOCs) are difficult to measure in the water column due to their inherent chemical properties resulting in low water solubility and high particle activity. Traditional sampling methods require large quantities of water to be extracted and interferen...

  9. Monosaccharides as Versatile Units for Water-Soluble Supramolecular Polymers.

    Science.gov (United States)

    Leenders, Christianus M A; Jansen, Gijs; Frissen, Martijn M M; Lafleur, René P M; Voets, Ilja K; Palmans, Anja R A; Meijer, E W

    2016-03-18

    We introduce monosaccharides as versatile water-soluble units to compatibilise supramolecular polymers based on the benzene-1,3,5-tricarboxamide (BTA) moiety with water. A library of monosaccharide-based BTAs is evaluated, varying the length of the alkyl chain (hexyl, octyl, decyl and dodecyl) separating the BTA and saccharide units, as well as the saccharide units (α-glucose, β-glucose, α-mannose and α-galactose). In all cases, the monosaccharides impart excellent water compatibility. The length of the alkyl chain is the determining factor to obtain either long, one-dimensional supramolecular polymers (dodecyl spacer), small aggregates (decyl spacer) or molecularly dissolved (octyl and hexyl) BTAs in water. For the BTAs comprising a dodecyl spacer, our results suggest that a cooperative self-assembly process is operative and that the introduction of different monosaccharides does not significantly change the self- assembly behaviour. Finally, we investigate the potential of post-assembly functionalisation of the formed supramolecular polymers by taking advantage of dynamic covalent bond formation between the monosaccharides and benzoxaboroles. We observe that the supramolecular polymers readily react with a fluorescent benzoxaborole derivative permitting imaging of these dynamic complexes by confocal fluorescence microscopy. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Synthesis of new water-soluble metal-binding polymers: Combinatorial chemistry approach. 1998 annual progress report

    International Nuclear Information System (INIS)

    Kurth, M.J.; Miller, R.B.; Sawan, S.; Smith, B.F.

    1998-01-01

    '(1) Develop rapid discovery and optimization approaches to new water-soluble chelating polymers for use in Polymer Filtration (PF) systems, and (2) evaluate the concept of using water and organic soluble polymers as new solid supports for combinatorial synthesis. Polymer Filtration (PF), which uses water-soluble metal-binding polymers to sequester metal ions in dilute solution with ultrafiltration (UF) to separate the polymers, is a new technology to selectively remove or recover hazardous and valuable metal ions. Future directions in PF must include rapid development, testing, and characterization of new metal-binding polymers. Thus, the authors are building upon and adapting the combinatorial chemistry approach developed for rapid molecule generation for the drug industry to the rapid development of new chelating polymers. The authors have focused on four areas including the development of: (1) synthetic procedures, (2) small ultrafiltration equipment compatible with organic- and aqueous-based combinatorial synthesis, (3) rapid assay techniques, and (4) polymer characterization techniques.'

  11. SYNTHESIS AND PHYSICAL-CHEMICAL PROPERTIES OF WATER-SOLUBLE 3-BENZYLXANTHINE DERIVATIVES

    Directory of Open Access Journals (Sweden)

    K. V. Аleksandrova

    2015-04-01

    Full Text Available Introduction Nowadays, research of novel biological active compounds with low toxicity, are carried out among different classes of organic compounds of natural and synthetic genesis. One of the main ways of these studies is search of water-soluble compounds – convenient objects for pharmacological researches. In recent years researchers paid attention to xanthine derivatives, because of their high variativity of possible chemical modification and ability to form different salts with wide spectrum of biological action. Thus, among water-soluble xanthine derivatives were found compounds with pronounced antioxidant, diuretic and analeptic properties. Primary methods of obtaining water-soluble xanthine derivatives are direct interaction of bases with xanthine molecule or insertion basic or acidic residues in positions 7 or 8 of xanthine bicycle. According from the above, search of biologically active compounds among water-soluble substituted xanthines is prospective and actual. The aim of the study was development of synthetic ways of obtaining novel water-soluble derivatives of 3-benzyl-8-methylxanthine and studying their physical and chemical properties. Material and methods Melting points of obtained compounds were determined by capillary method on PTP (M device. ІR-spectra of synthesized compounds were recorded on the Bruker Alpha device (company «Bruker» – Germany on 4000-400 sm-1 with using console ATR (direct insertion of compound. 1Н NMR-spectra were recorded on the Varian Mercury VX-200 device (company «Varian» – USA solvent – (DMSO-d6, internal standart – ТМС. Elemental analysis was made on Elementar Vario L cube device. Chromatoraphic studies were made on the plates Sorbfil-AFV-UV (company «Sobrpolimer» –Russia. Systhems for chromatography: «acetone-propanol-2» in ratio 2:3, «propanol-2-benzene» in ratio 10:1 and exersized in UV-light in wave 200-300 nm. Results and discussion We developed methodic of synthesis

  12. Catalytic hydrotreating of lignin with water-soluble molybdenum catalyst

    Energy Technology Data Exchange (ETDEWEB)

    Osmaa, A.; Johansson, A. (Technical Research Centre of Finland, Espoo (Finland). Lab. of Fuel and Process Technology)

    High yields (61% of the original lignin) of low molecular weight oil (84% of the oil eluted through GC) have been obtained by hydrotreating kraft pine lignin with a water-soluble molybdenum catalyst at 430[degree]C for 60 min. The main compounds in the product oil were phenols (8.7% of the original lignin), cyclohexanes (5.0%), benzenes (3.8%), naphthalenes (4.0%), and phenanthrenes (1.2%). The degree of hydrodeoxygenation was 98%. The quality (measured by GPC and GC) of the product was as good as when using more expensive solid NiMo-CR[sub 2]O[sub 3] catalysts. 30 refs., 6 tabs.

  13. Lumbar myelography using water-soluble contrast media

    International Nuclear Information System (INIS)

    Langlotz, M.

    1981-01-01

    With the new water-soluble contrast media developed in the last 10 years, lumbar myelography has become a simple and low-risk diagnostic method of great value which is hardly ever omitted before surgery is undertaken. The book attempts a synopsis of radiology and clinical examinations. In its first part, the pathological, clinical, and radiological aspects of diseases of the lumbosacral spinal duct are reviewed. The second part contains more than 300 myelographic pictures in original size. Each of the myelograms is supplemented by the case history of the patient (anamnesis, neurological examination, therapy and course). Interpretation is facilitated by drawings at the beginning of each chapter which show the major pathological and radiological changes. (orig./MG) [de

  14. Novel water-soluble curcumin derivative mediating erectile signaling.

    Science.gov (United States)

    Abdel Aziz, Mohamed Talaat; El Asmer, Mohammed F; Rezq, Ameen; Kumosani, Taha Abdullah; Mostafa, Samya; Mostafa, Taymour; Atta, Hazem; Abdel Aziz Wassef, Mohamed; Fouad, Hanan H; Rashed, Laila; Sabry, Dina; Hassouna, Amira A; Senbel, Amira; Abdel Aziz, Ahmed

    2010-08-01

    Curcumin is an inducer of heme oxygenase enzyme-1 (HO-1) that is involved in erectile signaling via elevating cyclic guanosine monophosphate (cGMP)levels. To assess the effect of oral administration of a water-soluble long-acting curcumin derivative on erectile signaling. Two hundred and thirty six male white albino rats were divided into four groups; group 1 (N = 20) includes control. Group 2 (N = 72) was equally divided into four subgroups; subgroup 1 received pure curcumin (10 mg/kg), subgroup 2 received the long-acting curcumin derivative (2 mg/kg), subgroup 3 received the long-acting curcumin derivative (10 mg/kg), and subgroup 4 received sildenafil (4 mg/kg). Subgroups were sacrificed after the first, second, and third hour. Group 3 (N = 72) was equally divided into the same four subgroups already mentioned and were sacrificed after 24 hours, 48 hours, and 1 week. Group 4 (N = 72) was subjected to intracavernosal pressure (ICP) measurements 1 hour following oral administration of the same previous doses in the same rat subgroups. Cavernous tissue HO enzyme activity, cGMP, and ICP. In group 2, there was a significant progressive maintained elevation of HO activity and cGMP tissue levels starting from the first hour in subgroups 3 and 4, whereas, the rise in HO activity and cGMP started from second hour regarding the other rat subgroups. Sildenafil effect decreased after 3 hours. In group 3, there was a significant maintained elevation of HO activity and cGMP tissue levels extended to 1 week as compared to controls for all rat subgroups that received both forms of curcumin. In group 4, long-acting curcumin derivative exhibited more significant potentiation of intracavernosal pressure as compared to control and to the pure curcumin. Water-soluble long-acting curcumin derivative could mediate erectile function via upregulating cavernous tissue cGMP. © 2009 International Society for Sexual Medicine.

  15. Spectrofluorimetric determination of some water-soluble vitamins.

    Science.gov (United States)

    Mohamed, Abdel-Maaboud I; Mohamed, Horria A; Abdel-Latif, Niveen M; Mohamed, Marwa R

    2011-01-01

    Two simple and sensitive spectrofluorimetric methods were developed for determination of three water-soluble vitamins (B1, B2, and B6) in mixtures in the presence of cyanocobalamin. The first one was for thiamine determination, which depends on the oxidation of thiamine HCl to thiochrome by iodine in an alkaline medium. The method was applied accurately to determine thiamine in binary, ternary, and quaternary mixtures with pyridoxine HCl, riboflavin, and cyanocobalamin without interference. In the second method, riboflavin and pyridoxine HCl were determined fluorimetrically in acetate buffer, pH 6. The three water-soluble vitamins (B1, B2, and B6) were determined spectrofluorimetrically in binary, ternary, and quaternary mixtures in the presence of cyanocobalamin. All variables were studied in order to optimize the reaction conditions. Linear relationship was obeyed for all studied vitamins by the proposed methods at their corresponding lambda(exc) or lambda(em). The linear calibration curves were obtained from 10 to 500 ng/mL; the correlation ranged from 0.9991 to 0.9999. The suggested procedures were applied to the analysis of the investigated vitamins in their laboratory-prepared mixtures and pharmaceutical dosage forms from different manufacturers. The RSD range was 0.46-1.02%, which indicates good precision. No interference was observed from common pharmaceutical additives. Good recoveries (97.6 +/- 0.7-101.2 +/- 0.8%) were obtained. Statistical comparison of the results with reported methods shows excellent agreement and indicates no significant difference in accuracy and precision.

  16. Novel micellar systems for the formulation of poorly water soluble drugs : biocompatibility aspects and pharmaceutical applications

    OpenAIRE

    Dumontet Mondon, Karine

    2010-01-01

    Amongst the large number of novel drugs, 95% are lipophilic and poorly water soluble. Particularly, this renders their aqueous formulation very difficult. In this regard this thesis focused on polymeric micelles based on novel MPEG-hexPLA copolymers forming a hydrophilic shell and a very hydrophobic core that favors the incorporation of poorly water soluble drugs. Although the drug hydrophobicity and water solubility are the main parameters in respect to their incorporation efficiency, struct...

  17. Water-soluble elements in atmospheric particulate matter over tropical and equatorial Atlantic

    International Nuclear Information System (INIS)

    Buat-Menard, Patrick; Morelli, Jacques; Chesselet, Roger

    1974-01-01

    Samples of water-soluble atmospheric particulate matter collected from R/V ''Jean Charcot'' (May to October 1971) and R/V ''James Gilliss'' (October 1972) over Tropical and Equatorial Atlantic were analyzed for Na, Mg, K and Ca by atomic absorption and for Cl and S as SO 4 by colorimetry. Data shows a strong geographical dependence of K and Ca enrichment relative to their elemental ratio to Na in sea-water. Ca enrichment is related to presence of identified soluble calcium minerals in continental dust originating from African deserts (Sahara-Kalahari). This dust does not influence amounts of K in the water-soluble phase. When observed, strong K enrichment appears tightly associated with high concentrations of surface-active organic material in the microlayer derived from high biological activity (Gulf of Guinea). Observed in same samples, SO 4 enrichment could also be controlled by the same source. This SO 4 enrichment balances the observed Cl loss in aerosols accordingly with gaseous HCl formation processes in marine atmosphere [fr

  18. Transpiration directly regulates the emissions of water-soluble short-chained OVOCs.

    Science.gov (United States)

    Rissanen, K; Hölttä, T; Bäck, J

    2018-04-20

    Most plant-based emissions of volatile organic compounds (VOCs) are considered mainly temperature dependent. However, certain oxygenated VOCs (OVOCs) have high water solubility; thus, also stomatal conductance could regulate their emissions from shoots. Due to their water solubility and sources in stem and roots, it has also been suggested that their emissions could be affected by transport in xylem sap. Yet, further understanding on the role of transport has been lacking until present. We used shoot-scale long-term dynamic flux data from Scots pines (Pinus sylvestris) to analyse the effects of transpiration and transport in xylem sap flow on emissions of three water soluble OVOC: methanol, acetone and acetaldehyde. We found a direct effect of transpiration on the shoot emissions of the three OVOCs. The emissions were best explained by a regression model that combined linear transpiration and exponential temperature effects. In addition, a structural equation model indicated that stomatal conductance affects emissions mainly indirectly, by regulating transpiration. A part of temperature's effect is also indirect. The tight coupling of shoot emissions to transpiration clearly evidences that these OVOCs are transported in xylem sap from their sources in roots and stem to leaves and to ambient air. This article is protected by copyright. All rights reserved.

  19. Determination of fat- and water-soluble vitamins by supercritical fluid chromatography: A review.

    Science.gov (United States)

    Tyśkiewicz, Katarzyna; Dębczak, Agnieszka; Gieysztor, Roman; Szymczak, Tomasz; Rój, Edward

    2018-01-01

    Vitamins are compounds that take part in all basic functions of an organism but also are subject of number of studies performed by different researchers. Two groups of vitamins are distinguished taking into consideration their solubility. Chromatography with supercritical CO 2 has found application in the determination, separation, and quantitative analyses of both fat- and water-soluble vitamins. The methods of vitamins separation have developed and improved throughout the years. Both groups of compounds were separated using supercritical fluid chromatography with different detection on different stationary phases. The main aim of this review is to provide an overview of the studies of vitamins separation that have been determined so far. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Organic Redox Species in Aqueous Flow Batteries: Redox Potentials, Chemical Stability and Solubility

    OpenAIRE

    Kristina Wedege; Emil Dražević; Denes Konya; Anders Bentien

    2016-01-01

    Organic molecules are currently investigated as redox species for aqueous low-cost redox flow batteries (RFBs). The envisioned features of using organic redox species are low cost and increased flexibility with respect to tailoring redox potential and solubility from molecular engineering of side groups on the organic redox-active species. In this paper 33, mainly quinone-based, compounds are studied experimentially in terms of pH dependent redox potential, solubility and stability, combined ...

  1. Study on Mixed Solvency Concept in Formulation Development of Aqueous Injection of Poorly Water Soluble Drug

    Directory of Open Access Journals (Sweden)

    Shailendra Singh Solanki

    2013-01-01

    Full Text Available In the present investigation, mixed-solvency approach has been applied for the enhancement of aqueous solubility of a poorly water- soluble drug, zaltoprofen (selected as a model drug, by making blends (keeping total concentrations 40% w/v, constant of selected water-soluble substances from among the hydrotropes (urea, sodium benzoate, sodium citrate, nicotinamide; water-soluble solids (PEG-4000, PEG-6000; and co-solvents (propylene glycol, glycerine, PEG-200, PEG-400, PEG-600. Aqueous solubility of drug in case of selected blends (12 blends ranged from 9.091 ± 0.011 mg/ml–43.055 ± 0.14 mg/ml (as compared to the solubility in distilled water 0.072 ± 0.012 mg/ml. The enhancement in the solubility of drug in a mixed solvent containing 10% sodium citrate, 5% sodium benzoate and 25 % S cosolvent (25% S cosolvent contains PEG200, PEG 400, PEG600, Glycerine and Propylene glycol was more than 600 fold. This proved a synergistic enhancement in solubility of a poorly water-soluble drug due to mixed cosolvent effect. Each solubilized product was characterized by ultraviolet and infrared techniques. Various properties of solution such as pH, viscosity, specific gravity and surface tension were studied. The developed formulation was studied for physical and chemical stability. This mixed solvency shall prove definitely a boon for pharmaceutical industries for the development of dosage form of poorly water soluble drugs.

  2. One-pot synthesis of water soluble iron nanoparticles using rationally-designed peptides and ligand release.

    Science.gov (United States)

    Papst, Stefanie; Cheong, Soshan; Banholzer, Moritz J; Brimble, Margaret A; Williams, David E; Tilley, Richard D

    2013-05-18

    Herein we report the rational design of new phosphopeptides for control of nucleation, growth and aggregation of water-soluble, superparamagnetic iron-iron oxide core-shell nanoparticles. The use of the designed peptides enables a one-pot synthesis that avoids utilizing unstable or toxic iron precursors, organic solvents, and the need for exchange of capping agent after synthesis of the NPs.

  3. The solubilities of significant organic compounds in HLW tank supernate solutions -- FY 1995 progress report

    International Nuclear Information System (INIS)

    Barney, G.S.

    1996-01-01

    At the Hanford Site organic compounds were measured in tank supernate simulant solutions during FY 1995. This solubility information will be used to determine if these organic salts could exist in solid phases (saltcake or sludges) in the waste where they might react violently with the nitrate or nitrite salts present in the tanks. Solubilities of sodium glycolate, succinate, and caproate salts; iron and aluminum and butylphosphate salts; and aluminum oxalate were measured in simulated waste supernate solutions at 25 degree C, 30 degree C, 40 degree C, and 50 degree C. The organic compounds were selected because they are expected to exist in relatively high concentrations in the tanks. The solubilities of sodium glycolate, succinate, caproate, and butylphosphate in HLW tank supernate solutions were high over the temperature and sodium hydroxide concentration ranges expected in the tanks. High solubilities will prevent solid sodium salts of these organic acids from precipitating from tank supernate solutions. The total organic carbon concentrations (YOC) of actual tank supernates are generally much lower than the TOC ranges for simulated supernate solutions saturated (at the solubility limit) with the organic salts. This is so even if all the dissolved carbon in a given tank and supernate is due to only one of these eight soluble compounds (an unlikely situation). Metal ion complexes of and butylphosphate and oxalate in supernate solutions were not stable in the presence of the hydroxide concentrations expected in most tanks. Iron and aluminum dibutylphosphate compounds reacted with hydroxide to form soluble sodium dibutylphosphate and precipitated iron and aluminum hydroxides. Aluminum oxalate complexes were also not stable in the basic simulated supernate solutions. Solubilities of all the organic salts decrease with increasing sodium hydroxide concentration because of the common ion effect of Na+. Increasing temperatures raised the solubilities of the organic

  4. Solubility of Methane, Ethane, and Propane in Pure Water Using New Binary Interaction Parameters

    Directory of Open Access Journals (Sweden)

    Masoud Behrouz

    2015-07-01

    Full Text Available Solubility of hydrocarbons in water is important due to ecological concerns and new restrictions on the existence of organic pollutants in water streams. Also, the creation of a thermodynamic model has required an advanced study of the phase equilibrium between water (as a basis for the widest spread muds and amines and gas hydrocarbon phases in wide temperature and pressure ranges. Therefore, it is of great interest to develop semi-empirical correlations, charts, or thermodynamic models for estimating the solubility of hydrocarbons in liquid water. In this work, a thermodynamic model based on Mathias modification of Sova-Redlich-Kwong (SRK equation of state is suggested using classical mixing rules with new binary interaction parameters which were used for two-component systems of hydrocarbons and water. Finally, the model results and their deviations in comparison with the experimental data are presented; these deviations were equal to 5.27, 6.06, and 4.1% for methane, ethane, and propane respectively.

  5. [Emission Characteristics of Water-Soluble Ions in Fumes of Coal Fired Boilers in Beijing].

    Science.gov (United States)

    Hu, Yue-qi; Ma, Zhao-hui; Feng, Ya-jun; Wang, Chen; Chen, Yuan-yuan; He, Ming

    2015-06-01

    Selecting coal fired boilers with typical flue gas desulfurization and dust extraction systems in Beijing as the study objects, the issues and characteristics of the water-soluble ions in fumes of coal fired boilers and theirs influence factors were analyzed and evaluated. The maximum mass concentration of total water-soluble ions in fumes of coal fired boilers in Beijing was 51.240 mg x m(-3) in the benchmark fume oxygen content, the minimum was 7.186 mg x m(-3), and the issues of the water-soluble ions were uncorrelated with the fume moisture content. SO4(2-) was the primary characteristic water-soluble ion for desulfurization reaction, and the rate of contribution of SO4(2-) in total water-soluble ions ranged from 63.8% to 81.0%. F- was another characteristic water-soluble ion in fumes of thermal power plant, and the rate of contribution of F- in total water-soluble ions ranged from 22.2% to 32.5%. The fume purification technologies significantly influenced the issues and the emission characteristics of water-soluble ions in fumes of coal fired boilers. Na+ was a characteristic water-soluble ion for the desulfurizer NaOH, NH4+ and NO3+ were characteristic for the desulfurizer NH4HCO3, and Mg2+ was characteristic for the desulfurizer MgO, but the Ca2+ emission was not increased by addition of the desulfurizer CaO or CaCO3 The concentrations of NH4+ and NO3- in fumes of thermal power plant were lower than those in fumes of industrial or heating coal fired boilers. The form of water-soluble ions was significantly correlated with fume temperature. The most water-soluble ions were in superfine state at higher fume temperature and were not easily captured by the filter membrane.

  6. Improved Bilayer Resist System Using Contrast-Enhanced Lithography With Water-Soluble Photopolymer

    Science.gov (United States)

    Sasago, Masaru; Endo, Masayuki; Hirai, Yoshihiko; Ogawa, Kazufurni; Ishihara, Takeshi

    1986-07-01

    A new water-soluble contract enhanced material, WSP (Water-soluble Photopolymer), has been developed. The WSP is composed of a mainpolymer and a photobleachable reagents. The mainpolymer is a water-soluble polymer mixed with pullulan (refined through biotechnological process) and polyvinyl-pyrolidone (PVP). The photo-bleachable reagent is of a diazonium compound gorup. The introduction of the mainpolymer and photobleach-able reagent mixture has improved filmity, gas transparency, photobleaching characteristics and solubility in alkaline which are essential to the device fabrication. Submicron photoresist patterns are successfully fabricated by a simple sequence of photolithography process. The WSP layer has been applied to the bilayer resist system--deep-UV portable conformable masking (PCM)--that is not affected by VLSI's topography, and is able to fabricate highly accurate pattern. The aqueous developable layer, PMGI, with high organic solvent resistance is used in the bottom layer. Therefore, no interfacial mixing with conventional positive resist top layer is observed. Furthermore, deep-UV exposure method has been used for the KrF excimer laser optical system in order to increase high throughput. From the experiments, it has been confirmed that good resist transfer profile can be realized by the use of WSP, and that the submicron resist patterns with high aspect-ratio can be developed on the nonplaner wafer with steps of up to 41m by the combination of the WSP with the PCM system. By this technology, has been improved the weak point: variation in the line width due to the thickness of contrast-enhanced layer when the CEL technology is applied, and dependency of both the finished resist profile and the line-width accuracy on the thickness of the top layer resist when the PCM system is adopted.

  7. Solubility isotherms in ternary systems of samarium nitrate, water and nitrates of amidopyrine, benzotriazole

    International Nuclear Information System (INIS)

    Starikova, L.I.

    1991-01-01

    Solubility in the system of samarium nitrate-amidopyrine nitrate-water at 25 and 50 deg C was studied. Solubility isotherms consist of three branches, corresponding to crystallization of samarium nitrate tetrahydrate, amidopyrine nitrate and congruently soluble compounds of Sm(NO 3 ) 3 · 2C 13 H 17 ON 3 ·HNO 3 composition. Its thermal behaviour was studied. The system of samarium nitrate-benzotriazole nitrate-water is referred to eutonic type

  8. Process for the production of furfural from pentoses and/or water soluble pentosans

    NARCIS (Netherlands)

    De Jong, W.; Marcotullio, G.

    2012-01-01

    The invention is directed to a process for the production of furfural from pentoses and/or water soluble pentosans, said process comprising converting the said pentoses and/or water soluble pentosans in aqueous solution in a first step to furfural and in a second step feeding the aqueous solution

  9. Water Soluble Polymers as Proton Exchange Membranes for Fuel Cells

    Directory of Open Access Journals (Sweden)

    Bing-Joe Hwang

    2012-03-01

    Full Text Available The relentless increase in the demand for useable power from energy-hungry economies continues to drive energy-material related research. Fuel cells, as a future potential power source that provide clean-at-the-point-of-use power offer many advantages such as high efficiency, high energy density, quiet operation, and environmental friendliness. Critical to the operation of the fuel cell is the proton exchange membrane (polymer electrolyte membrane responsible for internal proton transport from the anode to the cathode. PEMs have the following requirements: high protonic conductivity, low electronic conductivity, impermeability to fuel gas or liquid, good mechanical toughness in both the dry and hydrated states, and high oxidative and hydrolytic stability in the actual fuel cell environment. Water soluble polymers represent an immensely diverse class of polymers. In this comprehensive review the initial focus is on those members of this group that have attracted publication interest, principally: chitosan, poly (ethylene glycol, poly (vinyl alcohol, poly (vinylpyrrolidone, poly (2-acrylamido-2-methyl-1-propanesulfonic acid and poly (styrene sulfonic acid. The paper then considers in detail the relationship of structure to functionality in the context of polymer blends and polymer based networks together with the effects of membrane crosslinking on IPN and semi IPN architectures. This is followed by a review of pore-filling and other impregnation approaches. Throughout the paper detailed numerical results are given for comparison to today’s state-of-the-art Nafion® based materials.

  10. Aerobic Biodegradation Characteristic of Different Water-Soluble Azo Dyes

    Directory of Open Access Journals (Sweden)

    Shixiong Sheng

    2017-12-01

    Full Text Available This study investigated the biodegradation performance and characteristics of Sudan I and Acid Orange 7 (AO7 to improve the biological dye removal efficiency in wastewater and optimize the treatment process. The dyes with different water-solubility and similar molecular structure were biologically treated under aerobic condition in parallel continuous-flow mixed stirred reactors. The biophase analysis using microscopic examination suggested that the removal process of the two azo dyes is different. Removal of Sudan I was through biosorption, since it easily assembled and adsorbed on the surface of zoogloea due to its insolubility, while AO7 was biodegraded incompletely and bioconverted, the AO7 molecule was decomposed to benzene series and inorganic ions, since it could reach the interior area of zoogloea due to the low oxidation-reduction potential conditions and corresponding anaerobic microorganisms. The transformation of NH3-N, SO42− together with the presence of tryptophan-like components confirm that AO7 can be decomposed to non-toxic products in an aerobic bioreactor. This study provides a theoretical basis for the use of biosorption or biodegradation mechanisms for the treatment of different azo dyes in wastewater.

  11. Biostimulants and Its Potential Utilization in Functional Water-soluble Fertilizers

    Directory of Open Access Journals (Sweden)

    ZHANG Qiang

    2018-02-01

    Full Text Available Biostimulants are becoming widely applied and extended in the fertilizer industry, because of their effects on soil improvement, anti-stress ability enhancement and root growth promotion, which can increase efficient uptake and utilization of soil nutrients, crop yield and quality.This review introduced the concepts of biostimulants, and summarized the functions and related mechanisms of commonly-applied biostimulants in the market, i.e.humic acid, amino acid, seaweed extracts and plant-growth-promoting bacteria(PGPR. The properties and applied characteristics of different organic wastes containing some biostimulating compounds as the main material of functional water soluble fertilizers (WSFin the industry were presented. The technical keys to compound these organic wastes with some bio-active substances to produce the functional WSF were explored, with the aims to support the value -added utilization of organic wastes, reduce the use of fertilizers, and promote crops忆 quality and quantity.

  12. Enhancement of carvedilol solubility by solid dispersion technique using cyclodextrins, water soluble polymers and hydroxyl acid.

    Science.gov (United States)

    Yuvaraja, K; Khanam, Jasmina

    2014-08-05

    Aim of the present work is to enhance aqueous solubility of carvedilol (CV) by solid dispersion technique using wide variety of carriers such as: β-cyclodextrin (βCD), hydroxypropyl-β-cyclodextrin (HPβCD), tartaric acid (TA), polyvinyl pyrrolidone K-30 (PVP K-30) and poloxamer-407 (PLX-407). Various products of 'CV-solid dispersion' had been studied extensively in various pH conditions to check enhancement of solubility and dissolution characteristics of carvedilol. Any physical change upon interaction between CV and carriers was confirmed by instrumental analysis: XRD, DSC, FTIR and SEM. Negative change of Gibb's free energy and complexation constants (Kc, 75-240M(-1), for cyclodextrins and 1111-20,365M(-1), for PVP K-30 and PLX-407) were the evidence of stable nature of the binding between CV and carriers. 'Solubility enhancement factor' of ionized-CV was found high enough (340 times) with HPβCD in presence of TA. TA increases the binding efficiency of cyclodextrin and changing the pH of microenvironment in dissolution medium. In addition, ionization process was used to increase the apparent intrinsic solubility of drug. In vitro, dissolution time of CV was remarkably reduced in the solid dispersion system compared to that of pure drug. This may be attributed to increased wettability, dispersing ability and transformation of crystalline state of drug to amorphous one. Copyright © 2014 Elsevier B.V. All rights reserved.

  13. Overview of milling techniques for improving the solubility of poorly water-soluble drugs

    Directory of Open Access Journals (Sweden)

    Zhi Hui Loh

    2015-07-01

    Full Text Available Milling involves the application of mechanical energy to physically break down coarse particles to finer ones and is regarded as a “top–down” approach in the production of fine particles. Fine drug particulates are especially desired in formulations designed for parenteral, respiratory and transdermal use. Most drugs after crystallization may have to be comminuted and this physical transformation is required to various extents, often to enhance processability or solubility especially for drugs with limited aqueous solubility. The mechanisms by which milling enhances drug dissolution and solubility include alterations in the size, specific surface area and shape of the drug particles as well as milling-induced amorphization and/or structural disordering of the drug crystal (mechanochemical activation. Technology advancements in milling now enable the production of drug micro- and nano-particles on a commercial scale with relative ease. This review will provide a background on milling followed by the introduction of common milling techniques employed for the micronization and nanonization of drugs. Salient information contained in the cited examples are further extracted and summarized for ease of reference by researchers keen on employing these techniques for drug solubility and bioavailability enhancement.

  14. Renal Cell Toxicity of Water-Soluble Coal Extracts from the Gulf Coast

    Science.gov (United States)

    Ojeda, A. S.; Ford, S.; Ihnat, M.; Gallucci, R. M.; Philp, P. R.

    2017-12-01

    In the Gulf Coast, many rural residents rely on private well water for drinking, cooking, and other domestic needs. A large portion of this region contains lignite coal deposits within shallow aquifers that potentially leach organic matter into the water supply. It is proposed that the organic matter leached from low-rank coal deposits contributes to the development of kidney disease, however, little work has been done to investigate the toxicity of coal extracts. In this study, human kidney cells (HK-2) were exposed to water-soluble extracts of Gulf Coast Coals to assess toxicity. Cell viability was measured by direct counts of total and necrotic cells. A dose-response curve was used to generate IC50 values, and the extracts showed significant toxicity that ranged from 0.5% w/v to 3% w/v IC50. The most toxic extract was from Louisiana where coal-derived organic material has been previously linked to high incidents of renal pelvic cancer (RPC). Although the toxic threshold measured in this study is significantly higher than the concentration of organic matter in the groundwater, typically affected areas may consume contaminated water over a lifetime. It is possible that the cumulative toxic effects of coal-derived material contribute to the development of disease.

  15. Study on spraying water soluble resin to reduce pollution for Fukushima daiichi NPP accident

    International Nuclear Information System (INIS)

    Zhang Qiong; Guo Ruiping; Zhang Chunming; Han Fujuan; Hua Jie; Zhang Jiankui

    2012-01-01

    After Fukushima nuclear accident, Tokyo electric power company used the method of spraying water soluble resin synthesis at the scene of the accident, to restrain and control the spread of the radioactive dust, by forming consolidation layer in pollution area surface. This paper briefly introduced the accident, motivation of spraying water soluble resin, spraying range and implementation process. According to the relevant report on Fukushima nuclear accident, the effect of spraying water soluble resin for reducing pollution was analyzed. The mechanism of reducing pollution for water soluble resin and the application prospect were discussed. Spraying water soluble resin for fixing radioactive dust has reasonable reducing pollution effect. It is worth to use as reference and study in China. (authors)

  16. Diffusion and solubility coefficients determined by permeation and immersion experiments for organic solvents in HDPE geomembrane.

    Science.gov (United States)

    Chao, Keh-Ping; Wang, Ping; Wang, Ya-Ting

    2007-04-02

    The chemical resistance of eight organic solvents in high density polyethylene (HDPE) geomembrane has been investigated using the ASTM F739 permeation method and the immersion test at different temperatures. The diffusion of the experimental organic solvents in HDPE geomembrane was non-Fickian kinetic, and the solubility coefficients can be consistent with the solubility parameter theory. The diffusion coefficients and solubility coefficients determined by the ASTM F739 method were significantly correlated to the immersion tests (pHDPE as barriers in the field.

  17. Water soluble and metal-containing electron beam resist poly(sodium 4-styrenesulfonate)

    International Nuclear Information System (INIS)

    Abbas, Arwa Saud; Alqarni, Sondos; Shokouhi, Babak Baradaran; Yavuz, Mustafa; Cui, Bo

    2014-01-01

    Popular electron beam resists such as PMMA, ZEP and HSQ all use solvent or base solutions for processing, which may attack the sub-layers or substrate that are made out of organic semiconducting materials. In this study we show that water soluble poly(sodium 4-styrenesulfonate), or sodium PSS, can be used as a negative electron beam resist developed in water. Moreover, since PSS contains metal sodium, its dry etching resistance is much higher than PMMA. It is notable that sodium PSS’s sensitivity and contrast is still far inferior to organic resists such as PMMA, thus it is not suitable for patterning dense and high-resolution structures. Nevertheless, feature size down to 40 nm was achieved for sparse patterns. Lastly, using very low energy (here 2 keV) electron beam lithography and liftoff process using water only, patterning of metal layer on an organic conductive material P3HT was achieved. The metallization of an organic conducting material may find applications in organic semiconductor devices such as OLED. (paper)

  18. Evaluation of soluble organic compounds generated by radiological degradation of asphalt

    International Nuclear Information System (INIS)

    Fukumoto, M.; Nishikawa, Y.; Kagawa, A.; Kawamura, K.

    2000-12-01

    The soluble organic compounds generated by radiological degradation of asphalt (γ ray) were confirmed as a part of influence of the bituminized waste degradation in the TRU waste repository. Especially, the influence of the nitrate was focused on. As a result, the concentration of the soluble organic compounds generated by radiological degradation of asphalt (10 MGy, γ ray which is correspond to absorbed dose of asphalt for 1,000,000 years) were lower (each formic acid: about 50 mg/dm 3 , acetic acid: about 30 mg/dm 3 and oxalic acid: about 2 mg/dm 3 ) than that of the formic acid, the acetic acid and the oxalic acid which Valcke et al. had shown (the influence of the organic at the solubility examination which uses Pu and Am). Moreover, the change in the concentration of TOC and the soluble organic compounds (formic acid, acetic acid and oxalic acid) is little under the existence of nitrate ion. That is, the formic acid and acetic acid which can be organic ligands were generated little by oxidative decomposition of asphalt in the process that nitrate ion becomes nitride ion by radiation. The influence of the soluble organic compounds by the radiological degradation of the asphalt (γ ray) on adsorption and solubility by the complexation of radionuclides in the performance assessment can be limited. (author)

  19. An estimation of influence of humic acid and organic matter originated from bentonite on samarium solubility

    International Nuclear Information System (INIS)

    Kanaji, Mariko; Sato, Haruo; Sasahira, Akira

    1999-10-01

    Organic acids in groundwater are considered to form complexes and increase the solubility of radionuclides released from vitrified waste in a high-level radioactive waste (HLW) repository. To investigate whether the solubility of samarium (Sm) is influenced by organic substances, we measured Sm solubility in the presence of different organic substances and compared those values with results from thermodynamic predictions. Humic acid (Aldrich) is commercially available and soluble organic matter originated from bentonite were used as organic substances in this study. Consequently, the solubility of Sm showed a tendency to apparently increase with increasing the concentration of humic acid, but in the presence of carbonate, thermodynamic predictions suggested that the dominant species are carbonate complexes and that the effect of organic substances are less than that of carbonate. Based on total organic carbon (TOC), the increase of Sm solubility measured with humic acid (Aldrich) was more significant than that in the case with soluble organic matter originated from bentonite. Since bentonite is presumed to include also simple organic matters of which stability constant for forming complexes is low, the effect of soluble organic matter originated from bentonite on the solubility of Sm is considered to be less effective than that of humic acid (Aldrich). Experimental values were compared with model prediction, proposed by Kim, based on data measured in a low pH region. Tentatively we calculated the increase in Sm solubility assuming complexation with humic acid. Trial calculations were carried out on the premise that the complexation reaction of metal ion with humic acid is based on neutralization process by 1-1 complexation. In this process, it was assumed that one metal ion coordinates with one unit of complexation sites which number of proton exchange sites is equal to ionic charge. Consequently, Kim's model indicated that carbonate complexes should be dominant

  20. Image Charge Effects in the Wetting Behavior of Alkanes on Water with Accounting for Water Solubility

    Directory of Open Access Journals (Sweden)

    Kirill A. Emelyanenko

    2016-03-01

    Full Text Available Different types of surface forces, acting in the films of pentane, hexane, and heptane on water are discussed. It is shown that an important contribution to the surface forces originates from the solubility of water in alkanes. The equations for the distribution of electric potential inside the film are derived within the Debye-Hückel approximation, taking into account the polarization of the film boundaries by discrete charges at water-alkane interface and by the dipoles of water molecules dissolved in the film. On the basis of above equations we estimate the image charge contribution to the surface forces, excess free energy, isotherms of water adsorption in alkane film, and the total isotherms of disjoining pressure in alkane film. The results indicate the essential influence of water/alkane interface charging on the disjoining pressure in alkane films, and the wettability of water surface by different alkanes is discussed.

  1. Dual Activity of Hydroxypropyl-β-Cyclodextrin and Water-Soluble Carriers on the Solubility of Carvedilol.

    Science.gov (United States)

    Zoghbi, Abdelmoumin; Geng, Tianjiao; Wang, Bo

    2017-11-01

    Carvedilol (CAR) is a non-selective α and β blocker categorized as class II drug with low water solubility. Several recent studies have investigated ways to overcome this problem. The aim of the present study was to combine two of these methods: the inclusion complex using hydroxypropyl-β-cyclodextrin (HPβCD) with solid dispersion using two carriers: Poloxamer 188 (PLX) and Polyvinylpyrrolidone K-30 (PVP) to enhance the solubility, bioavailability, and the stability of CAR. Kneading method was used to prepare CAR-HPβCD inclusion complex (KD). The action of different carriers separately and in combination on Carvedilol solubility was investigated in three series. CAR-carrier and KD-carrier solid dispersions were prepared by solvent evaporation method. In vitro dissolution test was conducted in three different media: double-distilled water (DDW), simulative gastric fluid (SGF), and PBS pH 6.8 (PBS). The interactions between CAR, HPβCD, and different carriers were explored by Fourier transform infrared spectroscopy (FTIR), powder X-ray diffractometry (XRD), and differential scanning colorimetry (DSC). The results showed higher solubility of CAR in KD-PVP solid dispersions up to 70, 25, and 22 fold compared to pure CAR in DDW, SGF, and PBS, respectively. DSC and XRD analyses indicated an improved degree of transformation of CAR in KD-PVP solid dispersion from crystalline to amorphous state. This study provides a new successful combination of two polymers with the dual action of HPβCD and PLX/PVP on water solubility and bioavailability of CAR.

  2. Effect of radio-oxidative ageing and pH on the release of soluble organic matter from bitumen

    International Nuclear Information System (INIS)

    Libert, M.F.; Walczak, I.

    2000-01-01

    Bitumen is employed as an embedding matrix for low and medium level radioactive wastes. An high impermeability and a great resistance against most of chemicals are two of main bitumen properties. These characteristics of bitumen confinement properties may be modified under environmental parameters during intermediate storage or deep repository such as radiations or the presence of water. The radio-oxidation induces an increase of the quantity of leached organic matter. The evolution of the soluble organic species release seems to be linear with the irradiation dose, as soon as the dose is higher than 20 kGy, and seems to be no dependant of the dose rate. The generation of water-soluble organic complexing agents can affect the integrity of the wasteform due to an increase of the radionuclides solubility. An increase of the quantity of leached organic matter is also observed in presence of alkaline solutions. Identified molecules, by GC/MS analysis, are aromatics like naphthalene, oxidised compounds like alcohols, linear carbonyls, aromatics, glycols and nitrogen compounds. (authors)

  3. Solubility of gases in water at high temperature

    International Nuclear Information System (INIS)

    Crovetto, Rosa; Fernandez Prini, R.J.; Japas, M.L.

    1981-01-01

    In the primary circuits of the PWR, it is usual to find apolar gases such as the noble gases like, nitrogen, hydrogen (deuterium) and oxygen. These gases enter into the circuit partly due to failures in the fuel elements, accidental entries of air into the system and corrosion processes and radiolisis in the coolant media. For the operation of several auxiliary systems in the primary circuit, it is important to know the solubility of these gases in the flux of the circuit and the evaluation of physicochemical processes that take place. A cell has been built that allows to carry out determinations of solubility in the range of 350 deg C and 100 Mega Pascal. Three alternative experimental techniques have been developed to determine the solubility of the gases which are compared to each other. Measures of solubility of argon in H2O and D2O have been made in a wide range of temperatures. (V.B.) [es

  4. Electrochemical detection of dopamine using water-soluble sulfonated graphene

    International Nuclear Information System (INIS)

    Li, Su-Juan; He, Jun-Zhi; Zhang, Meng-Jie; Zhang, Rong-Xia; Lv, Xia-Lei; Li, Shao-Hua; Pang, Huan

    2013-01-01

    Graphical abstract: DPV responses of dopamine (DA) at sulfonated graphene based glassy carbon electrode in the presence of ascorbic acid (AA) and uric acid (UA). The separation of the oxidation peak potentials for AA-DA, DA-UA and UA-AA was about 227 mV, 125 mV and 352 mV, which allowed selectively determining DA. -- Abstract: In the present study, a biosensor was prepared using the water-soluble sulfonated graphene with the aim of achieving the selective and sensitive determination of dopamine (DA) in the presence of ascorbic acid (AA) and uric acid (UA). The aromatic π–π stacking and electrostatic attraction between positively charged DA and negatively charged sulfonated graphene can accelerate the electron transfer whereas weakening AA and UA oxidation on the sulfonated graphene-modified electrode. Fourier transform infrared spectra (FTIR), energy dispersive X-ray spectroscopy (EDX), atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to characterize the successful synthesis of sulfonated graphene sheets. Differential pulse voltammetry was used for electrochemical detection, the separation of the oxidation peak potentials for AA-DA, DA-UA and UA-AA was about 227 mV, 125 mV and 352 mV, which allowed selectively determining DA. A broad linear range, low detection limit, along with good ability to suppress the background current from large excess ascorbic acid (AA) and uric acid (UA) were obtained. The as-prepared sulfonated graphene sheets exhibited superior performance over conventional negatively charged Nafion films, such as flexible film thickness, unique nanostructure, excellent anti-interference ability, high sensitivity and selectivity. The proposed method was used to detect DA in real hydrochloride injection sample, human urine and serum samples with satisfactory recovery results

  5. Water soluble vitamin E (TMG) as a radioprotector.

    Science.gov (United States)

    Nair, Cherupally Krishnan K; Devi, Pathirissery Uma; Shimanskaya, R; Kunugita, N; Murase, Hironobu; Gu, Yeun-Hwa; Kagiya, Tsutomu V

    2003-12-01

    Tocopherol monoglucoside (TMG), a water soluble derivative of vitamin E offers protection against deleterious effects of ionizing radiation, both under in vivo and in vitro conditions, to biological systems. TMG was found to be a potent antioxidant and an effective free radical scavenger. It forms a phenoxyl radical similar to trolox upon reaction with various one-electron oxidants. TMG protected DNA from radiation-induced strand breaks. It also protected thymine glycol formation induced by gamma-radiation. Gamma-radiation-induced loss of viability of EL-tumor cells and peroxidation of lipids in microsomal and mitochondrial membranes were prevented by TMG. TMG was nontoxic to mice when administered orally up to 7.0 g/kg body weight. The LD50 dose of TMG for ip administration in mice was 1.15 g/kg body wt. In rats, following oral and ip administration of TMG, the absorption (distribution) half lives were 5.8 and 3.0 min respectively and elimination half lives were 6.7 and 3.1 min respectively. Embryonic mortality resulting from exposure of pregnant mice to ionizing radiation (2 Gy) was reduced by 75% by ip administration of TMG (0.6 g/kg, body wt) prior to irradiation. TMG offered protection to mice against whole body gamma-radiation-induced lethality and weight loss. The LD50(30) of mice increased from 6 to 6.72 Gy upon post irradiation administration of a single dose of TMG (0.6 g/kg, body wt) by ip.

  6. Determination of water-soluble vitamins using a colorimetric microbial viability assay based on the reduction of water-soluble tetrazolium salts.

    Science.gov (United States)

    Tsukatani, Tadayuki; Suenaga, Hikaru; Ishiyama, Munetaka; Ezoe, Takatoshi; Matsumoto, Kiyoshi

    2011-07-15

    A method for the determination of water-soluble vitamins using a colorimetric microbial viability assay based on the reduction of the tetrazolium salt {2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-disulfophenyl)-2H-tetrazolium, monosodium salt (WST-8)} via 2-methyl-1,4-napthoquinone (NQ) was developed. Measurement conditions were optimized for the microbiological determination of water-soluble vitamins, such as vitamin B(6), biotin, folic acid, niacin, and pantothenic acid, using microorganisms that have a water-soluble vitamin requirement. A linear relationship between absorbance and water-soluble vitamin concentration was obtained. The proposed method was applied to determine the concentration of vitamin B(6) in various foodstuffs. There was good agreement between vitamin B(6) concentrations determined after 24h using the WST-8 colorimetric method and those obtained after 48h using a conventional method. The results suggest that the WST-8 colorimetric assay is a useful method for the rapid determination of water-soluble vitamins in a 96-well microtiter plate. Copyright © 2011 Elsevier Ltd. All rights reserved.

  7. Towards improved solubility of poorly water-soluble drugs: cryogenic co-grinding of piroxicam with carrier polymers.

    Science.gov (United States)

    Penkina, Anna; Semjonov, Kristian; Hakola, Maija; Vuorinen, Sirpa; Repo, Timo; Yliruusi, Jouko; Aruväli, Jaan; Kogermann, Karin; Veski, Peep; Heinämäki, Jyrki

    2016-01-01

    Amorphous solid dispersions (SDs) open up exciting opportunities in formulating poorly water-soluble active pharmaceutical ingredients (APIs). In the present study, novel catalytic pretreated softwood cellulose (CPSC) and polyvinylpyrrolidone (PVP) were investigated as carrier polymers for preparing and stabilizing cryogenic co-ground SDs of poorly water-soluble piroxicam (PRX). CPSC was isolated from pine wood (Pinus sylvestris). Raman and Fourier transform infrared (FTIR) spectroscopy, X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) were used for characterizing the solid-state changes and drug-polymer interactions. High-resolution scanning electron microscope (SEM) was used to analyze the particle size and surface morphology of starting materials and final cryogenic co-ground SDs. In addition, the molecular aspects of drug-polymer interactions and stabilization mechanisms are presented. The results showed that the carrier polymer influenced both the degree of amorphization of PRX and stabilization against crystallization. The cryogenic co-ground SDs prepared from PVP showed an enhanced dissolution rate of PRX, while the corresponding SDs prepared from CPSC exhibited a clear sustained release behavior. In conclusion, cryogenic co-grinding provides a versatile method for preparing amorphous SDs of poorly water-soluble APIs. The solid-state stability and dissolution behavior of such co-ground SDs are to a great extent dependent on the carrier polymer used.

  8. Synthesis of new water-soluble metal-binding polymers: Combinatorial chemistry approach. 1997 mid-year progress report

    International Nuclear Information System (INIS)

    Smith, B.F.

    1997-01-01

    'The first objective of this research is to develop rapid discovery and optimization approaches to new water-soluble chelating polymers. A byproduct of the development approach will be the new, selective, and efficient metal-binding agents. The second objective is to evaluate the concept of using water and organic soluble polymers as new solid supports for combinatorial synthesis. The technology under development, Polymer Filtration (PF), is a technique to selectively remove or recover hazardous and valuable metal ions and radionuclides from various dilute aqueous streams. Not only can this technology be used to remediate contaminated soils and solid surfaces and treat aqueous wastes, it can also be incorporated into facilities as a pollution prevention and waste minimization technology. Polymer Filtration uses water-soluble metal-binding polymers to sequester metal ions in dilute solution. The water-soluble polymers have a sufficiently large molecular size that they can be separated and concentrated using commercial ultrafiltration technology. Water, small organic molecules, and unbound metals pass freely through the ultrafiltration membrane while concentrating the metal-binding polymer. The polymers can then be reused by changing the solution conditions to release the metal ions. The metal-ions are recovered in concentrated form for recycle or disposal using a diafiltration process. The water-soluble polymer can be recycled for further aqueous-stream processing. To advance Polymer Filtration technology to the selectivity levels required for DOE needs. fixture directions in Polymer Filtration must include rapid development, testing, and characterization of new metal-binding polymers. The development of new chelating molecules can be equated to the process of new drugs or new materials discovery. Thus, the authors want to build upon and adapt the combinatorial chemistry approaches developed for rapid molecule generation for the drug industry to the rapid

  9. Hygroscopic behavior of water-soluble matter in marine aerosols over the East China Sea.

    Science.gov (United States)

    Yan, Yu; Fu, Pingqing; Jing, Bo; Peng, Chao; Boreddy, S K R; Yang, Fan; Wei, Lianfang; Sun, Yele; Wang, Zifa; Ge, Maofa

    2017-02-01

    In this study, we investigated hygroscopic properties of water-soluble matter (WSM) in marine aerosols over the East China Sea, which were collected during a Natural Science Foundation of China (NSFC) sharing cruise in 2014. Hygroscopic growth factors (g) of WSM were measured by a hygroscopicity tandem differential mobility analyzer (H-TDMA) with an initial dry particle mobility diameter of 100nm. The observed g at 90% relative humidity (RH), g(90%) WSM , defined as the ratio of the particle diameter at 90% RH to that at RHsea water was likely due to the transport of anthropogenic aerosols, chemical aging of dust particles, the contribution of biomass burning products, and the aerosol hygroscopic growth inhibition of organics. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Method to produce water-soluble sugars from biomass using solvents containing lactones

    Science.gov (United States)

    Dumesic, James A.; Luterbacher, Jeremy S.

    2017-08-08

    A process to produce an aqueous solution of carbohydrates that contains C6-sugar-containing oligomers, C6 sugar monomers, C5-sugar-containing oligomers, C5 sugar monomers, or any combination thereof is presented. The process includes the steps of reacting biomass or a biomass-derived reactant with a solvent system including a lactone and water, and an acid catalyst. The reaction yields a product mixture containing water-soluble C6-sugar-containing oligomers, C6-sugar monomers, C5-sugar-containing oligomers, C5-sugar monomers, or any combination thereof. A solute is added to the product mixture to cause partitioning of the product mixture into an aqueous layer containing the carbohydrates and a substantially immiscible organic layer containing the lactone.

  11. Soluble carbon in oxisol under the effect of organic residue rates

    Directory of Open Access Journals (Sweden)

    Gabriela Lúcia Pinheiro

    2014-06-01

    Full Text Available The application of organic residues to the soil can increase soluble organic carbon (SOC and affect the pH and electrolytic conductivity (EC of the soil. However, the magnitude of these changes depends on the type of residue and the applied dose. This study aimed to evaluate the effect of increasing C rates contained in organic residue on the pH, EC, water-extractable total carbon (WETC, water-extractable organic carbon (WEOC, and water-extractable inorganic carbon (WEIC in soil treated with manure (chicken, swine, and quail, sawdust, coffee husk, and sewage sludge. The levels of total C (TC- KH2PO4, organic carbon (OC- KH2PO4, and inorganic C (IC- KH2PO4 extractable by a 0.1 mol L-1 KH2PO4 solution were also quantified in soil under the effect of increasing rates of chicken and quail manures. The following rates of organic residue C were applied to a dystrophic Red Latosol (Oxisol sample: 0, 2,000, 5,000, 10,000, and 20,000 mg kg-1. The addition of organic residues to the soil increased pH, except in the case of sewage sludge, which acidified the soil. The acidity correction potential of chicken and quail manure was highest, dependent on the manure rate applied; regardless of the dose used, sawdust barely alters the soil pH. At all tested rates, the EC of the soil treated with swine manure, coffee husk, and sawdust remained below 2.0 dS m-1, which is a critical level for salinity-sensitive crops. However, the application of chicken or quail manure and sewage sludge at certain rates increased the EC to values above this threshold level. Highest levels of WETC, WEOC, and WEIC were obtained when chicken and quail manure and coffee husk were applied to the Oxisol. The quantities of SOC extracted by KH2PO4 were higher than the quantities extracted by water, demonstrating the ability of soil to adsorb C into its colloids.

  12. Bioassay using the water soluble fraction of a Nigerian Light Crude ...

    African Journals Online (AJOL)

    Summary: A 96-hour bioassay was conducted using the water soluble fraction of a Nigerian light crude oil sample on Clarias gariepinus fingerlings. 0, 2.5, 5.0, 7.5 and 10 mls of water soluble fractions (WSF) of the oil were added to 1000 litres of de-chlorinated tap water to form 0, 25, 50 , 75 and 100 parts per million ...

  13. Measurement and correlation of solubility of ciclesonide in seven pure organic solvents

    International Nuclear Information System (INIS)

    Zhou, Lina; Yin, Qiuxiang; Guo, Zhiqiang; Lu, Haijiao; Liu, Mingyan; Chen, Wei; Hou, Baohong

    2017-01-01

    Highlights: • The solubility of ciclesonide in seven pure organic solvents was determined by gravimetric method. • The solubility order was interpreted by virtue of density function theory (DFT). • The experimental solubility of ciclesonide was correlated by four thermodynamic models. • Mixing thermodynamic properties of ciclesonide were calculated and discussed. - Abstract: The solubility of ciclesonide in seven organic solvents (ethanol, 2-propanol, 1-propanol, 1-butanol, acetonitrile, toluene and ethyl acetate) in the temperature range from 278.15 K to 313.15 K was measured by gravimetrical method under atmospheric pressure. The results indicate that the solubility of ciclesonide increases with elevating temperature in all investigated solvents. The solubility order in different solvents was interpreted through comparing interaction force between solute and solvent molecules by virtue of density function theory (DFT). Thermodynamic equations including the modified Apelblat equation, λh equation, Wilson equation and NRTL equation are all suitable to correlate the solubility results. Based on the Wilson equation, the thermodynamic parameters from the mixing process are calculated, and the results indicate the mixing process of ciclesonide in the selected pure solvents is spontaneous and entropy-driven.

  14. The synthesis of a water-soluble derivative of rutin as an antiradical agent

    Energy Technology Data Exchange (ETDEWEB)

    Pedriali, Carla Aparecida; Fernandes, Adjaci Uchoa [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Quimica. Dept. de Bioquimica]. E-mail: capedriali@hotmail.com; Bernusso, Leandra de Cassia; Polakiewicz, Bronislaw [Universidade de Sao Paulo (USP), SP (Brazil). Faculdade de Ciencias Farmaceuticas. Dept. de Tecnologia Bioquimico-Farmaceutica

    2008-07-01

    The purpose of this study was to synthesize a water-soluble derivative of rutin (compound 2) by introducing carboxylate groups on rutin's sugar moiety. The rutin derivative showed an almost 100-fold solubility increase in water. The antiradical capacity of compound 2 was evaluated using the luminol/AAPH system, and the derivative's activity was 1.5 times greater than that of Trolox. Despite the derivative's high solubility in water (log P = -1.13), lipid peroxidation of brain homogenate membranes was very efficiently inhibited (inhibition values were only 19% lower than the inhibition values of rutin). (author)

  15. The synthesis of a water-soluble derivative of rutin as an antiradical agent

    International Nuclear Information System (INIS)

    Pedriali, Carla Aparecida; Fernandes, Adjaci Uchoa; Bernusso, Leandra de Cassia; Polakiewicz, Bronislaw

    2008-01-01

    The purpose of this study was to synthesize a water-soluble derivative of rutin (compound 2) by introducing carboxylate groups on rutin's sugar moiety. The rutin derivative showed an almost 100-fold solubility increase in water. The antiradical capacity of compound 2 was evaluated using the luminol/AAPH system, and the derivative's activity was 1.5 times greater than that of Trolox. Despite the derivative's high solubility in water (log P = -1.13), lipid peroxidation of brain homogenate membranes was very efficiently inhibited (inhibition values were only 19% lower than the inhibition values of rutin). (author)

  16. Inkjet Printing of Organic Light-Emitting Diodes Based on Alcohol-Soluble Polyfluorenes

    Science.gov (United States)

    Odod, A. V.; Gadirov, R. M.; Solodova, T. A.; Kurtsevich, A. E.; Il'gach, D. M.; Yakimanskii, A. V.; Burtman, V.; Kopylova, T. N.

    2018-04-01

    Ink compositions for inkjet printing based on poly(9.9-dioctylfluorene) and its alcohol-soluble analog are created. Current-voltage, brightness-voltage, and spectral characteristics are compared for one- and twolayer polymer structures of organic light-emitting diodes. It is shown that the efficiency of the alcohol-soluble polyfluorene analog is higher compared to poly(9.9-dioctylfluorene), and the possibility of viscosity optimization is higher compared to aromatic chlorinated solvents.

  17. Organically modified clay removes oil from water

    International Nuclear Information System (INIS)

    Alther, G.R.

    1995-01-01

    When bentonite or other clays and zeolite are modified with quaternary amines, they become organophilic. Such modified bentonites are used to remove mechanically emulsified oil and grease, and other sparingly soluble organics. Types of oil found in water can include fats, lubricants, cutting fluids, heavy hydrocarbons such as tars, grease, crude oil, diesel oils; and light hydrocarbons such as kerosene, jet fuel, and gasoline. If the organoclay is granulated, it is placed into a liquid phase carbon filter vessel to remove FOGs (Free Oil and Grease) and chlorinated hydrocarbons. In this application the clay is mixed with anthrazite to prevent early plugging of the filter by oil or grease droplets. In batch systems a powdered organoclay is employed. Organoclay removes mechanically emulsified oil and grease at 5--7 times the rate of activated carbon, or 50% of its dry weight. Oil and grease and other large sparingly soluble chlorinated hydrocarbons and NOMs (Natural Organic Matter) blind the pores of activated carbon (and ion-exchange resins), reducing its effectiveness significantly. It is therefore economically advantageous for the end user to prepolish the water before it enters carbon vessels. Operating costs can often be reduced by 50% or more

  18. Binary systems solubilities of inorganic and organic compounds, v.1 pt.2

    CERN Document Server

    Stephen, H

    2013-01-01

    Solubilities of Inorganic and Organic Compounds, Volume 1: Binary Systems, Part 1 is part of an approximately 5,500-page manual containing a selection from the International Chemical Literature on the Solubilities of Elements, Inorganic Compounds, Metallo-organic and Organic Compounds in Binary, Ternary and Multi-component Systems. A careful survey of the literature in all languages by a panel of scientists specially appointed for the task by the U.S.S.R. Academy of Sciences, Moscow, has made the compilation of this work possible. The complete English edition in five separately bound volumes w

  19. Cross-linking of wheat gluten using a water-soluble carbodiimide

    NARCIS (Netherlands)

    Tropini, V.; Lens, J.P.; Mulder, W.J.; Silvestre, F.

    2000-01-01

    Wheat gluten was cross-linked using water-soluble 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide HCl (EDC). To enhance cross-linking, N-hydroxysuccinimide (NHS) was added to the reaction mixture. The cross-linking efficiency was evaluated by the decrease in the amount of amino groups, the solubility

  20. Solubility of corrosion products of plain steel in oxygen-containing water solutions at high parameters

    International Nuclear Information System (INIS)

    Martynova, O.I.; Samojlov, Yu.F.; Petrova, T.I.; Kharitonova, N.L.

    1983-01-01

    Technique for calculation of solubility of iron corrosion products in oxygen-containing aqueous solutions in the 298-573 K temperature range is presented. Solubility of corrosion products of plain steel in deeply-desalinizated water in the presence of oxygen for the such range of the temperatures is experimentally determined. Rather good convergence between calculated and experimental data is noted

  1. Formulation of a poorly water-soluble drug in sustained-release hollow granules with a high viscosity water-soluble polymer using a fluidized bed rotor granulator.

    Science.gov (United States)

    Asada, Takumi; Yoshihara, Naoki; Ochiai, Yasushi; Kimura, Shin-Ichiro; Iwao, Yasunori; Itai, Shigeru

    2018-04-25

    Water-soluble polymers with high viscosity are frequently used in the design of sustained-release formulations of poorly water-soluble drugs to enable complete release of the drug in the gastrointestinal tract. Tablets containing matrix granules with a water-soluble polymer are preferred because tablets are easier to handle and the multiple drug-release units of the matrix granules decreases the influences of the physiological environment on the drug. However, matrix granules with a particle size of over 800 μm sometimes cause a content uniformity problem in the tableting process because of the large particle size. An effective method of manufacturing controlled-release matrix granules with a smaller particle size is desired. The aim of this study was to develop tablets containing matrix granules with a smaller size and good controlled-release properties, using phenytoin as a model poorly water-soluble drug. We adapted the recently developed hollow spherical granule granulation technology, using water-soluble polymers with different viscosities. The prepared granules had an average particle size of 300 μm and sharp particle size distribution (relative width: 0.52-0.64). The values for the particle strength of the granules were 1.86-1.97 N/mm 2 , and the dissolution profiles of the granules were not affected by the tableting process. The dissolution profiles and the blood concentration levels of drug released from the granules depended on the viscosity of the polymer contained in the granules. We succeeded in developing the desired controlled-release granules, and this study should be valuable in the development of sustained-release formulations of poorly water-soluble drugs. Copyright © 2018 Elsevier B.V. All rights reserved.

  2. Formulation of a Novel Nano emulsion System for Enhanced Solubility of a Sparingly Water Soluble Antibiotic, Clarithromycin

    International Nuclear Information System (INIS)

    Vatsraj, S.; Pathak, H.; Chauhan, K.

    2014-01-01

    The sparingly water soluble property of majority of medicinally significant drugs acts as a potential barrier towards its utilization for therapeutic purpose. The present study was thus aimed at development of a novel oil-in-water (o/w) nano emulsion (NE) system having ability to function as carrier for poorly soluble drugs with clarithromycin as a model antibiotic. The therapeutically effective concentration of clarithromycin, 5 mg/mL, was achieved using polysorbate 80 combined with olive oil as lipophilic counterion. A three-level three-factorial central composite experimental design was utilized to conduct the experiments. The effects of selected variables, polysorbate 80 and olive oil content and concentration of polyvinyl alcohol, were investigated. The particle size of clarithromycin for the optimized formulation was observed to be 30 nm. The morphology of the nano emulsion was explored using transmission electron microscopy (TEM). The emulsions prepared with the optimized formula demonstrated good physical stability during storage at room temperature. Antibacterial activity was conducted with the optimized nano emulsion NESH 01 and compared with free clarithromycin. Zone of inhibition was larger for NESH 01 as compared to that with free clarithromycin. This implies that the solubility and hence the bioavailability of clarithromycin has increased in the formulated nano emulsion system.

  3. Long-term observation of water-soluble chemical components in the bulk atmospheric aerosols collected at Okinawa, Japan

    Science.gov (United States)

    Handa, Daishi; Somada, Yuka; Ijyu, Moriaki; Azechi, Sotaro; Nakaema, Fumiya; Arakaki, Takemitsu; Tanahara, Akira

    2010-05-01

    The economic development and population growth in recent Asia spread air pollution. Emission rate of air pollutants from Asia, in particular oxides of nitrogen, surpassed those from North America and Europe and should continue to exceed them for decades. The study of the long-range transported air pollution from Asian continent has gained a special attention in Japan because of increase in photochemical oxidants in relatively remote islands. Okinawa Island is situated approximately 1500 km south of Tokyo, Japan, 2000 km southeast of Beijing, China, and 1000 km south of South Korea. Its location in Asia is well suited for studying long-range transport of air pollutants in East Asia because maritime air mass prevails during summer, while continental air mass dominates during fall, winter, and spring. The maritime air mass data can be seen as background and can be compared with continental air masses which have been affected by anthropogenic activities. Bulk aerosol samples were collected on quartz filters by using a high volume air sampler. Sampling duration was one week for each sample. We determined the concentrations of water-soluble anions, cations and dissolved organic carbon (DOC) in the bulk aerosols collected at the Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS) using ion chromatography, atomic absorption spectrometry, and total organic carbon analyzer, respectively. We will report water-soluble chemical components data of anions, cations and DOC in bulk atmospheric aerosols collected at CHAAMS during August, 2005 to April, 2010. Seasonal variation of water-soluble chemical components showed that the concentrations were relatively low in summer, higher in fall and winter, and the highest in spring. When air mass came from Asian Continent, the concentrations of water-soluble chemical components were much higher compared to the other directions. In addition, we calculated background concentration of water-soluble chemical components at Okinawa

  4. Reverse micelle-based water-soluble nanoparticles for simultaneous bioimaging and drug delivery.

    Science.gov (United States)

    Chen, Ying; Liu, Yong; Yao, Yongchao; Zhang, Shiyong; Gu, Zhongwei

    2017-04-11

    With special confined water pools, reverse micelles (RMs) have shown potential for a wide range of applications. However, the inherent water-insolubility of RMs hinders their further application prospects, especially for applications related to biology. We recently reported the first successful transfer of RMs from organic media to an aqueous phase without changing the smart water pools by the hydrolysis of an arm-cleavable interfacial cross-linked reverse micelles. Herein, we employed another elaborate amphiphile 1 to construct new acrylamide-based cross-linked water-soluble nanoparticles (ACW-NPs) under much gentler conditions. The special property of the water pools of the ACW-NPs was confirmed by both the Förster resonance energy transfer (FRET) between 5-((2-aminoethyl)amino)naphthalene-1-sulfonic acid (1,5-EDANS) and benzoic acid, 4-[2-[4-(dimethylamino)phenyl]diazenyl] (DABCYL) and satisfactory colloidal stability in 10% fetal bovine serum. Importantly, featured by the gentle synthetic strategy, confined water pool, and carboxylic acid-functionalized surface, the new ACW-NPs are well suitable for biological applications. As an example, the fluorescent reagent 8-hydroxy-1,3,6-pyrenetrisulfonic acid trisodium salt (HPTS) was encapsulated in the core and simultaneously, the anticancer drug gemcitabine (Gem) was covalently conjugated onto the surface exterior. As expected, the resulting multifunctional ACW-NPs@HPTS@Gem exhibits a high imaging effect and anticancer activity for non-small lung cancer cells.

  5. N-succinyl-chitosan as a drug carrier: water-insoluble and water-soluble conjugates.

    Science.gov (United States)

    Kato, Yoshinori; Onishi, Hiraku; Machida, Yoshiharu

    2004-02-01

    N-succinyl-chitosan (Suc-Chi) has favourable properties as a drug carrier such as biocompatibility, low toxicity and long-term retention in the body. It was long retained in the systemic circulation after intravenous administration, and the plasma half-lives of Suc-Chi (MW: 3.4 x 10(5); succinylation degree: 0.81 mol/sugar unit; deacetylation degree: 1.0 mol/sugar unit) were ca. 100.3h in normal mice and 43 h in Sarcoma 180-bearing mice. The biodistribution of Suc-Chi into other tissues was trace apart from the prostate and lymph nodes. The maximum tolerable dose for the intraperitoneal injection of Suc-Chi to mice was greater than 2 g/kg. The water-insoluble and water-soluble conjugates could be prepared using a water-soluble carbodiimide and mitomycin C (MMC) or using an activated ester of glutaric MMC. In vitro release characteristics of these conjugates showed similar patterns, i.e. a pH-dependent manner, except that water-insoluble conjugates showed a slightly slower release of MMC than water-soluble ones. The conjugates of MMC with Suc-Chi showed good antitumour activities against various tumours such as murine leukaemias (L1210 and P388), B16 melanoma, Sarcoma 180 solid tumour, a murine liver metastatic tumour (M5076) and a murine hepatic cell carcinoma (MH134). This review summarizes the utilization of Suc-Chi as a drug carrier for macromolecular conjugates of MMC and the therapeutic efficacy of the conjugates against various tumours.

  6. Homogeneous synthesis of Ag nanoparticles-doped water-soluble cellulose acetate for versatile applications.

    Science.gov (United States)

    Cao, Jie; Sun, Xunwen; Zhang, Xinxing; Lu, Canhui

    2016-11-01

    We report a facile and efficient approach for synthesis of well-dispersed and stable silver nanoparticles (Ag NPs) using water-soluble cellulose acetate (CA) as both reductant and stabilizer. Partially substituted CA with highly active hydroxyl groups and excellent water-solubility is able to reduce silver ions in homogeneous aqueous medium effectively. The synthesized Ag NPs were characterized by UV-vis spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and energy dispersive X-ray spectroscope analysis. The as-prepared Ag NPs were well-dispersed, showing a surface plasmon resonance peak at 426nm. The resulted Ag NPs@CA nanohybrids exhibit high catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol in the presence of NaBH 4 . Meanwhile, the nanohybrids are also effective in inhibiting the growth of bacterial. This environmentally friendly method promotes the use of renewable natural resources to prepare a variety of inorganic-organic materials for catalysis, antibacterial, sensors and other applications. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. HILIC separation and quantitation of water-soluble vitamins using diol column.

    Science.gov (United States)

    Karatapanis, Andreas E; Fiamegos, Yiannis C; Stalikas, Constantine D

    2009-04-01

    Hydrophilic interaction liquid-chromatography (HILIC) in conjunction with diode array detection has been applied for the separation of selected-water-soluble vitamins using an end-capped HILIC-diol column. Vitamins with significant biological importance, such as thiamine (B(1)), riboflavin (B(2)), nicotinic acid (B(3)), nicotinamide (B(3)), pyridoxine (B(6)), folic acid (B(9)), cyanocobalamin (B(12)) and ascorbic acid (vitamin C) were simultaneously separated. Chromatographic conditions including type and percentage of organic modifier in the mobile phase, pH, type and concentration of buffer salt and flow rate were investigated. ACN was shown to offer superior separation for the compounds tested as compared to methanol, isopropanol and THF. Isocratic separation and analysis were achieved for six vitamins (B(1), B(2), nicotinic acid/nicotinamide, B(6) and C) at ACN-H(2)O 90:10, containing ammonium acetate 10 mM, triethylamine 20 mM, pH 5.0, using a flow rate of 0.8 mL/min, while a gradient was necessary to resolve a mixture of all eight water-soluble vitamins. The HILIC method was validated and successfully applied to the analysis of a pharmaceutical formulation and an energy drink negating the need for time consuming clean-up steps.

  8. Comparison of Passive Samplers for Monitoring Dissolved Organic Contaminants in Water Column Deployments NAC/SETAC 2012

    Science.gov (United States)

    Nonionic organic contaminants (NOCs) are difficult to measure in the water column due to their inherent chemical properties resulting in low water solubility and high particle activity. Traditional sampling methods require large quantities of water to be extracted and interferen...

  9. Sunlight creates oxygenated species in water-soluble fractions of Deepwater horizon oil

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Phoebe Z. [Department of Chemistry, University of New Orleans, New Orleans, LA 70148 (United States); Chen, Huan [National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL 32310-4005 (United States); Podgorski, David C. [National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL 32310-4005 (United States); Future Fuels Institute, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL 32310-4005 (United States); McKenna, Amy M. [National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL 32310-4005 (United States); Tarr, Matthew A., E-mail: mtarr@uno.edu [Department of Chemistry, University of New Orleans, New Orleans, LA 70148 (United States)

    2014-09-15

    Graphical abstract: Sunlight oxygenates petroleum. - Highlights: • Oxidation seen in water-soluble oil fraction after exposure to simulated sunlight. • Oxygen addition occurred across a wide range of carbon number and DBE. • Oil compounds were susceptible to addition of multiple oxygens to each molecule. • Results provide understanding of fate of oil on water after exposure to sunlight. - Abstract: In order to assess the impact of sunlight on oil fate, Macondo well oil from the Deepwater Horizon (DWH) rig was mixed with pure water and irradiated with simulated sunlight. After irradiation, the water-soluble organics (WSO) from the dark and irradiated samples were extracted and characterized by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Liquid–liquid extraction yielded two fractions from dark and irradiated water/oil mixtures: acidic WSOs (negative-ion electrospray (ESI)), and base/neutral WSOs (positive-ion ESI) coupled to FT-ICR MS to catalog molecular-level transformations that occur to Macondo-derived WSOs after solar irradiation. Such direct measure of oil phototransformation has not been previously reported. The most abundant heteroatom class detected in the irradiated WSO acid fractions correspond to molecules that contain five oxygens (O{sub 5}), while the most abundant acids in the dark samples contain two oxygen atoms per molecule (O{sub 2}). Higher-order oxygen classes (O{sub 5}–O{sub 9}) were abundant in the irradiated samples, but <1.5% relative abundance in the dark sample. The increased abundance of higher-order oxygen classes in the irradiated samples relative to the dark samples indicates that photooxidized components of the Macondo crude oil become water-soluble after irradiation. The base/neutral fraction showed decreased abundance of pyridinic nitrogen (N{sub 1}) concurrent with an increased abundance of N{sub 1}O{sub x} classes after irradiation. The predominance of higher

  10. Review: kinetics of water-soluble contrast media in the central nervous system

    International Nuclear Information System (INIS)

    Sage, M.R.

    1983-01-01

    In neuroradiology, intraarterial, intravenous, and intrathecal injections of water-soluble contrast media are made. With the growing importance of water-soluble myelography, interventional angiography, and enhanced computed tomography (CT), it is essential to have a clear understanding of the response of the nervous system to such procedures. The blood, cerebrospinal fluid (CSF), and extracellular fluid of the parenchyma form the fluid compartments of the brain with three interfaces between, namely, the blood-brain interface, the CSF-brain interface, and the blood-CSF interface. One of more of these interfaces are exposed to water-soluble contrast media after intraarterial, intravenous, or intrathecal administration. The behavior of water-soluble contrast media at these interfaces is discussed on the basis of local experience and a review of the literature

  11. Comparative toxicity of water soluble fractions of four oils on the growth of a Microalga

    Digital Repository Service at National Institute of Oceanography (India)

    Phatarpekar, P.V.; Ansari, Z.A.

    Toxic effects of water soluble fractions (WSF) of four different fuel oils on a microalga. Tetraselmis gracilis, were examined and compared. On applying different concentrations of WSF, a decrease in cell population was observed. Depending...

  12. Application of spray-drying and electrospraying/electospinning for poorly water-soluble drugs

    DEFF Research Database (Denmark)

    Bohr, Adam; Boetker, Johan P; Rades, Thomas

    2014-01-01

    Solid dispersions have been widely studied as an attractive formulation strategy for the increasingly prevalent poorly water-soluble drug compounds, including herbal medicines, often leading to improvements in drug dissolution rate and bioavailability. However, several challenges are encountered...

  13. Calculated solubility isotherm of a system of alkaline earth sulfates and hydroxides in water

    International Nuclear Information System (INIS)

    MOshinskii, A.S.; TIkomirova, K.A.

    1986-01-01

    Tis paper examines the calculation of the isothermal solubility diagram of a system of alkaline earth sulfates and hydroxides in water which makes it possible to substantiate, to a considerable extent, the natural physicochemical mineralization of natural waters, in particular water from geochemical sources. The present paper investigates the solubility of the equilibrium solid phases of a system of alkaline earth sulfates and hydroxides in water. A projection is shown of the composition prism of the quinary reciprocal system with demarcation of the crystallization areas of each sulfate and hydroxide of the component subsystems. The computational formulas for calculating solubility were derived from the solubility product principle, with allowance for ion activity coefficients in saturated hydroxide solutions

  14. Intestinal absorption of water-soluble vitamins in health and disease

    OpenAIRE

    Said, Hamid M.

    2011-01-01

    Our knowledge of the mechanisms and regulation of intestinal absorption of water-soluble vitamins under normal physiological conditions, and of the factors/conditions that affect and interfere with theses processes has been significantly expanded in recent years as a result of the availability of a host of valuable molecular/cellular tools. Although structurally and functionally unrelated, the water-soluble vitamins share the feature of being essential for normal cellular functions, growth an...

  15. Effect of fasting on the urinary excretion of water-soluble vitamins in humans and rats.

    Science.gov (United States)

    Fukuwatari, Tsutomu; Yoshida, Erina; Takahashi, Kei; Shibata, Katsumi

    2010-01-01

    Recent studies showed that the urinary excretion of the water-soluble vitamins can be useful as a nutritional index. To determine how fasting affects urinary excretion of water-soluble vitamins, a human study and an animal experiment were conducted. In the human study, the 24-h urinary excretion of water-soluble vitamins in 12 healthy Japanese adults fasting for a day was measured. One-day fasting drastically decreased urinary thiamin content to 30%, and increased urinary riboflavin content by 3-fold. Other water-soluble vitamin contents did not show significant change by fasting. To further investigate the alterations of water-soluble vitamin status by starvation, rats were starved for 3 d, and water-soluble vitamin contents in the liver, blood and urine were measured during starvation. Urinary excretion of thiamin, riboflavin, vitamin B(6) metabolite 4-pyridoxic acid, nicotinamide metabolites and folate decreased during starvation, but that of vitamin B(12), pantothenic acid and biotin did not. As for blood vitamin levels, only blood vitamin B(1), plasma PLP and plasma folate levels decreased with starvation. All water-soluble vitamin contents in the liver decreased during starvation, whereas vitamin concentrations in the liver did not decrease. Starvation decreased only concentrations of vitamin B(12) and folate in the skeletal muscle. These results suggest that water-soluble vitamins were released from the liver, and supplied to the peripheral tissues to maintain vitamin nutrition. Our human study also suggested that the effect of fasting should be taken into consideration for subjects showing low urinary thiamin and high urinary riboflavin.

  16. Evaluation of ammonium nitrate phosphate (Suphala) having different water soluble phosphorus levels on black soils

    International Nuclear Information System (INIS)

    Deo Dutt; Mutatkar, V.K.; Chapke, V.G.

    1974-01-01

    Efficiency of the laboratory prepared 32 P tagged ammonium nitrate phosphate (Suphala) varying in water soluble P was studied both on calcareous and non-calcareous soils of Maharashtra for bajra and wheat crops under greenhouse conditions. The results revealed a significant increase in dry matter production and uptake of total and fertilizer P with Suphala containing 30-32% water-soluble phosphorus. (author)

  17. Solubility studies of inorganic–organic hybrid nanoparticle photoresists with different surface functional groups

    KAUST Repository

    Li, Li

    2016-01-01

    © 2016 The Royal Society of Chemistry. The solubility behavior of Hf and Zr based hybrid nanoparticles with different surface ligands in different concentrations of photoacid generator as potential EUV photoresists was investigated in detail. The nanoparticles regardless of core or ligand chemistry have a hydrodynamic diameter of 2-3 nm and a very narrow size distribution in organic solvents. The Hansen solubility parameters for nanoparticles functionalized with IBA and 2MBA have the highest contribution from the dispersion interaction than those with tDMA and MAA, which show more polar character. The nanoparticles functionalized with unsaturated surface ligands showed more apparent solubility changes after exposure to DUV than those with saturated ones. The solubility differences after exposure are more pronounced for films containing a higher amount of photoacid generator. The work reported here provides material selection criteria and processing strategies for the design of high performance EUV photoresists.

  18. Impact of bleaching agents on water sorption and solubility of resin luting cements.

    Science.gov (United States)

    Torabi Ardakani, Mahshid; Atashkar, Berivan; Bagheri, Rafat; Burrow, Michael F

    2017-08-01

    The aim of the present study was to evaluate the effect of distilled water and home and office bleaching agents on the sorption and solubility of resin luting cements. A total of 18 disc-shaped specimens were prepared from each of four resin cements: G-CEM LinkAce, Panavia F, Rely X Unicem, and seT. Specimens were cured according to the manufacturers' instructions and randomly divided into three groups of six, where they were treated with either an office or home bleaching agent or immersed in distilled water (control). Water sorption and solubility were measured by weighing the specimens before and after immersion and desiccation. Data were analyzed using Pearson correlation coefficient, two-way analysis of variance (ANOVA) and Tukey's test. There was a significant, positive correlation between sorption and solubility. Two-way anova showed significant differences among all resin cements tested for either sorption or solubility. Water sorption and solubility of all cements were affected significantly by office bleaching, and even more by home bleaching agents. Sorption and solubility behavior of the studied cements were highly correlated and significantly affected by applying either office or home bleaching agents; seT showed the highest sorption and solubility, whereas Rely X Unicem revealed the lowest. © 2016 John Wiley & Sons Australia, Ltd.

  19. Solubility of Stevioside and Rebaudioside A in water, ethanol and their binary mixtures

    Directory of Open Access Journals (Sweden)

    Liliana S. Celaya

    2016-10-01

    Full Text Available In order to investigate the solubility of Stevioside and Rebaudioside A in different solvents (ethanol, water, ethanol:water 30:70 and ethanol:water 70:30, supersaturated solutions of pre-crystalized steviol glycosides were maintained at different temperatures (from 5 °C to 50 °C to reach equilibrium. Under these conditions significant differences were found in the extent of solubility. Rebaudioside A was poorly soluble in ethanol and water, and Stevioside was poorly soluble in water. Solvent mixtures more effectively promoted solubilisation, and a significant effect of temperature on solubility was observed. The two steviol glycosides showed higher solubilities and this behavior was promoted by the presence of the other sweetener. The polarity indices of the solvents were determined, and helped to explain the observed behavior. Several solute-solvent and solute-solute interactions can occur, along with the incidence of a strong affinity between solvents. The obtained results are in accordance with technological applications of ethanol, water and their binary mixtures for Stevioside and Rebaudioside A separations.

  20. Photo and thermochemical evolution of astrophysical ice analogues as a source for soluble and insoluble organic materials in Solar system minor bodies

    Science.gov (United States)

    de Marcellus, Pierre; Fresneau, Aurelien; Brunetto, Rosario; Danger, Gregoire; Duvernay, Fabrice; Meinert, Cornelia; Meierhenrich, Uwe J.; Borondics, Ferenc; Chiavassa, Thierry; Le Sergeant d'Hendecourt, Louis

    2017-01-01

    Soluble and insoluble organic matter (IOM) is a key feature of primitive carbonaceous chondrites. We observe the formation of organic materials in the photothermochemical treatment of astrophysical ices in the laboratory. Starting from a low vacuum ultraviolet (VUV) irradiation dose on templates of astrophysical ices at 77 K, we obtain first a totally soluble form of organic matter at room temperature. Once this organic residue is formed, irradiating it further in vacuum results in the production of a thin altered dark crust on top of the initial soluble one. The whole residue is studied here by non-destructive methods inducing no alteration of samples, visible microscopy and mid-infrared (micro-)spectroscopy. After water extraction of the soluble part, an insoluble fraction remains on the sample holder which provides a largely different infrared spectrum when compared to the one of the soluble sample. Therefore, from the same VUV and thermal processing of initial simple ices, we produce first a soluble material from which a much larger irradiation dose leads to an insoluble one. Interestingly, this insoluble fraction shows some spectral similarities with natural samples of IOM extracted from two meteorites (Tagish Lake and Murchison), selected as examples of primitive materials. It suggests that the organic molecular diversity observed in meteorites may partly originate from the photo and thermal processing of interstellar/circum-stellar ices at the final stages of molecular cloud evolution towards the build-up of our Solar system.

  1. Oral water soluble contrast for malignant bowel obstruction.

    Science.gov (United States)

    Syrmis, William; Richard, Russell; Jenkins-Marsh, Sue; Chia, Siew C; Good, Phillip

    2018-03-07

    Malignant bowel obstruction (MBO) is a common problem in patients with intra-abdominal cancer. Oral water soluble contrast (OWSC) has been shown to be useful in the management of adhesive small bowel obstruction in identifying patients who will recover with conservative management alone and also in reducing the length of hospital stay. It is not clear whether the benefits of OWSC in adhesive small bowel obstruction are also seen in patients with MBO. To determine the reliability of OWSC media and follow-up abdominal radiographs in predicting the success of conservative treatment in resolving inoperable MBO with conservative management.To determine the efficacy and safety of OWSC media in reducing the duration of obstruction and reducing hospital stay in people with MBO. We identified studies from searching Cochrane Central Register of Controlled Trials (CENTRAL), MEDLINE and MEDLINE in Process, Embase, CINAHL, Science Citation Index (Web of Science) and Conference Proceedings Citation Index - Science (Web of Science). We also searched registries of clinical trials and the CareSearch Grey Literature database. The date of the search was the 6 June 2017. Randomised controlled trials (RCTs), or prospective controlled studies, that evaluated the diagnostic potential of OWSC in predicting which malignant bowel obstructions will resolve with conservative treatment.RCTs, or prospective controlled studies, that assessed the therapeutic potential of OWSC in managing MBO at any level compared with placebo, no intervention or usual treatment or supportive care. We used standard methodological procedures expected by Cochrane. We assessed risk of bias and assessed the evidence using GRADE and created a 'Summary of findings' table. We found only one RCT meeting the selection criteria for the second objective (therapeutic potential) of this review. This study recruited nine participants. It compared the use of gastrografin versus placebo in adult patients with MBO with no

  2. Rapid analysis of water- and fat-soluble vitamins by electrokinetic chromatography with polymeric micelle as pseudostationary phase.

    Science.gov (United States)

    Ni, Xinjiong; Xing, Xiaoping; Cao, Yuhua; Cao, Guangqun

    2014-11-28

    A novel polymeric micelle, formed by random copolymer poly (stearyl methacrylate-co-methacrylic acid) (P(SMA-co-MAA)) has been used as pseudostationary phase (PSP) in electrokinetic chromatography (EKC) for simultaneous and rapid determination of 11 kinds of water- and fat-soluble vitamins in this work. The running buffer consisting of 1% (w/v) P(SMA-co-MAA), 10% (v/v) 1-butanol, 20% (v/v) acetonitrile, and 30 mM Palitzsch buffer solution (pH 9.2) was applied to improve the selectivity and efficiency, as well as to shorten analysis time. 1-Butanol and acetonitrile as the organic solvent modifiers played the most important roles for rapid separation of these vitamins. The effects of organic solvents on microstructure of the polymeric micelle were investigated. The organic solvents swell the polymeric micelle by three folds, lower down the surface charge density and enhance the microenviromental polarity of the polymeric micelle. The 11 kinds of water- and fat-soluble vitamins could be baseline separated within 13 min. The method was applied to determine water- and fat-soluble vitamins in commercial vitamin sample; the recoveries were between 93% and 111% with the relative standard derivations (RSDs) less than 5%. The determination results matched the label claim. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Nootkatone encapsulation by cyclodextrins: Effect on water solubility and photostability.

    Science.gov (United States)

    Kfoury, Miriana; Landy, David; Ruellan, Steven; Auezova, Lizette; Greige-Gerges, Hélène; Fourmentin, Sophie

    2017-12-01

    Nootkatone (NO) is a sesquiterpenoid volatile flavor, used in foods, cosmetics and pharmaceuticals, possessing also insect repellent activity. Its application is limited because of its low aqueous solubility and stability; this could be resolved by encapsulation in cyclodextrins (CDs). This study evaluated the encapsulation of NO by CDs using phase solubility studies, Isothermal Titration Calorimetry, Nuclear Magnetic Resonance spectroscopy and molecular modeling. Solid CD/NO inclusion complex was prepared and characterized for encapsulation efficiency and loading capacity using UV-Visible. Thermal properties were investigated by thermogravimetric-differential thermal analysis and release studies were performed using multiple headspace extraction. Formation constants (K f ) proved the formation of stable inclusion complexes. NO aqueous solubility, photo- and thermal stability were enhanced and the release could be insured from solid complex in aqueous solution. This suggests that CDs are promising carrier to improve NO properties and, consequently, to enlarge its use in foods, cosmetics, pharmaceuticals and agrochemicals preparations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. WATER ACTIVITY DATA ASSESSMENT TO BE USED IN HANFORD WASTE SOLUBILITY CALCULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    DISSELKAMP RS

    2011-01-06

    The purpose of this report is to present and assess water activity versus ionic strength for six solutes:sodium nitrate, sodium nitrite, sodium chloride, sodium carbonate, sodium sulfate, and potassium nitrate. Water activity is given versus molality (e.g., ionic strength) and temperature. Water activity is used to estimate Hanford crystal hydrate solubility present in the waste.

  5. WATER ACTIVITY DATA ASSESSMENT TO BE USED IN HANFORD WASTE SOLUBILITY CALCULATIONS

    International Nuclear Information System (INIS)

    Disselkamp, R.S.

    2011-01-01

    The purpose of this report is to present and assess water activity versus ionic strength for six solutes:sodium nitrate, sodium nitrite, sodium chloride, sodium carbonate, sodium sulfate, and potassium nitrate. Water activity is given versus molality (e.g., ionic strength) and temperature. Water activity is used to estimate Hanford crystal hydrate solubility present in the waste.

  6. Prediction of solubilities for ginger bioactive compounds in hot water by the COSMO-RS method

    Science.gov (United States)

    Zaimah Syed Jaapar, Syaripah; Azian Morad, Noor; Iwai, Yoshio

    2013-04-01

    The solubilities in water of four main ginger bioactives, 6-gingerol, 6-shogaol, 8-gingerol and 10-gingerol, were predicted using a conductor-like screening model for real solvent (COSMO-RS) calculations. This study was conducted since no experimental data are available for ginger bioactive solubilities in hot water. The σ-profiles of these selected molecules were calculated using Gaussian software and the solubilities were calculated using the COSMO-RS method. The solubilities of these ginger bioactives were calculated at 50 to 200 °C. In order to validate the accuracy of the COSMO-RS method, the solubilities of five hydrocarbon molecules were calculated using the COSMO-RS method and compared with the experimental data in the literature. The selected hydrocarbon molecules were 3-pentanone, 1-hexanol, benzene, 3-methylphenol and 2-hydroxy-5-methylbenzaldehyde. The calculated results of the hydrocarbon molecules are in good agreement with the data in the literature. These results confirm that the solubilities of ginger bioactives can be predicted using the COSMO-RS method. The solubilities of the ginger bioactives are lower than 0.0001 at temperatures lower than 130 °C. At 130 to 200 °C, the solubilities increase dramatically with the highest being 6-shogaol, which is 0.00037 mole fraction, and the lowest is 10-gingerol, which is 0.000039 mole fraction at 200 °C.

  7. Prediction of solubilities for ginger bioactive compounds in hot water by the COSMO-RS method

    International Nuclear Information System (INIS)

    Jaapar, Syaripah Zaimah Syed; Iwai, Yoshio; Morad, Noor Azian

    2013-01-01

    The solubilities in water of four main ginger bioactives, 6-gingerol, 6-shogaol, 8-gingerol and 10-gingerol, were predicted using a conductor-like screening model for real solvent (COSMO-RS) calculations. This study was conducted since no experimental data are available for ginger bioactive solubilities in hot water. The σ-profiles of these selected molecules were calculated using Gaussian software and the solubilities were calculated using the COSMO-RS method. The solubilities of these ginger bioactives were calculated at 50 to 200 °C. In order to validate the accuracy of the COSMO-RS method, the solubilities of five hydrocarbon molecules were calculated using the COSMO-RS method and compared with the experimental data in the literature. The selected hydrocarbon molecules were 3-pentanone, 1-hexanol, benzene, 3-methylphenol and 2-hydroxy-5-methylbenzaldehyde. The calculated results of the hydrocarbon molecules are in good agreement with the data in the literature. These results confirm that the solubilities of ginger bioactives can be predicted using the COSMO-RS method. The solubilities of the ginger bioactives are lower than 0.0001 at temperatures lower than 130 °C. At 130 to 200 °C, the solubilities increase dramatically with the highest being 6-shogaol, which is 0.00037 mole fraction, and the lowest is 10-gingerol, which is 0.000039 mole fraction at 200 °C.

  8. Modeling the formation of soluble microbial products (SMP in drinking water biofiltration

    Directory of Open Access Journals (Sweden)

    Yu Xin

    2008-09-01

    Full Text Available Both a theoretical and an empirical model were developed for predicting the formation of soluble microbial products (SMP during drinking water biofiltration. Four pilot-scale biofilters with ceramsite as the medium were fed with different acetate loadings for the determination of SMP formation. Using numerically simulated and measured parameters, the theoretical model was developed according to the substrate and biomass balance. The results of this model matched the measured data better for higher SMP formation but did not fit well when SMP formation was lower. In order to better simulate the reality and overcome the difficulties of measuring the kinetic parameters, a simpler empirical model was also developed. In this model, SMP formation was expressed as a function of fed organic loadings and the depth of the medium, and a much better fit was obtained.

  9. Anthropogenic Influence on Secondary Aerosol Formation and Total Water-Soluble Carbon on Atmospheric Particles

    Science.gov (United States)

    Gioda, Adriana; Mateus, Vinicius; Monteiro, Isabela; Taira, Fabio; Esteves, Veronica; Saint'Pierre, Tatiana

    2013-04-01

    On a global scale, the atmosphere is an important source of nutrients, as well as pollutants, because of its interfaces with soil and water. Important compounds in the gaseous phase are in both organic and inorganic forms, such as organic acids, nitrogen, sulfur and chloride. In spite of the species in gas form, a huge number of process, anthropogenic and natural, are able to form aerosols, which may be transported over long distances. Sulfates e nitrates are responsible for rain acidity; they may also increase the solubility of organic compounds and metals making them more bioavailable, and also can act as cloud condensation nuclei (CCN). Aerosol samples (PM2.5) were collected in a rural and industrial area in Rio de Janeiro, Brazil, in order to quantify chemical species and evaluate anthropogenic influences in secondary aerosol formation and organic compounds. Samples were collected during 24 h every six days using a high-volume sampler from August 2010 to July 2011. The aerosol mass was determined by Gravimetry. The water-soluble ionic composition (WSIC) was obtained by Ion Chromatography in order to determine the major anions (NO3-, SO4= and Cl-); total water-soluble carbon (TWSC) was determined by a TOC analyzer. The average aerosol (PM2.5) concentrations ranged from 1 to 43 ug/m3 in the industrial site and from 4 to 35 ug/m3 in the rural area. Regarding anions, the highest concentrations were measured for SO42- (10.6 μg/m3-12.6 μg/m3); where the lowest value was found in the rural site and the highest in the industrial. The concentrations for NO3- and Cl- ranged from 4.2 μg/m3 to 9.3 μg/m3 and 3.1 μg/m3 to 6.4 μg /m3, respectively. Sulfate was the major species and, like nitrate, it is related to photooxidation in the atmosphere. Interestingly sulfate concentrations were higher during the dry period and could be related to photochemistry activity. The correlations between nitrate and non-sea-salt sulfate were weak, suggesting different sources for these

  10. The effects of fire temperatures on water soluble heavy metals.

    Science.gov (United States)

    Pereira, P.; Ubeda, X.; Martin, D. A.

    2009-04-01

    Fire ash are majority composed by base cations, however the mineralized organic matter, led also available to transport a higher quantity of heavy metals that potentially could increase a toxicity in soil and water resources. The amount availability of these elements depend on the environment were the fire took place, burning temperature and combusted tree specie. The soil and water contamination from fire ash has been neglected, because the majority of studies are focused on base cations dynamic. Our research, beside contemplate major elements, is focused in to study the behavior of heavy metals released from ash slurries created at several temperatures under laboratory environment, prescribed fires and wildland fires. The results presented in these communication are preliminary and study the presence of Aluminium (Al3+), Manganese (Mn2+), Iron (Fe2+) and Zinc (Zn2+) of ash slurries generated in laboratory environment at several temperatures (150°, 200°, 250°, 300°, 350°, 400°,450°, 500°, 550°C) from Quercus suber, Quercus robur, Pinus pinea and Pinus pinaster and from a low medium temperature prescribed fire in a forest dominated Quercus suber trees. We observed that ash produced at lower and medium temperatures (Pinus ashes. Fe2+ and Zn2+ showed a reduced concentration in test solution in relation to unburned sample at all temperatures of exposition. In the results obtained from prescribed fire, we identify a higher release of Al3+ and a decrease of the remain elements. The solubilization of these elements are related with pH levels and ash calcite content, because their ability to capture ions in solution. Moreover, the amount and the type of ions released in relation to unburned sample vary in each specie. In this study Al3+ release is related with Quercus species and Mn2+ with Pinus species. Fire ashes can be an environmental problem, because at long term can increase soil acidity. After all base cations have being leached, pH values decrease, and

  11. Synthesis, characterization and fluorescent properties of water-soluble glycopolymer bearing curcumin pendant residues.

    Science.gov (United States)

    Zhang, Haisong; Yu, Meng; Zhang, Hailei; Bai, Libin; Wu, Yonggang; Wang, Sujuan; Ba, Xinwu

    2016-08-01

    Curcumin is a potential natural anticancer drug with low oral bioavailability because of poor water solubility. The aqueous solubility of curcumin is enhanced by means of modification with the carbohydrate units. Polymerization of the curcumin-containing monomer with carbohydrate-containing monomer gives the water-soluble glycopolymer bearing curcumin pendant residues. The obtained copolymers (P1 and P2) having desirable water solubility were well-characterized by infrared spectroscopy (IR), nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), UV-Vis absorption spectroscopy, and photoluminescence spectroscopy. The copolymer P2 with a molar ratio of 1:6 (curcumin/carbohydrate) calculated from the proton NMR results exhibits a similar anticancer activity compared to original curcumin, which may serve as a potential chemotherapeutic agent in the field of anticancer medicine.

  12. A facile physical approach to make chitosan soluble in acid-free water.

    Science.gov (United States)

    Fu, Yinghao; Xiao, Congming

    2017-10-01

    We changed the situation that chitosan was only dissolved in diluted acid through mild physical treatment. In viewing of the usual methods to modify chitosan are chemical ones, we established the approach by using a water-soluble chitosan derivative as the model polymer. Its water-solubility was modulated via changing the concentration of solution and varying the precipitants. Such a physical method was adopted to treat chitiosan. One gram chitosan was dissolved in a mixture of 100mL 10% acetic acid and 50mL methanol, and then precipitated from a precipitant consisted of 10mL ethanol and 90mL acetate ester. The treated chitosan became soluble in acid-free water completely, and its solubility was 8.02mg/mL. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Water-enhanced solvation of organics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jane H. [Univ. of California, Berkeley, CA (United States)

    1993-07-01

    Water-enhanced solvation (WES) was explored for Lewis acid solutes in Lewis base organic solvents, to develop cheap extract regeneration processes. WES for solid solutes was determined from ratios of solubilities of solutes in water-sat. and low-water solvent; both were determined from solid-liquid equilibrium. Vapor-headspace analysis was used to determine solute activity coefficients as function of organic phase water concentration. WES magnitudes of volatile solutes were normalized, set equal to slope of log γs vs xw/xs curve. From graph shape Δ(log γs) represents relative change in solute activity coefficient. Solutes investigated by vapor-headspace analysis were acetic acid, propionic acid, ethanol, 1,2-propylene glycol, 2,3-butylene glycol. Monocarboxylic acids had largest decrease in activity coefficient with water addition followed by glycols and alcohols. Propionic acid in cyclohexanone showed greatest water-enhancement Δ(log γacid)/Δ(xw/xacid) = -0.25. In methylcyclohexanone, the decrease of the activity coefficient of propionic acid was -0.19. Activity coefficient of propionic acid in methylcyclohexanone stopped decreasing once the water reached a 2:1 water to acid mole ratio, implying a stoichiometric relation between water, ketone, and acid. Except for 2,3-butanediol, activity coefficients of the solutes studied decreased monotonically with water content. Activity coefficient curves of ethanol, 1,2-propanediol and 2,3-butanediol did not level off at large water/solute mole ratio. Solutes investigated by solid-liquid equilibrium were citric acid, gallic acid, phenol, xylenols, 2-naphthol. Saturation concentration of citric acid in anhydrous butyl acetate increased from 0.0009 to 0.087 mol/L after 1.3 % (g/g) water co-dissolved into organic phase. Effect of water-enhanced solvation for citric acid is very large but very small for phenol and its derivatives.

  14. Validation of a screening method for the simultaneous identification of fat-soluble and water-soluble vitamins (A, E, B1, B2 and B6) in an aqueous micellar medium of hexadecyltrimethylammonium chloride.

    Science.gov (United States)

    León-Ruiz, V; Vera, S; San Andrés, M P

    2005-04-01

    Simultaneous determination of the fat-soluble vitamins A and E and the water-soluble vitamins B1, B2 and B6 has been carried using a screening method from fluorescence contour graphs. These graphs show different colour zones in relation to the fluorescence intensity measured for the pair of excitation/emission wavelengths. The identification of the corresponding excitation/emission wavelength zones allows the detection of different vitamins in an aqueous medium regardless of the fat or water solubility of each vitamin, owing to the presence of a surfactant which forms micelles in water at the used concentration (over the critical micelle concentration). The micelles dissolve very water insoluble compounds, such as fat-soluble vitamins, inside the aggregates. This approach avoids the use of organic solvents in determining these vitamins and offers the possibility of analysing fat- and water-soluble vitamins simultaneously. The method has been validated in terms of detection limit, cut-off limit, sensitivity, number of false positives, number of false negatives and uncertainty range. The detection limit is about microg L(-1). The screening method was applied to different samples such as pharmaceuticals, juices and isotonic drinks.

  15. Investigation of cloud condensation nuclei properties and droplet growth kinetics of the water-soluble aerosol fraction in Mexico City

    Science.gov (United States)

    Padró, Luz T.; Tkacik, Daniel; Lathem, Terry; Hennigan, Chris J.; Sullivan, Amy P.; Weber, Rodney J.; Huey, L. Greg; Nenes, Athanasios

    2010-05-01

    We present hygroscopic and cloud condensation nuclei (CCN) relevant properties of the water-soluble fraction of Mexico City aerosol collected upon filters during the 2006 Megacity Initiative: Local and Global Research Observations (MILAGRO) campaign. Application of κ-Köhler theory to the observed CCN activity gave a fairly constant hygroscopicity parameter (κ = 0.28 ± 0.06) regardless of location and organic fraction. Köhler theory analysis was used to understand this invariance by separating the molar volume and surfactant contributions to the CCN activity. Organics were found to depress surface tension (10-15%) from that of pure water. Daytime samples exhibited lower molar mass (˜200 amu) and surface tension depression than nighttime samples (˜400 amu); this is consistent with fresh hygroscopic secondary organic aerosol (SOA) condensing onto particles during peak photochemical hours, subsequently aging during nighttime periods of high relative humidity. Changes in surface tension partially compensate for shifts in average molar volume to give the constant hygroscopicity observed, which implies the amount (volume fraction) of soluble material in the parent aerosol is the key composition parameter required for CCN predictions. This finding, if applicable elsewhere, may explain why CCN predictions are often found to be insensitive to assumptions of chemical composition and provides a very simple way to parameterize organic hygroscopicity in atmospheric models (i.e., κorg = 0.28ɛWSOC). Special care should be given, however, to surface tension depression from organic surfactants, as its nonlinear dependence with organic fraction may introduce biases in observed (and predicted) hygroscopicity. Finally, threshold droplet growth analysis suggests the water-soluble organics do not affect activation kinetics.

  16. Organic chemistry - Fast reactions 'on water'

    NARCIS (Netherlands)

    Klijn, JE; Engberts, JBFN

    2005-01-01

    Efficient reactions in aqueous organic chemistry do not require soluble reactants, as had been thought. A newly developed ‘on-water’ protocol is characterized by short reaction times, and the products are easy to isolate.

  17. Removal of soluble microbial products as the precursors of disinfection by-products in drinking water supplies.

    Science.gov (United States)

    Liu, Jin-Lin; Li, Xiao-Yan

    2015-01-01

    Water pollution worsens the problem of disinfection by-products (DBPs) in drinking water supply. Biodegradation of wastewater organics produces soluble microbial products (SMPs), which can be important DBP precursors. In this laboratory study, a number of enhanced water treatment methods for DBP control, including enhanced coagulation, ozonation, and activated carbon adsorption, were evaluated for their effectiveness in treating SMP-containing water for the DBP reduction purpose. The results show that enhanced coagulation with alum could remove SMPs only marginally and decrease the DBP formation potential (DBPFP) of the water by less than 20%. Although ozone could cause destruction of SMPs in water, the overall DBPFP of the water did not decrease but increased after ozonation. In contrast, adsorption by granular activated carbon could remove the SMP organics from water by more than 60% and reduce the DBPFP by more than 70%. It is apparent that enhanced coagulation and ozonation are not suitable for the removal of SMPs as DBP precursors from polluted water, although enhanced coagulation has been commonly used to reduce the DBP formation caused by natural organic matter. In comparison, activated carbon adsorption is shown as a more effective means to remove the SMP content from water and hence to control the wastewater-derived DBP problem in water supply.

  18. Solubility of hydrogen in water in a broad temperature and pressure range

    International Nuclear Information System (INIS)

    Baranenko, V.I.; Kirov, V.S.

    1989-01-01

    In the coolant of water-water reactors, as a result of radiolytic decomposition of water and chemical additives (hydrazine and ammonia) and saturation of the make-up water of the first loop with free hydrogen in order to suppress radiolysis, 30-60 ml/kg of hydrogen is present in normal conditions. On being released from the water, it is free to accumulate in micropores of the metals, resulting in hydrogen embrittlement; gas accumulates in stagnant zones, with deterioration in heat transfer in the first loop and corresponding difficulty in the use of the reactor and the whole reactor loop. To determine the amount of free hydrogen and hydrogen dissolved in water in different elements of the first loop, it is necessary to know the limiting solubility of hydrogen in water at different temperatures and pressures, and also to have the corresponding theoretical dependences. The experimental data on the solubility of hydrogen in water are nonsystematic and do not cover the parameter ranges of modern nuclear power plants (P = 10-30 MPa, T = 260-370C). Therefore, the aim of the present work is to establish a well-founded method of calculating the limiting solubility of hydrogen in water and, on this basis, to compile tables of the limiting solubility of hydrogen in water at pressures 0.1-50 MPa and temperatures 0-370C

  19. Solubility studies of inorganic–organic hybrid nanoparticle photoresists with different surface functional groups

    KAUST Repository

    Li, Li; Chakrabarty, Souvik; Jiang, Jing; Zhang, Ben; Ober, Christopher; Giannelis, Emmanuel P.

    2016-01-01

    . The nanoparticles regardless of core or ligand chemistry have a hydrodynamic diameter of 2-3 nm and a very narrow size distribution in organic solvents. The Hansen solubility parameters for nanoparticles functionalized with IBA and 2MBA have the highest contribution

  20. Refuse derived soluble bio-organics enhancing tomato plant growth and productivity

    Energy Technology Data Exchange (ETDEWEB)

    Sortino, Orazio [Dipartimento di Scienze Agronomiche Agrochimiche e delle Produzioni Animali, Universita degli Studi di Catania, Via Valdisavoia 5, 95123 Catania (Italy); Dipasquale, Mauro [Dipartimento di Chimica, Universita di Torino, Via P. Giuria 7, 10125 Torino (Italy); Montoneri, Enzo, E-mail: enzo.montoneri@unito.it [Dipartimento di Chimica, Universita di Torino, Via P. Giuria 7, 10125 Torino (Italy); Tomasso, Lorenzo; Perrone, Daniele G. [Dipartimento di Chimica, Universita di Torino, Via P. Giuria 7, 10125 Torino (Italy); Vindrola, Daniela; Negre, Michele; Piccone, Giuseppe [Dipartimento di Valorizzazione e Protezione delle Risorse Agroforestali, Universita di Torino, Via L. da Vinci 44, 10095 Grugliasco (Italy)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Municipal bio-wastes are a sustainable source of bio-based products. Black-Right-Pointing-Pointer Refuse derived soluble bio-organics promote chlorophyll synthesis. Black-Right-Pointing-Pointer Refuse derived soluble bio-organics enhance plant growth and fruit ripening rate. Black-Right-Pointing-Pointer Sustainable chemistry exploiting urban refuse allows sustainable development. Black-Right-Pointing-Pointer Chemistry, agriculture and the environment benefit from biowaste technology. - Abstract: Municipal bio-refuse (CVD), containing kitchen wastes, home gardening residues and public park trimmings, was treated with alkali to yield a soluble bio-organic fraction (SBO) and an insoluble residue. These materials were characterized using elemental analysis, potentiometric titration, and 13C NMR spectroscopy, and then applied as organic fertilizers to soil for tomato greenhouse cultivation. Their performance was compared with a commercial product obtained from animal residues. Plant growth, fruit yield and quality, and soil and leaf chemical composition were the selected performance indicators. The SBO exhibited the best performance by enhancing leaf chlorophyll content, improving plant growth and fruit ripening rate and yield. No product performance-chemical composition relationship could be assessed. Solubility could be one reason for the superior performance of SBO as a tomato growth promoter. The enhancement of leaf chlorophyll content is discussed to identify a possible link with the SBO photosensitizing properties that have been demonstrated in other work, and thus with photosynthetic performance.

  1. Refuse derived soluble bio-organics enhancing tomato plant growth and productivity

    International Nuclear Information System (INIS)

    Sortino, Orazio; Dipasquale, Mauro; Montoneri, Enzo; Tomasso, Lorenzo; Perrone, Daniele G.; Vindrola, Daniela; Negre, Michele; Piccone, Giuseppe

    2012-01-01

    Highlights: ► Municipal bio-wastes are a sustainable source of bio-based products. ► Refuse derived soluble bio-organics promote chlorophyll synthesis. ► Refuse derived soluble bio-organics enhance plant growth and fruit ripening rate. ► Sustainable chemistry exploiting urban refuse allows sustainable development. ► Chemistry, agriculture and the environment benefit from biowaste technology. - Abstract: Municipal bio-refuse (CVD), containing kitchen wastes, home gardening residues and public park trimmings, was treated with alkali to yield a soluble bio-organic fraction (SBO) and an insoluble residue. These materials were characterized using elemental analysis, potentiometric titration, and 13C NMR spectroscopy, and then applied as organic fertilizers to soil for tomato greenhouse cultivation. Their performance was compared with a commercial product obtained from animal residues. Plant growth, fruit yield and quality, and soil and leaf chemical composition were the selected performance indicators. The SBO exhibited the best performance by enhancing leaf chlorophyll content, improving plant growth and fruit ripening rate and yield. No product performance-chemical composition relationship could be assessed. Solubility could be one reason for the superior performance of SBO as a tomato growth promoter. The enhancement of leaf chlorophyll content is discussed to identify a possible link with the SBO photosensitizing properties that have been demonstrated in other work, and thus with photosynthetic performance.

  2. Complexation with dissolved organic matter and solubility control of heavy metals in sandy soil

    NARCIS (Netherlands)

    Weng, L.; Temminghoff, E.J.M.; Lofts, S.; Tipping, E.; Riemsdijk, van W.H.

    2002-01-01

    The complexation of heavy metals with dissolved organic matter (DOM) in the environment influences the solubility and mobility of these metals. In this paper, we measured the complexation of Cu, Cd, Zn, Ni, and Pb with DOM in the soil solution at pH 3.7-6.1 using a Donnan membrane technique. The

  3. SOLUBILITY OF ORGANIC BIOCIDES IN SUPERCRITICAL CO2 AND CO2+ COSOLVENT MIXTURES

    Science.gov (United States)

    Solubilities of four organic biocides in supercritical carbon dioxide (Sc-CO2) were measured using a dynamic flowr apparatus over a pressure range of 10 to 30 MPa and temperature of 35-80 degrees C. The biocides studied were: Amical-48 (diiodomethyl p-tolyl sulfone), chlorothalo...

  4. The solubilities of significant organic compounds in HLW tank supernate solutions

    International Nuclear Information System (INIS)

    Barney, G.S.

    1994-08-01

    Large quantities of organic chemicals used in reprocessing spent nuclear-fuels at the Hanford Site have accumulated in underground high-level radioactive waste tanks. The organic content of these tanks must he known so that the potential for hazardous reactions between organic components and sodium nitrate/nitrite salts in the waste can he evaluated. The solubilities of organic compounds described in this report will help determine if they are present in the solid phases (salt cake and sludges) as well as the liquid phase (interstitial liquor/supernate) in the tanks. The solubilities of five significant sodium salts of carboxylic acids and aminocarboxylic acids [sodium oxalate, formate, citrate, nitrilotriacetate (NTA) and ethylendiaminetetraacetate (EDTA)] were measured in a simulated supernate solution at 25 degrees C, 30 degrees C, 40 degrees C, and 50 degrees C

  5. Removal of Water-Soluble Extractives Improves the Enzymatic Digestibility of Steam-Pretreated Softwood Barks.

    Science.gov (United States)

    Frankó, Balázs; Carlqvist, Karin; Galbe, Mats; Lidén, Gunnar; Wallberg, Ola

    2018-02-01

    Softwood bark contains a large amounts of extractives-i.e., soluble lipophilic (such as resin acids) and hydrophilic components (phenolic compounds, stilbenes). The effects of the partial removal of water-soluble extractives before acid-catalyzed steam pretreatment on enzymatic digestibility were assessed for two softwood barks-Norway spruce and Scots pine. A simple hot water extraction step removed more than half of the water-soluble extractives from the barks, which improved the enzymatic digestibility of both steam-pretreated materials. This effect was more pronounced for the spruce than the pine bark, as evidenced by the 30 and 11% glucose yield improvement, respectively, in the enzymatic digestibility. Furthermore, analysis of the chemical composition showed that the acid-insoluble lignin content of the pretreated materials decreased when water-soluble extractives were removed prior to steam pretreatment. This can be explained by a decreased formation of water-insoluble "pseudo-lignin" from water-soluble bark phenolics during the acid-catalyzed pretreatment, which otherwise results in distorted lignin analysis and may also contribute to the impaired enzymatic digestibility of the barks. Thus, this study advocates the removal of extractives as the first step in the processing of bark or bark-rich materials in a sugar platform biorefinery.

  6. Tainting by short-term exposure of Atlantic salmon to water soluble petroleum hydrocarbons

    International Nuclear Information System (INIS)

    Ackman, R.G.; Heras, H.

    1992-01-01

    Experiments were conducted to examine the extent of tainting of salmon by exposure to the soluble fraction of petroleum hydrocarbons. The experiments were conducted on Atlantic salmon in tanks containing seawater artificially contaminated at three different concentrations with the soluble fraction of a North Sea crude. The salmon flesh was analyzed by gas chromatography and taste tests were conducted on cooked salmon samples to determine the extent of tainting. Salmon in control tanks with uncontaminated seawater had muscle accumulations of total hydrocarbons of ca 1 ppM. The muscle accumulations of total hydrocarbons in the salmon were 13.5 ppM, 25.6 ppM, and 31.3 ppM for water soluble fraction concentrations of 0.45, 0.87, and 1.54 ppM respectively. The threshold for taint was clearly inferred to be less than 0.45 ppM of water soluble fraction. 18 refs., 2 figs

  7. Effect of water soluble carrier on dissolution profiles of diclofenac sodium.

    Science.gov (United States)

    Cwiertnia, Barbara

    2013-01-01

    Pharmaceutical aviailability of diclofenac sodium from solid dispersions of PEG 6000 have been studied in comparison to those of the corresponding physical mixtures and pure diclofenac sodium. The diclofenac sodium is poorly water soluble drug. The properties of diclofenac sodium-PEG 6000 solid dispersions have been determined by the methods of differential scanning calorimetry (DSC), X-ray diffraction and scanning electron microscopy (SEM). The effect of PEG 6000 on the solubility of selected diclofenac sodium dispersions has been studied. The solubility of diclofenac sodium from its solid dispersion has been found to increase in the presence of PEG 6000.

  8. Organically modified clay removes oil from water

    International Nuclear Information System (INIS)

    Alther, G.R.

    1995-01-01

    When bentonite or other clays and zeolites are modified with quaternary amines, they become organophilic. Such modified bentonites are used to remove mechanically emulsified oil and grease, and other sparingly soluble organics. If the organoclay is granulated, it is placed into a liquid phase carbon filter vessel to remove FOG's and chlorinated hydrocarbons. In this application the clay is mixed with anthrazite to prevent early plugging of the filter by oil or grease droplets. In batch systems a powered organoclay is employed. Types of oil found in water can include fats, lubricants, cutting fluids, heavy hydrocarbons such as tars, grease, crude oil, diesel oils; and light hydrocarbons such as kerosene, jet fuel, and gasoline

  9. Enhancement of solubility of poorly water soluble anti hypertensive drug by nanosizing approach

    Directory of Open Access Journals (Sweden)

    Divyesh Thakar

    2012-01-01

    Full Text Available The objective of this research study was to optimize formulation and process variables affecting characteristic of nanosuspension in bead milling process. In this study, the practically water-insoluble telmisartan was nanoground by using top down method i.e. media milling method. Here the media used is ZnO 2 beads. A variety of surface active agents were tested for their stabilizing effects. Formulation factors evaluated were ratio of polymer to drug, whereas process parameters were milling time and concentration of ZnO 2 beads. Different concentration of stabilizers such as poloxamer 188, poloxamer 407, HPMC E 15, PVP K30 and combination of stabilizers were used for preparation of telmisartan nanosuspension. Responses measured in this study include particle size measurement, particle size distribution and zeta potential.

  10. Preparation of water-soluble carbon nanotubes using a pulsed streamer discharge in water

    International Nuclear Information System (INIS)

    Imasaka, Kiminobu; Suehiro, Junya; Kanatake, Yusuke; Kato, Yuki; Hara, Masanori

    2006-01-01

    A novel technique for the preparation of water-soluble carbon nanotubes was demonstrated using a pulsed streamer discharge generated in water. The technique involved chemical reactions between radicals generated by the pulsed streamer discharge and carbon nanotubes. The pulsed streamer-treated carbon nanotubes were homogeneously dispersed and well solubilized in water for a month or longer. The mechanism of solubilization of carbon nanotubes by the pulsed streamer discharge is discussed based on FTIR spectroscopy and optical emission spectra measurements. FTIR spectroscopy revealed that -OH groups, which are known to impart a hydrophilic nature to carbon material, were introduced on the carbon nanotube surface. Optical emission spectra from the pulsed streamer plasma showed that highly oxidative O * and H * radicals were generated in water. These results suggest that the functionalization of the carbon nanotube surface by -OH group can be attributed to the O * and H * radicals. An advantage of the proposed method is that there is no need for any chemical agents or additives for solubilization. Chemical agents for solubilization are generated from the water itself by the electrochemical reactions induced by the pulsed streamer discharge

  11. Water solubility of synthetic pyrope at high temperature and pressure up to 12GPa

    Science.gov (United States)

    Huang, S.; Chen, J.

    2012-12-01

    Water can be incorporated into normally anhydrous minerals as OH- defects and transported into the mantle. Its existence in the mantle may affect property of minerals, such as elasticity, electrical conductivity and rheological properties. As the secondary mineral in the mantle, garnet has not been extensively studied for its water solubility and there is discrepancies among the existing experiments on the water solubility in the garnet change at pressures and temperatures. Geiger et al., 1991 investigated water content in synthetic pyrope and concluded 0.02wt% to 0.07wt% OH- substitution. Lu et al., 1997 found 198ppm water in the Dora Miara pyrope at 100Kbar and 1000°C. Withers et al., 1998 claimed that water solubility in pyrope reached 1000ppm at 5GPa and then decreased as pressure increasing; above 7GPa, no water was detected. Mookherjee et al., 2009 also explored pyrope-rich garnet, which contains water up to 0.1%wt at 5-9GPa and temperatures 1373K-1473K. Here we report a study of water solubility of synthetic single crystal pyrope at pressures 4-12GPa and temperature 1000°C. Single crystals of pyrope were synthesized using multi-anvil press and water contents in these samples were measured using FTIR. We have observed OH- peak at 3650 cm-1 along this pressure range, although Withers, 1998 reported water contents decrease to undetectable level above 7GPa. Water solubility in pyrope will be reported as a function of pressure up to 12 GPa at 1000°C.

  12. Thermodynamics of the sorption of water-soluble vitamins in reverse-phase high performance liquid chromatography

    Science.gov (United States)

    Chirkin, V. A.; Karpov, S. I.; Selemenev, V. F.

    2012-12-01

    The thermodynamics of the sorption of certain water-soluble vitamins on a C18 reverse phase from water-acetonitrile solutions of different compositions is studied. The thermodynamic characteristics of the investigated chromatographic systems are calculated. The dependences of standard molar enthalpy and changes in entropy when the sorbate transfers from the bulk solution to the surface layer on the concentration of the organic component in the mobile phase are analyzed. The boundaries for applying the main retention models describing the sorption of the investigated compounds are discussed.

  13. Carbonate compensation depth: relation to carbonate solubility in ocean waters.

    Science.gov (United States)

    Ben-Yaakov, S; Ruth, E; Kaplan, I R

    1974-05-31

    In situ calcium carbonate saturometry measurements suggest that the intermediate water masses of the central Pacific Ocean are close to saturation with resppect to both calcite and local carbonate sediment. The carbonate compensation depth, located at about 3700 meters in this area, appears to represent a depth above which waters are essentially saturated with respect to calcite and below which waters deviate toward undersaturation with respect to calcite.

  14. Comparison of water sorption and solubility of Acropars and Meliodent heat cure acrylic resins

    Directory of Open Access Journals (Sweden)

    Golbidi F

    2006-06-01

    Full Text Available Background and Aim: Water sorption and solubility are important properties of acrylic resins. Denture base acrylic resins have low solubility. This solubility results from the leaching out of unreacted monomer and water soluble additives into the oral fluids. The solubility of denture bases can cause oral soft tissue reactions. In addition, water absorbed into this material acts as a plasticizer and decreases the mechanical properties such as hardness, transverse strength, fatigue limit and also can change the color and dimensional stability. The aim of this study was to compare the water sorption and solubility of Acropars and Meliodent heat cure acrylic resins. Materials and Methods: This experimental study was performed on the basis of ADA specification No.12 and ISO No.1567 and standards NO: 2571 of Institute of Standards & Industrial Research of Iran. Six disc form samples of each acrylic resin were prepared, with the dimension of 50×0.5 mm. After desiccating, the samples were kept in an oven for 24 hours and weighed. Then they were immersed in water, kept in oven for 7 days and weighed again. After this phase, the samples were carried to a dessicator, for 24 hours and kept in an oven for drying and were weighed for the third time. Data were analyzed with Mann Whitney and one sample t-test. P<0.05 was considered as the limit of significance. Results: Water sorption mean values were 30.5±0.1 µg/mm3 or 0.76±0.01 mg/cm2 for Meliodent samples and 30.7±0.87 µg/mm3 or 0.77±0.009 mg/cm2 for Acropars samples. No significant difference was observed in water sorption of these two materials (P=0.9. Meliodent acrylic resin showed lower solubility (1.7±0.097 µg/mm3 or 0.042±0.001 mg/cm2 than Acropars acrylic resin (2.5±0.13 µg/mm3 or 0.062±0.001 mg/cm2 (P=0.002. Conclusion: Acropars heat cure acrylic resin matched well with the requirements of the international standards for water sorption, but its solubility was not favorable. This problem

  15. Solubility investigation of ether and ester essential oils in water using spectrometry and GC/MS

    Directory of Open Access Journals (Sweden)

    B. Khodabandeloo

    2017-11-01

    Full Text Available Background and objectives: Essential oils (volatiles are aromatic oily liquids prepared from different parts of plants and demonstrate various therapeutic and cosmetic properties. The dissolution of essential oils are not desirable in water, therefore the aim of this research was evaluation and selection the best co-solvents for increasing their solubility and bio availability. Methods:The solubility of six  plants essential oils were investigated in presence of propylene glycol (PG, polyethylene glycol 300 (PEG, glycerin and ethanol as solvent and tween 80 or lecithin as co-solvent by observation and spectrophotometric assay. Chemical composition of the essential oils and supersaturated 50% ethanol (SSE and 50% PG or PEG (SSP solutions were analyzed by GC/MS, too. Results: Ester (Lavandula dentata, Heracleum persicum and, Elettaria cardamomum essential oils showed the best solubility in ethanol and PG, respectively. Ether (Foeniculum vulgare, Pimpinella anisum and Petroselinum crispum essential oils had the best solubility in ethanol and PEG, respectively. In ester class, mixture of ethanol/water was the best solvent according to solubility and total amounts of major compounds of the essential oils. In ether class, all samples had better solubility in mixtures of ethanol/water than PEG, but the amounts of total phenols or ethers in SSP of some samples were higher than SSE. Therefore selecting the best solvent for these class need more experiments. Conclusion: Selecting the solvent for essential oils changes their chemical composition; therefore the best solvent was different for various purposes.

  16. Consequences of chirality on the dynamics of a water-soluble supramolecular polymer

    NARCIS (Netherlands)

    Baker, M.B.; Albertazzi, L.; Voets, Ilja K.; Leenders, C.M.A.; Palmans, A.R.A.; Pavan, G.M.; Meijer, E. W.

    2015-01-01

    The rational design of supramolecular polymers in water is imperative for their widespread use, but the design principles for these systems are not well understood. Herein, we employ a multi-scale (spatial and temporal) approach to differentiate two analogous water-soluble supramolecular polymers:

  17. Kinetics of Acid Hydrolysis of Water-Soluble Spruce O-Acetyl Galactoglucomannans

    NARCIS (Netherlands)

    Xu, C.; Pranovich, A.; Vahasalo, L.; Hemming, J.; Holmbom, B.; Schols, H.A.; Willfor, S.

    2008-01-01

    Water-soluble O-acetyl galactoglucomannan (GGM) is a softwood-derived polysaccharide, which can be extracted on an industrial scale from wood or mechanical pulping waters and now is available in kilogram scale for research and development of value-added products. To develop applications of GGM,

  18. Wax encapsulation of water-soluble compounds for application in foods.

    Science.gov (United States)

    Mellema, M; Van Benthum, W A J; Boer, B; Von Harras, J; Visser, A

    2006-11-01

    Water-soluble ingredients have been successfully encapsulated in wax using two preparation techniques. The first technique ('solid preparation') leads to relatively large wax particles. The second technique ('liquid preparation') leads to relatively small wax particles immersed in vegetable oil. On the first technique: stable encapsulation of water-soluble colourants (dissolved at low concentration in water) has been achieved making use of beeswax and PGPR. The leakage from the capsules, for instance of size 2 mm, is about 30% after 16 weeks storage in water at room temperature. To form such capsules a minimum wax mass of 40% relative to the total mass is needed. High amounts of salt or acids at the inside water phase causes more leaking, probably because of the osmotic pressure difference. Osmotic matching of inner and outer phase can lead to a dramatic reduction in leakage. Fat capsules are less suitable to incorporate water soluble colourants. The reason for this could be a difference in crystal structure (fat is less ductile and more brittle). On the second technique: stable encapsulation of water-soluble colourants (encapsulated in solid wax particles) has been achieved making use of carnauba wax. The leakage from the capsules, for instance of size 250 mm, is about 40% after 1 weeks storage in water at room temperature.

  19. Steel corrosion products solubility under conditions simulating various water chemistry parameters in power plants

    International Nuclear Information System (INIS)

    Slobodov, A.A.; Kritskij, V.G.; Zarembo, V.I.; Puchkov, L.V.

    1988-01-01

    To simulate construction material corrosion product mass transfer model in power plant circuits calculation of iron oxide and hydroxide solubility, depending on water chemistry parameters: temperature, pH-value, content of dissolved in water hydrogen and oxygen, is carried out

  20. Structural investigation of water-soluble polysaccharides extracted from the fruit bodies of Coprinus comatus

    NARCIS (Netherlands)

    Li, Bo; Dobruchowska, Justyna M.; Gerwig, Gerrit J.; Dijkhuizen, Lubbert; Kamerling, Johannis P.

    2013-01-01

    Water-soluble polysaccharide material, extracted from the stipes of the fruit bodies of Coprinus comatus by hot water, was fractionated by sequential weak anion-exchange and size-exclusion chromatography. The relevant fractions were subjected to structural analysis, including (D/L)

  1. Water-soluble carbon nanotube compositions for drug delivery and medicinal applications

    Science.gov (United States)

    Tour, James M.; Lucente-Schultz, Rebecca; Leonard, Ashley; Kosynkin, Dmitry V.; Price, Brandi Katherine; Hudson, Jared L.; Conyers, Jr., Jodie L.; Moore, Valerie C.; Casscells, S. Ward; Myers, Jeffrey N.; Milas, Zvonimir L.; Mason, Kathy A.; Milas, Luka

    2014-07-22

    Compositions comprising a plurality of functionalized carbon nanotubes and at least one type of payload molecule are provided herein. The compositions are soluble in water and PBS in some embodiments. In certain embodiments, the payload molecules are insoluble in water. Methods are described for making the compositions and administering the compositions. An extended release formulation for paclitaxel utilizing functionalized carbon nanotubes is also described.

  2. Temperature-dependent photoluminescence of water-soluble quantum dots for a bioprobe

    International Nuclear Information System (INIS)

    Liu Tiancai; Huang Zhenli; Wang Haiqiao; Wang Jianhao; Li Xiuqing; Zhao Yuandi; Luo Qingming

    2006-01-01

    The photoluminescence of water-soluble CdSe/ZnS core/shell quantum dots is found to be temperature-dependent: as temperature arising from 280 K to 351 K, the photoluminescence declines with emission peak shifting towards the red at a rate of ∼0.11 nm K -1 . And the studies show that the photoluminescence of water-soluble CdSe/ZnS quantum dots with core capped by a thinner ZnS shell is more sensitive to temperature than that of ones with core capped by a thicker one. That is, with 50% decrement of the quantum yield the temperature of the former need to arise from 280 K to 295 K, while the latter requires much higher temperature (315.6 K), which means that the integrality of shell coverage is a very important factor on temperature-sensitivity to for the photoluminescence of water-soluble CdSe/ZnS quantum dots. Moreover, it is found that the water-soluble CdSe quantum dots with different core sizes, whose cores are capped by thicker ZnS shells, possess almost the same sensitivity to the temperature. All of the studies about photoluminescence temperature-dependence of water-soluble CdSe/ZnS core/shell quantum dots show an indispensable proof for their applications in life science

  3. Water soluble {2-[3-(diethylamino)phenoxy]ethoxy} substituted zinc(II) phthalocyanine photosensitizers

    Energy Technology Data Exchange (ETDEWEB)

    Çakır, Dilek [Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey); Göl, Cem [Gebze Institute of Technology, Department of Chemistry, PO Box 141, Gebze, 41400, Kocaeli (Turkey); Çakır, Volkan [Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey); Durmuş, Mahmut [Gebze Institute of Technology, Department of Chemistry, PO Box 141, Gebze, 41400, Kocaeli (Turkey); Bıyıklıoğlu, Zekeriya, E-mail: zekeriya_61@yahoo.com [Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey); Kantekin, Halit [Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey)

    2015-03-15

    The new peripherally and non-peripherally tetra-{2-[3-(diethylamino)phenoxy] ethoxy} substituted zinc phthalocyanines (2a and 3a) were synthesized by cyclotetramerization of phthalonitrile derivatives (2 and 3). 2-[3-(diethylamino)phenoxy] ethoxy group was chosen as substituent because the quaternization of the diethylamino functionality on the structure of this group produced water soluble zinc phthalocyanines (2b and 3b). The water solubility is very important for many different applications such as photosensitizers in the photodynamic therapy of cancer because the water soluble photosensitizers can be injected directly to the body and they can transport to cancer cells through blood stream. The new compounds were characterized by using elemental analysis, UV–vis, IR, {sup 1}H NMR, {sup 13}C NMR and mass spectroscopies. The photophysical and photochemical properties of these novel photosensitizer compounds were examined in DMSO (both non-ionic and ionic complexes) and in PBS (for ionic complexes) solutions. The investigation of these properties is very important for the usage of the compounds as photosensitizers for PDT because determination of these properties is the first stage of potential of the compounds as photosensitizers. The bovine serum albumin (BSA) and DNA binding behaviour of the studied water soluble zinc (II) phthalocyanines were also investigated in PBS solutions for the determination of biological activity of these compounds. - Highlights: • Synthesis of water soluble zinc phthalocyanines. • Photophysical and photochemical properties for phthalocyanines. • Photodynamic therapy studies.

  4. Water Soluble Vitamins Enhance the Growth of Microorganisms in Peripheral Parenteral Nutrition Solutions.

    Science.gov (United States)

    Omotani, Sachiko; Tani, Katsuji; Nagai, Katsuhito; Hatsuda, Yasutoshi; Mukai, Junji; Myotoku, Michiaki

    2017-01-01

    Peripheral parenteral nutrition (PPN) solutions contain amino acids, glucose, and electrolytes, with or without some water soluble vitamins. Peripheral venous catheters are one of the causes of catheter related blood stream infection (CRBSI), which requires infection control. In Japan, PPN solutions have rarely been prepared under aseptic conditions. However, in recent years, the necessity of adding vitamins to infusions has been reported. Therefore, we investigated the effects of water soluble vitamins on growth of microorganisms in PPN solutions. AMINOFLUID ® (AF), BFLUID ® (BF), PARESAFE ® (PS) and PAREPLUS ® (PP) PPN solutions were used. Water soluble vitamins contained in PP were also used. Causative microorganisms of CRBSI were used. Staphylococcus epidermidis decreased after 24 hours or 48 hours in all solutions. On the other hand, Escherichia coli , Serratia marcescens , Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans increased, especially in PP. When each water soluble vitamin was added to BF and PS, growth of S. aureus was greater in solutions that contained nicotinamide than in solutions that contained other vitamins. As for C. albicans , they grew in all test solutions. C. albicans grew especially well in solutions that contained biotin. When commercial amino acids and glucose solutions with electrolytes are administered, in particular those containing multivitamins or water soluble vitamins, efforts to control infection must be taken to prevent proliferation of microorganisms.

  5. Teratogenicity and metabolism of water-soluble forms of vitamin A in the pregnant rat

    International Nuclear Information System (INIS)

    Gunning, D.B.; Barua, A.B.; Olson, J.A.

    1990-01-01

    Retinoyl β-glucuronide, unlike retinoic acid, has been shown to be non-teratogenic when administered orally, even in large doses, to pregnant rats. The degree to which water-solubility is associated with low teratogenicity is not known. Other water-soluble forms of vitamin A have now been synthesized in our laboratory and are being evaluated for teratogenicity. New water-soluble forms of vitamin A were administered orally to pregnant Sprague-Dawley rats in a single dose of 0.35 mmole/kg bw on day 8 of gestation. On day 19, the dams were sacrificed and the litters were examined. Control animals received either vehicle only or an equivalent dose of all-trans retinoic acid. Maternal and fetal tissues were taken and analyzed by HPLC for vitamin A metabolites. In another experiment, a large single oral dose of the radiolabelled water-soluble compound was administered on day 10. At either 30 minutes or 1 hour after the dose, dams were sacrificed and the embryos analyzed both for radioactivity and for specific metabolites. In contrast to retinoyl β-glucuronide, retinoyl β-glucose is highly teratogenic under identical conditions. Thus, water-solubility does not seem to be the determining factor in the teratogenicity of retinoic acid conjugates

  6. Temperature-dependent photoluminescence of water-soluble quantum dots for a bioprobe

    Energy Technology Data Exchange (ETDEWEB)

    Liu Tiancai [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Huang Zhenli [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Wang Haiqiao [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Wang Jianhao [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Li Xiuqing [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China); Zhao Yuandi [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)]. E-mail: zydi@mail.hust.edu.cn; Luo Qingming [Key Laboratory of Biomedical Photonics of Ministry of Education - Hubei Bioinformatics and Molecular Imaging Key Laboratory, Huazhong University of Science and Technology, Wuhan, Hubei 430074 (China)

    2006-02-10

    The photoluminescence of water-soluble CdSe/ZnS core/shell quantum dots is found to be temperature-dependent: as temperature arising from 280 K to 351 K, the photoluminescence declines with emission peak shifting towards the red at a rate of {approx}0.11 nm K{sup -1}. And the studies show that the photoluminescence of water-soluble CdSe/ZnS quantum dots with core capped by a thinner ZnS shell is more sensitive to temperature than that of ones with core capped by a thicker one. That is, with 50% decrement of the quantum yield the temperature of the former need to arise from 280 K to 295 K, while the latter requires much higher temperature (315.6 K), which means that the integrality of shell coverage is a very important factor on temperature-sensitivity to for the photoluminescence of water-soluble CdSe/ZnS quantum dots. Moreover, it is found that the water-soluble CdSe quantum dots with different core sizes, whose cores are capped by thicker ZnS shells, possess almost the same sensitivity to the temperature. All of the studies about photoluminescence temperature-dependence of water-soluble CdSe/ZnS core/shell quantum dots show an indispensable proof for their applications in life science.

  7. Membrane Proteins Are Dramatically Less Conserved than Water-Soluble Proteins across the Tree of Life.

    Science.gov (United States)

    Sojo, Victor; Dessimoz, Christophe; Pomiankowski, Andrew; Lane, Nick

    2016-11-01

    Membrane proteins are crucial in transport, signaling, bioenergetics, catalysis, and as drug targets. Here, we show that membrane proteins have dramatically fewer detectable orthologs than water-soluble proteins, less than half in most species analyzed. This sparse distribution could reflect rapid divergence or gene loss. We find that both mechanisms operate. First, membrane proteins evolve faster than water-soluble proteins, particularly in their exterior-facing portions. Second, we demonstrate that predicted ancestral membrane proteins are preferentially lost compared with water-soluble proteins in closely related species of archaea and bacteria. These patterns are consistent across the whole tree of life, and in each of the three domains of archaea, bacteria, and eukaryotes. Our findings point to a fundamental evolutionary principle: membrane proteins evolve faster due to stronger adaptive selection in changing environments, whereas cytosolic proteins are under more stringent purifying selection in the homeostatic interior of the cell. This effect should be strongest in prokaryotes, weaker in unicellular eukaryotes (with intracellular membranes), and weakest in multicellular eukaryotes (with extracellular homeostasis). We demonstrate that this is indeed the case. Similarly, we show that extracellular water-soluble proteins exhibit an even stronger pattern of low homology than membrane proteins. These striking differences in conservation of membrane proteins versus water-soluble proteins have important implications for evolution and medicine. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  8. Water soluble {2-[3-(diethylamino)phenoxy]ethoxy} substituted zinc(II) phthalocyanine photosensitizers

    International Nuclear Information System (INIS)

    Çakır, Dilek; Göl, Cem; Çakır, Volkan; Durmuş, Mahmut; Bıyıklıoğlu, Zekeriya; Kantekin, Halit

    2015-01-01

    The new peripherally and non-peripherally tetra-{2-[3-(diethylamino)phenoxy] ethoxy} substituted zinc phthalocyanines (2a and 3a) were synthesized by cyclotetramerization of phthalonitrile derivatives (2 and 3). 2-[3-(diethylamino)phenoxy] ethoxy group was chosen as substituent because the quaternization of the diethylamino functionality on the structure of this group produced water soluble zinc phthalocyanines (2b and 3b). The water solubility is very important for many different applications such as photosensitizers in the photodynamic therapy of cancer because the water soluble photosensitizers can be injected directly to the body and they can transport to cancer cells through blood stream. The new compounds were characterized by using elemental analysis, UV–vis, IR, 1 H NMR, 13 C NMR and mass spectroscopies. The photophysical and photochemical properties of these novel photosensitizer compounds were examined in DMSO (both non-ionic and ionic complexes) and in PBS (for ionic complexes) solutions. The investigation of these properties is very important for the usage of the compounds as photosensitizers for PDT because determination of these properties is the first stage of potential of the compounds as photosensitizers. The bovine serum albumin (BSA) and DNA binding behaviour of the studied water soluble zinc (II) phthalocyanines were also investigated in PBS solutions for the determination of biological activity of these compounds. - Highlights: • Synthesis of water soluble zinc phthalocyanines. • Photophysical and photochemical properties for phthalocyanines. • Photodynamic therapy studies

  9. Linear and nonlinear photophysics and bioimaging of an integrin-targeting water-soluble fluorenyl probe.

    Science.gov (United States)

    Morales, Alma R; Luchita, Gheorghe; Yanez, Ciceron O; Bondar, Mykhailo V; Przhonska, Olga V; Belfield, Kevin D

    2010-06-07

    Linear photophysical characterization and two-photon absorption (2PA) properties of a new water-soluble fluorene derivative, 3-(9-(2-(2-methoxyethoxy)ethyl)-2,7-bis{3-[2-(polyethyleneglycol-550-monomethylether-1-yl)]-4-(benzo[d]thiazol-2-yl)styryl}-9H-fluoren-9-yl)propanoic acid (1), were investigated in several organic solvents and water at room temperature. A comprehensive analysis of the steady-state absorption, emission and excitation anisotropy spectra revealed electronic structures of 1, including mutual orientation of the transition dipoles, relatively weak solvatochromic effects, high fluorescence quantum yield (approximately 0.5-1.0), and strong aggregation in water. The 2PA spectra of 1 were obtained in the 600-900 nm spectral range by two-photon induced fluorescence (2PF) and open aperture Z-scan methods using femtosecond laser sources. No discrete 2PA bands were apparent and values of the corresponding 2PA cross sections monotonically increased in the short wavelength range up to 3000 GM in organic solvents and approximately 6000 GM in aqueous solution, reflecting relatively high two-photon absorptivity. The 2PA efficiency of in water increased 2-3 times relative to aprotic solvents and can be explained by cooperative electronic effects of molecular aggregates of 1 produced in aqueous media. The carboxylic acid fluorenyl probe 1 was conjugated with the cyclic peptide RGDfK. Two-photon fluorescence microscopy (2PFM) imaging of U87MG cells (and MCF-7 as control), incubated with fluorene-RGD peptide conjugate 2, demonstrated high alpha(v)beta(3) integrin selectivity, making this probe particularly attractive for integrin imaging.

  10. Soluble and insoluble pollutants in fog and rime water samples

    Czech Academy of Sciences Publication Activity Database

    Fišák, Jaroslav; Stoyanova, V.; Chaloupecký, Pavel; Řezáčová, Daniela; Tsacheva, Ts.; Kupenova, T.; Marinov, M.

    2009-01-01

    Roč. 4, Sp. Iss. 2 (2009), S123-S130 ISSN 1801-5395 R&D Projects: GA ČR GA205/09/1918; GA AV ČR 1QS200420562 Institutional research plan: CEZ:AV0Z30420517 Keywords : fog water * rime water * pollutant concentration Subject RIV: DG - Athmosphere Sciences, Meteorology

  11. Water Solubility of Plutonium and Uranium Compounds and Residues at TA-55

    International Nuclear Information System (INIS)

    Reilly, Sean Douglas; Smith, Paul Herrick; Jarvinen, Gordon D.; Prochnow, David Adrian; Schulte, Louis D.; DeBurgomaster, Paul Christopher; Fife, Keith William; Rubin, Jim; Worl, Laura Ann

    2016-01-01

    Understanding the water solubility of plutonium and uranium compounds and residues at TA-55 is necessary to provide a technical basis for appropriate criticality safety, safety basis and accountability controls. Individual compound solubility was determined using published solubility data and solution thermodynamic modeling. Residue solubility was estimated using a combination of published technical reports and process knowledge of constituent compounds. The scope of materials considered includes all compounds and residues at TA-55 as of March 2016 that contain Pu-239 or U-235 where any single item in the facility has more than 500 g of nuclear material. This analysis indicates that the following materials are not appreciably soluble in water: plutonium dioxide (IDC=C21), plutonium phosphate (IDC=C66), plutonium tetrafluoride (IDC=C80), plutonium filter residue (IDC=R26), plutonium hydroxide precipitate (IDC=R41), plutonium DOR salt (IDC=R42), plutonium incinerator ash (IDC=R47), uranium carbide (IDC=C13), uranium dioxide (IDC=C21), U 3 O 8 (IDC=C88), and uranium filter residue (IDC=R26). This analysis also indicates that the following materials are soluble in water: plutonium chloride (IDC=C19) and uranium nitrate (IDC=C52). Equilibrium calculations suggest that PuOCl is water soluble under certain conditions, but some plutonium processing reports indicate that it is insoluble when present in electrorefining residues (R65). Plutonium molten salt extraction residues (IDC=R83) contain significant quantities of PuCl 3 , and are expected to be soluble in water. The solubility of the following plutonium residues is indeterminate due to conflicting reports, insufficient process knowledge or process-dependent composition: calcium salt (IDC=R09), electrorefining salt (IDC=R65), salt (IDC=R71), silica (IDC=R73) and sweepings/screenings (IDC=R78). Solution thermodynamic modeling also indicates that fire suppression water buffered with a commercially-available phosphate

  12. Water Solubility of Plutonium and Uranium Compounds and Residues at TA-55

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, Sean Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Smith, Paul Herrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Jarvinen, Gordon D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Prochnow, David Adrian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Schulte, Louis D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; DeBurgomaster, Paul Christopher [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Fife, Keith William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Rubin, Jim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Worl, Laura Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States

    2016-06-13

    Understanding the water solubility of plutonium and uranium compounds and residues at TA-55 is necessary to provide a technical basis for appropriate criticality safety, safety basis and accountability controls. Individual compound solubility was determined using published solubility data and solution thermodynamic modeling. Residue solubility was estimated using a combination of published technical reports and process knowledge of constituent compounds. The scope of materials considered includes all compounds and residues at TA-55 as of March 2016 that contain Pu-239 or U-235 where any single item in the facility has more than 500 g of nuclear material. This analysis indicates that the following materials are not appreciably soluble in water: plutonium dioxide (IDC=C21), plutonium phosphate (IDC=C66), plutonium tetrafluoride (IDC=C80), plutonium filter residue (IDC=R26), plutonium hydroxide precipitate (IDC=R41), plutonium DOR salt (IDC=R42), plutonium incinerator ash (IDC=R47), uranium carbide (IDC=C13), uranium dioxide (IDC=C21), U3O8 (IDC=C88), and uranium filter residue (IDC=R26). This analysis also indicates that the following materials are soluble in water: plutonium chloride (IDC=C19) and uranium nitrate (IDC=C52). Equilibrium calculations suggest that PuOCl is water soluble under certain conditions, but some plutonium processing reports indicate that it is insoluble when present in electrorefining residues (R65). Plutonium molten salt extraction residues (IDC=R83) contain significant quantities of PuCl3, and are expected to be soluble in water. The solubility of the following plutonium residues is indeterminate due to conflicting reports, insufficient process knowledge or process-dependent composition: calcium salt (IDC=R09), electrorefining salt (IDC=R65), salt (IDC=R71), silica (IDC=R73) and sweepings/screenings (IDC=R78). Solution thermodynamic modeling also indicates that fire suppression water buffered with a

  13. Ecotoxicity of water-soluble PM1, PM2.5 and PM10 aerosols at Gosan Climate Observatory (GCO) in Jeju, Korea

    Science.gov (United States)

    Kim, J. A.; Lee, M.; Yoon, H. O.; Bae, M. S.

    2017-12-01

    The water-soluble components of aerosols are rapidly permeated to various biosurfaces through the deposition process due to their high solubility and have profound effects on ecosystem functioning as well as human health. In this context, the ecotoxicity of atmospheric aerosol was assessed, particularly for water-soluble components. For measurements of ecotoxicity of water soluble components, ambient aerosols of PM1, PM2.5, and PM10 were collected on filters at Gosan Climate Observatory (GCO), Jeju, Korea in May, August, October 2010, March and July 2011. The ecotoxicity was estimated using Vibrio fischeri based on bioluminescence inhibition bioassay. In this study, EC10 (10% effective concentration) value was used as an ecotoxicity indicator. The EC10 value was generally in good relation with major water-soluble constituents such as SO42-, NH4+, and water-soluble organic carbon (WSOC). The characteristics of ecotoxicity was different in PM1, PM2.5, and PM10 aerosols. The EC10 of PM10 was correlated well with SO42- (r=-0.53) and Mg2+(r=-0.52). The ecotoxicity was relatively high in smaller particles with either high NO3-/SO42- ratio or WSOC concentration. The high ecotoxicity was found in outflows mostly from nearby lands especially under stagnant condition.

  14. Solubility of water in fluorocarbons: Experimental and COSMO-RS prediction results

    International Nuclear Information System (INIS)

    Freire, Mara G.; Carvalho, Pedro J.; Santos, Luis M.N.B.F.; Gomes, Ligia R.; Marrucho, Isabel M.; Coutinho, Joao A.P.

    2010-01-01

    This work aims at providing experimental and theoretical information about the water-perfluorocarbon molecular interactions. For that purpose, experimental solubility results for water in cyclic and aromatic perfluorocarbons (PFCs), over the temperature range between (288.15 and 318.15) K, and at atmospheric pressure, were obtained and are presented. From the experimental solubility dependence on temperature, the partial molar solution and solvation thermodynamic functions such as Gibbs free energy, enthalpy and entropy were determined and are discussed. The process of dissolution of water in PFCs is shown to be spontaneous for cyclic and aromatic compounds. It is demonstrated that the interactions between the non-aromatic PFCs and water are negligible while those between aromatic PFCs and water are favourable. The COSMO-RS predictive capability was explored for the description of the water solubility in PFCs and others substituted fluorocompounds. The COSMO-RS is shown to be a useful model to provide reasonable predictions of the solubility values, as well as to describe their temperature and structural modifications dependence. Moreover, the molar Gibbs free energy and molar enthalpy of solution of water are predicted remarkably well by COSMO-RS while the main deviations appear for the prediction of the molar entropy of solution.

  15. Gastrointestinal absorption of soluble uranium from drinking water. Published paper

    International Nuclear Information System (INIS)

    Wrenn, M.E.; Singh, N.P.; Ruth, H.; Burleigh, D.

    1988-04-01

    This manuscript describes results of an experiment to determine the gastrointestinal absorption of uranium from drinking water in 12 health adults. Most of the uranium ingested was excreted in feces in the first 2 days following ingestion of the water. The absorption was the same for (234)U and (238)U for each subject. Absorption varied among subjects from -0.02% to 2.6%, with a mean of 0.6%. Low absorption may be due to concurrent ingestion of food

  16. Temperature and salt addition effects on the solubility behaviour of some phenolic compounds in water

    Energy Technology Data Exchange (ETDEWEB)

    Noubigh, Adel [Laboratoire de Physico-chimie des materiaux, IPEST, BP51, 2070 La MARSA (Tunisia)]. E-mail: Adel.anoubigh@ipest.rnu.tn; Abderrabba, Manef [Laboratoire de Physico-chimie des materiaux, IPEST, BP51, 2070 La MARSA (Tunisia); Provost, Elise [Laboratoire Chimie et procedes, ENSTA, 32 Rue de Boulevard Victor, 75739 Paris, Cedex 15 (France)

    2007-02-15

    Solubility-temperature dependence data for six phenolic compounds (PhC), contained in olive mill wastewater (OMWW), in water and in some chloride salts (KCl, NaCl, and LiCl) aqueous solutions have been presented and solution standard molar enthalpies ({delta}{sub sol} H {sup 0}) were determined using Van't Hoff plots. The temperature was varied from 293.15 K to 318.15 K. Solubility data were estimated using a thermostated reactor and HPLC analysis. It has been observed that solubility, in pure water and in aqueous chloride solutions, increases with increasing temperature. The salting-out LiCl > NaCl > KCl order obtained at 298.15 K is confirmed. Results were interpreted in terms of the salt hydration shells and the ability of the solute to form hydrogen-bond with water. The standard molar Gibbs free energies of transfer of PhC ({delta}{sub tr} G {sup 0}) from pure water to aqueous solutions of the chloride salts have been calculated from the solubility data. In order to estimate the contribution of enthalpic and entropic terms, standard molar enthalpies ({delta}{sub tr} H {sup 0}) and entropies ({delta}{sub tr} S {sup 0}) of transfer have also been calculated. The decrease in solubility is correlated to the positive {delta}{sub tr} G {sup 0} value which is mainly of enthalpic origin.

  17. Temperature and salt addition effects on the solubility behaviour of some phenolic compounds in water

    International Nuclear Information System (INIS)

    Noubigh, Adel; Abderrabba, Manef; Provost, Elise

    2007-01-01

    Solubility-temperature dependence data for six phenolic compounds (PhC), contained in olive mill wastewater (OMWW), in water and in some chloride salts (KCl, NaCl, and LiCl) aqueous solutions have been presented and solution standard molar enthalpies (Δ sol H 0 ) were determined using Van't Hoff plots. The temperature was varied from 293.15 K to 318.15 K. Solubility data were estimated using a thermostated reactor and HPLC analysis. It has been observed that solubility, in pure water and in aqueous chloride solutions, increases with increasing temperature. The salting-out LiCl > NaCl > KCl order obtained at 298.15 K is confirmed. Results were interpreted in terms of the salt hydration shells and the ability of the solute to form hydrogen-bond with water. The standard molar Gibbs free energies of transfer of PhC (Δ tr G 0 ) from pure water to aqueous solutions of the chloride salts have been calculated from the solubility data. In order to estimate the contribution of enthalpic and entropic terms, standard molar enthalpies (Δ tr H 0 ) and entropies (Δ tr S 0 ) of transfer have also been calculated. The decrease in solubility is correlated to the positive Δ tr G 0 value which is mainly of enthalpic origin

  18. Separation of three water-soluble vitamins by poly(dimethylsiloxane) microchannel electrophoresis with electrochemical detection.

    Science.gov (United States)

    Li, Xiang-Yun; Zhang, Qian-Li; Lian, Hong-Zhen; Xu, Jing-Juan; Chen, Hong-Yuan

    2007-09-01

    A method for rapid separation and sensitive determination of three water-soluble vitamins, pyridoxine, ascorbic acid (VC), and p-aminobenzoic acid (PABA) has been developed by PDMS microchannel electrophoresis integrated with amperometric detection. After treatment of the microchip with oxygen plasma, the peak shapes of the three analytes were essentially improved. Pyridoxine, VC, and PABA were well separated within only 80 s in a running buffer of 20 mM borate solution (pH 8.5). Good linearity was obtained within the concentration range of 2-200 microM for the three water-soluble vitamins. The detection limits were 1.0 microM for pyridoxine and VC, and 1.5 microM for PABA. The proposed method has been successfully applied to real human urine sample, without solid phase extraction, with recoveries of 80-122% for the three water-soluble vitamins.

  19. Effect of supplementation of water-soluble vitamins on oxidative stress and blood pressure in prehypertensives.

    Science.gov (United States)

    Talikoti, Prashanth; Bobby, Zachariah; Hamide, Abdoul

    2015-01-01

    The objective of the study was to evaluate the effect of water-soluble vitamins on oxidative stress and blood pressure in prehypertensives. Sixty prehypertensives were recruited and randomized into 2 groups of 30 each. One group received water-soluble vitamins and the other placebo for 4 months. Further increase in blood pressure was not observed in the vitamin group which increased significantly in the placebo group at the end of 4 months. Malonedialdehyde and protein carbonylation were reduced during the course of treatment with vitamins whereas in the placebo group there was an increase in the level of malondialdehyde. In conclusion, supplementation of water-soluble vitamins in prehypertension reduces oxidative stress and its progression to hypertension.

  20. Polyaniline - Carrageenan - Polyvinyl Alcohol Composite Material Synthesized Via Interfacial Polymerization, its Morphological Characteristics and Enhanced Solubility in Water

    Science.gov (United States)

    Montalbo, R. C. K.; Marquez, M. C.

    2017-09-01

    In recent years, conducting polyaniline (PAni) has been a popular interest of research in the field of conducting polymers due to its relatively low cost, ease of production, good conductivity, and environmental stability. Many studies however, have focused on improving its short-comings such as its limited processability and solubility in common solvents. In this study, PAni, soluble in water was produced via interfacial polymerization with chloroform as the organic solvent. Poly(vinyl alcohol) (PVA) and kappa(κ), iota(ι) and lambda(λ) - carrageenan (κCGN, ιCGN, λCGN) were added to the aqueous layer to stabilize PAni in the medium. FTIR and UV-Vis absorption spectra of the solutions as well as the fabricated film confirmed the existence of PAni emeraldine salt (PAni-ES). FTIR spectrum also confirmed the peaks corresponding to the interaction of PAni with the CGNs. Moreover, PVA-CGN played a very large role on the stability of the PAni nanofibers integrated on the PVA-CGN matrix. The morphologies of the products were further investigated using SEM and TEM. Polymer electrolyte for supercapacitor or an interfacial layer for organic solar cell is being targeted as potential application of the synthesized water soluble PAni.

  1. Environmentally friendly synthesis of organic-soluble silver nanoparticles for printed electronics

    International Nuclear Information System (INIS)

    Lee, Kwi Jong; Jun, Byung Ho; Choi, Junrak; Lee, Young Il; Joung, Jaewoo; Oh, Yong Soo

    2007-01-01

    In this study, we attempted to synthesize organic-soluble silver nanoparticles in the concentrated organic phase with an environmentally friendly method. The fully organic phase system contains silver acetate as a silver precursor, oleic acid as both a medium and a capping molecule, and tin acetate as a reducing agent. Monodisperse silver nanoparticles with average diameters of ca. 5 nm can be easily synthesized at large scale. Only a small usage of tin acetate ( 90%). Also, it was investigated that the residual tin atom does not exist in the synthesized silver nanoparticles. This implied that tin acetate acts as a reducing catalyst

  2. Urinary excretion levels of water-soluble vitamins in pregnant and lactating women in Japan.

    Science.gov (United States)

    Shibata, Katsumi; Fukuwatari, Tsutomu; Sasaki, Satoshi; Sano, Mitsue; Suzuki, Kahoru; Hiratsuka, Chiaki; Aoki, Asami; Nagai, Chiharu

    2013-01-01

    Recent studies have shown that the urinary excretion levels of water-soluble vitamins can be used as biomarkers for the nutritional status of these vitamins. To determine changes in the urinary excretion levels of water-soluble vitamins during pregnant and lactating stages, we surveyed and compared levels of nine water-soluble vitamins in control (non-pregnant and non-lactating women), pregnant and lactating women. Control women (n=37), women in the 2nd (16-27 wk, n=24) and 3rd trimester of pregnancy (over 28 wk, n=32), and early- (0-5 mo, n=54) and late-stage lactating (6-11 mo, n=49) women took part in the survey. The mean age of subjects was ~30 y, and mean height was ~160 cm. A single 24-h urine sample was collected 1 d after the completion of a validated, self-administered comprehensive diet history questionnaire to measure water-soluble vitamins or metabolites. The average intake of each water-soluble vitamin was ≍ the estimated average requirement value and adequate intake for the Japanese Dietary Reference Intakes in all life stages, except for vitamin B6 and folate intakes during pregnancy. No change was observed in the urinary excretion levels of vitamin B2, vitamin B6, vitamin B12, biotin or vitamin C among stages. Urine nicotinamide and folate levels were higher in pregnant women than in control women. Urine excretion level of vitamin B1 decreased during lactation and that of pantothenic acid decreased during pregnancy and lactation. These results provide valuable information for setting the Dietary Reference Intakes of water-soluble vitamins for pregnant and lactating women.

  3. Organic Redox Species in Aqueous Flow Batteries: Redox Potentials, Chemical Stability and Solubility

    Science.gov (United States)

    Wedege, Kristina; Dražević, Emil; Konya, Denes; Bentien, Anders

    2016-01-01

    Organic molecules are currently investigated as redox species for aqueous low-cost redox flow batteries (RFBs). The envisioned features of using organic redox species are low cost and increased flexibility with respect to tailoring redox potential and solubility from molecular engineering of side groups on the organic redox-active species. In this paper 33, mainly quinone-based, compounds are studied experimentially in terms of pH dependent redox potential, solubility and stability, combined with single cell battery RFB tests on selected redox pairs. Data shows that both the solubility and redox potential are determined by the position of the side groups and only to a small extent by the number of side groups. Additionally, the chemical stability and possible degradation mechanisms leading to capacity loss over time are discussed. The main challenge for the development of all-organic RFBs is to identify a redox pair for the positive side with sufficiently high stability and redox potential that enables battery cell potentials above 1 V. PMID:27966605

  4. Organic Redox Species in Aqueous Flow Batteries: Redox Potentials, Chemical Stability and Solubility

    Science.gov (United States)

    Wedege, Kristina; Dražević, Emil; Konya, Denes; Bentien, Anders

    2016-12-01

    Organic molecules are currently investigated as redox species for aqueous low-cost redox flow batteries (RFBs). The envisioned features of using organic redox species are low cost and increased flexibility with respect to tailoring redox potential and solubility from molecular engineering of side groups on the organic redox-active species. In this paper 33, mainly quinone-based, compounds are studied experimentially in terms of pH dependent redox potential, solubility and stability, combined with single cell battery RFB tests on selected redox pairs. Data shows that both the solubility and redox potential are determined by the position of the side groups and only to a small extent by the number of side groups. Additionally, the chemical stability and possible degradation mechanisms leading to capacity loss over time are discussed. The main challenge for the development of all-organic RFBs is to identify a redox pair for the positive side with sufficiently high stability and redox potential that enables battery cell potentials above 1 V.

  5. Gastrointestinal absorption of soluble uranium from drinking water by man

    International Nuclear Information System (INIS)

    Wrenn, M.E.; Singh, N.P.; Ruth, H.; Rallison, M.L.; Burleigh, D.P.

    1989-01-01

    The gastrointestinal absorption of uranium has been measured in ten normal healthy adult volunteers of both sexes by feeding them one litre of water containing 200 to 300 μg of uranium per litre. The water was consumed during normal daytime activities while food was also ingested at its normal rate. Complete collections of urine and faeces were made and compounded on a daily basis over a period of two weeks, one week being prior to the consumption of the uranium-containing water. Uranium was measured by radiochemical separation followed by alpha spectrometry. Both 234 U and 238 U were determined. The results on these people showed that the uptake of uranium under these conditions averaged 0.6%, well below the f 1 of 5% assumed by the ICRP. (author)

  6. Relationship Between Urinary Concentrations of Nine Water-soluble Vitamins and their Vitamin Intakes in Japanese Adult Males

    OpenAIRE

    Shibata, Katsumi; Hirose, Junko; Fukuwatari, Tsutomu

    2014-01-01

    Excess water-soluble vitamins are thought to be eliminated in the urine. We have reported a strong relationship between water-soluble vitamin intake and urinary excretion in females. The relationship, however, is not well understood in males. In the present experiment, 10 Japanese male subjects were given a standard Japanese diet for the first week. The subjects remained on the same diet, and a synthesized water-soluble vitamin mixture containing one time the Dietary Reference Intakes (DRIs) ...

  7. Pressurized capillary electrochromatographic analysis of water-soluble vitamins by combining with on-line concentration technique.

    Science.gov (United States)

    Jia, Li; Liu, Yaling; Du, Yanyan; Xing, Da

    2007-06-22

    A pressurized capillary electrochromatography (pCEC) system was developed for the separation of water-soluble vitamins, in which UV absorbance was used as the detection method and a monolithic silica-ODS column as the separation column. The parameters (type and content of organic solvent in the mobile phase, type and concentration of electrolyte, pH of the electrolyte buffer, applied voltage and flow rate) affecting the separation resolution were evaluated. The combination of two on-line concentration techniques, namely, solvent gradient zone sharpening effect and field-enhanced sample stacking, was utilized to improve detection sensitivity, which proved to be beneficial to enhance the detection sensitivity by enabling the injection of large volumes of samples. Coupling electrokinetic injection with the on-line concentration techniques was much more beneficial for the concentration of positively charged vitamins. Comparing with the conventional injection mode, the enhancement in the detection sensitivities of water-soluble vitamins using the on-line concentration technique is in the range of 3 to 35-fold. The developed pCEC method was applied to evaluate water-soluble vitamins in corns.

  8. Simultaneous determination of water-soluble vitamins in beverages and dietary supplements by LC-MS/MS.

    Science.gov (United States)

    Kakitani, Ayano; Inoue, Tomonori; Matsumoto, Keiko; Watanabe, Jun; Nagatomi, Yasushi; Mochizuki, Naoki

    2014-01-01

    An LC-MS/MS method was developed for the simultaneous determination of 15 water-soluble vitamins that are widely used as additives in beverages and dietary supplements. This combined method involves the following simple pre-treatment procedures: dietary supplement samples were prepared by centrifugation and filtration after an extraction step, whereas beverage samples were diluted prior to injection. Chromatographic analysis in this method utilised a multi-mode ODS column, which provided reverse-phase, anion- and cation-exchange capacities, and therefore improved the retention of highly polar analytes such as water-soluble vitamins. Additionally, the multi-mode ODS column did not require adding ion pair reagents to the mobile phase. We optimised the chromatographic separation of 15 water-soluble vitamins by adjusting the mobile phase pH and the organic solvent. We also conducted an analysis of a NIST Standard Reference Material (SRM 3280 Multi-vitamin/Multi-element tablets) using this method to verify its accuracy. In addition, the method was applied to identify the vitamins in commercial beverages and dietary supplements. By comparing results with the label values and results obtained by official methods, it was concluded that the method could be used for quality control and to compose nutrition labels for vitamin-enriched products.

  9. Preparation and tribology properties of water-soluble fullerene derivative nanoball

    Directory of Open Access Journals (Sweden)

    Guichang Jiang

    2017-02-01

    Full Text Available Water-soluble fullerene derivatives were synthesized via radical polymerization. They are completely soluble in water, yielding a clear brown solution. The products were characterized by FTIR, UV–Vis, 1H-NMR, 13CNMR, GPC, TGA, and SEM. Four-ball tests show that the addition of a certain concentration of the fullerene derivatives to base stock (2 wt.% triethanolamine aqueous solution can effectively increase both the load-carrying capacity (PB value, and the resistance to wear. SEM observations confirm the additive results in a reduced diameter of the wear scar and decreased wear.

  10. Smart polyelectrolyte microcapsules as carriers for water-soluble small molecular drug.

    Science.gov (United States)

    Song, Weixing; He, Qiang; Möhwald, Helmuth; Yang, Yang; Li, Junbai

    2009-10-15

    Heat treatment is introduced as a simple method for the encapsulation of low molecular weight water-soluble drugs within layer-by-layer assembled microcapsules. A water-soluble drug, procainamide hydrochloride, could thus be encapsulated in large amount and enriched by more than 2 orders of magnitude in the assembled PDADMAC/PSS capsules. The shrunk capsules could control the unloading rate of drugs, and the drugs could be easily unloaded using ultrasonic treatment. The encapsulated amount could be quantitatively controlled via the drug concentration in the bulk. We also found that smaller capsules possess higher encapsulation capability.

  11. Lipid-based formulations for oral administration of poorly water-soluble drugs

    DEFF Research Database (Denmark)

    Mu, Huiling; Holm, René; Müllertz, Anette

    2013-01-01

    Lipid-based drug delivery systems have shown great potentials in oral delivery of poorly water-soluble drugs, primarily for lipophilic drugs, with several successfully marketed products. Pre-dissolving drugs in lipids, surfactants, or mixtures of lipids and surfactants omits the dissolving....../dissolution step, which is a potential rate limiting factor for oral absorption of poorly water-soluble drugs. Lipids not only vary in structures and physiochemical properties, but also in their digestibility and absorption pathway; therefore selection of lipid excipients and dosage form has a pronounced effect...

  12. Bioavailability assessment of the lipophilic benfotiamine as compared to a water-soluble thiamin derivative.

    Science.gov (United States)

    Bitsch, R; Wolf, M; Möller, J; Heuzeroth, L; Grüneklee, D

    1991-01-01

    The bioequivalence of thiamin in 2 therapeutically used preparations was tested in 10 healthy young men. Thiamin was orally administered either as lipophilic benfotiamine or as water-soluble thiamin mononitrate. Biokinetic data, measured as area under the curve and maximal concentration in plasma and hemolysate after ingestion, demonstrated a significantly improved bioavailability from the lipophilic derivative despite an ingested dose of only 40% as compared with the water-soluble salt. A superior cellular efficacy of benfotiamine was also concluded from the short-term stimulation of the thiamin-dependent transketolase activity in erythrocytes.

  13. Synthesis of gold nanoclusters: a fluorescent marker for water-soluble TiO2 nanotubes

    International Nuclear Information System (INIS)

    Ratanatawanate, Chalita; Yu Jing; Zhou Chen; Zheng Jie; Balkus, Kenneth J Jr

    2011-01-01

    The first example of a water-soluble wrapped titania nanotube (TNT) decorated with fluorescent gold nanoparticles has been prepared. Gold nanoparticles ∼ 1.6 nm in diameter were grown on the TiO 2 nanotubes using a thiolactic acid linker to control the size. The gold clusters emit at 660 nm in water and were imaged using confocal microscopy. The gold decorated TNTs were suspended in water by wrapping the nanotubes with poly-L-arginine.

  14. A novel pH sensitive water soluble fluorescent nanomicellar sensor for potential biomedical applications.

    Science.gov (United States)

    Georgiev, Nikolai I; Bryaskova, Rayna; Tzoneva, Rumiana; Ugrinova, Iva; Detrembleur, Christophe; Miloshev, Stoyan; Asiri, Abdullah M; Qusti, Abdullah H; Bojinov, Vladimir B

    2013-11-01

    Herein we report on the synthesis and sensor activity of a novel pH sensitive probe designed as highly water-soluble fluorescent micelles by grafting of 1,8-naphthalimide-rhodamine bichromophoric FRET system (RNI) to the PMMA block of a well-defined amphiphilic diblock copolymer-poly(methyl methacrylate)-b-poly(methacrylic acid) (PMMA48-b-PMAA27). The RNI-PMMA48-b-PMAA27 adduct is capable of self-assembling into micelles with a hydrophobic PMMA core, containing the anchored fluorescent probe, and a hydrophilic shell composed of PMAA block. Novel fluorescent micelles are able to serve as a highly sensitive pH probe in water and to internalize successfully HeLa and HEK cells. Furthermore, they showed cell specificity and significantly higher photostability than that of a pure organic dye label such as BODIPY. The valuable properties of the newly prepared fluorescent micelles indicate the high potential of the probe for future biological and biomedical applications. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Natural products phytotoxicity A bioassay suitable for small quantities of slightly water-soluble compounds.

    Science.gov (United States)

    Dornbos, D L; Spencer, G F

    1990-02-01

    A large variety of secondary metabolites that can inhibit germination and/or seedling growth are produced by plants in low quantities. The objective of this study was to develop a bioassay capable of reliably assessing reductions in germination percentage and seedling length of small-seeded plant species caused by exposure to minute quantities of these compounds. The germination and growth of alfalfa (Medicago saliva), annual ryegrass (Lolium multiflorum), and velvetleaf (Abutilon theophrasti) were evaluated against six known phytotoxins from five chemical classes; cinmethylin (a herbicidal cineole derivative) was selected as a comparison standard. Each phytotoxin, dissolved in a suitable organic solvent, was placed on water-agar in small tissue culture wells. After the solvent evaporated, imbibed seeds were placed on the agar; after three days, germination percentages and seedling lengths were measured. Compared to a commonly used filter paper procedure, this modified agar bioassay required smaller quantities of compound per seed for comparable bioassay results. This bioassay also readily permitted the measurement of seedling length, a more sensitive indicator of phytotoxicity than germination. Seedling length decreased sigmoidally as the toxin concentration increased logarithmically. Phytotoxicity was a function of both compound and plant species. Cinmethylin, a grass herbicide, reduced the length of annual ryegrass seedlings by 90-100%, whereas that of alfalfa and velvetleaf was inhibited slightly. The agar bioassay facilitated the rapid and reliable testing of slightly water-soluble compounds, requiring only minute quantities of each compound to give reproducible results.

  16. A water soluble heteropolyoxotungstate as a selective, efficient and ...

    Indian Academy of Sciences (India)

    Administrator

    In the catalytic system described here product isolation is easy, and the aqueous catalyst solution can be re-used several times with little loss in ... tle loss in the total amount of the heavy metal, which makes the overall process green ..... Chem. Res. 27 387. 12. Waters T, O'Hair R A J and Wedd A G 2003 J. Am. Chem. Soc.

  17. An analysis of the water soluble components of Sappi Saiccor's ...

    African Journals Online (AJOL)

    Attempts to isolate pure lignosulphonates were unsuccessful; however, an acid hydrolysis of the aqueous portion of the calcium effluent stream yielded a range of organic compounds. These included lignans, lignin-type precursors as well as small quantities of vanillin and syringaldehyde. The structures of these compounds ...

  18. Investigating differences in the root to shoot transfer and xylem sap solubility of organic compounds between zucchini, squash and soybean using a pressure chamber method.

    Science.gov (United States)

    Garvin, Naho; Doucette, William J; White, Jason C

    2015-07-01

    A pressure chamber method was used to examine differences in the root to shoot transfer and xylem sap solubility of caffeine (log Kow=-0.07), triclocarban (log Kow=3.5-4.2) and endosulfan (log Kow=3.8-4.8) for zucchini (cucurbita pepo ssp pepo), squash (cucurbita pepo ssp ovifera), and soybean (glycine max L.). Transpiration stream concentration factors (TSCF) for caffeine (TSCF=0.8) were statistically equivalent for all plant species. However, for the more hydrophobic endosulfan and triclocarban, the TSCF values for zucchini (TSCF=0.6 and 0.4, respectively) were 3 and 10 times greater than the soybean and squash (TSCF=0.2 and 0.05, respectively). The difference in TSCF values was examined by comparing the measured solubilities of caffeine, endosulfan and triclocarban in deionized water to those in soybean and zucchini xylem saps using a modified shake flask method. The measured solubility of organic contaminants in xylem sap has not previously been reported. Caffeine solubilities in the xylem saps of soybean and zucchini were statistically equal to deionized water (21500mgL(-1)) while endosulfan and triclocarban solubilities in the zucchini xylem sap were significantly greater (0.43 and 0.21mgL(-1), respectively) than that of the soybean xylem sap (0.31 and 0.11mgL(-1), respectively) and deionized water (0.34 and 0.11mgL(-1), respectively). This suggests that the enhanced root to shoot transfer of hydrophobic organics reported for zucchini is partly due to increased solubility in the xylem sap. Further xylem sap characterization is needed to determine the mechanism of solubility enhancement. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Improvement of humidity resistance of water soluble core by precipitation method

    Directory of Open Access Journals (Sweden)

    Zhang Long

    2011-05-01

    Full Text Available Water soluble core has been widely used in manufacturing complex metal components with hollow configurations or internal channels; however, the soluble core can absorb water easily from the air at room temperature. To improve the humidity resistance of the water soluble core and optimize the process parameters applied in manufacturing of the water soluble core, a precipitation method and a two-level-three-full factorial central composite design were used, respectively. The properties of the cores treated by the precipitation method were compared with that without any treatment. Through a systematical study by means of both an environmental scanning electron microscope (ESEM and an energy dispersive X-ray (EDX analyzer, the results indicate that the hygroscopicity can be reduced by 20% and the obtained optimal process conditions for three critical control factors affecting the hygroscopicity are 0.2 g·mL-1 calcium chloride concentration, 4% water concentration and 0 min ignition time. The porous surface coated by calcium chloride and the high humidity resistance products generated in the precipitation reaction between calcium chloride and potassium carbonate may contribute to the lower hygroscopicity.

  20. Solubility and solution thermodynamics of 2-methyl-6-nitroaniline in ten organic solvents at elevated temperatures

    International Nuclear Information System (INIS)

    Cong, Yang; Wang, Jian; Du, Cunbin; Han, Shuo; Zhao, Hongkun

    2016-01-01

    Highlights: • Solubility of 2-methyl-6-nitroaniline in ten solvents were determined. • The solubility were correlated with four thermodynamic models. • Standard dissolution enthalpy and excess enthalpy of the solutions were computed. - Abstract: Knowledge of solubility for 2-methyl-6-nitroaniline in different solvents is essential for its purification and further theoretical studies. In this paper, the solid-liquid equilibrium for 2-methyl-6-nitroaniline in ten pure organic solvents (methanol, ethanol, n-propanol, isopropanol, toluene, ethyl acetate, acetonitrile, acetone, cyclohexane and 1,4-dioxane) was established using the isothermal saturation method at temperatures T = (278.15–313.15) K under pressure of 101.2 kPa, and the solubility of 2-methyl-6-nitroaniline in these solvents were determined by a high-performance liquid chromatography (HPLC). In general, the mole fraction solubility followed the following order from high to low in different solvents: 1,4-dioxane (0.1799–0.3390) > acetone (0.1128–0.3010) > ethyl acetate (0.08414–0.2654) > acetonitrile (0.04179–0.2027) > toluene (0.02367–0.1104) > n-propanol (0.01080–0.04514) > ethanol (0.01020–0.04202) > isopropanol (0.008595–0.03763) > methanol (0.007391–0.03198) > cyclohexane (0.001027–0.005617). The modified Apelblat equation, λh equation, Wilson model and NRTL model were employed to correlate the measured solubility data of 2-methyl-6-nitroaniline in the selected solvents. Results indicated that the largest values of RAD and RMSD acquired by the four models were less than 0.76% and 9.13 × 10"−"4, respectively. The modified Apelblat equation provided better results than the other three models. Furthermore, the standard dissolution enthalpy and excess enthalpy of the solutions were computed from the solubility values. The standard dissolution enthalpies vary within the range from (14.88 to 45.57) kJ·mol"−"1 and are all positive, the dissolution process of 2-methyl-6

  1. Solubility of gallic acid in liquid mixtures of (ethanol + water) from (293.15 to 318.15) K

    International Nuclear Information System (INIS)

    Noubigh, Adel; Jeribi, Chokri; Mgaidi, Arbi; Abderrabba, Manef

    2012-01-01

    Graphical abstract: Solubility of gallic acid vs the mole fraction of ethanol (0.0 to 1) on a solute-free basis in ethanol + water at different temperatures/K. □, 293.15; Δ, 298.15; ◊, 303.15; line calculated by equation. Highlights: ► Solubilities of gallic acid in binary mixtures were determined over the temperatures range (293.15 to 318.15) K. ► The gallic acid solubility in mixed solvents presents a maximum-solubility effect. ► Two empirical equations were proposed to correlate the solubility Data. ► The thermodynamic properties were determined. - Abstract: The solubility of gallic acid in (water + ethanol) binary solvents was determined from (293.15 to 318.15) K at atmospheric pressure using a thermostatted reactor and UV/vis spectrophotometer analysis. The effects of binary solvents composition and temperature on the solubility were discussed. It was found that gallic acid solubility in (water + ethanol) mixed solvents presents a maximum-solubility effect. Two empirical equations were proposed to correlate the solubility data. The calculated solubilities show good agreement with the experimental data within the studied temperature range. Using the experimentally measured solubilities, the thermodynamic properties of dissolution of the gallic acid such as Gibbs energy (Δ sol G°), molar enthalpy of dissolution (Δ sol H°), and molar entropy of dissolution (Δ sol S°) were calculated.

  2. Formation of water-soluble soybean polysaccharides from spent flakes by hydrogen peroxide treatment

    DEFF Research Database (Denmark)

    Pierce, Brian; Wichmann, Jesper; Tran, Tam H.

    2016-01-01

    70% of the original insoluble material as high molar mass soluble polysaccharides. A design of experiment was used to quantify the effects of pH, reaction time, and hydrogen peroxide concentration on the reaction yield, average molar mass, and free monosaccharides generated. The resulting product......In this paper we propose a novel chemical process for the generation of water-soluble polysaccharides from soy spent flake, a by-product of the soy food industry. This process entails treatment of spent flake with hydrogen peroxide at an elevated temperature, resulting in the release of more than...... is low in protein, fat, and minerals and contains predominantly water-soluble polysaccharides of high molar mass, including arabinan, type I arabinogalactan, homogalacturonan, xyloglucan, rhamnogalacturonan, and (glucurono)arabinoxylan. This treatment provides a straightforward approach for generation...

  3. Highly Water-Soluble Magnetic Nanoparticles as Novel Draw Solutes in Forward Osmosis for Water Reuse

    KAUST Repository

    Ling, Ming Ming

    2010-06-16

    Highly hydrophilic magnetic nanoparticles have been molecularly designed. For the first time, the application of highly water-soluble magnetic nanoparticles as novel draw solutes in forward osmosis (FO) was systematically investigated. Magnetic nanoparticles functionalized by various groups were synthesized to explore the correlation between the surface chemistry of magnetic nanoparticles and the achieved osmolality. We verified that magnetic nanoparticles capped with polyacrylic acid can yield the highest driving force and subsequently highest water flux among others. The used magnetic nanoparticles can be captured by the magnetic field and recycled back into the stream as draw solutes in the FO process. In addition, magnetic nanoparticles of different diameters were also synthesized to study the effect of particles size on FO performance. We demonstrate that the engineering of surface hydrophilicity and magnetic nanoparticle size is crucial in the application of nanoparticles as draw solutes in FO. It is believed that magnetic nanoparticles will soon be extensively used in this area. © 2010 American Chemical Society.

  4. Monoglyceride-based self-assembling copolymers as carriers for poorly water-soluble drugs.

    Science.gov (United States)

    Rouxhet, L; Dinguizli, M; Latere Dwan'isa, J P; Ould-Ouali, L; Twaddle, P; Nathan, A; Brewster, M E; Rosenblatt, J; Ariën, A; Préat, V

    2009-12-01

    To develop self-assembling polymers forming polymeric micelles and increasing the solubility of poorly soluble drugs, amphiphilic polymers containing a hydrophilic PEG moiety and a hydrophobic moiety derived from monoglycerides and polyethers were designed. The biodegradable copolymers were obtained via a polycondensation reaction of polyethylene glycol (PEG), monooleylglyceride (MOG) and succinic anhydride (SA). Polymers with molecular weight below 10,000 g/mol containing a minimum of 40 mol% PEG and a maximum of 10 mol% MOG self-assembled spontaneously in aqueous media upon gentle mixing. They formed particles with a diameter of 10 nm although some aggregation was evident. The critical micellar concentration varied between 3x10(-4) and 4x10(-3) g/ml, depending on the polymer. The cloud point (> or = 66 degrees C) and flocculation point (> or = 0.89 M) increased with the PEG chain length. At a 1% concentration, the polymers increased the solubility of poorly water-soluble drug candidates up to 500-fold. Drug solubility increased as a function of the polymer concentration. HPMC capsules filled with these polymers disintegrated and released model drugs rapidly. Polymer with long PEG chains had a lower cytotoxicity (MTT test) on Caco-2 cells. All of these data suggest that the object polymers, in particular PEG1000/MOG/SA (45/5/50) might be potential candidates for improving the oral biopharmaceutical performance of poorly soluble drugs.

  5. Water sorption and solubility of bulk-fill composites polymerized with a third generation LED LCU

    Directory of Open Access Journals (Sweden)

    Tuğba MİSİLLİ

    2017-10-01

    Full Text Available Abstract The aim of this study was to compare the degree of water sorption and solubility in bulk-fills after curing with a polywave light source. A total of 120 disc-shaped specimens (8 mm diameter; 4 mm depth were prepared from three regular bulk-fill materials (X-tra Fil, Tetric N-Ceram Bulk Fill, SonicFill, and a control material (Filtek Z250, cured in 3 different modes (standard: 1000 mW/cm2-20 s; high power: 1400 mW/cm2-12 s; xtra power: 3200 mW/cm2-6 s using a third generation light-emitting diode light curing unit. Water sorption and solubility levels of the specimens were measured according to the ISO 4049:2009 specification after storing in distilled water for 30 days. Data were analyzed using two-way ANOVA and Tukey’s post-hoc test (p < 0.05. The Z250 sample exposed to high power presented a higher sorption compared to the X-tra Fil and SonicFill samples. In xtra power mode, the values of Z250 and SonicFill were similar to each other and higher compared to those of X-tra Fil. Only SonicFill exhibited significantly different sorption values depending on the curing mode, the highest of which was achieved when using the xtra power mode. The highest solubility values were obtained for SonicFill. No statistically significant differences were found among other groups. No significant correlation was detected between water sorption and solubility. The traditional composite group exhibited a higher water sorption values than the bulk-fills. The reduction in polymerization time significantly increased the sorption of SonicFill. SonicFill showed the highest water solubility value among the composites tested.

  6. Solubility of fused silica in sub- and supercritical water: Estimation from a thermodynamic model

    Czech Academy of Sciences Publication Activity Database

    Karásek, Pavel; Šťavíková, Lenka; Planeta, Josef; Hohnová, Barbora; Roth, Michal

    2013-01-01

    Roč. 83, NOV (2013), s. 72-77 ISSN 0896-8446 R&D Projects: GA ČR(CZ) GAP106/12/0522 Institutional support: RVO:68081715 Keywords : amorphous silica * fused silica * supercritical water * aqueous solubility Subject RIV: CB - Analytical Chemistry, Separation Impact factor: 2.571, year: 2013

  7. Synthesis of phthalocyanines-ALA conjugates: water-soluble compounds with low aggregation.

    Science.gov (United States)

    de Oliveira, Kleber T; de Assis, Francisco F; Ribeiro, Anderson O; Neri, Claudio R; Fernandes, Adjaci U; Baptista, Mauricio S; Lopes, Norberto P; Serra, Osvaldo A; Iamamoto, Yassuko

    2009-10-16

    Syntheses of two water-soluble phthalocyanines (Pc) containing 5-aminolevulinic acid (ALA) linked to the core structure are described. These compounds were prepared by using original functionalizations, and they present remarkable structural and photophysical features, indicating that they could be applied to photodynamic therapy (PDT).

  8. Kinetics of radiolysis of irradiated ligno celluloses into soluble products in water and rumen liquid

    International Nuclear Information System (INIS)

    Tukenmez, I.; Bakioglu, A.T.; Ersen, M.S.

    1997-01-01

    In order to increase the low bio hydrolysis of ligno celluloses in biotechnological and biological processes where these materials are used as raw materials and ruminant feed, the substrates were pretreated with irradiation to induce radiolytic depolymerisation and then kinetics of their radiolysis into soluble products in water and rumen liquid were analyzed. Wheat straw used as a representative lignocellulose substrate was irradiated at 0-2.5 MGy doses at 20''o''C with an optimum equilibrium humidity of 6.6% in Cs-137 gamma irradiator with a dose rate of 1.8 kGy/h, and soluablefractions in water and in situ rumen liquid were determined gravimetrically. Based on these data, a reaction mechanism was proposed for the radiolysis of ligno celluloses into soluble fractions. From the corresponding reaction rate equations with this mechanism a dose dependent kinetics was derived for the radiolysis of ligno celluloses into water/rumen liquid-soluble products. Defined by this kinetics, the threshold doses for the radiolysis of the substrate into water/rumen liquid-soluble products were respectively found 80.6 kGy and 186.0 kGy, and fractional radiolytic decomposition yields 0.193 MGy''-1''.It was emphasized that developed kinetic models may be used for the process design of irradiation pretreatments to improve the bio hydrolysis of ligno celluloses.(2figs. and 17 refs.)

  9. Profiling and relationship of water-soluble sugar and protein compositions in soybean seeds.

    Science.gov (United States)

    Yu, Xiaomin; Yuan, Fengjie; Fu, Xujun; Zhu, Danhua

    2016-04-01

    Sugar and protein are important quality traits in soybean seeds for making soy-based food products. However, the investigations on both compositions and their relationship have rarely been reported. In this study, a total of 35 soybean germplasms collected from Zhejiang province of China, were evaluated for both water-soluble sugar and protein. The total water-soluble sugar (TWSS) content of the germplasms studied ranged from 84.70 to 140.91 mg/g and the water-soluble protein (WSP) content varied from 26.5% to 36.0%. The WSP content showed positive correlations with the TWSS and sucrose contents but negative correlations with the fructose and glucose contents. The clustering showed the 35 germplasms could be divided into four groups with specific contents of sugar and protein. The combination of water-soluble sugar and protein profiles provides useful information for future breeding and genetic research. This investigation will facilitate future work for seed quality improvement. Copyright © 2015. Published by Elsevier Ltd.

  10. pKa Determination of water-soluble calix[4]arenes

    NARCIS (Netherlands)

    Shinkai, Seiji; Araki, Koji; Grootenhuis, P.D.J.; Reinhoudt, David

    1991-01-01

    Neutral, water-soluble 5,11,17,23-tetrakis[bis-(2-hydroxyethyl)aminosulphonyl]calix[4]arene-25,26,27,28-tetraol and 5,11,17,23-tetranitrocalix[4]arene-25,26,27,28-tetraol have been synthesized and the pKa values of the OH groups determined in an aqueous system.

  11. Fluorescent Water Soluble Polymers for Isozyme-Selective Interactions with Matrix Metalloproteinase-9

    Science.gov (United States)

    Dutta, Rinku; Scott, Michael D.; Haldar, Manas K.; Ganguly, Bratati; Srivastava, D. K.; Friesner, Daniel L.; Mallik, Sanku

    2011-01-01

    Matrix metalloproteinases (MMPs) are overexpressed in various pathological conditions, including various cancers. Although these isozymes have similar active sites, the patterns of exposed amino acids on their surfaces are different. Herein, we report the synthesis and molecular interactions of two water-soluble, fluorescent polymers which demonstrate selective interactions with MMP-9 compared to MMP-7 and -10. PMID:21367603

  12. Testing water-soluble carbohydrate QTL effects in perennial ryegrass (Lolium perenne L.) by marker selection

    NARCIS (Netherlands)

    Turner, L.B.; Farrell, M.; Humphreys, M.O.; Dolstra, O.

    2010-01-01

    Water-soluble carbohydrates (WSC) are an important factor determining the nutritional value of grass forage and development of genetic markers for selection of WSC traits in perennial ryegrass would benefit future breeding programmes. Quantitative trait loci (QTLs) for WSC have been published for an

  13. Antioxidative activity of water soluble polysaccharide in pumpkin fruits (Cucurbita maxima Duchesne).

    Science.gov (United States)

    Nara, Kazuhiro; Yamaguchi, Akira; Maeda, Naomi; Koga, Hidenori

    2009-06-01

    We evaluated the antioxidative activity of a water soluble polysaccharide fraction (WSP) from pumpkin fruits (Cucurbita maxima Duchesne). In the WSP, DPPH radical scavenging and superoxide dismutase-like activity increased depending on the total sugar content. Furthermore, the WSP can serve as an inhibitor of ascorbic acid oxidation. The efficacy was also affected by the total sugar content.

  14. Cross-linking of dermal sheep collagen using a water-soluble carbodiimide

    NARCIS (Netherlands)

    Damink, LHHO; Dijkstra, PJ; vanLuyn, MJA; vanWachem, PB; Nieuwenhuis, P; Feijen, J

    A cross-linking method for collagen-based biomaterials was developed using the water-soluble carbodiimide 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide hydrochloride (EDC). Cross-linking using EDC involves the activation of carboxylic acid groups to give O-acylisourea groups, which form cross-links

  15. In vitro degradation of dermal sheep collagen cross-linked using a water-soluble carbodiimide

    NARCIS (Netherlands)

    Damink, LHHO; Dijkstra, PJ; vanLuyn, MJA; vanWachem, PB; Nieuwenhuis, P; Feijen, J

    Bacterial collagenase was used to study the susceptibility of dermal sheep collagen (DSC) cross-inked with a mixture of the water-soluble carbodiimide 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide hydrochloride and N-hydroxysuccinimide (EIN-DSC) towards enzymatic degradation. Contrary to

  16. Cross-linking of dermal sheep collagen using a water-soluble carbodiimide

    NARCIS (Netherlands)

    Olde damink, L.H.H.; Olde Damink, L.H.H.; Dijkstra, Pieter J.; van Luyn, M.J.A.; van Wachem, P.B.; Nieuwenhuis, P.; Feijen, Jan

    1996-01-01

    A cross-linking method for collagen-based biomaterials was developed using the water-soluble carbodiimide 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide hydrochloride (EDC). Cross-linking using EDC involves the activation of carboxylic acid groups to give O-acylisourea groups, which form cross-links

  17. 40 CFR 799.6786 - TSCA water solubility: Generator column method.

    Science.gov (United States)

    2010-07-01

    ... b, using a linear regression equation of C vs. R in the following form: Equation 4: ER15DE00.062... address in paragraph (e) of this section. (b) Introduction—(1) Purpose. (i) The water solubility of a... peak area to volume injected and, from the regression equation of the calibration line, determine the...

  18. Synthesis of water-soluble scaffolds for peptide cyclization, labeling, and ligation

    NARCIS (Netherlands)

    Smeenk, L.E.J.; Dailly, N.; Hiemstra, H.; van Maarseveen, J.H.; Timmerman, P.

    2012-01-01

    The synthesis and applications of water-soluble scaffolds that conformationally constrain side chain unprotected linear peptides containing two cysteines are described. These scaffolds contain a functionality with orthogonal reactivity to be used for labeling and ligation. This is illustrated by the

  19. Distribution of various water soluble radioactive metalloporphyrins in tumor bearing mice

    International Nuclear Information System (INIS)

    Hambright, P.; Fawwaz, R.; Valk, P.; McRae, J.; Bearden, A.J.

    1975-01-01

    The distribution of a variety of water soluble 109 Pd and 64 Cu porphyrins were studied in mice bearing three types of tumors. While the metalloporphyrins are found to have an affinity for neoplastic tissue, substantial extra-tumor concentrations are also noted. Although this limits their value as specific tumor imaging agents, their use in localized therapy is discussed

  20. Temperature and sodium chloride effects on the solubility of anthracene in water

    International Nuclear Information System (INIS)

    Arias-Gonzalez, Israel; Reza, Joel; Trejo, Arturo

    2010-01-01

    The solubility of anthracene was measured in pure water and in sodium chloride aqueous solution (salt concentration, m/mol . kg -1 = 0.1006, 0.5056, and 0.6082) at temperatures between (278 and 333) K. Solubility of anthracene in pure water agrees fairly well with values reported in earlier similar studies. Solubility of anthracene in sodium chloride aqueous solutions ranged from (6 . 10 -8 to 143 . 10 -8 ) mol . kg -1 . Sodium chloride had a salting-out effect on the solubility of anthracene. The salting-out coefficients did not vary significantly with temperature over the range studied. The average salting-out coefficient for anthracene was 0.256 kg . mol -1 . The standard molar Gibbs free energies, Δ tr G o , enthalpies, Δ tr H o , and entropies, Δ tr S o , for the transfer of anthracene from pure water to sodium chloride aqueous solutions were also estimated. Most of the estimated Δ tr G o values were positive [(20 to 1230) J . mol -1 ]. The analysis of the thermodynamic parameters shows that the transfer of anthracene from pure water to sodium chloride aqueous solution is thermodynamically unfavorable, and that this unfavorable condition is caused by a decrease in entropy.

  1. Assessment of acute toxicity of water soluble fraction of diesel on ...

    African Journals Online (AJOL)

    Acute toxicity of water soluble fraction (WSF) of diesel fuel was assessed by evaluating its effects on growth of two marine microalgae, Isochrysis and Chaetoceros. Pure cultures of each of the two microalgae were exposed to concentrations of 0% (controls), 5%, 10%, 15% and 20% of diesel WSF (in triplicates) and allowed ...

  2. Amino acids as co-amorphous stabilizers for poorly water soluble drugs--Part 1

    DEFF Research Database (Denmark)

    Löbmann, Korbinian; Grohganz, Holger; Laitinen, Riikka

    2013-01-01

    molecular weight excipients that form specific molecular interactions with the drug resulting in co-amorphous forms. The two poorly water soluble drugs carbamazepine and indomethacin were combined with amino acids from the binding sites of the biological receptors of these drugs. Mixtures of drug...

  3. Mechanisms and Regulation of Intestinal Absorption of Water-soluble Vitamins: Cellular and Molecular Aspects

    DEFF Research Database (Denmark)

    Nexø, Ebba; Said, Hamid M

    2012-01-01

    The water-soluble vitamins represent a group of structurally and functionally unrelated compounds that share the common feature of being essential for normal cellular functions, growth, and development. With the exception of some endogenous production of niacin, human cells cannot synthesize...

  4. The effect of water solubles on Kelvin effects of the Maritime Polluted ...

    African Journals Online (AJOL)

    In this work microphysical properties of Maritime Polluted aerosols wereextracted from Optical Properties of Aerosols and Clouds (OPAC) after varying the concentrations of water soluble at five different levels. The analytical expressions for the changes in the equilibrium relative humidity (RH), effective radii, effective ...

  5. Biphasic and SAPC Hydroformylation Catalyzed by Rh-phosphines Bound to Water-Soluble Polymers

    DEFF Research Database (Denmark)

    Malmstrøm, Torsten; Andersson, Carlaxel; Hjortkjær, Jes

    1999-01-01

    Coupling of the triphenylphosphine moiety to poly-acrylic acid and poly-ethyleneimine respectively afford the macromolecular ligands PAA-PNH and PEI-PNH. Reaction of the ligands with Rh(CO)2(acac) give water-soluble complexes that are active as catalysts in the hydroformylation ofdifferent olefins...

  6. Temperature and sodium chloride effects on the solubility of anthracene in water

    Energy Technology Data Exchange (ETDEWEB)

    Arias-Gonzalez, Israel [Instituto Mexicano del Petroleo, Direccion de Investigacion y Posgrado, Programa de Ingenieria Molecular, Area de Investigacion en Termofisica, Eje Central Lazaro Cardenas Norte 152. 07730, Mexico D.F. (Mexico); Reza, Joel, E-mail: jreza@imp.m [Instituto Mexicano del Petroleo, Direccion de Investigacion y Posgrado, Programa de Ingenieria Molecular, Area de Investigacion en Termofisica, Eje Central Lazaro Cardenas Norte 152. 07730, Mexico D.F. (Mexico); Trejo, Arturo, E-mail: atrejo@imp.m [Instituto Mexicano del Petroleo, Direccion de Investigacion y Posgrado, Programa de Ingenieria Molecular, Area de Investigacion en Termofisica, Eje Central Lazaro Cardenas Norte 152. 07730, Mexico D.F. (Mexico)

    2010-11-15

    The solubility of anthracene was measured in pure water and in sodium chloride aqueous solution (salt concentration, m/mol . kg{sup -1} = 0.1006, 0.5056, and 0.6082) at temperatures between (278 and 333) K. Solubility of anthracene in pure water agrees fairly well with values reported in earlier similar studies. Solubility of anthracene in sodium chloride aqueous solutions ranged from (6 . 10{sup -8} to 143 . 10{sup -8}) mol . kg{sup -1}. Sodium chloride had a salting-out effect on the solubility of anthracene. The salting-out coefficients did not vary significantly with temperature over the range studied. The average salting-out coefficient for anthracene was 0.256 kg . mol{sup -1}. The standard molar Gibbs free energies, {Delta}{sub tr}G{sup o}, enthalpies, {Delta}{sub tr}H{sup o}, and entropies, {Delta}{sub tr}S{sup o}, for the transfer of anthracene from pure water to sodium chloride aqueous solutions were also estimated. Most of the estimated {Delta}{sub tr}G{sup o} values were positive [(20 to 1230) J . mol{sup -1}]. The analysis of the thermodynamic parameters shows that the transfer of anthracene from pure water to sodium chloride aqueous solution is thermodynamically unfavorable, and that this unfavorable condition is caused by a decrease in entropy.

  7. Synthesis and Characterization of Water-soluble Conjugates of Cabazitaxel Hemiesters-Dextran.

    Science.gov (United States)

    Parhizkar, Elahehnaz; Ahmadi, Fatemeh; Daneshamouz, Saeid; Mohammadi-Samani, Soliman; Sakhteman, Amirhossein; Parhizkar, Golnaz

    2017-11-24

    Cabazitaxel (CTX) is a second- generation taxane derivative, a class of potent anticancer drugs with very low water solubility. CTX is used in patients with resistant prostate cancer unresponsive to the first generation taxane, docetaxel. Currently marketed formulations of CTX contain high concentrations of surfactant and ethanol, which cause severe hypersensitivity reactions in patients. In order to increase its solubility, two hemiester analogs; CTX-succinate and CTX-glutarate were synthesized and characterized. To improve the solubility of hemiesters even more, dextran as a biocompatible polymer was also conjugated to hemiester analogs. MTT assay was performed on MCF-7 cell line to evaluate the cytotoxicity effect of hemiesters and conjugates. Based on the results, hemiester analogs increased water solubility of the drug up to about 3 and 8 fold. Conjugation to dextran enhanced the CTX solubility to more than 1500 fold. These conjugates released the conjugated CTX in less than 24 hours in a pH dependent manner and showed proper hemocompatibility characteristics. The hemiesters had approximately similar cytotoxicity in comparison with CTX and the dextran conjugates showed higher cytotoxicity effect on MCF-7 cell line. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  8. New Methods for the Analysis of Water-Soluble Vitamins in Infant Formula and Adult/Pediatric Nutritionals.

    Science.gov (United States)

    Martin, Frederic; Giménez, Ester Campos; Konings, Erik

    2016-01-01

    Water-soluble vitamins (WSVs) are a group of organic compounds which are essential micronutrients. WSVs could be divided between the B complex group and vitamin C (l-ascorbic acid). Within the B complex group, eight vitamins are recognized: vitamins B1 (thiamin), B2 (riboflavin), B3 (niacin or niacinamide), B5 (pantothenic acid), B6 (pyridoxine, pyridoxal, or pyridoxamine), B7 (biotin), B9 (folic acid), and B12 (various cobalamins). This paper reviews the new methods for the analysis of these vitamins, with a focus on infant formula and adult nutritionals.

  9. Low-frequency magnetic field effect on solubility of oxalate type human organominerals in water in vitro

    Directory of Open Access Journals (Sweden)

    PopkovV.M.

    2012-09-01

    Full Text Available The research goal is to determine low-frequency AMF effect on dissolution of urinary stone material in vitro in water with human urinary stones (oxalate type. Materials and Methods. The structural changes in aqueous solutions may occur when exposed to low-frequency alternating magnetic fields (AMF. It depends on chemical composition of the solutions under the study. Results. Organic components (63.1 %, leading to the density decrease of the solution, urea (18.8%, leading to its increase, and oxalic acid (19.7% have been determined in stone composition. The decrease of transmittance T (% by the time of oxalate dissolution has indicated increase in concentration of dissolved sample. The sample has been exposed to AMF of 2-9 Hz on the background of the control sample. The growth of this dependence with AMF increasing of 11-22 Hz has established less concentration of dissolved sample in the test solution than in the control one. Conclusion. The main task has been to determine the influence of AMF of 2-22 Hz on solubility of urinary stones placed in water for an hour. The article is to conclude that maximal solubility of oxalate mineral sample by AMF of 2-22 Hz has been reached. It is 14% more than in the control solution. The effectiveness of AMF influence on solubility of organomineral decreases with frequency increasing. It has been confirmed by photometric and areometric measurements.

  10. Renal excretion of water-soluble contrast media after enema in the neonatal period.

    Science.gov (United States)

    Kim, Hee Sun; Je, Bo-Kyung; Cha, Sang Hoon; Choi, Byung Min; Lee, Ki Yeol; Lee, Seung Hwa

    2014-08-01

    When abdominal distention occurs or bowel obstruction is suspected in the neonatal period, a water-soluble contrast enema is helpful for diagnostic and therapeutic purposes. The water-soluble contrast medium is evacuated through the anus as well as excreted via the kidneys in some babies. This study was designed to evaluate the incidence of renal excretion after enemas using water-soluble contrast media and presume the causes. Contrast enemas using diluted water-soluble contrast media were performed in 23 patients under 2 months of age. After the enema, patients were followed with simple abdominal radiographs to assess the improvement in bowel distention, and we could also detect the presence of renal excretion of contrast media on the radiographs. Reviewing the medical records and imaging studies, including enemas and consecutive abdominal radiographs, we evaluated the incidence of renal excretion of water-soluble contrast media and counted the stay duration of contrast media in urinary tract, bladder, and colon. Among 23 patients, 12 patients (52%) experienced the renal excretion of water-soluble contrast media. In these patients, stay-in-bladder durations of contrast media were 1-3 days and stay-in-colon durations of contrast media were 1-10 days, while stay-in-colon durations of contrast media were 1-3 days in the patients not showing renal excretion of contrast media. The Mann-Whitney test for stay-in-colon durations demonstrated the later evacuation of contrast media in the patients with renal excretion of contrast media (p = 0.07). The review of the medical records showed that 19 patients were finally diagnosed as intestinal diseases, including Hirschsprung's disease, meconium ileum, meconium plug syndrome, and small bowel atresia or stenosis. Fisher's exact test between the presence of urinary excretion and intestinal diseases indicated a statistically significant difference (p = 0.04). The intestinal diseases causing bowel obstruction may increase the

  11. SPATIAL AND TEMPORAL DISTRIBUTION OF COLORED DISSOLOVED ORGANIC MATTER (CDOM) IN SOUTHERN NEW ENGALND COASTAL WATERS

    Science.gov (United States)

    The concentration of colored dissolved organic matter (CDOM) is a primary factor affecting the absorption of incident sunlight in coastal and estuarine waters. CDOM is extracted from water-soluble humic substances and transported by runoff into lakes and coastal waters. CDOM is a...

  12. Consequences of chirality on the dynamics of a water-soluble supramolecular polymer.

    Science.gov (United States)

    Baker, Matthew B; Albertazzi, Lorenzo; Voets, Ilja K; Leenders, Christianus M A; Palmans, Anja R A; Pavan, Giovanni M; Meijer, E W

    2015-02-20

    The rational design of supramolecular polymers in water is imperative for their widespread use, but the design principles for these systems are not well understood. Herein, we employ a multi-scale (spatial and temporal) approach to differentiate two analogous water-soluble supramolecular polymers: one with and one without a stereogenic methyl. Initially aiming simply to understand the molecular behaviour of these systems in water, we find that while the fibres may look identical, the introduction of homochirality imparts a higher level of internal order to the supramolecular polymer. Although this increased order does not seem to affect the basic dimensions of the supramolecular fibres, the equilibrium dynamics of the polymers differ by almost an order of magnitude. This report represents the first observation of a structure/property relationship with regard to equilibrium dynamics in water-soluble supramolecular polymers.

  13. Consequences of chirality on the dynamics of a water-soluble supramolecular polymer

    Science.gov (United States)

    Baker, Matthew B.; Albertazzi, Lorenzo; Voets, Ilja K.; Leenders, Christianus M. A.; Palmans, Anja R. A.; Pavan, Giovanni M.; Meijer, E. W.

    2015-02-01

    The rational design of supramolecular polymers in water is imperative for their widespread use, but the design principles for these systems are not well understood. Herein, we employ a multi-scale (spatial and temporal) approach to differentiate two analogous water-soluble supramolecular polymers: one with and one without a stereogenic methyl. Initially aiming simply to understand the molecular behaviour of these systems in water, we find that while the fibres may look identical, the introduction of homochirality imparts a higher level of internal order to the supramolecular polymer. Although this increased order does not seem to affect the basic dimensions of the supramolecular fibres, the equilibrium dynamics of the polymers differ by almost an order of magnitude. This report represents the first observation of a structure/property relationship with regard to equilibrium dynamics in water-soluble supramolecular polymers.

  14. Changes in apparent molar water volume and DKP solubility yield insights on the Hofmeister effect.

    Science.gov (United States)

    Payumo, Alexander Y; Huijon, R Michael; Mansfield, Deauna D; Belk, Laurel M; Bui, Annie K; Knight, Anne E; Eggers, Daryl K

    2011-12-15

    This study examines the properties of a 4 × 2 matrix of aqueous cations and anions at concentrations up to 8.0 M. The apparent molar water volume, as calculated by subtracting the mass and volume of the ions from the corresponding solution density, was found to exceed the molar volume of ice in many concentrated electrolyte solutions, underscoring the nonideal behavior of these systems. The solvent properties of water were also analyzed by measuring the solubility of diketopiperazine (DKP) in 2.000 M salt solutions prepared from the same ion combinations. Solution rankings for DKP solubility were found to parallel the Hofmeister series for both cations and anions, whereas molar water volume concurred with the cation series only. The results are discussed within the framework of a desolvation energy model that attributes solute-specific changes in equilibria to solute-dependent changes in the free energy of bulk water.

  15. Changes in Apparent Molar Water Volume and DKP Solubility Yield Insights on the Hofmeister Effect

    Science.gov (United States)

    Payumo, Alexander Y.; Huijon, R. Michael; Mansfield, Deauna D.; Belk, Laurel M.; Bui, Annie K.; Knight, Anne E.; Eggers, Daryl K.

    2011-01-01

    This study examines the properties of a 4 × 2 matrix of aqueous cations and anions at concentrations up to 8.0 M. The apparent molar water volume, as calculated by subtracting the mass and volume of the ions from the corresponding solution density, was found to exceed the molar volume of ice in many concentrated electrolyte solutions, underscoring the non-ideal behavior of these systems. The solvent properties of water were also analyzed by measuring the solubility of diketopiperazine (DKP) in 2.000 M salt solutions prepared from the same ion combinations. Solution rankings for DKP solubility were found to parallel the Hofmeister series for both cations and anions, whereas molar water volume concurred with the cation series only. The results are discussed within the framework of a desolvation energy model that attributes solute-specific changes in equilibria to solute-dependent changes in the free energy of bulk water. PMID:22029390

  16. Thermodynamic Stability Analysis of Tolbutamide Polymorphs and Solubility in Organic Solvents.

    Science.gov (United States)

    Svärd, Michael; Valavi, Masood; Khamar, Dikshitkumar; Kuhs, Manuel; Rasmuson, Åke C

    2016-06-01

    Melting temperatures and enthalpies of fusion have been determined by differential scanning calorimetry (DSC) for 2 polymorphs of the drug tolbutamide: FI(H) and FV. Heat capacities have been determined by temperature-modulated DSC for 4 polymorphs: FI(L), FI(H), FII, FV, and for the supercooled melt. The enthalpy of fusion of FII at its melting point has been estimated from the enthalpy of transition of FII into FI(H) through a thermodynamic cycle. Calorimetric data have been used to derive a quantitative polymorphic stability relationship between these 4 polymorphs, showing that FII is the stable polymorph below approximately 333 K, above which temperature FI(H) is the stable form up to its melting point. The relative stability of FV is well below the other polymorphs. The previously reported kinetic reversibility of the transformation between FI(L) and FI(H) has been verified using in situ Raman spectroscopy. The solid-liquid solubility of FII has been gravimetrically determined in 5 pure organic solvents (methanol, 1-propanol, ethyl acetate, acetonitrile, and toluene) over the temperature range 278 to 323 K. The ideal solubility has been estimated from calorimetric data, and solution activity coefficients at saturation in the 5 solvents determined. All solutions show positive deviation from Raoult's law, and all van't Hoff plots of solubility data are nonlinear. The solubility in toluene is well below that observed in the other investigated solvents. Solubility data have been correlated and extrapolated to the melting point using a semiempirical regression model. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  17. Water soluble (Ln3+) doped nanoparticle: Retention of strong luminescence

    Science.gov (United States)

    Attar, Tarannum Vahid; Khandpekar, Mahendra M.

    2018-04-01

    This paper deals with the synthesis of hexagonal nanoparticles of LaF3: Nd, Ho (LFNH) in the presence of LaCl3.7H2O and NH4F by precipitation method using deionized water as solvent. The nanoparticles have a nearly hexagonal shape with cell parameters, a = b = 7.0980 AU and c = 7.2300 AU and confirms with the JCPDS standard card (32-0483) of pure LaF3 crystals. The TEM results show that the average sizes of these nanoparticles are 15nm which is consistent with the sizes obtained from XRD measurements. The SEM image shows uniform size distribution of the nanoparticles. Detection of Second harmonic generation (SHG) signal together with the presence of wide transparency window (UV studies) makes LFNH suitable for optoelectronic applications. The Photoluminescence of the nanocrystals has been observed by excitation and emission spectra. The peak at 629nm indicates red up conversion fluorescence useful in applications like bioimaging and biolabelling.

  18. Maximizing recovery of water-soluble proteins through acetone precipitation.

    Science.gov (United States)

    Crowell, Andrew M J; Wall, Mark J; Doucette, Alan A

    2013-09-24

    Solvent precipitation is commonly used to purify protein samples, as seen with the removal of sodium dodecyl sulfate through acetone precipitation. However, in its current practice, protein loss is believed to be an inevitable consequence of acetone precipitation. We herein provide an in depth characterization of protein recovery through acetone precipitation. In 80% acetone, the precipitation efficiency for six of 10 protein standards was poor (ca. ≤15%). Poor recovery was also observed for proteome extracts, including bacterial and mammalian cells. As shown in this work, increasing the ionic strength of the solution dramatically improves the precipitation efficiency of individual proteins, and proteome mixtures (ca. 80-100% yield). This is obtained by including 1-30 mM NaCl, together with acetone (50-80%) which maximizes protein precipitation efficiency. The amount of salt required to restore the recovery correlates with the amount of protein in the sample, as well as the intrinsic protein charge, and the dielectric strength of the solution. This synergistic approach to protein precipitation in acetone with salt is consistent with a model of ion pairing in organic solvent, and establishes an improved method to recover proteins and proteome mixtures in high yield. Copyright © 2013 Elsevier B.V. All rights reserved.

  19. Experimental density, viscosity, interfacial tension and water solubility of ethyl benzene-α-methyl benzyl alcohol–water system

    International Nuclear Information System (INIS)

    Barega, Esayas W.; Zondervan, Edwin; Haan, André B. de

    2013-01-01

    Highlights: • Properties were measured for MBA (methyl benzyl alcohol)-EB (ethyl benzene)-water. • MBA concentration was found to influence all the properties strongly. • The water solubility, density, and viscosity increased at high MBA concentration. • The interfacial tension decreased sharply at high MBA concentration. • MBA dictates the phase separation and mass transfer of the ternary system. -- Abstract: Density, viscosity, interfacial tension, and water solubility were measured for the (α-methyl benzyl alcohol (MBA) + Ethyl benzene (EB)) system at different concentrations of MBA in contact with water and sodium hydroxide solution (0.01 mol · kg −1 ) as aqueous phases. The properties were measured to identify the component which plays a governing role in changing the physical properties relevant to mass transfer and phase separation of the ternary system. The concentration of MBA was found to be the major factor influencing all the properties. The water solubility, the density, and the viscosity increased notably at higher concentrations of MBA; while, the interfacial tension decreased strongly. The use of 0.01 mol · kg −1 NaOH as an aqueous phase resulted in a decrease of the interfacial tension and a minor decrease in the water solubility. The density data were correlated using a quadratic mixing rule to describe the influence of concentration at any temperature. The viscosity data are correlated using the Nissan and Grunberg and Katti-Chaudhri equations. The Szyzkowski’s equation was used to correlate the interfacial tension data. The water solubility data were described using an exponential relationship. All the correlations described the experimental physical property data adequately

  20. Temperature Dependence of Mineral Solubility in Water. Part 2. Alkaline and Alkaline Earth Bromides

    Science.gov (United States)

    Krumgalz, B. S.

    2018-03-01

    Databases of alkaline and alkaline earth bromide solubilities in water at various temperatures were created using experimental data from publications over about the last two centuries. Statistical critical evaluation of the created databases was produced since there were enough independent data sources to justify such evaluation. The reliable experimental data were adequately described by polynomial expressions over various temperature ranges. Using the Pitzer approach for ionic activity and osmotic coefficients, the thermodynamic solubility products for the discussed bromide minerals have been calculated at various temperature intervals and also represented by polynomial expressions.

  1. Calcium carbonate growth in the presence of water soluble cellulose ethers

    International Nuclear Information System (INIS)

    Zhang Fengju; Yang Xinguo; Tian Fei

    2009-01-01

    Calcium carbonate precipitation was performed in the presence of methyl cellulose (MC) and two kinds of hydroxyethyl cellulose (HEC FD-10000, HEC FD-30000). The results demonstrated that the final product morphology and structure of CaCO 3 crystals are highly sensitive to the concentration of the cellulose ethers aqueous solution. By precisely controlling their concentrations, all these three cellulose ethers solutions have the ability of protecting metastable vaterite from thermodynamically transforming into stable calcite. The intermediate products investigation showed to some extent the phase transformation of calcium carbonate in its growing process from metastable vaterite to calcite and indicated that the calcium carbonate crystal growth in HEC solutions occurs through dissolution and reprecipitation process. Calcium carbonate growth in both presence of HEC and ethanol or Mg 2+ was also examined. This work demonstrates the potential of water soluble cellulose ethers in controlling biominerals crystallization and growth. The results are revelatory for biomineralization and fabricating new organic-inorganic hybrids based on cellulose derivatives.

  2. Composição química da solução de solo sob diferentes coberturas vegetais e análise de carbono orgânico solúvel no deflúvio de pequenos cursos de água Chemical composition of soil solution under different land cover and soluble organic carbon in water from small creeks

    Directory of Open Access Journals (Sweden)

    Josias Miranda

    2006-08-01

    , taking climatic conditions into consideration. Soluble organic carbon was also determined in the soil solution and in water streams of small watersheds. Soil solution was extracted monthly from soils under different land uses from three layers: 0 to 20, 20 to 40 and 40 to 100 cm. The soil solution was extracted by centrifugation, at a relative centrifuge force of 900 g. Additionally, water samples were collected from four creeks draining out of watersheds under different land uses. A slight increase in the ion concentration was observed in the soil solution in the beginning of the wet season. The changes were pronounced for the soluble organic carbon in the soil solution and water streams. Soil fertilization promoted the displacement of exchangeable ions to the soil solution down through the soil profile. The highest soil leaching was found for the bare soil. The soluble organic carbon movement across the soil profile was higher under pasture, even though its concentration was the lowest compared to the other land uses. The highest soil organic carbon was observed in water of a creek draining out of a pasture watershed.

  3. Green synthesis of water soluble semiconductor nanocrystals and their applications

    Science.gov (United States)

    Wang, Ying

    II-VI semiconductor nanomaterials, e.g. CdSe and CdTe, have attracted great attention over the past decades due to their fascinating optical and electrical properties. The research presented here focuses on aqueous semiconductor nanomaterials. The work can be generally divided into three parts: synthesis, property study and application. The synthetic work is devoted to develop new methods to prepare shape- and structure-controlled II-VI semiconductor nanocrystals including nanoparticles and nanowires. CdSe and CdSe CdS semiconductor nanocrystals have been synthesized using sodium citrate as a stabilizer. Upon prolonged illumination with visible light, photoluminescence quantum yield of those quantum dots can be enhanced up to 5000%. The primary reason for luminescence enhancement is considered to be the removing of specific surface states (photocorrosion) and the smoothing of the CdSe core surface (photoannealing). CdTe nanowires are prepared through self-organization of stabilizer-depleted CdTe nanoparticles. The dipolar-dipolar attraction is believed to be the driving force of nanowire formation. The rich surface chemistry of CdTe nanowire is reflected by the formation of silica shell with different morphologies when nanowires with different capping ligands are used. Te and Se nanowires are prepared by chemical decomposition of CdTe and CdSe nanoparticles in presence of an external chemical stimulus, EDTA. These results not only provide a new example of NP→NW transformation, but also lead to a better understanding of the molecular process occurring in the stabilizer-depleted nanoparticles. The applications of those semiconductor materials are primarily based on the construction of nano-structured ultrathin films with desirable functions by using layer-by-layer technique (LBL). We demonstrate that light-induced micro-scale multicolor luminescent patterns can be obtained on photoactivable CdSe/CdS nanoparticles thin films by combining the advantages of LBL as

  4. Hydrodistillation-adsorption method for the isolation of water-soluble, non-soluble and high volatile compounds from plant materials.

    Science.gov (United States)

    Mastelić, J; Jerković, I; Blazević, I; Radonić, A; Krstulović, L

    2008-08-15

    Proposed method of hydrodistillation-adsorption (HDA) on activated carbon and hydrodistillation (HD) with solvent trap were compared for the isolation of water-soluble, non-soluble and high volatile compounds, such as acids, monoterpenes, isothiocyanates and others from carob (Certonia siliqua L.), rosemary (Rosmarinus officinalis L.) and rocket (Eruca sativa L.). Isolated volatiles were analyzed by GC and GC/MS. The main advantages of HDA method over ubiquitous HD method were higher yields of volatile compounds and their simultaneous separation in three fractions that enabled more detail analyses. This method is particularly suitable for the isolation and analysis of the plant volatiles with high amounts of water-soluble compounds. In distinction from previously published adsorption of remaining volatile compounds from distillation water on activated carbon, this method offers simultaneous hydrodistillation and adsorption in the same apparatus.

  5. Equilibrium solubility of carbon dioxide in the amine solvent system of (triethanolamine + piperazine + water)

    International Nuclear Information System (INIS)

    Chung, P.-Y.; Soriano, Allan N.; Leron, Rhoda B.; Li, M.-H.

    2010-01-01

    In this study, a new set of data for the equilibrium solubility of carbon dioxide in the amine solvent system that consists of triethanolamine (TEA), piperazine (PZ), and water is presented. Equilibrium solubility values were obtained at T = (313.2, 333.2, and 353.2) K and pressures up to 153 kPa using the vapour-recirculation equilibrium cell. The TEA concentrations in the considered ternary (solvent) mixture were (2 and 3) kmol . m -3 and those of PZ's were (0.5, 1.0, and 1.5) kmol . m -3 . The solubility data (CO 2 loading in the amine solution) obtained were correlated as a function of CO 2 partial pressure, system temperature, and amine composition via the modified Kent-Eisenberg model. Results showed that the model applied is generally satisfactory in representing the CO 2 absorption into mixed aqueous solutions of TEA and PZ.

  6. Magnetite solubility studies under simulated PWR primary-side conditions, using lithiated, hydrogenated water

    International Nuclear Information System (INIS)

    Hewett, John; Morrison, Jonathan; Cooper, Christopher; Ponton, Clive; Connolly, Brian; Dickinson, Shirley; Henshaw, Jim

    2014-01-01

    As software for modelling dissolution, precipitation, and transport of metallic species and subsequent CRUD deposition within nuclear plant becomes more advanced, there is an increasing need for accurate and reliable thermodynamic data. The solubility behaviour of magnetite is an example of such data, and is central to any treatment of CRUD solubility due to the prevalence of magnetite and nickel ferrites in CRUD. Several workers have shown the most consistent solubility data comes from once-through flowing systems. However, despite a strong consensus between the results in acidic to mildly alkaline solutions, there is disagreement between the results at approximately pH 25C 9 and higher. A programme of experimental work is on-going at the University of Birmingham, focusing on solubility of metal oxides (e.g., magnetite) in conditions relevant to PWR primary coolant. One objective of this programme is to calculate thermodynamic constants from the data obtained. Magnetite solubility from 200 to 300°C, in lithiated, hydrogenated water of pH 25C 9–11 is being studied using a once-through rig constructed of 316L stainless steel. The feedwater is pumped at 100 bar pressure through a heated bed of magnetite granules, and the output solution is collected and analysed for iron and several other metals by ICP-MS. This paper presents results from preliminary tests without magnetite granules, in which the corroding surface of the rig itself was used as the sole source of soluble iron and of dissolved hydrogen. Levels of iron were generally within an order of magnitude of literature solubility values. Comparison of results at different flow rates and temperatures, in conjunction with conclusions drawn from the published literature, suggests that this is likely due to the presence of particulate matter in a greatly under-saturated solution, compensating for the low surface area of oxide in contact with the solution. (author)

  7. Seasonal variation of water-soluble chemical components in the bulk atmospheric aerosols collected at Okinawa Island, Japan

    Science.gov (United States)

    Handa, D.; Nakajima, H.; Nakaema, F.; Arakaki, T.; Tanahara, A.

    2008-12-01

    The economic development and population growth in recent Asia spread air pollution. Emission rate of air pollutants from Asia, in particular oxides of nitrogen, surpassed those from North America and Europe and should continue to exceed them for decades. The study of the air pollution transported from Asian continent has gained a special attention in Japan. Okinawa Island is situated approximately 1500 km south of Tokyo, Japan, 2000 km southeast of Beijing, China, and 1000 km south of South Korea. Its location is ideal in observing East Asian atmospheric aerosols because maritime air mass prevails during summer, while continental air mass dominates during fall, winter, and spring. The maritime air mass data can be seen as background and can be compared with continental air masses which have been affected by anthropogenic activities. In 2005, Cape Hedo Atmosphere and Aerosol Monitoring Station (CHAAMS) was established by the National Institute for Environmental Studies (NIES) at the northern tip of Okinawa Island, Japan to monitor the air quality of Asia. Bulk aerosol samples were collected on quartz filters by using a high volume air sampler. Sampling duration was one week for each sample. We determined the concentrations of water-soluble anions, cations and dissolved organic carbon in the bulk aerosols collected at the CHAAMS, using ion chromatography, atomic absorption spectrometry, and total organic carbon analyzer, respectively. Seasonal variation of water-soluble chemical components showed that the concentrations were relatively low in summer, higher in fall and winter, and the highest in spring. When air mass came from Asian Continent, the concentrations of water-soluble chemical components were much higher compared to the other directions.

  8. Solubility of nicotinic acid in water, ethanol, acetone, diethyl ether, acetonitrile, and dimethyl sulfoxide

    International Nuclear Information System (INIS)

    Gonçalves, Elsa M.; Minas da Piedade, Manuel E.

    2012-01-01

    Highlights: ► We determined the solubility of nicotinic acid in six solvents by the gravimetric method. ► We found that, regardless of the solvent, the same monoclinic solid phase was in equilibrium with the solution. ► We determined the activity coefficients of nicotinic acid in the six solvents. ► We found that the solubility trends seem to be determined by the polarity and polarizability of the solvent. - Abstract: The mole fraction equilibrium solubility of nicotinic acid in six solvents (water, ethanol, dimethyl sulfoxide, acetone, acetonitrile and diethyl ether) differing in polarity, polarizability, and hydrogen-bonding ability, was determined over the temperature range (283 to 333) K, using the gravimetric method. The results obtained led to the solubility order dimethyl sulfoxide (DMSO) ≫ ethanol > water > acetone > diethyl ether > acetonitrile. An analysis based on various solvent descriptors, indicated that this trend seems to be mainly determined by the polarity and polarizability of the solvent. The activity coefficients of nicotinic acid in the different solvents, under saturation conditions, were determined as a function of the temperature and it was found that DMSO exhibits enhanced solubility relative to an ideal solution while the opposite is observed for all other solvents. Both the solvent and the fact that nicotinic acid is primarily zwitterionic in aqueous solution and non-zwitterionic in non-aqueous media, did not affect the nature of the solid phases in equilibrium with the different solutions. Indeed, X-ray powder diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and differential scanning calorimetry analysis indicated that, despite some differences in particle size and morphology, the starting material and the solid products obtained at the end of the solubility studies in the six solvents used in this work were all crystalline and corresponded to the same monoclinic phase.

  9. An unusual feature of uranium ore from Domiasiat, Meghalaya: presence of water soluble uranium

    International Nuclear Information System (INIS)

    Singh, A.K.; Padmanabhan, N.P.H.; Sivaramakrishnan, K.; Krishna Rao, N.

    1993-01-01

    An unusual feature of the recently discovered sandstone-type uranium deposit in Domiasiat is the presence of appreciable amount of water soluble uranium. With normal tap water at its natural pH (7.5-7.8), upto 35% of the uranium in the ore was found to be soluble during agitation in the different samples. Presence of other ions in appreciable quantities particularly SO 4 -2 Cl - and Fe +3 appear to influence the dissolution. Percolation experiments give terminal solubilization of upto 58%, but the instantaneous uranium concentration in the percolating water attains its maximum within the first few minutes of contact. A detailed study on the chemistry of uranium dissolution may throw light on the physico-chemical controls of localization of uranium in the deposit. (author). 7 refs., 3 tabs., 4 tabs

  10. Method of cross-linking polyvinyl alcohol and other water soluble resins

    Science.gov (United States)

    Phillipp, W. H.; May, C. E.; Hsu, L. C.; Sheibley, D. W. (Inventor)

    1980-01-01

    A self supporting sheet structure comprising a water soluble, noncrosslinked polymer such as polyvinyl alcohol which is capable of being crosslinked by reaction with hydrogen atom radicals and hydroxyl molecule radicals is contacted with an aqueous solution having a pH of less than 8 and containing a dissolved salt in an amount sufficient to prevent substantial dissolution of the noncrosslinked polymer in the aqueous solution. The aqueous solution is then irradiated with ionizing radiation to form hydrogen atom radicals and hydroxyl molecule radicals and the irradiation is continued for a time sufficient to effect crosslinking of the water soluble polymer to produce a water insoluble polymer sheet structure. The method has particular application in the production of battery separators and electrode envelopes for alkaline batteries.

  11. NIRS determination of non-structural carbohydrates, water soluble carbohydrates and other nutritive quality traits in whole plant maize with wide range variability

    OpenAIRE

    L. Campo; A. B. Monteagudo; B. Salleres; P. Castro; J. Moreno-Gonzalez

    2013-01-01

    The aim of this work was to study the potential of near-infrared reflectance spectroscopy (NIRS) to predict non-structural carbohydrates (NSC), water soluble carbohydrates (WSC), in vitro organic dry matter digestibility (IVOMD), organic matter (OM), crude protein (CP), neutral detergent fiber (NDF), acid detergent fiber (ADF) and starch in samples of whole plant maize with a wide range of variability. The samples were analyzed in reflectance mode by a spectrophotometer FOSS NIRSystems 6500. ...

  12. Solubility of methane in water and in a medium for the cultivation of methanotrophs bacteria

    International Nuclear Information System (INIS)

    Serra, Maria Celeste C.; Pessoa, F.L.P.; Palavra, A.M.F.

    2006-01-01

    Solubility of methane in water and in an aqueous growth medium for the cultivation of methanotrophs bacteria was determined over the temperature range 293.15 to 323.15 K and at atmospheric pressure. The measurements were carried out in a Ben-Naim/Baer type apparatus with a precision of about ±0.3%. The experimental results were determined using accurate thermodynamic relations. The mole fractions of the dissolved gas at the gas partial pressure of 101.325 kPa, the Henry coefficients at the water vapour pressure and the Ostwald coefficients at infinite dilution were obtained. A comparison between the solubility of methane in water and those observed in fermentation medium over the temperature range of 298.15 to 308.15 K has shown that this gas is about ±2.3% more soluble in water. The temperature dependence of the mole fractions of methane was also determined using the Clarke-Glew-Weiss equation and the thermodynamic quantities, Gibbs energy, enthalpy and entropy changes, associated with the dissolution process were calculated. Furthermore, the experimental Henry coefficients for methane in water are compared with those calculated by the scaled particle theory. The estimated Henry coefficients are about ±4% lower than the experimental ones

  13. Defensive strategies in Geranium sylvaticum, Part 2: Roles of water-soluble tannins, flavonoids and phenolic acids against natural enemies.

    Science.gov (United States)

    Tuominen, Anu

    2013-11-01

    Geranium sylvaticum is a common herbaceous plant in Fennoscandia, which has a unique phenolic composition. Ellagitannins, proanthocyanidins, galloylglucoses, gallotannins, galloyl quinic acids and flavonoids possess variable distribution in its different organs. These phenolic compounds are thought to have an important role in plant-herbivore interactions. The aim of this study was to quantify these different water-soluble phenolic compounds and measure the biological activity of the eight organs of G. sylvaticum. Compounds were characterized and quantified using HPLC-DAD/MS, in addition, total proanthocyanidins were determined by BuOH-HCl assay and total phenolics by the Folin-Ciocalteau method. Two in vitro biological activity measurements were used: the prooxidant activity was measured by the browning assay and antioxidant activity by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. Organ extracts were fractionated using column chromatography on Sephadex LH-20 and the activities of fractions was similarly measured to evaluate which polyphenol groups contributed the most to the biological activity of each organ. The data on the activity of fractions were examined by multivariate data analysis. The water-soluble extracts of leaves and pistils, which contained over 30% of the dry weight as ellagitannins, showed the highest pro-oxidant activity among the organ extracts. Fraction analysis revealed that flavonoids and galloyl quinic acids also exhibited high pro-oxidant activity. In contrast, the most antioxidant active organ extracts were those of the main roots and hairy roots that contained high amounts of proanthocyanidins in addition to ellagitannins. Analysis of the fractions showed that especially ellagitannins and galloyl quinic acids have high antioxidant activity. We conclude that G. sylvaticum allocates a significant amount of tannins in those plant parts that are important to the fitness of the plant and susceptible to natural enemies, i

  14. Extending the applicability of pressurized hot water extraction to compounds exhibiting limited water solubility by pH control: curcumin from the turmeric rhizome.

    Science.gov (United States)

    Euterpio, Maria Anna; Cavaliere, Chiara; Capriotti, Anna Laura; Crescenzi, Carlo

    2011-11-01

    Pressurized hot water extraction (PHWE, also known as subcritical water extraction) is commonly considered to be an environmentally friendly extraction technique that could potentially replace traditional methods that use organic solvents. Unfortunately, the applicability of this technique is often limited by the very low water solubility of the target compounds, even at high temperatures. In this paper, the scope for broadening the applicability of PHWE by adjusting the pH of the water used in the extraction is demonstrated in the extraction of curcumin (which exhibits very limited water solubility) from untreated turmeric (Curcuma longa L.) rhizomes. Although poor extraction yields were obtained, even at high temperatures when using degassed water or neutral phosphate buffer as the extraction medium, yields exceeding those obtained by Soxhlet extraction were achieved using highly acidic pH buffers due to curcumin protonation. The influence of the temperature, pH, and buffer concentration on the extraction yield were investigated in detail by means of a series of designed experiments. Optimized conditions for the extraction of curcumin from turmeric by PHWE were estimated at 197 °C using 62 g/L buffer concentration at pH 1.6. The relationships between these variables were subjected to statistical analysis using response surface methodology.

  15. Microstructural control over soluble pentacene deposited by capillary pen printing for organic electronics.

    Science.gov (United States)

    Lee, Wi Hyoung; Min, Honggi; Park, Namwoo; Lee, Junghwi; Seo, Eunsuk; Kang, Boseok; Cho, Kilwon; Lee, Hwa Sung

    2013-08-28

    Research into printing techniques has received special attention for the commercialization of cost-efficient organic electronics. Here, we have developed a capillary pen printing technique to realize a large-area pattern array of organic transistors and systematically investigated self-organization behavior of printed soluble organic semiconductor ink. The capillary pen-printed deposits of organic semiconductor, 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS_PEN), was well-optimized in terms of morphological and microstructural properties by using ink with mixed solvents of chlorobenzene (CB) and 1,2-dichlorobenzene (DCB). Especially, a 1:1 solvent ratio results in the best transistor performances. This result is attributed to the unique evaporation characteristics of the TIPS_PEN deposits where fast evaporation of CB induces a morphological evolution at the initial printed position, and the remaining DCB with slow evaporation rate offers a favorable crystal evolution at the pinned position. Finally, a large-area transistor array was facilely fabricated by drawing organic electrodes and active layers with a versatile capillary pen. Our approach provides an efficient printing technique for fabricating large-area arrays of organic electronics and further suggests a methodology to enhance their performances by microstructural control of the printed organic semiconducting deposits.

  16. New biodegradable organic-soluble chelating agents for simultaneous removal of heavy metals and organic pollutants from contaminated media

    International Nuclear Information System (INIS)

    Ullmann, Amos; Brauner, Neima; Vazana, Shlomi; Katz, Zhanna; Goikhman, Roman; Seemann, Boaz; Marom, Hanit; Gozin, Michael

    2013-01-01

    Highlights: • New soil remediation process using phase transition of partially miscible solvents. • Design and synthesis of new bio-degradable, organic soluble chelating agents. • Feasibility tests of the process on authentically polluted sediments and sludge. • Simultaneous removal of toxic metals and organic pollutants was demonstrated. -- Abstract: Advanced biodegradable and non-toxic organic chelators, which are soluble in organic media, were synthesized on the basis of the S,S-ethylenediamine-disuccinate (S,S-EDDS) ligand. The modifications suggested in this work include attachment of a lipophilic hydrocarbon chain (“tail”) to one or both nitrogen atoms of the S,S-EDDS. The new ligands were designed and evaluated for application in the Sediments Remediation Phase Transition Extraction (SR-PTE) process. This novel process is being developed for the simultaneous removal of both heavy metals and organic pollutants from contaminated soils, sediments or sludge. The new chelators were designed to bind various target metal ions, to promote extraction of these ions into organic solvents. Several variations of attached tails were synthesized and tested. The results for one of them, N,N′-bis-dodecyl-S,S-EDDS (C24-EDDS), showed that the metal-ligand complexes are concentrated in the organic-rich phase in the Phase Transition Extraction process (more than 80%). Preliminary applications of the SR-PTE process with the C24-EDDS ligand were conducted also on actually contaminated sludge (field samples). The extraction of five toxic metals, namely, Cd, Cu, Ni, Pb and Zn was examined. In general, the extraction performance of the new ligand was not less than that of S,S-EDDS when a sufficient ligand-to-extracted ion ratio (about 4:1 was applied

  17. New biodegradable organic-soluble chelating agents for simultaneous removal of heavy metals and organic pollutants from contaminated media

    Energy Technology Data Exchange (ETDEWEB)

    Ullmann, Amos, E-mail: Ullmann@eng.tau.ac.il [Faculty of Engineering, School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); Brauner, Neima; Vazana, Shlomi; Katz, Zhanna [Faculty of Engineering, School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); Goikhman, Roman [The Hebrew University of Jerusalem, The Robert H. Smith, Faculty of Agriculture, Food and Environment, Rehovot (Israel); Seemann, Boaz; Marom, Hanit [School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Gozin, Michael, E-mail: cogozin@gmail.com [School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel)

    2013-09-15

    Highlights: • New soil remediation process using phase transition of partially miscible solvents. • Design and synthesis of new bio-degradable, organic soluble chelating agents. • Feasibility tests of the process on authentically polluted sediments and sludge. • Simultaneous removal of toxic metals and organic pollutants was demonstrated. -- Abstract: Advanced biodegradable and non-toxic organic chelators, which are soluble in organic media, were synthesized on the basis of the S,S-ethylenediamine-disuccinate (S,S-EDDS) ligand. The modifications suggested in this work include attachment of a lipophilic hydrocarbon chain (“tail”) to one or both nitrogen atoms of the S,S-EDDS. The new ligands were designed and evaluated for application in the Sediments Remediation Phase Transition Extraction (SR-PTE) process. This novel process is being developed for the simultaneous removal of both heavy metals and organic pollutants from contaminated soils, sediments or sludge. The new chelators were designed to bind various target metal ions, to promote extraction of these ions into organic solvents. Several variations of attached tails were synthesized and tested. The results for one of them, N,N′-bis-dodecyl-S,S-EDDS (C24-EDDS), showed that the metal-ligand complexes are concentrated in the organic-rich phase in the Phase Transition Extraction process (more than 80%). Preliminary applications of the SR-PTE process with the C24-EDDS ligand were conducted also on actually contaminated sludge (field samples). The extraction of five toxic metals, namely, Cd, Cu, Ni, Pb and Zn was examined. In general, the extraction performance of the new ligand was not less than that of S,S-EDDS when a sufficient ligand-to-extracted ion ratio (about 4:1 was applied.

  18. Intestinal absorption of water-soluble vitamins in health and disease.

    Science.gov (United States)

    Said, Hamid M

    2011-08-01

    Our knowledge of the mechanisms and regulation of intestinal absorption of water-soluble vitamins under normal physiological conditions, and of the factors/conditions that affect and interfere with theses processes has been significantly expanded in recent years as a result of the availability of a host of valuable molecular/cellular tools. Although structurally and functionally unrelated, the water-soluble vitamins share the feature of being essential for normal cellular functions, growth and development, and that their deficiency leads to a variety of clinical abnormalities that range from anaemia to growth retardation and neurological disorders. Humans cannot synthesize water-soluble vitamins (with the exception of some endogenous synthesis of niacin) and must obtain these micronutrients from exogenous sources. Thus body homoeostasis of these micronutrients depends on their normal absorption in the intestine. Interference with absorption, which occurs in a variety of conditions (e.g. congenital defects in the digestive or absorptive system, intestinal disease/resection, drug interaction and chronic alcohol use), leads to the development of deficiency (and sub-optimal status) and results in clinical abnormalities. It is well established now that intestinal absorption of the water-soluble vitamins ascorbate, biotin, folate, niacin, pantothenic acid, pyridoxine, riboflavin and thiamin is via specific carrier-mediated processes. These processes are regulated by a variety of factors and conditions, and the regulation involves transcriptional and/or post-transcriptional mechanisms. Also well recognized now is the fact that the large intestine possesses specific and efficient uptake systems to absorb a number of water-soluble vitamins that are synthesized by the normal microflora. This source may contribute to total body vitamin nutrition, and especially towards the cellular nutrition and health of the local colonocytes. The present review aims to outline our current

  19. Enhancement of quercetin water solubility with steviol glucosides and the studies of biological properties

    Directory of Open Access Journals (Sweden)

    Thi Thanh Hanh Nguyen

    2015-12-01

    Full Text Available Background: Quercetin, a flavonol contained in various vegetables and fruits, has various biological activities including anticancer, antiviral, anti-diabetic, and anti-oxidative. However, it has low oral bioavailability due to insolubility in water. Thus, the bioavailability of quercetin administered to human beings in a capsule form, was reported to be less than 1%, with only a small percentage of ingested quercetin getting absorbed in the blood. This leads to certain difficulties in creating highly effective medicines Methods: Quercetin-rubusoside and quercetin-rebaudioside were prepared. The antioxidant activities of quercetin and Q-rubusoside were evaluated by DPPH radical scavenging method. Inhibition activities of quercetin and Quercetin-rubusoside were determined by measuring the remaining activity of 3CLpro with 200 μM inhibitor. The inhibition activity of quercetin, rubusoside and quercetin-rubusoside were determined by measuring the activity of human maltase which remains at 100 μM rubusoside or quercetin-rubusoside. The mushroom tyrosinase inhibition was assayed with the reaction mixture contained 3.3 mM L-DOPA in 50 mM potassium phosphate buffer (pH 6.8, and 10 U mushroom tyrosinase/ml with or without quercetin or quercetin-rubusoside. Results: With 10% rubusoside treatment, quercetin showed solubility of 7.7 mg/ml in water, and its solubility increased as the concentration of rubusoside increased; the quercetin solubility in water increased to 0.83 mg/mlas rubusoside concentration increased to 1 mg/ml. Quercetin solubilized in rubusoside solution showed DPPH radical-scavenging activity and mushroom tyrosinase inhibition activity, similar to that of quercetin solubilized in dimethyl-sulfoxide. Quercetin-rubusoside also showed 1.2 and 1.9 folds higher inhibition activity against 3CLpro of SARS and human intestinal maltase, respectively, than those of quercetin in DMSO. Conclusions: Quercetin can be solubilized in water with

  20. [HYGIENIC ASSESSMENT OF WATER-SOLUBLE VITAMINS CONTENT IN THE FOOD RATION OF ADOLESCENTS].

    Science.gov (United States)

    Kozubenko, O V; Turchaninov, D V; Boyarskaya, L A; Glagoleva, O N; Pogodin, I S; Luksha, E A

    2015-01-01

    Adequate, balanced nutrition is a precondition for the formation of health of the younger generation. The study of the dietary intake and peculiarities of the chemical composition offood is needed to substantiate measures aimed at the correction of the ration of adolescents. Hygienic evaluation of the content of water soluble vitamins in foods and the ration of teenage population of the Omsk region. TASKS OF THE STUDY: 1. To determine levels of water-soluble vitamins content in foods forming the basis of the ration of the population the Omsk region. 2. On the base of a study of the actual nutrition of adolescents to determine the levels of water-soluble vitamins consumption. 3. To give a hygienic assessment of adolescent nutrition in the Omsk region in terms of provision with water-soluble vitamins, and to identify priority directions of the alimentary correction of the revealed disorders. The analysis of 389 food samples for the content of water-soluble vitamins (B1, B2, B6, PP C, folic acid) was performed with the use of reversed-phase HPLC high pressure on the Shimadzu LC-20 Prominence detector. The hygienic assessment of the actual nutrition of adolescents aged 13-17 years (sample survey; n = 250; 2012-2014) in the Omsk region was performed by the method of the analysis of food consumption frequency. There were noted significantly lower concentrations of vitamin B1 and B2 in the studied samples of cereals, bread and vegetables in comparison with reference data. Consumption levels of vitamins B1, B2, PP folic acid in the diet of adolescents in the Omsk region are lower than recommended values. In the structure of nutrition there is not enough milk dairy products--in 82.4 ± 2.4%, fish and sea products in 90.8 ± 1.8% of adolescents. The actual nutrition of the adolescent population of the Omsk region is irrational, unbalanced in quantitative and qualitative terms, and does not provide the necessary level of consumption of most important water-soluble vitamins

  1. Soluble dendrimers europium(III) β-diketonate complex for organic memory devices

    International Nuclear Information System (INIS)

    Wang Binbin; Fang Junfeng; Li Bin; You Han; Ma Dongge; Hong Ziruo; Li Wenlian; Su Zhongmin

    2008-01-01

    We report the synthesis of a soluble dendrimers europium(III) complex, tris(dibenzoylmethanato)(1,3,5-tris[2-(2'-pyridyl) benzimidazoly]methylbenzene)-europium(III), and its application in organic electrical bistable memory device. Excellent stability that ensured more than 10 6 write-read-erase-reread cycles has been performed in ambient conditions without current-induced degradation. High-density, low-cost memory, good film-firming property, fascinating thermal and morphological stability allow the application of the dendrimers europium(III) complex as an active medium in non-volatile memory devices

  2. Controlling the photochemical reaction of an azastilbene derivative in water using a water-soluble pillar[6]arene.

    Science.gov (United States)

    Xia, Danyu; Wang, Pi; Shi, Bingbing

    2017-09-20

    Photochemistry plays an important role in our lives. It has also been a common tool in the laboratory to construct complicated systems from small molecules. Supramolecular chemistry provides an opportunity to solve some of the problems in controlling photochemical reactions via non-covalent interactions. By using confining media and weak interactions between the medium and the reactant molecule, the excited state behavior of molecules has been successfully manipulated. Pillararenes, a new class of macrocyclic hosts, have rarely been used in the field of photochemical investigations, such as the controlling of photo-induced reactions. Herein, we explore a synthetic macrocyclic host, a water-soluble pillar[6]arene, as a controlling tool to manipulate the photo-induced reactions (hydration) in water. A host-guest system in water based on a water-soluble pillar[6]arene and an azastilbene derivative, (E)-4,4'-dimethyl-4,4'-diazoniastilbene diiodide, has been constructed. Then this water-soluble pillar[6]arene was successfully employed to control the photohydration of the azastilbene derivative in water as a "protective agent".

  3. Alginate encapsulated mesoporous silica nanospheres as a sustained drug delivery system for the poorly water-soluble drug indomethacin

    Directory of Open Access Journals (Sweden)

    Liang Hu

    2014-08-01

    Full Text Available We applied a combination of inorganic mesoporous silica material, frequently used as drug carriers, and a natural organic polymer alginate (ALG, to establish a sustained drug delivery system for the poorly water-soluble drug Indomethacin (IND. Mesoporous silica nanospheres (MSNs were synthesized using an organic template method and then functionalized with aminopropyl groups through postsynthesis. After drug loading into the pores of aninopropyl functionalized MSNs (AP-MSNs, IND loaded AP-MSNs (IND-AP-MSNs were encapsulated by ALG through the ionic interaction. The effects of surface chemical groups and ALG layer on IND release were systematically studied using scanning electron microscopy (SEM, transmission electron microscopy (TEM, nitrogen adsorption, zeta-potential analysis and TGA analysis. The surface structure and surface charge changes of the ALG encapsulated AP-MSNs (ALG-AP-MSNs were also investigated. The results showed that sustained release of IND from the designed drug delivery system was mainly due to the blockage effect from the coated ALG. We believe that this combination will help designing oral sustained drug delivery systems for poorly water-soluble drugs.

  4. Application To Bilayer System With Water-Soluble Contrast Enhancing Material

    Science.gov (United States)

    Yabuta, Mitsuo; Ito, Naoki; Yamazaki, Hiroyuki; Nakayama, Toshimasa

    1987-09-01

    We have developed ,a water-soluble contrast enhancing material, TAD-436 ( Tokyo Ohka. Anti-Defocus Material ) which is consisted of a water-soluble diazonium salt as bleaching compounds and a water-soluble anion type polymer as binder polymers. Needless to say that water is used as solvent in TAD; therefore, it can be spincoated directly on a positive photoresist layer of a quinonediazide-novolak resin type without causing intermixing and furtheremore the bilayer can be developed without stripping TAD immediately after exposure. TAD shows a satisfactory bleaching characteristics on g-line, increases r-value of underlying photoresist and reduces the thickness loss of photoresist layer in unexposed area. Application to bilayer system with TAD will raise the resolution of underlying photoresist and when the focus depth is changed it will make the change in the resist profile small. As the result of it, the notches in the resist patterns on steps is reduced, making the difference in the linewidth between the top and the bottom of steps small.

  5. Synthesis and properties of amino acid functionalized water-soluble perylene diimides

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yongshan; Li, Xuemei; Wei, Xiaofeng; Jiang, Tianyi; Wu, Junsen; Ren, Huixue [Shandong Jianzhu University, Jinan (China)

    2015-07-15

    We prepared amino acid functionalized water-soluble perylene diimides: N,N'-bi(L-glutamic acid)-perylene-3,4;9,10-dicarboxylic diimide (1), N,N'-bi(L-phenylalanine acid)-perylene-3,4;9,10-dicarboxylic diimide (2), N,N'-bi(Lglutamic amine)-perylene-3,4;9,10-dicarboxylic diimide (3) and N,N'-bi(L-phenylalanine amine)-perylene-3,4;9,10-dicarboxylic diimide (4). The structures of 3 and 4 were confirmed by {sup 1}H NMR, FT-IR and MS. The maximal absorption bands of compound 1 and 2 in concentrated sulfuric acid were red-shifted for about 48 and 74 nm, respectively, compared with that of Perylene-3,4,9,10-tetracarboxylic acid dianhydride (PTCDA). Nearly no fluorescence was observed for compounds 1 and 2 in water, while compounds 3 and 4 were significantly water-soluble and had very high fluorescent quantum. The mechanism of the optical properties change was discussed, and the π-π stacking caused by H{sup +} led to the changes of fluorescence spectrum and absorption spectrum. The calculated molecular orbital energies and the frontier molecular orbital maps of compounds 1-2 based on density function theory (DFT) calculations were reported. Owing to the high water-soluble, the perylene derivatives 3 and 4 were successfully applied as high-performance fluorochromes for living hela cells imaging.

  6. Geochemical evidence of water-soluble gas accumulation in the Weiyuan gas field, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Shengfei Qin

    2016-01-01

    Full Text Available At present, there are several different opinions on the formation process of the Weiyuan gas field in the Sichuan Basin and the source of its natural gas. In view of the fact that the methane carbon isotope of the natural gas in the Weiyuan gas field is abnormally heavy, the geologic characteristics of gas reservoirs and the geochemical characteristics of natural gas were first analyzed. In the Weiyuan gas field, the principal gas reservoirs belong to Sinian Dengying Fm. The natural gas is mainly composed of methane, with slight ethane and trace propane. The gas reservoirs are higher in water saturation, with well preserved primary water. Then, it was discriminated from the relationship of H2S content vs. methane carbon isotope that the heavier methane carbon isotope of natural gas in this area is not caused by thermochemical sulfate reduction (TSR. Based on the comparison of methane carbon isotope in this area with that in adjacent areas, and combined with the tectonic evolution background, it is regarded that the natural gas in the Weiyuan gas field is mainly derived from water-soluble gas rather than be migrated laterally from adjacent areas. Some conclusions are made. First, since methane released from water is carbon isotopically heavier, the water-soluble gas accumulation after degasification results in the heavy methane carbon isotope of the gas produced from Weiyuan gas field. Second, along with Himalayan movement, great uplift occurred in the Weiyuan area and structural traps were formed. Under high temperature and high pressure, the gas dissolved in water experienced decompression precipitation, and the released natural gas accumulated in traps, consequently leading to the formation of Weiyuan gas field. Third, based on calculation, the amount of natural gas released from water which is entrapped in the Weiyuan gas field after the tectonic uplift is basically equal to the proved reserves of this field, confirming the opinion of water-soluble

  7. Design of Chitosan and Its Water Soluble Derivatives-Based Drug Carriers with Polyelectrolyte Complexes

    Directory of Open Access Journals (Sweden)

    Qing-Xi Wu

    2014-12-01

    Full Text Available Chitosan, the cationic polysaccharide derived from the natural polysaccharide chitin, has been studied as a biomaterial for more than two decades. As a polycationic polymer with favorable properties, it has been widely used to form polyelectrolyte complexes with polyanions for various applications in drug delivery fields. In recent years, a growing number of studies have been focused on the preparation of polyelectrolyte complexes based on chitosan and its water soluble derivatives. They have been considered well-suited as biomaterials for a number of vital drug carriers with targeted/controlled release profiles, e.g., films, capsules, microcapsules. In this work, an overview highlights not only the favorable properties of chitosan and its water soluble derivatives but also the good performance of the polyelectrolyte complexes produced based on chitosan. Their various types of applications as drug carriers are reviewed in detail.

  8. Design of chitosan and its water soluble derivatives-based drug carriers with polyelectrolyte complexes.

    Science.gov (United States)

    Wu, Qing-Xi; Lin, Dong-Qiang; Yao, Shan-Jing

    2014-12-19

    Chitosan, the cationic polysaccharide derived from the natural polysaccharide chitin, has been studied as a biomaterial for more than two decades. As a polycationic polymer with favorable properties, it has been widely used to form polyelectrolyte complexes with polyanions for various applications in drug delivery fields. In recent years, a growing number of studies have been focused on the preparation of polyelectrolyte complexes based on chitosan and its water soluble derivatives. They have been considered well-suited as biomaterials for a number of vital drug carriers with targeted/controlled release profiles, e.g., films, capsules, microcapsules. In this work, an overview highlights not only the favorable properties of chitosan and its water soluble derivatives but also the good performance of the polyelectrolyte complexes produced based on chitosan. Their various types of applications as drug carriers are reviewed in detail.

  9. Solubilities of some hydrous REE phosphates with implications for diagenesis and sea water concentrations

    International Nuclear Information System (INIS)

    Jonasson, R.G.; Bancroft, G.M.; Nesbitt, H.W.

    1985-01-01

    Solubility product determinations suggest that the hydrous phosphates of the rare earths, REPO 4 .xH 2 O, are important in controlling the sea water REE concentrations. Two of these solids, rhabdophane, (P6 2 22) and 'hydrous xenotime', (I4 1 /amd), have been synthesized at 100 C via the acid hydrolysis of the respective REE pyrophosphate. The solubility products at infinite dilution were determined to be pK 0 = 24.5, (La at 25 C); 26.0, (Pr at 100 C); 25.7, (Nd at 100 C); and 25.5, (Er at 100 C). On the basis of calculations involving the reaction of Re 3+ with apatite to form the hydrous phosphate, the lanthanum concentration in sea water is predicted to be about 140 pmol/L. Laboratory experiments support the hypothesis that apatite is a substrate for reactions with dissolved REE. (author)

  10. Synthesis and characterization of a hyper-branched water-soluble β-cyclodextrin polymer

    Directory of Open Access Journals (Sweden)

    Francesco Trotta

    2014-11-01

    Full Text Available A new hyper-branched water-soluble polymer was synthesized by reacting β-cyclodextrin with pyromellitic dianhydride beyond the critical conditions that allow the phenomenon of gelation to occur. The molar ratio between the monomers is a crucial parameter that rules the gelation process. Nevertheless, the concentration of monomers in the solvent phase plays a key role as well. Hyper-branched β-cyclodextrin-based polymers were obtained performing the syntheses with excess of solvent and cross-linking agent, and the conditions for critical dilution were determined experimentally. A hyper-branched polymer with very high water solubility was obtained and fully characterized both as for its chemical structure and for its capability to encapsulate substances. Fluorescein was used as probe molecule to test the complexation properties of the new material.

  11. Analytical procedures for water-soluble vitamins in foods and dietary supplements: a review.

    Science.gov (United States)

    Blake, Christopher J

    2007-09-01

    Water-soluble vitamins include the B-group vitamins and vitamin C. In order to correctly monitor water-soluble vitamin content in fortified foods for compliance monitoring as well as to establish accurate data banks, an accurate and precise analytical method is a prerequisite. For many years microbiological assays have been used for analysis of B vitamins. However they are no longer considered to be the gold standard in vitamins analysis as many studies have shown up their deficiencies. This review describes the current status of analytical methods, including microbiological assays and spectrophotometric, biosensor and chromatographic techniques. In particular it describes the current status of the official methods and highlights some new developments in chromatographic procedures and detection methods. An overview is made of multivitamin extractions and analyses for foods and supplements.

  12. Design of Chitosan and Its Water Soluble Derivatives-Based Drug Carriers with Polyelectrolyte Complexes

    Science.gov (United States)

    Wu, Qing-Xi; Lin, Dong-Qiang; Yao, Shan-Jing

    2014-01-01

    Chitosan, the cationic polysaccharide derived from the natural polysaccharide chitin, has been studied as a biomaterial for more than two decades. As a polycationic polymer with favorable properties, it has been widely used to form polyelectrolyte complexes with polyanions for various applications in drug delivery fields. In recent years, a growing number of studies have been focused on the preparation of polyelectrolyte complexes based on chitosan and its water soluble derivatives. They have been considered well-suited as biomaterials for a number of vital drug carriers with targeted/controlled release profiles, e.g., films, capsules, microcapsules. In this work, an overview highlights not only the favorable properties of chitosan and its water soluble derivatives but also the good performance of the polyelectrolyte complexes produced based on chitosan. Their various types of applications as drug carriers are reviewed in detail. PMID:25532565

  13. Studies on water soluble polysaccharides from Pithecellobium dulce (Roxb.) Benth. seeds.

    Science.gov (United States)

    Bagchi, S; Kumar, K Jayaram

    2016-03-15

    In this existing experimental work, water soluble PDP polysaccharides were secluded from Pithecellobium dulce (Roxb.) Benth. seeds. The physicochemical properties were analyzed in terms of swelling power, solubility, pH and water holding capacity. Micromeretic studies proved the polysaccharide may be used a potential pharmaceutical adjuvant. The polysaccharide was characterized by FT-IR, SEM, TGA and NMR techniques. Methylation analysis confirmed that the polysaccharide is composed of Arabinose (Araf) units. The chemical shifts of anomeric proton region were found in the region of 4.4-5.5ppm. Thermogravimetric analysis showed that PDP polysaccharide was thermally stable. The in vitro antioxidant capacities of the polysaccharide were investigated in terms of scavenging of hydroxyl radicals, 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radicals, hydrogen peroxide (H2O2) and reducing power assay. The polysaccharide fractions showed activity in a concentration dependent manner which was comparable to the standard, ascorbic acid. Copyright © 2015 Elsevier Ltd. All rights reserved.

  14. Solubility limit of methyl red and methylene blue in microemulsions and liquid crystals of water, sds and pentanol systems

    OpenAIRE

    Beri, D.; Pratami, A.; Gobah, P. L.; Dwimala, P.; Amran, A.

    2017-01-01

    Solubility of dyes in amphiphilic association structures of water, SDS and penthanol system (i.e. in the phases of microemulsions and liquid crystals) was attracted much interest due to its wide industrial and technological applications. This research was focused on understanding the solubility limitation of methyl red and methylene blue in microemulsion and liquid crystal phases. Experimental results showed that the highest solubility of methyl red was in LLC, followed by w/o microemulsion a...

  15. Application of radiation grafting techniques to prepare the high molecular weight water-soluble polymer

    International Nuclear Information System (INIS)

    Le Hai; Nguyen Quoc Hien; Nguyen Tan Man; Truong Thi Hanh; Le Huu Tu; Tran Thi Tam; Pham Thi Sam; Pham Anh Tuan; Le Dinh Lang

    2003-01-01

    The results of the study on the preparation of the high molecular weight water-soluble polymers by radiation grafting and their properties is presented as follows: 1/ by radiation grafting, the molecular weight of PVA was increased 20 times and PAM was increased only 3 times; 2/ the thermal and medium stability of poly(vinyl alcohol) grafted with acrylamide was obviously improved. (LH)

  16. Design of Chitosan and Its Water Soluble Derivatives-Based Drug Carriers with Polyelectrolyte Complexes

    OpenAIRE

    Wu, Qing-Xi; Lin, Dong-Qiang; Yao, Shan-Jing

    2014-01-01

    Chitosan, the cationic polysaccharide derived from the natural polysaccharide chitin, has been studied as a biomaterial for more than two decades. As a polycationic polymer with favorable properties, it has been widely used to form polyelectrolyte complexes with polyanions for various applications in drug delivery fields. In recent years, a growing number of studies have been focused on the preparation of polyelectrolyte complexes based on chitosan and its water soluble derivatives. They have...

  17. Natural polymers: Best carriers for improving bioavailability of poorly water soluble drugs in solid dispersions

    OpenAIRE

    Sandip Sapkal; Mahesh Narkhede; Mukesh Babhulkar; Gautam Mehetre; Ashish Rathi

    2013-01-01

    ABSTRACTNatural polymers and its modified forms can be used as best alternative for improving bioavailabilityof poorly water soluble drugs in solid dispersion. Most of the natural polymersare hydrophilic and having high swelling capacity. Recent trend towards the use of naturalpolymer demands the replacement of synthetic additives with natural ones. Many plant derivednatural polymers are studied for use in solid dispersion systems, out of which naturalgums, cyclodextrin and carbohydrate are m...

  18. Indirect caudal lymphography using a new water-soluble contrast agent - animal experimental studies in pigs

    International Nuclear Information System (INIS)

    Apitzsch, D.E.; Kroll, H.U.; Zuehlke, H.V.

    1981-01-01

    Animal experiments on caudal lymphography in pigs are presented, using a new water-soluble contrast medium which is renally excreted. Indirect cutaneous administration renders possible the radiological visualization of the entire lymphatic drainage system of the lower limb, the retro-peritoneal space and the thoracic duct. Visualization of the lymphatic system is rapid, homogeneous and can be repeated as often as desired. The quality of the lymphogram is as good as that obtained by the current methods in common use. (orig.)

  19. Changing oxidoreduction potential to improve water-soluble yellow pigment production with Monascus ruber CGMCC 10910.

    Science.gov (United States)

    Huang, Tao; Tan, Hailing; Lu, Fangju; Chen, Gong; Wu, Zhenqiang

    2017-11-21

    Monascus pigments are widely used in the food and pharmaceutical industries due to their safety to human health. Our previous study found that glucose concentration induced extracellular oxidoreduction potential (ORP) changes could influence extracellular water-soluble yellow pigment production by Monascus ruber CGMCC 10910 in submerged fermentation. In this study, H 2 O 2 and dithiothreitol (DTT) were used to change the oxidoreduction potential for investigating the effects of oxidative or reductive substances on Monascus yellow pigment production by Monascus ruber CGMCC 10910. The extracellular ORP could be controlled by H 2 O 2 and DTT. Both cell growth and extracellular water-soluble yellow pigment production were enhanced under H 2 O 2 -induced oxidative (HIO) conditions and were inhibited under dithiothreitol-induced reductive conditions. By optimizing the amount of H 2 O 2 added and the timing of the addition, the yield of extracellular water-soluble yellow pigments significantly increased and reached a maximum of 209 AU, when 10 mM H 2 O 2 was added on the 3rd day of fermentation with M. ruber CGMCC 10910. Under HIO conditions, the ratio of NADH/NAD+ was much lower than that in the control group, and the expression levels of relative pigment biosynthesis genes were up-regulated; moreover, the activity of glucose-6-phosphate dehydrogenase (G6PDH) was increased while 6-phosphofructokinase (PFK) activity was inhibited. Oxidative conditions induced by H 2 O 2 increased water-soluble yellow pigment accumulation via up-regulation of the expression levels of relative genes and by increasing the precursors of pigment biosynthesis through redirection of metabolic flux. In contrast, reductive conditions induced by dithiothreitol inhibited yellow pigment accumulation. This experiment provides a potential strategy for improving the production of Monascus yellow pigments.

  20. Biosynthetic Studies on Water-Soluble Derivative 5c (DTX5c

    Directory of Open Access Journals (Sweden)

    José J. Fernández

    2012-10-01

    Full Text Available The dinoflagellate Prorocentrum belizeanum is responsible for the production of several toxins involved in the red tide phenomenon known as Diarrhetic Shellfish Poisoning (DSP. In this paper we report on the biosynthetic origin of an okadaic acid water-soluble ester derivative, DTX5c, on the basis of the spectroscopical analysis of 13C enriched samples obtained by addition of labelled sodium [l-13C], [2-13C] acetate to artificial cultures of this dinoflagellate.

  1. Effect of New Water-Soluble Dendritic Phthalocyanines on Human Colorectal and Liver Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Ebru YABAŞ

    2017-08-01

    Full Text Available Human hepatocellular carcinoma (HepG2 cells and colorectal adenocarcinoma (DLD-1 cells were treated with the synthesized water soluble phthalocyanine derivatives to understand the effect of the compounds both on colorectal and liver cancer cells. The compounds inhibited cell proliferation and displayed cytotoxic effect on these cancer cell lines however; the effect of the compounds on healthy control fibroblast cell line was comparatively lower. The compounds can be employed for cancer treatment as anticancer agents.

  2. Preparation and characterization of complexes of RE3+ with furfural modified water-soluble chitosan

    Institute of Scientific and Technical Information of China (English)

    WANG Maoyuan; QIU Ligan; MA Guilin

    2008-01-01

    Degraded chitosan, with highly water-solubility, was obtained by the oxidation of chitosan with H2O2, and then reacted with furfural The final product coordinated with the rare earth ions (RE3+ = Sm3+,Eu3+), which led to the formation of the complexes. The prepared complexes were characterized with Inflated Spectroscopy (IR), Ultra Violet (UV), fluorescence, X-Ray Diffraction (XRD), and Thermogravimetric-Differential Scanning Calorimetry (TG-DSC) measurements.

  3. Solubility and thermodynamic behavior of vanillin in propane-1,2-diol+water cosolvent mixtures at different temperatures.

    Science.gov (United States)

    Shakeel, Faiyaz; Haq, Nazrul; Siddiqui, Nasir A; Alanazi, Fars K; Alsarra, Ibrahim A

    2015-12-01

    The solubilities of bioactive compound vanillin were measured in various propane-1,2-diol+water cosolvent mixtures at T=(298-318)K and p=0.1 MPa. The experimental solubility of crystalline vanillin was determined and correlated with calculated solubility. The results showed good correlation of experimental solubilities of crystalline vanillin with calculated ones. The mole fraction solubility of crystalline vanillin was recorded highest in pure propane-1,2-diol (7.06×10(-2) at 298 K) and lowest in pure water (1.25×10(-3) at 298 K) over the entire temperature range investigated. Thermodynamic behavior of vanillin in various propane-1,2-diol+water cosolvent mixtures was evaluated by Van't Hoff and Krug analysis. The results showed an endothermic, spontaneous and an entropy-driven dissolution of crystalline vanillin in all propane-1,2-diol+water cosolvent mixtures. Based on solubility data of this work, vanillin has been considered as soluble in water and freely soluble in propane-1,2-diol. Copyright © 2015 Elsevier Ltd. All rights reserved.

  4. Water-soluble organo-building blocks of aminoclay as a soil-flushing agent for heavy metal contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Young-Chul [Department of Chemical and Biomolecular Engineering (BK21 program), KAIST, 335 Gwahak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Kim, Eun Jung [Advanced Biomass R and D Center, KAIST, 291 Daehakno, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Ko, Dong Ah [Department of Chemical and Biomolecular Engineering (BK21 program), KAIST, 335 Gwahak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Yang, Ji-Won, E-mail: jiwonyang@kaist.ac.kr [Department of Chemical and Biomolecular Engineering (BK21 program), KAIST, 335 Gwahak-ro, Yuseong-gu, Daejeon 305-701 (Korea, Republic of); Advanced Biomass R and D Center, KAIST, 291 Daehakno, Yuseong-gu, Daejeon 305-701 (Korea, Republic of)

    2011-11-30

    Highlights: Black-Right-Pointing-Pointer Aminoclays have synthesized using centered metals with aminopropyl silane. Black-Right-Pointing-Pointer Developed aminoclay has unique nano-sized and water-soluble properties. Black-Right-Pointing-Pointer Aminoclay showed high heavy metal capacity with metal ions and its less toxicity. Black-Right-Pointing-Pointer Aminoclay could be used to remediate heavy metals from soils an alternative soil-flushing agent. - Abstract: We demonstrated that water-soluble aminopropyl magnesium functionalized phyllosilicate could be used as a soil-flushing agent for heavy metal contaminated soils. Soil flushing has been an attractive means to remediate heavy metal contamination because it is less disruptive to the soil environment after the treatment was performed. However, development of efficient and non-toxic soil-flushing agents is still required. We have synthesized aminoclays with three different central metal ions such as magnesium, aluminum, and ferric ions and investigated applicability of aminoclays as soil flushing agents. Among them, magnesium (Mg)-centered aminoclay showed the smallest size distribution and superior water solubility, up to 100 mg/mL. Mg aminoclay exhibited cadmium and lead binding capacity of 26.50 and 91.31 mg/g of Mg clay, respectively, at near neutral pH, but it showed negligible binding affinity to metals in acidic conditions. For soil flushing with Mg clay at neutral pH showed cadmium and lead were efficiently extracted from soils by Mg clay, suggesting strong binding ability of Mg clay with cadmium and lead. As the organic matter and clay compositions increased in the soil, the removal efficiency by Mg clay decreased and the operation time increased.

  5. Water-soluble organo-building blocks of aminoclay as a soil-flushing agent for heavy metal contaminated soil

    International Nuclear Information System (INIS)

    Lee, Young-Chul; Kim, Eun Jung; Ko, Dong Ah; Yang, Ji-Won

    2011-01-01

    Highlights: ► Aminoclays have synthesized using centered metals with aminopropyl silane. ► Developed aminoclay has unique nano-sized and water-soluble properties. ► Aminoclay showed high heavy metal capacity with metal ions and its less toxicity. ► Aminoclay could be used to remediate heavy metals from soils an alternative soil-flushing agent. - Abstract: We demonstrated that water-soluble aminopropyl magnesium functionalized phyllosilicate could be used as a soil-flushing agent for heavy metal contaminated soils. Soil flushing has been an attractive means to remediate heavy metal contamination because it is less disruptive to the soil environment after the treatment was performed. However, development of efficient and non-toxic soil-flushing agents is still required. We have synthesized aminoclays with three different central metal ions such as magnesium, aluminum, and ferric ions and investigated applicability of aminoclays as soil flushing agents. Among them, magnesium (Mg)-centered aminoclay showed the smallest size distribution and superior water solubility, up to 100 mg/mL. Mg aminoclay exhibited cadmium and lead binding capacity of 26.50 and 91.31 mg/g of Mg clay, respectively, at near neutral pH, but it showed negligible binding affinity to metals in acidic conditions. For soil flushing with Mg clay at neutral pH showed cadmium and lead were efficiently extracted from soils by Mg clay, suggesting strong binding ability of Mg clay with cadmium and lead. As the organic matter and clay compositions increased in the soil, the removal efficiency by Mg clay decreased and the operation time increased.

  6. Water-soluble derivatives of 25-OCH3-PPD and their anti-proliferative activities.

    Science.gov (United States)

    Zhou, Wu-Xi; Sun, Yuan-Yuan; Yuan, Wei-Hui; Zhao, Yu-Qing

    2017-05-01

    (20R)-25-Methoxyl-dammarane-3β,12β,20-triol (25-OCH 3 -PPD, AD-1) is a dammarane-type sapogenin showing anti-tumor potential. In the search for new anti-tumor agents with higher potency than our previously identified compound 25-OCH 3 -PPD, 11 novel sulfamic acid and diacid derivatives that could improve water solubility and contribute to good drug potency and pharmacokinetic profiles were designed and synthesized. Their in vitro anti-tumor activities in MCF-7, A-549, HCT-116, and BGC-823 cell lines and one normal cell line were tested by standard MTT assay. Results showed that compared with compound 25-OCH 3 -PPD, compounds 1, 4, and 5 exhibited higher cytotoxic activity on almost all cell lines, together with lower toxicity in the normal cell. In particular, compound 1 exhibited the best anti-tumor activity in the in vitro assays. The water solubility of 25-OCH 3 -PPD and its derivatives was tested and the results showed that the solubility of 25-OCH 3 -PPD sulfamic acid and diacid derivatives were better than that of 25-OCH 3 -PPD in water, which may provide valuable data for the research and development of new anti-tumor agents. Copyright © 2017 Elsevier Inc. All rights reserved.

  7. Studies on Dissolution Enhancement of Prednisolone, a Poorly Water-Soluble Drug by Solid Dispersion Technique

    Directory of Open Access Journals (Sweden)

    Parvin Zakeri-Milani

    2011-06-01

    Full Text Available Introduction: Prednisolone is a class II substance according to the Biopharmaceutics Classification System. It is a poorly water soluble agent. The aim of the present study was to improve dissolution rate of a poorly water-soluble drug, prednisolone, by a solid dispersion technique. Methods: Solid dispersion of prednisolone was prepared with PEG 6000 or different carbohydrates such as lactose and dextrin with various ratios of the drug to carrier i.e., 1:10, 1:20 and 1:40. Solid dispersions were prepared by coevaporation method. The evaluation of the properties of the dispersions was performed using dissolution studies, Fourier-transform infrared spectroscopy and x-ray powder diffractometery. Results: The results indicated that lactose is suitable carriers to enhance the in vitro dissolution rate of prednisolone. The data from the x-ray diffraction showed that the drug was still detectable in its solid state in all solid dispersions except solid dispersions prepared by dextrin as carrier. The results from infrared spectroscopy showed no well-defined drug–carrier interactions for coevaporates. Conclusion: Solid dispersion of a poorly water-soluble drug, prednisolone may alleviate the problems of delayed and inconsistent rate of dissolution of the drug.

  8. Synthesis of water-soluble curcumin derivatives and their inhibition on lysozyme amyloid fibrillation

    Science.gov (United States)

    Wang, Sujuan; Peng, Xixi; Cui, Liangliang; Li, Tongtong; Yu, Bei; Ma, Gang; Ba, Xinwu

    2018-02-01

    The potential application of curcumin was heavily limited in biomedicine because of its poor solubility in pure water. To circumvent the detracting feature, two novel water-soluble amino acid modified curcumin derivatives (MLC and DLC) have been synthesized through the condensation reaction between curcumin and Nα-Fmoc-Nε-Boc-L-lysine. Benefiting from the enhanced solubility of 3.32 × 10- 2 g/mL for MLC and 4.66 × 10- 2 g/mL for DLC, the inhibition effects of the as-prepared derivatives on the amyloid fibrillation of lysozyme (HEWL) were investigated detaily in water solution. The obtained results showed that the amyloid fibrillation of HEWL was inhibited to a great extent when the concentrations of MLC and DLC reach to 20.139 mM and 49.622 mM, respectively. The fluorescence quenching upon the addition of curcumin to HEWL provide a support for static and dynamic recombination quenching process. The binding driving force was assigned to classical hydrophobic interaction between curcumin derivatives and HEWL. In addition, UV-Vis absorption and circular dichroism (CD) spectra confirmed the change of the conformation of HEWL.

  9. Synthesis of water soluble glycine capped silver nanoparticles and their surface selective interaction

    International Nuclear Information System (INIS)

    Agasti, Nityananda; Singh, Vinay K.; Kaushik, N.K.

    2015-01-01

    Highlights: • Synthesis of water soluble silver nanoparticles at ambient reaction conditions. • Glycine as stabilizing agent for silver nanoparticles. • Surface selective interaction of glycine with silver nanoparticles. • Glycine concentration influences crystalinity and optical property of silver nanoparticles. - Abstract: Synthesis of biocompatible metal nanoparticles has been an area of significant interest because of their wide range of applications. In the present study, we have successfully synthesized water soluble silver nanoparticles assisted by small amino acid glycine. The method is primarily based on reduction of AgNO 3 with NaBH 4 in aqueous solution under atmospheric air in the presence of glycine. UV–vis spectroscopy, transmission electron microscopy (TEM), X–ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetry (TG) and differential thermal analysis (DTA) techniques used for characterization of resulting silver nanoparticles demonstrated that, glycine is an effective capping agent to stabilize silver nanoparticles. Surface selective interaction of glycine on (1 1 1) face of silver nanoparticles has been investigated. The optical property and crystalline behavior of silver nanoparticles were found to be sensitive to concentration of glycine. X–ray diffraction studies ascertained the phase specific interaction of glycine on silver nanoparticles. Silver nanoparticles synthesized were of diameter 60 nm. We thus demonstrated an efficient synthetic method for synthesis of water soluble silver nanoparticles capped by amino acid under mild reaction conditions with excellent reproducibility

  10. Spatial and temporal variability of water soluble carbon for a cropped field

    International Nuclear Information System (INIS)

    Liss, H.J.; Rolston, D.E.

    1983-01-01

    The water soluble carbon from soil extracts was taken from a two-hundred point grid established on a 1.2 ha field. The sampling was in the fall after the harvest of a sorghum crop. The concentrations ranged from 23.8 ppm to 274.2 ppm. Over 90 per cent of the concentrations were grouped around the mean of 40.3 ppm. The higher values caused the distribution to be greatly skewed such that neither normal nor log normal distributions characterized the data very well. The moisture content from the same samples followed normal distribution. Changes in the mean, the variance and the distribution of water soluble carbon were followed on 0.4 ha of the 1.2 ha in a grid of sixty points during a crop of wheat and a subsequent crop of sorghum. The mean increased in the spring, decreased in the summer and increased again in the fall. The spring and summer concentrations are well characterized by log normal distributions. The spatial dependence of water soluble carbon was examined on a fifty-five point transect across the field spaced every 1.37 m. The variogram indicated little or no dependence at this spacing. (author)

  11. Changes in the content of water-soluble vitamins in Actinidia chinensis during cold storage

    Directory of Open Access Journals (Sweden)

    Zhu Xian-Bo

    2016-01-01

    Full Text Available We assessed the effects of cold storage on nine water-soluble vitamins in 7 cultivars of Actinidia chinensis (kiwifruit using high-performance liquid chromatography. Samples were collected at three time points during cold storage: one day, 30 days, and when edible. We found that vitamin C in most cultivars was raised with cold storage, but there was no consistent increased or decreased trend for other water-soluble vitamins across cultivars in storage. After one day of cold storage, vitamins B1 and B2 were the most prevalent vitamins in Control (wild fruit, while vitamins B5 and B6 were most prevalent in the Hongyang and Qihong cultivars. However, B12 was the most prevalent vitamin in the Qihong cultivar after 30 days of cold storage. Vitamins B3, B7, B9, and C were detected at the edible time point in Huayou, Hongyang, Jinnong-2, and Control fruit. Vitamin contents varied significantly among cultivars of kiwifruit following different durations of cold storage. Out of the three durations tested, a period of 30 days in cold storage was the most suitable for the absorption of water-soluble vitamins by A. chinensis.

  12. Abalone water-soluble matrix for self-healing biomineralization of tooth defects.

    Science.gov (United States)

    Wen, Zhenliang; Chen, Jingdi; Wang, Hailiang; Zhong, Shengnan; Hu, Yimin; Wang, Zhili; Zhang, Qiqing

    2016-10-01

    Enamel cannot heal by itself if damaged. Hydroxyapatite (HAP) is main component of human enamel. Formation of enamel-like materials for healing enamel defects remains a challenge. In this paper, we successfully isolated the abalone water-soluble matrix (AWSM) with 1.53wt% the abalone water-soluble protein (AWSPro) and 2.04wt% the abalone water-soluble polysaccharide (AWSPs) from abandoned abalone shell, and self-healing biomineralization of tooth defects was successfully achieved in vitro. Based on X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), hot field emission scanning electron microscopy (HFESEM) and energy dispersive spectrometer (EDS) analysis, the results showed that the AWSM can efficiently induce remineralization of HAP. The enamel-like HAP was successfully achieved onto etched enamel's surface due to the presence of the AWSM. Moreover, the remineralized effect of eroded enamel was growing with the increase of the AWSM. This study provides a solution to the resource waste and environmental pollution caused by abandoned abalone shell, and we provides a new method for self-healing remineralization of enamel defects by AWSM and develops a novel dental material for potential clinical dentistry application. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Organic-soluble lanthanide nuclear magnetic resonance shift reagents for sulfonium and isothiouronium salts

    International Nuclear Information System (INIS)

    Wenzel, T.J.; Zaia, J.

    1987-01-01

    Lanthanide complexes of the formula [Ln(fod) 4 ] - (FOD, 6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octanedione) are effective organic-soluble nuclear magnetic resonance shift reagents for sulfonium and isothiouronium salts. The shift reagent is formed in solution from Ln(fod) 3 and Ag(fod) or K(fod). The selection of Ag(fod) or K(fod) in forming the shift reagent is dependent on the anion of the organic salt. Ag(fod) is more effective with halide salts, whereas K(fod) is preferred with tetrafluoroborate salts. Resolution of diastereotopic hydrogen atoms was observed in the shifted spectra of certain substrates. Enantiomeric resolution was obtained in the spectrum of sec-butylisothiouronium chloride with a chiral shift reagent. The reagents can be employed in solvents such as chloroform and benzene

  14. Data representing two separate LC-MS methods for detection and quantification of water-soluble and fat-soluble vitamins in tears and blood serum

    Directory of Open Access Journals (Sweden)

    Maryam Khaksari

    2017-04-01

    Full Text Available Two separate liquid chromatography (LC-mass spectrometry (MS methods were developed for determination and quantification of water-soluble and fat-soluble vitamins in human tear and blood serum samples. The water-soluble vitamin method was originally developed to detect vitamins B1, B2, B3 (nicotinamide, B5, B6 (pyridoxine, B7, B9 and B12 while the fat-soluble vitamin method detected vitamins A, D3, 25(OHD3, E and K1. These methods were then validated with tear and blood serum samples. In this data in brief article, we provide details on the two LC-MS methods development, methods sensitivity, as well as precision and accuracy for determination of vitamins in human tears and blood serum. These methods were then used to determine the vitamin concentrations in infant and parent samples under a clinical study which were reported in "Determination of Water-Soluble and Fat-Soluble Vitamins in Tears and Blood Serum of Infants and Parents by Liquid Chromatography/Mass Spectrometry DOI:10.1016/j.exer.2016.12.007 [1]". This article provides more details on comparison of vitamin concentrations in the samples with the ranges reported in the literature along with the medically accepted normal ranges. The details on concentrations below the limits of detection (LOD and limits of quantification (LOQ are also discussed. Vitamin concentrations were also compared and cross-correlated with clinical data and nutritional information. Significant differences and strongly correlated data were reported in [1]. This article provides comprehensive details on the data with slight differences or slight correlations.

  15. Data representing two separate LC-MS methods for detection and quantification of water-soluble and fat-soluble vitamins in tears and blood serum.

    Science.gov (United States)

    Khaksari, Maryam; Mazzoleni, Lynn R; Ruan, Chunhai; Kennedy, Robert T; Minerick, Adrienne R

    2017-04-01

    Two separate liquid chromatography (LC)-mass spectrometry (MS) methods were developed for determination and quantification of water-soluble and fat-soluble vitamins in human tear and blood serum samples. The water-soluble vitamin method was originally developed to detect vitamins B 1 , B 2 , B 3 (nicotinamide), B 5 , B 6 (pyridoxine), B 7 , B 9 and B 12 while the fat-soluble vitamin method detected vitamins A, D 3 , 25(OH)D 3, E and K 1 . These methods were then validated with tear and blood serum samples. In this data in brief article, we provide details on the two LC-MS methods development, methods sensitivity, as well as precision and accuracy for determination of vitamins in human tears and blood serum. These methods were then used to determine the vitamin concentrations in infant and parent samples under a clinical study which were reported in "Determination of Water-Soluble and Fat-Soluble Vitamins in Tears and Blood Serum of Infants and Parents by Liquid Chromatography/Mass Spectrometry DOI:10.1016/j.exer.2016.12.007 [1]". This article provides more details on comparison of vitamin concentrations in the samples with the ranges reported in the literature along with the medically accepted normal ranges. The details on concentrations below the limits of detection (LOD) and limits of quantification (LOQ) are also discussed. Vitamin concentrations were also compared and cross-correlated with clinical data and nutritional information. Significant differences and strongly correlated data were reported in [1]. This article provides comprehensive details on the data with slight differences or slight correlations.

  16. Molecular dynamics study of salt–solution interface: Solubility and surface charge of salt in water

    International Nuclear Information System (INIS)

    Kobayashi, Kazuya; Liang, Yunfeng; Matsuoka, Toshifumi; Sakka, Tetsuo

    2014-01-01

    The NaCl salt–solution interface often serves as an example of an uncharged surface. However, recent laser-Doppler electrophoresis has shown some evidence that the NaCl crystal is positively charged in its saturated solution. Using molecular dynamics (MD) simulations, we have investigated the NaCl salt–solution interface system, and calculated the solubility of the salt using the direct method and free energy calculations, which are kinetic and thermodynamic approaches, respectively. The direct method calculation uses a salt–solution combined system. When the system is equilibrated, the concentration in the solution area is the solubility. In the free energy calculation, we separately calculate the chemical potential of NaCl in two systems, the solid and the solution, using thermodynamic integration with MD simulations. When the chemical potential of NaCl in the solution phase is equal to the chemical potential of the solid phase, the concentration of the solution system is the solubility. The advantage of using two different methods is that the computational methods can be mutually verified. We found that a relatively good estimate of the solubility of the system can be obtained through comparison of the two methods. Furthermore, we found using microsecond time-scale MD simulations that the positively charged NaCl surface was induced by a combination of a sodium-rich surface and the orientation of the interfacial water molecules

  17. Acid-base equilibria and solubility of loratadine and desloratadine in water and micellar media.

    Science.gov (United States)

    Popović, Gordana; Cakar, Mira; Agbaba, Danica

    2009-01-15

    Acid-base equilibria in homogeneous and heterogeneous systems of two antihistaminics, loratadine and desloratadine were studied spectrophotometrically in Britton-Robinson's buffer at 25 degrees C. Acidity constant of loratadine was found to be pK(a) 5.25 and those of desloratadine pK(a1) 4.41 and pK(a2) 9.97. The values of intrinsic solubilities of loratadine and desloratadine were 8.65x10(-6) M and 3.82x10(-4) M, respectively. Based on the pK(a) values and intrinsic solubilities, solubility curves of these two drugs as a function of pH were calculated. The effects of anionic, cationic and non-ionic surfactants applied in the concentration exceeding critical micelle concentration (cmc) on acid-base properties of loratadine and desloratadine, as well as on intrinsic solubility of loratadine were also examined. The results revealed a shift of pK(a) values in micellar media comparing to the values obtained in water. These shifts (DeltapK(a)) ranged from -2.24 to +1.24.

  18. Understanding organic reactions in water : from hydrophobic encounters to surfactant aggregates

    NARCIS (Netherlands)

    Engberts, J.B.F.N.; Blandamer, M.J.

    2001-01-01

    A crucial factor in realising a green chemical process in solution involves the choice of a safe, non-toxic and cheap solvent. Water is the obvious choice. Despite solubility problems, considerable interest has developed recently in organic chemistry in water. This interest also results from the

  19. Effects of excess pantothenic acid administration on the other water-soluble vitamin metabolisms in rats.

    Science.gov (United States)

    Shibata, Katsumi; Takahashi, Chisato; Fukuwatari, Tsutomu; Sasaki, Ryuzo

    2005-12-01

    To acquire the data concerning the tolerable upper intake level which prevents health problems from an excessive intake of pantothenic acid, an animal experiment was done. Rats of the Wistar strain (male, 3 wk old) were fed on a diet which contains 0%, 0.0016% (control group), 1%, or 3% calcium pantothenate for 29 d. The amount of weight increase, the food intake, and the organ weights were measured, as well as the pantothenic acid contents in urine, the liver and blood. Moreover, to learn the influence of excessive pantothenic acid on other water-soluble vitamin metabolism, thiamin, riboflavin, a vitamin B6 catabolite, the niacin catabolites, and ascorbic acid in urine were measured. As for the 3% addition group, enlargement of the testis, diarrhea, and hair damage were observed, and the amount of weight increase and the food intake were less than those of the control group. However, abnormality was not seen in the 1% addition group. The amount of pantothenic acid in urine, the liver, and blood showed a high correlation with intake level of pantothenic acid. It was only for 4-pyridoxic acid, a vitamin B6 catabolite, in urine that a remarkable difference was observed against the control group. Moreover, the (2-Py+4-Py)/MNA excretion ratio for these metabolites of the nicotinamide also indicated a low value in the 3% pantothenic acid group. As for the calcium pantothenate, it was found that the 3% level in the diet was the lowest-observed-adverse-effect-level (LOAEL) and the 1% level was the no-observed-adverse-effect-level (NOAEL).

  20. Degradation Mechanism of Poly(Ether-Urethane) Estane Induced by High Energy Radiation (III) : Radiolytic Gases and Water Soluble Products

    International Nuclear Information System (INIS)

    Dannoux, A.

    2006-01-01

    Within the framework of nuclear waste management, there is interest in the prediction of long-term behaviour of organic materials subjected to high energy radiation. Once organic waste has been stored, gases and low molecular products might be generated from materials irradiated by radionuclides. Long-term behaviour of organic material in nuclear waste has several common concerns with radiation ageing of polymers. But a more detailed description of the chemical evolution is needed for nuclear waste management. In a first approach, an extensive work on radiation ageing is used to identify the different processes encountered during the degradation of a polyurethane, including oxidation dose rate-effects and influence of dose on the oxidation mechanism. In a second approach, a study is performed to identify and quantify gases and possible production of water soluble chemical complexing agents which might enhance radionuclides migration away from the repository. In this work, we present results concerning the production of radiolytic gases and the formation of water soluble oligomers reached with leaching tests Films were made from a poly(ether-urethane) synthesized from methylene bis(p-phenyl isocyanate) (MDI) and poly(tetramethylene glycol) (PTMG) with 1,4 butanediol (BD) and were irradiated by high-energy electron beam to cover a wide doses range and by γ rays to determine the formation/consumption yields of gases. They were measured by mass spectrometry and gas-chromatography/mass spectrometry (GC/MS). The migration of water soluble oligomers in water was reached by measuring the weight loss versus leaching time. The identification of oligomers was performed by using a mass spectrometry with an electrospray ionisation interface (ESI-MS-MS). The analysis of radiolytic gases indicates the formation of H 2 , CO 2 and CO with respective radiolytic yields of 1, 0.5 and 0.3 molecule/100 eV. The consumption of O 2 is evaluated to 6 molecules/100 eV. For absorbed doses

  1. In vitro and in vivo antioxidant activity of a water-soluble polysaccharide from dendrobium denneanum

    Science.gov (United States)

    Luo, A.; Ge, Z.; Fan, Y.; Chun, Z.; Jin, He X.

    2011-01-01

    The water-soluble crude polysaccharide (DDP) obtained from the aqueous extracts of the stem of Dendrobium denneanum through hot water extraction followed by ethanol precipitation, was found to have an average molecular weight (Mw) of about 484.7 kDa. Monosaccharide analysis revealed that DDP was composed of arabinose, xylose, mannose, glucose and galactose in a molar ratio of 1.00:2.66:8.92:34.20:10.16. The investigation of antioxidant activity both in vitro and in vivo showed that DDP is a potential antioxidant. ?? 2011.

  2. In Vitro and In Vivo Antioxidant Activity of a Water-Soluble Polysaccharide from Dendrobium denneanum

    Directory of Open Access Journals (Sweden)

    XingJin He

    2011-02-01

    Full Text Available The water-soluble crude polysaccharide (DDP obtained from the aqueous extracts of the stem of Dendrobium denneanum through hot water extraction followed by ethanol precipitation, was found to have an average molecular weight (Mw of about  484.7 kDa. Monosaccharide analysis revealed that DDP was composed of arabinose, xylose, mannose, glucose and galactose in a molar ratio of 1.00:2.66:8.92:34.20:10.16. The investigation of antioxidant activity both in vitro and in vivo showed that DDP is a potential antioxidant.

  3. Oil-soluble and water-soluble BTPhens and their europium complexes in octanol/water solutions: interface crossing studied by MD and PMF simulations.

    Science.gov (United States)

    Benay, G; Wipff, G

    2013-01-31

    Bistriazinyl-phenantroline "BTPhen" ligands L display the remarkable feature to complex trivalent lanthanide and actinide ions, with a marked selectivity for the latter. We report on molecular dynamics studies of tetrasubstituted X(4)BTPhens: L(4+) (X = (+)Et(3)NCH(2)-), L(4-) (X = (-)SO(3)Ph-), and L(0) (X = CyMe(4)) and their complexes with Eu(III) in binary octanol/water solutions. Changes in free energies upon interface crossing are also calculated for typical solutes by potential of mean force PMF simulations. The ligands and their complexes partition, as expected, to either the aqueous or the oil phase, depending on the "solubilizing" group X. Furthermore, most of them are found to be surface active. The water-soluble L(4+) and L(4-) ligands and their (L)Eu(NO(3))(3) complexes adsorb at the aqueous side of the interface, more with L(4-) than with L(4+). The oil soluble ligand L(0) is not surface active in its endo-endo form but adsorbs on the oil side of the interface in its most polar endo-exo form, as well as in its protonated L(0)H(+) and complexed (L(0))Eu(NO(3))(3) states. Furthermore, comparing PMFs of the Eu(III) complexes with and without nitric acid shows that acidifying the aqueous phase has different effects, depending on the ligand charge. In particular, acid promotes the Eu(III) extraction by L(0) via the (L(0))(2)Eu(NO(3))(2+) complex, as observed experimentally. Overall, the results point to the importance of interfacial adsorption for the liquid-liquid extraction of trivalent lanthanide and actinide cations by BTPhens and analogues.

  4. Study to evaluate the impact of heat treatment on water soluble vitamins in milk.

    Science.gov (United States)

    Asadullah; Khair-un-nisa; Tarar, Omer Mukhtar; Ali, Syed Abdul; Jamil, Khalid; Begum, Askari

    2010-11-01

    To evaluate the effect of domestic boiling practice on the contents of water soluble vitamins of loose milk and quantitative comparison of these vitamins in Ultra High Temperature (UHT) treated packaged milk with that of boiled loose milk. Loose milk samples were collected from various localities of Karachi city (Pakistan). These samples were boiled in simulated household conditions for 5, 10 and 15 minutes. Ultra High Temperature (UHT) treated packaged milk samples of various brands were obtained from the local market. The aliquots were analyzed for water-soluble vitamins using High Performance Liquid Chromatography (HPLC) technique. The mean values and standard deviations for data were computed and compared as well as level of variations were also determined. Conventional boiling caused destruction of water soluble vitamins in milk i.e. vitamin 81 content in fresh milk decreased from 0.037 mg/100 g to 0.027 mg/100 g after 15 min boiling, whereas vitamin B2 from 0.115 to 0.084 mg/100 g, vitamin B3 0.062 to 0.044 mg/100 g, vitamin B6 0.025 to 0.019 mg/100 g and folic acid 3.38 to 2.40 microg/100 g. This accounted for a post-boiling decrease of about 27, 27, 29, 24 and 36% in vitamins B1, B2, B3, B6 and folic acid respectively. The values for vitamins B1, B2, B3, B6 and folic acid determined in boiled milk were significantly lower than UHT treated packaged milk samples by 25.9, 75.0, 54.5, 63.16 and 38.1% respectively. Conventional boiling caused drastic reduction in vitamin levels of loose milk samples. In comparison to this, UHT milk retained high levels of water soluble B-vitamins. Thus it could be envisaged that UHT treated milk provides better water soluble vitamins' nourishment than conventionally boiled milk (JPMA 60:909; 2010).

  5. Study to evaluate the impact of heat treatment on water soluble vitamins in milk

    International Nuclear Information System (INIS)

    Khair-un-Nisa, A.; Tarar, O.M.; Ali, S.A.; Jamil, K.; Begum, A.

    2010-01-01

    Objectives: To evaluate the effect of domestic boiling practice on the contents of water soluble vitamins of loose milk and quantitative comparison of these vitamins in Ultra High Temperature (UHT) treated packaged milk with that of boiled loose milk. Methods: Loose milk samples were collected from various localities of Karachi city (Pakistan). These samples were boiled in simulated household conditions for 5, 10 and 15 minutes. Ultra High Temperature (UHT) treated packaged milk samples of various brands were obtained from the local market. The aliquots were analyzed for water-soluble vitamins using High Performance Liquid Chromatography (HPLC) technique. The mean values and standard deviations for data were computed and compared as well as level of variations were also determined. Results: Conventional boiling caused destruction of water soluble vitamins in milk i.e. vitamin B1 content in fresh milk decreased from 0.037 mg/100g to 0.027 mg/100g after 15 min boiling, whereas vitamin B2 from 0.115 to 0.084 mg/100g, vitamin B3 0.062 to 0.044 mg/100g, vitamin B6 0.025 to 0.019 mg/100g and folic acid 3.38 to 2.40 < g/100g. This accounted for a post-boiling decrease of about 27, 27, 29, 24 and 36% in vitamins B1, B2, B3, B6 and folic acid respectively. The values for vitamins B1, B2, B3, B6 and folic acid determined in boiled milk were significantly lower than UHT treated packaged milk samples by 25.9, 75.0, 54.5, 63.16 and 38.1% respectively. Conclusion: Conventional boiling caused drastic reduction in vitamin levels of loose milk samples. In comparison to this, UHT milk retained high levels of water soluble B-vitamins. Thus it could be envisaged that UHT treated milk provides better water soluble vitamins' nourishment than conventionally boiled milk. (author)

  6. Supramolecular Host-Guest System as Ratiometric Fe3+ Ion Sensor Based on Water-Soluble Pillar[5]arene.

    Science.gov (United States)

    Yao, Qianfang; Lü, Baozhong; Ji, Chendong; Cai, Yang; Yin, Meizhen

    2017-10-18

    Developing a specific, ratiometric, and reversible detection method for metal ions is significant to guard against the threat of metal-caused environmental pollution and organisms poisoning. Here a supramolecular host-guest system (WP5⊃G) based on water-soluble pillar[5]arene (WP5) and water-soluble quaternized perylene diimide derivative (G) was constructed. Morphological transformation was achieved during the process of adding WP5 into G aqueous solution, and a fluorescence "turn-off" phenomenon was observed which was caused by supramolecular photoinduced electron transfer (PET). Meanwhile, hydrophobic effect and electrostatic interaction played important roles in this supramolecular process, which was confirmed by isothermal titration calorimeter (ITC) and ζ potential experiments. Furthermore, the supramolecular host-guest system could be a "turn-on" fluorescent probe for Fe 3+ ion detection through the process of interdicting supramolecular PET. Moreover, the Fe 3+ ion detection showed specific, ratiometric, and reversible performances with a detection limit of 2.13 × 10 -7 M, which might have great potentials in biological and environmental monitoring.

  7. Water-soluble chelating polymers for removal of actinides from wastewater

    International Nuclear Information System (INIS)

    Jarvinen, G.D.

    1997-01-01

    Polymer filtration is a technology under development to selectively recover valuable or regulated metal ions from process or wastewaters. The technology uses water-soluble chelating polymers that are designed to selectively bind with metal ions in aqueous solutions. The polymers have a sufficiently large molecular weight that they can be separated and concentrated using available ultrafiltration (UF) technology. The UF range is generally considered to include molecular weights from about 3000 to several million daltons and particles sizes of about 2 to 1000 nm. Water and smaller unbound components of the solution pass freely through the UF membrane. The polymers can then be reused by changing the solution conditions to release the metal ions that are recovered in concentrated form for recycle or disposal. Some of the advantages of polymer filtration relative to technology now in use are rapid binding kinetics, high selectivity, low energy and capital costs, and a small equipment footprint. Some potential commercial applications include electroplating rinse waters, photographic processing, nuclear power plant cooling water; remediation of contaminated soils and groundwater; removal of mercury contamination; and textile, paint and dye production. The purpose of this project is to evaluate this technology to remove plutonium, americium, and other regulated metal ions from various process and waste streams found in nuclear facilities. The work involves preparation of the water-soluble chelating polymers; small-scale testing of the chelating polymer systems for the required solubility, UF properties, selectivity and binding constants; followed by an engineering assessment at a larger scale to allow comparison to competing separation technologies. This project focuses on metal-ion contaminants in waste streams at the Plutonium Facility and the Waste Treatment Facility at LANL. Potential applications at other DOE facilities are also apparent

  8. Water-soluble chelating polymers for removal of actinides from wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Jarvinen, G.D. [Los Alamos National Lab., NM (United States)

    1997-10-01

    Polymer filtration is a technology under development to selectively recover valuable or regulated metal ions from process or wastewaters. The technology uses water-soluble chelating polymers that are designed to selectively bind with metal ions in aqueous solutions. The polymers have a sufficiently large molecular weight that they can be separated and concentrated using available ultrafiltration (UF) technology. The UF range is generally considered to include molecular weights from about 3000 to several million daltons and particles sizes of about 2 to 1000 nm. Water and smaller unbound components of the solution pass freely through the UF membrane. The polymers can then be reused by changing the solution conditions to release the metal ions that are recovered in concentrated form for recycle or disposal. Some of the advantages of polymer filtration relative to technology now in use are rapid binding kinetics, high selectivity, low energy and capital costs, and a small equipment footprint. Some potential commercial applications include electroplating rinse waters, photographic processing, nuclear power plant cooling water; remediation of contaminated soils and groundwater; removal of mercury contamination; and textile, paint and dye production. The purpose of this project is to evaluate this technology to remove plutonium, americium, and other regulated metal ions from various process and waste streams found in nuclear facilities. The work involves preparation of the water-soluble chelating polymers; small-scale testing of the chelating polymer systems for the required solubility, UF properties, selectivity and binding constants; followed by an engineering assessment at a larger scale to allow comparison to competing separation technologies. This project focuses on metal-ion contaminants in waste streams at the Plutonium Facility and the Waste Treatment Facility at LANL. Potential applications at other DOE facilities are also apparent.

  9. Solubility of mixed monomers of tetrafluoroethylene and propylene in water and latex

    International Nuclear Information System (INIS)

    Watanabe, Hiromasa; Okamoto, Jiro

    1978-03-01

    For kinetical analysis of the emulsion copolymerization of tetrafluoroethylene with propylene and selection of the optimum reaction conditions, the monomer concentrations and composition of the polymer particle were measured and the relations with reaction conditions were determined. Solubilities of tetrafluoroethylene and propylene in water increase with pressure. solubility of propylene is larger than that of tetrafluoroethylene. Solubility of the mixed monomers in water and latex increases with pressure and propylene concentration and decreases with temperature. Propylene concentration in the dissolved monomers is dependent on its concentration in the gas phase and independent of pressure and temperature. The monomer concentrations and the composition were estimated from measurements. Under propylene concentration in the gas phase of 0 to 40 wt % at 30 Kg/cm 2 G and 40 0 C, the monomer concentration and propylene fraction of the polymer particle are 17 -- 27% and 0 -- 62% respectively. The amount of propylene in the particle increases with its fraction in the gas phase, but the amount of tetrafluoroethylene is independent of its fraction in the gas phase. Monomer composition of the polymer particle is dependent on monomer composition of the gas phase and independent of temperature and pressure. The concentration in the polymer particle is 17% at propylene concentration 10 mole % in the gas phase. (auth.)

  10. Multilayer encapsulated mesoporous silica nanospheres as an oral sustained drug delivery system for the poorly water-soluble drug felodipine

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Liang [Department of Pharmaceutics, Shenyang Pharmaceutical University, P.O. Box 32, Liaoning Province, Shenyang 110016 (China); Sun, Hongrui [English Teaching Department, School of Basic Courses, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016 (China); Zhao, Qinfu; Han, Ning; Bai, Ling; Wang, Ying; Jiang, Tongying [Department of Pharmaceutics, Shenyang Pharmaceutical University, P.O. Box 32, Liaoning Province, Shenyang 110016 (China); Wang, Siling, E-mail: silingwang@syphu.edu.cn [Department of Pharmaceutics, Shenyang Pharmaceutical University, P.O. Box 32, Liaoning Province, Shenyang 110016 (China)

    2015-02-01

    We used a combination of mesoporous silica nanospheres (MSN) and layer-by-layer (LBL) self-assembly technology to establish a new oral sustained drug delivery system for the poorly water-soluble drug felodipine. Firstly, the model drug was loaded into MSN, and then the loaded MSN were repeatedly encapsulated by chitosan (CHI) and acacia (ACA) via LBL self-assembly method. The structural features of the samples were studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen adsorption. The encapsulating process was monitored by zeta-potential and surface tension measurements. The physical state of the drug in the samples was characterized by differential scanning calorimetry (DSC) and X-ray diffractometry (XRD). The influence of the multilayer with different number of layers on the drug release rate was studied using thermal gravimetric analysis (TGA) and surface tension measurement. The swelling effect and the structure changes of the multilayer were investigated to explore the relationship between the drug release behavior and the state of the multilayer under different pH conditions. The stability and mucosa adhesive ability of the prepared nanoparticles were also explored. After multilayer coating, the drug release rate was effectively controlled. The differences in drug release behavior under different pH conditions could be attributed to the different states of the multilayer. And the nanoparticles possessed good stability and strong mucosa adhesive ability. We believe that this combination offers a simple strategy for regulating the release rate of poorly water-soluble drugs and extends the pharmaceutical applications of inorganic materials and polymers. - Highlights: • A combination of inorganic and organic materials was applied. • Mesoporous silica nanospheres (MSN) were used as drug carriers. • Chitosan and acacia were encapsulated through layer-by-layer self-assembly. • The release rate of the poorly

  11. Multilayer encapsulated mesoporous silica nanospheres as an oral sustained drug delivery system for the poorly water-soluble drug felodipine

    International Nuclear Information System (INIS)

    Hu, Liang; Sun, Hongrui; Zhao, Qinfu; Han, Ning; Bai, Ling; Wang, Ying; Jiang, Tongying; Wang, Siling

    2015-01-01

    We used a combination of mesoporous silica nanospheres (MSN) and layer-by-layer (LBL) self-assembly technology to establish a new oral sustained drug delivery system for the poorly water-soluble drug felodipine. Firstly, the model drug was loaded into MSN, and then the loaded MSN were repeatedly encapsulated by chitosan (CHI) and acacia (ACA) via LBL self-assembly method. The structural features of the samples were studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen adsorption. The encapsulating process was monitored by zeta-potential and surface tension measurements. The physical state of the drug in the samples was characterized by differential scanning calorimetry (DSC) and X-ray diffractometry (XRD). The influence of the multilayer with different number of layers on the drug release rate was studied using thermal gravimetric analysis (TGA) and surface tension measurement. The swelling effect and the structure changes of the multilayer were investigated to explore the relationship between the drug release behavior and the state of the multilayer under different pH conditions. The stability and mucosa adhesive ability of the prepared nanoparticles were also explored. After multilayer coating, the drug release rate was effectively controlled. The differences in drug release behavior under different pH conditions could be attributed to the different states of the multilayer. And the nanoparticles possessed good stability and strong mucosa adhesive ability. We believe that this combination offers a simple strategy for regulating the release rate of poorly water-soluble drugs and extends the pharmaceutical applications of inorganic materials and polymers. - Highlights: • A combination of inorganic and organic materials was applied. • Mesoporous silica nanospheres (MSN) were used as drug carriers. • Chitosan and acacia were encapsulated through layer-by-layer self-assembly. • The release rate of the poorly

  12. Improved intestinal absorption of a poorly water-soluble oral drug using mannitol microparticles containing a nanosolid drug dispersion.

    Science.gov (United States)

    Nishino, Yukiko; Kubota, Aya; Kanazawa, Takanori; Takashima, Yuuki; Ozeki, Tetsuya; Okada, Hiroaki

    2012-11-01

    A nozzle for a spray dryer that can prepare microparticles of water-soluble carriers containing various nanoparticles in a single step was previously developed in our laboratory. To enhance the solubility and intestinal absorption of poorly water-soluble drugs, we used probucol (PBL) as a poorly water-soluble drug, mannitol (MAN) as a water-soluble carrier for the microparticles, and EUDRAGIT (EUD) as a polymer vehicle for the solid dispersion. PBL-EUD-acetone-methanol and aqueous MAN solutions were simultaneously supplied through different liquid passages of the spray nozzle and dried together. PBL-EUD solid dispersion was nanoprecipitated in the MAN solution using an antisolvent mechanism and rapidly dried by surrounding it with MAN. PBL in the dispersion vehicle was amorphous and had higher physical stability according to powder X-ray diffraction and differential scanning calorimetry analysis. The bioavailability of PBL in PBL-EUD S-100-MAN microparticles after oral administration in rats was markedly higher (14- and 6.2-fold, respectively) than that of the original PBL powder and PBL-MAN microparticles. These results demonstrate that the composite microparticles containing a nanosized solid dispersion of a poorly water-soluble drug prepared using the spray nozzle developed by us should be useful to increase the solubility and bioavailability of drugs after oral administration. Copyright © 2012 Wiley Periodicals, Inc.

  13. Highly water-soluble, porous, and biocompatible boron nitrides for anticancer drug delivery.

    Science.gov (United States)

    Weng, Qunhong; Wang, Binju; Wang, Xuebin; Hanagata, Nobutaka; Li, Xia; Liu, Dequan; Wang, Xi; Jiang, Xiangfen; Bando, Yoshio; Golberg, Dmitri

    2014-06-24

    Developing materials for "Nano-vehicles" with clinically approved drugs encapsulated is envisaged to enhance drug therapeutic effects and reduce the adverse effects. However, design and preparation of the biomaterials that are porous, nontoxic, soluble, and stable in physiological solutions and could be easily functionalized for effective drug deliveries are still challenging. Here, we report an original and simple thermal substitution method to fabricate perfectly water-soluble and porous boron nitride (BN) materials featuring unprecedentedly high hydroxylation degrees. These hydroxylated BNs are biocompatible and can effectively load anticancer drugs (e.g., doxorubicin, DOX) up to contents three times exceeding their own weight. The same or even fewer drugs that are loaded on such BN carriers exhibit much higher potency for reducing the viability of LNCaP cancer cells than free drugs.

  14. Thermodynamic interactions of water-soluble homopolymers and double-hydrophilic diblock copolymer

    International Nuclear Information System (INIS)

    Yazici, D. Topaloglu; Askin, A.; Buetuen, V.

    2008-01-01

    Thermodynamic interaction parameters of water-soluble poly[2-(dimethylamino)ethyl methacrylate] (DMA) and poly[2-(N-morpholino)ethyl methacrylate] (MEMA) homopolymers and their diblock copolymer (DMA-MEMA) were investigated at the temperatures above their glass-transition temperatures (T g ) by inverse gas chromatography (IGC) method. Sorption thermodynamic parameters of some aliphatic, alicyclic and aromatic hydrocarbons, weight fraction activity coefficients, Flory-Huggins interaction parameters, and solubility parameters for hydrocarbons and polymers were calculated. It was observed that sorption thermodynamic parameters on (co)polymers depend on the molecular structures of hydrocarbons. Evaluating both the calculated values of the weight fraction activity coefficients and Flory-Huggins interaction parameters, the solving ability of the hydrocarbons for DMA, MEMA homopolymers, and DMA-MEMA diblock copolymer decreased in the following sequence: Aromatic > alicyclic > aliphatic hydrocarbons

  15. Aryl-derivatized, water-soluble functionalized carbon nanotubes for biomedical applications

    International Nuclear Information System (INIS)

    Karousis, N.; Ali-Boucetta, H.; Kostarelos, K.; Tagmatarchis, N.

    2008-01-01

    The functionalization of very-thin multi-walled carbon nanotubes (VT-MWNTs) with an aniline derivative, via the protocol of in situ generated aryl diazonium salts results, upon acidic deprotection of the terminal BOC group, on the formation of the water-soluble positively charged ammonium functionalized VT-MWNTs-NH 3 + material. The new materials have been structurally and morphologically characterized by infra-red (ATR-IR) spectroscopy and transmission electron microscopy (TEM). The quantitative calculation of the grafted aryl units onto the skeleton of VT-MWNTs has been estimated by thermogravimetric analysis (TGA), while the quantitative Kaiser test showed the amine group loaded onto VT-MWNTs-NH 3 + material. The aqueous solubility of this material has allowed the performance of some initial toxicological in vitro investigations

  16. Synthesis, structure, antioxidant activity, and water solubility of trolox ion conjugates

    Directory of Open Access Journals (Sweden)

    Yuliya V. Yushkova

    2018-01-01

    Full Text Available The interaction of trolox with ammonia, alkylamines of different classes, and amino derivatives of heterocyclic compounds, including nitroxyl radicals and alkaloids, led to the production of ammonium salts called ion conjugates (ICs. Five ICs were characterised by X-ray diffraction. This is the first time a wide range of ICs were made from trolox with amines, and ESI-MS data demonstrated they have the potential to generate pseudomolecular [(A−B+ + H]+ ions. For all obtained trolox ICs, a significant increase (1–3 orders of magnitude in water solubility was achieved while retaining high antioxidant activity. ICs synthesised from two biologically active fragments may be used to create polyfunctional agents with varying solubility and bioavailability. Keywords: Trolox, Amines, Ion conjugates, Antioxidants, Mass-spectrometry

  17. UV-radiation induced changes in antibiotic markers, chemical composition of water soluble polysaccharides and nodulation ability of Rhizobium trifolic 11B

    International Nuclear Information System (INIS)

    Ghai, Jyotsna; Ghai, S.K.; Kalra, M.S.

    1983-01-01

    Rhizobium trifolii 11B, which formed effective nodules on its host. Trifolium alexanderinum L. was UV-irradiated to isolate mutants. Out of the 9 variants isolated only 1 strain, viz. 21M11B produced more water soluble polysaccharide [752 mg (100 ml -1 )] than the parent 15 different antibiotics was similar only in two (22M11B and 26M11B) of the 9 UV-mutants. Compositional studies revealed that the water soluble polysaccharides from all strains contained glucose and galactose in the molar ratio of 7:1. Glucuronic acid which was present (2.33 per cent) in the water soluble polysaccharide from strain 11B was absent in all but 2UV-mutants (4.22per cent in 6M11B and 4.04per cent in26M11B). Five of the UB-mutants (1M11B, 17M11B, 20N11B, 22M11B and 26M11B) were Nod - . The organisms which produced more water soluble polysaccharide upon infection of the plants induced the formation of more number of nodules. (author)

  18. Highly water soluble nanoparticles as a draw solute in forward osmosis for the treatment of radioactive liquid waste

    International Nuclear Information System (INIS)

    Yang, Heeman; Choi, Hye Min; Jang, Sungchan; Seo, Bumkyoung; Lee, Kune Woo; Moon, Jei Kwon

    2014-01-01

    . In this study, we introduced highly water-soluble hyperbranched caroboxylated polyglycerol-coated magnetic nanoparticles (CPG-MNPs). It is known that the highly branched, globular architecture of PG significantly increase solubility compared to linear polymer and they are eco-friendly. The CPG-MNPs showed no aggregate of particles in water even after placing external magnet, and exhibited a high water flux in FO process. The CPG-MNPs are, therefore, potentially useful as a draw solute in FO processes. The operation of nuclear pressurized water reactors (PWRs) results in numerous radioactive waste streams which vary in radioactivity content. Most PWR stations have experienced leakages of boric acid into liquid radioactive waste systems. These wastes contain about 0.3∼0.8 wt% of boric acid. It is known that reverse osmosis (RO) membrane can eliminate boron at high pH and boron of 40∼90% can be removed by RO membrane in pH condition. RO uses hydraulic pressure to oppose, and exceed, the osmotic pressure of an aqueous feed solution containing boric acid. Forward osmosis (FO), a low energy technique based on membrane technologies, has recently garnered attention for its utility in wastewater treatment and desalination applications. In the FO process, water flows across a semi-permeable membrane from a solution with a low osmotic pressure (the feed solution) to a solution with a high osmotic pressure (the draw solution). The driving force in FO processes is provided by the osmotic gradient between the two solutions. Low energy costs and low degrees of membrane fouling are two of the advantages conveyed by FO processes over other processes, such as reverse osmosis processes that rely on a hydraulic pressure driving force. However, the challenges of FO still lie in the fabrication of eligible FO membranes and the readily separable draw solutes of high osmotic pressures. Superparamagnetic Fe3O4 nanoparticles can be separated from water by an external magnet field

  19. Highly water soluble nanoparticles as a draw solute in forward osmosis for the treatment of radioactive liquid waste

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Heeman; Choi, Hye Min; Jang, Sungchan; Seo, Bumkyoung; Lee, Kune Woo; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    . In this study, we introduced highly water-soluble hyperbranched caroboxylated polyglycerol-coated magnetic nanoparticles (CPG-MNPs). It is known that the highly branched, globular architecture of PG significantly increase solubility compared to linear polymer and they are eco-friendly. The CPG-MNPs showed no aggregate of particles in water even after placing external magnet, and exhibited a high water flux in FO process. The CPG-MNPs are, therefore, potentially useful as a draw solute in FO processes. The operation of nuclear pressurized water reactors (PWRs) results in numerous radioactive waste streams which vary in radioactivity content. Most PWR stations have experienced leakages of boric acid into liquid radioactive waste systems. These wastes contain about 0.3∼0.8 wt% of boric acid. It is known that reverse osmosis (RO) membrane can eliminate boron at high pH and boron of 40∼90% can be removed by RO membrane in pH condition. RO uses hydraulic pressure to oppose, and exceed, the osmotic pressure of an aqueous feed solution containing boric acid. Forward osmosis (FO), a low energy technique based on membrane technologies, has recently garnered attention for its utility in wastewater treatment and desalination applications. In the FO process, water flows across a semi-permeable membrane from a solution with a low osmotic pressure (the feed solution) to a solution with a high osmotic pressure (the draw solution). The driving force in FO processes is provided by the osmotic gradient between the two solutions. Low energy costs and low degrees of membrane fouling are two of the advantages conveyed by FO processes over other processes, such as reverse osmosis processes that rely on a hydraulic pressure driving force. However, the challenges of FO still lie in the fabrication of eligible FO membranes and the readily separable draw solutes of high osmotic pressures. Superparamagnetic Fe3O4 nanoparticles can be separated from water by an external magnet field

  20. Effect of Bombay high crude oil and its water-soluble fraction on growth and metabolism of diatom Thalassiosira sp.

    Digital Repository Service at National Institute of Oceanography (India)

    Parab, S.R.; Pandit, R.A.; Kadam, A.N.; Indap, M.M.

    Effect of Bombay high crude oil (BHC) and its water-soluble fraction (WSF) on growth and metabolism of the phytoplankton, Thalassiosira sp. was assessed. The study revealed the signs of acute toxicity at higher concentrations of crude oil (0...

  1. Simultaneous quantification of 21 water soluble vitamin circulating forms in human plasma by liquid chromatography-mass spectrometry.

    Science.gov (United States)

    Meisser Redeuil, Karine; Longet, Karin; Bénet, Sylvie; Munari, Caroline; Campos-Giménez, Esther

    2015-11-27

    This manuscript reports a validated analytical approach for the quantification of 21 water soluble vitamins and their main circulating forms in human plasma. Isotope dilution-based sample preparation consisted of protein precipitation using acidic methanol enriched with stable isotope labelled internal standards. Separation was achieved by reversed-phase liquid chromatography and detection performed by tandem mass spectrometry in positive electrospray ionization mode. Instrumental lower limits of detection and quantification reached water soluble vitamins in human plasma single donor samples. The present report provides a sensitive and reliable approach for the quantification of water soluble vitamins and main circulating forms in human plasma. In the future, the application of this analytical approach will give more confidence to provide a comprehensive assessment of water soluble vitamins nutritional status and bioavailability studies in humans. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Solubility of root-canal sealers in water and artificial saliva.

    Science.gov (United States)

    Schäfer, E; Zandbiglari, T

    2003-10-01

    To compare the weight loss of eight different root-canal sealers in water and in artificial saliva with different pH values. For standardized samples (n = 12 per group), ring moulds were filled with epoxy resin (AH 26, AH Plus)-, silicone (RSA RoekoSeal)-, calcium hydroxide (Apexit, Sealapex)-, zinc oxide-eugenol (Aptal-Harz)-, glass-ionomer (Ketac Endo)- and polyketone (Diaket)-based sealers. These samples were immersed in double-distilled water or artificial saliva with different pH values (7.0, 5.7 and 4.5) for 30 s, 1 min, 2 min, 5 min, 10 min, 20 min, 1 h, 2 h, 10 h, 24 h, 48 h, 72 h, 14 days and 28 days. Mean loss of weight was determined and analysed statistically using a one-way anova and Student-Newman-Keuls test for all pairwise comparisons. Most sealers were of low solubility, although Sealapex, Aptal-Harz and Ketac Endo showed a marked weight loss in all liquids. Even after 28 days of storage in water, AH 26, AH Plus, RSA RoekoSeal, and Diaket showed less than 3% weight loss. At exposure times greater than 14 days, Sealapex showed the significantly greatest weight loss of all sealers tested (P < 0.05). Aptal-Harz and Ketac Endo were significantly more soluble in saliva (pH 4.5) than in water (P < 0.05). Under the conditions of the present study, AH Plus showed the least weight loss of all sealers tested, independent of the solubility medium used. Sealapex, Aptal-Harz and Ketac Endo had a marked weight loss in all liquids.

  3. Soluble CD30 serum level--an adequate marker for allograft rejection of solid organs?

    Science.gov (United States)

    Schlaf, G; Altermann, W W; Rothhoff, A; Seliger, B

    2007-11-01

    The CD30 molecule, a 120 kDa cell surface glycoprotein, is a member of the tumor necrosis factor receptor (TNF-R) superfamily and was originally identified on the surface of Reed-Sternberg cells and anaplastic large cell lymphomas in Hodgkin's disease patients. In addition to lymphoproliferative disorders the expression of CD30 was found in both activated CD8+ and CD4+ Th2 cells which lead to the activation of B-cells and consequently to the inhibition of the Th1-type cellular immunity. The membrane-bound CD30 molecule can be proteolytically cleaved, thereby generating a soluble form (sCD30) of about 85 kDa. Low serum levels of soluble CD30 were found in healthy humans, whereas increased sCD30 serum concentrations were detected under pathophysiological situations such as systemic lupus erythematosus, rheumatoid arthritis, certain viral infections and adult T cell leukaemia/lymphoma. In addition, it has recently been suggested that pre- or post-transplant levels of sCD30 represent a biomarker for graft rejection associated with an impaired outcome for transplanted patients. We here review (i) the current knowledge of the clinical significance of sCD30 serum levels for solid organ transplantations and (ii) our own novel data regarding inter- and intra-individual variations as well as time-dependent alterations of sCD30 levels in patients. (iii) Based on this information the implementation of sCD30 as predictive pre-transplant or post-transplant parameter for solid organ transplantation is critically discussed.

  4. Water-Soluble N-Heterocyclic Carbene-Protected Gold Nanoparticles: Size-Controlled Synthesis, Stability, and Optical Properties

    OpenAIRE

    Salorinne, Kirsi; Man, Renee W.Y.; Li, Chien-Hung; Taki, Masayasu; Nambo, Masakazu; Crudden, Cathleen M.

    2017-01-01

    NHC-Au(I) complexes were used to prepare stable, water-soluble, NHC-protected gold nanoparticles. The water-soluble, charged nature of the nanoparticles permitted analysis by polyacrylamide gel electrophoresis (PAGE), which showed that the nanoparticles were highly monodisperse, with tunable core diameters between 2.0 and 3.3 nm depending on the synthesis conditions. Temporal, thermal, and chemical stability of the nanoparticles were determined to be high. Treatment with thiols caused etching...

  5. Preparations and properties of anti-corrosion additives of water-soluble metal working fluids for aluminum alloy materials.

    Science.gov (United States)

    Watanabe, Shoji

    2008-01-01

    This short review describes various types of anti-corrosion additives of water-soluble metal working fluids for aluminum alloy materials. It is concerned with synthetic additives classified according to their functional groups; silicone compounds, carboxylic acids and dibasic acids, esters, Diels-Alder adducts, various polymers, nitrogen compounds, phosphoric esters, phosphonic acids, and others. Testing methods for water-soluble metal working fluids for aluminum alloy materials are described for a practical application in a laboratory.

  6. Method of removing nitrogen monoxide from a nitrogen monoxide-containing gas using a water-soluble iron ion-dithiocarbamate, xanthate or thioxanthate

    Science.gov (United States)

    Liu, D. Kwok-Keung; Chang, Shih-Ger

    1987-08-25

    The present invention relates to a method of removing of nitrogen monoxide from a nitrogen monoxide-containing gas which method comprises contacting a nitrogen oxide-containing gas with an aqueous solution of water soluble organic compound-iron ion chelate complex. The NO absorption efficiency of ferrous urea-dithiocarbamate and ferrous diethanolamine-xanthate as a function of time, oxygen content and solution ph is presented. 3 figs., 1 tab.

  7. Follow-up barium study after a negative water-soluble contrast examination for suspected esophageal leak: is it necessary?

    Science.gov (United States)

    Sanchez, Thomas R; Holz, Grant S; Corwin, Michael T; Wood, Robert J; Wootton-Gorges, Sandra L

    2015-10-01

    The purpose of this study was to determine the value of follow-up barium esophogram in diagnosing esophageal injury or leak if the initial water-soluble contrast examination of the esophagus is normal. An institutional review board (IRB)-approved retrospective review of all pediatric patients less than 18 years old referred to the radiology department for evaluation of esophageal injury or leak was performed for a 9-year period from 2005 to 2014. The majority of patients had unexplained pneumomediastinum, chest trauma (gunshot or puncture wound), or foreign body ingestion as the reason for the referral. Forty-nine patients (age range 10 days to 17 years) underwent an initial water-soluble esophogram immediately followed by a barium esophogram. Forty-six studies were negative on both water-soluble contrast and barium studies. Two studies were both positive on the initial water-soluble contrast and subsequent barium studies. A single study showed the esophageal leak only in the water-soluble study, with the follow-up barium exam being normal. The result of this study indicates that a single-contrast water-soluble esophogram alone is sensitive in the diagnosis of esophageal injury or leak. It has a 100 % sensitivity and negative predictive value. A follow-up barium esophogram only increases the study time and radiation dose to the patient.

  8. Urinary water-soluble vitamins and their metabolite contents as nutritional markers for evaluating vitamin intakes in young Japanese women.

    Science.gov (United States)

    Fukuwatari, Tsutomu; Shibata, Katsumi

    2008-06-01

    Little information is available to estimate water-soluble vitamin intakes from urinary vitamins and their metabolite contents as possible nutritional markers. Determination of the relationships between the oral dose and urinary excretion of water-soluble vitamins in human subjects contributes to finding valid nutrition markers of water-soluble vitamin intakes. Six female Japanese college students were given a standard Japanese diet in the first week, the same diet with a synthesized water-soluble vitamin mixture as a diet with approximately onefold vitamin mixture based on Dietary Reference Intakes (DRIs) for Japanese in the second week, with a threefold vitamin mixture in the third week, and a sixfold mixture in the fourth week. Water-soluble vitamins and their metabolites were measured in the 24-h urine collected each week. All urinary vitamins and their metabolite levels except vitamin B(12) increased linearly in a dose-dependent manner, and highly correlated with vitamin intake (r=0.959 for vitamin B(1), r=0.927 for vitamin B(2), r=0.965 for vitamin B(6), r=0.957 for niacin, r=0.934 for pantothenic acid, r=0.907 for folic acid, r=0.962 for biotin, and r=0.952 for vitamin C). These results suggest that measuring urinary water-soluble vitamins and their metabolite levels can be used as good nutritional markers for assessing vitamin intakes.

  9. Determination of water-soluble and fat-soluble vitamins in tears and blood serum of infants and parents by liquid chromatography/mass spectrometry.

    Science.gov (United States)

    Khaksari, Maryam; Mazzoleni, Lynn R; Ruan, Chunhai; Kennedy, Robert T; Minerick, Adrienne R

    2017-02-01

    Tears serve as a viable diagnostic fluid with advantages including less invasive sample to collect and less complex to prepare for analysis. Several water-soluble and fat-soluble vitamins were detected and quantified in human tears and compared with blood serum levels. Samples from 15 family pairs, each pair consisting of a four-month-old infant and one parent were analyzed; vitamin concentrations were compared between tears and blood serum for individual subjects, between infants and parents, and against self-reported dietary intakes. Water-soluble vitamins B 1 , B 2 , B 3 (nicotinamide), B 5 , B 9 and fat-soluble vitamin E (α-tocopherol) were routinely detected in tears and blood serum while fat-soluble vitamin A (retinol) was detected only in blood serum. Water-soluble vitamin concentrations measured in tears and blood serum of single subjects were comparable, while higher concentrations were measured in infants compared to their parents. Fat-soluble vitamin E concentrations were lower in tears than blood serum with no significant difference between infants and parents. Serum vitamin A concentrations were higher in parents than infants. Population trends were compiled and quantified using a cross correlation factor. Strong positive correlations were found between tear and blood serum concentrations of vitamin E from infants and parents and vitamin B 3 concentrations from parents, while slight positive correlations were detected for infants B 3 and parents B 1 and B 2 concentrations. Correlations between infants and parents were found for the concentrations of B 1 , B 2 , B 3 , and E in tears, and the concentrations of B 2, A, and E in blood serum. Stronger vitamin concentration correlations were found between infants and parents for the breast-fed infants, while no significant difference was observed between breast-fed and bottle-fed infants. This work is the first to demonstrate simultaneous vitamin A, B, and E detection and to quantify correlations between

  10. Effects of solvent evaporation on water sorption/solubility and nanoleakage of adhesive systems.

    Science.gov (United States)

    Chimeli, Talita Baumgratz Cachapuz; D'Alpino, Paulo Henrique Perlatti; Pereira, Patrícia Nóbrega; Hilgert, Leandro Augusto; Di Hipólito, Vinicius; Garcia, Fernanda Cristina Pimentel

    2014-01-01

    To evaluate the influence of solvent evaporation in the kinetics of water diffusion (water sorption-WS, solubility-SL, and net water uptake) and nanoleakage of adhesive systems. Disk-shaped specimens (5.0 mm in diameter x 0.8 mm in thickness) were produced (N=48) using the adhesives: Clearfil S3 Bond (CS3)/Kuraray, Clearfil SE Bond - control group (CSE)/Kuraray, Optibond Solo Plus (OS)/Kerr and Scotchbond Universal Adhesive (SBU)/3M ESPE. The solvents were either evaporated for 30 s or not evaporated (N=24/per group), and then photoactivated for 80 s (550 mW/cm2). After desiccation, the specimens were weighed and stored in distilled water (N=12) or mineral oil (N=12) to evaluate the water diffusion over a 7-day period. Net water uptake (%) was also calculated as the sum of WS and SL. Data were submitted to 3-way ANOVA/Tukey's test (α=5%). The nanoleakage expression in three additional specimens per group was also evaluated after ammoniacal silver impregnation after 7 days of water storage under SEM. Statistical analysis revealed that only the factor "adhesive" was significant (padhesives. CSE (control) presented significantly lower net uptake (5.4%). The nanoleakage was enhanced by the presence of solvent in the adhesives. Although the evaporation has no effect in the kinetics of water diffusion, the nanoleakage expression of the adhesives tested increases when the solvents are not evaporated.

  11. Comparative transcriptome analysis reveals key genes potentially related to soluble sugar and organic acid accumulation in watermelon.

    Directory of Open Access Journals (Sweden)

    Lei Gao

    Full Text Available Soluble sugars and organic acids are important components of fruit flavor and have a strong impact on the overall organoleptic quality of watermelon (Citrullus lanatus fruit. Several studies have analyzed the expression levels of the genes related to soluble sugar accumulation and the dynamic changes in their content during watermelon fruit development and ripening. Nevertheless, to date, there have been no reports on the organic acid content in watermelon or the genes regulating their synthesis. In this study, the soluble sugars and organic acids in watermelon were measured and a comparative transcriptome analysis was performed to identify the key genes involved in the accumulation of these substances during fruit development and ripening. The watermelon cultivar '203Z' and its near-isogenic line (NIL 'SW' (in the '203Z' background were used as experimental materials. The results suggested that soluble sugar consist of fructose, glucose and sucrose while malic-, citric-, and oxalic acids are the primary organic acids in watermelon fruit. Several differentially expressed genes (DEGs related to soluble sugar- and organic acid accumulation and metabolism were identified. These include the DEGs encoding raffinose synthase, sucrose synthase (SuSy, sucrose-phosphate synthase (SPSs, insoluble acid invertases (IAI, NAD-dependent malate dehydrogenase (NAD-cyt MDH, aluminum-activated malate transporter (ALMT, and citrate synthase (CS. This is the first report addressing comparative transcriptome analysis via NILs materials in watermelon fruit. These findings provide an important basis for understanding the molecular mechanism that leads to soluble sugar and organic acid accumulation and metabolism during watermelon fruit development and ripening.

  12. Comparative transcriptome analysis reveals key genes potentially related to soluble sugar and organic acid accumulation in watermelon.

    Science.gov (United States)

    Gao, Lei; Zhao, Shengjie; Lu, Xuqiang; He, Nan; Zhu, Hongju; Dou, Junling; Liu, Wenge

    2018-01-01

    Soluble sugars and organic acids are important components of fruit flavor and have a strong impact on the overall organoleptic quality of watermelon (Citrullus lanatus) fruit. Several studies have analyzed the expression levels of the genes related to soluble sugar accumulation and the dynamic changes in their content during watermelon fruit development and ripening. Nevertheless, to date, there have been no reports on the organic acid content in watermelon or the genes regulating their synthesis. In this study, the soluble sugars and organic acids in watermelon were measured and a comparative transcriptome analysis was performed to identify the key genes involved in the accumulation of these substances during fruit development and ripening. The watermelon cultivar '203Z' and its near-isogenic line (NIL) 'SW' (in the '203Z' background) were used as experimental materials. The results suggested that soluble sugar consist of fructose, glucose and sucrose while malic-, citric-, and oxalic acids are the primary organic acids in watermelon fruit. Several differentially expressed genes (DEGs) related to soluble sugar- and organic acid accumulation and metabolism were identified. These include the DEGs encoding raffinose synthase, sucrose synthase (SuSy), sucrose-phosphate synthase (SPSs), insoluble acid invertases (IAI), NAD-dependent malate dehydrogenase (NAD-cyt MDH), aluminum-activated malate transporter (ALMT), and citrate synthase (CS). This is the first report addressing comparative transcriptome analysis via NILs materials in watermelon fruit. These findings provide an important basis for understanding the molecular mechanism that leads to soluble sugar and organic acid accumulation and metabolism during watermelon fruit development and ripening.

  13. Comparative transcriptome analysis reveals key genes potentially related to soluble sugar and organic acid accumulation in watermelon

    Science.gov (United States)

    Gao, Lei; Zhao, Shengjie; Lu, Xuqiang; He, Nan; Zhu, Hongju; Dou, Junling

    2018-01-01

    Soluble sugars and organic acids are important components of fruit flavor and have a strong impact on the overall organoleptic quality of watermelon (Citrullus lanatus) fruit. Several studies have analyzed the expression levels of the genes related to soluble sugar accumulation and the dynamic changes in their content during watermelon fruit development and ripening. Nevertheless, to date, there have been no reports on the organic acid content in watermelon or the genes regulating their synthesis. In this study, the soluble sugars and organic acids in watermelon were measured and a comparative transcriptome analysis was performed to identify the key genes involved in the accumulation of these substances during fruit development and ripening. The watermelon cultivar ‘203Z’ and its near-isogenic line (NIL) ‘SW’ (in the ‘203Z’ background) were used as experimental materials. The results suggested that soluble sugar consist of fructose, glucose and sucrose while malic-, citric-, and oxalic acids are the primary organic acids in watermelon fruit. Several differentially expressed genes (DEGs) related to soluble sugar- and organic acid accumulation and metabolism were identified. These include the DEGs encoding raffinose synthase, sucrose synthase (SuSy), sucrose-phosphate synthase (SPSs), insoluble acid invertases (IAI), NAD-dependent malate dehydrogenase (NAD-cyt MDH), aluminum-activated malate transporter (ALMT), and citrate synthase (CS). This is the first report addressing comparative transcriptome analysis via NILs materials in watermelon fruit. These findings provide an important basis for understanding the molecular mechanism that leads to soluble sugar and organic acid accumulation and metabolism during watermelon fruit development and ripening. PMID:29324867

  14. Luminescent, water-soluble silicon quantum dots via micro-plasma surface treatment

    International Nuclear Information System (INIS)

    Wu, Jeslin J; Siva Santosh Kumar Kondeti, Vighneswara; Bruggeman, Peter J; Kortshagen, Uwe R

    2016-01-01

    Silicon quantum dots (SiQDs), with their broad absorption, narrow and size-tunable emission, and potential biocompatibility are highly attractive materials in biological imaging applications. The inherent hydrophobicity and instability of hydrogen-terminated SiQDs are obstacles to their widespread implementation. In this work, we successfully produced highly luminescent, hydrophilic SiQDs with long-term stability in water using non-thermal plasma techniques. Hydrogen-terminated SiQDs were produced in a low-pressure plasma and subsequently treated in water using an atmospheric-pressure plasma jet for surface modification. Preliminary assessments of the chemical mechanism(s) involved in the creation of water-soluble SiQDs were performed using Fenton’s reaction and various plasma chemistries, suggesting both OH and O species play a key role in the oxidation of the SiQDs. (letter)

  15. Chemical constituents: water-soluble vitamins, free amino acids and sugar profile from Ganoderma adspersum.

    Science.gov (United States)

    Kıvrak, İbrahim

    2015-01-01

    Ganoderma adspersum presents a rigid fruiting body owing to chitin content and having a small quantity of water or moisture. The utility of bioactive constituent of the mushroom can only be available by extraction for human usage. In this study, carbohydrate, water-soluble vitamin compositions and amino acid contents were determined in G. adspersum mushroom. The composition in individual sugars was determined by HPLC-RID, mannitol (13.04 g/100 g) and trehalose (10.27 g/100 g) being the most abundant sugars. The examination of water-soluble vitamins and free amino acid composition was determined by UPLC-ESI-MS/MS. Essential amino acid constituted 67.79% of total amino acid, which is well worth the attention with regard to researchers and consumers. In addition, G. adspersum, which is also significantly rich in B group vitamins and vitamin C, can provide a wide range of notable applications in the pharmaceutics, cosmetics, food and dietary supplement industries. G. adspersum revealed its value for pharmacy and nutrition fields.

  16. Water-soluble triazabutadienes that release diazonium species upon protonation under physiologically relevant conditions.

    Science.gov (United States)

    Kimani, Flora W; Jewett, John C

    2015-03-23

    Triazabutadienes are an understudied structural motif that have remarkable reactivity once rendered water-soluble. It is shown that these molecules readily release diazonium species in a pH-dependent manner in a series of buffer solutions with pH ranges similar to those found in cells. Upon further development, we expect that this process will be well suited to cargo-release strategies and organelle-specific bioconjugation reactions. These compounds offer one of the mildest ways of generating diazonium species in aqueous solutions. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Graft copolymerization of water soluble mixed monomers onto polyethylene by the pre-irradiation method

    International Nuclear Information System (INIS)

    Long Fu; Tang Liming; Zhao Jin; Gao Zhenyong

    1993-01-01

    Grafting of water soluble mixed monomers of acrylic acid (AA)/acrylamide (Am) and acrylic acid/methacrylic acid (MA) onto polyethylene film by the pre-irradiation grafting method was investigated. The results showed that the grafting proceeded successfully with the adding of ferric salt in the solution. In the case of AA/Am system, a synergistic effect was noticed. In the case of AA/MA system, the graft percent increased with the increase in the concentration of MA in the feed ratio. Furthermore, the effects of monomer concentration, radiation dose and temperature on the grafting were also studied

  18. Encapsulation of Polythiophene by Glycopolymer for Water Soluble Nano-wire

    Energy Technology Data Exchange (ETDEWEB)

    T Fukuda; Y Inoue; T Koga; M Matsuoka; Y Miura

    2011-12-31

    A water-soluble polythiophene (PT) was prepared by the self-assembling complex with a glycopolymer. The glycopolymer of poly(N-p-vinylbenzyl-D-lactonamide) (PVLA) formed self-assembling cylindrical structure based on the amphiphilicity even after the complexation with PT. We confirmed the improved optical functionality of PT due to the longer conjugated {pi}-orbital. It suggested that PT behaved like molecular nanowire with the self-assembled structure in the hydrophobic core of PVLA. PVLA-PT also showed specific biorecognition against corresponding lectin. These results suggested that the bioactive nanowire formation of PT with the glycopolymer was developed.

  19. Capacity for absorption of water-soluble secondary metabolites greater in birds than in rodents.

    Science.gov (United States)

    Karasov, William H; Caviedes-Vidal, Enrique; Bakken, Bradley Hartman; Izhaki, Ido; Samuni-Blank, Michal; Arad, Zeev

    2012-01-01

    Plant secondary metabolites (SMs) are pervasive in animal foods and potentially influence feeding behavior, interspecies interactions, and the distribution and abundance of animals. Some of the major classes of naturally occurring SMs in plants include many water-soluble compounds in the molecular size range that could cross the intestinal epithelium via the paracellular space by diffusion or solvent drag. There are differences among species in paracellular permeability. Using Middle Eastern rodent and avian consumers of fruits containing SMs, we tested the hypothesis that avian species would have significantly higher paracellular permeability than rodent species. Permeability in intact animals was assessed using standard pharmacological methodology to measure absorption of two radiolabeled, inert, neutral water-soluble probes that do not interact with intestinal nutrient transporters, L-arabinose (M(r) = 150.1 Da) and lactulose (M(r) = 342.3 Da). We also measured absorption of labeled 3-O-methyl-D-glucose (3OMD-glucose; M(r) = 194.2 Da), which is a nonmetabolized analogue of D-glucose that is passively absorbed through the paracellular space but also transported across the enterocyte membranes. Most glucose was absorbed by all species, but arabinose fractional absorption (f) was nearly three times higher in birds (1.03±0.17, n = 15 in two species) compared to rodents (0.37±0.06, n = 10 in two species) (Pbirds of arabinose exceeded those of 3OMD-glucose. Our findings are in agreement with previous work showing that the paracellular pathway is more prominent in birds relative to nonflying mammals, and suggests that birds may be challenged by greater absorption of water-soluble, dietary SMs. The increased expression of the paracellular pathway in birds hints at a tradeoff: the free energy birds gain by absorbing water-soluble nutrients passively may be offset by the metabolic demands placed on them to eliminate concomitantly absorbed SMs.

  20. Sensory and chromatographic evaluations of water soluble fractions from air-dried sausages

    DEFF Research Database (Denmark)

    Henriksen, Anders Peter; Stahnke, Marie Louise Heller

    1997-01-01

    Low molecular weight water soluble compounds were extracted from Danish salami, Italian sausage, and Spanish Chorizo. The extracts were fractionated by gel filtration chromatography revealing peptides with a molecular weight less than 4200 Dalton. Fractions consisting of smaller peptides and free...... amino acids had enhanced savory taste impressions described as mainly bouillon, bitter, sour, salty and plastic with odor notes of boiled potato. Determination of amino acids in the fractions before and after hydrolysis revealed the presence of mainly hydrophilic peptides in all fractions. Partial least...

  1. Efficient Route to Highly Water-Soluble Aromatic Cyclic Hydroxamic Acid Ligands

    Energy Technology Data Exchange (ETDEWEB)

    Seitz, Michael; Raymond, Kenneth N.

    2008-02-06

    2-Hydroxyisoquinolin-1-one (1,2-HOIQO) is a new member of the important class of aromatic cyclic hydroxamic acid ligands which are widely used in metal sequestering applications and metal chelating therapy. The first general approach for the introduction of substituents at the aromatic ring of the chelating moiety is presented. As a useful derivative, the highly water-soluble sulfonic acid has been synthesized by an efficient route that allows general access to 1,2-HOQIO 3-carboxlic acid amides, which are the most relevant for applications.

  2. Synthesis and characterization of a fluorescent water-soluble paclitaxel prodrug.

    Science.gov (United States)

    Sohn, Jeong-Sun; Choi, Eun-Sun; Jo, Byung-Wook; Hess, Michael; Han, Song-Hee

    2010-05-01

    A fluorescence susceptible water-soluble paclitaxel was synthesized by a condensation reaction between PEGylated paclitaxel (namely, PP7) and 1-pyrene butyric acid (PBA) in order to obtain a better understanding of the mechanism of action of paclitaxel as well as of the environment of the paclitaxel-binding site. The reaction was performed successfully and the resulting paclitaxel was characterized by FT-NMR, analytical-HPLC, UV spectro photometry, and fluorescence spectrometry. The synthesized paclitaxel analogue showed a high susceptibility to fluorescence in both excitation and emission spectra. And we have investigated the time-resolved fluorescence behavior of them in different solvents and at different excitation wavelengths.

  3. [Nutrition and bone health. The bone and the foods containing many water-soluble vitamins].

    Science.gov (United States)

    Ishida, Hiromi

    2009-08-01

    On the Dietary Reference Intakes in Japan, nine kinds of water-soluble vitamins are taken up. Those vitamins are supplied from various food. Food from animal sources and vegetable sources are those vitamins source of supply. Vitamin C participates in generation of collagen. Vitamin C is supplied from vegetables or fruits. Since vitamin C is lost by cooking processing, the content of a raw state is not expectable after cooking. Moreover, the vitamin B group of food origin has combined with protein etc., and free types, such as supplement, differ in the bioavailability.

  4. Sunlight-Induced Photochemical Degradation of Methylene Blue by Water-Soluble Carbon Nanorods

    Directory of Open Access Journals (Sweden)

    Anshu Bhati

    2016-01-01

    Full Text Available Water-soluble graphitic hollow carbon nanorods (wsCNRs are exploited for their light-driven photochemical activities under outdoor sunlight. wsCNRs were synthesized by a simple pyrolysis method from castor seed oil, without using any metal catalyst or template. wsCNRs exhibited the light-induced photochemical degradation of methylene blue used as a model pollutant by the generation of singlet oxygen species. Herein, we described a possible degradation mechanism of methylene blue under the irradiation of visible photons via the singlet oxygen-superoxide anion pathway.

  5. Preparation of nanoparticles of poorly water-soluble antioxidant curcumin by antisolvent precipitation methods

    Science.gov (United States)

    Kakran, Mitali; Sahoo, Nanda Gopal; Tan, I.-Lin; Li, Lin

    2012-03-01

    The objective of this study was to enhance the solubility and dissolution rate of a poorly water-soluble antioxidant, curcumin, by fabricating its nanoparticles with two methods: antisolvent precipitation with a syringe pump (APSP) and evaporative precipitation of nanosuspension (EPN). For APSP, process parameters like flow rate, stirring speed, solvent to antisolvent (SAS) ratio, and drug concentration were investigated to obtain the smallest particle size. For EPN, factors like drug concentration and the SAS ratio were examined. The effects of these process parameters on the supersaturation, nucleation, and growth rate were studied and optimized to obtain the smallest particle size of curcumin by both the methods. The average particle size of the original drug was about 10-12 μm and it was decreased to a mean diameter of 330 nm for the APSP method and to 150 nm for the EPN method. Overall, decreasing the drug concentration or increasing the flow rate, stirring rate, and antisolvent amount resulted in smaller particle sizes. Differential scanning calorimetry studies suggested lower crystallinity of curcumin particles fabricated. The solubility and dissolution rates of the prepared curcumin particles were significantly higher than those the original curcumin. The antioxidant activity, studied by the DPPH free radical-scavenging assay, was greater for the curcumin nanoparticles than the original curcumin. This study demonstrated that both the methods can successfully prepare curcumin into submicro to nanoparticles. However, drug particles prepared by EPN were smaller than those by APSP and hence, showed the slightly better solubility, dissolution rate, and antioxidant activity than the latter.

  6. Preparation of nanoparticles of poorly water-soluble antioxidant curcumin by antisolvent precipitation methods

    Energy Technology Data Exchange (ETDEWEB)

    Kakran, Mitali; Sahoo, Nanda Gopal; Tan, I-Lin; Li Lin, E-mail: mlli@ntu.edu.sg [Nanyang Technological University, School of Mechanical and Aerospace Engineering (Singapore)

    2012-03-15

    The objective of this study was to enhance the solubility and dissolution rate of a poorly water-soluble antioxidant, curcumin, by fabricating its nanoparticles with two methods: antisolvent precipitation with a syringe pump (APSP) and evaporative precipitation of nanosuspension (EPN). For APSP, process parameters like flow rate, stirring speed, solvent to antisolvent (SAS) ratio, and drug concentration were investigated to obtain the smallest particle size. For EPN, factors like drug concentration and the SAS ratio were examined. The effects of these process parameters on the supersaturation, nucleation, and growth rate were studied and optimized to obtain the smallest particle size of curcumin by both the methods. The average particle size of the original drug was about 10-12 {mu}m and it was decreased to a mean diameter of 330 nm for the APSP method and to 150 nm for the EPN method. Overall, decreasing the drug concentration or increasing the flow rate, stirring rate, and antisolvent amount resulted in smaller particle sizes. Differential scanning calorimetry studies suggested lower crystallinity of curcumin particles fabricated. The solubility and dissolution rates of the prepared curcumin particles were significantly higher than those the original curcumin. The antioxidant activity, studied by the DPPH free radical-scavenging assay, was greater for the curcumin nanoparticles than the original curcumin. This study demonstrated that both the methods can successfully prepare curcumin into submicro to nanoparticles. However, drug particles prepared by EPN were smaller than those by APSP and hence, showed the slightly better solubility, dissolution rate, and antioxidant activity than the latter.

  7. Preparation of nanoparticles of poorly water-soluble antioxidant curcumin by antisolvent precipitation methods

    International Nuclear Information System (INIS)

    Kakran, Mitali; Sahoo, Nanda Gopal; Tan, I-Lin; Li Lin

    2012-01-01

    The objective of this study was to enhance the solubility and dissolution rate of a poorly water-soluble antioxidant, curcumin, by fabricating its nanoparticles with two methods: antisolvent precipitation with a syringe pump (APSP) and evaporative precipitation of nanosuspension (EPN). For APSP, process parameters like flow rate, stirring speed, solvent to antisolvent (SAS) ratio, and drug concentration were investigated to obtain the smallest particle size. For EPN, factors like drug concentration and the SAS ratio were examined. The effects of these process parameters on the supersaturation, nucleation, and growth rate were studied and optimized to obtain the smallest particle size of curcumin by both the methods. The average particle size of the original drug was about 10–12 μm and it was decreased to a mean diameter of 330 nm for the APSP method and to 150 nm for the EPN method. Overall, decreasing the drug concentration or increasing the flow rate, stirring rate, and antisolvent amount resulted in smaller particle sizes. Differential scanning calorimetry studies suggested lower crystallinity of curcumin particles fabricated. The solubility and dissolution rates of the prepared curcumin particles were significantly higher than those the original curcumin. The antioxidant activity, studied by the DPPH free radical-scavenging assay, was greater for the curcumin nanoparticles than the original curcumin. This study demonstrated that both the methods can successfully prepare curcumin into submicro to nanoparticles. However, drug particles prepared by EPN were smaller than those by APSP and hence, showed the slightly better solubility, dissolution rate, and antioxidant activity than the latter.

  8. Water-Soluble Lignins from Different Bioenergy Crops Stimulate the Early Development of Maize (Zea mays, L.

    Directory of Open Access Journals (Sweden)

    Davide Savy

    2015-11-01

    Full Text Available The molecular composition of water-soluble lignins isolated from four non-food bioenergy crops (cardoon CAR, eucalyptus EUC, and two black poplars RIP and LIM was characterized in detail, and their potential bioactivity towards maize germination and early growth evaluated. Lignins were found to not affect seed germination rates, but stimulated the maize seedling development, though to a different extent. RIP promoted root elongation, while CAR only stimulated the length of lateral seminal roots and coleoptile, and LIM improved only the coleoptile development. The most significant bioactivity of CAR was related to its large content of aliphatic OH groups, C-O carbons and lowest hydrophobicity, as assessed by 31P-NMR and 13C-CPMAS-NMR spectroscopies. Less bioactive RIP and LIM lignins were similar in composition, but their stimulation of maize seedling was different. This was accounted to their diverse content of aliphatic OH groups and S- and G-type molecules. The poorest bioactivity of the EUC lignin was attributed to its smallest content of aliphatic OH groups and largest hydrophobicity. Both these features may be conducive of a EUC conformational structure tight enough to prevent its alteration by organic acids exuded from vegetal tissues. Conversely the more labile conformational arrangements of the other more hydrophilic lignin extracts promoted their bioactivity by releasing biologically active molecules upon the action of exuded organic acids. Our findings indicate that water-soluble lignins from non-food crops may be effectively used as plant biostimulants, thus contributing to increase the economic and ecological liability of bio-based industries.

  9. Synthesis and evaluation of water-soluble poly(vinyl alcohol)-paclitaxel conjugate as a macromolecular prodrug

    International Nuclear Information System (INIS)

    Kakinoki, Atsufumi; Kaneo, Yoshiharu; Tanaka, Tetsuro; Hosokawa, Yoshitsugu

    2008-01-01

    Paclitaxel (PTX) is an antitumor agent for the treatment of various human cancers. Cremophor EL and ethanol are used to formulate PTX in commercial injection solutions, because of its poor solubility in water. However, these agents cause severe allergic reaction upon intravenous administration. The aim of this study is to synthesize water-soluble macromolecular prodrugs of PTX for enhancing the therapeutic efficacy. Poly (vinyl alcohol) (PVA, 80 kDa), water-soluble synthetic polymer, was used as a drug carrier which is safe and stable in the body. The 2'-hydroxyl group of PTX was reacted with succinic anhydride and then carboxylic group of the succinyl spacer was coupled to PVA via ethylene diamine spacer, resulting the water-soluble prodrug of poly (vinyl alcohol)-paclitaxel conjugate (PVA-SPTX). The solubility of PTX was greatly enhanced by the conjugation to PVA. The release of PTX from the conjugate was accelerated at the neutral to basic conditions in in vitro release experiment. [ 125 I]-labeled PVA-SPTX was retained in the blood circulation for several days and was gradually distributed into the tumorous tissue after intravenous injection to the tumor-bearing mice. PVA-SPTX inhibited the growth of sarcoma 180 cells subcutaneously inoculated in mice. It was suggested that the water-solubility of PTX was markedly enhanced by the conjugation to PVA, and PVA-SPTX effectively delivered PTX to the tumorous tissue due to the enhanced permeability and retention (EPR) effect. (author)

  10. Effect of addition of water-soluble salts on the hydrogen generation of aluminum in reaction with hot water

    International Nuclear Information System (INIS)

    Razavi-Tousi, S.S.; Szpunar, J.A.

    2016-01-01

    Aluminum powder was ball milled for different durations of time with different weight percentages of water-soluble salts (NaCl and KCl). The hydrogen generation of each mixture in reaction with hot water was measured. A scanning electron microscope (SEM) as well as energy-dispersive spectroscopy (EDS) were used to investigate the morphology, surfaces and cross sections of the produced particles. The results show that the presence of salts in the microstructure of the aluminum considerably increases the hydrogen generation rate. At shorter milling times, the salt covers the aluminum particles and becomes embedded in layers within the aluminum matrix. At higher milling durations, salt and aluminum phases form composite particles. A higher percentage of the second phase significantly decreases the milling time needed for activation of the aluminum particles. Based on the EDS results from cross sections of the milled particles, a mechanism for improvement of the hydrogen generation rate in the presence of salts is suggested. - Highlights: • Milling and water soluble salts have a synergic effect on hydrogen generation. • Salt and aluminum form composite particles by milling. • Salt is dissolved in water leaving aluminum with much fresh surfaces for the reaction. • The chemical effect of salt on the reaction is negligible compared to its structural effect.

  11. [Sufficiency with water-soluble vitamins and state of bone in pregnant women].

    Science.gov (United States)

    Vrzhesinskaya, O A; Pereverzeva, O G; Gmoshinskaya, M V; Kodentsova, V M; Safronova, A I; Korosteleva, M M; Aleshina, I V; Fandeeva, T A

    2015-01-01

    Vitamin status and bone strength have been estimated in 91 pregnant women (29.3 ± 4.6 years old) from Moscow by non-invasive methods. Sufficiency with vitamins C, B2, B6 has been evaluated by morning urinary excretion of ascorbic acid, riboflavin and 4-piridoxic acid determined by visual titration and fluorimetric methods. The rate of bone resorption has been measured by the ratio of urinary calcium and creatinine, determined by complexometric titration and spectrophotometrically. The study of the bone strength has been conducted using an ultrasonic densitometer (the speed of the ultrasonic waves along the cortical layer). The lack of vitamin C was found in 20.4% .of the women surveyed, vitamin B2--in 27.4%. Vitamin B6 deficiency was detected most frequently (90%). Excretion of vitamins B2 and B6 in women in the third trimester of pregnancy was lower as compared with the women in the first and second trimester. In 53.3% of the women surveyed an increase in urinary excretion of calcium per creatinine has been observed. Excretion of group B vitamins (especially vitamin B6, 1.75 fold, p vitamin supplements was higher compared to non-taking vitamins that indicates the better sufficiency of the organism with these vitamins. Among women who took vitamin complexes, inadequate supply with water-soluble vitamins C, B2 and B6 was detected less frequently (the difference was significant for vitamin B2) than among women who did not intake vitamin complexes (in 11.9, 27.7 and 42.4% vs 16.1, 54.8 and 48.8 %). The rate of bone resorption (Ca/creatinine) in women taking vitamins was smaller (0.19 ± 0.09 vs 0.24 ± 0.14, p > 0.05). Ca/creatinine ratio was within normal range in 40% of women who intake vitamins, while in women not taking vitamins--only in 22.2%; this value exceeded the upper limit of norm in the rest. The strength of bone was broken in women in the second and third trimester of pregnancy, having worse supply of vitamins. The percentage of agreement of the results

  12. Synthesis of water-soluble poly [acrylic acid-co-vinyl butyl ether] and its applications in cement admixtures

    International Nuclear Information System (INIS)

    Negim, S.M.; Mun, G.A.; Nurkeeva, Z.S.; Danveesh, H.H.M.

    2005-01-01

    Three composition ratios of poly[acrylic acid (AA)-co-vinyl butyl ether)] were prepared in alcoholic solution using azo-bis-isobutyro-nitrile as initiator (ABIN). The water-soluble copolymers were characterized through FT-IR, 1 H NMR, Mass spectra, ESEM as well as viscosity. The effect of water-soluble copolymers and their sodium salts on the physico-mechanical properties of Ordaniary Portland Cement (O.P.C) pastes was investigated. The results showed that the addition of aqueous solutions from the prepared copolymers and their sodium salts to the cement improve most of the specific characteristics of (O.P.C). As the concentration of the water-soluble copolymer increases, the setting time increases. The combined water content enhances the addition of copolymer to the mixing water. The compressive strength was she increased at all any hydration. The results of the solution of the prepared sodium salt copolymers are better than its copolymers. (author)

  13. Decreasing DOC trends in soil solution along the hillslopes at two IM sites in southern Sweden--geochemical modeling of organic matter solubility during acidification recovery.

    Science.gov (United States)

    Löfgren, Stefan; Gustafsson, Jon Petter; Bringmark, Lage

    2010-12-01

    Numerous studies report increased concentrations of dissolved organic carbon (DOC) during the last two decades in boreal lakes and streams in Europe and North America. Recently, a hypothesis was presented on how various spatial and temporal factors affect the DOC dynamics. It was concluded that declining sulphur deposition and thereby increased DOC solubility, is the most important driver for the long-term DOC concentration trends in surface waters. If this recovery hypothesis is correct, the DOC levels should increase both in the soil solution as well as in the surrounding surface waters as soil pH rises and the ionic strength declines due to the reduced input of SO(4)(2-) ions. In this project a geochemical model was set up to calculate the net humic charge and DOC solubility trends in soils during the period 1996-2007 at two integrated monitoring sites in southern Sweden, showing clear signs of acidification recovery. The Stockholm Humic Model was used to investigate whether the observed DOC solubility is related to the humic charge and to examine how pH and ionic strength influence it. Soil water data from recharge and discharge areas, covering both podzols and riparian soils, were used. The model exercise showed that the increased net charge following the pH increase was in many cases counteracted by a decreased ionic strength, which acted to decrease the net charge and hence the DOC solubility. Thus, the recovery from acidification does not necessarily have to generate increasing DOC trends in soil solution. Depending on changes in pH, ionic strength and soil Al pools, the trends might be positive, negative or indifferent. Due to the high hydraulic connectivity with the streams, the explanations to the DOC trends in surface waters should be searched for in discharge areas and peat lands. Copyright © 2010 Elsevier B.V. All rights reserved.

  14. Debinding behaviour of a water soluble PEG/PMMA binder for Ti metal injection moulding

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Gang [Department of Chemical and Materials Engineering, The University of Auckland, Private Bag 92019, Auckland 1142 (New Zealand); Cao, Peng, E-mail: p.cao@auckland.ac.nz [Department of Chemical and Materials Engineering, The University of Auckland, Private Bag 92019, Auckland 1142 (New Zealand); Wen, Guian [Department of Chemical and Materials Engineering, The University of Auckland, Private Bag 92019, Auckland 1142 (New Zealand); Edmonds, Neil [School of Chemical Science, The University of Auckland, Private Bag 92019, Auckland 1142 (New Zealand)

    2013-05-15

    Polyethylene glycol (PEG) has been becoming a common component in the design of water soluble binder systems for metal injection moulding. Similar to solvent debinding, PEG can be leached out by water and the mechanism of debinding was proposed in the literature with somehow misleading information about the debinding mechanism, particularly about the formation of PEG gel. This work investigates the debinding behaviours of a PEG-based binder in titanium compacts. Titanium powder is formulated with PEG, poly(methyl methacrylate) (PMMA) and stearic acid (SA) to formulate titanium feedstock. To determine the debinding kinetics, the PEG removal percentages are measured at three different temperatures and for various specimen thicknesses. A mathematic model based on diffusion-controlled debinding process is established. The evolution of porous microstructure during the water debinding process is observed using scanning electron microscopy. Based on these observations, a water debinding mechanism for titanium alloy compacts formulated with PEG-based binders is proposed. - Highlights: ► The water-debinding behaviours of the PEG binder system were investigated. ► PEG dissolution and transportation, and the pore structure development. ► A water debinding mechanism of PEG-based binders is proposed. ► Incorrect explanation of PEG gelling in the literature is corrected. ► Correction/modification made as per the reviewers' comments and suggestions.

  15. The Solubility of Ozone in Deionized Water and its Cleaning Efficiency

    Energy Technology Data Exchange (ETDEWEB)

    Han, J.H.; Park, J.G. [Hanyang University, Seoul (Korea, Republic of); Kwak, Y.S. [Hanyang Technology Co., Ltd., Ansan (Korea, Republic of)

    1998-06-01

    The purpose of this study was to investigate the behavior of ozone in DI water and the reaction with wafers during the semiconductor wet cleaning process. The solubility of ozone in DI water was not only dependent on the temperature but also directly proportional to the input concentration of ozone. The lower the initial ozone concentration and the temperature, the longer the half-life time of ozone. The reaction order of ozone in DI water was calculated to be around 1.5. The redox potential reached a saturation value in 5min and slightly increased as the input ozone concentrations increased. The completely hydrophilic surface was created in 1min when HF etched silicon wafer was cleaned in ozonized DI water containing higher ozone concentrations than 2ppm. Spectroscopic ellipsometry measurements showed that the chemical oxide formed by ozonized DI water was measured to be thicker than that by piranha solution. The wafers contaminated with a non-ionic surfactant were more effectively cleaned in ozonized DI water than in piranha and ozonized piranha solutions. (author). 19 refs., 11 figs., 1 tab.

  16. Use of tritium to predict soluble pollutants transport in Ebro River waters (Spain).

    Science.gov (United States)

    Pujol, L; Sanchez-Cabeza, J A

    2000-05-01

    The Ebro River, in Northeast Spain, discharges into the Mediterranean Sea after flowing through several large cities and agricultural, mining and industrial areas. The Ascó nuclear power plant (NPP) is located in its lower section and comprises two pressurised water reactor units, from which low-level liquid radioactive waste is released to river waters under authority control. Tritium routinely released by the NPP was used as a radiotracer to determine the longitudinal dispersion coefficient and velocity of the river waters. Several field experiments, in co-ordination with the NPP, were carried out during 1991 and 1992. During each field experiment, the flow rate was kept constant by dams located upstream from the NPP. After each tritium release, water was sampled downstream at periodic intervals over several hours and tritium was measured with a low-background liquid scintillation counter. Velocity and dispersion coefficient were determined in river waters for several river discharges using an analytical, box-type and numerical approach to solve the one-dimensional advection-diffusion equation. The set of calibrated parameters was used to predict the displacement and dispersion of soluble pollutants in river waters. Velocity was determined as a function of river discharge and river slope, and dispersion coefficient was determined as a function of distance. Finally, sensitivity of the model predictions was studied and uncertainties of the fitted parameters were estimated.

  17. Debinding behaviour of a water soluble PEG/PMMA binder for Ti metal injection moulding

    International Nuclear Information System (INIS)

    Chen, Gang; Cao, Peng; Wen, Guian; Edmonds, Neil

    2013-01-01

    Polyethylene glycol (PEG) has been becoming a common component in the design of water soluble binder systems for metal injection moulding. Similar to solvent debinding, PEG can be leached out by water and the mechanism of debinding was proposed in the literature with somehow misleading information about the debinding mechanism, particularly about the formation of PEG gel. This work investigates the debinding behaviours of a PEG-based binder in titanium compacts. Titanium powder is formulated with PEG, poly(methyl methacrylate) (PMMA) and stearic acid (SA) to formulate titanium feedstock. To determine the debinding kinetics, the PEG removal percentages are measured at three different temperatures and for various specimen thicknesses. A mathematic model based on diffusion-controlled debinding process is established. The evolution of porous microstructure during the water debinding process is observed using scanning electron microscopy. Based on these observations, a water debinding mechanism for titanium alloy compacts formulated with PEG-based binders is proposed. - Highlights: ► The water-debinding behaviours of the PEG binder system were investigated. ► PEG dissolution and transportation, and the pore structure development. ► A water debinding mechanism of PEG-based binders is proposed. ► Incorrect explanation of PEG gelling in the literature is corrected. ► Correction/modification made as per the reviewers' comments and suggestions

  18. Lipid nanoparticles for the delivery of poorly water-soluble drugs.

    Science.gov (United States)

    Bunjes, Heike

    2010-11-01

    This review discusses important aspects of lipid nanoparticles such as colloidal lipid emulsions and, in particular, solid lipid nanoparticles as carrier systems for poorly water-soluble drugs, with a main focus on the parenteral and peroral use of these carriers. A short historical background of the development of colloidal lipid emulsions and solid lipid nanoparticles is provided and their similarities and differences are highlighted. With regard to drug incorporation, parameters such as the chemical nature of the particle matrix and the physicochemical nature of the drug, effects of drug partition and the role of the particle interface are discussed. Since, because of the crystalline nature of their lipid core, solid lipid nanoparticles display some additional important features compared to emulsions, their specificities are introduced in more detail. This mainly includes their solid state behaviour (crystallinity, polymorphism and thermal behaviour) and the consequences of their usually non-spherical particle shape. Since lipid nanoemulsions and -suspensions are also considered as potential means to alter the pharmacokinetics of incorporated drug substances, some underlying basic considerations, in particular concerning the drug-release behaviour of such lipid nanodispersions on dilution, are addressed as well. Colloidal lipid emulsions and solid lipid nanoparticles are interesting options for the delivery of poorly water-soluble drug substances. Their specific physicochemical properties need, however, to be carefully considered to provide a rational basis for their development into effective carrier systems for a given delivery task. © 2010 The Author. Journal compilation © 2010 Royal Pharmaceutical Society of Great Britain.

  19. Laser incising of wood: Impregnation of columns with water-soluble dye

    International Nuclear Information System (INIS)

    Hattori, N.; Ando, K.; Kitayama, S.; Nakamura, Y.

    1994-01-01

    To know whether or not laser incising is a useful pre-treatment technique in impregnating a chemical fluid into lumber, pin holes were made in columns of hinoki (Chamaecyparis obtusa Endl.), sugi (Cryptomeria japonica D. Don), karamatsu (Larix leptolepis Gordon) and douglas-fir (Pseudo-tsuga menziesii Franco) with 1.7 kW CO2 laser, and a water-soluble dye was impregnated into these columns with a local pressure impregnation device. Retentions, and lengths and widths of penetrations from each hole were measured quantitatively. Referring to the results of the preparatory experiment mentioned above, incising patterns for sugi and douglas-fir were designed, and the same water-soluble dye was impregnated into the laser-incised columns as well as into non-incised ones with the vacuum-pressure method to obtain penetrated layers with the target depths completely. As a result, a retention of 200 kg/m3 of dye could be achieved for a column of douglas-fir even if it is a species difficult to impregnate. The penetrated layer also could be formed completely at the depth of the laser incision. Therefore, it is concluded that laser incising can be used for the pre-treatment before impregnation of wood columns. (author)

  20. Synthesis and photophysicochemical studies of a water soluble conjugate between folic acid and zinc tetraaminophthalocyanine

    Energy Technology Data Exchange (ETDEWEB)

    Khoza, Phindile; Antunes, Edith [Department of Chemistry, Rhodes University, PO Box 94, Grahamstown (South Africa); Chen, Ji-Yao [State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433 (China); Nyokong, Tebello, E-mail: t.nyokong@ru.ac.za [Department of Chemistry, Rhodes University, PO Box 94, Grahamstown (South Africa)

    2013-02-15

    This work reports on the synthesis of zinc tetraaminophthalocyanine (ZnTAPc) functionalized with folic acid (FA), forming ZnTAPcFA. The conjugate between FA and ZnTAPc was soluble in water whereas ZnTAPc alone is not. The structure of ZnTAPcFA conjugate was elucidated by {sup 1}H NMR, MALDI-TOF mass and FTIR spectra. Photophysical and photochemical studies of ZnTAPcFA were conducted in DMSO. The increase in fluorescence quantum yield of the conjugate was accompanied by a decrease in the triplet and singlet oxygen quantum yields. The changes in triplet quantum and singlet oxygen quantum yields were marginal when ZnTAPc was simply mixed with FA without a chemical bond. - Highlights: Black-Right-Pointing-Pointer A conjugate between folic acid and a zinc tetraaminophthalocyanine was formed. Black-Right-Pointing-Pointer The conjugate is water soluble even though the phthalocyanine alone is not. Black-Right-Pointing-Pointer The fluorescence quantum yield of the conjugate was enhanced compared to the phthalocyanine alone. Black-Right-Pointing-Pointer Triplet quantum yields decreased for the conjugate.