WorldWideScience

Sample records for water soluble organics

  1. Characterization of Soluble Organics in Produced Water

    Energy Technology Data Exchange (ETDEWEB)

    Bostick, D.T.

    2002-01-16

    Soluble organics in produced water and refinery effluents represent treatment problems for the petroleum industry. Neither the chemistry involved in the production of soluble organics nor the impact of these chemicals on total effluent toxicity is well understood. The U.S. Department of Energy provides funding for Oak Ridge National Laboratory (ORNL) to support a collaborative project with Shell, Chevron, Phillips, and Statoil entitled ''Petroleum and Environmental Research Forum project (PERF 9844: Manage Water-Soluble Organics in Produced Water''). The goal of this project, which involves characterization and evaluation of these water-soluble compounds, is aimed at reducing the future production of such contaminants. To determine the effect that various drilling conditions might have on water-soluble organics (WSO) content in produced water, a simulated brine water containing the principal inorganic components normally found in Gulf of Mexico (GOM) brine sources was prepared. The GOM simulant was then contacted with as-received crude oil from a deep well site to study the effects of water cut, produced-water pH, salinity, pressure, temperature, and crude oil sources on the type and content of the WSO in produced water. The identities of individual semivolatile organic compounds (SVOCs) were determined in all as-received crude and actual produced water samples using standard USEPA Method (8270C) protocol. These analyses were supplemented with the more general measurements of total petroleum hydrocarbon (TPH) content in the gas (C{sub 6}-C{sub 10}), diesel (C{sub 10}-C{sub 20}), and oil (C{sub 20}-C{sub 28}) carbon ranges as determined by both gas chromatographic (GC) and infrared (IR) analyses. An open liquid chromatographic procedure was also used to differentiate the saturated hydrocarbon, aromatic hydrocarbon, and polar components within the extractable TPH. Inorganic constituents in the produced water were analyzed by ion

  2. OZONE TREATMENT OF SOLUBLE ORGANICS IN PRODUCED WATER

    Energy Technology Data Exchange (ETDEWEB)

    Klasson, KT

    2002-03-14

    This project was an extension of previous research to improve the applicability of ozonation and will help address the petroleum-industry problem of treating produced water containing soluble organics. The goal of this project was to maximize oxidation of hexane-extractable organics during a single-pass operation. The project investigated: (1) oxidant production by electrochemical and sonochemical methods, (2) increasing the mass transfer rate in the reactor by forming microbubbles during ozone injection into the produced water, and (3) using ultraviolet irradiation to enhance the reaction if needed. Several types of methodologies for treatment of soluble organics in synthetic and actual produced waters have been performed. The technologies tested may be categorized as follows: (1) Destruction via sonochemical oxidation at different pH, salt concentration, ultraviolet irradiation, and ferrous iron concentrations. (2) Destruction via ozonation at different pH, salt concentration, hydrogen peroxide concentrations, ultraviolet irradiation, temperature, and reactor configurations.

  3. Fluorescence characteristics of water soluble organic carbon in eastern China

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Fluorescence excitation and average molecular weight of 46 water soluble organic matter (WSOC) samples extracted from 20 soil types in eastern China were determined. It was found all samples shared similar spectroscopy. A good linear relationship existed between total organic carbon and excitation in the range of 350 to 450 nm though the content of organic carbon and pH of the samples vary in a wide range. No significant correlation between relative excitation intensity and average molecular weight of WSOC and FA was found, but the partial correlation became significant with pH as the controlling factor for WSOC samples. The relative excitation intensity showed a general trend of increasing from south to north in the study area. The pH value might play an important role in regulating the fluorescent spatial variation of WSOC.

  4. Water-enhanced solubility of carboxylic acids in organic solvents and its applications to extraction processes

    Energy Technology Data Exchange (ETDEWEB)

    Starr, J.N.; King, C.J.

    1991-11-01

    The solubilities of carboxylic acids in certain organic solvents increase remarkably with an increasing amount of water in the organic phase. This phenomenon leads to a novel extract regeneration process in which the co-extracted water is selectively removed from an extract, and the carboxylic acid precipitates. This approach is potentially advantageous compared to other regeneration processes because it removes a minor component of the extract in order to achieve a large recovery of acid from the extract. Carboxylic acids of interest include adipic acid, fumaric acid, and succinic acid because of their low to moderate solubilities in organic solvents. Solvents were screened for an increase in acid solubility with increased water concentration in the organic phase. Most Lewis-base solvents were found to exhibit this increased solubility phenomena. Solvents that have a carbonyl functional group showed a very large increase in acid solubility. 71 refs., 52 figs., 38 tabs.

  5. Processes controlling the production of aromatic water-soluble organic matter during litter decomposition

    NARCIS (Netherlands)

    Klotzbücher, T.; Kaiser, K.; Filley, T.R.; Kalbitz, K.

    2013-01-01

    Dissolved organic matter (DOM) plays a fundamental role for many soil processes. For instance, production, transport, and retention of DOM control properties and long-term storage of organic matter in mineral soils. Production of water-soluble compounds during the decomposition of plant litter is a

  6. Filterable water-soluble organic nitrogen in fine particles over the southeastern USA during summer

    Science.gov (United States)

    Rastogi, Neeraj; Zhang, Xiaolu; Edgerton, Eric S.; Ingall, Ellery; Weber, Rodney J.

    2011-10-01

    Time integrated high-volume PM 2.5 samples were collected separately during day and night from 1 August to 10 September 2008 at a paired urban (Atlanta)-rural (Yorkville) sites as part of the August Mini-Intensive Gas and Aerosol Study (AMIGAS). Selected filters ( n = 96, 48 for each site) were analyzed for a suite of water-soluble chemical species, including major inorganic ions, water-soluble organic carbon (WSOC), water-soluble total and inorganic nitrogen (WSTN and WSIN), and levoglucosan. Semi-continuous analyses of PM 2.5 mass, soluble ions, WSOC, and gaseous O 3, SO 2, NO, NO 2, NO y, CO, and meteorological parameters were also carried out in parallel. This study focuses on the characteristics of filterable water-soluble organic nitrogen (WSON), estimated by the difference in the measured concentrations of WSTN and WSIN, determined from aqueous filter extracts. At both sites, WSON varied from below the limit of detection (25 ng-N m -3) to ˜600 ng-N m -3 and on average contributed ˜10% to WSTN mass, with the majority of soluble nitrogen being ammonium (˜82%). WSON:WSOC (or N:C) mass ratios ranged between 0 and 27% at both the sites with a median value of ˜5%, similar to what has been reported in another study in the southeastern USA. At both the urban and rural sites median nighttime levels of WSON and N:C were observed to be consistently higher than daytime values. Based on correlation analyses, daytime WSON sources appeared different than nighttime sources, especially at the urban site. Overall, the data suggest the importance of coal-combustion (e.g., link to SO 2), vehicle emissions, soil dust and biomass burning as WSON sources, and that nitrogenous organic compounds are likely a fairly small fraction of the secondary organic aerosol for this location during summer.

  7. A method for separating water soluble organics from a process stream by aqueous biphasic extraction

    Energy Technology Data Exchange (ETDEWEB)

    Chaiko, David J.; Mego, William A.

    1997-12-01

    The present invention relates to a method for separating water-miscible organic species from a process stream by aqueous biphasic extraction. In particular, the method includes extracting the organic species into a polymer-rich phase of an aqueous biphase system in which the process stream comprises the salt-rich phase, and, next, separating the polymer from the extracted organic species by contacting the loaded, polymer-rich phase with a water-immiscible organic phase. Alternatively, the polymer can be separated from the extracted organic species by raising the temperature of the loaded, polymer-rich phase above the cloud point, such that the polymer and the water-soluble organic species separate into two distinct aqueous phases. In either case, a substantially salt-free, concentrated aqueous solution containing the organic species is recovered.

  8. Biodegradability of soil water soluble organic carbon extracted from seven different soils

    Institute of Scientific and Technical Information of China (English)

    SCAGLIA Barbara; ADANI Fabrizio

    2009-01-01

    Water soluble organic carbon (WSOC) is considered the most mobile and reactive soil carbon source and its characterization is an important issue for soil ecology study. A biodegradability test was set up to study WSOC extracted from 7 soils differently managed. WSOC was extracted from soil with water (soil/water ratio of 1:2, W/V) for 30 min, and then tested for biodegradability by a liquid state respirometric test. Result obtained confirmed the finding that WSOC biodegradability depended on both land use and management practice. These results suggested the biodegradability test as suitable method to characterize WSOC, adding useful information to soil fertility.

  9. Modeling phase distribution of water-soluble organics in aqueous solutions using surface tension data

    Science.gov (United States)

    Cline, B.; Hiatt, J.; Aumann, E.; Cabrera, J.; Tabazadeh, A.

    2006-12-01

    A good fraction (greater than 30 percent) of submicron particle mass in the atmosphere is often composed of water-soluble organic carbon. Identifiable, water-miscible organics, such as, known sugars, small alcohols, small diacids, etc. comprise only a small fraction of the water-soluble mass (about 1-2 percent). Most of the water-soluble mass is often composed of unidentifiable, humic-like materials, which are commonly refereed to as HULIS. Humic substances are known to form colloids in aqueous solutions at very low aqueous concentrations. Thus, it is likely for HULIS to also be colloid-forming in aqueous solutions. Here, we present surface tension measurements of water-miscible and colloid-forming organics, using methanol and sodium laurate as analogs, respectively. By relating the change in surface tension to chemical potential of the solution, we determine a relationship between surface tension and the surface excess of solute; that is, the number of molecules of solute adsorbed at the surface. Assuming surface acts as a monolayer, we model the adsorption with a Langmuir isotherm to extract the surface excess as a function of solute mole fraction. This relationship allows us to calculate the solute's distribution between bulk and surface phases for methanol, and in bulk, surface and colloid phases for sodium laurate. A colloid of sodium laurate contains approximately 100 laurate anions in a spherical cluster. We present adsorption constants for methanol and sodium laurate (derived from our surface tension data), critical micelle concentration for sodium laurate (derived from our surface tension data), and all the other thermocehmical constants (obtained from the literature) required to constrain a model for determining phase partitioning of organics in aqueous solutions.

  10. Encapsulation of poorly water-soluble drugs into organic nanotubes for improving drug dissolution.

    Science.gov (United States)

    Moribe, Kunikazu; Makishima, Takashi; Higashi, Kenjirou; Liu, Nan; Limwikrant, Waree; Ding, Wuxiao; Masuda, Mitsutoshi; Shimizu, Toshimi; Yamamoto, Keiji

    2014-07-20

    Hydrocortisone (HC), a poorly water-soluble drug, was encapsulated within organic nanotubes (ONTs), which were formed via the self-assembly of N-{12-[(2-α,β-d-glucopyranosyl) carbamoyl]dodecanyl}-glycylglycylglycine acid. The stability of the ONTs was evaluated in ten organic solvents, of differing polarities, by field emission transmission electron microscopy. The ONTs maintained their stable tubular structure in the highly polar solvents, such as ethanol and acetone. Furthermore, solution-state (1)H-NMR spectroscopy confirmed that they were practically insoluble in acetone at 25°C (0.015 mg/mL). HC-loaded ONTs were prepared by solvent evaporation using acetone. A sample with a 3/7 weight ratio of HC/ONT was analyzed by powder X-ray diffraction, which confirmed the presence of a halo pattern and the absence of any crystalline HC peak. HC peak broadening, observed by solid-state (13)C-NMR measurements of the evaporated sample, indicated the absence of HC crystals. These results indicated that HC was successfully encapsulated in ONT as an amorphous state. Improvements of the HC dissolution rate were clearly observed in aqueous media at both pH 1.2 and 6.8, probably due to HC amorphization in the ONTs. Phenytoin, another poorly water-soluble drug, also showed significant dissolution improvement upon ONT encapsulation. Therefore, ONTs can serve as an alternative pharmaceutical excipient to enhance the bioavailability of poorly water-soluble drugs.

  11. Singlet oxygen generation from water-soluble quantum dot-organic dye nanocomposites.

    Science.gov (United States)

    Shi, Lixin; Hernandez, Billy; Selke, Matthias

    2006-05-17

    Water-soluble quantum dot-organic dye nanocomposites have been prepared via electrostatic interaction. We used CdTe quantum dots with diameters up to 3.4 nm, 2-aminoethanethiol as a stabilizer, and meso-tetra(4-sulfonatophenyl)porphine dihydrochloride (TSPP) as an organic dye. The photophysical properties of the nanocomposite have been investigated. The fluorescence of the parent CdTe quantum dot is largely suppressed. Instead, indirect excitation of the TSPP moiety leads to production of singlet oxygen with a quantum yield of 0.43. The nanocomposite is sufficiently photostable for biological applications.

  12. Occurrence of selected volatile organic compounds and soluble pesticides in Texas public water-supply source waters, 1999-2001

    Science.gov (United States)

    Mahler, Barbara June; Canova, Michael G.; Gary, Marcus O.

    2002-01-01

    During 1999?2001, the U.S. Geological Survey, in cooperation with the Texas Natural Resource Conservation Commission, collected samples of untreated water from 48 public water-supply reservoirs and 174 public water-supply wells. The samples were analyzed for volatile organic compounds (VOCs) and soluble pesticides; in addition, well samples were analyzed for nitrite plus nitrate and tritium. This fact sheet summarizes the findings of the source-water sampling and analyses. Both VOCs and pesticides were detected much more frequently in surface water than in ground water. The only constituent detected at concentrations exceeding the maximum contaminant level for drinking water was nitrate. These results will be used in the Texas Source-Water Assessment Program to evaluate the susceptibility of public water-supply source waters to contamination.

  13. Water soluble organic aerosols in indo gangetic plain (IGP): Insights from aerosol mass spectrometry.

    Science.gov (United States)

    Chakraborty, Abhishek; Rajeev, Pradhi; Rajput, Prashant; Gupta, Tarun

    2017-12-01

    Filter samples collected during winter of 2015-16 from two polluted urban locations (Allahabad and Kanpur) residing within Indo-Gangetic plain (IGP) showed high levels of water-soluble organic aerosols (WSOA). Total organic aerosols (OA) in submicron fraction, measured at Kanpur in real time via Aerosol Mass Spectrometer also showed substantially high concentration levels. WSOA to OA contribution in Kanpur was found to be very high (around 55%) indicating significant contributions from secondary OA (SOA). On average, WSOA oxidation ratio (O/C) was found to be higher (15-20%) in Kanpur than at Allahabad. WSOA from Allahabad was found to be following a much shallower slope (-0.38) in Van Krevelen diagram (H/C vs O/C plot) than Kanpur (-0.58). These differences suggest different composition and chemistry of WSOA at these two different locations. O/C ratios of WSOA were found to be much higher (~40%) than that of OA and independent of WSOA loading. Higher OA loadings were found to be associated with less oxidized primary OAs (POA) and culminated into lower WSOA/OA ratios. The presence of organo sulfate in filter samples from both locations indicate a significant amount of aqueous processing of organics. Concentrations and characteristics of water insoluble OA (WIOA) in Kanpur revealed that although they are present in significant quantity, their oxidation levels are much (almost 3 times) lower than that of WSOA. This finding indicates that less oxidized OAs are less soluble in line with the conventional wisdom. This study provides the first insight into oxidation levels and evolution of WSOA from India and also explores the interplay between WSOA and OA characteristics based on AMS measurements. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Application of mineral bed materials during fast pyrolysis of rice husk to improve water-soluble organics production.

    Science.gov (United States)

    Li, R; Zhong, Z P; Jin, B S; Zheng, A J

    2012-09-01

    Fast pyrolysis of rice husk was performed in a spout-fluid bed to produce water-soluble organics. The effects of mineral bed materials (red brick, calcite, limestone, and dolomite) on yield and quality of organics were evaluated with the help of principal component analysis (PCA). Compared to quartz sand, red brick, limestone, and dolomite increased the yield of the water-soluble organics by 6-55% and the heating value by 16-19%. The relative content of acetic acid was reduced by 23-43% with calcite, limestone and dolomite when compared with quartz sand. The results from PCA showed all minerals enhanced the ring-opening reactions of cellulose into furans and carbonyl compounds rather than into monomeric sugars. Moreover, calcite, limestone, and dolomite displayed the ability to catalyze the degradation of heavy compounds and the demethoxylation reaction of guaiacols into phenols. Minerals, especially limestone and dolomite, were beneficial to the production of water-soluble organics.

  15. Water Soluble Organic Compounds over the Eastern Mediterranean: Study of their occurrence and sources

    Science.gov (United States)

    Tziaras, T.; Spyros, A.; Mandalakis, M.; Apostolaki, M.; Stephanou, E. G.

    2010-05-01

    Fine marine aerosols influence the climate system by acting as cloud condensation nuclei (CCN) in the atmosphere. The organic chemical composition and origin of the marine fine particulate matter are still largely unknown, because of the insufficient reports on in situ studies, the large variability in the emission from the sea, from the complex transfer of gases and particles at the air-sea interface, and the transport of aerosol particles from very distant sources. As important processes of formation of marine organic aerosol production we consider: transport of terrestrial particles, secondary organic aerosol (SOA) formation from the oxidation of biogenic dimethyl-sulfide (DMS), and biogenic particle emissions through sea spray. Specific compounds related to the above-mentioned processes have been proposed as molecular markers: e.g. n-alkanoic acids and n-alkanes (terrestrial particles), levoglucosan (biomass burning aerosol), aminoacids (biological terrestrial or marine particles), methanesulphonate (MSA) (DMS oxidation), C8 and C9 dicarboxylic acids and oxo-carboxylic acids (marine SOA) and other short-chain dicarboxylic acids (marine or terrestrial SOA), and humic-like compounds (emission of marine organic carbon). In our study, we made an effort to characterize the water-soluble organic fraction of marine aerosols collected at a background sampling site of Eastern Mediterranean (Finokalia, N35o20', E25o40', Island of Crete, Greece). The sampling period was 2007-2008. In order to identify and quantify the water-soluble organic compounds of marine aerosols determined in the present study we have used gas chromatography/mass spectrometry (GC/MS), liquid chromatography/mass spectrometry (LC/MS) and nuclear magnetic resonance spectroscopy (NMR) and ion chromatography (IC). The origin of air masses arriving in the study area was studied by using backward trajectories calculation (NOAA HYSPLIT Model). In addition, we have used the "MODIS fire products" for fire

  16. Size distributions, sources and source areas of water-soluble organic carbon in urban background air

    Directory of Open Access Journals (Sweden)

    H. Timonen

    2008-09-01

    Full Text Available This paper represents the results of one year long measurement period of the size distributions of water-soluble organic carbon (WSOC, inorganic ions and gravimetric mass of particulate matter. Measurements were done at an urban background station (SMEAR III by using a micro-orifice uniform deposit impactor (MOUDI. The site is located in northern European boreal region in Helsinki, Finland. The WSOC size distribution measurements were completed with the chemical analysis of inorganic ions, organic carbon (OC and monosaccharide anhydrides from the filter samples (particle aerodynamic diameter smaller than 1 μm, PM1. Gravimetric mass concentration varied during the MOUDI samplings between 3.4 and 55.0 μg m−3 and the WSOC concentrations were between 0.3 and 7.4 μg m−3. On average, water-soluble particulate organic matter (WSPOM, WSOC multiplied by 1.6 to convert the analyzed carbon mass to organic matter mass comprised 25±7.7% and 7.5±3.4% of aerosol PM1 mass and the PM1–10 mass, respectively. Inorganic ions contributed 33±12% and 28±19% of the analyzed PM1 and PM1–10 aerosol mass.

    Five different aerosol categories corresponding to different sources or source areas were identified (long-range transport aerosols, biomass burning aerosols from wild land fires and from small-scale wood combustion, aerosols originating from marine areas and from the clean arctic areas. Categories were identified mainly using levoglucosan concentration level for wood combustion and air mass backward trajectories for other groups. Clear differences in WSOC concentrations and size distributions originating from different sources or source areas were observed, although there are also many other factors which might affect the results. E.g. the local conditions and sources of volatile organic compounds (VOCs and aerosols as well as various transformation processes are likely

  17. Structural Characterization and Reactivity of Pyrogenic Water-Soluble Organic Matter Derived from Biomass Combustion

    Science.gov (United States)

    Norwood, M. J.; Louchouarn, P.; Kuo, L.

    2011-12-01

    Combustion processes, whether from natural or anthropogenic origin, are major sources of particulate matter (PM), black carbon (BC), and volatile organic carbon to the atmosphere as well as soils and aquatic environments. The ubiquitous presence of biomass combustion by-products in atmospheric particles and soils could potentially lead to a large transfer of pyrogenic water-soluble organic matter (Pyr-WSOM) to the surface of watersheds and aquatic systems. In spite of this, there is a dearth of studies that have characterized the sources, and particularly the fate, of Pyr-WSOM to aquatic systems. In the present study, Pyr-WSOM was extracted from plant-derived chars (feedstocks: honey mesquite, cordgrass, and loblolly pine) produced at a range of temperatures (150-850C), and were then characterized using elemental analyses and ATR-FTIR. Low temperature (250C) Pyr-WSOM, extracted from honey mesquite and cordgrass biochars, were then incubated with aliquots of filtered water from the Trinity River (TX) for one month under dark conditions. Consistent with prior studies on combustion molecular markers such as anhydrosugars and methoxylated phenols, the total amount of dissolved organic carbon (DOC) released from biochars peaks around 200-250C and then decreases with increasing temperature of combustion. Elemental and structural analyses of biochar-derived WSOM reflect the selective solubility of certain functional groups. For example, despite the predominance of aromatic units and soot structures in biochars formed at high temperatures, such functionalities are not as predominant in their respective Pyr-WSOM. In addition, the high proportion of O-containing functionalities suggests that Pyr-WSOM may be more biodegradable than the particulate residues of biomass combustion. Indeed, low temperature Pyr-WSOM decomposed rapidly with half-lives ranging ~30 days for total DOC to 4-5 days for specific molecular markers of biomass combustion. These rapid turnover rates are in

  18. Water-soluble organic carbon in urban aerosol: concentrations, size distributions and contribution to particulate matter

    Energy Technology Data Exchange (ETDEWEB)

    Timonen, H. J.; Saarikoski, S. K.; Aurela, M. A.; Saarnio, K. M.; Hillamo, R. E. (Finnish Meteorological Inst., Helsinki (Finland))

    2008-07-01

    The aim of this study was to characterize the concentrations and particle mass size distributions of water-soluble organic carbon (WSOC) in urban aerosols. The sample collection was carried out in spring 2006 at the SMEAR III station in Helsinki, Finland, by using a size-segregating method (MOUDI) and by collecting sub-micrometer fraction of aerosols on the filter. During the three-month measurement period, a major 12-day biomass burning pollution episode was observed. Concentrations of WSOC, organic carbon, monosaccharide anhydrides, inorganic ions and some organic acids (oxalic, succinic and malonic acid) were analyzed from the PM{sub 1} samples. The measured OC and WSOC concentrations varied in ranges 0.67-15.7 mug m-3 and 0.26-10.7 mug m3, respectively. The WSOC/OC concentration ratio was between 0.30 and 0.89 with an average of 0.54. Size distributions of WSOC, inorganic ions and total mass were determined from the MOUDI samples. WSOC had bimodal size distributions with a clear accumulation mode below 1 mum of particle aerodynamic diameter and minor coarse mode at sizes > 1 mum. (orig.)

  19. Determination of the solubility of low volatility liquid organic compounds in water using volatile-tracer assisted headspace gas chromatography.

    Science.gov (United States)

    Zhang, Shu-Xin; Chai, Xin-Sheng; Barnes, Donald G

    2016-02-26

    This study reports a new headspace gas chromatographic method (HS-GC) for the determination of water solubility of low volatility liquid organic compounds (LVLOs). The HS-GC analysis was performed on a set of aqueous solutions containing a range of concentrations of toluene-spiked (as a tracer) LVLOs, from under-saturation to over-saturation. A plot of the toluene tracer GC signal vs. the concentration of the LVLO results in two lines of different slopes that intersect at the concentration corresponding to the compound's solubility in water. The results showed that the HS-GC method has good precision (RSD solubility of LVLOs at elevated temperatures. This approach should be of special interest to those concerned about the impact of the presence of low-volatility organic liquids in waters of environmental and biological systems.

  20. Partitioning of water soluble organic carbon in three sediment size fractions: Effect of the humic substances

    Institute of Scientific and Technical Information of China (English)

    SUN Liying; SUN Weiling; NI Jinren

    2009-01-01

    Water soluble organic carbon (WSOC) in sediments plays an important role in transference and transformation of aquatic pollutants. This article investigated the inherent mechanisms of how sediemnt grain size affect the partitioning coeffcient (k) of WSOC. Influences of NaOH extracted humic substances were particularly focused on. Sediments were sampled from two cross-sections of the middle Yellow River and sieved into three size fractions (< 63 μm, 63-100 μm, and 100--300 μm). The total concentration of WSOC in sediments (CWSOC) and k were estimated using multiple water-sediment ratio experiments. Results show that CWSOC ranges from 0.012 to 0.022 mg/g, while k ranges from 0.8 to 3.9 L/kg. Correlations between the spectrum characteristics of NaOH extracted humic substances and k were analyzed. Strong positive correlations are determined between k and the aromaticity indicators of NaOH extracted humic substances in different sediment size fractions. Comparing with finer fractions (< 63 μm), k is higher in larger size fractions (63--100 and 100--300 μm) related to higher aromaticity degree of NaOH extracted humic substances mostly. While negative relationship between k and the area ratio of fourier transform infrared spectroscopy (FT-IR) at 3400 and 1430 cm-1 implied that the lowest k was related to the highest concentration of the acidic humic groups in particles < 63 μm. WSOC in finer fractions (< 63 μm) is likely to enter into pore water, which may further accelerate the transportation of aquatic contaminants from sediment to water.

  1. Water-soluble organic compounds (WSOCs) in PM2.5 and PM10 at a subtropical site of India

    Science.gov (United States)

    Khare, Puja; Baruah, B. P.; Rao, P. G.

    2011-11-01

    PM2.5 and PM10 samples collected at a suburban site of northeastern part of India have been analysed for particle mass, total carbon (TC), water-soluble total carbon (WSTC), water-soluble organic carbon (WSOC), water-soluble inorganic carbon (WSIC), organic acids (formic, acetic, proponoic and oxalic acids) along with inorganic ions (NO3-, SO42- and NH4-). Most of the PM10 consists of PM2.5 in the present site (ratio 54-74%). WSTC content in PM2.5 and PM10 corresponds to 21% and 16%, respectively, of their total particle masses. Thermo gravimetric analysis showed the presence of humic-like substances (16-22%) in particulate samples. Domestic heating and stagnant atmospheric conditions enhanced the levels of these carbonaceous compounds in PM2.5 and PM10 in winter. Qualitative estimation of various functional groups by Fourier transform infrared (FTIR) analysis indicates the presence of carboxylic, hydroxyl, aliphatic and aromatic hydrocarbons, amines and sulphurous compounds in these aerosols. Absolute principal component analysis applied on the aerosol data resolves four factors. These factors are associated with carbonaceous aerosols released from combustion of coal and wood, secondary inorganic and organic aerosols and water-soluble inorganic fraction.

  2. High-Resolution Electrospray Ionization Mass Spectrometry Analysis of Water- Soluble Organic Aerosols Collected with a Particle into Liquid Sampler

    Energy Technology Data Exchange (ETDEWEB)

    Bateman, Adam P.; Nizkorodov, Serguei; Laskin, Julia; Laskin, Alexander

    2010-10-01

    This work demonstrates the utility of a particle-into-liquid sampler (PILS) a technique traditionally used for identification of inorganic ions present in ambient or laboratory aerosols for the analysis of water soluble organic aerosol (OA) using high resolution electrospray ionization mass spectrometry (HR ESI-MS). Secondary organic aerosol (SOA) was produced from 0.5 ppm mixing ratios of limonene and ozone in a 5 m3 Teflon chamber. SOA was collected simultaneously using a traditional filter sampler and a PILS. The filter samples were later extracted with either water or acetonitrile, while the aqueous PILS samples were analyzed directly. In terms of peak intensities, types of detectable compounds, average O:C ratios, and organic mass to organic carbon ratios, the resulting high resolution mass spectra were essentially identical for the PILS and filter based samples. SOA compounds extracted from both filter/acetonitrile extraction and PILS/water extraction accounted for >95% of the total ion current in ESI mass spectra. This similarity was attributed to high solubility of limonene SOA in water. In contrast, significant differences in detected ions and peak abundances were observed for pine needle biomass burning organic aerosol (BBOA) collected with PILS and filter sampling. The water soluble fraction of BBOA is considerably smaller than for SOA, and a number of unique peaks were detectable only by the filter/acetonitrile method. The combination of PILS collection with HR-ESI-MS analysis offers a new approach for molecular analysis of the water-soluble organic fraction in biogenic SOA, aged photochemical smog, and BBOA.

  3. Size-resolved particulate water-soluble organic compounds in the urban, mountain and marine atmosphere

    Directory of Open Access Journals (Sweden)

    G. Wang

    2010-07-01

    Full Text Available Primary (i.e., sugars and sugar alcohols and secondary water-soluble organic compounds (WSOCs (i.e., dicarboxylic acids and aromatic acids were characterised on a molecular level in size-segregated aerosols from the urban and mountain atmosphere of China and from the marine atmosphere in the outflow region of East Asia. Levoglucosan is the most abundant WSOCs in the urban and mountain atmosphere, whose accumulated concentrations in all stages are 1–3 orders of magnitude higher than those of marine aerosols. In contrast, malic, succinic and phthalic acids are dominant in the marine aerosols, which are 3–6 times more abundant than levoglucosan. This suggests that a continuous formation of secondary organic aerosols is occurring in the marine atmosphere during the long-range transport of air mass from inland China to the North Pacific. Sugars and sugar-alcohols, except for levoglucosan, gave a bimodal size distribution in the urban and mountain areas, peaking at 0.7–1.1 μm and >3.3 μm, and a unimodal distribution in the marine region, peaking at >3.3 μm. In contrast, levoglucosan and all the secondary WSOCs, except for benzoic and azelaic acids, showed a unimodal size distribution with a peak at 0.7–1.1 μm. Geometric mean diameters (GMDs of the WSOCs in fine particles (<2.1 μm at the urban site are larger in winter than in spring, due to an enhanced coagulation effect under the development of an inversion layer. However, GMDs of levoglucosan and most of the secondary WSOCs in the coarse mode are larger in the mountain and marine air and smaller in the urban air. This is most likely caused by an enhanced hygroscopic growth due to the high humidity of the mountain and marine atmosphere.

  4. Microbial respiration activities correlated to sequentially separated, particulate and water-soluble organic matter fractions from arable and forest topsoils

    Science.gov (United States)

    Kaiser, M.; Wirth, S.; Ellerbrock, R.; Sommer, M.

    2009-12-01

    Michael Kaiser1, Stephan Wirth2, Ruth H. Ellerbrock3, Michael Sommer3,4 1University of California Merced, Natural Science, 4225 N. Hospital Rd., Atwater, CA 95301 2,3 Leibniz-Center for Agricultural Research (ZALF) e. V. 2 Institute of Landscape Matter Dynamics 3 Institute of Soil Landscape Research Eberswalder Str. 84, D-15374 Muencheberg, Germany 4University of Potsdam, Institute of Geoecology, Karl-Liebknecht-Str. 24-25, 14476 Potsdam, Germany Microbial respiration activities correlated to sequentially separated, particulate and water-soluble organic matter fractions from arable and forest topsoils Microbial decomposition of soil organic matter (SOM) accounts for roughly half of CO2 evolution from vegetated soil surfaces and plays a crucial role in the ability of soil to mitigate the greenhouse effect. The separation and identification of labile (i.e., easily decomposable) organic matter (OM) fractions from bulk SOM is of particular importance for a mechanistic understanding of microbial decomposition processes and for predicting the response of SOM to changes in land use, management, and climate. This work aimed to reveal differences in the relevance of particulate as well as water-soluble organic matter (OM) fractions from topsoils to the easily biodegradable soil organic matter (SOM). We selected eight paired sites with quite different soil types (Udorthent, Paleudalf, Glossudalf, Aquept, Hapludalf, Aquert, Udert, Haplorthod) and soil properties (e.g., clay content: 28 to 564 g kg-1). For each of these sites, we took samples from adjacent arable and forest topsoils. Physically uncomplexed, macro-, and micro-aggregate-occluded organic particle, as well as water-soluble OM fractions were sequentially separated by a combination of electrostatic attraction, ultrasonic treatment, density separation, sieving, and water extraction. The easily biodegradable SOM of the topsoil samples was determined by measuring microbial respiration during a short-term incubation

  5. Sources and light absorption of water-soluble organic carbon aerosols in the outflow from northern China

    Science.gov (United States)

    Kirillova, E. N.; Andersson, A.; Han, J.; Lee, M.; Gustafsson, Ö.

    2014-02-01

    High loadings of anthropogenic carbonaceous aerosols in Chinese air influence the air quality for over one billion people and impact the regional climate. A large fraction (17-80%) of this aerosol carbon is water-soluble, promoting cloud formation and thus climate cooling. Recent findings, however, suggest that water-soluble carbonaceous aerosols also absorb sunlight, bringing additional direct and indirect climate warming effects, yet the extent and nature of light absorption by this water-soluble "brown carbon" and its relation to sources is poorly understood. Here, we combine source estimates constrained by dual carbon isotopes with light-absorption measurements of water-soluble organic carbon (WSOC) for a March 2011 campaign at the Korea Climate Observatory at Gosan (KCOG), a receptor station in SE Yellow Sea for the outflow from northern China. The mass absorption cross section at 365 nm (MAC365) of WSOC for air masses from N. China were in general higher (0.8-1.1 m2 g-1), than from other source regions (0.3-0.8 m2 g-1). However, this effect corresponds to only 2-10% of the radiative forcing caused by light absorption by elemental carbon. Radiocarbon constraints show that the WSOC in Chinese outflow had significantly higher fraction fossil sources (30-50%) compared to previous findings in S. Asia, N. America and Europe. Stable carbon (δ13C) measurements were consistent with aging during long-range air mass transport for this large fraction of carbonaceous aerosols.

  6. Application of ion chromatography to the determination of water-soluble inorganic and organic ions in atmospheric aerosols

    Institute of Scientific and Technical Information of China (English)

    YU Xue-chun; HE Ke-bin; MA Yong-liang; YANG Fu-mo; DUAN Feng-kui; ZHENG Ai-hua; ZHAO Cheng-yi

    2004-01-01

    A simple, sensitive and convenient ion chromatography(IC) method was established for the simultaneous determination of twelve water-soluble inorganic ions(F-, Cl-, NO2-, NO3-, SO32-, SO42-, PO43-, Na+, NH4+, K+, Mg2+) and sixteen water-soluble organic ions(formate, acetate, MSA, oxalate, malonate, succinate, phthalates, etc.) in atmospheric aerosols. The linear concentrations ranged from 0.005 μg/m3 to 500 μg/m3(r = 0.999-0.9999). The relative standard deviation(RSD) were 0.43%-2.00% and the detection limits were from 2.7 ng/m3 to 88 ng/m3. The proposed method was successfully applied to the simultaneous determination of those inorganic ions and organic ions in PM2.5 of Beijing.

  7. Method for separating water soluble organics from a process stream by aqueous biphasic extraction

    Energy Technology Data Exchange (ETDEWEB)

    Chaiko, D.J.; Mego, W.A.

    1999-09-07

    A method for separating water-miscible organic species from a process stream by aqueous biphasic extraction is provided. An aqueous biphase system is generated by contacting a process stream comprised of water, salt, and organic species with an aqueous polymer solution. The organic species transfer from the salt-rich phase to the polymer-rich phase, and the phases are separated. Next, the polymer is recovered from the loaded polymer phase by selectively extracting the polymer into an organic phase at an elevated temperature, while the organic species remain in a substantially salt-free aqueous solution. Alternatively, the polymer is recovered from the loaded polymer by a temperature induced phase separation (cloud point extraction), whereby the polymer and the organic species separate into two distinct solutions. The method for separating water-miscible organic species is applicable to the treatment of industrial wastewater streams, including the extraction and recovery of complexed metal ions from salt solutions, organic contaminants from mineral processing streams, and colorants from spent dye baths.

  8. Method for separating water soluble organics from a process stream by aqueous biphasic extraction

    Energy Technology Data Exchange (ETDEWEB)

    Chaiko, David J. (Naperville, IL); Mego, William A. (Naperville, IL)

    1999-01-01

    A method for separating water-miscible organic species from a process stream by aqueous biphasic extraction is provided. An aqueous biphase system is generated by contacting a process stream comprised of water, salt, and organic species with an aqueous polymer solution. The organic species transfer from the salt-rich phase to the polymer-rich phase, and the phases are separated. Next, the polymer is recovered from the loaded polymer phase by selectively extracting the polymer into an organic phase at an elevated temperature, while the organic species remain in a substantially salt-free aqueous solution. Alternatively, the polymer is recovered from the loaded polymer by a temperature induced phase separation (cloud point extraction), whereby the polymer and the organic species separate into two distinct solutions. The method for separating water-miscible organic species is applicable to the treatment of industrial wastewater streams, including the extraction and recovery of complexed metal ions from salt solutions, organic contaminants from mineral processing streams, and colorants from spent dye baths.

  9. [Characteristics of soil microbial biomass carbon and soil water soluble organic carbon in the process of natural restoration of Karst forest].

    Science.gov (United States)

    Huang, Zong-Sheng; Fu, Yu-Hong; Yu, Li-Fei

    2012-10-01

    By the method of taking space instead of time, an incubation test was conducted to study the characteristics of soil microbial biomass carbon and water soluble organic carbon in the process of natural restoration of Karst forest in Maolan Nature Reserve, Guizhou Province of Southwest China. The soil microbial biomass carbon content and soil basal respiration decreased with increasing soil depth but increased with the process of the natural restoration, soil microbial quotient increased with increasing soil depth and with the process of restoration, and soil water soluble organic carbon content decreased with increasing soil depth. In the process of the natural restoration, surface soil water soluble organic carbon content increased, while sublayer soil water soluble organic carbon content decreased after an initial increase. The ratio of soil water soluble organic carbon to total soil organic carbon increased with increasing soil depth but decreased with the process of restoration. Soil quality increased with the process of restoration. Also, the quality and quantity of soil organic carbon increased with the process of restoration, in which, soil microbial biomass carbon content had the greatest change, while soil water soluble organic carbon content had less change.

  10. Investigation of water-soluble organic matter extracted from shales during leaching experiments

    Science.gov (United States)

    Zhu, Yaling; Vieth-Hillebrand, Andrea; Wilke, Franziska D. H.; Horsfield, Brian

    2017-04-01

    The huge volumes and unknown composition of flowback and produced waters cause major public concerns about the environmental and social compatibility of hydraulic fracturing and the exploitation of gas from unconventional reservoirs. Flowback and produced waters contain not only residues of fracking additives but also chemical species that are dissolved from the shales themselves during fluid-rock interaction. Knowledge of the composition, size and structure of dissolved organic carbon (DOC) as well as the main controls on the release of DOC are a prerequisite for a better understanding of these interactions and its effects on composition of flowback and produced water. Black shales from four different geological settings and covering a maturity range Ro = 0.3-2.6% were extracted with deionized water. The DOC yields were found to decrease rapidly with increasing diagenesis and remain low throughout catagenesis. Four DOC fractions have been qualitatively and quantitatively characterized using size-exclusion chromatography. The concentrations of individual low molecular weight organic acids (LMWOA) decrease with increasing maturity of the samples except for acetate extracted from the overmature Posidonia shale, which was influenced by hydrothermal brines. The oxygen content of the shale organic matter also shows a significant influence on the release of organic acids, which is indicated by the positive trend between oxygen index (OI) and the concentrations of formate and acetate. Based on our experiments, both the properties of the organic matter source and the thermal maturation progress of the shale organic matter significantly influence the amount and quality of extracted organic compounds during the leaching experiments.

  11. Contribution of water soluble organic nitrogen to total nitrogen in marine aerosols over the East China Sea and western North Pacific

    Digital Repository Service at National Institute of Oceanography (India)

    Nakamura, T.; Ogawa, H.; DileepKumar, M.; Uematsu, M.

    This paper presents information on concentrations, size distributions, geographical distributions and sources of water-soluble organic nitrogen (ONws) in aerosols over the East China Sea and western North Pacific to understand its impact...

  12. Hygroscopic growth of water soluble organic carbon isolated from atmospheric aerosol collected at US national parks and Storm Peak Laboratory

    Science.gov (United States)

    Taylor, Nathan F.; Collins, Don R.; Lowenthal, Douglas H.; McCubbin, Ian B.; Gannet Hallar, A.; Samburova, Vera; Zielinska, Barbara; Kumar, Naresh; Mazzoleni, Lynn R.

    2017-02-01

    Due to the atmospheric abundance and chemical complexity of water soluble organic carbon (WSOC), its contribution to the hydration behavior of atmospheric aerosol is both significant and difficult to assess. For the present study, the hygroscopicity and CCN activity of isolated atmospheric WSOC particulate matter was measured without the compounding effects of common, soluble inorganic aerosol constituents. WSOC was extracted with high purity water from daily high-volume PM2.5 filter samples and separated from water soluble inorganic constituents using solid-phase extraction. The WSOC filter extracts were concentrated and combined to provide sufficient mass for continuous generation of the WSOC-only aerosol over the combined measurement time of the tandem differential mobility analyzer and coupled scanning mobility particle sizer-CCN counter used for the analysis. Aerosol samples were taken at Great Smoky Mountains National Park during the summer of 2006 and fall-winter of 2007-2008; Mount Rainier National Park during the summer of 2009; Storm Peak Laboratory (SPL) near Steamboat Springs, Colorado, during the summer of 2010; and Acadia National Park during the summer of 2011. Across all sampling locations and seasons, the hygroscopic growth of WSOC samples at 90 % RH, expressed in terms of the hygroscopicity parameter, κ, ranged from 0.05 to 0.15. Comparisons between the hygroscopicity of WSOC and that of samples containing all soluble materials extracted from the filters implied a significant modification of the hydration behavior of inorganic components, including decreased hysteresis separating efflorescence and deliquescence and enhanced water uptake between 30 and 70 % RH.

  13. Selective Organic and Organometallic Reactions in Water-Soluble Host-Guest Supramolecular Systems

    Energy Technology Data Exchange (ETDEWEB)

    Pluth, Michael D.; Raymond, Kenneth N.; Bergman, Robert G.

    2008-02-16

    Inspired by the efficiency and selectivity of enzymes, synthetic chemists have designed and prepared a wide range of host molecules that can bind smaller molecules with their cavities; this area has become known as 'supramolecular' or 'host-guest' chemistry. Pioneered by Lehn, Cram, Pedersen, and Breslow, and followed up by a large number of more recent investigators, it has been found that the chemical environment in each assembly - defined by the size, shape, charge, and functional group availability - greatly influences the guest-binding characteristics of these compounds. In contrast to the large number of binding studies that have been carried out in this area, the exploration of chemistry - especially catalytic chemistry - that can take place inside supramolecular host cavities is still in its infancy. For example, until the work described here was carried out, very few examples of organometallic reactivity inside supramolecular hosts were known, especially in water solution. For that reason, our group and the group directed by Kenneth Raymond decided to take advantage of our complementary expertise and attempt to carry out metal-mediated C-H bond activation reactions in water-soluble supramolecular systems. This article begins by providing background from the Raymond group in supramolecular coordination chemistry and the Bergman group in C-H bond activation. It goes on to report the results of our combined efforts in supramolecular C-H activation reactions, followed by extensions of this work into a wider range of intracavity transformations.

  14. Water Soluble Organic Nitrogen in atmospheric aerosol samples from urban, sub-urban and pristine areas of Venezuela

    Science.gov (United States)

    Canelon, R.; Giuliante, A.; Aguiar, G.; Ghneim, T.; Perez, T.

    2007-12-01

    Concentrations of water soluble organic nitrogen (WSON) were determined in atmospheric total suspended particles (TSP) collected between September of 2005 and May of 2006, in an urban continental (Caracas, 10° 29' 09'' N, 66° 53' 48'' W), an urban coastal (Catia la mar, 10° 35' 47'' N, 67° 01' 45'' W), a sub-urban coastal (Osma, 10° 32' N, 67° 28' W), a suburban continental (Altos de Pipe, 10° 23' 41'' N, 63° 59' 10'' W), a pristine coastal (Isla de Aves, 15° 40' N, 63° 36' W) and a pristine continental (La Gran Sabana National Park, 5° 41' 30'' N, 61° 34' 20'' W) areas of Venezuela. TSP samples were collected using a Hi-Vol airborne particle sampler. TSP were impacted on a fiberglass filter pretreated under 400° C for 4 hours to minimize organic nitrogen contamination. Ultra sound water extractions of the sample filters were performed and their NH4+, NO2- and NO3- concentrations were determined by ion exchange liquid chromatography. The water extracts were UV digested and the nitrogen inorganic ions were analyzed after the UV exposure. WSON concentrations were calculated by the difference between the inorganic nitrogen concentrations before and after UV digestion. Ninety five percent of the aerosol samples collected in the suburban and pristine areas showed a WSON concentration range from 0.03 to 0.6 μg/m3 whereas in urban areas the range was 0.21 to 1.09 μg/m3. These concentration values are on the same order of magnitude than the previously found in other tropical and subtropical areas. The contribution of aerosol WSON to the total soluble nitrogen in the coastal urban, sub-urban and pristine areas ranged from 23 to 67%, while in Caracas was smaller (38±8%, n=5). Therefore, aerosol WSON provides an important source of nitrogen to these pristine and suburban ecosystems, which could potentially have implications on the nutrient cycling. There was a statistically significant linear correlation between the aerosol WSON and the water soluble inorganic

  15. Defensive strategies in Geranium sylvaticum. Part 1: organ-specific distribution of water-soluble tannins, flavonoids and phenolic acids.

    Science.gov (United States)

    Tuominen, Anu; Toivonen, Eija; Mutikainen, Pia; Salminen, Juha-Pekka

    2013-11-01

    A combination of high-resolution mass spectrometry and modern HPLC column technology, assisted by diode array detection, was used for accurate characterization of water-soluble polyphenolic compounds in the pistils, stamens, petals, sepals, stems, leaves, roots and seeds of Geranium sylvaticum. The organs contained a large variety of polyphenols, five types of tannins (ellagitannins, proanthocyanidins, gallotannins, galloyl glucoses and galloyl quinic acids) as well as flavonoids and simple phenolic acids. In all, 59 compounds were identified. Geraniin and other ellagitannins dominated in all the green photosynthetic organs. The other organs seem to produce distinctive polyphenol groups: pistils accumulated gallotannins; petals acetylglucose derivatives of galloylglucoses; stamens kaempferol glycosides, and seeds and roots accumulated proanthocyanidins. The intra-plant distribution of the different polyphenol groups may reflect the different functions and importance of various types of tannins as the defensive chemicals against herbivory.

  16. Case study of water-soluble metal containing organic constituents of biomass burning aerosol.

    Science.gov (United States)

    Chang-Graham, Alexandra L; Profeta, Luisa T M; Johnson, Timothy J; Yokelson, Robert J; Laskin, Alexander; Laskin, Julia

    2011-02-15

    Natural and prescribed biomass fires are a major source of aerosols that may persist in the atmosphere for several weeks. Biomass burning aerosols (BBA) can be associated with long-range transport of water-soluble N-, S-, P-, and metal-containing species. In this study, BBA samples were collected using a particle-into-liquid sampler (PILS) from laboratory burns of vegetation collected on military bases in the southeastern and southwestern United States. The samples were then analyzed using high resolution electrospray ionization mass spectrometry (ESI/HR-MS) that enabled accurate mass measurements for hundreds of species with m/z values between 70 and 1000 and assignment of elemental formulas. Mg, Al, Ca, Cr, Mn, Fe, Ni, Cu, Zn, and Ba-containing organometallic species were identified. The results suggest that the biomass may have accumulated metal-containing species that were re-emitted during biomass burning. Further research into the sources, dispersion, and persistence of metal-containing aerosols, as well as their environmental effects, is needed.

  17. Fructans and other water soluble carbohydrates in vegetative organs and fruits of different Musa spp. accessions.

    Science.gov (United States)

    Cruz-Cárdenas, Carlos I; Miranda-Ham, María L; Castro-Concha, Lizbeth A; Ku-Cauich, José R; Vergauwen, Rudy; Reijnders, Timmy; Van den Ende, Wim; Escobedo-GraciaMedrano, Rosa M

    2015-01-01

    The water soluble carbohydrates (WSC) glucose, fructose, and sucrose are well-known to the great public, but fructans represent another type of WSC that deserves more attention given their prebiotic and immunomodulatory properties in the food context. Although the occurrence of inulin-type fructo-oligosaccharides (FOS) was proposed in the fruit of some banana accessions, little or no information is available neither on the exact identity of the fructan species, nor on the fructan content in different parts of banana plants and among a broader array of banana cultivars. Here, we investigated the WSC composition in leaves, pulp of ripe fruits and rhizomes from mature banana plants of 11 accessions (I to XI), including both cultivated varieties and wild Musa species. High performance anion exchange chromatography with integrated pulsed amperometric detection (HPAEC-IPAD) showed the presence of 1-kestotriose [GF2], inulobiose [F2], inulotriose [F3], 6-kestotriose and 6G-kestotriose (neokestose) fructan species in the pulp of mature fruits of different accessions, but the absence of 1,1-nystose and 1,1,1 kestopentaose and higher degree of polymerization (DP) inulin-type fructans. This fructan fingerprint points at the presence of one or more invertases that are able to use fructose and sucrose as alternative acceptor substrates. Quantification of glucose, fructose, sucrose and 1-kestotriose and principal component analysis (PCA) identified related banana groups, based on their specific WSC profiles. These data provide new insights in the biochemical diversity of wild and cultivated bananas, and shed light on potential roles that fructans may fulfill across species, during plant development and adaptation to changing environments. Furthermore, the promiscuous behavior of banana fruit invertases (sucrose and fructose as acceptor substrates besides water) provides a new avenue to boost future work on structure-function relationships on these enzymes, potentially leading to

  18. Fructans and other water soluble carbohydrates in vegetative organs and fruits of different Musa spp. accessions

    Directory of Open Access Journals (Sweden)

    Carlos Ivan eCruz Cardenas

    2015-06-01

    Full Text Available The water-soluble carbohydrates (WSC glucose, fructose and sucrose are well-known to the great public, but fructan represents another type of WSC that deserves more attention given their prebiotic and immunomodulatory properties in the food context. Although the occurrence of inulin-type fructo-oligosaccharides (FOS was proposed in the fruit of some banana accessions, little or no information is available neither on the exact identity of the fructan species, nor on the fructan content in different parts of banana plants and among a broader array of banana cultivars. Here, we investigated the WSC composition in leaves, pulp of ripe fruits and rhizomes from mature banana plants of eleven accessions (I to XI, including both cultivated varieties and wild Musa species. High performance anion exchange chromatography with integrated pulsed amperometric detection (HPAEC-IPAD showed the presence of 1-kestotriose [GF2], inulobiose [F2], inulotriose [F3], 6-kestotriose and 6G-kestotriose (neokestose fructan species in the pulp of mature fruits of different accessions, but the absence of 1,1-nystose and 1,1,1 kestopentaose and higher degree of polymerization (DP inulin-type fructans. This fructan fingerprint points at the presence of one or more invertases that are able to use fructose and sucrose as alternative acceptor substrates. Quantification of glucose, fructose, sucrose and 1-kestotriose and principal component analysis (PCA identified related banana groups, based on their specific WSC profiles. These data provide new insights in the biochemical diversity of wild and cultivated bananas, and shed light on potential roles that fructans may fulfil across species, during plant development and adaptation to changing environments. Furthermore, the promiscuous behavior of banana fruit invertases (sucrose and fructose as acceptor substrates besides water provides a new avenue to boost future work on structure-function relationships on these enzymes

  19. Profiling contents of water-soluble metabolites and mineral nutrients to evaluate the effects of pesticides and organic and chemical fertilizers on tomato fruit quality.

    Science.gov (United States)

    Watanabe, Masami; Ohta, Yuko; Licang, Sun; Motoyama, Naoki; Kikuchi, Jun

    2015-02-15

    In this study, the contents of water-soluble metabolites and mineral nutrients were measured in tomatoes cultured using organic and chemical fertilizers, with or without pesticides. Mineral nutrients and water-soluble metabolites were determined by inductively coupled plasma-atomic emission spectrometry and (1)H nuclear magnetic resonance spectrometry, respectively, and results were analysed by principal components analysis (PCA). The mineral nutrient and water-soluble metabolite profiles differed between organic and chemical fertilizer applications, which accounted for 88.0% and 55.4%, respectively, of the variation. (1)H-(13)C-hetero-nuclear single quantum coherence experiments identified aliphatic protons that contributed to the discrimination of PCA. Pesticide application had little effect on mineral nutrient content (except Fe and P), but affected the correlation between mineral nutrients and metabolites. Differences in the content of mineral nutrients and water-soluble metabolites resulting from different fertilizer and pesticide applications probably affect tomato quality.

  20. Bis[(lprolinate-N,O]Zn: A water-soluble and recycle catalyst for various organic transformations

    Directory of Open Access Journals (Sweden)

    Roona Poddar

    2017-05-01

    Full Text Available Under the green chemistry perspective, bis[(lprolinate-N,O]Zn (also called zinc–proline or Zn[(l-pro]2 has proven its competence as a promising alternative in a plethora of applications such as catalyst or promoter. Owing to its biodegradable and non-toxic nature of bis[(lprolinate-N,O]Zn, it is being actively investigated as a water soluble green catalyst for synthetic chemistry. Bis[(lprolinate-N,O]Zn are readily utilized under mild conditions and have high selectivity and reactivity with broad range of substrate acceptance to make it better reaction medium for a wide variety of organic transformations. This Review summarizes the till date literature on its synthesis, characterization, and its catalytic role in various organic reactions.

  1. Charge-specific size-dependent separation of water-soluble organic molecules by fluorinated nanoporous networks

    Science.gov (United States)

    Byun, Jeehye; Patel, Hasmukh A.; Thirion, Damien; Yavuz, Cafer T.

    2016-11-01

    Molecular architecture in nanoscale spaces can lead to selective chemical interactions and separation of species with similar sizes and functionality. Substrate specific sorbent chemistry is well known through highly crystalline ordered structures such as zeolites, metal organic frameworks and widely available nanoporous carbons. Size and charge-dependent separation of aqueous molecular contaminants, on the contrary, have not been adequately developed. Here we report a charge-specific size-dependent separation of water-soluble molecules through an ultra-microporous polymeric network that features fluorines as the predominant surface functional groups. Treatment of similarly sized organic molecules with and without charges shows that fluorine interacts with charges favourably. Control experiments using similarly constructed frameworks with or without fluorines verify the fluorine-cation interactions. Lack of a σ-hole for fluorine atoms is suggested to be responsible for this distinct property, and future applications of this discovery, such as desalination and mixed matrix membranes, may be expected to follow.

  2. Radiocarbon-based Source Apportionment of Organic, Elemental and Water-soluble Organic Carbon Aerosols and the Light Absorption of Water-soluble Organic Carbon Aerosols in the East Asia High-intensity Winter Campaigns in 2014

    Science.gov (United States)

    Fang, W.; Andersson, A.; Zheng, M.; Lee, M.; Kim, S. W.; Du, K.; Gustafsson, O.

    2016-12-01

    Improved understanding of anthropogenic aerosol effects on atmospheric chemistry and climate as well as efficient mitigation actions are hampered by the limited comprehension of the relative contributions of different sources of carbonaceous aerosols and of their subsequent atmospheric processing. Here, we present dual carbon isotope constrained source apportionment and optical properties of carbonaceous aerosols simultaneously both at urban and rural receptor sites, includes North China Plain (NCP, Beijing and Tianjin), Yangtze River Delta (YRD, Shanghai, Zhejiang), and Jeju Island (Korea Climate Observatory at Gosan) during January 2014 field campaigns. The radiocarbon (∆14C) data show that fossil combustions contribute equally ˜80 ± 5% to elemental carbon (EC) aerosol in Beijing, Tianjin, and Shanghai, and 66 ± 9% to Gosan-EC aerosol, while the specific sources of the dominant fossil fuel component were dramatically different among these sites. The mean fraction coal combustion of Beijing-EC, Tianjin-EC, and Gosan-EC is double that of Shanghai-EC. The other large fraction (72―92%) of carbonaceous aerosol is organic carbon (OC) aerosol which contains water soluble and water insoluble organic carbon (WSOC and WISOC). OC, WISOC, and WSOC in Beijing and Gosan sites were still observed largely from fossil sources (53―75%). The more 13C-enriched signature of Gosan-WSOC (-22.8 ± 0.2‰) compared to Gosan-EC (-23.9 ± 0.4‰) and Beijing-WSOC (-23.5 ± 0.7‰) reflects that WSOC is likely more affected by atmospheric aging during long-rang transport than is EC. The high light absorption coefficients of PM2.5, PM1, and TSP were observed at Gosan during this study and was frequently reaching 20―60 Mm-1 by aethalometer and continuous light absorption photometer. The mass absorption cross section of WSOC (MAC365) for above sites is high (1.5 ± 0.8 m2/g), accounted for ˜14 ± 5% of the total direct absorbance relative to EC, which is significantly higher than

  3. Evidence of formation of submicrometer water-soluble organic aerosols at a deciduous forest site in northern Japan in summer

    Science.gov (United States)

    Miyazaki, Yuzo; Jung, Jinsang; Fu, Pingqing; Mizoguchi, Yasuko; Yamanoi, Katsumi; Kawamura, Kimitaka

    2012-10-01

    Semicontinuous measurements of submicrometer water-soluble organic aerosols and particle size distributions were conducted at a deciduous forest site in northern Japan in August 2010. Increases in particle number concentration were frequently observed in daytime, accompanied by an increase in the concentrations of water-soluble organic carbon (WSOC). We found that daily averaged WSOC concentrations positively correlated with gross primary production of CO2 by the forest ecosystem (r2 = 0.63) and ambient temperature during daytime. These relations suggest that the formation of WSOC is closely linked to photosynthetic activity by the forest ecosystem, which depends on both temperature and solar radiation. Off-line chemical analysis of samples of particles with aerodynamic diameter smaller than 1 μm collected during a 2 day event of elevated WSOC levels suggests that photochemical aging of both α- andβ-pinene and isoprene oxidation products contributes to the particle growth and the WSOC mass. Organic tracers of primary biological aerosol particles (PBAPs) showed distinct diurnal variations with a maximum around noontime, also indicating that higher temperature and light intensity induce emissions of PBAPs. However, their contribution to the submicrometer WSOC mass was likely insignificant. During the day, the concentrations of 3-methyl-1,2,3-butanetricarboxylic acid (3-MBTCA) showed a strong dependence on temperature, and the ratios of WSOC to particle volume concentration increased with an increase in the concentration ratios of 3-MBTCA to pinonic acid (PA). This result supports a previous proposal that the 3-MBTCA/PA ratios in submicrometer particles can be a useful tracer for chemical aging of biogenic secondary organic aerosol from forest vegetation.

  4. Chemical characteristics of water-soluble organic compounds (WSOC) in PM2.5 in Beijing, China: 2011-2012

    Science.gov (United States)

    Xiang, Ping; Zhou, Xueming; Duan, Jinchun; Tan, Jihua; He, Kebin; Yuan, Cheng; Ma, Yongliang; Zhang, Yuanxun

    2017-01-01

    PM2.5 filter sampling was conducted on a daily basis for one year from 2011 to 2012 at an urban site in Beijing. One-third of the samples were subjected to chemical analysis, including water-soluble inorganic ions, organic carbon (OC), elemental carbon (EC) and water-soluble organic carbon (WSOC). The results show that OM (Organic Matter = OC × 1.6; average 50.8% of PM2.5) was the most abundant species, followed by SNA (SO42 - + NO3- + NH4+; average 35%); however, SNA contributed more to PM2.5 in summer and OM contributed more in other seasons. The concentrations of nitrate were higher in summer and autumn than that in winter, suggesting that nitrate had formed in acidic and ammonium-poor environments in summer. WSOC accounted for 26.6% of OC and 8.1% of PM2.5 and exhibited distinct seasonal variations: the lowest concentration occurred in spring (3.90 ± 1.78 μg/m3) and the highest in autumn (5.82 ± 3.73 μg/m3). The higher WSOC/OC ratio in summer suggests that OC was more aged, oxidized and hygroscopic during this season. The seasonal trend of SOC (Secondary Organic Carbon) was the opposite of WSOC/OC, which may indicate that the OC/EC minimum ratio method was not suitable for estimating SOC in this study. Correlations between WSOC and K+, EC and inorganic ions indicated that WSOC was dominated by secondary formation, except that biomass burning was an important source in autumn. Aqueous chemical processes may play an important role in the formation of WSOC in winter. Meteorological conditions had an important influence on WSOC: positive correlations were observed between WSOC and relative humidity, but there was a negative correlation when humidity was higher than 80% in summer.

  5. Acid-base properties of water-soluble organic matter of forest soils, studied by the pK-spectroscopy method.

    Science.gov (United States)

    Shamrikova, E V; Ryazanov, M A; Vanchikova, E V

    2006-11-01

    Using the potentiometric titration and pK spectroscopy method, acid-base properties of water-soluble organic matter of forest soils have been studied. Five acidic classes composed of different substances with pK(a) values around 3.6; 4.8; 6.7; 8.7 and 9.7 have been identified. Testing the properties of soluble soil fraction, it is to be taken into account that when it is isolated from non-soluble soil matter, some water-soluble substances remain in soil and do not pass into the solution. Most firmly adsorbed in soil are water-soluble components with pK(a) 9.6-9.8.

  6. Impact of tree cutting on water-soluble organic compounds in podzolic soils of the European North-East

    Science.gov (United States)

    Lapteva, Elena; Bondarenko, Natalia; Shamrikova, Elena; Kubik, Olesya; Punegov, Vasili

    2016-04-01

    Water-soluble organic compounds (WOCs) and their single components, i.e. low-molecular organic acids, alcohols, and carbohydrates, attain a great deal of attention among soil scientists. WOCs are an important component of soil organic matter (SOM) and form as a results of different biological and chemical processes in soils. These processes are mainly responsible for formation and development of soils in aboveground ecosystems. The purpose of the work was identifying qualitative and quantitative composition of low-molecular organic substances which form in podzolic loamy soils against natural reforestation after spruce forest cutting. The studies were conducted on the territory of the European North-East of Russia, in the middle taiga subzone (Komi Republic, Ust-Kulom region). The study materials were soil of undisturbed bilberry spruce forest (Sample Plot 1 (SP1)) and soils of different-aged tree stands where cutting activities took place in winter 2001/2002 (SP2) and 1969/1970 (SP3). Description of soils and vegetation cover on the plots is given in [1]. Low-molecular organic compounds in soil water extracts were identified by the method of gas chromatography mass-spectrometry [2, 3]. Finally, reforestationafterspruceforestcutting was found to be accompanied by different changes in soil chemical composition. In contrast with soils under undisturbed spruce forest, organic soil horizons under different-aged cuts decreased in organic carbon reserves and production of low-molecular organic compounds, changed in soil acidity. Within the soil series of SP1→SP2→SP3, the highest content of WOCs was identified for undisturbed spruce forest (738 mg kg-1 soil). In soils of coniferous-deciduous forests on SP1 and SP3, WOC content was 294 and 441 mg kg-1 soil, correspondingly. Soils at cuts decreased in concentration of any water-soluble low-molecular SOM components as low-molecular acids, alcohols, and carbohydrates. Structure of low-molecular WOCs in the study podzolic

  7. Chemical characteristics and light-absorbing property of water-soluble organic carbon in Beijing: Biomass burning contributions

    Science.gov (United States)

    Yan, Caiqing; Zheng, Mei; Sullivan, Amy P.; Bosch, Carme; Desyaterik, Yury; Andersson, August; Li, Xiaoying; Guo, Xiaoshuang; Zhou, Tian; Gustafsson, Örjan; Collett, Jeffrey L.

    2015-11-01

    Emissions from biomass burning contribute significantly to water-soluble organic carbon (WSOC) and light-absorbing organic carbon (brown carbon). Ambient atmospheric samples were collected at an urban site in Beijing during winter and summer, along with source samples from residential crop straw burning. Carbonaceous aerosol species, including organic carbon (OC), elemental carbon (EC), WSOC and multiple saccharides as well as water-soluble potassium (K+) in PM2.5 (fine particulate matter with size less than 2.5 μm) were measured. Chemical signatures of atmospheric aerosols in Beijing during winter and summer days with significant biomass burning influence were identified. Meanwhile, light absorption by WSOC was measured and quantitatively compared to EC at ground level. The results from this study indicated that levoglucosan exhibited consistently high concentrations (209 ± 145 ng m-3) in winter. Ratios of levoglucosan/mannosan (L/M) and levoglucosan/galacosan (L/G) indicated that residential biofuel use is an important source of biomass burning aerosol in winter in Beijing. Light absorption coefficient per unit ambient WSOC mass calculated at 365 nm is approximately 1.54 ± 0.16 m2 g-1 in winter and 0.73 ± 0.15 m2 g-1 in summer. Biomass burning derived WSOC accounted for 23 ± 7% and 16 ± 7% of total WSOC mass, and contributed to 17 ± 4% and 19 ± 5% of total WSOC light absorption in winter and summer, respectively. It is noteworthy that, up to 30% of total WSOC light absorption was attributed to biomass burning in significant biomass-burning-impacted summer day. Near-surface light absorption (over the range 300-400 nm) by WSOC was about ∼40% of that by EC in winter and ∼25% in summer.

  8. Hygroscopic Properties of Internally Mixed Particles Composed of NaCl and Water-Soluble Organic Acids

    Energy Technology Data Exchange (ETDEWEB)

    Ghorai, Suman; Wang, Bingbing; Tivanski, Alexei V.; Laskin, Alexander

    2014-02-18

    Atmospheric aging of naturally emitted marine aerosol often leads to formation of internally mixed particles composed of sea salts and water soluble organic compounds of anthropogenic origin. Mixing of sea salt and organic components has profound effects on the evolving chemical composition and hygroscopic properties of the resulted particles, which are poorly understood. Here, we have studied chemical composition and hygroscopic properties of laboratory generated NaCl particles mixed with malonic acid (MA) and glutaric acid (GA) at different molar ratios using micro-FTIR spectroscopy and X-ray elemental microanalysis.Hygroscopic properties of inte rnally mixed NaCl and organic acid particles were distinctly different from pure components and varied significantly with the type and amount of organic compound present. Experimental results were in a good agreement with the AIM modeling calculations of gas/liquid/solid partitioning in studied systems. X-ray elemental microanalysis of particles showed that Cl/Na ratio decreased with increasing organic acid component in the particles with MA yielding lower ratios relative to GA. We attribute the depletion of chloride to the formation of Na-malonate and Na-glutarate salts resulted by HCl evaporation from dehydrating particles.

  9. Water-soluble Organic Components in Aerosols Associated with Savanna Fires in Southern Africa: Identification, Evolution and Distribution

    Science.gov (United States)

    Gao, Song; Hegg, Dean A.; Hobbs, Peter V.; Kirchstetter, Thomas W.; Magi, Brian I.; Sadilek, Martin

    2003-01-01

    During the SAFARI 2000 field campaign, both smoke aerosols from savanna fires and haze aerosols in the boundary layer and in the free troposphere were collected from an aircraft in southern Africa. These aerosol samples were analyzed for their water-soluble chemical components, particularly the organic species. A novel technique, electrospray ionization-ion trap mass spectrometry, was used concurrently with an ion chromatography system to analyze for carbohydrate species. Seven carbohydrates, seven organic acids, five metallic elements, and three inorganic anions were identified and quantified. On the average, these 22 species comprised 36% and 27% of the total aerosol mass in haze and smoke aerosols, respectively. For the smoke aerosols, levoglucosan was the most abundant carbohydrate species, while gluconic acid was tentatively identified as the most abundant organic acid. The mass abundance and possible source of each class of identified species are discussed, along with their possible formation pathways. The combustion phase of a fire had an impact on the chemical composition of the emitted aerosols. Secondary formation of sulfate, nitrate, levoglucosan, and several organic acids occurred during the initial aging of smoke aerosols. It is likely that under certain conditions, some carbohydrate species in smoke aerosols, such as levoglucosan, were converted to organic acids during upward transport.

  10. Reactions between water-soluble organic acids and nitrates in atmospheric aerosols: Recycling of nitric acid and formation of organic salts

    Science.gov (United States)

    Wang, Bingbing; Laskin, Alexander

    2014-03-01

    Atmospheric particles often include a complex mixture of nitrate and secondary organic materials accumulated within the same individual particles. Nitrate as an important inorganic component can be chemically formed in the atmosphere. For instance, formation of sodium nitrate (NaNO3) and calcium nitrate (Ca(NO3)2) occurs when nitrogen oxides and nitric acid (HNO3) react with sea salt and calcite, respectively. Organic acids contribute a significant fraction of photochemically formed secondary organics that can condense on the preexisting nitrate-containing particles. Here we present a systematic microanalysis study on chemical composition of laboratory-generated particles composed of water-soluble organic acids and nitrates (i.e., NaNO3 and Ca(NO3)2) using computer-controlled scanning electron microscopy with energy-dispersive X-ray microanalysis and Fourier transform infrared microspectroscopy. The results show that water-soluble organic acids can react with nitrates and release gaseous HNO3 during the dehydration process. These reactions are attributed to acid displacement of nitrate with weak organic acids driven by the evaporation of HNO3 into gas phase because of its relatively high volatility. The reactions result in significant nitrate depletion and formation of organic salts in mixed organic acids/nitrate particles that, in turn, may affect their physical and chemical properties relevant to atmospheric environment and climate. Airborne nitrate concentrations are estimated by thermodynamic calculations corresponding to various nitrate depletions in selected organic acids of atmospheric relevance. The results indicate a potential mechanism of HNO3 recycling that may further affect concentrations of gas and condensed phase species in the atmosphere and the heterogeneous reaction chemistry between them.

  11. Advanced oxidation of water soluble organics (WSO) from near- and supercritical hydrothermal liquefaction (HTL) of biomass

    DEFF Research Database (Denmark)

    Arturi, Katarzyna Ratajczyk; Nielsen, Rudi Pankratz; Muff, Jens

    . Numerous applications of HTL for conversion of wastes with high water contents (sewage, manure, or lipid-rich algae cultivated on wastewater nutrients) to high-value drop-in biofuels have been studied. The main bulk of the research focuses on the optimization of the biocrude production, while management......The challenges involving procuring the necessary water and energy resources for the future generations are partially entwined. An example of the close water-energy dependency is the production of drop-in biofuels by hydrothermal liquefaction (HTL) of biomass in near- and supercritical water...

  12. Effects of aerosol collection and extraction procedures on the optical properties of water-soluble organic compounds

    Science.gov (United States)

    Mladenov, N.; Alados-Arboledas, L.; Olmo Reyes, F. J.; Reche, I.

    2009-12-01

    Water-soluble organic compounds (WSOC) are routinely collected using active and passive aerosol samplers and, after extraction in water, analyzed using UV-vis absorbance and fluorescence techniques. These analyses provide important information regarding the chemical character and sources of aerosols worldwide. To evaluate the effects of various aerosol collection and processing methods on the optical properties of WSOC, two-dimensional absorption spectra from 200 to 900 nm and three-dimensional fluorescence excitation-emission spectra (EEMs) from 240 to 450 nm excitation and 300 to 560 nm emission were analyzed in samples obtained simultaneously with different procedures. Samples included: milli-Q purified water passed through 140 mm diameter glass fiber and quartz fiber filters used in high volume PM10 aerosol samplers, 47 mm glass fiber filters used for organic matter analyses, and mixed cellulose 0.2 micron and 0.015 micron filters used for bacterial and viral filtration, respectively; milli-Q purified water rinsed in plastic buckets used for passive wet and dry deposition collection; and WSOC samples extracted from filters by soaking, sonication, and agitation. Parallel factor analysis (PARAFAC) modeling of WSOC was performed to quantify the influence of various collection and extraction procedures on fluorescence signatures. All filters examined were found to leach some amount of fluorescent compounds (Figure 1). Mixed cellulose filters, especially those with small pore size, leached substantially more amino acid-like and humic-like material than other filters, whereas leaching from quartz fiber filters used for high volume aerosol collection was minimal (Figure 1). Fluorescence intensities of filter leachates decreased with increased rinsing of filters, indicating that rinsing with purified water prior to filtration is advisable, even for pre-combusted filters. Dissolved organic carbon concentrations of WSOC extracted from filters by sonication, agitation

  13. Insights Into Water-Soluble Organic Aerosol Sources From Carbon-13 Ratios of Size Exclusion Chromatography Fractions

    Science.gov (United States)

    Ruehl, C. R.; Chuang, P. Y.; McCarthy, M. D.

    2008-12-01

    Many sources of organic aerosols have been identified and quantified, and much of this work has used individual (mosty water-insoluble) compounds as tracers of primary sources. However, most organic aerosol cannot be molecularly characterized, and the water-soluble organic carbon (WSOC) in many aerosols is thought to originate from gaseous precursors (i.e., it is secondary in nature). It can therefore be difficult to infer aerosol sources, particularly of background (i.e., aged) aerosols, and of the relatively high-MW component of aerosols. The stable isotope ratios (δ13C) of organic aerosols have been used to distinguish between sources, with lighter values (-30‰ to -25‰) interpreted as having originated from fossil fuel combustion and C4 biogenic emission, and heavier values (-25‰ to - 20‰) indicating a marine or C3 biogenic source. Most published measurements were of either total suspended particulates or PM2.5, however, and it is unknown to what extent these fractions differ from submicron WSOC. We report δ13C for submicron WSOC collected at a variety of sites, ranging from marine to polluted to background continental. Bulk marine organic δ13C ranged from -30.4 to - 27.6‰, slightly lighter than previously published results. This could be due to the elimination of supermicron cellular material or other biogenic primary emissions from the sample. Continental WSOC δ13C ranged from -19.1 to -29.8‰, with heavier values (-19.8 ± 1.0‰) in Oklahoma and lighter values at Great Smoky Mountain National Park in Tennessee (-25.8 ± 2.6‰) and Illinois (-24.5 ± 1.0‰). This likely results from the greater proportional of C3 plant material in the Oklahoma samples. In addition to bulk samples, we used size exclusion chromatography (SEC) to report δ13C of organic aerosols as a function of hydrodynamic diameter. Variability and magnitude of hydrodynamic diameter was greatest at low SEC pH, indicative of the acidic character of submicron WSOC. Tennessee

  14. Size distributions of hydrophilic and hydrophobic fractions of water-soluble organic carbon in an urban atmosphere in Hong Kong

    Science.gov (United States)

    Wang, Nijing; Yu, Jian Zhen

    2017-10-01

    Water-soluble organic carbon (WSOC) is a significant part of ambient aerosol and plays an active role in contributing to aerosol's effect on visibility degradation and radiation budget through its interactions with atmospheric water. Size-segregated aerosol samples in the range of 0.056-18 μm were collected using a ten-stage impactor sampler at an urban site in Hong Kong over one-year period. The WSOC samples were separated into hydrophilic (termed WSOC_h) and hydrophobic fractions (i.e., the humic-like substances (HULIS) fraction) through solid-phase extraction procedure. Carbon in HULIS accounted for 40 ± 14% of WSOC. The size distribution of HULIS was consistently characterized in all seasons with a dominant droplet mode (46-71%) and minor condensation (9.0-18%) and coarse modes (20-35%). The droplet mode had a mass median aerodynamic diameter in the range of 0.7-0.8 μm. This size mode showed the largest seasonal variation in abundance, lowest in the summer (0.41 μg/m3) and highest in the winter (3.3 μg/m3). WSOC_h also had a dominant droplet mode, but was more evenly distributed among different size modes. Inter-species correlations within the same size mode suggest that the condensation-mode HULIS was partly associated with combustion sources and the droplet-mode was strongly associated with secondary sulfate formation and biomass burning particle aging processes. There is evidence to suggest that the coarse-mode HULIS largely originated from coagulation of condensation-mode HULIS with coarse soil/sea salt particles. The formation process and possible sources of WSOC_h was more complicated and multiple than HULIS and need further investigation. Our measurements indicate that WSOC components contributed a dominant fraction of water-soluble aerosol mass in particles smaller than 0.32 μm while roughly 20-30% in the larger particles.

  15. Organic/Organic Cathode Bi-Interlayers Based on a Water-Soluble Nonconjugated Polymer and an Alcohol-Soluble Conjugated Polymer for High Efficiency Inverted Polymer Solar Cells.

    Science.gov (United States)

    Cai, Ping; Jia, Hongfu; Chen, Junwu; Cao, Yong

    2015-12-23

    In this work, organic/organic cathode bi-interlayers based on a water-soluble nonconjugated polymer PDMC and an alcohol-soluble conjugated polymer PFN were introduced to modifythe ITO cathode for inverted polymer solar cells (PSCs). PDMC with ultrahigh molecular weight would facilitate to form strong adsorption on the ITO substrate, while PFN could provide both compatibly interfacial contacts with the bottom PDMC interlayer and the upper organic active layer. The PDMC/PFN cathode bi-interlayers could decrease work function of the ITO cathode to 3.8 eV, supplying the most efficient ohmic interfacial contacts for electron collection at the ITO cathode. With a PTB7:PC71BM blend as the active layer, inverted PSCs based on the PDMC/PFN cathode bi-interlayers showed the highest efficiency of 9.01% and the best air stability within 60 days if compared with devices based on a separate PDMC or PFN cathode interlayer. The results suggest that the PDMC/PFN cathode bi-interlayers would play an important role to achieve high efficiency and stable inverted PSCs.

  16. Use of levoglucosan, potassium, and water-soluble organic carbon to characterize the origins of biomass-burning aerosols

    Science.gov (United States)

    Urban, Roberta Cerasi; Lima-Souza, Michele; Caetano-Silva, Letícia; Queiroz, Maria Eugênia C.; Nogueira, Raquel F. P.; Allen, Andrew G.; Cardoso, Arnaldo A.; Held, Gerhard; Campos, Maria Lucia A. M.

    2012-12-01

    Three chemical species related to biomass burning, levoglucosan, potassium and water-soluble organic carbon (WSOC), were measured in aerosol samples collected in a rural area on the outskirts of the municipality of Ourinhos (São Paulo State, Brazil). This region is representative of the rural interior of the State, where the economy is based on agro-industrial production, and the most important crop is sugar cane. The manual harvesting process requires that the cane be first burned to remove excess foliage, leading to large emissions of particulate materials to the atmosphere. Most of the levoglucosan (68-89%) was present in small particles (fertilizers. When only the fine particles (<1.5 μm; typical of biomass burning) were considered, the linear coefficient increased to 0.91 (n = 9). In this case, the average levoglucosan/K+ ratio was 0.24, which may be typical of biomass burning in the study region. This ratio is about 5 times lower than that previously found for Amazon aerosol collected during the day, when flaming combustion prevails. This suggests that the levoglucosan/K+ ratio may be especially helpful for characterization of the type of vegetation burned (such as crops or forest), when biomass-burning is the dominant source of potassium. The relatively high concentrations of WSOC (and inorganic ions) suggest an important influence on the formation of cloud condensation nuclei, which is likely to affect cloud formation and precipitation patterns.

  17. Water-soluble organic compounds (WSOCs) in PM{sub 2.5} and PM{sub 10} at a subtropical site of India

    Energy Technology Data Exchange (ETDEWEB)

    Khare, Puja; Baruah, B.P.; Rao, P.G. (North East Inst. of Science and Technology (NEIST), Council of Scientific and Industrial Research (CSIR), Jorhat (India)), e-mail: kharepuja@rediffmail.com

    2011-11-15

    PM{sub 2.5} and PM{sub 10} samples collected at a suburban site of northeastern part of India have been analysed for particle mass, total carbon (TC), water-soluble total carbon (WSTC), water-soluble organic carbon (WSOC), water-soluble inorganic carbon (WSIC), organic acids (formic, acetic, proponoic and oxalic acids) along with inorganic ions (NO{sub 3}{sup -}, SO{sub 4}{sup 2-} and NH{sup 4-}). Most of the PM{sub 10} consists of PM{sub 2.5} in the present site (ratio 54-74%). WSTC content in PM{sub 2.5} and PM{sub 10} corresponds to 21% and 16%, respectively, of their total particle masses. Thermo gravimetric analysis showed the presence of humic-like substances (16-22%) in particulate samples. Domestic heating and stagnant atmospheric conditions enhanced the levels of these carbonaceous compounds in PM{sub 2.5} and PM{sub 10} in winter. Qualitative estimation of various functional groups by Fourier transform infrared (FTIR) analysis indicates the presence of carboxylic, hydroxyl, aliphatic and aromatic hydrocarbons, amines and sulphurous compounds in these aerosols. Absolute principal component analysis applied on the aerosol data resolves four factors. These factors are associated with carbonaceous aerosols released from combustion of coal and wood, secondary inorganic and organic aerosols and water-soluble inorganic fraction

  18. Molecular characterization of water soluble organic nitrogen in marine rainwater by ultra-high resolution electrospray ionization mass spectrometry

    Science.gov (United States)

    Altieri, K. E.; Hastings, M. G.; Peters, A. J.; Sigman, D. M.

    2012-04-01

    Atmospheric water soluble organic nitrogen (WSON) is a subset of the complex organic matter in aerosols and rainwater, which impacts cloud condensation processes and aerosol chemical and optical properties and may play a significant role in the biogeochemical cycle of N. However, its sources, composition, connections to inorganic N, and variability are largely unknown. Rainwater samples were collected on the island of Bermuda (32.27° N, 64.87° W), which experiences both anthropogenic and marine influenced air masses. Samples were analyzed by ultra-high resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry to chemically characterize the WSON. Elemental compositions of 2281 N containing compounds were determined over the mass range m/z+ 50 to 500. The five compound classes with the largest number of elemental formulas identified, in order from the highest number of formulas to the lowest, contained carbon, hydrogen, oxygen, and nitrogen (CHON+), CHON compounds that contained sulfur (CHONS+), CHON compounds that contained phosphorus (CHONP+), CHON compounds that contained both sulfur and phosphorus (CHONSP+), and compounds that contained only carbon, hydrogen, and nitrogen (CHN+). Compared to rainwater collected in the continental USA, average O:C ratios of all N containing compound classes were lower in the marine samples whereas double bond equivalent values were higher, suggesting a reduced role of secondary formation mechanisms. Despite their prevalence in continental rainwater, no organonitrates or nitrooxy-organosulfates were detected, but there was an increased presence of organic S and organic P containing compounds in the marine rainwater. Cluster analysis showed a clear chemical distinction between samples collected during the cold season (October to March) which have anthropogenic air mass origins and samples collected during the warm season (April to September) with remote marine air mass origins. This, in

  19. Molecular characterization of water soluble organic nitrogen in marine rainwater by ultra-high resolution electrospray ionization mass spectrometry

    Directory of Open Access Journals (Sweden)

    K. E. Altieri

    2011-11-01

    Full Text Available Atmospheric water soluble organic nitrogen (WSON is a subset of the complex organic matter in aerosols and rainwater, which impacts cloud condensation processes and aerosol chemical and optical properties, and may play a significant role in the biogeochemical cycle of N. However, its sources, composition, connections to inorganic N, and variability are largely unknown. Rainwater samples were collected on the island of Bermuda (32.27° N, 64.87° W, which experiences both anthropogenic and marine influenced air masses. Samples were analyzed by ultra-high resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry to chemically characterize the WSON. Elemental compositions of 2455 N containing compounds were determined over the mass range m/z+ 50 to 500. The five compound classes with the largest number of elemental formulas identified, in order from the highest number of formulas to the lowest, contained carbon, hydrogen, oxygen, and nitrogen (CHON+, CHON compounds that contained sulfur (CHONS+, CHON compounds that contained phosphorous (CHONP+, CHON compounds that contained both sulfur and phosphorous (CHONSP+, and compounds that contained only carbon, hydrogen, and nitrogen (CHN+. No organonitrates or nitrooxy-organosulfates were detected, but there was an increased presence of organic S and organic P containing compounds in the marine rainwater. Compared to rainwater collected in the continental USA, average O:C ratios of all N containing compound classes were lower in the marine samples whereas double bond equivalent values were higher, suggesting a reduced role of secondary formation mechanisms. Cluster analysis showed a clear chemical distinction between samples collected during the cold season (October to March which have anthropogenic air mass origins and samples collected during the warm season (April to September with remote marine air mass origins. This, in conjunction with patterns

  20. Water-soluble organic carbon (WSOC) and its temperature-resolved carbon fractions in atmospheric aerosols in Beijing

    Science.gov (United States)

    Tang, Xiong; Zhang, Xiaoshan; Wang, Zhangwei; Ci, Zhijia

    2016-11-01

    Investigation of temperature-resolved carbon fractions of water-soluble organic carbon (WSOC) can improve our understanding of the chemical properties, formation processes and sources of WSOC in aerosols. We developed a method that can examine different temperature-resolved carbon fractions of WSOC and used this method to characterize aerosol samples (n = 102) collected from an urban site in Beijing in 2010-2011. The aerosol composition data including inorganic ions, elements and temperature-resolved carbon fractions of WSOC were used as input of positive matrix factorization (PMF) model to investigate the sources of WSOC. The results showed that the mean concentrations of WSOC were 10.2 μg m- 3 with increased values in winter and decreased values in summer, while WSOC/OC ratios (mean: 51.7%) were higher in spring and summer than in fall and winter. The sampling artifacts of WSOC (18.2%) were higher than those of OC (13.4%). Though WSOC was significantly influenced by biomass burning in spring and winter, the strong correlations between WSOC and other secondary components suggested that WSOC was secondary in nature. Results of temperature-resolved carbon fractions of OC and WSOC showed that WSOC/OC ratios for different carbon fractions had the highest value of 0.92 and lowest value of 0.30. PMF analysis identified four factors, three of which were associated with three organic polar compounds groups (low, medium, and high molecular weight compounds) based on their thermal evolution features, and one of which was attributed to inorganic secondary formation processes. Annually, the contributions of four factors were 20.5%, 46.2%, 12.4% and 20.9%, respectively.

  1. Source and formation characteristics of water-soluble organic carbon in the anthropogenic-influenced Yellow River Delta, North China

    Science.gov (United States)

    Zong, Zheng; Wang, Xiaoping; Tian, Chongguo; Chen, Yingjun; Han, Guangxuan; Li, Jun; Zhang, Gan

    2016-11-01

    High intensity measurement of water-soluble organic carbon (WSOC) in PM2.5 was conducted at Yellow River Delta (YRD), North China, from 29 May to 1 July 2013. On average, concentration of WSOC was 3.09 ± 2.45 μg m-3 with a relative high WSOC/OC mass ratio (56.39%), implying organic aerosol in YRD was aged. WSOC concentration in day time was obviously higher than night time, which was mainly attributed to the decrease of source emission. While secondary formation of WSOC was strengthen in night time under stable atmospheric condition. The significant relationship between WSOC and SOC indicated WSOC was mostly secondary formation product. Furthermore, WSOC formation was enhanced at high level of acidity, providing direct evidence for the great impact of aerosol acidity on WSOC formation. WSOC correlated well with nss-K+, nss-SO42-, NO3-, Zn and Cu, suggesting a major part of observed WSOC and/or its precursors was of biomass burning and fossil fuel combustion origin. Moreover, vehicle emission may make great proportion in the fossil fuel combustion. Conditional probability function (CPF) analysis showed significant contribution of WSOC occurred when wind came from southerly (135-195°) and northwesterly (285, 345°) directions. In order to further confirm the source of WSOC, two merged samples representing the two directions were selected for radiocarbon (14C) measurement. 14C results demonstrated the average value of ƒc(WSOC) was 0.57 ± 0.01, implying biogenic and biomass burning (B&B) was the major source of WSOC. However, fossil fuel contribution could not be ignored in North China in summer.

  2. Investigation of molar volume and surfactant characteristics of water-soluble organic compounds in biomass burning aerosol

    Directory of Open Access Journals (Sweden)

    A. Asa-Awuku

    2008-02-01

    Full Text Available In this study, we characterize the CCN activity of the water-soluble organics in biomass burning aerosol. The aerosol after collection upon filters is dissolved in water using sonication. Hydrophobic and hydrophilic components are fractionated from a portion of the original sample using solid phase extraction, and subsequently desalted. The surface tension and CCN activity of these different samples are measured with a KSV CAM 200 goniometer and a DMT Streamwise Thermal Gradient CCN Counter, respectively. The measurements show that the strongest surfactants are isolated in the hydrophobic fraction, while the hydrophilics exhibit negligible surface tension depression. The presence of salts (primarily (NH42SO4 in the hydrophobic fraction substantially enhances surface tension depression; their synergistic effects considerably enhance CCN activity, exceeding that of pure (NH42SO4. From our analysis, average thermodynamic properties (i.e, molar volume are determined for samples using our newly developed Köhler Theory Analysis (KTA method. The molar mass of the hydrophilic and hydrophobic aerosol components is estimated to be 87±26 g mol−1 and 780±231 g mol−1, respectively. KTA also suggests that the relative proportion (in moles of hydrophobic to hydrophilic compounds in the original sample to be 1:3. For the first time, KTA is applied to an aerosol with this level of complexity and displays its potential for providing physically-based constraints for GCM parameterizations of the aerosol indirect effect.

  3. The influence of natural organic matter on the speciation and solubility of Eu in Boom Clay pore water

    Energy Technology Data Exchange (ETDEWEB)

    Liu, D.J. [Belgian Nuclear Research Centre, SCK-CEN, Mol (Belgium); China Inst. of Atomic Energy, BJ (China); Bruggeman, C.; Maes, N. [Belgian Nuclear Research Centre, SCK-CEN, Mol (Belgium)

    2008-07-01

    The influence of natural organic matter (NOM) on the speciation and solubility of europium (Eu) was studied under geochemical conditions representative for the Boom Clay. Different organic matter types were used, and analysis was performed both after 0.45 {mu}m microfiltration and after 30 000 MWCO ultrafiltration to distinguish between larger colloids (assumed to be immobile under in situ conditions) and small dissolved species. Equilibrium was approached from undersaturation starting from synthesised Eu(OH){sub 3}(s), which, during the experiment, transformed into EuOHCO{sub 3}(s), in agreement with thermodynamic considerations. In the absence of NOM, the Eu solution concentrations after 0.45 {mu}m filtration exceeded the thermodynamic solubility of EuOHCO{sub 3}(s) by several orders of magnitude, indicating the presence of inorganic Eu colloids. In the presence of NOM, the Eu solubility increased with increasing NOM concentration as was expected, but, surprisingly, was dependent on the operational size cut-off: at an identical NOM concentration in the filtrate, the Eu solution concentration after 0.45 {mu}m filtration was consistently higher compared to the Eu concentration after 30 000 MWCO filtration. This latter observation necessitates detailed knowledge concerning the pore size cut-off of Boom Clay under in situ conditions in order to use the correct Eu-NOM complexation constant and/or maximum solubility in transport calculations. At higher NOM concentrations (TOC > 30 mg/L) the Eu solubility after 0.45 {mu}m filtration was seemingly independent of the NOM concentration. In contrast, after 30 000 MWCO ultrafiltration, the Eu solution increased linearly with increasing DOC, from the expected thermodynamic solubility ({proportional_to} 5 x 10{sup -7} mol L{sup -1}) at 0 mg L{sup -1} DOC to {proportional_to} 3 x 10{sup -5} mol L{sup -1} at 80 mg L{sup -1} DOC. All of the data sets were modelled using the Nagra/PSI database [1] for solubility, hydrolysis and

  4. High-field FT-ICR-MS and aromaticity equivalent approach for structural identification of water soluble organic compounds (WSOC)

    Science.gov (United States)

    Harir, Mourad; Yassine, Mahmoud M.; Dabek-Zlotorzynska, Ewa; Hertkorn, Norbert; Schmitt-Kopplin, Philippe

    2015-04-01

    Organic aerosol (OA) makes up a large and often dominant fraction, (20 to 90%) of the submicron atmospheric particulate mass, and its effects are becoming increasingly important in determining climatic and health effects of atmospheric aerosols. Despite the abundance of OA, our understanding of the sources, formation processes and atmospheric properties of OA is limited. Atmospheric OA has both primary (directly emitted) and secondary (formed in the atmosphere from precursor gases) sources, which can be natural (e.g. vegetation) and/or anthropogenic (e.g. fossil-based vehicle exhaust or biomass burning). A significant fraction of OA contains as much as 20-70% of water soluble organic compounds (WSOC). The WSOC fraction is a very complex mixture of low volatility, polyfunctional aliphatic and aromatic compounds containing carboxyl, alcohol, carbonyl, sulfo, nitro, and other functionalities. This high degree of chemical complexity of atmospheric organics has inspired a number of sophisticated approaches that are capable of identifying and detecting a variety of different analytes in OA. Accordingly, one of the most challenging areas of atmospheric particulate matter (PM) analysis is to comprehend the molecular complexity of the OA, especially WSOC fraction, a significant component of atmospheric fine PM (PM2.5). The sources of WSOC are not well understood, especially the relative contributions of primary vs. secondary organic aerosol. Therefore, the molecular characterization of WSOC is important because it allows gaining insight into aerosol sources and underlying mechanisms of secondary organic aerosols (SOA) formation and transformation. In this abstract, molecular characterization of WSOC was achieved using high-field mass spectrometry FT-ICR-MS and aromaticity equivalent approach. Aromaticity equivalent (Xc), defined recently as a new parameter calculated from the assigned molecular formulas (complementary to the aromaticity index [1]), is introduced to improve

  5. Abundance and sources of hydrophilic and hydrophobic water-soluble organic carbon at an urban site in Korea in summer.

    Science.gov (United States)

    Park, Seung Shik; Kim, Ja-Hyun; Jeong, Jae-Uk

    2012-01-01

    In this study, the characteristics of total water-soluble organic carbon (WSOC) and isolated WSOC fractions were examined to gain a better understanding of the pathway of organic aerosol production. 24 h PM(2.5) samples were collected during the summer (July 28-August 28, 2009) at an urban site in Korea. A glass column filled with XAD7HP resin was used to separate the filtered extracts into hydrophilic (WSOC(HPI)) and hydrophobic (WSOC(HPO)) fractions. The origins of air mass pathways arriving at the sampling site were mostly classified into three types, those originating over the East Sea of Korea that passed over the eastern inland urban and industrial regions (type I); those from the marine (western/southwestern/southern marine) and passed over the national industrial complex regions (type II); and those from northeastern China that passed through North Korea and metropolitan areas of South Korea (type III). Measurements showed an increase in the average WSOC fraction of total OC from the type II to III air mass (53 to 64%) periods. Also, higher SO(4)(2-)/SO(x) (=SO(2) + SO(4)(2-)) was observed in the type III air mass (0.70) than those in the types I (0.49) and II (0.43). According to the average values of WSOC/OC and SO(4)(2-)/SO(x), measurements suggest that the aerosols collected during the type III air mass period were more aged or photo-chemically processed than those during the types I and II air mass periods. The relationship between the SO(4)(2-)/SO(x) and WSOC/OC (R(2) = 0.64) suggests that a significant fraction of the observed WSOC at the site could be formed by an oxidation process similar to SO(4)(2-) aerosols, probably the oxidation process using OH radicals, or in-cloud processing. The photochemical production of WSOC(HPO) was also observed to significantly contribute to the total OC.

  6. [Characteristics of water-soluble organic nitrogen of PM2.5 in Xi'an during wintertime non-haze and haze periods].

    Science.gov (United States)

    Cheng, Yu-Ting; Wang, Ge-Hui; Sun, Tao; Cheng, Chun-Lei; Meng, Jing-Jing; Ren, Yan-Qin; Li, Jian-Jun

    2014-07-01

    High-volume PM2.5 samples were collected hourly from 4 December to 13 December 2012 at an urban site in Xi'an and analyzed for organic carbon (OC), elemental carbon (EC), water-soluble organic carbon (WSOC), water-soluble total nitrogen (WSTN), water-soluble organic nitrogen (WSON) and inorganic ions to investigate the sources and formation mechanism of WSON. The results showed that during the sampling period the averaged hourly concentration of WSON was (12 +/- 9.4) microg x m(-3) and maximized at 31 microg x m(-3), accounting for 47% +/- 9.8% of WSTN with NH4(+) -N and NO3(-) -N being 29% +/- 8.5% and 23% +/- 8.1%, respectively. WSON: WSOC (N: C) mass ratios ranged from 0.04 to 0.65 with an average of 0.31 +/- 0.13 during the observation period. WSON was (1.6 +/- 0.9) microg x m(-3), (6.5 +/- 3.9) microg x m(-3) and (23 +/- 4.7) microg x m(-3) in non-haze days (visibility > 10 km), light haze days (5 km haze days (visibility haze days to 0.3 +/- 0.1 on light haze days and 0.4 +/- 0.1 on heavy haze days, in consistence with the enhanced acidity of the fine particles. In addition, during the whole sampling period, WSON was strongly correlated with NH4(+), SO4(2-) and NO3(-) (R2 > 0.80), and negatively correlated with cation-anion equivalent ratio (R2 = 0.53). These phenomena can be mainly ascribed to a gas-particle conversion of gaseous water-soluble nitrogen-containing organic compounds like amines via acid-base reactions, which was sharply increased under the favorable meteorological conditions (e.g., low temperature and high humidity) during the heavy haze days.

  7. Water-soluble cavitands - synthesis, solubilities and binding properties

    NARCIS (Netherlands)

    Middel, Oskar; Verboom, Willem; Reinhoudt, David N.

    2002-01-01

    Water-soluble cavitand receptors have been obtained by the introduction of ionizable groups (5, 21-28, 39) and neutral hydrophilic tetraethylene glycol based dendritic wedges (19, 20). The synthesis of these cavitands and a study of their water solubilities and binding properties toward neutral orga

  8. Cloud condensation nuclei activation of limited solubility organic aerosol

    Science.gov (United States)

    Huff Hartz, Kara E.; Tischuk, Joshua E.; Chan, Man Nin; Chan, Chak K.; Donahue, Neil M.; Pandis, Spyros N.

    The cloud condensation nuclei (CCN) activation of 19 organic species with water solubilities ( Csat) ranging from 10 -4 to 10 2 g solute 100 g -1 H 2O was measured. The organic particles were generated by nebulization of an aqueous or an alcohol solution. Use of alcohols as solvents enables the measurement of low solubility, non-volatile organic CCN activity and reduces the likelihood of residual water in the aerosol. The activation diameter of organic species with very low solubility in water ( Csat<0.3 g 100 g -1 H 2O) is in agreement with Köhler theory using the bulk solubility (limited solubility case) of the organic in water. Many species, including 2-acetylbenzoic acid, aspartic acid, azelaic acid, glutamic acid, homophthalic acid, phthalic acid, cis-pinonic acid, and salicylic acid are highly CCN active in spite of their low solubility (0.3 g 100 g -1 H 2O< Csat<1 g 100 g -1 H 2O), and activate almost as if completely water soluble. The CCN activity of most species is reduced, if the particles are produced using non-aqueous solvents. The existence of the particles in a metastable state at low RH can explain the observed enhancement in CCN activity beyond the levels suggested by their solubility.

  9. Review of methods and measurements of selected hydrophobic organic contaminant aqueous solubilities, vapor pressures, and air-water partition coefficients

    Energy Technology Data Exchange (ETDEWEB)

    Bamford, H.A.; Baker, J.E.; Poster, D.L.

    1998-03-01

    Aqueous solubilities, vapor pressures, and Henry`s law constants for a wide range of organic contaminants of environmental interest are presented. Specifically, a discussion of methods used to measure these physical constants and resulting measurements are provided in an effort to examine the scope of physical constants reported in the scientific literature. Physical constants reviewed include those for 40 PAHs, 14 chlorinated aliphatics, 149 PCBs, 12 chlorinated benzenes, 16 dioxins, 63 furans, and 29 agrochemicals (a total of 323 compounds) and overall a total of 1,605 values are listed.

  10. Which Starch Fraction is Water-Soluble, Amylose or Amylopectin?

    Science.gov (United States)

    Green, Mark M.; And Others

    1975-01-01

    A survey of 22 popular organic chemistry textbooks showed that only four correctly stated that of the two components of starch, amylopectin is the water-soluble, and amylose is the water-insoluble. (MLH)

  11. Distinguishing molecular characteristics of aerosol water soluble organic matter from the 2011 trans-North Atlantic US GEOTRACES cruise

    Science.gov (United States)

    Wozniak, A. S.; Willoughby, A. S.; Gurganus, S. C.; Hatcher, P. G.

    2014-08-01

    The molecular characteristics of aerosol organic matter (OM) determines to a large extent its impacts on the atmospheric radiative budget and ecosystem function in terrestrial and aquatic environments, yet the OM molecular details of aerosols from different sources are not well established. Aerosol particulate samples with North American-influenced, North African-influenced, and marine (minimal recent continental influence) air mass back trajectories were collected as part of the 2011 trans-North Atlantic US GEOTRACES cruise and analyzed for their water soluble OM (WSOM) molecular characteristics using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Principal component analysis (PCA) separated the samples into five groups defined by distinct molecular formula characteristics. An abundance of nitrogen containing compounds with molecular formulas consistent with amino acid derivatives defined the two samples comprising the primary marine group (henceforth referred to as Primary Marine), which suggest a primary marine biological source to their WSOM in spite of their North American-influenced air mass trajectories. A second group of samples (aged marine, henceforth referred to as Aged Marine) with marine air mass trajectories was characterized by an abundance of low O / C (0.15-0.45) sulfur containing compounds consistent with organosulfate compounds formed via secondary aging reactions in the atmosphere. Several samples having North American-influenced air mass trajectories formed another group again characterized by organosulfate and nitrooxyorganosulfate type compounds with higher O / C ratios (0.5-1.0) than the Aged Marine samples reflecting the combustion influence from the North American continent. All the samples with North African-influenced air mass trajectories were grouped together in the PCA and were characterized by a lack of heteroatom (N, S, P) containing molecular formulas covering a wide O / C range (0

  12. Characteristics and seasonal variation of Carbonaceous and Water soluble organic Components in the aerosols over East India

    Directory of Open Access Journals (Sweden)

    Basant Shubhankar

    2016-03-01

    Full Text Available The present investigation intends to measurement of PM2.5 and PM10 samples from agricultural (AG and an Adityapur industrial (AI site of East India to better characterize the carbonecous and water-soluble organic carbon (WSOC. The current study aimed (a to determine variation ratio of OC/PM, EC/PM, WSOC/EC, OC/EC in the study area (b assess and quantity the Correlation between OC and EC, WSOC and OC, WSOC and PM, WSOC and EC of AG and AI site (c Analyse the abundance pattern, at AG site indicating dominant contribution from biomass burning sources (wood-fuel and agriculture waste and in AI site sharp contrast influenced by emissions from coal-fired industries. The OC10/EC10, OC2.5/EC2.5, OC10/PM10, OC2.5/PM2.5, EC10/PM10,EC2.5/PM2.5 ratios at the AI and AG sampling sites varied from (min-max (average are 2.8 – 8.3 (4.9, 4.2 - 7.6 (5.5, 0.17 -0.19 (0.17, 0.14 - 0.20 (0.17, 0.03 - 0.06 (0.04, 0.02 - 0.04 (0.03 and 3.3 - 8.3 (4.9, 3.03 - 8.8 (3.9, 0.62 - 0.98 (0.78, 0.09 - 0.12 (0.09, 0.07 - 0.23 (0.17, 0.01 - 0.04 (0.02 respectively. Total carbon (TC was calculated as OC+EC. The comprehensive data set on EC, OC and WSOC/OC ratios from Eastern India is crucial to systematise the baseline data for future predictions of carbonaceous aerosol studies for atmospheric scattering and absorption of solar radiation on a regional scale.

  13. Identification of water-soluble heavy crude oil organic-acids, bases, and neutrals by electrospray ionization and field desorption ionization fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Stanford, Lateefah A; Kim, Sunghwan; Klein, Geoffrey C; Smith, Donald F; Rodgers, Ryan P; Marshall, Alan G

    2007-04-15

    We identify water-soluble (23 degrees C) crude oil NSO nonvolatile acidic, basic, and neutral crude oil hydrocarbons by negative-ion ESI and continuous flow FD FT-ICR MS at an average mass resolving power, m/deltam50% = 550,000. Of the 7000+ singly charged acidic species identified in South American crude oil, surprisingly, many are water-soluble, and much more so in pure water than in seawater. The truncated m/z distributions for water-soluble components exhibit preferential molecular weight, size, and heteroatom class influences on hydrocarbon solubility. Acidic water-soluble heteroatomic classes detected at >1% relative abundance include O, O2, O3, O4, OS, O2S, O3S, O4S, NO2, NO3, and NO4. Parent oil class abundance does not directly relate to abundance in the water-soluble fraction. Acidic oxygen-containing classes are most prevalent in the water-solubles, whereas acidic nitrogen-containing species are least soluble. In contrast to acidic nitrogen-containing heteroatomic classes, basic nitrogen classes are water-soluble. Water-soluble heteroatomic basic classes detected at >1% relative abundance include N, NO, NO2, NS, NS2, NOS, NO2S, N2, N2O, N2O2, OS, O2S, and O2S2.

  14. CYCLODEXTRIN INCLUSION COMPLEX TO ENHANCE SOLUBILITY OF POORLY WATER SOLUBLE DRUGS: A REVIEW

    Directory of Open Access Journals (Sweden)

    V.B. Chaudhary * 1 and J. K. Patel 2

    2013-01-01

    Full Text Available Low solubility compounds show dissolution rate limited absorption and hence poor absorption, distribution and target organ delivery. Improvement of aqueous solubility in such a case is valuable goal to improve therapeutic efficacy. Complexation with CDs by different methods like physical mixing, melting, kneding, spray drying, freeze drying, co-evaporation has been reported to enhance the solubility, dissolution rate and bioavability of poorly water soluble drugs. The formation of inclusion complex can be confirmed by DSC, FTIR, XRD and SEM study. This review aims to assess the use of cyclodextrines as complexing agents to enhance the solubility of poorly soluble drugs and hence to resolve the many issues associated with developing and commercializing poorly water soluble drugs.

  15. Connecting the solubility and CCN activation of complex organic aerosols: a theoretical study using solubility distributions

    Science.gov (United States)

    Riipinen, I.; Rastak, N.; Pandis, S. N.

    2015-06-01

    We present a theoretical study investigating the cloud activation of multicomponent organic particles. We modeled these complex mixtures using solubility distributions (analogous to volatility distributions in the VBS, i.e., volatility basis set, approach), describing the mixture as a set of surrogate compounds with varying water solubilities in a given range. We conducted Köhler theory calculations for 144 different mixtures with varying solubility range, number of components, assumption about the organic mixture thermodynamics and the shape of the solubility distribution, yielding approximately 6000 unique cloud condensation nucleus (CCN)-activation points. The results from these comprehensive calculations were compared to three simplifying assumptions about organic aerosol solubility: (1) complete dissolution at the point of activation; (2) combining the aerosol solubility with the molar mass and density into a single effective hygroscopicity parameter κ; and (3) assuming a fixed water-soluble fraction ϵeff. The complete dissolution was able to reproduce the activation points with a reasonable accuracy only when the majority (70-80%) of the material was dissolved at the point of activation. The single-parameter representations of complex mixture solubility were confirmed to be powerful semi-empirical tools for representing the CCN activation of organic aerosol, predicting the activation diameter within 10% in most of the studied supersaturations. Depending mostly on the condensed-phase interactions between the organic molecules, material with solubilities larger than about 0.1-100 g L-1 could be treated as soluble in the CCN activation process over atmospherically relevant particle dry diameters and supersaturations. Our results indicate that understanding the details of the solubility distribution in the range of 0.1-100 g L-1 is thus critical for capturing the CCN activation, while resolution outside this solubility range will probably not add

  16. Impact of a large wildfire on water-soluble organic aerosol in a major urban area: the 2009 Station Fire in Los Angeles County

    Directory of Open Access Journals (Sweden)

    A. Wonaschütz

    2011-04-01

    Full Text Available Water-soluble organic carbon is a major component of aerosol particles globally. This study examines a field dataset of water-soluble organic aerosol in the Los Angeles Basin, a classic urban setting, under typical conditions and under the influence of a large wildfire (the 2009 Station Fire. The measurements took place between July and September in Pasadena as part of the 2009 Pasadena Aerosol Characterization Observatory (PACO field campaign. Large differences in the nature of water-soluble organic carbon (WSOC were observed between periods with and without the influence of the fire. During non-fire periods, WSOC variability was driven most likely by a combination of photochemical production processes and subsequent sea breeze transport, resulting in an average diurnal cycle with a maximum at 15:00 LT (up to 4.9 μg C m−3. During the Station Fire, smoke plumes advected to the site in the morning hours were characterized by high concentrations of WSOC (up to 41 μg C m−3 in tight correlation with nitrate and chloride, and with Aerodyne Aerosol Mass Spectrometer (AMS organic metrics such as the biomass burning tracer m/z 60, and total non-refractory organic mass. These concentrations and correlations and the proximity of the measurement site to the fire suggest that primary production was a key formation mechanism for WSOC. During the afternoons, the sea breeze transported urban pollution and processed residual smoke back to the measurement site, leading to higher afternoon WSOC levels than on non-fire days. Parameters representing higher degrees of oxidation of organics, including the ratios m/z 44 : m/z 57 and m/z 44 : m/z 43, were increased in those air masses. Intercomparisons of relative amounts of WSOC, AMS organic, m/z 44, and m/z 43 are used to examine how the relative abundance of different classes of WSOC species changed as a result of photochemical aging. The

  17. A Colorful Solubility Exercise for Organic Chemistry

    Science.gov (United States)

    Shugrue, Christopher R.; Mentzen, Hans H., II; Linton, Brian R.

    2015-01-01

    A discovery chemistry laboratory has been developed for the introductory organic chemistry student to investigate the concepts of polarity, miscibility, solubility, and density. The simple procedure takes advantage of the solubility of two colored dyes in a series of solvents or solvent mixtures, and the diffusion of colors can be easily…

  18. A Colorful Solubility Exercise for Organic Chemistry

    Science.gov (United States)

    Shugrue, Christopher R.; Mentzen, Hans H., II; Linton, Brian R.

    2015-01-01

    A discovery chemistry laboratory has been developed for the introductory organic chemistry student to investigate the concepts of polarity, miscibility, solubility, and density. The simple procedure takes advantage of the solubility of two colored dyes in a series of solvents or solvent mixtures, and the diffusion of colors can be easily…

  19. Trans-boundary secondary organic aerosol in western Japan indicated by stable carbon isotope ratio of low volatile water-soluble organic carbon and signal at m/z 44 in organic aerosol mass spectra

    CERN Document Server

    Irei, Satoshi; Hayashi, Masahiko; Hara, Keiichiro; Kaneyasu, Naoki; Sato, Kei; Arakaki, Takemitsu; Hatakeyama, Shiro; Hikida, Toshihide; Shimono, Akio

    2013-01-01

    Field studies were conducted in the winter of 2010 at two rural sites and an urban site in western Japan, and filter samples of total suspended particulate matter were collected every 24-h and analyzed for concentration and stable carbon isotope ratio (delta13C) of low volatile water-soluble organic carbon (LV-WSOC). Concentration of major chemical species in fine aerosol (<1.0 micron) was also measured in real time by Aerodyne aerosol mass spectrometers. Oxidation state of organic aerosol was evaluated using the proportion of signal at m/z 44 (fragment ions of carboxyl group) to the sum of all m/z signals of organic mass spectra (f44). Analyses show a high correlation between LV-WSOC and m/z 44 concentrations, suggesting that the LV-WSOC is substantially composed of water soluble carboxylic acids in the fine aerosol. Plots of delta13C of LV-WSOC versus f44 exhibit systematic trends at the rural sites and random variation at the urban site. The systematic trends qualitatively agree with a simple binary mix...

  20. Novel spray freeze-drying technique using four-fluid nozzle-development of organic solvent system to expand its application to poorly water soluble drugs.

    Science.gov (United States)

    Niwa, Toshiyuki; Shimabara, Hiroko; Danjo, Kazumi

    2010-02-01

    Spray freeze-drying (SFD) technique using four-fluid nozzle (4N), which is a novel particle design technique previously developed by authors, has been further developed to expand its application in pharmaceutical industry. The organic solvent was utilized as a spray solvent to dissolve the poorly soluble drug instead of conventional aqueous solution. Acetonitrile solution of the drug and aqueous solution of the polymeric carrier were separately and simultaneously atomized through 4N, and collided each other at the tip of nozzle edge. The spray mists were immediately frozen in the liquid nitrogen to form a suspension. Then, the iced droplets were freeze-dried to prepare the composite particles of the drug and carrier according to our proprietary method developed before. The resultant composite particles with phenytoin prepared by using acetonitrile (4N-SFD-MeCN system) were deeply characterized compared to those using aqueous solution (4N-SFD-aqua system) from morphological and physicochemical perspectives. The characteristic porous structure was observed in 4N-SFD-MeCN particles as well as 4N-SFD-aqua particles. However, it was found that the size and quantity of pore in 4N-SFD-MeCN particles were smaller than those of 4N-SFD-aqua particles. As a result, the former particles had 2- to 3-times smaller specific surface area than the latter particles independent of the type of carrier loaded. The slight difference of release profiles from the particles prepared between both systems was discussed from the microscopically structural viewpoint. In addition, ciclosporin was applied to organic solvent SFD system because this drug was poorly water soluble and cannot be applied to conventional aqueous SFD system. The release profiles from SFD particles were dramatically improved compared to the bulk material, suggesting that the new SFD technique using organic solvent has potential to develop the novel solubilized formulation for poorly water-soluble active pharmaceutical

  1. The application of water-soluble ruthenium catalysts for the hydrogenation of the dichloromethane soluble fraction of fast pyrolysis oil and related model compounds in a two phase aqueous-organic system

    NARCIS (Netherlands)

    Mahfud, F.H.; Bussemaker, S.; Kooi, B.J.; ten Brink, Gert; Heeres, H.J.

    2007-01-01

    The hydrogenation of a dichloromethane soluble fraction of flash pyrolysis oil (bio-oil, BO), obtained by treatment of BO with a water–dichloromethane solvent mixture, was investigated using a water-soluble homogeneous ruthenium catalyst (RuCl3·3H2O/tris(m-sulfonatophenyl)phosphine, TPPTS). The

  2. Distinguishing molecular characteristics of aerosol water soluble organic matter from the 2011 trans-North Atlantic US GEOTRACES cruise

    Directory of Open Access Journals (Sweden)

    A. S. Wozniak

    2014-03-01

    different sources are not well established. Aerosol particulate samples having North American-influenced, North African-influenced, and marine (minimal recent continental influence air mass back trajectories were collected as part of the 2011 trans-North Atlantic US GEOTRACES cruise and analyzed for their water soluble OM (WSOM molecular characteristics using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry. Principal component analysis (PCA separated the samples into five groups defined by distinct molecular formula characteristics. An abundance of nitrogen containing compounds with molecular formulas consistent with amino acid derivatives defined the two samples comprising the Primary Marine group suggesting a primary marine biological source to their WSOM in spite of their North American-influenced air mass trajectories. A second group of samples (Aged Marine having primarily marine air mass trajectories was characterized by an abundance of low O / C (0.15–0.45 sulfur containing compounds consistent with organosulfate compounds formed via secondary aging reactions in the atmosphere. Several samples having North American-influenced air mass trajectories formed another group again characterized by organosulfate and nitrooxyorganosulfate type compounds with higher O / C ratios (0.5–1.0 than the Aged Marine samples reflecting the combustion influence from the North American continent. All the samples having North African-influenced air mass trajectories grouped together in the PCA and were characterized by a lack of heteroatom (N, S, P containing molecular formulas covering a wide O / C range (0.15–0.90 reflecting the desert source of this WSOM. The two marine groups showed molecular formulas that, on average, had higher O / C ratios and lower O / C ratios and modified aromaticity indices than the two continentally-influenced groups suggesting these properties are characteristic of marine vs. continental aerosol WSOM. The

  3. SOLUBILITY ENHANCEMENT OF POORLY WATER SOLUBLE DRUGS BY SOLID DISPERSIO

    Directory of Open Access Journals (Sweden)

    Amita Verm

    2012-01-01

    Full Text Available Solid dispersions have been employed to enhance the dissolution rates of poorly water-soluble drugs. Many approaches have been investigated for the preparation of solid dispersions. This paper reports the various solubility enhancement strategies in solid dispersion. The approaches described are fusion (melting, solvent evaporation, lyophilization (freeze drying, melt agglomeration process, extruding method, spray drying technology, use of surfactant, electro static spinning method and super critical fluid technology. This paper also highlights the potential applications and limitations of theseapproaches in solid dispersions.

  4. Water Soluble Polymers for Pharmaceutical Applications

    Directory of Open Access Journals (Sweden)

    Veeran Gowda Kadajji

    2011-11-01

    Full Text Available Advances in polymer science have led to the development of novel drug delivery systems. Some polymers are obtained from natural resources and then chemically modified for various applications, while others are chemically synthesized and used. A large number of natural and synthetic polymers are available. In the present paper, only water soluble polymers are described. They have been explained in two categories (1 synthetic and (2 natural. Drug polymer conjugates, block copolymers, hydrogels and other water soluble drug polymer complexes have also been explained. The general properties and applications of different water soluble polymers in the formulation of different dosage forms, novel delivery systems and biomedical applications will be discussed.

  5. Soluble organic nanotubes for catalytic systems

    Science.gov (United States)

    Xiong, Linfeng; Yang, Kunran; Zhang, Hui; Liao, Xiaojuan; Huang, Kun

    2016-03-01

    In this paper, we report a novel method for constructing a soluble organic nanotube supported catalyst system based on single-molecule templating of core-shell bottlebrush copolymers. Various organic or metal catalysts, such as sodium prop-2-yne-1-sulfonate (SPS), 1-(2-(prop-2-yn-1-yloxy)ethyl)-1H-imidazole (PEI) and Pd(OAc)2 were anchored onto the tube walls to functionalize the organic nanotubes via copper-catalyzed azide-alkyne cycloaddition (CuAAC) reaction. Depending on the ‘confined effect’ and the accessible cavity microenvironments of tubular structures, the organic nanotube catalysts showed high catalytic efficiency and site-isolation features. We believe that the soluble organic nanotubes will be very useful for the development of high performance catalyst systems due to their high stability of support, facile functionalization and attractive textural properties.

  6. Effect of Organic Matter on Manganese Solubility

    Directory of Open Access Journals (Sweden)

    Emilene Andrade

    2002-03-01

    Full Text Available The objective of this study was to re-evaluate some aspects of the relative importance of organic matter on Mn solubility in acid soil conditions. Field study showed that black oats, oil seed radish, elephant grass, lupin, leucaena, and coffee leaves serving as mulch decreased Mn solubility as compared with bare soil. The decrease in Mn solubility with plant mulch was related to increase in soil moisture content. Laboratory study showed that increasing temperature from 25 to 100ºC increased Mn solubility and total soil organic carbon was little changed; from 150 to 200ºC increased both Mn solubility and organic carbon oxidation, and up to 300ºC decreased Mn solubility and stoped organic carbon oxidation . Aluminum solubility always increased with increasing temperature. Organic matter exerted a control in both Mn and Al solubilities in acid soils.O estudo foi conduzido com objetivo de reavaliar alguns aspectos da importância relativa da matéria orgânica na solubilidade do Mn em solos ácidos. Em condição de campo cobertura morta com resíduos de aveia preta, nabo forrageiro, napier, tremoço, leucena e folhas de café diminuíram a solubilidade de Mn quando comparada com o solo descoberto. A redução na solubilidade do Mn em solo coberto com resíduos vegetais foi relacionada com o teor de umidade do solo. Estudos de laboratório demonstraram que o aumento da temperatura de 25 para 100ºC aumentou a solubilidade do Mn com pouca alteração no teor de carbono do solo; de 150 a 200ºC aumentou ambas a solubilidade do Mn e a oxidação do carbono orgânico e acima de 300ºC diminuiu a solubilidade do Mn e completou a oxidação do carbono orgânico. A solubilidade do Al sempre aumentou com a elevação da temperatura. A matéria orgânica influenciou diretamente a solubilidade do Mn e do Al.

  7. Preparation of detergent-lipase complexes utilizing water-soluble amphiphiles in single aqueous phase and catalysis of transesterifications in homogeneous organic solvents.

    Science.gov (United States)

    Mine, Y; Fukunaga, K; Maruoka, N; Nakao, K; Sugimura, Y

    2000-01-01

    A novel method of preparing detergent-enzyme complexes that can be employed in organic media was developed utilizing newly synthesized water-soluble nonionic gemini-type detergents, N,N-bis(3-D-gluconamidopropyl)-3-(dialkyl-L-glutamatecarbonyl)propanamides (BIG2CnCA: n = 10,12,14,16,18) and N,N-bis(3-D-lactonamidopropyl)-3-(dialkyl-L-glutamatecarbonyl)propanamides (BIL2CnCA: n = 16,18), and nonionic twin-headed detergents, N,N-bis(3-D-gluconamidopropyl)alkanamides (BIG1Cn: n = 12,14,16,18,delta9). This method simply entails mixing a selected enzyme with an appropriate detergent in an aqueous solution followed by lyophilization, and it offers the advantages of enhanced enzymatic activity in organic solvents and eliminates both enzyme loss and the necessity for an organic solvent in the preparation stage. Using various modified lipases originating from Aspergillus niger (Lipase A), Candida rugosa (Lipase C), Pseudomonas cepacia (Lipase P), and porcine pancreas (PPL), prepared using the novel method and detergents, including conventional synthesized nonionic detergents such as dialkyl N-D-glucona-L-glutamates (2CnGE: n = 12,18delta9) and octanoyl-N-methylglucamide (MEGA-8), enantioselective transesterifications of 6-methyl-5-hepten-2-ol (sulcatol) and 2,2-dimethyl-1,3-dioxolane-4-methanol (solketal) with a vinyl or isopropenyl carboxylate were carried out in an organic solvent. The modified lipase activity was influenced by both the lipases and the structure of the detergents. The value for the hydrophile-lipophile balance (HLB) of the detergent provided a means of correlating the structure and the obtained modified lipase activity. For detergents of the same class with a HLB value of approximately 9 and 12, the highest activity was obtained for Lipase A and Lipase P, and Lipase C and PPL, respectively. Among detergents of the same HLB value tested, the gemini-type detergents possessing the most bulky head and tail were most effective as a modifier for lipases of all

  8. Chemical characterization of the ambient organic aerosol soluble in water: 1. Isolation of hydrophobic and hydrophilic fractions with a XAD-8 resin

    Science.gov (United States)

    Sullivan, Amy P.; Weber, Rodney J.

    2006-03-01

    Group separation of the aqueous extract of fine particles bearing water-soluble organic carbon (WSOC) provides unique insights into the sources of organic carbon (OC). XAD-8 resin coupled with a Total Organic Carbon analyzer allows for direct quantification. We term the fraction of WSOC not retained by a XAD-8 resin column at pH 2 as hydrophilic WSOC (WSOCxp); this includes saccharides, amines, and carbonyls and aliphatic monocarboxylic/dicarboxylic/oxocarboxylic acids with less than 4 or 5 carbons. The fraction of WSOC retained by XAD-8, termed the hydrophobic fraction (WSOCxr), include aromatic acids, phenols, organic nitrates, cyclic acids, and carbonyls and monocarboxylic/dicarboxylic acids with greater than 3 or 4 carbons. However, only aromatic compounds (or aromatic-like compounds with similar properties) can subsequently be extracted from XAD-8 with high efficiency. By coupling a Particle-into-Liquid Sampler with this technique, online measurements of WSOC, WSOCxp, and WSOCxr are possible. Urban measurements from St. Louis and Atlanta, on a carbon mass basis, show an increase in the mean WSOC fraction from winter (51%) to summer (61%), due to increases in the WSOCxp/OC from 0.25 to 0.35. During a summer Atlanta PM event, WSOC to OC was 0.75, driven largely by increases in the WSOCxp. The results are consistent with the view that in the summer, there are increased amounts of oxygenated polar compounds, possibly from secondary organic aerosol production, and that these compounds account for an even larger fraction of OC during stagnation events. A companion paper describes a method to further group speciate these XAD-8 isolated fractions.

  9. [Variability of soil water soluble organic carbon content and its response to temperature change in green spaces along urban-to-rural gradient of Nanchang, China].

    Science.gov (United States)

    Li, Pei-qing; Fang, Xiang-min; Chen, Fu-sheng; Wang, Fang-chao; Yu, Jin-rong; Wan, Song-ze; Li, Zu-yao

    2015-11-01

    Topsoil of green space including typical forest, shrub and grassland were collected to measure their water soluble organic carbon ( WSOC) before and after incubation of 30 days at 5, 15, 25, 35 and, 45 °C. The results showed the average values of WSOC were higher in urban than in rural green spaces, but the percentage of WSOC to total organic carbon (TOC) showed an opposite trend. No significant changes were found among the three green space types in WSOC and WSOC/TOC. Response of WSOC in green space to incubation temperature was generally highest in urban sites, followed by suburban sites, and lowest in rural sites at the incubation temperature of 5 °C, but showed an opposite trend at the temperature of 45 °C. Response coefficient of WSOC to temperature change was lower in forest and shrub than in grassland, but increased along the urban-rural gradient. Further analysis showed that WSOC positively correlated with TOC, total nitrogen and available phosphorus, and the response coefficient of WSOC to temperature change negatively correlated with available phosphorus. In summary, exogenous substances input might lead to the accumulation of WSOC in urban green space, however, urban environment was helpful to maintain the stability of WSOC, which might be due to the enrichment of available phosphorus in urban sites.

  10. Soluble organic nitrogen in forest soils of northeast China

    Institute of Scientific and Technical Information of China (English)

    SONG Li-chen; HAO Jing-mei; CUI Xiao-yang

    2008-01-01

    Soluble organic nitrogen (SON) is recognized as a sensitive indicator of soil nitrogen status. The present work was conducted in the temperate forests of northeast China where soils are typically characterized by high organic matter and high organic nitrogen content, and soil sampling was made in early spring just after the freeze-thaw period. The water extracted SON pools in the organic layer of forest soils were measured within the range from 156.0 mg·kg-1 to 292.6 mg·kg-1, a similar magnitude of salt solution extracted SON pools reported in literatures. However, the water soluble SON pools in 0-15 cm mineral soils in present study were much higher (3-10 times) than any other reports, ranging from 58.6 mg·kg-1 to 125.2 mg·kg-1. Water soluble SON varied markedly among the soils under different forests and at different sites. The SON in water extracts were positively and significantly correlated to soil organic matter and total nitrogen contents, but negatively correlated to microbial biomass nitrogen (MBN). The reasons of the abnormally large SON pools and the negative correlations between SON and MBN in the 0-15cm mineral soils in this study were specially discussed.

  11. Water-soluble organic aerosol in the Los Angeles Basin and outflow regions: Airborne and ground measurements during the 2010 CalNex field campaign

    OpenAIRE

    Duong, Hanh T.; Sorooshian, Armin; Craven, Jill S.; Hersey, Scott P.; Metcalf, Andrew R.; Zhang, Xiaolu; Weber, Rodney J.; Jonsson, Haflidi; Flagan, Richard C.; Seinfeld, John H.

    2011-01-01

    A particle‐into‐liquid sampler coupled to a total organic carbon analyzer (PILS‐TOC) quantified particulate water‐soluble organic carbon (WSOC) mass concentrations during the May 2010 deployment of the Center for Interdisciplinary Remotely Piloted Aircraft Studies (CIRPAS) Twin Otter in the CalNex field study. WSOC data collected during 16 flights provide the first spatiotemporal maps of WSOC in the San Joaquin Valley, Los Angeles Basin, and outflow regions of the Basin. WSOC w...

  12. Benzodicarbomethoxytetrathiafulvalene derivatives as soluble organic semiconductors.

    Science.gov (United States)

    Otón, Francisco; Pfattner, Raphael; Oxtoby, Neil S; Mas-Torrent, Marta; Wurst, Klaus; Fontrodona, Xavier; Olivier, Yoann; Cornil, Jérôme; Veciana, Jaume; Rovira, Concepció

    2011-01-07

    A series of new tetrathiafulvalene (TTF) derivatives bearing dimethoxycarbonyl and phenyl or phthalimidyl groups fused to the TTF core (6 and 15-18) has been synthesized as potential soluble semiconductor materials for organic field-effect transistors (OFETs). The electron-withdrawing substituents lower the energy of the HOMO and LUMO levels and increase the solubility and stability of the semiconducting material. Crystal structures of all new TTF derivatives are also described, and theoretical DFT calculations were carried out to study the potential of the crystals to be used in OFET. In the experimental study, the best performing device exhibited a hole mobility up to 7.5 × 10(-3) cm(2) V(-1) s(-1)).

  13. Technical Note: Molecular characterization of aerosol-derived water soluble organic carbon using ultrahigh resolution electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry

    Directory of Open Access Journals (Sweden)

    R. M. Dickhut

    2008-09-01

    Full Text Available Despite the acknowledged relevance of aerosol-derived water-soluble organic carbon (WSOC to climate and biogeochemical cycling, characterization of aerosol WSOC has been limited. Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI FT-ICR MS was utilized in this study to provide detailed molecular level characterization of the high molecular weight (HMW; m/z>223 component of aerosol-derived WSOC collected from rural sites in Virginia and New York, USA. More than 3000 peaks were detected by ESI FT-ICR MS within a m/z range of 223–600 for each sample. Approximately 86% (Virginia and 78% (New York of these peaks were assigned molecular formulas using only carbon (C, hydrogen (H, oxygen (O, nitrogen (N, and sulfur (S as elemental constituents. H/C and O/C molar ratios were plotted on van Krevelen diagrams and indicated a strong contribution of lignin-like and lipid-like compounds to the aerosol-derived WSOC samples. Approximately 1–4% of the peaks in the aerosol-derived WSOC mass spectra were classified as black carbon (BC on the basis of double bond equivalents calculated from the assigned molecular formulas. In addition, several high-magnitude peaks in the mass spectra of samples from both sites corresponded to molecular formulas proposed in previous secondary organic aerosol (SOA laboratory investigations indicating that SOAs are important constituents of the WSOC. Overall, ESI FT-ICR MS provides a level of resolution adequate for detailed compositional and source information of the HMW constituents of aerosol-derived WSOC.

  14. Seasonal variations of stable carbon isotopic ratios and biogenic tracer compounds of water-soluble organic aerosols in a deciduous forest

    Directory of Open Access Journals (Sweden)

    Y. Miyazaki

    2011-11-01

    Full Text Available To investigate the seasonal changes in biogenic water-soluble organic carbon (WSOC aerosols in a boreal forest, aerosol samples were collected continuously in the canopy of a~deciduous forest in Northern Japan during 2009–2010. Stable carbon isotopic ratios of WSOC (δ13CWSOC in aerosols exhibited a distinct seasonal cycle, with lower values from June through September (−25.5 ± 0.5‰. This cycle follows the net CO2 exchange between the forest ecosystem and the atmosphere, indicating that δ13CWSOC likely reflects the biological activity at the forest site. WSOC concentrations showed the highest values in early summer and autumn. Positive matrix factorization (PMF analysis indicated that the factor in which biogenic secondary organic aerosols (BSOAs dominated accounted for ~ 40% of the highest concentrations of WSOC, where BSOAs mostly consisted of α-/β-pinene SOA. In addition, primary biological aerosol particles (PBAPs made similar contributions (~ 57% to the WSOC near the canopy floor in early summer. This finding indicates that the production of both primary and secondary WSOC aerosols is important during the growing season in a deciduous forest. The methanesulfonic acid (MSA maximum was also found in early summer and had a distinct vertical gradient with larger concentrations near the canopy floor. Together with the similar vertical gradients found for WSOC and δ13CWSOCas well as the α-/β-pinene SOA tracers, our results indicate that the forest floor, including ground vegetation and soil, acts as a significant source of the WSOC within a~forest canopy at the study site.

  15. Seasonal variations of stable carbon isotopic composition and biogenic tracer compounds of water-soluble organic aerosols in a deciduous forest

    Directory of Open Access Journals (Sweden)

    Y. Miyazaki

    2012-02-01

    Full Text Available To investigate the seasonal changes in biogenic water-soluble organic carbon (WSOC aerosols in a boreal forest, aerosol samples were collected continuously in the canopy of a deciduous forest in northern Japan during 2009–2010. Stable carbon isotopic composition of WSOC (δ13CWSOC in total suspended particulate matter (TSP exhibited a distinct seasonal cycle, with lower values from June through September (−25.5±0.5 ‰. This cycle follows the net CO2 exchange between the forest ecosystem and the atmosphere, indicating that δ13CWSOC likely reflects the biological activity at the forest site. WSOC concentrations showed the highest values in early summer and autumn. Positive matrix factorization (PMF analysis indicated that the factor in which biogenic secondary organic aerosols (BSOAs dominated accounted for ~40 % of the highest concentrations of WSOC, where BSOAs mostly consisted of α-/β-pinene SOA. In addition, primary biological aerosol particles (PBAPs made similar contributions (~57 % to the WSOC near the forest floor in early summer. This finding indicates that the production of both primary and secondary WSOC aerosols is important during the growing season in a deciduous forest. The methanesulfonic acid (MSA maximum was also found in early summer and had a distinct vertical gradient with larger concentrations near the forest floor. Together with the similar vertical gradients found for WSOC and δ13CWSOC as well as the α-/β-pinene SOA tracers, our results indicate that the forest floor, including ground vegetation and soil, acts as a significant source of WSOC in TSP within a forest canopy at the study site.

  16. Water-soluble polymers and compositions thereof

    Science.gov (United States)

    Smith, B.F.; Robison, T.W.; Gohdes, J.W.

    1999-04-06

    Water-soluble polymers including functionalization from the group of amino groups, carboxylic acid groups, phosphonic acid groups, phosphonic ester groups, acylpyrazolone groups, hydroxamic acid groups, aza crown ether groups, oxy crown ethers groups, guanidinium groups, amide groups, ester groups, aminodicarboxylic groups, permethylated polyvinylpyridine groups, permethylated amine groups, mercaptosuccinic acid groups, alkyl thiol groups, and N-alkylthiourea groups are disclosed.

  17. Atmospheric Deposition of Soluble Organic Nitrogen due to Biomass Burning

    Science.gov (United States)

    Ito, A.; Lin, G.; Penner, J. E.

    2014-12-01

    Atmospheric deposition of reactive nitrogen (N) species from large fires may contribute to enrichment of nutrients in aquatic ecosystems. Here we use an atmospheric chemistry transport model to investigate the supply of soluble organic nitrogen (ON) from open biomass burning to the ocean. The model results show that the annual deposition rate of soluble ON to the oceans is increased globally by 13% with the increase being particularly notable over the coastal water downwind from the source regions. The estimated deposition of soluble ON due to haze events from the secondary formation is more than half of that from the primary sources. We examine the secondary formation of particulate C-N compounds (e.g., imidazole) from the reactions of glyoxal and methylglyoxal with atmospheric ammonium in wet aerosols and upon cloud evaporation. These ON sources result in a significant contribution to the open ocean, suggesting that atmospheric processing in aqueous phase may have a large effect. We compare the soluble ON concentration in aerosols with and without open biomass burning as a case study in Singapore. The model results demonstrate that the soluble ON concentration in aerosols is episodically enriched during the fire events, compared to the without smoke simulations. However, the model results show that the daily soluble ON concentration can be also enhanced in the without smoke simulations during the same period, compared to the monthly averages. This indicates that care should be taken when using in-situ observations to constrain the soluble ON source strength from biomass burning. More accurate quantification of the soluble ON burdens with no smoke sources is therefore needed to assess the effect of biomass burning on bioavailable ON input to the oceans.

  18. Antibacterial Characteristics and Activity of Water-Soluble Chitosan Derivatives Prepared by the Maillard Reaction

    Directory of Open Access Journals (Sweden)

    Ying-Chien Chung

    2011-10-01

    Full Text Available The antibacterial activity of water-soluble chitosan derivatives prepared by Maillard reactions against Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus, Escherichia coli, Shigella dysenteriae, and Salmonella typhimurium was examined. Relatively high antibacterial activity against various microorganisms was noted for the chitosan-glucosamine derivative as compared to the acid-soluble chitosan. In addition, it was found that the susceptibility of the test organisms to the water-soluble chitosan derivative was higher in deionized water than in saline solution. Metal ions were also found to reduce the antibacterial activity of the water-soluble chitosan derivative on S. aureus. The marked increase in glucose level, protein content and lactate dehydrogenase (LDH activity was observed in the cell supernatant of S. aureus exposed to the water-soluble chitosan derivative in deionized water. The results suggest that the water-soluble chitosan produced by Maillard reaction may be a promising commercial substitute for acid-soluble chitosan.

  19. In-depth compositional analysis of water-soluble and -insoluble organic substances in fine (PM2.5) airborne particles using ultra-high-resolution 15T FT-ICR MS and GC×GC-TOFMS.

    Science.gov (United States)

    Choi, Jung Hoon; Ryu, Jijeong; Jeon, Sodam; Seo, Jungju; Yang, Yung-Hun; Pack, Seung Pil; Choung, Sungwook; Jang, Kyoung-Soon

    2017-03-05

    Airborne particulate matter consisting of ionic species, salts, heavy metals and carbonaceous material is one of the most serious environmental pollutants owing to its impacts on the environment and human health. Although elemental and organic carbon compounds are known to be major components of aerosols, information on the elemental composition of particulate matter remains limited because of the broad range of compounds involved and the limits of analytical instruments. In this study, we investigated water-soluble and -insoluble organic compounds in fine (PM2.5) airborne particles collected during winter in Korea to better understand the elemental compositions and distributions of these compounds. To collect ultra-high-resolution mass profiles, we analyzed water-soluble and -insoluble organic compounds, extracted with water and dichloromethane, respectively, using an ultra-high-resolution 15 T Fourier transform ion cyclotron resonance (15T FT-ICR) mass spectrometer in positive ion mode (via both electrospray ionization [ESI] and atmospheric pressure photoionization [APPI] for water-extracts and via APPI for dichloromethane-extracts). In conjunction with the FT-ICR mass spectrometry (MS) data, subsequent two-dimensional gas chromatography time-of-flight mass spectrometry (GC×GC-TOFMS) data were used to identify potentially hazardous organic components, such as polycyclic aromatic hydrocarbons. This analysis provided information on the sources of ambient particles collected during winter season and partial evidence of contributions to the acidity of organic content in PM2.5 particles. The compositional and structural features of water-soluble and -insoluble organic compounds from PM2.5 particles are important for understanding the potential impacts of aerosol-carried organic substances on human health and global ecosystems in future toxicological studies.

  20. The search for reliable aqueous solubility (Sw) and octanol-water partition coefficient (Kow) data for hydrophobic organic compounds; DDT and DDE as a case study

    Science.gov (United States)

    Pontolillo, James; Eganhouse, R.P.

    2001-01-01

    The accurate determination of an organic contaminant?s physico-chemical properties is essential for predicting its environmental impact and fate. Approximately 700 publications (1944?2001) were reviewed and all known aqueous solubilities (Sw) and octanol-water partition coefficients (Kow) for the organochlorine pesticide, DDT, and its persistent metabolite, DDE were compiled and examined. Two problems are evident with the available database: 1) egregious errors in reporting data and references, and 2) poor data quality and/or inadequate documentation of procedures. The published literature (particularly the collative literature such as compilation articles and handbooks) is characterized by a preponderance of unnecessary data duplication. Numerous data and citation errors are also present in the literature. The percentage of original Sw and Kow data in compilations has decreased with time, and in the most recent publications (1994?97) it composes only 6?26 percent of the reported data. The variability of original DDT/DDE Sw and Kow data spans 2?4 orders of magnitude, and there is little indication that the uncertainty in these properties has declined over the last 5 decades. A criteria-based evaluation of DDT/DDE Sw and Kow data sources shows that 95?100 percent of the database literature is of poor or unevaluatable quality. The accuracy and reliability of the vast majority of the data are unknown due to inadequate documentation of the methods of determination used by the authors. [For example, estimates of precision have been reported for only 20 percent of experimental Sw data and 10 percent of experimental Kow data.] Computational methods for estimating these parameters have been increasingly substituted for direct or indirect experimental determination despite the fact that the data used for model development and validation may be of unknown reliability. Because of the prevalence of errors, the lack of methodological documentation, and unsatisfactory data

  1. Effects of polar and nonpolar groups on the solubility of organic compounds in soil organic matter

    Science.gov (United States)

    Chiou, C.T.; Kile, D.E.

    1994-01-01

    Vapor sorption capacities on a high-organic-content peat, a model for soil organic matter (SOM), were determined at room temperature for the following liquids: n-hexane, 1,4-dioxane, nitroethane, acetone, acetonitrile, 1-propanol, ethanol, and methanol. The linear organic vapor sorption is in keeping with the dominance of vapor partition in peat SOM. These data and similar results of carbon tetrachloride (CT), trichloroethylene (TCE), benzene, ethylene glycol monoethyl ether (EGME), and water on the same peat from earlier studies are used to evaluate the effect of polarity on the vapor partition in SOM. The extrapolated liquid solubility from the vapor isotherm increases sharply from 3-6 wt % for low-polarity liquids (hexane, CT, and benzene) to 62 wt % for polar methanol and correlates positively with the liquid's component solubility parameters for polar interaction (??P) and hydrogen bonding (??h). The same polarity effect may be expected to influence the relative solubilities of a variety of contaminants in SOM and, therefore, the relative deviations between the SOM-water partition coefficients (Kom) and corresponding octanol-water partition coefficients (Kow) for different classes of compounds. The large solubility disparity in SOM between polar and nonpolar solutes suggests that the accurate prediction of Kom from Kow or Sw (solute water solubility) would be limited to compounds of similar polarity.

  2. Biochemical synthesis of water soluble conducting polymers

    Science.gov (United States)

    Bruno, Ferdinando F.; Bernabei, Manuele

    2016-05-01

    An efficient biomimetic route for the synthesis of conducting polymers/copolymers complexed with lignin sulfonate and sodium (polystyrenesulfonate) (SPS) will be presented. This polyelectrolyte assisted PEG-hematin or horseradish peroxidase catalyzed polymerization of pyrrole (PYR), 3,4 ethyldioxithiophene (EDOT) and aniline has provided a route to synthesize water-soluble conducting polymers/copolymers under acidic conditions. The UV-vis, FTIR, conductivity and cyclic voltammetry studies for the polymers/copolymer complex indicated the presence of a thermally stable and electroactive polymers. Moreover, the use of water-soluble templates, used as well as dopants, provided a unique combination of properties such as high electronic conductivity, and processability. These polymers/copolymers are nowadays tested/evaluated for antirust features on airplanes and helicopters. However, other electronic applications, such as photovoltaics, for transparent conductive polyaniline, actuators, for polypyrrole, and antistatic films, for polyEDOT, will be proposed.

  3. Biochemical synthesis of water soluble conducting polymers

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Ferdinando F., E-mail: Ferdinando-Bruno@uml.edu [US Army Natick Soldier Research, Development and Engineering Center, Natick, MA 01760 (United States); Bernabei, Manuele [ITAF, Test Flight Centre, Chemistry Dept. Pratica di Mare AFB, 00071 Pomezia (Rome), Italy (UE) (Italy)

    2016-05-18

    An efficient biomimetic route for the synthesis of conducting polymers/copolymers complexed with lignin sulfonate and sodium (polystyrenesulfonate) (SPS) will be presented. This polyelectrolyte assisted PEG-hematin or horseradish peroxidase catalyzed polymerization of pyrrole (PYR), 3,4 ethyldioxithiophene (EDOT) and aniline has provided a route to synthesize water-soluble conducting polymers/copolymers under acidic conditions. The UV-vis, FTIR, conductivity and cyclic voltammetry studies for the polymers/copolymer complex indicated the presence of a thermally stable and electroactive polymers. Moreover, the use of water-soluble templates, used as well as dopants, provided a unique combination of properties such as high electronic conductivity, and processability. These polymers/copolymers are nowadays tested/evaluated for antirust features on airplanes and helicopters. However, other electronic applications, such as photovoltaics, for transparent conductive polyaniline, actuators, for polypyrrole, and antistatic films, for polyEDOT, will be proposed.

  4. "Mixed-solvency approach" - Boon for solubilization of poorly water-soluble drugs

    Directory of Open Access Journals (Sweden)

    Maheshwari R

    2010-01-01

    Full Text Available Based on a large number of experiments on solubilization of poorly water-soluble drugs, the author is of the opinion that hydrotropy is another type of cosolvency and all water-soluble substances whether liquids, solids, or gases may act as solubilizers for poorly water-soluble drugs. In the present investigation, a mixed-solvency approach has been utilized for solubility enhancement of poorly water-soluble drug, salicylic acid (as a model drug. Sixteen blends (having total 40% w/v strength of solubilizers containing various solubilizers among the commonly used hydrotropes (urea and sodium citrate, cosolvents (glycerin, propylene glycol, PEG 300 and PEG 400, and water-soluble solids (PEG 4000 and PEG 6000 were made to study the influence on solubility of salicylic acid. Twelve blends were found to increase the solubility of salicylic acid, synergistically. This approach shall prove a boon in pharmaceutical field to develop various formulations of poorly water-soluble drugs by combining various water-soluble excipients in safe concentrations to give a strong solution (say 25% w/v or so to produce a desirable aqueous solubility of poorly water-soluble drugs. In the present investigation, the mixed-solvency approach has been employed to analyze salicylic acid in the bulk drug sample (using six blends precluding the use of organic solvents (a way to green chemistry.

  5. Water soluble azido polyisocyanopeptides as functional β-sheet mimics

    NARCIS (Netherlands)

    Schwartz, Erik; Koepf, Matthieu; Kitto, Heather J.; Espelt, Mónica; Nebot-Carda, Vicent J.; Gelder, de Rene; Nolte, Roeland J.M.; Cornelissen, Jeroen J.L.M.; Rowan, Alan E.

    2009-01-01

    The design and synthesis of functional biomimetic water soluble polymers with a defined secondary structure has been developed using β-sheet polyisocyanopeptide scaffolds. Water soluble isocyanopolymers were prepared by random copolymerisation of the azido functionalized isocyanopeptides with nonfun

  6. Scavenging of soluble organic matter from the prebiotic oceans.

    Science.gov (United States)

    Nissenbaum, A

    1976-12-01

    The existence of hot or cold "nutrient broth" or "primeval soup" is challenged on the basis of the recent geochemistry of soluble organic carbon in the oceans. Most of the dissolved organic carbon is recycled quickly by organisms, but the residual, biologically refractive, organic matter is efficiently scavenged from the oceans (residence time of 1000 to 3500 years) by nonbiologically mediated chemical and physical processes, such as adsorption on sinking minerals, polymerization and aggregation to humic type polymers or by aggregation to particulate matter through bubbling and sinking of this material to the ocean bottom. Since there is no reason to believe that such nonbiological scavenging was not operative in the prebiotic oceans as well, then the prolonged existence of "organic soup" is very doubtful. The question of the origin of life is thus assumed to be related to solid-liquid interfacial activity, and the answer may be associated with sediment-water interaction rather than with solution chemistry.

  7. Solubility Enhancement of a Poorly Water Soluble Drug by Forming Solid Dispersions using Mechanochemical Activation

    OpenAIRE

    Rojas-Oviedo, I.; Retchkiman-Corona, B.; Quirino-Barreda, C. T.; Cárdenas, J.; Schabes-Retchkiman, P. S.

    2012-01-01

    Mechanochemical activation is a practical cogrinding operation used to obtain a solid dispersion of a poorly water soluble drug through changes in the solid state molecular aggregation of drug-carrier mixtures and the formation of noncovalent interactions (hydrogen bonds) between two crystalline solids such as a soluble carrier, lactose, and a poorly soluble drug, indomethacin, in order to improve its solubility and dissolution rate. Samples of indomethacin and a physical mixture with a weigh...

  8. Molecular Characteristics of Aerosol Water Soluble Organic Matter from the 2010 and 2011 US GEOTRACES Cruises in the North Atlantic Ocean

    Science.gov (United States)

    Wozniak, A. S.; Sleighter, R. L.; Gurganus, S.; McElhenie, S. D.; Hatcher, P. G.

    2013-12-01

    Aerosol particulate samples (n=39) were collected on a transatlantic transect in the North Atlantic Ocean during the 2010 and 2011 US GEOTRACES cruises. Air mass trajectory analyses were used to operationally-define the samples as European-, North African-, North American-, or marine-influenced. Aerosol water soluble organic matter (WSOM) was isolated and analyzed by Fourier transform ion cyclotron resonance mass spectrometry (FTICR MS), and a total of 13,739 unique molecular formulas containing C, H, O, N, S, and P as potential constituents were identified. Principal component analysis (PCA) was performed to facilitate comparisons within this extensive dataset using the assigned molecular formulas (weighted by peak intensity) as input variables. The samples were assigned to five groups based on their principal component scores. Using the the air mass trajectory analyses, the sample groups were classified as 1) marine, 2) marine/N. American, 3) N. American, 4) 2011 N. African, and 5) the 2010 samples. Each PCA-defined sample group showed PCA loadings (molecular formulas) with distinguishing characteristics that are supported by average molecular formula characteristics calculated for the samples in each group. The marine, marine/N. American, and N. American-influenced groups were all characterized as being relatively more aliphatic (higher H/C ratio) and having higher heteroatom (N, S, P) content than the 2011 N. African and 2010 samples. The ';marine' and N. American-influenced samples both showed S containing compounds to be important for their PCA scores with the N. American-influenced samples having CHO and CHOS formulas with a higher O/C content. The high relative O content suggests that these N. American-influenced samples are characterized by a high degree of oxidation and may be linked to high contributions from combustion-derived sulfate and carboxylic acid functional groups. The marine/N. American sample group had the highest contributions from N

  9. Nonlinear water waves with soluble surfactant

    Science.gov (United States)

    Lapham, Gary; Dowling, David; Schultz, William

    1998-11-01

    The hydrodynamic effects of surfactants have fascinated scientists for generations. This presentation describes an experimental investigation into the influence of a soluble surfactant on nonlinear capillary-gravity waves in the frequency range from 12 to 20 Hz. Waves were generated in a plexiglass wave tank (254 cm long, 30.5 cm wide, and 18 cm deep) with a triangular plunger wave maker. The tank was filled with carbon- and particulate-filtered water into which the soluble surfactant Triton-X-100® was added in known amounts. Wave slope was measured nonintrusively with a digital camera running at 225 fps by monitoring the position of light beams which passed up through the bottom of the tank, out through the wavy surface, and onto a white screen. Wave slope data were reduced to determine wave damping and the frequency content of the wave train. Both were influenced by the presence of the surfactant. Interestingly, a subharmonic wave occurring at one-sixth the paddle-driving frequency was found only when surfactant was present and the paddle was driven at amplitudes high enough to produce nonlinear waves in clean water. Although the origins of this subharmonic wave remain unclear, it appears to be a genuine manifestation of the combined effects of the surfactant and nonlinearity.

  10. Photocatalytic hydrogen production from a simple water-soluble [FeFe]-hydrogenase model system.

    Science.gov (United States)

    Cao, Wei-Ning; Wang, Feng; Wang, Hong-Yan; Chen, Bin; Feng, Ke; Tung, Chen-Ho; Wu, Li-Zhu

    2012-08-21

    Combined with a simple water soluble [FeFe]-hydrogenase mimic 1, Ru(bpy)(3)(2+) and ascorbic acid enable hydrogen production photocatalytically. More than 88 equivalents of H(2) were achieved in water, which is much better than that obtained in an organic solvent or a mixture of organic solvent and water.

  11. Indomethacin solubility estimation in 1,4-dioxane + water mixtures by the extended hildebrand solubility approach

    Directory of Open Access Journals (Sweden)

    Miller A Ruidiaz

    2011-09-01

    Full Text Available Extended Hildebrand Solubility Approach (EHSA was successfully applied to evaluate the solubility of Indomethacin in 1,4-dioxane + water mixtures at 298.15 K. An acceptable correlation-performance of EHSA was found by using a regular polynomial model in order four of the W interaction parameter vs. solubility parameter of the mixtures (overall deviation was 8.9%. Although the mean deviation obtained was similar to that obtained directly by means of an empiric regression of the experimental solubility vs. mixtures solubility parameters, the advantages of EHSA are evident because it requires physicochemical properties easily available for drugs.

  12. Physical and ionic characteristics in water soluble fraction (WSF) of ...

    African Journals Online (AJOL)

    SERVER

    2008-01-04

    Jan 4, 2008 ... Key words: Physical and ionic characteristics, heavy metals, water soluble fraction, crude oil and Azolla africana. ... impact on aquatic life (Camougis, 1981). Water ..... Fish, fisheries, aquatic macrophytes and water quality in.

  13. “ Enhancement of Solubility of poorly water soluble drug by solid dispersion technique”

    Directory of Open Access Journals (Sweden)

    V.R.Tagalpallewar

    2015-02-01

    Full Text Available Atovaquone and Satrinidazole has poor solubility resulting in low oral absorption hence low oral bioavailability. Hence to improve the solubility of poorly Atovaquone and Satrinidazole , hydrophilic polymers were used to enhance the dissolution by solid dispersion technique. Polyehylene Glycol 4000 and PVP k30 used to enhance the dissolution of both the drug by Solubilisation. Many alternative techniques have been used to improve such bioavailability; this study thus employed the simple solid dispersion technique and incorporated excipients which can increase the bioavailability of these drugs directly enhancing the dissolution rate of the drug and indirectly by reducing particle size.The aim of present work is to enhance the dissolution of poorly water soluble drug by using solid dispersion technique. To improve the dissolution rate, by using the various concentration of carrier or matrix with drug and hence ,improve the bioavailability of poorly water soluble drug by formulating solid dispersion.To enhance the solubility of poorly water soluble drug ,by means of solubilising agent. In case of poorly water soluble drug, dissolution may be the rate limiting step in the process of absorption. In such case ,we can improve their solubility and dissolution rate.To study the effect of surfactant on the solid dispersion of poorly water soluble drug.

  14. Preparation and Properties of Water-soluble Conjugated Polyelectrolyte

    Institute of Scientific and Technical Information of China (English)

    BAO Xiangjun; HONG Ruibin; HU Jianhua; ZHONG Yiping; LIU Ping; DENG Wenji

    2014-01-01

    The water-soluble conjugated polyelectrolyte, poly[3-(1′-ethyloxy-2′-N- methylimidazole) thiophene] (PEOIMT), was prepared. Its photophysical and electrochemical properties, and response characteristics to the external condition (e g, temperature response, solvent response and pH response), were investigated. The results show the PEOIMT belongs to the organic semiconductor. The interaction between the PEOIMT and the bovine serum albumin (BSA) was investigated using UV-vis spectroscopy. It was found that the PEOIMT could interact with the BSA. The PEOIMT can be used as a biosensor to detect the BSA.

  15. Solubility prediction of satranidazole in propylene glycol-water mixtures using extended hildebrand solubility approach

    Directory of Open Access Journals (Sweden)

    P B Rathi

    2011-01-01

    Full Text Available Extended Hildebrand solubility approach is used to estimate the solubility of satranidazole in binary solvent systems. The solubility of satranidazole in various propylene glycol-water mixtures was analyzed in terms of solute-solvent interactions using a modified version of Hildebrand-Scatchard treatment for regular solutions. The solubility equation employs term interaction energy (W to replace the geometric mean (δ1δ2 , where δ1 and δ2 are the cohesive energy densities for the solvent and solute, respectively. The new equation provides an accurate prediction of solubility once the interaction energy, W, is obtained. In this case, the energy term is regressed against a polynomial in δ1 of the binary mixture. A quartic expression of W in terms of solvent solubility parameter was found for predicting the solubility of satranidazole in propylene glycol-water mixtures. The expression yields an error in mole fraction solubility of ~3.74%, a value approximating that of the experimentally determined solubility. The method has potential usefulness in preformulation and formulation studies during which solubility prediction is important for drug design.

  16. Solubility prediction of satranidazole in propylene glycol-water mixtures using extended hildebrand solubility approach.

    Science.gov (United States)

    Rathi, P B

    2011-11-01

    Extended Hildebrand solubility approach is used to estimate the solubility of satranidazole in binary solvent systems. The solubility of satranidazole in various propylene glycol-water mixtures was analyzed in terms of solute-solvent interactions using a modified version of Hildebrand-Scatchard treatment for regular solutions. The solubility equation employs term interaction energy (W) to replace the geometric mean (δ(1)δ(2)), where δ(1) and δ(2) are the cohesive energy densities for the solvent and solute, respectively. The new equation provides an accurate prediction of solubility once the interaction energy, W, is obtained. In this case, the energy term is regressed against a polynomial in δ(1) of the binary mixture. A quartic expression of W in terms of solvent solubility parameter was found for predicting the solubility of satranidazole in propylene glycol-water mixtures. The expression yields an error in mole fraction solubility of ~3.74%, a value approximating that of the experimentally determined solubility. The method has potential usefulness in preformulation and formulation studies during which solubility prediction is important for drug design.

  17. 氮沉降影响下酸性森林土壤中水溶性有机氮的分布特征%DISTRIBUTION PATTERN OF WATER SOLUBLE ORGANIC NITROGEN IN ACIDIC FOREST SOILS RECEIVING NITROGEN DEPOSITION

    Institute of Scientific and Technical Information of China (English)

    郭景恒; 张逸; 何骞; 相秀娟

    2011-01-01

    选取贵州雷公山(LGS)和重庆铁山坪(TSP)两个氮沉降量具有明显差异的森林小流域,对土壤中水溶性有机氮(WSON)的分布特征进行了对比研究.在氮沉降较低的LGS流域土壤水中WSON占总氮的比例可达30%—60%,显著高于氮沉降高的TSP流域.TSP流域土壤浸提液中WSON的比例相较于土壤水有显著增加,说明该流域中WSON多附着于土壤表面,流动性较弱.在0—90 cm典型剖面内,TSP流域WSON的比例显著高于LGS流域.两剖面中WSON的比例均在中部(30—60 cm)达到最高值,分别为35.37%和5%Distribution pattern of water soluble organic nitrogen(WSON) in acidic forest soils was investigated in two selected catchments.In Leigongshan(LGS) catchment receiving lower nitrogen deposition,WSON was the important fraction of total dissolved nitrogen(TDN) in soil water,with the percentage ranging from 30% to 60%.However,the percentage was less than 10% in Teishanping(TSP) catchment receiving higher nitrogen deposition.In soil extracts of TSP catchment WSON percentage increased substantially,which indicates that WSON in this catchment mostly adsorbed on soil solid phase with low mobility.In the typical soil profiles(0—90 cm),WSON percentage in TSP catchment was significantly higher than that in LGS catchment.In LGS and TSP catchment,WSON percentage reached its maximum in the middle depth(30—60 cm) with the values of 35.37% and 55.82%,respectively.Vertical change of WSON was not synchronous with water soluble organic carbon(WSOC) in the investigated soil depth range.In the middle depth,C/N ratio of water soluble organic matter(WSOM) reached minimum.In the middle and bottom depth(30—90 cm),C/N ratio in TSP profile was significantly lower than in LGS profile,indicating higher nitrogen enrichment of WSOM in TSP catchment.

  18. Compostos orgânicos hidrossolúveis de resíduos vegetais e seus efeitos nos atributos químicos do solo Water-soluble organic compounds in plant residue and the effects on soil chemical properties

    Directory of Open Access Journals (Sweden)

    Raquel Cátia Diehl

    2008-12-01

    Full Text Available Compostos orgânicos hidrossolúveis de resíduos vegetais depositados na superfície do solo podem melhorar a fertilidade do subsolo, pela neutralização da acidez e transporte de Ca e Mg. Com o objetivo de avaliar o efeito dos compostos orgânicos hidrossolúveis de materiais vegetais nos atributos químicos de um Latossolo Vermelho distroférrico, foi desenvolvido um experimento no Instituto Agronômico do Paraná (IAPAR, Londrina, com amostras de solo acondicionadas em colunas nas quais se aplicaram os tratamentos: água destilada, calcário incorporado na camada 0-5 cm de profundidade, calcário e percolação com extratos de nabo forrageiro, aveia preta, palha de trigo, milho e soja. No extrato percolado, foram determinados os teores de ligantes orgânicos hidrossolúveis (LOH por potenciometria com eletrodo seletivo de Cu2+; ácidos orgânicos tituláveis (AOT por titulação ácido-base e ânions orgânicos (AO pela soma de bases. As concentrações de AO e AOT variaram de 7,0 a 32,0 mmol L-1 e de LOH de 0,60 a 2,23 mmol L-1. Todos os extratos vegetais aumentaram o pH, os teores de Ca, Mg e K trocável e diminuíram a acidez potencial e o Al trocável até 15 cm de profundidade, enquanto o efeito da calagem sem extrato foi observado somente até 10 cm de profundidade. A concentração de compostos orgânicos solúveis oriundos dos materiais vegetais correlacionou-se com o pH, Al trocável, H+Al e V % do solo na camada de 0-20 cm, confirmando a participação destes na melhoria dos atributos químicos do solo e ação da calagem superficial quando o material vegetal está presente.The water-soluble organic compounds of plant residues released on the soil surface can improve the subsoil fertility, due to the neutralization of acidity and Ca and Mg transport. An experiment was conducted at the Instituto Agronomico do Parana (IAPAR, Londrina, to evaluate the effect of water-soluble organic compounds of plant extracts on the chemical

  19. Organic synthesis reactions on-water at the organic-liquid water interface.

    Science.gov (United States)

    Butler, Richard N; Coyne, Anthony G

    2016-10-25

    Organic reactions that occur at the water interface for water-insoluble compounds, and reactions in water solution for water soluble compounds, has added a powerful dimension to prospects for organic synthesis under more beneficial economic and environmental conditions. Many organic molecules are partially soluble in water and reactions that appear as heterogeneous mixtures and suspensions may involve on-water and in-water reaction modes occurring simultaneously. The behavior of water molecules and organic molecules at this interface is discussed in the light of reported theoretical and experimental studies. The on-water catalytic effect, relative to neat reactions or organic solvents, ranges from factors of several hundred times to 1-2 times and it depends on the properties of reactant compounds. In some cases when on-water reactions produce quantitative yields of water-insoluble products they can reach ideal synthetic aspirations.

  20. Effect of Cyclodextrin Types and Co-Solvent on Solubility of a Poorly Water Soluble Drug

    Science.gov (United States)

    Charumanee, Suporn; Okonogi, Siriporn; Sirithunyalug, Jakkapan; Wolschann, Peter; Viernstein, Helmut

    2016-01-01

    The aim of the study was to investigate the solubility of piroxicam (Prx) depending on the inclusion complexation with various cyclodextrins (CDs) and on ethanol as a co-solvent. The phase-solubility method was applied to determine drug solubility in binary and ternary systems. The results showed that in systems consisting of the drug dissolved in ethanol–water mixtures, the drug solubility increased exponentially with a rising concentration of ethanol. The phase solubility measurements of the drug in aqueous solutions of CDs, β-CD and γ-CD exhibited diagrams of AL-type, whereas 2,6-dimethyl-β-CD revealed AP-type. The destabilizing effect of ethanol as a co-solvent was observed for all complexes regardless of the CD type, as a consequence of it the lowering of the complex formation constants. In systems with a higher concentration of ethanol, the drug solubility was increased in opposition to the decreasing complex formation constants. According to this study, the type of CDs played a more important role on the solubility of Prx, and the use of ethanol as a co-solvent exhibited no synergistic effect on the improvement of Prx solubility. The Prx solubility was increased again due to the better solubility in ethanol. PMID:27763573

  1. Effect of Cyclodextrin Types and Co-Solvent on Solubility of a Poorly Water Soluble Drug

    Directory of Open Access Journals (Sweden)

    Suporn Charumanee

    2016-10-01

    Full Text Available The aim of the study was to investigate the solubility of piroxicam (Prx depending on the inclusion complexation with various cyclodextrins (CDs and on ethanol as a co-solvent. The phase-solubility method was applied to determine drug solubility in binary and ternary systems. The results showed that in systems consisting of the drug dissolved in ethanol–water mixtures, the drug solubility increased exponentially with a rising concentration of ethanol. The phase solubility measurements of the drug in aqueous solutions of CDs, β-CD and γ-CD exhibited diagrams of AL-type, whereas 2,6-dimethyl-β-CD revealed AP-type. The destabilizing effect of ethanol as a co-solvent was observed for all complexes regardless of the CD type, as a consequence of it the lowering of the complex formation constants. In systems with a higher concentration of ethanol, the drug solubility was increased in opposition to the decreasing complex formation constants. According to this study, the type of CDs played a more important role on the solubility of Prx, and the use of ethanol as a co-solvent exhibited no synergistic effect on the improvement of Prx solubility. The Prx solubility was increased again due to the better solubility in ethanol.

  2. Prediction of water solubilities for selected PCDDs/PCCDFs with COSMO-RS model

    Energy Technology Data Exchange (ETDEWEB)

    Oleszek-Kudlak, S.; Grabda, M.; Shibata, E.; Nakamura, T. [Inst. of Multidisciplinary Research for Advanced Materials (IMRAM), Tohoku Univ., Sendai (Japan); Rosik-Dulewska, C. [Inst. of Environmental Engineering of the Polish Academy of Sciences, Zabrze (Poland)

    2004-09-15

    Polychlorinated dibenzo-p-dioxins (PCDDs) and polychlorinated dibenzofurans (PCDFs) are well identified contaminants ubiquitous in the environment. Of the various parameters that affect the fate and behavior of environmental organic compounds, water solubility is one of the most important. However, when we are studying the aqueous behavior of organic chemicals, we should also take into consideration and evaluate several parameters (temperature, salinity, dissolved organic matter) influencing their solubility. Among the 210 congeners (mono- to octa-chlorinated) of PCDDs and PCDFs, water solubility values are available for a few congeners only. The reported aqueous solubilities of PCDDs and PCDFs are often scattered, despite most of them having been measured by the generator column method, recognized as the most accurate for the determination of the water solubility of hydrophobic organic chemicals. These discrepancies reflect an important problem associated with difficulties in the preparation of the saturated solution and in the analytical measurements, particularly of compounds with a solubility below 1 ppb. In practice, the high cost of the experimental determinations also limits the field of research. In recent years, investigators have developed a number of calculational methods to predict the water solubility of organic chemicals. One of them is the Conductor-like Screening Model for Real Solvents (COSMO-RS) introduced by Klamt et al. This model was successfully used for finding the solubilities of chlorobenzenes (ClBZs) at a wider range of temperatures (from 5 to 60 C) and in a salty environment. In this study, we have applied COSMO-RS to determine the aqueous solubilities of 19 PCDDs/ PCDFs at 25 C. Additionally, we measured the solubilities of 7 PCDDs/PCDFs using the generator column method at 25 C. We used these data and those available from the literature to estimate the accuracy of the COSMO-RS calculations.

  3. A water soluble extract from Uncaria tomentosa (Cat's Claw) is a potent enhancer of DNA repair in primary organ cultures of human skin.

    Science.gov (United States)

    Mammone, Thomas; Akesson, Christina; Gan, David; Giampapa, Vincent; Pero, Ronald W

    2006-03-01

    Cat's Claw (Uncaria tomentosa) water extracts, essentially free of oxindole alkaloids, have been shown to possess a broad spectrum of biological activity including DNA repair enhancement and antiinflammatory properties. These two biological mechanisms are key molecular targets to develop treatments that protect skin exposed to ultraviolet light from the sun. Because C-Med-100, a Cat's Claw water extract, is the only documented natural source of components that can up-regulate simultaneously both DNA repair and antiinflammation, its ability to modulate DNA repair in human skin organ cultures was undertaken. For this purpose skin cultures were treated with or without 5 mg/mL C-Med-100, irradiated with 0-100 mJ/cm2 UVB, and microscopically analysed for necrosis as well as the level of pyrimidine dimers using immunofluorescent TT-dimer antibody staining. The data clearly demonstrated that co-incubation with C-Med-100 reduced skin cell death from UV exposure, and this protection was accounted for by a concomitant increase in DNA repair. Based on these results, it was concluded that C-Med-100 was a natural plant extract worthy of further consideration as a sunscreen product. Copyright 2006 John Wiley & Sons, Ltd.

  4. Binary systems solubilities of inorganic and organic compounds

    CERN Document Server

    Stephen, H

    1963-01-01

    Solubilities of Inorganic and Organic Compounds, Volume 1: Binary Systems, Part 1 is part of an approximately 5,500-page manual containing a selection from the International Chemical Literature on the Solubilities of Elements, Inorganic Compounds, Metallo-organic and Organic Compounds in Binary, Ternary and Multi-component Systems. A careful survey of the literature in all languages by a panel of scientists specially appointed for the task by the U.S.S.R. Academy of Sciences, Moscow, has made the compilation of this work possible. The complete English edition in five separately bound volumes w

  5. Effects of sulfite ions on water-soluble chlorophyll proteins

    Energy Technology Data Exchange (ETDEWEB)

    Sugahara, K.; Uchida, S.; Takimoto, M.

    1980-01-01

    To clarify the mechanisms and processes of chlorophyll destruction and the relation to the appearance of visible symptoms in SO/sub 2/-injured plants, model experiments were carried out by utilizing the peculiar properties of a water-soluble chlorophyll protein from Chenopodium album. The acceleration of chlorophyll destruction by sulfite ions under aerobic and illuminated conditions, reported previously in organic solvent, was not observed for the water-soluble pigment-protein complex, even in 4 x 10/sup -2/ M sulfite. This indicates that pigments are stabilized by combining with protein molecules. On comparison of pigment destruction between the reconstituted chlorophyll a- and chlorophyllide a-proteins in the presence of sulfite ions, the former was slightly sensitive to sulfite ions. On the other hand, it was demonstrated that photoconversion of water-soluble chlorophyll protein was inhibited by denaturation of the protein moiety caused by sulfite ions in the presence of light. In addition it was shown that it was necessary for the pigment absorbing the light energy to be structurally related to the protein moiety for inhibition of photoconversion. From these results, the inhibition processes of photoconversion are inferred as follows: conformational changes of apoprotein molecules were induced by light energy absorbed by the pigments and which allowed sulfite ions to attack the apoprotein molecules. The mechanism of the sulfite action on the apoprotein is the breakdown of disulfide bonds in proteins, the disulfide bonds having important functions in the photoconversion process. From the present model experiments, it is suggested that the breakdown of disulfide bonds occurred and induced damage to the chloroplast lamellae or physiological functions in the SO/sub 2/-injured plant tissues. 17 references, 8 figures.

  6. Biological properties of water-soluble phosphorhydrazone dendrimers

    Directory of Open Access Journals (Sweden)

    Anne-Marie Caminade

    2013-01-01

    Full Text Available Dendrimers are hyperbranched and perfectly defined macromolecules, constituted of branches emanating from a central core in an iterative fashion. Phosphorhydrazone dendrimers constitute a special family of dendrimers, possessing one phosphorus atom at each branching point. The internal structure of these dendrimers is hydrophobic, but hydrophilic terminal groups can induce the solubility of the whole structure in water. Indeed, the properties of these compounds are mainly driven by the type of terminal groups their bear; this is especially true for the biological properties. For instance, positively charged terminal groups are efficient for transfection experiments, as drug carriers, as anti-prion agents, and as inhibitor of the aggregation of Alzheimer's peptides, whereas negatively charged dendrimers have anti-HIV properties and can influence the human immune system, leading to anti-inflammatory properties usable against rheumatoid arthritis. This review will give the most representative examples of the biological properties of water-soluble phosphorhydrazone dendrimers, organized depending on the type of terminal groups they bear.

  7. Enhancement of solubility and dissolution rate of poorly water soluble raloxifene using microwave induced fusion method

    OpenAIRE

    Payal Hasmukhlal Patil; Veena Sailendra Belgamwar; Pratibha Ramratan Patil; Sanjay Javerilal Surana

    2013-01-01

    The objective of the present work was to enhance the solubility and dissolution rate of the drug raloxifene HCl (RLX), which is poorly soluble in water. The solubility of RLX was observed to increase with increasing concentration of hydroxypropyl methylcellulose (HPMC E5 LV). The optimized ratio for preparing a solid dispersion (SD) of RLX with HPMC E5 LV using the microwave-induced fusion method was 1:5 w/w. Microwave energy was used to prepare SDs. HPMC E5 LV was used as a hydrophilic carri...

  8. Interlaboratory validation of small-scale solubility and dissolution measurements of poorly water-soluble drugs

    DEFF Research Database (Denmark)

    Andersson, Sara B. E.; Alvebratt, Caroline; Bevernage, Jan

    2016-01-01

    The purpose of this study was to investigate the interlaboratory variability in determination of apparent solubility (Sapp) and intrinsic dissolution rate (IDR) using a miniaturized dissolution instrument. Three poorly water-soluble compounds were selected as reference compounds and measured...... the concentrations reached are typically below the limit of detection. The following guidelines were established: for compounds with Sapp >1 mg/mL, the disc method is recommended. For compounds with Sapp

  9. Application of various water soluble polymers in gas hydrate inhibition

    DEFF Research Database (Denmark)

    Kamal, Muhammad Shahzad; Hussein, Ibnelwaleed A.; Sultan, Abdullah S.

    2016-01-01

    . This review presents the various types of water soluble polymers used for hydrate inhibition, including conventional and novel polymeric inhibitors along with their limitations. The review covers the relevant properties of vinyl lactam, amide, dendrimeric, fluorinated, and natural biodegradable polymers...

  10. Deep cavitand receptors with pH-independent water solubility.

    Science.gov (United States)

    Lledó, Agustí; Rebek, Julius

    2010-12-07

    Pendant oligoethyleneglycol groups confer water solubility to a cavitand over a wide pH range. The kinetic stability of the host-guest complexes reveals an effective stabilization through hydrogen bonding even in the highly competitive aqueous environment.

  11. Water-soluble pyrrolopyrrole cyanine (PPCy) NIR fluorophores.

    Science.gov (United States)

    Wiktorowski, Simon; Rosazza, Christelle; Winterhalder, Martin J; Daltrozzo, Ewald; Zumbusch, Andreas

    2014-05-11

    Water-soluble derivatives of pyrrolopyrrole cyanines (PPCys) have been synthesized by a post-synthetic modification route. In highly polar media, these dyes are excellent NIR fluorophores. Labeling experiments show how these novel dyes are internalized into mammalian cells.

  12. Water-soluble dopamine-based polymers for photoacoustic imaging

    NARCIS (Netherlands)

    Repenko, T.; Fokong, S.; De Laporte, L.; Go, D.; Kiessling, F.; Lammers, Twan Gerardus Gertudis Maria; Kuehne, A.

    2015-01-01

    Here we present a facile synthetic method yielding a linear form of polydopamine via Kumada-coupling, which can be converted into water-soluble melanin, generating high contrast in photoacoustic imaging.

  13. Plasma concentrations of water-soluble vitamins in metabolic ...

    African Journals Online (AJOL)

    2012-01-21

    Jan 21, 2012 ... levels of water-soluble vitamins with metabolic syndrome and its various components. Aims: This ... thiamine has a role in reducing cellular oxidative stress.[2,12] ... a protective effect on pancreatic beta-cell survival, probably.

  14. Buckminsterfullerene's (C60) octanol-water partition coefficient (Kow) and aqueous solubility.

    Science.gov (United States)

    Jafvert, Chad T; Kulkarni, Pradnya P

    2008-08-15

    To assess the risk and fate of fullerene C60 in the environment, its water solubility and partition coefficients in various systems are useful. In this study, the log Kow of C60 was measured to be 6.67, and the toluene-water partition coefficient was measured at log Ktw = 8.44. From these values and the respective solubilities of C60 in water-saturated octanol and water-saturated toluene, C60's aqueous solubility was calculated at 7.96 ng/L(1.11 x 10(-11) M) for the organic solvent-saturated aqueous phase. Additionally, the solubility of C60 was measured in mixtures of ethanol-water and tetrahydrofuran-water and modeled with Wohl's equation to confirm the accuracy of the calculated solubility value. Results of a generator column experiment strongly support the hypothesis that clusters form at aqueous concentrations below or near this calculated solubility. The Kow value is compared to those of other hydrophobic organic compounds, and bioconcentration factors for C60 were estimated on the basis of Kow.

  15. Improved water solubility of neohesperidin dihydrochalcone in sweetener blends.

    Science.gov (United States)

    Benavente-García, O; Castillo, J; Del Baño, M J; Lorente, J

    2001-01-01

    Significant technological advantages in terms of sweetness synergy and hence cost-saving can be obtained if neohesperidin dihydrochalcone (NHDC) is used in sweetener blends with other intense or bulk sweeteners. The combination of NHDC with sodium saccharin or sodium cyclamate is an excellent method to improve the water solubility at room temperature of NHDC. In the case of NHDC-sodium saccharin, two different methods for blend preparation, a simple mixture and a cosolubilized mixture, can be used, with similar results obtained for solubility and solution stability properties. To improve temporally the water solubility of NHDC in combination with sodium cyclamate, it is absolutely necessary to prepare cosolubilized blends.

  16. Abalone water-soluble matrix for self-healing biomineralization of tooth defects

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Zhenliang [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Chen, Jingdi, E-mail: ibptcjd@fzu.edu.cn [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Wang, Hailiang [The Affiliated Stomatological Hospital, Fujian Medical University, Fuzhou 350002 (China); Zhong, Shengnan; Hu, Yimin; Wang, Zhili [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Zhang, Qiqing, E-mail: zhangqiq@126.com [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192 (China)

    2016-10-01

    Enamel cannot heal by itself if damaged. Hydroxyapatite (HAP) is main component of human enamel. Formation of enamel-like materials for healing enamel defects remains a challenge. In this paper, we successfully isolated the abalone water-soluble matrix (AWSM) with 1.53 wt% the abalone water-soluble protein (AWSPro) and 2.04 wt% the abalone water-soluble polysaccharide (AWSPs) from abandoned abalone shell, and self-healing biomineralization of tooth defects was successfully achieved in vitro. Based on X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), hot field emission scanning electron microscopy (HFESEM) and energy dispersive spectrometer (EDS) analysis, the results showed that the AWSM can efficiently induce remineralization of HAP. The enamel-like HAP was successfully achieved onto etched enamel's surface due to the presence of the AWSM. Moreover, the remineralized effect of eroded enamel was growing with the increase of the AWSM. This study provides a solution to the resource waste and environmental pollution caused by abandoned abalone shell, and we provides a new method for self-healing remineralization of enamel defects by AWSM and develops a novel dental material for potential clinical dentistry application. - Graphical abstract: In this paper, we successfully isolated the abalone water-soluble matrix (AWSM) with 1.53 wt% abalone water-soluble protein (AWSPro) and 2.04 wt% abalone water-soluble polysaccharide (AWSPs) from abandoned abalone shell, and self-healing biomineralization of tooth defects was successfully achieved in vitro by self-organized. Display Omitted - Highlights: • Provides a solution to the resource waste and environmental pollution caused by abandoned abalone shell. • The abalone shell water-soluble matrix contains protein and polysaccharide. • The abalone water-soluble matrix can efficiently induce remineralization of HAP by self-organized. • Achieved self-healing biomineralization of tooth defects in

  17. Water sorption and solubility of polyamide denture base materials.

    Science.gov (United States)

    Nguyen, Long G; Kopperud, Hilde M; Øilo, Marit

    2017-01-01

    Purpose: Some patients experience adverse reactions to poly(methyl methacrylate)-based (PMMA) dentures. Polyamide (PA) as an alternative to PMMA has, however, not been well documented with regard to water sorption and water solubility. The aim of this in vitro study was to measure water sorption and water solubility of two PA materials compared with PMMA, and to evaluate the major components released from the PA materials and the effect on hardness of the materials. Methods: Ten discs (40.0 mm diameter, 2.0 mm thick) of each material (PA: Valplast and Breflex; PMMA: SR Ivocap HIP) were prepared according to manufacturers' recommendations. The specimens were tested for water sorption and water solubility, according to a modification of ISO 20795-1:2008. Released substances were analysed by gas chromatography/mass spectrometry (GC/MS). Results: There were statistically significant differences among the materials regarding water sorption, water solubility and time to water saturation. Breflex had the highest water sorption (30.4 μg/mm(3)), followed by PMMA-material (25.8 μg/mm(3)) and Valplast (13.6 μg/mm(3)). Both PA materials had statistically significant lower water solubility than the PMMA. Both PA had a net increase in weight. Analysis by GC/MS identified release of the compound 12-aminododecanolactam from the material Valplast. No release was found from the Breflex material. Conclusions: The PA denture materials show differences in water sorption and solubility, but within the limits of the standard requirements. The PA showed a net increase in weight after long-term water sorption. The clinical implications of the findings are not elucidated.

  18. Novel electrosprayed nanospherules for enhanced aqueous solubility and oral bioavailability of poorly water-soluble fenofibrate

    Science.gov (United States)

    Yousaf, Abid Mehmood; Mustapha, Omer; Kim, Dong Wuk; Kim, Dong Shik; Kim, Kyeong Soo; Jin, Sung Giu; Yong, Chul Soon; Youn, Yu Seok; Oh, Yu-Kyoung; Kim, Jong Oh; Choi, Han-Gon

    2016-01-01

    Purpose The purpose of the present research was to develop a novel electrosprayed nanospherule providing the most optimized aqueous solubility and oral bioavailability for poorly water-soluble fenofibrate. Methods Numerous fenofibrate-loaded electrosprayed nanospherules were prepared with polyvinylpyrrolidone (PVP) and Labrafil® M 2125 as carriers using the electrospray technique, and the effect of the carriers on drug solubility and solvation was assessed. The solid state characterization of an optimized formulation was conducted by scanning electron microscopy, powder X-ray diffraction, differential scanning calorimetry, and Fourier transform infrared spectroscopic analyses. Oral bioavailability in rats was also evaluated for the formulation of an optimized nanospherule in comparison with free drug and a conventional fenofibrate-loaded solid dispersion. Results All of the electrosprayed nanospherule formulations had remarkably enhanced aqueous solubility and dissolution compared with free drug. Moreover, Labrafil M 2125, a surfactant, had a positive influence on the solubility and dissolution of the drug in the electrosprayed nanospherule. Increases were observed as the PVP/drug ratio increased to 4:1, but higher ratios gave no significant increases. In particular, an electrosprayed nanospherule composed of fenofibrate, PVP, and Labrafil M 2125 at the weight ratio of 1:4:0.5 resulted in a particle size of amorphous state. It demonstrated the highest solubility (32.51±2.41 μg/mL), an excellent dissolution (~85% in 10 minutes), and an oral bioavailability ~2.5-fold better than that of the free drug. It showed similar oral bioavailability compared to the conventional solid dispersion. Conclusion Electrosprayed nanospherules, which provide improved solubility and bioavailability, are promising drug delivery tools for oral administration of poorly water-soluble fenofibrate. PMID:26834471

  19. Solubility Enhancement of a Poorly Water Soluble Drug by Forming Solid Dispersions using Mechanochemical Activation

    Science.gov (United States)

    Rojas-Oviedo, I.; Retchkiman-Corona, B.; Quirino-Barreda, C. T.; Cárdenas, J.; Schabes-Retchkiman, P. S.

    2012-01-01

    Mechanochemical activation is a practical cogrinding operation used to obtain a solid dispersion of a poorly water soluble drug through changes in the solid state molecular aggregation of drug-carrier mixtures and the formation of noncovalent interactions (hydrogen bonds) between two crystalline solids such as a soluble carrier, lactose, and a poorly soluble drug, indomethacin, in order to improve its solubility and dissolution rate. Samples of indomethacin and a physical mixture with a weight ratio of 1:1 of indomethacin and lactose were ground using a high speed vibrating ball mill. Particle size was determined by electron microscopy, the reduction of crystallinity was determined by calorimetry and transmission electron microscopy, infrared spectroscopy was used to find evidence of any interactions between the drug and the carrier and the determination of apparent solubility allowed for the corroboration of changes in solubility. Before grinding, scanning electron microscopy showed the drug and lactose to have an average particle size of around 50 and 30 μm, respectively. After high speed grinding, indomethacin and the mixture had a reduced average particle size of around 5 and 2 μm, respectively, showing a morphological change. The ground mixture produced a solid dispersion that had a loss of crystallinity that reached 81% after 30 min of grinding while the drug solubility of indomethacin within the solid dispersion increased by 2.76 fold as compared to the pure drug. Drug activation due to hydrogen bonds between the carboxylic group of the drug and the hydroxyl group of lactose as well as the decrease in crystallinity of the solid dispersion and the reduction of the particle size led to a better water solubility of indomethacin. PMID:23798775

  20. Effect of atmospheric organic complexation on iron-bearing dust solubility

    Directory of Open Access Journals (Sweden)

    R. Paris

    2013-05-01

    Full Text Available Recent studies reported that the effect of organic complexation may be a potentially important process to be considered by models estimating atmospheric iron flux to the ocean. In this study, we investigated this process effect by a series of dissolution experiments on iron-bearing dust in the presence or the absence of various organic compounds (acetate, formate, oxalate, malonate, succinate, glutarate, glycolate, lactate, tartrate and humic acid as an analogue of humic like substances, HULIS typically found in atmospheric waters. Only 4 of tested organic ligands (oxalate, malonate, tartrate and humic acid caused an enhancement of iron solubility which was associated with an increase of dissolved Fe(II concentrations. For all of these organic ligands, a positive linear dependence of iron solubility to organic concentrations was observed and showed that the extent of organic complexation on iron solubility decreased in the following order: oxalate >malonate = tartrate > humic acid. This was attributed to the ability of electron donors of organic ligands and implies a reductive ligand-promoted dissolution. This study confirms that among the known atmospheric organic binding ligands of Fe, oxalate is the most effective ligand promoting dust iron solubility and showed, for the first time, the potential effect of HULIS on iron dissolution under atmospheric conditions.

  1. Solubilities of Isophthalic Acid in Acetic Acid + Water Solvent Mixtures

    Institute of Scientific and Technical Information of China (English)

    CHENG Youwei; HUO Lei; LI Xi

    2013-01-01

    The solubilities of isophthalic acid (1) in binary acetic acid (2) + water (3) solvent mixtures were determined in a pressurized vessel.The temperature range was from 373.2 to 473.2K and the range of the mole fraction of acetic acid in the solvent mixtures was from x2 =0 to 1.A new method to measure the solubility was developed,which solved the problem of sampling at high temperature.The experimental results indicated that within the temperature range studied,the solubilities of isophthalic acid in all mixtures showed an increasing trend with increasing temperature.The experimental solubilities were correlated by the Buchowski equation,and the calculate results showed good agreement with the experimental solubilities.Furthermore,the mixed solvent systems were found to exhibit a maximum solubility effect on the solubility,which may be attributed to the intermolecular association between the solute and the solvent mixture.The maximum solubility effect was well modeled by the modified Wilson equation.

  2. Water sorption/solubility of dental adhesive resins.

    Science.gov (United States)

    Malacarne, Juliana; Carvalho, Ricardo M; de Goes, Mario F; Svizero, Nadia; Pashley, David H; Tay, Franklin R; Yiu, Cynthia K; Carrilho, Marcela Rocha de Oliveira; de Oliveira Carrilho, Marcela Rocha

    2006-10-01

    This study evaluated the water sorption, solubility and kinetics of water diffusion in commercial and experimental resins that are formulated to be used as dentin and enamel bonding agents. Four commercial adhesives were selected along with their solvent-monomer combination: the bonding resins were of Adper Scotchbond Multi-Purpose (MP) and Clearfil SE Bond (SE) systems, and the "one-bottle" systems, Adper Single Bond (SB) and Excite (EX). Five experimental methacrylate-based resins of known hydrophilicities (R1, R2, R3, R4 and R5) were used as reference materials. Specimen disks were prepared by dispensing the uncured resin into a mould (5.8mm x 0.8mm). After desiccation, the cured specimens were weighed and then stored in distilled water for evaluation of the water diffusion kinetics over a 28-day period. Resin composition and hydrophilicity (ranked by their Hoy's solubility parameters) influenced water sorption, solubility and water diffusion in both commercial and experimental dental resins. The most hydrophilic experimental resin, R5, showed the highest water sorption, solubility and water diffusion coefficient. Among the commercial adhesives, the solvated systems, SB and EX, showed water sorption, solubility and water diffusion coefficients significantly greater than those observed for the non-solvated systems, MP and SE (p<0.05). In general, the extent and rate of water sorption increased with the hydrophilicity of the resin blends. The extensive amount of water sorption in the current hydrophilic dental resins is a cause of concern. This may affect the mechanical stability of these resins and favor the rapid and catastrophic degradation of resin-dentin bonds.

  3. Enhancement of solubility and dissolution rate of poorly water soluble raloxifene using microwave induced fusion method

    Directory of Open Access Journals (Sweden)

    Payal Hasmukhlal Patil

    2013-09-01

    Full Text Available The objective of the present work was to enhance the solubility and dissolution rate of the drug raloxifene HCl (RLX, which is poorly soluble in water. The solubility of RLX was observed to increase with increasing concentration of hydroxypropyl methylcellulose (HPMC E5 LV. The optimized ratio for preparing a solid dispersion (SD of RLX with HPMC E5 LV using the microwave-induced fusion method was 1:5 w/w. Microwave energy was used to prepare SDs. HPMC E5 LV was used as a hydrophilic carrier to enhance the solubility and dissolution rate of RLX. After microwave treatment, the drug and hydrophilic polymer are fused together, and the drug is converted from the crystalline form into an amorphous form. This was confirmed through scanning electron microscopy (SEM, differential scanning calorimetry (DSC and powder X-ray diffraction (PXRD studies. These results suggested that the microwave method is a simple and efficient method of preparing SDs. The solubility and dissolution rate of the SDs were increased significantly compared with pure RLX due to the surfactant and wetting properties of HPMC E5 LV and the formation of molecular dispersions of the drug in HPMC E5 LV. It was concluded that the solubility and dissolution rate of RLX are increased significantly when an SD of the drug is prepared using the microwave-induced fusion method.

  4. Phosphoryl choline-grafted water-soluble carbon nanotube

    Institute of Scientific and Technical Information of China (English)

    Tao Zhang; Kai Xi; Min Gu; Zheng Sheng Jiang

    2008-01-01

    Water-soluble property is the precondition of biomedical evaluation and application of carbon nanotube (CNT). Novel watersoluble CNT was synthesized in this letter by grafting phosphoryi choline (PC) onto multi-wall CNTs. Utilizing FTIR, XPS, TGAand TEM, the title CNTs were characterized and it was found that the target products could facilely dissolve in water.

  5. Efficient and Convenient Preparation of Water-Soluble Fullerenol

    Institute of Scientific and Technical Information of China (English)

    ZHANG Jian-Min章建民; YANG Wen杨文; HE Ping何萍; ZHU Shi-Zheng朱士正

    2004-01-01

    An efficient and convenient preparation of fullerenols was described. With polyethylene glycol (PEG) 400 as catalyst, fullerenols were conveniently synthesized via the direct reaction of fullerene with aqueous NaOH. By control of reaction conditions, either water-soluble C60 fullerenol or water-insoluble C60 fullerenol could be obtained selectively.

  6. Coaxial electrospinning for encapsulation and controlled release of fragile water-soluble bioactive agents.

    Science.gov (United States)

    Jiang, Hongliang; Wang, Liqun; Zhu, Kangjie

    2014-11-10

    Coaxial electrospinning is a robust technique for one-step encapsulation of fragile, water-soluble bioactive agents, including growth factors, DNA and even living organisms, into core-shell nanofibers. The coaxial electrospinning process eliminates the damaging effects due to direct contact of the agents with organic solvents or harsh conditions during emulsification. The shell layer serves as a barrier to prevent the premature release of the water-soluble core contents. By varying the structure and composition of the nanofibers, it is possible to precisely modulate the release of the encapsulated agents. Promising work has been done with coaxially electrospun non-woven mats integrated with bioactive agents for use in tissue engineering, in local delivery and in wound healing, etc. This paper reviews the origins of the coaxial electrospinning method, its updated status and potential future developments for controlled release of the class of fragile, water-soluble bioactive agents.

  7. High resolution FT-ICR mass spectral analysis of bio-oil and residual water soluble organics produced by hydrothermal liquefaction of the marine microalga Nannochloropsis salina

    Energy Technology Data Exchange (ETDEWEB)

    Sudasinghe, Nilusha; Dungan, Barry; Lammers, Peter; Albrecht, Karl O.; Elliott, Douglas C.; Hallen, Richard T.; Schaub, Tanner

    2014-03-01

    We report a detailed compositional characterization of a bio-crude oil and aqueous by-product from hydrothermal liquefaction of Nannochloropsis salina by direct infusion Fourier Transform Ion Cyclotron Resonance Mass Spectrometry (FT-ICR MS) in both positive- and negative-ionization modes. The FT-ICR MS instrumentation approach facilitates direct assignment of elemental composition to >7000 resolved mass spectral peaks and three-dimensional mass spectral images for individual heteroatom classes highlight compositional diversity of the two samples and provide a baseline description of these materials. Aromatic nitrogen compounds and free fatty acids are predominant species observed in both the bio-oil and aqueous fraction. Residual organic compounds present in the aqueous fraction show distributions that are slightly lower in both molecular ring and/or double bond value and carbon number relative to those found in the bio-oil, albeit with a high degree of commonality between the two compositions.

  8. Functionalized Carbosilane Dendritic Species as Soluble Support in Organic Synthesis

    NARCIS (Netherlands)

    Koten, G. van; Hovestad, N.J.; Ford, A.; Jastrzebski, J.T.B.H.

    2000-01-01

    A new methodology, which is compatible with the use of reactive organometallic reagents, has been developed for the use of carbosilane dendrimers as soluble supports in organic synthesis. Hydroxy-functionalized dendritic carbosilanes Si[CH2CH2CH2SiMe2(C6H4CH(R)OH)]4 (G0-OH, R = H or (S)-Me) and Si[C

  9. Soluble silk-like organic matrix in the nacreous layer of the bivalve Pinctada maxima.

    Science.gov (United States)

    Pereira-Mouriès, Lucilia; Almeida, Maria-José; Ribeiro, Cristina; Peduzzi, Jean; Barthélemy, Michel; Milet, Christian; Lopez, Evelyne

    2002-10-01

    Nacre organic matrix has been conventionally classified as both 'water-soluble' and 'water-insoluble', based on its solubility in aqueous solutions after decalcification with acid or EDTA. Some characteristics (aspartic acid-rich, silk-fibroin-like content) were specifically attributed to either one or the other. The comparative study on the technique of extraction (extraction with water alone vs. demineralization with EDTA) presented here, seems to reveal that this generally accepted classification may need to be reconsidered. Actually, the nondecalcified soluble organic matrix, extracted in ultra-pure water, displays many of the characteristics of what until now has been called 'insoluble matrix'. We present the results obtained on this extract and on a conventional EDTA-soluble matrix, with various characterization methods: fractionation by size-exclusion and anion-exchange HPLC, amino acid analysis, glycosaminoglycan and calcium quantification, SDS/PAGE and FTIR spectroscopy. We propose that the model for the interlamellar matrix sheets of nacre given by Nakahara [In: Biomineralization and Biological Metal Accumulation, Westbroek, P. & deJong, E.W., eds, (1983) pp. 225-230. Reidel, Dordrecht, Holland] and Weiner and Traub [Phil. Trans. R. Soc. Lond. B (1984) 304, 425-434] may no longer be valid. The most recent model, proposed by Levi-Kalisman et al. [J. Struct. Biol. (2001) 135, 8-17], seemed to be more in accordance with our findings.

  10. Water sorption and solubility of dental composites and identification of monomers released in an aqueous environment.

    Science.gov (United States)

    Ortengren, U; Wellendorf, H; Karlsson, S; Ruyter, I E

    2001-12-01

    Water sorption and solubility of six proprietary composite resin materials were assessed, and monomers eluted from the organic matrix during water storage identified. Water sorption and solubility tests were carried out with the following storage times: 4 h, 24 h and 7, 60 and 180 days. After storage, water sorption and solubility were determined. Eluted monomers were analysed by high performance liquid chromatography (HPLC). Correlation between the retention time of the registered peak and the reference peak was observed, and UV-spectra confirmed the identity. The results showed an increase in water sorption until equilibrium for all materials with one exception. The solubility behaviour of the composite resin materials tested revealed variations, with both mass decrease and increase. The resin composition influences the water sorption and solubility behaviour of composite resin materials. The HPLC analysis of eluted components revealed that triethyleneglycol dimethacrylate (TEGDMA) was the main monomer released. Maximal monomer concentration in the eluate was observed after 7 days. During the test period, quantifiable quantities of urethanedimethacrylate (UEDMA) monomer were observed, whereas 2,2-bis[4-(2-hydroxy-3-methacryloyloxypropoxy)-phenyl]propane (Bis-GMA) was only found in detectable quantities. No detectable quantities of bisphenol-A were observed during the test period.

  11. Antimicrobial and Antifungal Effects of Acid and Water-Soluble Chitosan Extracted from Indian Shrimp (Fenneropenaeus indicus Shell

    Directory of Open Access Journals (Sweden)

    Ali Taheri

    2013-06-01

    Full Text Available Background & Objective : Currently, efforts are underway to seek new and effective antimicrobial agents, and marine resources are potent candidates for this aim. The following study was conducted to investigate the efficacy of water-soluble and acid-soluble chitosan against some pathogenic organisms.   Materials & Method s: Inhibition zone of different concentrations (5, 7.5, and 10 mg/ml of acid- soluble and water-soluble chitosan were examined for in vitro antibacterial activity against 4 kinds of hospital bacteria and penicillium sp. Results were compared with 4 standard antibiotics: streptomycin, gentamicin, tetracycline, and erythromycin. Furthermore, minimum inhibitory concentration and minimum lethal concentration were determined.   Results: Inhibition activity of acid-soluble chitosan (10% showed the best result (p value < 0.05, whereas water-soluble chitosan exhibited the least antibacterial effects (p value < 0.05. Chitosan demonstrated maximum effect on V. cholera cerotype ogava , and the least effect was seen on E. coli (p value < 0.05. Acid-soluble chitosan had a more potent effect than the standard antibiotics. Also, acid-soluble chitosan (10% and water-soluble chitosan showed maximum inhibitory effects on penicillium sp.   Conclusion: Chitosan showed maximum antibacterial effect against S. aureus, V. cholerae cerotype ogava, and water-soluble chitosan demonstrated good antifungal effects, revealing a statistically significant difference with common antibacterial and antifungal medicines.

  12. Novel electrosprayed nanospherules for enhanced aqueous solubility and oral bioavailability of poorly water-soluble fenofibrate

    Directory of Open Access Journals (Sweden)

    Yousaf AM

    2016-01-01

    Full Text Available Abid Mehmood Yousaf,1,2 Omer Mustapha,1 Dong Wuk Kim,1 Dong Shik Kim,1 Kyeong Soo Kim,1 Sung Giu Jin,1 Chul Soon Yong,3 Yu Seok Youn,4 Yu-Kyoung Oh,5 Jong Oh Kim,3 Han-Gon Choi1 1College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi, South Korea; 2Faculty of Pharmacy, University of Central Punjab, Johar, Lahore, Pakistan; 3College of Pharmacy, Yeungnam University, Gyongsan, North Gyeongsang, 4School of Pharmacy, Sungkyunkwan University, Suwon, Gyeonggi, 5College of Pharmacy, Seoul National University, Seoul, South Korea Purpose: The purpose of the present research was to develop a novel electrosprayed nanospherule providing the most optimized aqueous solubility and oral bioavailability for poorly water-soluble fenofibrate.Methods: Numerous fenofibrate-loaded electrosprayed nanospherules were prepared with polyvinylpyrrolidone (PVP and Labrafil® M 2125 as carriers using the electrospray technique, and the effect of the carriers on drug solubility and solvation was assessed. The solid state characterization of an optimized formulation was conducted by scanning electron microscopy, powder X-ray diffraction, differential scanning calorimetry, and Fourier transform infrared spectroscopic analyses. Oral bioavailability in rats was also evaluated for the formulation of an optimized nanospherule in comparison with free drug and a conventional fenofibrate-loaded solid dispersion.Results: All of the electrosprayed nanospherule formulations had remarkably enhanced aqueous solubility and dissolution compared with free drug. Moreover, Labrafil M 2125, a surfactant, had a positive influence on the solubility and dissolution of the drug in the electrosprayed nanospherule. Increases were observed as the PVP/drug ratio increased to 4:1, but higher ratios gave no significant increases. In particular, an electrosprayed nanospherule composed of fenofibrate, PVP, and Labrafil M 2125 at the weight ratio of 1

  13. Characteristics of soil microbial biomass carbon and soil water soluble organic carbon in the process of natural restoration of Karst forest%喀斯特森林自然恢复中土壤微生物生物量碳与水溶性有机碳特征

    Institute of Scientific and Technical Information of China (English)

    黄宗胜; 符裕红; 喻理飞

    2012-01-01

    2011年9月,采用空间代替时间方法,研究了贵州茂兰国家级自然保护区退化喀斯特森林自然恢复中土壤微生物生物量碳和水溶性有机碳特征.结果表明:研究期间,土壤微生物生物量碳含量、基础呼吸随土壤深度增加而减少,随自然恢复的进程而增加;微生物熵随土壤深度增加和恢复的进程增加;水溶性有机碳含量随土壤深度增加而减少,随自然恢复的进程表层土增加,下层先增加后减少;水溶性有机碳与有机碳的比值随土壤深度增加而增加,随自然恢复的进程而减少;土壤质量、有机碳的质与量随自然恢复的进程而提高,其中微生物量碳变化最大,而水溶性有机碳变化不显著.%By the method of taking space instead of time, an incubation test was -conducted to study the characteristics of soil microbial biomass carbon and water soluble organic carbon in the process of natural restoration of Karst forest in Maolan Nature Reserve, Guizhou Province of Southwest China. The soil microbial biomass carbon content and soil basal respiration decreased with increasing soil depth but increased with the process of the natural restoration, soil microbial quotient increased with increasing soil depth and with the process of restoration, and soil water soluble organic carbon content decreased with increasing soil depth. In the process of the natural restoration, surface soil water soluble organic carbon content increased, while sublayer soil water soluble organic carbon content decreased after an initial increase. The ratio of soil water soluble organic carbon to total soil organic carbon increased with increasing soil depth but decreased with the process of restoration. Soil quality increased with the process of restoration. Also, the quality and quantity of soil organic carbon increased with the process of restoration, in which, soil microbial biomass carbon content had the greatest change, while soil water soluble

  14. Study of pH-dependent drugs solubility in water

    Directory of Open Access Journals (Sweden)

    Pobudkowska A.

    2014-01-01

    Full Text Available The solubilities of five sparingly soluble drug-compounds in water have been measured at constant temperatures (298.1K and 310.1K by the classical saturation shake-flask method. All substances presented in this work are derivatives of anthranilic acid: flufenamic acid, (FLU, mefenamic acid, (MEF, niflumic acid, (NIF, diclofenac sodium, (DIC, and meclofenamic sodium, (MEC. All of them have anti-inflammatory action. Since the aqueous solubility of the ionized drug is significantly higher than the unionized, the experimental conditions that affect equilibrium solubility values such as composition of aqueous buffer have been examined. The Henderson-Hasselbalch (HH relationship has been used to predict the pH-dependent solubility profiles of chosen drugs at two temperatures. For this purpose the pKa values of the investigated drugs have been determined with Bates-Schwarzenbach spectrophotometric method at temperature 310.1 K. At temperature 298.1K these values were reported earlier. Similar values of pKa were obtained from the solubility measurements.

  15. Water-Soluble Gold Nanoparticles Protected by Fluorinated Amphiphilic Thiolates

    NARCIS (Netherlands)

    Gentilini, Cristina; Evangelista, Fabrizio; Rudolf, Petra; Franchi, Paola; Lucarini, Marco; Pasquato, Lucia

    2008-01-01

    The preparation and the properties of gold nanoparticles (Au NPs) protected by perfluorinated amphiphiles are described. The thiols were devised to form a perfluorinated region close to the gold surface and to have a hydrophilic portion in contact with the bulk solvent to impart solubility in water.

  16. Determination of Carboxylic Acids and Water-soluble Inorganic Ions ...

    African Journals Online (AJOL)

    NICO

    radiation balance.4,5 Major water-soluble inorganic ions are associated with ... central area and major road systems and possible aerosol sources include biomass ..... Tanzania than at European rural sites32 and Asia.33,34. To determine the ...

  17. Water-soluble diphosphadiazacyclooctanes as ligands for aqueous organometallic catalysis

    KAUST Repository

    Boulanger, Jérôme

    2012-12-01

    Two new water-soluble diphosphacyclooctanes been synthesized and characterized by NMR and surface tension measurements. Both phosphanes proved to coordinate rhodium in a very selective way as well-defined bidentates were obtained. When used in Rh-catalyzed hydroformylation of terminal alkenes, both ligands positively impacted the reaction chemoselectivity. © 2012 Elsevier B.V.

  18. Water-soluble constituents of cumin: monoterpenoid glucosides.

    Science.gov (United States)

    Ishikawa, Toru; Takayanagi, Tomomi; Kitajima, Junichi

    2002-11-01

    From the water-soluble portion of the methanol extract of cumin (fruit of Cuminum cyminum L.), which has been used as a spice and medicine since antiquity, sixteen monoterpenoid glucosides, including twelve new compounds, were isolated. Their structures were clarified by spectral investigation.

  19. Morphological Analysis and Solubility of Lead Particles: Effect of Phosphates and Implications to Drinking Water (Presentation)

    Science.gov (United States)

    Describe lead synthesis experiments conduced to model the impact of water quality on lead particles and solubility Develop a model system that can be used for lead solubility studies Understand how phosphates impact morphology and solubility transformations with time

  20. Water-soluble primary amine compounds in rural continental precipitation

    Science.gov (United States)

    Gorzelska, Krystyna; Galloway, James N.; Watterson, Karen; Keene, William C.

    Procedures for collecting, storing and analysing precipitation samples for organic nitrogen studies were developed. These procedures preserve chemical integrities of the species of interest, allow for up to 3 months storage and quantitative determination of water-soluble primary amine compounds, with the overall error at the 2 nM detection limit of less than 30%. This methodology was applied to study amino compounds in precipitation samples collected over a period of one year in central Virginia. Nitrogen concentrations of 13 amino acids and 3 aliphatic amines were summed to calculate the total amine nitrogen (TAN). The concentration of TAN ranged from below our detection level to 6658 nM, and possibly reflected a seasonal variation in the source strength of the atmospheric amines. Overall, the most commonly occurring amino compounds were methyl amine, ethyl amine, glutamic acid, glycine and serine. On average, the highest overall contribution to the TAN came from arginine, asparagine, glutamine, methyl amine, serine and alanine. However, large qualitative and quantitative variations observed among samples warrant caution in interpretation and application of the averaged values. TAN in Charlottesville precipitation contributed from less than 1 to ca 10% of the ammonium nitrogen level. However, our estimates show that amino compounds may contribute significantly to reduced nitrogen budget in precipitation in remote regions.

  1. Mechanisms and solubility equations of gas dissolving in water

    Institute of Scientific and Technical Information of China (English)

    付晓泰; 王振平; 卢双舫

    1996-01-01

    The two mechanisms of gas dissolving in water, interstice filling and aquation, are proposed. General equations of gas solubility have been deduced from the mechanisms and experimental observations. Dependence of Henry’s coefficient on temperature, pressure, aquation equilibrium constant and gas molecular wlume is discussed. The theoretical equations were verified by experimental data, which shows that the theoretical results of the solubility of methane are in good agreement with the experimental data in the range of 20 -160℃ and under a pressure of less than 60 MPa.

  2. Aqueous solubility of a simple (single-carbon) organic molecule as a function of its size & dipole moment.

    Science.gov (United States)

    Al-Malah, Kamal I

    2011-05-01

    The aqueous solubility of a single-carbon organic molecule as a function of its size & dipole moment was investigated. The molecular dipole moment was chosen to represent the polar character of a poly-atomic molecule. It is hypothesized here that at a given pH, temperature, and pressure, the solubility of a single-carbon organic molecule in water will be a function of its polar character; namely, dipole moment and of its molecular size. Different forms of the solubility function were tested; it was found that the solubility model, given by Eq. 1, which is based on the polar character and the molecular volume, adequately described the aqueous solubility of single-carbon organic moieties. The aqueous solubility of single-carbon organic solutes exhibits maximum at the condition of high polar character (large dipole moment) and low molecular volume. The general trend of the solubility of single-carbon organic solutes, based on the proposed model (Eq. 1) could be explained in terms of the trade-off between the driving force (degree of polar character of the solute) for solubilization versus the resistance to be solubilized as a result of the entropic effects which increase with increasing molecular volume of the organic moiety.

  3. Formulation of a Novel Nanoemulsion System for Enhanced Solubility of a Sparingly Water Soluble Antibiotic, Clarithromycin

    Directory of Open Access Journals (Sweden)

    Stuti Vatsraj

    2014-01-01

    Full Text Available The sparingly water soluble property of majority of medicinally significant drugs acts as a potential barrier towards its utilization for therapeutic purpose. The present study was thus aimed at development of a novel oil-in-water (o/w nanoemulsion (NE system having ability to function as carrier for poorly soluble drugs with clarithromycin as a model antibiotic. The therapeutically effective concentration of clarithromycin, 5 mg/mL, was achieved using polysorbate 80 combined with olive oil as lipophilic counterion. A three-level three-factorial central composite experimental design was utilized to conduct the experiments. The effects of selected variables, polysorbate 80 and olive oil content and concentration of polyvinyl alcohol, were investigated. The particle size of clarithromycin for the optimized formulation was observed to be 30 nm. The morphology of the nanoemulsion was explored using transmission electron microscopy (TEM. The emulsions prepared with the optimized formula demonstrated good physical stability during storage at room temperature. Antibacterial activity was conducted with the optimized nanoemulsion NESH 01 and compared with free clarithromycin. Zone of inhibition was larger for NESH 01 as compared to that with free clarithromycin. This implies that the solubility and hence the bioavailability of clarithromycin has increased in the formulated nanoemulsion system.

  4. Solubility effects in waste-glass/demineralized-water systems

    Energy Technology Data Exchange (ETDEWEB)

    Fullam, H.T.

    1981-06-01

    Aqueous systems involving demineralized water and four glass compositions (including standins for actinides and fission products) at temperatures of up to 150/sup 0/C were studied. Two methods were used to measure the solubility of glass components in demineralized water. One method involved approaching equilibrium from subsaturation, while the second method involved approaching equilibrium from supersaturation. The aqueous solutions were analyzed by induction-coupled plasma spectrometry (ICP). Uranium was determined using a Scintrex U-A3 uranium analyzer and zinc and cesium were determined by atomic absorption. The system that results when a waste glass is contacted with demineralized water is a complex one. The two methods used to determine the solubility limits gave very different results, with the supersaturation method yielding much higher solution concentrations than the subsaturation method for most of the elements present in the waste glasses. The results show that it is impossible to assign solubility limits to the various glass components without thoroughly describing the glass-water systems. This includes not only defining the glass type and solution temperature, but also the glass surface area-to-water volume ratio (S/V) of the system and the complete thermal history of the system. 21 figures, 22 tables. (DLC)

  5. Biodegradation of the water-soluble gasoline components in a novel hybrid bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-De-Jesus, A.; Lara-Rodriguez, A.; Santoyo-Tepole, F.; Juarez-Ramirez, C.; Cristiani-Urbina, E.; Ruiz-Ordaz, N.; Galindez Mayer, J. [Escuela Nacional de Ciencias Biologicas, del Instituto Politecnico Nacional, Departamento de Ingenieria Bioquimica, Carpio y Plan de Ayala, ' ' Centro Operativo Naranjo' ' , Mexico, D.F. (Mexico)

    2003-07-01

    A novel hybrid bioreactor was designed to remove volatile organic compounds from water contaminated with water-soluble gasoline components, and the performance of this new bioreactor was investigated. It was composed of two biotrickling filter sections and one biofilter section. The liquid phase pollutants were removed by a mixed culture in the biotrickling filter sections and the gas phase pollutants stripped by air injection in the biofilter section. The specific rates of chemical oxygen demand (COD) removal obtained in the reactor were directly proportional to the pollutant-loading rate. A stable operation of the hybrid bioreactor was attained for long periods of time. The bioreactor had the potential to simultaneously treat a complex mixture of volatile organic compounds, e.g., those present in the water-soluble fraction of gasoline, as well as the capacity to readily adapt to changing operational conditions, such as an increased contaminant loading, and variations in the airflow rate. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  6. A literature review of interaction of oxidized uranium species and uranium complexes with soluble organic matter

    Science.gov (United States)

    Jennings, Joan K.; Leventhal, J.S.

    1978-01-01

    Organic material is commonly found associated with uranium ores in sandstone-type deposits. This review of the literature summarizes the classes and separations of naturally occurring organic material but the emphasis is on soluble organic species. The main class of materials of interest is humic substances which are high-molecular-weight complex molecules that are soluble in alkaline solution. These humic substances are able to solubilize (make soluble) minerals and also to complex [by ion exchange and (or) chelation] many cations. The natural process of soil formation results in both mineral decomposition and element complexing by organic species. Uranium in solution, such as ground water, can form many species with other elements or complexes present depending on Eh and pH. In natural systems (oxidizing Eh, pH 5-9) the uranium is usually present as a complex with hydroxide or carbonate. Thermodynamic data for these species are presented. Interacting metals and organic materials have been observed in nature and studied in the laboratory by many workers in diverse scientific disciplines. The results are not easily compared. Measurements of the degree of complexation are reported as equilibrium stability constant determinations. This type of research has been done for Mn, Fe, Cu, Zn, Pb, Ni, Co, Mg, Ca, Al, and to a limited degree for U. The use of Conditional Stability Constants has given quantitative results in some cases. The methods utilized in experiments and calculations are reviewed.

  7. Solubility and lability of cadmium and zinc in two soils treated with organic matter

    Energy Technology Data Exchange (ETDEWEB)

    Almaas, A.R.; McBride, M.B.; Singh, B.R.

    2000-03-01

    The effect of organic matter (pig manure, sus scrofa) addition on solubility and free Cd(II) and Zn(II) speciation was studied in two mineral soils. The soils were extracted with ultra pure 0.01 M KNO{sub 3}, and the extracts were analyzed for total dissolved Cd and Zn by graphite furnace AAS and ICP, respectively, and for labile Cd and Zn by differential pulse anodic stripping voltammetry (DPASV). Based on the assumption that the non-ASV-labile fraction of the total dissolved Cd and Zn was organically bound to fulvic acid (FA), the relative fraction of labile to total dissolved Cd and Zn was used to estimate conditional stability constants (log K) for the formation of Cd-Fulvate (CdFA) and Zn-Fulvate (ZnFA). Species of organically and inorganically associated Cd and Zn, as affected by the addition of pig manure to the two different soil types, were calculated. The addition of organic matter increased the solubility of Cd and Zn in both soils by the formation of organo-metallic complexes. The lability of Zn was, however, reduced substantially, whereas for Cd it was unaffected. The conditional log K values calculated indicate that the stability of organo-metallic complexes with Cd and Zn may be more important than reported previously. This implies that increasing concentrations of dissolved organic acids can increase their solubility, thus leading to the leaching of Cd and Zn into ground water.

  8. Mechanisms for oral absorption of poorly water-soluble compounds

    DEFF Research Database (Denmark)

    Lind, Marianne Ladegaard

    in the development of lipid-based formulations. However, in order for optimum formulations to be developed, knowledge of the mechanisms of absorption of poorly water-soluble drug substances is desired. Accordingly, the purpose of this PhD study was to study the effects of endogenous surfactants (bile salts...... the intake of a lipid-rich meal can increase the bioavailability due to slower gastric emptying, increased solubilization of the drug substance in the intestinal fluids by endogenous and exogenous components, inhibition of efflux carriers and induction of intestinal lymphatic transport. Some...... of these processes can also be obtained by formulating the poorly water-soluble drug substances in lipid-based formulations. Then the drug substance is in solution when administered. Consequently, an enhanced and less variable bioavailability can be obtained, and this has led to an increasing interest...

  9. Preparation of water soluble chitosan by hydrolysis using hydrogen peroxide.

    Science.gov (United States)

    Xia, Zhenqiang; Wu, Shengjun; Chen, Jinhua

    2013-08-01

    Chitosan is not soluble in water, which limits its wide application particularly in the medicine and food industry. In the present study, water soluble chitosan (WSC) was prepared by hydrolyzing chitosan using hydrogen peroxide under the catalysis of phosphotungstic acid in homogeneous phase. Factors affecting hydrolysis were investigated and the optimal hydrolysis conditions were determined. The WSC structure was characterized by Fourier transform infrared spectroscopy. The resulting products were composed of chitooligosaccharides of DP 2-9. The WSC content of the product and the yield were 94.7% and 92.3% (w/w), respectively. The results indicate that WSC can be effectively prepared by hydrolysis of chitosan using hydrogen peroxide under the catalysis of phosphotungstic acid.

  10. Solubility and aggregation of Gly(5) in water.

    Science.gov (United States)

    Karandur, Deepti; Wong, Ka-Yiu; Pettitt, B Montgomery

    2014-08-14

    Experimentally, the solubility of oligoglycines in water decreases as its length increases. Computationally, the free energy of solvation becomes more favorable with chain length for short (n = 1-5) oligoglycines. We present results of large scale simulations with over 600 pentaglycines at varying concentrations in explicit solvent to consider the mechanism of aggregation. The solubility limit of Gly5 for the force field used was calculated and compared with experimental values. We find that intermolecular interactions between pentaglycines are favored over interactions between glycine and water, leading to their aggregation. However, the interaction driving peptide associations, liquid-liquid phase separation, are not predominantly hydrogen bonding. Instead, non-hydrogen bonding interactions between partially charged atoms on the peptide backbone allow the formation of dipole-dipole and charge layering correlations that mechanistically stabilize the formation of large, stable peptide clusters.

  11. New water-soluble carbamate ester derivatives of resveratrol

    OpenAIRE

    Andrea Mattarei; Massimo Carraro; Michele Azzolini; Cristina Paradisi; Mario Zoratti; Lucia Biasutto

    2014-01-01

    Low bioavailability severely hinders exploitation of the biomedical potential of resveratrol. Extensive phase-II metabolism and poor water solubility contribute to lowering the concentrations of resveratrol in the bloodstream after oral administration. Prodrugs may provide a solution—protection of the phenolic functions hinders conjugative metabolism and can be exploited to modulate the physicochemical properties of the compound. We report here the synthesis and characterization of carb...

  12. Water Soluble Iron aminoclay for Catalytic Reduction of Nitrophenol

    Directory of Open Access Journals (Sweden)

    S. ANBU ANJUGAM VANDARKUZHALI

    2013-06-01

    Full Text Available Water soluble iron decorated phyllosilicate is synthesized through one pot sol-gel synthesis by a wet chemical method using NaBH4 as reducing agent. The as-synthesized nanocomposite is characterized by powder-XRD and TGA techniques. The morphology of the composite is obtained using HRSEM and HRTEM. The prepared nanocomposite is an efficient catalyst for the reduction of nitrophenol.

  13. Enhancing the Solubility and Oral Bioavailability of Poorly Water-Soluble Drugs Using Monoolein Cubosomes.

    Science.gov (United States)

    Ali, Md Ashraf; Kataoka, Noriko; Ranneh, Abdul-Hackam; Iwao, Yasunori; Noguchi, Shuji; Oka, Toshihiko; Itai, Shigeru

    2017-01-01

    Monoolein cubosomes containing either spironolactone (SPI) or nifedipine (NI) were prepared using a high-pressure homogenization technique and characterized in terms of their solubility and oral bioavailability. The mean particle size, polydispersity index (PDI), zeta potential, solubility and encapsulation efficiency (EE) values of the SPI- and NI-loaded cubosomes were determined to be 90.4 nm, 0.187, -13.4 mV, 163 µg/mL and 90.2%, and 91.3 nm, 0.168, -12.8 mV, 189 µg/mL and 93.0%, respectively, which were almost identical to those of the blank cubosome. Small-angle X-ray scattering analyses confirmed that the SPI-loaded, NI-loaded and blank cubosomes existed in the cubic space group Im3̄m. The lattice parameters of the SPI- and NI-loaded cubosomes were 147.6 and 151.6 Å, respectively, making them almost identical to that of blank cubosome (151.0 Å). The in vitro release profiles of the SPI- and NI-loaded cubosomes showed that they released less than 5% of the drugs into various media over 12-48 h, indicating that most of the drug remained encapsulated within the cubic phase of their lipid bilayer. Furthermore, the in vivo pharmacokinetic results suggested that these cubosomes led to a considerable increase in the systemic oral bioavailability of the drugs compared with pure dispersions of the same materials. Notably, the stability results indicated that the mean particle size and PDI values of these cubosomes were stable for at least 4 weeks. Taken together, these results demonstrate that monoolein cubosomes represent promising drug carriers for enhancing the solubility and oral bioavailability of poorly water-soluble drugs.

  14. Solubilization of the poorly water soluble drug, telmisartan, using supercritical anti-solvent (SAS) process.

    Science.gov (United States)

    Park, Junsung; Cho, Wonkyung; Cha, Kwang-Ho; Ahn, Junhyun; Han, Kang; Hwang, Sung-Joo

    2013-01-30

    Telmisartan is a biopharmaceutical classification system (BCS) class II drug that has extremely low water solubility but is freely soluble in highly alkalized solutions. Few organic solvents can dissolve telmisartan. This solubility problem is the main obstacle achieving the desired bioavailability. Because of its unique characteristics, the supercritical anti-solvent (SAS) process was used to BCS class II drug in a variety of ways including micronization, amorphization and solid dispersion. Solid dispersions were prepared using hydroxypropylmethylcellulose/polyvinylpyrrolidone (HPMC/PVP) at 1:0.5, 1:1, and 1:2 weight ratios of drug to polymer, and pure telmisartan was also treated using the SAS process. Processed samples were characterized for morphology, particle size, crystallinity, solubility, dissolution rate and polymorphic stability. After the SAS process, all samples were converted to the amorphous form and were confirmed to be hundreds nm in size. Solubility and dissolution rate were increased compared to the raw material. Solubility tended to increase with increases in the amount of polymer used. However, unlike the solubility results, the dissolution rate decreased with increases in polymer concentration due to gel layer formation of the polymer. Processed pure telmisartan showed the best drug release even though it had lower solubility compared to other solid dispersions; however, because there were no stabilizers in processed pure telmisartan, it recrystallized after 1 month under severe conditions, while the other solid dispersion samples remained amorphous form. We conclude that after controlling the formulation of solid dispersion, the SAS process could be a promising approach for improving the solubility and dissolution rate of telmisartan.

  15. Polyelectrolyte microcapsules for sustained delivery of water-soluble drugs

    Energy Technology Data Exchange (ETDEWEB)

    Anandhakumar, S.; Debapriya, M. [Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012 (India); Nagaraja, V. [Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012 (India); Raichur, Ashok M., E-mail: amr@materials.iisc.ernet.in [Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012 (India)

    2011-03-12

    Polyelectrolyte capsules composed of weak polyelectrolytes are introduced as a simple and efficient system for spontaneous encapsulation of low molecular weight water-soluble drugs. Polyelectrolyte capsules were prepared by layer-by-layer (LbL) assembling of weak polyelectrolytes, poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) on polystyrene sulfonate (PSS) doped CaCO{sub 3} particles followed by core removal with ethylene-diaminetetraacetic acid (EDTA). The loading process was observed by confocal laser scanning microscopy (CLSM) using tetramethylrhodamineisothiocyanate labeled dextran (TRITC-dextran) as a fluorescent probe. The intensity of fluorescent probe inside the capsule decreased with increase in cross-linking time. Ciprofloxacin hydrochloride (a model water-soluble drug) was spontaneously deposited into PAH/PMA capsules and their morphological changes were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The quantitative study of drug loading was also elucidated which showed that drug loading increased with initial drug concentration, but decreased with increase in pH. The loaded drug was released in a sustained manner for 6 h, which could be further extended by cross-linking the capsule wall. The released drug showed significant antibacterial activity against E. coli. These findings indicate that such capsules can be potential carriers for water-soluble drugs in sustained/controlled drug delivery applications.

  16. Hybrid solar cells from water-soluble polymers

    Directory of Open Access Journals (Sweden)

    James T. McLeskey

    2006-01-01

    Full Text Available We report on the use of a water-soluble, light-absorbing polythiophene polymer to fabricate novel photovoltaic devices. The polymer is a water-soluble thiophene known as sodium poly[2-(3-thienyl-ethoxy-4-butylsulfonate] or PTEBS. The intention is to take advantage of the properties of conjugated polymers (flexible, tunable, and easy to process and incorporate the additional benefits of water solubility (easily controlled evaporation rates and environmentally friendly. The PTEBS polythiophene has shown significant photovoltaic response and has been found to be effective for making solar cells. To date, solar cells in three different configurations have been produced: titanium dioxide (TiO2 bilayer cells, TiO2 bulk heterojunction solar cells, and carbon nanotubes (CNTs in bulk heterojunctions. The best performance thus far has been achieved with TiO2 bilayer devices. These devices have an open circuit voltage (Voc of 0.84V, a short circuit current (Jsc of 0.15 mA/cm2, a fill factor (ff of 0.91, and an efficiency (η of 0.15 %.

  17. Extraction of soluble substances from organic solid municipal waste to increase methane production.

    Science.gov (United States)

    Campuzano, Rosalinda; González-Martínez, Simón

    2015-02-01

    This work deals with the analysis of the methane production from Mexico City's urban organic wastes after separating soluble from suspended substances. Water was used to extract soluble substances under three different water to waste ratios and after three extraction procedures. Methane production was measured at 35 °C during 21 days using a commercial methane potential testing device. Results indicate that volatile solids extraction increases with dilution rate to a maximum of 40% at 20 °C and to 43% at 93 °C. The extracts methane production increases with the dilution rate as a result of enhanced dissolved solids extraction. The combined (extract and bagasse) methane production reached, in 6 days, 66% of the total methane produced in 21 days. The highest methane production rates were measured during the first six days.

  18. Seasonal variations of concentrations and optical properties of water soluble HULIS collected in urban environments

    Directory of Open Access Journals (Sweden)

    C. Baduel

    2010-05-01

    Full Text Available Major contributors to the organic aerosol include water-soluble macromolecular compounds (e.g. HULISWS: Water Soluble Humic LIke Substances. The nature and sources of HULISWS are still largely unknown. This work is based on a monitoring in six different French cities performed during summer and winter seasons. HULISWS analysis was performed with a selective method of extraction complemented by carbon quantification. UV spectroscopy was also applied for their chemical characterisation. HULISWS carbon represent an important contribution to the organic aerosol mass in summer and winter, as it accounts for 12–22% of Organic Carbon and 34–40% of Water Soluble Organic Carbon. We found strong differences in the optical properties (specific absorbance at 250, 272, 280 nm and E2/E3 ratio and therefore in the chemical structure between HULISWS from samples of summer- and wintertime. These differences highlight different processes responsible for emissions and formation of HULISWS according to the season, namely biomass burning in winter, and secondary processes in summer. Specific absorbance can also be considered as a rapid and useful indicator of the origin of HULISWS in urban environment.

  19. Spray Freeze-drying - The Process of Choice for Low Water Soluble Drugs?

    Energy Technology Data Exchange (ETDEWEB)

    Leuenberger, H. [University of Basel, Pharmacenter, Institute of Pharmaceutical Technology (Switzerland)], E-mail: hans.leuenberger@unibas.ch

    2002-04-15

    Most of the novel highly potent drugs, developed on the basis of modern molecular medicine, taking into account cell surface recognition techniques, show poor water solubility. A chemical modification of the drug substance enhancing the solubility often decreases the pharmacological activity. Thus, as an alternative an increase of the solubility can be obtained by the reduction of the size of the drug particles. Unfortunately, it is often difficult to obtain micro or nanosized drug particles by classical or more advanced crystallization using supercritical gases or by milling techniques. In addition, nanosized particles are often not physically stable and need to be stabilized in an appropriate matrix. Thus, it may be of interest to manufacture directly nanosized drug particles stabilized in an inert hydrophilic matrix, i.e. nanostructured and nanocomposite systems. Solid solutions and solid dispersions represent nanostructured and nanocomposite systems. In this context, the use of the vacuum-fluidized-bed technique for the spray-drying of a low water soluble drug cosolubilized with a hydrophilic excipient in a polar organic solvent is discussed. In order to avoid the use of organic solvents, a special spray-freeze-drying technique working at atmospheric pressure is presented. This process is very suitable for temperature and otherwise sensitive drugs such as pharmaproteins.

  20. Solubility of C60 and PCBM in Organic Solvents.

    Science.gov (United States)

    Wang, Chun I; Hua, Chi C

    2015-11-12

    The ability to correlate fullerene solubility with experimentally or computationally accessible parameters can significantly facilitate nanotechnology nowadays for a wide range of applications, while providing crucial insight into optimum design of future fullerene species. To date, there has been no single relationship that satisfactorily describes the existing data clearly manifesting the effects of solvent species, system temperature, and isomer. Using atomistic molecular dynamics simulations on two standard fullerene species, C60 and PCBM ([6,6]-phenyl-C61-butyric acid methyl ester), in a representative series of organic solvent media (i.e., chloroform, toluene, chlorobenzene, 1,3-dichlorobenzene, and 1,2-dichlorobenzene), we show that a single time constant characterizing the dynamic stability of a tiny (angstrom-sized) solvation shell encompassing the fullerene particle can be utilized to effectively capture the known trends of fullerene solubility as reported in the literature. The underlying physics differs substantially between the two fullerene species, however. Although C60 was previously shown to be dictated by a diffusion-limited aggregation mechanism, the side-chain-substituted PCBM is demonstrated herein to proceed with an analogous reaction-limited aggregation with the "reaction rate" set by the fullerene rotational diffusivity in the medium. The present results suggest that dynamic quantities-in contrast to the more often employed, static ones-may provide an excellent means to characterize the complex (entropic and enthalpic) interplay between fullerene species and the solvent medium, shed light on the factors determining the solvent quality of a nanoparticle solution, and, in particular, offer a practical pathway to foreseeing optimum fullerene design and fullerene-solvent interactions.

  1. Synthesis and properties of water-soluble asterisk molecules.

    Science.gov (United States)

    Menger, Fredric M; Azov, Vladimir A

    2002-09-18

    An asterisk is comprised of six semirigid arms projecting from a benzene nucleus. In the case at hand, asterisks were synthesized with one, two, or three aromatic rings (connected by sulfur atoms) in each of the six arms. A phosphomonoester at the termini of each arm solubilized the asterisks in water. The colloidal properties of these amphiphilic molecules were investigated by UV-vis and fluorescence spectroscopy, calorimetry, light scattering, surface tensiometry, and pulse-gradient spin-echo NMR. Solubility, solubilization, metal binding, and micelle "seeding" experiments were also carried out. Chain-conformation and supramolecular assembly into remarkable molecular "scrolls" were investigated by X-ray analysis and electron microscopy, respectively. One of the more interesting properties of the asterisks is that they remain monomeric in water despite having as many as 19 hydrophobic aromatic rings exposed to the water. The reasons for this behavior, and the possibility of exploiting it for constructing enzyme models free from aggregation equilibria, are discussed.

  2. Water solubility enhancements of pyrene by single and mixed surfactant solutions

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    Water solubility enhancements of pyrene by both single-surfactant and mixed-surfactant solutions were compared andevaluated. The solubility of pyrene in water was greatly enhanced by each of Triton X-100 (TX100), Triton X-405 (TX405), Brij 35 and SDS, in which the water solubility enhancements increased with increasing surfactant concentrations. The extent of solubility enhancements at surfactant concentrations below the CMC is the order of TX100 > Brij 35 > TX405 > SDS; the sequence at surfactantconcentrations above the CMC is TX100 > Brij 35 > SDS > TX405. Pyrene was solubilized synergistically by anionic-nonionic mixed surfactant solutions, especially at low surfactant concentrations. The synergistic power of the mixed surfactants is SDS-TX405 > SDS-Brij 35 > SDS-TX100. The synergism as noted is attributed to increasing Kmc and/or decreasing the CMC of the mixed surfactan solution. For SDS-TX405 and SDS-Brij 35 mixed surfactant solutions, an increase in Kmc is coupled with a decrease in the CMC; for SDS-TX100, only a decreased in the CMC value is noted. Mixed-surfactant solutions may improve the performance of the surfactant-enhanced remediation (SER) of soils by increasing the bioavailability and biodegradation of non-aqueous-phase organic pollutants and reducing the level of surfactant pollution and remediation expenses.

  3. [Mutagen properties of water-soluble polysaccharides from Acorus calamus].

    Science.gov (United States)

    Gur'ev, A M; Belousov, M B; Akhmedzhanov, R R; Iusubov, M S; Voronova, O L; Karpova, G V; Churin, A A

    2010-08-01

    Mutagenic properties of water soluble polysaccharides (WSPS) extracted from Acorus calamus L. have been studied. Neither a single intravenous injection nor a course intraperitoneal introduction of WSPS in a dose of 1/2 LD50 to mice of the CBA/CaLac line increases the level of cytogenetic disorders in the bone marrow cells. The investigation of WSPS by means of the somatic mosaicism test showed that the given dose of WSPS does not increase the rate of mutant spots on Drosophila wings.

  4. Water-soluble constituents from aerial roots of Ficus microcarpa.

    Science.gov (United States)

    Ouyang, M-A; Kuo, Y-H

    2006-01-01

    Three new water-soluble constituents [ficuscarpanoside B (1), (7E,9Z)-dihydrophaseic acid 3-O-beta-D-glucopyranoside (4) and ficuscarpanic acid (6)] and the natural product 2,2'-dihydroxyl ether (7) have been isolated, together with three known compounds [(7S,8R)-syringoylglycerol (2), (7S,8R)-syringoylglycerol-7-O-beta-D-glucopyranoside (3) and icariside D2 (5)] from the aerial roots of Ficus microcarpa. Identification of their structures was achieved by 1D and 2D NMR experiments, including 1H-1H COSY, NOESY, HMQC and HMBC methods and FAB mass spectral data.

  5. Zwitterionic phosphorylcholine-protected water-soluble nanoparticles

    Institute of Scientific and Technical Information of China (English)

    JIN Qiao; LIU XiangSheng; XU JianPing; JI Jian; SHEN JiaCong

    2009-01-01

    The water-soluble Ag nanoparticles capped with novel zwitterionic thioalkylated phosphorylcholine were synthesized. The Ag nanoparticles showed remarkable stability in saline media with salt concen-trations as high as 2.0 mol/L and plasma using UV-vis absorption spectroscopy. Similarly, compared with tiopronin and citrate-protected Ag nanoparticles, the zwitterionic phosphorylcholine Ag nanopar-ticles did not precipitate out of solution when charged polyelectrolytes or biopolymers were added. The zwitterionic phosphorylcholine might be a better ligand for stabilizing metal nanoparticles.

  6. Zwitterionic phosphorylcholine-protected water-soluble Ag nanoparticles

    Institute of Scientific and Technical Information of China (English)

    2009-01-01

    The water-soluble Ag nanoparticles capped with novel zwitterionic thioalkylated phosphorylcholine were synthesized.The Ag nanoparticles showed remarkable stability in saline media with salt concen-trations as high as 2.0 mol/L and plasma using UV-vis absorption spectroscopy.Similarly,compared with tiopronin and citrate-protected Ag nanoparticles,the zwitterionic phosphorylcholine Ag nanopar-ticles did not precipitate out of solution when charged polyelectrolytes or biopolymers were added.The zwitterionic phosphorylcholine might be a better ligand for stabilizing metal nanoparticles.

  7. Wettability, water sorption and water solubility of seven silicone elastomers used for maxillofacial prostheses.

    Science.gov (United States)

    Hulterström, Anna Karin; Berglund, Anders; Ruyter, I Eystein

    2008-01-01

    The wettability, water sorption and solubility of silicone elastomers used for maxillofacial prostheses were studied. The hypothesis was, that a material that has absorbed water would show an increase in the wettability and thus also the surface free energy of the material. Seven silicone elastomers, both addition- and condensation type polymers, were included. Five specimens of each material were subjected to treatment according to ISO standards 1567:1999 and 10477: 2004 for water sorption and solubility. The volumes of the specimens were measured according to Archimedes principle. The contact angle was measured with a contact angle goniometer at various stages of the sorption/solubility test. Wettability changed over the test period, but not according to theory. The addition type silicones showed little or no sorption and solubility, but two of the condensation type polymers tested had a significant sorption and solubility. This study showed that condensation type polymers may show too large volumetric changes when exposed to fluids, and therefore should no longer be used in prosthetic devices. The results of this study also suggests that it might be of interest to test sorption and solubility of materials that are to be implanted, since most of the materials had some solubility.

  8. Estimating the physicochemical properties of polyhalogenated aromatic and aliphatic compounds using UPPER: part 2. Aqueous solubility, octanol solubility and octanol-water partition coefficient.

    Science.gov (United States)

    Admire, Brittany; Lian, Bo; Yalkowsky, Samuel H

    2015-01-01

    The UPPER (Unified Physicochemical Property Estimation Relationships) model uses additive and non-additive parameters to estimate 20 biologically relevant properties of organic compounds. The model has been validated by Lian and Yalkowsky (2014) on a data set of 700 hydrocarbons. Recently, Admire et al. (2014) expanded the model to predict the boiling and melting points of 1288 polyhalogenated benzenes, biphenyls, dibenzo-p-dioxins, diphenyl ethers, anisoles and alkanes. In this work, 19 new group descriptors are determined and used to predict the aqueous solubilities, octanol solubilities and the octanol-water coefficients.

  9. One-pot synthesis and control of aqueous soluble and organic soluble carbon dots from a designable waterborne polyurethane emulsion

    Science.gov (United States)

    Gu, Jiangjiang; Hu, Donghua; Huang, Jin; Huang, Xin; Zhang, Qiuhong; Jia, Xudong; Xi, Kai

    2016-02-01

    Carbon dots (CDs) have a wide range of applications and have drawn great interest in the recent decade. The fabrication and control of CDs with different solubilities are still urgent problems for their practical use. In this paper, aqueous soluble and organic soluble CDs (ACDs, OCDs) were produced by one-pot hydrothermal treatment of a designable waterborne polyurethane (WPU) emulsion. The difference in the solubility and fluorescence of these two kinds of CDs was attributed to the various functional groups on the surface, which were derived from the different segment fragments formed by hydrothermal treatment of a block polymer. It was found that the yields of the ACDs and OCDs could be regulated by means of selecting different soft segments in WPU. The more hydrophobic soft segments could result in an increase of the OCDs and a decrease of the ACDs. While the soft segments were hydrophilic or hydrolysable under hydrothermal conditions, only ACDs were obtained. The ACDs had good fluorescence and showed low cytotoxicity for use in multicolour bio-imaging. The OCDs processed good solubility in a wide range of organic solvents and were suitable for preparing fluorescent composite films with polymers.Carbon dots (CDs) have a wide range of applications and have drawn great interest in the recent decade. The fabrication and control of CDs with different solubilities are still urgent problems for their practical use. In this paper, aqueous soluble and organic soluble CDs (ACDs, OCDs) were produced by one-pot hydrothermal treatment of a designable waterborne polyurethane (WPU) emulsion. The difference in the solubility and fluorescence of these two kinds of CDs was attributed to the various functional groups on the surface, which were derived from the different segment fragments formed by hydrothermal treatment of a block polymer. It was found that the yields of the ACDs and OCDs could be regulated by means of selecting different soft segments in WPU. The more

  10. Water solubility enhancements of PAHs by sodium castor oil sulfonate microemulsions

    Institute of Scientific and Technical Information of China (English)

    ZHU Li-zhong; ZHAO Bao-wei; LI Zong-lai

    2003-01-01

    Water solubility enhancements of naphthalene(Naph), phenantherene(Phen) and pyrene(Py) in sodium castor oil sulfonate(SCOS) microemulsions were evaluated. The apparent solubilities of PAHs are linearly proportional to the concentrations of SCOS microemulsion, and the enhancement extent by SCOS solutions is greater than that by ordinary surfactants on the basis of weight solubilization ratio(WSR). The logKem values of Naph, Phen, and Py are 3.13, 4.44 and 5.01 respectively, which are about the same as the logKow values. At 5000 mg/L of SCOS conccentration, the apparent solubilities are 8.80, 121, and 674 times as the intrinsic solubilities for Naph, Phen, and Py. The effects of inorganic ions and temperature on the solubilization of solutes are also investigated. The solubilization is improved with a moderate addition of Ca2+, Na+, NH4+ and the mixture of Na+, K+, Ca2+, Mg2+ and NH4+. WSR values are enhanced by 22.0% for Naph, 23.4% for Phen, and 24.6% for Py with temperature increasing by 5℃. The results indicated that SCOS microemulsions improve the performance of the surfactant-enhanced remediation(SER) of soil, by increasing solubilities of organic pollutants and reducing the level of surfactant pollution and remediation expenses.

  11. Therapeutic Effects of Water Soluble Danshen Extracts on Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Yoon Hee Cho

    2013-01-01

    Full Text Available Danshen is a traditional Chinese medicine with many beneficial effects on cardiovascular diseases. The aim of this study was to evaluate the mechanisms responsible for the antiatherogenic effect of water soluble Danshen extracts (DEs. Rat vascular smooth muscle cells (VSMCs and human umbilical vein endothelial cells (HUVECs were treated with DE. To evaluate the effects of DE in vivo, carotid balloon injury and tail vein thrombosis were induced in Sprague-Dawley (SD rats and iliac artery stent was induced in New Zealand white rabbits. The inhibitory action of DE on platelet aggregation was confirmed with an impedance aggregometer. DE inhibited the production of reactive oxygen species, and the migration and proliferation of platelet-derived growth factor-BB stimulated VSMCs. Furthermore, DE prevented inflammation and apoptosis in HUVECs. Both effects of DE were reconfirmed in both rat models. DE treatment attenuated platelet aggregation in both in vivo and ex vivo conditions. Pretreatment with DE prevented tail vein thrombosis, which is normally induced by κ-carrageenan injection. Lastly, DE-treated rabbits showed decreased in-stent restenosis of stented iliac arteries. These results suggest that water soluble DE modulates key atherogenic events in VSMCs, endothelial cells, and platelets in both in vitro and in vivo conditions.

  12. Organic acids as cloud condensation nuclei: Laboratory studies of highly soluble and insoluble species

    Directory of Open Access Journals (Sweden)

    P. Pradeep Kumar

    2003-01-01

    Full Text Available The ability of sub-micron-sized organic acid particles to act as cloud condensation nuclei (CCN has been examined at room temperature using a newly constructed continuous-flow, thermal-gradient diffusion chamber (TGDC. The organic acids studied were: oxalic, malonic, glutaric, oleic and stearic. The CCN properties of the highly soluble acids - oxalic, malonic and glutaric - match very closely Köhler theory predictions which assume full dissolution of the dry particle and a surface tension of the growing droplet equal to that of water. In particular, for supersaturations between 0.3 and 0.6, agreement between the dry particle diameter which gives 50% activation and that calculated from Köhler theory is to within 3nm on average. In the course of the experiments, considerable instability of glutaric acid particles was observed as a function of time and there is evidence that they fragment to some degree to smaller particles. Stearic acid and oleic acid, which are both highly insoluble in water, did not activate at supersaturations of 0.6% with dry diameters up to 140nm. Finally, to validate the performance of the TGDC, we present results for the activation of ammonium sulfate particles that demonstrate good agreement with Köhler theory if solution non-ideality is considered. Our findings support earlier studies in the literature that showed highly soluble organics to be CCN active but insoluble species to be largely inactive.

  13. Interaction of water-soluble bridged porphyrin with DNA

    Institute of Scientific and Technical Information of China (English)

    Kai WANG; Zhi ZHANG; Qianni GUO; Xiaoping BAO; Zaoying LI

    2008-01-01

    A water-soluble porphyrin dimer (Por Dimer) containing eight positive charges, bridged by 4,4'-dicarboxy-2,2'-bipyridine, has been synthesized. With Meso-tetrakis(N-methyl-pyridium-4-yl)porphyrin (H2TMPyP) as the reference compound, the water-sol-uble porphyrin dimer was investigated for its inter-action with DNA by absorption, fluorescence, and circular dichroism (CD) spectroscopy. The apparent affinity binding constant (Kapp= 1.2×106) of Por Dimer binding to CT DNA was measured by a com-petition method with ethidium bromide (EB) (that of H2TMPyP was 6.9×106). The cleavage ability of Por Dimer to pBR322 plasmid DNA was studied by gel electrophoresis. The results suggest that the binding modes of Por Dimer were complex and involve both intercalation and outside binding.

  14. Drug delivery by water-soluble organometallic cages.

    Science.gov (United States)

    Therrien, Bruno

    2012-01-01

    Until recently, organometallic derivatives were generally viewed as moisture- and air-sensitive compounds, and consequently very challenging to synthesise and very demanding in terms of laboratory requirements (Schlenk techniques, dried solvent, glove box). However, an increasing number of stable, water-soluble organometallic compounds are now available, and organometallic chemistry in aqueous phase is a flourishing area of research. As such, coordination-driven self-assemblies using organometallic building blocks are compatible with water, thus opening new perspectives in bio-organometallic chemistry.This chapter gives a short history of coordination-driven self-assembly, with a special attention to organometallic metalla-cycles, especially those composed of half-sandwich complexes. These metalla-assemblies have been used as sensors, as anticancer agents, as well as drug carriers.

  15. Facile synthesis of water-soluble curcumin nanocrystals

    Directory of Open Access Journals (Sweden)

    Marković Zoran M.

    2015-01-01

    Full Text Available In this paper, facile synthesis of water soluble curcumin nanocrystals is reported. Solvent exchange method was applied to synthesize curcumin nanocrystals. Different techniques were used to characterize the structural and photophysical properties of curcumin nanocrystals. We found that nanocurcumin prepared by this method had good chemical and physical stability, could be stored in the powder form at room temperature, and was freely dispersible in water. It was established that the size of curcumin nanocrystals was varied in the range of 20-500 nm. Fourier transform infrared spectroscopy and UV-Vis analyses showed the presence of tetrahydrofuran inside the curcumin nanocrystals. Also, it was found that nanocurcumin emitted photoluminescencewith yellow-green colour. [Projekat Ministarstva nauke Republike Srbije, br. 172003

  16. Effects of Soluble Organic N on Evaluating Soil N-Supplying Capacity

    Institute of Scientific and Technical Information of China (English)

    LU Hong-ling; LI Shi-qing; JIN Fa-hui; SHAO Ming-an

    2008-01-01

    It is important to study the soluble organic N (SON) extracted during water-logged incubation for evaluating soil N- supplying capacity. Soil initial SON and mineral N (Nmin), cumulative soluble organic N and NH4+-N in leachates during water-logged incubation, mineralization potentials of both easily decomposable N (ND) and resistant N (NR), and their relationships with N uptake by crop in pot experiment were investigated by using 10 kinds of farmland soils with widely different physical and chemical properties on the Loess Plateau, China, and the effects of SON on evaluating soil N- supplying capacity were studied. The results showed that the average content of initial SON (23.9 mg kg-1) of 10 soils was 28.8% of initial total soluble N and 2.4% of soil total N. The percentage of cumulative SON in leaching total soluble N (118.1 mg kg-1) was 46.4%, higher than the percentage of initial SON (28.8%), and almost close to the percentage of cumulative NH4+-N in the leachates. ND had close correlation with total N, and the correlation coefficients were 0.92 (P < 0.01, excluding SON in estimating ND) and 0.88 (P< 0.01, including SON in estimating ND), respectively. N mineralization potential and mineralization rate constant were different with the soil types. ND of Los-Orthic Entisols and Ust-Sandiic Entisols were lower than that of Eum-Orthrosols. Mineralization rate constant for the fast decomposable N-fraction (kD) decreased and the mineralization rate constant of resistant materials (kR) increased when SON was taken into account. Cumulative NH4+-N was a better evaluation index of soil N-supplying capacity, and it is not only suitable for the first season crops but also for two successive season crops. Cumulative SON alone was not a satisfactory index for the potential of mineralizable N. But it would be more accurate for ND in revealing the potential mineralizable N when SON was taken into account. Cumulative TSN, to some extent, could also be taken as an index for

  17. Simultaneous extraction of oil- and water-soluble phase from sunflower seeds with subcritical water.

    Science.gov (United States)

    Ravber, Matej; Knez, Željko; Škerget, Mojca

    2015-01-01

    In this study, the subcritical water extraction is proposed as an alternative and greener processing method for simultaneous removal of oil- and water-soluble phase from sunflower seeds. Extraction kinetics were studied at different temperatures and material/solvent ratios in a batch extractor. Degree of hydrothermal degradation of oils was observed by analysing amount of formed free fatty acids and their antioxidant capacities. Results were compared to oils obtained by conventional methods. Water soluble extracts were analysed for total proteins, carbohydrates and phenolics and some single products of hydrothermal degradation. Highest amount of oil was obtained at 130 °C at a material/solvent ratio of 1/20 g/mL after 30 min of extraction. For all obtained oils minimal degree of hydrothermal degradation could be identified. High antioxidant capacities of oil samples could be observed. Water soluble extracts were degraded at temperatures ≥100 °C, producing various products of hydrothermal degradation.

  18. Highly water-soluble multi-walled carbon nanotubes amine-functionalized by supercritical water oxidation.

    Science.gov (United States)

    Chun, Kyoung-Yong; Moon, In-Kyu; Han, Joo-Hee; Do, Seung-Hoe; Lee, Jin-Seo; Jeon, Seong-Yun

    2013-11-07

    Multi-walled carbon nanotubes (MWNTs) have been amine-functionalized by eco-friendly supercritical water oxidation. The facilely functionalized MWNTs have high solubility (~84 mg L(-1)) in water and 78% transmittance at 30-fold dilution. The Tyndall effect is also shown for several liquids.

  19. A Novel Injectable Water-Soluble Amphotericin B-Arabinogalactan Conjugate

    OpenAIRE

    Falk, Rama; Domb, Abraham J.; Polacheck, Itzhack

    1999-01-01

    New, stable, highly water-soluble, nontoxic polysaccharide conjugates of amphotericin B (AmB) are described. AmB was conjugated by a Schiff-base reaction with oxidized arabinogalactan (AG). AG is a highly branched natural polysaccharide with unusual water solubility (70% in water). A high yield of active AmB was obtained with the conjugates which were similarly highly water soluble and which could be appropriately formulated for injection. They showed comparable MICs for Candida albicans and ...

  20. Evidence of soluble microbial products accelerating chloramine decay in nitrifying bulk water samples.

    Science.gov (United States)

    Bal Krishna, K C; Sathasivan, Arumugam; Chandra Sarker, Dipok

    2012-09-01

    The discovery of a microbially derived soluble product that accelerates chloramine decay is described. Nitrifying bacteria are believed to be wholly responsible for rapid chloramine loss in drinking water systems. However, a recent investigation showed that an unidentified soluble agent significantly accelerated chloramine decay. The agent was suspected to be either natural organic matter (NOM) or soluble microbial products (SMPs). A laboratory scale reactor was fed chloraminated reverse osmosis (RO) treated water to eliminate the interference from NOM. Once nitrification had set in, experiments were conducted on the reactor and feed waters to determine the identity of the component. The study showed the presence of SMPs released by microbes in severely nitrified waters. Further experiments proved that the SMPs significantly accelerated chloramine decay, probably through catalytic reaction. Moreover, application of common protein denaturing techniques stopped the reaction implying that the compound responsible was likely to be a protein. This significant finding will pave the way for better control of chloramine in the distribution systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Determination of water-soluble forms of oxalic and formic acids in soils by ion chromatography

    Science.gov (United States)

    Karicheva, E.; Guseva, N.; Kambalina, M.

    2016-03-01

    Carboxylic acids (CA) play an important role in the chemical composition origin of soils and migration of elements. The content of these acids and their salts is one of the important characteristics for agrochemical, ecological, ameliorative and hygienic assessment of soils. The aim of the article is to determine water-soluble forms of same carboxylic acids — (oxalic and formic acids) in soils by ion chromatography with gradient elution. For the separation and determination of water-soluble carboxylic acids we used reagent-free gradient elution ion-exchange chromatography ICS-2000 (Dionex, USA), the model solutions of oxalate and formate ions, and leachates from soils of the Kola Peninsula. The optimal gradient program was established for separation and detection of oxalate and formate ions in water solutions by ion chromatography. A stability indicating method was developed for the simultaneous determination of water-soluble organic acids in soils. The method has shown high detection limits such as 0.03 mg/L for oxalate ion and 0.02 mg/L for formate ion. High signal reproducibility was achieved in wide range of intensities which correspond to the following ion concentrations: from 0.04 mg/g to 10 mg/L (formate), from 0.1 mg/g to 25 mg/L (oxalate). The concentration of formate and oxalate ions in soil samples is from 0.04 to 0.9 mg/L and 0.45 to 17 mg/L respectively.

  2. A novel injectable water-soluble amphotericin B-arabinogalactan conjugate.

    Science.gov (United States)

    Falk, R; Domb, A J; Polacheck, I

    1999-08-01

    New, stable, highly water-soluble, nontoxic polysaccharide conjugates of amphotericin B (AmB) are described. AmB was conjugated by a Schiff-base reaction with oxidized arabinogalactan (AG). AG is a highly branched natural polysaccharide with unusual water solubility (70% in water). A high yield of active AmB was obtained with the conjugates which were similarly highly water soluble and which could be appropriately formulated for injection. They showed comparable MICs for Candida albicans and Cryptococcus neoformans (MICs, 0.1 to 0.2 microg/ml). The reduced AmB conjugate, which was synthesized at pH 11 for 48 h at 37 degrees C, was nonhemolytic and was much safer than conventional micellar AmB-deoxycholate. It was the least toxic AmB-AG conjugate among those tested with mice (maximal tolerated dose, 50 mg/kg of body weight), and histopathology indicated no damage to the liver or kidneys. This conjugate, similarly to the liposomal formulation (AmBisome), was more effective than AmB-deoxycholate in prolonging survival. It was more effective than both the liposomal and the deoxycholate formulations in eradicating yeast cells from target organs. The overall results suggest that after further development of the AmB-AG conjugate, it may be a potent agent in the treatment of fungal infections.

  3. Solubility and leaching risks of organic carbon in paddy soils as affected by irrigation managements.

    Science.gov (United States)

    Xu, Junzeng; Yang, Shihong; Peng, Shizhang; Wei, Qi; Gao, Xiaoli

    2013-01-01

    Influence of nonflooding controlled irrigation (NFI) on solubility and leaching risk of soil organic carbon (SOC) were investigated. Compared with flooding irrigation (FI) paddies, soil water extractable organic carbon (WEOC) and dissolved organic carbon (DOC) in NFI paddies increased in surface soil but decreased in deep soil. The DOC leaching loss in NFI field was 63.3 kg C ha⁻¹, reduced by 46.4% than in the FI fields. It indicated that multi-wet-dry cycles in NFI paddies enhanced the decomposition of SOC in surface soils, and less carbon moved downward to deep soils due to less percolation. That also led to lower SOC in surface soils in NFI paddies than in FI paddies, which implied that more carbon was released into the atmosphere from the surface soil in NFI paddies. Change of solubility of SOC in NFI paddies might lead to potential change in soil fertility and sustainability, greenhouse gas emission, and bioavailability of trace metals or organic pollutants.

  4. Soluble organic and inorganic nutrient fluxes in clearcut and mature deciduous forests

    Science.gov (United States)

    R.G. Qualls; B.L. Haines; W.T. Swank; S.W. Tyler

    2000-01-01

    The mechanisms by which forest ecosystems retain or lose soluble inorganic nutrients after disturbance are well known, but substantial amounts of soluble organic nutrients may also be released from cut vegetation. Our objective was to compare the leaching of dissolved organic and inorganic nutrients in cut and mature forest stands and to develop hypotheses about...

  5. Measurement and control of water content of organic solvents

    Energy Technology Data Exchange (ETDEWEB)

    Goderis, H.L.; Fouwe, B.L.; Van Cauwenbergh, S.M.; Tobback, P.P.

    1986-06-01

    An isotopic dilution procedure is described for the quantitative determination of the solubility of water in organic solvents as a function of the relative humidity at which the sample is equilibrated. /sup 3/H/sub 2/O is used as a tracer, and the relative humidity conditions are realized by incubation of the organic solvent above a saturated salt solution having a known water activity. The technique is applicable independent of the concentration range of water present, the minimum amount of moisture being only limited by the concentration of the tritium label used. Solubility isotherms of water in hydrocarbon solvents such as n-hexane are sigmoidal in shape, reflecting cooperative effects in the solubilization of water molecules at the higher relative humidity portion of the curve. Solubility increases with increasing temperature.

  6. 青岛大气气溶胶中水溶性有机氮对总氮的贡献%Contribution of Water Soluble Organic Nitrogen to Total Nitrogen in Atmospheric Aerosols in Qingdao

    Institute of Scientific and Technical Information of China (English)

    石金辉; 韩静; 范得国; 祁建华; 高会旺

    2011-01-01

    Organic nitrogen (ON) is a quantitatively important component of reactive nitrogen in atmospheric aerosols. Deposition of ON in seawater from atmosphere could enhance primary productivity, as well as with the changes in the phytoplankton community composition. 64 total suspended particles (TSP) samples collected at Qingdao from January to December in 2008 were applied to analyze the concentrations of water soluble organic nitrogen in aerosols. Concentrations of ON in Qingdao aerosols ranged from 30 to 2 073 nmol.m -3 ( 100-12 157 p mol-g-1 ) , with the highest values occurring in December, followed in March and April and the lowest values in June to September. ON mean concentration in TSP in 2008 was 430 nmol·m -3 (2 323 μmol.g-1 ). The contribution of ON to total nitrogen (TN) was (37.5 ± 21.6)%, with the maximum presenting in December and the minimum in September. The distribution of organic nitrogen in aerosols was significantly affected by the weather conditions. During haze and fog episodes, the concentrations of ON in the aerosols were 789 nmol·m-3 and 412 nmol.m-3, respectively, 4 times and twice higher than that during clear episodes. However, the particle mass concentrations in haze and fog days were comparable with that in clear days. During dust episodes, the concentration of particles was 5 times higher than that during clear episodes while ON concentration slightly enhanced 0.4 times. The ON concentration in aerosols after raining was 57 nmol. m -3 ,decreased 80% than that before raining due to the efficient wet scavenging.%有机氮是大气气溶胶中重要的氮组分,其沉降入海后不仅能够促进海洋初级生产力的增长,还可能影响海洋生态系统的群落结构.利用2008年1~12月在青岛采集的64个总悬浮颗粒物样品,分析了其中水溶性有机氮的浓度.气溶胶中有机氮的浓度为30~2 073 nmol·m-3(100~12 157 μmol·g-1),以12月浓度最高,3、4月次之,6~9

  7. Monosaccharides as Versatile Units for Water-Soluble Supramolecular Polymers.

    Science.gov (United States)

    Leenders, Christianus M A; Jansen, Gijs; Frissen, Martijn M M; Lafleur, René P M; Voets, Ilja K; Palmans, Anja R A; Meijer, E W

    2016-03-18

    We introduce monosaccharides as versatile water-soluble units to compatibilise supramolecular polymers based on the benzene-1,3,5-tricarboxamide (BTA) moiety with water. A library of monosaccharide-based BTAs is evaluated, varying the length of the alkyl chain (hexyl, octyl, decyl and dodecyl) separating the BTA and saccharide units, as well as the saccharide units (α-glucose, β-glucose, α-mannose and α-galactose). In all cases, the monosaccharides impart excellent water compatibility. The length of the alkyl chain is the determining factor to obtain either long, one-dimensional supramolecular polymers (dodecyl spacer), small aggregates (decyl spacer) or molecularly dissolved (octyl and hexyl) BTAs in water. For the BTAs comprising a dodecyl spacer, our results suggest that a cooperative self-assembly process is operative and that the introduction of different monosaccharides does not significantly change the self- assembly behaviour. Finally, we investigate the potential of post-assembly functionalisation of the formed supramolecular polymers by taking advantage of dynamic covalent bond formation between the monosaccharides and benzoxaboroles. We observe that the supramolecular polymers readily react with a fluorescent benzoxaborole derivative permitting imaging of these dynamic complexes by confocal fluorescence microscopy.

  8. Influences of Combined Application of Water-soluble Organic Fertilizer and Inorganic Fertilizer on Yield, Nutrient Absorption and Economic Benefit of Cabbage%有机水溶性肥与无机肥配施对包菜产量、养分吸收和经济效益的影响

    Institute of Scientific and Technical Information of China (English)

    夏全杰; 蔡建华; 刘启华; 熊汉锋; 刘新伟; 李鸣凤; 张炜; 赵竹青

    2014-01-01

    研究了有机水溶性肥与无机肥配施对包菜产量、养分吸收和经济效益的影响。结果表明:与单施无机肥相比,有机水溶性肥以灌根的方式与无机肥配施能显著提高包菜的包心率、包心重、产量、经济效益以及叶片中叶绿素、磷、钾的含量,并在一定程度上提高包菜氮、磷、钾的累积量和各养分利用效率;有机水溶性肥与无机肥灌根的综合效果优于叶面喷施的综合效果。%The influences of combined application of water -soluble organic fertilizer and inorganic fertilizer on the yield , nu-trient absorption and economic benefit of cabbage were studied .The results revealed that:as compared with the single application of inorganic fertilizer , the application of water -soluble organic fertilizer in the manner of root -irrigation combined with inorganic fer-tilizer could significantly enhance the package rate , package weight , yield and economic benefit of cabbage , as well as the contents of chlorophyll , phosphorus and potassium in cabbage leaf , and could increase the accumulation and utilization efficiency of nitrogen , phosphorus and potassium in cabbage to a certain degree .The combined application of water -soluble organic fertilizer and inorganic fertilizer in the manner of root -irrigation obtained better comprehensive effect than that in the manner of foliage spray .

  9. Determination of Polarity Water-soluble Organic Compounds in Water by Method of Dynamic Headspace Gas Chromatography%动态顶空气相色谱法测定水中极性水溶性有机物

    Institute of Scientific and Technical Information of China (English)

    孙睿华

    2014-01-01

    Dynamic headspace gas chromatography equipped with FID was applied to test the acetaldehyde, acetone, methanol, acrolein, acrylonitrile, acetonitrile and pyridin in water.The dynamic headspace conditions were optimized.The method had good linearity from 0.152 mg/L to 7.92 mg/L.The method detection limits were between 0.008 mg/L and 0.048 mg/L.The spiked recovery in blank water ranged from 103%to 111%, with the RSDs 5 .4%~8 .7%.This method was used to test wastwater of some pharmaceutical enterprise and surface water.Only methanol, acetonitrile and pyridin were detected in wastwater.%采用动态顶空气相色谱FID法测定水中乙醛、丙酮、甲醇、丙烯醛、丙烯腈、乙腈、吡啶等7种极性水溶性有机物,通过优化动态顶空条件,使该方法在0.157 mg/L~7.92 mg/L之间线性良好。方法检出限在0.008 mg/L~0.048 mg/L之间,空白水样的加标回收率为103%~111%,RSD为5.4%~8.7%。用该方法测定某制药企业排口污水和地表水,只有污水中甲醇、乙腈、吡啶有响应值。

  10. Biological activities of water-soluble fullerene derivatives

    Energy Technology Data Exchange (ETDEWEB)

    Nakamura, S; Mashino, T [Department of Pharmaceutical Sciences, Faculty of Pharmacy, Keio University, 1-5-30 Shiba-koen, Minato-ku, Tokyo 105-8512 (Japan)], E-mail: mashino-td@pha.keio.ac.jp

    2009-04-01

    Three types of water-soluble fullerene derivatives were synthesized and their biological activities were investigated. C{sub 60}-dimalonic acid, an anionic fullerene derivative, showed antioxidant activity such as quenching of superoxide and relief from growth inhibition of E. coli by paraquat. C{sub 60}-bis(7V,7V-dimethylpyrrolidinium iodide), a cationic fullerene derivative, has antibacterial activity and antiproliferative effect on cancer cell lines. The mechanism is suggested to be respiratory chain inhibition by reactive oxygen species produced by the cationic fullerene derivative. Proline-type fullerene derivatives showed strong inhibition activities on HIV-reverse transcriptase. The IC{sub 50} values were remarkably lower than nevirapine, a clinically used anti-HIV drug. Fullerene derivatives have a big potential for a new type of lead compound to be used as medicine.

  11. Reactivity of Metal Ions Bound to Water-Soluble Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Sauer, N.N.; Watkins, J.G.; Lin, M.; Birnbaum, E.R.; Robison, T.W.; Smith, B.F.; Gohdes, J.W.; McDonald, J.G.

    1999-06-29

    The intent of this work is to determine the effectiveness of catalysts covalently bound to polymers and to understand the consequences of supporting the catalysts on catalyst efficiency and selectivity. Rhodium phosphine complexes with functional groups for coupling to polymers were prepared. These catalyst precursors were characterized using standard techniques including IR, NMR, and elemental analysis. Studies on the modified catalysts showed that they were still active hydrogenation catalysts. However, tethering of the catalysts to polyamines gave systems with low hydrogenation activity. Analogous biphasic systems were also explored. Phosphine ligands with a surfactant-like structure have been synthesized and used to prepare catalytically active complexes of palladium. The palladium complexes were utilized in Heck-type coupling reactions (e.g. coupling of iodobenzene and ethyl acrylate to produce ethyl cinnamate) under vigorously stirred biphasic reaction conditions, and were found to offer superior performance over a standard water-soluble palladium catalyst under analogous conditions.

  12. ANALYSIS OF SOLUBLE CHEMICAL TRANSFER BY RUNOFF WATER IN FIELD

    Institute of Scientific and Technical Information of China (English)

    TONG Ju-xiu; YANG Jin-zhong

    2008-01-01

    In order to determine the main factors influencing soluble chemical transfer and corresponding techniques for reducing fertilizer loss caused by runoff in irrigated fields, a physically based two-layer model was developed with incomplete mixing theory. Different forms of incomplete mixing parameters were introduced in the model, which was successfully verified with previous published experimental data. According to comparison, the chemicals loss of fertilizer is very sensitive to the runoff-related parameter while it is not sensitive to the infiltration-related parameter. The calculated results show that the chemicals in infiltration water play an important role in the early time of rainfall even with saturated soil, and it is mainly in the runoff flow in the late rainfall. Therefore, prevention of shallow subsurface drainage in the early rainfall is an effective way to reduce fertilizer loss, and the coverage on soil surface is another effective way.

  13. Water Soluble Fluorescent Carbon Nanodots from Biosource for Cells Imaging

    Directory of Open Access Journals (Sweden)

    Kumud Malika Tripathi

    2017-01-01

    Full Text Available Carbon nanodots (CNDs derived from a green precursor, kidney beans, was synthesized with high yield via a facile pyrolysis technique. The CND material was easily modified through simple oxidative treatment with nitric acid, leading to a high density “self-passivated” water soluble form (wsCNDs. The synthesized wsCNDs have been extensively characterized by using various microscopic and spectroscopic techniques and were crystalline in nature. The highly carboxylated wsCNDs possessed tunable-photoluminescence emission behavior throughout the visible region of the spectrum, demonstrating their application for multicolor cellular imaging of HeLa cells. The tunable-photoluminescence properties of “self-passivated” wsCNDs make them a promising candidate as a probe in biological cell-imaging applications.

  14. Drug delivery strategies for poorly water-soluble drugs.

    Science.gov (United States)

    Fahr, Alfred; Liu, Xiangli

    2007-07-01

    The drug candidates coming from combinatorial chemistry research and/or the drugs selected from biologically based high-throughput screening are quite often very lipophilic, as these drug candidates exert their pharmacological action at or in biological membranes or membrane-associated proteins. This challenges drug delivery institutions in industry or academia to develop carrier systems for the optimal oral and parenteral administration of these drugs. To mention only a few of the challenges for this class of drugs: their oral bioavailability is poor and highly variable, and carrier development for parenteral administration is faced with problems, including the massive use of surface-active excipients for solubilisation. Formulation specialists are confronted with an even higher level of difficulties when these drugs have to be delivered site specifically. This article addresses the emerging formulation designs for delivering of poorly water-soluble drugs.

  15. Antioxidant Properties of Water-Soluble Gum from Flaxseed Hulls.

    Science.gov (United States)

    Bouaziz, Fatma; Koubaa, Mohamed; Barba, Francisco J; Roohinejad, Shahin; Chaabouni, Semia Ellouz

    2016-08-02

    Soluble flaxseed gum (SFG) was extracted from flax (Linum usitatissimum) hulls using hot water, and its functional groups and antioxidant properties were investigated using infrared spectroscopy and different antioxidant assays (2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid (ABTS), reducing power capacity, and β-carotene bleaching inhibition assay), respectively. The antioxidant capacity of SFG showed interesting DPPH radical-scavenging capacity (IC50 SFG = 2.5 mg·mL(-1)), strong ABTS radical scavenging activity (% inhibition ABTS = 75.6% ± 2.6% at 40 mg·mL(-1)), high reducing power capacity (RPSFG = 5 mg·mL(-1)), and potent β-carotene bleaching inhibition activity (IC50 SFG = 10 mg·mL(-1)). All of the obtained results demonstrate the promising potential use of SFG in numerous industrial applications, and a way to valorize flaxseed hulls.

  16. Phase partitioning and solubility of iron in natural seawater controlled by dissolved organic matter

    Science.gov (United States)

    Chen, Min; Wang, Wen-Xiong; Guo, Laodong

    2004-12-01

    The phase partitioning and solubility of Fe as well as its relationship with marine dissolved organic matter (DOM) in different natural seawater and phytoplankton cultures were examined using radiotracer and ultrafiltration techniques to better understand Fe biogeochemical cycling and its biological availability in the ocean. Fe solubility in seawaters was related to the filter's cutoff, with the Fe solubility in the Complexation of organic ligands with Fe appeared to be Fe-specific or Fe preferential. Our results highlight quantitatively the importance of DOM in controlling Fe solubility in seawater. Further studies are needed to elucidate the interrelationship between the biogeochemical cycles of Fe and the chemistry of DOM in the ocean.

  17. Water Solubility in the Proto-Lunar Disk

    Science.gov (United States)

    Hauri, E. H.; Nakajima, M.

    2016-12-01

    The giant impact model is the scenario most widely accepted for the origin of the Moon, yet no satisfactory version of this model exists to explain the Earth-like H2O content of primitive lunar magmas. Here we investigate the likelihood that H2O from the Earth was transferred to the Moon in the aftermath of the giant impact. Nearly all variants of the giant impact model produce an energetic impact-generated debris disk that eventually coalesces to form the Moon [1]. Here we investigate the behavior of H2O in disks of Bulk Silicate Earth (BSE) composition produced by three impact scenarios; (a) the standard model of a Mars-sized impactor striking the proto-Earth [2]; (b) impact into a fast-spinning Earth [3]; and (c) impact of two sub-earths each being half the mass of the current Earth [4]. All of these models have been shown to be sufficiently energetic that, at maximum entropy and hydrostatic equilibrium following the impact, most of the mass of the proto-lunar disk consists of silicate melt and vapor, with vapor mass fractions ranging from 20-100% and mid-plane temperatures of 3500-6000K [1]. From these models, we calculate the 2D axisymmetric pressure structure of the disk, and calculate the solubility of H2O in liquid droplets that condense from the vapor atmosphere. Assuming a high bulk Earth H2O content of 1000 ppm, at the Roche radius and close to the disk midplane where pressures are highest (1 to 1000 bars), the mass fraction of all H-bearing species in the vapor is calculated to be ≤0.001, and the maximum H2O solubility in silicate melt is predicted to be ppm because most of the water is dissociated at these high temperatures, in agreement with [5]. As the disk cools past the condensation of silicate vapor, the remaining vapor is dominated by Na and similarly volatile elements, with H2O a minor component of the vapor phase from 2500-1000K. The calculated vapor pressures are low at the midplane with strong vertical gradients, and thus calculated H2O

  18. Fat-soluble and water-soluble vitamin contents of breast milk from Japanese women.

    Science.gov (United States)

    Sakurai, Takayuki; Furukawa, Miyako; Asoh, Miyuki; Kanno, Takahiro; Kojima, Tadashi; Yonekubo, Akie

    2005-08-01

    To determine the concentrations of fat-soluble and water-soluble vitamins in the maternal milk of Japanese women, we collected human milk samples from more than 4,000 mothers living throughout Japan between December 1998 and September 1999, and defined as group A the 691 samples among these that met the following conditions: breast milk of mothers who were under 40 y of age, who did not smoke habitually and/or use vitamin supplements, and whose babies showed no symptoms of atopy and had birth weights of 2.5 kg or more. We then analyzed the contents of vitamins individually. Large differences were observed among the contents of individual human milk samples. The mean contents of each component were as follows: vitamin A, 159.0 +/- 95.2 IU/100 mL; vitamin E, 0.325 +/- 0.165 alpha-TE mg/100mL; vitamin D3 (cholecalciferol), 8.0 +/- 10.7 ng/100mL; vitamin B1 (thiamin), 12.3 +/- 3.2 microg/100 mL; vitamin B2, 38.4 +/- 12.7 microg/100 mL; vitamin B6, 5.7 +/- 2.5 microg/100 mL; vitamin B12, 0.04 +/- 0.02 microg/100 mL; vitamin C, 5.1 +/- 1.9 mg/100 mL; biotin, 0.50 +/- 0.23 microg/100 mL; choline, 9.2 +/- 1.8 mg/100 mL; folic acid, 6.2 +/- 2.9 microg/100 mL; inositol, 12.6 +/- 3.6 mg/100 mL; niacin (nicotinamide), 32.9 +/- 20.4 microg/100 mL and pantothenic acid, 0.27 +/- 0.09 mg/100 mL. The concentrations of derivatives and/or related compounds of vitamin A (retinol, beta-carotene), vitamin E (alpha-, beta-, gamma-, and delta-tocopherol), and B2 (riboflavin, FMN, and FAD) were determined separately. The contents of each were found to vary greatly as the duration of lactation increased. The present results indicate that it is necessary to evaluate individual differences in human milk in order to perform valid research regarding infant formula.

  19. Water-soluble polymers for recovery of metal ions from aqueous streams

    Science.gov (United States)

    Smith, Barbara F.; Robison, Thomas W.

    1998-01-01

    A process of selectively separating a target metal contained in an aqueous solution by contacting the aqueous solution containing a target metal with an aqueous solution including a water-soluble polymer capable of binding with the target metal for sufficient time whereby a water-soluble polymer-target metal complex is formed, and, separating the solution including the water-soluble polymer-target metal complex from the solution is disclosed.

  20. Morphological Analysis and Solubility of Lead Particles: Effect of Phosphates and Implications to Drinking Water Distribution

    Science.gov (United States)

    Objective • Describe lead synthesis experiments conduced to model the impact of water quality on lead particles and solubility • Develop a model system that can be used for lead solubility studies • Understand the how phosphates impact the morphology and solubility transfo...

  1. Organic-soluble antimicrobial silver nanoparticle-polymer composites in gram scale by one-pot synthesis.

    Science.gov (United States)

    Nair, A Sreekumaran; Binoy, Nadappuram P; Ramakrishna, Seeram; Kurup, T R R; Chan, Lai Wah; Goh, Cheong Hian; Islam, Md Rafiqul; Utschig, Thomas; Pradeep, T

    2009-11-01

    We report a one-pot synthesis of silver nanoparticle-polymer composites (Ag-PNCs) in water by a novel finding involving the polycondensation of methoxybenzyl chlorides (MeO-BzCl) directly on Ag nanoparticle surfaces at room temperature, leading to highly soluble antimicrobial nanocomposites. The composites, which are soluble in a range of organic solvents, precipitate in the reaction vessel, making their separation simple. Solutions of the composites can be casted directly on substrates or made into freestanding films. The material was found to be stable for nearly 2 years. A range of substrates have been shown to become antibacterial by direct application of this material. The experiments were conducted with Ag-PNC-loaded filter paper strips and glass substrates. The samples were found to be antimicrobial (against Escerichia coli and Aspergillus niger). The simple one-pot approach of this kind to make organic-soluble antibacterial coatings could have wide implications.

  2. Superwetting double-layer polyester materials for effective removal of both insoluble oils and soluble dyes in water.

    Science.gov (United States)

    Li, Bucheng; Wu, Lei; Li, Lingxiao; Seeger, Stefan; Zhang, Junping; Wang, Aiqin

    2014-07-23

    Inspired by the mussel adhesive protein and the lotus leaf, Ag-based double-layer polyester (DL-PET) textiles were fabricated for effective removal of organic pollutants in water. The DL-PET textiles are composed of a top superamphiphilic layer and a bottom superhydrophobic/superoleophilic layer. First, the PET textiles were modified with a layer of polydopamine (PDA) and deposited with Ag nanoparticles to form the PET@PDA@Ag textiles. The top superamphiphilic layer, formed by immobilizing Ag3PO4 nanoparticles on the PET@PDA@Ag textile, shows excellent visible-light photocatalytic activity. The bottom superhydrophobic/superoleophilic layer, formed by modifying the PET@PDA@Ag textile using dodecyl mercaptan, is mechanically, environmentally, and chemically very stable. The water-insoluble oils with low surface tension can penetrate both layers of the DL-PET textiles, while the water with soluble organic dyes can only selectively wet the top layer owing to their unique wettability. Consequently, the water-soluble organic contaminants in the collected water can be decomposed by the Ag3PO4 nanoparticles of the top layer under visible-light irradiation or even sunlight in room conditions. Thus, the DL-PET textiles can remove various kinds of organic pollutants in water including both insoluble oils and soluble dyes. The DL-PET textiles feature unique wettability, high oil/water separation efficiency, and visible-light photocatalytic activity.

  3. Study on Mixed Solvency Concept in Formulation Development of Aqueous Injection of Poorly Water Soluble Drug

    Directory of Open Access Journals (Sweden)

    Shailendra Singh Solanki

    2013-01-01

    Full Text Available In the present investigation, mixed-solvency approach has been applied for the enhancement of aqueous solubility of a poorly water- soluble drug, zaltoprofen (selected as a model drug, by making blends (keeping total concentrations 40% w/v, constant of selected water-soluble substances from among the hydrotropes (urea, sodium benzoate, sodium citrate, nicotinamide; water-soluble solids (PEG-4000, PEG-6000; and co-solvents (propylene glycol, glycerine, PEG-200, PEG-400, PEG-600. Aqueous solubility of drug in case of selected blends (12 blends ranged from 9.091 ± 0.011 mg/ml–43.055 ± 0.14 mg/ml (as compared to the solubility in distilled water 0.072 ± 0.012 mg/ml. The enhancement in the solubility of drug in a mixed solvent containing 10% sodium citrate, 5% sodium benzoate and 25 % S cosolvent (25% S cosolvent contains PEG200, PEG 400, PEG600, Glycerine and Propylene glycol was more than 600 fold. This proved a synergistic enhancement in solubility of a poorly water-soluble drug due to mixed cosolvent effect. Each solubilized product was characterized by ultraviolet and infrared techniques. Various properties of solution such as pH, viscosity, specific gravity and surface tension were studied. The developed formulation was studied for physical and chemical stability. This mixed solvency shall prove definitely a boon for pharmaceutical industries for the development of dosage form of poorly water soluble drugs.

  4. TOOL FOR MONITORING HYDROPHILIC CONTAMINANTS IN WATER: POLAR ORGANIC CHEMICAL INTEGRATIVE SAMPLER (POCIS)

    Science.gov (United States)

    Global emissions of persistent bioconcentratable organic chemicals have resulted in a wide range of adverse ecological effects. Consequently, industry was led to develop less persistent, more water soluble, polar or hydrophilic organic compounds (HpOCs), which generally have low ...

  5. TOOL FOR MONITORING HYDROPHILIC CONTAMINANTS IN WATER: POLAR ORGANIC CHEMICAL INTEGRATIVE SAMPLER (POCIS)

    Science.gov (United States)

    Global emissions of persistent bioconcentratable organic chemicals have resulted in a wide range of adverse ecological effects. Consequently, industry was led to develop less persistent, more water soluble, polar or hydrophilic organic compounds (HpOCs), which generally have low ...

  6. Water-soluble ruthenium complexes bearing activity against protozoan parasites.

    Science.gov (United States)

    Sarniguet, Cynthia; Toloza, Jeannette; Cipriani, Micaella; Lapier, Michel; Vieites, Marisol; Toledano-Magaña, Yanis; García-Ramos, Juan Carlos; Ruiz-Azuara, Lena; Moreno, Virtudes; Maya, Juan Diego; Azar, Claudio Olea; Gambino, Dinorah; Otero, Lucía

    2014-06-01

    Parasitic illnesses are major causes of human disease and misery worldwide. Among them, both amebiasis and Chagas disease, caused by the protozoan parasites, Entamoeba histolytica and Trypanosoma cruzi, are responsible for thousands of annual deaths. The lack of safe and effective chemotherapy and/or the appearance of current drug resistance make the development of novel pharmacological tools for their treatment relevant. In this sense, within the framework of the medicinal inorganic chemistry, metal-based drugs appear to be a good alternative to find a pharmacological answer to parasitic diseases. In this work, novel ruthenium complexes [RuCl2(HL)(HPTA)2]Cl2 with HL=bioactive 5-nitrofuryl containing thiosemicarbazones and PTA=1,3,5-triaza-7-phosphaadamantane have been synthesized and fully characterized. PTA was included as co-ligand in order to modulate complexes aqueous solubility. In fact, obtained complexes were water soluble. Their activity against T. cruzi and E. histolytica was evaluated in vitro. [RuCl2(HL4)(HPTA)2]Cl2 complex, with HL4=N-phenyl-5-nitrofuryl-thiosemicarbazone, was the most active compound against both parasites. In particular, it showed an excellent activity against E. histolytica (half maximal inhibitory concentration (IC50)=5.2 μM), even higher than that of the reference drug metronidazole. In addition, this complex turns out to be selective for E. histolytica (selectivity index (SI)>38). The potential mechanism of antiparasitic action of the obtained ruthenium complexes could involve oxidative stress for both parasites. Additionally, complexes could interact with DNA as second potential target by an intercalative-like mode. Obtained results could be considered a contribution in the search for metal compounds that could be active against multiple parasites.

  7. The effect of sublethal concentrations of the water-soluble fraction of crude oil on the chemosensory function of Caspian roach, Rutilus caspicus (YAKOVLEV, 1870).

    Science.gov (United States)

    Lari, Ebrahim; Abtahi, Behrooz; Hashtroudi, Mehri Seyed; Mohaddes, Effat; Døving, Kjell B

    2015-08-01

    The water-soluble fraction of crude oil is a complex and toxic mixture of hydrocarbons. Because aquatic organisms directly encounter it, the water-soluble fraction plays an important role in the toxicity of crude oil in aquatic environments. To determine whether fish are attracted to or avoid the water-soluble fraction, Caspian roaches (Rutilus caspicus) were exposed to different concentrations of the water-soluble fraction in a choice maze apparatus. The results showed that Caspian roaches can detect and avoid 2 mg/L of the water-soluble fraction. To study the effect of the water-soluble fraction on the olfactory function of fish, Caspian roaches were exposed to 3.2 mg/L and 16 mg/L of the water-soluble fraction for 96 h; afterward, exposed fish encountered food extract in a choice maze apparatus. The present study showed that the water-soluble fraction significantly impairs the olfactory function of roaches. To investigate the effect of olfactory system dysfunction on the feeding behavior of fish, Caspian roaches were exposed to 3.2 mg/L and 16 mg/L of the water-soluble fraction. After 4 d, 8 d, and 12 d of exposure, the feeding behavior toward the food extract was tested. The results showed that both 3.2 mg/L and 16 mg/L of the water-soluble fraction suppress the feeding behavior of Caspian roaches. The present study demonstrates that sublethal concentrations of crude oil's water-soluble fraction impair the olfactory function of fish and consequently suppress the feeding behavior. © 2015 SETAC.

  8. Solubility of sodium chloride in superionic water ice

    Science.gov (United States)

    Hernandez, Jean-Alexis; Caracas, Razvan

    2017-04-01

    In icy planets, complex interactions are expected to occur at the interface between the rocky core and the icy mantle composed of mixtures based on water, methane, and ammonia [1, 2]. The hydration of the silicate layer produces salts (MgSO4, NaCl, KCl) that could mix with the ice, and change considerably its properties [3]. Here, we used first-principles molecular dynamics to investigate the stability and the properties of the binary system NaCl-H2O at the relevant thermodynamic conditions for planetary interiors up to ice giants. In these conditions, pure water ice undergoes several transitions that affect considerably its ionic conductivity and its elastic properties [4]. We calculated the Gibbs free energy of mixing along the NaCl-H2O binary by applying Boltzmann statistics to account for energy differences between configurations. We evaluated vibrational entropy from the vibrational spectra of the nuclei motion using the recently developed two phases thermodynamic memory function (2PT-MF) model for multicomponent systems [5, 6]. We show that the solubility of NaCl in water ice at 1600 K is less than 0.78 mol%. We find that salty ices present an extended superionic domain toward high pressures in comparison to pure water ice. Finally, we predict that the complete symmetrization of the hydrogen bonds (i.e. transition to ice X) occurs at higher pressure than in pure water ice, as observed in LiCl doped water ice at ambient temperature [7]. References: [1] M. R. Frank, C. E. Runge, H. P. Scott, S. J. Maglio, J. Olson, V. B. Prakapenka, G. Shen, PEPI 155 (2006) 152-162 [2] B. Journaux, I. Daniel, R. Caracas, G. Montagnac, H. Cardon, Icarus 226 (2013) 355-363 [3] S. Klotz, L. E. Bove, T. Strässle, T. C. Hansen, A. M. Saitta, Nature Materials 8 (2009) 405-409 [4] J. -A. Hernandez, R. Caracas, Phys. Rev. Lett. 117 (2016) 135503 [5] M. P. Desjarlais, Phys. Rev. E 88 (2013) 062145 [6] M. French, M. P. Desjarlais, R. Redmer, Phys. Rev. E 93 (2016) 022140 [7] L. E. Bove

  9. Simultaneous Rapid Determination of the Solubility and Diffusion Coefficients of a Poorly Water-Soluble Drug Based on a Novel UV Imaging System.

    Science.gov (United States)

    Lu, Yan; Li, Mingzhong

    2016-01-01

    The solubility and diffusion coefficient are two of the most important physicochemical properties of a drug compound. In practice, both have been measured separately, which is time consuming. This work utilizes a novel technique of UV imaging to determine the solubility and diffusion coefficients of poorly water-soluble drugs simultaneously. A 2-step optimal method is proposed to determine the solubility and diffusion coefficients of a poorly water-soluble pharmaceutical substance based on the Fick's second law of diffusion and UV imaging measurements. Experimental results demonstrate that the proposed method can be used to determine the solubility and diffusion coefficients of a drug with reasonable accuracy, indicating that UV imaging may provide a new opportunity to accurately measure the solubility and diffusion coefficients of a poorly water-soluble drug simultaneously and rapidly. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  10. Solubility and sorption of petroleum hydrocarbons in water and cosolvent systems

    Institute of Scientific and Technical Information of China (English)

    CHEN Hong; CHEN Shuo; QUAN Xie; ZHAO Yazhi; ZHAO Huimin

    2008-01-01

    The solubility and sorption of oil by uncontaminated clay loam and silt loam soils were studied from water and cosolvent/watersolutions using batch techniques. The data obtained from the dissolution and sorption experinaents were used to evaluate theapplicability of the cosolvent theory to oil as a complex mixture. Aqueous solubility and soil-water distribution coefficients (Kd,w,L/kg) were estimated by extrapolating from cosolvent data, with a log-linear cosolvency model, to the volume fraction of cosolvent(fc) 0, and were compared with direct aqueous measurements. The extrapolated water solubility was 3.16 mg/L, in good agreementwith the directly measured value of 3.83 mg/L. Extrapolated values of Kd,w for the two soils were close to each other but consistentlyhigher than the values from direct aqueous measurements, because of the presence of dissolved organic carbon (DOC). The partitioncoefficient (KDOC) between the DOC and the reely dissolved phase and the OC-normalized sorption coefficient (KOC) were determined.The average values of logKDOC and logKoc were estimated as 4.34 and 3.32, respectively, giving insight into the possibility of oilbecoming mobilized and/or of the soil being remedied. This study revealed that the cosolvency model can be applied to a broader rangeof hydrophobic organic chemicals (HOCs) than has been previously thought. The results aided in a reliable determination of watersolubility and sorption coefficients and provide information about the fate of oil in solvent-contaminated environment.

  11. [Study of water-soluble compounds from fungus garden of Odontotermes formosanus].

    Science.gov (United States)

    Xue, Dejun; Zhou, Hui; Zhang, Min; Xie, Kang; Zhang, Yong

    2005-10-01

    To study water-soluble compounds from fungus garden of Odontotermes formosanus. The chemical constituents of fungus garden were analyzed and identified by GC-MS. 28 compounds were separated and 11 chemical constituents were identified. The main constituents in water-solubles from fungus garden of Odontotermes formosanus are palmitic acid, linolei acid and oleic aid.

  12. Extended Hildebrand solubility approach: Satranidazole in mixtures of dioxane and water

    Directory of Open Access Journals (Sweden)

    P B Rathi

    2011-01-01

    Full Text Available The extended Hildebrand solubility parameter approach is used to estimate the solubility of satranidazole in binary solvent systems. The solubility of satranidazole in various dioxane-water mixtures was analyzed in terms of solute-solvent interactions using a modified version of Hildebrand-Scatchard treatment for regular solutions. The solubility of satranidazole in the binary solvent, dioxane-water shows a bell-shaped profile with a solubility maximum well above the ideal solubility of the drug. This is attributed to solvation of the drug with the dioxane-water mixture, and indicates that the solute-solvent interaction energy is larger than the geometric mean (δ1δ2 of regular solution theory. The new approach provides an accurate prediction of solubility once the interaction energy is obtained. In this case, the energy term is regressed against a polynomial in δ1 of the binary mixture. A quartic expression of W in terms of solvent solubility parameter was found for predicting the solubility of satranidazole in dioxane-water mixtures. The method has potential usefulness in preformulation and formulation studies during which solubility prediction is important for drug design.

  13. Extended hildebrand solubility approach: satranidazole in mixtures of dioxane and water.

    Science.gov (United States)

    Rathi, P B; Mourya, V K

    2011-05-01

    The extended Hildebrand solubility parameter approach is used to estimate the solubility of satranidazole in binary solvent systems. The solubility of satranidazole in various dioxane-water mixtures was analyzed in terms of solute-solvent interactions using a modified version of Hildebrand-Scatchard treatment for regular solutions. The solubility of satranidazole in the binary solvent, dioxane-water shows a bell-shaped profile with a solubility maximum well above the ideal solubility of the drug. This is attributed to solvation of the drug with the dioxane-water mixture, and indicates that the solute-solvent interaction energy is larger than the geometric mean (δ(1)δ(2)) of regular solution theory. The new approach provides an accurate prediction of solubility once the interaction energy is obtained. In this case, the energy term is regressed against a polynomial in δ(1) of the binary mixture. A quartic expression of W in terms of solvent solubility parameter was found for predicting the solubility of satranidazole in dioxane-water mixtures. The method has potential usefulness in preformulation and formulation studies during which solubility prediction is important for drug design.

  14. Water Soluble Polymers as Proton Exchange Membranes for Fuel Cells

    Directory of Open Access Journals (Sweden)

    Bing-Joe Hwang

    2012-03-01

    Full Text Available The relentless increase in the demand for useable power from energy-hungry economies continues to drive energy-material related research. Fuel cells, as a future potential power source that provide clean-at-the-point-of-use power offer many advantages such as high efficiency, high energy density, quiet operation, and environmental friendliness. Critical to the operation of the fuel cell is the proton exchange membrane (polymer electrolyte membrane responsible for internal proton transport from the anode to the cathode. PEMs have the following requirements: high protonic conductivity, low electronic conductivity, impermeability to fuel gas or liquid, good mechanical toughness in both the dry and hydrated states, and high oxidative and hydrolytic stability in the actual fuel cell environment. Water soluble polymers represent an immensely diverse class of polymers. In this comprehensive review the initial focus is on those members of this group that have attracted publication interest, principally: chitosan, poly (ethylene glycol, poly (vinyl alcohol, poly (vinylpyrrolidone, poly (2-acrylamido-2-methyl-1-propanesulfonic acid and poly (styrene sulfonic acid. The paper then considers in detail the relationship of structure to functionality in the context of polymer blends and polymer based networks together with the effects of membrane crosslinking on IPN and semi IPN architectures. This is followed by a review of pore-filling and other impregnation approaches. Throughout the paper detailed numerical results are given for comparison to today’s state-of-the-art Nafion® based materials.

  15. Image Charge Effects in the Wetting Behavior of Alkanes on Water with Accounting for Water Solubility

    Directory of Open Access Journals (Sweden)

    Kirill A. Emelyanenko

    2016-03-01

    Full Text Available Different types of surface forces, acting in the films of pentane, hexane, and heptane on water are discussed. It is shown that an important contribution to the surface forces originates from the solubility of water in alkanes. The equations for the distribution of electric potential inside the film are derived within the Debye-Hückel approximation, taking into account the polarization of the film boundaries by discrete charges at water-alkane interface and by the dipoles of water molecules dissolved in the film. On the basis of above equations we estimate the image charge contribution to the surface forces, excess free energy, isotherms of water adsorption in alkane film, and the total isotherms of disjoining pressure in alkane film. The results indicate the essential influence of water/alkane interface charging on the disjoining pressure in alkane films, and the wettability of water surface by different alkanes is discussed.

  16. Transitioning organic synthesis from organic solvents to water. What's your E Factor?

    Science.gov (United States)

    Lipshutz, Bruce H.; Ghorai, Subir

    2014-01-01

    Traditional organic chemistry, and organic synthesis in particular, relies heavily on organic solvents, as most reactions involve organic substrates and catalysts that tend to be water-insoluble. Unfortunately, organic solvents make up most of the organic waste created by the chemical enterprise, whether from academic, industrial, or governmental labs. One alternative to organic solvents follows the lead of Nature: water. To circumvent the solubility issues, newly engineered “designer” surfactants offer an opportunity to efficiently enable many of the commonly used transition metal-catalyzed and related reactions in organic synthesis to be run in water, and usually at ambient temperatures. This review focuses on recent progress in this area, where such amphiphiles spontaneously self-aggregate in water. The resulting micellar arrays serve as nanoreactors, obviating organic solvents as the reaction medium, while maximizing environmental benefits. PMID:25170307

  17. Transitioning organic synthesis from organic solvents to water. What's your E Factor?

    Science.gov (United States)

    Lipshutz, Bruce H; Ghorai, Subir

    2014-08-01

    Traditional organic chemistry, and organic synthesis in particular, relies heavily on organic solvents, as most reactions involve organic substrates and catalysts that tend to be water-insoluble. Unfortunately, organic solvents make up most of the organic waste created by the chemical enterprise, whether from academic, industrial, or governmental labs. One alternative to organic solvents follows the lead of Nature: water. To circumvent the solubility issues, newly engineered "designer" surfactants offer an opportunity to efficiently enable many of the commonly used transition metal-catalyzed and related reactions in organic synthesis to be run in water, and usually at ambient temperatures. This review focuses on recent progress in this area, where such amphiphiles spontaneously self-aggregate in water. The resulting micellar arrays serve as nanoreactors, obviating organic solvents as the reaction medium, while maximizing environmental benefits.

  18. Linking Atomistic and Mesoscale Simulations of Water Soluble Polymers

    Science.gov (United States)

    Jones, J. L.

    2003-03-01

    There exist a range of techniques for studying surfactants and polymers in the mesoscale regime. One of the challenges is to link mesoscale theories and simulations to other calculation methods which address different length scales of the system. We introduce some mesoscale methods of calculation for polymers and surfactants and then present a case study of where mesoscale modelling is used for mechanistic understanding, by linking the method to high throughput in-silico screening methods. We look at the adsorption onto silica of ethylene oxide (EO)/ propylene oxide (PO) block copolymers (lutrols) which have been modified by end-grafting of short, cationic dimethylamino ethyl methacrylate (DMAEMA)chains. Given that the silica surface is negatively charged, it is remarkable that in some circumstances, polymers with longercationic chains have a lower adsorption. The effect is attributed to a competition between strong adsorption of the cationic DMAEMA groups driven by electrostatics, and weaker adsorption of the more numerous EO groups. This then raises the question of how we produce the values for the mesoscale parameters in these models and in the second part of the talk we describe a calculation method for doing this for water soluble polymers. The most promising route, but notoriously costly, is based on free energy calculations at the atomistic level. Free energy calculations are computationally intensive in general, but in an aqueous system one is also faced with the additional problem of using complex continuum models and/or accurate interaction potentials for water. Here we show how potential of mean force (PMF)calculations offer a practical alternative which avoids these drawbacks, though one is still faced with extremely long simulations.

  19. Determination and Prediction of Binary Solubility for Aromatic-Tetraethylene Glycol (with Water) Systems

    Institute of Scientific and Technical Information of China (English)

    1999-01-01

    The binary solubilities of tetraethylene glycol (TTEG) with benzene, toluene or p-xylene, were measured by the turbidity point method. In TTEG the content of water ranged from 0 to 5% and the test temperature ranged from 20℃ to 120℃. Increasing the temperature resulted in greater solubility of the aromatics in TTEG, while increasing the content of water caused the aromatic solubility to decrease. The benzene solubillity in TTEG was the greatest followed by toluene and xylene at the same water content and temperature. The mutual solubility was predicted by correlating the paramaters of a new group for the UNIFAC model for the aromatics extraction system. The modified UNIFAC group contribution model was used to predict the binary solubility of TTEG and aromatics. The average deviation between the experimental result and prediction is 4.06%. Therefore, the UNIFAC model can be used to describe the solubility phenomena for TTEG-aromatics systems.

  20. Water-Soluble 2-Hydroxyisophthalamides for Sensitization of Lanthanide Luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Samuel, Amanda P. S.; Moore, Evan G.; Melchior, Marco; Xu, Jide; Raymond, Kenneth N.

    2008-02-20

    A series of octadentate ligands featuring the 2-hydroxyisophthalamide (IAM) antenna chromophore (to sensitize Tb(III) and Eu(III) luminescence) has been prepared and characterized. The length of the alkyl amine scaffold that links the four IAM moieties has been varied in order to investigate the effect of the ligand backbone on the stability and photophysical properties of the Ln(III) complexes. The amine backbones utilized in this study are N,N,N{prime},N{prime}-tetrakis-(2-aminoethyl)-ethane-1,2-diamine [H(2,2)-], N,N,N{prime},N{prime}-tetrakis-(2-aminoethyl)-propane-1,3-diamine [H(3,2)-] and N,N,N{prime},N{prime}-tetrakis-(2-aminoethyl)-butane-1,4-diamine [H(4,2)-]. These ligands also incorporate methoxyethylene [MOE] groups on each of the IAM chromophores to increase their water solubility. The aqueous ligand protonation constants and Tb(III) and Eu(III) formation constants were determined from solution thermodynamic studies. The resulting values indicate that at physiological pH, the Eu(III) and Tb(III) complexes of H(2,2)-IAM-MOE and H(4,2)-IAM-MOE are sufficiently stable to prevent dissociation at nanomolar concentrations. The photophysical measurements for the Tb(III) complexes gave overall quantum yield values of 0.56, 0.39, and 0.52 respectively for the complexes with H(2,2)-IAM-MOE, H(3,2)-IAM-MOE and H(4,2)-IAM-MOE, while the corresponding Eu(III) complexes displayed significantly weaker luminescence, with quantum yield values of 0.0014, 0.0015, and 0.0058, respectively. Analysis of the steady state Eu(III) emission spectra provides insight into the solution symmetries of the complexes. The combined solubility, stability and photophysical performance of the Tb(III) complexes in particular make them well suited to serve as the luminescent reporter group in high sensitivity time-resolved fluoroimmunoassays.

  1. Water-Soluble 2-Hydroxyisophthalamides for Sensitization of Lanthanide Luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Samuel, Amanda P. S.; Moore, Evan G.; Melchior, Marco; Xu, Jide; Raymond, Kenneth N.

    2008-02-20

    A series of octadentate ligands featuring the 2-hydroxyisophthalamide (IAM) antenna chromophore (to sensitize Tb(III) and Eu(III) luminescence) has been prepared and characterized. The length of the alkyl amine scaffold that links the four IAM moieties has been varied in order to investigate the effect of the ligand backbone on the stability and photophysical properties of the Ln(III) complexes. The amine backbones utilized in this study are N,N,N{prime},N{prime}-tetrakis-(2-aminoethyl)-ethane-1,2-diamine [H(2,2)-], N,N,N{prime},N{prime}-tetrakis-(2-aminoethyl)-propane-1,3-diamine [H(3,2)-] and N,N,N{prime},N{prime}-tetrakis-(2-aminoethyl)-butane-1,4-diamine [H(4,2)-]. These ligands also incorporate methoxyethylene [MOE] groups on each of the IAM chromophores to increase their water solubility. The aqueous ligand protonation constants and Tb(III) and Eu(III) formation constants were determined from solution thermodynamic studies. The resulting values indicate that at physiological pH, the Eu(III) and Tb(III) complexes of H(2,2)-IAM-MOE and H(4,2)-IAM-MOE are sufficiently stable to prevent dissociation at nanomolar concentrations. The photophysical measurements for the Tb(III) complexes gave overall quantum yield values of 0.56, 0.39, and 0.52 respectively for the complexes with H(2,2)-IAM-MOE, H(3,2)-IAM-MOE and H(4,2)-IAM-MOE, while the corresponding Eu(III) complexes displayed significantly weaker luminescence, with quantum yield values of 0.0014, 0.0015, and 0.0058, respectively. Analysis of the steady state Eu(III) emission spectra provides insight into the solution symmetries of the complexes. The combined solubility, stability and photophysical performance of the Tb(III) complexes in particular make them well suited to serve as the luminescent reporter group in high sensitivity time-resolved fluoroimmunoassays.

  2. Overview of milling techniques for improving the solubility of poorly water-soluble drugs

    Directory of Open Access Journals (Sweden)

    Zhi Hui Loh

    2015-07-01

    Full Text Available Milling involves the application of mechanical energy to physically break down coarse particles to finer ones and is regarded as a “top–down” approach in the production of fine particles. Fine drug particulates are especially desired in formulations designed for parenteral, respiratory and transdermal use. Most drugs after crystallization may have to be comminuted and this physical transformation is required to various extents, often to enhance processability or solubility especially for drugs with limited aqueous solubility. The mechanisms by which milling enhances drug dissolution and solubility include alterations in the size, specific surface area and shape of the drug particles as well as milling-induced amorphization and/or structural disordering of the drug crystal (mechanochemical activation. Technology advancements in milling now enable the production of drug micro- and nano-particles on a commercial scale with relative ease. This review will provide a background on milling followed by the introduction of common milling techniques employed for the micronization and nanonization of drugs. Salient information contained in the cited examples are further extracted and summarized for ease of reference by researchers keen on employing these techniques for drug solubility and bioavailability enhancement.

  3. Water-Soluble Conjugated Polymers: Self-Assembly and Biosensor Applications

    Science.gov (United States)

    Bazan, Guillermo

    2005-03-01

    Homogeneous assays can be designed which take advantage of the optical amplification of conjugated polymers and the self-assembly characteristic of aqueous polyelectrolytes. For example, a ssDNA sequence sensor comprises an aqueous solution containing a cationic water soluble conjugated polymer such as poly(9,9-bis(trimethylammonium)-hexyl)-fluorene phenylene) with a peptide nucleic acid (PNA) labeled with a dye (PNA-C*). Signal transduction is controlled by hybridization of the neutral PNA-C* probe and the negative ssDNA target, resulting in favorable electrostatic interactions between the hybrid complex and the cationic polymer. Distance requirements for Förster energy transfer are thus met only when ssDNA of complementary sequence to the PNA-C* probe is present. Signal amplification by the conjugated polymer provides fluorescein emission >25 times higher than that of the directly excited dye. Transduction by electrostatic interactions followed by energy transfer is a general strategy. Examples involving other biomolecular recognition events, such as DNA/DNA, RNA/protein and RNA/RNA, will also be provided. The mechanism of biosensing will be discussed, with special attention to the varying contributions of hydrophobic and electrostatic forces, polymer conformation, charge density, local concentration of C*s and tailored defect sites for aggregation-induced optical changes. Finally, the water solubility of these conjugated polymers opens possibilities for spin casting onto organic materials, without dissolving the underlying layers. This property is useful for fabricating multilayer organic optoelectronic devices by simple solution techniques.

  4. Synthesis and properties of novel water-soluble fullerene-glycine derivatives as new materials for cancer therapy.

    Science.gov (United States)

    Jiang, Guichang; Yin, Fen; Duan, Jihua; Li, Guangtao

    2015-01-01

    Novel water-soluble fullerene-glycine derivatives were synthesized by means of simple organic chemistry. They are completely soluble in water, yielding a clear brown solution. The products were characterized by fourier transform infrared (FTIR), ultraviolet-visible spectroscopy (UV-Vis), (1)H NMR, (13)C NMR, thermogravimetric analyses (TGA), and scanning electron microscopy (SEM). The assembly behavior of water-soluble fullerene-glycine derivatives was investigated by SEM. The results show that the fullerene-glycine derivatives create morphology that is sphere-like. The cytotoxicity to cancer cell lines of the fullerene-glycine derivatives was evaluated by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) and flow cytometry. The results show that fullerene-glycine derivatives exhibit mortality and apoptosis of the cells which increased with the increase of fullerene-glycine derivative concentration. The cytotoxicity mechanism of fullerene-glycine derivatives was investigated for the first time. Novel water-soluble fullerene-glycine derivatives were synthesized by means of simple organic chemistry. The products were characterized by FTIR, UV-Vis, (1)H NMR, (13)C NMR, TGA, and SEM. The bioactivities of fullerene-glycine derivative materials have been tested, and the results show that compared with the fullerene complex, the fullerene-glycine derivative materials exhibit mortality and apoptosis of the cells which increased with the increase of fullerene-glycine derivative concentration. SEM images showed the macrostructure of fullerene-glycine derivative materials was spheres.

  5. Spherical mesoporous silica nanoparticles for loading and release of the poorly water-soluble drug telmisartan.

    Science.gov (United States)

    Zhang, Yanzhuo; Zhi, Zhuangzhi; Jiang, Tongying; Zhang, Jinghai; Wang, Zhanyou; Wang, Siling

    2010-08-03

    The purpose of this study was to develop mesoporous silica nanoparticles (MSNs) loaded with a poorly water-soluble drug, intended to be orally administered, able to improve the dissolution rate and enhance the drug loading capacity. Spherical MSNs were synthesized using an organic template method in an oil/water phase, and large pore diameter MSNs were functionalized with aminopropyl groups through postsynthesis. MSNs as well as the resulting functionalized MSNs were investigated as matrices for loading and release of the model drug telmisartan (TEL). The effects of different pore sizes and surface chemical groups on TEL uptake and release were systematically studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption, X-ray diffraction (XRD), Fourier transformation infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and HPLC. The total pore volume and the pore diameter of MSNs were the two main factors limiting the maximum drug load capacity. MSNs allow a very high drug loading of about 60% in weight. The release rate of TEL from MSNs with a pore diameter of 12.9 nm was found to be effectively increased and the release rate of TEL from the functionalized MSNs was effectively controlled compared with that from the unmodified MSNs. We believe that the present study will help in the design of oral drug delivery systems for the dissolution enhancement and/or sustained release of poorly water-soluble drugs.

  6. Influence of soluble surface-active organic material on droplet activation

    Science.gov (United States)

    Li, Zhidong

    1997-06-01

    The growth of droplets from inorganic salt aerosols, i.e., NaCl or (NH4)2SO4, by water vapor condensation can be predicted from Kohler theory, which accounts for the droplet curvature (Kelvin) effect and solute (Raoult) effect. Atmospheric aerosol particles, however, are also rich in organic materials, some of which are water soluble surfactants. Very limited research has been carried out to study the influence of soluble surfactants on droplet activation. This research has explored the effect of soluble surfactants on droplet activation both theoretically and experimentally. Particles containing sodium dodecyl sulfate (SDS) have been selected as surrogate of atmospheric surfactant aerosols. Both experimental and model simulation reach consistent results. It is concluded that SDS can lower critical supersaturation of particles that contain SDS through surface tension depression (lowering Kelvin effect). However, due to its high molecular weight (Mw = 288), SDS lowers the Raoult effect, leading to overall higher critical supersaturation than that of same dry size of pure NaCl particles. The osmotic coefficient of NaCl, Φ sal, and of SDS, Φ SDS, have also been calculated utilizing the measured S c and published σ data. It appears that the presence of SDS in an initially dry particle alters Φ SDS such that it increases in value and approaches ideal behavior as the proportion of SDS decreases. Since the critical droplet radius is larger for smaller SDS% in the mixture, the corresponding SDS bulk concentration is even more dilute, which is consistent with ideal solution behavior. Both theoretical and experimental approaches also show that despite the a depression, S c of a particle that contains SDS is always higher than that of a pure NaCl particle with the same dry size. The degree of this deviation increases with increasing SDS% in the mixtures, indicating an increase in hydrophobicity with increasing SDS% in the initially dry particles. The lowering of Raoult

  7. Determination and evaluation of solubility parameter of satranidazole using dioxane-water system

    Directory of Open Access Journals (Sweden)

    Rathi P

    2010-01-01

    Full Text Available Satranidazole, a potent broad spectrum antiprotozoal, is a poorly water-soluble drug and has low bioavailability on oral administration. One of the important methods to improve the solubility and bioavailability of a less water-soluble drug is by the use of cosolvents. The solubility enhancement produced by binary blends with a cosolvent (dioxane was studied against the solubility parameter of solvent blends (d1 to evaluate the solubility parameter of drug (d2 . Solubility parameter of drug (d2 was evaluated in blends of dioxane-water system. The results obtained were compared with the d2 values obtained using Molar Volume Method and Fedor′s Group Substitution Method. The binary blend water-dioxane (10:90 gave maximum solubility with an experimental d2 value of 11.34 (Cal/cm 3 0.5 that was comparable to the theoretical values of 11.34 (Cal/cm 3 0.5 determined by Molar Volume Method and 11.3928 (Cal/cm 3 0.5 when determined by Fedor′s Group Substitution Method, which is in good agreement with solubility measurement method.

  8. Soluble carbon in oxisol under the effect of organic residue rates

    Directory of Open Access Journals (Sweden)

    Gabriela Lúcia Pinheiro

    2014-06-01

    Full Text Available The application of organic residues to the soil can increase soluble organic carbon (SOC and affect the pH and electrolytic conductivity (EC of the soil. However, the magnitude of these changes depends on the type of residue and the applied dose. This study aimed to evaluate the effect of increasing C rates contained in organic residue on the pH, EC, water-extractable total carbon (WETC, water-extractable organic carbon (WEOC, and water-extractable inorganic carbon (WEIC in soil treated with manure (chicken, swine, and quail, sawdust, coffee husk, and sewage sludge. The levels of total C (TC- KH2PO4, organic carbon (OC- KH2PO4, and inorganic C (IC- KH2PO4 extractable by a 0.1 mol L-1 KH2PO4 solution were also quantified in soil under the effect of increasing rates of chicken and quail manures. The following rates of organic residue C were applied to a dystrophic Red Latosol (Oxisol sample: 0, 2,000, 5,000, 10,000, and 20,000 mg kg-1. The addition of organic residues to the soil increased pH, except in the case of sewage sludge, which acidified the soil. The acidity correction potential of chicken and quail manure was highest, dependent on the manure rate applied; regardless of the dose used, sawdust barely alters the soil pH. At all tested rates, the EC of the soil treated with swine manure, coffee husk, and sawdust remained below 2.0 dS m-1, which is a critical level for salinity-sensitive crops. However, the application of chicken or quail manure and sewage sludge at certain rates increased the EC to values above this threshold level. Highest levels of WETC, WEOC, and WEIC were obtained when chicken and quail manure and coffee husk were applied to the Oxisol. The quantities of SOC extracted by KH2PO4 were higher than the quantities extracted by water, demonstrating the ability of soil to adsorb C into its colloids.

  9. Method to produce water-soluble sugars from biomass using solvents containing lactones

    Energy Technology Data Exchange (ETDEWEB)

    Dumesic, James A.; Luterbacher, Jeremy S.

    2015-06-02

    A process to produce an aqueous solution of carbohydrates that contains C6-sugar-containing oligomers, C6 sugar monomers, C5-sugar-containing oligomers, C5 sugar monomers, or any combination thereof is presented. The process includes the steps of reacting biomass or a biomass-derived reactant with a solvent system including a lactone and water, and an acid catalyst. The reaction yields a product mixture containing water-soluble C6-sugar-containing oligomers, C6-sugar monomers, C5-sugar-containing oligomers, C5-sugar monomers, or any combination thereof. A solute is added to the product mixture to cause partitioning of the product mixture into an aqueous layer containing the carbohydrates and a substantially immiscible organic layer containing the lactone.

  10. Method to produce water-soluble sugars from biomass using solvents containing lactones

    Energy Technology Data Exchange (ETDEWEB)

    Dumesic, James A.; Luterbacher, Jeremy S.

    2017-08-08

    A process to produce an aqueous solution of carbohydrates that contains C6-sugar-containing oligomers, C6 sugar monomers, C5-sugar-containing oligomers, C5 sugar monomers, or any combination thereof is presented. The process includes the steps of reacting biomass or a biomass-derived reactant with a solvent system including a lactone and water, and an acid catalyst. The reaction yields a product mixture containing water-soluble C6-sugar-containing oligomers, C6-sugar monomers, C5-sugar-containing oligomers, C5-sugar monomers, or any combination thereof. A solute is added to the product mixture to cause partitioning of the product mixture into an aqueous layer containing the carbohydrates and a substantially immiscible organic layer containing the lactone.

  11. Method to produce water-soluble sugars from biomass using solvents containing lactones

    Energy Technology Data Exchange (ETDEWEB)

    Dumesic, James A.; Luterbacher, Jeremy S.

    2015-06-02

    A process to produce an aqueous solution of carbohydrates that contains C6-sugar-containing oligomers, C6 sugar monomers, C5-sugar-containing oligomers, C5 sugar monomers, or any combination thereof is presented. The process includes the steps of reacting biomass or a biomass-derived reactant with a solvent system including a lactone and water, and an acid catalyst. The reaction yields a product mixture containing water-soluble C6-sugar-containing oligomers, C6-sugar monomers, C5-sugar-containing oligomers, C5-sugar monomers, or any combination thereof. A solute is added to the product mixture to cause partitioning of the product mixture into an aqueous layer containing the carbohydrates and a substantially immiscible organic layer containing the lactone.

  12. The impact of exogenous N supply on soluble organic nitrogen dynamics and nitrogen balance in a greenhouse vegetable system.

    Science.gov (United States)

    Liang, Bin; Kang, Lingyun; Ren, Tao; Junliang, Li; Chen, Qing; Wang, Jingguo

    2015-05-01

    A long-term greenhouse experiment (2004-2012) was conducted with continuous tomato (Lycopersicum esculentum Mill.) plantings to understand the influence of an exogenous nitrogen supply from irrigation water, chemical fertilizer, or organic amendment on the N balance and soluble organic nitrogen (SON). The results from 16 tomato growing seasons indicated that the application of organic amendment (manure and straw) alone (Or-N) resulted in the same yield as the conventional chemical N with organic amendment (Co-N) and the reduced chemical N with organic amendment (Re-N) treatments. The annual apparent N loss was >1000 and 438 kg N ha(-1) in the Co-N and Re-N treatments, respectively. Over the study period, the SON in the 1.8 m soil profile was 1449 and 1978 kg N ha(-1) in the Re-N and Co-N treatments, respectively, it was 1.7- and 2.3-fold higher than that observed in the Or-N treatment, which indicated that SON increased with the chemical N application. The percentage of SON in the cumulative soluble N (SON plus mineral N) ranged from 28% to 44%, and there were no significant differences across the 0-0.6, 0.6-1.2, and 1.2-1.8 m soil profile, which indicated that the leaching and distribution of SON was similar to those of the mineral N in the 0-1.8 m soil profile. We conclude that the mobility of soluble organic N in the 0-1.8 m of the soil was synchronous with the mineral N under a greenhouse production system, and the risk of soluble organic N leaching increased with inorganic N application rate. Therefore, leaching of SON in the intensive agriculture should not be ignored when evaluating the risk of N leaching.

  13. Towards improved solubility of poorly water-soluble drugs: cryogenic co-grinding of piroxicam with carrier polymers.

    Science.gov (United States)

    Penkina, Anna; Semjonov, Kristian; Hakola, Maija; Vuorinen, Sirpa; Repo, Timo; Yliruusi, Jouko; Aruväli, Jaan; Kogermann, Karin; Veski, Peep; Heinämäki, Jyrki

    2016-01-01

    Amorphous solid dispersions (SDs) open up exciting opportunities in formulating poorly water-soluble active pharmaceutical ingredients (APIs). In the present study, novel catalytic pretreated softwood cellulose (CPSC) and polyvinylpyrrolidone (PVP) were investigated as carrier polymers for preparing and stabilizing cryogenic co-ground SDs of poorly water-soluble piroxicam (PRX). CPSC was isolated from pine wood (Pinus sylvestris). Raman and Fourier transform infrared (FTIR) spectroscopy, X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) were used for characterizing the solid-state changes and drug-polymer interactions. High-resolution scanning electron microscope (SEM) was used to analyze the particle size and surface morphology of starting materials and final cryogenic co-ground SDs. In addition, the molecular aspects of drug-polymer interactions and stabilization mechanisms are presented. The results showed that the carrier polymer influenced both the degree of amorphization of PRX and stabilization against crystallization. The cryogenic co-ground SDs prepared from PVP showed an enhanced dissolution rate of PRX, while the corresponding SDs prepared from CPSC exhibited a clear sustained release behavior. In conclusion, cryogenic co-grinding provides a versatile method for preparing amorphous SDs of poorly water-soluble APIs. The solid-state stability and dissolution behavior of such co-ground SDs are to a great extent dependent on the carrier polymer used.

  14. Water-enhanced solvation of organics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, J.H.

    1993-07-01

    Water-enhanced solvation (WES) was explored for Lewis acid solutes in Lewis base organic solvents, to develop cheap extract regeneration processes. WES for solid solutes was determined from ratios of solubilities of solutes in water-sat. and low-water solvent; both were determined from solid-liquid equilibrium. Vapor-headspace analysis was used to determine solute activity coefficients as function of organic phase water concentration. WES magnitudes of volatile solutes were normalized, set equal to slope of log {gamma}{sub s} vs x{sub w}/x{sub s} curve. From graph shape {Delta}(log {gamma}{sub s}) represents relative change in solute activity coefficient. Solutes investigated by vapor-headspace analysis were acetic acid, propionic acid, ethanol, 1,2-propylene glycol, 2,3-butylene glycol. Monocarboxylic acids had largest decrease in activity coefficient with water addition followed by glycols and alcohols. Propionic acid in cyclohexanone showed greatest water-enhancement {Delta} (log {gamma}{sub acid})/{Delta}(x{sub w}/x{sub acid}) = {minus}0.25. In methylcyclohexanone, the decrease of the activity coefficient of propionic acid was {minus}0.19. Activity coefficient of propionic acid in methylcyclohexanone stopped decreasing once the water reached a 2:1 water to acid mole ratio, implying a stoichiometric relation between water, ketone, and acid. Except for 2,3-butanediol, activity coefficients of the solutes studied decreased monotonically with water content. Activity coefficient curves of ethanol, 1,2-propanediol and 2,3-butanediol did not level off at large water/solute mole ratio. Solutes investigated by solid-liquid equilibrium were citric acid, gallic acid, phenol, xylenols, 2-naphthol. Saturation concentration of citric acid in anhydrous butyl acetate increased from 0.0009 to 0.087 mol/L after 1.3 % (g/g) water co-dissolved into organic phase. Effect of water-enhanced solvation for citric acid is very large but very small for phenol and its derivatives.

  15. Solubility Characteristics and Slow-Release Mechanism of Nitrogen from Organic-Inorganic Compound Coated Urea

    Directory of Open Access Journals (Sweden)

    Hongtao Zou

    2015-01-01

    Full Text Available A soil incubation method was used to investigate the solubility characteristics and slow-release mechanism of organic-inorganic compound coated urea at temperature of 10, 20, and 30°C. The membrane microstructure with and without incubation was tested via scanning electron microscopy (SEM. Slow release of nitrogen (N from different inorganic minerals was analysed by the activation energy from the nutrient solubility system. The rate of nitrogen solubility increased with temperature increasing. The first-order reaction kinetic equation described the solubility process of coated urea. The rate constant k also increased with temperature increasing. Moreover, the SEM images showed that the microstructure of the coating layer changed into a flocculent structure and the number of tiny pores and holes on the membrane surface increased significantly with temperature increasing, which increased N solubility rate. The Arrhenius equation indicated that activation energy was closely related to k during the solubility process; the activation energy was reduced with k rising, which resulted in N solubility rate increasing. Overall, the N solubility rate of coated urea was affected by temperature.

  16. INFLUENCE OF WATER-SOLUBLE COMPOUNDS OF RESTORED SULFUR ONTO TOXIC PROPERTIES OF NATURAL AND WASTE WATERS

    Directory of Open Access Journals (Sweden)

    Frog Boris Nikolaevich

    2012-10-01

    Full Text Available Whenever environmental pollution by sulphur compounds is under discussion, the latter contemplate those compounds that may be subjected to consideration through the employment of methods of analytical control. First of all, sulphates and volatile compounds of partially or completely restored sulphur, such as SO2, H2S, methyl sulphur compounds (merkaptans, dimethyl sulphide, dimethyl disulphide and others may be subjected to control. Elementary sulphur that is contained in the water is difficult to analyze. At the same time, an extensive group of water-soluble compounds of restored sulphur is not considered by numerous nature protection organizations. As a rule, they do not possess distinct analytical properties. The latter include any organic and inorganic thio-acids and their combinations with ions of transitive metals, in particular, with ions of monovalent copper. Microcolloidal (nano- particles of FeS may also be included into this group of compounds. The objective of the article is to generate the awareness of those compounds of reduced sulphur that are out of control. By virtue of this article, the authors apply to specialists in water treatment, water conditioning and water quality regulation.

  17. Preparation of water-soluble nanographite and its application in water-based cutting fluid

    Science.gov (United States)

    Chen, Qiang; Wang, Xue; Wang, Zongting; Liu, Yu; You, Tingzheng

    2013-01-01

    Water-soluble nanographite was prepared by in situ emulsion polymerization using methacrylate as polymeric monomer. The dispersion stability and dispersion state of graphite particles were evaluated by UV-visible spectrophotometry and scanning electron microscopy, respectively. The water-soluble nanographite was then added into the water-based cutting fluid as lubricant additive. The lubrication performance of water-based cutting fluid with the nanographite additive was studied on four-ball friction tester and surface tensiometer. Results indicate that the modification method of in situ emulsion polymerization realizes the uniform and stabilized dispersion of nanographite in aqueous environment. The optimal polymerization condition is 70°C (polymerization temperature) and 5 h (polymerization time). The addition of nanographite decreases the friction coefficient and wear scar diameter by 44% and 49%. Meanwhile, the maximum non-seizure load ( P B ) increases from 784 to 883 N, and the value of surface tension (32.76 × 10-3 N/m) is at low level. Nanographite additive improves apparently the lubrication performance of water-based cutting fluid.

  18. Aqueous coating dispersion (pseudolatex) of zein improves formulation of sustained-release tablets containing very water-soluble drug.

    Science.gov (United States)

    Li, X N; Guo, H X; Heinamaki, J

    2010-05-01

    Zein is an alcohol soluble protein of corn origin that exhibits hydrophobic properties. Pseudolatexes are colloidal dispersions containing spherical solid or semisolid particles less than 1 microm in diameter and can be prepared from any existing thermoplastic water-insoluble polymer. The novel plasticized film-coating pseudolatex of zein was studied in formulation of sustained-release tablets containing very water-soluble drug. Film formation of plasticized aqueous dispersion was compared with film forming properties of plasticized organic solvent system (ethanol) of zein. The water vapor permeability (WVP), water uptake and erosion, and moisture sorption were evaluated with free films. The tablets containing metoprolol tartrate as a model drug were used in pan-coating experiments. Aqueous film coatings plasticized with PEG 400 exhibited very low water uptake. No significant difference in WVP, moisture sorption and erosion were found between aqueous films and organic solvent-based films of zein plasticized with PEG 400. The atomic force microscopy (AFM) images on microstructure of films showed that colloidal particle size of zein in the aqueous films was smaller than that observed in the solvent-based films. In addition, the aqueous-based films were more compact and smoother than the respective solvent-based films. The aqueous zein-coated tablets containing very water-soluble drug (metoprolol tartrate) exhibited clear sustained-release dissolution profiles in vitro, while the respective solvent-based film-coated tablets showed much faster drug release. Furthermore, aqueous zein-coated tablets had lower water absorption at high humidity conditions. In conclusion, the plasticized aqueous dispersion (pseudolatex) of zein can be used for moisture resistant film coating of sustained-release tablets containing very water-soluble drug.

  19. The synthesis of a water-soluble derivative of rutin as an antiradical agent

    Energy Technology Data Exchange (ETDEWEB)

    Pedriali, Carla Aparecida; Fernandes, Adjaci Uchoa [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Quimica. Dept. de Bioquimica]. E-mail: capedriali@hotmail.com; Bernusso, Leandra de Cassia; Polakiewicz, Bronislaw [Universidade de Sao Paulo (USP), SP (Brazil). Faculdade de Ciencias Farmaceuticas. Dept. de Tecnologia Bioquimico-Farmaceutica

    2008-07-01

    The purpose of this study was to synthesize a water-soluble derivative of rutin (compound 2) by introducing carboxylate groups on rutin's sugar moiety. The rutin derivative showed an almost 100-fold solubility increase in water. The antiradical capacity of compound 2 was evaluated using the luminol/AAPH system, and the derivative's activity was 1.5 times greater than that of Trolox. Despite the derivative's high solubility in water (log P = -1.13), lipid peroxidation of brain homogenate membranes was very efficiently inhibited (inhibition values were only 19% lower than the inhibition values of rutin). (author)

  20. Water-Soluble Multi-Walled Nanotube and its Film Characteristics

    Institute of Scientific and Technical Information of China (English)

    FENG Wei(郭镇); ZHOU Feng(红); WANG Xiao-Gong(叶瑜黄); WAN Mei-Xiang(星景志); FUJII Akihiko(圣锦); YOSHINO Katsumi(江冰林)

    2003-01-01

    Covalent modification of multi-walled-nanotube (MWNT) surface-enhanced solubility in water yields a thin transparent shining dark-coloured film of soluble MWNT (s-MWNT) with a conductivity of 1.25S/cm. Fourier transform infrared spectroscopy, scanning electron microscopy, transmission-electron microscopy, and UV-vis absorption spectroscopy were used for thefilm characterization. The result shows that enhanced interactions between s-MWNT and water and between s-MWNTs play an important role in increasing the solubility of the nanotubes in water and in the formation of uniform thin films.

  1. The priming effect of soluble carbon inputs in organic and mineral soils from a temperate forest.

    Science.gov (United States)

    Wang, Hui; Xu, Wenhua; Hu, Guoqing; Dai, Weiwei; Jiang, Ping; Bai, Edith

    2015-08-01

    The priming effect (PE) is one of the most important interactions between C input and output in soils. Here we aim to quantify patterns of PE in response to six addition rates of (13)C-labeled water-soluble C (WSC) and determine if these patterns are different between soil organic and mineral layers in a temperate forest. Isotope mass balance was used to distinguish WSC derived from SOC-derived CO2 respiration. The relative PE was 1.1-3.3 times stronger in the mineral layer than in the organic layer, indicating higher sensitivity of the mineral layer to WSC addition. However, the magnitude of cumulative PE was significantly higher in the organic layer than in the mineral layer due to higher SOC in the organic layer. With an increasing WSC addition rate, cumulative PE increased for both layers, but tended to level off when the addition rate was higher than 400 mg C kg(-1) soil. This saturation effect indicates that stimulation of soil C loss by exogenous substrate would not be as drastic as the increase of C input. In fact, we found that the mineral layer with an WSC addition rate of 160-800 mg C kg(-1) soil had net C storage although positive PE was observed. The addition of WSC basically caused net C loss in the organic layer due to the high magnitude of PE, pointing to the importance of the organic layer in C cycling of forest ecosystems. Our findings provide a fundamental understanding of PE on SOC mineralization of forest soils and warrant further in situ studies of PE in order to better understand C cycling under global climate change.

  2. Binary systems solubilities of inorganic and organic compounds, v.1 pt.2

    CERN Document Server

    Stephen, H

    2013-01-01

    Solubilities of Inorganic and Organic Compounds, Volume 1: Binary Systems, Part 1 is part of an approximately 5,500-page manual containing a selection from the International Chemical Literature on the Solubilities of Elements, Inorganic Compounds, Metallo-organic and Organic Compounds in Binary, Ternary and Multi-component Systems. A careful survey of the literature in all languages by a panel of scientists specially appointed for the task by the U.S.S.R. Academy of Sciences, Moscow, has made the compilation of this work possible. The complete English edition in five separately bound volumes w

  3. Explaining Ionic Liquid Water Solubility in Terms of Cation and Anion Hydrophobicity

    Directory of Open Access Journals (Sweden)

    Johannes Ranke

    2009-03-01

    Full Text Available The water solubility of salts is ordinarily dictated by lattice energy and ion solvation. However, in the case of low melting salts also known as ionic liquids, lattice energy is immaterial and differences in hydrophobicity largely account for differences in their water solubility. In this contribution, the activity coefficients of ionic liquids in water are split into cation and anion contributions by regression against cation hydrophobicity parameters that are experimentally determined by reversed phase liquid chromatography. In this way, anion hydrophobicity parameters are derived, as well as an equation to estimate water solubilities for cation-anion combinations for which the water solubility has not been measured. Thus, a new pathway to the quantification of aqueous ion solvation is shown, making use of the relative weakness of interactions between ionic liquid ions as compared to their hydrophobicities.

  4. Soluble organic carbon and pH of organic amendments affect metal mobility and chemical speciation in mine soils.

    Science.gov (United States)

    Pérez-Esteban, Javier; Escolástico, Consuelo; Masaguer, Alberto; Vargas, Carmen; Moliner, Ana

    2014-05-01

    We evaluated the effects of pH and soluble organic carbon affected by organic amendments on metal mobility to find out the optimal conditions for their application in the stabilization of metals in mine soils. Soil samples (pH 5.5-6.2) were mixed with 0, 30 and 60 th a(-1) of sheep-horse manure (pH 9.4) and pine bark compost (pH 5.7). A single-step extraction procedure was performed using 0.005 M CaCl2 adjusted to pH 4.0-7.0 and metal speciation in soil solution was simulated using NICA-Donnan model. Sheep-horse manure reduced exchangeable metal concentrations (up to 71% Cu, 75% Zn) due to its high pH and degree of maturity, whereas pine bark increased them (32% Cu, 33% Zn). However, at increasing dose and hence pH, sheep-horse manure increased soluble Cu because of higher soluble organic carbon, whereas soluble Cu and organic carbon increased at increasing dose and correspondingly decreasing pH in pine bark and non-amended treatments. Near the native pH of these soils (at pH 5.8-6.3), with small doses of amendments, there was minimum soluble Cu and organic carbon. Pine bark also increased Zn solubility, whereas sheep-horse manure reduced it as soluble Zn always decreased with increasing pH. Sheep-horse manure also reduced the proportion of free metals in soil solution (from 41% to 4% Cu, from 97% to 94% Zn), which are considered to be more bioavailable than organic species. Sheep-horse manure amendment could be efficiently used for the stabilization of metals with low risk of leaching to groundwater at low doses and at relatively low pH, such as the native pH of mine soils.

  5. Synthesis of mesoporous silica nanoparticles and drug loading of poorly water soluble drug cyclosporin A

    Directory of Open Access Journals (Sweden)

    A Lodha

    2012-01-01

    Full Text Available Mesoporous silica nanoparticles (MSNs are introduced as chemically and thermally stable nanomaterials with well-defined and controllable morphology and porosity. It is shown that these particles possess external and internal surfaces that can be selectively functionalized with multiple organic and inorganic groups. Silica nano-particles were synthesized by chemical methods from tetraethylorthosilicate (TEOS, methanol (CH3OH and deionised water in the presence of sodium hydroxide as catalyst at 80°C temperature. The nature and morphology of particles was investigated by scanning electron microscopy (SEM, N2 adsorption/desorption method using BET instrument and X-ray diffraction (XRD. Silica nanoparticles are applicable to a wide range of therapeutic entities from small molecule to peptides and proteins including hydrophobic and hydrophilic entities. Drug loading does not require chemical modification of the molecule; there are no changes in the drug structure or activity after loading and subsequent release of the drug. Thus, well suited to solve formulation problems associated with hydrophobic drugs such as peptide and protein drugs like cyclosporine A. Silica nanoparticles improved the solubility of poorly water soluble drugs and enhanced the absorption and bioavailability of these compounds.

  6. Determination of Water Content of Water-soluble Paints by Gas Chromatography

    Institute of Scientific and Technical Information of China (English)

    顾润南; 钦维民; 肖舸

    2003-01-01

    This paper describes the determination of water content of water-soluble paints by gas chromatography. The water in paints is extracted by dimethyl formamide (DMF) as a solvent.Isopropanol is used as an internal standard. The mixture is separated by low-speed centrifugation.Then a 1-uL sample of the supernatant from the prepared solution is injected into the gas chromatograph. The water content is determined by internal standard calibration curve. The rate of recovery of added standard of this method is more than 98%. Relative mean deviation is less than 3‰.The linearity of calibration curve is good and relativity coefficient is higher than 0.998.

  7. One-year water sorption and solubility of "all-in-one" adhesives.

    Science.gov (United States)

    Walter, Ricardo; Feiring, Andrew E; Boushell, Lee W; Braswell, Krista; Bartholomew, Whitley; Chung, Yunro; Phillips, Ceib; Pereira, Patricia N R; Swift, Edward J

    2013-01-01

    The aim of this study was to evaluate the water sorption and solubility of different adhesives. Adper Easy Bond, Adper Single Bond Plus, Bond Force, Clearfil SE Bond (bonding resin only), and Xeno IV were the materials evaluated. Ten disks of each adhesive were made in Teflon molds and evaporation of any volatile components was allowed. The disks were weighed daily in an analytical balance until a constant mass was obtained (m1). Disks were then immersed in water for 12 months when their wet weight was recorded (m2). The disks were again weighed daily until a constant mass was obtained and the final weight recorded (m3). Water sorption and solubility (percentages) were calculated using the recorded mass values. Kruskal-Wallis tests were used to compare the average water sorption and solubility among the different adhesives. Mann-Whitney tests with a Bonferroni correction were used to determine the pairwise differences between adhesives in water sorption and solubility. The level of significance was set at 0.05. Water sorption and solubility were significantly different among the groups (p0.05) between Adper Single Bond Plus and Bond Force, or between Clearfil SE Bond and Xeno IV in either water sorption or solubility. Xeno IV did not differ from Adper Easy Bond in water sorption (p>0.05). Water sorption and solubility of all-in-one adhesives increased with time, and the rates of increase were composition-dependent. The results suggest that monomers other than HEMA contribute to water sorption and solubility of adhesive systems from different categories.

  8. Measurement of Solubilities of o-Phenylphenol in Petroleum Ether and DDP in Acetone + Water Solution

    Institute of Scientific and Technical Information of China (English)

    WANG Li-sheng; LONG Bing-wen; XIONG You-qing; WU Jun-sheng; KANG Hui-bao

    2006-01-01

    [(6-oxide-6H-dibenze(c, e)(1, 2) oxaphosphorin-6-yl) methyl]-butanedioic acid (DDP) was prepared and characterized. Solubilities of o-phenylphenol(OPP) in petroleum ether and DDP in acetone + water solution were measured by a gravimetrical method. The solubility data of OPP were well correlated using Francis equation. For the solubility of DDP in acetone aqueous solution, it was found that at each fixed temperature there existed a maximum when the acetone mass fraction in the solvent reached a certain concentration. The experiment shows that the fraction is approximately 0.6. The solubility data would be helpful for their industrial crystallization process.

  9. Organic chemistry - Fast reactions 'on water'

    NARCIS (Netherlands)

    Klijn, JE; Engberts, JBFN

    2005-01-01

    Efficient reactions in aqueous organic chemistry do not require soluble reactants, as had been thought. A newly developed ‘on-water’ protocol is characterized by short reaction times, and the products are easy to isolate.

  10. Selection of excipients for melt extrusion with two poorly water-soluble drugs by solubility parameter calculation and thermal analysis.

    Science.gov (United States)

    Forster, A; Hempenstall, J; Tucker, I; Rades, T

    2001-09-11

    The aim of this study was to determine the miscibility of drug and excipient to predict if glass solutions are likely to form when drug and excipient are melt extruded. Two poorly water-soluble drugs, indomethacin and lacidipine, were selected along with 11 excipients (polymeric and non-polymeric). Estimation of drug/excipient miscibility was performed using a combination of the Hoy and Hoftzyer/Van Krevelen methods for Hansen solubility parameter calculation. Miscibility was experimentally investigated with differential scanning calorimetry (DSC) and hot stage microscopy (HSM). Studies were performed at drug/excipient ratios, 1:4, 1:1 and 4:1. Analysis of the glass transition temperature (T(g)) was performed by quench cooling drug/excipient melts in the DSC. Differences in the drug/excipient solubility parameters of 10 MPa(1/2) were expected to indicate a lack of miscibility and not form glass solutions when melt extruded. Experimentally, miscibility was shown by changes in drug/excipient melting endotherms and confirmed by HSM investigations. Experimental results were in agreement with solubility parameter predictions. In addition, drug/excipient combinations predicted to be largely immiscible often exhibited more than one T(g) upon reheating in the DSC. Melt extrusion of miscible components resulted in amorphous solid solution formation, whereas extrusion of an "immiscible" component led to amorphous drug dispersed in crystalline excipient. In conclusion, combining calculation of Hansen solubility parameters with thermal analysis of drug/excipient miscibility can be successfully applied to predict formation of glass solutions with melt extrusion.

  11. Sunlight creates oxygenated species in water-soluble fractions of Deepwater horizon oil

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Phoebe Z. [Department of Chemistry, University of New Orleans, New Orleans, LA 70148 (United States); Chen, Huan [National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL 32310-4005 (United States); Podgorski, David C. [National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL 32310-4005 (United States); Future Fuels Institute, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL 32310-4005 (United States); McKenna, Amy M. [National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL 32310-4005 (United States); Tarr, Matthew A., E-mail: mtarr@uno.edu [Department of Chemistry, University of New Orleans, New Orleans, LA 70148 (United States)

    2014-09-15

    Graphical abstract: Sunlight oxygenates petroleum. - Highlights: • Oxidation seen in water-soluble oil fraction after exposure to simulated sunlight. • Oxygen addition occurred across a wide range of carbon number and DBE. • Oil compounds were susceptible to addition of multiple oxygens to each molecule. • Results provide understanding of fate of oil on water after exposure to sunlight. - Abstract: In order to assess the impact of sunlight on oil fate, Macondo well oil from the Deepwater Horizon (DWH) rig was mixed with pure water and irradiated with simulated sunlight. After irradiation, the water-soluble organics (WSO) from the dark and irradiated samples were extracted and characterized by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Liquid–liquid extraction yielded two fractions from dark and irradiated water/oil mixtures: acidic WSOs (negative-ion electrospray (ESI)), and base/neutral WSOs (positive-ion ESI) coupled to FT-ICR MS to catalog molecular-level transformations that occur to Macondo-derived WSOs after solar irradiation. Such direct measure of oil phototransformation has not been previously reported. The most abundant heteroatom class detected in the irradiated WSO acid fractions correspond to molecules that contain five oxygens (O{sub 5}), while the most abundant acids in the dark samples contain two oxygen atoms per molecule (O{sub 2}). Higher-order oxygen classes (O{sub 5}–O{sub 9}) were abundant in the irradiated samples, but <1.5% relative abundance in the dark sample. The increased abundance of higher-order oxygen classes in the irradiated samples relative to the dark samples indicates that photooxidized components of the Macondo crude oil become water-soluble after irradiation. The base/neutral fraction showed decreased abundance of pyridinic nitrogen (N{sub 1}) concurrent with an increased abundance of N{sub 1}O{sub x} classes after irradiation. The predominance of higher

  12. The solubilities of significant organic compounds in HLW tanks upernate solutions - FY 1997 progress report

    Energy Technology Data Exchange (ETDEWEB)

    Barney, G.S.

    1997-09-16

    The solubilities of seven sodium salts of organic acids that are thought to exist in high-level waste at the Hanford Site were measured in tank supernatant simulant solutions during FY 1997. This solubility information will be used to determine if these organic salts could exist in solid phases (saltcake or sludges) in the waste where they might react violently with the nitrate or nitrite salts present in the tanks. The solubility of sodium acetate was measured in simulated waste supernate solutions at 25C, 30C, 40C, and 50C that were both unsaturated and saturated with sodium nitrate. Solubilities of sodium glycolate, citrate, ethylenediaminetetraacetate (EDTA), nitrilotriacetate (NTA), formate, and oxalate were measured in simulated waste supernate solutions that were saturated with sodium nitrate. In addition, solubilities of sodium EDTA, citrate, glycolate, and NTA were measured in a complex waste matrix. The organic compounds were selected because they are expected to exist in relatively high concentrations in the tanks. The solubilities of sodium glycolate citrate, EDTA, NTA, and formate were high over the temperature and sodium hydroxide concentration ranges expected in the tanks. The solubility of sodium oxalate in solutions saturated with sodium nitrate were quite low. The presence of additional sodium in the waste simulant solutions that were saturated with sodium nitrate slightly lowered the solubilities of each of the organic salts. Solubilities were, however, high enough to prevent solid sodium salts of all the organic acids from precipitating from tank supernate solutions, except for sodium oxalate. The total organic carbon concentrations (TOC) of actual tank supernates are generally much lower than the TOC ranges for the simulated supernate solutions saturated (at the solubility limit) with the organic salts. This is true even if all the dissolved carbon in a given tank supernate is due to only one of these soluble compounds (an unlikely situation

  13. Phase transfer of hydrophobic QDs for water-soluble and biocompatible nature through silanization

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ping, E-mail: mse_yangp@ujn.edu.cn [School of Material Science and Engineering, University of Jinan, Jinan 250022 (China); Zhou, Guangjun [State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China)

    2011-12-15

    Graphical abstract: A facile and novel method has been developed for creating water-soluble and biocompatible CdSe/ZnS quantum dots with a small hydrodynamic diameter (less than 10 nm) via silanization. Highlights: Black-Right-Pointing-Pointer A facile and novel method has been developed for creating water-soluble and biocompatible CdSe/ZnS quantum dots (QDs) with a small hydrodynamic diameter (less than 10 nm). Black-Right-Pointing-Pointer The control of ligand exchange plays an important role to retain high fluorescence quantum yields. Black-Right-Pointing-Pointer The functional SiO{sub 2}-coated QDs were conjugated with immunoglobin G antibody by using biotin-streptavidin as linkers. Black-Right-Pointing-Pointer The QD phase transfer by silanization is a well-established method for generating biocompatible QDs. -- Abstract: A novel method has been developed for creating water-soluble and biocompatible CdSe/ZnS quantum dots (QDs) with a small hydrodynamic diameter (less than 10 nm). The silanization of the QDs was carried out by using partially hydrolyzed tetraethyl orthosilicate (TEOS) to replace organic ammine or tri-n-octylphosphine oxide on the surface of the QDs. The partially hydrolyzed 3-mercaptopropyltrimethoxysilane attached to the hydrolyzed TEOS layer on the QDs prevented the QDs from agglomeration when the QDs were transferred into water. The functional SiO{sub 2}-coated QDs were conjugated with immunoglobin G antibody by using biotin-streptavidin as linkers. The SiO{sub 2}-coated QDs exhibited the same absorption and photoluminescence (PL) spectra as those of initial QDs in organic solvents. The SiO{sub 2}-coated QDs preserved PL intensities, is colloidally stable over a wide pH range (pH 6-11). Because the mean diameter of amphiphilic polymer-coated QDs was almost 2 times of that of functional SiO{sub 2}-coated QDs, the QD phase transfer by silanization is a well-established method for generating biocompatible QDs.

  14. Comparative toxicity of water soluble fractions of four oils on the growth of a Microalga

    Digital Repository Service at National Institute of Oceanography (India)

    Phatarpekar, P.V.; Ansari, Z.A.

    Toxic effects of water soluble fractions (WSF) of four different fuel oils on a microalga. Tetraselmis gracilis, were examined and compared. On applying different concentrations of WSF, a decrease in cell population was observed. Depending...

  15. Water soluble nanocurcumin extracted from turmeric challenging the microflora from human oral cavity.

    Science.gov (United States)

    Gopal, Judy; Muthu, Manikandan; Chun, Se-Chul

    2016-11-15

    Water soluble nanocurcumin prepared from commercial turmeric powders was compared against ethanol extracted curcumin particles. The oral microflora from five different human volunteers was collected and the efficacy of solvent extracted curcumin versus water extracted nanocurcumin was demonstrated. Nanocurcumin activity against oral microflora confirms its antimicrobial potency. Confocal laser scanning microscopic results revealed the enhanced entry of nanocurcumin particles into microbial cells. The nanosized nature of nanocurcumin appears to have led to increased cellular interaction and thereby efficient destruction of microbial cells in the mouth. In addition, solubility of nanocurcumin is also believed to be a crucial factor behind its successful antimicrobial activity. This study proves that the bioactivity of a compound is greatly influenced by its solubility in water. This work recommends the use of water soluble nanocurcumin (extracted from turmeric) as potent substitute for curcumin in dental formulations.

  16. Thermoresponsive synergistic hydrogen bonding switched by several guest units in a water-soluble polymer.

    Science.gov (United States)

    Hao, Zhenhua; Li, Guangxiang; Yang, Ke; Cai, Yuanli

    2013-03-12

    Thermoresponsive synergistic hydrogen bonding (H-bonding) switched by several guest units in a water-soluble polymer is reported. Adjusting the distribution of guest units can effectively change the synergistic H-bonding inside polymer chains, thus widely switch the preorganization and thermoresponsive behavior of a water-soluble polymer. The synergistic H-bonding is also evidenced by converting less polar aldehyde groups into water-soluble oxime groups, which bring about the lowering-down of cloud point and an amplified hysteresis effect. This is a general approach toward the wide tunability of thermosensitivity of a water-soluble polymer simply by adjusting the distribution of several guest H-bonding units.

  17. Synthesis and Characterization of Water-Soluble Carboxymethyl-Cyclodextrin Polymer as Capillary Electrophoresis Chiral Selector

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    The water-soluble carboxymethyl-cyclodextrin polymer (CM-CD polymer) was synthesized and used as capillary electrophoresis chiral selector.Verrapamil and thiopentorusodium were well separated using CM-CD polymer as chiral selector.

  18. Hydroaminomethylation of 1-Dodecene Catalyzed by Water-soluble Rhodium Complex

    Institute of Scientific and Technical Information of China (English)

    Ying Yong WANG; Mei Ming LUO; Yao Zhong LI; Hua CHEN; Xian Jun LI

    2004-01-01

    The hydroaminomethylation of 1-dodecene catalyzed by water soluble rhodium complex RhCl(CO)(TPPTS)2 in the presence of surfactant CTAB was investigated. High reactivity and selectivity for tertiary amine were achieved under relatively mild conditions.

  19. Molecular Dynamics Simulations of the Solubility of H2S and CO2 in Water

    OpenAIRE

    Roberto López Rendón; José Alejandre

    2008-01-01

    We have performed molecular dynamics simulations at constant temperature and pressure to calculate the solubility of carbon dioxide (CO2) and hydrogen sulfide (H2S) in water. The solubility of gases in water is important in several technological problems, in particular in the petroleum industry. The calculated liquid densities as function of temperature are in good agreement with experimental data. The results at the liquid-vapor equilibrium show that at low temperatures there is an important...

  20. Synthesis and Cytotoxic Activity of Novel Water-soluble Prodrugs of Combretastatin A-4

    Institute of Scientific and Technical Information of China (English)

    Zhi Quan YONG; Xiao Ping XU; Ying Chun CHEN; Xu BAO; Ling Ling WENG; Hu ZHENG

    2006-01-01

    Novel water-soluble prodrugs of combretastatin A-4 (5-8) were synthesized and evaluated for their in vitro cytotoxicity against lung carcinoma A549. Compound 5, bearing phosphoryl choline (PC) moiety, showed 90% inhibition at 32 μg/mL concentration after 24 h. The findings showed the PC derivative would be a promising candidate for the development of new water-soluble prodrug of cytotoxic combretastatin A-4.

  1. Photo and thermochemical evolution of astrophysical ice analogues as a source for soluble and insoluble organic materials in Solar system minor bodies

    Science.gov (United States)

    de Marcellus, Pierre; Fresneau, Aurelien; Brunetto, Rosario; Danger, Gregoire; Duvernay, Fabrice; Meinert, Cornelia; Meierhenrich, Uwe J.; Borondics, Ferenc; Chiavassa, Thierry; Le Sergeant d'Hendecourt, Louis

    2017-01-01

    Soluble and insoluble organic matter (IOM) is a key feature of primitive carbonaceous chondrites. We observe the formation of organic materials in the photothermochemical treatment of astrophysical ices in the laboratory. Starting from a low vacuum ultraviolet (VUV) irradiation dose on templates of astrophysical ices at 77 K, we obtain first a totally soluble form of organic matter at room temperature. Once this organic residue is formed, irradiating it further in vacuum results in the production of a thin altered dark crust on top of the initial soluble one. The whole residue is studied here by non-destructive methods inducing no alteration of samples, visible microscopy and mid-infrared (micro-)spectroscopy. After water extraction of the soluble part, an insoluble fraction remains on the sample holder which provides a largely different infrared spectrum when compared to the one of the soluble sample. Therefore, from the same VUV and thermal processing of initial simple ices, we produce first a soluble material from which a much larger irradiation dose leads to an insoluble one. Interestingly, this insoluble fraction shows some spectral similarities with natural samples of IOM extracted from two meteorites (Tagish Lake and Murchison), selected as examples of primitive materials. It suggests that the organic molecular diversity observed in meteorites may partly originate from the photo and thermal processing of interstellar/circum-stellar ices at the final stages of molecular cloud evolution towards the build-up of our Solar system.

  2. Solubility studies of inorganic–organic hybrid nanoparticle photoresists with different surface functional groups

    KAUST Repository

    Li, Li

    2016-01-01

    © 2016 The Royal Society of Chemistry. The solubility behavior of Hf and Zr based hybrid nanoparticles with different surface ligands in different concentrations of photoacid generator as potential EUV photoresists was investigated in detail. The nanoparticles regardless of core or ligand chemistry have a hydrodynamic diameter of 2-3 nm and a very narrow size distribution in organic solvents. The Hansen solubility parameters for nanoparticles functionalized with IBA and 2MBA have the highest contribution from the dispersion interaction than those with tDMA and MAA, which show more polar character. The nanoparticles functionalized with unsaturated surface ligands showed more apparent solubility changes after exposure to DUV than those with saturated ones. The solubility differences after exposure are more pronounced for films containing a higher amount of photoacid generator. The work reported here provides material selection criteria and processing strategies for the design of high performance EUV photoresists.

  3. Solubility of Stevioside and Rebaudioside A in water, ethanol and their binary mixtures

    Directory of Open Access Journals (Sweden)

    Liliana S. Celaya

    2016-10-01

    Full Text Available In order to investigate the solubility of Stevioside and Rebaudioside A in different solvents (ethanol, water, ethanol:water 30:70 and ethanol:water 70:30, supersaturated solutions of pre-crystalized steviol glycosides were maintained at different temperatures (from 5 °C to 50 °C to reach equilibrium. Under these conditions significant differences were found in the extent of solubility. Rebaudioside A was poorly soluble in ethanol and water, and Stevioside was poorly soluble in water. Solvent mixtures more effectively promoted solubilisation, and a significant effect of temperature on solubility was observed. The two steviol glycosides showed higher solubilities and this behavior was promoted by the presence of the other sweetener. The polarity indices of the solvents were determined, and helped to explain the observed behavior. Several solute-solvent and solute-solute interactions can occur, along with the incidence of a strong affinity between solvents. The obtained results are in accordance with technological applications of ethanol, water and their binary mixtures for Stevioside and Rebaudioside A separations.

  4. Modeling the formation of soluble microbial products (SMP) in drinking water biofiltration

    Institute of Scientific and Technical Information of China (English)

    Yu Xin; Ye Lin; Wei Gu

    2008-01-01

    Both a theoretical and an empirical model were developed for predicting the formation of soluble microbial products (SMP) during drinking water biofiltration. Four pilot-scale biofilters with ceramsite as the medium were fed with different acetate loadings for the determination of SMP formation. Using numerically simulated and measured parameters, the theoretical model was developed according to the substrate and biomass balance. The results of this model matched the measured data better for higher SMP formation but did not fit well when SMP formation was lower. In order to better simulate the reality and overcome the difficulties of measuring the kinetic parameters, a simpler empirical model was also developed. In this model, SMP formation was expressed as a function of fed organic loadings and the depth of the medium, and a much better fit was obtained.

  5. A Highly Efifcient and Selective Water-Soluble Bimetallic Catalyst for Hydrogenation of Chloronitrobenzene to Chloroaniline

    Institute of Scientific and Technical Information of China (English)

    Zhou Yafen; Yang Wenjuan; Zhou Limei; Wang Manman; Ma Xiaoyan

    2015-01-01

    Selective hydrogenation of chloronitrobenzene (CNB) to chloroaniline (CAN) catalyzed by water-soluble Ru/Pt bimetallic catalyst in an aqueous-organic biphasic system was studied. It was found that the catalytic activity increased ob-viously due to the addition of platinum. Ru/Pt bimetallic catalysts exhibited a strong synergistic effect when the molar ratio of Pt was in the range of 5%—80%. Under the mild conditions including a temperature of 25℃, a hydrogen pressure of 1.0 MPa and a Pt molar ratio of 20%, the conversion of p-chloronitrobenzene (p-CNB) reached 99.9%, with the selectivity to p-chloroaniline (p-CAN) equating to 99.4%. The Ru/Pt catalyst also showed high activity and selectivity for the hydrogena-tion of other chloro-and dichloro-nitrobenzenes with different substituted positions. In addition, the catalyst can be recycled ifve times without signiifcant loss of activity.

  6. Modeling the formation of soluble microbial products (SMP in drinking water biofiltration

    Directory of Open Access Journals (Sweden)

    Xin YU

    2008-09-01

    Full Text Available Both a theoretical and an empirical model were developed for predicting the formation of soluble microbial products (SMP during drinking water biofiltration. Four pilot-scale biofilters with ceramsite as the medium were fed with different acetate loadings for the determination of SMP formation. Using numerically simulated and measured parameters, the theoretical model was developed according to the substrate and biomass balance. The results of this model matched the measured data better for higher SMP formation but did not fit well when SMP formation was lower. In order to better simulate the reality and overcome the difficulties of measuring the kinetic parameters, a simpler empirical model was also developed. In this model, SMP formation was expressed as a function of fed organic loadings and the depth of the medium, and a much better fit was obtained.

  7. Bioassay using the water soluble fraction of a Nigerian Light Crude ...

    African Journals Online (AJOL)

    Bioassay using the water soluble fraction of a Nigerian Light Crude oil on Clarias ... Heavy metal and total hydrocarbon contents of the water and fish were ... THC concentrations in fish were higher at 96 hours and 14days than in the water ...

  8. WATER ACTIVITY DATA ASSESSMENT TO BE USED IN HANFORD WASTE SOLUBILITY CALCULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    DISSELKAMP RS

    2011-01-06

    The purpose of this report is to present and assess water activity versus ionic strength for six solutes:sodium nitrate, sodium nitrite, sodium chloride, sodium carbonate, sodium sulfate, and potassium nitrate. Water activity is given versus molality (e.g., ionic strength) and temperature. Water activity is used to estimate Hanford crystal hydrate solubility present in the waste.

  9. Solubility studies of inorganic-organic hybrid nanoparticle photoresists with different surface functional groups

    Science.gov (United States)

    Li, Li; Chakrabarty, Souvik; Jiang, Jing; Zhang, Ben; Ober, Christopher; Giannelis, Emmanuel P.

    2016-01-01

    The solubility behavior of Hf and Zr based hybrid nanoparticles with different surface ligands in different concentrations of photoacid generator as potential EUV photoresists was investigated in detail. The nanoparticles regardless of core or ligand chemistry have a hydrodynamic diameter of 2-3 nm and a very narrow size distribution in organic solvents. The Hansen solubility parameters for nanoparticles functionalized with IBA and 2MBA have the highest contribution from the dispersion interaction than those with tDMA and MAA, which show more polar character. The nanoparticles functionalized with unsaturated surface ligands showed more apparent solubility changes after exposure to DUV than those with saturated ones. The solubility differences after exposure are more pronounced for films containing a higher amount of photoacid generator. The work reported here provides material selection criteria and processing strategies for the design of high performance EUV photoresists.The solubility behavior of Hf and Zr based hybrid nanoparticles with different surface ligands in different concentrations of photoacid generator as potential EUV photoresists was investigated in detail. The nanoparticles regardless of core or ligand chemistry have a hydrodynamic diameter of 2-3 nm and a very narrow size distribution in organic solvents. The Hansen solubility parameters for nanoparticles functionalized with IBA and 2MBA have the highest contribution from the dispersion interaction than those with tDMA and MAA, which show more polar character. The nanoparticles functionalized with unsaturated surface ligands showed more apparent solubility changes after exposure to DUV than those with saturated ones. The solubility differences after exposure are more pronounced for films containing a higher amount of photoacid generator. The work reported here provides material selection criteria and processing strategies for the design of high performance EUV photoresists. Electronic supplementary

  10. Multiple sources of soluble atmospheric iron to Antarctic waters

    Science.gov (United States)

    Winton, V. H. L.; Edwards, R.; Delmonte, B.; Ellis, A.; Andersson, P. S.; Bowie, A.; Bertler, N. A. N.; Neff, P.; Tuohy, A.

    2016-03-01

    The Ross Sea, Antarctica, is a highly productive region of the Southern Ocean. Significant new sources of iron (Fe) are required to sustain phytoplankton blooms in the austral summer. Atmospheric deposition is one potential source. The fractional solubility of Fe is an important variable determining Fe availability for biological uptake. To constrain aerosol Fe inputs to the Ross Sea region, fractional solubility of Fe was analyzed in a snow pit from Roosevelt Island, eastern Ross Sea. In addition, aluminum, dust, and refractory black carbon (rBC) concentrations were analyzed, to determine the contribution of mineral dust and combustion sources to the supply of aerosol Fe. We estimate exceptionally high dissolved Fe (dFe) flux of 1.2 × 10-6 g m-2 y-1 and total dissolvable Fe flux of 140 × 10-6 g m-2 y-1 for 2011/2012. Deposition of dust, Fe, Al, and rBC occurs primarily during spring-summer. The observed background fractional Fe solubility of ~0.7% is consistent with a mineral dust source. Radiogenic isotopic ratios and particle size distribution of dust indicates that the site is influenced by local and remote sources. In 2011/2012 summer, relatively high dFe concentrations paralleled both mineral dust and rBC deposition. Around half of the annual aerosol Fe deposition occurred in the austral summer phytoplankton growth season; however, the fractional Fe solubility was low. Our results suggest that the seasonality of dFe deposition can vary and should be considered on longer glacial-interglacial timescales.

  11. The effects of fire temperatures on water soluble heavy metals.

    Science.gov (United States)

    Pereira, P.; Ubeda, X.; Martin, D. A.

    2009-04-01

    Fire ash are majority composed by base cations, however the mineralized organic matter, led also available to transport a higher quantity of heavy metals that potentially could increase a toxicity in soil and water resources. The amount availability of these elements depend on the environment were the fire took place, burning temperature and combusted tree specie. The soil and water contamination from fire ash has been neglected, because the majority of studies are focused on base cations dynamic. Our research, beside contemplate major elements, is focused in to study the behavior of heavy metals released from ash slurries created at several temperatures under laboratory environment, prescribed fires and wildland fires. The results presented in these communication are preliminary and study the presence of Aluminium (Al3+), Manganese (Mn2+), Iron (Fe2+) and Zinc (Zn2+) of ash slurries generated in laboratory environment at several temperatures (150°, 200°, 250°, 300°, 350°, 400°,450°, 500°, 550°C) from Quercus suber, Quercus robur, Pinus pinea and Pinus pinaster and from a low medium temperature prescribed fire in a forest dominated Quercus suber trees. We observed that ash produced at lower and medium temperatures (Quercus species and Mn2+ in Pinus ashes. Fe2+ and Zn2+ showed a reduced concentration in test solution in relation to unburned sample at all temperatures of exposition. In the results obtained from prescribed fire, we identify a higher release of Al3+ and a decrease of the remain elements. The solubilization of these elements are related with pH levels and ash calcite content, because their ability to capture ions in solution. Moreover, the amount and the type of ions released in relation to unburned sample vary in each specie. In this study Al3+ release is related with Quercus species and Mn2+ with Pinus species. Fire ashes can be an environmental problem, because at long term can increase soil acidity. After all base cations have being leached

  12. Removal of soluble microbial products as the precursors of disinfection by-products in drinking water supplies.

    Science.gov (United States)

    Liu, Jin-Lin; Li, Xiao-Yan

    2015-01-01

    Water pollution worsens the problem of disinfection by-products (DBPs) in drinking water supply. Biodegradation of wastewater organics produces soluble microbial products (SMPs), which can be important DBP precursors. In this laboratory study, a number of enhanced water treatment methods for DBP control, including enhanced coagulation, ozonation, and activated carbon adsorption, were evaluated for their effectiveness in treating SMP-containing water for the DBP reduction purpose. The results show that enhanced coagulation with alum could remove SMPs only marginally and decrease the DBP formation potential (DBPFP) of the water by less than 20%. Although ozone could cause destruction of SMPs in water, the overall DBPFP of the water did not decrease but increased after ozonation. In contrast, adsorption by granular activated carbon could remove the SMP organics from water by more than 60% and reduce the DBPFP by more than 70%. It is apparent that enhanced coagulation and ozonation are not suitable for the removal of SMPs as DBP precursors from polluted water, although enhanced coagulation has been commonly used to reduce the DBP formation caused by natural organic matter. In comparison, activated carbon adsorption is shown as a more effective means to remove the SMP content from water and hence to control the wastewater-derived DBP problem in water supply.

  13. Experimental study on desorption of soluble matter as influenced by cations in static water

    Institute of Scientific and Technical Information of China (English)

    Wen-sheng XU; Li CHEN; Xiao-xia TONG; Xiao-ping CHEN; Ping-cang ZHANG

    2014-01-01

    With variation of drainage basin environments, desorption of soluble matter has become one of the significant erosion processes in rivers. It has a considerable impact on flow and sediment transport, as well as processes of river bed deformation and landform evolution throughout a watershed. In this study, considering influences on sediment movement, especially on cohesive sediment transport, Ca2+ and H+ were chosen as characteristic ions of soluble matter, and the total desorption quantity of Ca2+ and pH value when the desorption equilibrium is reached were employed as two indexes representing the desorption of soluble matter. By means of an indoor experiment, desorption of soluble matter as influenced by cations in static water was investigated. The results show that the total desorption quantity of soluble matter increases with the initial cation concentration until a maximum desorption quantity value is obtained and maintained. The total desorption quantity of soluble matter depends on properties of the specific cations in static water, and the stronger the affinity is between the cation and sediment surface, the higher the total desorption quantity will be. Finally, a strong approximate linear relationship between desorption quantities for different kinds of soluble matters was obtained, which means that variation of pH values can accurately reflect the desorption results of soluble matter.

  14. Prediction of solubilities for ginger bioactive compounds in hot water by the COSMO-RS method

    Science.gov (United States)

    Zaimah Syed Jaapar, Syaripah; Azian Morad, Noor; Iwai, Yoshio

    2013-04-01

    The solubilities in water of four main ginger bioactives, 6-gingerol, 6-shogaol, 8-gingerol and 10-gingerol, were predicted using a conductor-like screening model for real solvent (COSMO-RS) calculations. This study was conducted since no experimental data are available for ginger bioactive solubilities in hot water. The σ-profiles of these selected molecules were calculated using Gaussian software and the solubilities were calculated using the COSMO-RS method. The solubilities of these ginger bioactives were calculated at 50 to 200 °C. In order to validate the accuracy of the COSMO-RS method, the solubilities of five hydrocarbon molecules were calculated using the COSMO-RS method and compared with the experimental data in the literature. The selected hydrocarbon molecules were 3-pentanone, 1-hexanol, benzene, 3-methylphenol and 2-hydroxy-5-methylbenzaldehyde. The calculated results of the hydrocarbon molecules are in good agreement with the data in the literature. These results confirm that the solubilities of ginger bioactives can be predicted using the COSMO-RS method. The solubilities of the ginger bioactives are lower than 0.0001 at temperatures lower than 130 °C. At 130 to 200 °C, the solubilities increase dramatically with the highest being 6-shogaol, which is 0.00037 mole fraction, and the lowest is 10-gingerol, which is 0.000039 mole fraction at 200 °C.

  15. An alternative approach for the use of water solubility of nonionic pesticides in the modeling of the soil sorption coefficients.

    Science.gov (United States)

    dos Reis, Ralpho Rinaldo; Sampaio, Silvio César; de Melo, Eduardo Borges

    2014-04-15

    The collection of data to study the damage caused by pesticides to the environment and its ecosystems is slowly acquired and costly. Large incentives have been established to encourage research projects aimed at building mathematical models for predicting physical, chemical or biological properties of environmental interest. The organic carbon normalized soil sorption coefficient (K(oc)) is an important physicochemical property used in environmental risk assessments for compounds released into the environment. Many models for predicting logK(oc) that have used the parameters logP or logS as descriptors have been published in recent decades. The strong correlation between these properties (logP and logS) prevents them from being used together in multiple linear regressions. Because the sorption of a chemical compound in soil depends on both its water solubility and its water/organic matter partitioning, we assume that models capable of combining these two properties can generate more realistic results. Therefore, the objective of this study was to propose an alternative approach for modeling logK(oc), using a simple descriptor of solubility, here designated as the logarithm of solubility corrected by octanol/water partitioning (logS(P)). Thus, different models were built with this descriptor and with the conventional descriptors logP and logS, alone or associated with other explanatory variables representing easy-to-interpret physicochemical properties. The obtained models were validated according to current recommendations in the literature, and they were compared with other previously published models. The results showed that the use of logS(p) instead of conventional descriptors led to simple models with greater statistical quality and predictive power than other more complex models found in the literature. Therefore, logS(P) can be a good alternative to consider for the modeling of logK(oc) and other properties that relate to both solubility and water/organic

  16. Effect of Thiobacillus, sulfur, and vermicompost on the water-soluble phosphorus of hard rock phosphate.

    Science.gov (United States)

    Aria, Marzieh Mohammady; Lakzian, Amir; Haghnia, Gholam Hosain; Berenji, Ali Reza; Besharati, Hosein; Fotovat, Amir

    2010-01-01

    Sulfur, organic matter, and inoculation with sulfur-oxidizing bacteria are considered as amendments to increase the availability of phosphorus from rock phosphate. The present study was conducted to evaluate the best combination of sulfur, vermicompost, and Thiobacillus thiooxidans inoculation with rock phosphate from Yazd province for direct application to agricultural lands in Iran. For such study, an experiment was carried out in a completely randomized design with factorial arrangement: Elemental sulfur originated from Sarakhs mine at three rates, 0% (S1), 10% (S2), 20% (S3), vermicompost at two rates, 0% (V1), 15% (V2), and inoculation without (B1) and with (B2) T. thiooxidans, in three replications. The results showed that water-soluble phosphorus (WSP) content was significantly higher in inoculated treatments compared to non-inoculated treatments. Sulfur had a significant effect on WSP. The highest solubility rate of rock phosphate was obtained in 20% of sulfur (S3) treatments and it was 2.4 times more than S1 treatments. Vermicompost also had a significant and positive effect on WSP of rock phosphate dissolution. The results also revealed that the highest concentration of WSP, sulfate and the lowest pH were obtained in treatments with 20% sulfur, 15% vermicompost inoculated with T. thiooxidans (B2S3V2).

  17. Method of immobilizing water-soluble bioorganic compounds on a capillary-porous carrier

    Science.gov (United States)

    Ershov, Gennady Moiseevich; Timofeev, Eduard Nikolaevich; Ivanov, Igor Borisovich; Florentiev, Vladimir Leonidovich; Mirzabekov, Andrei Darievich

    1998-01-01

    The method for immobilizing water-soluble bioorganic compounds to capillary-porous carrier comprises application of solutions of water-soluble bioorganic compounds onto a capillary-porous carrier, setting the carrier temperature equal to or below the dew point of the ambient air, keeping the carrier till appearance of water condensate and complete swelling of the carrier, whereupon the carrier surface is coated with a layer of water-immiscible nonluminescent inert oil and is allowed to stand till completion of the chemical reaction of bonding the bioorganic compounds with the carrier.

  18. Antibacterial effect of water-soluble chitosan on representative dental pathogens Streptococcus mutans and Lactobacilli brevis

    Directory of Open Access Journals (Sweden)

    Chih-Yu Chen

    2012-12-01

    Full Text Available Dental caries is still a major oral health problem in most industrialized countries. The development of dental caries primarily involves Lactobacilli spp. and Streptococcus mutans. Although antibacterial ingredients are used against oral bacteria to reduce dental caries, some reports that show partial antibacterial ingredients could result in side effects. OBJECTIVES: The main objective is to test the antibacterial effect of water-soluble chitosan while the evaluation of the mouthwash appears as a secondary aim. MATERIAL AND METHODS: The chitosan was obtained from the Application Chemistry Company (Taiwan. The authors investigated the antibacterial effects of water-soluble chitosan against oral bacteria at different temperatures (25-37ºC and pH values (pH 5-8, and evaluated the antibacterial activities of a self-made water-soluble chitosan-containing mouthwash by in vitro and in vivo experiments, and analyzed the acute toxicity of the mouthwashes. The acute toxicity was analyzed with the pollen tube growth (PTG test. The growth inhibition values against the logarithmic scale of the test concentrations produced a concentrationresponse curve. The IC50 value was calculated by interpolation from the data. RESULTS: The effect of the pH variation (5-8 on the antibacterial activity of water-soluble chitosan against tested oral bacteria was not significant. The maximal antibacterial activity of water-soluble chitosan occurred at 37ºC. The minimum bactericidal concentration (MBC of water-soluble chitosan on Streptococcus mutans and Lactobacilli brevis were 400 µg/mL and 500 µg/mL, respectively. Only 5 s of contact between water-soluble chitosan and oral bacteria attained at least 99.60% antibacterial activity at a concentration of 500 µg/mL. The water-soluble chitosan-containing mouthwash significantly demonstrated antibacterial activity that was similar to that of commercial mouthwashes (>99.91% in both in vitro and in vivo experiments. In addition

  19. Solubility and permeability of steroids in water in the presence of potassium halides.

    Science.gov (United States)

    Messner, M; Loftsson, T

    2010-02-01

    Water forms a network of hydrogen bonded water molecules that gives liquid water unique physicochemical properties. Ions that affect the network structure, e.g. potassium halides, are known to either increase or decrease aqueous solubilities of drugs. Most biological membranes consist of hydrophilic exterior and a lipophilic interior. Mathematically they can be treated as two-layer membranes, i.e. a hydrophilic water layer that is referred to as unstirred water layer (UWL) and a lipophilic membrane. The purpose of this study was to investigate if and then how ions affect drug permeation through the UWL. The effects of potassium halides on the solubility and permeability of dexamethasone and hydrocortisone was investigated. The potassium halides had either increasing or decreasing effect on their aqueous solubility but did not have any effect on their permeability through UWL.

  20. Development of water soluble binder systems for low pressure injection molding of alumina

    Energy Technology Data Exchange (ETDEWEB)

    Bakan, H.I.; Gunes, M. [TUBITAK-MRC Materials and Chemical Technologies Research Inst., Kocaeli (Turkey)

    2004-07-01

    Low pressure injection molding of alumina powder using a water-soluble binder system has been carried out successfully. The water-soluble based binder system consisted of poly (2-ethyl-2-oxaline), low density polyethylene and stearic acid. The critical powder loading of the binder-powder mixture was determined based on torque rheometry experiments. The rheological properties of the powder-binder mixture were investigated systematically. The binder system used provides satisfactory mixture stability, excellent mouldability and reasonably fast water leaching and thermal debinding rates. The water-soluble constituent, poly (2-ethyl-2-oxaline), was removed by leaching in convecting water at 60 C within 6 hour. The remaining binder constituents were thermally removed during heating to 450 C. Sintering of the parts was conducted at 1550 C for an hour in air. (orig.)

  1. Preparation and electrochemical behavior of water-soluble inclusion complex of ferrocene with {beta}-cyclodextrin polymer

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Wang; Chen Ming [College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu (China); Diao Guowang, E-mail: gwdiao@yzu.edu.cn [College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu (China)

    2011-05-30

    Highlights: > Water-soluble Fc-{beta}-CD polymer inclusion complex is prepared with a supermolecular method. > Fc-{beta}-CDP shows better aqueous solubility remarkably than Fc and Fc-{beta}-CD. > It also reserves the electrochemical properties of Fc-{beta}-CDP in aqueous solution. > It is determined the electrochemical constants and dissociated constant. > The method opens up aqueous applications of insoluble organic compounds in electrochemistry. - Abstract: A new water-soluble inclusion complex of ferrocene (Fc) with {beta}-cyclodextrin polymer ({beta}-CDP) was prepared by a facile strategy and characterized by {sup 1}H NMR spectroscopy, elemental analysis, powder X-ray diffractometry, thermogravimetry, UV-vis spectroscopy and cyclic voltammetry. Compared with Fc and the inclusion complex of Fc with {beta}-cyclodextrin (Fc-{beta}-CD), the solubility of ferrocene-{beta}-cyclodextrin polymer (Fc-{beta}-CDP) was greatly enhanced due to the water-soluble {beta}-CDP host. The ratio of {beta}-cyclodextrin ({beta}-CD) unit in {beta}-CDP to Fc was determined as 1:1. At 25 deg. C, the dissociated constant of Fc-{beta}-CDP was measured as 3.65 mM by UV-vis spectroscopy and cyclic voltammetry. The electrochemical properties of Fc-{beta}-CDP in water were studied. The diffusion coefficients of oxidation state and reduction state were calculated as 3.52 x 10{sup -7} cm{sup 2} s{sup -1} and 3.93 x 10{sup -7} cm{sup 2} s{sup -1}. The resulting value of standard rate constant was measured as 1.95 x 10{sup -3} cm s{sup -1}. The diffusion activation energy was calculated as 21.8 kJ mol{sup -1}.

  2. Evaluation of solubility of polycyclic aromatic hydrocarbons in ethyl lactate/water versus ethanol/water mixtures for contaminated soil remediation applications

    Institute of Scientific and Technical Information of China (English)

    Chiew Lin Yap; Suyin Gan; Hoon Kiat Ng

    2012-01-01

    Solubility data of recalcitrant contaminants in cosolvents is essential to determine their potential applications in enhanced soil remediation.The solubilities of phenanthrene,anthracene,fluoranthene and benzo[a]pyrene in ethyl lactate/water and ethanol/water mixtures were measured using equilibrium techniques.The cosolvency powers derived from solubility data were then applied to the model developed from the solvophobic approach to predict the capability of ethyl lactate and ethanol in enhancing the desorption of contaminants from soils.Both ethyl lactate and ethanol cosolvents were shown to be able to enhance the solubilisation of the tested four polycyclic aromatic hydrocarbons by > 4 orders of magnitude above the levels obtained with water alone.However,ethyl lactate demonstrated a greater capacity to enhance PAH solubility than ethanol.The cosolvency powers of ethyl lactate/water system obtained from the end-to-end slope (σ) and the end-to-half slope (σ0.5) of the solubilisation curve were 1.0-1.5 and 2.0-2.9 higher than ethanol/water system respectively.In line with this,ethyl lactate/water was demonstrated to enhance the desorption of contaminants from soil by 20%-37% and 18%-61% higher compared to ethanol/water system in low organic content and high organic content soils respectively,with a 2:1 (V/W) ratio of solution:soil and with cosolvent fraction as low as 0.4.With the exception of benzo[a]pyrene,the experimental desorption results agreed fairly with the predicted values,under an applied solution:soil ratio that was enough to hold the capacity of released contaminants.

  3. Refuse derived soluble bio-organics enhancing tomato plant growth and productivity

    Energy Technology Data Exchange (ETDEWEB)

    Sortino, Orazio [Dipartimento di Scienze Agronomiche Agrochimiche e delle Produzioni Animali, Universita degli Studi di Catania, Via Valdisavoia 5, 95123 Catania (Italy); Dipasquale, Mauro [Dipartimento di Chimica, Universita di Torino, Via P. Giuria 7, 10125 Torino (Italy); Montoneri, Enzo, E-mail: enzo.montoneri@unito.it [Dipartimento di Chimica, Universita di Torino, Via P. Giuria 7, 10125 Torino (Italy); Tomasso, Lorenzo; Perrone, Daniele G. [Dipartimento di Chimica, Universita di Torino, Via P. Giuria 7, 10125 Torino (Italy); Vindrola, Daniela; Negre, Michele; Piccone, Giuseppe [Dipartimento di Valorizzazione e Protezione delle Risorse Agroforestali, Universita di Torino, Via L. da Vinci 44, 10095 Grugliasco (Italy)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer Municipal bio-wastes are a sustainable source of bio-based products. Black-Right-Pointing-Pointer Refuse derived soluble bio-organics promote chlorophyll synthesis. Black-Right-Pointing-Pointer Refuse derived soluble bio-organics enhance plant growth and fruit ripening rate. Black-Right-Pointing-Pointer Sustainable chemistry exploiting urban refuse allows sustainable development. Black-Right-Pointing-Pointer Chemistry, agriculture and the environment benefit from biowaste technology. - Abstract: Municipal bio-refuse (CVD), containing kitchen wastes, home gardening residues and public park trimmings, was treated with alkali to yield a soluble bio-organic fraction (SBO) and an insoluble residue. These materials were characterized using elemental analysis, potentiometric titration, and 13C NMR spectroscopy, and then applied as organic fertilizers to soil for tomato greenhouse cultivation. Their performance was compared with a commercial product obtained from animal residues. Plant growth, fruit yield and quality, and soil and leaf chemical composition were the selected performance indicators. The SBO exhibited the best performance by enhancing leaf chlorophyll content, improving plant growth and fruit ripening rate and yield. No product performance-chemical composition relationship could be assessed. Solubility could be one reason for the superior performance of SBO as a tomato growth promoter. The enhancement of leaf chlorophyll content is discussed to identify a possible link with the SBO photosensitizing properties that have been demonstrated in other work, and thus with photosynthetic performance.

  4. Synthesis of a Novel Organic Soluble and Thermal-stable Fullerene-perylene Dyad

    Institute of Scientific and Technical Information of China (English)

    Jian Li HUA; Fang DING; Fan Shun MENG; He TIAN

    2004-01-01

    A novel organic soluble and thermal-stable fullerene-perylene dyad, in which a perylene moietyis attached to C60, has been prepared by 1, 3-dipolar cycloaddition of the azomethine ylides generated in situ from the aldehyde and N-methylglycine and characterized by NMR, FT-IR, TGA, absorption and fluorescent spectra etc.

  5. Complexation with dissolved organic matter and solubility control of heavy metals in sandy soil

    NARCIS (Netherlands)

    Weng, L.; Temminghoff, E.J.M.; Lofts, S.; Tipping, E.; Riemsdijk, van W.H.

    2002-01-01

    The complexation of heavy metals with dissolved organic matter (DOM) in the environment influences the solubility and mobility of these metals. In this paper, we measured the complexation of Cu, Cd, Zn, Ni, and Pb with DOM in the soil solution at pH 3.7-6.1 using a Donnan membrane technique. The res

  6. Soluble organic carbon and carbon dioxide fluxes in maize fields receiving spring-applied manure

    NARCIS (Netherlands)

    Gregorich, E.G.; Rochette, P.; McGuire, S.; Liang, B.C.; Lessard, R.

    1998-01-01

    More than 19 million Mg of dairy manure are produced annually in the Canadian provinces of Quebec and Ontario, and most of it is spread on agricultural fields. Quantitative information on the impact of manure management practices on levels of soluble organic carbon (SOC) and emissions of CO 2 is

  7. Soluble microbial products in pilot-scale drinking water biofilters with acetate as sole carbon source.

    Science.gov (United States)

    Zhang, Ying; Ye, Chengsong; Gong, Song; Wei, Gu; Yu, Xin; Feng, Lin

    2013-04-01

    A comprehensive study on formation and characteristics of soluble microbial products (SMP) during drinking water biofiltration was made in four parallel pilot-scale ceramic biofilters with acetate as the substrate. Excellent treatment performance was achieved while microbial biomass and acetate carbon both declined with the depth of filter. The SMP concentration was determined by calculating the difference between the concentration of dissolved organic carbon (DOC), biodegradable dissolved organic carbon (BDOC) and acetate carbon. The results revealed that SMP showed an obvious increase from 0 to 100 cm depth of the filter. A rising specific ultraviolet absorbance (SUVA) was also found, indicating that benzene or carbonyl might exist in these compounds. SMP produced during this drinking water biological process were proved to have weak mutagenicity and were not precursors of by-products of chlorination disinfection. The volatile parts of SMP were half-quantity analyzed and most of them were dicarboxyl acids, others were hydrocarbons or benzene with 16-17 carbon atoms.

  8. Aqueous solubility data for pressurized hot water extraction for solid heterocyclic analogs of anthracene, phenanthrene and fluorene.

    Science.gov (United States)

    Karásek, Pavel; Planeta, Josef; Roth, Michal

    2007-01-26

    We report the aqueous solubilities of phenanthrene and several solid three-ring aromatic heterocycles (phenanthridine, acridine, phenazine, thianthrene, phenothiazine, phenoxathiin, phenoxazine, carbazole, dibenzofuran, dibenzothiophene, and 4,6-dimethyldibenzothiophene) at temperatures ranging from 313K to the solute melting point and at a pressure of 5MPa. The data were measured by dynamic saturation method using an in-house-assembled apparatus for pressurized hot water extraction (PHWE). The solute from a known mass of the saturated aqueous solution was transferred to an organic solvent (hexane or toluene), and the organic phase was analyzed by GC/MS. In any of the solutes, the GC/MS records did not indicate any noticeable decomposition within the temperature range of the measurements. The resultant solubilities were converted to activity coefficients of the individual solutes in saturated aqueous solutions, and the results are discussed in terms of temperature and type/number of heteroatoms.

  9. Asymmetric Transfer Hydrogenation of Prochiral Ketones in Aqueous Media with New Water-Soluble Chiral Vicinal Diamine as Ligand

    Institute of Scientific and Technical Information of China (English)

    ZHU Jin; MA Ya-Ping; LIU Hui; CHEN Li; CUI Xin; DENG Jin-Gen

    2003-01-01

    @@ As a consequence of the increasing demand for atom economy and environmental friendly methods, the water soluble ligands and their metal complexes are of great interest in catalytic synthesis because of simpler product sepa ration and the possibility of recycling. [1] Unique reactivity and selectivity are often observed in aqueous reactions. [2]Recently, we have developed a new water-soluble chiral vicinal diamine and synthesized its mono-N-tosylated derivative for the first time. The application of its mono-N-tosylated derivative in catalytic asymmetric transfer hydrogenation of prochiral ketones was examined in aqueous media. High activity (up to > 99 % conv. ) and good enatioselectivity ( up to 98% ee ) were achieved for most of prochiral aromatic ketones in organic solvent free system. [3

  10. PRESENCE OF WATER-SOLUBLE COMPOUNDS IN THERMALLY MODIFIED WOOD: CARBOHYDRATES AND FURFURALS

    Directory of Open Access Journals (Sweden)

    Olov Karlsson,

    2012-06-01

    Full Text Available With thermal modification, changes in properties of wood, such as the presence of VOC and water-soluble carbohydrates, may occur. Thermal modifications under saturated steam conditions (160 °C or 170 °C and superheated steam conditions (170, 185, and 212 °C were investigated by analysing the presence of water-soluble 5-(hydroxymethylfurfural (HMF, furfural, and carbohydrates in heat-treated wood. The influence of thermal modifications on Scots pine, Norway spruce, and silver birch was also studied. Furfurals were analysed using HPLC at 280 nm, while monosaccharides and water-soluble carbohydrates were determined by GC-FID as their acetylated alditiols and, after methanolysis, as their trimethylsilylated methyl-glycosides, respectively. The amount of furfurals was larger in boards thermally modified under saturated steam conditions than those treated under superheated steam conditions. Generally, more of HMF than furfural was found in the thermally modified boards. In process water, in which saturated steam conditions had been used, furfural and only traces of HMF were found. Higher content of water-soluble carbohydrates was found in boards treated in saturated steam rather than in superheated steam. After modification in saturated steam, substantial parts of the water-soluble carbohydrates were due to monosaccharides, but only traces of monosaccharides were found in boards treated under superheated steam conditions.

  11. Modified water solubility of milk protein concentrate powders through the application of static high pressure treatment.

    Science.gov (United States)

    Udabage, Punsandani; Puvanenthiran, Amirtha; Yoo, Jin Ah; Versteeg, Cornelis; Augustin, Mary Ann

    2012-02-01

    The effects of high pressure (HP) treatment (100-400 MPa at 10-60 °C) on the solubility of milk protein concentrate (MPC) powders were tested. The solubility, measured at 20 °C, of fresh MPC powders made with no HP treatment was 66%. It decreased by 10% when stored for 6 weeks at ambient temperature (~20 °C) and continued to decrease to less than 50% of its initial solubility after 12 months of storage. Of the combinations of pressure and heat used, a pressure of 200 MPa at 40 °C applied to the concentrate before spray drying was found to be the most beneficial for improved solubility of MPC powders. This combination of pressure/heat improved the initial cold water solubility to 85%. The solubility was maintained at this level after 6 weeks storage at ambient temperature and 85% of the initial solubility was preserved after 12 months. The improved solubility of MPC powders on manufacture and on storage are attributed to an altered surface composition arising from an increased concentration of non-micellar casein in the milk due to HP treatment prior to drying. The improved solubility of high protein powders (95% protein) made from blends of sodium caseinate and whey protein isolate compared with MPC powders (~85% protein) made from ultrafiltered/diafiltered milk confirmed the detrimental role of micellar casein on solubility. The results suggest that increasing the non-micellar casein content by HP treatment of milk or use of blends of sodium caseinate and whey proteins are strategies that may be used to obtain high protein milk powders with enhanced solubility.

  12. Thermodynamics of the sorption of water-soluble vitamins in reverse-phase high performance liquid chromatography

    Science.gov (United States)

    Chirkin, V. A.; Karpov, S. I.; Selemenev, V. F.

    2012-12-01

    The thermodynamics of the sorption of certain water-soluble vitamins on a C18 reverse phase from water-acetonitrile solutions of different compositions is studied. The thermodynamic characteristics of the investigated chromatographic systems are calculated. The dependences of standard molar enthalpy and changes in entropy when the sorbate transfers from the bulk solution to the surface layer on the concentration of the organic component in the mobile phase are analyzed. The boundaries for applying the main retention models describing the sorption of the investigated compounds are discussed.

  13. Formation of water-soluble soybean polysaccharides from spent flakes by hydrogen peroxide treatment.

    Science.gov (United States)

    Pierce, Brian C; Wichmann, Jesper; Tran, Tam H; Cheetamun, Roshan; Bacic, Antony; Meyer, Anne S

    2016-06-25

    In this paper we propose a novel chemical process for the generation of water-soluble polysaccharides from soy spent flake, a by-product of the soy food industry. This process entails treatment of spent flake with hydrogen peroxide at an elevated temperature, resulting in the release of more than 70% of the original insoluble material as high molar mass soluble polysaccharides. A design of experiment was used to quantify the effects of pH, reaction time, and hydrogen peroxide concentration on the reaction yield, average molar mass, and free monosaccharides generated. The resulting product is low in protein, fat, and minerals and contains predominantly water-soluble polysaccharides of high molar mass, including arabinan, type I arabinogalactan, homogalacturonan, xyloglucan, rhamnogalacturonan, and (glucurono)arabinoxylan. This treatment provides a straightforward approach for generation of soluble soy polysaccharides and opens a new range of opportunities for this abundant and underutilized material in future research and industrial applications.

  14. Design, synthesis and in vitro evaluation of novel water-soluble prodrugs of buparvaquone.

    Science.gov (United States)

    Mäntylä, Antti; Rautio, Jarkko; Nevalainen, Tapio; Keski-Rahkonen, Pekka; Vepsälainen, Jouko; Järvinen, Tomi

    2004-10-01

    Novel water-soluble phosphate prodrugs (2b-5b) of buparvaquone-oxime (1a) and buparvaquone-O-methyloxime (1b) were synthesized and evaluated in vitro as potential oral prodrugs against leishmaniasis. Buparvaquone-oxime (1a), and most probably also buparvaquone-O-methyloxime (1b), released the parent buparvaquone via a cytochrome P450-catalysed reaction. The prodrugs 2b-5b showed significantly higher aqueous solubilities (>4 mg/ml) than buparvaquone ( 8 days). Although buparvaquone-oxime (1a) has been shown to undergo a cytochrome P450-catalysed oxidation in liver microsomes to the parent buparvaquone and behave as a novel bioreversible prodrug, its usefulness is limited in oral drug delivery due to its poor aqueous solubility, like buparvaquone itself. Further phosphorylation of an oxime form of buparvaquone significantly increased water solubility, and this novel approach is therefore useful to improve physicochemical properties of drugs containing a ketone functional group.

  15. An experimental study on the solubility of copper bichloride in water vapor

    Institute of Scientific and Technical Information of China (English)

    SHANG LinBo; BI XianWu; HU RuiZhong; FAN WenLing

    2007-01-01

    Using the solubility method, the solubility of CuCl2 in liquid-undersaturated HCl-bearing water vapor was investigated experimentally at temperatures of 330-370℃ and pressures of 4.2-10 MPa. The results have shown that hydration could significantly enhance copper solubility and the concentrations of copper were positively correlated with PH2O. The solubility of copper in vapor phase increased with increasing PH2O at the constant temperature. CuCl2 was transported as hydrated species CuCl2(H2O)ngas in water vapor. The formation of complexes is proposed to be the result of the following reaction:CuCl2solid + nH2Ogas = CuCl2 (H2O)ngas The hydration number n decreased slightly with increasing temperature. Statistical hydration numbers are 4.0, 3.6 and 3.3 at 330, 350 and 370℃, respectively.

  16. Water-soluble extracts from defatted sesame seed flour show antioxidant activity in vitro.

    Science.gov (United States)

    Ben Othman, Sana; Katsuno, Nakako; Kanamaru, Yoshihiro; Yabe, Tomio

    2015-05-15

    Defatted white and gold sesame seed flour, recovered as a byproduct after sesame oil extraction, was extracted with 70% ethanol to obtain polar-soluble crude extracts. The in vitro antioxidant activity of the extract was evaluated by DPPH free radical scavenging activity and oxygen radical absorbing capacity (ORAC). The polar-soluble crude extracts of both sesame seed types exhibited good antioxidant capacity, especially by the ORAC method with 34,720 and 21,700 μmol Trolox equivalent/100g of white and gold sesame seed extract, respectively. HPLC, butanol extraction, and UPLC-MS analyses showed that different compounds contributed to the antioxidant activity of the polar-soluble crude extracts. Sesaminol glycosides were identified in the butanol-soluble fractions; whereas, purified water-soluble fraction contained ferulic and vanillic acids. This study shows that hydrophilic antioxidants in the purified water-soluble fraction contributed to the antioxidant activity of white and gold sesame seed polar-soluble crude extracts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. A Preliminary Study of the Solubility of Copper in Water Vapor at Elevated Temperatures and Pressures

    Institute of Scientific and Technical Information of China (English)

    2006-01-01

    In order to understand the capacity of water vapor to transport copper and its mechanism,using the solubility method, the solubility of copper in undersaturated water vapor was investigated experimentally at temperatures from 310 ℃ to 350 ℃ and pressures from 42 × 105 to 100 × 105 Pa. Results of these experiments show that the presence of water vapor increases the concentration of Cu in the gus. At a constant temperature, the solubility of copper increases with increasing water vapor pressure.Copper may exist as hydrated gaseous particles in the vapor phase, and the dissolution process can be denumber decreases with increasing temperature, varying from ~6 at 310 ℃, to ~5 at 330 ℃, and ~4at 350 ℃. The results show that interactions between gas-solvent H2O and copper will significantly enhance the dissolution and transport capacity of copper in the gas phase.

  18. Study on the sound absorption mechanism in gradient water-soluble polymer solution

    Institute of Scientific and Technical Information of China (English)

    WANG Yuansheng; YANG Xue; ZHU Jinhua; YAO Shuren

    2006-01-01

    Attention was paid to the study on the sound absorption mechanism of watersoluble polymer during dissolving. A specially designed water-soluble polymer coating was synthesized in our lab. The sound attenuation property was measured in sound tube. The results showed that the sound attenuation of the gradient polymer solution was larger than that of the uniform. Depending on the experimental result and the theory of sound wave propagation in layered medium, a mechanism of gradient water-soluble polymer solution was developed. This mechanism can be described as follows: a water-soluble polymer coating formed a concentration gradient layer when it was dissolved in water. This gradient layer led to multiple reflection and absorption of sound. Finally the sound energy was transferred into heat.

  19. Enhancement of solubility of poorly water soluble anti hypertensive drug by nanosizing approach

    Directory of Open Access Journals (Sweden)

    Divyesh Thakar

    2012-01-01

    Full Text Available The objective of this research study was to optimize formulation and process variables affecting characteristic of nanosuspension in bead milling process. In this study, the practically water-insoluble telmisartan was nanoground by using top down method i.e. media milling method. Here the media used is ZnO 2 beads. A variety of surface active agents were tested for their stabilizing effects. Formulation factors evaluated were ratio of polymer to drug, whereas process parameters were milling time and concentration of ZnO 2 beads. Different concentration of stabilizers such as poloxamer 188, poloxamer 407, HPMC E 15, PVP K30 and combination of stabilizers were used for preparation of telmisartan nanosuspension. Responses measured in this study include particle size measurement, particle size distribution and zeta potential.

  20. Water-soluble carbon nanotube compositions for drug delivery and medicinal applications

    Energy Technology Data Exchange (ETDEWEB)

    Tour, James M.; Lucente-Schultz, Rebecca; Leonard, Ashley; Kosynkin, Dmitry V.; Price, Brandi Katherine; Hudson, Jared L.; Conyers, Jr., Jodie L.; Moore, Valerie C.; Casscells, S. Ward; Myers, Jeffrey N.; Milas, Zvonimir L.; Mason, Kathy A.; Milas, Luka

    2014-07-22

    Compositions comprising a plurality of functionalized carbon nanotubes and at least one type of payload molecule are provided herein. The compositions are soluble in water and PBS in some embodiments. In certain embodiments, the payload molecules are insoluble in water. Methods are described for making the compositions and administering the compositions. An extended release formulation for paclitaxel utilizing functionalized carbon nanotubes is also described.

  1. Kinetics of Acid Hydrolysis of Water-Soluble Spruce O-Acetyl Galactoglucomannans

    NARCIS (Netherlands)

    Xu, C.; Pranovich, A.; Vahasalo, L.; Hemming, J.; Holmbom, B.; Schols, H.A.; Willfor, S.

    2008-01-01

    Water-soluble O-acetyl galactoglucomannan (GGM) is a softwood-derived polysaccharide, which can be extracted on an industrial scale from wood or mechanical pulping waters and now is available in kilogram scale for research and development of value-added products. To develop applications of GGM, info

  2. Structural investigation of water-soluble polysaccharides extracted from the fruit bodies of Coprinus comatus

    NARCIS (Netherlands)

    Li, Bo; Dobruchowska, Justyna M.; Gerwig, Gerrit J.; Dijkhuizen, Lubbert; Kamerling, Johannis P.

    2013-01-01

    Water-soluble polysaccharide material, extracted from the stipes of the fruit bodies of Coprinus comatus by hot water, was fractionated by sequential weak anion-exchange and size-exclusion chromatography. The relevant fractions were subjected to structural analysis, including (D/L) monosaccharide/me

  3. Water-soluble carbon nanotube compositions for drug delivery and medicinal applications

    Science.gov (United States)

    Tour, James M.; Lucente-Schultz, Rebecca; Leonard, Ashley; Kosynkin, Dmitry V.; Price, Brandi Katherine; Hudson, Jared L.; Conyers, Jr., Jodie L.; Moore, Valerie C.; Casscells, S. Ward; Myers, Jeffrey N.; Milas, Zvonimir L.; Mason, Kathy A.; Milas, Luka

    2014-07-22

    Compositions comprising a plurality of functionalized carbon nanotubes and at least one type of payload molecule are provided herein. The compositions are soluble in water and PBS in some embodiments. In certain embodiments, the payload molecules are insoluble in water. Methods are described for making the compositions and administering the compositions. An extended release formulation for paclitaxel utilizing functionalized carbon nanotubes is also described.

  4. Novel Water Soluble Fluorescent Trimethine Indocyanines Containing N-p-Carboxybenzyl Group

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Two fluorescent indocyanine dyes containing at least one p-carboxybenzyl group on the nitrogen atoms in the hetcrocyclic rings were designed and synthesized. Their absorption maxima were 549 nm and 551 nm in water respectively. They had good water solubility and photostability.

  5. Enhanced water-solubility and antibacterial activity of novel chitosan derivatives modified with quaternary phosphonium salt.

    Science.gov (United States)

    Zhu, Dan; Cheng, Honghao; Li, Jianna; Zhang, Wenwen; Shen, Yuanyuan; Chen, Shaojun; Ge, Zaochuan; Chen, Shiguo

    2016-04-01

    Chitosan (CS) has been widely recognized as an important biomaterial due to its good antimicrobial activity, biocompatibility and biodegradability. However, CS is insoluble in water in neutral and alkaline aqueous solution due to the linear aggregation of chain molecules and the formation of crystallinity. This is one of the key factors that limit its practical applications. Therefore, improving the solubility of CS in neutral and alkaline aqueous solution is a primary research direction for biomedical applications. In this paper, a reactive antibacterial compound (4-(2,5-Dioxo-pyrrolidin-1-yloxycarbonyl)-benzyl)-triphenyl-phosphonium bromide (NHS-QPS) was synthesized for chemical modification of CS, and a series of novel polymeric antimicrobial agents, N-quaternary phosphonium chitosan derivatives (N-QPCSxy, x=1-2,y=1-4) were obtained. The water solubilities and antibacterial activities of N-QPCSxy against Escherichia coli and Staphylococcus aureus were evaluated compare to CS. The water solubility of N-QPCSxy was all better than that of CS at neutral pH aqueous solution, particularly, N-QPCS14 can be soluble in water over the pH range of 3 to 12. The antibacterial activities of CS derivatives were improved by introducing quaternary phosphonium salt, and antibacterial activity of N-QPCSxy increases with degree of substitution. Overall, N-QPCS14 represents a novel antibacterial polymer material with good antibacterial activity, waters solubility and low cytotoxicity. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Membrane Proteins Are Dramatically Less Conserved than Water-Soluble Proteins across the Tree of Life.

    Science.gov (United States)

    Sojo, Victor; Dessimoz, Christophe; Pomiankowski, Andrew; Lane, Nick

    2016-11-01

    Membrane proteins are crucial in transport, signaling, bioenergetics, catalysis, and as drug targets. Here, we show that membrane proteins have dramatically fewer detectable orthologs than water-soluble proteins, less than half in most species analyzed. This sparse distribution could reflect rapid divergence or gene loss. We find that both mechanisms operate. First, membrane proteins evolve faster than water-soluble proteins, particularly in their exterior-facing portions. Second, we demonstrate that predicted ancestral membrane proteins are preferentially lost compared with water-soluble proteins in closely related species of archaea and bacteria. These patterns are consistent across the whole tree of life, and in each of the three domains of archaea, bacteria, and eukaryotes. Our findings point to a fundamental evolutionary principle: membrane proteins evolve faster due to stronger adaptive selection in changing environments, whereas cytosolic proteins are under more stringent purifying selection in the homeostatic interior of the cell. This effect should be strongest in prokaryotes, weaker in unicellular eukaryotes (with intracellular membranes), and weakest in multicellular eukaryotes (with extracellular homeostasis). We demonstrate that this is indeed the case. Similarly, we show that extracellular water-soluble proteins exhibit an even stronger pattern of low homology than membrane proteins. These striking differences in conservation of membrane proteins versus water-soluble proteins have important implications for evolution and medicine. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  7. Teratogenicity and metabolism of water-soluble forms of vitamin A in the pregnant rat

    Energy Technology Data Exchange (ETDEWEB)

    Gunning, D.B.; Barua, A.B.; Olson, J.A. (Iowa State Univ., Ames (United States))

    1990-02-26

    Retinoyl {beta}-glucuronide, unlike retinoic acid, has been shown to be non-teratogenic when administered orally, even in large doses, to pregnant rats. The degree to which water-solubility is associated with low teratogenicity is not known. Other water-soluble forms of vitamin A have now been synthesized in our laboratory and are being evaluated for teratogenicity. New water-soluble forms of vitamin A were administered orally to pregnant Sprague-Dawley rats in a single dose of 0.35 mmole/kg bw on day 8 of gestation. On day 19, the dams were sacrificed and the litters were examined. Control animals received either vehicle only or an equivalent dose of all-trans retinoic acid. Maternal and fetal tissues were taken and analyzed by HPLC for vitamin A metabolites. In another experiment, a large single oral dose of the radiolabelled water-soluble compound was administered on day 10. At either 30 minutes or 1 hour after the dose, dams were sacrificed and the embryos analyzed both for radioactivity and for specific metabolites. In contrast to retinoyl {beta}-glucuronide, retinoyl {beta}-glucose is highly teratogenic under identical conditions. Thus, water-solubility does not seem to be the determining factor in the teratogenicity of retinoic acid conjugates.

  8. Fabrication and Mechanical Characterization of Water-Soluble Resin-Coated Natural Fiber Green Composites

    Science.gov (United States)

    Manabe, Ken-Ichi; Hayakawa, Tomoyuki

    In this study, water-soluble biodegradable resin was introduced as a coating agent to improve the interfacial strength and then to fabricate a high-performance green composite with polylactic acid (PLA) and hemp yarn. Dip coating was carried out for hemp yarn and the green composites were fabricated by hot processing. The coated green composite achieves a high tensile strength of 117 MPa even though the fiber volume fraction is less than 30%. Interfacial shear strength (IFSS) was measured by a single fiber pull-out test, and the effect of water-soluble resin on the tensile properties of the composites was evaluated. As a result, when using coated natural bundles, the IFSS value is smaller than when using noncoated natural bundles. On the basis of observations of the fractured surface of composites and initial yarns using a scanning electron microscope (SEM), the effect of the impregnation of water-soluble resin into the natural bundles on the tensile strength is discussed in detail. It is found that water-soluble resin is effective in improving the mechanical properties of the composite, although the interfacial strength between PLA and water-soluble resin was decreased, and as a result, the tensile strength of green composites increases by almost 20%.

  9. Solubilization of poorly water-soluble compounds using amphiphilic phospholipid polymers with different molecular architectures.

    Science.gov (United States)

    Mu, Mingwei; Konno, Tomohiro; Inoue, Yuuki; Ishihara, Kazuhiko

    2017-06-29

    To achieve stable and effective solubilization of poorly water-soluble bioactive compounds, water-soluble and amphiphilic polymers composed of hydrophilic 2-methacryloyloxyethyl phosphorylcholine (MPC) units and hydrophobic n-butyl methacrylate (BMA) units were prepared. MPC polymers having different molecular architectures, such as random-type monomer unit sequences and block-type sequences, formed polymer aggregates when they were dissolved in aqueous media. The structure of the random-type polymer aggregate was loose and flexible. On the other hand, the block-type polymer formed polymeric micelles, which were composed of very stable hydrophobic poly(BMA) cores and hydrophilic poly(MPC) shells. The solubilization of a poorly water-soluble bioactive compound, paclitaxel (PTX), in the polymer aggregates was observed, however, solubilizing efficiency and stability were strongly depended on the polymer architecture; in other words, PTX stayed in the poly(BMA) core of the polymer micelle formed by the block-type polymer even when plasma protein was present in the aqueous medium. On the other hand, when the random-type polymer was used, PTX was transferred from the polymer aggregate to the protein. We conclude that water-soluble and amphiphilic MPC polymers are good candidates as solubilizers for poorly water-soluble bioactive compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  10. Water soluble {2-[3-(diethylamino)phenoxy]ethoxy} substituted zinc(II) phthalocyanine photosensitizers

    Energy Technology Data Exchange (ETDEWEB)

    Çakır, Dilek [Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey); Göl, Cem [Gebze Institute of Technology, Department of Chemistry, PO Box 141, Gebze, 41400, Kocaeli (Turkey); Çakır, Volkan [Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey); Durmuş, Mahmut [Gebze Institute of Technology, Department of Chemistry, PO Box 141, Gebze, 41400, Kocaeli (Turkey); Bıyıklıoğlu, Zekeriya, E-mail: zekeriya_61@yahoo.com [Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey); Kantekin, Halit [Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, 61080 Trabzon (Turkey)

    2015-03-15

    The new peripherally and non-peripherally tetra-{2-[3-(diethylamino)phenoxy] ethoxy} substituted zinc phthalocyanines (2a and 3a) were synthesized by cyclotetramerization of phthalonitrile derivatives (2 and 3). 2-[3-(diethylamino)phenoxy] ethoxy group was chosen as substituent because the quaternization of the diethylamino functionality on the structure of this group produced water soluble zinc phthalocyanines (2b and 3b). The water solubility is very important for many different applications such as photosensitizers in the photodynamic therapy of cancer because the water soluble photosensitizers can be injected directly to the body and they can transport to cancer cells through blood stream. The new compounds were characterized by using elemental analysis, UV–vis, IR, {sup 1}H NMR, {sup 13}C NMR and mass spectroscopies. The photophysical and photochemical properties of these novel photosensitizer compounds were examined in DMSO (both non-ionic and ionic complexes) and in PBS (for ionic complexes) solutions. The investigation of these properties is very important for the usage of the compounds as photosensitizers for PDT because determination of these properties is the first stage of potential of the compounds as photosensitizers. The bovine serum albumin (BSA) and DNA binding behaviour of the studied water soluble zinc (II) phthalocyanines were also investigated in PBS solutions for the determination of biological activity of these compounds. - Highlights: • Synthesis of water soluble zinc phthalocyanines. • Photophysical and photochemical properties for phthalocyanines. • Photodynamic therapy studies.

  11. Water Solubility of Plutonium and Uranium Compounds and Residues at TA-55

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, Sean Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Smith, Paul Herrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Jarvinen, Gordon D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Prochnow, David Adrian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Schulte, Louis D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; DeBurgomaster, Paul Christopher [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Fife, Keith William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Rubin, Jim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Worl, Laura Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States

    2016-06-13

    Understanding the water solubility of plutonium and uranium compounds and residues at TA-55 is necessary to provide a technical basis for appropriate criticality safety, safety basis and accountability controls. Individual compound solubility was determined using published solubility data and solution thermodynamic modeling. Residue solubility was estimated using a combination of published technical reports and process knowledge of constituent compounds. The scope of materials considered includes all compounds and residues at TA-55 as of March 2016 that contain Pu-239 or U-235 where any single item in the facility has more than 500 g of nuclear material. This analysis indicates that the following materials are not appreciably soluble in water: plutonium dioxide (IDC=C21), plutonium phosphate (IDC=C66), plutonium tetrafluoride (IDC=C80), plutonium filter residue (IDC=R26), plutonium hydroxide precipitate (IDC=R41), plutonium DOR salt (IDC=R42), plutonium incinerator ash (IDC=R47), uranium carbide (IDC=C13), uranium dioxide (IDC=C21), U3O8 (IDC=C88), and uranium filter residue (IDC=R26). This analysis also indicates that the following materials are soluble in water: plutonium chloride (IDC=C19) and uranium nitrate (IDC=C52). Equilibrium calculations suggest that PuOCl is water soluble under certain conditions, but some plutonium processing reports indicate that it is insoluble when present in electrorefining residues (R65). Plutonium molten salt extraction residues (IDC=R83) contain significant quantities of PuCl3, and are expected to be soluble in water. The solubility of the following plutonium residues is indeterminate due to conflicting reports, insufficient process knowledge or process-dependent composition: calcium salt (IDC=R09), electrorefining salt (IDC=R65), salt (IDC=R71), silica (IDC=R73) and sweepings/screenings (IDC=R78). Solution thermodynamic modeling also indicates that fire suppression water buffered with a

  12. Solubility of water in fluorocarbons: Experimental and COSMO-RS prediction results

    Energy Technology Data Exchange (ETDEWEB)

    Freire, Mara G.; Carvalho, Pedro J. [CICECO, Departamento de Quimica, Universidade de Aveiro, 3810-193 Aveiro (Portugal); Santos, Luis M.N.B.F. [CIQ, Departamento de Quimica, Faculdade de Ciencias da Universidade do Porto, R. Campo Alegre 687, 4169-007 Porto (Portugal); Gomes, Ligia R. [REQUIMTE, Departamento de Quimica, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre, P-4169-007 Porto (Portugal); Marrucho, Isabel M. [CICECO, Departamento de Quimica, Universidade de Aveiro, 3810-193 Aveiro (Portugal); Coutinho, Joao A.P., E-mail: jcoutinho@ua.p [CICECO, Departamento de Quimica, Universidade de Aveiro, 3810-193 Aveiro (Portugal)

    2010-02-15

    This work aims at providing experimental and theoretical information about the water-perfluorocarbon molecular interactions. For that purpose, experimental solubility results for water in cyclic and aromatic perfluorocarbons (PFCs), over the temperature range between (288.15 and 318.15) K, and at atmospheric pressure, were obtained and are presented. From the experimental solubility dependence on temperature, the partial molar solution and solvation thermodynamic functions such as Gibbs free energy, enthalpy and entropy were determined and are discussed. The process of dissolution of water in PFCs is shown to be spontaneous for cyclic and aromatic compounds. It is demonstrated that the interactions between the non-aromatic PFCs and water are negligible while those between aromatic PFCs and water are favourable. The COSMO-RS predictive capability was explored for the description of the water solubility in PFCs and others substituted fluorocompounds. The COSMO-RS is shown to be a useful model to provide reasonable predictions of the solubility values, as well as to describe their temperature and structural modifications dependence. Moreover, the molar Gibbs free energy and molar enthalpy of solution of water are predicted remarkably well by COSMO-RS while the main deviations appear for the prediction of the molar entropy of solution.

  13. Polyaniline – Carrageenan - Polyvinyl Alcohol Composite Material Synthesized Via Interfacial Polymerization, its Morphological Characteristics and Enhanced Solubility in Water

    Science.gov (United States)

    Montalbo, R. C. K.; Marquez, M. C.

    2017-09-01

    In recent years, conducting polyaniline (PAni) has been a popular interest of research in the field of conducting polymers due to its relatively low cost, ease of production, good conductivity, and environmental stability. Many studies however, have focused on improving its short-comings such as its limited processability and solubility in common solvents. In this study, PAni, soluble in water was produced via interfacial polymerization with chloroform as the organic solvent. Poly(vinyl alcohol) (PVA) and kappa(κ), iota(ι) and lambda(λ) - carrageenan (κCGN, ιCGN, λCGN) were added to the aqueous layer to stabilize PAni in the medium. FTIR and UV-Vis absorption spectra of the solutions as well as the fabricated film confirmed the existence of PAni emeraldine salt (PAni-ES). FTIR spectrum also confirmed the peaks corresponding to the interaction of PAni with the CGNs. Moreover, PVA-CGN played a very large role on the stability of the PAni nanofibers integrated on the PVA-CGN matrix. The morphologies of the products were further investigated using SEM and TEM. Polymer electrolyte for supercapacitor or an interfacial layer for organic solar cell is being targeted as potential application of the synthesized water soluble PAni.

  14. Solubility of methane, nitrogen, and carbon dioxide in bitumen and water for SAGD modelling

    Energy Technology Data Exchange (ETDEWEB)

    Al-Murayri, M.T.; Harding, T.G.; Maini, B.B.

    2011-07-15

    The steam assisted gravity-drainage (SAGD) process is a technology used in unconventional reservoirs to enhance oil recovery, this technique sometimes uses the co-injection of noncondensable gases (NCGs). The co-injection of NCGs with steam is used to reduce energy consumption and greenhouse gas emissions in SAGD, but this technique also affects the performance of SAGD, making the knowledge of gas solubility in bitumen and water important. This study was undertaken to develop a systematic approach to predict the K-values for the gas-bitumen and gas water phase equilibria at different temperatures and pressures. This research has been carried out by using different existing correlations. It has been observed that the Mehrotra and Svrcek gas-solubility correlation should be used to calculate NCG's solubility in bitumen and that NCGs' solubility in water could be calculated with Harvey's correlation. This study defined successfully an approach to calculate NCGs' solubility in bitumen and water.

  15. Effect of thatch on water-soluble phosphorus of pasture soil fertilized with broiler litter

    Institute of Scientific and Technical Information of China (English)

    2002-01-01

    The presence of a thatch layer in established pastures could reduce the contact between broiler litter and soil, thus increasing the potential for surface runoff contamination with litter P. We conducted a laboratory study to evaluate the effect of a thatch layer on the dynamics of water-soluble P in undisturbed cores taken from a pasture. Cores with and without a thatch layer received a surface application of broiler litter (5 t@hm-2) and were incubated at 25 oC for 56 d. The result showed that on the soil surface the contents of water soluble-P (39 kg@hm-2) of the cores with the thatch layer was higher than that (20 kg@hm-2) of the cores without the thatch layer. Therefore on well-established pastures fertilized with broiler litter, the presence of a thatch layer might lead to high concentrations of water-soluble P on the soil surface.

  16. [Relationship of resistance to diseases and water-soluble amino acids in Konjac leaves].

    Science.gov (United States)

    Chen, Yongbo; Jiang, Qiaolong

    2008-05-01

    Reversed-phase high performance liquid chromatography was used to analyze water-soluble amino acids in the normal Amorphophallus Konjac, Amorphophallus albus, Amorphophallus bulbifer, and the soft rot Amorphophallus Konjac, to determine the relationship of the different soft-rot resistant Konjac varieties and the proportion and content of the multiple water-soluble amino acids. The results showed that there are remarkable differences in the content and proportion of water-soluble amino acids in different resistant varieties and the same variety of normal and diseased leaves of Amorphophallus. In this study, the bank of fingerprint 15 chromatogram was established and can be used to analyze the related characteristic peaks and the resistance of Amorphophallus.

  17. Characteristics of size-fractionated atmospheric metals and water-soluble metals in two typical episodes in Beijing

    Science.gov (United States)

    Wang, Qingqing; Ma, Yongliang; Tan, Jihua; Zheng, Naijia; Duan, Jingchun; Sun, Yele; He, Kebin; Zhang, Yuanxun

    2015-10-01

    The abundance and behaviour of metals and water-soluble metals (V, Cr, Mn, Fe, Cu, Zn, As, Sr, Ag, Cd, Sn, Sb, Ba and Pb) in size-fractionated aerosols were investigated during two typical episodes in Beijing. Water-soluble inorganic ions (Na+, K+, Mg2+, Ca2+, NH4+ , F-, Cl-, SO42- and NO3-) were also measured. Atmospheric metals and water-soluble metals were both found at high levels; for PM2.5, average As, Cr, Cd, Cu, Mn and Pb concentrations were 14.8, 203.3, 2.5, 18.5, 42.6 and 135.3 ng/m3, respectively, and their water-soluble components were 11.1, 1.7, 2.4, 14.5, 19.8 and 97.8 ng/m3, respectively. Daily concentrations of atmospheric metals and water-soluble metals were generally in accordance with particle mass. The highest concentrations of metals and water-soluble metals were generally located in coarse mode and droplet mode, respectively. The lowest mass of metals and water-soluble metals was mostly in Aitken mode. The water solubility of all metals was low in Aitken and coarse modes, indicating that freshly emitted metals have low solubility. Metal water solubility generally increased with the decrease in particle size in the range of 0.26-10 μm. The water solubility of metals for PM10 was: 50% ≤ Cd, As, Sb, Pb; 26% water-soluble metals and their water solubility increased when polluted air mass came from the near west, near north-west, south-west and south-east of the mainland, and decreased when clean air mass came from the far north-west and far due south. The influence of dust-storms and clean days on water-soluble metals and size distribution was significant; however, the influence of rainfall was negligible. Aerosols with high concentrations of SO42- , K+ and NH4+ might indicate increased potential for human health effects because of their high correlation with water-soluble metals. Industrial emissions contribute substantially to water-soluble metal pollution as water-soluble metals show higher correlation with Cd, Sn, Sb and Pb that are mainly

  18. The speciation of water-soluble Al and Zn in the rhizosphere of forest soils.

    Science.gov (United States)

    Cloutier-Hurteau, Benoît; Turmel, Marie-Claude; Sauvé, Sébastien; Courchesne, François

    2010-06-01

    This study focuses on the relationships of dissolved Al and Zn speciation with microbial and chemical soil properties in the bulk and rhizosphere of forest soils. The soil components were sampled under Populus tremuloides Michx. at six sites located close to industrial facilities. Total water-soluble (Al(WS), Zn(WS)) and reactive (Al(R), Zn(R)) Al and Zn concentrations measured in soil water extracts, speciation data modeled by WHAM 6, chemical properties (pH, DOC, major cations and anions) and microbial properties (microbial biomass and enzyme activities) were measured on all soils. Enrichment in Al(R) and Zn(R) was observed in the rhizosphere compared to bulk soils. In a given soil material, the speciation of Al and Zn varied according to solution pH and Al-organic as well as Zn-organic complexes or Zn(2+) were generally the dominant species. The factors controlling the Al(WS), Zn(WS), Al(R) and Zn(R) concentrations differed between soil components, shifting from strictly chemical in the bulk (78%) to interactions among microbial and chemical variables in the rhizosphere (87%). Results further indicate that organic matter and pH were significantly linked to these response variables in the rhizosphere. Involvement of rhizospheric microorganisms occurred via pH changes induced by either the microbial assimilation of nitrogen or through the release of metals during the mineralization of roots. Our results therefore suggest that microbial activity is an important component of the biogeochemistry of Al and Zn in the rhizosphere. The study further provides key information to improve the assessment of ecological risk associated to Al and Zn in forest soils.

  19. Synthesis of Soluble Host Materials for Highly Efficient Red Phosphorescent Organic Light-Emitting Diodes.

    Science.gov (United States)

    Suh, Min Chul; Park, So-Ra; Cho, Ye Ram; Shin, Dong Heon; Kang, Pil-Gu; Ahn, Dong A; Kim, Hyung Suk; Kim, Chul-Bae

    2016-07-20

    New soluble host materials with benzocarbazole and triphenyltriazine moieties, 11-[3-(4,6-diphenyl-[1,3,5]triazin-2-yl)-phenyl]-11H-benzo[a]carbazole and 11-[3'-(4,6-diphenyl-[1,3,5]triazin-2-yl)-biphenyl-4-yl]-11H-benzo[a]carbazole, were synthesized for highly efficient red phosphorescent organic light-emitting diodes (PHOLED). Hole-transporting benzocarbazole moiety and electron transporting triphenyltriazine moiety, which are severely twisted each other enhance the solubility of those materials in common organic solvent. The improved solubility from this molecular design could be due to a reduced π-π stacking interaction, which gives a very uniform film morphology after spin coating of those materials. As a result, we obtained highly efficient soluble PHOLEDs combined with an evaporated blue common layer structure. The resultant red PHOLED exhibited the maximum current efficiency as well as external quantum efficiency values up to 23.7 cd/A and 19.0%.

  20. The effect of the cation alkyl chain branching on mutual solubilities with water and toxicities

    Science.gov (United States)

    Kurnia, Kiki A.; Sintra, Tânia E.; Neves, Catarina M. S. S.; Shimizu, Karina; Lopes, José N. Canongia; Gonçalves, Fernando; Ventura, Sónia P. M.; Freire, Mara G.; Santos, Luís M. N. B. F.; Coutinho, João A. P.

    2014-01-01

    The design of ionic liquids has been focused on the cation-anion combinations but other more subtle approaches can be used. In this work the effect of the branching of the cation alkyl chain on the design of ionic liquids (ILs) is evaluated. The mutual solubilities with water and toxicities of a series of bis(trifluoromethylsulfonyl)-based ILs, combined with imidazolium, pyridinium, pyrrolidinium, and piperidinium cations with linear or branched alkyl chains, are reported. The mutual solubility measurements were carried out in the temperature range from (288.15 to 323.15) K. From the obtained experimental data, the thermodynamic properties of the solution (in the water-rich phase) were determined and discussed. The COnductor like Screening MOdel for Real Solvents (COSMO-RS) was used to predict the liquid-liquid equilibrium. Furthermore, molecular dynamic simulations were also carried out aiming to get a deeper understanding of these fluids at the molecular level. The results show that the increase in the number of atoms at the cation ring (from five to six) leads to a decrease in the mutual solubilities with water while increasing their toxicity, and as expected from the well-established relationship between toxicities and hydrophobicities of ILs. The branching of the alkyl chain was observed to decrease the water solubility in ILs, while increasing the ILs solubility in water. The inability of COSMO-RS to correctly predict the effect of branching alkyl chains toward water solubility on them was confirmed using molecular dynamic simulations to be due to the formation of nano-segregated structures of the ILs that are not taken into account by the COSMO-RS model. In addition, the impact of branched alkyl chains on the toxicity is shown to be not trivial and to depend on the aromatic nature of the ILs. PMID:25119425

  1. Urinary excretion levels of water-soluble vitamins in pregnant and lactating women in Japan.

    Science.gov (United States)

    Shibata, Katsumi; Fukuwatari, Tsutomu; Sasaki, Satoshi; Sano, Mitsue; Suzuki, Kahoru; Hiratsuka, Chiaki; Aoki, Asami; Nagai, Chiharu

    2013-01-01

    Recent studies have shown that the urinary excretion levels of water-soluble vitamins can be used as biomarkers for the nutritional status of these vitamins. To determine changes in the urinary excretion levels of water-soluble vitamins during pregnant and lactating stages, we surveyed and compared levels of nine water-soluble vitamins in control (non-pregnant and non-lactating women), pregnant and lactating women. Control women (n=37), women in the 2nd (16-27 wk, n=24) and 3rd trimester of pregnancy (over 28 wk, n=32), and early- (0-5 mo, n=54) and late-stage lactating (6-11 mo, n=49) women took part in the survey. The mean age of subjects was ~30 y, and mean height was ~160 cm. A single 24-h urine sample was collected 1 d after the completion of a validated, self-administered comprehensive diet history questionnaire to measure water-soluble vitamins or metabolites. The average intake of each water-soluble vitamin was ≍ the estimated average requirement value and adequate intake for the Japanese Dietary Reference Intakes in all life stages, except for vitamin B6 and folate intakes during pregnancy. No change was observed in the urinary excretion levels of vitamin B2, vitamin B6, vitamin B12, biotin or vitamin C among stages. Urine nicotinamide and folate levels were higher in pregnant women than in control women. Urine excretion level of vitamin B1 decreased during lactation and that of pantothenic acid decreased during pregnancy and lactation. These results provide valuable information for setting the Dietary Reference Intakes of water-soluble vitamins for pregnant and lactating women.

  2. Solubility and solution thermodynamics of 2,5-thiophenedicarboxylic acid in (water + ethanol) binary solvent mixtures

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Yang; Zhang, Qi; Cao, Cuicui; Cheng, Limin [State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009 (China); Shi, Ying [Taiyuan Qiaoyou Chemical Industrial Co. Ltd., Taiyuan 030025 (China); Yang, Wenge [State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009 (China); Hu, Yonghong, E-mail: yonghonghu11@126.com [State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009 (China)

    2014-09-20

    Highlights: • The solubility increased with increasing temperature. • The solubility decreased with the rise of the ratio of the water. • The solubility data were fitted using Apelblat equation, CNIBS/R–K and JA model. • The Gibbs energy, enthalpy and entropy were calculated by the van’t Hoff analysis. - Abstract: In this paper, we focused on solubility and solution thermodynamics of 2,5-thiophenedicarboxylic acid. By gravimetric method, the solubility of 2,5-thiophenedicarboxylic acid was measured in (water + ethanol) binary solvent mixtures from 278.15 K to 333.15 K under atmosphere pressure. The solubility data were fitted using modified Apelblat equation, a variant of the combined nearly ideal binary solvent/Redlich–Kister (CNIBS/R–K) model and Jouyban–Acree model. Computational results showed that the modified Apelblat equation has the lowest MD (mean deviation). In addition, the thermodynamic properties of the solution process, including the Gibbs energy, enthalpy, and entropy were calculated by the van’t Hoff analysis.

  3. Glycol-Water Interactions and co-existing phases and Temperature Dependent Solubility. An Example Of Carbon-Hydrogen Chemistry In Water

    CERN Document Server

    Michael, Fredrick

    2010-01-01

    Recently there has been great interest in Glycol-Water chemistry and solubility and temperature dependent phase dynamics. The Glycol-Water biochemistry of interactions is present in plant biology and chemistry, is of great interest to chemical engineers and biochemists as it is a paradigm of Carbon-Hydrogen Water organic chemistry. There is an interest moreover in formulating a simpler theory and computation model for the Glycol-Water interaction and phase dynamics, that is not fully quantum mechanical yet has the high accuracy available from a fully quantum mechanical theory of phase transitions of fluids and Fermi systems. Along these lines of research interest we have derived a Lennard-Jones -like theory of interacting molecules-Water in a dissolved adducts of Glycol-Water system interacting by Hydrogen bonds whose validity is supported at the scale of interactions by other independent molecular dynamics investigations that utilize force fields dependent on their experimental fittings to the Lennard-Jones ...

  4. On the implications of aerosol liquid water and phase separation for organic aerosol mass

    Science.gov (United States)

    Pye, Havala O. T.; Murphy, Benjamin N.; Xu, Lu; Ng, Nga L.; Carlton, Annmarie G.; Guo, Hongyu; Weber, Rodney; Vasilakos, Petros; Wyat Appel, K.; Hapsari Budisulistiorini, Sri; Surratt, Jason D.; Nenes, Athanasios; Hu, Weiwei; Jimenez, Jose L.; Isaacman-VanWertz, Gabriel; Misztal, Pawel K.; Goldstein, Allen H.

    2017-01-01

    Organic compounds and liquid water are major aerosol constituents in the southeast United States (SE US). Water associated with inorganic constituents (inorganic water) can contribute to the partitioning medium for organic aerosol when relative humidities or organic matter to organic carbon (OM / OC) ratios are high such that separation relative humidities (SRH) are below the ambient relative humidity (RH). As OM / OC ratios in the SE US are often between 1.8 and 2.2, organic aerosol experiences both mixing with inorganic water and separation from it. Regional chemical transport model simulations including inorganic water (but excluding water uptake by organic compounds) in the partitioning medium for secondary organic aerosol (SOA) when RH > SRH led to increased SOA concentrations, particularly at night. Water uptake to the organic phase resulted in even greater SOA concentrations as a result of a positive feedback in which water uptake increased SOA, which further increased aerosol water and organic aerosol. Aerosol properties, such as the OM / OC and hygroscopicity parameter (κorg), were captured well by the model compared with measurements during the Southern Oxidant and Aerosol Study (SOAS) 2013. Organic nitrates from monoterpene oxidation were predicted to be the least water-soluble semivolatile species in the model, but most biogenically derived semivolatile species in the Community Multiscale Air Quality (CMAQ) model were highly water soluble and expected to contribute to water-soluble organic carbon (WSOC). Organic aerosol and SOA precursors were abundant at night, but additional improvements in daytime organic aerosol are needed to close the model-measurement gap. When taking into account deviations from ideality, including both inorganic (when RH > SRH) and organic water in the organic partitioning medium reduced the mean bias in SOA for routine monitoring networks and improved model performance compared to observations from SOAS. Property updates from

  5. Organic Redox Species in Aqueous Flow Batteries: Redox Potentials, Chemical Stability and Solubility

    Science.gov (United States)

    Wedege, Kristina; Dražević, Emil; Konya, Denes; Bentien, Anders

    2016-12-01

    Organic molecules are currently investigated as redox species for aqueous low-cost redox flow batteries (RFBs). The envisioned features of using organic redox species are low cost and increased flexibility with respect to tailoring redox potential and solubility from molecular engineering of side groups on the organic redox-active species. In this paper 33, mainly quinone-based, compounds are studied experimentially in terms of pH dependent redox potential, solubility and stability, combined with single cell battery RFB tests on selected redox pairs. Data shows that both the solubility and redox potential are determined by the position of the side groups and only to a small extent by the number of side groups. Additionally, the chemical stability and possible degradation mechanisms leading to capacity loss over time are discussed. The main challenge for the development of all-organic RFBs is to identify a redox pair for the positive side with sufficiently high stability and redox potential that enables battery cell potentials above 1 V.

  6. A water soluble heteropolyoxotungstate as a selective, efficient and environment friendly oxidation catalyst

    Indian Academy of Sciences (India)

    Prasenjit Maity; Double Mukesh; Sumit Bhaduri; Goutam Kumar Lahiri

    2009-07-01

    A series of water soluble Keggin type heteropolyoxotungstates have been tested as oxidation catalysts in aqueous-biphasic media with dilute H2O2 (30%) as the oxygen atom donor, without using any phase transfer agent. The Zn substituted polyoxoanion {(NH4)7Zn0.5[-ZnO4W11O30ZnO5(OH2)].H2O} has been found to be the most efficient catalyst, which oxidizes a wide range of organic functionalities with good turnovers and high selectivities. The functionalities that undergo oxidations are: organic sulfides, pyridines, anilines, benzyl alcohols and benzyl halides. The oxidations of sulfides to sulfoxides and/or sulfones have been studied in detail, and a simple kinetic model consisting of two consecutive reactions, is shown to give good fit with the experimental data. In the catalytic system described here product isolation is easy, and the aqueous catalyst solution can be re-used several times with little loss in its efficiency.

  7. Irreversible catalyst activation enables hyperpolarization and water solubility for NMR signal amplification by reversible exchange.

    Science.gov (United States)

    Truong, Milton L; Shi, Fan; He, Ping; Yuan, Bingxin; Plunkett, Kyle N; Coffey, Aaron M; Shchepin, Roman V; Barskiy, Danila A; Kovtunov, Kirill V; Koptyug, Igor V; Waddell, Kevin W; Goodson, Boyd M; Chekmenev, Eduard Y

    2014-12-04

    Activation of a catalyst [IrCl(COD)(IMes)] (IMes = 1,3-bis(2,4,6-trimethylphenyl)imidazol-2-ylidene; COD = cyclooctadiene)] for signal amplification by reversible exchange (SABRE) was monitored by in situ hyperpolarized proton NMR at 9.4 T. During the catalyst-activation process, the COD moiety undergoes hydrogenation that leads to its complete removal from the Ir complex. A transient hydride intermediate of the catalyst is observed via its hyperpolarized signatures, which could not be detected using conventional nonhyperpolarized solution NMR. SABRE enhancement of the pyridine substrate can be fully rendered only after removal of the COD moiety; failure to properly activate the catalyst in the presence of sufficient substrate can lead to irreversible deactivation consistent with oligomerization of the catalyst molecules. Following catalyst activation, results from selective RF-saturation studies support the hypothesis that substrate polarization at high field arises from nuclear cross-relaxation with hyperpolarized (1)H spins of the hydride/orthohydrogen spin bath. Importantly, the chemical changes that accompanied the catalyst's full activation were also found to endow the catalyst with water solubility, here used to demonstrate SABRE hyperpolarization of nicotinamide in water without the need for any organic cosolvent--paving the way to various biomedical applications of SABRE hyperpolarization methods.

  8. WATER SOLUBLE PHENOLIC RESIN/SiO2 HYBRID MATERIALS PREPARED BY ORGANIC-INORGANIC COPOLYMERIZATION PROCESS AND THEIR APPLICATION%有机-无机同步聚合法制备水溶性酚醛树脂/SiO2杂化材料及其应用

    Institute of Scientific and Technical Information of China (English)

    莫军连; 齐暑华; 张冬娜; 李春华; 史艳梅

    2009-01-01

    The water soluble phenolic resin/SiO_2 hybrid materials are prepared by organic-inorganic copolymerization technique that the polymerization of phenolic resin monomers and the hydrolysis polycondensation reaction of tetraethyl orthosilicate process at the same time. FTIR and SEM analyses indicate that SiO_2 particles and phenolic resin matrix form organic-inorganic interpenetrating network, and there are strong combinations between organic-inorganic phases. DSC is applied to study the curing behavior of hybrid materials. TGA analysis indicates that the thermal stability of hybrid materials is improved after adding SiO_2 particles into phenolic resin matrix.%采用有机-无机同步聚合法使酚醛树脂(PF)的单体聚合和正硅酸乙酯(TEOS)的水解缩合反应同步进行制备了水溶性PF/SiO_2杂化材料.红外光谱分析和扫描电镜分析表明,在有机-无机同步聚合过程中,SiO_2粒子与PF基体间形成有机、无机互穿网络结构,并且实现了有机、无机两相间的强界面结合.采用差示扫描量热仪对杂化材料的固化行为进行了研究.热失重分析表明,杂化材料的耐热性能明显提高,大大拓宽了其应用范围.

  9. Measured elemental carbon by thermo-optical transmittance analysis in water-soluble extracts from diesel exhaust, woodsmoke, and ambient particulate samples.

    Science.gov (United States)

    Wallén, Anna; Lidén, Göran; Hansson, Hans-Christen

    2010-01-01

    Elemental carbon has been proposed as a marker of diesel particulate matter. The objective of this study was to investigate if water-soluble carbonaceous compounds could be responsible for positive bias of elemental carbon using NIOSH Method 5040 with a thermo-optical carbon transmittance analyzer. Filter samples from eight different aerosol environments were used: pure diesel exhaust fume with a high content of elemental carbon, pure diesel exhaust fume with a low content of elemental carbon, pure biodiesel exhaust fume, pure woodsmoke, an urban road tunnel, an urban street canyon, an urban background site, and residential woodburning in an urban area. Part of each filter sample was analyzed directly with a thermo-optical carbon analyzer, and another part was extracted with water. This water-soluble extract was filtered to remove particles, spiked onto filter punches, and analyzed with a thermo-optical transmittance carbon analyzer. The ratio of elemental carbon in the water-soluble extract to the particulate sample measurement was 18, 12, and 7%, respectively, for the samples of pure woodsmoke, residential woodburning, and urban background. Samples with diesel particulate matter and ambient samples with motor exhaust detected no elemental carbon in the water-soluble extract. Since no particles were present in the filtered water-soluble extract, part of the water-soluble organic carbon species, existing or created during analysis, are misclassified as elemental carbon with this analysis. The conclusion is that in measuring elemental carbon in particulate aerosol samples with thermo-optical transmittance analysis, woodsmoke, and biomass combustion samples show a positive bias of elemental carbon. The water-soluble EC could be used as a simple method to indicate other sources, such as wood or other biomass combustion aerosol particles.

  10. Lipid-based formulations for oral administration of poorly water-soluble drugs

    DEFF Research Database (Denmark)

    Mu, Huiling; Holm, René; Müllertz, Anette

    2013-01-01

    Lipid-based drug delivery systems have shown great potentials in oral delivery of poorly water-soluble drugs, primarily for lipophilic drugs, with several successfully marketed products. Pre-dissolving drugs in lipids, surfactants, or mixtures of lipids and surfactants omits the dissolving....../dissolution step, which is a potential rate limiting factor for oral absorption of poorly water-soluble drugs. Lipids not only vary in structures and physiochemical properties, but also in their digestibility and absorption pathway; therefore selection of lipid excipients and dosage form has a pronounced effect...

  11. Smart polyelectrolyte microcapsules as carriers for water-soluble small molecular drug.

    Science.gov (United States)

    Song, Weixing; He, Qiang; Möhwald, Helmuth; Yang, Yang; Li, Junbai

    2009-10-15

    Heat treatment is introduced as a simple method for the encapsulation of low molecular weight water-soluble drugs within layer-by-layer assembled microcapsules. A water-soluble drug, procainamide hydrochloride, could thus be encapsulated in large amount and enriched by more than 2 orders of magnitude in the assembled PDADMAC/PSS capsules. The shrunk capsules could control the unloading rate of drugs, and the drugs could be easily unloaded using ultrasonic treatment. The encapsulated amount could be quantitatively controlled via the drug concentration in the bulk. We also found that smaller capsules possess higher encapsulation capability.

  12. Hydrogen production by a hyperthermophilic membrane-bound hydrogenase in water-soluble nanolipoprotein particles.

    Science.gov (United States)

    Baker, Sarah E; Hopkins, Robert C; Blanchette, Craig D; Walsworth, Vicki L; Sumbad, Rhoda; Fischer, Nicholas O; Kuhn, Edward A; Coleman, Matt; Chromy, Brett A; Létant, Sonia E; Hoeprich, Paul D; Adams, Michael W W; Henderson, Paul T

    2009-06-10

    Hydrogenases constitute a promising class of enzymes for ex vivo hydrogen production. Implementation of such applications is currently hindered by oxygen sensitivity and, in the case of membrane-bound hydrogenases (MBHs), poor water solubility. Nanolipoprotein particles (NLPs) formed from apolipoproteins and phospholipids offer a novel means of incorporating MBHs into a well-defined water-soluble matrix that maintains the enzymatic activity and is amenable to incorporation into more complex architectures. We report the synthesis, hydrogen-evolving activity, and physical characterization of the first MBH-NLP assembly. This may ultimately lead to the development of biomimetic hydrogen-production devices.

  13. Similar Energetic Contributions of Packing in the Core of Membrane and Water-Soluble Proteins

    Energy Technology Data Exchange (ETDEWEB)

    Joh, Nathan H.; Oberai, Amit; Yang, Duan; Whitelegge, Julian P.; Bowie, James U.; (UCLA)

    2009-09-15

    A major driving force for water-soluble protein folding is the hydrophobic effect, but membrane proteins cannot make use of this stabilizing contribution in the apolar core of the bilayer. It has been proposed that membrane proteins compensate by packing more efficiently. We therefore investigated packing contributions experimentally by observing the energetic and structural consequences of cavity creating mutations in the core of a membrane protein. We observed little difference in the packing energetics of water and membrane soluble proteins. Our results imply that other mechanisms are employed to stabilize the structure of membrane proteins.

  14. Water-Soluble Silicon Quantum Dots with Quasi-Blue Emission

    Science.gov (United States)

    Wang, Yun; Wang, Hao; Guo, Jun; Wu, Jiang; Gao, Li J.; Sun, Ying H.; Zhao, J.; Zou, Gui F.

    2015-07-01

    In this study, water-soluble silicon quantum dots have quasi-blue emission at 390 nm by being capped with 1-vinylimidazole in resese micelles. As-obtained silicon quantum dots have a diameter of 2~5 nm and high crystallinity. The quasi-blue emission of the silicon quantum dots is likely attributed to the polarity of the capping ligands. Moreover, the silicon quantum dots are water-soluble and have photoluminescence nanosecond decay time, suggesting their potential application in biological field.

  15. Preparation and tribology properties of water-soluble fullerene derivative nanoball

    Directory of Open Access Journals (Sweden)

    Guichang Jiang

    2017-02-01

    Full Text Available Water-soluble fullerene derivatives were synthesized via radical polymerization. They are completely soluble in water, yielding a clear brown solution. The products were characterized by FTIR, UV–Vis, 1H-NMR, 13CNMR, GPC, TGA, and SEM. Four-ball tests show that the addition of a certain concentration of the fullerene derivatives to base stock (2 wt.% triethanolamine aqueous solution can effectively increase both the load-carrying capacity (PB value, and the resistance to wear. SEM observations confirm the additive results in a reduced diameter of the wear scar and decreased wear.

  16. Quantitative approaches for the description of solubilities of inorganic compounds in near-critical and supercritical water

    NARCIS (Netherlands)

    Leusbrock, Ingo; Metz, Sybrand J.; Rexwinkel, Glenn; Versteeg, Geert F.

    2008-01-01

    The decreased solubility of salts in supercritical water is of great interest for industrial applications and scientific work. Several methods to quantify this decreased solubility are described and reviewed by applying them on experimental solubility data. The salts used for comparison are NaCl, N

  17. Quantitative approaches for the description of solubilities of inorganic compounds in near-critical and supercritical water

    NARCIS (Netherlands)

    Leusbrock, Ingo; Metz, Sybrand J.; Rexwinkel, Glenn; Versteeg, Geert F.

    2008-01-01

    The decreased solubility of salts in supercritical water is of great interest for industrial applications and scientific work. Several methods to quantify this decreased solubility are described and reviewed by applying them on experimental solubility data. The salts used for comparison are NaCl, Na

  18. Conjugated polyions : Polymers with ionic, water-soluble backbones

    NARCIS (Netherlands)

    Voortman, Thomas Pieter

    2016-01-01

    Organic photovoltaics (OPV) is an emerging solar power technology in which the active layer consists of molecules that are built-up mostly from carbon and hydrogen. However, OPV technologies still face major scientific challenges: high performance materials with good synthetic accessibility must be

  19. Characterization of Gasolines, Diesel Fuels and Their Water Soluble Fractions

    Science.gov (United States)

    1983-09-01

    low on the basis of comparison to the dynamic headspace analysis data (Table IV.) The best estimates of the levels of aromatic hydrocarbons appear to...0.2 0.1 a determined by dynamic headspace analysis (see Table 3). bincludes ethylbenzene and xylenes. 6 Table III. Chemical Composition of the Water

  20. Evaluating the mutagenicity of the water-soluble fraction of air particulate matter: A comparison of two extraction strategies.

    Science.gov (United States)

    Palacio, Isabel C; Oliveira, Ivo F; Franklin, Robson L; Barros, Silvia B M; Roubicek, Deborah A

    2016-09-01

    Many studies have focused on assessing the genotoxic potential of the organic fraction of airborne particulate matter. However, the determination of water-soluble compounds, and the evaluation of the toxic effects of these elements can also provide valuable information for the development of novel strategies to control atmospheric air pollution. To determine an appropriate extraction method for assessing the mutagenicity of the water-soluble fraction of PM, we performed microwave assisted (MW) and ultrasonic bath (US) extractions, using water as solvent, in eight different air samples (TSP and PM10). Mutagenicity and extraction performances were evaluated using the Salmonella/microsome assay with strains TA98 and TA100, followed by chemical determination of water-soluble metals. Additionally, we evaluated the chemical and biological stability of the extracts testing their mutagenic potential and chemically determining elements present in the samples along several periods after extraction. Reference material SRM 1648a was used. The comparison of MW and US extractions did not show differences on the metals concentrations, however positive mutagenic responses were detected with TA98 strain in all samples extracted using the MW method, but not with the US bath extraction. The recovery, using reference material was better in samples extracted with MW. We concluded that the MW extraction is more efficient to assess the mutagenic activity of the soluble fraction of airborne PM. We also observed that the extract freezing and storage over 60 days has a significant effect on the mutagenic and analytical results on PM samples, and should be avoided.

  1. Investigating differences in the root to shoot transfer and xylem sap solubility of organic compounds between zucchini, squash and soybean using a pressure chamber method.

    Science.gov (United States)

    Garvin, Naho; Doucette, William J; White, Jason C

    2015-07-01

    A pressure chamber method was used to examine differences in the root to shoot transfer and xylem sap solubility of caffeine (log Kow=-0.07), triclocarban (log Kow=3.5-4.2) and endosulfan (log Kow=3.8-4.8) for zucchini (cucurbita pepo ssp pepo), squash (cucurbita pepo ssp ovifera), and soybean (glycine max L.). Transpiration stream concentration factors (TSCF) for caffeine (TSCF=0.8) were statistically equivalent for all plant species. However, for the more hydrophobic endosulfan and triclocarban, the TSCF values for zucchini (TSCF=0.6 and 0.4, respectively) were 3 and 10 times greater than the soybean and squash (TSCF=0.2 and 0.05, respectively). The difference in TSCF values was examined by comparing the measured solubilities of caffeine, endosulfan and triclocarban in deionized water to those in soybean and zucchini xylem saps using a modified shake flask method. The measured solubility of organic contaminants in xylem sap has not previously been reported. Caffeine solubilities in the xylem saps of soybean and zucchini were statistically equal to deionized water (21500mgL(-1)) while endosulfan and triclocarban solubilities in the zucchini xylem sap were significantly greater (0.43 and 0.21mgL(-1), respectively) than that of the soybean xylem sap (0.31 and 0.11mgL(-1), respectively) and deionized water (0.34 and 0.11mgL(-1), respectively). This suggests that the enhanced root to shoot transfer of hydrophobic organics reported for zucchini is partly due to increased solubility in the xylem sap. Further xylem sap characterization is needed to determine the mechanism of solubility enhancement.

  2. Growth and Histopathological Effects of Chronic Exposition of Marine Pejerrey Odontesthes argentinensis Larvae to Petroleum Water-Soluble Fraction (WSF)

    National Research Council Canada - National Science Library

    Emeline Pereira Gusmão; Ricardo Vieira Rodrigues; Cauê Bonucci Moreira; Luis Alberto Romano; Luís André Sampaio; Kleber Campos Miranda-Filho

    2012-01-01

    The water-soluble fraction (WSF) of petroleum contains a mixture of polycyclic aromatic hydrocarbons, volatile hydrocarbons, phenols, and heterocyclic compounds, considered deleterious to aquatic biota...

  3. Contribution of water-soluble and insoluble components and their hydrophobic/hydrophilic subfractions to the reactive oxygen species-generating potential of fine ambient aerosols.

    Science.gov (United States)

    Verma, Vishal; Rico-Martinez, Roberto; Kotra, Neel; King, Laura; Liu, Jiumeng; Snell, Terry W; Weber, Rodney J

    2012-10-16

    Relative contributions of water- and methanol-soluble compounds and their hydrophobic/hydrophilic subfractions to the ROS (reactive oxygen species)-generating potential of ambient fine aerosols (D(p) Hydrophobic and hydrophilic fractions were then subsequently segregated via a C-18 solid phase extraction column. The DTT assay response was significantly higher for the methanol extract, and for both extracts a substantial fraction of PM oxidative potential was associated with the hydrophobic compounds as evident from a substantial attenuation in DTT response after passing PM extracts through the C-18 column (64% for water and 83% for methanol extract; both median values). The DTT activities of water and methanol extracts were correlated with the water-soluble (R = 0.86) and water-insoluble organic carbon (R = 0.94) contents of the PM, respectively. Brown carbon (BrC), which predominantly represents the hydrophobic organic fraction (referred to as humic-like substances, HULIS), was also correlated with DTT activity in both the water (R = 0.78) and methanol extracts (R = 0.83). Oxidative potential was not correlated with any metals measured in the extracts. These findings suggest that the hydrophobic components of both water-soluble and insoluble organic aerosols substantially contribute to the oxidative properties of ambient PM. Further investigation of these hydrophobic organic compounds could help identify sources of a significant fraction of ambient aerosol toxicity.

  4. Supercritical fluid particle design for poorly water-soluble drugs (review).

    Science.gov (United States)

    Sun, Yongda

    2014-01-01

    Supercritical fluid particle design (SCF PD) offers a number of routes to improve solubility and dissolution rate for enhancing the bioavailability of poorly water-soluble drugs, which can be adopted through an in-depth knowledge of SCF PD processes and the molecular properties of active pharmaceutical ingredients (API) and drug delivery system (DDS). Combining with research experiences in our laboratory, this review focuses on the most recent development of different routes (nano-micron particles, polymorphic particles, composite particles and bio-drug particles) to improve solubility and dissolution rate of poorly water-soluble drugs, covering the fundamental concept of SCF and the principle of SCF PD processes which are typically used to control particle size, shape, morphology and particle form and hence enable notable improvement in the dissolution rate of the poorly water-soluble drugs. The progress of the industrialization of SCF PD processes in pharmaceutical manufacturing environment with scaled-up plant under current good manufacturing process (GMP) specification is also considered in this review.

  5. An efficient oxidation of benzylic and alicylic compounds with water-soluble copper catalysts in t-butyl hydroperoxide at room temperature

    Institute of Scientific and Technical Information of China (English)

    Ateeq Rahman; S. M. Al Zahrani; Abdel Aziz Nait Ajjou

    2011-01-01

    The water soluble catalytic system comprising of CuCl2 and 2,2-biquinoline-4,4-dicarboxylic acid dipotassium salt (BQC) is highly efficient organic metallic catalysts for selective oxidation of benzylic and alicyclic compounds to the corresponding ketones, ex: indan to indanone, ethyl benzene to acetophenone.

  6. Transdermal Delivery of Water Soluble Molecules into Human Skin

    OpenAIRE

    Steinsland, Synne

    2012-01-01

    The skin is the largest organ of the human body and it constitutes a great protective barrier against entry of harmful microbial species and foreign materials into the body. The barrier function is a result of the highly hydrophobic nature and compact structure of the outermost skin layer, which makes transdermal delivery of drugs difficult. The aim of this study was to investigate diffusion of hydrophilic fish gelatin peptides and alginate oligomers (G-blocks) into human skin, and to evaluat...

  7. Water-soluble UV curable urethane methyl acrylate coating:preparation and properties

    Institute of Scientific and Technical Information of China (English)

    魏燕彦; 罗英武; 李宝芳; 李伯耿

    2004-01-01

    Two kinds of water-soluble and ultraviolet (UV) curable oligomers were synthesized and characterized. The oligomers were evaluated as resins for water-based UV curable coating. The rheology of the two oligomers' aqueous so-lutions was investigated in terms of solid fraction, pH dependence, and temperature dependence. The solutions were found to be Newtonian fluid showing rather low viscosity even at high solid fraction of 0.55. The drying process of the coatings and the properties of the cured coatings were studied by comparing them with water-dispersed UV-curable polyurethane methyl acrylate. It was evident that the water-soluble coating dried more slowly; and that the overall properties were inferior to those of the water-dispersed coating.

  8. Water-soluble UV curable urethane methyl acrylate coating:preparation and properties

    Institute of Scientific and Technical Information of China (English)

    魏燕彦; 罗英武; 李宝芳; 李伯耿

    2004-01-01

    Two kinds of water-soluble and ultraviolet (UV) curable oligomers were synthesized and characterized. The oligomers were evaluated as resins for water-based UV curable coating. The rheology of the two oligomers' aqueous solutions was investigated in terms of solid fraction, pH dependence, and temperature dependence. The solutions were found to be Newtonian fluid showing rather low viscosity even at high solid fraction of 0.55. The drying process of the coatings and the properties of the cured coatings were studied by comparing them with water-dispersed UV-curable polyurethane methyl acrylate. It was evident that the water-soluble coating dried more slowly; and that the overall properties were inferior to those of the water-dispersed coating.

  9. Highly Water-Soluble Magnetic Nanoparticles as Novel Draw Solutes in Forward Osmosis for Water Reuse

    KAUST Repository

    Ling, Ming Ming

    2010-06-16

    Highly hydrophilic magnetic nanoparticles have been molecularly designed. For the first time, the application of highly water-soluble magnetic nanoparticles as novel draw solutes in forward osmosis (FO) was systematically investigated. Magnetic nanoparticles functionalized by various groups were synthesized to explore the correlation between the surface chemistry of magnetic nanoparticles and the achieved osmolality. We verified that magnetic nanoparticles capped with polyacrylic acid can yield the highest driving force and subsequently highest water flux among others. The used magnetic nanoparticles can be captured by the magnetic field and recycled back into the stream as draw solutes in the FO process. In addition, magnetic nanoparticles of different diameters were also synthesized to study the effect of particles size on FO performance. We demonstrate that the engineering of surface hydrophilicity and magnetic nanoparticle size is crucial in the application of nanoparticles as draw solutes in FO. It is believed that magnetic nanoparticles will soon be extensively used in this area. © 2010 American Chemical Society.

  10. Synthesis of water-dispersible silver nanoparticles by thermal decomposition of water-soluble silver oxalate precursors.

    Science.gov (United States)

    Togashi, Takanari; Saito, Kota; Matsuda, Yukiko; Sato, Ibuki; Kon, Hiroki; Uruma, Keirei; Ishizaki, Manabu; Kanaizuka, Katsuhiko; Sakamoto, Masatomi; Ohya, Norimasa; Kurihara, Masato

    2014-08-01

    Silver oxalate, one of the coordination polymer crystals, is a promising synthetic precursor for transformation into Ag nanoparticles without any reducing chemicals via thermal decomposition of the oxalate ions. However, its insoluble nature in solvents has been a great disadvantage, especially for systematic control of crystal growth of the Ag nanoparticles, while such control of inorganic nanoparticles has been generally performed using soluble precursors in homogeneous solutions. In this paper, we document our discovery of water-soluble species from the reaction between the insoluble silver oxalate and N,N-dimethyl-1,3-diaminopropane. The water-soluble species underwent low-temperature thermal decomposition of the oxalate ions at 30 °C with evolution of CO2 to reduce Ag+ to Ag0. Water-dispersible Ag nanoparticles have been successfully synthesized from the water-soluble species in the presence of gelatin via similar thermal decomposition at 100 °C. The gelatin-protected and water-dispersible Ag nanoparticles with a mean diameter of 25.1 nm appeared. In addition, antibacterial activity of the prepared water-dispersible Ag nanoparticles has been preliminarily investigated.

  11. Simulation of soluble waste transport and buildup in surface waters using tracers

    Science.gov (United States)

    Kilpatrick, F.A.

    1993-01-01

    Soluble tracers can be used to simulate the transport and dispersion of soluble wastes that might have been introduced or are planned for introduction into surface waters. Measured tracer-response curves produced from the injection of a known quantity of soluble tracer can be used in conjunction with the superposition principle to simulate potential waste buildup in streams, lakes, and estuaries. Such information is particularly valuable to environmental and water-resource planners in determining the effects of proposed waste discharges. The theory, techniques, analysis, and presentation of results of tracer-waste simulation tests in rivers, lakes, and estuaries are described. This manual builds on other manuals dealing with dye tracing by emphasizing the expanded use of data from time-of-travel studies.

  12. Global modeling study of soluble organic nitrogen from open biomass burning

    Science.gov (United States)

    Ito, Akinori; Lin, Guangxing; Penner, Joyce E.

    2015-11-01

    Atmospheric deposition of reactive nitrogen (N) species from large fires may contribute to enrichment of nutrients in aquatic ecosystems. Here we use an atmospheric chemistry transport model to investigate the supply of soluble organic nitrogen (ON) from open biomass burning to the ocean. The model results show that the annual deposition rate of soluble ON to the oceans (14 Tg N yr-1) is increased globally by 13% with the increase being particularly notable over the tropical oceans downwind from the source regions. The estimated deposition of soluble ON due to biomass burning from the secondary formation (1.0 Tg N yr-1) is close to that from the primary sources (1.2 Tg N yr-1). We examine the secondary formation of particulate C-N compounds (i.e., imidazole, methyl imidazole, and N-containing oligomers) from the reactions of glyoxal (CHOCHO) and methylglyoxal (CH3COCHO) with ammonium (NH4+) in wet aerosols and upon cloud evaporation. These ON sources result in a significant contribution to the open ocean (1.3 Tg N yr-1), suggesting that atmospheric processing in aqueous-phase may have a large effect. We compare the soluble ON concentration in aerosols with and without open biomass burning as a case study in Singapore. The model results demonstrate that the soluble ON concentration in aerosols is episodically enriched during the fire events, compared to the case without smoke simulations. At the same time, the model results show that the daily soluble ON concentration can be also enhanced in the case without smoke simulations, compared to the monthly averages. These results may suggest that both the primary source strength of ON and the secondary formation rates of ON should be taken into consideration when using in-situ observations to constrain the calculated soluble ON burden due to biomass burning. More accurate quantification of the soluble ON burdens both with and without smoke sources is therefore needed to assess the effect of biomass burning on bioavailable

  13. Highly sensitive biosensors based on water-soluble conjugated polymers

    Institute of Scientific and Technical Information of China (English)

    XU Hui; WU Haiping; FAN Chunhai; LI Wenxin; ZHANG Zhizhou; HE Lin

    2004-01-01

    Conjugated, conductive polymers are a kind of important organic macromolecules, which has found applications in a variety of areas. The application of conjugated polymers in developing fluorescent biosensors represents the merge of polymer sciences and biological sciences. Conjugated polymers are very good light harvesters as well as fluorescent polymers, and they are also "molecular wires". Through elaborate designs, these important features, i.e. efficient light harvesting and electron/energy transfer, can be used as signal amplification in fluorescent biosensors. This might significantly improve the sensitivity of conjugated polymer-based biosensors. In this article, we reviewed the application of conjugated polymers, via either electron transfer or energy transfer, to detections of gene targets, antibodies or enzymes. We also reviewed recent efforts in conjugated polymer-based solid-state sensor designs as well as chip-based multiple target detection. Possible directions in this conjugated polymer-based biosensor area are also discussed.

  14. Water-soluble constituents of caraway: aromatic compound, aromatic compound glucoside and glucides.

    Science.gov (United States)

    Matsumura, Tetsuko; Ishikawa, Toru; Kitajima, Junichi

    2002-10-01

    From the water-soluble portion of the methanolic extract of caraway (fruit of Carum carvi L.), an aromatic compound, an aromatic compound glucoside and a glucide were isolated together with 16 known compounds. Their structures were clarified as 2-methoxy-2-(4'-hydroxyphenyl)ethanol, junipediol A 2-O-beta-D-glucopyranoside and L-fucitol, respectively.

  15. Measurement of solubility and water sorption of dental nanocomposites light cured by argon laser.

    Science.gov (United States)

    Mirsasaani, Seyed Shahabeddin; Ghomi, Farhad; Hemati, Mehran; Tavasoli, Tina

    2013-03-01

    Different parameters used for photoactivation process and also composition provide changes in the properties of dental composites. In the present work the effect of different power density of argon laser and filler loading on solubility (SL) and water sorption (WS) of light-cure dental nanocomposites was studied. The resin of nanocomposites was prepared by mixing bisphenol A glycol dimethacrylate (Bis-GMA) and triethylene glycol dimethacrylate (TEGDMA) with a mass ratio of 65/35. 20 wt.% and 25 wt.% of nanosilica fillers with a primary particle size of 10 nm were added to the resin. Camphorquinone (CQ) and DMAEMA were added as photoinitiator system. The nanocomposites were cured by applying the laser beam at the wavelength of 472 nm and power densities of 260 and 340 mW/cm(2) for 40 sec. Solubility and water sorption were then measured according to ISO 4049, which in our case, the maximums were 2.2% and 4.3% at 260 mW/cm(2) and 20% filler, respectively. The minimum solubility (1.2%) and water sorption (3.8%) were achieved for the composite containing 25% filler cured at 340 mW/cm(2). The results confirmed that higher power density and filler loading decreased solubility of unreacted monomers and water sorption and improved physico-mechanical properties of nanocomposites.

  16. Water sorption and solubility of methacrylate resin-based root canal sealers.

    Science.gov (United States)

    Donnelly, Adam; Sword, Jeremy; Nishitani, Yoshihiro; Yoshiyama, Masahiro; Agee, Kelli; Tay, Franklin R; Pashley, David H

    2007-08-01

    The water sorption and solubility characteristics of three contemporary methacrylate resin-based endodontic sealers, EndoREZ, Epiphany, and InnoEndo, were compared with those obtained from Kerr EWT, Ketac-Endo (positive control), GuttaFlow, and AH Plus (both negative controls). Ten disks of each material were dehydrated in Drierite for 24 h and weighed to constant dry mass. They were placed in water and weighed periodically until maximum water sorption was obtained. The disks were dehydrated again to determine their mass loss (solubility) at equilibrium. Epiphany exhibited the highest apparent water sorption (8%) followed by Ketac-Endo (6.2%), InnoEndo (3.4%), EndoREZ (3.0%), AH Plus (1.1%), GuttaFlow (0.4%), and Kerr EWT (0.3%). Significantly higher solubility (3.5-4%) were observed for all three methacrylate resin-based sealers and Kerr EWT (3.95%), compared with Ketac-Endo (1.6%), AH Plus (0.16%), and GuttaFlow (0.13%). American Dental Association specifications require<3% solubility for endodontic sealers. Only Ketac-Endo, AH Plus, and GuttaFlow met that criterion.

  17. In vitro degradation of dermal sheep collagen cross-linked using a water-soluble carbodiimide

    NARCIS (Netherlands)

    Olde damink, L.H.H.; Olde Damink, L.H.H.; Dijkstra, Pieter J.; van Luyn, M.J.A.; van Wachem, P.B.; Nieuwenhuis, P.; Feijen, Jan

    1996-01-01

    Bacterial collagenase was used to study the susceptibility of dermal sheep collagen (DSC) crosslinked with a mixture of the water-soluble carbodiimide 1-ethyl-3-(3-dimethyl aminopropyl)-carbodiimide hydrochloride and N-hydroxysuccinimide (E/N-DSC) towards enzymatic degradation. Contrary to

  18. In vitro degradation of dermal sheep collagen cross-linked using a water-soluble carbodiimide

    NARCIS (Netherlands)

    Damink, LHHO; Dijkstra, PJ; vanLuyn, MJA; vanWachem, PB; Nieuwenhuis, P; Feijen, J

    Bacterial collagenase was used to study the susceptibility of dermal sheep collagen (DSC) cross-inked with a mixture of the water-soluble carbodiimide 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide hydrochloride and N-hydroxysuccinimide (EIN-DSC) towards enzymatic degradation. Contrary to

  19. Antioxidative activity of water soluble polysaccharide in pumpkin fruits (Cucurbita maxima Duchesne).

    Science.gov (United States)

    Nara, Kazuhiro; Yamaguchi, Akira; Maeda, Naomi; Koga, Hidenori

    2009-06-01

    We evaluated the antioxidative activity of a water soluble polysaccharide fraction (WSP) from pumpkin fruits (Cucurbita maxima Duchesne). In the WSP, DPPH radical scavenging and superoxide dismutase-like activity increased depending on the total sugar content. Furthermore, the WSP can serve as an inhibitor of ascorbic acid oxidation. The efficacy was also affected by the total sugar content.

  20. In vitro degradation of dermal sheep collagen cross-linked using a water-soluble carbodiimide

    NARCIS (Netherlands)

    Damink, LHHO; Dijkstra, PJ; vanLuyn, MJA; vanWachem, PB; Nieuwenhuis, P; Feijen, J

    1996-01-01

    Bacterial collagenase was used to study the susceptibility of dermal sheep collagen (DSC) cross-inked with a mixture of the water-soluble carbodiimide 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide hydrochloride and N-hydroxysuccinimide (EIN-DSC) towards enzymatic degradation. Contrary to non-cross-

  1. In vitro degradation of dermal sheep collagen cross-linked using a water-soluble carbodiimide

    NARCIS (Netherlands)

    Olde Damink, L.H.H.; Dijkstra, P.J.; Luyn, van M.J.A.; Wachem, van P.B.; Nieuwenhuis, P.; Feijen, J.

    1996-01-01

    Bacterial collagenase was used to study the susceptibility of dermal sheep collagen (DSC) crosslinked with a mixture of the water-soluble carbodiimide 1-ethyl-3-(3-dimethyl aminopropyl)-carbodiimide hydrochloride and N-hydroxysuccinimide (E/N-DSC) towards enzymatic degradation. Contrary to non-cross

  2. Temperature-dependent photoluminescence of highly luminescent water-soluble CdTe quantum dots

    Institute of Scientific and Technical Information of China (English)

    Ji Wei Liu; Yu Zhang; Cun Wang Ge; Yong Long Jin; Sun Ling Hu; Ning Gu

    2009-01-01

    Highly luminescent water-soluble CdTe quantum dots (QDs) have been synthesized with an electrogenerated precursor. The obtained CdTe QDs can possess good crystallizability, high quantum yield (QY) and favorable stability. Furthermore, a detection system is designed firstly for the investigation of the temperature-dependent PL of the QDs.

  3. Temperature and sodium chloride effects on the solubility of anthracene in water

    Energy Technology Data Exchange (ETDEWEB)

    Arias-Gonzalez, Israel [Instituto Mexicano del Petroleo, Direccion de Investigacion y Posgrado, Programa de Ingenieria Molecular, Area de Investigacion en Termofisica, Eje Central Lazaro Cardenas Norte 152. 07730, Mexico D.F. (Mexico); Reza, Joel, E-mail: jreza@imp.m [Instituto Mexicano del Petroleo, Direccion de Investigacion y Posgrado, Programa de Ingenieria Molecular, Area de Investigacion en Termofisica, Eje Central Lazaro Cardenas Norte 152. 07730, Mexico D.F. (Mexico); Trejo, Arturo, E-mail: atrejo@imp.m [Instituto Mexicano del Petroleo, Direccion de Investigacion y Posgrado, Programa de Ingenieria Molecular, Area de Investigacion en Termofisica, Eje Central Lazaro Cardenas Norte 152. 07730, Mexico D.F. (Mexico)

    2010-11-15

    The solubility of anthracene was measured in pure water and in sodium chloride aqueous solution (salt concentration, m/mol . kg{sup -1} = 0.1006, 0.5056, and 0.6082) at temperatures between (278 and 333) K. Solubility of anthracene in pure water agrees fairly well with values reported in earlier similar studies. Solubility of anthracene in sodium chloride aqueous solutions ranged from (6 . 10{sup -8} to 143 . 10{sup -8}) mol . kg{sup -1}. Sodium chloride had a salting-out effect on the solubility of anthracene. The salting-out coefficients did not vary significantly with temperature over the range studied. The average salting-out coefficient for anthracene was 0.256 kg . mol{sup -1}. The standard molar Gibbs free energies, {Delta}{sub tr}G{sup o}, enthalpies, {Delta}{sub tr}H{sup o}, and entropies, {Delta}{sub tr}S{sup o}, for the transfer of anthracene from pure water to sodium chloride aqueous solutions were also estimated. Most of the estimated {Delta}{sub tr}G{sup o} values were positive [(20 to 1230) J . mol{sup -1}]. The analysis of the thermodynamic parameters shows that the transfer of anthracene from pure water to sodium chloride aqueous solution is thermodynamically unfavorable, and that this unfavorable condition is caused by a decrease in entropy.

  4. Cross-linking of dermal sheep collagen using a water-soluble carbodiimide

    NARCIS (Netherlands)

    Olde Damink, L.H.H.; Dijkstra, P.J.; Luyn, van M.J.A.; Wachem, van P.B.; Nieuwenhuis, P.; Feijen, J.

    1996-01-01

    A cross-linking method for collagen-based biomaterials was developed using the water-soluble carbodiimide 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide hydrochloride (EDC). Cross-linking using EDC involves the activation of carboxylic acid groups to give O-acylisourea groups, which form cross-links

  5. Profiling and relationship of water-soluble sugar and protein compositions in soybean seeds.

    Science.gov (United States)

    Yu, Xiaomin; Yuan, Fengjie; Fu, Xujun; Zhu, Danhua

    2016-04-01

    Sugar and protein are important quality traits in soybean seeds for making soy-based food products. However, the investigations on both compositions and their relationship have rarely been reported. In this study, a total of 35 soybean germplasms collected from Zhejiang province of China, were evaluated for both water-soluble sugar and protein. The total water-soluble sugar (TWSS) content of the germplasms studied ranged from 84.70 to 140.91 mg/g and the water-soluble protein (WSP) content varied from 26.5% to 36.0%. The WSP content showed positive correlations with the TWSS and sucrose contents but negative correlations with the fructose and glucose contents. The clustering showed the 35 germplasms could be divided into four groups with specific contents of sugar and protein. The combination of water-soluble sugar and protein profiles provides useful information for future breeding and genetic research. This investigation will facilitate future work for seed quality improvement.

  6. Differences in dinucleotide frequencies of thermophilic genes encoding water soluble and membrane proteins

    Institute of Scientific and Technical Information of China (English)

    Hiroshi NAKASHIMA; Yuka KURODA

    2011-01-01

    The occurrence frequencies of the dinucleotides of genes of three thermophilic and three mesophilic species from both archaea and eubacteria were investigated in this study. The genes encoding water soluble proteins were rich in the dinucleotides of purine dimers, whereas the genes encoding membrane proteins were rich in pyrimidine dimers. The dinucleotides of purine dimers are the counterparts of pyrimidine dimers in a double-stranded DNA. The purine/pyrimidine dimers were favored in the thermophiles but not in the mesophiles, based on comparisons of observed and expected frequencies. This finding is in agreement with our previous study which showed that purine/pyrimidine dimers are positive factors that increase the thermal stability of DNA. The dinucleotides AA, AG, and GA are components of the codons of charged residues of Glu, Asp, Lys, and Arg, and the dinucleotides TT, CT, and TC are components of the codons of hydrophobic residues of Leu, He, and Phe. This is consistent with the suitabilities of the different amino acid residues for water soluble and membrane proteins. Our analysis provides a picture of how thermophilic species produce water soluble and membrane proteins with distinctive characters: the genes encoding water soluble proteins use DNA sequences rich in purine dimers, and the genes encoding membrane proteins use DNA sequences rich in pyrimidine dimers on the opposite strand.

  7. Sensory and chromatographic evaluations of water soluble fractions from air-dried sausages

    DEFF Research Database (Denmark)

    Henriksen, Anders Peter; Stahnke, Marie Louise Heller

    1997-01-01

    Low molecular weight water soluble compounds were extracted from Danish salami, Italian sausage, and Spanish Chorizo. The extracts were fractionated by gel filtration chromatography revealing peptides with a molecular weight less than 4200 Dalton. Fractions consisting of smaller peptides and free...

  8. Biphasic and SAPC Hydroformylation Catalyzed by Rh-phosphines Bound to Water-Soluble Polymers

    DEFF Research Database (Denmark)

    Malmstrøm, Torsten; Andersson, Carlaxel; Hjortkjær, Jes

    1999-01-01

    Coupling of the triphenylphosphine moiety to poly-acrylic acid and poly-ethyleneimine respectively afford the macromolecular ligands PAA-PNH and PEI-PNH. Reaction of the ligands with Rh(CO)2(acac) give water-soluble complexes that are active as catalysts in the hydroformylation ofdifferent olefins...

  9. Water-soluble vitamin deficiencies in complicated peptic ulcer patients soon after ulcer onset in Japan.

    Science.gov (United States)

    Miyake, Kazumasa; Akimoto, Teppei; Kusakabe, Makoto; Sato, Wataru; Yamada, Akiyoshi; Yamawaki, Hiroshi; Kodaka, Yasuhiro; Shinpuku, Mayumi; Nagoya, Hiroyuki; Shindo, Tomotaka; Ueki, Nobue; Kusunoki, Masafumi; Kawagoe, Tetsuro; Futagami, Seiji; Tsukui, Taku; Sakamoto, Choitsu

    2013-01-01

    We investigated over time whether contemporary Japanese patients with complicated peptic ulcers have any water-soluble vitamin deficiencies soon after the onset of the complicated peptic ulcers. In this prospective cohort study, fasting serum levels of water-soluble vitamins (vitamins B1, B2, B6, B12, C, and folic acid) and homocysteine were measured at 3 time points (at admission, hospital discharge, and 3 mo after hospital discharge). Among the 20 patients who were enrolled in the study, 10 consecutive patients who completed measurements at all 3 time points were analyzed. The proportion of patients in whom any of the serum water-soluble vitamins that we examined were deficient was as high as 80% at admission, and remained at 70% at discharge. The proportion of patients with vitamin B6 deficiency was significantly higher at admission and discharge (50% and 60%, respectively, ppeptic ulcers may have a deficiency of one or more water-soluble vitamins in the early phase of the disease after the onset of ulcer complications, even in a contemporary Japanese population.

  10. CORAL: QSPR model of water solubility based on local and global SMILES attributes.

    Science.gov (United States)

    Toropov, Andrey A; Toropova, Alla P; Benfenati, Emilio; Gini, Giuseppina; Leszczynska, Danuta; Leszczynski, Jerzy

    2013-01-01

    Water solubility is an important characteristic of a chemical in many aspects. However experimental definition of the endpoint for all substances is impossible. In this study quantitative structure-property relationships (QSPRs) for negative logarithm of water solubility-logS (mol L(-1)) are built up for five random splits into the sub-training set (≈55%), the calibration set (≈25%), and the test set (≈20%). Simplified molecular input-line entry system (SMILES) is used as the representation of the molecular structure. Optimal SMILES-based descriptors are calculated by means of the Monte Carlo method using the CORAL software (http://www.insilico.eu/coral). These one-variable models for water solubility are characterized by the following average values of the statistical characteristics: n(sub_train)=725-763; n(calib)=312-343; n(test)=231-261; r(sub_train)(2)=0.9211±0.0028; r(calib)(2)=0.9555±0.0045; r(test)(2)=0.9365±0.0073; s(sub_train)=0.561±0.0086; s(calib)=0.453±0.0209; s(test)=0.520±0.0205. Thus, the reproducibility of statistical quality of suggested models for water solubility confirmed for five various splits. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Chemical characterization of extractable water soluble matter associated with PM10 from Mexico City during 2000.

    Science.gov (United States)

    Gutiérrez-Castillo, M E; Olivos-Ortiz, M; De Vizcaya-Ruiz, A; Cebrián, M E

    2005-11-01

    We report the chemical composition of PM10-associated water-soluble species in Mexico City during the second semester of 2000. PM10 samples were collected at four ambient air quality monitoring sites in Mexico City. We determined soluble ions (chloride, nitrate, sulfate, ammonium, sodium, potassium), ionizable transition metals (Zn, Fe, Ti, Pb, Mn, V, Ni, Cr, Cu) and soluble protein. The higher PM(10) levels were observed in Xalostoc (45-174 microg m(-3)) and the lowest in Pedregal (19-54 microg m(-3)). The highest SO2 average concentrations were observed in Tlalnepantla, NO2 in Merced and O3 and NO(x) in Pedregal. The concentration range of soluble sulfate was 6.7-7.9 and 19-25.5 microg m(-3) for ammonium, and 14.8-29.19 for soluble V and 3.2-7.7 ng m(-3) for Ni, suggesting a higher contribution of combustion sources. PM-associated soluble protein levels varied between 0.038 and 0.169 mg m(-3), representing a readily inhalable constituent that could contribute to adverse outcomes. The higher levels for most parameters studied were observed during the cold dry season, particularly in December. A richer content of soluble metals was observed when they were expressed by mass/mass units rather than by air volume units. Significant correlations between Ni-V, Ni-SO4(-2), V-SO4(-2), V-SO2, Ni-SO2 suggest the same type of emission source. The variable soluble metal and ion concentrations were strongly influenced by the seasonal meteoclimatic conditions and the differential contribution of emission sources. Our data support the idea that PM10 mass concentration by itself does not provide a clear understanding of a local PM air pollution problem.

  12. Invertible micellar polymer assemblies for delivery of poorly water-soluble drugs.

    Science.gov (United States)

    Hevus, Ivan; Modgil, Amit; Daniels, Justin; Kohut, Ananiy; Sun, Chengwen; Stafslien, Shane; Voronov, Andriy

    2012-08-13

    Strategically designed amphiphilic invertible polymers (AIPs) are capable of (i) self-assembling into invertible micellar assemblies (IMAs) in response to changes in polarity of environment, polymer concentration, and structure, (ii) accommodating (solubilizing) substances that are otherwise insoluble in water, and (iii) inverting their molecular conformation in response to changes in the polarity of the local environment. The unique ability of AIPs to invert the molecular conformation depending on the polarity of the environment can be a decisive factor in establishing the novel stimuli-responsive mechanism of solubilized drug release that is induced just in response to a change in the polarity of the environment. The IMA capability to solubilize lipophilic drugs and deliver and release the cargo molecules by conformational inversion of polymer macromolecules in response to a change of the polarity of the environment was demonstrated by loading IMA with a phytochemical drug, curcumin. It was demonstrated that four sets of micellar vehicles based on different AIPs were capable of delivering the curcumin from water to an organic medium (1-octanol) by means of unique mechanism: AIP conformational inversion in response to changing polarity from polar to nonpolar. The IMAs are shown to be nontoxic against human cells up to a concentration of 10 mg/L. On the other hand, the curcumin-loaded IMAs are cytotoxic to breast carcinoma cells at this concentration, which confirms the potential of IMA-based vehicles in controlled delivery of poorly water-soluble drug candidates and release by means of this novel stimuli-responsive mechanism.

  13. Composição química da solução de solo sob diferentes coberturas vegetais e análise de carbono orgânico solúvel no deflúvio de pequenos cursos de água Chemical composition of soil solution under different land cover and soluble organic carbon in water from small creeks

    Directory of Open Access Journals (Sweden)

    Josias Miranda

    2006-08-01

    , taking climatic conditions into consideration. Soluble organic carbon was also determined in the soil solution and in water streams of small watersheds. Soil solution was extracted monthly from soils under different land uses from three layers: 0 to 20, 20 to 40 and 40 to 100 cm. The soil solution was extracted by centrifugation, at a relative centrifuge force of 900 g. Additionally, water samples were collected from four creeks draining out of watersheds under different land uses. A slight increase in the ion concentration was observed in the soil solution in the beginning of the wet season. The changes were pronounced for the soluble organic carbon in the soil solution and water streams. Soil fertilization promoted the displacement of exchangeable ions to the soil solution down through the soil profile. The highest soil leaching was found for the bare soil. The soluble organic carbon movement across the soil profile was higher under pasture, even though its concentration was the lowest compared to the other land uses. The highest soil organic carbon was observed in water of a creek draining out of a pasture watershed.

  14. Sorption and solubility of ofloxacin and norfloxacin in water-methanol cosolvent.

    Science.gov (United States)

    Peng, Hongbo; Li, Hao; Wang, Chi; Zhang, Di; Pan, Bo; Xing, Baoshan

    2014-05-01

    Prediction of the properties and behavior of antibiotics is important for their risk assessment and pollution control. Theoretical calculation was incorporated in our experimental study to investigate the sorption of ofloxacin (OFL) and norfloxacin (NOR) on carbon nanotubes and their solubilities in water, methanol, and their mixture. Sorption for OFL and NOR decreased as methanol volume fractions (fc) increased. But the log-linear cosolvency model could not be applied as a general model to describe the cosolvent effect on OFL and NOR sorption. We computed the bond lengths of possible hydrogen bonds between solute and solvent and the corresponding interaction energies using Density Functional Theory. The decreased OFL solubility with increased fc could be attributed to the generally stronger hydrogen bond between OFL and H2O than that between OFL and CH3OH. Solubility of NOR varied nonmonotonically with increasing fc, which may be understood from the stronger hydrogen bond of NOR-CH3OH than NOR-H2O at two important sites (-O18 and -O21). The interaction energies were also calculated for the solute surrounded by solvent molecules at all the possible hydrogen bond sites, but it did not match the solubility variations with fc for both chemicals. The difference between the simulated and real systems was discussed. Similar sorption but different solubility of NOR and OFL from water-methanol cosolvent suggested that sorbate-solvent interaction seems not control their sorption.

  15. Soluble vs. insoluble fiber

    Science.gov (United States)

    Insoluble vs. soluble fiber; Fiber - soluble vs. insoluble ... There are 2 different types of fiber -- soluble and insoluble. Both are important for health, digestion, and preventing diseases. Soluble fiber attracts water and turns to gel during digestion. ...

  16. Phytoactivity of secondary compounds in aromatic plants by volatile and water-soluble ways of release

    OpenAIRE

    A. S. Dias; Dias, L. S.

    2005-01-01

    Phytoactivity should be expected as a generalized trait of secondary plant compounds if their primary role is defence against co-occurring plants, and volatilization should be their predominant way of release in dry climates while in wet climates water leaching should prevail. Bioassays were designed to compare the ability of volatiles and water-solubles of four aromatic species thriving in dry environments (Cistus salvifolius L., Foeniculum vulgare Miller, Myrtus communis L., and Rosmarinus ...

  17. Lipid-nanoemulsions as drug delivery carriers for poorly-water soluble drug

    OpenAIRE

    Veerendra K. Nanjwade; F. V. Manvi; Basavaraj K. Nanjwade; Katare, O P

    2013-01-01

    To enhance the bioavailability of the poorly water-soluble drug Aceclofenac, a lipidnanoemulsion comprising ethanolic solution of phospholipid 90 G and tween 80 in 1:1 ratio (Smix), triacetin and anseed oil as oil phase and distilled water as aqueous phase, in the ratio of 55:15:30 (% w/w) was developed by constructing pseudo-ternary phase diagrams and evaluated for viscosity, % transmittance, and surface morphology of nanoemulsions. In vitro diffusion (release) of Aceclofenac from three diff...

  18. Thermodynamic Stability Analysis of Tolbutamide Polymorphs and Solubility in Organic Solvents.

    Science.gov (United States)

    Svärd, Michael; Valavi, Masood; Khamar, Dikshitkumar; Kuhs, Manuel; Rasmuson, Åke C

    2016-06-01

    Melting temperatures and enthalpies of fusion have been determined by differential scanning calorimetry (DSC) for 2 polymorphs of the drug tolbutamide: FI(H) and FV. Heat capacities have been determined by temperature-modulated DSC for 4 polymorphs: FI(L), FI(H), FII, FV, and for the supercooled melt. The enthalpy of fusion of FII at its melting point has been estimated from the enthalpy of transition of FII into FI(H) through a thermodynamic cycle. Calorimetric data have been used to derive a quantitative polymorphic stability relationship between these 4 polymorphs, showing that FII is the stable polymorph below approximately 333 K, above which temperature FI(H) is the stable form up to its melting point. The relative stability of FV is well below the other polymorphs. The previously reported kinetic reversibility of the transformation between FI(L) and FI(H) has been verified using in situ Raman spectroscopy. The solid-liquid solubility of FII has been gravimetrically determined in 5 pure organic solvents (methanol, 1-propanol, ethyl acetate, acetonitrile, and toluene) over the temperature range 278 to 323 K. The ideal solubility has been estimated from calorimetric data, and solution activity coefficients at saturation in the 5 solvents determined. All solutions show positive deviation from Raoult's law, and all van't Hoff plots of solubility data are nonlinear. The solubility in toluene is well below that observed in the other investigated solvents. Solubility data have been correlated and extrapolated to the melting point using a semiempirical regression model.

  19. Nanoformulation and encapsulation approaches for poorly water-soluble drug nanoparticles

    Science.gov (United States)

    Wais, Ulrike; Jackson, Alexander W.; He, Tao; Zhang, Haifei

    2016-01-01

    During the last few decades the nanomedicine sector has emerged as a feasible and effective solution to the problems faced by the high percentage of poorly water-soluble drugs. Decreasing the size of such drug compounds to the nanoscale can significantly change their physical properties, which lays the foundation for the use of nanomedicine for pharmaceutical applications. Various techniques have been developed to produce poorly water-soluble drug nanoparticles, mainly to address the poor water-soluble issues but also for the efficient and targeted delivery of such drugs. These techniques can be generally categorized into top-down, bottom-up and encapsulation approaches. Among them, the top-down approaches have been the main choice for industrial preparation of drug nanoparticles while other methods are actively investigated by researchers. In this review, we aim to give a comprehensive overview and latest progress of the top-down, bottom-up, and encapsulation methods for the preparation of poorly water-soluble drug nanoparticles and how solvents and additives can be selected for these methods. In addition to the more industrially applied top-down approaches, the review is focused more on bottom-up and encapsulation methods, particularly covering supercritical fluid-related methods, cryogenic techniques, and encapsulation with dendrimers and responsive block copolymers. Some of the approved and mostly used nanodrug formulations on the market are also covered to demonstrate the applications of poorly water-soluble drug nanoparticles. This review is complete with perspectives on the development and challenges of fabrication techniques for more effective nanomedicine.

  20. Experimental study of Ni solubility in sulphidic groundwater and cement water under anoxic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, T.; Vuorinen, U.; Kekki, T.; Aalto, H. [VTT Chemical Technology, Espoo (Finland)

    2001-06-01

    The nickel solubility was studied during a 177-day period under anoxic conditions in three types of waters: a synthetic reference groundwater (OL-SR), a natural Olkiluoto groundwater (PVA2), and a cement-conditioned groundwater (C-PVA2). To each water, nickel, ferrous iron and sulphide were added yielding eight combinations of, approximately, the following initial concentrations: nickel: 1.0x10{sup -6} and 1.0x10{sup -3} mol/L, ferrous iron: 1.8 10{sup -6} and 1.8x10{sup -5} mol/L, and sulphide: 3.1x10{sup -6} and 9.4x10{sup -5} mol/L. The concentrations of these elements in the natural groundwater PVA2 as well as in the cement-conditioned water C-PVA2 was insignificant. In the synthetic water, the nickel concentration was unchanged in all samples having a high initial nickel concentration of 1.0x10{sup -3} mol/L. In the samples with an initial low nickel concentration of 1.0x10{sup -6} mol/L, the sulphide content determined the final nickel concentration. Where the initial sulphide concentration was low, the nickel concentration remained at the level of 1.0x10{sup -6} mol/L, but the higher sulphide concentration caused the nickel concentration to drop to below 10{sup -8} mol/L. In the natural groundwater PVA2, the nickel concentration dropped to below 10{sup -4} mol/L in all samples with an initially high nickel concentration, and to values of roughly 10{sup -7} mol/L in samples with an initially low nickel content. In the cement-conditioned water, the nickel concentration reached a value of 3x10{sup -6} mol/L in samples with initial high nickel concentrations, and to a value of 1x10{sup -7} mol/L in samples with a low initial nickel content. The added amounts of iron and sulphide did not have any significant effect on the observed nickel solubility. The solid phases formed in the natural and synthetic groundwater were analyzed by XRD but could not be identified. In the case of cement-conditioned water the XRD analyses showed the presence of Ni(OH){sub 2} as well

  1. Polyelectrolyte multilayers prepared from water-soluble poly(alkoxythiophene) derivatives.

    Science.gov (United States)

    Lukkari, J; Salomäki, M; Viinikanoja, A; Aäritalo, T; Paukkunen, J; Kocharova, N; Kankare, J

    2001-06-27

    Electronically conducting polyanion and polycation based on poly(alkoxythiophene) derivatives, poly-3-(3'-thienyloxy)propanesulfonate (P3TOPS) and poly-3-(3'-thienyloxy)propyltriethylammonium (P3TOPA) have been synthesized. Both polymers are water-soluble and exhibit high conjugation length in solution and in the solid state. These polyelectrolytes were used to prepare conducting and electroactive polyelectrolyte multilayers by the sequential layer-by-layer adsorption technique. In aqueous solutions multilayers of P3TOPS with inactive polyelectrolytes (e.g., poly(diallyldimethylammonium chloride), PDADMA) displayed electrochemical and optical behavior similar to polythiophene films prepared in organic media. Their in-plane conductivity was low (ca. 1.6 x 10(-)(5) S cm(-)(1)). The conductivity could, however, be increased by a factor of ca. 40 in "all-thiophene" films, in which P3TOPA was substituted for the inactive polycation (PDADMA). The interpenetration of layers is of prime importance in films containing conducting components. The interpenetration of P3TOPS was studied by measuring the charge-transfer rate across an insulating polyelectrolyte multilayer between the substrate and the P3TOPS layer with modulated electroreflectance. The extent of interpenetration was 8-9 polyelectrolyte layers, the length scale (7-15 nm) depending on the nature of the insulating layer and, especially, on the ionic strength of the solution used for the adsorption of P3TOPS.

  2. Susceptibility of representative dental pathogens to inactivation by the PDT with water-soluble photosensitizers

    Science.gov (United States)

    Angelov, Ivan; Mantareva, Vanya; Kussovski, Veselin; Worle, Diter; Kisov, Hristo; Belcheva, Marieta; Georgieva, Tzvetelina; Dimitrov, Slavcho

    2011-02-01

    In the recent decade the applications of photodynamic therapy (PDT) rapidly increase in several topics and one of areas where the PDT in the future will be play significant role is dentistry. The different photosensitizing complexes with a good water solubility and with absorption with an intensive maximum in the red region (630-690 nm), which makes them suitable for photodynamic treatments, were investigated. The photochemical properties of complexes for singlet oxygen generation were investigated and were shown relations between uptake levels and light intensity to achieve increase in photodynamic efficacy. Photodynamic efficacy against fungi Candida albicans and bacteria's E. faecalis, MRSA and S. Mutans in planktonic media was evaluated. The high photodynamic efficacy was shown for SiPc at very low concentrations (0.9 μM) and light doses of 50 J cm-2 by intensity of light 60 mW cm-2. The photodynamic response for E. faecalis, MRSA and S. Mutans, after treatments with different photosensitizers show strong dependence on concentrations of photsensitzers and micro organisms. The level of inactivation of the pathogen bacteria's from 1-2 degree of initial concentration up to full inactivation was observed. The studied complexes were compared to the recently studied Methylene blue, Haematoporphyrine and tetra-methylpirydiloxy Zn(II)- phthalocyanines and experimental results show that some of them have a good potential for inactivation of representative pathogenic bacterial strains. Experimental results also indicate that photodynamic therapy appears an effective method for inactivation of oral pathogenic bacterias and fungi.

  3. Green chemistry oriented organic synthesis in water.

    Science.gov (United States)

    Simon, Marc-Olivier; Li, Chao-Jun

    2012-02-21

    The use of water as solvent features many benefits such as improving reactivities and selectivities, simplifying the workup procedures, enabling the recycling of the catalyst and allowing mild reaction conditions and protecting-group free synthesis in addition to being benign itself. In addition, exploring organic chemistry in water can lead to uncommon reactivities and selectivities complementing the organic chemists' synthetic toolbox in organic solvents. Studying chemistry in water also allows insight to be gained into Nature's way of chemical synthesis. However, using water as solvent is not always green. This tutorial review briefly discusses organic synthesis in water with a Green Chemistry perspective.

  4. Formation of water-soluble soybean polysaccharides from spent flakes by hydrogen peroxide treatment

    DEFF Research Database (Denmark)

    Pierce, Brian; Wichmann, Jesper; Tran, Tam H.

    2016-01-01

    In this paper we propose a novel chemical process for the generation of water-soluble polysaccharides from soy spent flake, a by-product of the soy food industry. This process entails treatment of spent flake with hydrogen peroxide at an elevated temperature, resulting in the release of more than...... 70% of the original insoluble material as high molar mass soluble polysaccharides. A design of experiment was used to quantify the effects of pH, reaction time, and hydrogen peroxide concentration on the reaction yield, average molar mass, and free monosaccharides generated. The resulting product...

  5. Amorphous solid dispersions and nano-crystal technologies for poorly water-soluble drug delivery.

    Science.gov (United States)

    Brough, Chris; Williams, R O

    2013-08-30

    Poor water-solubility is a common characteristic of drug candidates in pharmaceutical development pipelines today. Various processes have been developed to increase the solubility, dissolution rate and bioavailability of these active ingredients belonging to BCS II and IV classifications. Over the last decade, nano-crystal delivery forms and amorphous solid dispersions have become well established in commercially available products and industry literature. This article is a comparative analysis of these two methodologies primarily for orally delivered medicaments. The thermodynamic and kinetic theories relative to these technologies are presented along with marketed product evaluations and a survey of commercial relevant scientific literature.

  6. Water solubility of selected C9-C18 alkanes using a slow-stir technique: Comparison to structure - property models.

    Science.gov (United States)

    Letinski, Daniel J; Parkerton, Thomas F; Redman, Aaron D; Connelly, Martin J; Peterson, Brian

    2016-05-01

    Aqueous solubility is a fundamental physical-chemical substance property that strongly influences the distribution, fate and effects of chemicals upon release into the environment. Experimental water solubility was determined for 18 selected C9-C18 normal, branched and cyclic alkanes. A slow-stir technique was applied to obviate emulsion formation, which historically has resulted in significant overestimation of the aqueous solubility of such hydrophobic liquid compounds. Sensitive GC-MS based methods coupled with contemporary sample extraction techniques were employed to enable reproducible analysis of low parts-per billion aqueous concentrations. Water solubility measurements for most of the compounds investigated, are reported for the first time expanding available data for branched and cyclic alkanes. Measured water solubilities spanned four orders of magnitude ranging from 0.3 μg/L to 250 μg/L. Good agreement was observed for selected alkanes tested in this work and reported in earlier literature demonstrating the robustness of the slow-stir water solubility technique. Comparisons of measured alkane water solubilities were also made with those predicted by commonly used quantitative structure-property relationship models (e.g. SPARC, EPIWIN, ACD/Labs). Correlations are also presented between alkane measured water solubilities and molecular size parameters (e.g. molar volume, solvent accessible molar volume) affirming a mechanistic description of empirical aqueous solubility results and prediction previously reported for a more limited set of alkanes.

  7. Temperature dependence of local solubility of hydrophobic molecules in the liquid-vapor interface of water.

    Science.gov (United States)

    Abe, Kiharu; Sumi, Tomonari; Koga, Kenichiro

    2014-11-14

    One important aspect of the hydrophobic effect is that solubility of small, nonpolar molecules in liquid water decreases with increasing temperature. We investigate here how the characteristic temperature dependence in liquid water persists or changes in the vicinity of the liquid-vapor interface. From the molecular dynamics simulation and the test-particle insertion method, the local solubility Σ of methane in the liquid-vapor interface of water as well as Σ of nonpolar solutes in the interface of simple liquids are calculated as a function of the distance z from the interface. We then examine the temperature dependence of Σ under two conditions: variation of Σ at fixed position z and that at fixed local solvent density around the solute molecule. It is found that the temperature dependence of Σ at fixed z depends on the position z and the system, whereas Σ at fixed local density decreases with increasing temperature for all the model solutions at any fixed density between vapor and liquid phases. The monotonic decrease of Σ under the fixed-density condition in the liquid-vapor interface is in accord with what we know for the solubility of nonpolar molecules in bulk liquid water under the fixed-volume condition but it is much robust since the solvent density to be fixed can be anything between the coexisting vapor and liquid phases. A unique feature found in the water interface is that there is a minimum in the local solubility profile Σ(z) on the liquid side of the interface. We find that with decreasing temperature the minimum of Σ grows and at the same time the first peak in the oscillatory density profile of water develops. It is likely that the minimum of Σ is due to the layering structure of the free interface of water.

  8. Defensive strategies in Geranium sylvaticum, Part 2: Roles of water-soluble tannins, flavonoids and phenolic acids against natural enemies.

    Science.gov (United States)

    Tuominen, Anu

    2013-11-01

    Geranium sylvaticum is a common herbaceous plant in Fennoscandia, which has a unique phenolic composition. Ellagitannins, proanthocyanidins, galloylglucoses, gallotannins, galloyl quinic acids and flavonoids possess variable distribution in its different organs. These phenolic compounds are thought to have an important role in plant-herbivore interactions. The aim of this study was to quantify these different water-soluble phenolic compounds and measure the biological activity of the eight organs of G. sylvaticum. Compounds were characterized and quantified using HPLC-DAD/MS, in addition, total proanthocyanidins were determined by BuOH-HCl assay and total phenolics by the Folin-Ciocalteau method. Two in vitro biological activity measurements were used: the prooxidant activity was measured by the browning assay and antioxidant activity by the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging assay. Organ extracts were fractionated using column chromatography on Sephadex LH-20 and the activities of fractions was similarly measured to evaluate which polyphenol groups contributed the most to the biological activity of each organ. The data on the activity of fractions were examined by multivariate data analysis. The water-soluble extracts of leaves and pistils, which contained over 30% of the dry weight as ellagitannins, showed the highest pro-oxidant activity among the organ extracts. Fraction analysis revealed that flavonoids and galloyl quinic acids also exhibited high pro-oxidant activity. In contrast, the most antioxidant active organ extracts were those of the main roots and hairy roots that contained high amounts of proanthocyanidins in addition to ellagitannins. Analysis of the fractions showed that especially ellagitannins and galloyl quinic acids have high antioxidant activity. We conclude that G. sylvaticum allocates a significant amount of tannins in those plant parts that are important to the fitness of the plant and susceptible to natural enemies, i

  9. Ultraviolet-irradiation induced and spontaneous mutation of Rhizobium trifolii 11B in relation to water-soluble and water-insoluble polysaccharide production ability

    Energy Technology Data Exchange (ETDEWEB)

    Ghai, J.; Ghai, S.K.; Kalra, M.S. (Punjab Agricultural Univ., Ludhiana (India))

    1985-02-01

    Rhizobium trifolii 11B was u.v. irradiated and nine u.v. mutants have been isolated. Among the mutants, only one, R. trifolii 21M11B, produced more (752 mg/100 ml) water-soluble polysaccharide than the parent (704 mg/100 ml). The composition of water-soluble polysaccharide from u.v. mutants differed from that of the parent, R. trifolii 11B, and none of its u.v. mutants produced water-insoluble polysaccharide as detected by the Aniline Blue method. Storage of u.v. mutants for 2 months at 5/sup 0/C gave four spontaneous variants which acquired the ability to produce water-insoluble polysaccharide. The spontaneous mutants also retained their water-soluble polysaccharide producing ability. The water-soluble polysaccharide produced by these mutants was characterized as curdlan type. The chemistry of water-soluble and water-insoluble polysaccharides was also ascertained.

  10. Hydrodistillation-adsorption method for the isolation of water-soluble, non-soluble and high volatile compounds from plant materials.

    Science.gov (United States)

    Mastelić, J; Jerković, I; Blazević, I; Radonić, A; Krstulović, L

    2008-08-15

    Proposed method of hydrodistillation-adsorption (HDA) on activated carbon and hydrodistillation (HD) with solvent trap were compared for the isolation of water-soluble, non-soluble and high volatile compounds, such as acids, monoterpenes, isothiocyanates and others from carob (Certonia siliqua L.), rosemary (Rosmarinus officinalis L.) and rocket (Eruca sativa L.). Isolated volatiles were analyzed by GC and GC/MS. The main advantages of HDA method over ubiquitous HD method were higher yields of volatile compounds and their simultaneous separation in three fractions that enabled more detail analyses. This method is particularly suitable for the isolation and analysis of the plant volatiles with high amounts of water-soluble compounds. In distinction from previously published adsorption of remaining volatile compounds from distillation water on activated carbon, this method offers simultaneous hydrodistillation and adsorption in the same apparatus.

  11. Bioavailability Improvement Strategies for Poorly Water-Soluble Drugs Based on the Supersaturation Mechanism: An Update.

    Science.gov (United States)

    Yang, Meiyan; Gong, Wei; Wang, Yuli; Shan, Li; Li, Ying; Gao, Chunsheng

    2016-01-01

    The formulation development for poorly soluble drugs still remains a challenge. Supersaturating drug delivery systems (SDDS) or drug delivery systems based on supersaturating provide a promising way to improve the oral bioavailability of poorly water-soluble drugs. In supersaturable formulations, drug concentration exceeds the equilibrium solubility when exposed to gastrointestinal fluids, and the supersaturation state is maintained long enough to be absorbed, resulting in compromised bioavailability. In this article, the mechanism of generating and maintaining supersaturation and the evaluation methods of supersaturation assays are discussed. Recent advances in different drug delivery systems based on supersaturating are the focus and are discussed in detail.This article is open to POST-PUBLICATION REVIEW. Registered readers (see "For Readers") may comment by clicking on ABSTRACT on the issue's contents page.

  12. Solubility of cellulose in supercritical water studied by molecular dynamics simulations.

    Science.gov (United States)

    Tolonen, Lasse K; Bergenstråhle-Wohlert, Malin; Sixta, Herbert; Wohlert, Jakob

    2015-04-02

    The insolubility of cellulose in ambient water and most aqueous systems presents a major scientific and practical challenge. Intriguingly though, the dissolution of cellulose has been reported to occur in supercritical water. In this study, cellulose solubility in ambient and supercritical water of varying density (0.2, 0.7, and 1.0 g cm(-3)) was studied by atomistic molecular dynamics simulations using the CHARMM36 force field and TIP3P water. The Gibbs energy of dissolution was determined between a nanocrystal (4 × 4 × 20 anhydroglucose residues) and a fully dissociated state using the two-phase thermodynamics model. The analysis of Gibbs energy suggested that cellulose is soluble in supercritical water at each of the studied densities and that cellulose dissolution is typically driven by the entropy gain upon the chain dissociation while simultaneously hindered by the loss of solvent entropy. Chain dissociation caused density augmentation around the cellulose chains, which improved water-water bonding in low density supercritical water whereas the opposite occurred in ambient and high density supercritical water.

  13. Photophysical Properties and Singlet Oxygen Generation Efficiencies of Water-Soluble Fullerene Nanoparticles

    Science.gov (United States)

    Stasheuski, Alexander S; Galievsky, Victor A; Stupak, Alexander P; Dzhagarov, Boris M; Choi, Mi Jin; Chung, Bong Hyun; Jeong, Jin Young

    2014-01-01

    As various fullerene derivatives have been developed, it is necessary to explore their photophysical properties for potential use in photoelectronics and medicine. Here, we address the photophysical properties of newly synthesized water-soluble fullerene-based nanoparticles and polyhydroxylated fullerene as a representative water-soluble fullerene derivative. They show broad emission band arising from a wide-range of excitation energies. It is attributed to the optical transitions from disorder-induced states, which decay in the nanosecond time range. We determine the kinetic properties of the singlet oxygen (1O2) luminescence generated by the fullerene nanoparticles and polyhydroxylated fullerene to consider the potential as photodynamic agents. Triplet state decay of the nanoparticles was longer than 1O2 lifetime in water. Singlet oxygen quantum yield of a series of the fullerene nanoparticles is comparably higher ranging from 0.15 to 0.2 than that of polyhydroxylated fullerene, which is about 0.06. PMID:24893622

  14. Method of cross-linking polyvinyl alcohol and other water soluble resins

    Science.gov (United States)

    Phillipp, W. H.; May, C. E.; Hsu, L. C.; Sheibley, D. W. (Inventor)

    1980-01-01

    A self supporting sheet structure comprising a water soluble, noncrosslinked polymer such as polyvinyl alcohol which is capable of being crosslinked by reaction with hydrogen atom radicals and hydroxyl molecule radicals is contacted with an aqueous solution having a pH of less than 8 and containing a dissolved salt in an amount sufficient to prevent substantial dissolution of the noncrosslinked polymer in the aqueous solution. The aqueous solution is then irradiated with ionizing radiation to form hydrogen atom radicals and hydroxyl molecule radicals and the irradiation is continued for a time sufficient to effect crosslinking of the water soluble polymer to produce a water insoluble polymer sheet structure. The method has particular application in the production of battery separators and electrode envelopes for alkaline batteries.

  15. Speciation of organic-soluble europium(III) α1-Wells-Dawson complexes.

    Science.gov (United States)

    Burton-Pye, Benjamin P; Francesconi, Lynn C

    2011-05-07

    In this contribution, we provide a comprehensive understanding of the speciation of the Eu(III) complex of the lacunary Wells-Dawson isomer, α1-[P(2)W(17)O(61)](10-) in organic media. The Wells-Dawson polyoxometalate, α1-[P(2)W(17)O(61)](10-) (abbreviated as α1) forms well-defined complexes with europium(III) (and other lanthanide(III)) ions in aqueous solution of predominantly 1 : 1 stoichiometries. The 8-coordinate Eu(III) ion is bound to 4 basic terminal oxygens (O(α1)) and four water molecules (O(H(2)O)) that complete the coordination sphere. Tetra-n-butylammonium (TBA) cations are employed to render the [(H(2)O)(4)Eu(α1-P(2)W(17)O(61))](7-) (Eu-α1) complex soluble in acetonitrile. Europium(III) provides the unique opportunity to employ luminescence spectroscopy and multinuclear NMR to probe the coordination environment. We interrogate the innermost coordination sphere of the Eu(III) ion in acetonitrile solution and in MeCN/H(2)O mixtures. We provide evidence toward the fractional displacement and coordination of acetonitrile within the TBA salts, that is consistent with recent EXAFS data. (31)P NMR and Stern-Volmer quenching studies suggest that dimerization to the 2 : 2 species is negligible in acetonitrile and MeCN-H(2)O mixtures. The decreasing transition energy in the excitation spectroscopy of the TBA-Eu-α1 analog upon dilution is consistent with a nephelauxetic effect, which is attributed to a slight increase in covalency upon replacement of water with acetonitrile. Determination of the number of bound waters (q) is also consistent with acetonitrile-water exchange. The reactivity of the 1 : 1 TBA-Eu-α1 with heterocyclic aromatic amines (1,10-phenanthroline, phen, and 2,2' bipyridine, bipy) in MeCN was probed by titrations monitoring the Eu(III) emission upon sensitization by the "antenna ligands". Binding constants for the products 1 : 1 TBA(x-y)H(y)[(Phen)(H(2)O)(2)Eu(α1-P(2)W(17)O(61))] and 1 : 2 TBA(x-y)H(y)[(Phen)(2)Eu(α1-P(2)W(17)O(61

  16. Enhanced encapsulation and bioavailability of breviscapine in PLGA microparticles by nanocrystal and water-soluble polymer template techniques.

    Science.gov (United States)

    Wang, Hong; Zhang, Guangxing; Ma, Xueqin; Liu, Yanhua; Feng, Jun; Park, Kinam; Wang, Wenping

    2017-03-02

    Poly (lactide-co-glycolide) (PLGA) microparticles are widely used for controlled drug delivery. Emulsion methods have been commonly used for preparation of PLGA microparticles, but they usually result in low loading capacity, especially for drugs with poor solubility in organic solvents. In the present study, the nanocrystal technology and a water-soluble polymer template method were used to fabricate nanocrystal-loaded microparticles with improved drug loading and encapsulation efficiency for prolonged delivery of breviscapine. Breviscapine nanocrystals were prepared using a precipitation-ultrasonication method and further loaded into PLGA microparticles by casting in a mold from a water-soluble polymer. The obtained disc-like particles were then characterized and compared with the spherical particles prepared by an emulsion-solvent evaporation method. X-ray powder diffraction (XRPD) and confocal laser scanning microscopy (CLSM) analysis confirmed a highly-dispersed state of breviscapine inside the microparticles. The drug form, loading percentage and fabrication techniques significantly affected the loading capacity and efficiency of breviscapine in PLGA microparticles, and their release performance as well. Drug loading was increased from 2.4 % up to 15.3 % when both nanocrystal and template methods were applied, and encapsulation efficiency increased from 48.5 % to 91.9 %. But loading efficiency was reduced as the drug loading was increased. All microparticles showed an initial burst release, and then a slow release period of 28 days followed by an erosion-accelerated release phase, which provides a sustained delivery of breviscapine over a month. A relatively stable serum drug level for more than 30 days was observed after intramuscular injection of microparticles in rats. Therefore, PLGA microparticles loaded with nanocrystals of poorly soluble drugs provided a promising approach for long-term therapeutic products characterized with preferable in vitro and in

  17. Removal of Organic Pollutants from Water Using Superwetting Materials.

    Science.gov (United States)

    Li, Lingxiao; Zhang, Junping; Wang, Aiqin

    2017-08-02

    The frequent occurrence of water pollution accidents and the leakage of organic pollutants have caused severe environmental and ecological crisis. It is thus highly imperative to find efficient materials to solve the problem. Inspired by the lotus leaf, superwetting materials are receiving increasing attention in the field of removal of organic pollutants from water. Various superwetting materials have been successfully generated and integrated into devices for removal of organic pollutants from water. On the basis of our previous work in the field, we summarized in this account the progress of removal of (1) floating and underwater insoluble, (2) emulsified insoluble, and (3) both insoluble and soluble organic pollutants from water using superwetting materials including superhydrophobic & superoleophilic materials, superhydrophilic & underwater superoleophobic materials, and materials with controllable wettability. The superwetting materials are in the forms of 2D porous materials, 3D porous materials and particles, etc. Finally, the current state and future challenges in this field are discussed. We hope this account could shed light on the design of novel superwetting materials for efficient removal of organic pollutants from water. © 2017 The Chemical Society of Japan & Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Understanding organic reactions in water : from hydrophobic encounters to surfactant aggregates

    NARCIS (Netherlands)

    Engberts, J.B.F.N.; Blandamer, M.J.

    2001-01-01

    A crucial factor in realising a green chemical process in solution involves the choice of a safe, non-toxic and cheap solvent. Water is the obvious choice. Despite solubility problems, considerable interest has developed recently in organic chemistry in water. This interest also results from the fac

  19. New biodegradable organic-soluble chelating agents for simultaneous removal of heavy metals and organic pollutants from contaminated media

    Energy Technology Data Exchange (ETDEWEB)

    Ullmann, Amos, E-mail: Ullmann@eng.tau.ac.il [Faculty of Engineering, School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); Brauner, Neima; Vazana, Shlomi; Katz, Zhanna [Faculty of Engineering, School of Mechanical Engineering, Tel Aviv University, Tel Aviv 69978 (Israel); Goikhman, Roman [The Hebrew University of Jerusalem, The Robert H. Smith, Faculty of Agriculture, Food and Environment, Rehovot (Israel); Seemann, Boaz; Marom, Hanit [School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel); Gozin, Michael, E-mail: cogozin@gmail.com [School of Chemistry, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv 69978 (Israel)

    2013-09-15

    Highlights: • New soil remediation process using phase transition of partially miscible solvents. • Design and synthesis of new bio-degradable, organic soluble chelating agents. • Feasibility tests of the process on authentically polluted sediments and sludge. • Simultaneous removal of toxic metals and organic pollutants was demonstrated. -- Abstract: Advanced biodegradable and non-toxic organic chelators, which are soluble in organic media, were synthesized on the basis of the S,S-ethylenediamine-disuccinate (S,S-EDDS) ligand. The modifications suggested in this work include attachment of a lipophilic hydrocarbon chain (“tail”) to one or both nitrogen atoms of the S,S-EDDS. The new ligands were designed and evaluated for application in the Sediments Remediation Phase Transition Extraction (SR-PTE) process. This novel process is being developed for the simultaneous removal of both heavy metals and organic pollutants from contaminated soils, sediments or sludge. The new chelators were designed to bind various target metal ions, to promote extraction of these ions into organic solvents. Several variations of attached tails were synthesized and tested. The results for one of them, N,N′-bis-dodecyl-S,S-EDDS (C24-EDDS), showed that the metal-ligand complexes are concentrated in the organic-rich phase in the Phase Transition Extraction process (more than 80%). Preliminary applications of the SR-PTE process with the C24-EDDS ligand were conducted also on actually contaminated sludge (field samples). The extraction of five toxic metals, namely, Cd, Cu, Ni, Pb and Zn was examined. In general, the extraction performance of the new ligand was not less than that of S,S-EDDS when a sufficient ligand-to-extracted ion ratio (about 4:1 was applied.

  20. Microstructural control over soluble pentacene deposited by capillary pen printing for organic electronics.

    Science.gov (United States)

    Lee, Wi Hyoung; Min, Honggi; Park, Namwoo; Lee, Junghwi; Seo, Eunsuk; Kang, Boseok; Cho, Kilwon; Lee, Hwa Sung

    2013-08-28

    Research into printing techniques has received special attention for the commercialization of cost-efficient organic electronics. Here, we have developed a capillary pen printing technique to realize a large-area pattern array of organic transistors and systematically investigated self-organization behavior of printed soluble organic semiconductor ink. The capillary pen-printed deposits of organic semiconductor, 6,13-bis(triisopropylsilylethynyl) pentacene (TIPS_PEN), was well-optimized in terms of morphological and microstructural properties by using ink with mixed solvents of chlorobenzene (CB) and 1,2-dichlorobenzene (DCB). Especially, a 1:1 solvent ratio results in the best transistor performances. This result is attributed to the unique evaporation characteristics of the TIPS_PEN deposits where fast evaporation of CB induces a morphological evolution at the initial printed position, and the remaining DCB with slow evaporation rate offers a favorable crystal evolution at the pinned position. Finally, a large-area transistor array was facilely fabricated by drawing organic electrodes and active layers with a versatile capillary pen. Our approach provides an efficient printing technique for fabricating large-area arrays of organic electronics and further suggests a methodology to enhance their performances by microstructural control of the printed organic semiconducting deposits.

  1. Enhanced water-solubility, antibacterial activity and biocompatibility upon introducing sulfobetaine and quaternary ammonium to chitosan.

    Science.gov (United States)

    Chen, Yuxiang; Li, Jianna; Li, Qingqing; Shen, Yuanyuan; Ge, Zaochuan; Zhang, Wenwen; Chen, Shiguo

    2016-06-05

    Chitosan (CS) has attracted much attention due to its good antibacterial activity and biocompatibility. However, CS is insoluble in neutral and alkaline aqueous solution, limiting its biomedical application to some extent. To circumvent this drawback, we have synthesized a novel N-quaternary ammonium-O-sulfobetaine-chitosan (Q3BCS) by introducing quaternary ammonium compound (QAC) and sulfobetaine, and its water-solubility, antibacterial activity and biocompatibility were evaluated compare to N-quaternary ammonium chitosan and native CS. The results showed that by introducing QAC, antibacterial activities and water-solubilities increase with degrees of substitution. The largest diameter zone of inhibition (DIZ) was improved from 0 (CS) to 15mm (N-Q3CS). And the water solution became completely transparent from pH 6.5 to pH 11; the maximal waters-solubility was improved from almost 0% (CS) to 113% at pH 7 (N-Q3CS). More importantly, by further introducing sulfobetaine, cell survival rate of Q3BCS increased from 30% (N-Q3CS) to 85% at 2000μg/ml, which is even greater than that of native CS. Furthermore, hemolysis of Q3BCS was dropped sharply from 4.07% (N-Q3CS) to 0.06%, while the water-solution and antibacterial activity were further improved significantly. This work proposes an efficient strategy to prepare CS derivatives with enhanced antibacterial activity, biocompatibility and water-solubility. Additionally, these properties can be finely tailored by changing the feed ratio of CS, glycidyl trimethylammonium chloride and NCO-sulfobetaine.

  2. Alginate encapsulated mesoporous silica nanospheres as a sustained drug delivery system for the poorly water-soluble drug indomethacin

    Directory of Open Access Journals (Sweden)

    Liang Hu

    2014-08-01

    Full Text Available We applied a combination of inorganic mesoporous silica material, frequently used as drug carriers, and a natural organic polymer alginate (ALG, to establish a sustained drug delivery system for the poorly water-soluble drug Indomethacin (IND. Mesoporous silica nanospheres (MSNs were synthesized using an organic template method and then functionalized with aminopropyl groups through postsynthesis. After drug loading into the pores of aninopropyl functionalized MSNs (AP-MSNs, IND loaded AP-MSNs (IND-AP-MSNs were encapsulated by ALG through the ionic interaction. The effects of surface chemical groups and ALG layer on IND release were systematically studied using scanning electron microscopy (SEM, transmission electron microscopy (TEM, nitrogen adsorption, zeta-potential analysis and TGA analysis. The surface structure and surface charge changes of the ALG encapsulated AP-MSNs (ALG-AP-MSNs were also investigated. The results showed that sustained release of IND from the designed drug delivery system was mainly due to the blockage effect from the coated ALG. We believe that this combination will help designing oral sustained drug delivery systems for poorly water-soluble drugs.

  3. Effect Of Pressure On The Temperature Dependence Of Water Solubility In Forsterite

    Science.gov (United States)

    Bali, E.; Bolfan-Casanova, N.; Koga, K.

    2005-12-01

    Water storage capacity of the upper mantle largely depends on water solubility in mantle olivine. Realistic models must take into account the simultaneous effects of variables such as pressure, temperature, iron content and silica activity. Previous experimental studies have shown that the water solubility in olivine increases with increasing water fugacity up to 12 GPa at 1100°C. Water incorporation in olivine was also observed to increase with increasing temperature and increasing iron content at 0.3 GPa, however the temperature dependence was not studied at higher pressures. Interestingly, the only high-pressure data available, that is for wadsleyite and ringwoodite, show that their water solubility decreases with increasing temperature. The goal of this study is to determine the dependence of water maximum concentration on temperature at pressures higher than 0.3 GPa. We performed experiments at 3 and 6 GPa, and temperatures ranging from 1000 to 1400°C in the MgO-SiO2-H2O system using a multi-anvil apparatus. The olivine and orthopyroxene molar ratio was 1 to 1 in the starting material with 5 wt% H2O. The samples were analyzed using scanning electron microscopy and Fourier transform infrared spectroscopy. The mineralogical assemblage consisted of olivine+orthopyroxene+fluid at temperatures below 1250°C both at 3 and 6 GPa and olivine+melt+/-orthopyroxene at higher temperatures. At 3 GPa, above 1325°C orthopyroxene was missing from the assemblage, whereas in case of the 6 GPa experiments it was present even at higher temperatures. This indicates a change in fluid composition from 3 to 6 GPa. Preliminary data using unpolarized FTIR measurements, but comparing same orientations, indicate that water solubility in olivine at 6 GPa decreases with increasing temperature. This observation agrees with the results on wadsleyite and ringwoodite, but contradict the results of the existing low-pressure data. The explaination we propose for the change in temperature

  4. Environmentally friendly synthesis of organic-soluble silver nanoparticles for printed electronics

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Kwi Jong; Jun, Byung Ho; Choi, Junrak; Lee, Young Il; Joung, Jaewoo; Oh, Yong Soo [eMD Center, Samsung Electro-Mechanics, Suwon, Kyunggi-Do 443-743 (Korea, Republic of)

    2007-08-22

    In this study, we attempted to synthesize organic-soluble silver nanoparticles in the concentrated organic phase with an environmentally friendly method. The fully organic phase system contains silver acetate as a silver precursor, oleic acid as both a medium and a capping molecule, and tin acetate as a reducing agent. Monodisperse silver nanoparticles with average diameters of ca. 5 nm can be easily synthesized at large scale. Only a small usage of tin acetate (<0.05 eq.mol) resulted in a high synthesis yield (>90%). Also, it was investigated that the residual tin atom does not exist in the synthesized silver nanoparticles. This implied that tin acetate acts as a reducing catalyst.

  5. Enhancement of quercetin water solubility with steviol glucosides and the studies of biological properties

    Directory of Open Access Journals (Sweden)

    Thi Thanh Hanh Nguyen

    2015-12-01

    Full Text Available Background: Quercetin, a flavonol contained in various vegetables and fruits, has various biological activities including anticancer, antiviral, anti-diabetic, and anti-oxidative. However, it has low oral bioavailability due to insolubility in water. Thus, the bioavailability of quercetin administered to human beings in a capsule form, was reported to be less than 1%, with only a small percentage of ingested quercetin getting absorbed in the blood. This leads to certain difficulties in creating highly effective medicines Methods: Quercetin-rubusoside and quercetin-rebaudioside were prepared. The antioxidant activities of quercetin and Q-rubusoside were evaluated by DPPH radical scavenging method. Inhibition activities of quercetin and Quercetin-rubusoside were determined by measuring the remaining activity of 3CLpro with 200 μM inhibitor. The inhibition activity of quercetin, rubusoside and quercetin-rubusoside were determined by measuring the activity of human maltase which remains at 100 μM rubusoside or quercetin-rubusoside. The mushroom tyrosinase inhibition was assayed with the reaction mixture contained 3.3 mM L-DOPA in 50 mM potassium phosphate buffer (pH 6.8, and 10 U mushroom tyrosinase/ml with or without quercetin or quercetin-rubusoside. Results: With 10% rubusoside treatment, quercetin showed solubility of 7.7 mg/ml in water, and its solubility increased as the concentration of rubusoside increased; the quercetin solubility in water increased to 0.83 mg/mlas rubusoside concentration increased to 1 mg/ml. Quercetin solubilized in rubusoside solution showed DPPH radical-scavenging activity and mushroom tyrosinase inhibition activity, similar to that of quercetin solubilized in dimethyl-sulfoxide. Quercetin-rubusoside also showed 1.2 and 1.9 folds higher inhibition activity against 3CLpro of SARS and human intestinal maltase, respectively, than those of quercetin in DMSO. Conclusions: Quercetin can be solubilized in water with

  6. Attributes of aerosol bound water soluble ions and carbon, and their relationships with AOD over the Brahmaputra Valley

    Science.gov (United States)

    Bhuyan, Pranamika; Barman, Nivedita; Bora, Jayanta; Daimari, Rebecca; Deka, Pratibha; Hoque, Raza Rafiqul

    2016-10-01

    The present study is a ground based investigation of chemical properties of aerosol as PM10 and its relationship with the upper air optical properties. A total of 161 aerosol samples collected during 2010-2014 were characterized for water soluble ions viz. SO42-, NO3-, Cl-, F-, NH4+, K+, Ca2+, Mg2+and Na+ and water soluble carbon factions - water soluble organic carbon (WSOC) and water soluble inorganic carbon (WSIC). The entire study period was subdivided into four distinct seasons -pre-monsoon, monsoon, post-monsoon and winter to assess the characteristics of chemical species in different times of the year contributing to the particulate loading over the study site. To understand the relationship between chemical species and optical properties, aerosol optical depth (AOD) data of the study area have been retrieved from MODIS satellite data at 550 nm. Mean mass concentration of PM10 was found to be 49.3 ± 37 μg/m3 for the whole study period with an explicit seasonal variation and winter maximum of mass concentration. Also, secondary ions have strong influence on the total aerosol loading in the region. Vivid seasonal variability was found in the concentrations of ions and carbons. The winter season showed maximum loading of ionic and carbonaceous species and the presence of crustal derived ions - Ca2+ and Mg2+ - remained uniform all through the seasons. The anions were found to be dominant over the cations during the study period. Interestingly, K+, originating mostly from biomass burning emissions, also play important neutralizing role together with NH4+. Significant relationships between AOD with PM10 and attributes were observed. Strong correlation of anthropogenic (SO42-, NO3-, NH4+), biomass burning (K+) and organic carbon fraction of PM10 with AOD was observed, which indicated the influence of these fractions on the attenuation of incoming light over the study region. HYSPLIT backward trajectories of air masses, which were computed for the study area

  7. Characterization of human monocyte activation by a water soluble preparation of Aphanizomenon flos-aquae.

    Science.gov (United States)

    Pugh, N; Pasco, D S

    2001-11-01

    Aphanizomenon flos-aquae (AFA) is a fresh-water microalgae that is consumed as a nutrient-dense food source and for its health-enhancing properties. The current research characterizes the effect of a water soluble preparation from AFA on human monocyte/macrophage function and compares the effect of AFA with responses from known agents that modulate the immune system. At 0.5 pg/ml the AFA extract robustly activated nuclear factor kappa B (NF-kappa B) directed luciferase expression in THP-1 human monocytic cells to levels at 50% of those achieved by maximal concentrations (10 microg/ml) of bacterial lipopolysaccharide (LPS). In addition, the AFA extract substantially increased mRNA levels of interleukin-1beta (IL-1beta) and tumor necrosis factor-alpha (TNF-alpha), and enhanced the DNA binding activity of NF-kappa B. The effects of AFA water soluble preparation were similar to the responses displayed by LPS, but clearly different from responses exhibited by tetradecanoyl phorbol acetate (TPA) and interferon-gamma (INF-gamma). Pretreatment of THP-1 monocytes with factors known to induce hyporesponsiveness suppressed both AFA-dependent and LPS-dependent activation. These results suggest that the macrophage-activating properties of the AFA water soluble preparation are mediated through pathways that are similar to LPS-dependent activation.

  8. Synthesis and properties of amino acid functionalized water-soluble perylene diimides

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yongshan; Li, Xuemei; Wei, Xiaofeng; Jiang, Tianyi; Wu, Junsen; Ren, Huixue [Shandong Jianzhu University, Jinan (China)

    2015-07-15

    We prepared amino acid functionalized water-soluble perylene diimides: N,N'-bi(L-glutamic acid)-perylene-3,4;9,10-dicarboxylic diimide (1), N,N'-bi(L-phenylalanine acid)-perylene-3,4;9,10-dicarboxylic diimide (2), N,N'-bi(Lglutamic amine)-perylene-3,4;9,10-dicarboxylic diimide (3) and N,N'-bi(L-phenylalanine amine)-perylene-3,4;9,10-dicarboxylic diimide (4). The structures of 3 and 4 were confirmed by {sup 1}H NMR, FT-IR and MS. The maximal absorption bands of compound 1 and 2 in concentrated sulfuric acid were red-shifted for about 48 and 74 nm, respectively, compared with that of Perylene-3,4,9,10-tetracarboxylic acid dianhydride (PTCDA). Nearly no fluorescence was observed for compounds 1 and 2 in water, while compounds 3 and 4 were significantly water-soluble and had very high fluorescent quantum. The mechanism of the optical properties change was discussed, and the π-π stacking caused by H{sup +} led to the changes of fluorescence spectrum and absorption spectrum. The calculated molecular orbital energies and the frontier molecular orbital maps of compounds 1-2 based on density function theory (DFT) calculations were reported. Owing to the high water-soluble, the perylene derivatives 3 and 4 were successfully applied as high-performance fluorochromes for living hela cells imaging.

  9. Development and Deployment of a Particle-into-Liquid sampling - Electrospray Ionization Mass Spectrometer (PiLs-ESI/MS) for Characterization of Water-Soluble Biomass Burning Aerosols

    Science.gov (United States)

    Stockwell, C.; Witkowski, B.; Talukdar, R. K.; Middlebrook, A. M.; Roberts, J. M.

    2016-12-01

    Biomass burning (BB) is a major influence on Earth's atmosphere as it is an important source of primary and secondary aerosols. Measuring the aerosol composition for such complex mixtures remains an analytical challenge and the characterization of the water-soluble portion of BB aerosol has been traditionally limited to off-line analysis and/or qualitative techniques. In this work, we present a new method of directly interfacing a particle-into-liquid sampler with an electrospray ionization mass spectrometer (PiLs-ESI/MS). This technique allows real-time, sensitive, and chemically-specific speciation of water-soluble organics and inorganics for the quantification of fresh BB aerosol sampled during the recent Firelab component of the NOAA FIREX experiments. The aerosol composition is fuel and combustion-phase dependent, and several polar organic species thought to be main contributors to aerosol brown carbon and secondary organic aerosol were measured.

  10. Synthesis, photophysical and antimicrobial activity of new water soluble ammonium quaternary benzanthrone in solution and in polylactide film.

    Science.gov (United States)

    Staneva, Desislava; Vasileva-Tonkova, Evgenia; Makki, Mohamad Saleh I; Sobahi, Tariq Rashad; Abdеl-Rahman, Reda Mohamed; Asiri, Abdullah M; Grabchev, Ivo

    2015-02-01

    The synthesis of a new cationic water soluble fluorescent 1-[(7-oxo-7H-benzo[de]anthracen-3-ylcarbamoyl)-methyl]-triethylammonium chloride (B) has been described. Due to the presence of the quaternary amino group, the compound is soluble in water. Its photophysical characteristics in aqueous solution and organic solvents with different polarity have been determined using absorption and fluorescence spectroscopy. The photostability of compound B has been investigated in aqueous media. The newly synthesized compound has been tested in vitro for its antimicrobial activity against eight bacterial and two yeasts cultures. The results obtained suggest that the newly synthesized compound is effective in treating the relevant pathogens and is suitable in designing new effective antimicrobial preparations. The incorporation of the compound into thin polylactic acid film and its release into water solution has been also investigated. It was demonstrated that the compound released from the polymer polylactic acid matrix exhibited a prolonged good antibacterial activity. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Geochemical evidence of water-soluble gas accumulation in the Weiyuan gas field, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Shengfei Qin

    2016-01-01

    Full Text Available At present, there are several different opinions on the formation process of the Weiyuan gas field in the Sichuan Basin and the source of its natural gas. In view of the fact that the methane carbon isotope of the natural gas in the Weiyuan gas field is abnormally heavy, the geologic characteristics of gas reservoirs and the geochemical characteristics of natural gas were first analyzed. In the Weiyuan gas field, the principal gas reservoirs belong to Sinian Dengying Fm. The natural gas is mainly composed of methane, with slight ethane and trace propane. The gas reservoirs are higher in water saturation, with well preserved primary water. Then, it was discriminated from the relationship of H2S content vs. methane carbon isotope that the heavier methane carbon isotope of natural gas in this area is not caused by thermochemical sulfate reduction (TSR. Based on the comparison of methane carbon isotope in this area with that in adjacent areas, and combined with the tectonic evolution background, it is regarded that the natural gas in the Weiyuan gas field is mainly derived from water-soluble gas rather than be migrated laterally from adjacent areas. Some conclusions are made. First, since methane released from water is carbon isotopically heavier, the water-soluble gas accumulation after degasification results in the heavy methane carbon isotope of the gas produced from Weiyuan gas field. Second, along with Himalayan movement, great uplift occurred in the Weiyuan area and structural traps were formed. Under high temperature and high pressure, the gas dissolved in water experienced decompression precipitation, and the released natural gas accumulated in traps, consequently leading to the formation of Weiyuan gas field. Third, based on calculation, the amount of natural gas released from water which is entrapped in the Weiyuan gas field after the tectonic uplift is basically equal to the proved reserves of this field, confirming the opinion of water-soluble

  12. Assembly of water-soluble chlorophyll-binding proteins with native hydrophobic chlorophylls in water-in-oil emulsions.

    Science.gov (United States)

    Bednarczyk, Dominika; Takahashi, Shigekazu; Satoh, Hiroyuki; Noy, Dror

    2015-03-01

    The challenges involved in studying cofactor binding and assembly, as well as energy- and electron transfer mechanisms in the large and elaborate transmembrane protein complexes of photosynthesis and respiration have prompted considerable interest in constructing simplified model systems based on their water-soluble protein analogs. Such analogs are also promising templates and building blocks for artificial bioinspired energy conversion systems. Yet, development is limited by the challenge of introducing the essential cofactors of natural proteins that are highly water-insoluble into the water-soluble protein analogs. Here we introduce a new efficient method based on water-in-oil emulsions for overcoming this challenge. We demonstrate the effectiveness of the method in the assembly of native chlorophylls with four recombinant variants of the water-soluble chlorophyll-binding protein of Brassicaceae plants. We use the method to gain new insights into the protein-chlorophyll assembly process, and demonstrate its potential as a fast screening system for developing novel chlorophyll-protein complexes.

  13. Immunomodulatory effect of water soluble extract separated from mycelium of Phellinus linteus on experimental atopic dermatitis

    Directory of Open Access Journals (Sweden)

    Hwang Ji

    2012-09-01

    Full Text Available Abstract Background Complementary and alternative medicine (CAM is becoming a popular treatment for modulating diverse immune disorders. Phellinus linteus (P. linteus as one of the CAMs has been used to modulate cancers, inflammation and allergic activities. However, little evidence has been shown about its underlying mechanism of action by which it exerts a beneficial role in dermatological disease in vivo. In this study, we examined the immunomodulatory effects of P. linteus on experimental atopic dermatitis (AD and elucidated its action mechanism. Methods The immunomodulatory effect of total extract of P. linteus on IgE production by human myeloma U266B1 cells was measured by ELISA. To further identify the effective components, P. linteus was fractionated into methanol soluble, water soluble and boiling water soluble extracts. Each extract was treated to U266B1 cells and primary B cells to compare their inhibitory effects on IgE secretion. To test the in vivo efficacy, experimental atopic dermatitis (AD was established by alternative treatment of DNCB and house dust mite extract into BALB/c mice. Water soluble extract of P. linteus (WA or ceramide as a positive control were topically applied to ears of atopic mouse every day for 2 weeks and progression of the disease was estimated by the following criteria: (a ear thickness, clinical score, (b serum total IgE, IgG and mite specific IgE level by ELSIA, (c histological examination of ear tissue by H&E staining and (d cytokine profile of total ear cells and CD4+ T cells by real time PCR and ELSIA. Results Treatment of total extracts of P. linteus to U266B1 inhibited IgE secretion. Among the diverse extracts of P. linteus, water soluble extract of P. linteus (WA significantly reduced the IgE production in primary B cells and B cell line U266B1. Moreover, treatment of WA reduced AD symptoms such as ear swelling, erythema, and dryness and decreased recruitment of lymphocyte into the inflamed site

  14. Rapid screening of water soluble arsenic species in edible oils using dispersive liquid-liquid microextraction.

    Science.gov (United States)

    López-García, Ignacio; Briceño, Marisol; Vicente-Martínez, Yesica; Hernández-Córdoba, Manuel

    2015-01-15

    A methodology for the non-chromatographic screening of the main arsenic species present in edible oils is discussed. Reverse dispersive liquid-liquid microextraction was used to extract water soluble arsenic compounds (inorganic arsenic, methylarsonate, dimethylarsinate and arsenobetaine) from the edible oils into a slightly acidic aqueous medium. The total arsenic content was measured in the extracts by electrothermal atomic absorption spectrometry using palladium as the chemical modifier. By repeating the measurement using cerium instead of palladium, the sum of inorganic arsenic and methylarsonate was obtained. The detection limit was 0.03 ng As per gram of oil. Data for the total and water-soluble arsenic levels of 29 samples of different origin are presented. Inorganic arsenic was not found in any of the samples marketed as edible oils.

  15. Phosphated cyclodextrins as water-soluble chiral NMR solvating agents for cationic compounds

    Directory of Open Access Journals (Sweden)

    Cira Mollings Puentes

    2017-01-01

    Full Text Available The utility of phosphated α-, β- and γ-cyclodextrins as water-soluble chiral NMR solvating agents for cationic substrates is described. Two sets of phosphated cyclodextrins, one with degrees of substitution in the 2–6 range, the other with degrees of substitution in the 6–10 range, are examined. Results with 33 water-soluble cationic substrates are reported. We also explored the possibility that the addition of paramagnetic lanthanide ions such as praseodymium(III and ytterbium(III further enhances the enantiomeric differentiation in the NMR spectra. The chiral differentiation with the phosphated cyclodextrins is compared to prior results obtained with anionic carboxymethylated cyclodextrins. There are a number of examples where a larger differentiation is observed with the phosphated cyclodextrins.

  16. Phosphated cyclodextrins as water-soluble chiral NMR solvating agents for cationic compounds

    Science.gov (United States)

    Puentes, Cira Mollings

    2017-01-01

    Summary The utility of phosphated α-, β- and γ-cyclodextrins as water-soluble chiral NMR solvating agents for cationic substrates is described. Two sets of phosphated cyclodextrins, one with degrees of substitution in the 2–6 range, the other with degrees of substitution in the 6–10 range, are examined. Results with 33 water-soluble cationic substrates are reported. We also explored the possibility that the addition of paramagnetic lanthanide ions such as praseodymium(III) and ytterbium(III) further enhances the enantiomeric differentiation in the NMR spectra. The chiral differentiation with the phosphated cyclodextrins is compared to prior results obtained with anionic carboxymethylated cyclodextrins. There are a number of examples where a larger differentiation is observed with the phosphated cyclodextrins.

  17. Design of Chitosan and Its Water Soluble Derivatives-Based Drug Carriers with Polyelectrolyte Complexes

    Science.gov (United States)

    Wu, Qing-Xi; Lin, Dong-Qiang; Yao, Shan-Jing

    2014-01-01

    Chitosan, the cationic polysaccharide derived from the natural polysaccharide chitin, has been studied as a biomaterial for more than two decades. As a polycationic polymer with favorable properties, it has been widely used to form polyelectrolyte complexes with polyanions for various applications in drug delivery fields. In recent years, a growing number of studies have been focused on the preparation of polyelectrolyte complexes based on chitosan and its water soluble derivatives. They have been considered well-suited as biomaterials for a number of vital drug carriers with targeted/controlled release profiles, e.g., films, capsules, microcapsules. In this work, an overview highlights not only the favorable properties of chitosan and its water soluble derivatives but also the good performance of the polyelectrolyte complexes produced based on chitosan. Their various types of applications as drug carriers are reviewed in detail. PMID:25532565

  18. Synthesis and characterization of a hyper-branched water-soluble β-cyclodextrin polymer

    Directory of Open Access Journals (Sweden)

    Francesco Trotta

    2014-11-01

    Full Text Available A new hyper-branched water-soluble polymer was synthesized by reacting β-cyclodextrin with pyromellitic dianhydride beyond the critical conditions that allow the phenomenon of gelation to occur. The molar ratio between the monomers is a crucial parameter that rules the gelation process. Nevertheless, the concentration of monomers in the solvent phase plays a key role as well. Hyper-branched β-cyclodextrin-based polymers were obtained performing the syntheses with excess of solvent and cross-linking agent, and the conditions for critical dilution were determined experimentally. A hyper-branched polymer with very high water solubility was obtained and fully characterized both as for its chemical structure and for its capability to encapsulate substances. Fluorescein was used as probe molecule to test the complexation properties of the new material.

  19. Chemical composition, properties, and antimicrobial activity of the water-soluble pigments from Castanea mollissima shells.

    Science.gov (United States)

    You, Ting-Ting; Zhou, Su-Kun; Wen, Jia-Long; Ma, Chao; Xu, Feng

    2014-02-26

    Agricultural residues Castanea mollissima shells represent a promising resource for natural pigments for the food industry. This study provides a comprehensive and systematic evaluation of water-soluble pigments (CSP) from C. mollissima shells, which were obtained by 50% ethanol with microwave-assisted extraction. Spectroscopic techniques (UV, FT-IR, (13)C NMR), elemental analysis, and chromatographic techniques (HPAEC, GPC) revealed that the main components in the CSP were flavonoids procyanidin B3 (condensed tannin), quercetin-3-O-glycoside, and steroidal sapogenins. As a consequence, CSP was water-soluble and presented significant DPPH scavenge capacity (EC50 value was 0.057 mg/mL). Specially, CSP gave excellent antibacterial activity, and even better than 5% aqueous phenol in some case. Moreover, CSP was practically nontoxic and exhibited good stability with temperature, natural light, and metal ions. These outstanding properties will enlarge the application of CSP for natural food additives production.

  20. The effect of water on the mechanical properties of soluble and insoluble ceramic cements.

    Science.gov (United States)

    Koh, Ilsoo; López, Alejandro; Pinar, Ana B; Helgason, Benedikt; Ferguson, Stephen J

    2015-11-01

    Ceramic cements are good candidates for the stabilization of fractured bone due to their potential ease of application and biological advantages. New formulations of ceramic cements have been tested for their mechanical properties, including strength, stiffness, toughness and durability. The changes in the mechanical properties of a soluble cement (calcium sulfate) upon water-saturation (saturation) was reported in our previous study, highlighting the need to test ceramic cements using saturated samples. It is not clear if the changes in the mechanical properties of ceramic cements are exclusive to soluble cements. Therefore the aim of the present study was to observe the changes in the mechanical properties of soluble and insoluble ceramic cements upon saturation. A cement with high solubility (calcium sulfate dihydrate, CSD) and a cement with low solubility (dicalcium phosphate dihydrate, DCPD) were tested. Three-point bending tests were performed on four different groups of: saturated CSD, non-saturated CSD, saturated DCPD, and non-saturated DCPD samples. X-ray diffraction analysis and scanning electron microscopy were also performed on a sample from each group. Flexural strength, effective flexural modulus and flexural strain at maximum stress, lattice volume, and crystal sizes and shape were compared, independently, between saturated and non-saturated groups of CSD and DCPD. Although material dissolution did not occur in all cases, all calculated mechanical properties decreased significantly in both CSD and DCPD upon saturation. The results indicate that the reductions in the mechanical properties of saturated ceramic cements are not dependent on the solubility of a ceramic cement. The outcome raised the importance of testing any implantable ceramic cements in saturated condition to estimate its in vivo mechanical properties.

  1. Recrystallization of water in non-water-soluble (meth)acrylate polymers is not rare and is not devitrification.

    Science.gov (United States)

    Gemmei-Ide, Makoto; Ohya, Atsushi; Kitano, Hiromi

    2012-02-16

    Change in the state of water sorbed into four kinds of non-water-soluble poly(meth)acrylates with low water content by temperature (T) perturbation was examined on the basis of T variable mid-infrared (MIR) spectroscopy. Many studies using differential scanning calorimetry suggested that there was no change in the state. T dependence of their MIR spectra, however, clearly demonstrated various changes in the state. Furthermore, recrystallization, which was crystallization during heating, was observed in all four polymers. The recrystallization observed in this study was not devitrification, which is the change in the state from glassy water to crystalline water, but vapor deposition during heating (vapor re-deposition). There were only two reports about recrystallization of water in a non-water-soluble polymer before this report; therefore, it might be considered to be a rare phenomenon. However, as demonstrated in this study, it is not a rare phenomenon. Recrystallization (vapor re-deposition) of water in the polymer matrices is related to a balance between flexibility and strength of the electrostatic interaction sites of polymer matrices but might not be related to the biocompatibility of polymers.

  2. Biosynthetic Studies on Water-Soluble Derivative 5c (DTX5c

    Directory of Open Access Journals (Sweden)

    José J. Fernández

    2012-10-01

    Full Text Available The dinoflagellate Prorocentrum belizeanum is responsible for the production of several toxins involved in the red tide phenomenon known as Diarrhetic Shellfish Poisoning (DSP. In this paper we report on the biosynthetic origin of an okadaic acid water-soluble ester derivative, DTX5c, on the basis of the spectroscopical analysis of 13C enriched samples obtained by addition of labelled sodium [l-13C], [2-13C] acetate to artificial cultures of this dinoflagellate.

  3. Mechanisms and Regulation of Intestinal Absorption of Water-soluble Vitamins: Cellular and Molecular Aspects

    DEFF Research Database (Denmark)

    Nexø, Ebba; Said, Hamid M

    2012-01-01

    The water-soluble vitamins represent a group of structurally and functionally unrelated compounds that share the common feature of being essential for normal cellular functions, growth, and development. With the exception of some endogenous production of niacin, human cells cannot synthesize...... or deficiency. An impaired absorptive function occurs in a variety of conditions including congenital defects in the digestive or absorptive processes, intestinal diseases, drug interaction, and chronic alcohol use....

  4. Water-soluble phenylpropanoid constituents from aerial roots of Ficus microcarpa.

    Science.gov (United States)

    Ouyang, Ming-An; Chen, Pei-Qing; Wang, Si-Bing

    2007-07-20

    New water-soluble phenylpropanoid constituents, ficuscarpanoside A, guaiacylglycerol 9-O-beta-D-glucopyranoside, and erythro-guaiacylglycerol 9-O-beta-D-glucopyranoside, along with known guaiacylglycerol, erythro-guaiacylglycerol, 4-methoxy guaiacylglycerol 7-O-beta-D-glucopyranoside, and 3-(4-hydroxy-3-methoxy phenyl) propan-1,2-diol, have been isolated from the aerial roots of Ficus microcarpa. Their structures were elucidated on the basis of 1D and 2D NMR experiments.

  5. Automatic Carbon Dioxide-Methane Gas Sensor Based on the Solubility of Gases in Water

    OpenAIRE

    Cadena-Pereda, Raúl O.; Anaya-Rivera, Ely K.; Gilberto Herrera-Ruiz; Eric M. Rivera-Muñoz; Gomez-Melendez, Domingo J.

    2012-01-01

    Biogas methane content is a relevant variable in anaerobic digestion processing where knowledge of process kinetics or an early indicator of digester failure is needed. The contribution of this work is the development of a novel, simple and low cost automatic carbon dioxide-methane gas sensor based on the solubility of gases in water as the precursor of a sensor for biogas quality monitoring. The device described in this work was used for determining the composition of binary mixtures, such a...

  6. Effect of New Water-Soluble Dendritic Phthalocyanines on Human Colorectal and Liver Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Ebru YABAŞ

    2017-08-01

    Full Text Available Human hepatocellular carcinoma (HepG2 cells and colorectal adenocarcinoma (DLD-1 cells were treated with the synthesized water soluble phthalocyanine derivatives to understand the effect of the compounds both on colorectal and liver cancer cells. The compounds inhibited cell proliferation and displayed cytotoxic effect on these cancer cell lines however; the effect of the compounds on healthy control fibroblast cell line was comparatively lower. The compounds can be employed for cancer treatment as anticancer agents.

  7. Selecting water-alcohol mixed solvent for synthesis of polydopamine nano-spheres using solubility parameter

    OpenAIRE

    Jiang, Xiaoli; Wang, Yinling; Li, Maoguo

    2014-01-01

    The solvent plays an important role in a given chemical reaction. Since most reaction in nature occur in the mixed-solvent systems, a comprehensive principle for solvent optimization was required. By calculating the Hansen solubility parameters (HSP) distance Ra , we designed a model experiment to explore the influence of mixed solvents on the chemical synthesis. The synthesis of polydopamine (PDA) in the water-alcohol system was chosen as model. As predicted, the well-dispersed PDA spheres w...

  8. Biphasic and SAPC Hydroformylation Catalyzed by Rh-phosphines Bound to Water-Soluble Polymers

    DEFF Research Database (Denmark)

    Malmstrøm, Torsten; Andersson, Carlaxel; Hjortkjær, Jes

    1999-01-01

    Coupling of the triphenylphosphine moiety to poly-acrylic acid and poly-ethyleneimine respectively afford the macromolecular ligands PAA-PNH and PEI-PNH. Reaction of the ligands with Rh(CO)2(acac) give water-soluble complexes that are active as catalysts in the hydroformylation ofdifferent olefin...... PEI-PNH as ligands show lower stability and activity in both SAPC and biphasic applications....

  9. Preparation and characterization of complexes of RE3+ with furfural modified water-soluble chitosan

    Institute of Scientific and Technical Information of China (English)

    WANG Maoyuan; QIU Ligan; MA Guilin

    2008-01-01

    Degraded chitosan, with highly water-solubility, was obtained by the oxidation of chitosan with H2O2, and then reacted with furfural The final product coordinated with the rare earth ions (RE3+ = Sm3+,Eu3+), which led to the formation of the complexes. The prepared complexes were characterized with Inflated Spectroscopy (IR), Ultra Violet (UV), fluorescence, X-Ray Diffraction (XRD), and Thermogravimetric-Differential Scanning Calorimetry (TG-DSC) measurements.

  10. Structural features of a water soluble gum polysaccharide from Murraya paniculata fruits.

    Science.gov (United States)

    Mondal, S K; Ray, B; Ghosal, P K; Teleman, A; Vuorinen, T

    2001-10-22

    A water soluble gum polysaccharide was isolated from Murraya paniculata fruits. Hydrolytic experiments, methylation analysis, periodate oxidation studies and NMR data revealed that the polysaccharide was extensively branched and it consisted of 1,3-, and 1,3,6-linked beta-D-galactopyranosyl units, terminal beta-D-galactopyranosyl units and terminal alpha-D-glucopyranosyl 1,4-beta-D-galactopyranosyl units. Small amounts of 4-O-methylglucuronic acid residues were also present.

  11. NASA Workmanship Hot Topics: Water Soluble Flux and ESD Charge Device Model

    Science.gov (United States)

    Plante, Jeannette F.

    2009-01-01

    This slide presentation reviews two topics of interest to NASA Workmanship: (1) Water Soluble Flux (WSF) and Electrostatic Discharge (ESD) safety. In the first topic, WSF, the presentation reviews voiding and the importance of cleanliness in using WSF for welding and soldering operations. The second topic reviews the NASA-HDBK-8739.21 for Human Body Model, and Machine Model safety methods, and challenges associated with the Charged Device Model (CDM)

  12. Solubility and thermodynamic behavior of vanillin in propane-1,2-diol+water cosolvent mixtures at different temperatures.

    Science.gov (United States)

    Shakeel, Faiyaz; Haq, Nazrul; Siddiqui, Nasir A; Alanazi, Fars K; Alsarra, Ibrahim A

    2015-12-01

    The solubilities of bioactive compound vanillin were measured in various propane-1,2-diol+water cosolvent mixtures at T=(298-318)K and p=0.1 MPa. The experimental solubility of crystalline vanillin was determined and correlated with calculated solubility. The results showed good correlation of experimental solubilities of crystalline vanillin with calculated ones. The mole fraction solubility of crystalline vanillin was recorded highest in pure propane-1,2-diol (7.06×10(-2) at 298 K) and lowest in pure water (1.25×10(-3) at 298 K) over the entire temperature range investigated. Thermodynamic behavior of vanillin in various propane-1,2-diol+water cosolvent mixtures was evaluated by Van't Hoff and Krug analysis. The results showed an endothermic, spontaneous and an entropy-driven dissolution of crystalline vanillin in all propane-1,2-diol+water cosolvent mixtures. Based on solubility data of this work, vanillin has been considered as soluble in water and freely soluble in propane-1,2-diol.

  13. Online Measurements of Water-Soluble Iron in Ambient Aerosols: A new Technique

    Science.gov (United States)

    Rastogi, N.; Oakes, M.; Weber, R. J.; Majestic, B. J.; Shafer, M. M.; Snyder, D. C.; Schauer, J. J.

    2008-05-01

    Water-soluble iron, i.e. Fe(II) (hereafter, WS-Fe), is a redox active metal that can act as a catalyst in the production of reactive oxygen species (ROS). In atmospheric aerosol particles, WS-Fe may significantly impact human health and the atmospheric oxidative capacity. Further, WS-Fe acts as a critical nutrient for marine organisms and has been hypothesized to limit phytoplankton productivity in high nitrate, low-chlorophyll ocean regions. In order to assess the role of aerosol WS-Fe on human health, atmospheric chemistry and ocean biogeochemistry, it is necessary to understand its major sources, transport, transformation processes and sinks. Filter-based measurements with several (6-24) hours integration time are predominately used to quantify WS-Fe in aerosols but provide limited insight into acute exposures that could be higher than daily averages, or sources having high temporal variability. Generally, mineral dust and its processing with acidic pollutants, is considered the dominant source of WS-Fe, however, recent studies have reported combustion emissions are also a possible source. A time-resolved data set may help in identifying WS-Fe sources, atmospheric transformations and possible sinks. We have developed a new system for online quantitative analyses of WS-Fe present in ambient aerosols with a 12-minute integration time. It mainly consists of Particle-Into-Liquid Sampler (PILS), a liquid waveguide capillary cell (LWCC) and a portable UV-Visible spectrophotometer. The complete system is automated so that first the liquid sample (water-extract of ambient aerosols from PILS) is mixed with ferrozine (complexing reagent) by pumping them simultaneously (10:1) through a serpentine reactor and a 100 turn mixing coil using a peristaltic pump. After holding the mixed solution in the mixing coil for three minutes, the sample is pumped through the LWCC and held there for two minutes to acquire the absorbance of the solution at 562 nm (for Fe

  14. Studies on Dissolution Enhancement of Prednisolone, a Poorly Water-Soluble Drug by Solid Dispersion Technique

    Directory of Open Access Journals (Sweden)

    Parvin Zakeri-Milani

    2011-06-01

    Full Text Available Introduction: Prednisolone is a class II substance according to the Biopharmaceutics Classification System. It is a poorly water soluble agent. The aim of the present study was to improve dissolution rate of a poorly water-soluble drug, prednisolone, by a solid dispersion technique. Methods: Solid dispersion of prednisolone was prepared with PEG 6000 or different carbohydrates such as lactose and dextrin with various ratios of the drug to carrier i.e., 1:10, 1:20 and 1:40. Solid dispersions were prepared by coevaporation method. The evaluation of the properties of the dispersions was performed using dissolution studies, Fourier-transform infrared spectroscopy and x-ray powder diffractometery. Results: The results indicated that lactose is suitable carriers to enhance the in vitro dissolution rate of prednisolone. The data from the x-ray diffraction showed that the drug was still detectable in its solid state in all solid dispersions except solid dispersions prepared by dextrin as carrier. The results from infrared spectroscopy showed no well-defined drug–carrier interactions for coevaporates. Conclusion: Solid dispersion of a poorly water-soluble drug, prednisolone may alleviate the problems of delayed and inconsistent rate of dissolution of the drug.

  15. A predictive model for the release of slightly water-soluble drugs from HPMC matrices.

    Science.gov (United States)

    Fu, X C; Wang, G P; Wang, Y H; Liang, W Q

    2004-08-01

    A model to predict the fraction of slightly water-soluble drug released as a function of release time (t, h), HPMC concentration (C(H), w/w), drug solubility in distilled water at 37 degrees C (C(s), g/100 mL), and volume of drug molecule (V, nm3) was derived when theophyline, tinidazole, and propylthiouracil were selected as model drugs. The model is log (M(t)/M(infinity)) = 0.8683 logt-0.1930C(s) logt + 0.5406V logt-1.227C(H) + 0.1594C(s) + 0.4423C(H)C(s) - 0.8655 (n = 130, r = 0.9969), where Mt is the amount of drug released at time t, Minfinity is the amount of drug released over a very long time, which corresponds in principle to the initial loading, n is the number of samples, and r is the correlation coefficient. The model was validated using sulfamethoxazole and satisfactory results were obtained. The model can be used to predict the release fraction of variousslightly water-soluble drugs from HPMC matrices having different polymer levels.

  16. Nanosizing of poorly water soluble compounds using rotation/revolution mixer.

    Science.gov (United States)

    Takatsuka, Takayuki; Endo, Tomoko; Jianguo, Yao; Yuminoki, Kayo; Hashimoto, Naofumi

    2009-10-01

    In this study, nanoparticles of various poorly water soluble compounds were prepared by wet milling that was carried out using a rotation/revolution mixer and zirconia balls. To be compared with Beads mill, rotation/revolution mixer has superior in very quick process (5 min) and needs very few amounts of zirconia balls (2.4 g) for pulverizing drugs to nanometer range. Phenytoin, indomethacin, nifedipine, danazol, and naproxen were selected as the standard poorly water soluble compounds. Various parameters of the rotation/revolution mixer were studied to decide the optimal pulverization conditions for the production of nanoparticles of the abovementioned compounds. The rotation/revolution speed, shape of the mixing vessel, amount of zirconia balls, and volume of the vehicle (methylcellulose solution) mainly affected the pulverization of the compounds. Using the mixer, phenytoin could be pulverized to nanoparticles within a few minutes. The particle size was confirmed by using a scanning electron microscope and a particle size analyzer. The crystallinity of the pulverized phenytoin particles was confirmed by X-ray diffractometry (XRD) and differential scanning calorimetry (DSC). It was observed that the pulverized phenytoin particles retained their crystallinity, and amorphous phenytoin was not detected. Particles of other poorly water soluble compounds were also reduced to the nanometer range by using this method.

  17. Poly(ether ester) Ionomers as Water-Soluble Polymers for Material Extrusion Additive Manufacturing Processes.

    Science.gov (United States)

    Pekkanen, Allison M; Zawaski, Callie; Stevenson, André T; Dickerman, Ross; Whittington, Abby R; Williams, Christopher B; Long, Timothy E

    2017-04-12

    Water-soluble polymers as sacrificial supports for additive manufacturing (AM) facilitate complex features in printed objects. Few water-soluble polymers beyond poly(vinyl alcohol) enable material extrusion AM. In this work, charged poly(ether ester)s with tailored rheological and mechanical properties serve as novel materials for extrusion-based AM at low temperatures. Melt transesterification of poly(ethylene glycol) (PEG, 8k) and dimethyl 5-sulfoisophthalate afforded poly(ether ester)s of sufficient molecular weight to impart mechanical integrity. Quantitative ion exchange provided a library of poly(ether ester)s with varying counterions, including both monovalent and divalent cations. Dynamic mechanical and tensile analysis revealed an insignificant difference in mechanical properties for these polymers below the melting temperature, suggesting an insignificant change in final part properties. Rheological analysis, however, revealed the advantageous effect of divalent countercations (Ca(2+), Mg(2+), and Zn(2+)) in the melt state and exhibited an increase in viscosity of two orders of magnitude. Furthermore, time-temperature superposition identified an elevation in modulus, melt viscosity, and flow activation energy, suggesting intramolecular interactions between polymer chains and a higher apparent molecular weight. In particular, extrusion of poly(PEG8k-co-CaSIP) revealed vast opportunities for extrusion AM of well-defined parts. The unique melt rheological properties highlighted these poly(ether ester) ionomers as ideal candidates for low-temperature material extrusion additive manufacturing of water-soluble parts.

  18. Water-Soluble Coenzyme Q10 Reduces Rotenone-Induced Mitochondrial Fission.

    Science.gov (United States)

    Li, Hai-Ning; Zimmerman, Mary; Milledge, Gaolin Z; Hou, Xiao-Lin; Cheng, Jiang; Wang, Zhen-Hai; Li, P Andy

    2017-02-11

    Parkinson's disease is a neurodegenerative disorder characterized by mitochondrial dysfunction and oxidative stress. It is usually accompanied by an imbalance in mitochondrial dynamics and changes in mitochondrial morphology that are associated with impaired function. The objectives of this study were to identify the effects of rotenone, a drug known to mimic the pathophysiology of Parkinson's disease, on mitochondrial dynamics. Additionally, this study explored the protective effects of water-soluble Coenzyme Q10 (CoQ10) against rotenone-induced cytotoxicity in murine neuronal HT22 cells. Our results demonstrate that rotenone elevates protein expression of mitochondrial fission markers, Drp1 and Fis1, and causes an increase in mitochondrial fragmentation as evidenced through mitochondrial staining and morphological analysis. Water-soluble CoQ10 prevented mitochondrial dynamic imbalance by reducing Drp1 and Fis1 protein expression to pre-rotenone levels, as well as reducing rotenone treatment-associated mitochondrial fragmentation. Hence, water-soluble CoQ10 may have therapeutic potential in treating patients with Parkinson's disease.

  19. Laboratory investigation of aluminum solubility and solid-phase properties following alum treatment of lake waters.

    Science.gov (United States)

    Berkowitz, Jacob; Anderson, Michael A; Graham, Robert C

    2005-10-01

    Water samples from two southern California lakes adversely affected by internal nutrient loading were treated with a 20 mg/L dose of Al3+ in laboratory studies to examine Al solubility and solid-phase speciation over time. Alum [Al2(SO4)3 . 18 H2O] applications to water samples from Big Bear Lake and Lake Elsinore resulted in a rapid initial decrease in pH and alkalinity followed by a gradual recovery in pH over several weeks. Dissolved Al concentrations increased following treatment, reaching a maximum of 2.54 mg/L after 17 days in Lake Elsinore water and 0.91 mg/L after 48 days in Big Bear Lake water; concentrations in both waters then decreased to Lake Elsinore water. Surface areas also decreased over time as crystals reordered to form gibbsite/microcrystalline gibbsite species. DSC-TGA results suggested that the initially formed amorphous Al(OH)3 underwent transformation to >45% gibbsite. These results were supported by geochemical modeling using Visual MINTEQ, with Al solubility putatively controlled by amorphous Al(OH)3 shortly after treatment and approaching that of microcrystalline gibbsite after about 150 days. These findings indicate that Al(OH)3 formed after alum treatment undergoes significant chemical and mineralogical changes that may alter its effectiveness as a reactive barrier to phosphorus release from lake sediments.

  20. Enhancing the release and plant uptake of PAHs with a water-soluble purine alkaloid.

    Science.gov (United States)

    Navarro, Ronald R; Ichikawa, Hiroyasu; Morimoto, Kengo; Tatsumi, Kenji

    2009-08-01

    The effect of a common plant alkaloid, caffeine, on the release and plant uptake of some polycyclic aromatic hydrocarbons (PAHs) in soils was investigated. Cucurbita pepo (ssp. pepo cv. Gold Rush) was grown in PAH-spiked media in the presence and absence of caffeine. Solubility tests initially confirmed the ability of caffeine to dissolve PAHs mixtures of anthracene, phenanthrene, pyrene, benzo[a]pyrene and benzo[ghi]perylene. Extraction experiments also highlighted its potential as a PAH-releasing agent from an aged soil. Phytoextraction from a low organic sand medium (f(OC)=0.056+/-0.03%) indicated a significant enhancement of pyrene uptake with three weeks daily watering with 500mgL(-1) caffeine solution. The average pyrene content of roots was 35.3 and 16.0microgg(-1), in caffeine and non-caffeine set-ups, respectively. In the shoots, the corresponding values were 3.60 and 1.67microgg(-1). Both showed more than twofold increase with caffeine. Caffeine also accumulated mainly in the leaves of the treated samples at 2800mgkg(-1) dry weight. Further tests with a 1-year aged soil (f(OC)=5.2+/-1%) containing a mixture of phenanthrene and pyrene yielded parallel results. However, lower PAH content in these samples were observed due to the stronger PAHs partitioning in aged-soil matrix. After four weeks of caffeine, phenanthrene in shoots and roots increased by one and a half and four times, respectively. The corresponding enhancements for pyrene were two and a half and three and a half times.

  1. Sensitive detection of mercury (II) ion using water-soluble captopril-stabilized fluorescent gold nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Feng, Jiu-Ju; Huang, Hong; Chen, Wei-Jie; Chen, Jian-Rong; Lin, Hong-Jun; Wang, Ai-Jun, E-mail: ajwang@zjnu.cn

    2013-07-01

    In our work, a simple, facile, and green method was developed for the synthesis of water-soluble and well-dispersed fluorescent gold nanoparticles (Au NPs) within 5 min, using captopril as a capping agent. The as-prepared Au NPs showed strong emission at 414 nm, with a quantum yield of 5.5%. The fluorescence of the Au NPs can be strongly quenched by mercury (II) ion (Hg{sup 2+}) due to the stronger interactions between thiolates (RS{sup −}) and Hg{sup 2+}. It was applied to the detection of Hg{sup 2+} in water samples in the linear ranges of 0.033–0.133 μM and 0.167–2.500 μM, with a detection limit of 0.017 μM. Therefore, the as-prepared Au NPs can meet the requirement for monitoring Hg{sup 2+} in environmental samples. - Graphical abstract: In this work, we developed a simple, fast and facile method for the preparation of water-soluble and fluorescent gold nanoparticles (Au NPs). The trace existence of Hg{sup 2+} could strongly quench the fluorescence of the Au NPs. The Au NPs were used to detect highly toxic Hg{sup 2+} in water samples with high sensitivity and selectivity. Highlights: ► Water-soluble fluorescent Au NPs stabilized by captopril ► The synthesis procedure was simple, fast and facile. ► The fluorescence of the Au NPs can be strongly quenched by Hg{sup 2+}. ► The Au NPs were used to the assay of Hg{sup 2+} in water samples with high sensitivity and selectivity.

  2. New biodegradable organic-soluble chelating agents for simultaneous removal of heavy metals and organic pollutants from contaminated media.

    Science.gov (United States)

    Ullmann, Amos; Brauner, Neima; Vazana, Shlomi; Katz, Zhanna; Goikhman, Roman; Seemann, Boaz; Marom, Hanit; Gozin, Michael

    2013-09-15

    Advanced biodegradable and non-toxic organic chelators, which are soluble in organic media, were synthesized on the basis of the S,S-ethylenediamine-disuccinate (S,S-EDDS) ligand. The modifications suggested in this work include attachment of a lipophilic hydrocarbon chain ("tail") to one or both nitrogen atoms of the S,S-EDDS. The new ligands were designed and evaluated for application in the Sediments Remediation Phase Transition Extraction (SR-PTE) process. This novel process is being developed for the simultaneous removal of both heavy metals and organic pollutants from contaminated soils, sediments or sludge. The new chelators were designed to bind various target metal ions, to promote extraction of these ions into organic solvents. Several variations of attached tails were synthesized and tested. The results for one of them, N,N'-bis-dodecyl-S,S-EDDS (C24-EDDS), showed that the metal-ligand complexes are concentrated in the organic-rich phase in the Phase Transition Extraction process (more than 80%). Preliminary applications of the SR-PTE process with the C24-EDDS ligand were conducted also on actually contaminated sludge (field samples). The extraction of five toxic metals, namely, Cd, Cu, Ni, Pb and Zn was examined. In general, the extraction performance of the new ligand was not less than that of S,S-EDDS when a sufficient ligand-to-extracted ion ratio (about 4:1 was applied. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Water-soluble chelating polymers for removal of actinides from watewater

    Energy Technology Data Exchange (ETDEWEB)

    Jarvinen, G. [Los Alamos National Lab., NM (United States)

    1996-10-01

    Polymer filtration is a technology being developed to recover valuable or regulated metal ions selectively from process or wastewaters. Water-soluble chelating polymers are specially designed to bind selectively with metal ions in aqueous solutions. The polymers molecular weight is large enough so they can be separated and concentrated using available ultrafiltration technology. Water and smaller unbound components of the solution pass freely through the ultrafiltration membrane. The polymers can then be reused by changing the solution conditions to release the metal ions, which are recovered in concentrated form, for recycle or disposal.

  4. In vitro and in vivo antioxidant activity of a water-soluble polysaccharide from dendrobium denneanum

    Science.gov (United States)

    Luo, A.; Ge, Z.; Fan, Y.; Chun, Z.; Jin, He X.

    2011-01-01

    The water-soluble crude polysaccharide (DDP) obtained from the aqueous extracts of the stem of Dendrobium denneanum through hot water extraction followed by ethanol precipitation, was found to have an average molecular weight (Mw) of about 484.7 kDa. Monosaccharide analysis revealed that DDP was composed of arabinose, xylose, mannose, glucose and galactose in a molar ratio of 1.00:2.66:8.92:34.20:10.16. The investigation of antioxidant activity both in vitro and in vivo showed that DDP is a potential antioxidant. ?? 2011.

  5. Water soluble decontamination coating for Defense Waste Processing Facility (DWPF) canisters

    Energy Technology Data Exchange (ETDEWEB)

    Selby, C.L.

    1986-12-17

    Water soluble sodium borate glass coating was successfully codeveloped by Clemson University (Dr. H.G. Lefort) and Du Pont as an alternative decontamination process to frit slurry blasting of Defense Waste Processing Facility (DWPF) canisters. Slurry blasting requires transport of abrasive slurries, might cause galling by entrapped frit particles, and could result in frit slurry freezeup in pumps and retention basins. Contamination can be removed from precoated canisters with a gentle hot water rinse. Glass waste spilled on a coated canister will spall off spontaneously during canister cooling. A glass coating appears to prevent transfer of contamination to the Canister Decontamination Cell (CDC) guides and cradle. 1 ref., 5 tabs.

  6. In Vitro and In Vivo Antioxidant Activity of a Water-Soluble Polysaccharide from Dendrobium denneanum

    Directory of Open Access Journals (Sweden)

    XingJin He

    2011-02-01

    Full Text Available The water-soluble crude polysaccharide (DDP obtained from the aqueous extracts of the stem of Dendrobium denneanum through hot water extraction followed by ethanol precipitation, was found to have an average molecular weight (Mw of about  484.7 kDa. Monosaccharide analysis revealed that DDP was composed of arabinose, xylose, mannose, glucose and galactose in a molar ratio of 1.00:2.66:8.92:34.20:10.16. The investigation of antioxidant activity both in vitro and in vivo showed that DDP is a potential antioxidant.

  7. Mechanistic studies of metal ion binding to water-soluble polymers using potentiometry.

    Science.gov (United States)

    Jarvis, N V; Wagener, J M

    1995-02-01

    A method for elucidating metal ion binding mechanisms with water-soluble polymers has been developed in which the polymer is treated as a collection of monomeric units. Data obtained from potentiometric titrations are analysed by the ESTA library of programs and apparent formation constants may be calculated. From this information, predictions may be made as to metal ion separation using complexation-ultrafiltration techniques. The polymer used in this study was Polymin Water-Free and its complexation with Hg(II), Cd(II), Pb(II), Co(II) and Ni(II) was successfully modelled.

  8. Gelatinization and solubility of corn starch during heating in excess water: new insights.

    Science.gov (United States)

    Ratnayake, Wajira S; Jackson, David S

    2006-05-17

    Starch gelatinization is associated with the disruption of granular structure causing starch molecules to disperse in water. This study was designed to examine starch granules as they were heated in water, and their resulting morphological, structural, and solubility traits. The results indicate that starch gelatinization is a more complex process than the previously suggested order-to-disorder transition. The energy absorbed by the granules facilitates the rearrangement or formation of new bonds among molecules prior to the temperatures normally associated with the melting of amylopectin crystallites during gelatinization. It is also evident that amylose plays an important role during the initial stages of corn starch gelatinization.

  9. Modeling the temperature dependent interfacial tension between organic solvents and water using dissipative particle dynamics.

    Science.gov (United States)

    Mayoral, E; Goicochea, A Gama

    2013-03-07

    The interfacial tension between organic solvents and water at different temperatures is predicted using coarse-grained, mesoscopic Dissipative Particle Dynamics (DPD) simulations. The temperature effect of the DPD repulsive interaction parameters, aij, for the different components is calculated from the dependence of the Flory-Huggins χ parameter on temperature, by means of the solubility parameters. Atomistic simulations were carried out for the calculation of the solubility parameters for different organic compounds at different temperatures in order to estimate χ and then the aij coefficients. We validate this parametrization through the study of the interfacial tension in a mixture of benzene and water, and cyclohexane and water, varying the temperature. The predictions of our simulations are found to be in good agreement with experimental data taken from the literature, and show that the use of the solubility parameter at different temperatures to obtain the repulsive DPD parameters is a good alternative to introduce the effect of temperature in these systems.

  10. Water-soluble chelating polymers for removal of actinides from wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Jarvinen, G.D. [Los Alamos National Lab., NM (United States)

    1997-10-01

    Polymer filtration is a technology under development to selectively recover valuable or regulated metal ions from process or wastewaters. The technology uses water-soluble chelating polymers that are designed to selectively bind with metal ions in aqueous solutions. The polymers have a sufficiently large molecular weight that they can be separated and concentrated using available ultrafiltration (UF) technology. The UF range is generally considered to include molecular weights from about 3000 to several million daltons and particles sizes of about 2 to 1000 nm. Water and smaller unbound components of the solution pass freely through the UF membrane. The polymers can then be reused by changing the solution conditions to release the metal ions that are recovered in concentrated form for recycle or disposal. Some of the advantages of polymer filtration relative to technology now in use are rapid binding kinetics, high selectivity, low energy and capital costs, and a small equipment footprint. Some potential commercial applications include electroplating rinse waters, photographic processing, nuclear power plant cooling water; remediation of contaminated soils and groundwater; removal of mercury contamination; and textile, paint and dye production. The purpose of this project is to evaluate this technology to remove plutonium, americium, and other regulated metal ions from various process and waste streams found in nuclear facilities. The work involves preparation of the water-soluble chelating polymers; small-scale testing of the chelating polymer systems for the required solubility, UF properties, selectivity and binding constants; followed by an engineering assessment at a larger scale to allow comparison to competing separation technologies. This project focuses on metal-ion contaminants in waste streams at the Plutonium Facility and the Waste Treatment Facility at LANL. Potential applications at other DOE facilities are also apparent.

  11. The synthesis and characterization of environmentally-responsive water-swellable and water-soluble polymers for wastewater remediation

    Science.gov (United States)

    Armentrout, Rodney Scott

    The primary research goal is the development of new polymeric materials that demonstrate the environmentally-responsive sequestration of common water foulants, including surfactants and oils. Water-swellable and water-soluble polymers have been synthesized, structurally characterized, and their physical properties have been determined. In addition, the ability of the materials to sequester model water foulants has been evaluated. Anionic crosslinked polymer networks of 2-acrylamido-2-methyl-1-propanesulfonic acid, acrylamide, and methylene bisacrylamide have been synthesized and characterized by determining the equilibrium water contents as a function of ionic content of the polymer network. The molar ratio of bound surfactant to ionic group was determined to be less than one for all hydrogels studied, indicating an ion-exchange binding mechanism with minimal hydrophobic interactions between bound and unbound surfactant molecules is responsible for surfactant binding. Cationic crosslinked cyclopolymer networks of N,N-diallyl- N-methyl amine (DAMA) and N,N,N,N-tetraallyl ammonium chloride (TAAC) have been synthesized and characterized by determining the equilibrium water content as a function of pH. A maximum in the equilibrium water content is observed for pH-6 when the polymer is fully ionized. The solubilization of a model water foulant, p-cresol, by the polymeric surfactant, Pluronic F127, has been studied via equilibrium dialysis, dynamic light scattering and ultrafiltration experiments. It has been shown that at 25°C p-cresol is readily solubilized by F127 since the polymeric surfactant exists in a multimer conformation. Ultrafiltration experiments have demonstrated that the polymer-foulant binding interactions are largely unaffected by shear in a hollow fiber membrane. Copolymers of the zwitterionic monomer, 3-(N,N-diallyl- N-methyl ammonio) propane sulfonate (DAMAPS) and N,N-diallyl- N,N-dimethylammonium chloride (DADMAC) (the DADS series) or the p

  12. Complexation with dissolved organic matter and solubility control of heavy metals in a sandy soil.

    Science.gov (United States)

    Weng, Liping; Temminghoff, Erwin J M; Lofts, Stephen; Tipping, Edward; Van Riemsdijk, Willem H

    2002-11-15

    The complexation of heavy metals with dissolved organic matter (DOM) in the environment influences the solubility and mobility of these metals. In this paper, we measured the complexation of Cu, Cd, Zn, Ni, and Pb with DOM in the soil solution at pH 3.7-6.1 using a Donnan membrane technique. The results show that the DOM-complexed species is generally more significant for Cu and Pb than for Cd, Zn, and Ni. The ability of two advanced models for ion binding to humic substances, e.g., model VI and NICA-Donnan, in the simulation of metal binding to natural DOM was assessed by comparing the model predictions with the measurements. Using the default parameters of fulvic and humic acid, the predicted concentrations of free metal ions from the solution speciation calculation using the two models are mostly within 1 order of magnitude difference from the measured concentrations, except for Ni and Pb in a few samples. Furthermore, the solid-solution partitioning of the metals was simulated using a multisurface model, in which metal binding to soil organic matter, dissolved organic matter, clay, and iron hydroxides was accounted for using adsorption and cation exchange models (NICA-Donnan, Donnan, DDL, CD-MUSIC). The model estimation of the dissolved concentration of the metals is mostly within 1 order of magnitude difference from those measured except for Ni in some samples and Pb. The solubility of the metals depends mainly on the metal loading over soil sorbents, pH, and the concentration of inorganic ligands and DOM in the soil solution.

  13. Quantification and implications of two types of soluble organic matter from brackish to saline lake source rocks

    Institute of Scientific and Technical Information of China (English)

    SONG Yitao; LIAO Yongsheng; ZHANG Shouchun

    2005-01-01

    Two types of soluble organic matter, the free and adsorbed, were obtained and quantified from the brackish to saline lake source rocks. The adsorbed type was extracted with chloroform, solvent mixtures of methanol: acetone:chloroform (MAC) and CS2:N-methyl-2-pyrroli- dinone (CS2/NMP). The total amounts of the two types of soluble organic matter from some immature source rocks are >830 mg/g TOC, more than 63% of the total organic matter in these samples. This result indicates that the majority of the organic matter in the immature source rocks in the brackish to saline lake basin is soluble, and is significant for study of petroleum formation and helpful for petroleum exploration in the brackish to saline lake basin.

  14. Water-soluble carbohydrates and fructan structure patterns from Agave and Dasylirion species.

    Science.gov (United States)

    Mancilla-Margalli, N Alejandra; López, Mercedes G

    2006-10-04

    Fructans, storage carbohydrates with beta-fructofuranosyl linkages, are found in approximately 15% of higher plants. The metabolic flexibility of those molecules allows them easily to polymerize and depolymerize to soluble carbohydrates according to plant development stage and environmental conditions. In this work, water-soluble carbohydrates, including fructan structure patterns, were compared among Agave and Dasylirion species grown in different environmental regions in Mexico. Fructans were the main storage carbohydrate present in Agave stems, in addition to other carbohydrates related to its metabolism, whereas Dasylirion spp. presented a different carbohydrate distribution. A good correlation of water-soluble carbohydrate content with climatic conditions was observed. Fructans in Agave and Dasylirion genera were found in the form of polydisperse molecules, where structural heterogeneity in the same plant was evidenced by methylation linkage analysis and chromatographic methods. Fructans from the studied species were classified into three groups depending on DP and linkage-type abundance. These storage carbohydrates share structural characteristics with fructans in plants that belong to the Asparagales members. Agave and Dasylirion fructans can be categorized as graminans and branched neo-fructans, which we have termed agavins.

  15. Multilayer encapsulated mesoporous silica nanospheres as an oral sustained drug delivery system for the poorly water-soluble drug felodipine

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Liang [Department of Pharmaceutics, Shenyang Pharmaceutical University, P.O. Box 32, Liaoning Province, Shenyang 110016 (China); Sun, Hongrui [English Teaching Department, School of Basic Courses, Shenyang Pharmaceutical University, Wenhua Road 103, Shenyang 110016 (China); Zhao, Qinfu; Han, Ning; Bai, Ling; Wang, Ying; Jiang, Tongying [Department of Pharmaceutics, Shenyang Pharmaceutical University, P.O. Box 32, Liaoning Province, Shenyang 110016 (China); Wang, Siling, E-mail: silingwang@syphu.edu.cn [Department of Pharmaceutics, Shenyang Pharmaceutical University, P.O. Box 32, Liaoning Province, Shenyang 110016 (China)

    2015-02-01

    We used a combination of mesoporous silica nanospheres (MSN) and layer-by-layer (LBL) self-assembly technology to establish a new oral sustained drug delivery system for the poorly water-soluble drug felodipine. Firstly, the model drug was loaded into MSN, and then the loaded MSN were repeatedly encapsulated by chitosan (CHI) and acacia (ACA) via LBL self-assembly method. The structural features of the samples were studied using scanning electron microscopy (SEM), transmission electron microscopy (TEM) and nitrogen adsorption. The encapsulating process was monitored by zeta-potential and surface tension measurements. The physical state of the drug in the samples was characterized by differential scanning calorimetry (DSC) and X-ray diffractometry (XRD). The influence of the multilayer with different number of layers on the drug release rate was studied using thermal gravimetric analysis (TGA) and surface tension measurement. The swelling effect and the structure changes of the multilayer were investigated to explore the relationship between the drug release behavior and the state of the multilayer under different pH conditions. The stability and mucosa adhesive ability of the prepared nanoparticles were also explored. After multilayer coating, the drug release rate was effectively controlled. The differences in drug release behavior under different pH conditions could be attributed to the different states of the multilayer. And the nanoparticles possessed good stability and strong mucosa adhesive ability. We believe that this combination offers a simple strategy for regulating the release rate of poorly water-soluble drugs and extends the pharmaceutical applications of inorganic materials and polymers. - Highlights: • A combination of inorganic and organic materials was applied. • Mesoporous silica nanospheres (MSN) were used as drug carriers. • Chitosan and acacia were encapsulated through layer-by-layer self-assembly. • The release rate of the poorly

  16. A framework for API solubility modelling

    DEFF Research Database (Denmark)

    Conte, Elisa; Gani, Rafiqul; Crafts, Peter

    The solubility of solid organic compounds in water and organic solvents is a fundamental thermodynamic property for many purposes such as product-process design and optimization, for the chemical and pharmaceutical industry. Experimental literature solubility data are usually scarce and temperature...

  17. Poly(L-aspartic acid) derivative soluble in a volatile organic solvent for biomedical application.

    Science.gov (United States)

    Oh, Nam Muk; Oh, Kyung Taek; Youn, Yu Seok; Lee, Eun Seong

    2012-09-01

    In order to develop a novel functional poly(L-amino acid) that can dissolve in volatile organic solvents, we prepared poly[L-aspartic acid-g-(3-diethylaminopropyl)]-b-poly(ethylene glycol) [poly(L-Asp-g-DEAP)-b-PEG] via the conjugation of 3-diethylaminopropyl (DEAP) to carboxylate groups of poly(L-Asp) (M(n) 4 K)-b-PEG (M(n) 2 K). This poly(L-aspartic acid) derivative evidenced a relatively high solubility in volatile organic solvents such as dichloromethane, chloroform, and acetone. We fabricated a model nanostructure (i.e., polymeric micelle) using poly(L-Asp-g-DEAP)-b-PEG by the film rehydration method, which involves the simple removal of the volatile organic solvent (dichloromethane) used to dissolve polymer, reducing concerns about organic solvents remaining in a nano-sized particle. Interestingly, this micelle showed the pH-stimulated release of encapsulated model drug [i.e., doxorubicin (DOX)] due to the protonation of DEAP according to the pH of the solution. We expect that this poly(L-aspartic acid) derivative promises to provide pharmaceutical potential for constituting a new stimuli-sensitive drug carrier for various drug molecules.

  18. Selecting water-alcohol mixed solvent for synthesis of polydopamine nano-spheres using solubility parameter

    Science.gov (United States)

    Jiang, Xiaoli; Wang, Yinling; Li, Maoguo

    2014-08-01

    The solvent plays an important role in a given chemical reaction. Since most reaction in nature occur in the mixed-solvent systems, a comprehensive principle for solvent optimization was required. By calculating the Hansen solubility parameters (HSP) distance Ra, we designed a model experiment to explore the influence of mixed solvents on the chemical synthesis. The synthesis of polydopamine (PDA) in the water-alcohol system was chosen as model. As predicted, the well-dispersed PDA spheres were obtained in selected solvents with smaller Ra values: methanol/water, ethanol/water and 2-propanol/water. In addition, the mixed solvent with smaller Ra values gave a higher conversion of dopamine. The strategy for mixed solvent selection is might be useful to choose optimal reaction media for efficient chemical synthesis.

  19. Selecting water-alcohol mixed solvent for synthesis of polydopamine nano-spheres using solubility parameter

    Science.gov (United States)

    Jiang, Xiaoli; Wang, Yinling; Li, Maoguo

    2014-01-01

    The solvent plays an important role in a given chemical reaction. Since most reaction in nature occur in the mixed-solvent systems, a comprehensive principle for solvent optimization was required. By calculating the Hansen solubility parameters (HSP) distance Ra, we designed a model experiment to explore the influence of mixed solvents on the chemical synthesis. The synthesis of polydopamine (PDA) in the water-alcohol system was chosen as model. As predicted, the well-dispersed PDA spheres were obtained in selected solvents with smaller Ra values: methanol/water, ethanol/water and 2-propanol/water. In addition, the mixed solvent with smaller Ravalues gave a higher conversion of dopamine. The strategy for mixed solvent selection is might be useful to choose optimal reaction media for efficient chemical synthesis. PMID:25317902

  20. Influence of organic matter decomposition on soluble carbon and its copper-binding capacity.

    Science.gov (United States)

    Merritt, Karen A; Erich, M Susan

    2003-01-01

    Bulk and low molecular weight (LMW) (complexation parameters were determined for both bulk and LMW water-extractable C for both plant materials in a separate 1-wk incubation. Humification progressed through increasing molar absorptivity (A285) and phenolic and total acidity (TA), and through an increase in average molecular size and degree of polymerization as determined by ultrafiltration and changes in fluorescence peak locations. Such dynamic transformations demonstrate that while humification is a bulk property, with C breakdown and stabilization occurring simultaneously and continuously in soil, its early stages can be effectively monitored for fresh plant residues. Significant changes consistently occurred during the first 7 d of the incubation and were more pronounced for LMW fractions than bulk extracts. For both residues, water-extractable C extracted initially and following a 7-d incubation desorbed and complexed 0.11 to 0.55 mmol resin-bound Cu g(-1) C. Low molecular weight water-extractable C generated the higher values within this range, and values increased consistently following incubation. Potential concerns regarding LMW soluble Cu complexes include percolation through soils or runoff into adjacent water bodies as well as effects on plant root development.

  1. Highly water soluble nanoparticles as a draw solute in forward osmosis for the treatment of radioactive liquid waste

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Heeman; Choi, Hye Min; Jang, Sungchan; Seo, Bumkyoung; Lee, Kune Woo; Moon, Jei Kwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    . In this study, we introduced highly water-soluble hyperbranched caroboxylated polyglycerol-coated magnetic nanoparticles (CPG-MNPs). It is known that the highly branched, globular architecture of PG significantly increase solubility compared to linear polymer and they are eco-friendly. The CPG-MNPs showed no aggregate of particles in water even after placing external magnet, and exhibited a high water flux in FO process. The CPG-MNPs are, therefore, potentially useful as a draw solute in FO processes. The operation of nuclear pressurized water reactors (PWRs) results in numerous radioactive waste streams which vary in radioactivity content. Most PWR stations have experienced leakages of boric acid into liquid radioactive waste systems. These wastes contain about 0.3∼0.8 wt% of boric acid. It is known that reverse osmosis (RO) membrane can eliminate boron at high pH and boron of 40∼90% can be removed by RO membrane in pH condition. RO uses hydraulic pressure to oppose, and exceed, the osmotic pressure of an aqueous feed solution containing boric acid. Forward osmosis (FO), a low energy technique based on membrane technologies, has recently garnered attention for its utility in wastewater treatment and desalination applications. In the FO process, water flows across a semi-permeable membrane from a solution with a low osmotic pressure (the feed solution) to a solution with a high osmotic pressure (the draw solution). The driving force in FO processes is provided by the osmotic gradient between the two solutions. Low energy costs and low degrees of membrane fouling are two of the advantages conveyed by FO processes over other processes, such as reverse osmosis processes that rely on a hydraulic pressure driving force. However, the challenges of FO still lie in the fabrication of eligible FO membranes and the readily separable draw solutes of high osmotic pressures. Superparamagnetic Fe3O4 nanoparticles can be separated from water by an external magnet field

  2. Dissolution Enhancement of Poorly Water Soluble Efavirenz by Hot Melt Extrusion Technique

    Directory of Open Access Journals (Sweden)

    Smita Kolhe

    2013-06-01

    studies also showed enhancement in release rate of HME complex. Stability studies at 40 º C/75 % RH (relative humidity were studied and it shows that the sample is stable even after 3 months study. HME is simple and efficient method to improve dissolution and permeability of poorly water soluble Efv.

  3. Selection of ionic liquids for enhancing the gas solubility of volatile organic compounds.

    Science.gov (United States)

    Gonzalez-Miquel, Maria; Palomar, Jose; Rodriguez, Francisco

    2013-01-10

    A systematic thermodynamic analysis has been carried out for selecting cations and anions to enhance the absorption of volatile organic compounds (VOCs) at low concentration in gaseous streams by ionic liquids (ILs), using COSMO-RS methodology. The predictability of computational procedure was validated by comparing experimental and COSMO-RS calculated Henry's law constant data over a sample of 125 gaseous solute-IL systems. For more than 2400 solute-IL mixtures evaluated, including 9 solutes and 270 ILs, it was found that the lower the activity coefficient at infinite dilution (γ(∞)) of solutes in the ILs, the more the exothermic excess enthalpy (H(E)) of the equimolar IL-solute mixtures. Then, the solubility of a representative sample of VOC solutes, with very different chemical nature, was screened in a wide number of ILs using COSMO-RS methodology by means of γ(∞) and H(E) parameters, establishing criteria to select the IL structures that promote favorable solute-solvent intermolecular interactions. As a result of this analysis, an attempt of classification of VOCs respect to their potential solubility in ILs was proposed, providing insights to rationally select the cationic and anionic species for a possible development of absorption treatments of VOC pollutants based on IL systems.

  4. Formulation of poorly water-soluble drugs via coacervation--a pilot study using febantel.

    Science.gov (United States)

    De Jaeghere, W; De Geest, B G; Van Bocxlaer, J; Remon, J P; Vervaet, C; Antunes da Fonseca, A

    2013-11-01

    In this study, febantel was dissolved under increased temperature in a nonionic surfactant Lutrol L44® and subsequently mixed into an aqueous maltodextrin solution. After 8h under static conditions, coacervation or phase separation took place. (1)H NMR spectra and HPLC analysis showed that the upper phase contained mainly all febantel, while no febantel was detected in the lower phase. Fluorescent microscopy showed that maltodextrin is distributed in the lower phase. Coacervation proved to be a promising formulation technology for certain poorly water-soluble drugs, such as febantel. The coacervate phase showed an increase in in vitro dissolution kinetics, compared to Rintal® granules. These results were confirmed in an in vivo study performed on dogs. Febantel and fenbendazole showed a significant increase in plasma concentration compared to Rintal® granules. Further studies have to be performed to transform coacervates into a solid dosage form and to prove broad applicability to other poorly soluble drugs.

  5. A mathematical model to predict the release of water-soluble drugs from HPMC matrices.

    Science.gov (United States)

    Fu, X C; Wang, G P; Fu, C Y; Liang, W Q

    2004-09-01

    A mathematical model to predict the fraction of water-soluble drug released as a function of release time (t, h), HPMC concentration (CH, w/w), and volume of drug molecule (V, nm3) was derived with ranitidine hydrochloride, diltiazem hydrochloride, and ribavirin as model drugs. The model is log (M(t)/M(infinity)) = 0.5 log t-0.3322CH-0.2222V-0.2988 (n = 140, r = 0.9848), where M(t) is the amount of drug released at time t, M(infinity) is the amount of drug released over a very long time, which corresponds in principle to the initial loading, n is the number of samples, and r is the correlation coefficient. The model was validated using isoniazid and satisfactory results were obtained. The model can be used to predict the release fraction of various soluble drugs from HPMC matrices having different polymer levels.

  6. Development Status and Market Prospect of Water Soluble Fertilizer%水溶肥发展现状及市场前景

    Institute of Scientific and Technical Information of China (English)

    汪家铭

    2011-01-01

    Developed in recent years,water soluble fertilizer is a new type fertilizer which can be completely dissolved in water, completing fertilization through underground or drip irrigation. With remarkable fertilizer efficiency, labor and fertilizer saving, increasing production and efficiency and other characteristics, water soluble fertilizer is known as new development direction of China fertilizer industry and organic, ecological, efficient agriculture. At present the domestic water soluble fertilizer industry is in accelerating growth period, its development perspective is very wide. This paper introduces the properties, production technology, production situation and market prospect of water soluble fertilizer, and puts forward some suggestions on development of domestic water soluble fertilizer industry in future.%水溶肥是近年来在国内发展起来的一种可以完全溶于水的新型肥料,通过地埋或滴灌来完成施肥,具有肥效显著、省工省肥、增产增效等特点,被誉为中国化肥产业和有机、生态、高效农业发展的新方向。目前国内水溶肥行业进入加速成长期,其发展前景十分广阔。介绍了水溶肥的性能特点、制取工艺、生产现状及市场前景,并对国内今后水溶肥产业的发展提出了一些建议。

  7. Method of removing nitrogen monoxide from a nitrogen monoxide-containing gas using a water-soluble iron ion-dithiocarbamate, xanthate or thioxanthate

    Science.gov (United States)

    Liu, D. Kwok-Keung; Chang, Shih-Ger

    1987-08-25

    The present invention relates to a method of removing of nitrogen monoxide from a nitrogen monoxide-containing gas which method comprises contacting a nitrogen oxide-containing gas with an aqueous solution of water soluble organic compound-iron ion chelate complex. The NO absorption efficiency of ferrous urea-dithiocarbamate and ferrous diethanolamine-xanthate as a function of time, oxygen content and solution ph is presented. 3 figs., 1 tab.

  8. Effect of Bombay high crude oil and its water-soluble fraction on growth and metabolism of diatom Thalassiosira sp.

    Digital Repository Service at National Institute of Oceanography (India)

    Parab, S.R.; Pandit, R.A.; Kadam, A.N.; Indap, M.M.

    Effect of Bombay high crude oil (BHC) and its water-soluble fraction (WSF) on growth and metabolism of the phytoplankton, Thalassiosira sp. was assessed. The study revealed the signs of acute toxicity at higher concentrations of crude oil (0...

  9. A new member of the oxygen-photosensitizers family: a water-soluble polymer binding a platinum complex.

    Science.gov (United States)

    Ricciardi, Loredana; Puoci, Francesco; Cirillo, Giuseppe; La Deda, Massimo

    2012-08-28

    The grafting of a 2-picolylamine Pt(II) complex into polymethacrylic acid has been successfully performed. The obtained polymer is water soluble, and it represents the first example of a platinum-containing polymer able to photogenerate singlet oxygen.

  10. The ultrafast reactions in the photochromic cycle of water-soluble fulgimide photoswitches.

    Science.gov (United States)

    Slavov, C; Boumrifak, C; Hammer, C A; Trojanowski, P; Chen, X; Lees, W J; Wachtveitl, J; Braun, M

    2016-04-21

    Photochromic switches are essential for the control and manipulation of nanoscale reactions and processes. The expansion of their application to aqueous environments depends strongly on the development of optimized water-soluble photoswitches. Here we present a femtosecond time-resolved investigation of the photochromic reactions (transition between the open and the closed form) of a water-soluble indolylfulgimide. We observe a pronounced effect of the protic nature of water as a solvent on the ultrafast ring-opening reaction. Typically, the excited state of the closed form has a larger dipole moment than the ground state, which leads to stabilization of the excited state in polar solvents and hence a lifetime (3 ps) longer than in non-polar solvents (2 ps). However, in water, despite the increased solvent polarity and the increased excited state dipole moment, the opposite trend for the excited state lifetime is observed (1.8 ps). This effect is caused by the opening of a new excited state deactivation pathway involving proton transfer reactions.

  11. A general strategy to fabricate ligan