WorldWideScience

Sample records for water solubility preferentially

  1. Ligand Fluorination to Optimize Preferential Oxidation (PROX) of Carbon Monoxide by Water-Soluble Rhodium Porphyrins

    Science.gov (United States)

    Biffinger, Justin C.; Uppaluri, ShriHarsha; Sun, Haoran

    2011-01-01

    Catalytic, low temperature preferential oxidation (PROX) of carbon monoxide by aqueous [5,10,15,20-tetrakis(4-sulfonatophenyl)-2,3,7,8,12,13,17,18-octafluoroporphyrinato]rhodium(III) tetrasodium salt, (1[Rh(III)]) and [5,10,15,20-tetrakis(3-sulfonato-2,6-difluorophenyl)-2,3,7,8,12,13,17,18-octafluoroporphyrinato]rhodium(III) tetrasodium salt, (2[Rh(III)]) is reported. The PROX reaction occurs at ambient temperature in buffered (4 ≤ pH ≤ 13) aqueous solutions. Fluorination on the porphyrin periphery is shown to increase the CO PROX reaction rate, shift the metal centered redox potentials, and acidify ligated water molecules. Most importantly, β-fluorination increases the acidity of the rhodium hydride complex (pKa = 2.2 ± 0.2 for 2[Rh-D]); the dramatically increased acidity of the Rh(III) hydride complex precludes proton reduction and hydrogen activation near neutral pH, thereby permitting oxidation of CO to be unaffected by the presence of H2. This new fluorinated water-soluble rhodium porphyrin-based homogenous catalyst system permits preferential oxidation of carbon monoxide in hydrogen gas streams at 308 °K using dioxygen or a sacrificial electron acceptor (indigo carmine) as the terminal oxidant. PMID:21949596

  2. Fungus-mediated preferential bioleaching of waste material such as fly - ash as a means of producing extracellular, protein capped, fluorescent and water soluble silica nanoparticles.

    Directory of Open Access Journals (Sweden)

    Shadab Ali Khan

    Full Text Available In this paper, we for the first time show the ability of the mesophilic fungus Fusarium oxysporum in the bioleaching of waste material such as Fly-ash for the extracellular production of highly crystalline and highly stable, protein capped, fluorescent and water soluble silica nanoparticles at ambient conditions. When the fungus Fusarium oxysporum is exposed to Fly-ash, it is capable of selectively leaching out silica nanoparticles of quasi-spherical morphology within 24 h of reaction. These silica nanoparticles have been completely characterized by UV-vis spectroscopy, Photoluminescence (PL, Transmission electron microscopy (TEM, X-ray diffraction (XRD, Fourier transform infrared spectroscopy (FTIR and Energy dispersive analysis of X-rays (EDAX.

  3. Water-soluble vitamins.

    Science.gov (United States)

    Konings, Erik J M

    2006-01-01

    Simultaneous Determination of Vitamins.--Klejdus et al. described a simultaneous determination of 10 water- and 10 fat-soluble vitamins in pharmaceutical preparations by liquid chromatography-diode-array detection (LC-DAD). A combined isocratic and linear gradient allowed separation of vitamins in 3 distinct groups: polar, low-polar, and nonpolar. The method was applied to pharmaceutical preparations, fortified powdered drinks, and food samples, for which results were in good agreement with values claimed. Heudi et al. described a separation of 9 water-soluble vitamins by LC-UV. The method was applied for the quantification of vitamins in polyvitaminated premixes used for the fortification of infant nutrition products. The repeatability of the method was evaluated at different concentration levels and coefficients of variation were principle in a specific and sensitive method for the determination of free and bound pantothenic acid in a large variety of foods. A French laboratory invited European laboratories to participate in a series of collaborative studies for this method, which will be carried out in 2005/2006. A more sophisticated method was described by Mittermayer et al. They developed an LC-mass spectrometry (LC/MS) method for the determination of vitamin B5 in a wide range of fortified food products. Application of the method to various samples showed consistent results with those obtained by microbiology. Vitamin B6.-Method 2004.07, an LC method for the analysis of vitamin B6 in reconstituted infant formula, was published by Mann et al. In contrast with this method, which quantifies vitamin B6 after converting the phosphorylated and free vitamers into pyridoxine, Viñas et al. published an LC method which determines 6 vitamin B6 related compounds, the 3 B6 vitamers, their corresponding phosphorylated esters, and a metabolite. Accuracy was determined using 2 CRMs. Results were within the certified ranges. Vitamin C.-Franke et al. described an extensive

  4. Potential Efficiency of Riparian Vegetated Buffer Strips in Intercepting Soluble Compounds in the Presence of Subsurface Preferential Flows.

    Directory of Open Access Journals (Sweden)

    Suzanne Edith Allaire

    Full Text Available Buffer strips have been widely recognized as to promote infiltration, deposition and sorption of contaminants for protecting surface water against agricultural contamination. However, such strips do not intercept all contaminants, particularly soluble ones. Although preferential flow (PF has been suggested as one factor among several decreasing the efficiency of buffer strips, the mechanisms involved are not well understood. This project examines buffer strip efficiency at intercepting solutes when subsurface PF occurs. Two soluble sorbed tracers, FD&C Blue #1 and rhodamine WT, were applied on an agricultural sandy loam soil to evaluate the ability of a naturally vegetated buffer strip to intercept soluble contaminants. Rhodamine was applied about 15 m from the creek, while the Blue was applied 15 m to 165 m from the creek. Tracer concentration was measured over a two-year period in both the creek and the buffer strip through soil and water samples. Although the tracers traveled via different pathways, they both quickly moved toward the creek, passing beneath the buffer strip through the soil matrix. Our results demonstrate that the risk of water contamination by soluble contaminants is high in such systems, even when a well-vegetated buffer strip is used. The design of buffer strips should be modified to account for underground bypass, either by using plants that have deep, fine roots that do not favour PF or by adding a filter extending deep underground that can be regularly changed.

  5. Molecular cloning, characterization and analysis of the intracellular localization of a water-soluble chlorophyll-binding protein (WSCP) from Virginia pepperweed (Lepidium virginicum), a unique WSCP that preferentially binds chlorophyll b in vitro.

    Science.gov (United States)

    Takahashi, Shigekazu; Yanai, Haruna; Oka-Takayama, Yuko; Zanma-Sohtome, Aya; Fujiyama, Kosaku; Uchida, Akira; Nakayama, Katsumi; Satoh, Hiroyuki

    2013-12-01

    Various plants possess non-photosynthetic, hydrophilic chlorophyll (Chl) proteins called water-soluble Chl-binding proteins (WSCPs). WSCPs are categorized into two classes; Class I (photoconvertible type) and Class II (non-photoconvertible type). Among Class II WSCPs, only Lepidium virginicum WSCP (LvWSCP) exhibits a low Chl a/b ratio compared with that found in the leaf. Although the physicochemical properties of LvWSCP have been characterized, its molecular properties have not yet been documented. Here, we report the characteristics of the LvWSCP gene, the biochemical properties of a recombinant LvWSCP, and the intracellular localization of LvWSCP. The cloned LvWSCP gene possesses a 669-bp open reading frame. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis revealed that the precursor of LvWSCP contains both N- and C-terminal extension peptides. RT-PCR analysis revealed that LvWSCP was transcribed in various tissues, with the levels being higher in developing tissues. A recombinant LvWSCP and hexa-histidine fusion protein (LvWSCP-His) could remove Chls from the thylakoid in aqueous solution and showed an absorption spectrum identical to that of native LvWSCP. Although LvWSCP-His could bind both Chl a and Chl b, it bound almost exclusively to Chl b when reconstituted in 40 % methanol. To clarify the intracellular targeting functions of the N- and C-terminal extension peptides, we constructed transgenic Arabidopsis thaliana lines expressing the Venus protein fused with the LvWSCP N- and/or C-terminal peptides, as well as Venus fused at the C-terminus of LvWSCP. The results showed that the N-terminal peptide functioned in ER body targeting, while the C-terminal sequence did not act as a trailer peptide.

  6. Water-Soluble Nanodiamond (Postprint)

    Science.gov (United States)

    2012-03-01

    nanodiamond salt that reacts with either alkyl or aryl halides by electron transfer to yield radical anions that dissociate spontaneously into free radicals...sodium in liquid ammonia leads to the nanodiamond salt 1. This material can be reacted with either alkyl or aryl halides to yield a radical anion that...From - To) March 2012 Technical Paper 1 October 2008 – 1 March 2012 4. TITLE AND SUBTITLE WATER-SOLUBLE NANODIAMOND (POSTPRINT) 5a. CONTRACT

  7. Water-soluble conductive polymers

    Science.gov (United States)

    Aldissi, Mahmoud

    1989-01-01

    Polymers which are soluble in water and are electrically conductive. The monomer repeat unit is a thiophene or pyrrole molecule having an alkyl group substituted for the hydrogen atom located in the beta position of the thiophene or pyrrole ring and having a surfactant molecule at the end of the alkyl chain. Polymers of this class having 8 or more carbon atoms in the alkyl chain exhibit liquid crystalline behavior, resulting in high electrical anisotropy. The monomer-to-monomer bonds are located between the carbon atoms which are adjacent to the sulfur or nitrogen atoms. The number of carbon atoms in the alkyl group may vary from 1 to 20 carbon atoms. The surfactant molecule consists of a sulfonate group, or a sulfate group, or a carboxylate group, and hydrogen or an alkali metal. Negative ions from a supporting electrolyte which may be used in the electrochemical synthesis of a polymer may be incorporated into the polymer during the synthesis and serve as a dopant to increase the conductivity.

  8. Preferential Solvation/Hydration of α-Chymotrypsin in Water-Acetonitrile Mixtures.

    Science.gov (United States)

    Sirotkin, Vladimir A; Kuchierskaya, Alexandra A

    2017-05-04

    The aim of our study is to monitor the preferential hydration/solvation of the protein macromolecules at low and high water content in water-organic mixtures. Our approach is based on the analysis of the absolute values of the water/organic solvent sorption. We applied this approach to estimate the protein stabilization/destabilization due to the preferential interactions of α-chymotrypsin with water-acetonitrile mixtures. At high water content, α-chymotrypsin is preferentially hydrated. At the intermediate water content, the preferential interaction changed from preferential hydration to preferential binding of acetonitrile. From infrared spectra, changes in the structure of α-chymotrypsin were determined through an analysis of the structure of the amide I band. Acetonitrile augments the intensity of the 1626 cm(-1) band assigned to the intermolecular β-sheet aggregates. At low water content, the protein is in a glassy (rigid) state. The H-bond accepting acetonitrile molecules are not effective in solvating the dehydrated protein molecules alone. Therefore, the acetonitrile molecules are preferentially excluded from the protein surface, resulting in the preferential hydration. Advantages of our approach: (i) The preferential interaction parameters can be determined in the entire range of water content in water-organic mixtures. (ii) Our approach facilitates the individual evaluation of the Gibbs energies of water, protein, and organic solvent.

  9. Chromatographic determination of solubilities in superheated water.

    Science.gov (United States)

    Jones, Neil; Clifford, Anthony A; Bartle, Keith D; Myers, Peter

    2010-10-01

    Superheated water (SHW) is an effective solvent for the extraction of a variety of environmental pollutants, but knowledge of the solubilities in water at elevated temperatures necessary to maximise the efficiency of the process is often lacking. Ambient temperature aqueous solubilities have been measured by reverse-phase HPLC from correlations with retention factors, k, but for poorly soluble organics the eluent must contain a proportion of organic modifier followed by extrapolation to pure water. The use of SHW as mobile phase allows direct determination of aqueous solubility from measurement of k on a modified HPLC system in which the eluent is cooled before detection to improve baseline stability. Alumina-bonded octadecylsilane columns were found to be more stable in SHW chromatography than their silica-bonded counterparts. To validate the procedure, measurements of k were made between 100 and 200°C for toluene and correlated with literature solubilities; the solubilities at 170°C of a number of related aromatics were then determined from their k-values.

  10. Water-Soluble Metallocene-Containing Polymers.

    Science.gov (United States)

    Alkan, Arda; Wurm, Frederik R

    2016-09-01

    Metallocenes are organometallic compounds with reversible redox profiles and tunable oxidation and reduction potentials, depending on the metal and substituents at the cyclopentadienyl rings. Metallocenes have been introduced in macromolecules to combine the redox-activity with polymer properties. There are many examples of such hydrophobic polymer materials, but much fewer water-soluble examples are found scattered across the polymer literature. However, in terms of drug delivery and other biological applications, water solubility is essential. For this very reason, all the synthetic routes to water-soluble metallocene containing polymers are collected and discussed here. The focus is on neutral ferrocene- and ruthenocene-containing and charged cobaltocenium-containing macromolecules (i.e., symmetrical sandwich complexes). The synthetic protocols, self-assembly behavior, and other benefits of the obtained materials are discussed. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Lysozyme in water-acetonitrile mixtures: Preferential solvation at the inner edge of excess hydration

    Science.gov (United States)

    Sirotkin, Vladimir A.; Kuchierskaya, Alexandra A.

    2017-06-01

    Preferential solvation/hydration is an effective way for regulating the mechanism of the protein destabilization/stabilization. Organic solvent/water sorption and residual enzyme activity measurements were performed to monitor the preferential solvation/hydration of hen egg-white lysozyme at high and low water content in acetonitrile at 25 °C. The obtained results show that the protein destabilization/stabilization depends essentially on the initial hydration level of lysozyme and the water content in acetonitrile. There are three composition regimes for the dried lysozyme. At high water content, the lysozyme has a higher affinity for water than for acetonitrile. The residual enzyme activity values are close to 100%. At the intermediate water content, the dehydrated lysozyme has a higher affinity for acetonitrile than for water. A minimum on the residual enzyme activity curve was observed in this concentration range. At the lowest water content, the organic solvent molecules are preferentially excluded from the dried lysozyme, resulting in the preferential hydration. The residual catalytic activity is ˜80%, compared with that observed after incubation in pure water. Two distinct schemes are operative for the hydrated lysozyme. At high and intermediate water content, lysozyme is preferentially hydrated. However, in contrast to the dried protein, at the intermediate water content, the initially hydrated lysozyme has the increased preferential hydration parameters. At low water content, the preferential binding of the acetonitrile molecules to the initially hydrated lysozyme was detected. No residual enzyme activity was observed in the water-poor acetonitrile. Our data clearly show that the initial hydration level of the protein macromolecules is one of the key factors that govern the stability of the protein-water-organic solvent systems.

  12. Characterization of Soluble Organics in Produced Water

    Energy Technology Data Exchange (ETDEWEB)

    Bostick, D.T.

    2002-01-16

    Soluble organics in produced water and refinery effluents represent treatment problems for the petroleum industry. Neither the chemistry involved in the production of soluble organics nor the impact of these chemicals on total effluent toxicity is well understood. The U.S. Department of Energy provides funding for Oak Ridge National Laboratory (ORNL) to support a collaborative project with Shell, Chevron, Phillips, and Statoil entitled ''Petroleum and Environmental Research Forum project (PERF 9844: Manage Water-Soluble Organics in Produced Water''). The goal of this project, which involves characterization and evaluation of these water-soluble compounds, is aimed at reducing the future production of such contaminants. To determine the effect that various drilling conditions might have on water-soluble organics (WSO) content in produced water, a simulated brine water containing the principal inorganic components normally found in Gulf of Mexico (GOM) brine sources was prepared. The GOM simulant was then contacted with as-received crude oil from a deep well site to study the effects of water cut, produced-water pH, salinity, pressure, temperature, and crude oil sources on the type and content of the WSO in produced water. The identities of individual semivolatile organic compounds (SVOCs) were determined in all as-received crude and actual produced water samples using standard USEPA Method (8270C) protocol. These analyses were supplemented with the more general measurements of total petroleum hydrocarbon (TPH) content in the gas (C{sub 6}-C{sub 10}), diesel (C{sub 10}-C{sub 20}), and oil (C{sub 20}-C{sub 28}) carbon ranges as determined by both gas chromatographic (GC) and infrared (IR) analyses. An open liquid chromatographic procedure was also used to differentiate the saturated hydrocarbon, aromatic hydrocarbon, and polar components within the extractable TPH. Inorganic constituents in the produced water were analyzed by ion

  13. Biochemical synthesis of water soluble conducting polymers

    Energy Technology Data Exchange (ETDEWEB)

    Bruno, Ferdinando F., E-mail: Ferdinando-Bruno@uml.edu [US Army Natick Soldier Research, Development and Engineering Center, Natick, MA 01760 (United States); Bernabei, Manuele [ITAF, Test Flight Centre, Chemistry Dept. Pratica di Mare AFB, 00071 Pomezia (Rome), Italy (UE) (Italy)

    2016-05-18

    An efficient biomimetic route for the synthesis of conducting polymers/copolymers complexed with lignin sulfonate and sodium (polystyrenesulfonate) (SPS) will be presented. This polyelectrolyte assisted PEG-hematin or horseradish peroxidase catalyzed polymerization of pyrrole (PYR), 3,4 ethyldioxithiophene (EDOT) and aniline has provided a route to synthesize water-soluble conducting polymers/copolymers under acidic conditions. The UV-vis, FTIR, conductivity and cyclic voltammetry studies for the polymers/copolymer complex indicated the presence of a thermally stable and electroactive polymers. Moreover, the use of water-soluble templates, used as well as dopants, provided a unique combination of properties such as high electronic conductivity, and processability. These polymers/copolymers are nowadays tested/evaluated for antirust features on airplanes and helicopters. However, other electronic applications, such as photovoltaics, for transparent conductive polyaniline, actuators, for polypyrrole, and antistatic films, for polyEDOT, will be proposed.

  14. α-chymotrypsin in water-acetone and water-dimethyl sulfoxide mixtures: Effect of preferential solvation and hydration.

    Science.gov (United States)

    Sirotkin, Vladimir A; Kuchierskaya, Alexandra A

    2017-10-01

    We investigated water/organic solvent sorption and residual enzyme activity to simultaneously monitor preferential solvation/hydration of protein macromolecules in the entire range of water content at 25°C. We applied this approach to estimate protein destabilization/stabilization due to the preferential interactions of bovine pancreatic α-chymotrypsin with water-acetone (moderate-strength H-bond acceptor) and water-DMSO (strong H-bond acceptor) mixtures. There are three concentration regimes for the dried α-chymotrypsin. α-Chymotrypsin is preferentially hydrated at high water content. The residual enzyme activity values are close to 100%. At intermediate water content, the dehydrated α-chymotrypsin has a higher affinity for acetone/DMSO than for water. Residual enzyme activity is minimal in this concentration range. The acetone/DMSO molecules are preferentially excluded from the protein surface at the lowest water content, resulting in preferential hydration. The residual catalytic activity in the water-poor acetone is ∼80%, compared with that observed after incubation in pure water. This effect is very small for the water-poor DMSO. Two different schemes are operative for the hydrated enzyme. At high and intermediate water content, α-chymotrypsin exhibits preferential hydration. However, at intermediate water content, in contrast to the dried enzyme, the initially hydrated α-chymotrypsin possesses increased preferential hydration parameters. At low water content, no residual enzyme activity was observed. Preferential binding of DMSO/acetone to α-chymotrypsin was detected. Our data clearly demonstrate that the hydrogen bond accepting ability of organic solvents and the protein hydration level constitute key factors in determining the stability of protein-water-organic solvent systems. © 2017 Wiley Periodicals, Inc.

  15. Water soluble azido polyisocyanides as functional beta-sheet mimics

    NARCIS (Netherlands)

    Schwartz, Erik; Schwartz, E.; Koepf, Matthieu; Kitto, Heather J.; Espelt, Mónica; Nebot-Carda, Vicent J.; de Gelder, Rene; Nolte, Roeland J.M.; Cornelissen, Jeroen Johannes Lambertus Maria; Rowan, Alan E.

    2009-01-01

    The design and synthesis of functional biomimetic water soluble polymers with a defined secondary structure has been developed using β-sheet polyisocyanopeptide scaffolds. Water soluble isocyanopolymers were prepared by random copolymerisation of the azido functionalized isocyanopeptides with

  16. Water-soluble titanium alkoxide material

    Science.gov (United States)

    Boyle, Timothy J.

    2010-06-22

    A water soluble, water stable, titanium alkoxide composition represented by the chemical formula (OC.sub.6H.sub.6N).sub.2Ti(OC.sub.6H.sub.2(CH.sub.2N(CH.sub.3).sub.2).sub- .3-2,4,6).sub.2 with a theoretical molecular weight of 792.8 and an elemental composition of 63.6% C, 8.1% H, 14.1% N, 8.1% O and 6.0% Ti.

  17. Influence of sampling strategy on detecting preferential flow paths in water-repellent sand

    NARCIS (Netherlands)

    Ritsema, C.J.; Dekker, L.W.

    1996-01-01

    A sample spacing up to 22 cm over a distance of several metres is just sufficient to collect information about preferential flow paths in a water-repellent sandy soil. When larger sample spacings were used, the water content distributions became more horizontally stratified. Increasing the sample

  18. Indomethacin solubility in propylene glycol + water mixtures according to the extended hildebrand solubility approach

    OpenAIRE

    Holguín, Andrés R.; Delgado, Daniel R.; Martínez, Fleming

    2012-01-01

    In this work the Extended Hildebrand Solubility Approach (EHSA) was applied to evaluate the solubility of the analgesic drug indomethacin in propylene glycol + water mixtures at 298.15 K. An acceptable correlative capacity of EHSA was found using a regular polynomial model in order four (overall deviation lower than 2.2 %), when the W interaction parameter is related to the solubility parameter of the mixtures. Nevertheless, the deviations obtained in the estimated solubility with respect to ...

  19. Further Numerical Analyses on the Solubility of Sulfapyridine in Ethanol + Water Mixtures

    Directory of Open Access Journals (Sweden)

    Daniel R Delgado , María A. Peña , Fleming Martinez , Abolghasem Jouyban, William E. Acree Jr.

    2016-09-01

    Full Text Available Background: Dissolution thermodynamic quantities of sulfapyridine (SP have been reported in the literature for aqueous alcoholic mixtures. Nevertheless, no attempts to evaluate the preferential solvation of this drug in this binary system, have been reported. In this way, the inverse Kirkwood-Buff integrals (IKBI were used to evaluate this behavior in solution. Methods: Solubility data for SP dissolved in binary ethanol (EtOH + water mixtures at various temperatures were mathematically represented using the Jouyban-Acree (J-A model. The preferential solvation parameters of SP by EtOH (δx1,3 in EtOH + water mixtures were obtained from some thermodynamic properties of the mixtures by means of the IKBI method. Results: Solubility of SP in EtOH + water mixtures is adequately described by the J-A model in second order. Moreover, SP is sensitive to specific solvation effects, so the δx1,3 values are negative in water-rich and EtOH-rich mixtures indicating preferential solvation by water in these mixtures. By contrary, δx1,3 values are positive in the range 0.24 < x1 < 0.53 indicating preferential solvation by EtOH in these mixtures. Conclusion: It can be assumed that in water-rich mixtures the hydrophobic hydration around the aromatic rings plays a relevant role in the solvation. The higher drug solvation by EtOH in mixtures of similar solvent proportions could be due to polarity effects. Moreover, in EtOH + water mixtures SP could be acting as a Lewis acid with the EtOH molecules and in EtOH-rich mixtures the drug could be acting as a Lewis base with water molecules.

  20. Membrane Proteins Are Dramatically Less Conserved than Water-Soluble Proteins across the Tree of Life.

    Science.gov (United States)

    Sojo, Victor; Dessimoz, Christophe; Pomiankowski, Andrew; Lane, Nick

    2016-11-01

    Membrane proteins are crucial in transport, signaling, bioenergetics, catalysis, and as drug targets. Here, we show that membrane proteins have dramatically fewer detectable orthologs than water-soluble proteins, less than half in most species analyzed. This sparse distribution could reflect rapid divergence or gene loss. We find that both mechanisms operate. First, membrane proteins evolve faster than water-soluble proteins, particularly in their exterior-facing portions. Second, we demonstrate that predicted ancestral membrane proteins are preferentially lost compared with water-soluble proteins in closely related species of archaea and bacteria. These patterns are consistent across the whole tree of life, and in each of the three domains of archaea, bacteria, and eukaryotes. Our findings point to a fundamental evolutionary principle: membrane proteins evolve faster due to stronger adaptive selection in changing environments, whereas cytosolic proteins are under more stringent purifying selection in the homeostatic interior of the cell. This effect should be strongest in prokaryotes, weaker in unicellular eukaryotes (with intracellular membranes), and weakest in multicellular eukaryotes (with extracellular homeostasis). We demonstrate that this is indeed the case. Similarly, we show that extracellular water-soluble proteins exhibit an even stronger pattern of low homology than membrane proteins. These striking differences in conservation of membrane proteins versus water-soluble proteins have important implications for evolution and medicine. © The Author 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  1. Thermodynamics of sulfanilamide solubility in propylene glycol + water mixtures

    OpenAIRE

    Martínez, Fleming; Romdhani, Asma; Delgado, Daniel R.

    2011-01-01

    The solubility of sulfanilamide (SA) in propylene glycol + water cosolvent mixtures was determined at temperatures from 293.15 to 313.15 K. The thermodynamic functions: Gibbs energy, enthalpy, and entropy of solution and mixing were obtained from these solubility data by using the van’t Hoff and Gibbs equations. The solubility was maximal in propylene glycol and very low in water at all the temperatures. A non linear enthalpy–entropy relationship was observed from a plot of enthal...

  2. Bioconcentration of Water Soluble Fraction (WSF) of crude oil in ...

    African Journals Online (AJOL)

    Bioconcentration of water soluble fraction of Australian crude oil in 50 fingerlings of Oreochromis niloticus was conducted under laboratory conditions for 28 days. An initial acute toxicity test was carried out using different concentrations (25ml/L, 50ml/L, 75ml/L, 100ml/L and a control) of the water soluble fraction (WSF) of ...

  3. Water-soluble dietary fibers and cardiovascular disease.

    Science.gov (United States)

    Theuwissen, Elke; Mensink, Ronald P

    2008-05-23

    One well-established way to reduce the risk of developing cardiovascular disease (CVD) is to lower serum LDL cholesterol levels by reducing saturated fat intake. However, the importance of other dietary approaches, such as increasing the intake of water-soluble dietary fibers is increasingly recognized. Well-controlled intervention studies have now shown that four major water-soluble fiber types-beta-glucan, psyllium, pectin and guar gum-effectively lower serum LDL cholesterol concentrations, without affecting HDL cholesterol or triacylglycerol concentrations. It is estimated that for each additional gram of water-soluble fiber in the diet serum total and LDL cholesterol concentrations decrease by -0.028 mmol/L and -0.029 mmol/L, respectively. Despite large differences in molecular structure, no major differences existed between the different types of water-soluble fiber, suggesting a common underlying mechanism. In this respect, it is most likely that water-soluble fibers lower the (re)absorption of in particular bile acids. As a result hepatic conversion of cholesterol into bile acids increases, which will ultimately lead to increased LDL uptake by the liver. Additionally, epidemiological studies suggest that a diet high in water-soluble fiber is inversely associated with the risk of CVD. These findings underlie current dietary recommendations to increase water-soluble fiber intake.

  4. Use of Hoy's solubility parameters to predict water sorption/solubility of experimental primers and adhesives.

    Science.gov (United States)

    Nishitani, Yoshihiro; Yoshiyama, Masahiro; Hosaka, Keiichi; Tagami, Junji; Donnelly, Adam; Carrilho, Marcela; Tay, Franklin R; Pashley, David H

    2007-02-01

    Self-etching primers and adhesives contain very hydrophilic acidic monomers that result in high water sorption/solubilities of their polymers. However, the chemical composition of these products varies widely. The purpose of this work was to vary the chemical composition of experimental self-etching primers and adhesives to determine if the water sorption/solubility of the polymers were affected in a predictable manner. The Hoy's solubility parameters of these mixtures were calculated to permit ranking of the degree of hydrophilicity of the polymers. Water sorption/solubility was measured according to ISO 4049. The results showed highly significant (R(2) = 0.86, P solubility parameter for polar forces (delta(p)) of the polymers. Similar correlations were obtained between polymer solubility and delta(p). When these results were compared with previously published results obtained with more hydrophobic resins, excellent correlations were obtained, indicating that Hoy's delta(p) values may be used to predict the water sorption behavior of methylmethacrylate polymers.

  5. Coccidioides immitis Vaccine: Potential of an Alkali-Soluble, Water-Soluble Cell Wall Antigen

    Science.gov (United States)

    Lecara, Grace; Cox, Rebecca A.; Simpson, Russell B.

    1983-01-01

    C-ASWS-M, the alkali-soluble, water-soluble cell wall antigen of Coccidioides immitis mycelia, was evaluated for its vaccine potential in mice. Vaccination with 0.5-, 1.5-, or 3-mg doses of C-ASWS-M in complete Freund adjuvant provided a significant level of protection against intraperitoneal challenge with 1,500 arthroconidia (P 0.05). PMID:6822433

  6. Thiolate ligands for synthesis of water-soluble gold clusters.

    Science.gov (United States)

    Ackerson, Christopher J; Jadzinsky, Pablo D; Kornberg, Roger D

    2005-05-11

    Water-soluble monolayer-protected gold clusters (MPCs) have been an object of investigation by many research groups since their first syntheses were reported in 1998 and 1999. The basic requirements for a ligand to form a monolayer protecting a gold cluster were established some time ago for alkanethiolate MPCs, but there has been no such information published for water-soluble MPCs. We identify 6 new ligands capable of forming water-soluble MPCs, as well as 22 water-soluble ligands that fail to form MPCs. Our findings contribute not only to the definition of the requirements for MPC formation but also to the variety of MPCs available for applications in chemistry and biology.

  7. Water-soluble dopamine-based polymers for photoacoustic imaging

    NARCIS (Netherlands)

    Repenko, T.; Fokong, S.; De Laporte, L.; Go, D.; Kiessling, F.; Lammers, Twan Gerardus Gertudis Maria; Kuehne, A.

    2015-01-01

    Here we present a facile synthetic method yielding a linear form of polydopamine via Kumada-coupling, which can be converted into water-soluble melanin, generating high contrast in photoacoustic imaging.

  8. Water sorption and solubility of polyamide denture base materials.

    Science.gov (United States)

    Nguyen, Long G; Kopperud, Hilde M; Øilo, Marit

    2017-01-01

    Purpose: Some patients experience adverse reactions to poly(methyl methacrylate)-based (PMMA) dentures. Polyamide (PA) as an alternative to PMMA has, however, not been well documented with regard to water sorption and water solubility. The aim of this in vitro study was to measure water sorption and water solubility of two PA materials compared with PMMA, and to evaluate the major components released from the PA materials and the effect on hardness of the materials. Methods: Ten discs (40.0 mm diameter, 2.0 mm thick) of each material (PA: Valplast and Breflex; PMMA: SR Ivocap HIP) were prepared according to manufacturers' recommendations. The specimens were tested for water sorption and water solubility, according to a modification of ISO 20795-1:2008. Released substances were analysed by gas chromatography/mass spectrometry (GC/MS). Results: There were statistically significant differences among the materials regarding water sorption, water solubility and time to water saturation. Breflex had the highest water sorption (30.4 μg/mm(3)), followed by PMMA-material (25.8 μg/mm(3)) and Valplast (13.6 μg/mm(3)). Both PA materials had statistically significant lower water solubility than the PMMA. Both PA had a net increase in weight. Analysis by GC/MS identified release of the compound 12-aminododecanolactam from the material Valplast. No release was found from the Breflex material. Conclusions: The PA denture materials show differences in water sorption and solubility, but within the limits of the standard requirements. The PA showed a net increase in weight after long-term water sorption. The clinical implications of the findings are not elucidated.

  9. Identification of water-soluble heavy crude oil organic-acids, bases, and neutrals by electrospray ionization and field desorption ionization fourier transform ion cyclotron resonance mass spectrometry.

    Science.gov (United States)

    Stanford, Lateefah A; Kim, Sunghwan; Klein, Geoffrey C; Smith, Donald F; Rodgers, Ryan P; Marshall, Alan G

    2007-04-15

    We identify water-soluble (23 degrees C) crude oil NSO nonvolatile acidic, basic, and neutral crude oil hydrocarbons by negative-ion ESI and continuous flow FD FT-ICR MS at an average mass resolving power, m/deltam50% = 550,000. Of the 7000+ singly charged acidic species identified in South American crude oil, surprisingly, many are water-soluble, and much more so in pure water than in seawater. The truncated m/z distributions for water-soluble components exhibit preferential molecular weight, size, and heteroatom class influences on hydrocarbon solubility. Acidic water-soluble heteroatomic classes detected at >1% relative abundance include O, O2, O3, O4, OS, O2S, O3S, O4S, NO2, NO3, and NO4. Parent oil class abundance does not directly relate to abundance in the water-soluble fraction. Acidic oxygen-containing classes are most prevalent in the water-solubles, whereas acidic nitrogen-containing species are least soluble. In contrast to acidic nitrogen-containing heteroatomic classes, basic nitrogen classes are water-soluble. Water-soluble heteroatomic basic classes detected at >1% relative abundance include N, NO, NO2, NS, NS2, NOS, NO2S, N2, N2O, N2O2, OS, O2S, and O2S2.

  10. Bioremediation prospects of fungi isolated from water soluble ...

    African Journals Online (AJOL)

    Bioremediation prospects of fungi isolated from water soluble fraction of crude oil samples. ... the level of pH, EC and TDS. The ability of the fungi to adapt to these conditions indicates their potential as a tool for bioremediation of crude oil polluted water. Keywords: Bioremediation, Crude Oil, Fungi, Polluted Water, Potential.

  11. Preferential adsorption from liquid water-ethanol mixtures in alumina pores.

    Science.gov (United States)

    Phan, Anh; Cole, David R; Striolo, Alberto

    2014-07-15

    The sorptivity, structure, and dynamics of liquid water-ethanol mixtures confined in alumina pores were studied by molecular dynamics simulations. Due to an effective stronger attraction between water and the alumina surface, our simulations show that water is preferentially adsorbed in alumina nanopores from bulk solutions of varying composition. These results are in good qualitative agreement with experimental data reported by Rao and Sircar (Adsorpt. Sci. Technol. 1993, 10, 93). Analysis of the simulated trajectories allows us to predict that water diffuses through the narrow pores more easily than ethanol, in part because of its smaller size. Our results suggest that ethanol has an antiplasticization effect on water within the narrow pores considered here, whereas it has a plasticization effect on water in the bulk. Rao and Sircar suggested that alumina could be used in concentration swing and/or concentration-thermal swing adsorption processes to separate water from ethanol. In addition, our results suggest the possibility of using alumina for manufacturing permselective membranes to produce anhydrous ethanol from liquid water-ethanol solutions.

  12. Novel electrosprayed nanospherules for enhanced aqueous solubility and oral bioavailability of poorly water-soluble fenofibrate.

    Science.gov (United States)

    Yousaf, Abid Mehmood; Mustapha, Omer; Kim, Dong Wuk; Kim, Dong Shik; Kim, Kyeong Soo; Jin, Sung Giu; Yong, Chul Soon; Youn, Yu Seok; Oh, Yu-Kyoung; Kim, Jong Oh; Choi, Han-Gon

    2016-01-01

    The purpose of the present research was to develop a novel electrosprayed nanospherule providing the most optimized aqueous solubility and oral bioavailability for poorly water-soluble fenofibrate. Numerous fenofibrate-loaded electrosprayed nanospherules were prepared with polyvinylpyrrolidone (PVP) and Labrafil(®) M 2125 as carriers using the electrospray technique, and the effect of the carriers on drug solubility and solvation was assessed. The solid state characterization of an optimized formulation was conducted by scanning electron microscopy, powder X-ray diffraction, differential scanning calorimetry, and Fourier transform infrared spectroscopic analyses. Oral bioavailability in rats was also evaluated for the formulation of an optimized nanospherule in comparison with free drug and a conventional fenofibrate-loaded solid dispersion. All of the electrosprayed nanospherule formulations had remarkably enhanced aqueous solubility and dissolution compared with free drug. Moreover, Labrafil M 2125, a surfactant, had a positive influence on the solubility and dissolution of the drug in the electrosprayed nanospherule. Increases were observed as the PVP/drug ratio increased to 4:1, but higher ratios gave no significant increases. In particular, an electrosprayed nanospherule composed of fenofibrate, PVP, and Labrafil M 2125 at the weight ratio of 1:4:0.5 resulted in a particle size of state. It demonstrated the highest solubility (32.51±2.41 μg/mL), an excellent dissolution (~85% in 10 minutes), and an oral bioavailability ~2.5-fold better than that of the free drug. It showed similar oral bioavailability compared to the conventional solid dispersion. Electrosprayed nanospherules, which provide improved solubility and bioavailability, are promising drug delivery tools for oral administration of poorly water-soluble fenofibrate.

  13. The levels of water-soluble and triton-soluble Aβ are increased in Alzheimer's disease brain

    Science.gov (United States)

    Mc Donald, Jessica M.; Cairns, Nigel J.; Taylor-Reinwald, Lisa; Holtzman, David; Walsh, Dominic M.

    2012-01-01

    Although plaques composed of the amyloid β-protein (Aβ) are considered a defining feature of Alzheimer's disease (AD), they are also found in cognitively normal individuals and extensive evidence suggests that non-plaque, water-soluble forms of Aβ may play a role in AD pathogenesis. However, the relationship between the levels of water-soluble Aβ and the clinical severity of disease has never been investigated. Here, we present results of a pilot study designed to examine the levels of water-soluble forms of Aβ in brains of individuals who died at clinically distinct stages of AD. Using a serial extraction method, we also investigated the levels of triton-soluble and formic acid-soluble Aβ. We found that water-soluble and detergent-soluble Aβ monomer and SDS-stable dimer were elevated in AD and that the levels of water soluble Aβ did not increase with plaque pathology. These results support the notion that both water- and detergent-soluble Aβ are important in AD and are not simply released from plaques by mechanical disruption. Moreover, the fact that the levels of water- and triton-soluble Aβ were similar in very mild/mild AD and moderate/severe AD suggests that once a certain level of these species is attained, further accumulation is not necessary for the disease to progress. Consequently, therapeutic targeting of water-soluble Aβ should best benefit individuals in earliest phases of the disease process. PMID:22440675

  14. The solubilities of benzene polycarboxylic acids in water

    Energy Technology Data Exchange (ETDEWEB)

    Apelblat, Alexander [Department of Chemical Engineering, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105 (Israel)]. E-mail: apelblat@bgu.ac.il; Manzurola, Emanuel [Department of Chemical Engineering, Ben Gurion University of the Negev, P.O. Box 653, Beer Sheva 84105 (Israel); Abo Balal, Nazmia [Negev Academic College of Engineering, Beer Sheva (Israel)

    2006-05-15

    The solubilities in water of all benzene polycarboxylic acids are discussed, using data determined in this work (benzoic, terephthalic, trimellitic, trimesic, and pyromellitic acids) and available from the literature (benzoic, phthalic, isophthalic, terephthalic, hemimellitic, trimelitic, trimesic, mellophanic, prehnitic, pyromellitic, benzene-pentacarboxylic and mellitic acids). The apparent molar enthalpies of solution at the saturation point for these benzene polycarboxylic acids were determined from the temperature dependence of the solubilities.

  15. Interlaboratory validation of small-scale solubility and dissolution measurements of poorly water-soluble drugs

    DEFF Research Database (Denmark)

    Andersson, Sara B. E.; Alvebratt, Caroline; Bevernage, Jan

    2016-01-01

    The purpose of this study was to investigate the interlaboratory variability in determination of apparent solubility (Sapp) and intrinsic dissolution rate (IDR) using a miniaturized dissolution instrument. Three poorly water-soluble compounds were selected as reference compounds and measured...... at multiple laboratories using the same experimental protocol. Dissolution was studied in fasted-state simulated intestinal fluid and phosphate buffer (pH 6.5). An additional 6 compounds were used for the development of an IDR measurement guide, which was then validated with 5 compounds. The results clearly...

  16. Water sorption and solubility of core build-up materials.

    Science.gov (United States)

    Zankuli, M A; Devlin, H; Silikas, N

    2014-12-01

    To investigate the variation in water sorption and solubility across a range of different core build-up materials. Five materials were tested, four of which are resin-based materials (Grandio Core, Core.X Flow, Bright Flow Core, Speedee) and one resin-modified glass ionomer (Fuji II LC). All specimens (n=10) were immersed in 10ml distilled water in individual glass containers and weighed at one week, 14 and 28 days. After a total immersion time of 28 days, 7 specimens were dried to a constant mass, in a desiccator for 28 days. Three samples of each material were not dried, but were left in distilled water for 1 year, to determine the long-term water sorption properties. Specimens were weighed at monthly intervals until 6 months and then at the 9th and 12th months. Each specimen was measured using a digital electronic caliper (Mitutoyo Corporation, Japan). After 28 days immersion, the change in water sorption and solubility of the materials ranged from 12.9 to 67.1μg/mm(3) (P<0.001) and 0.9-6.4μg/mm(3) respectively (P<0.001). Except for Fuji II LC, an independent T-test showed significantly higher water sorption and solubility for the other materials after 1-year total immersion in water compared to 1 month (P<0.05). Using repeated measures ANOVA, all materials showed mass changes over time (1 month) (P<0.001). Grandio Core had the lowest water sorption and solubility among the tested materials. According to the ISO 4049 standards, all the tested materials showed acceptable water sorption and solubility, apart from the water sorption behavior of Fuji II LC. Copyright © 2014 Academy of Dental Materials. Published by Elsevier Ltd. All rights reserved.

  17. Oral formulation strategies to improve solubility of poorly water-soluble drugs.

    Science.gov (United States)

    Singh, Abhishek; Worku, Zelalem Ayenew; Van den Mooter, Guy

    2011-10-01

    In the past two decades, there has been a spiraling increase in the complexity and specificity of drug-receptor targets. It is possible to design drugs for these diverse targets with advances in combinatorial chemistry and high throughput screening. Unfortunately, but not entirely unexpectedly, these advances have been accompanied by an increase in the structural complexity and a decrease in the solubility of the active pharmaceutical ingredient. Therefore, the importance of formulation strategies to improve the solubility of poorly water-soluble drugs is inevitable, thus making it crucial to understand and explore the recent trends. Drug delivery systems (DDS), such as solid dispersions, soluble complexes, self-emulsifying drug delivery systems (SEDDS), nanocrystals and mesoporous inorganic carriers, are discussed briefly in this review, along with examples of marketed products. This article provides the reader with a concise overview of currently relevant formulation strategies and proposes anticipated future trends. Today, the pharmaceutical industry has at its disposal a series of reliable and scalable formulation strategies for poorly soluble drugs. However, due to a lack of understanding of the basic physical chemistry behind these strategies, formulation development is still driven by trial and error.

  18. Study of pH-dependent drugs solubility in water

    Directory of Open Access Journals (Sweden)

    Pobudkowska A.

    2014-01-01

    Full Text Available The solubilities of five sparingly soluble drug-compounds in water have been measured at constant temperatures (298.1K and 310.1K by the classical saturation shake-flask method. All substances presented in this work are derivatives of anthranilic acid: flufenamic acid, (FLU, mefenamic acid, (MEF, niflumic acid, (NIF, diclofenac sodium, (DIC, and meclofenamic sodium, (MEC. All of them have anti-inflammatory action. Since the aqueous solubility of the ionized drug is significantly higher than the unionized, the experimental conditions that affect equilibrium solubility values such as composition of aqueous buffer have been examined. The Henderson-Hasselbalch (HH relationship has been used to predict the pH-dependent solubility profiles of chosen drugs at two temperatures. For this purpose the pKa values of the investigated drugs have been determined with Bates-Schwarzenbach spectrophotometric method at temperature 310.1 K. At temperature 298.1K these values were reported earlier. Similar values of pKa were obtained from the solubility measurements.

  19. Colloid Mobilization in a Fractured Soil: Effect of Pore-Water Exchange between Preferential Flow Paths and Soil Matrix.

    Science.gov (United States)

    Mohanty, Sanjay K; Saiers, James E; Ryan, Joseph N

    2016-03-01

    Exchange of water and solutes between contaminated soil matrix and bulk solution in preferential flow paths has been shown to contribute to the long-term release of dissolved contaminants in the subsurface, but whether and how this exchange can affect the release of colloids in a soil are unclear. To examine this, we applied rainfall solutions of different ionic strength on an intact soil core and compared the resulting changes in effluent colloid concentration through multiple sampling ports. The exchange of water between soil matrix and the preferential flow paths leading to each port was characterized on the basis of the bromide (conservative tracer) breakthrough time at the port. At individual ports, two rainfalls of a certain ionic strength mobilized different amounts of colloids when the soil was pre-exposed to a solution of lower or higher ionic strength. This result indicates that colloid mobilization depended on rainfall solution history, which is referred as colloid mobilization hysteresis. The extent of hysteresis was increased with increases in exchange of pore water and solutes between preferential flow paths and matrix. The results indicate that the soil matrix exchanged the old water from the previous infiltration with new infiltrating water during successive infiltration and changed the pore water chemistry in the preferential flow paths, which in turn affected the release of soil colloids. Therefore, rainfall solution history and soil heterogeneity must be considered to assess colloid mobilization in the subsurface. These findings have implications for the release of colloids, colloid-associated contaminants, and pathogens from soils.

  20. Plasma concentrations of water.soluble vitamins in metabolic ...

    African Journals Online (AJOL)

    Context: Vitamins B1 (thiamine), B3 (niacin), B6 (pyridoxine), and C (ascorbic acid) are vital for energy, carbohydrate, lipid, and amino acid metabolism and in the regulation of the cellular redox state. Some studies have associated low levels of water.soluble vitamins with metabolic syndrome and its various components.

  1. Water-Soluble Gold Nanoparticles Protected by Fluorinated Amphiphilic Thiolates

    NARCIS (Netherlands)

    Gentilini, Cristina; Evangelista, Fabrizio; Rudolf, Petra; Franchi, Paola; Lucarini, Marco; Pasquato, Lucia

    2008-01-01

    The preparation and the properties of gold nanoparticles (Au NPs) protected by perfluorinated amphiphiles are described. The thiols were devised to form a perfluorinated region close to the gold surface and to have a hydrophilic portion in contact with the bulk solvent to impart solubility in water.

  2. Plasma concentrations of water-soluble vitamins in metabolic ...

    African Journals Online (AJOL)

    2012-01-21

    Jan 21, 2012 ... levels of water-soluble vitamins with metabolic syndrome and its various components. Aims: This study aims to determine the plasma concentrations of vitamins B1, B3, B6, and C in Nigerians with metabolic syndrome and in healthy controls. Settings and Design: One-hundred subjects with metabolic ...

  3. Synthesis and characterization of water-soluble carbon nanotubes ...

    Indian Academy of Sciences (India)

    Carbon nanotubes (CNT) has been synthesized by pyrolysing mustard oil using an oil lamp. It was made water-soluble (wsCNT) through oxidative treatment by dilute nitric acid and was characterized by SEM, AFM, XRD, Raman and FTIR spectroscopy. The synthesized wsCNT showed the presence of several junctions and ...

  4. Highly Active Water-Soluble Olefin Metathesis Catalyst

    OpenAIRE

    Hong, Soon Hyeok; Grubbs, Robert H

    2006-01-01

    A novel water-soluble ruthenium olefin metathesis catalyst supported by a poly(ethylene glycol) conjugated saturated 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene ligand is reported. The catalyst displays improved activity in ring-opening metathesis polymerization, ring-closing metathesis, and cross-metathesis reactions in aqueous media.

  5. Water-soluble diphosphadiazacyclooctanes as ligands for aqueous organometallic catalysis

    KAUST Repository

    Boulanger, Jérôme

    2012-12-01

    Two new water-soluble diphosphacyclooctanes been synthesized and characterized by NMR and surface tension measurements. Both phosphanes proved to coordinate rhodium in a very selective way as well-defined bidentates were obtained. When used in Rh-catalyzed hydroformylation of terminal alkenes, both ligands positively impacted the reaction chemoselectivity. © 2012 Elsevier B.V.

  6. Seasonal and genotypic variation of water-soluble polysaccharide ...

    African Journals Online (AJOL)

    Cyclocarya paliurus (Batal) Iljinskaja is an important medicinal woody plant due to numerous bioactive natural products in its leaves. As an important bioactive natural product, water-soluble polysaccharides (WSP) in leaves of C. paliurus possess diverse biological activities, such as hypoglycemic, anticancer and ...

  7. SYNTHESIS AND PROPERTIES OF STERICALLY HINDERED WATER SOLUBLE PORPHYRINE

    Directory of Open Access Journals (Sweden)

    Yu. V. Ishkov

    2014-12-01

    Full Text Available 5,10,15,20-(2-methoxy-3-quinolinylporphyrine, which was a mixture of atropisomers, was obtained by condensation of 2-methoxyquinoline-3-carbaldehyde with pyrrole in propionic acid. Quaternization of nitrogen atoms of peripheric substituents in this compound lead to water soluble sterically hindered porphyrine.

  8. Synthesis and characterization of water-soluble carbon nanotubes ...

    Indian Academy of Sciences (India)

    Abstract. Carbon nanotubes (CNT) has been synthesized by pyrolysing mustard oil using an oil lamp. It was made water-soluble (wsCNT) through oxidative treatment by dilute nitric acid and was characterized by SEM, AFM, XRD, Raman and FTIR spec- troscopy. The synthesized wsCNT showed the presence of several ...

  9. Compositional analysis of water-soluble materials in switchgrass.

    Science.gov (United States)

    Chen, Shou-Feng; Mowery, Richard A; Sevcik, Richard S; Scarlata, Christopher J; Chambliss, C Kevin

    2010-03-24

    Any valuation of a potential feedstock for bioprocessing is inherently dependent upon detailed knowledge of its chemical composition. Accepted analytical procedures for compositional analysis of biomass water-soluble extracts currently enable near-quantitative mass closure on a dry weight basis. Techniques developed in conjunction with a previous analytical assessment of corn stover have been applied to assess the composition of water-soluble materials in four representative switchgrass samples. To date, analytical characterization of water-soluble material in switchgrass has resulted in >78% mass closures for all four switchgrass samples, three of which have a mass closure of >85%. Over 30 previously unknown constituents in aqueous extracts of switchgrass were identified and quantified using a variety of chromatographic techniques. Carbohydrates (primarily sucrose, glucose, and fructose) were found to be the predominant water-soluble components of switchgrass, accounting for 18-27% of the dry weight of extractives. Total glycans (monomeric and oligomeric sugars) contributed 25-32% to the dry weight of extractives. Additional constituents contributing to the mass balance for extractives included various alditols (2-3%), organic acids (10-13%), inorganic ions (11-13%), and a distribution of oligomers presumed to represent a diverse mixture of lignin-carbohydrate complexes (30-35%). Switchgrass results are compared with previous analyses of corn stover extracts and presented in the context of their potential impact on biomass processing, feedstock storage, and future analyses of feedstock composition.

  10. Short Communication Relationships between the water solubility of ...

    African Journals Online (AJOL)

    132. Short Communication. Relationships between the water solubility of roughage dry matter and certain chemical characteristics. J.W. Cilliers- and H.J. Cilliers. North West Agricultural Development lnstitute, Private. Bag X804, Potchefstroom, 2520 Republic of South Africa. Received 17 May 1995; accepted 8 August 1995.

  11. The coagulation characteristics of humic acid by using acid-soluble chitosan, water-soluble chitosan, and chitosan coagulant mixtures.

    Science.gov (United States)

    Chen, Chih-Yu; Wu, Chung-Yu; Chung, Ying-Chien

    2015-01-01

    Chitosan is a potential substitute for traditional aluminium salts in water treatment systems. This study compared the characteristics of humic acid (HA) removal by using acid-soluble chitosan, water-soluble chitosan, and coagulant mixtures of chitosan with aluminium sulphate (alum) or polyaluminium chloride (PACl). In addition, we evaluated their respective coagulation efficiencies at various coagulant concentrations, pH values, turbidities, and hardness levels. Furthermore, we determined the size and settling velocity of flocs formed by these coagulants to identify the major factors affecting HA coagulation. The coagulation efficiency of acid- and water-soluble chitosan for 15 mg/l of HA was 74.4% and 87.5%, respectively. The optimal coagulation range of water-soluble chitosan (9-20 mg/l) was broader than that of acid-soluble chitosan (4-8 mg/l). Notably, acid-soluble chitosan/PACl and water-soluble chitosan/alum coagulant mixtures exhibited a higher coagulation efficiency for HA than for PACl or alum alone. Furthermore, these coagulant mixtures yielded an acceptable floc settling velocity and savings in both installation and operational expenses. Based on these results, we confidently assert that coagulant mixtures with a 1:1 mass ratio of acid-soluble chitosan/PACl and water-soluble chitosan/alum provide a substantially more cost-effective alternative to using chitosan alone for removing HA from water.

  12. Morphological Analysis and Solubility of Lead Particles: Effect of Phosphates and Implications to Drinking Water (Presentation)

    Science.gov (United States)

    Describe lead synthesis experiments conduced to model the impact of water quality on lead particles and solubility Develop a model system that can be used for lead solubility studies Understand how phosphates impact morphology and solubility transformations with time

  13. Synthesis of Water-Soluble Deep-Cavity Cavitands.

    Science.gov (United States)

    Hillyer, Matthew B; Gibb, Corinne L D; Sokkalingam, Punidha; Jordan, Jacobs H; Ioup, Sarah E; Gibb, Bruce C

    2016-08-19

    An efficient, four-step synthesis of a range of water-soluble, deep-cavity cavitands is presented. Key to this approach are octahalide derivatives (4, X = Cl or Br) that allow a range of water-solubilizing groups to be added to the outer surface of the core host structure. In many cases, the conversion of the starting dodecol (1) resorcinarene to the different cavitands avoids any chromatographic procedures.

  14. Water-soluble pentagonal-prismatic titanium-oxo clusters

    OpenAIRE

    Zhang, Guanyun; Liu, Caiyun; Long, De-Liang; Cronin, Leroy; Tung, Chen-Ho; Wang, Yifeng

    2016-01-01

    By using solubility control to crystallize the prenucleation clusters of hydrosol, a family of titanium-oxo clusters possessing the {Ti18O27} core in which the 18 Ti(IV)-ions are uniquely connected with μ-oxo ligands into a triple-decked pentagonal prism was obtained. The cluster cores are wrapped by external sulfate and aqua ligands, showing good solubilities and stabilities in a variety of solvents including acetonitrile and water and allowing their solution chemistry being studied by means...

  15. [Effects of snow cover on water soluble and organic solvent soluble components during foliar litter decomposition in an alpine forest].

    Science.gov (United States)

    Xu, Li-Ya; Yang, Wan-Qin; Li, Han; Ni, Xiang-Yin; He, Jie; Wu, Fu-Zhong

    2014-11-01

    Seasonal snow cover may change the characteristics of freezing, leaching and freeze-thaw cycles in the scenario of climate change, and then play important roles in the dynamics of water soluble and organic solvent soluble components during foliar litter decomposition in the alpine forest. Therefore, a field litterbag experiment was conducted in an alpine forest in western Sichuan, China. The foliar litterbags of typical tree species (birch, cypress, larch and fir) and shrub species (willow and azalea) were placed on the forest floor under different snow cover thickness (deep snow, medium snow, thin snow and no snow). The litterbags were sampled at snow formation stage, snow cover stage and snow melting stage in winter. The results showed that the content of water soluble components from six foliar litters decreased at snow formation stage and snow melting stage, but increased at snow cover stage as litter decomposition proceeded in the winter. Besides the content of organic solvent soluble components from azalea foliar litter increased at snow cover stage, the content of organic solvent soluble components from the other five foliar litters kept a continue decreasing tendency in the winter. Compared with the content of organic solvent soluble components, the content of water soluble components was affected more strongly by snow cover thickness, especially at snow formation stage and snow cover stage. Compared with the thicker snow covers, the thin snow cover promoted the decrease of water soluble component contents from willow and azalea foliar litter and restrain the decrease of water soluble component content from cypress foliar litter. Few changes in the content of water soluble components from birch, fir and larch foliar litter were observed under the different thicknesses of snow cover. The results suggested that the effects of snow cover on the contents of water soluble and organic solvent soluble components during litter decomposition would be controlled by

  16. Formulation of a Novel Nanoemulsion System for Enhanced Solubility of a Sparingly Water Soluble Antibiotic, Clarithromycin

    Directory of Open Access Journals (Sweden)

    Stuti Vatsraj

    2014-01-01

    Full Text Available The sparingly water soluble property of majority of medicinally significant drugs acts as a potential barrier towards its utilization for therapeutic purpose. The present study was thus aimed at development of a novel oil-in-water (o/w nanoemulsion (NE system having ability to function as carrier for poorly soluble drugs with clarithromycin as a model antibiotic. The therapeutically effective concentration of clarithromycin, 5 mg/mL, was achieved using polysorbate 80 combined with olive oil as lipophilic counterion. A three-level three-factorial central composite experimental design was utilized to conduct the experiments. The effects of selected variables, polysorbate 80 and olive oil content and concentration of polyvinyl alcohol, were investigated. The particle size of clarithromycin for the optimized formulation was observed to be 30 nm. The morphology of the nanoemulsion was explored using transmission electron microscopy (TEM. The emulsions prepared with the optimized formula demonstrated good physical stability during storage at room temperature. Antibacterial activity was conducted with the optimized nanoemulsion NESH 01 and compared with free clarithromycin. Zone of inhibition was larger for NESH 01 as compared to that with free clarithromycin. This implies that the solubility and hence the bioavailability of clarithromycin has increased in the formulated nanoemulsion system.

  17. Hydrocarbon molar water solubility predicts NMDA vs. GABAA receptor modulation.

    Science.gov (United States)

    Brosnan, Robert J; Pham, Trung L

    2014-11-19

    Many anesthetics modulate 3-transmembrane (such as NMDA) and 4-transmembrane (such as GABAA) receptors. Clinical and experimental anesthetics exhibiting receptor family specificity often have low water solubility. We hypothesized that the molar water solubility of a hydrocarbon could be used to predict receptor modulation in vitro. GABAA (α1β2γ2s) or NMDA (NR1/NR2A) receptors were expressed in oocytes and studied using standard two-electrode voltage clamp techniques. Hydrocarbons from 14 different organic functional groups were studied at saturated concentrations, and compounds within each group differed only by the carbon number at the ω-position or within a saturated ring. An effect on GABAA or NMDA receptors was defined as a 10% or greater reversible current change from baseline that was statistically different from zero. Hydrocarbon moieties potentiated GABAA and inhibited NMDA receptor currents with at least some members from each functional group modulating both receptor types. A water solubility cut-off for NMDA receptors occurred at 1.1 mM with a 95% CI = 0.45 to 2.8 mM. NMDA receptor cut-off effects were not well correlated with hydrocarbon chain length or molecular volume. No cut-off was observed for GABAA receptors within the solubility range of hydrocarbons studied. Hydrocarbon modulation of NMDA receptor function exhibits a molar water solubility cut-off. Differences between unrelated receptor cut-off values suggest that the number, affinity, or efficacy of protein-hydrocarbon interactions at these sites likely differ.

  18. Water partitioning and storage via preferential pathways on the hillslope scale observed using time-lapse ERT

    Science.gov (United States)

    Kotikian, M.; Parsekian, A.; Paige, G. B.; Carey, A. M.

    2016-12-01

    Water in the west is primarily sourced from snowmelt in the mountainous alpine zone providing freshwater for rivers and recharge for groundwater aquifers. Subsurface water flow often moves through the soil and fractured rock although its storage, residence time, and partitioning have not been well documented at the hillslope scale. In this study we investigate water partitioning and preferential flow pathways using geophysical methods to complete the water balance. We hypothesize that preferential flow paths will indicate where water is partitioning into groundwater stores and will differ based on the vegetation cover and soil depth. We use daily time-lapse electric resistivity tomography (TL-ERT) to estimate moisture content on seasonal and annual time-scales. Water content is assumed to be the only variable to change over the duration of the measurement after temperature corrections. The ERT measurement is combined with other geophysical measurements including seismic refraction tomography for locating the weathering front, time-lapse borehole nuclear magnetic resonance (NMR) to directly measure changes in water content over the season, and 3D ERT as a control for out-of-plane effects of the 2D TL-ERT measurement. The results show that during snowmelt, the wetting front is heterogeneous and moves down at a rate up to 25 mm/day within the top 5m. A preferential flow path is observed to be moving water to at least 5m depth in one area. This preferential flow anomaly only occurred during snowmelt and was not observed during rainfall-driven infiltration. Heterogeneities in vegetation cover and soil depth result in different water flow behaviors. These results indicate that water storage increases during the snowmelt season and partitioning pathways differ seasonally and with precipitation type.

  19. A novel water soluble solvatochromic probe as a micropolarity reporter for homogeneous and microheterogeneous media

    Energy Technology Data Exchange (ETDEWEB)

    Sarkar, Amrita; Kedia, Niraja [Department of Chemical Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur Campus, BCKV Main P.O., Mohanpur 741252, Nadia, WB (India); Bagchi, Sanjib, E-mail: bsanjibb@yahoo.com [Department of Chemistry and Biochemistry, Presidency University, 86/1 College Street, Kolkata 700073 (India)

    2014-07-01

    A new water soluble donor–acceptor dye, sodium 4-(methyl((1E,3E)-3-(1-oxo-1H-inden-2(3H)-ylidene)prop-1-enyl)amino) benzoate (DN3) has been synthesized. Optical response of the solvatochromic dye (DN3) has been studied in various homogeneous (neat and mixed binary solvents) and heterogeneous (SDS and CTAB homomicelle and β-cyclodextrin nanocavity) media. To get information regarding the change in the solvation interaction of the dye with the alteration in its microenvironment in different media, the photophysical properties of the dye have been monitored in various media using steady state and time resolved spectral analysis. Results obtained for mixed binary solvents containing water indicate that the solute is preferentially solvated by one of the component solvents and solvent–solvent interactions are also important in determining the preference. Effect of variation of pH in aqueous medium on the spectroscopic parameters of the dye has been studied and its pKa has been estimated. Studies in homomicelles (SDS and CTAB) reveal that the dye distributes itself between the aqueous and the micellar phase and the values of distribution coefficient have been estimated from the fluorescence parameters. The dye is encapsulated in β-cyclodextrin nanocavity and a 1:2 dye-β-cyclodextrin host–guest interaction is indicated. Semi-empirical quantum chemical calculations have been carried out to support the experimental results. - Highlights: • A water soluble fluorescent dye has been synthesized and studied in various media. • The dye is sensitive towards changes in micropolarity and pH of the medium. • Study in mixed binary solvent system indicates preferential solvation of the dye. • Stronger interaction of the dye is indicated with CTAB micelles compared to SDS. • Study in aqueous β-CD medium reveals favorable 1:2 binding of the dye with β-CD.

  20. Synthesis and biological evaluation of new water-soluble photoactive chlorin conjugate for targeted delivery.

    Science.gov (United States)

    Otvagin, Vasilii F; Nyuchev, Alexander V; Kuzmina, Natalia S; Grishin, Ivan D; Gavryushin, Andrei E; Romanenko, Yuliya V; Koifman, Oscar I; Belykh, Dmitrii V; Peskova, Nina N; Shilyagina, Natalia Yu; Balalaeva, Irina V; Fedorov, Alexey Yu

    2018-01-20

    A new water-soluble conjugate, consisting of a chlorin-based photosensitizing part, and a 4-arylaminoquinazoline moiety with high potential affinity to an epidermal growth factor receptors (EGFR) and vascular endothelial growth factor receptors (VEGFR), suitable for photodynamic therapy (PDT), was synthesized starting from methylpheophorbide-a in seven steps. An increased accumulation of this compound in A431 cells with high level of EGFR expression, in comparison with CHO and HeLa cells with low EGFR expression was observed. The prepared conjugate exhibits dark and photoinduced cytotoxicity at micromolar concentrations with IC 50dark /IC 50light ratio of 11-18. In tumor-bearing mice, the conjugate preferentially accumulates in the tumor tissue. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  1. Photosensitizing activity of water- and lipid-soluble phthalocyanines on prokaryotic and eukaryotic microbial cells.

    Science.gov (United States)

    Bertoloni, G; Rossi, F; Valduga, G; Jori, G; Ali, H; van Lier, J E

    1992-01-01

    The photosensitizing activity of lipophilic zinc-phthalocyanine (Zn-Pc) and its water-soluble sulphonated derivative (Zn-PcS) towards Streptococcus faecium and Candida albicans was studied and correlated with the amount of cell-bound photosensitizer. With both micro-organisms Zn-PcS was more tightly bound in larger amounts than Zn-Pc in the protoplasts of the cytoplasmic membrane. As a consequence, the photoinduced damage in S. faecium initially involved membrane proteins, while DNA was modified only upon prolonged irradiation. For C. albicans only Zn-PcS showed a preferential affinity for the spheroplasts and the decrease in cell survival was not accompanied by detectable modifications of the electrophoretic pattern of membrane proteins. The photoinduced ultrastructural alteration of both micro-organisms suggests damage at membrane level. This would indicate the involvement of different targets in bacteria and yeast for phthalocyanine photosensitization.

  2. Water-soluble conjugated polymers for fluorescent-enzyme assays.

    Science.gov (United States)

    Feng, Fude; Liu, Libing; Yang, Qiong; Wang, Shu

    2010-08-17

    Enzyme assays are receiving more and more research and application interest because of the rapidly increasing demands of clinical diagnosis, environmental analysis, drug discovery, and molecular biology. Water-soluble light-harvesting conjugated polymers (CPs) coordinate the action of a large number of absorbing units to afford an amplified fluorescence signal, which makes them useful as optical platforms in highly sensitive chemical and biological sensors. This Feature Article highlights recent developments of water-soluble CPs for fluorescent assays of enzymes. Different signal transduction mechanisms, such as electron transfer, fluorescence resonance energy transfer (FRET), and aggregation or conformation changes of CPs, are employed in these assays according to the dissimilar nature of enzymes. Potential challenges and future research directions in these approaches based on CPs are also discussed. Copyright © 2010 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Size-Controlled Water-Soluble Ag Nanoparticles

    OpenAIRE

    Dominguez-Vera, J. M.; Galvez, N.; Sanchez, P; A. J. Mota; Trasobares Llorente, Susana; Hernandez, J.C.; Calvino Gámez, José Juan

    2007-01-01

    Ag nanoparticles of two different sizes (1 and 4 nm) were prepared within an apoferritin cavity by using an Ag+-loaded apoferritin as a nanoconfined environment for their construction. The initial amount of Ag' ions injected in the apoferritin cavity dictates the size of the final Ag particles. The protein shell prevents bulk aggregation of the metal particles, which renders them water soluble and extremely stable.

  4. Water sorption, solubility and surface roughness of resin surface sealants

    OpenAIRE

    Biazuz,Jaqueline; Zardo,Patrícia; Rodrigues-Junior,Sinval Adalberto

    2015-01-01

    Surface sealants have been suggested as final glaze of the surface of composite restorations. However, little is known about bulk and surface properties of these materials aiming the long-term preservation of the surface integrity of these restorations. AIM: To evaluate the water sorption, solubility and surface roughness of commercial surface sealants for restorations. METHODS: Five disc-shaped specimens 15 mm diameter X 1 mm high were made from the surface sealants Natural Glaze DFL and Per...

  5. Polyelectrolyte microcapsules for sustained delivery of water-soluble drugs

    Energy Technology Data Exchange (ETDEWEB)

    Anandhakumar, S.; Debapriya, M. [Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012 (India); Nagaraja, V. [Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 560012 (India); Raichur, Ashok M., E-mail: amr@materials.iisc.ernet.in [Department of Materials Engineering, Indian Institute of Science, Bangalore, 560012 (India)

    2011-03-12

    Polyelectrolyte capsules composed of weak polyelectrolytes are introduced as a simple and efficient system for spontaneous encapsulation of low molecular weight water-soluble drugs. Polyelectrolyte capsules were prepared by layer-by-layer (LbL) assembling of weak polyelectrolytes, poly(allylamine hydrochloride) (PAH) and poly(methacrylic acid) (PMA) on polystyrene sulfonate (PSS) doped CaCO{sub 3} particles followed by core removal with ethylene-diaminetetraacetic acid (EDTA). The loading process was observed by confocal laser scanning microscopy (CLSM) using tetramethylrhodamineisothiocyanate labeled dextran (TRITC-dextran) as a fluorescent probe. The intensity of fluorescent probe inside the capsule decreased with increase in cross-linking time. Ciprofloxacin hydrochloride (a model water-soluble drug) was spontaneously deposited into PAH/PMA capsules and their morphological changes were investigated by scanning electron microscopy (SEM) and atomic force microscopy (AFM). The quantitative study of drug loading was also elucidated which showed that drug loading increased with initial drug concentration, but decreased with increase in pH. The loaded drug was released in a sustained manner for 6 h, which could be further extended by cross-linking the capsule wall. The released drug showed significant antibacterial activity against E. coli. These findings indicate that such capsules can be potential carriers for water-soluble drugs in sustained/controlled drug delivery applications.

  6. Hybrid solar cells from water-soluble polymers

    Directory of Open Access Journals (Sweden)

    James T. McLeskey

    2006-01-01

    Full Text Available We report on the use of a water-soluble, light-absorbing polythiophene polymer to fabricate novel photovoltaic devices. The polymer is a water-soluble thiophene known as sodium poly[2-(3-thienyl-ethoxy-4-butylsulfonate] or PTEBS. The intention is to take advantage of the properties of conjugated polymers (flexible, tunable, and easy to process and incorporate the additional benefits of water solubility (easily controlled evaporation rates and environmentally friendly. The PTEBS polythiophene has shown significant photovoltaic response and has been found to be effective for making solar cells. To date, solar cells in three different configurations have been produced: titanium dioxide (TiO2 bilayer cells, TiO2 bulk heterojunction solar cells, and carbon nanotubes (CNTs in bulk heterojunctions. The best performance thus far has been achieved with TiO2 bilayer devices. These devices have an open circuit voltage (Voc of 0.84V, a short circuit current (Jsc of 0.15 mA/cm2, a fill factor (ff of 0.91, and an efficiency (η of 0.15 %.

  7. Preparation and Characterization of Water-Soluble Xylan Ethers

    Directory of Open Access Journals (Sweden)

    Kay Hettrich

    2017-03-01

    Full Text Available Xylan is a predominant hemicellulose component that is found in plants and in some algae. This polysaccharide is made from units of xylose (a pentose sugar. One promising source of xylan is oat spelt. This feedstock was used for the synthesis of two xylan ethers. To achieve water soluble products, we prepared dihydroxypropyl xylan as a non-ionic ether on the one hand, and carboxymethyl xylan as an ionic derivative on the other hand. Different preparation methods like heterogeneous, pseudo-homogeneous, and homogeneous syntheses were compared. In the case of dihydroxypropyl xylan, the synthesis method did not significantly affect the degree of substitution (DS. In contrast, in the case of carboxymethyl xylan, clear differences of the DS values were found in dependence on the synthesis method. Xylan ethers with DS values of >1 could be obtained, which mostly show good water solubility. The synthesized ionic, as well as non-ionic, xylan ethers were soluble in water, even though the aqueous solutions showed slight turbidity. Nevertheless, stable, transparent, and stainable films could be prepared from aqueous solutions from carboxymethyl xylans.

  8. Effect of water and salt content on protein solubility and water retention of meat preblends.

    Science.gov (United States)

    Kenney, P B; Hunt, M C

    1990-01-01

    Different preblend water contents at a constant ionic strength were investigated to determine if increasing water availability would increase protein solubility and water retention in meat preblends. Four salt levels (0, 2, 4 and 8%) and four water levels (0, 20, 40 and 80% formulation water) were used with ground bovine semimembranosus muscle that had been frozen once. Ground muscle was mixed with either NaCl alone (0% formulation water) or NaCl and brine (20, 40 and 80% formulation water) for the 2, 4 and 8% NaCl treatments. Distilled water was used for the 0% NaCl treatment. The mixtures were stored at 5°C for 12 h. Following storage, the water/brine content was standardized, and protein solubility and water retention were measured. Elevating the water content of preblends, in which the salt concentration had been standardized, increased the water retained during centrifugation (P water retention. Copyright © 1990. Published by Elsevier Ltd.

  9. Water-soluble fullerene derivatives for drug discovery.

    Science.gov (United States)

    Nakamura, Shigeo; Mashino, Tadahiko

    2012-01-01

    Fullerenes (represented by buckminsterfullerene, C(60)) are a new kind of organic compound with a cage-like structure. A great deal of attention has been focused on their unique properties. From the viewpoint of drug discovery, fullerenes could be novel lead compounds for drug discovery. However, fullerenes are poorly soluble in aqueous media. Incorporation of water-soluble groups into the fullerene core enables investigation of its biological activities. Certain fullerene derivatives show inhibitory activity against human immunodeficiency virus reverse transcriptase. Hepatitis C virus RNA polymerase is also inhibited by fullerene derivatives. Therefore, fullerene derivatives are candidate antiviral agents. In addition, fullerene derivatives exhibit antiproliferative activity by inducing apoptosis related to the generation of reactive oxygen species. Fullerene derivatives also have the potential to be anticancer drugs.

  10. Mechanisms for oral absorption of poorly water-soluble compounds

    DEFF Research Database (Denmark)

    Lind, Marianne Ladegaard

    viability and monolayer integrity were developed. The effect of simulated intestinal fluids on the absorption of the poorly water-soluble drug substances, estradiol and diazepam, was studied. The flux of both drug substances across the Caco-2 cells was decreased when simulated intestinal fluids containing...... micelles were applied in the apical compartment. The flux of diazepam was further decreased when pharmaceutical surfactants (Labrafil, fatty acid ester of polyethylene glycol, Cremophor RH40, polysorbate 80 and Pluronic L81) were added to the medium. This was most likely caused by partial incorporation...... of the drug substances in the micelles, and accordingly the drug substances need to be released from the micelles before being absorbed. However, the solubility of estradiol and diazepam was higher in the simulated intestinal fluids, indicating that the presence of bile salts, phospholipids and lipolysis...

  11. Synthesis and anticancer properties of water-soluble zinc ionophores.

    Science.gov (United States)

    Magda, Darren; Lecane, Philip; Wang, Zhong; Hu, Weilin; Thiemann, Patricia; Ma, Xuan; Dranchak, Patricia K; Wang, Xiaoming; Lynch, Vincent; Wei, Wenhao; Csokai, Viktor; Hacia, Joseph G; Sessler, Jonathan L

    2008-07-01

    Several water-solubilized versions of the zinc ionophore 1-hydroxypyridine-2-thione (ZnHPT), synthesized as part of the present study, have been found both to increase the intracellular concentrations of free zinc and to produce an antiproliferative activity in exponential phase A549 human lung cancer cultures. Gene expression profiles of A549 cultures treated with one of these water-soluble zinc ionophores, PCI-5002, reveal the activation of stress response pathways under the control of metal-responsive transcription factor 1 (MTF-1), hypoxia-inducible transcription factor 1 (HIF-1), and heat shock transcription factors. Additional oxidative stress response and apoptotic pathways were activated in cultures grown in zinc-supplemented media. We also show that these water-soluble zinc ionophores can be given to mice at 100 micromol/kg (300 micromol/m(2)) with no observable toxicity and inhibit the growth of A549 lung and PC3 prostate cancer cells grown in xenograft models. Gene expression profiles of tumor specimens harvested from mice 4 h after treatment confirmed the in vivo activation of MTF-1-responsive genes. Overall, we propose that water-solubilized zinc ionophores represent a potential new class of anticancer agents.

  12. Water sorption and water solubility of self-etching and self-adhesive resin cements.

    Science.gov (United States)

    Petropoulou, Aikaterini; Vrochari, Areti D; Hellwig, Elmar; Stampf, Susanne; Polydorou, Olga

    2015-11-01

    The long-term success of indirect restorations depends on the clinical behavior of luting cements. In the oral environment, properties such as water sorption and solubility negatively affect the cements' clinical performance over time, jeopardizing the restoration's longevity. The purpose of this in vitro study was to compare the water sorption and solubility characteristics of self-etching, self-adhesive, and conventional resin cements. One conventional (Calibra), 1 self-etching (Panavia F), and 2 self-adhesive (Clearfil SA, G-Cem Automix) dual-polymerized resin cements were used. Fourteen disks of each material were prepared. Water sorption and solubility were calculated according to International Organization for Standards (ISO) specification 4049:2009. According to the water sorption test, all materials were found to interact with water. No statistically significant differences were found between the water sorption of Panavia F and Clearfil SA (P=.911). These cements exhibited higher water sorption values than the other materials (Psolubility (Psolubility values than the other materials. G-Cem Automix and Calibra exhibited negative solubility. However, all water sorption and solubility values were below the threshold values proposed by the ISO standard. Within the limitations of the present in vitro study, the interaction of resin cements with water is not type-related (conventional, self-etching, or self-adhesive). Copyright © 2015 Editorial Council for the Journal of Prosthetic Dentistry. Published by Elsevier Inc. All rights reserved.

  13. Solubilities of selected organic electronic materials in pressurized hot water and estimations of aqueous solubilities at 298.15 K.

    Science.gov (United States)

    Karásek, Pavel; Hohnová, Barbora; Planeta, Josef; Št'avíková, Lenka; Roth, Michal

    2013-02-01

    Increasing production and disposal of organic light-emitting diode (OLED) displays for smartphones and tablets may have impact on the environment depending on the aqueous solubility of the pertinent chemicals. Here, aqueous solubilities are presented for several compounds, mostly aromatic amines, used as hole transport materials in the OLED displays. Solute selection includes 1,4-bis(diphenylamino)benzene, tetra-N-phenylbenzidine, 4,4'-bis(N-carbazolyl)-1,1'-biphenyl, 1,3,5-tris(diphenylamino)benzene, and 9,10-bis(phenylethynyl)anthracene. The solubilities are those in pressurized hot water (PHW), i.e., measured at elevated temperature (up to 260 °C) and pressure. The semi-quantitative estimates of room-temperature solubilities of the solutes have been obtained from extrapolations of the solubilities in PHW. For the compounds studied, the estimated aqueous solubilities at room temperature do not exceed 2×10(-11) g of the solute per 1 kg of water. Aqueous solubilities of triphenylamine have also been measured and used to upgrade a recent group-contribution model of aqueous solubilities of organic nonelectrolytes with the parameters for the nitrogen atom in aromatic amines. Copyright © 2012 Elsevier Ltd. All rights reserved.

  14. Solubility of acetaminophen in polyethylene glycol 400 + water mixtures according to the extended hildebrand solubility approach

    OpenAIRE

    Edgar Ahumada; Daniel Delgado; Fleming Martínez

    2014-01-01

    The Extended Hildebrand Solubility Approach(EHSA) was applied in the presentwork to evaluate the solubility of theanalgesic drug acetaminophen (paracetamol)in polyethylene glycol 400 + watermixtures at 298.15 K. An acceptablecorrelative capacity of EHSA was foundusing a regular polynomial model in orderfour (overall deviation below 0.7%),when the W interaction parameter is relatedto the solubility parameter of themixtures. Thus, the deviations obtainedin the estimated solubility with respect ...

  15. Application of various water soluble polymers in gas hydrate inhibition

    DEFF Research Database (Denmark)

    Kamal, Muhammad Shahzad; Hussein, Ibnelwaleed A.; Sultan, Abdullah S.

    2016-01-01

    . This review presents the various types of water soluble polymers used for hydrate inhibition, including conventional and novel polymeric inhibitors along with their limitations. The review covers the relevant properties of vinyl lactam, amide, dendrimeric, fluorinated, and natural biodegradable polymers....... The factors affecting the performance of these polymers and the structure-property relationships are reviewed. A comprehensive review of the techniques used to evaluate the performance of the polymeric inhibitors is given. This review also addresses recent developments, current and future challenges......, and field applications of a range of polymeric kinetic hydrate inhibitors....

  16. Preliminary evaluation of a water soluble chlorin photosensitizer

    Science.gov (United States)

    Zou, Jian; Huang, Qiuyan; Li, Weijun; Zou, Shulin; Han, Zhen; Huang, Zheng

    2017-07-01

    Some of the key optical properties of a new water soluble chlorine (YLG-1) were evaluated. The sensitizer has a strong absorption at 398 nm and 655 nm in DMSO. A strong red fluorescence is detected under the excitation of 398 nm. The fluorescence life time is approximately 5 ns and fluorescence quantum yield 20%. The sensitizer does not accumulate in normal skin after topical use or IV injection. Preliminary in vivo results suggest that this novel chlorine causes little cutaneous phototoxicity. Its potentials in photodynamic therapy (PDT) deserve further study.

  17. Determination of Carboxylic Acids and Water-soluble Inorganic Ions ...

    African Journals Online (AJOL)

    The results showed that mean mass concentration of PM2.5 and PM10 were 13 ± 3.5 μg m–3 and 16 ± 2.3 μg m–3, respectively. Mean concentrations of the total carboxylates were 23.7±6.5 ngm–3 in PM2.5 and 36.4 ± 12 ngm–3 in PM10 whereas total water-soluble inorganic ions were 448±88 ngm–3 and 646± 214 ...

  18. Water-soluble magnetic nanoparticles with biologically active stabilizers

    Science.gov (United States)

    Zablotskaya, Alla; Segal, Izolda; Lukevics, Edmunds; Maiorov, Mikhail; Zablotsky, Dmitry; Blums, Elmars; Shestakova, Irina; Domracheva, Ilona

    2009-05-01

    We present the results of the interaction of iron oxide nanoparticles with some biologically active surfactants, namely, oleic acid and cytotoxic alkanolamine derivatives. Physico-chemical properties, as magnetization, magnetite concentration and particle diameter, of the prepared magnetic samples were studied. The nanoparticle size of 11 nm for toluene magnetic fluid determined by TEM is in good agreement with the data obtained by the method of magnetogranulometry. In vitro cytotoxic effect of water-soluble nanoparticles with different iron oxide:oleic acid molar ratio were revealed against human fibrosarcoma and mouse hepatoma cells. In vivo results using a sarcoma mouse model showed observable antitumor action.

  19. Water-soluble magnetic nanoparticles with biologically active stabilizers

    Energy Technology Data Exchange (ETDEWEB)

    Zablotskaya, Alla [Latvian Institute of Organic Synthesis, 21 Aizkraukles Street, Riga LV-1006 (Latvia)], E-mail: aez@osi.lv; Segal, Izolda; Lukevics, Edmunds [Latvian Institute of Organic Synthesis, 21 Aizkraukles Street, Riga LV-1006 (Latvia); Maiorov, Mikhail; Zablotsky, Dmitry; Blums, Elmars [Institute of Physics, University of Latvia, 32 Miera, Salaspils LV-2169 (Latvia); Shestakova, Irina; Domracheva, Ilona [Latvian Institute of Organic Synthesis, 21 Aizkraukles Street, Riga LV-1006 (Latvia)

    2009-05-15

    We present the results of the interaction of iron oxide nanoparticles with some biologically active surfactants, namely, oleic acid and cytotoxic alkanolamine derivatives. Physico-chemical properties, as magnetization, magnetite concentration and particle diameter, of the prepared magnetic samples were studied. The nanoparticle size of 11 nm for toluene magnetic fluid determined by TEM is in good agreement with the data obtained by the method of magnetogranulometry. In vitro cytotoxic effect of water-soluble nanoparticles with different iron oxide:oleic acid molar ratio were revealed against human fibrosarcoma and mouse hepatoma cells. In vivo results using a sarcoma mouse model showed observable antitumor action.

  20. [Antibacterial activity of water soluble fraction from Scolopendra subspinipes mutilans].

    Science.gov (United States)

    Ren, Wen-hua; Zhang, Shuang-quan; Song, Da-xiang; Zhou, Kai-ya

    2007-01-01

    The water soluble fraction (SWSF) of centipede Scolopendra subspinipes mautilans, injected with Escherichia coli K12 D31 for 3-4 days showed broad-spectrum antimicrobial activity against Gram-positive, Gram-negative bacteria and fungi. It showed strong antibacterial activity against E. coli K12D31 at different temperatures, pH and ionic strengths. It did not show any hemolytic and agglutination activities at the concentration below 600 microg/ml. After E. coli K12 D31 treated with SWSF, the ultrastructure showed that its outer cell wall was broken, surface collapsed and intracellular substances leaked out.

  1. Solubility of paroxetine hydrochloride hemi-hydrate in (water + acetone)

    Energy Technology Data Exchange (ETDEWEB)

    Ren Guobin [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)]. E-mail: renguobin2557@sohu.com; Wang Jingkang [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China); Li Guizhi [School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072 (China)

    2005-08-15

    Using a laser monitoring observation technique, the solubilities of paroxetine hydrochloride hemi-hydrate in (water + acetone) were determined by the synthetic method from (294.45 to 323.20) K, respectively. Results of these measurements were correlated by the three variants of the combined nearly ideal binary solvent/Redlich-Kister (CNIBS/R-K) model. For the seven group data studied, three variants of the (CNIBS/R-K) equation were found to provide accurate mathematical representations of the experimental data and variant 2 is the best of the three variants.

  2. Antibacterial Characteristics and Activity of Water-Soluble Chitosan Derivatives Prepared by the Maillard Reaction

    Directory of Open Access Journals (Sweden)

    Ying-Chien Chung

    2011-10-01

    Full Text Available The antibacterial activity of water-soluble chitosan derivatives prepared by Maillard reactions against Staphylococcus aureus, Listeria monocytogenes, Bacillus cereus, Escherichia coli, Shigella dysenteriae, and Salmonella typhimurium was examined. Relatively high antibacterial activity against various microorganisms was noted for the chitosan-glucosamine derivative as compared to the acid-soluble chitosan. In addition, it was found that the susceptibility of the test organisms to the water-soluble chitosan derivative was higher in deionized water than in saline solution. Metal ions were also found to reduce the antibacterial activity of the water-soluble chitosan derivative on S. aureus. The marked increase in glucose level, protein content and lactate dehydrogenase (LDH activity was observed in the cell supernatant of S. aureus exposed to the water-soluble chitosan derivative in deionized water. The results suggest that the water-soluble chitosan produced by Maillard reaction may be a promising commercial substitute for acid-soluble chitosan.

  3. Therapeutic Effects of Water Soluble Danshen Extracts on Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Yoon Hee Cho

    2013-01-01

    Full Text Available Danshen is a traditional Chinese medicine with many beneficial effects on cardiovascular diseases. The aim of this study was to evaluate the mechanisms responsible for the antiatherogenic effect of water soluble Danshen extracts (DEs. Rat vascular smooth muscle cells (VSMCs and human umbilical vein endothelial cells (HUVECs were treated with DE. To evaluate the effects of DE in vivo, carotid balloon injury and tail vein thrombosis were induced in Sprague-Dawley (SD rats and iliac artery stent was induced in New Zealand white rabbits. The inhibitory action of DE on platelet aggregation was confirmed with an impedance aggregometer. DE inhibited the production of reactive oxygen species, and the migration and proliferation of platelet-derived growth factor-BB stimulated VSMCs. Furthermore, DE prevented inflammation and apoptosis in HUVECs. Both effects of DE were reconfirmed in both rat models. DE treatment attenuated platelet aggregation in both in vivo and ex vivo conditions. Pretreatment with DE prevented tail vein thrombosis, which is normally induced by κ-carrageenan injection. Lastly, DE-treated rabbits showed decreased in-stent restenosis of stented iliac arteries. These results suggest that water soluble DE modulates key atherogenic events in VSMCs, endothelial cells, and platelets in both in vitro and in vivo conditions.

  4. Biological properties of water-soluble phosphorhydrazone dendrimers

    Directory of Open Access Journals (Sweden)

    Anne-Marie Caminade

    2013-01-01

    Full Text Available Dendrimers are hyperbranched and perfectly defined macromolecules, constituted of branches emanating from a central core in an iterative fashion. Phosphorhydrazone dendrimers constitute a special family of dendrimers, possessing one phosphorus atom at each branching point. The internal structure of these dendrimers is hydrophobic, but hydrophilic terminal groups can induce the solubility of the whole structure in water. Indeed, the properties of these compounds are mainly driven by the type of terminal groups their bear; this is especially true for the biological properties. For instance, positively charged terminal groups are efficient for transfection experiments, as drug carriers, as anti-prion agents, and as inhibitor of the aggregation of Alzheimer's peptides, whereas negatively charged dendrimers have anti-HIV properties and can influence the human immune system, leading to anti-inflammatory properties usable against rheumatoid arthritis. This review will give the most representative examples of the biological properties of water-soluble phosphorhydrazone dendrimers, organized depending on the type of terminal groups they bear.

  5. Preferential solvation of xylitol in ethanol + water co-solvent mixtures according to the IKBI and QLQC methods

    Directory of Open Access Journals (Sweden)

    Daniel Delgado

    2014-07-01

    Full Text Available The preferential solvation parameters, i.e., the differences between the local around the solute and bulk mole fractions of the solvents in solutions of xylitol in ethanol + water binary mixtures are derived from their thermodynamic properties by means of the inverse Kirkwood-Buff integrals (IKBI and quasi-lattice quasi-chemical (QLQC methods. According to IKBI method it is found that xylitol is sensitive to solvation effects, so the preferential solvation parameter δxE,S, is slightly positive in water-rich and negative in mixtures beyond 0.25 in mole fraction of ethanol. In different way, according to QLQC method negative values of δxE,S are found in all the compositions evaluated. The more solvation by ethanol observed in water-rich mixtures could be due mainly to polarity effects. Otherwise, the preference of this compound for water in ethanol-rich mixtures could be explained in terms of the bigger acidic behavior of water interacting with hydrogen-acceptor hydroxyl groups in xylitol. 

  6. Solubility of zinc ferrite in high-temperature oxygenated water

    Science.gov (United States)

    Hanzawa, Yukiko; Hiroishi, Daisuke; Matsuura, Chihiro; Ishigure, Kenkichi

    1998-02-01

    The solubility of zinc ferrite was measured at 423 K, 473 K, and 523 K in an oxygenated water system, which is rather similar to the chemical condition of boiling water reactors. Thermodynamic analysis was performed by a procedure minimizing standard Gibbs free energy of the system at the final state. From both the analysis and the experimental results it was concluded that the dissolution process of ZnFe 2O 4 in conditions where no redox reaction occurs is described by combination of ZnFe 2O 4 dissolution and Fe 2O 3 precipitation equilibria. By fitting to the experimental results, thermodynamic data of ZnFe 2O 4 are re-analyzed at 423 K, 473 K, and 523 K.

  7. Drug delivery by water-soluble organometallic cages.

    Science.gov (United States)

    Therrien, Bruno

    2012-01-01

    Until recently, organometallic derivatives were generally viewed as moisture- and air-sensitive compounds, and consequently very challenging to synthesise and very demanding in terms of laboratory requirements (Schlenk techniques, dried solvent, glove box). However, an increasing number of stable, water-soluble organometallic compounds are now available, and organometallic chemistry in aqueous phase is a flourishing area of research. As such, coordination-driven self-assemblies using organometallic building blocks are compatible with water, thus opening new perspectives in bio-organometallic chemistry.This chapter gives a short history of coordination-driven self-assembly, with a special attention to organometallic metalla-cycles, especially those composed of half-sandwich complexes. These metalla-assemblies have been used as sensors, as anticancer agents, as well as drug carriers.

  8. Self-assembly of water-soluble nanocrystals

    Science.gov (United States)

    Fan, Hongyou [Albuquerque, NM; Brinker, C Jeffrey [Albuquerque, NM; Lopez, Gabriel P [Albuquerque, NM

    2012-01-10

    A method for forming an ordered array of nanocrystals where a hydrophobic precursor solution with a hydrophobic core material in an organic solvent is added to a solution of a surfactant in water, followed by removal of a least a portion of the organic solvent to form a micellar solution of nanocrystals. A precursor co-assembling material, generally water-soluble, that can co-assemble with individual micelles formed in the micellar solution of nanocrystals can be added to this micellar solution under specified reaction conditions (for example, pH conditions) to form an ordered-array mesophase material. For example, basic conditions are used to precipitate an ordered nanocrystal/silica array material in bulk form and acidic conditions are used to form an ordered nanocrystal/silica array material as a thin film.

  9. Highly water-soluble multi-walled carbon nanotubes amine-functionalized by supercritical water oxidation.

    Science.gov (United States)

    Chun, Kyoung-Yong; Moon, In-Kyu; Han, Joo-Hee; Do, Seung-Hoe; Lee, Jin-Seo; Jeon, Seong-Yun

    2013-11-07

    Multi-walled carbon nanotubes (MWNTs) have been amine-functionalized by eco-friendly supercritical water oxidation. The facilely functionalized MWNTs have high solubility (~84 mg L(-1)) in water and 78% transmittance at 30-fold dilution. The Tyndall effect is also shown for several liquids.

  10. Evaluation of ISO 4049: water sorption and water solubility of resin cements.

    Science.gov (United States)

    Müller, Johannes A; Rohr, Nadja; Fischer, Jens

    2017-04-01

    The aim of this study was to evaluate the water sorption and solubility test design of ISO 4049 for resin cements. Sorption and solubility of six dual-curing resin cements [RelyX Unicem 2 Automix (RUN), Multilink Speed CEM (MLS), Panavia SA Plus (PSA), RelyX Ultimate (RUL), Multilink Automix (MLA), and Panavia V5 (PV5)] were analyzed by storage in distilled water after dual-curing. In addition, sorption and solubility during thermal cycling were assessed with self-cured and dual-cured specimens. After water storage, all cements revealed sorption in the range of 30 μg mm(-3) except for PV5, for which sorption was markedly lower (mean ± SD = 20.8 ± 0.4 μg mm(-3) ). Solubility values were negative for RUN and RUL (-2.1 ± 0.08 μg mm(-3) and -1.9 ± 0.13 μg mm(-3) , respectively). All other cements attained positive values in the range of 0.4-0.8 μg mm(-3) . Thermal cycling effects were more pronounced. The assessment of water sorption according to ISO 4049 provides reliable results. Solubility results must be interpreted with care because absorbed water may distort the values. © 2017 Eur J Oral Sci.

  11. Reactivity of Metal Ions Bound to Water-Soluble Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Sauer, N.N.; Watkins, J.G.; Lin, M.; Birnbaum, E.R.; Robison, T.W.; Smith, B.F.; Gohdes, J.W.; McDonald, J.G.

    1999-06-29

    The intent of this work is to determine the effectiveness of catalysts covalently bound to polymers and to understand the consequences of supporting the catalysts on catalyst efficiency and selectivity. Rhodium phosphine complexes with functional groups for coupling to polymers were prepared. These catalyst precursors were characterized using standard techniques including IR, NMR, and elemental analysis. Studies on the modified catalysts showed that they were still active hydrogenation catalysts. However, tethering of the catalysts to polyamines gave systems with low hydrogenation activity. Analogous biphasic systems were also explored. Phosphine ligands with a surfactant-like structure have been synthesized and used to prepare catalytically active complexes of palladium. The palladium complexes were utilized in Heck-type coupling reactions (e.g. coupling of iodobenzene and ethyl acrylate to produce ethyl cinnamate) under vigorously stirred biphasic reaction conditions, and were found to offer superior performance over a standard water-soluble palladium catalyst under analogous conditions.

  12. Biodegradable fibre scaffolds incorporating water-soluble drugs and proteins.

    Science.gov (United States)

    Ma, J; Meng, J; Simonet, M; Stingelin, N; Peijs, T; Sukhorukov, G B

    2015-07-01

    A new type of biodegradable drug-loaded fibre scaffold has been successfully produced for the benefit of water-soluble drugs and proteins. Model drug loaded calcium carbonate (CaCO3) microparticles incorporated into poly(lactic acid-co-glycolic acid) (PLGA) fibres were manufactured by co-precipitation of CaCO3 and the drug molecules, followed by electrospinning of a suspension of such drug-loaded microparticles in a PLGA solution. Rhodamine 6G and bovine serum albumin were used as model drugs for our release study, representing small bioactive molecules and protein, respectively. A bead and string structure of fibres was achieved. The drug release was investigated with different drug loadings and in different pH release mediums. Results showed that a slow and sustained drug release was achieved in 40 days and the CaCO3 microparticles used as the second barrier restrained the initial burst release.

  13. Monolayer Silane-Coated, Water-Soluble Quantum Dots.

    Science.gov (United States)

    Zhang, Xi; Shamirian, Armen; Jawaid, Ali M; Tyrakowski, Christina M; Page, Leah E; Das, Adita; Chen, Ou; Isovic, Adela; Hassan, Asra; Snee, Preston T

    2015-12-02

    A one-step method to produce ≈12 nm hydrodynamic diameter water-soluble CdSe/ZnS quantum dots (QDs), as well as CdS/ZnS, ZnSe/ZnMnS/ZnS, AgInS2 /ZnS, and CuInS2 /ZnS QDs, by ligand exchange with a near-monolayer of organosilane caps is reported. The method cross-links the surface-bound silane ligands such that the samples are stable on the order of months under ambient conditions. Furthermore, the samples may retain a high quantum yield (60%) over this time. Several methods to functionalize aqueous QD dispersions with proteins and fluorescent dyes have been developed with reaction yields as high as 97%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Water uptake by fresh Indonesian peat burning particles is limited by water-soluble organic matter

    Science.gov (United States)

    Chen, Jing; Hapsari Budisulistiorini, Sri; Itoh, Masayuki; Lee, Wen-Chien; Miyakawa, Takuma; Komazaki, Yuichi; Qing Yang, Liu Dong; Kuwata, Mikinori

    2017-09-01

    The relationship between hygroscopic properties and chemical characteristics of Indonesian biomass burning (BB) particles, which are dominantly generated from peatland fires, was investigated using a humidified tandem differential mobility analyzer. In addition to peat, acacia (a popular species at plantation) and fern (a pioneering species after disturbance by fire) were used for experiments. Fresh Indonesian peat burning particles are almost non-hygroscopic (mean hygroscopicity parameter, κ dry diameter = 100 nm, hereinafter) for Riau peat burning particles, while that for Central Kalimantan ranges from 0.05 to 0.06. Fern combustion particles are more hygroscopic (κ = 0. 08), whereas the acacia burning particles have a mediate κ value (0.04). These results suggest that κ is significantly dependent on biomass types. This variance in κ is partially determined by fractions of water-soluble organic carbon (WSOC), as demonstrated by a correlation analysis (R = 0.65). κ of water-soluble organic matter is also quantified, incorporating the 1-octanol-water partitioning method. κ values for the water extracts are high, especially for peat burning particles (A0 (a whole part of the water-soluble fraction): κ = 0.18, A1 (highly water-soluble fraction): κ = 0.30). This result stresses the importance of both the WSOC fraction and κ of the water-soluble fraction in determining the hygroscopicity of organic aerosol particles. Values of κ correlate positively (R = 0.89) with the fraction of m/z 44 ion signal quantified using a mass spectrometric technique, demonstrating the importance of highly oxygenated organic compounds to the water uptake by Indonesian BB particles. These results provide an experimentally validated reference for hygroscopicity of organics-dominated particles, thus contributing to more accurate estimation of environmental and climatic impacts driven by Indonesian BB particles on both regional and global scales.

  15. Morphological Analysis and Solubility of Lead Particles: Effect of Phosphates and Implications to Drinking Water Distribution

    Science.gov (United States)

    Objective • Describe lead synthesis experiments conduced to model the impact of water quality on lead particles and solubility • Develop a model system that can be used for lead solubility studies • Understand the how phosphates impact the morphology and solubility transfo...

  16. Ceramic membrane ozonator for soluble organics removal from produced water

    Science.gov (United States)

    Siagian, U. W. R.; Dwipramana, A. S.; Perwira, S. B.; Khoiruddin; Wenten, I. G.

    2018-01-01

    In this work, the performance of ozonation for degradation of soluble organic compounds in produced water was investigated. Tubular ceramic membrane diffuser (with and without a static mixer in the lumen side) was used to facilitate contact between ozone and produced water. The ozonation was conducted at ozone flow rate of 8 L.min-1, ozone concentration of 0.4 ppm, original pH of the solution, and pressure of 1.2 bar, while the flow rates of the produced water were varied (192, 378 and 830 mL.min-1). It was found that the reduction of benzene, toluene, ethylbenzene, and xylene were 85%, 99%, 85%, and 95%, respectively. A lower liquid flow rate in a laminar state showed a better component reduction due to the longer contacting time between the liquid and the gas phase. The introduction of the static mixer in the lumen side of the membrane as a turbulence promoter provided a positive effect on the performance of the membrane diffuser. The twisted static mixer exhibited the better removal rate than the spiral static mixer.

  17. Study on Mixed Solvency Concept in Formulation Development of Aqueous Injection of Poorly Water Soluble Drug

    Directory of Open Access Journals (Sweden)

    Shailendra Singh Solanki

    2013-01-01

    Full Text Available In the present investigation, mixed-solvency approach has been applied for the enhancement of aqueous solubility of a poorly water- soluble drug, zaltoprofen (selected as a model drug, by making blends (keeping total concentrations 40% w/v, constant of selected water-soluble substances from among the hydrotropes (urea, sodium benzoate, sodium citrate, nicotinamide; water-soluble solids (PEG-4000, PEG-6000; and co-solvents (propylene glycol, glycerine, PEG-200, PEG-400, PEG-600. Aqueous solubility of drug in case of selected blends (12 blends ranged from 9.091 ± 0.011 mg/ml–43.055 ± 0.14 mg/ml (as compared to the solubility in distilled water 0.072 ± 0.012 mg/ml. The enhancement in the solubility of drug in a mixed solvent containing 10% sodium citrate, 5% sodium benzoate and 25 % S cosolvent (25% S cosolvent contains PEG200, PEG 400, PEG600, Glycerine and Propylene glycol was more than 600 fold. This proved a synergistic enhancement in solubility of a poorly water-soluble drug due to mixed cosolvent effect. Each solubilized product was characterized by ultraviolet and infrared techniques. Various properties of solution such as pH, viscosity, specific gravity and surface tension were studied. The developed formulation was studied for physical and chemical stability. This mixed solvency shall prove definitely a boon for pharmaceutical industries for the development of dosage form of poorly water soluble drugs.

  18. [Emission Characteristics of Water-Soluble Ions in Fumes of Coal Fired Boilers in Beijing].

    Science.gov (United States)

    Hu, Yue-qi; Ma, Zhao-hui; Feng, Ya-jun; Wang, Chen; Chen, Yuan-yuan; He, Ming

    2015-06-01

    Selecting coal fired boilers with typical flue gas desulfurization and dust extraction systems in Beijing as the study objects, the issues and characteristics of the water-soluble ions in fumes of coal fired boilers and theirs influence factors were analyzed and evaluated. The maximum mass concentration of total water-soluble ions in fumes of coal fired boilers in Beijing was 51.240 mg x m(-3) in the benchmark fume oxygen content, the minimum was 7.186 mg x m(-3), and the issues of the water-soluble ions were uncorrelated with the fume moisture content. SO4(2-) was the primary characteristic water-soluble ion for desulfurization reaction, and the rate of contribution of SO4(2-) in total water-soluble ions ranged from 63.8% to 81.0%. F- was another characteristic water-soluble ion in fumes of thermal power plant, and the rate of contribution of F- in total water-soluble ions ranged from 22.2% to 32.5%. The fume purification technologies significantly influenced the issues and the emission characteristics of water-soluble ions in fumes of coal fired boilers. Na+ was a characteristic water-soluble ion for the desulfurizer NaOH, NH4+ and NO3+ were characteristic for the desulfurizer NH4HCO3, and Mg2+ was characteristic for the desulfurizer MgO, but the Ca2+ emission was not increased by addition of the desulfurizer CaO or CaCO3 The concentrations of NH4+ and NO3- in fumes of thermal power plant were lower than those in fumes of industrial or heating coal fired boilers. The form of water-soluble ions was significantly correlated with fume temperature. The most water-soluble ions were in superfine state at higher fume temperature and were not easily captured by the filter membrane.

  19. Solubility of sodium chloride in superionic water ice

    Science.gov (United States)

    Hernandez, Jean-Alexis; Caracas, Razvan

    2017-04-01

    In icy planets, complex interactions are expected to occur at the interface between the rocky core and the icy mantle composed of mixtures based on water, methane, and ammonia [1, 2]. The hydration of the silicate layer produces salts (MgSO4, NaCl, KCl) that could mix with the ice, and change considerably its properties [3]. Here, we used first-principles molecular dynamics to investigate the stability and the properties of the binary system NaCl-H2O at the relevant thermodynamic conditions for planetary interiors up to ice giants. In these conditions, pure water ice undergoes several transitions that affect considerably its ionic conductivity and its elastic properties [4]. We calculated the Gibbs free energy of mixing along the NaCl-H2O binary by applying Boltzmann statistics to account for energy differences between configurations. We evaluated vibrational entropy from the vibrational spectra of the nuclei motion using the recently developed two phases thermodynamic memory function (2PT-MF) model for multicomponent systems [5, 6]. We show that the solubility of NaCl in water ice at 1600 K is less than 0.78 mol%. We find that salty ices present an extended superionic domain toward high pressures in comparison to pure water ice. Finally, we predict that the complete symmetrization of the hydrogen bonds (i.e. transition to ice X) occurs at higher pressure than in pure water ice, as observed in LiCl doped water ice at ambient temperature [7]. References: [1] M. R. Frank, C. E. Runge, H. P. Scott, S. J. Maglio, J. Olson, V. B. Prakapenka, G. Shen, PEPI 155 (2006) 152-162 [2] B. Journaux, I. Daniel, R. Caracas, G. Montagnac, H. Cardon, Icarus 226 (2013) 355-363 [3] S. Klotz, L. E. Bove, T. Strässle, T. C. Hansen, A. M. Saitta, Nature Materials 8 (2009) 405-409 [4] J. -A. Hernandez, R. Caracas, Phys. Rev. Lett. 117 (2016) 135503 [5] M. P. Desjarlais, Phys. Rev. E 88 (2013) 062145 [6] M. French, M. P. Desjarlais, R. Redmer, Phys. Rev. E 93 (2016) 022140 [7] L. E. Bove

  20. Simultaneous Rapid Determination of the Solubility and Diffusion Coefficients of a Poorly Water-Soluble Drug Based on a Novel UV Imaging System.

    Science.gov (United States)

    Lu, Yan; Li, Mingzhong

    2016-01-01

    The solubility and diffusion coefficient are two of the most important physicochemical properties of a drug compound. In practice, both have been measured separately, which is time consuming. This work utilizes a novel technique of UV imaging to determine the solubility and diffusion coefficients of poorly water-soluble drugs simultaneously. A 2-step optimal method is proposed to determine the solubility and diffusion coefficients of a poorly water-soluble pharmaceutical substance based on the Fick's second law of diffusion and UV imaging measurements. Experimental results demonstrate that the proposed method can be used to determine the solubility and diffusion coefficients of a drug with reasonable accuracy, indicating that UV imaging may provide a new opportunity to accurately measure the solubility and diffusion coefficients of a poorly water-soluble drug simultaneously and rapidly. Copyright © 2016 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  1. A dual-permeability approach to preferential water flow and solute transport in shrinking soils

    Science.gov (United States)

    Coppola, Antonio; dragonetti, giovanna; Comegna, Alessandro; Gerke, Horst H.; Basile, Angelo

    2016-04-01

    The pore systems in most natural soils is dynamically changing due to alternating swelling and shrinkage processes, which induces changes in pore volume and pore size distribution including deformations in pore geometry. This is a serious difficulty for modeling flow and transport in dual permeability approaches, as it will also require that the geometrical deformation of both the soil matrix and the fracture porous systems be taken into account, as well as the dynamics of soil hydraulic properties in response to the domain deformations. This study follows up a previous work by the same authors extending the classical rigid (RGD) approach formerly proposed by Gerke and van Genuchten, to account for shrinking effects (SHR) in modeling water flow and solute transport in dual-permeability porous media. In this study we considered three SHR scenarios, assuming that aggregate shrinkage may change either: (i) the hydraulic properties of the two pore domains, (ii) their relative fractions, and (iii) both, hydraulic properties and fractions of the two domains. The objective was to compare simulation results obtained under the RGD and the SHR assumptions to illustrate the impact of matrix volume changes on water storage, water fluxes and solute concentrations during: 1) An infiltration process bringing an initially dry soil to saturation, 2) A drainage process starting from an initially saturated soil. For an infiltration process, the simulated wetting front and the solute concentration propagation velocity, as well as the water fluxes, water and solute exchange rates, for the three SHR scenarios significantly deviated from the RGD. By contrast, relatively similar water content profiles evolved under all scenarios during drying. Overall, compared to the RGD approach, the effect of changing the hydraulic properties and the weight of the two domains according to the shrinkage behavior of the soil aggregates induced a much more rapid response in terms of water fluxes and

  2. Water-soluble fullerene materials for bioapplications: photoinduced reactive oxygen species generation

    Science.gov (United States)

    The photoinduced reactive oxygen species (ROS) generation from several water-soluble fullerenes was examined. Macromolecular or small molecular water-soluble fullerene complexes/derivatives were prepared and their 1O2 and O2•- generation abilities were evaluated by EPR spin-trapping methods. As a r...

  3. Process for the production of furfural from pentoses and/or water soluble pentosans

    NARCIS (Netherlands)

    De Jong, W.; Marcotullio, G.

    2012-01-01

    The invention is directed to a process for the production of furfural from pentoses and/or water soluble pentosans, said process comprising converting the said pentoses and/or water soluble pentosans in aqueous solution in a first step to furfural and in a second step feeding the aqueous solution

  4. 40 CFR 799.6786 - TSCA water solubility: Generator column method.

    Science.gov (United States)

    2010-07-01

    ...-366 (1981). (2) Hansch, C. et al., The linear free-energy relationship between partition coefficients... 40 Protection of Environment 31 2010-07-01 2010-07-01 true TSCA water solubility: Generator column... TESTING REQUIREMENTS Product Properties Test Guidelines § 799.6786 TSCA water solubility: Generator column...

  5. Synthesis, structure and reactivity of a water-soluble copper(I) complex

    Indian Academy of Sciences (India)

    Administrator

    Water-soluble phosphines and their complexes have attracted a great deal of interest because of their potential use in aqueous catalytic organometallic chemistry and biomedical applications. Tris(hydroxymethyl)phosphine (THP) is moderately air-stable and water-soluble. While the coordination chemistry of this ligand with ...

  6. Analyzing water soluble soil organics as Trifluoroacetyl derivatives by liquid state proton nuclear magnetic resonance

    Science.gov (United States)

    Felipe Garza Sanchez; Zakiya Holmes Leggett; Sabapathy Sankar

    2005-01-01

    In forested ecosystems, water soluble organics play an important role in soil processes including carbon and nutrient turnover, microbial activity and pedogenesis. The quantity and quality (i.e., chemistry) of these materials is sensitive to land management practices. Monitoring alterations in the chemistry of water soluble organics resulting from land management...

  7. Antiradical activity of water soluble components in common diet vegetables.

    Science.gov (United States)

    Racchi, Marco; Daglia, Maria; Lanni, Cristina; Papetti, Adele; Govoni, Stefano; Gazzani, Gabriella

    2002-02-27

    The antiradical activity of water-soluble components contained in mushrooms (Psalliota campestris), onions (Allium cepa), white cabbage (Brassica oleracea var. alba), and yellow bell peppers (Capsicum annuum) against hydroxyl radicals was tested in a chemical and biological system. The vegetable juices were obtained by centrifugation of a vegetable homogenate processed at 2 degrees C or heated at 102 degrees C. The chemical system consisted of a buffered reaction mixture composed of Fe(III)-EDTA, 2-deoxy-D-ribose, ascorbic acid, and H(2)O(2) generating the hydroxyl radical. The antiradical activity was expressed as an inhibition of deoxyribose degradation. The biological system consisted of IMR32 neuroblastoma cells exposed to H(2)O(2) in the presence or absence of the vegetable juices. Cells were pretreated for either 24 h or 1 h with the vegetable juices, and reduction of 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) was used as a cell viability assay. All vegetable juices inhibited the degradation of deoxyribose and increased the viability of H(2)O(2) treated cells. Raw mushroom juice proved to be the most active in both cases. Boiling significantly affected the activity of mushroom juice, but did not change significantly the effect on onions and yellow bell peppers, and partially increased the activity of white cabbage juice. Mushroom antiradical activity was also confirmed by a cytofluorimetric analysis.

  8. Water Soluble Polymers as Proton Exchange Membranes for Fuel Cells

    Directory of Open Access Journals (Sweden)

    Bing-Joe Hwang

    2012-03-01

    Full Text Available The relentless increase in the demand for useable power from energy-hungry economies continues to drive energy-material related research. Fuel cells, as a future potential power source that provide clean-at-the-point-of-use power offer many advantages such as high efficiency, high energy density, quiet operation, and environmental friendliness. Critical to the operation of the fuel cell is the proton exchange membrane (polymer electrolyte membrane responsible for internal proton transport from the anode to the cathode. PEMs have the following requirements: high protonic conductivity, low electronic conductivity, impermeability to fuel gas or liquid, good mechanical toughness in both the dry and hydrated states, and high oxidative and hydrolytic stability in the actual fuel cell environment. Water soluble polymers represent an immensely diverse class of polymers. In this comprehensive review the initial focus is on those members of this group that have attracted publication interest, principally: chitosan, poly (ethylene glycol, poly (vinyl alcohol, poly (vinylpyrrolidone, poly (2-acrylamido-2-methyl-1-propanesulfonic acid and poly (styrene sulfonic acid. The paper then considers in detail the relationship of structure to functionality in the context of polymer blends and polymer based networks together with the effects of membrane crosslinking on IPN and semi IPN architectures. This is followed by a review of pore-filling and other impregnation approaches. Throughout the paper detailed numerical results are given for comparison to today’s state-of-the-art Nafion® based materials.

  9. Growth and characterization of films containing fullerenes and water soluble porphyrins for solar energy conversion applications.

    Science.gov (United States)

    Sgobba, Vito; Giancane, Gabriele; Conoci, Sabrina; Casilli, Serena; Ricciardi, Giampaolo; Guldi, Dirk M; Prato, Maurizio; Valli, Ludovico

    2007-03-21

    Thin films consisting of two fulleropyrrolidine derivatives 1 or 2 and a water-soluble porphyrin, TPPS4, were prepared by the Langmuir-Schäfer (LS, horizontal lifting) method. In particular, a solution of the fulleropyrrolidine in chloroform and dimethyl sulfoxide was spread on the water surface, while the porphyrin (bearing peripheral anionic sulfonic groups) was dissolved into the aqueous subphase. To the best of our knowledge, such a versatile method for film fabrication of fullerene/porphyrin mixed composite films has never been used by other researchers. Evidence of the effective interactions between the two components at the air-water interface was obtained from the analysis of the floating layers by means of surface pressure vs area per molecule Langmuir curves, Brewster angle microscopy, and UV-visible reflection spectroscopy. The characterization of the LS films by UV-visible spectroscopy reveals that in each case the two constituents behave as strongly interacting pi systems. The use of polarized light suggests the existence of a preferential direction of the TPPS4 macrocyclic rings with an edge-on arrangement with respect to the substrate surface, regardless which fulleropyrrolidine derivative is in the composite film. Atomic force microscopy investigations give evidence of morphologically flat layers even for LS transfer at low surface pressures. Photoaction spectra were recorded from films deposited by only one horizontal lifting onto indium-tin-oxide (ITO) electrodes, and the observed photocurrent increased notably with increasing transfer surface pressure for both 1/TPPS4 and 2/TPPS4 composite films. IPCE values are larger for 2/TPPS4 systems in comparison with 1/TPPS4 composite layers. Finally, a nonconventional approach to photoinduced phenomena is proposed by differential spectroscopy in the FT-IR attenuated total reflectance (ATR) mode.

  10. Water-Soluble 2-Hydroxyisophthalamides for Sensitization of Lanthanide Luminescence

    Energy Technology Data Exchange (ETDEWEB)

    Samuel, Amanda P. S.; Moore, Evan G.; Melchior, Marco; Xu, Jide; Raymond, Kenneth N.

    2008-02-20

    A series of octadentate ligands featuring the 2-hydroxyisophthalamide (IAM) antenna chromophore (to sensitize Tb(III) and Eu(III) luminescence) has been prepared and characterized. The length of the alkyl amine scaffold that links the four IAM moieties has been varied in order to investigate the effect of the ligand backbone on the stability and photophysical properties of the Ln(III) complexes. The amine backbones utilized in this study are N,N,N{prime},N{prime}-tetrakis-(2-aminoethyl)-ethane-1,2-diamine [H(2,2)-], N,N,N{prime},N{prime}-tetrakis-(2-aminoethyl)-propane-1,3-diamine [H(3,2)-] and N,N,N{prime},N{prime}-tetrakis-(2-aminoethyl)-butane-1,4-diamine [H(4,2)-]. These ligands also incorporate methoxyethylene [MOE] groups on each of the IAM chromophores to increase their water solubility. The aqueous ligand protonation constants and Tb(III) and Eu(III) formation constants were determined from solution thermodynamic studies. The resulting values indicate that at physiological pH, the Eu(III) and Tb(III) complexes of H(2,2)-IAM-MOE and H(4,2)-IAM-MOE are sufficiently stable to prevent dissociation at nanomolar concentrations. The photophysical measurements for the Tb(III) complexes gave overall quantum yield values of 0.56, 0.39, and 0.52 respectively for the complexes with H(2,2)-IAM-MOE, H(3,2)-IAM-MOE and H(4,2)-IAM-MOE, while the corresponding Eu(III) complexes displayed significantly weaker luminescence, with quantum yield values of 0.0014, 0.0015, and 0.0058, respectively. Analysis of the steady state Eu(III) emission spectra provides insight into the solution symmetries of the complexes. The combined solubility, stability and photophysical performance of the Tb(III) complexes in particular make them well suited to serve as the luminescent reporter group in high sensitivity time-resolved fluoroimmunoassays.

  11. Development of Soluble Manganese Sorptive Contactors for Enhancing Potable Water Treatment Practices

    OpenAIRE

    Zuravnsky, Lauren

    2006-01-01

    Without proper removal at a water treatment facility, the soluble manganese (Mn) concentration can reach and exceed the Secondary Maximum Contaminant Level (SMCL) of 0.05 mg/L in the water distribution system. At this level, soluble Mn can be oxidized to solid Mn-oxide particulates, leading to water discoloration events and resulting in numerous consumer complaints. Manganese-laden water can severely stain fixtures and laundry as well as increase turbidity and foul tastes. A major discolo...

  12. [Analysis on water-soluble components in roots of Changium smyrnioides among different populations by HPLC].

    Science.gov (United States)

    Wang, Changlin; Guo, Qiaosheng; Cheng, Boxing; Yang, Liwen; Zhou, Tinghui

    2010-12-01

    To analyze water-soluble components in the roots of Ch. smyrnioides among different populations that distributed in the main areas and give a reference for germplasm evaluation and quality control. Water-soluble components were extracted with the cold-soaking method and analyzed by HPLC, similarity coefficient was calculated by included angle cosine method according to relative content of major water-soluble components, and systematic relationships were constructed based on UPGMA method. There was significant difference in water-soluble components in root among population. Jiuhuashan population had the highest content of water-soluble extract. The content of water-soluble extract was below the pharmacopoeia standard in the root of Dalongshan population and Fushan population. There was significant difference in the HPLC chromatogram of water-soluble components in the root of Ch. smyrnioides from different populations, and the number of common peak was small. Similarity coefficient significantly ranged from 0.0306 to 0.9995 among 10 populations of Ch. smymrnioides. Water-soluble components in the root of Zijinshan population was the most unique, similarity coefficients were relatively small among Zijinshan population and the other seven populations except Hongshan population, and similarity coefficient was in a higher level of 0.9697 between Zijinshan population and Hongshan population. Water-soluble components were extremely similar in four populations that were Laoshan, Maoshan, Qinglongshan and Langyashan, and similarity coefficients among them were in a high level exceeded 0.99. 10 populations were divided into 3 groups according to clustering results. Water-soluble components show a high diversity in the roots of Ch. smyrnioides among different populations, and can be clearly divided into 3 types.

  13. Preferential flows and soil moistures on a Benggang slope: Determined by the water and temperature co-monitoring

    Science.gov (United States)

    Tao, Yu; He, Yangbo; Duan, Xiaoqian; Zou, Ziqiang; Lin, Lirong; Chen, Jiazhou

    2017-10-01

    Soil preferential flow (PF) has important effects on rainfall infiltration, moisture distribution, and hydrological and ecological process; but it is very difficult to monitor and characterize on a slope. In this paper, soil water and soil temperature at 20, 40, 60, 80 cm depths in six positions were simultaneously monitored at high frequency to confirm the occurrence of PF at a typical Benggang slope underlain granite residual deposits, and to determine the interaction of soil moisture distribution and Benggang erosion. In the presence of PF, the soil temperature was first (half to one hour) governed by the rainwater temperature, then (more than one hour) governed by the upper soil temperature; in the absence of PF (only matrix flow, MF), the soil temperature was initially governed by the upper soil temperature, then by the rainwater temperature. The results confirmed the water replacement phenomenon in MF, thus it can be distinguished from PF by additional temperature monitoring. It indicates that high frequency moisture and temperature monitoring can determine the occurrence of PF and reveal the soil water movement. The distribution of soil water content and PF on the different positions of the slope showed that a higher frequency of PF resulted in a higher variation of average of water content. The frequency of PF at the lower position can be three times as that of the upper position, therefore, the variation coefficient of soil water content increased from 4.67% to 12.68% at the upper position to 8.18%-33.12% at the lower position, where the Benggang erosion (soil collapse) was more possible. The results suggest strong relationships between PF, soil water variation, and collapse activation near the Benggang wall.

  14. New water-soluble polyanionic dendrimers and binding to acetylcholine in water by means of contact ion-pairing interactions.

    Science.gov (United States)

    Ornelas, Cátia; Boisselier, Elodie; Martinez, Victor; Pianet, Isabelle; Ruiz Aranzaes, Jaime; Astruc, Didier

    2007-12-21

    A new water-soluble polyanionic dendrimer containing 81 benzoate termini (diameter: 11+/-1 nm from DOSY NMR spectroscopy) has been synthesized; it interacts with acetylcholine cations in water-soluble assemblies in which each carboxylate terminus reversibly forms contact ion pairs and aggregates at the tether termini, as shown by 1H NMR spectroscopy.

  15. Water solubility of lead and cadmium compounds in flue ash purging residues

    Energy Technology Data Exchange (ETDEWEB)

    Gruber, H.

    1984-07-01

    Water soluble compounds (Pb, Cd) in flue ash purging residues represents a danger for environment. By waste incineration may be emitted as rain soluble salts 200-300 kg Pb, 2000 kg Cd and 10,000-80,000 kg Zn per year and plant. Dumping the material without prior washing out and recycling of the soluble compounds seems not to be responsible to future generations.

  16. Towards improved solubility of poorly water-soluble drugs: cryogenic co-grinding of piroxicam with carrier polymers.

    Science.gov (United States)

    Penkina, Anna; Semjonov, Kristian; Hakola, Maija; Vuorinen, Sirpa; Repo, Timo; Yliruusi, Jouko; Aruväli, Jaan; Kogermann, Karin; Veski, Peep; Heinämäki, Jyrki

    2016-01-01

    Amorphous solid dispersions (SDs) open up exciting opportunities in formulating poorly water-soluble active pharmaceutical ingredients (APIs). In the present study, novel catalytic pretreated softwood cellulose (CPSC) and polyvinylpyrrolidone (PVP) were investigated as carrier polymers for preparing and stabilizing cryogenic co-ground SDs of poorly water-soluble piroxicam (PRX). CPSC was isolated from pine wood (Pinus sylvestris). Raman and Fourier transform infrared (FTIR) spectroscopy, X-ray powder diffraction (XRPD) and differential scanning calorimetry (DSC) were used for characterizing the solid-state changes and drug-polymer interactions. High-resolution scanning electron microscope (SEM) was used to analyze the particle size and surface morphology of starting materials and final cryogenic co-ground SDs. In addition, the molecular aspects of drug-polymer interactions and stabilization mechanisms are presented. The results showed that the carrier polymer influenced both the degree of amorphization of PRX and stabilization against crystallization. The cryogenic co-ground SDs prepared from PVP showed an enhanced dissolution rate of PRX, while the corresponding SDs prepared from CPSC exhibited a clear sustained release behavior. In conclusion, cryogenic co-grinding provides a versatile method for preparing amorphous SDs of poorly water-soluble APIs. The solid-state stability and dissolution behavior of such co-ground SDs are to a great extent dependent on the carrier polymer used.

  17. Facile synthesis of highly water-soluble fullerenes more than half-covered by hydroxyl groups.

    Science.gov (United States)

    Kokubo, Ken; Matsubayashi, Kenji; Tategaki, Hiroshi; Takada, Hiroya; Oshima, Takumi

    2008-02-01

    Using a novel hydrogen peroxide heating method, we synthesized milky white, water-soluble polyhydroxylated fullerenes (fullerenols) with 36-40 hydroxyl groups (estimated average) along with 8-9 secondary bound water molecules. The fullerenols exhibited high water solubility up to 58.9 mg/mL in a neutral (pH = 7) condition. Dynamic light scattering analysis showed a high dispersion property, to give a narrow particle size distribution within 0.7-2.0 nm.

  18. Explaining Ionic Liquid Water Solubility in Terms of Cation and Anion Hydrophobicity

    OpenAIRE

    Johannes Ranke; Alaa Othman; Ping Fan; Anja Müller

    2009-01-01

    The water solubility of salts is ordinarily dictated by lattice energy and ion solvation. However, in the case of low melting salts also known as ionic liquids, lattice energy is immaterial and differences in hydrophobicity largely account for differences in their water solubility. In this contribution, the activity coefficients of ionic liquids in water are split into cation and anion contributions by regression against cation hydrophobicity parameters that are experimentally determined by r...

  19. Identification of Preferential Paths of Fossil Carbon within Water Resource Recovery Facilities via Radiocarbon Analysis.

    Science.gov (United States)

    Tseng, Linda Y; Robinson, Alice K; Zhang, Xiaying; Xu, Xiaomei; Southon, John; Hamilton, Andrew J; Sobhani, Reza; Stenstrom, Michael K; Rosso, Diego

    2016-11-15

    The Intergovernmental Panel on Climate Change (IPCC) reported that all carbon dioxide (CO 2 ) emissions generated by water resource recovery facilities (WRRFs) during treatment are modern, based on available literature. Therefore, such emissions were omitted from IPCC's greenhouse gas (GHG) accounting procedures. However, a fraction of wastewater's carbon is fossil in origin. We hypothesized that since the fossil carbon entering municipal WRRFs is mostly from soaps and detergents as dissolved organic matter, its fate can be selectively determined during the universally applied separation treatment processes. Analyzing radiocarbon at different treatment points within municipal WRRFs, we verified that the fossil content could amount to 28% in primary influent and showed varying distribution leaving different unit operations. We recorded the highest proportion of fossil carbon leaving the secondary treatment as off-gas and as solid sludge (averaged 2.08 kg fossil-CO 2 -emission-potential m -3 wastewater treated). By including fossil CO 2 , total GHG emission in municipal WRRFs increased 13%, and 23% if an on-site energy recovery system exists although much of the postdigestion fossil carbon remained in biosolids rather than in biogas, offering yet another carbon sequestration opportunity during biosolids handling. In comparison, fossil carbon contribution to GHG emission can span from negligible to substantial in different types of industrial WRRFs. With such a considerable impact, CO 2 should be analyzed for each WRRF and not omitted from GHG accounting.

  20. Water-enhanced solubility of carboxylic acids in organic solvents and its applications to extraction processes

    Energy Technology Data Exchange (ETDEWEB)

    Starr, John N. [Univ. of California, Berkeley, CA (United States)

    1991-11-01

    The solubilities of carboxylic acids in certain organic solvents increase remarkably with an increasing amount of water in the organic phase. This phenomenon leads to a novel extract regeneration process in which the co-extracted water is selectively removed from an extract, and the carboxylic acid precipitates. This approach is potentially advantageous compared to other regeneration processes because it removes a minor component of the extract in order to achieve a large recovery of acid from the extract. Carboxylic acids of interest include adipic acid, fumaric acid, and succinic acid because of their low to moderate solubilities in organic solvents. Solvents were screened for an increase in acid solubility with increased water concentration in the organic phase. Most Lewis-base solvents were found to exhibit this increased solubility phenomena. Solvents that have a carbonyl functional group showed a very large increase in acid solubility. 71 refs., 52 figs., 38 tabs.

  1. Polymer-assisted synthesis of water-soluble PbSe quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Melnig, V., E-mail: vmelnig@uaic.r [' Al. I. Cuza' University, Faculty of Physics (Romania); Apostu, M.-O. [' Al. I. Cuza' University, Faculty of Chemistry (Romania); Foca, N. [' Gh. Asachi' University, Faculty of Chemistry (Romania)

    2008-12-15

    Stable PbSe quantum dots were synthesised in water-based media using poly(amidehydroxyurethane) water-soluble polymer. The polymer acts like a precursor carrier, blocks the particles aggregation and assures their solubility. Atomic force microscopy data show that the particle radius is smaller than the Bohr radius of PbSe. Interactions studies, performed by Fourier transform IR spectroscopy, show that the quantum dots are capped with poly(amidehydroxyurethane). The proposed synthesis was realised in the absence of any organic solvent. As a result, the produced particles have good water solubility, stability and good arguments to be biologically compatible.

  2. The synthesis of a water-soluble derivative of rutin as an antiradical agent

    Energy Technology Data Exchange (ETDEWEB)

    Pedriali, Carla Aparecida; Fernandes, Adjaci Uchoa [Universidade de Sao Paulo (USP), SP (Brazil). Inst. de Quimica. Dept. de Bioquimica]. E-mail: capedriali@hotmail.com; Bernusso, Leandra de Cassia; Polakiewicz, Bronislaw [Universidade de Sao Paulo (USP), SP (Brazil). Faculdade de Ciencias Farmaceuticas. Dept. de Tecnologia Bioquimico-Farmaceutica

    2008-07-01

    The purpose of this study was to synthesize a water-soluble derivative of rutin (compound 2) by introducing carboxylate groups on rutin's sugar moiety. The rutin derivative showed an almost 100-fold solubility increase in water. The antiradical capacity of compound 2 was evaluated using the luminol/AAPH system, and the derivative's activity was 1.5 times greater than that of Trolox. Despite the derivative's high solubility in water (log P = -1.13), lipid peroxidation of brain homogenate membranes was very efficiently inhibited (inhibition values were only 19% lower than the inhibition values of rutin). (author)

  3. Explaining Ionic Liquid Water Solubility in Terms of Cation and Anion Hydrophobicity

    Science.gov (United States)

    Ranke, Johannes; Othman, Alaa; Fan, Ping; Müller, Anja

    2009-01-01

    The water solubility of salts is ordinarily dictated by lattice energy and ion solvation. However, in the case of low melting salts also known as ionic liquids, lattice energy is immaterial and differences in hydrophobicity largely account for differences in their water solubility. In this contribution, the activity coefficients of ionic liquids in water are split into cation and anion contributions by regression against cation hydrophobicity parameters that are experimentally determined by reversed phase liquid chromatography. In this way, anion hydrophobicity parameters are derived, as well as an equation to estimate water solubilities for cation-anion combinations for which the water solubility has not been measured. Thus, a new pathway to the quantification of aqueous ion solvation is shown, making use of the relative weakness of interactions between ionic liquid ions as compared to their hydrophobicities. PMID:19399248

  4. Explaining ionic liquid water solubility in terms of cation and anion hydrophobicity.

    Science.gov (United States)

    Ranke, Johannes; Othman, Alaa; Fan, Ping; Müller, Anja

    2009-03-01

    The water solubility of salts is ordinarily dictated by lattice energy and ion solvation. However, in the case of low melting salts also known as ionic liquids, lattice energy is immaterial and differences in hydrophobicity largely account for differences in their water solubility. In this contribution, the activity coefficients of ionic liquids in water are split into cation and anion contributions by regression against cation hydrophobicity parameters that are experimentally determined by reversed phase liquid chromatography. In this way, anion hydrophobicity parameters are derived, as well as an equation to estimate water solubilities for cation-anion combinations for which the water solubility has not been measured. Thus, a new pathway to the quantification of aqueous ion solvation is shown, making use of the relative weakness of interactions between ionic liquid ions as compared to their hydrophobicities.

  5. Explaining Ionic Liquid Water Solubility in Terms of Cation and Anion Hydrophobicity

    Directory of Open Access Journals (Sweden)

    Johannes Ranke

    2009-03-01

    Full Text Available The water solubility of salts is ordinarily dictated by lattice energy and ion solvation. However, in the case of low melting salts also known as ionic liquids, lattice energy is immaterial and differences in hydrophobicity largely account for differences in their water solubility. In this contribution, the activity coefficients of ionic liquids in water are split into cation and anion contributions by regression against cation hydrophobicity parameters that are experimentally determined by reversed phase liquid chromatography. In this way, anion hydrophobicity parameters are derived, as well as an equation to estimate water solubilities for cation-anion combinations for which the water solubility has not been measured. Thus, a new pathway to the quantification of aqueous ion solvation is shown, making use of the relative weakness of interactions between ionic liquid ions as compared to their hydrophobicities.

  6. Rampant Exchange of the Structure and Function of Extramembrane Domains between Membrane and Water Soluble Proteins

    Science.gov (United States)

    Nam, Hyun-Jun; Han, Seong Kyu; Bowie, James U.; Kim, Sanguk

    2013-01-01

    Of the membrane proteins of known structure, we found that a remarkable 67% of the water soluble domains are structurally similar to water soluble proteins of known structure. Moreover, 41% of known water soluble protein structures share a domain with an already known membrane protein structure. We also found that functional residues are frequently conserved between extramembrane domains of membrane and soluble proteins that share structural similarity. These results suggest membrane and soluble proteins readily exchange domains and their attendant functionalities. The exchanges between membrane and soluble proteins are particularly frequent in eukaryotes, indicating that this is an important mechanism for increasing functional complexity. The high level of structural overlap between the two classes of proteins provides an opportunity to employ the extensive information on soluble proteins to illuminate membrane protein structure and function, for which much less is known. To this end, we employed structure guided sequence alignment to elucidate the functions of membrane proteins in the human genome. Our results bridge the gap of fold space between membrane and water soluble proteins and provide a resource for the prediction of membrane protein function. A database of predicted structural and functional relationships for proteins in the human genome is provided at sbi.postech.ac.kr/emdmp. PMID:23555228

  7. Preferential flow dynamics in agricultural soils in Navarre (Spain): an experimental approach to gain insight into water connectivity

    Science.gov (United States)

    Iturria, Iban; Zubieta, Elena; Giménez, Rafael; Ángel Campo-Bescós, Miguel

    2017-04-01

    To address studies on soil erosion and water quality it is essential to understand and quantify water movements through the soil. The estimation of this movement is usually based on soil texture and structure since it is assumed that the water moves across soil matrix. However, soils prone to the formation of cracks or macropores could trigger rapid flow paths, capable of drastically changing the movement of the water and, therefore, its connectivity across the soil. This would have important consequences both for runoff -and thus for erosion- and for groundwater quality. Local preliminary studies have shown that in many agrarian soils in Navarre (Spain), infiltration rate was mainly determined by this type of preferential flow. On the other hand, the formation of these cracks basically responded to expansion/contraction processes of clays due to changes in soil moisture content caused by rainfall. The aim of this work was to quantify in agricultural soil the presence of cracks/macropores responsible for preferential flow and their temporal variation compared to different soil moisture contents. The work was carried out in experimental plots (150 m2) of the UPNA with different type of conventional tillage: (i) mouldboard plough: (ii) chisel and (iii) mouldboard+Molon rake. Each plot was divided into two halves or subplots. On half was submitted to the action of 4 simulated rainfall (5 days passing between each event); whereas in the other half, no rain was applied. Six subplots were thus defined. After each of the 4 rainfall, and once the 5 days had passed, the following experiments were conducted in each of the 6 subplots. In microplots (0.5 m2) a colourant (aqueous solution of bromide) was applied (Lu and Wu, 2003). To be specific, 8 mm of this solution was applied as intense rain with a sprinkler, but avoiding any waterlogging. Then, vertical cuts of 50-60 cm were made where the cracks/macropores were evidenced by the colourant. Photographs of the profiles were

  8. 21 CFR 201.319 - Water-soluble gums, hydrophilic gums, and hydrophilic mucilloids (including, but not limited to...

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 4 2010-04-01 2010-04-01 false Water-soluble gums, hydrophilic gums, and... Specific Labeling Requirements for Specific Drug Products § 201.319 Water-soluble gums, hydrophilic gums... been associated with the ingestion of water-soluble gums, hydrophilic gums, and hydrophilic mucilloids...

  9. The role of water-soluble meconium subfraction and lipid-soluble meconium subfraction on the superior mesenteric artery vasoconstriction in chick embryos.

    Science.gov (United States)

    Şiyve, Serdar; Ulusoy, Oktay; Karakuş, Osman Z; Murat, Nergis; Uslu, Mehmet E; Ateş, Oğuz; Hakgüder, Gülce; Olguner, Mustafa; Akgür, Feza M

    2017-03-01

    Intraamniotic meconium has been responsible for intestinal damage in gastroschisis and meconium-dependent intestinal ischemia has been proposed to induce additional intestinal damage in gastroschisis. This study is aimed to determine the effects of lipid and water-soluble meconium subfractions on the contractility of the superior mesenteric artery (SMA). The study was conducted on 18-day fertilized chick embryos (Gallus Domesticus). Meconium is fractioned into water and lipid-soluble components. Only one SMA tissue was prepared from each embryo and suspended in the organ bath. Isometric contraction responses (ICR) were created in SMA tissues by one hour of incubation in Krebs-Henseleit solution for each group. Groups consisted of control, meconium, water-soluble meconium subfraction and lipid-soluble meconium subfraction. ICR of the SMA specimens were evaluated with a transducer-amplifier system on a computer. The data were expressed (mean±1SD) as milliNewton (mN). The ICR of the meconium, water-soluble meconium subfraction and lipid-soluble meconium subfraction groups were significantly high when compared to the control group (psoluble meconium subfraction created more contraction response than the lipid-soluble meconium subfraction (psoluble meconium subfraction group (p>0.05). Water-soluble meconium subfraction has a profound vasoconstrictor effect on the SMA compared to the lipid-soluble meconium subfraction. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Solubility of phenolic compounds in water, organic and supercritical solvents

    OpenAIRE

    Queimada, António; Mota, Fátima; Direito, Filipe; Pinho, Simão; Macedo, Eugénia A.

    2009-01-01

    Phenolic compounds represent a class of important chemicals with both biological and industrial importance. Their production, either by chemical synthesis or extraction from different biological media requires the adequate knowledge of phase equilibria. Particularly, the solubility in aqueous systems organic and supercritical solvents are fundamental for a better design of separation and purification processes.

  11. Effects of soil drenching of water-soluble potassium silicate on ...

    African Journals Online (AJOL)

    Effects of soil drenching of water-soluble potassium silicate on commercial avocado ( Persea americana Mill.) orchard trees infected with Phytophthora cinnamomi Rands on root density, canopy health, induction and concentration of phenolic com.

  12. Abalone water-soluble matrix for self-healing biomineralization of tooth defects

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Zhenliang [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Chen, Jingdi, E-mail: ibptcjd@fzu.edu.cn [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Wang, Hailiang [The Affiliated Stomatological Hospital, Fujian Medical University, Fuzhou 350002 (China); Zhong, Shengnan; Hu, Yimin; Wang, Zhili [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Zhang, Qiqing, E-mail: zhangqiq@126.com [Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002 (China); Institute of Biomedical Engineering, Chinese Academy of Medical Science & Peking Union Medical College, Tianjin 300192 (China)

    2016-10-01

    Enamel cannot heal by itself if damaged. Hydroxyapatite (HAP) is main component of human enamel. Formation of enamel-like materials for healing enamel defects remains a challenge. In this paper, we successfully isolated the abalone water-soluble matrix (AWSM) with 1.53 wt% the abalone water-soluble protein (AWSPro) and 2.04 wt% the abalone water-soluble polysaccharide (AWSPs) from abandoned abalone shell, and self-healing biomineralization of tooth defects was successfully achieved in vitro. Based on X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), hot field emission scanning electron microscopy (HFESEM) and energy dispersive spectrometer (EDS) analysis, the results showed that the AWSM can efficiently induce remineralization of HAP. The enamel-like HAP was successfully achieved onto etched enamel's surface due to the presence of the AWSM. Moreover, the remineralized effect of eroded enamel was growing with the increase of the AWSM. This study provides a solution to the resource waste and environmental pollution caused by abandoned abalone shell, and we provides a new method for self-healing remineralization of enamel defects by AWSM and develops a novel dental material for potential clinical dentistry application. - Graphical abstract: In this paper, we successfully isolated the abalone water-soluble matrix (AWSM) with 1.53 wt% abalone water-soluble protein (AWSPro) and 2.04 wt% abalone water-soluble polysaccharide (AWSPs) from abandoned abalone shell, and self-healing biomineralization of tooth defects was successfully achieved in vitro by self-organized. Display Omitted - Highlights: • Provides a solution to the resource waste and environmental pollution caused by abandoned abalone shell. • The abalone shell water-soluble matrix contains protein and polysaccharide. • The abalone water-soluble matrix can efficiently induce remineralization of HAP by self-organized. • Achieved self-healing biomineralization of tooth defects in

  13. Amino acids as co-amorphous stabilizers for poorly water-soluble drugs - Part 2

    DEFF Research Database (Denmark)

    Löbmann, K.; Laitinen, R.; Strachan, C.

    2013-01-01

    The formation of co-amorphous drug-drug mixtures has proved to be a powerful approach to stabilize the amorphous form and at the same time increase the dissolution of poorly water-soluble drugs. Molecular interactions in these co-amorphous formulations can play a crucial role in stabilization...... as small molecular weight excipients in co-amorphous formulations to stabilize the amorphous form of a poorly water-soluble drug through strong and specific molecular interactions with the drug....

  14. Changes in the content of water-soluble vitamins in Actinidia chinensis during cold storage

    OpenAIRE

    Zhu Xian-Bo; Pan Liang; Wu, Wei; Pen Jia-Qing; Qi Yin-Wei; Ren Xiao-Lin

    2016-01-01

    We assessed the effects of cold storage on nine water-soluble vitamins in 7 cultivars of Actinidia chinensis (kiwifruit) using high-performance liquid chromatography. Samples were collected at three time points during cold storage: one day, 30 days, and when edible. We found that vitamin C in most cultivars was raised with cold storage, but there was no consistent increased or decreased trend for other water-soluble vitamins across cultivars in storage. Aft...

  15. Photoluminescence of water-soluble NdF nanoparticles by codoping Li or Ba ions

    Science.gov (United States)

    Fan, Ting; Lü, Jiantao; Li, Na; Han, Dingan

    2013-02-01

    Water-soluble NdF3, NdF3:Li+, and NdF3:Ba nanoparticles coated with polyvinylpyrrolidone were synthesized by a simple hydrothermal method. The products were characterized by x-ray diffraction, field-emission scanning electron microscopy, and photoluminescence spectra at room temperature. Codoping with Li+ ions does not change the emission intensity of water-soluble NdF3 nanoparticles, whereas codoping with Ba ions improves the near-infrared emissions.

  16. Solubility of Stevioside and Rebaudioside A in water, ethanol and their binary mixtures

    Directory of Open Access Journals (Sweden)

    Liliana S. Celaya

    2016-10-01

    Full Text Available In order to investigate the solubility of Stevioside and Rebaudioside A in different solvents (ethanol, water, ethanol:water 30:70 and ethanol:water 70:30, supersaturated solutions of pre-crystalized steviol glycosides were maintained at different temperatures (from 5 °C to 50 °C to reach equilibrium. Under these conditions significant differences were found in the extent of solubility. Rebaudioside A was poorly soluble in ethanol and water, and Stevioside was poorly soluble in water. Solvent mixtures more effectively promoted solubilisation, and a significant effect of temperature on solubility was observed. The two steviol glycosides showed higher solubilities and this behavior was promoted by the presence of the other sweetener. The polarity indices of the solvents were determined, and helped to explain the observed behavior. Several solute-solvent and solute-solute interactions can occur, along with the incidence of a strong affinity between solvents. The obtained results are in accordance with technological applications of ethanol, water and their binary mixtures for Stevioside and Rebaudioside A separations.

  17. WATER ACTIVITY DATA ASSESSMENT TO BE USED IN HANFORD WASTE SOLUBILITY CALCULATIONS

    Energy Technology Data Exchange (ETDEWEB)

    DISSELKAMP RS

    2011-01-06

    The purpose of this report is to present and assess water activity versus ionic strength for six solutes:sodium nitrate, sodium nitrite, sodium chloride, sodium carbonate, sodium sulfate, and potassium nitrate. Water activity is given versus molality (e.g., ionic strength) and temperature. Water activity is used to estimate Hanford crystal hydrate solubility present in the waste.

  18. Photocatalytic hydrogen production from a simple water-soluble [FeFe]-hydrogenase model system.

    Science.gov (United States)

    Cao, Wei-Ning; Wang, Feng; Wang, Hong-Yan; Chen, Bin; Feng, Ke; Tung, Chen-Ho; Wu, Li-Zhu

    2012-08-21

    Combined with a simple water soluble [FeFe]-hydrogenase mimic 1, Ru(bpy)(3)(2+) and ascorbic acid enable hydrogen production photocatalytically. More than 88 equivalents of H(2) were achieved in water, which is much better than that obtained in an organic solvent or a mixture of organic solvent and water.

  19. Simultaneous enhancements of solubility and dissolution rate of poorly water-soluble febuxostat via salts

    Science.gov (United States)

    Zhang, Xian-Rui; Zhang, Lei

    2017-06-01

    Novel crystalline forms of febuxostat (HFEB) salts were synthesized by liquid-assisted cogrinding with 2-methylimidazole (2MI) and di-2-pyridylamine (DPA) and characterized by Hirshfeld surface analysis, IR, 1H NMR, single crystal and powder X-ray diffractions, TGA and DSC. Two new HFEB salts featured different stoichiometries: 2:1 molecular ratio in HFEB-2MI and 1:1 molecular ratio in HFEB-DPA. For HFEB-2MI salt, two HFEB molecules lost one proton forming a singly charged hydrogen carboxylate anion H(FEB)2-, which interacted with the disordered 2MI cation via the N3sbnd H3A⋯O1i (i: -x, -y, -z+1) and N4sbnd H4B⋯O1ii (ii: x, y+1, z-1) hydrogen bonds to form one-dimensional structure. For HFEB-DPA salt, one proton transferred from one HFEB to DPA, which were further connected by N4sbnd H1⋯O1 and N3sbnd H2⋯O2 hydrogen bonds to form an R22(8) ring motif. HFEB-2MI and HFEB-DPA salts exhibited increased equilibrium solubilities and intrinsic dissolution rates compared to those of HFEB in aqueous medium.

  20. Nootkatone encapsulation by cyclodextrins: Effect on water solubility and photostability.

    Science.gov (United States)

    Kfoury, Miriana; Landy, David; Ruellan, Steven; Auezova, Lizette; Greige-Gerges, Hélène; Fourmentin, Sophie

    2017-12-01

    Nootkatone (NO) is a sesquiterpenoid volatile flavor, used in foods, cosmetics and pharmaceuticals, possessing also insect repellent activity. Its application is limited because of its low aqueous solubility and stability; this could be resolved by encapsulation in cyclodextrins (CDs). This study evaluated the encapsulation of NO by CDs using phase solubility studies, Isothermal Titration Calorimetry, Nuclear Magnetic Resonance spectroscopy and molecular modeling. Solid CD/NO inclusion complex was prepared and characterized for encapsulation efficiency and loading capacity using UV-Visible. Thermal properties were investigated by thermogravimetric-differential thermal analysis and release studies were performed using multiple headspace extraction. Formation constants (K f ) proved the formation of stable inclusion complexes. NO aqueous solubility, photo- and thermal stability were enhanced and the release could be insured from solid complex in aqueous solution. This suggests that CDs are promising carrier to improve NO properties and, consequently, to enlarge its use in foods, cosmetics, pharmaceuticals and agrochemicals preparations. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. Prediction of solubilities for ginger bioactive compounds in hot water by the COSMO-RS method

    Science.gov (United States)

    Zaimah Syed Jaapar, Syaripah; Azian Morad, Noor; Iwai, Yoshio

    2013-04-01

    The solubilities in water of four main ginger bioactives, 6-gingerol, 6-shogaol, 8-gingerol and 10-gingerol, were predicted using a conductor-like screening model for real solvent (COSMO-RS) calculations. This study was conducted since no experimental data are available for ginger bioactive solubilities in hot water. The σ-profiles of these selected molecules were calculated using Gaussian software and the solubilities were calculated using the COSMO-RS method. The solubilities of these ginger bioactives were calculated at 50 to 200 °C. In order to validate the accuracy of the COSMO-RS method, the solubilities of five hydrocarbon molecules were calculated using the COSMO-RS method and compared with the experimental data in the literature. The selected hydrocarbon molecules were 3-pentanone, 1-hexanol, benzene, 3-methylphenol and 2-hydroxy-5-methylbenzaldehyde. The calculated results of the hydrocarbon molecules are in good agreement with the data in the literature. These results confirm that the solubilities of ginger bioactives can be predicted using the COSMO-RS method. The solubilities of the ginger bioactives are lower than 0.0001 at temperatures lower than 130 °C. At 130 to 200 °C, the solubilities increase dramatically with the highest being 6-shogaol, which is 0.00037 mole fraction, and the lowest is 10-gingerol, which is 0.000039 mole fraction at 200 °C.

  2. Experimental study on desorption of soluble matter as influenced by cations in static water

    Directory of Open Access Journals (Sweden)

    Wen-sheng XU

    2015-10-01

    Full Text Available With variation of drainage basin environments, desorption of soluble matter has become one of the significant erosion processes in rivers. It has a considerable impact on flow and sediment transport, as well as processes of river bed deformation and landform evolution throughout a watershed. In this study, considering influences on sediment movement, especially on cohesive sediment transport, Ca2+ and H+ were chosen as characteristic ions of soluble matter, and the total desorption quantity of Ca2+ and pH value when the desorption equilibrium is reached were employed as two indexes representing the desorption of soluble matter. By means of an indoor experiment, desorption of soluble matter as influenced by cations in static water was investigated. The results show that the total desorption quantity of soluble matter increases with the initial cation concentration until a maximum desorption quantity value is obtained and maintained. The total desorption quantity of soluble matter depends on properties of the specific cations in static water, and the stronger the affinity is between the cation and sediment surface, the higher the total desorption quantity will be. Finally, a strong approximate linear relationship between desorption quantities for different kinds of soluble matters was obtained, which means that variation of pH values can accurately reflect the desorption results of soluble matter.

  3. A facile physical approach to make chitosan soluble in acid-free water.

    Science.gov (United States)

    Fu, Yinghao; Xiao, Congming

    2017-10-01

    We changed the situation that chitosan was only dissolved in diluted acid through mild physical treatment. In viewing of the usual methods to modify chitosan are chemical ones, we established the approach by using a water-soluble chitosan derivative as the model polymer. Its water-solubility was modulated via changing the concentration of solution and varying the precipitants. Such a physical method was adopted to treat chitiosan. One gram chitosan was dissolved in a mixture of 100mL 10% acetic acid and 50mL methanol, and then precipitated from a precipitant consisted of 10mL ethanol and 90mL acetate ester. The treated chitosan became soluble in acid-free water completely, and its solubility was 8.02mg/mL. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Antibacterial effect of water-soluble chitosan on representative dental pathogens Streptococcus mutans and Lactobacilli brevis

    Directory of Open Access Journals (Sweden)

    Chih-Yu Chen

    2012-12-01

    Full Text Available Dental caries is still a major oral health problem in most industrialized countries. The development of dental caries primarily involves Lactobacilli spp. and Streptococcus mutans. Although antibacterial ingredients are used against oral bacteria to reduce dental caries, some reports that show partial antibacterial ingredients could result in side effects. OBJECTIVES: The main objective is to test the antibacterial effect of water-soluble chitosan while the evaluation of the mouthwash appears as a secondary aim. MATERIAL AND METHODS: The chitosan was obtained from the Application Chemistry Company (Taiwan. The authors investigated the antibacterial effects of water-soluble chitosan against oral bacteria at different temperatures (25-37ºC and pH values (pH 5-8, and evaluated the antibacterial activities of a self-made water-soluble chitosan-containing mouthwash by in vitro and in vivo experiments, and analyzed the acute toxicity of the mouthwashes. The acute toxicity was analyzed with the pollen tube growth (PTG test. The growth inhibition values against the logarithmic scale of the test concentrations produced a concentrationresponse curve. The IC50 value was calculated by interpolation from the data. RESULTS: The effect of the pH variation (5-8 on the antibacterial activity of water-soluble chitosan against tested oral bacteria was not significant. The maximal antibacterial activity of water-soluble chitosan occurred at 37ºC. The minimum bactericidal concentration (MBC of water-soluble chitosan on Streptococcus mutans and Lactobacilli brevis were 400 µg/mL and 500 µg/mL, respectively. Only 5 s of contact between water-soluble chitosan and oral bacteria attained at least 99.60% antibacterial activity at a concentration of 500 µg/mL. The water-soluble chitosan-containing mouthwash significantly demonstrated antibacterial activity that was similar to that of commercial mouthwashes (>99.91% in both in vitro and in vivo experiments. In addition

  5. Extended Hildebrand solubility approach applied to some structurally related sulfonamides in ethanol + water mixtures

    Directory of Open Access Journals (Sweden)

    Daniel R. Delgado

    2016-01-01

    Full Text Available Extended Hildebrand Solubility Approach (EHSA was applied to evaluate the solubility of sulfadiazine, sulfamerazine, and sulfamethazine in some ethanol + water mixtures at 298.15 K. Reported experimental equilibrium solubilities and some fusion properties of these drugs were used for the calculations. In particular, a good predictive character of EHSA (with mean deviations lower than 3.0% has been found by using regular polynomials in order four correlating the interaction parameter W with the Hildebrand solubility parameter of solvent mixtures without drug. However, the predictive character of EHSA was the same as that obtained by direct correlation of drug solubilities with the same descriptor of polarity of the cosolvent mixtures.

  6. Sealing ability, water sorption, solubility and toothbrushing abrasion resistance of temporary filling materials.

    Science.gov (United States)

    Pieper, C M; Zanchi, C H; Rodrigues-Junior, S A; Moraes, R R; Pontes, L S; Bueno, M

    2009-10-01

    To evaluate marginal seal, water sorption, solubility and loss of mass after brushing of several temporary filling materials. For marginal seal, Class I cavities, including endodontic access preparations, were made in human molar teeth and restored using one or other of several temporary filling materials (n = 10): zinc oxide/calcium sulphate-based cement (Cavit, 3M,ESPE, St. Paul, MN, USA), zinc oxide/eugenol cement (IRM, Dentsply Caulk, Milford, DE, USA), glass ionomer cement (Vidrion R, SSWhite, Rio de Janeiro, RJ, Brazil) or a dimethacrylate-based filling (Bioplic, Biodinâmica, Londrina, PR, Brazil). Dye penetration was assessed after thermocycling and immersion in 0.5% basic fuchsine solution. For water sorption, solubility and loss of mass analyses, disc-shaped specimens were made. Water sorption and solubility were evaluated by mass alteration after storage in distilled water for 7 days (n = 7). Loss of mass was calculated based on the difference of mass after abrasion with a toothbrush (n = 5), and surfaces were analysed by SEM. Data of water sorption, solubility and loss of mass were submitted to anova and Tukey's test, and marginal sealing data to Kruskal-Wallis test (P Cavit had the greatest water sorption and solubility. Vidrion R and Bioplic had the lowest solubility. Loss of mass after brushing was higher for Cavit, followed by Bioplic, IRM and Vidrion R. Cavit and Vidrion R were worn aggressively by brushing. The resin-based temporary filling Bioplic produced the best marginal seal, and was associated with the lowest water sorption, solubility and loss of mass.

  7. Modified water solubility of milk protein concentrate powders through the application of static high pressure treatment.

    Science.gov (United States)

    Udabage, Punsandani; Puvanenthiran, Amirtha; Yoo, Jin Ah; Versteeg, Cornelis; Augustin, Mary Ann

    2012-02-01

    The effects of high pressure (HP) treatment (100-400 MPa at 10-60 °C) on the solubility of milk protein concentrate (MPC) powders were tested. The solubility, measured at 20 °C, of fresh MPC powders made with no HP treatment was 66%. It decreased by 10% when stored for 6 weeks at ambient temperature (~20 °C) and continued to decrease to less than 50% of its initial solubility after 12 months of storage. Of the combinations of pressure and heat used, a pressure of 200 MPa at 40 °C applied to the concentrate before spray drying was found to be the most beneficial for improved solubility of MPC powders. This combination of pressure/heat improved the initial cold water solubility to 85%. The solubility was maintained at this level after 6 weeks storage at ambient temperature and 85% of the initial solubility was preserved after 12 months. The improved solubility of MPC powders on manufacture and on storage are attributed to an altered surface composition arising from an increased concentration of non-micellar casein in the milk due to HP treatment prior to drying. The improved solubility of high protein powders (95% protein) made from blends of sodium caseinate and whey protein isolate compared with MPC powders (~85% protein) made from ultrafiltered/diafiltered milk confirmed the detrimental role of micellar casein on solubility. The results suggest that increasing the non-micellar casein content by HP treatment of milk or use of blends of sodium caseinate and whey proteins are strategies that may be used to obtain high protein milk powders with enhanced solubility.

  8. Removal of Water-Soluble Extractives Improves the Enzymatic Digestibility of Steam-Pretreated Softwood Barks.

    Science.gov (United States)

    Frankó, Balázs; Carlqvist, Karin; Galbe, Mats; Lidén, Gunnar; Wallberg, Ola

    2018-02-01

    Softwood bark contains a large amounts of extractives-i.e., soluble lipophilic (such as resin acids) and hydrophilic components (phenolic compounds, stilbenes). The effects of the partial removal of water-soluble extractives before acid-catalyzed steam pretreatment on enzymatic digestibility were assessed for two softwood barks-Norway spruce and Scots pine. A simple hot water extraction step removed more than half of the water-soluble extractives from the barks, which improved the enzymatic digestibility of both steam-pretreated materials. This effect was more pronounced for the spruce than the pine bark, as evidenced by the 30 and 11% glucose yield improvement, respectively, in the enzymatic digestibility. Furthermore, analysis of the chemical composition showed that the acid-insoluble lignin content of the pretreated materials decreased when water-soluble extractives were removed prior to steam pretreatment. This can be explained by a decreased formation of water-insoluble "pseudo-lignin" from water-soluble bark phenolics during the acid-catalyzed pretreatment, which otherwise results in distorted lignin analysis and may also contribute to the impaired enzymatic digestibility of the barks. Thus, this study advocates the removal of extractives as the first step in the processing of bark or bark-rich materials in a sugar platform biorefinery.

  9. Water sorption and solubility of bulk-fill composites polymerized with a third generation LED LCU.

    Science.gov (United States)

    Misilli, Tuğba; Gönülol, Nihan

    2017-09-28

    The aim of this study was to compare the degree of water sorption and solubility in bulk-fills after curing with a polywave light source. A total of 120 disc-shaped specimens (8 mm diameter; 4 mm depth) were prepared from three regular bulk-fill materials (X-tra Fil, Tetric N-Ceram Bulk Fill, SonicFill), and a control material (Filtek Z250), cured in 3 different modes (standard: 1000 mW/cm2-20 s; high power: 1400 mW/cm2-12 s; xtra power: 3200 mW/cm2-6 s) using a third generation light-emitting diode light curing unit. Water sorption and solubility levels of the specimens were measured according to the ISO 4049:2009 specification after storing in distilled water for 30 days. Data were analyzed using two-way ANOVA and Tukey's post-hoc test (p solubility values were obtained for SonicFill. No statistically significant differences were found among other groups. No significant correlation was detected between water sorption and solubility. The traditional composite group exhibited a higher water sorption values than the bulk-fills. The reduction in polymerization time significantly increased the sorption of SonicFill. SonicFill showed the highest water solubility value among the composites tested.

  10. Temperature Dependence of Mineral Solubility in Water. Part I. Alkaline and Alkaline Earth Chlorides

    Science.gov (United States)

    Krumgalz, B. S.

    2017-12-01

    A database of alkaline and alkaline earth chloride solubilities in water at various temperatures was created using data from more than 670 publications over about the last two centuries. Statistical critical evaluations of the created database were produced since there were enough independent data sources to justify such evaluations. The reliable experimental data were adequately described by polynomial expressions over various temperature ranges. Using the Pitzer approach for ionic activity and osmotic coefficients, the thermodynamic solubility products for the discussed minerals have been calculated at various temperature intervals and also represented by polynomial expressions. The solubility products calculated in the current study yield excellent agreement between the predicted and experimental mineral solubility values in natural waters over a wide range of temperature and ionic solution matrices.

  11. Water-soluble extracts from defatted sesame seed flour show antioxidant activity in vitro.

    Science.gov (United States)

    Ben Othman, Sana; Katsuno, Nakako; Kanamaru, Yoshihiro; Yabe, Tomio

    2015-05-15

    Defatted white and gold sesame seed flour, recovered as a byproduct after sesame oil extraction, was extracted with 70% ethanol to obtain polar-soluble crude extracts. The in vitro antioxidant activity of the extract was evaluated by DPPH free radical scavenging activity and oxygen radical absorbing capacity (ORAC). The polar-soluble crude extracts of both sesame seed types exhibited good antioxidant capacity, especially by the ORAC method with 34,720 and 21,700 μmol Trolox equivalent/100g of white and gold sesame seed extract, respectively. HPLC, butanol extraction, and UPLC-MS analyses showed that different compounds contributed to the antioxidant activity of the polar-soluble crude extracts. Sesaminol glycosides were identified in the butanol-soluble fractions; whereas, purified water-soluble fraction contained ferulic and vanillic acids. This study shows that hydrophilic antioxidants in the purified water-soluble fraction contributed to the antioxidant activity of white and gold sesame seed polar-soluble crude extracts. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. Mesoporous silica- and silicon-based materials as carriers for poorly water soluble drugs

    OpenAIRE

    Limnell, Tarja

    2011-01-01

    New chemical entities with unfavorable water solubility properties are continuously emerging in drug discovery. Without pharmaceutical manipulations inefficient concentrations of these drugs in the systemic circulation are probable. Typically, in order to be absorbed from the gastrointestinal tract, the drug has to be dissolved. Several methods have been developed to improve the dissolution of poorly soluble drugs. In this study, the applicability of different types of mesoporous (pore d...

  13. IUPAC-NIST Solubility Data Series. 96. Amines with Water Part 3. Non-Aliphatic Amines

    Science.gov (United States)

    Góral, Marian; Shaw, David G.; Mański, Andrzej; Wiśniewska-Gocłowska, Barbara; Oracz, Paweł

    2012-12-01

    The mutual solubilities and related liquid-liquid equilibria of 36 binary systems of non-aliphatic amines with water are exhaustively and critically reviewed. Reports of experimental determination of solubility that appeared in the primary literature prior to the end of 2010 are compiled. For 13 systems, sufficient data are available to allow critical evaluation. All data are expressed as mass percent and mole fraction as well as the originally reported units.

  14. Salinity impacts on water solubility and n-octanol/water partition coefficients of selected pesticides and oil constituents.

    Science.gov (United States)

    Saranjampour, Parichehr; Vebrosky, Emily N; Armbrust, Kevin L

    2017-09-01

    Salinity has been reported to influence the water solubility of organic chemicals entering marine ecosystems. However, limited data are available on salinity impacts for chemicals potentially entering seawater. Impacts on water solubility would correspondingly impact chemical sorption as well as overall bioavailability and exposure estimates used in the regulatory assessment. The pesticides atrazine, fipronil, bifenthrin, and cypermethrin, as well as the crude oil constituent dibenzothiophene together with 3 of its alkyl derivatives, all have different polarities and were selected as model compounds to demonstrate the impact of salinity on their solubility and partitioning behavior. The n-octanol/water partition coefficient (K OW ) was measured in both distilled-deionized water and artificial seawater (3.2%). All compounds had diminished solubility and increased K OW values in artificial seawater compared with distilled-deionized water. A linear correlation curve estimated salinity may increase the log K OW value by 2.6%/1 log unit increase in distilled water (R 2  = 0.97). Salinity appears to generally decrease the water solubility and increase the partitioning potential. Environmental fate estimates based on these parameters indicate elevated chemical sorption to sediment, overall bioavailability, and toxicity in artificial seawater. These dramatic differences suggest that salinity should be taken into account when exposure estimates are made for marine organisms. Environ Toxicol Chem 2017;36:2274-2280. © 2017 SETAC. © 2017 SETAC.

  15. Carboxylatopillar[n]arenes: a versatile class of water soluble synthetic receptors.

    Science.gov (United States)

    Dasgupta, Suvankar; Mukherjee, Partha Sarathi

    2017-01-25

    Carboxylatopillar[n]arenes (CP[n]As, n = 5, 6, 7, 9, 10) are water soluble derivatives of pillar[n]arenes. The three-dimensional π-electron-rich cavity and carboxylate groups at the portals, enabled CP[n]A to have strong binding affinity in water, which has been successfully harnessed in fabricating responsive supramolecular assemblies from supra-amphiphiles and developing targeted drug delivery systems (DDSs). CP[n]A based supraamphiphiles have also been used for sensor applications. This review highlights the diverse applications of water soluble carboxylatopillar[n]arenes.

  16. First water-soluble backbone Ru-Ru-Ni heterometallic organometallic polymer.

    Science.gov (United States)

    Scalambra, Franco; Serrano-Ruiz, Manuel; Romerosa, Antonio

    2015-04-01

    The water-soluble backbone heterometallic polymer {[(PTA)2 CpRu-μ-CN-RuCp(PTA)2 -μ-NiCl3 ]}n (2) is synthesized using a reproducible and robust method and fully characterized by X-ray single crystal diffraction. The Ru-Ru-Ni polymer is found to be stable in the solid state and soluble in water. Nuclear magnetic resonance (NMR) and light scattering studies show that the polymer is stable in water for several days in air. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Enhancement of solubility of poorly water soluble anti hypertensive drug by nanosizing approach

    Directory of Open Access Journals (Sweden)

    Divyesh Thakar

    2012-01-01

    Full Text Available The objective of this research study was to optimize formulation and process variables affecting characteristic of nanosuspension in bead milling process. In this study, the practically water-insoluble telmisartan was nanoground by using top down method i.e. media milling method. Here the media used is ZnO 2 beads. A variety of surface active agents were tested for their stabilizing effects. Formulation factors evaluated were ratio of polymer to drug, whereas process parameters were milling time and concentration of ZnO 2 beads. Different concentration of stabilizers such as poloxamer 188, poloxamer 407, HPMC E 15, PVP K30 and combination of stabilizers were used for preparation of telmisartan nanosuspension. Responses measured in this study include particle size measurement, particle size distribution and zeta potential.

  18. Comparative toxicity of water soluble fractions of four oils on the growth of a Microalga

    Digital Repository Service at National Institute of Oceanography (India)

    Phatarpekar, P.V.; Ansari, Z.A.

    the market. Water soluble fractions (WSF) were prepared by adding one part of oil to nine parts of filtered, auto- claved sea water (1:9, v/v) in a volumetric flask. The flask was tightly capped with a stopper and covered 368 P. V. Phatarpekar and Z. A...

  19. Bioassay using the water soluble fraction of a Nigerian Light Crude ...

    African Journals Online (AJOL)

    olayemitoyin

    Summary: A 96-hour bioassay was conducted using the water soluble fraction of a Nigerian light crude oil sample on. Clarias gariepinus ... metal and total hydrocarbon contents of the water and fish were analyzed at 96 hour and 14 days which marked the end of the recovery ..... ligand model of the acute toxicity of metals. 1.

  20. Dynamics of heat, water, and soluble gas exchange in the human airways: 1. A model study.

    Science.gov (United States)

    Tsu, M E; Babb, A L; Ralph, D D; Hlastala, M P

    1988-01-01

    In order to provide a means for analysis of heat, water, and soluble gas exchange with the airways during tidal ventilation, a one dimensional theoretical model describing heat and water exchange in the respiratory airways has been extended to include soluble gas exchange with the airway mucosa and water exchange with the mucous layer lining the airways. Not only do heat, water, and gas exchange occur simultaneously, but they also interact. Heating and cooling of the airway surface and mucous lining affects both evaporative water and soluble gas exchange. Water evaporation provides a major source of heat exchange. The model-predicted mean airway temperature profiles agree well with literature data for both oral and nasal breathing validating that part of the model. With model parameters giving the best fit to experimental data, the model shows: (a) substantial heat recovery in the upper airways, (b) minimal respiratory heat and water loss, and (c) low average mucous temperatures and maximal increases in mucous thickness. For resting breathing of room air, heat and water conservation appear to be more important than conditioning efficiency. End-tidal expired partial pressures of very soluble gases eliminated by the lungs are predicted to be lower than the alveolar partial pressures due to the absorption of the expired gases by the airway mucosa. The model may be usable for design of experiments to examine mechanisms associated with the local hydration and dehydration dynamics of the mucosal surface, control of bronchial perfusion, triggering of asthma, mucociliary clearance and deposition of inhaled pollutant gases.

  1. Structural investigation of water-soluble polysaccharides extracted from the fruit bodies of Coprinus comatus

    NARCIS (Netherlands)

    Li, Bo; Dobruchowska, Justyna M.; Gerwig, Gerrit J.; Dijkhuizen, Lubbert; Kamerling, Johannis P.

    2013-01-01

    Water-soluble polysaccharide material, extracted from the stipes of the fruit bodies of Coprinus comatus by hot water, was fractionated by sequential weak anion-exchange and size-exclusion chromatography. The relevant fractions were subjected to structural analysis, including (D/L)

  2. Kinetics of Acid Hydrolysis of Water-Soluble Spruce O-Acetyl Galactoglucomannans

    NARCIS (Netherlands)

    Xu, C.; Pranovich, A.; Vahasalo, L.; Hemming, J.; Holmbom, B.; Schols, H.A.; Willfor, S.

    2008-01-01

    Water-soluble O-acetyl galactoglucomannan (GGM) is a softwood-derived polysaccharide, which can be extracted on an industrial scale from wood or mechanical pulping waters and now is available in kilogram scale for research and development of value-added products. To develop applications of GGM,

  3. Water-soluble carbon nanotube compositions for drug delivery and medicinal applications

    Science.gov (United States)

    Tour, James M.; Lucente-Schultz, Rebecca; Leonard, Ashley; Kosynkin, Dmitry V.; Price, Brandi Katherine; Hudson, Jared L.; Conyers, Jr., Jodie L.; Moore, Valerie C.; Casscells, S. Ward; Myers, Jeffrey N.; Milas, Zvonimir L.; Mason, Kathy A.; Milas, Luka

    2014-07-22

    Compositions comprising a plurality of functionalized carbon nanotubes and at least one type of payload molecule are provided herein. The compositions are soluble in water and PBS in some embodiments. In certain embodiments, the payload molecules are insoluble in water. Methods are described for making the compositions and administering the compositions. An extended release formulation for paclitaxel utilizing functionalized carbon nanotubes is also described.

  4. Solubility investigation of ether and ester essential oils in water using spectrometry and GC/MS

    Directory of Open Access Journals (Sweden)

    B. Khodabandeloo

    2017-11-01

    Full Text Available Background and objectives: Essential oils (volatiles are aromatic oily liquids prepared from different parts of plants and demonstrate various therapeutic and cosmetic properties. The dissolution of essential oils are not desirable in water, therefore the aim of this research was evaluation and selection the best co-solvents for increasing their solubility and bio availability. Methods:The solubility of six  plants essential oils were investigated in presence of propylene glycol (PG, polyethylene glycol 300 (PEG, glycerin and ethanol as solvent and tween 80 or lecithin as co-solvent by observation and spectrophotometric assay. Chemical composition of the essential oils and supersaturated 50% ethanol (SSE and 50% PG or PEG (SSP solutions were analyzed by GC/MS, too. Results: Ester (Lavandula dentata, Heracleum persicum and, Elettaria cardamomum essential oils showed the best solubility in ethanol and PG, respectively. Ether (Foeniculum vulgare, Pimpinella anisum and Petroselinum crispum essential oils had the best solubility in ethanol and PEG, respectively. In ester class, mixture of ethanol/water was the best solvent according to solubility and total amounts of major compounds of the essential oils. In ether class, all samples had better solubility in mixtures of ethanol/water than PEG, but the amounts of total phenols or ethers in SSP of some samples were higher than SSE. Therefore selecting the best solvent for these class need more experiments. Conclusion: Selecting the solvent for essential oils changes their chemical composition; therefore the best solvent was different for various purposes.

  5. Solubilization of poorly water-soluble compounds using amphiphilic phospholipid polymers with different molecular architectures.

    Science.gov (United States)

    Mu, Mingwei; Konno, Tomohiro; Inoue, Yuuki; Ishihara, Kazuhiko

    2017-10-01

    To achieve stable and effective solubilization of poorly water-soluble bioactive compounds, water-soluble and amphiphilic polymers composed of hydrophilic 2-methacryloyloxyethyl phosphorylcholine (MPC) units and hydrophobic n-butyl methacrylate (BMA) units were prepared. MPC polymers having different molecular architectures, such as random-type monomer unit sequences and block-type sequences, formed polymer aggregates when they were dissolved in aqueous media. The structure of the random-type polymer aggregate was loose and flexible. On the other hand, the block-type polymer formed polymeric micelles, which were composed of very stable hydrophobic poly(BMA) cores and hydrophilic poly(MPC) shells. The solubilization of a poorly water-soluble bioactive compound, paclitaxel (PTX), in the polymer aggregates was observed, however, solubilizing efficiency and stability were strongly depended on the polymer architecture; in other words, PTX stayed in the poly(BMA) core of the polymer micelle formed by the block-type polymer even when plasma protein was present in the aqueous medium. On the other hand, when the random-type polymer was used, PTX was transferred from the polymer aggregate to the protein. We conclude that water-soluble and amphiphilic MPC polymers are good candidates as solubilizers for poorly water-soluble bioactive compounds. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Effects of Biochar on Adsorption Characteristics of Water-soluble Fluorine in Tea Garden Soil

    Directory of Open Access Journals (Sweden)

    SUN Yong-hong

    2017-06-01

    Full Text Available The adsorption characteristics of water-soluble fluoride with application of biochar in tea garden soil was studied by indoor culture test. The results showed that the adsorption quantity and adsorption rate of water-soluble fluorine decreased gradually with the increase of biochar amounts in tea garden soil. The isothermal adsorption of Langmuir equation, Freundlich equation and Temkin equation could be better used to describe the adsorption law of water-soluble fluorine, and the Freundlich equation had the best fitting curve. With the increase of biochar content of soil, the net amount of fluoride adsorption reduced gradually. The adsorption kinetics of fluoride in soil was characterized by fast adsorption and slow reaction stages. The equilibrium time was less than 120 min for the rapid increase of adsorption, 0.25% and 0.50% biomass carbon content treatments of the soil reached to equilibrium after 1 440 min. The results of theoretic calculation were in good agreement with experimental adsorption quantity by dual constant equation, Elovich equation and first order kinetics equation, which could accurately describe the adsorption process of water-soluble fluorine in soil with biochar. The increase of soil pH with the addition of biochar was closely related to the decrease of maximum adsorption quantity, adsorption intensity and net adsorption quantity of water-soluble fluorine in tea garden soil.

  7. Enhanced water-solubility and antibacterial activity of novel chitosan derivatives modified with quaternary phosphonium salt.

    Science.gov (United States)

    Zhu, Dan; Cheng, Honghao; Li, Jianna; Zhang, Wenwen; Shen, Yuanyuan; Chen, Shaojun; Ge, Zaochuan; Chen, Shiguo

    2016-04-01

    Chitosan (CS) has been widely recognized as an important biomaterial due to its good antimicrobial activity, biocompatibility and biodegradability. However, CS is insoluble in water in neutral and alkaline aqueous solution due to the linear aggregation of chain molecules and the formation of crystallinity. This is one of the key factors that limit its practical applications. Therefore, improving the solubility of CS in neutral and alkaline aqueous solution is a primary research direction for biomedical applications. In this paper, a reactive antibacterial compound (4-(2,5-Dioxo-pyrrolidin-1-yloxycarbonyl)-benzyl)-triphenyl-phosphonium bromide (NHS-QPS) was synthesized for chemical modification of CS, and a series of novel polymeric antimicrobial agents, N-quaternary phosphonium chitosan derivatives (N-QPCSxy, x=1-2,y=1-4) were obtained. The water solubilities and antibacterial activities of N-QPCSxy against Escherichia coli and Staphylococcus aureus were evaluated compare to CS. The water solubility of N-QPCSxy was all better than that of CS at neutral pH aqueous solution, particularly, N-QPCS14 can be soluble in water over the pH range of 3 to 12. The antibacterial activities of CS derivatives were improved by introducing quaternary phosphonium salt, and antibacterial activity of N-QPCSxy increases with degree of substitution. Overall, N-QPCS14 represents a novel antibacterial polymer material with good antibacterial activity, waters solubility and low cytotoxicity. Copyright © 2015 Elsevier B.V. All rights reserved.

  8. Water Soluble Vitamins Enhance the Growth of Microorganisms in Peripheral Parenteral Nutrition Solutions.

    Science.gov (United States)

    Omotani, Sachiko; Tani, Katsuji; Nagai, Katsuhito; Hatsuda, Yasutoshi; Mukai, Junji; Myotoku, Michiaki

    2017-01-01

    Peripheral parenteral nutrition (PPN) solutions contain amino acids, glucose, and electrolytes, with or without some water soluble vitamins. Peripheral venous catheters are one of the causes of catheter related blood stream infection (CRBSI), which requires infection control. In Japan, PPN solutions have rarely been prepared under aseptic conditions. However, in recent years, the necessity of adding vitamins to infusions has been reported. Therefore, we investigated the effects of water soluble vitamins on growth of microorganisms in PPN solutions. AMINOFLUID® (AF), BFLUID® (BF), PARESAFE® (PS) and PAREPLUS® (PP) PPN solutions were used. Water soluble vitamins contained in PP were also used. Causative microorganisms of CRBSI were used. Staphylococcus epidermidis decreased after 24 hours or 48 hours in all solutions. On the other hand, Escherichia coli, Serratia marcescens, Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans increased, especially in PP. When each water soluble vitamin was added to BF and PS, growth of S. aureus was greater in solutions that contained nicotinamide than in solutions that contained other vitamins. As for C. albicans, they grew in all test solutions. C. albicans grew especially well in solutions that contained biotin. When commercial amino acids and glucose solutions with electrolytes are administered, in particular those containing multivitamins or water soluble vitamins, efforts to control infection must be taken to prevent proliferation of microorganisms.

  9. The role of vitamins in the diet of the elderly II. Water-soluble vitamins

    Directory of Open Access Journals (Sweden)

    Csapó J.

    2017-10-01

    Full Text Available Following a presentation of humans’ water-soluble vitamin requirements, the authors will discuss in detail the role these vitamins play in human organism and outline those major biochemical processes that are negatively affected in the body in case of vitamin deficiency. They point out that in the elderly population of developed countries cases of water-soluble vitamin deficiency are extremely rare and they are due to the lack of dietary vitamin, but mostly to the vitamin being released from its bindings, the difficulty of free vitamin absorption, gastrointestinal problems, medication, and often alcoholism. Among water-soluble vitamins, B12 is the only one with a sufficient storage level in the body, capable of preventing deficiency symptoms for a long period of time in cases of vitamin-deficient nutrition. Each type of vitamin is dealt with separately in discussing the beneficial outcomes of their overconsumption regarding health, while the authors of the article also present cases with contradictory results. Daily requirements are set forth for every water-soluble vitamin and information is provided on the types of nutrients that help us to the water-soluble vitamins essential for the organism.

  10. Nitrogen Effect on Water-Soluble Polysaccharide Accumulation in Streblonema sp. (Ectocarpales, Phaeophyceae).

    Science.gov (United States)

    Skriptsova, Anna V

    2017-08-01

    The water-soluble polysaccharides of brown algae attract the increasing attention of researchers as an important class of polymeric materials of biotechnological interest. The sole source for production of these polysaccharides has been large brown seaweeds such as members of Laminariales and Fucales. A new source of water-soluble polysaccharides is suggested here: it is a filamentous brown alga Streblonema sp., which can be cultivated under controlled conditions in photobioreactors that allow obtaining algal biomass with reproducible content and quality of polysaccharides. The accumulation of water-soluble polysaccharides can be stimulated by macronutrient limitation. In response to nitrogen deficiency, Streblonema sp. accumulated water-soluble polysaccharides (WSPs) rich in laminaran. WSP accumulation started after 3-4 days following nitrate depletion and reached a plateau at around day 7. Polysaccharide accumulation was related to cellular nitrogen content. The critical internal N level that triggered the onset of polysaccharide accumulation was 2.3% dry weight (DW); at a cellular N concentration less than 1.4% DW, the polysaccharide synthesis stopped. Upon nitrate re-supply, mobilization of WSP occurred after 3 days. These results suggest that a two-stage cultivation process could be used to obtain large algal biomass with high water-soluble polysaccharide production: a first cultivation stage using nitrate-supplemented medium to accumulate algal biomass followed by a second cultivation stage in a nitrate-free medium for 3 to 7 days to enhance polysaccharide content in the alga.

  11. Water Solubility of Plutonium and Uranium Compounds and Residues at TA-55

    Energy Technology Data Exchange (ETDEWEB)

    Reilly, Sean Douglas [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Smith, Paul Herrick [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Jarvinen, Gordon D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Prochnow, David Adrian [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Schulte, Louis D. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; DeBurgomaster, Paul Christopher [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Fife, Keith William [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Rubin, Jim [Los Alamos National Lab. (LANL), Los Alamos, NM (United States; Worl, Laura Ann [Los Alamos National Lab. (LANL), Los Alamos, NM (United States

    2016-06-13

    Understanding the water solubility of plutonium and uranium compounds and residues at TA-55 is necessary to provide a technical basis for appropriate criticality safety, safety basis and accountability controls. Individual compound solubility was determined using published solubility data and solution thermodynamic modeling. Residue solubility was estimated using a combination of published technical reports and process knowledge of constituent compounds. The scope of materials considered includes all compounds and residues at TA-55 as of March 2016 that contain Pu-239 or U-235 where any single item in the facility has more than 500 g of nuclear material. This analysis indicates that the following materials are not appreciably soluble in water: plutonium dioxide (IDC=C21), plutonium phosphate (IDC=C66), plutonium tetrafluoride (IDC=C80), plutonium filter residue (IDC=R26), plutonium hydroxide precipitate (IDC=R41), plutonium DOR salt (IDC=R42), plutonium incinerator ash (IDC=R47), uranium carbide (IDC=C13), uranium dioxide (IDC=C21), U3O8 (IDC=C88), and uranium filter residue (IDC=R26). This analysis also indicates that the following materials are soluble in water: plutonium chloride (IDC=C19) and uranium nitrate (IDC=C52). Equilibrium calculations suggest that PuOCl is water soluble under certain conditions, but some plutonium processing reports indicate that it is insoluble when present in electrorefining residues (R65). Plutonium molten salt extraction residues (IDC=R83) contain significant quantities of PuCl3, and are expected to be soluble in water. The solubility of the following plutonium residues is indeterminate due to conflicting reports, insufficient process knowledge or process-dependent composition: calcium salt (IDC=R09), electrorefining salt (IDC=R65), salt (IDC=R71), silica (IDC=R73) and sweepings/screenings (IDC=R78). Solution thermodynamic modeling also indicates that fire suppression water buffered with a

  12. Water-soluble contrast media in obstructed and in ischemic intestine; A clinical and experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Stordahl, A. (Rikshospitalet, Oslo (Norway))

    1989-01-01

    The present work was undertaken to study the diagnostic efficacy of the water-soluble contrast media iohexol and sodium diatrizoate in the gastrointestinal tract, and to establish a method for the discrimination between intestinal obstruction and ischemia. The effects of the two contrast media were evaluated in 50 patients and in rats. The study gave the following results: Iohexol is a good, or better alternative to sodium diatrizoate regarding taste acceptance and patient reactions. Water-soluble contrast media may have therapeutic effects on intestinal obstruction when preceded by conventional gastric suction using a short gastric tube. The water-soluble, low-osmolar contrast media seem promising as diagnostic aids in the examination of the gastrointestinal tract. Waster-soluble contrast media may aid the diagnosis of bowel ischemia and the evaluation of the degree of ischemic injury. The chief route of absorption of water-soluble contrast media from ischemic bowel to blood is transmural and transperitoneal (>90% of the total absorption) before subsequent excretion in the urine. The use of hyperosmolar contrast media in the ischemic small intestine may enhance intestinal ischemia and systematic dehydration, and provoke septic complications by the enteric microflora. 68 refs.

  13. Temperature and salt addition effects on the solubility behaviour of some phenolic compounds in water

    Energy Technology Data Exchange (ETDEWEB)

    Noubigh, Adel [Laboratoire de Physico-chimie des materiaux, IPEST, BP51, 2070 La MARSA (Tunisia)]. E-mail: Adel.anoubigh@ipest.rnu.tn; Abderrabba, Manef [Laboratoire de Physico-chimie des materiaux, IPEST, BP51, 2070 La MARSA (Tunisia); Provost, Elise [Laboratoire Chimie et procedes, ENSTA, 32 Rue de Boulevard Victor, 75739 Paris, Cedex 15 (France)

    2007-02-15

    Solubility-temperature dependence data for six phenolic compounds (PhC), contained in olive mill wastewater (OMWW), in water and in some chloride salts (KCl, NaCl, and LiCl) aqueous solutions have been presented and solution standard molar enthalpies ({delta}{sub sol} H {sup 0}) were determined using Van't Hoff plots. The temperature was varied from 293.15 K to 318.15 K. Solubility data were estimated using a thermostated reactor and HPLC analysis. It has been observed that solubility, in pure water and in aqueous chloride solutions, increases with increasing temperature. The salting-out LiCl > NaCl > KCl order obtained at 298.15 K is confirmed. Results were interpreted in terms of the salt hydration shells and the ability of the solute to form hydrogen-bond with water. The standard molar Gibbs free energies of transfer of PhC ({delta}{sub tr} G {sup 0}) from pure water to aqueous solutions of the chloride salts have been calculated from the solubility data. In order to estimate the contribution of enthalpic and entropic terms, standard molar enthalpies ({delta}{sub tr} H {sup 0}) and entropies ({delta}{sub tr} S {sup 0}) of transfer have also been calculated. The decrease in solubility is correlated to the positive {delta}{sub tr} G {sup 0} value which is mainly of enthalpic origin.

  14. Rapid determination of water- and fat-soluble vitamins with microemulsion electrokinetic chromatography.

    Science.gov (United States)

    Yin, Changna; Cao, Yuhua; Ding, Shaodong; Wang, Yun

    2008-06-06

    A rapid, reliable and reproducible method based on microemulsion electrokinetic chromatography (MEEKC) for simultaneous determination of 13 kinds of water- and fat-soluble vitamins has been developed in this work. A novel microemulsion system consisting of 1.2% (w/w) sodium lauryl sulphate (SDS), 21% (v/v) 1-butanol, 18% (v/v) acetonitrile, 0.8% (w/w) n-hexane, 20mM borax buffer (pH 8.7) was applied to improve selectivity and efficiency, as well as shorten analysis time. The composition of microemulsion used as the MEEKC running buffer was investigated thoroughly to obtain stable separation medium, as well as the optimum determination conditions. Acetonitrile as the organic solvent modifier, pH of the running buffer and 1-butanol as the co-surfactant played the most important roles for the separation of the fat-soluble vitamins, water-soluble vitamins and stabilization of system, respectively. The 13 water- and fat-soluble vitamins were baseline separated within 30 min. The system was applied to determine water- and fat-soluble vitamins in commercial multivitamin pharmaceutical formulation, good accuracy and precision were obtained with recoveries between 97% and 105%, relative standard derivations (RSDs) less than 1.8% except vitamin C, and acceptable quantitative results corresponding to label claim.

  15. Effect of supplementation of water-soluble vitamins on oxidative stress and blood pressure in prehypertensives.

    Science.gov (United States)

    Talikoti, Prashanth; Bobby, Zachariah; Hamide, Abdoul

    2015-01-01

    The objective of the study was to evaluate the effect of water-soluble vitamins on oxidative stress and blood pressure in prehypertensives. Sixty prehypertensives were recruited and randomized into 2 groups of 30 each. One group received water-soluble vitamins and the other placebo for 4 months. Further increase in blood pressure was not observed in the vitamin group which increased significantly in the placebo group at the end of 4 months. Malonedialdehyde and protein carbonylation were reduced during the course of treatment with vitamins whereas in the placebo group there was an increase in the level of malondialdehyde. In conclusion, supplementation of water-soluble vitamins in prehypertension reduces oxidative stress and its progression to hypertension.

  16. Solubility investigation of ketone and phenol essential oils in water using spectrometry and GC/MS

    Directory of Open Access Journals (Sweden)

    2017-11-01

    Full Text Available Background and objectives: Essential oils are used for their flavors and fragrances and their medicinal properties in food, cosmetic, agriculture and pharmaceutical industries. This study was focused on the selection of the best solvent(s which would increase water solubility of ketone and phenol classes of essential oils. Methods: The solubility of six  plants essential oils was investigated in presence of propylene glycol (PG, polyethylene glycol 300 (PEG, glycerin and ethanol as the solvent and tween 80 or lecithin as the co-solvent by observation and spectrophotometric assay. Chemical composition of the essential oils and supersaturated 50% ethanol (SSE and 50% PG or PEG (SSP solutions were analyzed by GC/MS, too. Results: Ketone essential oils (Anethum graveolens, Mentha spicata and Salvia officinalis showed the best solubility in ethanol and PG, respectively. Phenol essential oils (Zattaria multiflora, Syzygium aromaticum and Trachyspermum ammi had the best solubility in ethanol and PEG, respectively.  In the ketone class, solubility of all samples in ethanol/water was greater than PG/water, but total ketones in SSP of samples with good solubility in PG were more than SSE. In the phenol class, all samples had better solubility in mixtures of ethanol/water than PEG, but the amounts of total phenols in SSP of some samples were higher than SSE. Therefore, selecting the best solvent for these classes need more experiments. Conclusion: Selecting the solvent for essential oils changes their chemical composition; therefore the best solvent was different for various purposes.

  17. Urinary excretion levels of water-soluble vitamins in pregnant and lactating women in Japan.

    Science.gov (United States)

    Shibata, Katsumi; Fukuwatari, Tsutomu; Sasaki, Satoshi; Sano, Mitsue; Suzuki, Kahoru; Hiratsuka, Chiaki; Aoki, Asami; Nagai, Chiharu

    2013-01-01

    Recent studies have shown that the urinary excretion levels of water-soluble vitamins can be used as biomarkers for the nutritional status of these vitamins. To determine changes in the urinary excretion levels of water-soluble vitamins during pregnant and lactating stages, we surveyed and compared levels of nine water-soluble vitamins in control (non-pregnant and non-lactating women), pregnant and lactating women. Control women (n=37), women in the 2nd (16-27 wk, n=24) and 3rd trimester of pregnancy (over 28 wk, n=32), and early- (0-5 mo, n=54) and late-stage lactating (6-11 mo, n=49) women took part in the survey. The mean age of subjects was ~30 y, and mean height was ~160 cm. A single 24-h urine sample was collected 1 d after the completion of a validated, self-administered comprehensive diet history questionnaire to measure water-soluble vitamins or metabolites. The average intake of each water-soluble vitamin was ≍ the estimated average requirement value and adequate intake for the Japanese Dietary Reference Intakes in all life stages, except for vitamin B6 and folate intakes during pregnancy. No change was observed in the urinary excretion levels of vitamin B2, vitamin B6, vitamin B12, biotin or vitamin C among stages. Urine nicotinamide and folate levels were higher in pregnant women than in control women. Urine excretion level of vitamin B1 decreased during lactation and that of pantothenic acid decreased during pregnancy and lactation. These results provide valuable information for setting the Dietary Reference Intakes of water-soluble vitamins for pregnant and lactating women.

  18. The effect of the cation alkyl chain branching on mutual solubilities with water and toxicities.

    Science.gov (United States)

    Kurnia, Kiki A; Sintra, Tânia E; Neves, Catarina M S S; Shimizu, Karina; Canongia Lopes, José N; Gonçalves, Fernando; Ventura, Sónia P M; Freire, Mara G; Santos, Luís M N B F; Coutinho, João A P

    2014-10-07

    The design of ionic liquids has been focused on the cation-anion combinations but other more subtle approaches can be used. In this work the effect of the branching of the cation alkyl chain on the design of ionic liquids (ILs) is evaluated. The mutual solubilities with water and toxicities of a series of bis(trifluoromethylsulfonyl)-based ILs, combined with imidazolium, pyridinium, pyrrolidinium, and piperidinium cations with linear or branched alkyl chains, are reported. The mutual solubility measurements were carried out in the temperature range from (288.15 to 323.15) K. From the obtained experimental data, the thermodynamic properties of the solution (in the water-rich phase) were determined and discussed. The COnductor like Screening MOdel for Real Solvents (COSMO-RS) was used to predict the liquid-liquid equilibrium. Furthermore, molecular dynamic simulations were also carried out aiming to get a deeper understanding of these fluids at the molecular level. The results show that the increase in the number of atoms at the cation ring (from five to six) leads to a decrease in the mutual solubilities with water while increasing their toxicity, and as expected from the well-established relationship between toxicities and hydrophobicities of ILs. The branching of the alkyl chain was observed to decrease the water solubility in ILs, while increasing the ILs solubility in water. The inability of COSMO-RS to correctly predict the effect of branching alkyl chains toward water solubility on them was confirmed using molecular dynamic simulations to be due to the formation of nano-segregated structures of the ILs that are not taken into account by the COSMO-RS model. In addition, the impact of branched alkyl chains on the toxicity is shown to be not trivial and to depend on the aromatic nature of the ILs.

  19. Quantitative approaches for the description of solubilities of inorganic compounds in near-critical and supercritical water

    NARCIS (Netherlands)

    Leusbrock, Ingo; Metz, Sybrand J.; Rexwinkel, Glenn; Versteeg, Geert F.

    2008-01-01

    The decreased solubility of salts in supercritical water is of great interest for industrial applications and scientific work. Several methods to quantify this decreased solubility are described and reviewed by applying them on experimental solubility data. The salts used for comparison are NaCl,

  20. Water-soluble fluorescent conjugated polymers and their interactions with biomacromolecules for sensitive biosensors.

    Science.gov (United States)

    Feng, Xuli; Liu, Libing; Wang, Shu; Zhu, Daoben

    2010-07-01

    Over the past decades, water-soluble conjugated polymers (CPs) have gained increasing attention as optical platforms for sensitive detection of biomacromolecules (DNA, protein and cell) due to the amplification of fluorescent signals. To meet the requirement for high throughput assays, chip and microarray techniques based on CPs have also been developed. Very recently, fluorescence imaging in vivo and at the cellular level have also been successfully accomplished using these water-soluble CPs. In this tutorial review, we provide a brief review of the synthesis and optical properties of CPs, focusing especially on their applications in biosensors and cell imaging.

  1. Preparation and tribology properties of water-soluble fullerene derivative nanoball

    Directory of Open Access Journals (Sweden)

    Guichang Jiang

    2017-02-01

    Full Text Available Water-soluble fullerene derivatives were synthesized via radical polymerization. They are completely soluble in water, yielding a clear brown solution. The products were characterized by FTIR, UV–Vis, 1H-NMR, 13CNMR, GPC, TGA, and SEM. Four-ball tests show that the addition of a certain concentration of the fullerene derivatives to base stock (2 wt.% triethanolamine aqueous solution can effectively increase both the load-carrying capacity (PB value, and the resistance to wear. SEM observations confirm the additive results in a reduced diameter of the wear scar and decreased wear.

  2. Comparative response of Allium cepa (l.) to the water soluble ...

    African Journals Online (AJOL)

    Tropical Freshwater Biology ... Physicochemical characteristics were found to increase after exposure to the plant tissues, except for pH, TDS, EC, THC (at 25 and 100%), hardness (at 50 and 100%), HCO-3 (at 25%), Cl- and SO42- of ... The river water had the least values of EC before and after exposure to the plant tissues.

  3. Highly luminescent water-soluble CdTe quantum dots

    NARCIS (Netherlands)

    Wuister, SF; Swart, A.N.; van Driel, F; Hickey, SG; Donega, CD; Swart, Ingmar|info:eu-repo/dai/nl/304837652

    Colloidal CdTe quantum dots prepared in TOP/DDA (trioctylphosphine/dodecylamine) are transferred into water by the use of aminoethanethiol.HCl (AET) or mercaptopropionic acid (MPA). This results in an increase in the photoluminescence quantum efficiency and a longer exciton lifetime. For the first

  4. Physical and ionic characteristics in water soluble fraction (WSF) of ...

    African Journals Online (AJOL)

    SERVER

    2008-01-04

    Jan 4, 2008 ... living cells and are metabolized (Ali and Mai, 2007). This is ecologically important because in event of an oil spill into aquatic habitant, this is absorbed by living organisms with serious effects on the ecosystem. ..... 3) and Talling and Talling (1965) classification scheme of. African water with conductivities of ...

  5. Effect of water deficit stress on proline contents, soluble sugars ...

    African Journals Online (AJOL)

    The objective of the present work was to determine the mechanisms of tolerance of four sunflower hybrids; H1 = Azargol, H2 = Alstar, H3 = Hysun 33 and H4 = Hysun 25 to water stress under three different levels of irrigation regimes; WD1 = irrigation after 50 mm (normal irrigation), WD2 = 100 mm (mild stress) and WD3 ...

  6. Supercritical fluid particle design for poorly water-soluble drugs (review).

    Science.gov (United States)

    Sun, Yongda

    2014-01-01

    Supercritical fluid particle design (SCF PD) offers a number of routes to improve solubility and dissolution rate for enhancing the bioavailability of poorly water-soluble drugs, which can be adopted through an in-depth knowledge of SCF PD processes and the molecular properties of active pharmaceutical ingredients (API) and drug delivery system (DDS). Combining with research experiences in our laboratory, this review focuses on the most recent development of different routes (nano-micron particles, polymorphic particles, composite particles and bio-drug particles) to improve solubility and dissolution rate of poorly water-soluble drugs, covering the fundamental concept of SCF and the principle of SCF PD processes which are typically used to control particle size, shape, morphology and particle form and hence enable notable improvement in the dissolution rate of the poorly water-soluble drugs. The progress of the industrialization of SCF PD processes in pharmaceutical manufacturing environment with scaled-up plant under current good manufacturing process (GMP) specification is also considered in this review.

  7. Solubility of Organosolv Lignin in γ-Valerolactone/Water Binary Mixtures.

    Science.gov (United States)

    Lê, Huy Quang; Zaitseva, Anna; Pokki, Juha-Pekka; Ståhl, Marina; Alopaeus, Ville; Sixta, Herbert

    2016-10-20

    The solubility of lignin in a mixture of γ-valerolactone (GVL) and water at different weight ratios was measured using the Hildebrand solubility parameters. Based on the molecular structure of lignin, its solubility parameter (δ-value) was calculated as 25.5 MPa 1/2 . The δ-value for aqueous GVL solvent increased from 23.1 MPa 1/2 for pure GVL to 45.6 MPa 1/2 for pure water. Therefore, the lignin solubility was predicted to increase with increasing GVL concentration in the aqueous mixture up to approximately 92-96 wt % of GVL. A ternary diagram describing the phase behavior of water-GVL-lignin mixtures at room temperature was constructed based on the experimental results. The three-component system exhibited a complex behavior with a liquid-liquid and solid-liquid-liquid phase split. The efficiency of the selected fractionation trials in a previous work was validated using the ternary solubility diagram. A promising recovery pathway and lignin isolation method were deduced from the results of this work. © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Ternary water in oil microemulsions made of cationic surfactants, water, and aromatic solvents. 1. Water solubility studies

    Energy Technology Data Exchange (ETDEWEB)

    Jada, A.; Lang, J.; Zana, R. (CNRS-ULP, Strasbourg (France))

    1990-01-11

    Two series of cationic surfactants ((I) n-C{sub m}H{sub 2m+1}(n-C{sub n}H{sub 2n+1})N{sup +}(CH{sub 3}){sub 2}X{sup {minus}} with m = 12 or 16, n = 1-8, and X{sup {minus}} = Cl{sup {minus}} or Br{sup {minus}}; (II) n-C{sub m}H{sub 2m+1}(C{sub 6}H{sub 5}(CH{sub 2}){sub p})N{sup +}(CH{sub 3}){sub 2}X{sup {minus}} with m = 10, 12, 14, 16, and 18, p = 0-2, and X{sup {minus}} = Cl{sup {minus}} or Br{sup {minus}}) have been synthesized and used to prepare water in oil microemulsions, with various aromatic solvents. The water solubility in these microemulsions and the phase behavior of the systems when the water content slightly exceeded the water solubility have been investigated as a function of surfactant chain length (variation of m), size of the surfactant head group (variation of n or p), nature of the counterion (substitution of Br{sup {minus}} by Cl{sup {minus}}), the molar volume, and the type of aromatic solvent. Mixtures of surfactant homologues have also been investigated: for instance, C{sub 16}H{sub 33}(C{sub 6}H{sub 5})N{sup +}(CH{sub 3}){sub 2}Cl{sup {minus}} and C{sub 16}H{sub 33}(C{sub 6}H{sub 5}CH{sub 2}CH{sub 2})N{sup +}(CH{sub 3}){sub 2}Cl{sup {minus}} or C{sub 16}H{sub 33}(C{sub 6}H{sub 5}CH{sub 2})N{sup +}(CH{sub 3}){sub 2}Cl{sup {minus}} and Br{sup {minus}}. The results concerning the effect of the surfactant chain length and the nature of the counterion and of the solvent have been interpreted in terms of the Hou and Shah model (Langmuir, 1987, 3, 1086) for the solubility of water in water in oil microemulsions. This model is based on the two main effects that determine the stability of these systems, namely, curvature of the surfactant film separating the oil and water and interactions between water droplets. The effect of the surfactant head-group size was found to be opposite to the prediction of this model.

  9. Highly Water-Soluble Magnetic Nanoparticles as Novel Draw Solutes in Forward Osmosis for Water Reuse

    KAUST Repository

    Ling, Ming Ming

    2010-06-16

    Highly hydrophilic magnetic nanoparticles have been molecularly designed. For the first time, the application of highly water-soluble magnetic nanoparticles as novel draw solutes in forward osmosis (FO) was systematically investigated. Magnetic nanoparticles functionalized by various groups were synthesized to explore the correlation between the surface chemistry of magnetic nanoparticles and the achieved osmolality. We verified that magnetic nanoparticles capped with polyacrylic acid can yield the highest driving force and subsequently highest water flux among others. The used magnetic nanoparticles can be captured by the magnetic field and recycled back into the stream as draw solutes in the FO process. In addition, magnetic nanoparticles of different diameters were also synthesized to study the effect of particles size on FO performance. We demonstrate that the engineering of surface hydrophilicity and magnetic nanoparticle size is crucial in the application of nanoparticles as draw solutes in FO. It is believed that magnetic nanoparticles will soon be extensively used in this area. © 2010 American Chemical Society.

  10. A novel formulation for solubility and content uniformity enhancement of poorly water-soluble drugs using highly-porous mannitol.

    Science.gov (United States)

    Saffari, Morteza; Ebrahimi, Amirali; Langrish, Timothy

    2016-02-15

    The present study investigates the enhancement of the dissolution rates for poorly-water soluble drugs by a new adsorption method. The results show that the current adsorption method enhanced the dissolution rate of both nifedipine and indomethacin to a significant extent by nano-confinement of drugs into the pore spaces of highly-porous excipients. Porous mannitol particles with a surface area and pore volume of 6.3 ± 0.1 m(2) g(-1) and 0.036 ± 0.002 ml g(-1), respectively, were drug loaded in two different concentrations of indomethacin and nifedipine. The results of drug loading for nifedipine showed an increase from 3.2 ± 0.1% w/w for a 0.08 M drug solution to 9.1 ± 0.3% w/w drug loading for a 0.16 M drug solution, while indomethacin had slightly better performance for the adsorption process, with 4.1 ± 0.2% w/w and 12.6 ± 0.4% w/w for 0.08 M and 0.16 M concentrations of indomethacin, respectively, in the final formulation. This result also indicated highly-uniform blends with a percentage relative standard deviation of less than 4% for drug-loaded mannitol in both nifedipine and indomethacin. This method gave a significant enhancement of the dissolution rate for both drugs due to nano-confinement of drugs into porous excipients and high solubility of porous mannitol, with 80% drug release within the first 15 min for the drug-loaded samples. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Protein structure, stability and solubility in water and other solvents.

    OpenAIRE

    Pace, C. Nick; Treviño, Saul; Prabhakaran, Erode; Scholtz, J. Martin

    2004-01-01

    Proteins carry out the most difficult tasks in living cells. They do so by interacting specifically with other molecules. This requires that they fold to a unique, globular conformation that is only marginally more stable than the large ensemble of unfolded states. The folded state is stabilized mainly by the burial and tight packing of over 80% of the peptide groups and non-polar side chains. If life as we know it is to exist in a solvent other than water, the folded state must be stable and...

  12. Soluble vs. insoluble fiber

    Science.gov (United States)

    Insoluble vs. soluble fiber; Fiber - soluble vs. insoluble ... There are 2 different types of fiber -- soluble and insoluble. Both are important for health, digestion, and preventing diseases. Soluble fiber attracts water and turns to gel during digestion. This slows ...

  13. Water sorption and solubility of bulk-fill composites polymerized with a third generation LED LCU

    Directory of Open Access Journals (Sweden)

    Tuğba MİSİLLİ

    2017-10-01

    Full Text Available Abstract The aim of this study was to compare the degree of water sorption and solubility in bulk-fills after curing with a polywave light source. A total of 120 disc-shaped specimens (8 mm diameter; 4 mm depth were prepared from three regular bulk-fill materials (X-tra Fil, Tetric N-Ceram Bulk Fill, SonicFill, and a control material (Filtek Z250, cured in 3 different modes (standard: 1000 mW/cm2-20 s; high power: 1400 mW/cm2-12 s; xtra power: 3200 mW/cm2-6 s using a third generation light-emitting diode light curing unit. Water sorption and solubility levels of the specimens were measured according to the ISO 4049:2009 specification after storing in distilled water for 30 days. Data were analyzed using two-way ANOVA and Tukey’s post-hoc test (p < 0.05. The Z250 sample exposed to high power presented a higher sorption compared to the X-tra Fil and SonicFill samples. In xtra power mode, the values of Z250 and SonicFill were similar to each other and higher compared to those of X-tra Fil. Only SonicFill exhibited significantly different sorption values depending on the curing mode, the highest of which was achieved when using the xtra power mode. The highest solubility values were obtained for SonicFill. No statistically significant differences were found among other groups. No significant correlation was detected between water sorption and solubility. The traditional composite group exhibited a higher water sorption values than the bulk-fills. The reduction in polymerization time significantly increased the sorption of SonicFill. SonicFill showed the highest water solubility value among the composites tested.

  14. QSPR study of the water solubility of a diverse set of agrochemicals ...

    African Journals Online (AJOL)

    QSPR study of the water solubility of a diverse set of agrochemicals: hybrid. (GA/ MLR) approach. Etude QSPR ... A six descriptor model, with squared correlation coefficient (R2) of 0.8895 and standard error of estimation (s) of 0.52 log unit, was ..... solute with the bulk of the surrounding solvent. (macroscopic or non specific ...

  15. The effect of water solubles on Kelvin effects of the Maritime Polluted ...

    African Journals Online (AJOL)

    In this work microphysical properties of Maritime Polluted aerosols wereextracted from Optical Properties of Aerosols and Clouds (OPAC) after varying the concentrations of water soluble at five different levels. The analytical expressions for the changes in the equilibrium relative humidity (RH), effective radii, effective ...

  16. FATE OF WATER SOLUBLE AZO DYES IN THE ACTIVATED SLUDGE PROCESS

    Science.gov (United States)

    The objective of this study was to determine the partitioning of water soluble azo dyes in the activated sludge process (ASP). Azo dyes are of concern because some of the dyes, dye precursors , and/or their degradation products such as aromatic amines (which are also dye precurso...

  17. In vitro degradation of dermal sheep collagen cross-linked using a water-soluble carbodiimide

    NARCIS (Netherlands)

    Damink, LHHO; Dijkstra, PJ; vanLuyn, MJA; vanWachem, PB; Nieuwenhuis, P; Feijen, J

    Bacterial collagenase was used to study the susceptibility of dermal sheep collagen (DSC) cross-inked with a mixture of the water-soluble carbodiimide 1-ethyl-3-(3-dimethyl aminopropyl)carbodiimide hydrochloride and N-hydroxysuccinimide (EIN-DSC) towards enzymatic degradation. Contrary to

  18. In vitro degradation of dermal sheep collagen cross-linked using a water-soluble carbodiimide

    NARCIS (Netherlands)

    Olde damink, L.H.H.; Olde Damink, L.H.H.; Dijkstra, Pieter J.; van Luyn, M.J.A.; van Wachem, P.B.; Nieuwenhuis, P.; Feijen, Jan

    1996-01-01

    Bacterial collagenase was used to study the susceptibility of dermal sheep collagen (DSC) crosslinked with a mixture of the water-soluble carbodiimide 1-ethyl-3-(3-dimethyl aminopropyl)-carbodiimide hydrochloride and N-hydroxysuccinimide (E/N-DSC) towards enzymatic degradation. Contrary to

  19. Assessment of acute toxicity of water soluble fraction of diesel on ...

    African Journals Online (AJOL)

    Acute toxicity of water soluble fraction (WSF) of diesel fuel was assessed by evaluating its effects on growth of two marine microalgae, Isochrysis and Chaetoceros. Pure cultures of each of the two microalgae were exposed to concentrations of 0% (controls), 5%, 10%, 15% and 20% of diesel WSF (in triplicates) and allowed ...

  20. Temperature and sodium chloride effects on the solubility of anthracene in water

    Energy Technology Data Exchange (ETDEWEB)

    Arias-Gonzalez, Israel [Instituto Mexicano del Petroleo, Direccion de Investigacion y Posgrado, Programa de Ingenieria Molecular, Area de Investigacion en Termofisica, Eje Central Lazaro Cardenas Norte 152. 07730, Mexico D.F. (Mexico); Reza, Joel, E-mail: jreza@imp.m [Instituto Mexicano del Petroleo, Direccion de Investigacion y Posgrado, Programa de Ingenieria Molecular, Area de Investigacion en Termofisica, Eje Central Lazaro Cardenas Norte 152. 07730, Mexico D.F. (Mexico); Trejo, Arturo, E-mail: atrejo@imp.m [Instituto Mexicano del Petroleo, Direccion de Investigacion y Posgrado, Programa de Ingenieria Molecular, Area de Investigacion en Termofisica, Eje Central Lazaro Cardenas Norte 152. 07730, Mexico D.F. (Mexico)

    2010-11-15

    The solubility of anthracene was measured in pure water and in sodium chloride aqueous solution (salt concentration, m/mol . kg{sup -1} = 0.1006, 0.5056, and 0.6082) at temperatures between (278 and 333) K. Solubility of anthracene in pure water agrees fairly well with values reported in earlier similar studies. Solubility of anthracene in sodium chloride aqueous solutions ranged from (6 . 10{sup -8} to 143 . 10{sup -8}) mol . kg{sup -1}. Sodium chloride had a salting-out effect on the solubility of anthracene. The salting-out coefficients did not vary significantly with temperature over the range studied. The average salting-out coefficient for anthracene was 0.256 kg . mol{sup -1}. The standard molar Gibbs free energies, {Delta}{sub tr}G{sup o}, enthalpies, {Delta}{sub tr}H{sup o}, and entropies, {Delta}{sub tr}S{sup o}, for the transfer of anthracene from pure water to sodium chloride aqueous solutions were also estimated. Most of the estimated {Delta}{sub tr}G{sup o} values were positive [(20 to 1230) J . mol{sup -1}]. The analysis of the thermodynamic parameters shows that the transfer of anthracene from pure water to sodium chloride aqueous solution is thermodynamically unfavorable, and that this unfavorable condition is caused by a decrease in entropy.

  1. Soil Microbial Biomass and Water-Soluble Organic Carbon in Crop ...

    African Journals Online (AJOL)

    Knowledge of the dynamics of microbial biomass and water-soluble organic carbon (WSOC) are important in understanding microbial cycling of nutrients, especially where external inputs of nutrients are low. We investigated the effect of preceding legumes-soybean (Glycine max), cowpea (Vigna unguiculata L.), ...

  2. Fluorescent water soluble polymers for isozyme-selective interactions with matrix metalloproteinase-9.

    Science.gov (United States)

    Dutta, Rinku; Scott, Michael D; Haldar, Manas K; Ganguly, Bratati; Srivastava, D K; Friesner, Daniel L; Mallik, Sanku

    2011-04-01

    Matrix metalloproteinases (MMPs) are overexpressed in various pathological conditions, including cancers. Although these isozymes have similar active sites, the patterns of exposed amino acids on their surfaces are different. Herein, we report the synthesis and molecular interactions of two water soluble, fluorescent polymers which demonstrate selective interactions with MMP-9 compared to MMP-7 and -10. Copyright © 2011 Elsevier Ltd. All rights reserved.

  3. Formation of water-soluble soybean polysaccharides from spent flakes by hydrogen peroxide treatment

    DEFF Research Database (Denmark)

    Pierce, Brian; Wichmann, Jesper; Tran, Tam H.

    2016-01-01

    In this paper we propose a novel chemical process for the generation of water-soluble polysaccharides from soy spent flake, a by-product of the soy food industry. This process entails treatment of spent flake with hydrogen peroxide at an elevated temperature, resulting in the release of more than...

  4. Case study of water-soluble metal containing organic constituents of biomass burning aerosol

    Science.gov (United States)

    Alexandra L. Chang-Graham; Luisa T. M. Profeta; Timothy J. Johnson; Robert J. Yokelson; Alexander Laskin; Julia Laskin

    2011-01-01

    Natural and prescribed biomass fires are a major source of aerosols that may persist in the atmosphere for several weeks. Biomass burning aerosols (BBA) can be associated with long-range transport of water-soluble N-, S-, P-, and metal-containing species. In this study, BBA samples were collected using a particle-into-liquid sampler (PILS) from laboratory burns of...

  5. 40 CFR 799.6784 - TSCA water solubility: Column elution method; shake flask method.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 31 2010-07-01 2010-07-01 true TSCA water solubility: Column elution method; shake flask method. 799.6784 Section 799.6784 Protection of Environment ENVIRONMENTAL PROTECTION... and analyzed by the chosen method. (ii) Fractions from the middle eluate range where the...

  6. CORAL: QSPR model of water solubility based on local and global SMILES attributes.

    Science.gov (United States)

    Toropov, Andrey A; Toropova, Alla P; Benfenati, Emilio; Gini, Giuseppina; Leszczynska, Danuta; Leszczynski, Jerzy

    2013-01-01

    Water solubility is an important characteristic of a chemical in many aspects. However experimental definition of the endpoint for all substances is impossible. In this study quantitative structure-property relationships (QSPRs) for negative logarithm of water solubility-logS (mol L(-1)) are built up for five random splits into the sub-training set (≈55%), the calibration set (≈25%), and the test set (≈20%). Simplified molecular input-line entry system (SMILES) is used as the representation of the molecular structure. Optimal SMILES-based descriptors are calculated by means of the Monte Carlo method using the CORAL software (http://www.insilico.eu/coral). These one-variable models for water solubility are characterized by the following average values of the statistical characteristics: n(sub_train)=725-763; n(calib)=312-343; n(test)=231-261; r(sub_train)(2)=0.9211±0.0028; r(calib)(2)=0.9555±0.0045; r(test)(2)=0.9365±0.0073; s(sub_train)=0.561±0.0086; s(calib)=0.453±0.0209; s(test)=0.520±0.0205. Thus, the reproducibility of statistical quality of suggested models for water solubility confirmed for five various splits. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. Sensory and chromatographic evaluations of water soluble fractions from air-dried sausages

    DEFF Research Database (Denmark)

    Henriksen, Anders Peter; Stahnke, Marie Louise Heller

    1997-01-01

    Low molecular weight water soluble compounds were extracted from Danish salami, Italian sausage, and Spanish Chorizo. The extracts were fractionated by gel filtration chromatography revealing peptides with a molecular weight less than 4200 Dalton. Fractions consisting of smaller peptides and free...

  8. Levels of Water-Soluble Vitamins in Methanogenic and Non-Methanogenic Bacteria

    OpenAIRE

    Leigh, John A.

    1983-01-01

    The levels of seven water-soluble vitamins in Methanobacterium thermoautotrophicum, Methanococcus voltae, Escherichia coli, Bacillus subtilis, Pseudomonas fluorescens, and Bacteroides thetaiotaomicron were compared by using a vitamin-requiring Leuconostoc strain. Both methanogens contained levels of folic acid and pantothenic acid which were approximately two orders of magnitude lower than levels in the nonmethanogens. Methanobacterium thermoautotrophicum contained levels of thiamine, biotin,...

  9. Crystallization of water-soluble chlorophyll-proteins from Lepidium virginicum.

    Science.gov (United States)

    Murata, T; Itoh, R; Yakushiji, E

    1980-11-05

    Water-soluble chlorophyll-proteins were prepared from leaves of Lepidium virginicum, by means of ammonium sulfate fractionation followed by column chromatography on DEAE-cellulose and Sephacryl S-200. After intensive purification the chlorophyll-proteins were crystallized by dialysis against an ammonium sulfate solution.

  10. Hydrolytic stability of water-soluble spruce O-acetyl galactoglucomannans

    NARCIS (Netherlands)

    Xu, C.; Pranovich, A.; Hemmimg, J.; Holmbom, B.; Albrecht, S.A.; Schols, H.A.; Willfor, S.

    2009-01-01

    Water-soluble native O-acetyl galactoglucomannan (GGM) from spruce is a polysaccharide that can be produced in an industrial scale. To develop GGM applications, information is needed on its stability, particularly under acidic conditions. Therefore, acid hydrolysis of spruce GGM was investigated at

  11. De novo design and synthesis of water-soluble gold(I) compounds ...

    Indian Academy of Sciences (India)

    Administrator

    De novo design and synthesis of water-soluble gold(I) compounds: ... specific transition metal precursors) is central to the design and development of transition metal-based compounds that meet certain ... also brings about kinetic inertness, over a wide range of pH, in aqueous media 1,2. Gold compounds have been ...

  12. Role of protein solubility in water-holding capacity of broiler breast meat.

    Science.gov (United States)

    The role muscle protein denaturation plays in determining water-holding capacity (WHC) in broiler breast meat is not well understood. Alterations in muscle protein solubility due to postmortem pH and temperature decline can be used as indicators of protein denaturation. In order to determine the i...

  13. Water-soluble plasmonic nanosensors with synthetic receptors for label-free detection of folic acid.

    Science.gov (United States)

    Ahmad, Randa; Félidj, Nordin; Boubekeur-Lecaque, Leïla; Lau-Truong, Stéphanie; Gam-Derouich, Sarra; Decorse, Philippe; Lamouri, Aazdine; Mangeney, Claire

    2015-06-14

    We describe an original approach to graft molecularly imprinted polymers around gold nanorods by combining the diazonium salt chemistry and the iniferter method. This chemical strategy enables fine control of the imprinting process at the nanometer scale and provides water-soluble plasmonic nanosensors.

  14. Sorption and solubility of ofloxacin and norfloxacin in water-methanol cosolvent.

    Science.gov (United States)

    Peng, Hongbo; Li, Hao; Wang, Chi; Zhang, Di; Pan, Bo; Xing, Baoshan

    2014-05-01

    Prediction of the properties and behavior of antibiotics is important for their risk assessment and pollution control. Theoretical calculation was incorporated in our experimental study to investigate the sorption of ofloxacin (OFL) and norfloxacin (NOR) on carbon nanotubes and their solubilities in water, methanol, and their mixture. Sorption for OFL and NOR decreased as methanol volume fractions (fc) increased. But the log-linear cosolvency model could not be applied as a general model to describe the cosolvent effect on OFL and NOR sorption. We computed the bond lengths of possible hydrogen bonds between solute and solvent and the corresponding interaction energies using Density Functional Theory. The decreased OFL solubility with increased fc could be attributed to the generally stronger hydrogen bond between OFL and H2O than that between OFL and CH3OH. Solubility of NOR varied nonmonotonically with increasing fc, which may be understood from the stronger hydrogen bond of NOR-CH3OH than NOR-H2O at two important sites (-O18 and -O21). The interaction energies were also calculated for the solute surrounded by solvent molecules at all the possible hydrogen bond sites, but it did not match the solubility variations with fc for both chemicals. The difference between the simulated and real systems was discussed. Similar sorption but different solubility of NOR and OFL from water-methanol cosolvent suggested that sorbate-solvent interaction seems not control their sorption. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Renal excretion of water-soluble contrast media after enema in the neonatal period.

    Science.gov (United States)

    Kim, Hee Sun; Je, Bo-Kyung; Cha, Sang Hoon; Choi, Byung Min; Lee, Ki Yeol; Lee, Seung Hwa

    2014-08-01

    When abdominal distention occurs or bowel obstruction is suspected in the neonatal period, a water-soluble contrast enema is helpful for diagnostic and therapeutic purposes. The water-soluble contrast medium is evacuated through the anus as well as excreted via the kidneys in some babies. This study was designed to evaluate the incidence of renal excretion after enemas using water-soluble contrast media and presume the causes. Contrast enemas using diluted water-soluble contrast media were performed in 23 patients under 2 months of age. After the enema, patients were followed with simple abdominal radiographs to assess the improvement in bowel distention, and we could also detect the presence of renal excretion of contrast media on the radiographs. Reviewing the medical records and imaging studies, including enemas and consecutive abdominal radiographs, we evaluated the incidence of renal excretion of water-soluble contrast media and counted the stay duration of contrast media in urinary tract, bladder, and colon. Among 23 patients, 12 patients (52%) experienced the renal excretion of water-soluble contrast media. In these patients, stay-in-bladder durations of contrast media were 1-3 days and stay-in-colon durations of contrast media were 1-10 days, while stay-in-colon durations of contrast media were 1-3 days in the patients not showing renal excretion of contrast media. The Mann-Whitney test for stay-in-colon durations demonstrated the later evacuation of contrast media in the patients with renal excretion of contrast media (p = 0.07). The review of the medical records showed that 19 patients were finally diagnosed as intestinal diseases, including Hirschsprung's disease, meconium ileum, meconium plug syndrome, and small bowel atresia or stenosis. Fisher's exact test between the presence of urinary excretion and intestinal diseases indicated a statistically significant difference (p = 0.04). The intestinal diseases causing bowel obstruction may increase the

  16. New water-soluble metal working fluids additives from phosphonic acid derivatives for aluminum alloy materials.

    Science.gov (United States)

    Kohara, Ichitaro; Tomoda, Hideyuki; Watanabe, Shoji

    2007-01-01

    Water-soluble metal working fluids are used for processing of aluminum alloy materials. This short paper describes properties of new additives for water-soluble cutting fluids for aluminum alloy materials. Some alkyldiphosphonic acids were prepared with known method. Amine salts of these phosphonic acids showed anti-corrosion property for aluminum alloy materials. However, they have no hard water tolerance. Monoesters of octylphosphonic acid were prepared by the reaction of octylphosphonic acid dichloride with various alcohols in the presence of triethylamine. Amine salts of monoester of octylphosphonic acid with diethyleneglycol monomethyl ether, ethyleneglycol monomethyl ether and triethyleneglycol monomethyl ether showed both of a good anti-corrosion property for aluminum alloy materials and hard water tolerance.

  17. Changes in Apparent Molar Water Volume and DKP Solubility Yield Insights on the Hofmeister Effect

    Science.gov (United States)

    Payumo, Alexander Y.; Huijon, R. Michael; Mansfield, Deauna D.; Belk, Laurel M.; Bui, Annie K.; Knight, Anne E.; Eggers, Daryl K.

    2011-01-01

    This study examines the properties of a 4 × 2 matrix of aqueous cations and anions at concentrations up to 8.0 M. The apparent molar water volume, as calculated by subtracting the mass and volume of the ions from the corresponding solution density, was found to exceed the molar volume of ice in many concentrated electrolyte solutions, underscoring the non-ideal behavior of these systems. The solvent properties of water were also analyzed by measuring the solubility of diketopiperazine (DKP) in 2.000 M salt solutions prepared from the same ion combinations. Solution rankings for DKP solubility were found to parallel the Hofmeister series for both cations and anions, whereas molar water volume concurred with the cation series only. The results are discussed within the framework of a desolvation energy model that attributes solute-specific changes in equilibria to solute-dependent changes in the free energy of bulk water. PMID:22029390

  18. Water Soluble Vitamins Enhance the Growth of Microorganisms in Peripheral Parenteral Nutrition Solutions

    OpenAIRE

    Omotani, Sachiko; Tani, Katsuji; Nagai, Katsuhito; Hatsuda, Yasutoshi; Mukai, Junji; Myotoku, Michiaki

    2017-01-01

    Peripheral parenteral nutrition (PPN) solutions contain amino acids, glucose, and electrolytes, with or without some water soluble vitamins. Peripheral venous catheters are one of the causes of catheter related blood stream infection (CRBSI), which requires infection control. In Japan, PPN solutions have rarely been prepared under aseptic conditions. However, in recent years, the necessity of adding vitamins to infusions has been reported. Therefore, we investigated the effects of water solub...

  19. Water-soluble naphthalene diimides as singlet oxygen sensitizers.

    Science.gov (United States)

    Doria, Filippo; Manet, Ilse; Grande, Vincenzo; Monti, Sandra; Freccero, Mauro

    2013-08-16

    Bromo- and/or alkylamino-substituted and hydrosoluble naphthalene diimides (NDIs) were synthesized to study their multimodal photophysical and photochemical properties. Bromine-containing NDIs (i.e., 11) behaved as both singlet oxygen ((1)O2) photosensitizers and fluorescent molecules upon irradiation at 532 nm. Among the NDIs not containing Br, only 12 exhibited photophysical properties similar to those of Br-NDIs, by irradiation above 610 nm, suggesting that for these NDIs both singlet and triplet excited-state properties are strongly affected by length, structure of the solubilizing moieties, and pH of the solution. Laser flash photolysis confirmed that the NDI lowest triplet excited state was efficiently populated, upon excitation at both 355 and 532 nm, and that free amine moieties quenched both the singlet and triplet excited states by intramolecular electron transfer, with generation of detectable radical anions. Time-resolved experiments, monitoring the 1270 nm (1)O2 phosphorescence decay generated upon laser irradiation at 532 nm, allowed a ranking of the NDIs as sensitizers, based on their (1)O2 quantum yields (ΦΔ). The tetrafunctionalized 12, exhibiting a long-lived triplet state (τ ~ 32 μs) and the most promising absorptivity for photodynamic therapy application, was tested as efficient photosensitizers in the photo-oxidations of 1,5-dihydroxynaphthalene and 9,10-anthracenedipropionic acid in acetonitrile and water.

  20. Nanoformulation and encapsulation approaches for poorly water-soluble drug nanoparticles

    Science.gov (United States)

    Wais, Ulrike; Jackson, Alexander W.; He, Tao; Zhang, Haifei

    2016-01-01

    During the last few decades the nanomedicine sector has emerged as a feasible and effective solution to the problems faced by the high percentage of poorly water-soluble drugs. Decreasing the size of such drug compounds to the nanoscale can significantly change their physical properties, which lays the foundation for the use of nanomedicine for pharmaceutical applications. Various techniques have been developed to produce poorly water-soluble drug nanoparticles, mainly to address the poor water-soluble issues but also for the efficient and targeted delivery of such drugs. These techniques can be generally categorized into top-down, bottom-up and encapsulation approaches. Among them, the top-down approaches have been the main choice for industrial preparation of drug nanoparticles while other methods are actively investigated by researchers. In this review, we aim to give a comprehensive overview and latest progress of the top-down, bottom-up, and encapsulation methods for the preparation of poorly water-soluble drug nanoparticles and how solvents and additives can be selected for these methods. In addition to the more industrially applied top-down approaches, the review is focused more on bottom-up and encapsulation methods, particularly covering supercritical fluid-related methods, cryogenic techniques, and encapsulation with dendrimers and responsive block copolymers. Some of the approved and mostly used nanodrug formulations on the market are also covered to demonstrate the applications of poorly water-soluble drug nanoparticles. This review is complete with perspectives on the development and challenges of fabrication techniques for more effective nanomedicine.

  1. Lipid-based formulations for oral administration of poorly water-soluble drugs

    DEFF Research Database (Denmark)

    Mu, Huiling; Holm, René; Müllertz, Anette

    2013-01-01

    /dissolution step, which is a potential rate limiting factor for oral absorption of poorly water-soluble drugs. Lipids not only vary in structures and physiochemical properties, but also in their digestibility and absorption pathway; therefore selection of lipid excipients and dosage form has a pronounced effect...... on the biopharmaceutical aspects of drug absorption and distribution both in vitro and in vivo. The aim of this review is to provide an overview of the different lipid-based dosage forms from a biopharmaceutical point of view and to describe effects of lipid dosage forms and lipid excipients on drug solubility, absorption...

  2. Water solubility of selected C9-C18 alkanes using a slow-stir technique: Comparison to structure - property models.

    Science.gov (United States)

    Letinski, Daniel J; Parkerton, Thomas F; Redman, Aaron D; Connelly, Martin J; Peterson, Brian

    2016-05-01

    Aqueous solubility is a fundamental physical-chemical substance property that strongly influences the distribution, fate and effects of chemicals upon release into the environment. Experimental water solubility was determined for 18 selected C9-C18 normal, branched and cyclic alkanes. A slow-stir technique was applied to obviate emulsion formation, which historically has resulted in significant overestimation of the aqueous solubility of such hydrophobic liquid compounds. Sensitive GC-MS based methods coupled with contemporary sample extraction techniques were employed to enable reproducible analysis of low parts-per billion aqueous concentrations. Water solubility measurements for most of the compounds investigated, are reported for the first time expanding available data for branched and cyclic alkanes. Measured water solubilities spanned four orders of magnitude ranging from 0.3 μg/L to 250 μg/L. Good agreement was observed for selected alkanes tested in this work and reported in earlier literature demonstrating the robustness of the slow-stir water solubility technique. Comparisons of measured alkane water solubilities were also made with those predicted by commonly used quantitative structure-property relationship models (e.g. SPARC, EPIWIN, ACD/Labs). Correlations are also presented between alkane measured water solubilities and molecular size parameters (e.g. molar volume, solvent accessible molar volume) affirming a mechanistic description of empirical aqueous solubility results and prediction previously reported for a more limited set of alkanes. Copyright © 2016 Elsevier Ltd. All rights reserved.

  3. Lysozyme Solubility and Conformation in Neat Ionic Liquids and Their Mixtures with Water.

    Science.gov (United States)

    Strassburg, Stephen; Bermudez, Harry; Hoagland, David

    2016-06-13

    The room temperature solubility of a number of model proteins is assessed for a diverse set of neat ionic liquids (ILs). For two soluble protein-IL pairs, lysozyme in [C2MIM][EtSO4] (1-ethyl-3-methylimidazolium ethylsulfate) and in [C2,4,4,4P][Et2PO4] (tributyl(ethyl)phosphonium diethylphosphate), protein solubility and structure at various temperatures are probed by dynamic light scattering (assessing dissolved molecular size), turbidimetry (reflecting degree of solubility), and Fourier transform infrared spectroscopy (uncovering helical secondary structure). As compared to aqueous environments, [C2,4,4,4P][Et2PO4] thermally stabilizes protein size and secondary structure while [C2MIM][EtSO4] does the opposite. Lysozyme denatured in [C2MIM][EtSO4] does not aggregate, presumably due to an absence of hydrophobic interactions, and the denaturation appears thermally reversible. Both ILs at room temperature are miscible with water in all proportions, but to create the corresponding ternary mixtures with protein, the order of mixing is important. Mixed to avoid additions of water to IL-dissolved protein, stable solutions are obtained with [C2MIM][EtSO4] at all solvent compositions. When water is added to IL-rich solutions, liquid-liquid demixing is noted.

  4. Synthesis of a Water-soluble Metal-Organic Complex Array.

    Science.gov (United States)

    Bose, Purnandhu; Sukul, Pradip K; Yaghi, Omar M; Tashiro, Kentaro

    2016-10-08

    We demonstrate a method for the synthesis of a water-soluble multimetallic peptidic array containing a predetermined sequence of metal centers such as Ru(II), Pt(II), and Rh(III). The compound, named as a water-soluble metal-organic complex array (WSMOCA), is obtained through 1) the conventional solution-chemistry-based preparation of the corresponding metal complex monomers having a 9-fluorenylmethyloxycarbonyl (Fmoc)-protected amino acid moiety and 2) their sequential coupling together with other water-soluble organic building units on the surface-functionalized polymeric resin by following the procedures originally developed for the solid-phase synthesis of polypeptides, with proper modifications. Traces of reactions determined by mass spectrometric analysis at the representative coupling steps in stage 2 confirm the selective construction of a predetermined sequence of metal centers along with the peptide backbone. The WSMOCA cleaved from the resin at the end of stage 2 has a certain level of solubility in aqueous media dependent on the pH value and/or salt content, which is useful for the purification of the compound.

  5. Effect of chemical grafting parameters on the manufacture of functionalized PVOH films having controlled water solubility

    Science.gov (United States)

    Haas, Andreas; Schlemmer, Daniel; Grupa, Uwe; Schmid, Markus

    2017-06-01

    This study investigated the chemical grafting of a single-layer poly(vinyl alcohol) (PVOH) film. The effect of the grafting parameters (grafting time, grafting temperature, and concentration of fatty acid chloride) on the hydrophobicity of the film surface and the film solubility were evaluated. The PVOH substrate film (cold-water soluble at 20°C) was manufactured by flat extrusion and had a thickness of 50 µm (± 5 µm). The chemical grafting was performed using the transfer method with palmitoyl chloride (C16). The solubility, surface energy, and water vapor transmission rate of the grafted films were measured. The process parameters which produced the most hydrophobic PVOH film were found to be a fatty acid concentration of 3%, a grafting time of 14 min, and a grafting temperature of 130°C. These studies involved systematic adjustment of the hydrophobicity of one side of PVOH films. The results open up opportunities for packing fluids in water soluble packaging.

  6. Biodesulfurization of water-soluble coal-derived material by Rhodococcus rhodochrous IGTS8

    Energy Technology Data Exchange (ETDEWEB)

    Kilbane, J.J. II; Jackowski, K.

    1991-12-31

    Rhodococcus rhodochrous IGTS8 was previously isolated because of its ability to use coal as its sole source of sulfur for growth. Subsequent growth studies have revealed that IGTS8 is capable of using a variety of organosulfur compounds as sources of sulfur but not carbon. In this paper, the ability of IGTS8 to selectively remove organic sulfur from water-soluble coal-derived material is investigated. The microbial removal of organic sulfur from coal requires microorganisms capable of cleaving carbonsulfur bonds and the accessibility of these bonds to microorganisms. The use of water-soluble coal-derived material effectively overcomes the problem of accessibility and allows the ability of microorganisms to cleave carbonsulfur bonds present in coal-derived material to be assessed directly. Three coals, two coal solubilization procedures, and two methods of biodesulfurization were examined. The results of these experiments reveal that the microbial removal of significant amounts of organic sulfur from watersoluble coal-derived material with treatment times as brief as 24 hours is possible. Moreover, the carbon content and calorific value of biotreated products are largely unaffected. Biotreatment does, however, result in increases in the hydrogen and nitrogen content and a decreased oxygen content of the coal-derived material. The aqueous supernatant obtained from biodesulfurization experiments does not contain sulfate, sulfite, or other forms of soluble sulfur at increased concentrations in comparison with control samples. Sulfur removed from water-soluble coal-derived material appears to be incorporated into biomass.

  7. Biodesulfurization of water-soluble coal-derived material by Rhodococcus rhodochrous IGTS8

    Energy Technology Data Exchange (ETDEWEB)

    Kilbane, J.J. II; Jackowski, K.

    1991-01-01

    Rhodococcus rhodochrous IGTS8 was previously isolated because of its ability to use coal as its sole source of sulfur for growth. Subsequent growth studies have revealed that IGTS8 is capable of using a variety of organosulfur compounds as sources of sulfur but not carbon. In this paper, the ability of IGTS8 to selectively remove organic sulfur from water-soluble coal-derived material is investigated. The microbial removal of organic sulfur from coal requires microorganisms capable of cleaving carbonsulfur bonds and the accessibility of these bonds to microorganisms. The use of water-soluble coal-derived material effectively overcomes the problem of accessibility and allows the ability of microorganisms to cleave carbonsulfur bonds present in coal-derived material to be assessed directly. Three coals, two coal solubilization procedures, and two methods of biodesulfurization were examined. The results of these experiments reveal that the microbial removal of significant amounts of organic sulfur from watersoluble coal-derived material with treatment times as brief as 24 hours is possible. Moreover, the carbon content and calorific value of biotreated products are largely unaffected. Biotreatment does, however, result in increases in the hydrogen and nitrogen content and a decreased oxygen content of the coal-derived material. The aqueous supernatant obtained from biodesulfurization experiments does not contain sulfate, sulfite, or other forms of soluble sulfur at increased concentrations in comparison with control samples. Sulfur removed from water-soluble coal-derived material appears to be incorporated into biomass.

  8. Cell Wall Proteome in the Maize Primary Root Elongation Zone. II. Region-Specific Changes in Water Soluble and Lightly Ionically Bound Proteins under Water Deficit

    National Research Council Canada - National Science Library

    Jinming Zhu; Sophie Alvarez; Ellen L. Marsh; Mary E. LeNoble; In-Jeong Cho; Mayandi Sivaguru; Sixue Chen; Henry T. Nguyen; Yajun Wu; Daniel P. Schachtman; Robert E. Sharp

    2007-01-01

    Previous work on the adaptation of maize (Zea mays) primary roots to water deficit showed that cell elongation is maintained preferentially toward the apex, and that this response involves modification of cell wall extension properties...

  9. β-Cyclodextrin functionalized carbon quantum dots as sensors for determination of water-soluble C60 fullerenes in water.

    Science.gov (United States)

    Cayuela, Angelina; Laura Soriano, M; Valcárcel, Miguel

    2016-04-25

    A selective photoluminescence method based on Carbon Quantum Dots (CQDs) functionalized with carboxymethyl-β-cyclodextrin for the direct determination of water-soluble C60 fullerene has been developed. CQDs were synthesized using a top-down methodology from multiwall carbon nanotubes (MWCNTs) and further functionalized with N-Boc-ethylenediamine to confer monoprotected amine groups onto their surface. Once amine-functionalized CQDs were obtained after deprotection, an amidation reaction with carboxymethyl-β-cyclodextrin cavitands was achieved and the obtained fluorescent β-cyclodextrin functionalized Carbon Quantum Dots (cd-CQDs) were investigated for the inclusion complexation of water-soluble C60. Quenching of their fluorescence was observed owing to the non-covalent self-assembly of cd-CQDs and C60, making possible the quantification of C60. A method to determine water-soluble C60 is then proposed with detection and quantification limits of 0.525 and 1.751 μg mL(-1), respectively. The method was validated by determining soluble C60 fullerene in spiked river water. One added value of the paper is the fact that it can be ascribed to the "Third Way in Analytical Nanoscience and Nanotechnology".

  10. Suppression of Psyllium Husk Suspension Viscosity by Addition of Water Soluble Polysaccharides.

    Science.gov (United States)

    Kale, Madhuvanti S; Yadav, Madhav P; Hanah, Kyle A

    2016-10-01

    Psyllium seed husk is an insoluble dietary fiber with many health benefits. It can absorb many times its weight in water, forming very viscous suspensions, which have low palatability and consumer acceptance. We report here a novel approach for decreasing its viscosity, involving inclusion of a soluble polysaccharide in the suspension. This leads to a drastic decrease (up to 87%) in viscosity of suspensions, while maintaining the same dosage level of psyllium and also delivering a significant amount of soluble dietary fiber such as corn bio-fiber gum in a single serving. Four soluble polysaccharides with a range of molecular weights and solution viscosities have been studied for their viscosity suppression effect. Besides improving palatability, another advantage of this approach is that it makes it possible to deliver 2 different dietary fibers in significant quantities, thus offering even greater health benefits. © 2016 Institute of Food Technologists®.

  11. Biodegradation of the water-soluble gasoline components in a novel hybrid bioreactor

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-De-Jesus, A.; Lara-Rodriguez, A.; Santoyo-Tepole, F.; Juarez-Ramirez, C.; Cristiani-Urbina, E.; Ruiz-Ordaz, N.; Galindez Mayer, J. [Escuela Nacional de Ciencias Biologicas, del Instituto Politecnico Nacional, Departamento de Ingenieria Bioquimica, Carpio y Plan de Ayala, ' ' Centro Operativo Naranjo' ' , Mexico, D.F. (Mexico)

    2003-07-01

    A novel hybrid bioreactor was designed to remove volatile organic compounds from water contaminated with water-soluble gasoline components, and the performance of this new bioreactor was investigated. It was composed of two biotrickling filter sections and one biofilter section. The liquid phase pollutants were removed by a mixed culture in the biotrickling filter sections and the gas phase pollutants stripped by air injection in the biofilter section. The specific rates of chemical oxygen demand (COD) removal obtained in the reactor were directly proportional to the pollutant-loading rate. A stable operation of the hybrid bioreactor was attained for long periods of time. The bioreactor had the potential to simultaneously treat a complex mixture of volatile organic compounds, e.g., those present in the water-soluble fraction of gasoline, as well as the capacity to readily adapt to changing operational conditions, such as an increased contaminant loading, and variations in the airflow rate. (Abstract Copyright [2003], Wiley Periodicals, Inc.)

  12. Method of cross-linking polyvinyl alcohol and other water soluble resins

    Science.gov (United States)

    Phillipp, W. H.; May, C. E.; Hsu, L. C.; Sheibley, D. W. (Inventor)

    1980-01-01

    A self supporting sheet structure comprising a water soluble, noncrosslinked polymer such as polyvinyl alcohol which is capable of being crosslinked by reaction with hydrogen atom radicals and hydroxyl molecule radicals is contacted with an aqueous solution having a pH of less than 8 and containing a dissolved salt in an amount sufficient to prevent substantial dissolution of the noncrosslinked polymer in the aqueous solution. The aqueous solution is then irradiated with ionizing radiation to form hydrogen atom radicals and hydroxyl molecule radicals and the irradiation is continued for a time sufficient to effect crosslinking of the water soluble polymer to produce a water insoluble polymer sheet structure. The method has particular application in the production of battery separators and electrode envelopes for alkaline batteries.

  13. Solubility of cellulose in supercritical water studied by molecular dynamics simulations.

    Science.gov (United States)

    Tolonen, Lasse K; Bergenstråhle-Wohlert, Malin; Sixta, Herbert; Wohlert, Jakob

    2015-04-02

    The insolubility of cellulose in ambient water and most aqueous systems presents a major scientific and practical challenge. Intriguingly though, the dissolution of cellulose has been reported to occur in supercritical water. In this study, cellulose solubility in ambient and supercritical water of varying density (0.2, 0.7, and 1.0 g cm(-3)) was studied by atomistic molecular dynamics simulations using the CHARMM36 force field and TIP3P water. The Gibbs energy of dissolution was determined between a nanocrystal (4 × 4 × 20 anhydroglucose residues) and a fully dissociated state using the two-phase thermodynamics model. The analysis of Gibbs energy suggested that cellulose is soluble in supercritical water at each of the studied densities and that cellulose dissolution is typically driven by the entropy gain upon the chain dissociation while simultaneously hindered by the loss of solvent entropy. Chain dissociation caused density augmentation around the cellulose chains, which improved water-water bonding in low density supercritical water whereas the opposite occurred in ambient and high density supercritical water.

  14. Solubility enhancement of some water-insoluble drugs in the presence of nicotinamide and related compounds.

    Science.gov (United States)

    Rasool, A A; Hussain, A A; Dittert, L W

    1991-04-01

    The solubilities of five poorly water-soluble drugs, diazepam, griseofulvin, progesterone, 17 beta-estradiol, and testosterone, were studied in the presence of nicotinamide. All solubilities were found to increase in a nonlinear fashion as a function of nicotinamide concentration. The K1:1 and K1:2 stability constants were as follows: for diazepam, K1:1 = 5.23 M-1 and K1:2 = 8.6 M-2; for griseofulvin, K1:1 = 5.54 M-1 and K1:2 = 8.82 M-2; for progesterone, K1:1 = 5.48 M-1 and K1:2 = 42.47 M-2; for 17 beta-estradiol, K1:1 = 5.38 M-1 and K1:2 = 36.9 M-2; and for testosterone, K1:1 = 5.07 M-1 and K1:2 = 27.47 M-2. Two aliphatic analogues of nicotinamide (nipecotamide and N,N-dimethylacetamide) were studied as ligands with diazepam and griseofulvin and were found to increase the solubilities of both drugs in a linear fashion. The aromatic analogue, N,N-diethylnicotinamide, showed a nonlinear solubilization relationship similar to that seen with nicotinamide. In addition, three other aromatic analogues (isonicotinamide, 1-methylnicotinamide iodide, and N-methylnicotinamide) were studied. These ligands were not soluble enough in water to be studied over the wide range of concentrations used for nicotinamide and N,N-diethylnicotinamide; however, in the concentration range studied, these ligands solubilized diazepam and griseofulvin to a degree similar to that observed with comparable concentrations of nicotinamide. These results suggest that the aromaticity (Pi-system) of the pyridine ring is an important factor in complexation because the aromatic amide ligands were found to enhance the aqueous solubilities of the test drugs to a greater extent than the aliphatic amide ligands.(ABSTRACT TRUNCATED AT 250 WORDS)

  15. The development and evaluation of microstructured reactors for the water gas shift and preferential oxidation reactions in the 5 kW range

    Energy Technology Data Exchange (ETDEWEB)

    O' Connell, Martin; Kolb, Gunther; Schelhaas, Karl-Peter; Schuerer, Jochen; Tiemann, David; Ziogas, Athanassios [Institut fuer Mikrotechnik Mainz GmbH, Carl-Zeiss-Strasse 18-20, 55129 Mainz (Germany); Hessel, Volker [Institut fuer Mikrotechnik Mainz GmbH, Carl-Zeiss-Strasse 18-20, 55129 Mainz (Germany); Department of Chemical Engineering and Chemistry, Eindhoven University of Technology (TU/e), Den Dolech 2, Postbus 513, 5600 MB, Eindhoven (Netherlands)

    2010-03-15

    5 kW{sub el} One-Stage Water Gas Shift (WGS) and Preferential Oxidation (PROx) reactors were designed and evaluated for the clean-up of surrogate diesel reformate. For the WGS reactor, CO conversions of up to 95% were attained using typical surrogate synthetic diesel reformate. The PROx reactor was capable of converting a feed concentration of 1.0 mol% CO to 20 ppm. Load changes for both reactors could be carried out without significant overshoots of carbon monoxide. (author)

  16. Enhanced water-solubility, antibacterial activity and biocompatibility upon introducing sulfobetaine and quaternary ammonium to chitosan.

    Science.gov (United States)

    Chen, Yuxiang; Li, Jianna; Li, Qingqing; Shen, Yuanyuan; Ge, Zaochuan; Zhang, Wenwen; Chen, Shiguo

    2016-06-05

    Chitosan (CS) has attracted much attention due to its good antibacterial activity and biocompatibility. However, CS is insoluble in neutral and alkaline aqueous solution, limiting its biomedical application to some extent. To circumvent this drawback, we have synthesized a novel N-quaternary ammonium-O-sulfobetaine-chitosan (Q3BCS) by introducing quaternary ammonium compound (QAC) and sulfobetaine, and its water-solubility, antibacterial activity and biocompatibility were evaluated compare to N-quaternary ammonium chitosan and native CS. The results showed that by introducing QAC, antibacterial activities and water-solubilities increase with degrees of substitution. The largest diameter zone of inhibition (DIZ) was improved from 0 (CS) to 15mm (N-Q3CS). And the water solution became completely transparent from pH 6.5 to pH 11; the maximal waters-solubility was improved from almost 0% (CS) to 113% at pH 7 (N-Q3CS). More importantly, by further introducing sulfobetaine, cell survival rate of Q3BCS increased from 30% (N-Q3CS) to 85% at 2000μg/ml, which is even greater than that of native CS. Furthermore, hemolysis of Q3BCS was dropped sharply from 4.07% (N-Q3CS) to 0.06%, while the water-solution and antibacterial activity were further improved significantly. This work proposes an efficient strategy to prepare CS derivatives with enhanced antibacterial activity, biocompatibility and water-solubility. Additionally, these properties can be finely tailored by changing the feed ratio of CS, glycidyl trimethylammonium chloride and NCO-sulfobetaine. Copyright © 2016 Elsevier Ltd. All rights reserved.

  17. Enhancement of quercetin water solubility with steviol glucosides and the studies of biological properties

    Directory of Open Access Journals (Sweden)

    Thi Thanh Hanh Nguyen

    2015-12-01

    Full Text Available Background: Quercetin, a flavonol contained in various vegetables and fruits, has various biological activities including anticancer, antiviral, anti-diabetic, and anti-oxidative. However, it has low oral bioavailability due to insolubility in water. Thus, the bioavailability of quercetin administered to human beings in a capsule form, was reported to be less than 1%, with only a small percentage of ingested quercetin getting absorbed in the blood. This leads to certain difficulties in creating highly effective medicines Methods: Quercetin-rubusoside and quercetin-rebaudioside were prepared. The antioxidant activities of quercetin and Q-rubusoside were evaluated by DPPH radical scavenging method. Inhibition activities of quercetin and Quercetin-rubusoside were determined by measuring the remaining activity of 3CLpro with 200 μM inhibitor. The inhibition activity of quercetin, rubusoside and quercetin-rubusoside were determined by measuring the activity of human maltase which remains at 100 μM rubusoside or quercetin-rubusoside. The mushroom tyrosinase inhibition was assayed with the reaction mixture contained 3.3 mM L-DOPA in 50 mM potassium phosphate buffer (pH 6.8, and 10 U mushroom tyrosinase/ml with or without quercetin or quercetin-rubusoside. Results: With 10% rubusoside treatment, quercetin showed solubility of 7.7 mg/ml in water, and its solubility increased as the concentration of rubusoside increased; the quercetin solubility in water increased to 0.83 mg/mlas rubusoside concentration increased to 1 mg/ml. Quercetin solubilized in rubusoside solution showed DPPH radical-scavenging activity and mushroom tyrosinase inhibition activity, similar to that of quercetin solubilized in dimethyl-sulfoxide. Quercetin-rubusoside also showed 1.2 and 1.9 folds higher inhibition activity against 3CLpro of SARS and human intestinal maltase, respectively, than those of quercetin in DMSO. Conclusions: Quercetin can be solubilized in water with

  18. [HYGIENIC ASSESSMENT OF WATER-SOLUBLE VITAMINS CONTENT IN THE FOOD RATION OF ADOLESCENTS].

    Science.gov (United States)

    Kozubenko, O V; Turchaninov, D V; Boyarskaya, L A; Glagoleva, O N; Pogodin, I S; Luksha, E A

    2015-01-01

    Adequate, balanced nutrition is a precondition for the formation of health of the younger generation. The study of the dietary intake and peculiarities of the chemical composition offood is needed to substantiate measures aimed at the correction of the ration of adolescents. Hygienic evaluation of the content of water soluble vitamins in foods and the ration of teenage population of the Omsk region. TASKS OF THE STUDY: 1. To determine levels of water-soluble vitamins content in foods forming the basis of the ration of the population the Omsk region. 2. On the base of a study of the actual nutrition of adolescents to determine the levels of water-soluble vitamins consumption. 3. To give a hygienic assessment of adolescent nutrition in the Omsk region in terms of provision with water-soluble vitamins, and to identify priority directions of the alimentary correction of the revealed disorders. The analysis of 389 food samples for the content of water-soluble vitamins (B1, B2, B6, PP C, folic acid) was performed with the use of reversed-phase HPLC high pressure on the Shimadzu LC-20 Prominence detector. The hygienic assessment of the actual nutrition of adolescents aged 13-17 years (sample survey; n = 250; 2012-2014) in the Omsk region was performed by the method of the analysis of food consumption frequency. There were noted significantly lower concentrations of vitamin B1 and B2 in the studied samples of cereals, bread and vegetables in comparison with reference data. Consumption levels of vitamins B1, B2, PP folic acid in the diet of adolescents in the Omsk region are lower than recommended values. In the structure of nutrition there is not enough milk dairy products--in 82.4 ± 2.4%, fish and sea products in 90.8 ± 1.8% of adolescents. The actual nutrition of the adolescent population of the Omsk region is irrational, unbalanced in quantitative and qualitative terms, and does not provide the necessary level of consumption of most important water-soluble vitamins

  19. Spray Freeze-drying - The Process of Choice for Low Water Soluble Drugs?

    Science.gov (United States)

    Leuenberger, H.

    2002-04-01

    Most of the novel highly potent drugs, developed on the basis of modern molecular medicine, taking into account cell surface recognition techniques, show poor water solubility. A chemical modification of the drug substance enhancing the solubility often decreases the pharmacological activity. Thus, as an alternative an increase of the solubility can be obtained by the reduction of the size of the drug particles. Unfortunately, it is often difficult to obtain micro or nanosized drug particles by classical or more advanced crystallization using supercritical gases or by milling techniques. In addition, nanosized particles are often not physically stable and need to be stabilized in an appropriate matrix. Thus, it may be of interest to manufacture directly nanosized drug particles stabilized in an inert hydrophilic matrix, i.e. nanostructured and nanocomposite systems. Solid solutions and solid dispersions represent nanostructured and nanocomposite systems. In this context, the use of the vacuum-fluidized-bed technique for the spray-drying of a low water soluble drug cosolubilized with a hydrophilic excipient in a polar organic solvent is discussed. In order to avoid the use of organic solvents, a special spray-freeze-drying technique working at atmospheric pressure is presented. This process is very suitable for temperature and otherwise sensitive drugs such as pharmaproteins.

  20. Synthesis and properties of amino acid functionalized water-soluble perylene diimides

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Yongshan; Li, Xuemei; Wei, Xiaofeng; Jiang, Tianyi; Wu, Junsen; Ren, Huixue [Shandong Jianzhu University, Jinan (China)

    2015-07-15

    We prepared amino acid functionalized water-soluble perylene diimides: N,N'-bi(L-glutamic acid)-perylene-3,4;9,10-dicarboxylic diimide (1), N,N'-bi(L-phenylalanine acid)-perylene-3,4;9,10-dicarboxylic diimide (2), N,N'-bi(Lglutamic amine)-perylene-3,4;9,10-dicarboxylic diimide (3) and N,N'-bi(L-phenylalanine amine)-perylene-3,4;9,10-dicarboxylic diimide (4). The structures of 3 and 4 were confirmed by {sup 1}H NMR, FT-IR and MS. The maximal absorption bands of compound 1 and 2 in concentrated sulfuric acid were red-shifted for about 48 and 74 nm, respectively, compared with that of Perylene-3,4,9,10-tetracarboxylic acid dianhydride (PTCDA). Nearly no fluorescence was observed for compounds 1 and 2 in water, while compounds 3 and 4 were significantly water-soluble and had very high fluorescent quantum. The mechanism of the optical properties change was discussed, and the π-π stacking caused by H{sup +} led to the changes of fluorescence spectrum and absorption spectrum. The calculated molecular orbital energies and the frontier molecular orbital maps of compounds 1-2 based on density function theory (DFT) calculations were reported. Owing to the high water-soluble, the perylene derivatives 3 and 4 were successfully applied as high-performance fluorochromes for living hela cells imaging.

  1. Evidence of soluble microbial products accelerating chloramine decay in nitrifying bulk water samples.

    Science.gov (United States)

    Bal Krishna, K C; Sathasivan, Arumugam; Chandra Sarker, Dipok

    2012-09-01

    The discovery of a microbially derived soluble product that accelerates chloramine decay is described. Nitrifying bacteria are believed to be wholly responsible for rapid chloramine loss in drinking water systems. However, a recent investigation showed that an unidentified soluble agent significantly accelerated chloramine decay. The agent was suspected to be either natural organic matter (NOM) or soluble microbial products (SMPs). A laboratory scale reactor was fed chloraminated reverse osmosis (RO) treated water to eliminate the interference from NOM. Once nitrification had set in, experiments were conducted on the reactor and feed waters to determine the identity of the component. The study showed the presence of SMPs released by microbes in severely nitrified waters. Further experiments proved that the SMPs significantly accelerated chloramine decay, probably through catalytic reaction. Moreover, application of common protein denaturing techniques stopped the reaction implying that the compound responsible was likely to be a protein. This significant finding will pave the way for better control of chloramine in the distribution systems. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Solubility and sorption of petroleum hydrocarbons in water and cosolvent systems.

    Science.gov (United States)

    Chen, Hong; Chen, Shuo; Quan, Xie; Zhao, Yazhi; Zhao, Huimin

    2008-01-01

    The solubility and sorption of oil by uncontaminated clay loam and silt loam soils were studied from water and cosolvent/water solutions using batch techniques. The data obtained from the dissolution and sorption experiments were used to evaluate the applicability of the cosolvent theory to oil as a complex mixture. Aqueous solubility and soil-water distribution coefficients (K(d,w), L/kg) were estimated by extrapolating from cosolvent data, with a log-linear cosolvency model, to the volume fraction of cosolvent (f(c)) 0, and were compared with direct aqueous measurements. The extrapolated water solubility was 3.16 mg/L, in good agreement with the directly measured value of 3.83 mg/L. Extrapolated values of K(d,w) for the two soils were close to each other but consistently higher than the values from direct aqueous measurements, because of the presence of dissolved organic carbon (DOC). The partition coefficient (K(DOC)) between the DOC and the freely dissolved phase and the OC-normalized sorption coefficient (K(OC)) were determined. The average values of logKD(OC) and logK(OC) were estimated as 4.34 and 3.32, respectively, giving insight into the possibility of oil becoming mobilized and/or of the soil being remedied. This study revealed that the cosolvency model can be applied to a broader range of hydrophobic organic chemicals (HOCs) than has been previously thought. The results aided in a reliable determination of water solubility and sorption coefficients and provide information about the fate of oil in solvent-contaminated environment.

  3. Geochemical evidence of water-soluble gas accumulation in the Weiyuan gas field, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Shengfei Qin

    2016-01-01

    Full Text Available At present, there are several different opinions on the formation process of the Weiyuan gas field in the Sichuan Basin and the source of its natural gas. In view of the fact that the methane carbon isotope of the natural gas in the Weiyuan gas field is abnormally heavy, the geologic characteristics of gas reservoirs and the geochemical characteristics of natural gas were first analyzed. In the Weiyuan gas field, the principal gas reservoirs belong to Sinian Dengying Fm. The natural gas is mainly composed of methane, with slight ethane and trace propane. The gas reservoirs are higher in water saturation, with well preserved primary water. Then, it was discriminated from the relationship of H2S content vs. methane carbon isotope that the heavier methane carbon isotope of natural gas in this area is not caused by thermochemical sulfate reduction (TSR. Based on the comparison of methane carbon isotope in this area with that in adjacent areas, and combined with the tectonic evolution background, it is regarded that the natural gas in the Weiyuan gas field is mainly derived from water-soluble gas rather than be migrated laterally from adjacent areas. Some conclusions are made. First, since methane released from water is carbon isotopically heavier, the water-soluble gas accumulation after degasification results in the heavy methane carbon isotope of the gas produced from Weiyuan gas field. Second, along with Himalayan movement, great uplift occurred in the Weiyuan area and structural traps were formed. Under high temperature and high pressure, the gas dissolved in water experienced decompression precipitation, and the released natural gas accumulated in traps, consequently leading to the formation of Weiyuan gas field. Third, based on calculation, the amount of natural gas released from water which is entrapped in the Weiyuan gas field after the tectonic uplift is basically equal to the proved reserves of this field, confirming the opinion of water-soluble

  4. Click strategy using disodium salts of amino acids improves the water solubility of plinabulin and KPU-300.

    Science.gov (United States)

    Yakushiji, Fumika; Muguruma, Kyohei; Hayashi, Yoshiki; Shirasaka, Takuya; Kawamata, Ryosuke; Tanaka, Hironari; Yoshiwaka, Yushi; Taguchi, Akihiro; Takayama, Kentaro; Hayashi, Yoshio

    2017-07-15

    Plinabulin and KPU-300 are promising anti-microtubule agents; however, the low water solubility of these compounds (click strategy using disodium salts of amino acids. The mother skeleton, diketopiperazine (DKP), was transformed into a monolactim-type alkyne and a copper-catalyzed alkyne azide cycloaddition (CuAAC) combined azides that was derived from amino acids as a water-solubilizing moiety. The conversion of carboxyl groups into disodium salts greatly improved the water solubility by 0.8 million times compared to the solubility of the parent molecules. In addition, the α-amino acid side chains of the water-solubilizing moieties affected both the water solubility and the half-lives of the compounds during enzymatic hydrolysis. Our effort to develop a variety of water-soluble derivatives using the click strategy has revealed that the replaceable water-solubilizing moieties can alter molecular solubility and stability under enzymatic hydrolysis. With this flexibility, we are approaching to the in vivo study using water-soluble derivative. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Immunomodulatory effect of water soluble extract separated from mycelium of Phellinus linteus on experimental atopic dermatitis

    Directory of Open Access Journals (Sweden)

    Hwang Ji

    2012-09-01

    Full Text Available Abstract Background Complementary and alternative medicine (CAM is becoming a popular treatment for modulating diverse immune disorders. Phellinus linteus (P. linteus as one of the CAMs has been used to modulate cancers, inflammation and allergic activities. However, little evidence has been shown about its underlying mechanism of action by which it exerts a beneficial role in dermatological disease in vivo. In this study, we examined the immunomodulatory effects of P. linteus on experimental atopic dermatitis (AD and elucidated its action mechanism. Methods The immunomodulatory effect of total extract of P. linteus on IgE production by human myeloma U266B1 cells was measured by ELISA. To further identify the effective components, P. linteus was fractionated into methanol soluble, water soluble and boiling water soluble extracts. Each extract was treated to U266B1 cells and primary B cells to compare their inhibitory effects on IgE secretion. To test the in vivo efficacy, experimental atopic dermatitis (AD was established by alternative treatment of DNCB and house dust mite extract into BALB/c mice. Water soluble extract of P. linteus (WA or ceramide as a positive control were topically applied to ears of atopic mouse every day for 2 weeks and progression of the disease was estimated by the following criteria: (a ear thickness, clinical score, (b serum total IgE, IgG and mite specific IgE level by ELSIA, (c histological examination of ear tissue by H&E staining and (d cytokine profile of total ear cells and CD4+ T cells by real time PCR and ELSIA. Results Treatment of total extracts of P. linteus to U266B1 inhibited IgE secretion. Among the diverse extracts of P. linteus, water soluble extract of P. linteus (WA significantly reduced the IgE production in primary B cells and B cell line U266B1. Moreover, treatment of WA reduced AD symptoms such as ear swelling, erythema, and dryness and decreased recruitment of lymphocyte into the inflamed site

  6. Immunomodulatory effect of water soluble extract separated from mycelium of Phellinus linteus on experimental atopic dermatitis.

    Science.gov (United States)

    Hwang, Ji Sun; Kwon, Ho-Keun; Kim, Jung-Eun; Rho, Jeonghae; Im, Sin-Hyeog

    2012-09-18

    Complementary and alternative medicine (CAM) is becoming a popular treatment for modulating diverse immune disorders. Phellinus linteus (P. linteus) as one of the CAMs has been used to modulate cancers, inflammation and allergic activities. However, little evidence has been shown about its underlying mechanism of action by which it exerts a beneficial role in dermatological disease in vivo. In this study, we examined the immunomodulatory effects of P. linteus on experimental atopic dermatitis (AD) and elucidated its action mechanism. The immunomodulatory effect of total extract of P. linteus on IgE production by human myeloma U266B1 cells was measured by ELISA. To further identify the effective components, P. linteus was fractionated into methanol soluble, water soluble and boiling water soluble extracts. Each extract was treated to U266B1 cells and primary B cells to compare their inhibitory effects on IgE secretion. To test the in vivo efficacy, experimental atopic dermatitis (AD) was established by alternative treatment of DNCB and house dust mite extract into BALB/c mice. Water soluble extract of P. linteus (WA) or ceramide as a positive control were topically applied to ears of atopic mouse every day for 2 weeks and progression of the disease was estimated by the following criteria: (a) ear thickness, clinical score, (b) serum total IgE, IgG and mite specific IgE level by ELSIA, (c) histological examination of ear tissue by H&E staining and (d) cytokine profile of total ear cells and CD4(+) T cells by real time PCR and ELSIA. Treatment of total extracts of P. linteus to U266B1 inhibited IgE secretion. Among the diverse extracts of P. linteus, water soluble extract of P. linteus (WA) significantly reduced the IgE production in primary B cells and B cell line U266B1. Moreover, treatment of WA reduced AD symptoms such as ear swelling, erythema, and dryness and decreased recruitment of lymphocyte into the inflamed site. Interestingly WA treatment significantly

  7. Preferential colonization and release of Legionella pneumophila from mature drinking water biofilms grown on copper versus unplasticized polyvinylchloride coupons

    Science.gov (United States)

    Legionella persistence and amplification in premise drinking water systems is a known contributor to legionellosis outbreaks, especially in the presence of suitable eukaryotic hosts. Here we examined Legionella pneumophila behavior within drinking water biofilms grown on copper ...

  8. The effect of water on the mechanical properties of soluble and insoluble ceramic cements.

    Science.gov (United States)

    Koh, Ilsoo; López, Alejandro; Pinar, Ana B; Helgason, Benedikt; Ferguson, Stephen J

    2015-11-01

    Ceramic cements are good candidates for the stabilization of fractured bone due to their potential ease of application and biological advantages. New formulations of ceramic cements have been tested for their mechanical properties, including strength, stiffness, toughness and durability. The changes in the mechanical properties of a soluble cement (calcium sulfate) upon water-saturation (saturation) was reported in our previous study, highlighting the need to test ceramic cements using saturated samples. It is not clear if the changes in the mechanical properties of ceramic cements are exclusive to soluble cements. Therefore the aim of the present study was to observe the changes in the mechanical properties of soluble and insoluble ceramic cements upon saturation. A cement with high solubility (calcium sulfate dihydrate, CSD) and a cement with low solubility (dicalcium phosphate dihydrate, DCPD) were tested. Three-point bending tests were performed on four different groups of: saturated CSD, non-saturated CSD, saturated DCPD, and non-saturated DCPD samples. X-ray diffraction analysis and scanning electron microscopy were also performed on a sample from each group. Flexural strength, effective flexural modulus and flexural strain at maximum stress, lattice volume, and crystal sizes and shape were compared, independently, between saturated and non-saturated groups of CSD and DCPD. Although material dissolution did not occur in all cases, all calculated mechanical properties decreased significantly in both CSD and DCPD upon saturation. The results indicate that the reductions in the mechanical properties of saturated ceramic cements are not dependent on the solubility of a ceramic cement. The outcome raised the importance of testing any implantable ceramic cements in saturated condition to estimate its in vivo mechanical properties. Copyright © 2015 Elsevier Ltd. All rights reserved.

  9. Development of self-nanoemulsifying drug delivery systems for the enhancement of solubility and oral bioavailability of fenofibrate, a poorly water-soluble drug

    Science.gov (United States)

    Mohsin, Kazi; Alamri, Rayan; Ahmad, Ajaz; Raish, Mohammad; Alanazi, Fars K; Hussain, Muhammad Delwar

    2016-01-01

    Background Self-nanoemulsifying drug delivery systems (SNEDDS) have become a popular formulation option as nanocarriers for poorly water-soluble drugs. The objective of this study was to investigate the factor that can influence the design of successful lipid formulation classification system (LFCS) Type III SNEDDS formulation and improve the oral bioavailability (BA) of fenofibrate. Materials and methods LFCS Type III SNEDDS were designed using various oils, water-soluble surfactants, and/or cosolvents (in considering the polarity of the lipids) for the model anticholesterol drug, fenofibrate. The developed SNEDDS were assessed visually and by measurement of the droplet size. Equilibrium solubility of fenofibrate in the SNEDDS was conducted to find out the maximum drug loading. Dynamic dispersion studies were carried out (1/100 dilution) in water to investigate how much drug stays in solution after aqueous dispersion of the formulation. The BA of SNEDDS formulation was evaluated in the rat. Results The results from the characterization and solubility studies showed that formulations containing mixed glycerides were highly efficient SNEDDS as they had higher solubility of the drug and produced nanosized droplets. The dispersion studies confirmed that SNEDDS (containing polar mixed glycerides) can retain >98% drug in solution for >24 hours in aqueous media. The in vivo pharmacokinetics parameters of SNEDDS formulation in comparison with pure drug showed significant increase in Cmax and AUC0–t, ~78% and 67%, respectively. The oral BA of fenofibrate from SNEDDS in rats was ~1.7-fold enhanced as compared with the BA from pure drug. Conclusion Fenofibrate-loaded LFCS Type III SNEDDS formulations could be a potential oral pharmaceutical product for administering the poorly water-soluble drug, fenofibrate, with an enhanced oral BA. PMID:27366063

  10. Design of Chitosan and Its Water Soluble Derivatives-Based Drug Carriers with Polyelectrolyte Complexes

    Directory of Open Access Journals (Sweden)

    Qing-Xi Wu

    2014-12-01

    Full Text Available Chitosan, the cationic polysaccharide derived from the natural polysaccharide chitin, has been studied as a biomaterial for more than two decades. As a polycationic polymer with favorable properties, it has been widely used to form polyelectrolyte complexes with polyanions for various applications in drug delivery fields. In recent years, a growing number of studies have been focused on the preparation of polyelectrolyte complexes based on chitosan and its water soluble derivatives. They have been considered well-suited as biomaterials for a number of vital drug carriers with targeted/controlled release profiles, e.g., films, capsules, microcapsules. In this work, an overview highlights not only the favorable properties of chitosan and its water soluble derivatives but also the good performance of the polyelectrolyte complexes produced based on chitosan. Their various types of applications as drug carriers are reviewed in detail.

  11. Comparison of volatile compounds in water- and oil-soluble annatto (Bixa orellana L.) extracts.

    Science.gov (United States)

    Galindo-Cuspinera, Verónica; Lubran, Meryl B; Rankin, Scott A

    2002-03-27

    Annatto is a natural food colorant extracted from the seeds of the Bixa orellana L. plant. Annatto is used in Latin American cuisine to add a deep red color as well as distinctive flavor notes to fish, meat, and rice dishes. In the United States, annatto extracts are primarily used to impart orange/yellow hues to cheese and other dairy foods. The objective of this study was to identify and compare volatile compounds present in water- and oil-soluble annatto extracts. Volatile compounds were recovered using dynamic headspace-solvent desorption sampling and analyzed using GC-MS. Compounds were identified by comparison to a mass spectral database, Kovats indexes, and retention times of known standards. Of the 107 compounds detected, 56 compounds were tentatively identified and 51 were positively identified. Volatile profile differences exist between water- and oil- soluble extracts, and annatto extracts contain odorants with the potential to influence food aroma.

  12. Synthesis and characterization of a hyper-branched water-soluble β-cyclodextrin polymer.

    Science.gov (United States)

    Trotta, Francesco; Caldera, Fabrizio; Cavalli, Roberta; Mele, Andrea; Punta, Carlo; Melone, Lucio; Castiglione, Franca; Rossi, Barbara; Ferro, Monica; Crupi, Vincenza; Majolino, Domenico; Venuti, Valentina; Scalarone, Dominique

    2014-01-01

    A new hyper-branched water-soluble polymer was synthesized by reacting β-cyclodextrin with pyromellitic dianhydride beyond the critical conditions that allow the phenomenon of gelation to occur. The molar ratio between the monomers is a crucial parameter that rules the gelation process. Nevertheless, the concentration of monomers in the solvent phase plays a key role as well. Hyper-branched β-cyclodextrin-based polymers were obtained performing the syntheses with excess of solvent and cross-linking agent, and the conditions for critical dilution were determined experimentally. A hyper-branched polymer with very high water solubility was obtained and fully characterized both as for its chemical structure and for its capability to encapsulate substances. Fluorescein was used as probe molecule to test the complexation properties of the new material.

  13. Synthesis and characterization of a hyper-branched water-soluble β-cyclodextrin polymer

    Directory of Open Access Journals (Sweden)

    Francesco Trotta

    2014-11-01

    Full Text Available A new hyper-branched water-soluble polymer was synthesized by reacting β-cyclodextrin with pyromellitic dianhydride beyond the critical conditions that allow the phenomenon of gelation to occur. The molar ratio between the monomers is a crucial parameter that rules the gelation process. Nevertheless, the concentration of monomers in the solvent phase plays a key role as well. Hyper-branched β-cyclodextrin-based polymers were obtained performing the syntheses with excess of solvent and cross-linking agent, and the conditions for critical dilution were determined experimentally. A hyper-branched polymer with very high water solubility was obtained and fully characterized both as for its chemical structure and for its capability to encapsulate substances. Fluorescein was used as probe molecule to test the complexation properties of the new material.

  14. Phosphated cyclodextrins as water-soluble chiral NMR solvating agents for cationic compounds

    Directory of Open Access Journals (Sweden)

    Cira Mollings Puentes

    2017-01-01

    Full Text Available The utility of phosphated α-, β- and γ-cyclodextrins as water-soluble chiral NMR solvating agents for cationic substrates is described. Two sets of phosphated cyclodextrins, one with degrees of substitution in the 2–6 range, the other with degrees of substitution in the 6–10 range, are examined. Results with 33 water-soluble cationic substrates are reported. We also explored the possibility that the addition of paramagnetic lanthanide ions such as praseodymium(III and ytterbium(III further enhances the enantiomeric differentiation in the NMR spectra. The chiral differentiation with the phosphated cyclodextrins is compared to prior results obtained with anionic carboxymethylated cyclodextrins. There are a number of examples where a larger differentiation is observed with the phosphated cyclodextrins.

  15. Solubility Database

    Science.gov (United States)

    SRD 106 IUPAC-NIST Solubility Database (Web, free access)   These solubilities are compiled from 18 volumes (Click here for List) of the International Union for Pure and Applied Chemistry(IUPAC)-NIST Solubility Data Series. The database includes liquid-liquid, solid-liquid, and gas-liquid systems. Typical solvents and solutes include water, seawater, heavy water, inorganic compounds, and a variety of organic compounds such as hydrocarbons, halogenated hydrocarbons, alcohols, acids, esters and nitrogen compounds. There are over 67,500 solubility measurements and over 1800 references.

  16. Solubility limit of methyl red and methylene blue in microemulsions and liquid crystals of water, sds and pentanol systems

    OpenAIRE

    Beri, D.; Pratami, A.; Gobah, P. L.; Dwimala, P.; Amran, A.

    2017-01-01

    Solubility of dyes in amphiphilic association structures of water, SDS and penthanol system (i.e. in the phases of microemulsions and liquid crystals) was attracted much interest due to its wide industrial and technological applications. This research was focused on understanding the solubility limitation of methyl red and methylene blue in microemulsion and liquid crystal phases. Experimental results showed that the highest solubility of methyl red was in LLC, followed by w/o microemulsion a...

  17. EPR and Structural Characterization of Water-Soluble Mn2+-Doped Si Nanoparticles

    OpenAIRE

    Atkins, Tonya M.; Walton, Jeffrey H.; Singh, Mani P.; Ganguly, Shreyashi; Janka, Oliver; Louie, Angelique Y.; Kauzlarich, Susan M.

    2016-01-01

    Water-soluble poly(allylamine) Mn2+-doped Si (SiMn) nanoparticles (NPs) were prepared and show promise for biologically related applications. The nanoparticles show both strong photoluminescence and good magnetic resonance contrast imaging. The morphology and average diameter were obtained through transmission electron microscopy (TEM) and high-resolution transmission electron microscopy (HRTEM); spherical crystalline Si NPs with an average diameter of 4.2 ? 0.7 nm were observed. The doping m...

  18. Synthesis and Size Dependent Reflectance Study of Water Soluble SnS Nanoparticles

    Directory of Open Access Journals (Sweden)

    Richard D. Tilley

    2012-01-01

    Full Text Available Near-monodispersed water soluble SnS nanoparticles in the diameter range of 3–6 nm are synthesized by a facile, solution based one-step approach using ethanolamine ligands. The optimal amount of triethanolamine is investigated. The effect of further heat treatment on the size of these SnS nanoparticles is discussed. Diffuse reflectance study of SnS nanoparticles agrees with predictions from quantum confinement model.

  19. Biphasic and SAPC Hydroformylation Catalyzed by Rh-phosphines Bound to Water-Soluble Polymers

    DEFF Research Database (Denmark)

    Malmstrøm, Torsten; Andersson, Carlaxel; Hjortkjær, Jes

    1999-01-01

    Coupling of the triphenylphosphine moiety to poly-acrylic acid and poly-ethyleneimine respectively afford the macromolecular ligands PAA-PNH and PEI-PNH. Reaction of the ligands with Rh(CO)2(acac) give water-soluble complexes that are active as catalysts in the hydroformylation ofdifferent olefin...... PEI-PNH as ligands show lower stability and activity in both SAPC and biphasic applications....

  20. COMPOSITION, HOT-WATER SOLUBILITY OF ELEMENTS AND NUTRITIONAL VALUE OF FRUITS AND

    Directory of Open Access Journals (Sweden)

    Julierme Zimmer Barbosa

    2015-12-01

    Full Text Available ABSTRACT Yerba mate leaves are the most studied and used parts of the tree, while fruits have been little investigated as to their elemental composition. The objective of this study was to characterize the composition, the hot-water solubility of the elements and the nutritional value of yerba mate (Ilex paraguariensis St. Hill fruits and leaves. Both fruits and leaves were collected from four yerba mate provenances (cities of Cascavel, Quedas do Iguaçu and Ivaí in Paraná state and Barão de Cotegipe in Rio Grande do Sul state 17 years of age, grown in the city of Pinhais, Paraná state, Brazil. The total and hot water-soluble contents of 22 and 20 elements, respectively, were determined. The elemental composition of the fruits presented the following decreasing order: C, K, N, Mg, Ca, P, Al, Na, Zn, Mn, Fe, Ba, Cu, Ni, Mo, Pb, Cr, As, Co, Ag, V and Cd. For the leaves the decreasing order was: C, N, K, Ca, Mg, P, Al, Mn, Na, Fe, Zn, Ba, Cu, Ni, Pb, Cr, Mo, As, Co, Ag, V and Cd. It was found than 2 to 8 elements in the fruit presented greater water solubility than in the leaves. In case of consumption via infusion of the fruits or leaves, there would be nutritive value for K, Mg, P, Mn, Cr, Mo, Cu and Zn, while consumption of capsules would have nutritive value only for Mn via the leaves. In general, the fruits have more distinct elemental composition, hot-water solubility and nutritional value than yerba mate leaves.

  1. Effect of New Water-Soluble Dendritic Phthalocyanines on Human Colorectal and Liver Cancer Cell Lines

    Directory of Open Access Journals (Sweden)

    Ebru YABAŞ

    2017-08-01

    Full Text Available Human hepatocellular carcinoma (HepG2 cells and colorectal adenocarcinoma (DLD-1 cells were treated with the synthesized water soluble phthalocyanine derivatives to understand the effect of the compounds both on colorectal and liver cancer cells. The compounds inhibited cell proliferation and displayed cytotoxic effect on these cancer cell lines however; the effect of the compounds on healthy control fibroblast cell line was comparatively lower. The compounds can be employed for cancer treatment as anticancer agents.

  2. Changes in Water Sorption and Solubility of Dental Adhesive Systems after Cigarette Smoke

    OpenAIRE

    Paula Mathias; Andrea Nóbrega Cavalcanti; Poliana Ramos Braga Santos; Thaiane Rodrigues Aguiar; Lívia Andrade Vitória

    2013-01-01

    Aim. To evaluate the effect of cigarette smoke on water sorption and solubility of four adhesive systems. Materials and Methods. Sixteen disks of each adhesive system were prepared (Adper Scotchbond Multipurpose Adhesive (SA); Adper Scotchbond Multipurpose Adhesive System (Adhesive + Primer) (SAP); Adper Single Bond Plus (SB); Adper Easy One (EO)). Specimens were desiccated until a constant mass was obtained and divided into two groups (n = 8). One-half of the specimens were immersed in deion...

  3. Biosynthetic Studies on Water-Soluble Derivative 5c (DTX5c

    Directory of Open Access Journals (Sweden)

    José J. Fernández

    2012-10-01

    Full Text Available The dinoflagellate Prorocentrum belizeanum is responsible for the production of several toxins involved in the red tide phenomenon known as Diarrhetic Shellfish Poisoning (DSP. In this paper we report on the biosynthetic origin of an okadaic acid water-soluble ester derivative, DTX5c, on the basis of the spectroscopical analysis of 13C enriched samples obtained by addition of labelled sodium [l-13C], [2-13C] acetate to artificial cultures of this dinoflagellate.

  4. Biosynthetic Studies on Water-Soluble Derivative 5c (DTX5c)

    OpenAIRE

    Vilches, Tamara S.; Norte, Manuel; Daranas, Antonio Hernández; Fernández, José J.

    2012-01-01

    The dinoflagellate Prorocentrum belizeanum is responsible for the production of several toxins involved in the red tide phenomenon known as Diarrhetic Shellfish Poisoning (DSP). In this paper we report on the biosynthetic origin of an okadaic acid water-soluble ester derivative, DTX5c, on the basis of the spectroscopical analysis of 13C enriched samples obtained by addition of labelled sodium [l-13C], [2-13C] acetate to artificial cultures of this dinoflagellate.

  5. Biosynthetic studies on water-soluble derivative 5c (DTX5c).

    Science.gov (United States)

    Vilches, Tamara S; Norte, Manuel; Daranas, Antonio Hernández; Fernández, José J

    2012-10-01

    The dinoflagellate Prorocentrum belizeanum is responsible for the production of several toxins involved in the red tide phenomenon known as Diarrhetic Shellfish Poisoning (DSP). In this paper we report on the biosynthetic origin of an okadaic acid water-soluble ester derivative, DTX5c, on the basis of the spectroscopical analysis of ¹³C enriched samples obtained by addition of labelled sodium [l-¹³C], [2-¹³C] acetate to artificial cultures of this dinoflagellate.

  6. Synthesis and EPR studies of the first water-soluble N@C60 derivative.

    Science.gov (United States)

    Cornes, Stuart P; Zhou, Shen; Porfyrakis, Kyriakos

    2017-11-28

    The first water-soluble derivative of the paramagnetic endohedral fullerene N@C60 has been prepared through the covalent attachment of a single addend containing two permethylated β-cyclodextrin units to the surface of the carbon cage. The line width of the derivative's EPR signal is highly sensitive to both the nature of the solvent and the presence of Cu(ii) ions in solution.

  7. Seasonal variations of concentrations and optical properties of water soluble HULIS collected in urban environments

    Directory of Open Access Journals (Sweden)

    C. Baduel

    2010-05-01

    Full Text Available Major contributors to the organic aerosol include water-soluble macromolecular compounds (e.g. HULISWS: Water Soluble Humic LIke Substances. The nature and sources of HULISWS are still largely unknown. This work is based on a monitoring in six different French cities performed during summer and winter seasons. HULISWS analysis was performed with a selective method of extraction complemented by carbon quantification. UV spectroscopy was also applied for their chemical characterisation. HULISWS carbon represent an important contribution to the organic aerosol mass in summer and winter, as it accounts for 12–22% of Organic Carbon and 34–40% of Water Soluble Organic Carbon. We found strong differences in the optical properties (specific absorbance at 250, 272, 280 nm and E2/E3 ratio and therefore in the chemical structure between HULISWS from samples of summer- and wintertime. These differences highlight different processes responsible for emissions and formation of HULISWS according to the season, namely biomass burning in winter, and secondary processes in summer. Specific absorbance can also be considered as a rapid and useful indicator of the origin of HULISWS in urban environment.

  8. Synthesis of water soluble glycine capped silver nanoparticles and their surface selective interaction

    Energy Technology Data Exchange (ETDEWEB)

    Agasti, Nityananda, E-mail: nnagasti@gmail.com [Department of Chemistry, University of Delhi, Delhi 110007 (India); Singh, Vinay K. [Department of Chemistry, Sri Aurobindo College, University of Delhi, Delhi 110017 (India); Kaushik, N.K. [Department of Chemistry, University of Delhi, Delhi 110007 (India)

    2015-04-15

    Highlights: • Synthesis of water soluble silver nanoparticles at ambient reaction conditions. • Glycine as stabilizing agent for silver nanoparticles. • Surface selective interaction of glycine with silver nanoparticles. • Glycine concentration influences crystalinity and optical property of silver nanoparticles. - Abstract: Synthesis of biocompatible metal nanoparticles has been an area of significant interest because of their wide range of applications. In the present study, we have successfully synthesized water soluble silver nanoparticles assisted by small amino acid glycine. The method is primarily based on reduction of AgNO{sub 3} with NaBH{sub 4} in aqueous solution under atmospheric air in the presence of glycine. UV–vis spectroscopy, transmission electron microscopy (TEM), X–ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, thermogravimetry (TG) and differential thermal analysis (DTA) techniques used for characterization of resulting silver nanoparticles demonstrated that, glycine is an effective capping agent to stabilize silver nanoparticles. Surface selective interaction of glycine on (1 1 1) face of silver nanoparticles has been investigated. The optical property and crystalline behavior of silver nanoparticles were found to be sensitive to concentration of glycine. X–ray diffraction studies ascertained the phase specific interaction of glycine on silver nanoparticles. Silver nanoparticles synthesized were of diameter 60 nm. We thus demonstrated an efficient synthetic method for synthesis of water soluble silver nanoparticles capped by amino acid under mild reaction conditions with excellent reproducibility.

  9. Studies on Dissolution Enhancement of Prednisolone, a Poorly Water-Soluble Drug by Solid Dispersion Technique

    Directory of Open Access Journals (Sweden)

    Parvin Zakeri-Milani

    2011-06-01

    Full Text Available Introduction: Prednisolone is a class II substance according to the Biopharmaceutics Classification System. It is a poorly water soluble agent. The aim of the present study was to improve dissolution rate of a poorly water-soluble drug, prednisolone, by a solid dispersion technique. Methods: Solid dispersion of prednisolone was prepared with PEG 6000 or different carbohydrates such as lactose and dextrin with various ratios of the drug to carrier i.e., 1:10, 1:20 and 1:40. Solid dispersions were prepared by coevaporation method. The evaluation of the properties of the dispersions was performed using dissolution studies, Fourier-transform infrared spectroscopy and x-ray powder diffractometery. Results: The results indicated that lactose is suitable carriers to enhance the in vitro dissolution rate of prednisolone. The data from the x-ray diffraction showed that the drug was still detectable in its solid state in all solid dispersions except solid dispersions prepared by dextrin as carrier. The results from infrared spectroscopy showed no well-defined drug–carrier interactions for coevaporates. Conclusion: Solid dispersion of a poorly water-soluble drug, prednisolone may alleviate the problems of delayed and inconsistent rate of dissolution of the drug.

  10. Poly(ether ester) Ionomers as Water-Soluble Polymers for Material Extrusion Additive Manufacturing Processes.

    Science.gov (United States)

    Pekkanen, Allison M; Zawaski, Callie; Stevenson, André T; Dickerman, Ross; Whittington, Abby R; Williams, Christopher B; Long, Timothy E

    2017-04-12

    Water-soluble polymers as sacrificial supports for additive manufacturing (AM) facilitate complex features in printed objects. Few water-soluble polymers beyond poly(vinyl alcohol) enable material extrusion AM. In this work, charged poly(ether ester)s with tailored rheological and mechanical properties serve as novel materials for extrusion-based AM at low temperatures. Melt transesterification of poly(ethylene glycol) (PEG, 8k) and dimethyl 5-sulfoisophthalate afforded poly(ether ester)s of sufficient molecular weight to impart mechanical integrity. Quantitative ion exchange provided a library of poly(ether ester)s with varying counterions, including both monovalent and divalent cations. Dynamic mechanical and tensile analysis revealed an insignificant difference in mechanical properties for these polymers below the melting temperature, suggesting an insignificant change in final part properties. Rheological analysis, however, revealed the advantageous effect of divalent countercations (Ca 2+ , Mg 2+ , and Zn 2+ ) in the melt state and exhibited an increase in viscosity of two orders of magnitude. Furthermore, time-temperature superposition identified an elevation in modulus, melt viscosity, and flow activation energy, suggesting intramolecular interactions between polymer chains and a higher apparent molecular weight. In particular, extrusion of poly(PEG 8k -co-CaSIP) revealed vast opportunities for extrusion AM of well-defined parts. The unique melt rheological properties highlighted these poly(ether ester) ionomers as ideal candidates for low-temperature material extrusion additive manufacturing of water-soluble parts.

  11. Changes in the content of water-soluble vitamins in Actinidia chinensis during cold storage

    Directory of Open Access Journals (Sweden)

    Zhu Xian-Bo

    2016-01-01

    Full Text Available We assessed the effects of cold storage on nine water-soluble vitamins in 7 cultivars of Actinidia chinensis (kiwifruit using high-performance liquid chromatography. Samples were collected at three time points during cold storage: one day, 30 days, and when edible. We found that vitamin C in most cultivars was raised with cold storage, but there was no consistent increased or decreased trend for other water-soluble vitamins across cultivars in storage. After one day of cold storage, vitamins B1 and B2 were the most prevalent vitamins in Control (wild fruit, while vitamins B5 and B6 were most prevalent in the Hongyang and Qihong cultivars. However, B12 was the most prevalent vitamin in the Qihong cultivar after 30 days of cold storage. Vitamins B3, B7, B9, and C were detected at the edible time point in Huayou, Hongyang, Jinnong-2, and Control fruit. Vitamin contents varied significantly among cultivars of kiwifruit following different durations of cold storage. Out of the three durations tested, a period of 30 days in cold storage was the most suitable for the absorption of water-soluble vitamins by A. chinensis.

  12. Preparation, characterization and antioxidant property of water-soluble ferulic acid grafted chitosan.

    Science.gov (United States)

    Woranuch, Sarekha; Yoksan, Rangrong

    2013-07-25

    The objective of the present work was to improve the antioxidant activity and water solubility of chitosan by grafting with ferulic acid through a carbodiimide-mediated coupling reaction. UV-vis spectrophotometry, FTIR, (1)H NMR and ninhydrin assay confirmed the grafting of ferulic acid onto chitosan at the C-2 position. Ferulic acid grafted chitosan - prepared using a mole ratio of chitosan to ferulic acid of 1:1, reaction temperature of 60°C, and reaction time of 3h - possessed the highest ferulic acid substitution degree, i.e. 0.37. Although ferulic acid grafted chitosan showed reduced crystallinity (∼10%) and decreased decomposition temperature (∼55°C) as compared to chitosan, it exhibited greater radical scavenging activity (∼55%) and was soluble in water (up to 1.3mg/mL). The improved antioxidant property and water solubility of this chitosan derivative could open a wide range of applications, particularly its use as an antioxidant in food, food packaging, biomedical, pharmaceutical and cosmetics industries. Copyright © 2013 Elsevier Ltd. All rights reserved.

  13. Characterization of Preferential Ground-Water Seepage From a Chlorinated Hydrocarbon-Contaminated Aquifer to West Branch Canal Creek, Aberdeen Proving Ground, Maryland, 2002-04

    Science.gov (United States)

    Majcher, Emily H.; Phelan, Daniel J.; Lorah, Michelle M.; McGinty, Angela L.

    2007-01-01

    Wetlands act as natural transition zones between ground water and surface water, characterized by the complex interdependency of hydrology, chemical and physical properties, and biotic effects. Although field and laboratory demonstrations have shown efficient natural attenuation processes in the non-seep wetland areas and stream bottom sediments of West Branch Canal Creek, chlorinated volatile organic compounds are present in a freshwater tidal creek at Aberdeen Proving Ground, Maryland. Volatile organic compound concentrations in surface water indicate that in some areas of the wetland, preferential flow paths or seeps allow transport of organic compounds from the contaminated sand aquifer to the overlying surface water without undergoing natural attenuation. From 2002 through 2004, the U.S. Geological Survey, in cooperation with the Environmental Conservation and Restoration Division of the U.S. Army Garrison, Aberdeen Proving Ground, characterized preferential ground-water seepage as part of an ongoing investigation of contaminant distribution and natural attenuation processes in wetlands at this site. Seep areas were discrete and spatially consistent during thermal infrared surveys in 2002, 2003, and 2004 throughout West Branch Canal Creek wetlands. In these seep areas, temperature measurements in shallow pore water and sediment more closely resembled those in ground water than those in nearby surface water. Generally, pore water in seep areas contaminated with chlorinated volatile organic compounds had lower methane and greater volatile organic compound concentrations than pore water in non-seep wetland sediments. The volatile organic compounds detected in shallow pore water in seeps were spatially similar to the dominant volatile organic compounds in the underlying Canal Creek aquifer, with both parent and anaerobic daughter compounds detected. Seep locations characterized as focused seeps contained the highest concentrations of chlorinated parent compounds

  14. Data representing two separate LC-MS methods for detection and quantification of water-soluble and fat-soluble vitamins in tears and blood serum

    Directory of Open Access Journals (Sweden)

    Maryam Khaksari

    2017-04-01

    Full Text Available Two separate liquid chromatography (LC-mass spectrometry (MS methods were developed for determination and quantification of water-soluble and fat-soluble vitamins in human tear and blood serum samples. The water-soluble vitamin method was originally developed to detect vitamins B1, B2, B3 (nicotinamide, B5, B6 (pyridoxine, B7, B9 and B12 while the fat-soluble vitamin method detected vitamins A, D3, 25(OHD3, E and K1. These methods were then validated with tear and blood serum samples. In this data in brief article, we provide details on the two LC-MS methods development, methods sensitivity, as well as precision and accuracy for determination of vitamins in human tears and blood serum. These methods were then used to determine the vitamin concentrations in infant and parent samples under a clinical study which were reported in "Determination of Water-Soluble and Fat-Soluble Vitamins in Tears and Blood Serum of Infants and Parents by Liquid Chromatography/Mass Spectrometry DOI:10.1016/j.exer.2016.12.007 [1]". This article provides more details on comparison of vitamin concentrations in the samples with the ranges reported in the literature along with the medically accepted normal ranges. The details on concentrations below the limits of detection (LOD and limits of quantification (LOQ are also discussed. Vitamin concentrations were also compared and cross-correlated with clinical data and nutritional information. Significant differences and strongly correlated data were reported in [1]. This article provides comprehensive details on the data with slight differences or slight correlations.

  15. Data representing two separate LC-MS methods for detection and quantification of water-soluble and fat-soluble vitamins in tears and blood serum.

    Science.gov (United States)

    Khaksari, Maryam; Mazzoleni, Lynn R; Ruan, Chunhai; Kennedy, Robert T; Minerick, Adrienne R

    2017-04-01

    Two separate liquid chromatography (LC)-mass spectrometry (MS) methods were developed for determination and quantification of water-soluble and fat-soluble vitamins in human tear and blood serum samples. The water-soluble vitamin method was originally developed to detect vitamins B1, B2, B3 (nicotinamide), B5, B6 (pyridoxine), B7, B9 and B12 while the fat-soluble vitamin method detected vitamins A, D3, 25(OH)D3, E and K1. These methods were then validated with tear and blood serum samples. In this data in brief article, we provide details on the two LC-MS methods development, methods sensitivity, as well as precision and accuracy for determination of vitamins in human tears and blood serum. These methods were then used to determine the vitamin concentrations in infant and parent samples under a clinical study which were reported in "Determination of Water-Soluble and Fat-Soluble Vitamins in Tears and Blood Serum of Infants and Parents by Liquid Chromatography/Mass Spectrometry DOI:10.1016/j.exer.2016.12.007 [1]". This article provides more details on comparison of vitamin concentrations in the samples with the ranges reported in the literature along with the medically accepted normal ranges. The details on concentrations below the limits of detection (LOD) and limits of quantification (LOQ) are also discussed. Vitamin concentrations were also compared and cross-correlated with clinical data and nutritional information. Significant differences and strongly correlated data were reported in [1]. This article provides comprehensive details on the data with slight differences or slight correlations.

  16. Characterization of Water Solubility in n-Octacosane Using Raman Spectroscopy.

    Science.gov (United States)

    Giraudet, Cédric; Papavasileiou, Konstantinos D; Rausch, Michael H; Chen, Jiaqi; Kalantar, Ahmad; van der Laan, Gerard P; Economou, Ioannis G; Fröba, Andreas P

    2017-11-30

    In this study, we demonstrate the ability of polarization-difference Raman spectroscopy (PDRS) to detect dissolved free water molecules in a n-octacosane (n-C 28 H 58 ) liquid-rich phase, and thus to determine its solubility, at temperatures and pressures relevant to the Fischer-Tropsch synthesis. Our results for the pure alkane reveal thermal decomposition above a temperature of 500 K as well as an increase of gauche conformers of the alkane chains with an increase in temperature. For binary homogeneous mixtures, raw spectra obtained from two different polarization scattering geometries did not show a relevant signal in the OH stretching frequency range. In contrast, isotropic spectra obtained from the PDRS technique reveal a narrow and tiny peak associated with the dangling OH bonds. Over the complete range of temperatures and pressures, no signature of hydrogen-bonded water molecules was observed in the isotropic Raman scattering intensities. A thorough investigation covering a large range of temperatures and pressures using PDRS signals showed that the higher the fraction of gauche conformers of hydrocarbon, the higher the solubility of water. The proportion of gauche and trans conformers was found to be water-concentration-independent, and the intensity of the OH-dangling peak increased linearly with increasing the vapor partial pressure of water. Therefore, we established a relation between a relevant intensity ratio and the concentration of water obtained from SAFT calculations. Contrary to the results from relevant literature, the calibration factor was found to be temperature-independent between 424 and 572 K. The isotropic Raman scattering intensities are corrected in order to provide a better representation of the vibrational density of states. The influence of correction of the isotropic scattering intensities on the solubility measurements as well as on the analysis of the molecular arrangement is discussed.

  17. Stearic acid and high molecular weight PEO as matrix for the highly water soluble metoprolol tartrate in continuous twin-screw melt granulation.

    Science.gov (United States)

    Monteyne, Tinne; Adriaensens, Peter; Brouckaert, Davinia; Remon, Jean-Paul; Vervaet, Chris; De Beer, Thomas

    2016-10-15

    Granules with release-sustaining properties were developed by twin screw hot melt granulation (HMG) using a combination of stearic acid (SA) and high molecular weight polyethylene oxide (PEO) as matrix for a highly water soluble model drug, metoprolol tartrate (MPT). Earlier studies demonstrated that mixing molten SA and PEO resulted in hydrogen bond formation between hydroxyl groups of fatty acid molecules and ether groups in PEO chains. These molecular interactions might be beneficial in order to elevate the sustained release effect of drugs from a SA/PEO matrix. This study aims to investigate the continuous twin screw melt granulation technique to study the impact of a SA/PEO matrix on the dissolution rate of a highly water soluble drug (MPT). Decreasing the SA/PEO ratio improved the release-sustaining properties of the matrix. The solid state of the granules was characterized using differential scanning calorimetry (DSC), nuclear magnetic resonance (NMR), X-ray diffraction (XRD), Raman spectroscopy, Fourier transform infrared (FTIR) and near infrared chemical imaging (NIR-CI) in order to understand the dissolution behavior. The results revealed a preferential interaction of the MPT molecules with stearic acid impeding the PEO to form hydrogen bonds with the stearic acid chains. However, this allowed the PEO chains to recrystallize inside the stearic acid matrix after granulation, hence, elevating the release-sustaining characteristics of the formulation. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Probing the Intermolecular Hydrogen Bonding of Water Molecules at the CCl sub 4 Water Interface in the Presence of Charged Soluble Surfactant

    National Research Council Canada - National Science Library

    Gragson, D

    1998-01-01

    The molecular structure and hydrogen bonding of water molecules at the CCl sub 4/water interface in the presence of a charged soluble surfactant has been explored in this study using vibrational sum frequency generation...

  19. Water-soluble chelating polymers for removal of actinides from watewater

    Energy Technology Data Exchange (ETDEWEB)

    Jarvinen, G. [Los Alamos National Lab., NM (United States)

    1996-10-01

    Polymer filtration is a technology being developed to recover valuable or regulated metal ions selectively from process or wastewaters. Water-soluble chelating polymers are specially designed to bind selectively with metal ions in aqueous solutions. The polymers molecular weight is large enough so they can be separated and concentrated using available ultrafiltration technology. Water and smaller unbound components of the solution pass freely through the ultrafiltration membrane. The polymers can then be reused by changing the solution conditions to release the metal ions, which are recovered in concentrated form, for recycle or disposal.

  20. Solubility of methane in N-methylpyrrolidone in the presence of water

    Energy Technology Data Exchange (ETDEWEB)

    Zubov, S.B.; Sokolina, L.F.; Afanas' ev, Yu.M.

    1987-08-20

    Various organic solvents, among which N-methylpyrrolidone possesses high absorption capacity, are widely used for the purification of gases from sulfur compounds and carbon dioxide. The gas sent for purification usually contains water vapors, which, dissolving in the absorbent, change its absorption capacity. In this work the authors investigated the equilibrium solubility of methane in N-methylpyrrolidone with various water contents. These data are necessary for calculating the amount and composition of the gases for ventilating and regenerating a saturated absorbent. The work is part of an investigation conducted to evaluate physical solvents for the purification of natural gas.

  1. In Vitro and In Vivo Antioxidant Activity of a Water-Soluble Polysaccharide from Dendrobium denneanum

    Directory of Open Access Journals (Sweden)

    XingJin He

    2011-02-01

    Full Text Available The water-soluble crude polysaccharide (DDP obtained from the aqueous extracts of the stem of Dendrobium denneanum through hot water extraction followed by ethanol precipitation, was found to have an average molecular weight (Mw of about  484.7 kDa. Monosaccharide analysis revealed that DDP was composed of arabinose, xylose, mannose, glucose and galactose in a molar ratio of 1.00:2.66:8.92:34.20:10.16. The investigation of antioxidant activity both in vitro and in vivo showed that DDP is a potential antioxidant.

  2. In vitro and in vivo antioxidant activity of a water-soluble polysaccharide from dendrobium denneanum

    Science.gov (United States)

    Luo, A.; Ge, Z.; Fan, Y.; Chun, Z.; Jin, He X.

    2011-01-01

    The water-soluble crude polysaccharide (DDP) obtained from the aqueous extracts of the stem of Dendrobium denneanum through hot water extraction followed by ethanol precipitation, was found to have an average molecular weight (Mw) of about 484.7 kDa. Monosaccharide analysis revealed that DDP was composed of arabinose, xylose, mannose, glucose and galactose in a molar ratio of 1.00:2.66:8.92:34.20:10.16. The investigation of antioxidant activity both in vitro and in vivo showed that DDP is a potential antioxidant. ?? 2011.

  3. Water-soluble triscyclometalated organoiridium complex: phosphorescent nanoparticle formation, nonlinear optics, and application for cell imaging.

    Science.gov (United States)

    Fan, Yuanpeng; Zhao, Jingyi; Yan, Qifan; Chen, Peng R; Zhao, Dahui

    2014-03-12

    Two water-soluble triscyclometalated organoiridium complexes, 1 and 2, with polar side chains that form nanoparticles emitting bright-red phosphorescence in water were synthesized. The optimal emitting properties are related to both the triscyclometalated structure and nanoparticle-forming ability in aqueous solution. Nonlinear optical properties are also observed with the nanoparticles. Because of their proper cellular uptake in addition to high emission brightness and effective two-photon absorbing ability, cell imaging can be achieved with nanoparticles of 2 bearing quaternary ammonium side chains at ultra-low effective concentrations using NIR incident light via the multiphoton excitation phosphorescence process.

  4. Optimization of self nanoemulsifying drug delivery system for poorly water-soluble drug using response surface methodology

    DEFF Research Database (Denmark)

    Ren, Shan; Mu, Huiling; Alchaer, Fadi

    2013-01-01

    There is an increasing interest on self-nanoemulsifying drug delivery system (SNEDDS) for oral delivery of poorly water-soluble drugs. However, development of SNEDDS is often driven by empiric, pseudo-ternary diagrams and solubility of drugs, and it is lacking a systematic approach for evaluating...

  5. Laboratory investigation of aluminum solubility and solid-phase properties following alum treatment of lake waters.

    Science.gov (United States)

    Berkowitz, Jacob; Anderson, Michael A; Graham, Robert C

    2005-10-01

    Water samples from two southern California lakes adversely affected by internal nutrient loading were treated with a 20 mg/L dose of Al3+ in laboratory studies to examine Al solubility and solid-phase speciation over time. Alum [Al2(SO4)3 . 18 H2O] applications to water samples from Big Bear Lake and Lake Elsinore resulted in a rapid initial decrease in pH and alkalinity followed by a gradual recovery in pH over several weeks. Dissolved Al concentrations increased following treatment, reaching a maximum of 2.54 mg/L after 17 days in Lake Elsinore water and 0.91 mg/L after 48 days in Big Bear Lake water; concentrations in both waters then decreased to 45% gibbsite. These results were supported by geochemical modeling using Visual MINTEQ, with Al solubility putatively controlled by amorphous Al(OH)3 shortly after treatment and approaching that of microcrystalline gibbsite after about 150 days. These findings indicate that Al(OH)3 formed after alum treatment undergoes significant chemical and mineralogical changes that may alter its effectiveness as a reactive barrier to phosphorus release from lake sediments.

  6. Chemical acylation of water-soluble antioxidant of bamboo leaves (AOB-w) and functional evaluation of oil-soluble AOB (cAOB-o).

    Science.gov (United States)

    Liu, Lingyi; Xia, Boneng; Jin, Cheng; Zhang, Yu; Zhang, Ying

    2014-10-01

    Antioxidant of bamboo leaves (AOB) is a novel natural food antioxidant approved in China since 2004. Natural phenolics contained in the current AOB are usually polyhydroxy derivatives exhibiting hydrophilic character, which has been marked as water-soluble AOB (AOB-w). In order to broaden the application fields, oil-soluble AOB (cAOB-o) was obtained by chemical acylation of AOB-w with different chain-length fatty acids varying from C8 to C18. Results indicated that the yield and solubility of cAOB-o in 1-octanol solvent depended on the carbon chain length of acyl donor, and cAOB-o derived from C12 fatty acid exhibited the more powerful antioxidant activity evaluated by β-carotene/linoleic acid bleaching assay. Total phenolic content decreased by Folin-Ciocalteu assay. Fourier transform infrared spectra showed the increase of a carbonyl (C = O) peak at 1701 cm(-1) and a decrease in the intensity of the absorption at 3400 cm(-1) (O-H stretching) in cAOB-o. Acylation was inferred to mainly occur on the hydroxyl groups of flavones C-glycosides according to the change of high-performance liquid chromatography spectra and the contents of total flavonoids and phenolic acids. cAOB-o with the addition of 0.02% significantly increased oxidative stability of palm oil 1.59 times, lard 3.74 times, and fried potato chips 2.08 times, which was better than the effect of oil-soluble tea polyphenol (P soluble antioxidant in the food industry. Oil-soluble antioxidant of bamboo leaves (cAOB-o) was obtained by chemical acylation with water-soluble AOB (AOB-w) and different chain-length fatty acids. The solubility of cAOB-o in 1-octanol solvent increased sharply. cAOB-o was able to increase the oxidative stability of palm oil, lard, and fried potato chips. cAOB-o has been identified to be actually not toxic by acute oral toxicity test. All the results indicated that cAOB-o could be used as an effective oil-soluble antioxidant in the food industry. © 2014 Institute of Food

  7. Water-soluble chelating polymers for removal of actinides from wastewater

    Energy Technology Data Exchange (ETDEWEB)

    Jarvinen, G.D. [Los Alamos National Lab., NM (United States)

    1997-10-01

    Polymer filtration is a technology under development to selectively recover valuable or regulated metal ions from process or wastewaters. The technology uses water-soluble chelating polymers that are designed to selectively bind with metal ions in aqueous solutions. The polymers have a sufficiently large molecular weight that they can be separated and concentrated using available ultrafiltration (UF) technology. The UF range is generally considered to include molecular weights from about 3000 to several million daltons and particles sizes of about 2 to 1000 nm. Water and smaller unbound components of the solution pass freely through the UF membrane. The polymers can then be reused by changing the solution conditions to release the metal ions that are recovered in concentrated form for recycle or disposal. Some of the advantages of polymer filtration relative to technology now in use are rapid binding kinetics, high selectivity, low energy and capital costs, and a small equipment footprint. Some potential commercial applications include electroplating rinse waters, photographic processing, nuclear power plant cooling water; remediation of contaminated soils and groundwater; removal of mercury contamination; and textile, paint and dye production. The purpose of this project is to evaluate this technology to remove plutonium, americium, and other regulated metal ions from various process and waste streams found in nuclear facilities. The work involves preparation of the water-soluble chelating polymers; small-scale testing of the chelating polymer systems for the required solubility, UF properties, selectivity and binding constants; followed by an engineering assessment at a larger scale to allow comparison to competing separation technologies. This project focuses on metal-ion contaminants in waste streams at the Plutonium Facility and the Waste Treatment Facility at LANL. Potential applications at other DOE facilities are also apparent.

  8. Studying of drug solubility in water and alcohols using drug-ammonium ionic liquid-compounds.

    Science.gov (United States)

    Halayqa, Mohammad; Pobudkowska, Aneta; Domańska, Urszula; Zawadzki, Maciej

    2017-10-03

    Synthesis of three mefenamic acid (MEF) derivatives - ionic liquid compounds composed of MEF in an anionic form and ammonium cation (choline, MEF1), or {di(2-hydroxyethyl)dimethyl ammonium (MEF2)}, or {tri(2-hydroxyethyl)methyl ammonium compound (MEF3)} is presented. The basic thermal properties of pure compounds i.e. fusion temperatures, and the enthalpy of fusion of these compounds have been measured with differential scanning microcalorimetry technique (DSC). Molar volumes have been calculated with the Barton group contribution method. The solubilities of MEF1, MEF2 and MEF3 using the dynamic method were measured at constant pH in a range of temperature from (290 to 370) K in three solvents: water, ethanol and 1-octanol. The experimental solubility data have been correlated by means of three commonly known G(E) equations: the Wilson, NRTL and UNIQUAC with the assumption that the systems studied here present simple eutectic behaviour. The activity coefficients of pharmaceuticals at saturated solutions in each binary mixture were calculated from the experimental data. The formation of MEF-ionic liquid compounds greatly increases the solubility in water in comparison with pure MEF or complexes with 2-hydroxypropyl-β-cyclodextrin. The development of these compounds formulations will assist in medication taking into account oral solid or gel medicines. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Water-soluble and organic extracts of airborne particulate matter induce micronuclei in human lung epithelial A549 cells.

    Science.gov (United States)

    Palacio, Isabel C; Barros, Silvia B M; Roubicek, Deborah A

    2016-12-01

    The in vitro genotoxic effects of organic and water-soluble fractions of airborne particulate matter (PM10) with the cytokinesis blocked micronucleus (MN) test in human alveolar carcinoma cells A549 were investigated. Samples were collected in three different sites of São Paulo State, Brazil, and fifteen soluble metals and the sixteen EPÁs priority polycyclic aromatic hydrocarbons (PAH) were chemically determined. PAHs prevailing were fluoranthene and benzo(ghi)perylene. In the water-soluble extracts, highest concentration of metals was found for zinc, iron, and copper in all places of collection. Although PM10 concentration in all samples was in the range of 33.5-110.1μg/m3, lower than 120μg/m3 (limit established by São Paulo State's legislation for PM10 in 24h), MN results showed that of the 24 samples analyzed, five organic and seven water-soluble extracts presented a significant increase in MN frequency. The frequency of MN correlates with the total PAH concentration of the three sites investigated, and the concentration of PM10 is correlated with the biological effect in two of them. For the water-soluble fraction, all the sites presented a relation between the PM10 concentration and the MN frequency. Again, the genotoxic response showed a correlation with the total concentration of water-soluble metals in two of the three sites. Our results confirm the importance of the soluble fraction of PM10 to the genotoxic effect of airborne PM even at low concentration of water-soluble compounds. Thus, together with chemical analysis, the implementation of the MN protocol for both organic and water-soluble fraction biological monitoring could be used as a strategy in a routine air-quality monitoring program, complementing other usual analyses for air pollution control and protection of populations. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Enhancement of the aqueous solubility and permeability of a poorly water soluble drug ritonavir via lyophilized milk-based solid dispersions.

    Science.gov (United States)

    Dhore, Pradip W; Dave, Vivek S; Saoji, Suprit D; Bobde, Yamini S; Mack, Connor; Raut, Nishikant A

    2017-02-01

    In the present study, a lyophilized milk-based solid dispersion (SD) of ritonavir (RTV) was developed with the goal of improving its aqueous solubility. The SD was prepared by lyophilization, and characterized for its physicochemical and functional properties. Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electron microscopy (SEM), photomicroscopy and powder X-ray diffraction (PXRD) were used to confirm the formation and robustness of the SD formulation. The prepared SD formulations were functionally evaluated by saturation solubility, in vitro drug release and ex vivo permeation studies. The optimized SD formulation exhibited a significantly higher (30-fold) aqueous solubility (11.36 ± 0.06 μg/mL), compared to the pure RTV (0.37 ± 0.03 μg/mL). The in vitro dissolution studies revealed a significantly higher (∼10-fold) efficiency of the optimized SD formulation in releasing the RTV, compared to the pure RTV. The ex vivo permeation studies with the everted intestine method showed that prepared SD formulation significantly improved the permeation of RTV (75.6 ± 3.09, % w/w), compared to pure RTV (20.45 ± 1.68, % w/w). Thus, SD formulation utilizing lyophilized milk as a carrier appears to be a promising alternative strategy to improve the aqueous solubility of poorly water soluble drugs.

  11. Synthesis of Glucose Based Water Soluble Molecular Tweezers as Molecular Recognition Scaffolds

    Directory of Open Access Journals (Sweden)

    Lalit Sharma

    2011-01-01

    Full Text Available Dry heating of 4,4’-methylenedianiline and N,N’-dimethyl-4,4’-methylenedianiline with 5,6-anhydro-1,2-o-isopropylidene-α-D-glucofuranose afforded molecular tweezers having tertiary amino group linked to C-6 of the glucose moiety. These molecular tweezers on deprotection with dilute acid yielded water soluble analogs which were explored for the solubilization of neutral arenes viz. naphthalene, biphenyl, durene, fluorene, anthracene and phenanthrene in acidic aqueous medium. These solid liquid extraction studies revealed that 6,6’-(N,N’-dimethyl-4’’,4’’’-methylenedianilino bis (α-D-glucopyranose causes an approximate 31 fold increase in the solubility of biphenyl in aqueous medium and has best complementarity for naphthalene by forming 1:1 complex.

  12. Determination of fat- and water-soluble vitamins by supercritical fluid chromatography: A review.

    Science.gov (United States)

    Tyśkiewicz, Katarzyna; Dębczak, Agnieszka; Gieysztor, Roman; Szymczak, Tomasz; Rój, Edward

    2017-08-03

    Vitamins are compounds that take part in all basic functions of an organism but also are subject of number of studies performed by different researchers. Two groups of vitamins are distinguished taking into consideration their solubility. Chromatography with supercritical CO2 has found application in the determination, separation, and quantitative analyses of both fat- and water-soluble vitamins. The methods of vitamins separation have developed and improved throughout the years. Both groups of compounds were separated using supercritical fluid chromatography with different detection on different stationary phases. The main aim of this review is to provide an overview of the studies of vitamins separation that have been determined so far. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Synthesis, structure, antioxidant activity, and water solubility of trolox ion conjugates

    Directory of Open Access Journals (Sweden)

    Yuliya V. Yushkova

    2018-01-01

    Full Text Available The interaction of trolox with ammonia, alkylamines of different classes, and amino derivatives of heterocyclic compounds, including nitroxyl radicals and alkaloids, led to the production of ammonium salts called ion conjugates (ICs. Five ICs were characterised by X-ray diffraction. This is the first time a wide range of ICs were made from trolox with amines, and ESI-MS data demonstrated they have the potential to generate pseudomolecular [(A−B+ + H]+ ions. For all obtained trolox ICs, a significant increase (1–3 orders of magnitude in water solubility was achieved while retaining high antioxidant activity. ICs synthesised from two biologically active fragments may be used to create polyfunctional agents with varying solubility and bioavailability.

  14. Bioassay using the water soluble fraction of a Nigerian light crude oil on Clarias gariepinus fingerlings.

    Science.gov (United States)

    Olaifa, F E

    2012-12-18

    A 96-hour bioassay was conducted using the water soluble fraction of a Nigerian light crude oil sample on Clarias gariepinus fingerlings. 0, 2.5, 5.0, 7.5 and 10 mls of water soluble fractions (WSF) of the oil were added to 1000 litres of de-chlorinated tap water to form 0, 25, 50 , 75 and 100 parts per million representing treatments 1 to 5 respectively. Each treatment had two replicates with fifteen fish per replicate. At the end of the 96-hour period of exposure, the fish were transferred into separate bowls containing fresh water without oil for recovery for ten more days. Heavy metal and total hydrocarbon contents of the water and fish were analyzed at 96 hour and 14 days which marked the end of the recovery period. No mortalities were recorded on all treatments during the 96-hour period. Mortalities were observed between 120 and 144 hours after the onset of the experiment with the maximum number of dead fish (pfish. No mortalities were recorded after 144 hours till the termination of the experiment at 14 days . The 96-hour LC50 could not be calculated since no deaths occurred during the period. The Total hydrocarbon contents of the water were 0, 0.026 ,0.316 ,0.297, 0.253 mg/l for treatments 1(0 ppmWSF)) to 5(100ppm WSF) respectively. Lead , iron and cadmium were not detected in water during the study, lead was also not detected in fish muscles from all treatments. The iron contents of all the treatments were lower than the control except for treatment 3(50 ppm WSF). THC concentrations in fish were higher at 96 hours and 14 days than in the water indicating bioconcentration in fish and a retention in the fish long after exposure.

  15. Photophysical studies of a new water soluble indocarbocyanine dye adsorbed onto microcrystalline cellulose and β-cyclodextrin

    National Research Council Canada - National Science Library

    El-Shishtawy, Reda M; Oliveira, Anabela S; Almeida, Paulo; Ferreira, Diana P; Conceição, David S; Ferreira, Luis F Vieira

    2013-01-01

    A water-soluble indocarbocyanine dye was synthesized and its photophysics were studied for the first time on two solid hosts, microcrystalline cellulose and b-cyclodextrin, as well as in homogeneous media...

  16. Photophysical Studies of a New Water Soluble Indocarbocyanine Dye Adsorbed onto Microcrystalline Cellulose and b-Cyclodextrin

    National Research Council Canada - National Science Library

    Luis F. Vieira Ferreira; Diana P. Ferreira; David S. Conceição; Paulo Almeida; Anabela S. Oliveira; Reda M. El-Shishtawy

    2013-01-01

    A water-soluble indocarbocyanine dye was synthesized and its photophysics were studied for the first time on two solid hosts, microcrystalline cellulose and b-cyclodextrin, as well as in homogeneous media...

  17. Increasing the Oral Bioavailability of Poorly Water-soluble Valsartan Using Non-ordered Mesoporous Silica Microparticles

    National Research Council Canada - National Science Library

    P Bahirat Santosh

    2016-01-01

      Aim: To evaluate the use of mesoporous silica SYLOID® 244 FP to increase the dissolution rate of valsartan, antihypertensive poorly water soluble, Biopharmaceutical Classification System Class II drug...

  18. Comparison of some functionalities of water soluble peptides derived from Turkish cow and goat milk Tulum cheeses during ripening

    National Research Council Canada - National Science Library

    Hale İnci ÖZTÜRK; Nihat AKIN

    2017-01-01

    Abstract In this study, profiles and functional properties such as antioxidant, mineral binding, and antimicrobial activities of water-soluble peptides from Turkish goat milk Tulum cheese and cow milk...

  19. Solubility of water in lunar basalt at low pH2O

    Science.gov (United States)

    Newcombe, M. E.; Brett, A.; Beckett, J. R.; Baker, M. B.; Newman, S.; Guan, Y.; Eiler, J. M.; Stolper, E. M.

    2017-03-01

    We report the solubility of water in Apollo 15 basaltic "Yellow Glass" and an iron-free basaltic analog composition at 1 atm and 1350 °C. We equilibrated melts in a 1-atm furnace with flowing H2/CO2 gas mixtures that spanned ∼8 orders of magnitude in fO2 (from three orders of magnitude more reducing than the iron-wüstite buffer, IW-3.0, to IW+4.8) and ∼4 orders of magnitude in pH2/pH2O (from 0.003 to 24). Based on Fourier transform infrared spectroscopy (FTIR), our quenched experimental glasses contain 69-425 ppm total water (by weight). Our results demonstrate that under the conditions of our experiments: (1) hydroxyl is the only H-bearing species detected by FTIR; (2) the solubility of water is proportional to the square root of pH2O in the furnace atmosphere and is independent of fO2 and pH2/pH2O; (3) the solubility of water is very similar in both melt compositions; (4) the concentration of H2 in our iron-free experiments is critical vapor volume fraction thought to be required for magma fragmentation (∼65-75 vol.%) at a total pressure of ∼5 bar (corresponding to a depth beneath the lunar surface of ∼120 m). At a fragmentation pressure of ∼5 bar, the calculated vapor composition is dominated by H2, supporting the hypothesis that H2, rather than CO, was the primary propellant of the lunar fire fountain eruptions. The results of our batch degassing model suggest that initial melt compositions with >∼200 ppm C would be required for the vapor composition to be dominated by CO rather than H2 at 65-75% vesicularity.

  20. Preparations and properties of anti-corrosion additives of water-soluble metal working fluids for aluminum alloy materials.

    Science.gov (United States)

    Watanabe, Shoji

    2008-01-01

    This short review describes various types of anti-corrosion additives of water-soluble metal working fluids for aluminum alloy materials. It is concerned with synthetic additives classified according to their functional groups; silicone compounds, carboxylic acids and dibasic acids, esters, Diels-Alder adducts, various polymers, nitrogen compounds, phosphoric esters, phosphonic acids, and others. Testing methods for water-soluble metal working fluids for aluminum alloy materials are described for a practical application in a laboratory.

  1. Sulfur speciation and stable isotope trends of water-soluble sulfates in mine tailings profiles.

    Science.gov (United States)

    Dold, Bernhard; Spangenberg, Jorge E

    2005-08-01

    Sulfur speciation and the sources of water-soluble sulfate in three oxidizing sulfidic mine tailings impoundments were investigated by selective dissolution and stable isotopes. The studied tailings impoundments--Piuquenes, Cauquenes, and Salvador No. 1--formed from the exploitation of the Rio Blanco/La Andina, El Teniente, and El Salvador Chilean porphyry copper deposits, which are located in Alpine, Mediterranean, and hyperarid climates, respectively. The water-soluble sulfate may originate from dissolution of primary ore sulfates (e.g., gypsum, anhydrite, jarosite) or from oxidation of sulfide minerals exposed to aerobic conditions during mining activity. With increasing aridity and decreasing pyrite content of the tailings, the sulfur speciation in the unsaturated oxidation zones showed a trend from dominantly Fe(III) oxyhydroxide fixed sulfate (e.g., jarosite and schwertmannite) in Piuquenes toward increasing presence of water-soluble sulfate at Cauquenes and Salvador No. 1. In the saturated primary zones, sulfate is predominantly present in water-soluble form (mainly as anhydrite and/or gypsum). In the unsaturated zone at Piuquenes and Cauquenes, the delta34S(SO4)values ranged from +0.5 per thousand to +2.0 per thousand and from -0.4 per thousand to +1.4 per thousand Vienna Canyon Diablo Troilite (V-CDT), respectively, indicating a major sulfate source from pyrite oxidation (delta34S(pyrite) = -1.1 per thousand and -0.9 per thousand). In the saturated zone at Piuquenes and Cauquenes, the values ranged from -0.8 per thousand to +0.3 per thousand and from +2.2 per thousand to +3.9 per thousand, respectively. At Cauquenes the 34S enrichment in the saturated zone toward depth indicates the increasing contribution of isotopically heavy dissolved sulfate from primary anhydrite (approximately +10.9 per thousand). At El Salvador No. 1, the delta34S(SO4) average value is -0.9 per thousand, suggesting dissolution of supergene sulfate minerals (jarosite, alunite, gypsum

  2. Preparation and evaluation of high dispersion stable nanocrystal formulation of poorly water-soluble compounds by using povacoat.

    Science.gov (United States)

    Yuminoki, Kayo; Seko, Fuko; Horii, Shota; Takeuchi, Haruka; Teramoto, Katsuya; Nakada, Yuichiro; Hashimoto, Naofumi

    2014-11-01

    In this study, we reported the application of Povacoat®, a hydrophilic polyvinylalcohol copolymer, as a dispersion stabilizer of nanoparticles of poorly water-soluble compounds. In addition, the influence of aggregation of the nanoparticles on their solubility and oral absorption was studied. Griseofulvin (GF) was used as a model compound with poor water solubility and was milled to nanoparticles by wet bead milling. The dispersion stability of GF milled with Povacoat® or the generally used polymers (polyvinylalcohol, hydroxypropylcellulose SSL, and polyvinylpyrrolidone K30) was compared. Milled GF suspended in Povacoat® aqueous solution with D-mannitol, added to improve the disintegration rate of freeze-dried GF, exhibited high dispersion stability without aggregation (D90 = ca. 0.220 μm), whereas milled GF suspended in aqueous solutions of the other polymers aggregated (D90 > 5 μm). Milled GF with Povacoat® showed improved aqueous solubility and bioavailability compared with the other polymers. The aggregation of nanoparticles had significant impact on the solubility and bioavailability of GF. Povacoat® also prevented the aggregation of the various milled poorly water-soluble compounds (hydrochlorothiazide and tolbutamide, etc.) more effectively than the other polymers. These results showed that Povacoat® could have wide applicability to the development of nanoformulations of poorly water-soluble compounds. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.

  3. Determination of water-soluble and fat-soluble vitamins in tears and blood serum of infants and parents by liquid chromatography/mass spectrometry.

    Science.gov (United States)

    Khaksari, Maryam; Mazzoleni, Lynn R; Ruan, Chunhai; Kennedy, Robert T; Minerick, Adrienne R

    2017-02-01

    Tears serve as a viable diagnostic fluid with advantages including less invasive sample to collect and less complex to prepare for analysis. Several water-soluble and fat-soluble vitamins were detected and quantified in human tears and compared with blood serum levels. Samples from 15 family pairs, each pair consisting of a four-month-old infant and one parent were analyzed; vitamin concentrations were compared between tears and blood serum for individual subjects, between infants and parents, and against self-reported dietary intakes. Water-soluble vitamins B1, B2, B3 (nicotinamide), B5, B9 and fat-soluble vitamin E (α-tocopherol) were routinely detected in tears and blood serum while fat-soluble vitamin A (retinol) was detected only in blood serum. Water-soluble vitamin concentrations measured in tears and blood serum of single subjects were comparable, while higher concentrations were measured in infants compared to their parents. Fat-soluble vitamin E concentrations were lower in tears than blood serum with no significant difference between infants and parents. Serum vitamin A concentrations were higher in parents than infants. Population trends were compiled and quantified using a cross correlation factor. Strong positive correlations were found between tear and blood serum concentrations of vitamin E from infants and parents and vitamin B3 concentrations from parents, while slight positive correlations were detected for infants B3 and parents B1 and B2 concentrations. Correlations between infants and parents were found for the concentrations of B1, B2, B3, and E in tears, and the concentrations of B2, A, and E in blood serum. Stronger vitamin concentration correlations were found between infants and parents for the breast-fed infants, while no significant difference was observed between breast-fed and bottle-fed infants. This work is the first to demonstrate simultaneous vitamin A, B, and E detection and to quantify correlations between vitamin

  4. Equilibrium solubility of carbon dioxide in the amine solvent system of (triethanolamine + piperazine + water)

    Energy Technology Data Exchange (ETDEWEB)

    Chung, P.-Y. [R and D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chung Li 32023, Taiwan (China); Soriano, Allan N. [R and D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chung Li 32023, Taiwan (China); School of Chemical Engineering and Chemistry, Mapua Institute of Technology, Manila 1002 (Philippines); Leron, Rhoda B. [R and D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chung Li 32023, Taiwan (China); Li, M.-H., E-mail: mhli@cycu.edu.t [R and D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, Chung Li 32023, Taiwan (China)

    2010-06-15

    In this study, a new set of data for the equilibrium solubility of carbon dioxide in the amine solvent system that consists of triethanolamine (TEA), piperazine (PZ), and water is presented. Equilibrium solubility values were obtained at T = (313.2, 333.2, and 353.2) K and pressures up to 153 kPa using the vapour-recirculation equilibrium cell. The TEA concentrations in the considered ternary (solvent) mixture were (2 and 3) kmol . m{sup -3} and those of PZ's were (0.5, 1.0, and 1.5) kmol . m{sup -3}. The solubility data (CO{sub 2} loading in the amine solution) obtained were correlated as a function of CO{sub 2} partial pressure, system temperature, and amine composition via the modified Kent-Eisenberg model. Results showed that the model applied is generally satisfactory in representing the CO{sub 2} absorption into mixed aqueous solutions of TEA and PZ.

  5. Solubility and molecular conformations of n-alkane chains in water.

    Science.gov (United States)

    Ferguson, Andrew L; Debenedetti, Pablo G; Panagiotopoulos, Athanassios Z

    2009-05-07

    We employ molecular dynamics simulations to study the solubility and molecular conformations of n-alkane chains in water. We find nearly exponential decrease in solubility with carbon number up to n-eicosane (C(20)), and excellent agreement with experiment up to n-dodecane (C(12)). We detect no sharp break in the dependence of the solubility upon carbon number. A free energy landscape analysis of the chain conformations reveals remarkable similarities between the ideal gas and solvated phase landscapes, suggesting that solvated chain conformations are driven primarily by ideal gas statistics. We find no evidence for hydrophobic collapse of n-alkane chains shorter than n-eicosane (C(20)). The primary effect of the solvent is the appearance of a barrier on the order k(B)T, not present in the ideal gas, between the free energy basins corresponding to compact and extended chain conformations, and destabilization of the most extended conformations. Our findings are robust to nontrivial modification of the potential model, suggesting that the absence of strong solvent effects on the free energy landscapes is fundamental to relatively short (

  6. Detection of water soluble lectin and antioxidant component from Moringa oleifera seeds.

    Science.gov (United States)

    Santos, A F S; Argolo, A C C; Coelho, L C B B; Paiva, P M G

    2005-03-01

    Seed flour from Moringa oleifera is widely used as a natural coagulant for water treatment in developing countries. Extracts obtained by water soaking of M. oleifera intact seeds were investigated for the presence of lectin, trypsin inhibitor, tannin as well as antioxidant activity. A water soluble M. oleifera lectin (WSMoL) detected was mainly active with rabbit cells at pH 4.5; heat treatment, pH 7.0, fructose and porcine thyroglobulin abolished HA of WSMoL. Trypsin inhibitor or tannins were not detected; the antioxidant component (WSMoAC) reduced 1,1-diphenyl-2-picrylhydrazyl radical (DPPH) was slower than catechin and was thermostable. The extracts showed a primary glycopolypeptide band of Mw 20,000; the main native acidic protein showed hemagglutinating activity. WSMoL may be involved in seed coagulant properties.

  7. Preparation of the Water-Soluble Pyrene-Containing Fluorescent Polymer by One-Pot Method

    Directory of Open Access Journals (Sweden)

    Xiaomeng Li

    2015-12-01

    Full Text Available A new water-soluble pyrene-containing fluorescent polymer, 1-{3′-S-[poly(acryloyl ethylene diamine hydrochloride-2′-methyl propionic acid]}propionyloxy hexyloxy pyrene (P3 with defined structure, was designed and synthesized using the click reaction between thiol and a carbon-carbon double bond. The intermediate products P1 (S-1-dodecyl-S′-[poly(N-Boc-acryloyl ethylene diamine-2′-methyl propionic acid]trithiocarbonate and AHP (1-(acryloyloxy hexyloxypyrene were prepared via reversible addition fragmentation chain transfer (RAFT polymerization and Williamson synthesis, respectively. Conjugating AHP with P1, P2 (1-{3′-S-[poly(N-butoxycarbonyl-acryloyl ethylene diamine-2″-methyl propionic acid]} propionyloxy hexyloxy pyrene was synthesized, adopting both the reduction reaction of a trithioester bond of P1 to thiol and the click reaction between thiol and the carbon-carbon double bond of AHP simultaneously. P3 was obtained by the deprotection of the resulting Boc-protected polymer (P2 with aqueous HCl. The experiment results showed that P2 exhibited a bright blue-violet emission band at approximately 387–429 nm. After deprotection, P3 displayed good solubility in water and not only exhibited a blue-violet fluorescence emission band at approximately 387–429 nm in aqueous solution but also had the similar photoluminescent spectra to those of AHP and P2 in dichloromethane. The fluorescence quantum yields of P2 in dilute tetrahydrofuran and P3 in a dilute aqueous solution were 0.44 and 0.39, respectively. This experiment provided a novel insight into the study of water-soluble fluorescent polymers.

  8. Water soluble organic aerosols in the Colorado Rocky Mountains, USA: composition, sources and optical properties

    Science.gov (United States)

    Xie, Mingjie; Mladenov, Natalie; Williams, Mark W.; Neff, Jason C.; Wasswa, Joseph; Hannigan, Michael P.

    2016-12-01

    Atmospheric aerosols have been shown to be an important input of organic carbon and nutrients to alpine watersheds and influence biogeochemical processes in these remote settings. For many remote, high elevation watersheds, direct evidence of the sources of water soluble organic aerosols and their chemical and optical characteristics is lacking. Here, we show that the concentration of water soluble organic carbon (WSOC) in the total suspended particulate (TSP) load at a high elevation site in the Colorado Rocky Mountains was strongly correlated with UV absorbance at 254 nm (Abs254, r = 0.88 p 90% of OC on average. According to source apportionment analysis, biomass burning had the highest contribution (50.3%) to average WSOC concentration; SOA formation and motor vehicle emissions dominated the contribution to WSOC in the summer. The source apportionment and backward trajectory analysis results supported the notion that both wildfire and Colorado Front Range pollution sources contribute to the summertime OC peaks observed in wet deposition at high elevation sites in the Colorado Rocky Mountains. These findings have important implications for water quality in remote, high-elevation, mountain catchments considered to be our pristine reference sites.

  9. Chemical constituents: water-soluble vitamins, free amino acids and sugar profile from Ganoderma adspersum.

    Science.gov (United States)

    Kıvrak, İbrahim

    2015-01-01

    Ganoderma adspersum presents a rigid fruiting body owing to chitin content and having a small quantity of water or moisture. The utility of bioactive constituent of the mushroom can only be available by extraction for human usage. In this study, carbohydrate, water-soluble vitamin compositions and amino acid contents were determined in G. adspersum mushroom. The composition in individual sugars was determined by HPLC-RID, mannitol (13.04 g/100 g) and trehalose (10.27 g/100 g) being the most abundant sugars. The examination of water-soluble vitamins and free amino acid composition was determined by UPLC-ESI-MS/MS. Essential amino acid constituted 67.79% of total amino acid, which is well worth the attention with regard to researchers and consumers. In addition, G. adspersum, which is also significantly rich in B group vitamins and vitamin C, can provide a wide range of notable applications in the pharmaceutics, cosmetics, food and dietary supplement industries. G. adspersum revealed its value for pharmacy and nutrition fields.

  10. Improvement of dissolution property of poorly water-soluble drug by supercritical freeze granulation.

    Science.gov (United States)

    Sonoda, Ryoichi; Hara, Yuko; Iwasaki, Tomohiro; Watano, Satoru

    2009-10-01

    The dissolution property of the poorly water-soluble drug, flurbiprofen (FP) was improved by a novel supercritical freeze granulation using supercritical carbon dioxide. Supercritical freeze granulation was defined as a production method of the granulated substances by using the dry ice to generate intentionally for the rapid atomization of the supercritical carbon dioxide to the atmospheric pressure. This process utilized a rapid expansion of supercritical solutions (RESS) process with the mixture of the drug and lactose. In the supercritical freeze granulation, needle-like FP fine particles were obtained which adhered to the surface of lactose particles, which did not dissolve in supercritical carbon dioxide. The number of FP particles that adhered to the surface of particles decreased with an increase in the ratio of lactose added, leading to markedly improve the dissolution rate. This improvement was caused not only by the increase in the specific surface area but also the improvement of the dispersibility of FP in water. It is thus concluded that the supercritical freeze granulation is a useful technique to improve the dissolution property of the poorly water-soluble flurbiprofen.

  11. Salting-in and salting-out of water-soluble polymers in aqueous salt solutions.

    Science.gov (United States)

    Sadeghi, Rahmat; Jahani, Farahnaz

    2012-05-03

    To obtain further experimental evidence for the mechanisms of the salting effect produced by the addition of salting-out or sating-in inducing electrolytes to aqueous solutions of water-soluble polymers, systematic studies on the vapor-liquid equilibria and liquid-liquid equilibria of aqueous solutions of several polymers are performed in the presence of a large series of electrolytes. Polymers are polyethylene glycol 400 (PEG400), polyethylene glycol dimethyl ether 250 (PEGDME250), polyethylene glycol dimethyl ether 2000 (PEGDME2000), and polypropylene glycol 400 (PPG400), and the investigated electrolytes are KCl, NH(4)Cl, MgCl(2), (CH(3))(4)NCl, NaCl, NaNO(3), Na(2)CO(3), Na(2)SO(4), and Na(3)Cit (tri-sodium citrate). Aqueous solutions of PPG400 form aqueous two-phase systems with all the investigated salts; however, other investigated polymers form aqueous two-phase systems only with Na(2)CO(3), Na(2)SO(4), and Na(3)Cit. A relation was found between the salting-out or sating-in effects of electrolyte on the polymer aqueous solutions and the slopes of the constant water activity lines of ternary polymer-salt aqueous solutions, so that, in the case of the salting-out effect, the constant water activity lines had a concave slope, but in the case of the salting-in effects, the constant water activity lines had a convex slope. The effect of temperature, anion of electrolyte, cation of electrolyte, and type and molar mass of polymers were studied and the results interpreted in terms of the solute-water and solute-solute interactions. The salting-out effect results from the formation of ion (specially anion)-water hydration complexes, which, in turn, decreases hydration, and hence, the solubility of the polymer and the salting-in effect results from a direct binding of the cations to the ether oxygens of the polymers.

  12. Aqueous Speciation and Electrochemical Properties of a Water-Soluble Manganese Phthalocyanine Complex#

    OpenAIRE

    Blakemore, James D.; Hull, Jonathan F.; Crabtree, Robert H.; Brudvig, Gary W.

    2012-01-01

    The speciation behavior of a water-soluble manganese(III) tetrasulfonated phthalocyanine complex was investigated with UV-visible and electron paramagnetic resonance (EPR) spectroscopies, as well as cyclic voltammetry. Parallel-mode EPR (in dimethylformamide:pyridine solvent mix) reveals a six-line hyperfine signal, centered at a g-value of 8.8, for the manganese(III) monomer, characteristic of the d4 S=2 system. The color of an aqueous solution containing the complex is dependent upon the pH...

  13. Encapsulation of Polythiophene by Glycopolymer for Water Soluble Nano-wire

    Energy Technology Data Exchange (ETDEWEB)

    T Fukuda; Y Inoue; T Koga; M Matsuoka; Y Miura

    2011-12-31

    A water-soluble polythiophene (PT) was prepared by the self-assembling complex with a glycopolymer. The glycopolymer of poly(N-p-vinylbenzyl-D-lactonamide) (PVLA) formed self-assembling cylindrical structure based on the amphiphilicity even after the complexation with PT. We confirmed the improved optical functionality of PT due to the longer conjugated {pi}-orbital. It suggested that PT behaved like molecular nanowire with the self-assembled structure in the hydrophobic core of PVLA. PVLA-PT also showed specific biorecognition against corresponding lectin. These results suggested that the bioactive nanowire formation of PT with the glycopolymer was developed.

  14. Water-soluble material on aerosols collected within volcanic eruption clouds ( Fuego, Pacaya, Santiaguito, Guatamala).

    Science.gov (United States)

    Smith, D.B.; Zielinski, R.A.; Rose, W.I.; Huebert, B.J.

    1982-01-01

    In Feb. and March of 1978, filter samplers mounted on an aircraft were used to collect the aerosol fraction of the eruption clouds from three active Guatemalan volcanoes (Fuego, Pacaya, and Santiaguito). The elements dissolved in the aqueous extracts represent components of water-soluble material either formed directly in the eruption cloud or derived from interaction of ash particles and aerosol components of the plume. Calculations of enrichment factors, based upon concentration ratios, showed the elements most enriched in the extracts relative to bulk ash composition were Cd, Cu, V, F, Cl, Zn, and Pb.-from Authors

  15. Mechanisms and Regulation of Intestinal Absorption of Water-soluble Vitamins: Cellular and Molecular Aspects

    DEFF Research Database (Denmark)

    Nexø, Ebba; Said, Hamid M

    2012-01-01

    The water-soluble vitamins represent a group of structurally and functionally unrelated compounds that share the common feature of being essential for normal cellular functions, growth, and development. With the exception of some endogenous production of niacin, human cells cannot synthesize...... these micronutrients, and thus, must obtain them from exogenous sources via intestinal absorption. The intestine, therefore, plays a critical role in maintaining and regulating normal body homeostasis of these essential nutrients, and interference with its normal absorptive function could lead to suboptimal states...

  16. Sunlight-Induced Photochemical Degradation of Methylene Blue by Water-Soluble Carbon Nanorods

    Directory of Open Access Journals (Sweden)

    Anshu Bhati

    2016-01-01

    Full Text Available Water-soluble graphitic hollow carbon nanorods (wsCNRs are exploited for their light-driven photochemical activities under outdoor sunlight. wsCNRs were synthesized by a simple pyrolysis method from castor seed oil, without using any metal catalyst or template. wsCNRs exhibited the light-induced photochemical degradation of methylene blue used as a model pollutant by the generation of singlet oxygen species. Herein, we described a possible degradation mechanism of methylene blue under the irradiation of visible photons via the singlet oxygen-superoxide anion pathway.

  17. Water soluble heterometallic potassium-dioxidovanadium(V) complexes as potential antiproliferative agents.

    Science.gov (United States)

    Sutradhar, Manas; Fernandes, Alexandra R; Silva, Joana; Mahmudov, Kamran T; Guedes da Silva, M Fátima C; Pombeiro, Armando J L

    2016-02-01

    Two water soluble heterometallic potassium–dioxidovanadium polymers, [KVO2(L1)]n (1) and [KVO2(L2)(H2O)]n (2) [H2L1= (2,3-dihydroxybenzylidene)-2-hydroxybenzohydrazide and H2L2=(2,3-dihydroxybenzylidene)benzohydrazide], have been synthesized and characterized by IR, NMR, elemental analysis and single crystal X-ray diffraction. The antiproliferative potentials of 1 and 2 were examined towards human colorectal carcinoma (HCT116), and lung (A549) and breast (MCF7) adenocarcinoma cell lines. 1 exhibits a high cytotoxic activity against colorectal carcinoma cells (HCT116), with IC50 lower than those for cisplatin.

  18. The Effect of Soluble Ammonium Polyphosphate on the Properties of Water Blown Semirigid Polyurethane Foams

    Directory of Open Access Journals (Sweden)

    Weiguo Yao

    2017-01-01

    Full Text Available Soluble ammonium polyphosphate (SAPP is employed to prepare flame retardant semirigid polyurethane foam (SPUF using water as blowing agent. The flame retardant property of SPUF is evaluated by limiting oxygen index (LOI and horizontal burning test. Also the thermal degradation mechanism is studied by TG and Fourier transform infrared (FTIR. The results show that, with the increase of the content of SAPP, flame retardant property of SPUF improves obviously as the LOI value increases and the horizontal burning rate decreases. And residual char is increased up to 20% with 19 wt% SAPP. Moreover, the mechanical property of SPUF is enhanced dramatically.

  19. Ventriculografia e mieloradiculografia com contrastes iodados hidrosoluveis Ventriculography and myeloradiculography with water-soluble contrast

    Directory of Open Access Journals (Sweden)

    Ricardo Reixach-Granés

    1975-03-01

    Full Text Available Com base em casuística de 136 exames neuro-radiológicos (ventriculografias e mieloradiculografias utilizando contrastes hidrosolúveis reabsorvíveis (iotalamato de metilglucamina e ácido iocármico, os autores ressaltam as vantagens destes produtos que permitem sem maiores complicações, perfeita visualização das estruturas examinadas.A casuistic of 136 neuro-radiologics examinations (ventriculographies and myeloradiculographies using water soluble contrasts (Metilglucamine iotalamate and Iocarmic acid is reported. The authors call attention for the advantages of these products that get, without any major problems, the perfect visualization of the researched structures.

  20. Preparation of nanoparticles of poorly water-soluble antioxidant curcumin by antisolvent precipitation methods

    Energy Technology Data Exchange (ETDEWEB)

    Kakran, Mitali; Sahoo, Nanda Gopal; Tan, I-Lin; Li Lin, E-mail: mlli@ntu.edu.sg [Nanyang Technological University, School of Mechanical and Aerospace Engineering (Singapore)

    2012-03-15

    The objective of this study was to enhance the solubility and dissolution rate of a poorly water-soluble antioxidant, curcumin, by fabricating its nanoparticles with two methods: antisolvent precipitation with a syringe pump (APSP) and evaporative precipitation of nanosuspension (EPN). For APSP, process parameters like flow rate, stirring speed, solvent to antisolvent (SAS) ratio, and drug concentration were investigated to obtain the smallest particle size. For EPN, factors like drug concentration and the SAS ratio were examined. The effects of these process parameters on the supersaturation, nucleation, and growth rate were studied and optimized to obtain the smallest particle size of curcumin by both the methods. The average particle size of the original drug was about 10-12 {mu}m and it was decreased to a mean diameter of 330 nm for the APSP method and to 150 nm for the EPN method. Overall, decreasing the drug concentration or increasing the flow rate, stirring rate, and antisolvent amount resulted in smaller particle sizes. Differential scanning calorimetry studies suggested lower crystallinity of curcumin particles fabricated. The solubility and dissolution rates of the prepared curcumin particles were significantly higher than those the original curcumin. The antioxidant activity, studied by the DPPH free radical-scavenging assay, was greater for the curcumin nanoparticles than the original curcumin. This study demonstrated that both the methods can successfully prepare curcumin into submicro to nanoparticles. However, drug particles prepared by EPN were smaller than those by APSP and hence, showed the slightly better solubility, dissolution rate, and antioxidant activity than the latter.

  1. Water droplet spreading on a soluble polymer: what happens close to the contact line?

    Science.gov (United States)

    Talini, Laurence; Dupas, Julien; Verneuil, Emilie; Lequeux, Francois; Forny, Laurent; Ramaioli, Marco

    2012-02-01

    We have studied the spreading of a water droplet on a water soluble substrate. Numerous coupled transfer processes are involved in such a situation, leading to complex wetting dynamics. In particular, previous studies have shown the major role of water evaporation from the droplet associated with water uptake by the substrate. However, the processes at stake close to the contact line, where the substrate properties set the wetting angle, have not been understood. We present an experimental study of the phenomena occurring within distances ranging from 10 to 1000 μm from the contact line of a water droplet spreading on a food polymer layer. We have evidenced a wrinkling pattern inside the droplet close to the contact line, and suggest it results from the swelling of the constrained polymer layer before it dissolves. In addition, using an optical method based on the analysis of Newton's rings, we have measured the hydration profile of the substrate ahead the contact line. We show that the profiles can be understood as a result of the evaporation/water uptake process through air combined with direct water diffusion in the substrate from the liquid wedge.

  2. Sunlight creates oxygenated species in water-soluble fractions of Deepwater horizon oil

    Energy Technology Data Exchange (ETDEWEB)

    Ray, Phoebe Z. [Department of Chemistry, University of New Orleans, New Orleans, LA 70148 (United States); Chen, Huan [National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL 32310-4005 (United States); Podgorski, David C. [National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL 32310-4005 (United States); Future Fuels Institute, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL 32310-4005 (United States); McKenna, Amy M. [National High Magnetic Field Laboratory, Florida State University, 1800 East Paul Dirac Drive, Tallahassee, FL 32310-4005 (United States); Tarr, Matthew A., E-mail: mtarr@uno.edu [Department of Chemistry, University of New Orleans, New Orleans, LA 70148 (United States)

    2014-09-15

    Graphical abstract: Sunlight oxygenates petroleum. - Highlights: • Oxidation seen in water-soluble oil fraction after exposure to simulated sunlight. • Oxygen addition occurred across a wide range of carbon number and DBE. • Oil compounds were susceptible to addition of multiple oxygens to each molecule. • Results provide understanding of fate of oil on water after exposure to sunlight. - Abstract: In order to assess the impact of sunlight on oil fate, Macondo well oil from the Deepwater Horizon (DWH) rig was mixed with pure water and irradiated with simulated sunlight. After irradiation, the water-soluble organics (WSO) from the dark and irradiated samples were extracted and characterized by ultrahigh resolution Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS). Liquid–liquid extraction yielded two fractions from dark and irradiated water/oil mixtures: acidic WSOs (negative-ion electrospray (ESI)), and base/neutral WSOs (positive-ion ESI) coupled to FT-ICR MS to catalog molecular-level transformations that occur to Macondo-derived WSOs after solar irradiation. Such direct measure of oil phototransformation has not been previously reported. The most abundant heteroatom class detected in the irradiated WSO acid fractions correspond to molecules that contain five oxygens (O{sub 5}), while the most abundant acids in the dark samples contain two oxygen atoms per molecule (O{sub 2}). Higher-order oxygen classes (O{sub 5}–O{sub 9}) were abundant in the irradiated samples, but <1.5% relative abundance in the dark sample. The increased abundance of higher-order oxygen classes in the irradiated samples relative to the dark samples indicates that photooxidized components of the Macondo crude oil become water-soluble after irradiation. The base/neutral fraction showed decreased abundance of pyridinic nitrogen (N{sub 1}) concurrent with an increased abundance of N{sub 1}O{sub x} classes after irradiation. The predominance of higher

  3. Preparation and characterization of water-soluble albumin-bound curcumin nanoparticles with improved antitumor activity.

    Science.gov (United States)

    Kim, Tae Hyung; Jiang, Hai Hua; Youn, Yu Seok; Park, Chan Woong; Tak, Kyung Kook; Lee, Seulki; Kim, Hyungjun; Jon, Sangyong; Chen, Xiaoyuan; Lee, Kang Choon

    2011-01-17

    Curcumin (CCM), a yellow natural polyphenol extracted from turmeric (Curcuma longa), has potent anti-cancer properties as has been demonstrated in various human cancer cells. However, the widespread clinical application of this efficient agent in cancer and other diseases has been limited by its poor aqueous solubility and bioavailability. In this study, we prepared novel CCM-loaded human serum albumin (HSA) nanoparticles (CCM-HSA-NPs) for intravenous administration using albumin bound technology. Field emission scanning electron microscopy (FE-SEM) and dynamic light scattering (DLS) investigation confirmed a narrow size distribution in the 130-150nm range. Furthermore, CCM-HSA-NPs showed much greater water solubility (300-fold) than free CCM, and on storage, the biological activity of CCM-HSA-NPs was preserved with negligible activity loss. In vivo distributions and vascular endothelial cells transport studies demonstrated the superiority of CCM-HSA-NPs over CCM. Amounts of CCM in tumors after treatment with CCM-HSA-NPs were about 14 times higher at 1h after injection than that achieved by CCM. Furthermore, vascular endothelial cell binding of CCM increased 5.5-fold, and transport of CCM across a vascular endothelial cell monolayer by Transwell testing was 7.7-fold greater for CCM-HSA-NPs than CCM. Finally, in vivo antitumor tests revealed that CCM-HSA-NPs (10 or 20mg/kg) had a greater therapeutic effect (50% or 66% tumor growth inhibition vs. PBS-treated controls) than CCM (18% inhibition vs. controls) in tumor xenograft HCT116 models without inducing toxicity. We attribute this potent antitumor activity of CCM-HSA-NPs to enhanced water solubility, increased accumulation in tumors, and an ability to traverse vascular endothelial cell. Copyright © 2010 Elsevier B.V. All rights reserved.

  4. Reverse micelle-based water-soluble nanoparticles for simultaneous bioimaging and drug delivery.

    Science.gov (United States)

    Chen, Ying; Liu, Yong; Yao, Yongchao; Zhang, Shiyong; Gu, Zhongwei

    2017-04-11

    With special confined water pools, reverse micelles (RMs) have shown potential for a wide range of applications. However, the inherent water-insolubility of RMs hinders their further application prospects, especially for applications related to biology. We recently reported the first successful transfer of RMs from organic media to an aqueous phase without changing the smart water pools by the hydrolysis of an arm-cleavable interfacial cross-linked reverse micelles. Herein, we employed another elaborate amphiphile 1 to construct new acrylamide-based cross-linked water-soluble nanoparticles (ACW-NPs) under much gentler conditions. The special property of the water pools of the ACW-NPs was confirmed by both the Förster resonance energy transfer (FRET) between 5-((2-aminoethyl)amino)naphthalene-1-sulfonic acid (1,5-EDANS) and benzoic acid, 4-[2-[4-(dimethylamino)phenyl]diazenyl] (DABCYL) and satisfactory colloidal stability in 10% fetal bovine serum. Importantly, featured by the gentle synthetic strategy, confined water pool, and carboxylic acid-functionalized surface, the new ACW-NPs are well suitable for biological applications. As an example, the fluorescent reagent 8-hydroxy-1,3,6-pyrenetrisulfonic acid trisodium salt (HPTS) was encapsulated in the core and simultaneously, the anticancer drug gemcitabine (Gem) was covalently conjugated onto the surface exterior. As expected, the resulting multifunctional ACW-NPs@HPTS@Gem exhibits a high imaging effect and anticancer activity for non-small lung cancer cells.

  5. Debinding behaviour of a water soluble PEG/PMMA binder for Ti metal injection moulding

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Gang [Department of Chemical and Materials Engineering, The University of Auckland, Private Bag 92019, Auckland 1142 (New Zealand); Cao, Peng, E-mail: p.cao@auckland.ac.nz [Department of Chemical and Materials Engineering, The University of Auckland, Private Bag 92019, Auckland 1142 (New Zealand); Wen, Guian [Department of Chemical and Materials Engineering, The University of Auckland, Private Bag 92019, Auckland 1142 (New Zealand); Edmonds, Neil [School of Chemical Science, The University of Auckland, Private Bag 92019, Auckland 1142 (New Zealand)

    2013-05-15

    Polyethylene glycol (PEG) has been becoming a common component in the design of water soluble binder systems for metal injection moulding. Similar to solvent debinding, PEG can be leached out by water and the mechanism of debinding was proposed in the literature with somehow misleading information about the debinding mechanism, particularly about the formation of PEG gel. This work investigates the debinding behaviours of a PEG-based binder in titanium compacts. Titanium powder is formulated with PEG, poly(methyl methacrylate) (PMMA) and stearic acid (SA) to formulate titanium feedstock. To determine the debinding kinetics, the PEG removal percentages are measured at three different temperatures and for various specimen thicknesses. A mathematic model based on diffusion-controlled debinding process is established. The evolution of porous microstructure during the water debinding process is observed using scanning electron microscopy. Based on these observations, a water debinding mechanism for titanium alloy compacts formulated with PEG-based binders is proposed. - Highlights: ► The water-debinding behaviours of the PEG binder system were investigated. ► PEG dissolution and transportation, and the pore structure development. ► A water debinding mechanism of PEG-based binders is proposed. ► Incorrect explanation of PEG gelling in the literature is corrected. ► Correction/modification made as per the reviewers' comments and suggestions.

  6. [Characterization of Water-soluble Ions in PM₂.₅ of Beijing During 2014 APEC].

    Science.gov (United States)

    Yang, Dong-yan; Liu, Bao-xian; Zhang, Da-wei; Shi, Ai-jun; Zhou, Jian-nan; Jing, Kuan; Fu, Jia-ming

    2015-12-01

    The mass concentration of PM₂.₅ associated with its online and off-line water-soluble ions were obtained during 2014- 10- 2014-11. Secondary inorganic species NO₃⁻, SO₄²⁻ and NH₄⁺ were the major components of PM₂.₅ during different observation periods. The total concentration of NO₃⁻, SO₄²⁻ and NH₄⁺ was (26.8 ± 22.5) µg · m⁻³, which contributed (41.7 ± 8.5)% to PM₂.₅. The concentration of NO₃⁻ was higher than those of others and contributed most to PM₂.₅. The ions of NO₃⁻, SO₄²⁻ NH₄⁺ and Cl⁻ all showed three different periods during 2014 Beijing APEC, besides the different meteorological condition, the cumulative effect caused by local emissions and regional pollution could also not be ignored. Although the characteristics of water-soluble ions was different during different observation periods, there was no obvious acidification of PM₂.₅ in Beijing at the end of autumn and beginning of winter.

  7. Influence of polymethacrylates and compritol on release profile of a highly water soluble drug metformin hydrochloride

    Directory of Open Access Journals (Sweden)

    Sunita Dahiya

    2015-01-01

    Full Text Available Aims: The present investigation studied effect of polymethacrylates Eudragit RSPO, Eudragit RLPO and compritol 888 ATO on release profile of highly water soluble drug metformin hydrochloride (MET. Materials and Methods: The solid dispersions were prepared using drug:polymer ratios 1:1 and 1:5 by coevaporation and coprecipitation techniques. Solid dispersions were characterized by infrared Spectroscopy (IR, differential scanning calorimetry (DSC, X-ray diffractometry (XRD as well as content uniformity, in vitro dissolution studies in 0.1 N HCl pH 1.2, phosphate buffer pH 6.8. Results and Discussion: Results of the studies suggested that there were progressive disappearance or changes of prominent peaks in IR, X-ray diffraction and thermotropic drug signals in coevaporates and coprecipitates with increased amount of polymers. Moreover, the in vitro release of highly water soluble MET could be extended at higher drug:polymer ratios. Conclusion: It was summarized that Eudragit RLPO had greater capacity of drug release than Eudragit RSPO and Comproitol 888 and its coevaporates in 1:5 drug:polymer ratio (F11 displayed extended drug release with comparatively higher dissolution rates (92.15 % drug release at 12 hour following near Zero order kinetics (r² =0.9822.

  8. Simultaneous detection of water-soluble vitamins using the High Performance Liquid Chromatography (HPLC - a review

    Directory of Open Access Journals (Sweden)

    Rosemond Godbless Dadzie

    2014-01-01

    Full Text Available The water-soluble vitamins (WSV: ascorbic acid (vitamin C, thiamine (B1, riboflavin (B2, niacin (B3, panthothenic acid (B5, pyridoxine, and pyridoxal (B6, folic acid (B9, biotin(B8 , and B12 are very essential in the diet of humankind. As a result of ever increasing pressures from both consumers and legal enforcers, to specify accurately nutritive compositions of WSV that are present in food materials, many researchers have attempted to fill this niche through the provision of highly sensitive and rapid high performance liquid chromatography (HPLC procedures. In view of the health benefits of WSV, a replete of HPLC methods have been developed for simultaneous determination of their contents in nature and fortified food samples, nutritional supplements, as well as blood plasmas. The rate of losses of these vitamins during food processing and analysis, in addition to their transient dynamics, presents complexities in developing a highly sensitive HPLC procedure for their simultaneous separations and assays. This review critically assesses the different HPLC procedures developed by researchers and available in the open literature for simultaneous determination of water-soluble vitamins (WSV in dried tropical fruits materials. The study revealed that not a single chromatographic run developed by researchers can simultaneously elute all the WSV at a time. However, the HPLC procedures that are capable of determining all the WSV were coupled with electrospray ionization mass spectroscopy (ESI-MS, thus making the set-up expensive.

  9. Water-soluble chemistry and weathering characteristics of some tills in Western Dronning Maud Land, Antarctica

    Directory of Open Access Journals (Sweden)

    Lintinen, P.

    1997-12-01

    Full Text Available The water-soluble chemistry and weathering characteristics of tills were studied on three nunataks with differing bedrock characteristics in the Vestfjella and Heimefrontfjella areas of the Western Dronning Maud Land, Antarctica. The chemical analyses were performed using ion chromatography and ICP-AES. The relative weathering characteristics of the till surface boulders was assessed in study locations. No colour differences were observed in test pits dug in Basen and Utpostane nunataks at Vestfjella, whereas the till in Mygehenget nunatak at Heimefrontfjella has a pronounced soil profile in which the surface part has a banded rusty brown and light-coloured accumulations. The highest concentrations of readily soluble ions were recorded in the Mygehenget samples characterized by high (SO42- (5800-39000 ppm and Mg concentrations (540-6000 ppm, while the Basen samples had the highest concentrations of Fe2+(23-390 ppm, Al3+ (60-1000 ppm and Si4+ (23-1700 ppm and the Utpostane samples the lowest ones. The SO4/Na+, Na+/CI- and Mg2+/Na+ ratios for the samples differ markedly from those typically encountered in sea water. The presence of the highest concentrations of many of the analysed ions in the Mygehenget soil samples is in line with the advanced weathering of the surface boulders. The high Fe2+ , Si4+ and Al3+ concentrations in the Basen samples may be attributable to the weathering of olivine alteration products.

  10. Incorporation of titanate nanosheets to enhance mechanical properties of water-soluble polyamic acid

    Science.gov (United States)

    Harito, C.; Bavykin, Dmitry V.; Walsh, Frank C.

    2017-07-01

    Pyromeliticdianhydride (PMDA) and 4’,4’-oxydianiline (ODA) were used as monomers of polyimide. To synthesise a water soluble polyimide precursor (polyamic acid salt), triethylamine (TEA) was added to polyamic acid with a TEA/COOH mole ratio of 1:1. Titanate nanosheets were synthesised by solid-state reaction, ion-exchanged with acid, and exfoliated by TEA. Exfoliated titanate nanosheets were mixed with water soluble polyamic acid salt as reinforcing filler. Drop casting was deployed to synthesise polyamic acid/titanate nanosheet nanocomposite films. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were employed to study the morphology and dispersion of nanosheets in the colloidal dispersion and the solid film composite. Modulus and hardness of nanocomposites was provided by nanoindentation. Hardness increased by 90% with addition of 2% TiNS while modulus increased by 103% compared to pure polymer. This behaviour agrees well with Halpin-Tsai theoretical predictions up to 2 wt% filler loading; agglomeration occurs at higher concentrations.

  11. Synthesis of metallocomplexes of water soluble bisquinolinylporhyrins as potential antimicrobial agents

    Directory of Open Access Journals (Sweden)

    Yu. V. Ishkov

    2017-12-01

    Full Text Available At present, extensive research is being carried out on the phenomenon of resistance of microbes to antibiotics, including the newest of them. Among the most promising drug candidates for treatment such superbugs is derivatives of 5,15-disubstituted water-soluble porphyrins developed and patented by Destiny Pharma, UK. Here, we continued of our investigation of quinolinylporphyrins and report about synthesis of 5,15-di(n-propyl-10,20-di(3-quinolinylporphyrine and its isomer - 5,10-di(n-propyl-15,20-di(3-quinolinylporphyrine and their complexes with Fe and Mn. The porphyrins was obtained by mixed aldehydes condensation of mixture quinoline-3-carbaldehyde and n-butyraldehyde with pyrrole in propionic acid with small amount propionic anhydride. Above mentioned porphyrins was separated and purified by column chromatography on silica gel and their Fe and Mn complexes was synthesized in refluxing DMF by treatment respectively FeCl3 and Mn(CH3CO22. Water-soluble form of the metalloporphyrines was obtained by quaternization of nitrogen atom of quinolinyl substituents by methyl-paratoluenesulfonate for further investigation their antimicrobial properties.

  12. Water-Soluble Polymeric Interfacial Material for Planar Perovskite Solar Cells.

    Science.gov (United States)

    Zheng, Lingling; Ma, Yingzhuang; Xiao, Lixin; Zhang, Fengyan; Wang, Yuanhao; Yang, Hongxing

    2017-04-26

    Interfacial materials play a critical role in photoelectric conversion properties as well as the anomalous hysteresis phenomenon of the perovskite solar cells (PSCs). In this article, a water-soluble polythiophene PTEBS was employed as a cathode interfacial material for PSCs. Efficient energy level aligning and improved film morphology were obtained due to an ultrathin coating of PTEBS. Better ohmic contact between the perovskite layer and the cathode also benefits the charge transport and extraction of the device. Moreover, less charge accumulation at the interface weakens the polarization of the perovskite resulting in a relatively quick response of the modified device. The ITO/PTEBS/CH3NH3PbI3/spiro-MeOTAD/Au cells by an all low-temperature process achieved power conversion efficiencies of up to 15.4% without apparent hysteresis effect. Consequently, the utilization of this water-soluble polythiophene is a practical approach for the fabrication of highly efficient, large-area, and low-cost PSCs and compatible with low-temperature solution process, roll-to-roll manufacture, and flexible application.

  13. Water-soluble acacetin prodrug confers significant cardioprotection against ischemia/reperfusion injury.

    Science.gov (United States)

    Liu, Hui; Yang, Lei; Wu, Hui-Jun; Chen, Kui-Hao; Lin, Feng; Li, Gang; Sun, Hai-Ying; Xiao, Guo-Sheng; Wang, Yan; Li, Gui-Rong

    2016-11-07

    The morbidity and mortality of patients with ischemic cardiomyopathy resulted from ischemia/reperfusion injury are very high. The present study investigates whether our previously synthesized water-soluble phosphate prodrug of acacetin was cardioprotective against ischemia/reperfusion injury in an in vivo rat model. We found that intravenous administration of acacetin prodrug (10 mg/kg) decreased the ventricular arrhythmia score and duration, reduced ventricular fibrillation and infarct size, and improved the impaired heart function induced by myocardial ischemia/reperfusion injury in anesthetized rats. The cardioprotective effects were further confirmed with the parent compound acacetin in an ex vivo rat regional ischemia/reperfusion heart model. Molecular mechanism analysis revealed that acacetin prevented the ischemia/reperfusion-induced reduction of the anti-oxidative proteins SOD-2 and thioredoxin, suppressed the release of inflammation cytokines TLR4, IL-6 and TNFα, and decreased myocyte apoptosis induced by ischemia/reperfusion. Our results demonstrate the novel evidence that acacetin prodrug confer significant in vivo cardioprotective effect against ischemia/reperfusion injury by preventing the reduction of endogenous anti-oxidants and the release of inflammatory cytokines, thereby inhibiting cardiomyocytes apoptosis, which suggests that the water-soluble acacetin prodrug is likely useful in the future as a new drug candidate for treating patients with acute coronary syndrome.

  14. Water soluble bioactives of nacre mediate antioxidant activity and osteoblast differentiation.

    Directory of Open Access Journals (Sweden)

    Ratna Chaturvedi

    Full Text Available The water soluble matrix of nacre is a proven osteoinductive material. In spite of the differences in the biomolecular compositions of nacre obtained from multiple species of oysters, the common biochemical properties of those principles substantiate their biological activity. However, the mechanism by which nacre stimulates bone differentiation remains largely unknown. Since the positive impact of antioxidants on bone metabolism is well acknowledged, in this study we investigated the antioxidant potential of a water soluble matrix (WSM obtained from the nacre of the marine oyster Pinctada fucata, which could regulate its osteoblast differentiation activity. Enhanced levels of ALP activity observed in pre-osteoblast cells upon treatment with WSM, suggested the induction of bone differentiation events. Furthermore, bone nodule formation and up-regulation of bone differentiation marker transcripts, i.e. collagen type-1 and osteocalcin by WSM confirmed its ability to induce differentiation of the pre-osteoblasts into mature osteoblasts. Remarkably, same WSM fraction upon pre-treatment lowered the H2O2 and UV-B induced oxidative damages in keratinocytes, thus indicating the antioxidant potential of WSM. This was further confirmed from the in vitro scavenging of ABTS and DPPH free radicals and inhibition of lipid peroxidation by WSM. Together, these results indicate that WSM poses both antioxidant potential and osteoblast differentiation property. Thus, bioactivities associated with nacre holds potential in the development of therapeutics for bone regeneration and against oxidative stress induced damages in cells.

  15. Novel water-soluble fisetin/cyclodextrins inclusion complexes: Preparation, characterization, molecular docking and bioavailability.

    Science.gov (United States)

    Zhang, Jian-Qiang; Jiang, Kun-Ming; An, Kun; Ren, Si-Hao; Xie, Xiao-Guang; Jin, Yi; Lin, Jun

    2015-12-11

    Novel water-soluble inclusion complexes for fisetin (FIT) were developed by introducing β-cyclodextrin (β-CD) and γ-CD. Properties of the obtained complexes, as well as the interactions between each component, were systematically investigated in both solution and solid states by means of ESI-MS, NMR, FT-IR, XRD, DSC, SEM etc. All characterization information demonstrated that FIT/CDs inclusion complexes were formed, and exhibited different spectroscopic features and properties from FIT. A complex with 1:1 stoichiometry of FIT and CDs was confirmed with Job's method. Meanwhile, as supported by molecular modeling calculations, we suggested that phenyl group (C ring) of FIT molecule was included in the CDs cavity from the wide side. Moreover, the water solubility of FIT/CDs was successfully improved from 2.8 mg/mL (in ethanol aqueous solution) to 4.5 mg/mL (FIT/β-CD complex) and 7.8 mg/mL (FIT/γ-CD complex), and higher thermal stability results were shown by thermal analysis for those complexes. Notably, the inclusion complexes displayed almost two times higher cytotoxicity compared to free FIT against Hela and MCF-7 cells. These results suggested that FIT/CDs complexes could be potentially useful in food industry and healthcare area. Copyright © 2015 Elsevier Ltd. All rights reserved.

  16. Synthesis and photophysicochemical studies of a water soluble conjugate between folic acid and zinc tetraaminophthalocyanine

    Energy Technology Data Exchange (ETDEWEB)

    Khoza, Phindile; Antunes, Edith [Department of Chemistry, Rhodes University, PO Box 94, Grahamstown (South Africa); Chen, Ji-Yao [State Key Laboratory of Surface Physics and Department of Physics, Fudan University, Shanghai 200433 (China); Nyokong, Tebello, E-mail: t.nyokong@ru.ac.za [Department of Chemistry, Rhodes University, PO Box 94, Grahamstown (South Africa)

    2013-02-15

    This work reports on the synthesis of zinc tetraaminophthalocyanine (ZnTAPc) functionalized with folic acid (FA), forming ZnTAPcFA. The conjugate between FA and ZnTAPc was soluble in water whereas ZnTAPc alone is not. The structure of ZnTAPcFA conjugate was elucidated by {sup 1}H NMR, MALDI-TOF mass and FTIR spectra. Photophysical and photochemical studies of ZnTAPcFA were conducted in DMSO. The increase in fluorescence quantum yield of the conjugate was accompanied by a decrease in the triplet and singlet oxygen quantum yields. The changes in triplet quantum and singlet oxygen quantum yields were marginal when ZnTAPc was simply mixed with FA without a chemical bond. - Highlights: Black-Right-Pointing-Pointer A conjugate between folic acid and a zinc tetraaminophthalocyanine was formed. Black-Right-Pointing-Pointer The conjugate is water soluble even though the phthalocyanine alone is not. Black-Right-Pointing-Pointer The fluorescence quantum yield of the conjugate was enhanced compared to the phthalocyanine alone. Black-Right-Pointing-Pointer Triplet quantum yields decreased for the conjugate.

  17. Ion-pair chromatographic separation of water-soluble gold monolayer-protected clusters.

    Science.gov (United States)

    Choi, Martin M F; Douglas, Alicia D; Murray, Royce W

    2006-04-15

    We demonstrate the efficacy of ion-pair chromatography for separations of samples of charged, polydisperse, water-soluble gold nanoparticles protected by monolayers of N-acetyl-l-cysteine and of tiopronin ligands. These nanoparticle mixtures have 1-2-nm-diameter Au core sizes as estimated from UV-visible spectra of the separated components. This size range encompasses the transition from bulk metal to molecular properties. The nanoparticle mixtures were resolved, the smallest nanoparticles eluting first, on an octadecylsilyl (C18) column using isocratic elution with a methanol/water mobile phase containing tetrabutylammonium fluoride (Bu4N+F-) and phosphate buffer. The column retention increases with Bu4N+F- concentration, lowered pH, and decreasing methanol volume fraction. The retention mechanism is dominated by ion-pairing in either the mobile phase or at the stationary/mobile-phase interface. Size exclusion effects, used in many previous nanoparticle separations, are insignificant.

  18. Nanoparticle formation of poorly water-soluble drugs from ternary ground mixtures with PVP and SDS.

    Science.gov (United States)

    Itoh, Koichi; Pongpeerapat, Adchara; Tozuka, Yuichi; Oguchi, Toshio; Yamamoto, Keiji

    2003-02-01

    Poorly water-soluble drugs N-5159, griseofulvin (GFV), glibenclamide (GBM) and nifedipine (NFP) were ground in a dry process with polyvinylpyrrolidone (PVP) and sodium dodecyl sulfate (SDS). Different crystallinity behavior of each drug during grinding was shown in the ternary Drug/PVP/SDS system. However, when each ternary Drug/PVP/SDS ground mixture was added to distilled water, crystalline nanoparticles which were 200 nm or less in size were formed and had excellent stability. Zeta potential measurement suggested that the nanoparticles had a structure where SDS was adsorbed onto the particles that were formed by the adsorption of PVP on the surface of drug crystals. Stable existence of crystalline nanoparticles was attributable to the inhibition of aggregation caused by the adsorption of PVP and SDS on the surface of drug crystals. Furthermore, the electrostatic repulsion due to the negative charge of SDS on a shell of nanoparticles could be assumed to contribute to the stable dispersion.

  19. Hygroscopic behavior of water-soluble matter in marine aerosols over the East China Sea.

    Science.gov (United States)

    Yan, Yu; Fu, Pingqing; Jing, Bo; Peng, Chao; Boreddy, S K R; Yang, Fan; Wei, Lianfang; Sun, Yele; Wang, Zifa; Ge, Maofa

    2017-02-01

    In this study, we investigated hygroscopic properties of water-soluble matter (WSM) in marine aerosols over the East China Sea, which were collected during a Natural Science Foundation of China (NSFC) sharing cruise in 2014. Hygroscopic growth factors (g) of WSM were measured by a hygroscopicity tandem differential mobility analyzer (H-TDMA) with an initial dry particle mobility diameter of 100nm. The observed g at 90% relative humidity (RH), g(90%) WSM , defined as the ratio of the particle diameter at 90% RH to that at RHsea water was likely due to the transport of anthropogenic aerosols, chemical aging of dust particles, the contribution of biomass burning products, and the aerosol hygroscopic growth inhibition of organics. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Hydrogen-Bonding-Induced Fluorescence: Water-Soluble and Polarity-Independent Solvatochromic Fluorophores.

    Science.gov (United States)

    Okada, Yohei; Sugai, Masae; Chiba, Kazuhiro

    2016-11-18

    Fluorophores with emission wavelengths that shift depending on their hydrogen-bonding microenvironment in water would be fascinating tools for the study of biological events. Herein we describe the design and synthesis of a series of water-soluble solvatochromic fluorophores, 2,5-bis(oligoethylene glycol)oxybenzaldehydes (8-11) and 2,5-bis(oligoethylene glycol)oxy-1,4-dibenzaldehydes (14-17), based on a push-pull strategy. Unlike typical examples in this class of fluorophores, the fluorescence properties of these compounds are independent of solvent polarity and become fluorescent upon intermolecular hydrogen-bonding, exhibiting high quantum yields (up to ϕ = 0.55) and large Stokes shifts (up to 134 nm). Furthermore, their emission wavelengths change depending on their hydrogen-bonding environment. The described fluorophores provide a starting point for unprecedented applications in the fields of chemical biology and medicinal chemistry.

  1. Method to produce water-soluble sugars from biomass using solvents containing lactones

    Energy Technology Data Exchange (ETDEWEB)

    Dumesic, James A.; Luterbacher, Jeremy S.

    2017-08-08

    A process to produce an aqueous solution of carbohydrates that contains C6-sugar-containing oligomers, C6 sugar monomers, C5-sugar-containing oligomers, C5 sugar monomers, or any combination thereof is presented. The process includes the steps of reacting biomass or a biomass-derived reactant with a solvent system including a lactone and water, and an acid catalyst. The reaction yields a product mixture containing water-soluble C6-sugar-containing oligomers, C6-sugar monomers, C5-sugar-containing oligomers, C5-sugar monomers, or any combination thereof. A solute is added to the product mixture to cause partitioning of the product mixture into an aqueous layer containing the carbohydrates and a substantially immiscible organic layer containing the lactone.

  2. Water-soluble thin film transistors and circuits based on amorphous indium-gallium-zinc oxide.

    Science.gov (United States)

    Jin, Sung Hun; Kang, Seung-Kyun; Cho, In-Tak; Han, Sang Youn; Chung, Ha Uk; Lee, Dong Joon; Shin, Jongmin; Baek, Geun Woo; Kim, Tae-il; Lee, Jong-Ho; Rogers, John A

    2015-04-22

    This paper presents device designs, circuit demonstrations, and dissolution kinetics for amorphous indium-gallium-zinc oxide (a-IGZO) thin film transistors (TFTs) comprised completely of water-soluble materials, including SiNx, SiOx, molybdenum, and poly(vinyl alcohol) (PVA). Collections of these types of physically transient a-IGZO TFTs and 5-stage ring oscillators (ROs), constructed with them, show field effect mobilities (∼10 cm2/Vs), on/off ratios (∼2×10(6)), subthreshold slopes (∼220 mV/dec), Ohmic contact properties, and oscillation frequency of 5.67 kHz at supply voltages of 19 V, all comparable to otherwise similar devices constructed in conventional ways with standard, nontransient materials. Studies of dissolution kinetics for a-IGZO films in deionized water, bovine serum, and phosphate buffer saline solution provide data of relevance for the potential use of these materials and this technology in temporary biomedical implants.

  3. Solubility Determination and Modeling and Dissolution Thermodynamic Properties of Raspberry Ketone in Binary Solvent Mixtures of Ethanol and Water

    Science.gov (United States)

    Shu, Min; Zhu, Liang; Wang, Yan-fei; Yang, Jing; Wang, Liyu; Yang, Libin; Zhao, Xiaoyu; Du, Wei

    2018-01-01

    The solubility and dissolution thermodynamic properties of raspberry ketone in a set of binary solvent mixtures (ethanol + water) with different compositions were experimentally determined by static gravimetrical method in the temperature range of 283.15-313.15 K at 0.10 MPa. The solubility of raspberry ketone in this series of ethanol/water binary solvent mixtures was found to increase with a rise in temperature and the rising mole fraction of ethanol in binary solvent mixtures. The van't Hoff, modified Apelblat and 3D Jouyban-Acree-van't Hoff equations were increasingly applied to correlate the solubility in ethanol/water binary solvent mixtures. The former two models could reach better fitting results with the solubility data, while the 3D model can be comprehensively used to estimate the solubility data in all the ratios of ethanol and water in binary solvent mixtures at random temperature. Furthermore, the changes of dissolution thermodynamic properties of raspberry ketone in experimental ethanol/water solvent mixtures were obtained by van't Hoff equation. For all the above experiments, these dissolution processes of raspberry ketone in experimental ethanol/water binary solvent mixtures were estimated to be endothermic and enthalpy-driven.

  4. Protein conformational modifications and kinetics of water-protein interactions in milk protein concentrate powder upon aging: effect on solubility.

    Science.gov (United States)

    Haque, Enamul; Bhandari, Bhesh R; Gidley, Michael J; Deeth, Hilton C; Møller, Sandie M; Whittaker, Andrew K

    2010-07-14

    Protein conformational modifications and water-protein interactions are two major factors believed to induce instability of protein and eventually affect the solubility of milk protein concentrate (MPC) powder. To test these hypotheses, MPC was stored at different water activities (a(w) 0.0-0.85) and temperatures (25 and 45 degrees C) for up to 12 weeks. Samples were examined periodically to determine solubility, change in protein conformation by Fourier transform infrared (FTIR) spectroscopy and principal component analysis (PCA), and water status (interaction of water with the protein molecule/surface) by measuring the transverse relaxation time (T(2)) with proton nuclear magnetic resonance ((1)H NMR). The solubility of MPC decreased significantly with aging, and this process was enhanced by increasing water activity (a(w)) and storage temperature. Minor changes in protein secondary structure were observed with FTIR, which indicated some degree of unfolding of protein molecules. PCA of the FTIR data was able to discriminate samples according to moisture content and storage period. Partial least-squares (PLS) analysis showed some correlation between FTIR spectral feature and solubility. The NMR T(2) results indicated the presence of three distinct populations of water molecules, and the proton signal intensity and T(2) values of proton fractions varied with storage conditions (humidity, temperature) and aging. Results suggest that protein/protein interactions may be initiated by unfolding of protein molecules that eventually affects solubility.

  5. A comparative assessment of solubility advantage from glassy and crystalline forms of a water-insoluble drug.

    Science.gov (United States)

    Chawla, Garima; Bansal, Arvind K

    2007-09-01

    The objective of the present study was to generate and characterize the glassy state of Irbesartan (IBS), with a view to exploit the solubility advantage from disordered high energy system. The major reason for limited solubility benefit from amorphous systems is their devitrification, on exposure to primarily aqueous dissolution medium. IBS is a lipophilic molecule and exhibits poor aqueous solubility and incomplete dissolution. IBS was found to be a good glass former (with glass transition/melting temperature >0.7), non-hygroscopic in nature and showed reasonable solid-state stability. The present work places particular emphasis on studying the influence of various dissolution environments on the devitrification of amorphous system. It was noted that IBS forms a relatively 'stable' glassy system with a 2.5-fold increase in aqueous solubility and a higher intrinsic dissolution rate (IDR). The dissolution behavior showed pH dependency and about eight-fold solubility advantage was obtained from amorphous system at pH 3. Both the crystalline and amorphous forms exhibited appreciably high solubility in HCl and HCl strength was found to significantly influence the solubility of crystalline form. Amorphous IBS showed reduced devitrification in HCl, as against water, thus highlighting the effect of dissolution environment on devitrification kinetics. Statistical and mathematical analyses were performed to compare the solubility advantage obtained using amorphous IBS vis-à-vis the crystalline counterpart.

  6. A New Approach on Estimation of Solubility and n-Octanol/ Water Partition Coefficient for Organohalogen Compounds

    Directory of Open Access Journals (Sweden)

    Chenzhong Cao

    2008-06-01

    Full Text Available The aqueous solubility (logW and n-octanol/water partition coefficient (logPOW are important properties for pharmacology, toxicology and medicinal chemistry. Based on an understanding of the dissolution process, the frontier orbital interaction model was suggested in the present paper to describe the solvent-solute interactions of organohalogen compounds and a general three-parameter model was proposed to predict the aqueous solubility and n-octanol/water partition coefficient for the organohalogen compounds containing nonhydrogen-binding interactions. The model has satisfactory prediction accuracy. Furthermore, every item in the model has a very explicit meaning, which should be helpful to understand the structure-solubility relationship and may be provide a new view on estimation of solubility.

  7. Cytotoxic properties of the alkaloid rutaecarpine and its oligocyclic derivatives and chemical modifications to enhance water-solubility.

    Science.gov (United States)

    Huang, Guozheng; Drakopoulos, Antonios; Saedtler, Marco; Zou, Huijuan; Meinel, Lorenz; Heilmann, Jörg; Decker, Michael

    2017-11-01

    The alkaloid rutaecarpine and its derivatives have been described as cytotoxic and hold potential as antitumor agents. Nevertheless, their synthesis is demanding and compounds display poor water solubility. Herein, we describe the synthesis of two sets of rutaecarpine derivatives with amine functions to improve solubility. Using a classic shake-flask experiment and a potentiometric titration platform, the water solubility of the compounds was determined. Solubility improved significantly with the amine functions connected over the indole-N atom. Reduction of metabolic activity and cell viability on HeLa cells was in the same range or better for these derivatives compared to the chemically unaltered parent compounds prepared in a new synthetic procedure established in our group. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. Current Trends in Self-Emulsifying Drug Delivery Systems (SEDDSs) to Enhance the Bioavailability of Poorly Water-Soluble Drugs.

    Science.gov (United States)

    Karwal, Rohit; Garg, Tarun; Rath, Goutam; Markandeywar, Tanmay S

    2016-01-01

    The main object of the self-emulsifying drug-delivery system (SEDDS) is oral bioavailability (BA) enhancement of a poorly water-soluble drug. Low aqueous solubility and low oral BA are major concerns for formulation scientists. As many drugs are lipophilic in nature, their lower solubility and dissolution are major drawbacks for their successful formulation into oral dosage forms. More than 60% of drugs have a lipophilic nature and exhibit poor aqueous solubility. Various strategies are reported in the literature to improve the solubility and enhance BA of lipophilic drugs, including the formation of a cyclodextrin complex, solid dispersions, and micronization. SEDDSs are ideally isotropic mixtures of drug, oil, surfactant, and/or cosurfactant. SEDDSs have gained increasing attention for enhancing oral BA and reducing drug dose. SEDDSs also provide an effective and excellent solution to the various issues related to the formulation of hydrophobic drugs that have limited solubility in gastrointestinal fluid. Our major focus of this review is to highlight the importance of SEDDSs in oral BA enhancement of poorly water-soluble drugs.

  9. Alarm pheromone that aggravates stress-induced hyperthermia is soluble in water.

    Science.gov (United States)

    Kiyokawa, Yasushi; Kikusui, Takefumi; Takeuchi, Yukari; Mori, Yuji

    2005-07-01

    We previously reported that stressed male Wistar rats released alarm pheromone from the perianal region, which aggravated stress-induced hyperthermia and increased Fos expression in the mitral/tufted cell layer of the accessory olfactory bulb in recipient rats. In this study, we attempted to obtain this pheromone in water using these responses as bioassay parameters. Water droplets were collected from the ceiling of a box in which no animal was placed, or from a box in which an anesthetized donor rat was given electrical stimulation to either the neck or perianal regions in order to induce neck odor or alarm pheromone release, respectively. Then we placed one of the three kinds of water-containing filter papers on the wall of a recipient's home cage and observed heart rate, body temperature and behavioral responses, as well as Fos expression in the main and accessory olfactory bulbs of the recipient. The water collected from the box containing the alarm pheromone was found to generate a reproduction of all of the responses seen in the animal that had been directly exposed to alarm pheromone in our previous studies. These results suggest that the alarm pheromone is soluble in water.

  10. Phase transfer of hydrophobic QDs for water-soluble and biocompatible nature through silanization

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ping, E-mail: mse_yangp@ujn.edu.cn [School of Material Science and Engineering, University of Jinan, Jinan 250022 (China); Zhou, Guangjun [State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100 (China)

    2011-12-15

    Graphical abstract: A facile and novel method has been developed for creating water-soluble and biocompatible CdSe/ZnS quantum dots with a small hydrodynamic diameter (less than 10 nm) via silanization. Highlights: Black-Right-Pointing-Pointer A facile and novel method has been developed for creating water-soluble and biocompatible CdSe/ZnS quantum dots (QDs) with a small hydrodynamic diameter (less than 10 nm). Black-Right-Pointing-Pointer The control of ligand exchange plays an important role to retain high fluorescence quantum yields. Black-Right-Pointing-Pointer The functional SiO{sub 2}-coated QDs were conjugated with immunoglobin G antibody by using biotin-streptavidin as linkers. Black-Right-Pointing-Pointer The QD phase transfer by silanization is a well-established method for generating biocompatible QDs. -- Abstract: A novel method has been developed for creating water-soluble and biocompatible CdSe/ZnS quantum dots (QDs) with a small hydrodynamic diameter (less than 10 nm). The silanization of the QDs was carried out by using partially hydrolyzed tetraethyl orthosilicate (TEOS) to replace organic ammine or tri-n-octylphosphine oxide on the surface of the QDs. The partially hydrolyzed 3-mercaptopropyltrimethoxysilane attached to the hydrolyzed TEOS layer on the QDs prevented the QDs from agglomeration when the QDs were transferred into water. The functional SiO{sub 2}-coated QDs were conjugated with immunoglobin G antibody by using biotin-streptavidin as linkers. The SiO{sub 2}-coated QDs exhibited the same absorption and photoluminescence (PL) spectra as those of initial QDs in organic solvents. The SiO{sub 2}-coated QDs preserved PL intensities, is colloidally stable over a wide pH range (pH 6-11). Because the mean diameter of amphiphilic polymer-coated QDs was almost 2 times of that of functional SiO{sub 2}-coated QDs, the QD phase transfer by silanization is a well-established method for generating biocompatible QDs.

  11. Characterization of the Water-Soluble Fraction of Woody Biomass Pyrolysis Oils

    Energy Technology Data Exchange (ETDEWEB)

    Stankovikj, Filip; McDonald, Armando G.; Helms, Gregory L.; Olarte, Mariefel V.; Garcia-Perez, Manuel

    2017-01-31

    This paper reports a study of the chemical composition of the water soluble (WS) fraction obtained by cold water precipitation of two commercial wood pyrolysis oils (BTG and Amaron). The fraction studied accounts for between 50.3 and 51.3 wt. % of the oils. With the most common analytical techniques used today for the characterization of this fraction (KF titration, GC/MS, hydrolysable sugars and total carbohydrates), it is possible to quantify only between 45 and 50 wt. % of it. Our results confirm that most of the total carbohydrates (hydrolysable sugars and non-hydrolysable) are soluble in water. The ion chromatography hydrolysis method showed that between 11.6 and 17.3 wt. % of these oils were hydrolysable sugars. A small quantity of phenols detectable by GC/MS (between 2.5 and 3.9 wt. %) were identified. It is postulated that the unknown high molecular weight fraction (30-55 wt. %) is formed by highly dehydrated sugars rich in carbonyl groups and WS phenols. The overall content of carbonyl, carboxyl, hydroxyl and phenolic compounds in the WS fraction were quantified by titration, Folin-Ciocalteu, 31P-NMR and 1H-NMR. The WS fraction contains between 5.5 and 6.2 mmol/g of carbonyl groups, between 0.4 and 1.0 mmol/g of carboxylic acid groups, between 1.2 and 1.8 mmol/g phenolic -OH, and between 6.0 and 7.9 mmol/g of aliphatic alcohol groups. Translation into weight fractions of the WS was done by supposing surrogate structures for the water soluble phenols, carbonyl and carboxyl groups and we estimated the content of WS phenols (21-27 wt. %), carbonyl (5-14 wt.%), and carboxyl (0-4 wt.%). Together with the total carbohydrates (23-27 wt.%), this approach leads to > 90 wt. % of the WS material in the bio-oils being quantified. We speculate the larger portion of the difference between the total carbohydrates and hydrolysable sugars is the missing furanic fraction. Further refinement of the suggested methods and development of separation schemes to obtain and

  12. Predicting the excess solubility of acetanilide, acetaminophen, phenacetin, benzocaine, and caffeine in binary water/ethanol mixtures via molecular simulation

    OpenAIRE

    Paluch, AS; Parameswaran, S.; Liu, S.(State Key Laboratory of Nuclear Physics and Technology, Peking University, Beijing, China); Kolavennu, A; Mobley, DL

    2015-01-01

    © 2015 AIP Publishing LLC. We present a general framework to predict the excess solubility of small molecular solids (such as pharmaceutical solids) in binary solvents via molecular simulation free energy calculations at infinite dilution with conventional molecular models. The present study used molecular dynamics with the General AMBER Force Field to predict the excess solubility of acetanilide, acetaminophen, phenacetin, benzocaine, and caffeine in binary water/ethanol solvents. The simula...

  13. The inhibiting influence of water soluble natural lignin on the determination of lignosulfonates by the vanilin method

    Energy Technology Data Exchange (ETDEWEB)

    Ganin, G.I.; Kaplin, V.T.

    1981-01-01

    Phenol and aldehyde fractions of water soluble natural lignin of wood pulp and bark of the spruce represent a complex mixture of compounds with a different molecular weight. They may exert an inhibiting influence on the determination of lignosufonates by the Vanilin method or directly (p-oxybenzaldehyde, vanilin lilac aldehyde, etc.) or with the formation of an inhibiting determination of the compound under conditions of the alkaline hydrolysis of lignosulfonates. The inhibiting influence of water soluble natural lignin eliminates the preliminary extraction of a sample of water by amyl alcohol.

  14. Investigation of Changes in Solubility Values of Some Non Impregnated Pine Species used in Water Cooling Towers

    Directory of Open Access Journals (Sweden)

    Murat ÖZALP

    2007-01-01

    Full Text Available Scotch pine (Pinus sylvestris L., Austrian black pine (Pinus nigra L. and Cyprus pine (Pinus brutia L. specimens were prepared and settled to water return system on water cooling tower. For every 3 months period’s specimens were tested solubility of hot and could water, 1% NaOH, alcohol-benzene and ethyl alcohol values were determined. For the control specimens significant color change, odour and surface softening was observed. For chemical analysis, all the solubility values were changed significantly.

  15. The elevation effect on water-soluble polysaccharides and DPPH free radical scavenging activity of Ganoderma lucidum K

    Science.gov (United States)

    Darsih, C.; Apriyana, W.; Nur Hayati, S.; Taufika Rosyida, V.; Hernawan; Dewi Poeloengasih, C.

    2017-02-01

    Water soluble polysaccharide is one of the important phytochemical in Ganoderma lucidum K. Phytochemicals in the plants, microorganisms, and plants were affected by internal and external factors. The objective of the research was to evaluate the effect of elevation on the water-soluble polysaccharides and its DPPH radical scavenging activity. We found that the water-polysaccharides in mushroom from Godean (elevation Ganoderma lucidum K from Godean (IC50 11.5 ± 0.29 mg/mL) higher than Kaliurang (IC50 14.4 ± 0.27%).

  16. An improved design of water-soluble propofol prodrugs characterized by rapid onset of action.

    Science.gov (United States)

    Lang, Bing-Chen; Yang, Jun; Wang, Yu; Luo, Yun; Kang, Yi; Liu, Jin; Zhang, Wen-Sheng

    2014-04-01

    Phosphate ester prodrugs of propofol (fospropofol, HX0969W) were designed to avoid the unsatisfactory water solubility of the parent drug. However, in previous clinical trials, there were reported prodrug side effects such as paresthesia and pruritus. The accumulation of a phosphate ester component was found to be the main culprit. To exclude this potential risk, we designed 2 amino acid propofol prodrugs (HX0969-Gly-F3, HX0969-Ala-HCl) based on the lead compound (HX0969) by introducing the amino acid group into the structures of the propofol prodrugs. We hypothesized that the improved propofol prodrugs could not only eliminate those adverse effects but also retain their rapid action and good water solubility. The lead compound HX0969 was synthesized by the sodium borohydride-iodine system. HX0969W, HX0969-Gly-F3, and HX0969-Ala-HCl were synthesized from HX0969. The solubility of fospropofol, HX0969W, HX0969-Gly-F3, and HX0969-Ala-HCl in normal saline was tested. The bioconversions from those prodrugs to propofol in different physiological media (rat plasma, rhesus monkey plasma, and rat hepatic microsomes) were determined in vitro. An in vivo test in the rats was performed to measure the 50% effective dose (ED50) of the 4 propofol prodrugs. Their action onset time and duration time were also measured after their equipotent doses were given. (1) The water solubility of fospropofol, HX0969W, HX0969-Gly-F3, and HX0969-Ala-HCl was 461.46 ± 26.40 mg/mL, 189.45 ± 5.02 mg/mL, 49.88 ± 0.58 mg/mL, and 245.99 ± 4.83 mg/mL, respectively; (2) The hydrolysis tests in both the rat plasma and the rhesus monkey plasma revealed that the 2 amino acid prodrugs released propofol to a greater extent at a more rapid rate than the 2 phosphate prodrugs during the testing period of 5 hours. All 4 prodrugs released propofol rapidly in the presence of rat hepatic enzymes; (3) Compared with the previous prodrugs (fospropofol, HX0969W), the 2 novel compounds (HX0969-Gly-F3, HX0969-Ala

  17. Effects of solvent evaporation on water sorption/solubility and nanoleakage of adhesive systems

    Directory of Open Access Journals (Sweden)

    Talita Baumgratz Cachapuz CHIMELI

    2014-07-01

    Full Text Available Objective: To evaluate the influence of solvent evaporation in the kinetics of water diffusion (water sorption-WS, solubility-SL, and net water uptake and nanoleakage of adhesive systems. Material and Methods: Disk-shaped specimens (5.0 mm in diameter x 0.8 mm in thickness were produced (N=48 using the adhesives: Clearfil S3 Bond (CS3/Kuraray, Clearfil SE Bond - control group (CSE/Kuraray, Optibond Solo Plus (OS/Kerr and Scotchbond Universal Adhesive (SBU/3M ESPE. The solvents were either evaporated for 30 s or not evaporated (N=24/per group, and then photoactivated for 80 s (550 mW/cm2. After desiccation, the specimens were weighed and stored in distilled water (N=12 or mineral oil (N=12 to evaluate the water diffusion over a 7-day period. Net water uptake (% was also calculated as the sum of WS and SL. Data were submitted to 3-way ANOVA/Tukey's test (α=5%. The nanoleakage expression in three additional specimens per group was also evaluated after ammoniacal silver impregnation after 7 days of water storage under SEM. Results: Statistical analysis revealed that only the factor "adhesive" was significant (p<0.05. Solvent evaporation had no influence in the WS and SL of the adhesives. CSE (control presented significantly lower net uptake (5.4%. The nanoleakage was enhanced by the presence of solvent in the adhesives. Conclusions: Although the evaporation has no effect in the kinetics of water diffusion, the nanoleakage expression of the adhesives tested increases when the solvents are not evaporated.

  18. Water-soluble polysaccharide extracts from the oyster culinary-medicinal mushroom pleurotus ostreatus (Agaricomycetes) with HMGCR inhibitory activity

    NARCIS (Netherlands)

    Gil-Ramírez, Alicia; Smiderle, Fhernanda R.; Morales, Diego; Govers, Coen; Synytsya, Andriy; Wichers, Harry J.; Iacomini, Marcello; Soler-Rivas, Cristina

    2017-01-01

    Water extracts from Pleurotus ostreatus containing no statins showed 3-hydroxy-3-methyl-glutaryl CoA reductase (HMGCR) inhibitory activity (in vitro) that might be due to specific water-soluble polysaccharides (WSPs); when isolated and deproteinized, increasing concentrations of the WSP extract

  19. Cultivar by environment effects of perennial ryegrass cultivars selected for high water soluble carbohydrates managed under differing precipitation levels

    Science.gov (United States)

    Historic results of perennial ryegrass (Lolium perenne L.) breeding include improved disease resistance, biomass, and nutritional quality. Yet, lack of tolerance to water stress limits its wise use. Recent efforts to increase water soluble carbohydrate (WSC) content in perennial ryegrass may incre...

  20. Water deficit modifies the carbon isotopic composition of lipids, soluble sugars and leaves of Copaifera langsdorffii Desf. (Fabaceae

    Directory of Open Access Journals (Sweden)

    Angelo Albano da Silva Bertholdi

    2017-11-01

    Full Text Available ABSTRACT Water deficit is most frequent in forest physiognomies subjected to climate change. As a consequence, several tree species alter tissue water potential, gas exchange and production of carbon compounds to overcome damage caused by water deficiency. The working hypothesis, that a reduction in gas exchange by plants experiencing water deficit will affect the composition of carbon compounds in soluble sugars, lipids and vegetative structures, was tested on Copaifera langsdorffii. Stomatal conductance, leaf water potential, and CO2 assimilation rate declined after a period of water deficit. After rehydration, leaf water potential and leaf gas exchange did not recover completely. Water deficit resulted in 13C enrichment in leaves, soluble sugars and root lipids. Furthermore, the amount of soluble sugars and root lipids decreased after water deficit. In rehydration, the carbon isotopic composition and amount of root lipids returned to levels similar to the control. Under water deficit, 13C-enriched in root lipids assists in the adjustment of cellular membrane turgidity and avoids damage to the process of water absorption by roots. These physiological adjustments permit a better understanding of the responses of Copaifera langsdorffi to water deficit.

  1. Facile iron-mediated AGET ATRP for water-soluble poly(ethylene glycol) monomethyl ether methacrylate in water.

    Science.gov (United States)

    He, Weiwei; Zhang, Lifen; Miao, Jie; Cheng, Zhenping; Zhu, Xiulin

    2012-06-27

    An environmentally friendly iron catalyst system was successfully developed in water for the AGET ATRP (activator generated by electron transfer for atom transfer radical polymerization) of water-soluble monomer poly(ethylene glycol) monomethyl ether methacrylate (PEGMA) for the first time. A kinetic study indicated that the polymerization was a living/controlled process in which molecular weight increased linearly with monomer conversion. A lower molecular weight distribution (M(w)/M(n) < 1.5) was maintained. The nontoxic and biocompatible characteristics of the iron catalyst facilitate its mediated polymerization to be used in the preparation of functional polymer materials for biomedical use. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. [Composition of organic carbon/elemental carbon and water-soluble ions in rice straw burning].

    Science.gov (United States)

    Hong, Lei; Liu, Gang; Yang, Meng; Xu, Hui; Li, Jiu-hai; Chen, Hui-yu; Huang, Ke; Yang, Wei-zong; Wu, Dan

    2015-01-01

    Six types of rice straw were selected in China in this paper, the homemade biomass combustion devices were used to simulate the outdoor burning. The concentrations of organic carbon (OC), elemental carbon (C) and water-soluble ions in particular matter produced by the flaming and smoldering were analyzed using Thermal Optical Carbon Analyzer (Model 2001A) and Ion Chromatography(ISC 2000/ISC 3000). The results showed that the mean value of OC (EFoc) and EC (EFEC) emission factors were (6.37 +/- 1.86) g x kg(-1) and (1.07 +/- 0.30) g x kg(-1) under the flaming conditions, respectively, while under the smoldering conditions the two mean values were (37.63 +/- 6.26) g x kg(-1) and (4.98 x 1.42) g x kg(-1). PM, OC and EC emitted from the same kind of rice straw had similar change trends. The average values of OC/EC under flaming and smoldering were 5.96 and 7.80, and the value of OC/PM was almost unchanged along with the combustion state. Nevertheless, the values of EC/PM under flaming and smoldering were 0.06-0.08 and 0.08-0.11, respectively. The trend of combustion state could be determined using the ratio of EC/PM and the RZ of emitted OC and EC through those two types of combustion reached 0. 97, which was significantly correlated at the 0. 01 level. Among the anions, Cl- showed the highest concentration, the results indicated that the average value of of Cl- emission factor was (0.246 +/- 0.150) g x kg(-1) under flaming, while it was (0.301 +/- 0.274) g x kg(-1) under smoldering. However, A big difference between flaming and smoldering was found in the average value of K+ emission factor, where (0.118 +/- 0.051) g x kg(-1) of the former was significantly higher than the latter (0.053 +/- 0.031) g x kg(-1). When it came to Na, the result of smoldering was significantly higher than that of flaming. The correlation between water-soluble ions in flaming was more significant than smoldering. Rice straw burning could be distinguished from fossil fuels and some other

  3. Nanosuspensions of poorly water soluble drugs prepared by top-down technologies.

    Science.gov (United States)

    Zhang, Xin; Li, Luk Chiu; Mao, Shirui

    2014-01-01

    In recent years, nanosuspensions have been accepted as a valuable drug delivery system for poorly water-soluble drugs. Topdown and bottom-up technologies are the two main approaches for generating nanosuspensions. Several products manufactured by the top-down technologies have been successfully commercialized demonstrating that the processing features of the technologies are adaptable to industrial scale operation and meeting high pharmaceutical quality control standards. Nanosuspensions of poorly soluble drugs have shown to achieve dramatic improvements on the in vivo performance of the drugs including the enhancement of bioavailability and elimination of food effect when administered orally. This review will focus on the preparation of nanosuspensions by the top-down technologies. The influence of drug physicochemical properties on the nanosuspension forming process and the subsequent conversion into a dry powder form will be discussed with proposed mechanisms. In addition, the criteria for selection of stabilizers will be reviewed. The characteristics of drugs and stabilizers as well as their interaction effects on the redispersion properties of a dry powder prepared from a nanosuspension will be highlighted. The different administration routes of nanosuspensions are also presented with their potential therapeutic benefits.

  4. Water-soluble BODIPY-based fluorescent probe for mitochondrial imaging (Conference Presentation)

    Science.gov (United States)

    Sui, Binglin; Tang, Simon; Woodward, Adam W.; Kim, Bosung; Belfield, Kevin D.

    2016-03-01

    A new mitochondrial targeting fluorescent probe is designed, synthesized, characterized, and investigated. The probe is composed of three moieties, a BODIPY platform working as the fluorophore, two triphenylphosphonium (TPP) groups serving as mitochondrial targeting moiety, and two long highly hydrophilic polyethylene glycol (PEG) chains to increase its water solubility and reduce its cytotoxicity. As a mitochondria-selective fluorescent probe, the probe exhibits a series of desirable advantages compared with other reported fluorescent mitochondrial probes. It is readily soluble in aqueous media and emits very strong fluorescence. Photophysical determination experiments show that the photophysical properties of the probe are independent of solvent polarity and it has high quantum yield in various solvents examined. The probe also has good photostability and pH insensitivity over a broad pH range. Results obtained from cell viability tests indicate that the cytotoxicity of the probe is very low. Confocal fluorescence microscopy colocalization experiments reveal that this probe possesses excellent mitochondrial targeting ability and it is suitable for imaging mitochondria in living cells.

  5. Effect of Thiobacillus, sulfur, and vermicompost on the water-soluble phosphorus of hard rock phosphate.

    Science.gov (United States)

    Aria, Marzieh Mohammady; Lakzian, Amir; Haghnia, Gholam Hosain; Berenji, Ali Reza; Besharati, Hosein; Fotovat, Amir

    2010-01-01

    Sulfur, organic matter, and inoculation with sulfur-oxidizing bacteria are considered as amendments to increase the availability of phosphorus from rock phosphate. The present study was conducted to evaluate the best combination of sulfur, vermicompost, and Thiobacillus thiooxidans inoculation with rock phosphate from Yazd province for direct application to agricultural lands in Iran. For such study, an experiment was carried out in a completely randomized design with factorial arrangement: Elemental sulfur originated from Sarakhs mine at three rates, 0% (S1), 10% (S2), 20% (S3), vermicompost at two rates, 0% (V1), 15% (V2), and inoculation without (B1) and with (B2) T. thiooxidans, in three replications. The results showed that water-soluble phosphorus (WSP) content was significantly higher in inoculated treatments compared to non-inoculated treatments. Sulfur had a significant effect on WSP. The highest solubility rate of rock phosphate was obtained in 20% of sulfur (S3) treatments and it was 2.4 times more than S1 treatments. Vermicompost also had a significant and positive effect on WSP of rock phosphate dissolution. The results also revealed that the highest concentration of WSP, sulfate and the lowest pH were obtained in treatments with 20% sulfur, 15% vermicompost inoculated with T. thiooxidans (B2S3V2).

  6. Toxicity evaluation of boron nitride nanospheres and water-soluble boron nitride in Caenorhabditis elegans.

    Science.gov (United States)

    Wang, Ning; Wang, Hui; Tang, Chengchun; Lei, Shijun; Shen, Wanqing; Wang, Cong; Wang, Guobin; Wang, Zheng; Wang, Lin

    2017-01-01

    Boron nitride (BN) nanomaterials have been increasingly explored for potential biological applications. However, their toxicity remains poorly understood. Using Caenorhabditis elegans as a whole-animal model for toxicity analysis of two representative types of BN nanomaterials - BN nanospheres (BNNSs) and highly water-soluble BN nanomaterial (named BN-800-2) - we found that BNNSs overall toxicity was less than soluble BN-800-2 with irregular shapes. The concentration thresholds for BNNSs and BN-800-2 were 100 µg·mL-1 and 10 µg·mL-1, respectively. Above this concentration, both delayed growth, decreased life span, reduced progeny, retarded locomotion behavior, and changed the expression of phenotype-related genes to various extents. BNNSs and BN-800-2 increased oxidative stress levels in C. elegans by promoting reactive oxygen species production. Our results further showed that oxidative stress response and MAPK signaling-related genes, such as GAS1, SOD2, SOD3, MEK1, and PMK1, might be key factors for reactive oxygen species production and toxic responses to BNNSs and BN-800-2 exposure. Together, our results suggest that when concentrations are lower than 10 µg·mL-1, BNNSs are more biocompatible than BN-800-2 and are potentially biocompatible material.

  7. Water soluble biocompatible vesicles based on polysaccharides and oligosaccharides inclusion complexes for carotenoid delivery.

    Science.gov (United States)

    Polyakov, Nikolay E; Kispert, Lowell D

    2015-09-05

    Since carotenoids are highly hydrophobic, air- and light-sensitive hydrocarbon compounds, developing methods for increasing their bioavailability and stability towards irradiation and reactive oxygen species is an important goal. Application of inclusion complexes of "host-guest" type with polysaccharides and oligosaccharides such as arabinogalactan, cyclodextrins and glycyrrhizin minimizes the disadvantages of carotenoids when these compounds are used in food processing (colors and antioxidant capacity) as well as for production of therapeutic formulations. Cyclodextrin complexes which have been used demonstrated enhanced storage stability but suffered from poor solubility. Polysaccharide and oligosaccharide based inclusion complexes play an important role in pharmacology by providing increased solubility and stability of lipophilic drugs. In addition they are used as drug delivery systems to increase absorption rate and bioavailability of the drugs. In this review we summarize the existing data on preparation methods, analysis, and chemical reactivity of carotenoids in inclusion complexes with cyclodextrin, arabinogalactan and glycyrrhizin. It was demonstrated that incorporation of carotenoids into the "host" macromolecule results in significant changes in their physical and chemical properties. In particular, polysaccharide complexes show enhanced photostability of carotenoids in water solutions. A significant decrease in the reactivity towards metal ions and reactive oxygen species in solution was also detected. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. INFLUENCE OF WATER-SOLUBLE COMPOUNDS OF RESTORED SULFUR ONTO TOXIC PROPERTIES OF NATURAL AND WASTE WATERS

    Directory of Open Access Journals (Sweden)

    Frog Boris Nikolaevich

    2012-10-01

    Full Text Available Whenever environmental pollution by sulphur compounds is under discussion, the latter contemplate those compounds that may be subjected to consideration through the employment of methods of analytical control. First of all, sulphates and volatile compounds of partially or completely restored sulphur, such as SO2, H2S, methyl sulphur compounds (merkaptans, dimethyl sulphide, dimethyl disulphide and others may be subjected to control. Elementary sulphur that is contained in the water is difficult to analyze. At the same time, an extensive group of water-soluble compounds of restored sulphur is not considered by numerous nature protection organizations. As a rule, they do not possess distinct analytical properties. The latter include any organic and inorganic thio-acids and their combinations with ions of transitive metals, in particular, with ions of monovalent copper. Microcolloidal (nano- particles of FeS may also be included into this group of compounds. The objective of the article is to generate the awareness of those compounds of reduced sulphur that are out of control. By virtue of this article, the authors apply to specialists in water treatment, water conditioning and water quality regulation.

  9. Enhanced Wettability Modification and CO2 Solubility Effect by Carbonated Low Salinity Water Injection in Carbonate Reservoirs

    Directory of Open Access Journals (Sweden)

    Ji Ho Lee

    2017-01-01

    Full Text Available Carbonated water injection (CWI induces oil swelling and viscosity reduction. Another advantage of this technique is that CO2 can be stored via solubility trapping. The CO2 solubility of brine is a key factor that determines the extent of these effects. The solubility is sensitive to pressure, temperature, and salinity. The salting-out phenomenon makes low saline brine a favorable condition for solubilizing CO2 into brine, thus enabling the brine to deliver more CO2 into reservoirs. In addition, low saline water injection (LSWI can modify wettability and enhance oil recovery in carbonate reservoirs. The high CO2 solubility potential and wettability modification effect motivate the deployment of hybrid carbonated low salinity water injection (CLSWI. Reliable evaluation should consider geochemical reactions, which determine CO2 solubility and wettability modification, in brine/oil/rock systems. In this study, CLSWI was modeled with geochemical reactions, and oil production and CO2 storage were evaluated. In core and pilot systems, CLSWI increased oil recovery by up to 9% and 15%, respectively, and CO2 storage until oil recovery by up to 24% and 45%, respectively, compared to CWI. The CLSWI also improved injectivity by up to 31% in a pilot system. This study demonstrates that CLSWI is a promising water-based hybrid EOR (enhanced oil recovery.

  10. Impact of phosphorus and water-soluble organic carbon in cattle and swine manure composts on lead immobilization in soil.

    Science.gov (United States)

    Katoh, Masahiko; Wang, Yan; Kitahara, Wataru; Sato, Takeshi

    2015-01-01

    In the present study, we aimed to understand how amelioration of animal manure compost (AMC) with high phosphorus and low water-soluble organic carbon (WSOC) contents can simultaneously immobilize lead and reduce lead mobility and bioavailability in soil irrespective of the animal source. The amount of water-soluble lead in the soil amended with swine compost (SC) was not suppressed as compared with that in the soil without compost, whereas it was suppressed in the case of the soil amended with cattle compost (CC). The lead phases in the soil amended with SC became less soluble; however, those in the soil amended with CC were equivalent to those in the soil without compost. The ameliorated cattle and SCs with high phosphorus and low WSOC contents simultaneously induced a significant reduction in the concentration of water-soluble lead and ensured the formation of higher concentrations of insoluble lead phases. The microbial enzyme activities in the soil amended with the ameliorated compost were lower than those in the soil amended with the SC. This study suggests that ameliorated AMC can alter lead phases to insoluble forms and suppress the level of water-soluble lead, simultaneously. Therefore, such ameliorated AMC with high phosphorus and low WSOC contents would be suitable as a lead immobilization material.

  11. Au nanorods modulated NIR fluorescence and singlet oxygen generation of water soluble dendritic zinc phthalocyanine.

    Science.gov (United States)

    Zhou, Xuefei; He, Xiaohong; Wei, Shiliang; Jia, Kun; Liu, Xiaobo

    2016-11-15

    A novel cyano-terminated zinc phthalocyanine (ZnPc-CN) exhibiting visible near infrared (vis-NIR) emitting around 690nm in N,N-dimethylformamide (DMF) solvent has been synthesized. Furthermore, the peripheral cyano groups of newly synthesized zinc phthalocyanine were hydrolyzed in strong basic solution, leading to water soluble carboxylated zinc phthalocyanine (ZnPc-COOH) with completely quenched fluorescence in aqueous solution. Interestingly, we found that the NIR fluorescence of aqueous ZnPc-COOH was dramatically recovered in the presence of gold nanorods (Au NR), which was due to the alternation of ZnPc-COOH molecules self-assembling via electrostatic interaction between cetyltrimethylammonium bromide (CTAB) on the surface of Au NR and peripheral carboxyl of ZnPc-COOH. In addition, ZnPc-COOH/Au NR conjugates demonstrated an improved singlet oxygen generation, which could be served as potential bioimaging probe and photosensitizer for photodynamic therapy. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. [A water-soluble synthetic polymer, alpha,beta-poly(hydroxyalkyl)-DL-asparamide, and conjugating drug].

    Science.gov (United States)

    Zhang, Z; Tang, G; Chen, Q; Wang, B; Ma, M; Zhang, X

    1999-12-01

    A water-soluble polymer alpha,beta-poly (hydroxyalkyl)-DL-asparamide was synthesized by polysuccinimide(PSI) and different lengths of hydroxyalkyls, including alpha,beta-poly(hydroxyethyl)-DL-asparamide(PHEA), alpha,beta-poly(hydroxypropyl)-DL-asparamide(PHPA), and alpha,beta-poly(hydroxybutyl)-DL-asparamide(PHBA). These polymers were characterized by differential scanning calorimetry(DSC) and infrared spectrophotometry(IR). Stability and acutetoxicity of these polymers were studied. The experiment indicated that these materials were of low-toxicity and high stability. Acetylsalicylic acid, as a model drug, was conjugated into polymers; the drug loadings were 38.63%, 37.68% and 38.70% respectively. Polymer drugs were made into cylinder, and in-vivo release in rabbits was set out. It showed that the longer the spacer was linked into the polymer, the faster the drug was released.

  13. Effects of water-soluble humic extract and biofertilizer on development of Callophyllum brasiliense seedlings

    Directory of Open Access Journals (Sweden)

    Jader Galba Busato

    2016-06-01

    Full Text Available The objective of this work was to evaluate the effects of water-soluble humic extract (EHSA, Hortbio® biofertilizer (HORT and both compounds combination (EHSA+HORT on vegetative growth, nutrient absorption and chlorophyll levels in guanandi (Callophyllum brasiliense seedlings. Isolated and combined additions of EHSA and HORT did not affect seedlings height, number of leaves, leaf and root dry matter and leaf area during early stages of seedling growth. However, HORT and EHSA+HORT treatments increased chlorophyll levels and total N content. Addition of HORT resulted in S, Zn, Mg, Mn and Cu increases in the seedlings leaves, while ESHA application increased K, Mg, S and B. P and Ca levels were not altered by the treatments, however, addition of EHSA and EHSA+HORT reduced significantly the absorption of Cu, Fe, Mn and Zn.

  14. The Quality of Dory Fillets based on Water Soluble Protein, Color, and Myoglobin Concentration

    Directory of Open Access Journals (Sweden)

    Nurfajrin Nisa

    2016-04-01

    Full Text Available Fillet of dory is very easy to be find in Indonesian market with various brand and produsen.Imported dory fillet is preferred by consumer so far because it has a white color compare than localfillets. Color is the important parameter that used by consumers to determine the quality of filet. Thisstudy was aimed to determine the quality of local and imported fillets, including protein profile usingSDS PAGE, color measurement, and myoglobin extractability. The results of water soluble protein profilesshowed dory fillet contained 13-15 bands. The redness value (a* of local fillet (DN, DL, DM was highercompared others. However, imported fillet (DI had the highest if redness index (a/b. Imported fillet (DIshowed the lowest concentration of myoglobin compared other samples.

  15. The Quality of Dory Fillets based on Water Soluble Protein, Color, and Myoglobin Concentration

    Directory of Open Access Journals (Sweden)

    Nurfajrin Nisa

    2016-04-01

    Full Text Available Fillet of dory is very easy to be find in Indonesian market with various brand and produsen. Imported dory fillet is preferred by consumer so far because it has a white color compare than local fillets. Color is the important parameter that used by consumers to determine the quality of filet. This study was aimed to determine the quality of local and imported fillets, including protein profile using SDS PAGE, color measurement, and myoglobin extractability. The results of water soluble protein profiles showed dory fillet contained 13-15 bands. The redness value (a* of local fillet (DN, DL, DM was higher compared others. However, imported fillet (DI had the highest if redness index (a/b. Imported fillet (DI showed the lowest concentration of myoglobin compared other samples.

  16. A water-soluble and highly phosphorescent cyclometallated iridium complex with versatile sensing capability.

    Science.gov (United States)

    Yang, Zhen; Zhao, Yuan; Wang, Chan; Song, Qijun; Pang, Qingfeng

    2017-05-01

    A water-soluble and highly phosphorescent cyclometallated iridium complex [(pq)2Ir(bpy-COOK)](+)Cl(-) (where pq=2-phenylquinoline, bpy-COOK= potassium 2,2'-bipyridine-4,4'-dicarboxylate) (Ir) has been synthesized and characterized. Its phosphorescence can be sensitively and selectively quenched by tryptophan through a photoinduced electron-transfer (PET) process. Furthermore, the phosphorescence of Ir is drastically increased upon binding with bovine serum albumin (BSA), and the enhanced signal is effectively quenched in the presence of Cu(2+). Thus, Ir can be used as a multifunctional chemosensor for tryptophan, BSA, and Cu(2+) determination as well as for cell imaging. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. Radiation crosslinking of starch/water-soluble polymer blends for hydrogel

    Energy Technology Data Exchange (ETDEWEB)

    Hashim, K.; Mohid, N.; Bahari, K.; Dahlan, K.Z. [Radiation Processing Technology Division, Malaysian Institute Nuclear Technology Research Malaysia (MINT), Bangi, 43000 Kajang (Malaysia)

    2000-03-01

    Water-soluble polymers such as PVP(polyvinyl pyrrolidone) and PVA(polyvinyl alcohol), in aqueous solution can form hydrogel easily upon gamma or electron beam irradiation. The properties of hydrogels, particularly for wound dressing application, can be further improved by adding sago starch to the blend. Results show improved gel strength and elongation properties of the hydrogel with increasing sago concentration. It was found that the PVA/sago hydrogel gives better gel strength and elongation than the PVP/sago hydrogel. The tackiness property of the PVA/sago hydrogel increased with increase amount of sago starch added. In case of PVP/sago hydrogel, the tackiness property shows significant increase with increasing amount of sago except for the 5%PVP composition. The swelling properties of PVP/sago and PVA/sago hydrogel decreased with increasing amount of sago but the crosslink density of the hydrogels also reduced. (author)

  18. Using fluid bed granulation to improve the dissolution of poorly water-soluble drugs

    Directory of Open Access Journals (Sweden)

    Andrea Ikeda Takahashi

    2012-06-01

    Full Text Available In this study, fluid bed granulation was applied to improve the dissolution of nimodipine and spironolactone, two very poorly water-soluble drugs. Granules were obtained with different amounts of sodium dodecyl sulfate and croscarmellose sodium and then compressed into tablets. The dissolution behavior of the tablets was studied by comparing their dissolution profiles and dissolution efficiency with those obtained from physical mixtures of the drug and excipients subjected to similar conditions. Statistical analysis of the results demonstrated that the fluid bed granulation process improves the dissolution efficiency of both nimodipine and spironolactone tablets. The addition of either the surfactant or the disintegrant employed in the study proved to have a lower impact on this improvement in dissolution than the fluid bed granulation process.

  19. Levels of water-soluble vitamins in methanogenic and non-methanogenic bacteria

    Energy Technology Data Exchange (ETDEWEB)

    Leigh, J.A.

    1983-03-01

    The levels of seven water-soluble vitamins in Methanobacterium thermoautotropicum, Methanococcus voltae, Escherichia coli, Bacillus subtillis, Pseudomonas fluorescens, and Bacteroides thetaiotaomicron were compared by using a vitamin-requiring Leuconostoc strain. Both methanogens contained levels of folic acid and pantothenic acid which were approximately two orders of magnitude lower than levels in the nonmethanogens. Methanobacterium thermoautotrophicum contained levels of thiamine, biotin, nicotinic acid, and pyridoxine which were approximately one order of magnitude lower than levels in the nonmethanogens. The thiamine level in Methanococcus voltae was approximately one order of magnitude lower than levels in the nonmethanogens. Only the levels of riboflavin (and nicotinic acid and pyridoxine in Methanococcus voltae) were approximately equal in the methanogens and nonmethanogens. Folic acid may have been present in extracts of methanogens merely as a precursor, by-product, or hydrolysis product of methanopterin.

  20. Automatic carbon dioxide-methane gas sensor based on the solubility of gases in water.

    Science.gov (United States)

    Cadena-Pereda, Raúl O; Rivera-Muñoz, Eric M; Herrera-Ruiz, Gilberto; Gomez-Melendez, Domingo J; Anaya-Rivera, Ely K

    2012-01-01

    Biogas methane content is a relevant variable in anaerobic digestion processing where knowledge of process kinetics or an early indicator of digester failure is needed. The contribution of this work is the development of a novel, simple and low cost automatic carbon dioxide-methane gas sensor based on the solubility of gases in water as the precursor of a sensor for biogas quality monitoring. The device described in this work was used for determining the composition of binary mixtures, such as carbon dioxide-methane, in the range of 0-100%. The design and implementation of a digital signal processor and control system into a low-cost Field Programmable Gate Array (FPGA) platform has permitted the successful application of data acquisition, data distribution and digital data processing, making the construction of a standalone carbon dioxide-methane gas sensor possible.

  1. Electrospinning of poly(L-lactide) nanofibers encapsulated with water-soluble fullerenes for bioimaging application.

    Science.gov (United States)

    Liu, Wanyun; Wei, Junchao; Chen, Yiwang; Huo, Ping; Wei, Yen

    2013-02-01

    Photoluminescent fullerene nanoparticles/nanofibers have potential applications in bioimaging. A novel fluorescent nanofibrous material, consisting of fullerene nanoparticles and poly(L-lactide) (PLLA), was fabricated via a simple electrospinning method, and the composite nanofibers were characterized by various techniques such as scanning electron microscopy (SEM), laser scanning confocal microscopy (LSCM), and transmission electron microscopy (TEM). The nanofibers were uniform, and their surfaces were reasonably smooth, with the average diameters of fibers ranging from 300 to 600 nm. The fullerene nanoparticles were encapsulated within the composite nanofibers, forming a core-shell structure. The nanofiber scaffolds showed excellent hydrophilic surface due to the addition of water-soluble fullerene nanoparticles. The composite nanofibers used as substrates for bioimaging in vitro were evaluated with human liver carcinoma HepG2 cells, the fullerene nanoparticles signal almost displayed in every cell, implying the potential of fluorescent fullerene nanoparticles/PLLA nanofibers to be used as scaffolds for bioimaging application.

  2. 2D spectroscopy study of water-soluble chlorophyll-binding protein from Lepidium virginicum.

    Science.gov (United States)

    Alster, Jan; Lokstein, Heiko; Dostál, Jakub; Uchida, Akira; Zigmantas, Donatas

    2014-04-03

    Water-soluble chlorophyll-binding proteins (WSCPs) are interesting model systems for the study of pigment-pigment and pigment-protein interactions. While class IIa WSCP has been extensively studied by spectroscopic and theoretical methods, a comprehensive spectroscopic study of class IIb WSCP was lacking so far despite the fact that its structure was determined by X-ray crystallography. In this paper, results of two-dimensional electronic spectroscopy applied to the class IIb WSCP from Lepidium virginicum are presented. Global analysis of 2D data allowed determination of energy levels and excitation energy transfer pathways in the system. Some additional pathways, not present in class IIa WSCP, were observed. The data were interpreted in terms of a model comprising two interacting chlorophyll dimers. In addition, oscillatory signals were observed and identified as coherent beatings of vibrational origin.

  3. Automatic Carbon Dioxide-Methane Gas Sensor Based on the Solubility of Gases in Water

    Directory of Open Access Journals (Sweden)

    Raúl O. Cadena-Pereda

    2012-08-01

    Full Text Available Biogas methane content is a relevant variable in anaerobic digestion processing where knowledge of process kinetics or an early indicator of digester failure is needed. The contribution of this work is the development of a novel, simple and low cost automatic carbon dioxide-methane gas sensor based on the solubility of gases in water as the precursor of a sensor for biogas quality monitoring. The device described in this work was used for determining the composition of binary mixtures, such as carbon dioxide-methane, in the range of 0–100%. The design and implementation of a digital signal processor and control system into a low-cost Field Programmable Gate Array (FPGA platform has permitted the successful application of data acquisition, data distribution and digital data processing, making the construction of a standalone carbon dioxide-methane gas sensor possible.

  4. A water-soluble triiodo amino acid and its dendrimer conjugate for computerized tomography (CT imaging

    Directory of Open Access Journals (Sweden)

    MARTIN W. BRECHBIEL

    2005-02-01

    Full Text Available Prolonging the circulation of an imaging agent is vital for making it suitable for blood pool (vascular imaging. Medical applications of vascular imaging include cardiovascular disease, abnormal capillary permeability, and tumor neovascularity. As low molecular weight computerized tomography (CT enhancement agents are characterized by inconveniently fast clearance, macromolecular compounds (both natural and synthetic have gained a wide recongnition for possessing better characteristics for performing blood imaging tasks. Herein, the syntheses and characterization of a new water-soluble triiodo amino acid, 3-[(N,N-dimethylaminoacetyl amino]-a-ethyl-2,4,6-triiodobenzenepropanoic acid (DMAA-IPA and its Starburst PAMAMgeneration 4.0 dendrimer conjugate, G-4-(DMAA-IPA37 are described. The applicability of G-4-(DMAA-IPA37 as a potential macromolecular angiographic CT contrast agent is discussed. The linear relationship between organically bound iodine concentration and CT Hounsfield units has been established thus allowing for quantification uses of CT imaging as well.

  5. Controlled synthesis of titania using water-soluble titanium complexes: A review

    Science.gov (United States)

    Truong, Quang Duc; Dien, Luong Xuan; Vo, Dai-Viet N.; Le, Thanh Son

    2017-07-01

    The development of human society has led to the increase in energy and resources consumption as well as the arising problems of environmental damage and the toxicity to the human health. The development of novel synthesis method which tolerates utilization of toxic solvents and chemicals would fulfill the demand of the society for safer, softer, and environmental friendly technologies. For the past decades, a remarkable progress has been attained in the development of new water-soluble titanium complexes (WSTC) and their use for the synthesis of nanocrystalline titanium dioxide materials by aqueous solution-based approaches. The progress of synthesis of nanocrystalline titanium dioxide using such WSTCs is reviewed in this work. The key structural features responsible for the successfully controlled synthesis of TiO2 are discussed to provide guidelines for the morphology-controlled synthesis. Finally, this review ends with a summary and some perspectives on the challenges as well as new directions in this fascinating research.

  6. Lumbar myelography using water-soluble contrast media. Lumbale Myelographie mit wasserloelichen Kontrastmitteln. Lehrbuch und Atlas

    Energy Technology Data Exchange (ETDEWEB)

    Langlotz, M.

    1981-01-01

    With the new water-soluble contrast media developed in the last 10 years, lumbar myelography has become a simple and low-risk diagnostic method of great value which is hardly ever omitted before surgery is undertaken. The book attempts a synopsis of radiology and clinical examinations. In its first part, the pathological, clinical, and radiological aspects of diseases of the lumbosacral spinal duct are reviewed. The second part contains more than 300 myelographic pictures in original size. Each of the myelograms is supplemented by the case history of the patient (anamnesis, neurological examination, therapy and course). Interpretation is facilitated by drawings at the beginning of each chapter which show the major pathological and radiological changes.

  7. Chemical Characteristics and Antioxidant Properties of Crude Water Soluble Polysaccharides from Four Common Edible Mushrooms

    Directory of Open Access Journals (Sweden)

    Pei-Long Sun

    2012-04-01

    Full Text Available Four crude water soluble polysaccharides, CABP, CAAP, CFVP and CLDP, were isolated from common edible mushrooms, including Agaricus bisporus, Auricularia auricula, Flammulina velutipes and Lentinus edodes, and their chemical characteristics and antioxidant properties were determined. Fourier Transform-infrared analysis showed that the four crude polysaccharides were all composed of β-glycoside linkages. The major monosaccharide compositions were D-galactose, D-glucose and D-mannose for CABP, CAAP and CLDP, while CFVP was found to consist of L-arabinose, D-galactose, D-glucose and D-mannose. The main molecular weight distributions of CABP and the other three polysaccharides were 66.0 × 104 Da, respectively. Antioxidant properties of the four polysaccharides were evaluated in in vitro systems and CABP showed the best antioxidant properties. The studied mushroom species could potentially be used in part of well-balanced diets and as a source of antioxidant compounds.

  8. Water soluble polymer protected lipofectamine 2000/DNA complexes for solid-phase transfection.

    Science.gov (United States)

    Zhang, Qiao; Cheng, Si-Xue; Zhang, Xian-Zheng; Zhuo, Ren-Xi

    2009-12-08

    A fast degrading cholic acid-functionalized star poly(DL-lactide) has been used to fabricate polymer films to support Lipofectamine 2000/DNA complexes for mediating solid-phase transfection. To improve the gene expression activity, a water-soluble polymer, poly-alpha,beta-[N-(2-hydroxyethyl)-L-aspartamide (PHEA), was added to protect the complexes. The in vitro gene transfection in 293T cells, HeLa cells, and 3T3 cells showed that the gene expressions could be effectively mediated by the deposited Lipofectamine 2000/DNA complexes encapsulated in polymer films. The degradation of the polymer films that occurred during gene transfection did not show any unfavorable effects on the gene expression.

  9. ADME-Tox profiling of some low molecular weight water soluble chitosan derivatives

    Directory of Open Access Journals (Sweden)

    Adriana Isvoran

    2017-09-01

    Full Text Available Within this study we use a few computational tools for predicting absorption, distribution, metabolism, excretion and toxicity (ADME-Tox, pharmacokinetics profiles, toxic/adverse effects, carcinogenicity, cardiotoxicity and endocrine disruption of some of low molecular weight water soluble derivatives of chitosan that are used in wound healing. Investigated compounds do not possess drug-like properties, their pharmacokinetics profiles reveal poor gastrointestinal absorption and low skin penetration. Chitosan derivatives cannot pass the blood-brain barrier and they are not able to inhibit the enzymes of the cytochrome P450 that are involved in the metabolism of xenobiotics. They do not reflect carcinogenicity and cardiotoxicity and reveal only a low probability to be endocrine disruptors. The main side effects in humans of the investigated compounds are: weight loss, acidosis, gastrointestinal toxicity, respiratory failure. This information is especially important for professional exposure and accidental contamination with these compounds.

  10. Synthesis, fluorescence-sensing and molecular logic of two water-soluble 1,8-naphthalimides

    Science.gov (United States)

    Georgiev, Nikolai I.; Dimitrova, Margarita D.; Mavrova, Anelia Ts.; Bojinov, Vladimir B.

    2017-08-01

    Two novel highly water-soluble fluorescence sensing 1,8-naphthalimides are synthesized and investigated. The novel compounds are designed on the ;fluorophore-receptor1-spacer-receptor2; model as a molecular fluorescence probe for determination of cations and anions in 100% aqueous media. The novel probes comprising N-imide and N-phenylpiperazine or morpholine substituents are capable to operate simultaneously via ICT and PET signaling mechanism as a function of pH and to recognize selectively Cu2 + and Hg2 + over the other representative metal ions. Due to the remarkable fluorescence changes in the presence of protons, hydroxyl anions, Hg2 + and Cu2 +, INH and doubly disabled INH logic gates are executed and the systems are able to act as a single output combinatorial logic circuit with four chemical inputs.

  11. Carbamazepine solubility enhancement in tandem with swellable polymer osmotic pump tablet: A promising approach for extended delivery of poorly water-soluble drugs

    Directory of Open Access Journals (Sweden)

    Hadjira Rabti

    2014-06-01

    Full Text Available Elementary osmotic pump (EOP is a unique extended release (ER drug delivery system based on the principle of osmosis. It has the ability to minimize the amount of the drug, accumulation and fluctuation in drug level during chronic uses. Carbamazepine (CBZ, a poorly water-soluble antiepileptic drug, has serious side effects on overdoses and chronic uses. The aim of the present study was to design a new EOP tablet of CBZ containing a solubility enhancers and swellable polymer to reduce its side effects and enhance the patient compliance. Firstly, a combination of solubilizing carriers was selected to improve the dissolution of the slightly soluble drug. Then, designing the new EOP tablet and investigating the effect of different variables of core and coat formulations on drug release behavior by single parameter optimization and by Taguchi orthogonal design with analysis of variance (ANOVA, respectively. The results showed that CBZ solubility was successfully enhanced by a minimum amount of combined polyvinyl pyrrolidone (PVP K30 and sodium lauryl sulfate (SLS. The plasticizer amount and molecular weight (MW together with the osmotic agent amount directly affect the release rate whereas the swellable polymer amount and viscosity together with the semi-permeable membrane (SPM thickness inversely influence the release rate. In addition, the tendency of following zero order kinetics was mainly affected by the coat components rather than those of the core. Further, orifice size does not have any significant effect on the release behavior within the range of 0.1 mm to 0.8 mm. In this study we report the successful formulation of CBZ-EOP tablets, which were similar to the marketed product Tegretol CR 200 and able to satisfy the USP criterion limits and to deliver about 80% of CBZ at a rate of approximately zero order for up to 12 h.

  12. Solubilization of poorly water-soluble drugs by mixed micelles based on hydrogenated phosphatidylcholine.

    Science.gov (United States)

    Rupp, Christopher; Steckel, Hartwig; Müller, Bernd W

    2010-08-16

    A remarkable part of newly developed active pharmaceutical ingredients is rejected in early phase development and will never find a way to a patient because of poor water solubility which is often paired with poor bioavailability. Considering such arising solubility problems the development of application vehicles like mixed micelles (MM) is a challenging research topic in pharmaceutical technology. While known classical MM systems are composed of phosphatidylcholine and bile salts, it was the aim of this study to investigate if alternatively developed MM systems were superior in solubilization of different hydrophobic drugs. The novel MM were also comprised of phosphatidylcholine and (contrarily to bile salts) different other suitable surfactants forming binary MM. As model water-insoluble drug substances two benzodiazepines, diazepam and tetrazepam, and the steroid estradiol were chosen. In this study the solubilization capacities of newly developed MM were compared to those of classical lecithin/bile salt MM systems and different other surfactant containing systems. The MM system with sucrose laurate and hydrogenated PC (hPC) at a weight fraction of 0.5 was found to be superior in drug solubilization of all investigated drugs compared to the classical lecithin/bile salt mixed micelles. Further, a polysorbate 80 solution, also at 5%, was inferior with regard to solubilize the investigated hydrophobic drugs. The MM sizes of the favorite developed MM system, before and after drug incorporation, were analysed by dynamic light scattering (DLS) to evaluate the influence of the drug incorporation. Here, the particle sizes, before and after drug incorporation, remained constant, indicating a stable formation of the solubilizate. Further the critical micelle concentration (CMC) of MM before and after drug incorporation was analysed by three different determination techniques. Constant CMC-values could be obtained regardless if diazepam was encapsulated within the MM or

  13. Proteomic analysis of water soluble and myofibrillar protein changes occurring in dry-cured hams.

    Science.gov (United States)

    Luccia, Aldo Di; Picariello, Gianluca; Cacace, Giuseppina; Scaloni, Andrea; Faccia, Michele; Liuzzi, Vitantonio; Alviti, Giovanna; Musso, Salvatore Spagna

    2005-03-01

    The myofibrillar fraction of raw ham muscles and dry-cured hams with different ripening times was extracted in denaturing and reducing conditions and subjected to two-dimensional gel electrophoresis. The two-dimensional maps gave overall pictures of the already noted progressive disappearance of actin, tropomyosin and myosin light chains during ripening. In addition, two fragments from Myosin Heavy Chain proteolysis, marked as myosin chain fragments MCF1 and MCF2, were identified by immunodetection and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). Furthermore, a new form of actin on two-dimensional gel was identified by MALDI-TOF peptide mapping. In 12-month-old dry-cured ham, most myofibrillar proteins were completely hydrolyzed. At this stage of ripening, in fact, in some Parma and S. Daniele dry-cured ham samples, myosin heavy chain fragments and other unidentified neo-formed spots were found. Some of the sarcoplasmic proteins in water extracts from pork meat markedly decreased in amount or disappeared totally, during ripening. Surprisingly, two-dimensional gel electrophoresis maps of the water soluble protein fraction from dry-cured ham showed the presence of two spots identified as tropomyosin α- and β-chain. This result suggests that some of the saline soluble myofibrillar proteins can disappear from this fraction because of salt solubilization and not due to complete enzyme action. Two-dimensional gel electrophoresis (2-DGE) has proved a powerful tool to evaluate the enzymatic susceptibility of meat proteins and the evolution of protein map fragmentation throughout ripening process as well as a means of obtaining a standard fingerprinting map characterizing the final product.

  14. Analysis of water-soluble azo dyes in soft drinks by high resolution UPLC-MS.

    Science.gov (United States)

    Liu, X; Yang, J L; Li, J H; Li, X L; Li, J; Lu, X Y; Shen, J Z; Wang, Y W; Zhang, Z H

    2011-10-01

    An UPLC-Orbitrap MS system was exploited to develop and validate a method for the simultaneous determination of 11 water-soluble azo dyes (Acid Yellow 17, Acid Red 14, Acid Red 26, Acid Red 73, Acid Orange 52, Acid Orange 7, Acid Orange 12, Acid Yellow 36, Acid Orange 5, Acid Red 88 and Acid Red 9) in soft drinks. Three pairs of isomers and four disulphonated azo dyes were among a total of 11 water-soluble azo dyes obtained and purified using an SPE cartridge. They were well separated using optimized UPLC conditions with a RP18 column and a MS detector with a compatible mobile phase system. All these dyes were detected by the Orbitrap XL mass spectrometer in negative ion mode. HCD tandem MS fragment ions are first reported in this paper, and these fragment ions can be used for identification of isomers of azo dyes. According to SANCO/10684/2009, one quasi-molecular ion in full scan mode as quantification ion and one or two HCD tandem MS fragment ions as identification ions are required for compound confirmation. Matrix-matched calibration was employed for quantification. The linear matrix-matched calibration for the 11 dyes was in the range 5-200 ng g(-1) with correlation coefficients (r) of 0.9939-0.9988. Recoveries were 68.9-110.8% with coefficients of variation of 0.9-12.0%. Depending on the dye and matrix involved, the LODs were between 1.0 and 3.2 ng g(-1) and LOQs were between 5.2 and 9.8 ng g(-1).

  15. Water-soluble elements in snow and ice on Mt. Yulong.

    Science.gov (United States)

    Niu, Hewen; Kang, Shichang; Shi, Xiaofei; He, Yuanqing; Lu, Xixi; Shi, Xiaoyi; Paudyal, Rukumesh; Du, Jiankuo; Wang, Shijin; Du, Jun; Chen, Jizu

    2017-01-01

    Melting of high-elevation glaciers can be accelerated by the deposition of light-absorbing aerosols (e.g., organic carbon, mineral dust), resulting in significant reductions of the surface albedo on glaciers. Organic carbon deposited in glaciers is of great significance to global carbon cycles, snow photochemistry, and air-snow exchange processes. In this work, various snow and ice samples were collected at high elevation sites (4300-4850masl) from Mt. Yulong on the southeastern Tibetan Plateau in 2015. These samples were analyzed for water-soluble organic carbon (DOC), total nitrogen (TN), and water-soluble inorganic ions (WSIs) to elucidate the chemical species and compositions of the glaciers in the Mt. Yulong region. Generally, glacial meltwater had the lowest DOC content (0.39mgL-1), while fresh snow had the highest (2.03mgL-1) among various types of snow and ice samples. There were obvious spatial and temporal trends of DOC and WSIs in glaciers. The DOC and TN concentrations decreased in the order of fresh snow, snow meltwater, snowpit, and surface snow, resulting from the photolysis of DOC and snow's quick-melt effects. The surface snow had low DOC and TN depletion ratios in the melt season; specifically, the ratios were -0.79 and -0.19mgL-1d-1, respectively. In the winter season, the ratios of DOC and TN were remarkably higher, with values of -0.20mgL-1d-1 and -0.08mgL-1d-1, respectively. A reduction of the DOC and TN content in glaciers was due to snow's quick melt and sublimation. Deposition of these light-absorbing impurities (LAPs) in glaciers might accelerate snowmelt and even glacial retreat. Copyright © 2016 Elsevier B.V. All rights reserved.

  16. Design and synthesis of monofunctionalized, water-soluble conjugated polymers for biosensing and imaging applications.

    Science.gov (United States)

    Traina, Christopher A; Bakus, Ronald C; Bazan, Guillermo C

    2011-08-17

    Water-soluble conjugated polymers with controlled molecular weight characteristics, absence of ionic groups, high emission quantum yields, and end groups capable of selective reactions of wide scope are desirable for improving their performance in various applications and, in particular, fluorescent biosensor schemes. The synthesis of such a structure is described herein. 2-Bromo-7-iodofluorene with octakis(ethylene glycol) monomethyl ether chains at the 9,9'-positions, i.e., compound 4, was prepared as the reactive premonomer. A high-yielding synthesis of the organometallic initiator (dppe)Ni(Ph)Br (dppe = 1,2-bis(diphenylphosphino)ethane) was designed and implemented, and the resulting product was characterized by single-crystal X-ray diffraction techniques. Polymerization of 4 by (dppe)Ni(Ph)Br can be carried out in less than 30 s, affording excellent control over the average molecular weight and polydispersity of the product. Quenching of the polymerization with [2-(trimethylsilyl)ethynyl]magnesium bromide yields silylacetylene-terminated water-soluble poly(fluorene) with a photoluminescence quantum efficiency of 80%. Desilylation, followed by copper-catalyzed azide-alkyne cycloaddition reaction, yields a straightforward route to introduce a wide range of specific end group functionalities. Biotin was used as an example. The resulting biotinylated conjugated polymer binds to streptavidin and acts as a light-harvesting chromophore to optically amplify the emission of Alexa Fluor-488 chromophores bound onto the streptavidin. Furthermore, the biotin end group makes it possible to bind the polymer onto streptavidin-functionalized cross-linked agarose beads and thereby incorporate a large number of optically active segments.

  17. Cytotoxicity evaluation and antimicrobial studies of starch capped water soluble copper nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Valodkar, Mayur; Rathore, Puran Singh [Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat (India); Jadeja, Ravirajsinh N.; Thounaojam, Menaka; Devkar, Ranjitsinh V. [Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat (India); Thakore, Sonal, E-mail: chemistry2797@yahoo.com [Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390002, Gujarat (India)

    2012-01-30

    Highlights: Black-Right-Pointing-Pointer Bactericidal action of water soluble starch copper nanoconjugate was investigated. Black-Right-Pointing-Pointer Mode of action comparable to ampicillin and MIC as low as 1.6 {mu}g/ml. Black-Right-Pointing-Pointer The SCuNPs were non-toxic to mouse embryonic fibroblasts. Black-Right-Pointing-Pointer Cell viability was higher than uncapped CuNPs and cupric ions. Black-Right-Pointing-Pointer Promising biomedical applications due to high therapeutic index. - Abstract: Water soluble monodisperse copper nanoparticles of about 10 nm diameter were prepared by microwave irradiation using starch as green capping agent. The resulting Cu-starch conjugate were characterized by FTIR and energy dispersive X-ray analysis (EDX). The study confirmed the presence of copper embedded in polysaccharide matrix. The aqueous solution of starch capped copper nanoparticles (SCuNPs) exhibited excellent bactericidal action against both gram negative and gram positive bacteria. The in vitro cytotoxicity evaluation of the nanoparticles was carried out using mouse embryonic fibroblast (3T3L1) cells by MTT cell viability assay, extracellular lactate dehydrogenase (LDH) release and dark field microscopy imaging. The capped nanoparticles exhibited cytotoxicity at much higher concentration compared to cupric ions. Minimum bactericidal concentration (MBC) of SCuNPs was well below the in vitro cytotoxic concentration. Statistical analysis demonstrated p < 0.05 for significant results and p > 0.05 for non-significant ones as compared to untreated cells. The non-cytotoxic green Cu-starch conjugate offers a rational approach towards antimicrobial application and for integration to biomedical devices.

  18. Ageing-induced solubility loss in milk protein concentrate powder: effect of protein conformational modifications and interactions with water.

    Science.gov (United States)

    Haque, Enamul; Bhandari, Bhesh R; Gidley, Michael J; Deeth, Hilton C; Whittaker, Andrew K

    2011-11-01

    Protein conformational modifications and water-protein interactions are two major factors believed to induce instability of protein and eventually affect the solubility of milk protein concentrate (MPC) powder. To test these hypotheses, MPC was stored at different water activities (a(w) 0.0-0.85) and temperatures (25 and 45 °C) for up to 12 weeks. Samples were examined periodically to determine solubility, change in protein conformation by Fourier transform infrared (FTIR) spectroscopy and water status (interaction of water with the protein molecule/surface) by measuring the transverse relaxation time (T(2) ) with proton nuclear magnetic resonance ((1) H NMR). The solubility of MPC decreased significantly with ageing and this process was enhanced by increasing water activity (a(w) ) and temperature. Minor changes in protein secondary structure were observed with FTIR which indicated some degree of unfolding of protein molecules. The NMR T(2) results indicated the presence of three distinct populations of water molecules and the proton signal intensity and T(2) values of proton fractions varied with storage condition (humidity) and ageing. Results suggest that protein/protein interactions may be initiated by unfolding of protein molecules that eventually affects solubility. Copyright © 2011 Society of Chemical Industry.

  19. A water-soluble extract from Grifola frondosa, maitake mushroom, decreases lipid droplets in brown adipocyte tissue cells.

    Science.gov (United States)

    Minamino, Katsuhiko; Nagasawa, Yumi; Ohtsuru, Masaru

    2008-12-01

    We investigated the effect of a water-soluble extract from Grifola frondosa, the maitake mushroom, on lipid droplets in brown adipocyte tissue (BAT) cells. This water-soluble extract inhibits the conversion of pre white adipocyte tissue (WAT) cells but does not inhibit that of pre BAT cells. It reduces the amount of accumulated triglycerides (TG) in BAT cells. The glycerol-3-phosphate dehydrogenase (GPDH) activities of BAT cells decreased, but the expression of uncoupling protein 1 (UCP1) levels increased. These results suggest that maitake extract inhibits TG accumulation-related energy metabolism.

  20. Enzymatic synthesis of a 6-sialyl lactose analogue using a pH-responsive water-soluble polymer support.

    Science.gov (United States)

    Wang, Wenjun; Li, Lei; Jin, Chen; Niu, Yujie; Li, Sen; Ma, Ji; Li, Linfeng; Liu, Yu; Cai, Li; Zhao, Wei; Wang, Peng George

    2011-09-01

    The Letter describes a strategy for the enzymatic synthesis of glycans based on a pH-responsive water-soluble polymer. In neutral condition, the polymer is water-soluble and convenient for in-solution enzymatic synthesis, whereas in acidic condition (pH lower than 4.0), the polymer disconnects with the product and becomes insoluble, which can be easily removed. A 6-Sialyl lactose analogue was synthesized as a model reaction using this approach. Copyright © 2011. Published by Elsevier Ltd.

  1. Seasonal and diurnal characteristics of water soluble inorganic compounds in the gas and aerosol phase in the Zurich area

    OpenAIRE

    R. Fisseha; R. Fisseha; J. Dommen; L. Gutzwiller; E. Weingartner; M. Gysel; M. Gysel; C. Emmenegger; M. Kalberer; U. Baltensperger

    2006-01-01

    Gas and aerosol samples were taken using a wet effluent diffusion denuder/aerosol collector (WEDD/AC) coupled to ion chromatography (IC) in the city of Zurich, Switzerland from August to September 2002 and in March 2003. Major water soluble inorganic ions; nitrate, sulfate, and nitrite were analyzed online with a time resolution of two hours for the gas and aerosol phase. The fraction of water soluble inorganic anions in PM10 varied from 15% in August to about 38% in March. Seasonal and diurn...

  2. Aqueous speciation and electrochemical properties of a water-soluble manganese phthalocyanine complex.

    Science.gov (United States)

    Blakemore, James D; Hull, Jonathan F; Crabtree, Robert H; Brudvig, Gary W

    2012-07-07

    The speciation behavior of a water-soluble manganese(III) tetrasulfonated phthalocyanine complex was investigated with UV-visible and electron paramagnetic resonance (EPR) spectroscopies, as well as cyclic voltammetry. Parallel-mode EPR (in dimethylformamide : pyridine solvent mix) reveals a six-line hyperfine signal, centered at a g-value of 8.8, for the manganese(III) monomer, characteristic of the d(4)S = 2 system. The color of an aqueous solution containing the complex is dependent upon the pH of the solution; the phthalocyanine complex can exist as a water-bound monomer, a hydroxide-bound monomer, or an oxo-bridged dimer. Addition of coordinating bases such as borate or pyridine changes the speciation behavior by coordinating the manganese center. From the UV-visible spectra, complete speciation diagrams are plotted by global analysis of the pH-dependent UV-visible spectra, and a complete set of pK(a) values is obtained by fitting the data to a standard pK(a) model. Electrochemical studies reveal a pH-independent quasi-reversible oxidation event for the monomeric species, which likely involves oxidation of the organic ligand to the radical cation species. Adsorption of the phthalocyanine complex on the carbon working electrode was sometimes observed. The pK(a) values and electrochemistry data are discussed in the context of the development of mononuclear water-oxidation catalysts.

  3. Aqueous Speciation and Electrochemical Properties of a Water-Soluble Manganese Phthalocyanine Complex#

    Science.gov (United States)

    Blakemore, James D.; Hull, Jonathan F.

    2012-01-01

    The speciation behavior of a water-soluble manganese(III) tetrasulfonated phthalocyanine complex was investigated with UV-visible and electron paramagnetic resonance (EPR) spectroscopies, as well as cyclic voltammetry. Parallel-mode EPR (in dimethylformamide:pyridine solvent mix) reveals a six-line hyperfine signal, centered at a g-value of 8.8, for the manganese(III) monomer, characteristic of the d4 S=2 system. The color of an aqueous solution containing the complex is dependent upon the pH of the solution; the phthalocyanine complex can exist as a water-bound monomer, a hydroxide-bound monomer, or an oxo-bridged dimer. Addition of coordinating bases such as borate or pyridine changes the speciation behavior by coordinating the manganese center. From the UV-visible spectra, complete speciation diagrams are plotted by global analysis of the pH-dependent UV-visible spectra, and a complete set of pKa values is obtained by fitting the data to a standard pKa model. Electrochemical studies reveal a pH-independent quasi-reversible oxidation event for the monomeric species, which likely involves oxidation of the organic ligand to the radical cation species. Adsorption of the phthalocyanine complex on the carbon working electrode was sometimes observed. The pKa values and electrochemistry data are discussed in the context of the development of mononuclear water-oxidation catalysts. PMID:22585306

  4. Quantitative oral dosing of water soluble and lipophilic contaminants in the Japanese medaka (Oryzias latipes)

    Energy Technology Data Exchange (ETDEWEB)

    Schultz, Irv; Reed, Stacey M.; Pratt, Amanda V.; Skillman, Ann D.

    2007-02-01

    Quantitative oral dosing in fish can be challenging, particularly with water soluble contaminants, which can leach into the aquarium water prior to ingestion. We applied a method of bioencapsulation using newly hatched brine shrimp (Artemia franciscana) nauplii to study the toxicokinetics of five chlorinated and brominated halogenated acetic acids (HAAs), which are drinking water disinfection by-products. These results are compared to those obtained in a previous study using a polybrominated diphenyl ether (PBDE-47), a highly lipophilic chemical. The HAAs and PBDE-47 were bioencapsulated using freshly hatched A. franciscana nauplii after incubation in concentrated solutions of the study chemicals for 18 h. Aliquots of the brine shrimp were quantitatively removed for chemical analysis and fed to individual fish that were able to consume 400–500 nauplii in less than 5min. At select times after feeding, fish were euthanized and the HAA or PBDE-47 content determined. The absorption of HAAs was quantitatively similar to previous studies in rodents: rapid absorptionwith peak body levels occurringwithin 1–2 h, then rapidly declining with elimination half-life of 0.3–3 h depending on HAA. PBDE-47 was more slowly absorbed with peak levels occurring by 18 h and very slowly eliminated with an elimination half-life of 281 h.

  5. Selectivity differences of water-soluble vitamins separated on hydrophilic interaction stationary phases.

    Science.gov (United States)

    Yang, Yuanzhong; Boysen, Reinhard I; Hearn, Milton T W

    2013-06-01

    In this study, the retention behavior and selectivity differences of water-soluble vitamins were evaluated with three types of polar stationary phases (i.e. an underivatized silica phase, an amide phase, and an amino phase) operated in the hydrophilic interaction chromatographic mode with ESI mass spectrometric detection. The effects of mobile phase composition, including buffer pH and concentration, on the retention and selectivity of the vitamins were investigated. In all stationary phases, the neutral or weakly charged vitamins exhibited very weak retention under each of the pH conditions, while the acidic and more basic vitamins showed diverse retention behaviors. With the underivatized silica phase, increasing the salt concentration of the mobile phase resulted in enhanced retention of the acidic vitamins, but decreased retention of the basic vitamins. These observations thus signify the involvement of secondary mechanisms, such as electrostatic interaction in the retention of these analytes. Under optimized conditions, a baseline separation of all vitamins was achieved with excellent peak efficiency. In addition, the effects of water content in the sample on retention and peak efficiency were examined, with sample stacking effects observed when the injected sample contained a high amount of water. © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. DELIVERY OF WATER-SOLUBLE DRUGS USING ACOUSTICALLY-TRIGGERED, PERFLUOROCARBON DOUBLE EMULSIONS

    Science.gov (United States)

    Fabiilli, Mario L.; Lee, James A.; Kripfgans, Oliver D.; Carson, Paul L.; Fowlkes, J. Brian

    2010-01-01

    Purpose Ultrasound can be used to release a therapeutic payload encapsulated within a perfluorocarbon (PFC) emulsion via acoustic droplet vaporization (ADV), a process whereby the PFC phase is vaporized and the agent is released. ADV-generated microbubbles have been previously used to selectively occlude blood vessels in vivo. The coupling of ADV-generated drug delivery and occlusion has therapeutically, synergistic potentials. Methods Micron-sized, water-in-PFC-in-water (W1/PFC/W2) emulsions were prepared in a two-step process using perfluoropentane (PFP) or perfluorohexane (PFH) as the PFC phase. Fluorescein or thrombin was contained in the W1 phase. Results Double emulsions containing fluorescein in the W1 phase displayed a 5.7±1.4 fold and 8.2±1.3 fold increase in fluorescein mass flux, as measured using a Franz diffusion cell, after ADV for the PFP and PFH emulsions, respectively. Thrombin was stably retained in four out of five double emulsions. For three out of five formulations tested, the clotting time of whole blood decreased, in a statistically significant manner (p emulsions exposed to ultrasound compared to emulsions not exposed to ultrasound. Conclusions ADV can be used to spatially and temporally control the delivery of water-soluble compounds formulated in PFC double emulsions. Thrombin release could extend the duration of ADV-generated, microbubble occlusions. PMID:20872050

  7. The application of water-soluble ruthenium catalysts for the hydrogenation of the dichloromethane soluble fraction of fast pyrolysis oil and related model compounds in a two phase aqueous-organic system

    NARCIS (Netherlands)

    Mahfud, F.H.; Bussemaker, S.; Kooi, B.J.; ten Brink, Gert; Heeres, H.J.

    2007-01-01

    The hydrogenation of a dichloromethane soluble fraction of flash pyrolysis oil (bio-oil, BO), obtained by treatment of BO with a water–dichloromethane solvent mixture, was investigated using a water-soluble homogeneous ruthenium catalyst (RuCl3·3H2O/tris(m-sulfonatophenyl)phosphine, TPPTS). The

  8. Synthesis and characterization of a novel molecularly imprinted polymer for simultaneous extraction and determination of water-soluble and fat-soluble synthetic colorants in chilli products by solid phase extraction and high performance liquid chromatography.

    Science.gov (United States)

    Long, Chaoyang; Mai, Zhibin; Yang, Yingfen; Zhu, Binghui; Xu, Xiumin; Lu, Lin; Zou, Xiaoyong

    2009-11-20

    A sorbent was synthesized and investigated for molecularly imprinted solid phase extraction (MISPE). Molecularly imprinted polymers (MIP) were synthesized via precipitation polymerization procedure, where 4-vinyl pyridine (4-VP) was used as functional monomer and ethylene glycol dimethacrylate (EDMA) as cross-linking agent. The imprinting effect of the MISPE was evaluated by elution experiments. The resulting MISPE showed high extraction selectivity to water-soluble and fat-soluble synthetic colorants. The determination of multi-residue for three kinds of water-soluble and six kinds of fat-soluble synthetic colorants in chilli products was also investigated by HPLC coupled with MISPE. The mean recoveries calculated by solvent calibration curve for water-soluble and fat-soluble synthetic colorants were from 72.1% to 95.6% for chilli spice and 72.1% to 92.3% for chilli powder. The decision limit (CCalpha) and the detection capability (CCbeta) obtained for water-soluble and fat-soluble synthetic colorants were in the range of 1.2-1.6 and 1.9-2.4 microg kg(-1) in chilli spice and chilli powder. The resulting MISPE was successfully used off-line for the determination of nine kinds of synthetic colorants in chilli products.

  9. Solubility of natural gases in water under high pressure; Solubilite des gaz naturels dans l`eau a pression elevee

    Energy Technology Data Exchange (ETDEWEB)

    Dhima, A.

    1998-10-08

    Under high pressure (up to 1200 bar) and high temperature (up to 200 deg C) petroleum reservoir conditions the hydrocarbon-water mutual solubilities may become important. Under such conditions, the prediction of hydrocarbon water solubilities is a challenge for petroleum engineers. Indeed, very few studies have been done ar pressures higher that 700 bars. New solubility data for methane, ethane, n-butane, CO{sub 2} and their mixtures in pure water were obtained at 344.25 K and from 2.5 to 100 MPa. The results agree very well with those of the literature in the case of pure hydrocarbons in water, but differ for the hydrocarbon mixtures. A rigorous thermodynamic analysis allows the elaboration of a model that combines a cubic equation of state (Peng-Robinson with k{sub ij} given in literature) with the Henry`s law approach. The (P,T) functional form of Henry`s constant is given by the Krichevsky-Kasarnovsky equation which involves two important parameters: partial molar volume at infinite dilution and Henry`s constant at the vapour pressure of water. For a given solute both parameters are only functions of temperature. A critical selection of binary solubility data for a large number of solutes has been used as a basis for a new correlation for calculating both this partial molar volume and the corresponding Henry`s constants as a function of temperature. (author) 169 refs.

  10. [Fast separation and analysis of water-soluble vitamins in spinach by capillary electrophoresis with high voltage].

    Science.gov (United States)

    Hu, Xiaoqin; You, Huiyan

    2009-11-01

    In capillary electrophoresis, 0-40 kV (even higher) voltage can be reached by a connecting double-model high voltage power supply. In the article, water-soluble vitamins, VB1, VB2, VB6, VC, calcium D-pantothenate, D-biotin, nicotinic acid and folic acid in vegetable, were separated by using the high voltage power supply under the condition of electrolyte water solution as running buffer. The separation conditions, such as voltage, the concentration of buffer and pH value etc. , were optimized during the experiments. The results showed that eight water-soluble vitamins could be baseline separated in 2.2 min at 40 kV applied voltage, 25 mmol/L sodium tetraborate buffer solution (pH 8.8). The water-soluble vitamins in spinach were quantified and the results were satisfied. The linear correlation coefficients of the water-soluble vitamins ranged from 0.9981 to 0.9999. The detection limits ranged from 0.2 to 0.3 mg/L. The average recoveries ranged from 88.0% to 100.6% with the relative standard deviations (RSD) range of 1.15%-4.13% for the spinach samples.

  11. IUPAC-NIST Solubility Data Series. 101. Alcohols + Hydrocarbons + Water. Part 2. C1-C3 Alcohols + Aliphatic Hydrocarbons

    Science.gov (United States)

    Oracz, Paweł; Góral, Marian; Wiśniewska-Gocłowska, Barbara; Shaw, David G.; Mączyński, Andrzej

    2016-09-01

    The mutual solubilities and related liquid-liquid equilibria for 37 ternary systems of C1-C3 alcohols with aliphatic hydrocarbons and water are exhaustively and critically reviewed. Reports of experimental determination of solubility that appeared in the primary literature prior to the end of 2012 are compiled. For 14 systems, sufficient data are available (two or more independent determinations) to allow critical evaluation. All data are expressed as mass percent and mole fraction as well as the originally reported units. In addition to the standard evaluation criteria used throughout the Solubility Data Series, an additional criterion was used for each of the evaluated systems. These systems include one binary miscibility gap in the hydrocarbon + water subsystem and another one can be in the methanol + hydrocarbon subsystem. The binary tie lines were compared with the recommended values published previously.

  12. IUPAC-NIST Solubility Data Series. 101. Alcohols + Hydrocarbons + Water Part 3. C1-C3 Alcohols + Aromatic Hydrocarbons

    Science.gov (United States)

    Oracz, Paweł; Góral, Marian; Wiśniewska-Gocłowska, Barbara; Shaw, David G.; Mączyński, Andrzej

    2016-09-01

    The mutual solubilities and related liquid-liquid equilibria for 11 ternary systems of C1-C3 alcohols with aromatic hydrocarbons and water are exhaustively and critically reviewed. Reports of experimental determination of solubility that appeared in the primary literature prior to the end of 2012 are compiled. For nine systems, sufficient data are available (two or more independent determinations) to allow critical evaluation. All new data are expressed as mass percent and mole fraction as well as the originally reported units. In addition to the standard evaluation criteria used throughout the Solubility Data Series, an additional criterion was used for each of the evaluated systems. These systems include one binary miscibility gap in the hydrocarbon + water subsystem. The binary tie lines were compared with the recommended values published previously.

  13. Biochemical responses in freshwater fish after exposure to water-soluble fraction of gasoline.

    Science.gov (United States)

    Bettim, Franciele Lima; Galvan, Gabrieli Limberger; Cestari, Marta Margarete; Yamamoto, Carlos Itsuo; de Assis, Helena Cristina Silva

    2016-02-01

    The water-soluble fraction of gasoline (WSFG) is a complex mixture of mono-polycyclic aromatic hydrocarbons. The study aimed to evaluate the effects of WSFG diluted 1.5% on freshwater fish. Astyanax altiparanae were exposed to the WSFG for 96 h, under a semi-static system, with renewal of 25% of the gasoline test solution every 24 h. In addition, a decay of the contamination (DC) was carried out. During DC, the fish was exposed to the WSFG for 8 d, followed by another 7 d with renewal of 25% of volume aquaria with clean water every 24 h. For depuration, fish were transferred to aquaria with clean water, and in addition, 25% of the water was replaced every 24 h. The liver and kidney biotransformation, antioxidant defenses and lipid peroxidation (LPO) levels were evaluated. In the liver, the WSFG 1.5% caused reduction of glutathione S-transferase (GST) after 96 h and DC. In the kidney, only in depuration an increased GST activity was observed, and after DC a higher LPO levels. An increase of the superoxide dismutase (SOD) activity occurred at 96 h in both tissues; however, in the liver was also observed during the depuration. In WSFG 96 h, the glutathione peroxidase (GPx) activity in the kidney increased. As biomarkers of neurotoxicity, the brain and muscle acetylcholinesterase activities were measured, but the WSFG 1.5% did not change them. Therefore, this study brought forth more data about WSFG effects on freshwater fish after lower concentrations exposure and a DC, simulating an environmental contamination. Copyright © 2015. Published by Elsevier Ltd.

  14. From Cooperative Self-Assembly to Water-Soluble Supramolecular Polymers Using Coarse-Grained Simulations.

    Science.gov (United States)

    Bochicchio, Davide; Pavan, Giovanni M

    2017-01-24

    Supramolecular polymers, formed via noncovalent self-assembly of elementary monomers, are extremely interesting for their dynamic bioinspired properties. In order to understand their behavior, it is necessary to access their dynamics while maintaining high resolution in the treatment of the monomer structure and monomer-monomer interactions, which is typically a difficult task, especially in aqueous solution. Focusing on 1,3,5-benzenetricarboxamide (BTA) water-soluble supramolecular polymers, we have developed a transferable coarse-grained model that allows studying BTA supramolecular polymerization in water, while preserving remarkable consistency with the atomistic models in the description of the key interactions between the monomers (hydrophobic, H-bonding, etc.), self-assembly cooperativity, and amplification of order into the growing fibers. This permitted us to monitor the amplification of the key interactions between the monomers (including H-bonding) in the BTA fibers during the dynamic polymerization process. Our molecular dynamics simulations provide a picture of a stepwise cooperative polymerization mechanism, where initial fast hydrophobic aggregation of the BTA monomers in water is followed by the slower reorganization of these disordered aggregates into ordered directional oligomers. Supramolecular polymer growth then proceeds on a slower time scale. We challenged our models via comparison with the experimental evidence, capturing the effect of temperature variations and subtle changes in the monomer structure on the polymerization and on the properties of the fibers seen in the real systems. This work provides a multiscale spatiotemporal characterization of BTA self-assembly in water and a useful platform to study a variety of BTA-based supramolecular polymers toward structure-property relationships.

  15. Solubility of 1:1 Alkali Nitrates and Chlorides in Near-Critical and Supercritical Water : 1 Alkali Nitrates and Chlorides in Near-Critical and Supercritical Water

    NARCIS (Netherlands)

    Leusbrock, Ingo; Metz, Sybrand J.; Rexwinkel, Glenn; Versteeg, Geert F.

    2009-01-01

    To increase the available data oil systems containing supercritical water and inorganic compounds, all experimental setup was designed to investigate the solubilities of inorganic compounds Ill supercritical water, In this work, three alkali chloride salts (LiCl, NaCl, KCl) and three alkali nitrate

  16. Aqueous solubility, Henry's law constants and air/water partition coefficients of n-octane and two halogenated octanes.

    Science.gov (United States)

    Sarraute, S; Delepine, H; Costa Gomes, M F; Majer, V

    2004-12-01

    New data on the aqueous solubility of n-octane, 1-chlorooctane and 1-bromooctane are reported between 1 degree C and 45 degrees C. Henry's law constants, K(H), and air/water partition coefficients, K(AW), were calculated by associating the measured solubility values to vapor pressures taken from literature. The mole fraction aqueous solubility varies between (1.13-1.60)x10(-7) for n-octane with a minimum at approximately 23 degrees C, (3.99-5.07)x10(-7) for 1-chlorooctane increasing monotonically with temperature and (1.60-3.44)x10(-7) for 1-bromooctane with a minimum near 18 degrees C. The calculated air-water partition coefficients increase with temperature and are two orders of magnitude lower for the halogenated derivatives compared to octane. The precision of the results, taken as the average absolute deviations of the aqueous solubility, the Henry's law constants, or the air/water partition coefficients, from appropriate smoothing equations as a function of temperature is of 3% for n-octane and of 2% and 4% for 1-chlorooctane and 1-bromooctane, respectively. A new apparatus based on the dynamic saturation column method was used for the solubility measurements. Test measurements with n-octane indicated the capability of measuring solubilities between 10(-6) and 10(-10) in mole fraction, with an estimated accuracy better than +/-10%. A thorough thermodynamic analysis of converting measured data to air/water partition coefficients is presented.

  17. Selective Organic and Organometallic Reactions in Water-Soluble Host-Guest Supramolecular Systems

    Energy Technology Data Exchange (ETDEWEB)

    Pluth, Michael D.; Raymond, Kenneth N.; Bergman, Robert G.

    2008-02-16

    Inspired by the efficiency and selectivity of enzymes, synthetic chemists have designed and prepared a wide range of host molecules that can bind smaller molecules with their cavities; this area has become known as 'supramolecular' or 'host-guest' chemistry. Pioneered by Lehn, Cram, Pedersen, and Breslow, and followed up by a large number of more recent investigators, it has been found that the chemical environment in each assembly - defined by the size, shape, charge, and functional group availability - greatly influences the guest-binding characteristics of these compounds. In contrast to the large number of binding studies that have been carried out in this area, the exploration of chemistry - especially catalytic chemistry - that can take place inside supramolecular host cavities is still in its infancy. For example, until the work described here was carried out, very few examples of organometallic reactivity inside supramolecular hosts were known, especially in water solution. For that reason, our group and the group directed by Kenneth Raymond decided to take advantage of our complementary expertise and attempt to carry out metal-mediated C-H bond activation reactions in water-soluble supramolecular systems. This article begins by providing background from the Raymond group in supramolecular coordination chemistry and the Bergman group in C-H bond activation. It goes on to report the results of our combined efforts in supramolecular C-H activation reactions, followed by extensions of this work into a wider range of intracavity transformations.

  18. Synthesis and studies of water-soluble Prussian Blue-type nanoparticles into chitosan beads.

    Science.gov (United States)

    Folch, Benjamin; Larionova, Joulia; Guari, Yannick; Molvinger, Karine; Luna, Carlos; Sangregorio, Claudio; Innocenti, Claudia; Caneschi, Andrea; Guérin, Christian

    2010-10-21

    A new approach to the synthesis of highly stable aqueous colloids of coordination polymer nanoparticles was developed by using water-soluble chitosan beads as template and as stabilizing agent. The method consists in the synthesis of nanocomposite beads containing cyano-bridged coordination polymer nanoparticles via step-by-step coordination of the metal ions and the hexacyanometallate precursors into the chitosan pores and then water solubilization of these as-obtained nanocomposite beads. We obtain a large range of M(2+)/[M'(CN)(6)](3-)/chitosan (where M(2+) = Ni(2+), Cu(2+), Fe(2+), Co(2+), Mn(2+) and M' = Fe(3+) and Cr(3+)) nanocomposite beads and their respective aqueous colloids containing coordination polymer core/chitosan shell nanoparticles. The nanocomposite beads and the corresponding aqueous colloids were studied by Infrared (IR) and UV-Vis spectroscopy, nitrogen sorption (BET), Transmission Electron Microscopy (TEM), High Resolution Transmission Electron Microscopy (HRTEM) and magnetic analyses, which reveal the presence of homogeneously dispersed uniformly-sized cyano-bridged coordination polymer nanoparticles. The detailed studies of the static and dynamic magnetic properties of these nanoparticles show the occurrence of a spin-glass like behavior presumably produced by intra-particle spin disorder due to the low spin exchange energy characterizing these materials.

  19. Chemical properties and antioxidant activity of a water-soluble polysaccharide from Dendrobium officinale.

    Science.gov (United States)

    Luo, Qiu-Lian; Tang, Zhuan-Hui; Zhang, Xue-Feng; Zhong, Yong-Hong; Yao, Su-Zhi; Wang, Li-Sheng; Lin, Cui-Wu; Luo, Xuan

    2016-08-01

    In this report, a water-soluble polysaccharide was obtained from the dried stems of Dendrobium officinale Kimura et Migo by hot-water (70-75°C) extraction and 85% ethanol precipitation, and successively purification by DEAE-cellulose anion-exchange chromatography and gel-permeation chromatography. The D. officinale polysaccharide (DOP) has a molecular weight of 8500Da. Monosaccharide composition analysis reveals that DOP is composed of mannose, glucose, and arabinose with a trace of galacturonic acid in a molar ratio of 6.2:2.3:2.1:0.1. Periodate oxidation-smith degradation and 1D and 2D NMR spectroscopy analysis suggest the predominance of mannose and glucose, and it contains a 2-O-acetylglucomannan and (1→4)-linked-β-d-mannopyranosyl and (1→4)-linked-β-d-glucopyranosyl residues. Atomic force microscope shows that DOP mainly exists as rod-shaped chains, supporting high degrees of polymerization. The antioxidant activities of the polysaccharide in vitro assay indicate that DOP has good scavenging activity of 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical, higher scavenging activity of hydroxyl radical, and metal chelating activities. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Structural investigation of water-soluble polysaccharides extracted from the fruit bodies of Coprinus comatus.

    Science.gov (United States)

    Li, Bo; Dobruchowska, Justyna M; Gerwig, Gerrit J; Dijkhuizen, Lubbert; Kamerling, Johannis P

    2013-01-02

    Water-soluble polysaccharide material, extracted from the stipes of the fruit bodies of Coprinus comatus by hot water, was fractionated by sequential weak anion-exchange and size-exclusion chromatography. The relevant fractions were subjected to structural analysis, including (d/l) monosaccharide/methylation analysis and 1D/2D NMR spectroscopy. Besides the disaccharide α,α-trehalose [α-D-Glcp-(1↔1)-α-D-Glcp], high-molecular-mass α-D-glucans (the most abundant component) consisting of [→4)-α-D-Glcp-(1→](n) backbones with ~10% branching at C-6 by terminal α-D-Glcp-(1→6)- or α-D-Glcp-(1→6)-α-D-Glcp-(1→6)- units, lower-molecular-mass linear β-D-glucans consisting of [→6)-β-D-Glcp-(1→](m) sequences, and a lower-molecular-mass pentasaccharide-repeating α-L-fuco-α-D-galactan, {→6)-α-D-Galp-(1→6)-[α-L-Fucp-(1→2)-]α-D-Galp-(1→6)-α-D-Galp-(1→6)-α-D-Galp-(1→}(p), were found to be present. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Water-soluble PEGylated silicon nanoparticles and their assembly into swellable nanoparticle aggregates

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Zejing; Li, Yejia; Zhang, Boyu; Purkait, Tapas [Tulane University, Department of Chemistry (United States); Alb, Alina [Tulane University, Department of Physics and Engineering Physics (United States); Mitchell, Brian S. [Tulane University, Department of Chemical and Biomolecular Engineering (United States); Grayson, Scott M.; Fink, Mark J., E-mail: fink@tulane.edu [Tulane University, Department of Chemistry (United States)

    2015-01-15

    Water-soluble silicon nanoparticles were synthesized by grafting PEG polymers onto functionalized silicon nanoparticles with distal alkyne or azide moieties. The surface-functionalized silicon nanoparticles were produced in one step from the reactive high-energy ball milling (RHEBM) of silicon wafers with a mixture of either 5-chloro-1-pentyne in 1-pentyne or 1,7 octadiyne in 1-hexyne to afford air and water-stable chloroalkyl or alkynyl-terminated nanoparticles, respectively. Nanoparticles with the ω-chloroalkyl substituents were easily converted to ω-azidoalkyl groups through the reaction of the Si nanoparticles with sodium azide in DMF. The azido-terminated nanoparticles were then grafted with mono-alkynyl-PEG polymers using a copper-catalyzed alkyne-azide cycloaddition (CuAAC) reaction to afford core–shell silicon nanoparticles with a covalently attached PEG shell. Covalently linked Si nanoparticle clusters were synthesized via the CuAAC “click” reaction of functional Si NPs with α,ω-functional PEG polymers of various lengths. Dynamic light scattering studies show that the flexible globular nanoparticle aggregates undergo a solvent-dependent change in volume (ethanol > dichloromethane > toluene) similar in behavior to hydrogel nanocomposites.

  2. Host-guest chemistry with water-soluble gold nanoparticle supraspheres

    Science.gov (United States)

    Wang, Yizhan; Zeiri, Offer; Raula, Manoj; Le Ouay, Benjamin; Stellacci, Francesco; Weinstock, Ira A.

    2017-02-01

    The uptake of molecular guests, a hallmark of the supramolecular chemistry of cages and containers, has yet to be documented for soluble assemblies of metal nanoparticles. Here we demonstrate that gold nanoparticle-based supraspheres serve as a host for the hydrophobic uptake, transport and subsequent release of over two million organic guests, exceeding by five orders of magnitude the capacities of individual supramolecular cages or containers and rivalling those of zeolites and metal-organic frameworks on a mass-per-volume basis. The supraspheres are prepared in water by adding hexanethiol to polyoxometalate-protected 4 nm gold nanoparticles. Each 200 nm assembly contains hydrophobic cavities between the estimated 27,400 gold building blocks that are connected to one another by nanometre-sized pores. This gives a percolated network that effectively absorbs large numbers of molecules from water, including 600,000, 2,100,000 and 2,600,000 molecules (35, 190 and 234 g l-1) of para-dichorobenzene, bisphenol A and trinitrotoluene, respectively.

  3. Efficient one-step Suzuki arylation of unprotected halonucleosides, using water-soluble palladium catalysts.

    Science.gov (United States)

    Western, Elizabeth C; Daft, Jonathan R; Johnson, Edward M; Gannett, Peter M; Shaughnessy, Kevin H

    2003-08-22

    Modification of nucleosides to give pharmaceutically active compounds, mutagenesis models, and oligonucleotide structural probes continues to be of great interest. The aqueous-phase modification of unprotected halonucleosides is reported herein. Using a catalyst derived from tris(3-sulfonatophenyl)phosphine (TPPTS) and palladium acetate, 8-bromo-2'-deoxyguanosine (8-BrdG) is coupled with arylboronic acids to give 8-aryl-2'-deoxyguanosine adducts (8-ArdG) in excellent yield in a 2:1 water:acetonitrile solvent mixture. The TPPTS ligand was found to be superior to water-soluble alkylphosphines for this coupling reaction. The coupling chemistry has been extended to 8-bromo-2'-deoxyadenosine (8-BrdA) and 5-iodo-2'-deoxyuridine (5-IdU), as well as the ribonucleosides 8-bromoguanosine and 8-bromoadenosine. Good to excellent yields of arylated adducts are obtained in all cases. With use of tri(4,6-dimethyl-3-sulfonatophenyl)phosphine (TXPTS), the Suzuki coupling of 8-BrdA and 5-IdU can be accomplished in less than 1 h at room temperature. This methodology represents an efficient and general method for halonucleoside arylation that does not require prior protection of the nucleoside.

  4. Microbial oxidation of soluble sulfide in produced water from the Bakkeen Sands

    Energy Technology Data Exchange (ETDEWEB)

    Gevertz, D.; Zimmerman, S. [Agouron Institute, La Jolla, CA (United States); Jenneman, G.E. [Phillips Petroleum Company, Bartlesville, OK (United States)] [and others

    1995-12-31

    The presence of soluble sulfide in produced water results in problems for the petroleum industry due to its toxicity, odor, corrosive nature, and potential for wellbore plugging. Sulfide oxidation by indigenous nitrate-reducing bacteria (NRB) present in brine collected from wells at the Coleville Unit (CVU) in Saskatchewan, Canada, was investigated. Sulfide oxidation took place readily when nitrate and phosphate were added to brine enrichment cultures, resulting in a decrease in sulfide levels of 99-165 ppm to nondetectable levels (< 3.3 ppm). Produced water collected from a number of producing wells was screened to determine the time required for complete sulfide oxidation, in order to select candidate wells for treatment. Three wells were chosen, based on sulfide removal in 48 hours or less. These wells were treated down the backside of the annulus with a solution containing 10 mM KNO{sub 3} and 100 {mu}M NaH{sub 2}PO{sub 4}. Following a 24- to 72-hour shut-in, reductions in pretreatment sulfide levels of greater than 90% were observed for two of the wells, as well as sustained sulfide reductions of 50% for at least two days following startup. NRB populations in the produced brine were observed to increase significantly following treatment, but no significant increases in sulfate-reducing bacteria were observed. These results demonstrate the technical feasibility of stimulating indigenous populations of NRB to remediate and control sulfide in produced brine.

  5. Effect of extraction methods on property and bioactivity of water-soluble polysaccharides from Amomum villosum.

    Science.gov (United States)

    Yan, Yajuan; Li, Xia; Wan, Mianjie; Chen, Jingping; Li, Shijie; Cao, Man; Zhang, Danyan

    2015-03-06

    In the present study, effect of different extraction methods on property and bioactivity of water-soluble polysaccharides (WSP) from the seeds of Amomum villosum were investigated. Firstly, four different extraction methods were used to extract WSP, which include hot water extraction (HWE), ultrasonic-assisted extraction (UAE), microwave-assisted extraction (MAE) and enzyme-assisted extraction (EAE). As a result, four WSP samples, WSP(H), WSP(U), WSP(M) and WSP(E) were acquired. Then, the difference of four WSP samples in yield, characterization and antioxidant activities in vitro were further compared. Experimental results showed that the four WSP samples had the same monosaccharide composition, but mere difference in the content; they all had typical IR spectra characteristic of polysaccharides. WSP(U) contained the highest contents of uronic acid and sulfate. The yield of WSP(U) was the highest and its antioxidant activity was the best. These results suggested that ultrasonic-assisted extraction was the best extraction method for WSP. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Antioxidant property of water-soluble polysaccharides from Poria cocos Wolf using different extraction methods.

    Science.gov (United States)

    Wang, Nani; Zhang, Yang; Wang, Xuping; Huang, Xiaowen; Fei, Ying; Yu, Yong; Shou, Dan

    2016-02-01

    Poria cocos Wolf is a popular traditional medicinal plant that has invigorating activity. Water-soluble polysaccharides (PCPs) are its main active components. In this study, four different methods were used to extract PCPs, which include hot water extraction (PCP-H), ultrasonic-assisted extraction (PCP-U), enzyme-assisted extraction (PCP-E) and microwave-assisted extraction (PCP-M). Their chemical compositions and structure characterizations were compared. In vitro antioxidant activities were studied on the basis of DPPH radical, hydroxyl radical, reducing power and metal chelating ability. The results showed that PCPs were composed of mannose, glucose, galactose, and arabinose, and had typical IR spectra characteristics of polysaccharides. Compared with other PCPs, PCP-M had lower neutral sugar content, higher mannose content and higher uronic acid content. The molecular weight were determined as PCP-Eantioxidant activities. Response surface methodology was used to optimize the extraction yield of PCP-M by implementing the Box-Behnken design. Under the optimized conditions, the PCP-M yield was 9.95%, which was well in close agreement with the value predicted by the model. Overall, the microwave-assisted extraction was an effective and mild method for obtaining antioxidant polysaccharides from P. cocos Wolf. Copyright © 2015 Elsevier B.V. All rights reserved.

  7. Water Soluble Usnic Acid-Polyacrylamide Complexes with Enhanced Antimicrobial Activity against Staphylococcus epidermidis

    Directory of Open Access Journals (Sweden)

    Iolanda Francolini

    2013-04-01

    Full Text Available Usnic acid, a potent antimicrobial and anticancer agent, poorly soluble in water, was complexed to novel antimicrobial polyacrylamides by establishment of strong acidic-base interactions. Thermal and spectroscopic analysis evidenced a molecular dispersion of the drug in the polymers and a complete drug/polymer miscibility for all the tested compositions. The polymer/drug complexes promptly dissolved in water and possessed a greater antimicrobial activity against Staphylococcus epidermidis than both the free drug and the polymer alone. The best results were obtained with the complex based on the lowest molecular weight polymer and containing a low drug content. Such a complex showed a larger inhibition zone of bacterial growth and a lower minimum inhibitory concentration (MIC with respect to usnic acid alone. This improved killing effect is presumably due to the reduced size of the complexes that allows an efficient cellular uptake of the antimicrobial complexes. The killing effect extent seems to be not significantly dependent on usnic acid content in the samples.

  8. Water Soluble Organic Compounds over the Eastern Mediterranean: Study of their occurrence and sources

    Science.gov (United States)

    Tziaras, T.; Spyros, A.; Mandalakis, M.; Apostolaki, M.; Stephanou, E. G.

    2010-05-01

    Fine marine aerosols influence the climate system by acting as cloud condensation nuclei (CCN) in the atmosphere. The organic chemical composition and origin of the marine fine particulate matter are still largely unknown, because of the insufficient reports on in situ studies, the large variability in the emission from the sea, from the complex transfer of gases and particles at the air-sea interface, and the transport of aerosol particles from very distant sources. As important processes of formation of marine organic aerosol production we consider: transport of terrestrial particles, secondary organic aerosol (SOA) formation from the oxidation of biogenic dimethyl-sulfide (DMS), and biogenic particle emissions through sea spray. Specific compounds related to the above-mentioned processes have been proposed as molecular markers: e.g. n-alkanoic acids and n-alkanes (terrestrial particles), levoglucosan (biomass burning aerosol), aminoacids (biological terrestrial or marine particles), methanesulphonate (MSA) (DMS oxidation), C8 and C9 dicarboxylic acids and oxo-carboxylic acids (marine SOA) and other short-chain dicarboxylic acids (marine or terrestrial SOA), and humic-like compounds (emission of marine organic carbon). In our study, we made an effort to characterize the water-soluble organic fraction of marine aerosols collected at a background sampling site of Eastern Mediterranean (Finokalia, N35o20', E25o40', Island of Crete, Greece). The sampling period was 2007-2008. In order to identify and quantify the water-soluble organic compounds of marine aerosols determined in the present study we have used gas chromatography/mass spectrometry (GC/MS), liquid chromatography/mass spectrometry (LC/MS) and nuclear magnetic resonance spectroscopy (NMR) and ion chromatography (IC). The origin of air masses arriving in the study area was studied by using backward trajectories calculation (NOAA HYSPLIT Model). In addition, we have used the "MODIS fire products" for fire

  9. Experimental study of Ni solubility in sulphidic groundwater and cement water under anoxic conditions

    Energy Technology Data Exchange (ETDEWEB)

    Carlsson, T.; Vuorinen, U.; Kekki, T.; Aalto, H. [VTT Chemical Technology, Espoo (Finland)

    2001-06-01

    The nickel solubility was studied during a 177-day period under anoxic conditions in three types of waters: a synthetic reference groundwater (OL-SR), a natural Olkiluoto groundwater (PVA2), and a cement-conditioned groundwater (C-PVA2). To each water, nickel, ferrous iron and sulphide were added yielding eight combinations of, approximately, the following initial concentrations: nickel: 1.0x10{sup -6} and 1.0x10{sup -3} mol/L, ferrous iron: 1.8 10{sup -6} and 1.8x10{sup -5} mol/L, and sulphide: 3.1x10{sup -6} and 9.4x10{sup -5} mol/L. The concentrations of these elements in the natural groundwater PVA2 as well as in the cement-conditioned water C-PVA2 was insignificant. In the synthetic water, the nickel concentration was unchanged in all samples having a high initial nickel concentration of 1.0x10{sup -3} mol/L. In the samples with an initial low nickel concentration of 1.0x10{sup -6} mol/L, the sulphide content determined the final nickel concentration. Where the initial sulphide concentration was low, the nickel concentration remained at the level of 1.0x10{sup -6} mol/L, but the higher sulphide concentration caused the nickel concentration to drop to below 10{sup -8} mol/L. In the natural groundwater PVA2, the nickel concentration dropped to below 10{sup -4} mol/L in all samples with an initially high nickel concentration, and to values of roughly 10{sup -7} mol/L in samples with an initially low nickel content. In the cement-conditioned water, the nickel concentration reached a value of 3x10{sup -6} mol/L in samples with initial high nickel concentrations, and to a value of 1x10{sup -7} mol/L in samples with a low initial nickel content. The added amounts of iron and sulphide did not have any significant effect on the observed nickel solubility. The solid phases formed in the natural and synthetic groundwater were analyzed by XRD but could not be identified. In the case of cement-conditioned water the XRD analyses showed the presence of Ni(OH){sub 2} as well

  10. Synthesis and properties of novel water-soluble fullerene-glycine derivatives as new materials for cancer therapy.

    Science.gov (United States)

    Jiang, Guichang; Yin, Fen; Duan, Jihua; Li, Guangtao

    2015-01-01

    Novel water-soluble fullerene-glycine derivatives were synthesized by means of simple organic chemistry. They are completely soluble in water, yielding a clear brown solution. The products were characterized by fourier transform infrared (FTIR), ultraviolet-visible spectroscopy (UV-Vis), (1)H NMR, (13)C NMR, thermogravimetric analyses (TGA), and scanning electron microscopy (SEM). The assembly behavior of water-soluble fullerene-glycine derivatives was investigated by SEM. The results show that the fullerene-glycine derivatives create morphology that is sphere-like. The cytotoxicity to cancer cell lines of the fullerene-glycine derivatives was evaluated by MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) and flow cytometry. The results show that fullerene-glycine derivatives exhibit mortality and apoptosis of the cells which increased with the increase of fullerene-glycine derivative concentration. The cytotoxicity mechanism of fullerene-glycine derivatives was investigated for the first time. Novel water-soluble fullerene-glycine derivatives were synthesized by means of simple organic chemistry. The products were characterized by FTIR, UV-Vis, (1)H NMR, (13)C NMR, TGA, and SEM. The bioactivities of fullerene-glycine derivative materials have been tested, and the results show that compared with the fullerene complex, the fullerene-glycine derivative materials exhibit mortality and apoptosis of the cells which increased with the increase of fullerene-glycine derivative concentration. SEM images showed the macrostructure of fullerene-glycine derivative materials was spheres.

  11. Water-soluble vitamin homeostasis in fasting northern elephant seals (Mirounga angustirostris) measured by metabolomics analysis and standard methods.

    Science.gov (United States)

    Boaz, Segal M; Champagne, Cory D; Fowler, Melinda A; Houser, Dorian H; Crocker, Daniel E

    2012-02-01

    Despite the importance of water-soluble vitamins to metabolism, there is limited knowledge of their serum availability in fasting wildlife. We evaluated changes in water-soluble vitamins in northern elephant seals, a species with an exceptional ability to withstand nutrient deprivation. We used a metabolomics approach to measure vitamins and associated metabolites under extended natural fasts for up to 7 weeks in free-ranging lactating or developing seals. Water-soluble vitamins were not detected with this metabolomics platform, but could be measured with standard assays. Concentrations of measured vitamins varied independently, but all were maintained at detectable levels over extended fasts, suggesting that defense of vitamin levels is a component of fasting adaptation in the seals. Metabolomics was not ideal for generating complete vitamin profiles in this species, but gave novel insights into vitamin metabolism by detecting key related metabolites. For example, niacin level reductions in lactating females were associated with significant reductions in precursors suggesting downregulation of the niacin synthetic pathway. The ability to detect individual vitamins using metabolomics may be impacted by the large number of novel compounds detected. Modifications to the analysis platforms and compound detection algorithms used in this study may be required for improving water-soluble vitamin detection in this and other novel wildlife systems. Copyright © 2011 Elsevier Inc. All rights reserved.

  12. HPLC analysis of water-soluble vitamins (B1, B2, B3, B5, B6) in in ...

    African Journals Online (AJOL)

    STORAGESEVER

    2008-07-18

    Jul 18, 2008 ... of vegetarians. Key words: Cicer arietinum L., water-soluble vitamins, in vitro and in vitro culture. INTRODUCTION. Chickpea (Cicer arietinum L) is grown in different coun- tries of Asia, Africa, Europe, North and South America. It is mostly produced and consumed in South East Asia,. Middle East and some ...

  13. Pancreatico-colonic fistula after acute necrotizing pancreatitis. Diagnosis with spiral CT using rectal water soluble contrast media.

    Science.gov (United States)

    Tüney, Davut; Altun, Ersan; Barlas, Afsar; Yegen, Cumhur

    2008-01-08

    Colonic complications are rare but lethal events in acute pancreatitis. We report the case of a 42-year-old man who suffered from a pancreatico-colonic fistula following a necrosectomy for severe pancreatitis; the fistula was demonstrated by spiral computed tomography using rectal water soluble contrast media. Computed tomography with rectal contrast detects pancreatico-colonic fistulas.

  14. Estimation of octanol/water partition coefficient and aqueous solubility of environmental chemicals using molecular fingerprints and machine learning methods

    Science.gov (United States)

    Octanol/water partition coefficient (logP) and aqueous solubility (logS) are two important parameters in pharmacology and toxicology studies, and experimental measurements are usually time-consuming and expensive. In the present research, novel methods are presented for the estim...

  15. Hourly variations of water-soluble ions under different sand and dust weather processes in Lanzhou, China

    Science.gov (United States)

    Zhai, Guangyu; Chai, Guorong; Zhang, Haifeng

    2017-08-01

    In this paper we aimed to collect water-soluble anion and cationic through rapid capturing system of atmospheric fine particles in order to analyze the source of water-soluble ions of atmospheric PM2.5 in Lanzhou city, and the characteristics of hourly concentration changes in different sand and dust weather processes. The author also applied Hysplit4.8 to conduct backward trajectory analysis. The results showed that the correlation between water-soluble ions is instrumental to infer the forms of water-soluble ions in Lanzhou, such as (NH4) 2 SO4, NH4NO3, CaSO4, and NH4Cl. Lanzhou has been severely polluted by sand and dust apart from the increasing amount of Ca2+ under different dust sources and transmission paths. Na+ was also elevated in March, resulted from the dust going through the Hexi Corridor from the Taklimakan. Furthermore, in April Cl- also increased due to the dust being derived from Outer Mongolia then passing Qaidam Basin. In addition, Na+ dramatically went up in the process of precipitation.

  16. One-pot synthesis of water soluble iron nanoparticles using rationally-designed peptides and ligand release.

    Science.gov (United States)

    Papst, Stefanie; Cheong, Soshan; Banholzer, Moritz J; Brimble, Margaret A; Williams, David E; Tilley, Richard D

    2013-05-18

    Herein we report the rational design of new phosphopeptides for control of nucleation, growth and aggregation of water-soluble, superparamagnetic iron-iron oxide core-shell nanoparticles. The use of the designed peptides enables a one-pot synthesis that avoids utilizing unstable or toxic iron precursors, organic solvents, and the need for exchange of capping agent after synthesis of the NPs.

  17. Selection for water-soluble carbohydrate accumulation and investigation of genetic × environment interactions in an elite wheat breeding population

    Science.gov (United States)

    The potential to increase the genetic capacity for water-soluble carbohydrate (WSC) accumulation is an opportunity to improve the drought tolerance capability of rainfed wheat varieties, particularly in Australia where terminal drought is a significant constraint to wheat production. A population of...

  18. The effect of sublethal concentrations of the water-soluble fraction of crude oil on the chemosensory function of Caspian roach, Rutilus caspicus (YAKOVLEV, 1870).

    Science.gov (United States)

    Lari, Ebrahim; Abtahi, Behrooz; Hashtroudi, Mehri Seyed; Mohaddes, Effat; Døving, Kjell B

    2015-08-01

    The water-soluble fraction of crude oil is a complex and toxic mixture of hydrocarbons. Because aquatic organisms directly encounter it, the water-soluble fraction plays an important role in the toxicity of crude oil in aquatic environments. To determine whether fish are attracted to or avoid the water-soluble fraction, Caspian roaches (Rutilus caspicus) were exposed to different concentrations of the water-soluble fraction in a choice maze apparatus. The results showed that Caspian roaches can detect and avoid 2 mg/L of the water-soluble fraction. To study the effect of the water-soluble fraction on the olfactory function of fish, Caspian roaches were exposed to 3.2 mg/L and 16 mg/L of the water-soluble fraction for 96 h; afterward, exposed fish encountered food extract in a choice maze apparatus. The present study showed that the water-soluble fraction significantly impairs the olfactory function of roaches. To investigate the effect of olfactory system dysfunction on the feeding behavior of fish, Caspian roaches were exposed to 3.2 mg/L and 16 mg/L of the water-soluble fraction. After 4 d, 8 d, and 12 d of exposure, the feeding behavior toward the food extract was tested. The results showed that both 3.2 mg/L and 16 mg/L of the water-soluble fraction suppress the feeding behavior of Caspian roaches. The present study demonstrates that sublethal concentrations of crude oil's water-soluble fraction impair the olfactory function of fish and consequently suppress the feeding behavior. © 2015 SETAC.

  19. Significance of excipients to enhance the bioavailability of poorly water-soluble drugs in oral solid dosage forms: A Review

    Science.gov (United States)

    Vadlamudi, Manoj Kumar; Dhanaraj, Sangeetha

    2017-11-01

    Nowadays most of the drug substances are coming into the innovation pipeline with poor water solubility. Here, the influence of excipients will play a significant role to improve the dissolution of poorly aqueous soluble compounds. The drug substance needs to be dissolved in gastric fluids to get the better absorption and bioavailability of an orally administered drug. Dissolution is the rate-controlling stage for drugs which controls the rate and degree of absorption. Usually, poorly soluble oral administrated drugs show a slower dissolution rate, inconsistent and incomplete absorption which can lead to lower bioavailability. The low aqueous solubility of BCS class II and IV drugs is a major challenge in the drug development and delivery process. Several technologies have been used in an attempt to progress the bioavailability of poorly water-soluble drug compounds which include solid dispersions, lipid-based formulations, micronization, solvent evaporation, co-precipitation, ordered mixing, liquid-solid compacts, solvent deposition inclusion complexation, and steam aided granulation. In fact, most of the technologies require excipient as a carrier which plays a significant role in improving the bioavailability using Hypromellose acetate succinate, Cyclodextrin, Povidone, Copovidone, Hydroxypropyl cellulose, Hydroxypropyl methylcellulose, Crospovidone, Starch, Dimethylacetamide, Polyethylene glycol, Sodium lauryl sulfate, Polysorbate, Poloxamer. Mesoporous silica and so on. This review deliberates about the excipients significance on bioavailability enhancement of drug products in a single platform along with pragmatically proved applications so that user can able to select the right excipients as per the molecule.

  20. Mutual Solubility of MEG, Water and Reservoir Fluid: Experimental Measurements and Modeling using the CPA Equation of State

    DEFF Research Database (Denmark)

    Riaz, Muhammad; Kontogeorgis, Georgios; Stenby, Erling Halfdan

    2011-01-01

    This work presents new experimental phase equilibrium data of binary MEG-reservoir fluid and ternary MEG-water-reservoir fluid systems at temperatures 275-326 K and at atmospheric pressure. The reservoir fluid consists of a natural gas condensate from a Statoil operated gas field in the North Sea...... fluid and polar compounds such as water and MEG. Satisfactory results are obtained for mutual solubility of MEG and gas condensate whereas some deviations are observed for the ternary system of MEG-water-gas condensate........ Prediction of mutual solubility of water, MEG and hydrocarbon fluids is important for the oil industry to ensure production and processing as well as to satisfy environmental regulations. The CPA equation of state has been successfully applied in the past to well defined systems containing associating...

  1. Effect of novel water soluble curcumin derivative on experimental type- 1 diabetes mellitus (short term study

    Directory of Open Access Journals (Sweden)

    Abdel Aziz Mohamed T

    2012-07-01

    Full Text Available Abstract Background Diabetes mellitus type 1 is an autoimmune disorder caused by lymphocytic infiltration and beta cells destruction. Curcumin has been identified as a potent inducer of heme-oxygenase-1 (HO-1, a redoxsensitive inducible protein that provides protection against various forms of stress. A novel water soluble curcumin derivative (NCD has been developed to overcome low in vivo bioavailability of curcumin. The aim of the present work is to evaluate the anti diabetic effects of the “NCD” and its effects on diabetes-induced ROS generation and lipid peroxidation in experimental type- 1 diabetes mellitus. We also examine whether the up regulation of HO-1 accompanied by increased HO activity mediates these antidiabetic and anti oxidant actions. Materials and methods Rats were divided into control group, control group receiving curcumin derivative, diabetic group, diabetic group receiving curcumin derivative and diabetic group receiving curcumin derivative and HO inhibitor ZnPP. Type-1 diabetes was induced by intraperitoneal injection of streptozotocin. Curcumin derivative was given orally for 45 days. At the planned sacrification time (after 45 days, fasting blood samples were withdrawn for estimation of plasma glucose, plasma insulin and lipid profile . Animals were sacrificed; pancreas, aorta and liver were excised for the heme oxygenase - 1 expression, activity and malondialdehyde estimation. Results NCD supplementation to diabetic rats significantly lowered the plasma glucose by 27.5% and increased plasma insulin by 66.67%. On the other hand, the mean plasma glucose level in the control group showed no significant difference compared to the control group receiving the oral NCD whereas, NCD supplementation to the control rats significantly increased the plasma insulin by 47.13% compared to the control. NCD decreased total cholesterol, triglycerides, LDL cholesterol and increased HDL cholesterol levels. Also, it decreased lipid

  2. Size distributions, sources and source areas of water-soluble organic carbon in urban background air

    Directory of Open Access Journals (Sweden)

    H. Timonen

    2008-09-01

    Full Text Available This paper represents the results of one year long measurement period of the size distributions of water-soluble organic carbon (WSOC, inorganic ions and gravimetric mass of particulate matter. Measurements were done at an urban background station (SMEAR III by using a micro-orifice uniform deposit impactor (MOUDI. The site is located in northern European boreal region in Helsinki, Finland. The WSOC size distribution measurements were completed with the chemical analysis of inorganic ions, organic carbon (OC and monosaccharide anhydrides from the filter samples (particle aerodynamic diameter smaller than 1 μm, PM1. Gravimetric mass concentration varied during the MOUDI samplings between 3.4 and 55.0 μg m−3 and the WSOC concentrations were between 0.3 and 7.4 μg m−3. On average, water-soluble particulate organic matter (WSPOM, WSOC multiplied by 1.6 to convert the analyzed carbon mass to organic matter mass comprised 25±7.7% and 7.5±3.4% of aerosol PM1 mass and the PM1–10 mass, respectively. Inorganic ions contributed 33±12% and 28±19% of the analyzed PM1 and PM1–10 aerosol mass.

    Five different aerosol categories corresponding to different sources or source areas were identified (long-range transport aerosols, biomass burning aerosols from wild land fires and from small-scale wood combustion, aerosols originating from marine areas and from the clean arctic areas. Categories were identified mainly using levoglucosan concentration level for wood combustion and air mass backward trajectories for other groups. Clear differences in WSOC concentrations and size distributions originating from different sources or source areas were observed, although there are also many other factors which might affect the results. E.g. the local conditions and sources of volatile organic compounds (VOCs and aerosols as well as various transformation processes are likely

  3. [Fluorescence resonance energy transfer between gentamycin and water-soluble CdTe QDs].

    Science.gov (United States)

    Li, Jin-Gui; Zhu, Kui; Xu, Fei; Jiang, Hai-Yang; Ding, Shuang-Yang

    2009-11-01

    The water-soluble CdTe quantum dots (QDs) were prepared by using mercaptopropionic acid (MPA) as stabilizer in the aqueous system. Fluorescence resonance energy transfer (FRET) system was constructed between gentamycin (acceptor) and water-soluble CdTe QDs (donor). The maximal emission wavelength was 690 nm, and the line width of the fluorescence spectrum was very narrow (with the full width at half-maximum about 10 nm) and symmetric. The transfer of resonance energy from the CdTe QDs to gentamycin (GT) resulted in the fluorescence quenching of the QDs, corresponding to the increase in the concentration of GT. Several factors that impacted the fluorescence spectra of the FRET system, such as the excitation wavelength (305-425 nm), pH(5.0-11.0), ions (0-0.1 mmol x L(-1) PBS; 0-0.5 mmol x L(-1) NaCl), time (1-120 min), temperature (5-50 degrees C), and concentration of GT (2-80 mg x L(-1)), were investigated and refined. The linear ranges of GT concentration were 2-20 mg x L(-1), r = 0.986 7. Fourier transform infrared spectroscopy (FTIR) and high-performance liquid chromatography (HPLC) were used for confirming the chemical construction and relative specificity, respectively. The results indicated that sulfur and oxygen atoms in MPA molecules took part in coordination with rich Cd2+ on the surface of the nanoparticles. Meanwhile the results also demonstrated that the hydrogen bond between carboxyl of mercaptopropionic acid on the surface of quantum dots and amidocyanogen of GT mainly contributes to combining CdTe with GT. The combination ratio between GT and CdTe QDs is 0.35 to 1.0 according to HPLC. GT as an enhancement has first been applied to the determination of the bovine serum albumin (BSA) labeled with CdTe QDs, and the fluorescence intensity of the labeled BSA with GT is 6 times higher than the control. The proposed method might offer an attractive potential for use in future, because it is sensitive and rapid.

  4. Facile preparation of water-soluble fluorescent gold nanoclusters for cellular imaging applications

    Science.gov (United States)

    Shang, Li; Dörlich, René M.; Brandholt, Stefan; Schneider, Reinhard; Trouillet, Vanessa; Bruns, Michael; Gerthsen, Dagmar; Nienhaus, G. Ulrich

    2011-05-01

    We report a facile strategy to synthesize water-soluble, fluorescent gold nanoclusters (AuNCs) in one step by using a mild reductant, tetrakis(hydroxymethyl)phosphonium chloride (THPC). A zwitterionic functional ligand, d-penicillamine (DPA), as a capping agent endowed the AuNCs with excellent stability in aqueous solvent over the physiologically relevant pH range. The DPA-capped AuNCs displayed excitation and emission bands at 400 and 610 nm, respectively; the fluorescence quantum yield was 1.3%. The effect of borohydride reduction on the optical spectra and X-ray photoelectron spectroscopy (XPS) results indicated that the AuNC luminescence is closely related to the presence of Au(i) on their surfaces. In a first optical imaging application, we studied internalization of the AuNCs by live HeLa cells using confocal microscopy with two-photon excitation. A cell viability assay revealed good biocompatibility of these AuNCs. Our studies demonstrate a great potential of DPA-stabilized AuNCs as fluorescent nanoprobes in bioimaging and related applications.We report a facile strategy to synthesize water-soluble, fluorescent gold nanoclusters (AuNCs) in one step by using a mild reductant, tetrakis(hydroxymethyl)phosphonium chloride (THPC). A zwitterionic functional ligand, d-penicillamine (DPA), as a capping agent endowed the AuNCs with excellent stability in aqueous solvent over the physiologically relevant pH range. The DPA-capped AuNCs displayed excitation and emission bands at 400 and 610 nm, respectively; the fluorescence quantum yield was 1.3%. The effect of borohydride reduction on the optical spectra and X-ray photoelectron spectroscopy (XPS) results indicated that the AuNC luminescence is closely related to the presence of Au(i) on their surfaces. In a first optical imaging application, we studied internalization of the AuNCs by live HeLa cells using confocal microscopy with two-photon excitation. A cell viability assay revealed good biocompatibility of these Au

  5. Synthesis of polymeric derivatives of isoniazid: characterization and in vitro release from a water-soluble adduct with polysuccinimide.

    Science.gov (United States)

    Giammona, G; Giannola, L I; Carlisi, B

    1989-04-01

    Coupling of isoniazid with polysuccinimide afforded a water-insoluble polymeric pro-drug; by reaction with ethanolamine it was chemically transformed in a water-soluble adduct. The in vitro release of isoniazid from the drug-polymer adduct was studied by using an artificial stomach wall lipid membrane. The transfer rate constant from simulated gastric juice to simulated plasma was defined and compared with that of an equivalent dose of pure drug.

  6. Structural analysis of a water-soluble glucan (Fr.I) of an edible mushroom, Pleurotus sajor-caju.

    Science.gov (United States)

    Pramanik, Malay; Chakraborty, Indranil; Mondal, Soumitra; Islam, Syed S

    2007-12-10

    A water-soluble glucan was obtained from the fruit bodies of an edible mushroom, Pleurotus sajor-caju, by hot water extraction, ethanol precipitation, dialysis, and Sepharose 6B gel filtration. On the basis of total hydrolysis, methylation analysis, periodate oxidation, and NMR studies ((1)H, (13)C, DQF-COSY, TOCSY, NOESY, and HSQC), the structure of the repeating unit of the glucan is determined as [carbohydrate structure: see text].

  7. Variation of Water-Soluble Carbohydrates and Grain Yield in Iranian Cold Barley Promising Lines Under Well-Watered and Water Stress Conditions

    Directory of Open Access Journals (Sweden)

    Mohammadi Soleiman

    2014-10-01

    Full Text Available In order to evaluate promising lines in terms of grain yield and water-soluble carbohydrates remobiliza-tion, an experiment with fifteen promising lines and two checks was carried out under full irrigation and terminal water stress conditions at Miyandoab Agricultural Research and Natural Resources Station. Mobilized dry matter content and remobilization percentage from shoot to grain under water deficit (177mg(11.2% were greater than those under well watering condition. The lowest (110 mg and the highest (260mg mobilized dry matter to grain were obtained for C-79-18 and C-83-15lines, respectively. Water deficit reduced grain yield of barley genotypes by 200-1600 kg/ha, and mean grain yield reduction was 800 kg/ha. Line 14 with 5.880and 5.300t/ha grain yield in favorable and water stress conditions was superior to the other lines. Under water deficit condition, line 14 had greater grain yieldby20% and 38% than the Bahman and Makouee cultivars, respectively. The results showed that greater grain yield in tolerant lines under water deficit was due to remobilization of unstructured carbohydrates from shoot to grain. Thus, it seems that selection of lines with higher translocated dry matter and contribution of pre-anthesis assimilate in grain filling under water stress, the suitable way for achieving genotypes with high grain yield under water stress condition.

  8. IUPAC-NIST Solubility Data Series. 100. Rare Earth Metal Fluorides in Water and Aqueous Systems. Part 2. Light Lanthanides (Ce-Eu)

    Science.gov (United States)

    Mioduski, Tomasz; Gumiński, Cezary; Zeng, Dewen

    2015-03-01

    This is the second part of the volume devoted to the evaluation of experimental solubility data for rare earth metal (REM) fluorides in water as well as in aqueous ternary and multicomponent systems. Fluorides of Ce, Pr, Nd, Pm, Sm, and Eu (so-called light lanthanides), as the main solutes, are covered in the present part, which has thorough coverage of the experimental literature through the end of 2012. The experimentally unknown solubility value for PmF3 in water was predicted by an interpolation of the solubility values for NdF3 and SmF3 at 298 K. General features of the systems, such as the nature of the equilibrium solid phases, solubility as a function of temperature, influence of ionic strength, pH, mixed solvent medium on the solubility, quality of the solubility results, and solubility as a function of REM atomic number, have already been presented in Part 1 of the volume.

  9. Multi-Phase Equilibrium and Solubilities of Aromatic Compounds and Inorganic Compounds in Sub- and Supercritical Water: A Review.

    Science.gov (United States)

    Liu, Qinli; Ding, Xin; Du, Bowen; Fang, Tao

    2017-11-02

    Supercritical water oxidation (SCWO), as a novel and efficient technology, has been applied to wastewater treatment processes. The use of phase equilibrium data to optimize process parameters can offer a theoretical guidance for designing SCWO processes and reducing the equipment and operating costs. In this work, high-pressure phase equilibrium data for aromatic compounds+water systems and inorganic compounds+water systems are given. Moreover, thermodynamic models, equations of state (EOS) and empirical and semi-empirical approaches are summarized and evaluated. This paper also lists the existing problems of multi-phase equilibria and solubility studies on aromatic compounds and inorganic compounds in sub- and supercritical water.

  10. Superhydrophilic molecularly imprinted polymers based on a water-soluble functional monomer for the recognition of gastrodin in water media.

    Science.gov (United States)

    Ji, Wenhua; Zhang, Mingming; Wang, Daijie; Wang, Xiao; Liu, Jianhua; Huang, Luqi

    2015-12-18

    In this study, the first successfully developed superhydrophilic molecularly imprinted polymers (MIPs) for gastrodin recognition have been described. MIPs were prepared via the bulk polymerization process in an aqueous solution using alkenyl glycosides glucose (AGG) as the water-soluble functional monomer. The non-imprinted polymers (NIPs) were also synthesized using the same method without the use of the template. The dynamic water contact angles and photographs of the dispersion properties confirmed that the molecularly imprinted polymers displayed excellent superhydrophilicity. The results demonstrated that the MIPs exhibited high selectivity and an excellent imprinting effect. A molecularly imprinted solid phase extraction (MISPE) method was established. Optimization of various parameters affecting MISPE was investigated. Under the optimized conditions, a wide linear range (0.001-100.0μgmL(-1)) and low limits of detection (LOD) and quantification (LOQ) (0.03 and 0.09ngmL(-1), respectively) were achieved. When compared with the NIPs, higher recoveries (90.5% to 97.6%) of gastrodin with lower relative standard deviations values (below 6.4%) using high performance liquid chromatography were obtained at three spiked levels in three blank samples. These results demonstrated one efficient, highly selective and environmentally-friendly MISPE technique with excellent reproducibility for the purification and pre-concentration of gastrodin from an aqueous extract of Gastrodia elata roots. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Determination of water-soluble and insoluble elements in PM2.5 by ICP-MS.

    Science.gov (United States)

    Manousakas, M; Papaefthymiou, H; Eleftheriadis, K; Katsanou, K

    2014-09-15

    The elemental composition of water-soluble and acid-soluble fractions of PM2.5 samples from two different Greek cities (Patras and Megalopolis) was investigated. Patras and Megalopolis represent different environments. Specifically, Patras is an urban environment with proximity to a large port, while Megalopolis is a small city located close to lignite power plants. Both cities can serve as a representative example of European cities with similar characteristics. The concentration of 14 elements (As, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Fe, Sr, Ti, V and Zn) was determined in each fraction by ICP-MS. Microwave assisted digestion was used to digest the samples using a mixture of HNO3 and HF. For the determination of the water soluble fraction, water was chosen as the simplest and most universal extraction solvent. For the validation of the extraction procedure, the recoveries were tested on two certified reference materials (NIST SRM 1648 Urban Particulate Matter and NIST 1649a Urban Dust). Results showed that Zn has the highest total concentration (273 and 186 ng/m(3)) and Co the lowest (0.48 and 0.23 ng/m(3)) for Patras and Megalopolis samples, respectively. Nickel with 65% for Patras and As with 49% for Megalopolis displayed the highest solubility, whereas Fe (10%) and Ti (2%) the lowest ones, respectively. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. A study of transformation water - soluble forms of hevy metals at waste incenerator for detoxicationof ash.

    Directory of Open Access Journals (Sweden)

    Bilets'ka V. А.

    2011-11-01

    Full Text Available The complex research processes of transformation of soluble forms of heavy metals in sediment interaction with ash. Proved that the adsorption processes of immobilization lead to a significant decrease of soluble forms of heavy metals in the waste.

  13. Determination of the Solubility Limit of Tris(dibenzylideneacetone) Dipalladium(0) in Tetrahydrofuran/Water Mixtures

    Science.gov (United States)

    Franzen, Stefan

    2011-01-01

    Determination of the solubility limit of a strongly colored organometallic reagent in a mixed-solvent system provides an example of quantitative solubility measurement appropriate to understand polymer, nanoparticle, and other macromolecular aggregation processes. The specific example chosen involves a solution of tris(dibenzylideneacetone)…

  14. Modeling the Release Kinetics of Poorly Water-Soluble Drug Molecules from Liposomal Nanocarriers

    Directory of Open Access Journals (Sweden)

    Stephan Loew

    2011-01-01

    Full Text Available Liposomes are frequently used as pharmaceutical nanocarriers to deliver poorly water-soluble drugs such as temoporfin, cyclosporine A, amphotericin B, and paclitaxel to their target site. Optimal drug delivery depends on understanding the release kinetics of the drug molecules from the host liposomes during the journey to the target site and at the target site. Transfer of drugs in model systems consisting of donor liposomes and acceptor liposomes is known from experimental work to typically exhibit a first-order kinetics with a simple exponential behavior. In some cases, a fast component in the initial transfer is present, in other cases the transfer is sigmoidal. We present and analyze a theoretical model for the transfer that accounts for two physical mechanisms, collisions between liposomes and diffusion of the drug molecules through the aqueous phase. Starting with the detailed distribution of drug molecules among the individual liposomes, we specify the conditions that lead to an apparent first-order kinetic behavior. We also discuss possible implications on the transfer kinetics of (1 high drug loading of donor liposomes, (2 attractive interactions between drug molecules within the liposomes, and (3 slow transfer of drugs between the inner and outer leaflets of the liposomes.

  15. Water soluble carbon nano-onions from wood wool as growth promoters for gram plants.

    Science.gov (United States)

    Sonkar, Sumit Kumar; Roy, Manas; Babar, Dipak Gorakh; Sarkar, Sabyasachi

    2012-12-21

    Water-soluble carbon nano-onions (wsCNOs) isolated from wood wool-a wood-based pyrolysis waste product of wood, can enhance the overall growth rate of gram (Cicer arietinum) plants. Treatment of plants with upto 30 μg mL(-1) of wsCNOs for an initial 10 day period in laboratory conditions led to an increase in the overall growth of the plant biomass. In order to examine the growth stimulating effects of wsCNOs under natural conditions, 10 day-old plants treated with and without wsCNOs were transplanted into soil of standard carbon and nitrogen composition. We observed an enhanced growth rate of the wsCNOs pre-treated plants in soil, which finally led to an increased productivity of plants in terms of a larger number of grams. On analyzing the carbon, hydrogen, and nitrogen (CHN) content for the shoot and fruit sections of the plants treated with and without wsCNOs, only a minor difference in the composition was noticed. However, a slight increase in the percentage of carbon and hydrogen in shoots reflects the synthesis of more organic biomass in the case of treated plants. This work shows that wsCNOs are non-toxic to plant cells and can act as efficient growth stimulants which can be used as benign growth promoters.

  16. Polymeric Micelles, a Promising Drug Delivery System to Enhance Bioavailability of Poorly Water-Soluble Drugs

    Directory of Open Access Journals (Sweden)

    Wei Xu

    2013-01-01

    Full Text Available Oral administration is the most commonly used and readily accepted form of drug delivery; however, it is find that many drugs are difficult to attain enough bioavailability when administered via this route. Polymeric micelles (PMs can overcome some limitations of the oral delivery acting as carriers able to enhance drug absorption, by providing (1 protection of the loaded drug from the harsh environment of the GI tract, (2 release of the drug in a controlled manner at target sites, (3 prolongation of the residence time in the gut by mucoadhesion, and (4 inhibition of efflux pumps to improve the drug accumulation. To explain the mechanisms for enhancement of oral bioavailability, we discussed the special stability of PMs, the controlled release properties of pH-sensitive PMs, the prolongation of residence time with mucoadhesive PMs, and the P-gp inhibitors commonly used in PMs, respectively. The primary purpose of this paper is to illustrate the potential of PMs for delivery of poorly water-soluble drugs with bioavailability being well maintained.

  17. Water-Soluble Ruthenium (II) Chiral Heteroleptic Complexes with Amoebicidal in Vitro and in Vivo Activity.

    Science.gov (United States)

    Toledano-Magaña, Yanis; García-Ramos, Juan C; Torres-Gutiérrez, Carolina; Vázquez-Gasser, Cristina; Esquivel-Sánchez, José M; Flores-Alamo, Marcos; Ortiz-Frade, Luis; Galindo-Murillo, Rodrigo; Nequiz, Mario; Gudiño-Zayas, Marco; Laclette, Juan P; Carrero, Julio C; Ruiz-Azuara, Lena

    2017-02-09

    Three water-soluble Ru(II) chiral heteroleptic coordination compounds [Ru(en)(pdto)]Cl2 (1), [Ru(gly)(pdto)]Cl (2), and [Ru(acac)(pdto)]Cl (3), where pdto = 2,2'-[1,2-ethanediylbis-(sulfanediyl-2,1-ethanediyl)]dipyridine, en = ethylendiamine, gly = glycinate, and acac = acetylacetonate, have been synthezised and fully characterized. The crystal structures of compounds 1-3 are described. The IC50 values for compounds 1-3 are within nanomolar range (14, 12, and 6 nM, respectively). The cytotoxicity for human peripheral blood lymphocytes is extremely low (>100 μM). Selectivity indexes for Ru(II) compounds are in the range 700-1300. Trophozoites exposed to Ru(II) compounds die through an apoptotic pathway triggered by ROS production. The orally administration to infected mice induces a total elimination of the parasite charge in mice faeces 1-2-fold faster than metronidazole. Besides, all compounds inhibit the trophozoite proliferation in amoebic liver abscess induced in hamster. All our results lead us to propose these compounds as promising candidates as antiparasitic agents.

  18. Composition and antioxidant activity of water-soluble oligosaccharides from Hericium erinaceus.

    Science.gov (United States)

    Hou, Yiling; Ding, Xiang; Hou, Wanru

    2015-05-01

    Oligosaccharide are carbohydrate molecules, comprising repeating units joined together by glycosidic bonds. In recent years, an increasing number of oligosaccharides have been reported to exhibit various biological activities, including antitumor, immune-stimulation and antioxidation effects. In the present study, crude water‑soluble oligosaccharides were extracted from the fruiting bodies of Hericium erinaceus with water and then successively purified by diethylaminoethyl‑cellulose 52 and Sephadex G‑100 column chromatography, yielding one major oligosaccharide fraction: Hericium erinaceus oligosaccharide (HEO‑A). The structural features of HEO‑A were investigated by a combination of monosaccharide component analysis by thin layer chromatography, infrared spectroscopy, nuclear magnetic resonance spectroscopy, scanning electron microscopy and high‑performance gel permeation chromatography. The results indicated that HEO‑A was composed of D‑xylose and D‑glucose, and the average molecular size was ~1,877 Da. The antioxidant activity of HEO‑A was evaluated using three biochemical methods to determine the scavenging activity of HEO‑A on 1,1‑diphenyl‑2‑picrylhydrazyl, hydrogen peroxide and 2,2'‑azino‑bis(3‑ethylbenzthiazoline‑6‑sufonic acid) diammonium radicals. The results indicated that HEO‑A may serve as an effective healthcare food and source of natural antioxidant compounds.

  19. Characterization and antitumor activities of a water-soluble polysaccharide from Ampelopsis megalophylla.

    Science.gov (United States)

    Xie, Xianfei; Wang, Jianwu; Zhang, Hanping

    2015-09-20

    A water-soluble polysaccharide named as AMP was isolated and purified from the leaves of Ampelopsis megalophylla by DEAE-52 Cellulose and Sephadex G-100 column chromatography. AMP had an average molecular weight of about 8.4 × 10(4)Da and was composed of galactose (Gal), mannose (Man), glucose (Glc), arabinose (Ara), and rhamnose (Rha) in a molar ratio of 2.7:1.6:1.1:0.6:0.3. After 10 days of AMP (50, 100, and 200mg/kg) treatment once daily in tumor-bearing mice, AMP oral administration could inhibit the growth of transplantable Sarcoma 180 (S180) tumor in mice and increase the spleen index and body weight. Furthermore, AMP also promote splenocytes' proliferation induced by concanavalin A (ConA) and lipopolysaccharide (LPS), strengthen peritoneal macrophages to devour neutral red and increase the production of interleukin-2 (IL-2), tumor necrosis factor-alpha (TNF-α), and interferon-gamma (IFN-γ) in serum. These results suggest that AMP had clear antitumor activity, which might be related to its regulation of immune function in mice. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Influence of hydrophobic substance on enhancing washing durability of water soluble flame-retardant coating

    Energy Technology Data Exchange (ETDEWEB)

    Jindasuwan, Sunisa, E-mail: sunisaj@gmail.com [Department of Industrial Chemistry, Faculty of Applied Science, King Mongkut' s University of Technology North Bangkok, Bangkok, 10800 (Thailand); Sukmanee, Nattinee; Supanpong, Chanida [Department of Industrial Chemistry, Faculty of Applied Science, King Mongkut' s University of Technology North Bangkok, Bangkok, 10800 (Thailand); Suwan, Mantana; Nimittrakoolchai, On-uma [National Metal and Materials Technology Center, 114 Thailand Science Park, Paholyothin Rd., Klong Luang, Pathumthani, 12120 (Thailand); Supothina, Sitthisuntorn, E-mail: sitthis@mtec.or.th [National Metal and Materials Technology Center, 114 Thailand Science Park, Paholyothin Rd., Klong Luang, Pathumthani, 12120 (Thailand)

    2013-06-15

    Flame-retardant textiles are used in many consumer products. Among halogen-free flame retardant substances, inorganic flame retardants are mainly based on phosphorus, antimony, aluminum and boron-containing compounds. These coatings are soluble in water and therefore are not subjected to washing. In this study, washing durability of the inorganic flame retardant has been improved by incorporation of the hydrophobic substance to the coating. Composition of the coating which is the flame-retardant, monoammonium phosphate (MAP), and the hydrophobic substances, poly(methylhydrogen siloxane) (PMHS) and poly(dimethyl siloxane) (PDMS)), were varied to find the optimum coating solution. The results of SEM and TGA analysis, as well as the burning and washing tests, revealed that the coating solution consisting of MAP:PMHS:PDMS = 5:2:1 wt.% was the optimum condition. It showed the increased residue on the TGA profile compared to the uncoated sample, and self-extinguish after removal of the ignition source. The flame-retardant property can be maintained after washing, making it feasible for variety of applications.

  1. Extraction of hydrophobic species into a water-soluble synthetic receptor.

    Science.gov (United States)

    Hooley, Richard J; Van Anda, Hillary J; Rebek, Julius

    2007-11-07

    A deep, water-soluble cavitand extracts a variety of neutral hydrophobic species into its cavity. Flexible species such as n-alkanes tumble rapidly on the NMR time scale inside the cavity, but this motion is slowed for bulkier guests. Long, rigid guests such as p-substituted aromatics are either static or only tumble at elevated temperatures via flexing motions of the cavitand. Strong selectivity in recognition of long rigid guests is seen. The binding of neutral guests occurs via the classical hydrophobic effect; the process is entropically favored, as shown by isothermal titration calorimetry measurements. Binding affinities are generally on the order of 10(4)-10(5) M(-1). The extent of the hydrophobic stabilization is shown by the binding of long trimethylammonium salts, which bind the alkyl chain in the cavity, rather than the NMe3+ group. Dynamic NMR studies show that self-exchange of neutral guests is independent of guest concentration, and most likely occurs via rate-determining unfolding of the cavitand. In the absence of guests, the cavitand exists in a dimeric velcrand structure.

  2. Fluorescence Detection and Discrimination of ss- and ds-DNA with a Water Soluble Oligopyrene Derivative

    Directory of Open Access Journals (Sweden)

    Gaoquan Shi

    2009-06-01

    Full Text Available A novel water-soluble cationic conjugated oligopyrene derivative, oligo(N1,N1,N1,N4,N4,N4-hexamethyl-2-(4-(pyren-1-yl butane-1,4-diaminium bromide (OHPBDB, was synthesized by a combination of chemical and electrochemical synthesis techniques. Each oligomer chain has five pyrene derivative repeating units and brings 10 positive charges. OHPBDB showed high and rapid fluorescence quenching in aqueous media upon addition of trace amounts of single-stranded (ss and double-stranded (ds DNA. The Stern-Volmer constants for ss- and ds-DNA were measured to be as high as 1.3 × 108 mol-1·L and 1.2 × 108 mol-1·L, respectively. On the other hand, distinct fluorescence enhancement of OHPBDB upon addition of large amount of ss-DNA or ds-DNA was observed. Furthermore, ss-DNA showed much stronger fluorescence enhancement than that of ds-DNA, thus yielding a clear and simple signal useful for the discrimination between ss- and ds-DNA in aqueous media.

  3. Water-Soluble Electrospun Nanofibers as a Method for On-Chip Reagent Storage

    Directory of Open Access Journals (Sweden)

    Minhui Dai

    2012-10-01

    Full Text Available This work demonstrates the ability to electrospin reagents into water-soluble nanofibers resulting in a stable on-chip enzyme storage format. Polyvinylpyrrolidone (PVP nanofibers were spun with incorporation of the enzyme horseradish peroxidase (HRP. Scanning electron microscopy (SEM of the spun nanofibers was used to confirm the non-woven structure which had an average diameter of 155 ± 34 nm. The HRP containing fibers were tested for their change in activity following electrospinning and during storage. A colorimetric assay was used to characterize the activity of HRP by reaction with the nanofiber mats in a microtiter plate and monitoring the change in absorption over time. Immediately following electrospinning, the activity peak for the HRP decreased by approximately 20%. After a storage study over 280 days, 40% of the activity remained. In addition to activity, the fibers were observed to solubilize in the microfluidic chamber. The chromogenic 3,3′,5,5′-tetramethylbenzidine solution reacted immediately with the fibers as they passed through a microfluidic channel. The ability to store enzymes and other reagents on-chip in a rapidly dispersible format could reduce the assay steps required of an operator to perform.

  4. Fluorescence quenching behaviour of uric acid interacting with water-soluble cationic porphyrin

    Energy Technology Data Exchange (ETDEWEB)

    Makarska-Bialokoz, Magdalena, E-mail: makarska@hektor.umcs.lublin.pl [Department of Inorganic Chemistry, Maria Curie-Sklodowska University M. C. Sklodowska Sq. 2, 20-031 Lublin (Poland); Borowski, Piotr [Faculty of Chemistry, Maria Curie-Sklodowska University M. C. Sklodowska Sq. 3, 20-031 Lublin (Poland)

    2015-04-15

    The process of association between 5,10,15,20-tetrakis[4-(trimethylammonio)phenyl]-21H,23H-porphine tetra-p-tosylate (H{sub 2}TTMePP) and uric acid as well as its sodium salt has been studied in aqueous NaOH solution analysing its absorption and steady-state fluorescence spectra. The fluorescence quenching effect observed during interactions porphyrin-uric acid compounds points at the fractional accessibility of the fluorophore for the quencher. The association and fluorescence quenching constants are of the order of magnitude of 10{sup 5} mol{sup −1}. The fluorescence lifetimes and the quantum yields of the porphyrin anionic form were established. The results demonstrate that uric acid and its sodium salt can interact with H{sub 2}TTMePP at basic pH and through formation of stacking complexes are able to quench its ability to emission. - Highlights: • Association study of water soluble cationic porphyrin with uric acid. • Porphyrin absorption spectra undergo the bathochromic and hypochromic effects. • Uric acid interacts with porphyrin in inhibiting manner, quenching its emission. • Fluorescence quenching effect testifies for the partial inactivation of a porphyrin. • The association and fluorescence quenching constants were calculated.

  5. Synthesis of water soluble chitosan stabilized gold nanoparticles and determination of uric acid

    Science.gov (United States)

    Lanh Le, Thi; Khieu Dinh, Quang; Hoa Tran, Thai; Nguyen, Hai Phong; Le Hien Hoang, Thi; Hien Nguyen, Quoc

    2014-06-01

    Gold nanoparticles (Au-NPs) have been successfully synthesized by utilizing water soluble chitosan as reducing and stabilizing agent. The colloidal Au-NPs were characterized by UV-Vis spectroscopy and transmission electron microscopy (TEM). The results showed that the colloidal Au-NPs had a plasmon absorption band with maximum wavelength in the range of 520-526 nm and the diameters were about 8-15 nm. In addition, a new Au-NPs-modified electrode was fabricated by self-assembling Au-NPs to the surface of the L-cysteine-modified glassy carbon electrode (Au-NPs/L-Cys/GCE). The Au-NPs-modified electrode showed an excellent character for electro-catalytic oxidization of uric acid (UA) in 0.1 mol L-1 phosphate buffer solution (pH 3.2). Using differential pulse anodic stripping voltammetry (DP-ASV), a high selectivity for determination of UA has been explored for the Au-NPs-modified electrode. DP-ASV peak currents of UA increased linearly with their concentration at the range of 2.0 × 10-6 to 4.0 × 10-5 mol L-1 with the detection limit of 2.7 × 10-6 mol L-1 for UA. The proposed method was applied for the detection of UA in human urine and serum samples with satisfactory results.

  6. Analysis of water soluble polysaccharides as a potential chemotaxonomic marker for landraces in Bixa orellana.

    Science.gov (United States)

    Parimalan, Rangan; Mahendranath, Gondi; Giridhar, Parvatam

    2014-02-01

    Annatto tree (Bixa orellana L.) is native to Brazil and is now under cultivation in many parts of world for its reddish orange 'annatto' dye. There are three types of landraces in annatto and they are distinguished based on fruit shape i.e., ovate, conical and hemispherical, whose pigment yield differs. Since annatto pigment yield varies with landrace, it is necessary to characterize markers towards the identification of landraces. In this study, we characterized water soluble polysaccharides (WSP) of twigs from three landraces using size-exclusion chromatography (SEC), Fourier-transform Infrared spectroscopy (FT-IR), nuclear magnetic resonance spectroscopy (NMR) and gas liquid chromatography (GLC) for their potential use as chemotaxonomic markers to distinguish the landraces. GLC analysis on WSP showed hemispherical type contained 38% rhamnose, while conical and ovate types contained 17% and 34% glucose, respectively. Thus, glucose and rhamnose content of WSP could be used to distinguish the three landraces. Further, differences in calculated molecular weight as revealed by SEC (281.8, 151.3 and 79.4 kDa for conical, hemispherical and ovate types, respectively) could also be used to distinguish the three landraces.

  7. Bioautography and chemical characterization of antimicrobial compound(s) in commercial water-soluble annatto extracts.

    Science.gov (United States)

    Galindo-Cuspinera, Veronica; Rankin, Scott A

    2005-04-06

    Annatto preparations based on extracts of the seed of tropical bush Bixa orellana L consist of carotenoid-type pigments. Previous reports indicate that commercial annatto extracts have biological activities against microorganisms of significance to food fermentation, preservation, and safety. The objective of this study was to separate and identify the compound(s) responsible for the antimicrobial activity of annatto preparations. Commercial water-soluble annatto extracts were screened by thin-layer chromatography and bioautography followed by liquid chromatography/photodiode array/mass spectrometry (LC/PDA/MS) analysis of active fractions. Bioautography revealed two fractions with antimicrobial activity against Staphylococcus aureus. LC/PDA/MS analysis of both fractions revealed 9'-cis-norbixin (UV(max) 460 and 489 nm) and all-trans-norbixin (UV(max) 287, 470, and 494 nm) as the major components. Structure confirmation was achieved by (1)H NMR spectroscopy. Results indicate that 9'-cis-norbixin and all-trans-norbixin are responsible for the antimicrobial properties of annatto.

  8. Encapsulation of Ethylene Gas into Granular Cold-Water-Soluble Starch: Structure and Release Kinetics.

    Science.gov (United States)

    Shi, Linfan; Fu, Xiong; Tan, Chin Ping; Huang, Qiang; Zhang, Bin

    2017-03-15

    Ethylene gas was introduced into granular cold-water-soluble (GCWS) starches using a solid encapsulation method. The morphological and structural properties of the novel inclusion complexes (ICs) were characterized using scanning electron microscopy, X-ray diffractometry, and Raman spectroscopy. The V-type single helix of GCWS starches was formed through controlled gelatinization and ethanol precipitation and was approved to host ethylene gas. The controlled release characteristics of ICs were also investigated at various temperature and relative humidity conditions. Avrami's equation was fitted to understand the release kinetics and showed that the release of ethylene from the ICs was accelerated by increasing temperature or RH and was decelerated by increased degree of amylose polymerization. The IC of Hylon-7 had the highest ethylene concentration (31.8%, w/w) among the five starches, and the IC of normal potato starch showed the best controlled release characteristics. As a renewable and inexpensive material, GCWS starch is a desirable solid encapsulation matrix with potential in agricultural and food applications.

  9. Statistical optimization of controlled release microspheres containing cetirizine hydrochloride as a model for water soluble drugs.

    Science.gov (United States)

    El-Say, Khalid M; El-Helw, Abdel-Rahim M; Ahmed, Osama A A; Hosny, Khaled M; Ahmed, Tarek A; Kharshoum, Rasha M; Fahmy, Usama A; Alsawahli, Majed

    2015-01-01

    The purpose was to improve the encapsulation efficiency of cetirizine hydrochloride (CTZ) microspheres as a model for water soluble drugs and control its release by applying response surface methodology. A 3(3) Box-Behnken design was used to determine the effect of drug/polymer ratio (X1), surfactant concentration (X2) and stirring speed (X3), on the mean particle size (Y1), percentage encapsulation efficiency (Y2) and cumulative percent drug released for 12 h (Y3). Emulsion solvent evaporation (ESE) technique was applied utilizing Eudragit RS100 as coating polymer and span 80 as surfactant. All formulations were evaluated for micromeritic properties and morphologically characterized by scanning electron microscopy (SEM). The relative bioavailability of the optimized microspheres was compared with CTZ marketed product after oral administration on healthy human volunteers using a double blind, randomized, cross-over design. The results revealed that the mean particle sizes of the microspheres ranged from 62 to 348 µm and the efficiency of entrapment ranged from 36.3% to 70.1%. The optimized CTZ microspheres exhibited a slow and controlled release over 12 h. The pharmacokinetic data of optimized CTZ microspheres showed prolonged tmax, decreased Cmax and AUC0-∞ value of 3309 ± 211 ng h/ml indicating improved relative bioavailability by 169.4% compared with marketed tablets.

  10. Quantification of Water-Soluble Metabolites in Medicinal Mushrooms Using Proton NMR Spectroscopy.

    Science.gov (United States)

    Lo, Yu-Chang; Chien, Shih-Chang; Mishchuk, Darya O; Slupsky, Carolyn M; Mau, Jeng-Leun

    2016-01-01

    The water-soluble metabolites in 5 mushrooms were identified and quantified using proton nuclear magnetic resonance (NMR) spectroscopy and software for targeted metabolite detection and quantification. In total, 35 compounds were found in Agaricus brasiliensis, 25 in Taiwanofungus camphoratus, 23 in Ganoderma lucidum (Taiwan) and Lentinus edodes, and 16 in G. lucidum (China). Total amounts of all identified metabolites in A. brasiliensis, T. camphoratus, G. lucidum, G. lucidum (China), and L. edodes were 149,950.51, 12,834.18, 9,549.09, 2,788.41, and 111,726.51 mg/kg dry weight, respectively. These metabolites were categorized into 4 groups: free amino acids and derivatives, carbohydrates, carboxylic acids, and nucleosides. Carbohydrates were the most abundant metabolites among all 4 groups, with mannitol having the highest concentration among all analyzed metabolites (848-94,104 mg/kg dry weight). Principal components analysis (PCA) showed obvious distinction among the metabolites of the 5 different kinds of mushrooms analyzed in this study. Thus PCA could provide an optional analytical way of identifying and recognizing the compositions of flavor products. Furthermore, the results of this study demonstrate that NMRbased metabolomics is a powerful tool for differentiating between various medicinal mushrooms.

  11. Super fast detection of latent fingerprints with water soluble CdTe quantum dots.

    Science.gov (United States)

    Cai, Kaiyang; Yang, Ruiqin; Wang, Yanji; Yu, Xuejiao; Liu, Jianjun

    2013-03-10

    A new method based on the use of highly fluorescent water-soluble cadmium telluride (CdTe) quantum dots (QDs) capped with mercaptosuccinic acid (MSA) was explored to develop latent fingerprints. After optimized the effectiveness of QDs method contains pH value and developing time, super fast detection was achieved. Excellent fingerprint images were obtained in 1-3s after immersed the latent fingerprints into quantum dots solution on various non-porous surfaces, i.e. adhesive tape, transparent tape, aluminum foil and stainless steel. High sensitivity of the new latent fingerprints develop method was obtained by developing the fingerprints pressed on aluminum foil successively with the same finger. Compared with methyl violet and rhodamine 6G, the MSA-CdTe QDs showed the higher develop speed and fingerprint image quality. Clear image can be maintained for months by extending exposure time of CCD camera, storing fingerprints in a low temperature condition and secondary development. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.

  12. Synthesis and Biological Evaluation of Novel Water-Soluble Poly-(ethylene glycol-10-hydroxycamptothecin Conjugates

    Directory of Open Access Journals (Sweden)

    Na Guo

    2015-05-01

    Full Text Available In order to improve the antitumor activity and water solubility of 10-hydroxycamptothecin (HCPT, a series of novel HCPT conjugates were designed and synthesized by conjugating polyethylene glycol (PEG to the 10-hydroxyl group of HCPT via a valine spacer. The in vitro stability of these synthesized compounds was determined in pH 7.4 buffer at 37 °C, and the results showed that they released HCPT at different rates. All the compounds demonstrated significant antitumor activity in vitro against K562, HepG2 and HT-29 cells. Among them, compounds, 4a, 4d, 4e and 4f, exhibited 2–5 times higher potency than HCPT. The stability and antitumor activity of these conjugates were found to be closely related to the length of PEG and the linker type, conjugates with a relatively short PEG chain and carbamate linkages (compounds 4a and 4f exhibited controlled release of HCPT and excellent antitumor in vitro activity.

  13. Selective photoinactivation of Histoplasma capsulatum by water-soluble derivatives chalcones.

    Science.gov (United States)

    Melo, Wanessa C M A; Santos, Mariana Bastos Dos; Marques, Beatriz de Carvalho; Regasini, Luis Octávio; Giannini, Maria José Soares Mendes; Almeida, Ana Marisa Fusco

    2017-06-01

    Histoplasmosis is a respiratory and systemic disease caused by the dimorphic fungus Histoplasma capsulatum. The clinical features may vary from asymptomatic infections to disseminated severe form depending of patient immunity. The treatment of histoplasmosis can be performed with itraconazole, fluconazole, and in the disseminated forms is used amphotericin B. However, the critical side effects of amphotericin B, the cases of itraconazole therapy failure and the appearance of fluconozole-resistant strains makes necessary the search of new strategies to treat this disease. Antimicrobial photodynamic therapy (aPDT) seems to be a potential candidate once have been show efficacy to inhibit others dimorphic fungi. Although the photosensitizer (PS) chalcone aggregates in biological medium, it has antifungal activity and show a high quantum yield of ROS formation. So, the aim of this study was to obtain the experimental parameters to achieve an acceptable selective chalcone water-soluble derivatives photoinactivation of H. capsulatum comparing with fibroblastic and keratinocytes cells which are the constituents of some potential host tissues. Yeast and cells were incubated with the same chalchones concentrations and short incubation time followed by irradiation with equal dose of light. The best conditions to kill H. capsulatum selectively were very low photosensitizers concentration (1.95μgmL(-1)) incubated by 15min and irradiated with LED 450nm with 24Jcm(-2). Key words: chalcone, Histoplasma capsulatum, aPDT, selectivity. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Water-soluble coenzyme Q10 formulation (Q-TER(®)) in the treatment of presbycusis.

    Science.gov (United States)

    Salami, Angelo; Mora, Renzo; Dellepiane, Massimo; Manini, Giorgio; Santomauro, Valentina; Barettini, Luciano; Guastini, Luca

    2010-10-01

    These preliminary data are encouraging for a larger clinical trial to collect additional evidence on the effect of Q-TER(®) in preventing the development of hearing loss in subjects with presbycusis. The purpose of this study was to evaluate the efficiency and applicability of a water-soluble formulation of CoQ10 (Q-TER(®)) in subjects with presbycusis. A total of 60 patients with presbycusis were included and divided into three numerically equal groups. Group A underwent therapy with Q-TER(®), 160 mg, once a day for 30 days; group B underwent therapy with vitamin E (50 mg), once a day for 30 days; group C received placebo, once a day for 30 days. Before and at the end of the treatment, all patients underwent pure tone audiometry, transient evoked otoacoustic emissions, otoacoustic products of distortion, auditory brainstem response, and speech audiometry. Compared with group B, at the end of the treatment in group A the liminar tonal audiometry showed a significant improvement of the air and bone thresholds at the 1000 (14/20 vs 9/20), 2000 (14/20 vs 7/20), 4000 (15/20 vs 6/20), and 8000 Hz (13/20 vs 5/20). We found no significant differences in the other parameters and in group C.

  15. Water-soluble coenzyme Q10 formulation in presbycusis: long-term effects.

    Science.gov (United States)

    Guastini, Luca; Mora, Renzo; Dellepiane, Massimo; Santomauro, Valentina; Giorgio, Manini; Salami, Angelo

    2011-05-01

    These findings provide the basis for understanding the duration of the effect after the last use of the drug and encourage a larger clinical trial to collect additional evidence on the effect of coenzyme Q10 (CoQ10) in preventing the development of hearing loss in subjects with presbycusis. The aim of this study was to evaluate the long-term effects of a water-soluble formulation of CoQ10 (Q-TER) in subjects with presbycusis. Sixty patients with presbycusis were included and divided at random into three numerically equal groups. For 30 days, group A underwent therapy with Q-TER, group B underwent therapy with vitamin E, and group C received placebo. Before, at the end, and 6 months after the end of the treatment, all patients underwent evaluation of pure tone audiometry, transient evoked otoacoustic emissions and otoacoustic products of distortion, auditory brainstem response, and speech audiometry. Compared with group B, at the end of the treatment in group A the pure tone audiometry showed a significant (p < 0.05) improvement of the audiometric thresholds at 1000, 2000, 4000, and 8000 Hz. This improvement was confirmed by the speech audiometry and last check. We found no significant differences in the other parameters and in group C.

  16. New Insight into the Water-Soluble Chlorophyll-Binding Protein from Lepidium virginicum.

    Science.gov (United States)

    Kell, Adam; Bednarczyk, Dominika; Acharya, Khem; Chen, Jinhai; Noy, Dror; Jankowiak, Ryszard

    2016-05-01

    This study describes new recombinant water-soluble chlorophyll (Chl)-binding proteins (WSCP) from Lepidium virginicum (LvWSCP). This complex binds four Chls (i.e. two dimers of Chls) per protein tetramer. We show that absorption, emission, hole-burned (HB) spectra and the shape of the zero-phonon hole (ZPH) action spectrum are consistent with the presence of uncorrelated excitation energy transfer between two Chl dimers. Thus, there is no need to include slow protein relaxation within the lowest excited state (as suggested in a previous analysis of cauliflower WSCP [Schmitt, F.-J. et al. (2008) J. Phys. Chem. B, 112, 13951; Pieper, J. et al. (2011) J. Phys. Chem. B, 115, 4053]) in order to explain the large shift observed between the maxima of the ZPH action and emission spectra. Experimental evidence is provided which shows that electron exchange between lowest energy Chls and the protein may occur, i.e. electrons can be trapped at low temperature by nearby aromatic amino acids. The latter explains the shape of nonresonant HB spectra (i.e. the absence of antihole), demonstrating that the hole-burning process in LvWSCP is largely photochemical in nature, though a small contribution from nonphotochemical hole burning (in resonant holes) is also observed. © 2016 The American Society of Photobiology.

  17. Thermally activated superradiance and intersystem crossing in the water-soluble chlorophyll binding protein.

    Science.gov (United States)

    Renger, T; Madjet, M E; Müh, F; Trostmann, I; Schmitt, F-J; Theiss, C; Paulsen, H; Eichler, H J; Knorr, A; Renger, G

    2009-07-23

    The crystal structure of the class IIb water-soluble chlorophyll binding protein (WSCP) from Lepidium virginicum is used to model linear absorption and circular dichroism spectra as well as excited state decay times of class IIa WSCP from cauliflower reconstituted with chlorophyll (Chl) a and Chl b. The close agreement between theory and experiment suggests that both types of WSCP share a common Chl binding motif, where the opening angle between pigment planes in class IIa WSCP should not differ by more than 10 degrees from that in class IIb. The experimentally observed (Schmitt et al. J. Phys. Chem. B 2008, 112, 13951) decrease in excited state lifetime of Chl a homodimers with increasing temperature is fully explained by thermally activated superradiance via the upper exciton state of the dimer. Whereas a temperature-independent intersystem crossing (ISC) rate is inferred for WSCP containing Chl a homodimers, that of WSCP with Chl b homodimers is found to increase above 100 K. Our quantum chemical/electrostatic calculations suggest that a thermally activated ISC via an excited triplet state T4 is responsible for the latter temperature dependence.

  18. Structural mechanism and photoprotective function of water-soluble chlorophyll-binding protein.

    Science.gov (United States)

    Horigome, Daisuke; Satoh, Hiroyuki; Itoh, Nobue; Mitsunaga, Katsuyoshi; Oonishi, Isao; Nakagawa, Atsushi; Uchida, Akira

    2007-03-02

    A water-soluble chlorophyll-binding protein (WSCP) is the single known instance of a putative chlorophyll (Chl) carrier in green plants. Recently the photoprotective function of WSCP has been demonstrated by EPR measurements; the light-induced singlet-oxygen formation of Chl in the WSCP tetramer is about four times lower than that of unbound Chl. This paper describes the crystal structure of the WSCP-Chl complex purified from leaves of Lepidium virginicum (Virginia pepperweed) to clarify the mechanism of its photoprotective function. The WSCP-Chl complex is a homotetramer comprising four protein chains of 180 amino acids and four Chl molecules. At the center of the complex one hydrophobic cavity is formed in which all of the four Chl molecules are tightly packed and isolated from bulk solvent. With reference to the novel Chl-binding mode, we propose that the photoprotection mechanism may be based on the inhibition of physical contact between the Chl molecules and molecular oxygen.

  19. Supercritical Assisted Atomization: Polyvinylpyrrolidone as Carrier for Drugs with Poor Solubility in Water

    Directory of Open Access Journals (Sweden)

    Sara Liparoti

    2013-01-01

    Full Text Available Supercritical assisted atomization (SAA is an efficient technique to produce microparticles and composite microspheres formed by polymers and pharmaceutical compounds. In this work polyvinylpyrrolidone (PVP was proposed as carrier for pharmaceutical compounds that show a poor solubility in water medium. Indeed, this polymer is hydrosoluble and can be generally used to enhance the dissolution rate of hydrophobic compounds when finely dispersed in it. However, it is difficult to obtain coprecipitates with a uniform dispersion of the active molecule using other micronization techniques. The experiments were performed using ethanol as solvent; SAA plant was operated at 40°C and 76 bar in the saturator and 70°C and 1.6 bar in the precipitator. Three different dexamethasone/polymer weight ratios were selected: 1/2, 1/4, and 1/8. Produced composite particles showed a regular, spherical shape and a mean diameter ranging from about 0.8 to 1 μm, depending on the polymer/drug weight ratio. Dissolution analysis demonstrated that microparticles containing a lower drug amount show a higher dissolution rate.

  20. The fluorescent interactions between amphiphilic chitosan derivatives and water-soluble quantum dots.

    Science.gov (United States)

    Fei, Xuening; Yu, Miaozhuo; Zhang, Baolian; Cao, Lingyun; Yu, Lu; Jia, Guozhi; Zhou, Jianguo

    2016-01-05

    The LCC-CdTe quantum dots (QDs) hybrid was fabricated by mixing the N-lauryl-N, O-carboxymethyl chitosan (LCC) micelle with water-soluble CdTe QDs in an aqueous solution via hydrophobic forces and the electronic attraction. The structures of LCC and LCC-CdTe QDs hybrid were determined by differential scanning calorimetry (DSC), Fourier transform infrared (FT-IR) spectroscopy and transmission electron microscopy (TEM). The results showed that the lauryl and carboxymethyl were successfully grafted to chitosan oligosaccharide (CSO), and a number of CdTe QDs were encapsulated by LCC micelle to form a core/shell structure. The tested results of the fluorescent characteristics of LCC, CdTe QDs and LCC-CdTe QDs hybrid showed that there were some obvious fluorescent interactions between LCC and CdTe QDs. Meanwhile, with the change in LCC space structure, the fluorescent interactions between LCC and QDs showed different fluorescent characteristics. The QDs fluorescent (FL) intensity increased first and then decreased to almost quenching, while LCC FL intensity decreased continually. Copyright © 2015 Elsevier B.V. All rights reserved.

  1. Fluorescent polystyrene photonic crystals self-assembled with water-soluble conjugated polyrotaxanes

    Directory of Open Access Journals (Sweden)

    Francesco Di Stasio

    2013-10-01

    Full Text Available We demonstrate control of the photoluminescence spectra and decay rates of water-soluble green-emitting conjugated polyrotaxanes by incorporating them in polystyrene opals with a stop-band spectrally tuned on the rotaxane emission (405–650 nm. We observe a suppression of the luminescence within the photonic stop-band and a corresponding enhancement of the high-energy edge (405–447 nm. Time-resolved measurements reveal a wavelength-dependent modification of the emission lifetime, which is shortened at the high-energy edge (by ∼11%, in the range 405–447 nm, but elongated within the stop-band (by ∼13%, in the range 448–482 nm. We assign both effects to the modification of the density of photonic states induced by the photonic crystal band structure. We propose the growth of fluorescent composite photonic crystals from blends of “solvent-compatible” non-covalently bonded nanosphere-polymer systems as a general method for achieving a uniform distribution of polymeric dopants in three-dimensional self-assembling photonic structures.

  2. New water soluble phosphonate and polycarboxylate complexants for enhanced f element separations

    Energy Technology Data Exchange (ETDEWEB)

    Nash, K.L.; Rickert, P.G.; Lessmann, E.P.; Mendoza, M.D.; Feil, J.F.; Sullivan, J.C.

    1994-08-01

    While lipophilic extractant molecules and ion exchange polymeric materials are clearly essential to efficient separation of metal ions by solvent extraction or ion exchange, the most difficult separations often could not be accomplished without the use of water soluble complexants. This report focuses on recent developments in design, synthesis and characterization of phosphonic acid and polycarboxylic acid ligands for enhanced f element separations. Emphasis is on the basic solution chemistry and crystal structures of complexes of the f elements with selected amino-derivatives of methanediphosphonic acid and with tetrahydrofuran-2,3,4,5-tetracarboxylic acid. The former series of compounds exhibit high affinity for lanthanides and actinides in acidic solutions. The latter ligand exhibits an unusual (and very useful) ``anti-selectivity`` for uranyl ion in a solvent extraction process, which permits efficient separation of uranyl from more radioactive components of nuclear wastes. Most of the observed effects can be explained through examination of the structure of the ligand, and comparison of the spectroscopic and thermodynamic parameters for complexation of various metal ions.

  3. Genome-Wide Association of Stem Water Soluble Carbohydrates in Bread Wheat.

    Directory of Open Access Journals (Sweden)

    Yan Dong

    Full Text Available Water soluble carbohydrates (WSC in stems play an important role in buffering grain yield in wheat against biotic and abiotic stresses; however, knowledge of genes controlling WSC is very limited. We conducted a genome-wide association study (GWAS using a high-density 90K SNP array to better understand the genetic basis underlying WSC, and to explore marker-based breeding approaches. WSC was evaluated in an association panel comprising 166 Chinese bread wheat cultivars planted in four environments. Fifty two marker-trait associations (MTAs distributed across 23 loci were identified for phenotypic best linear unbiased estimates (BLUEs, and 11 MTAs were identified in two or more environments. Liner regression showed a clear dependence of WSC BLUE scores on numbers of favorable (increasing WSC content and unfavorable alleles (decreasing WSC, indicating that genotypes with higher numbers of favorable or lower numbers of unfavorable alleles had higher WSC content. In silico analysis of flanking sequences of trait-associated SNPs revealed eight candidate genes related to WSC content grouped into two categories based on the type of encoding proteins, namely, defense response proteins and proteins triggered by environmental stresses. The identified SNPs and candidate genes related to WSC provide opportunities for breeding higher WSC wheat cultivars.

  4. Genome-Wide Association of Stem Water Soluble Carbohydrates in Bread Wheat.

    Science.gov (United States)

    Dong, Yan; Liu, Jindong; Zhang, Yan; Geng, Hongwei; Rasheed, Awais; Xiao, Yonggui; Cao, Shuanghe; Fu, Luping; Yan, Jun; Wen, Weie; Zhang, Yong; Jing, Ruilian; Xia, Xianchun; He, Zhonghu

    2016-01-01

    Water soluble carbohydrates (WSC) in stems play an important role in buffering grain yield in wheat against biotic and abiotic stresses; however, knowledge of genes controlling WSC is very limited. We conducted a genome-wide association study (GWAS) using a high-density 90K SNP array to better understand the genetic basis underlying WSC, and to explore marker-based breeding approaches. WSC was evaluated in an association panel comprising 166 Chinese bread wheat cultivars planted in four environments. Fifty two marker-trait associations (MTAs) distributed across 23 loci were identified for phenotypic best linear unbiased estimates (BLUEs), and 11 MTAs were identified in two or more environments. Liner regression showed a clear dependence of WSC BLUE scores on numbers of favorable (increasing WSC content) and unfavorable alleles (decreasing WSC), indicating that genotypes with higher numbers of favorable or lower numbers of unfavorable alleles had higher WSC content. In silico analysis of flanking sequences of trait-associated SNPs revealed eight candidate genes related to WSC content grouped into two categories based on the type of encoding proteins, namely, defense response proteins and proteins triggered by environmental stresses. The identified SNPs and candidate genes related to WSC provide opportunities for breeding higher WSC wheat cultivars.

  5. Influence of hydrophobic substance on enhancing washing durability of water soluble flame-retardant coating

    Science.gov (United States)

    Jindasuwan, Sunisa; Sukmanee, Nattinee; Supanpong, Chanida; Suwan, Mantana; Nimittrakoolchai, On-uma; Supothina, Sitthisuntorn

    2013-06-01

    Flame-retardant textiles are used in many consumer products. Among halogen-free flame retardant substances, inorganic flame retardants are mainly based on phosphorus, antimony, aluminum and boron-containing compounds. These coatings are soluble in water and therefore are not subjected to washing. In this study, washing durability of the inorganic flame retardant has been improved by incorporation of the hydrophobic substance to the coating. Composition of the coating which is the flame-retardant, monoammonium phosphate (MAP), and the hydrophobic substances, poly(methylhydrogen siloxane) (PMHS) and poly(dimethyl siloxane) (PDMS)), were varied to find the optimum coating solution. The results of SEM and TGA analysis, as well as the burning and washing tests, revealed that the coating solution consisting of MAP:PMHS:PDMS = 5:2:1 wt.% was the optimum condition. It showed the increased residue on the TGA profile compared to the uncoated sample, and self-extinguish after removal of the ignition source. The flame-retardant property can be maintained after washing, making it feasible for variety of applications.

  6. Effect of sodium dodecyl benzene sulfonate on water-soluble hydrophobically associating polymer solutions

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, W.; Dong, M. [University of Regina, Faculty of Engineering, Regina, SK (Canada); Guo, Y. [Southwest Petroleum Institute (China); Xiao, H. [University of New Brunswick, Dept. of Chemical Engineering, Fredericton, NB (Canada)

    2004-02-01

    Water-soluble polymers are widely used in oilfield operations such as drilling, flooding and profile modification. Using the fluorescence probe approach, this paper investigates the effect of sodium dodecyl benzene (SDBS) on the rheological characteristics of the modified hydrophobically associated polymer (HAP) aqueous solutions. Polymer surfactant interactions and formations of hydrophobic domains are also investigated. Results show that the presence of SDBS enhances the structure viscosity of the polymer solution and causes a competition between intra- and intermolecular interaction. Low concentration of SDBS resulted in the cross-linkage of the hydrophobic groups of polymers; high concentrations of SDBS tended to disrupt the associated structures. Fluorescent results showed the ability of SDBS to provide information on the microstructure of solutions, including the generation of microdomains which strengthened the viscosity of the polymer solutions. In low shear rate range, and with SDBS concentration of about 1.0x10{sup 3} mol/L, the polymer solution exhibited significant shear thickening when the HAP concentration ranged from a dilute regime to an entangled semi-dilute regime. Beyond this level of SDBS, the viscosity of the polymer decreased, due to the SDBS molecules inhibiting interactions between polymers by forming micelles around the hydrophobes, causing the disappearance of the intermolecular association, and the disruption of the cross-linking structure. It was concluded that with an achievable high viscosity this system showed high promise as an effective thickener for enhanced oil recovery. 10 refs., 4 figs.

  7. Characterization of soluble microbial products in a drinking water biological aerated filter.

    Science.gov (United States)

    Kang, Jia; Ma, Teng-Fei; Zhang, Peng; Gao, Xu; Chen, You-Peng

    2016-05-01

    Utilization-associated products (UAPs) and biomass-associated products (BAPs) were quantified separately in this study to characterize soluble microbial products (SMPs) in a drinking water lab-scale biological aerated filter (BAF), and their basic characteristics were explored using gel filtration chromatography and three-dimensional excitation-emission matrix (3D-EEM) spectrophotometry with fluorescence regional integration analysis and parallel factor model. UAPs were observed increased with the increase of filter media depth and accumulated after BAF treatment, whereas BAPs were basically constant. 3D-EEM spectroscopy analysis result showed that tryptophan and protein-like compounds were the main components of UAPs and BAPs, and fulvic-acid-like substance was a major component of BAPs, rather than UAPs. In terms of molecular weight (MW) distribution, UAP MW presented a bimodal distribution in the range of 1-5 and >10 kDa, while BAP MW exhibited unimodal distribution with MW >20 kDa fraction accounting for more than 90 %. The macromolecules of UAPs accumulated after BAF treatment. This study provides theoretical support for in-depth study of SMP characteristics.

  8. Spectral manifestation of surface plasmon resonance of silver nanoparticles upon interaction with water-soluble metalloporphyrins

    Science.gov (United States)

    Panarin, A. Yu.; Abakshonok, A. V.; Eremin, A. N.; Terekhov, S. N.

    2017-06-01

    Absorption and resonant light-scattering spectra of nanoparticles (NPs) of silver, and their complexes with water-soluble Cu(II)-5,10,15,20-tetrakis(4-N-methylpyridinium)-porphyrin (CuTMpyP4) and Fe(II)-5,10,15,20-tetrakis(4-sulfonatophenyl)-porphyrin (FeTSPP) have been compared. It is shown that in the presence of cationic CuTMpyP4, the band of surface plasmon resonance in the absorption and resonant scattering spectra of silver NPs is shifted to the long-wavelength region that is associated with the agglomeration of the particles caused by the Coulomb attraction between the silver particles and the porphyrin molecules. Addition of anionic FeTSPP to the silver NP solution does not lead to any spectral changes. The observed effect of silver-NP association induced by the cationic porphyrin can be used to develop an optical method for the detection of nanoparticles in solutions.

  9. Polysaccharide components from the scape of Musa paradisiaca: main structural features of water-soluble polysaccharide component.

    Science.gov (United States)

    Anjaneyalu, Y V; Jagadish, R L; Raju, T S

    1997-06-01

    Polysaccharide components present in the pseudo-stem (scape) of M. paradisiaca were purified from acetone powder of the scape by delignification followed by extraction with aqueous solvents into water soluble polysaccharide (WSP), EDTA-soluble polysaccharide (EDTA-SP), alkali-soluble polysaccharide (ASP) and alkali-insoluble polysaccharide (AISP) fractions. Sugar compositional analysis showed that WSP and EDTA-SP contained only D-Glc whereas ASP contained D-Glc, L-Ara and D-Xyl in approximately 1:1:10 ratio, respectively, and AISP contained D-Glc, L-Ara and D-Xyl in approximately 10:1:2 ratio, respectively. WSP was further purified by complexation with iso-amylalcohol and characterized by specific rotation, IR spectroscopy, Iodine affinity, ferricyanide number, blue value, hydrolysis with alpha-amylase and glucoamylase, and methylation linkage analysis, and shown to be a amylopectin type alpha-D-glucan.

  10. Predicting the excess solubility of acetanilide, acetaminophen, phenacetin, benzocaine, and caffeine in binary water/ethanol mixtures via molecular simulation.

    Science.gov (United States)

    Paluch, Andrew S; Parameswaran, Sreeja; Liu, Shuai; Kolavennu, Anasuya; Mobley, David L

    2015-01-28

    We present a general framework to predict the excess solubility of small molecular solids (such as pharmaceutical solids) in binary solvents via molecular simulation free energy calculations at infinite dilution with conventional molecular models. The present study used molecular dynamics with the General AMBER Force Field to predict the excess solubility of acetanilide, acetaminophen, phenacetin, benzocaine, and caffeine in binary water/ethanol solvents. The simulations are able to predict the existence of solubility enhancement and the results are in good agreement with available experimental data. The accuracy of the predictions in addition to the generality of the method suggests that molecular simulations may be a valuable design tool for solvent selection in drug development processes.

  11. Predicting the excess solubility of acetanilide, acetaminophen, phenacetin, benzocaine, and caffeine in binary water/ethanol mixtures via molecular simulation

    Science.gov (United States)

    Paluch, Andrew S.; Parameswaran, Sreeja; Liu, Shuai; Kolavennu, Anasuya; Mobley, David L.

    2015-01-01

    We present a general framework to predict the excess solubility of small molecular solids (such as pharmaceutical solids) in binary solvents via molecular simulation free energy calculations at infinite dilution with conventional molecular models. The present study used molecular dynamics with the General AMBER Force Field to predict the excess solubility of acetanilide, acetaminophen, phenacetin, benzocaine, and caffeine in binary water/ethanol solvents. The simulations are able to predict the existence of solubility enhancement and the results are in good agreement with available experimental data. The accuracy of the predictions in addition to the generality of the method suggests that molecular simulations may be a valuable design tool for solvent selection in drug development processes.

  12. Synthesis and properties of a highly soluble dihydoxo(tetra-tert-butylphthalocyaninato)antimony(V) complex as a precursor toward water-soluble phthalocyanines.

    Science.gov (United States)

    Isago, Hiroaki; Miura, Kyoko; Oyama, Youichi

    2008-03-01

    The title complex cation, [Sb(tbpc)(OH)(2)](+) (where tbpc denotes tetra(tert-butyl)phthalocyaninate, C(48)H(48)N(8)(2-)), has been prepared by oxidizing [Sb(tbpc)]I(3) with tert-butyl perbenzoate in CH(2)Cl(2), CHCl(3), o-dichlorobenzene and also without solvent in the range of 20-80 degrees C. This species has been isolated as I(3)(-) salt and characterized by elemental analysis, ESI-MS, FT-IR, optical absorption and emission, and magnetic circular dichroism spectroscopy. This compound is quite well soluble in common polar organic solvents (e.g., CH(2)Cl(2), acetonitrile, acetone) without detectable aggregation at least up to ca. 10(-4)M while much less soluble (e.g., benzene, chloronaphthalene) or insoluble (hexane) in non-polar solvents. Although this compound is insoluble in water, it makes hydrophilic colloids in acetone-water mixtures. The most intense absorption band (Q-band) in a specific solvent red-shifts with an increase in the refractive index of the solvent. However, considerable deviation of the Q-band positions in donor-solvents from linear correlation between the positions and Onsager's solvent polarity function suggests that there are significant specific chemical interactions between the axial hydroxyl groups and the surrounding donor molecules. The low fluorescence quantum yield (ca. 0.01) for [Sb(tbpc)(OH)(2)](+) suggests that the singlet excited state of this species is considerably quenched by the presence of antimony ion in the chromophore.

  13. Ubiquitous water-soluble molecules in aquatic plant exudates determine specific insect attraction.

    Directory of Open Access Journals (Sweden)

    Julien Sérandour

    Full Text Available Plants produce semio-chemicals that directly influence insect attraction and/or repulsion. Generally, this attraction is closely associated with herbivory and has been studied mainly under atmospheric conditions. On the other hand, the relationship between aquatic plants and insects has been little studied. To determine whether the roots of aquatic macrophytes release attractive chemical mixtures into the water, we studied the behaviour of mosquito larvae using olfactory experiments with root exudates. After testing the attraction on Culex and Aedes mosquito larvae, we chose to work with Coquillettidia species, which have a complex behaviour in nature and need to be attached to plant roots in order to obtain oxygen. This relationship is non-destructive and can be described as commensal behaviour. Commonly found compounds seemed to be involved in insect attraction since root exudates from different plants were all attractive. Moreover, chemical analysis allowed us to identify a certain number of commonly found, highly water-soluble, low-molecular-weight compounds, several of which (glycerol, uracil, thymine, uridine, thymidine were able to induce attraction when tested individually but at concentrations substantially higher than those found in nature. However, our principal findings demonstrated that these compounds appeared to act synergistically, since a mixture of these five compounds attracted larvae at natural concentrations (0.7 nM glycerol, <0.5 nM uracil, 0.6 nM thymine, 2.8 nM uridine, 86 nM thymidine, much lower than those found for each compound tested individually. These results provide strong evidence that a mixture of polyols (glycerol, pyrimidines (uracil, thymine, and nucleosides (uridine, thymidine functions as an efficient attractive signal in nature for Coquillettidia larvae. We therefore show for the first time, that such commonly found compounds may play an important role in plant-insect relationships in aquatic eco-systems.

  14. High-performance liquid chromatography of water-soluble choline metabolites.

    Science.gov (United States)

    Liscovitch, M; Freese, A; Blusztajn, J K; Wurtman, R J

    1985-11-15

    We have developed a new method for the separation of [3H]choline metabolites by high-performance liquid chromatography. Using this method it is possible to separate, in one step, all of the known major water-soluble choline metabolites present in crude acid extracts of cells that have been incubated with [3H]choline, with baseline or near-baseline resolution. We use a gradient HPLC system with a normal-phase silica column as the stationary phase, and a linear gradient of increasing polarity and ionic strength as the mobile phase. The mobile phase is composed of two buffers: Buffer A, containing acetonitrile/water/ethyl alcohol/acetic acid/0.83 M sodium acetate (800/127/68/2/3), and buffer B (400/400/68/53/79), pH 3.6. A linear gradient from 0 to 100% buffer B, with a slope of 5%/min, is started 15 min after injection. At a flow rate of 2.7 ml/min and column temperature of 45 degrees C, typical retention times for the following compounds are (in min): betaine, 10; acetylcholine, 18; choline, 22; glycerophosphocholine, 26; CDP-choline, 31; and phosphorylcholine, 40. This procedure has been applied in tracer studies of choline metabolism utilizing the neuronal NG108-15 cell line and rat hippocampal slices as model systems. While the compounds labeled in the NG108-15 cells were primarily phosphorylcholine and glycerophosphocholine, reflecting high rates of phospholipid turnover, in the hippocampal slices choline and acetylcholine were the major labeled species. Identification of individual peaks was confirmed by comparing the elution profiles of untreated cell extracts with extracts that had been treated with hydrolyzing enzymes of differing specificities. This HPLC method may be useful in studies of acetylcholine and phosphatidylcholine metabolism, and of the possible interrelationships of these compounds in cholinergic cells.

  15. Fructans and other water soluble carbohydrates in vegetative organs and fruits of different Musa spp. accessions

    Directory of Open Access Journals (Sweden)

    Carlos Ivan eCruz Cardenas

    2015-06-01

    Full Text Available The water-soluble carbohydrates (WSC glucose, fructose and sucrose are well-known to the great public, but fructan represents another type of WSC that deserves more attention given their prebiotic and immunomodulatory properties in the food context. Although the occurrence of inulin-type fructo-oligosaccharides (FOS was proposed in the fruit of some banana accessions, little or no information is available neither on the exact identity of the fructan species, nor on the fructan content in different parts of banana plants and among a broader array of banana cultivars. Here, we investigated the WSC composition in leaves, pulp of ripe fruits and rhizomes from mature banana plants of eleven accessions (I to XI, including both cultivated varieties and wild Musa species. High performance anion exchange chromatography with integrated pulsed amperometric detection (HPAEC-IPAD showed the presence of 1-kestotriose [GF2], inulobiose [F2], inulotriose [F3], 6-kestotriose and 6G-kestotriose (neokestose fructan species in the pulp of mature fruits of different accessions, but the absence of 1,1-nystose and 1,1,1 kestopentaose and higher degree of polymerization (DP inulin-type fructans. This fructan fingerprint points at the presence of one or more invertases that are able to use fructose and sucrose as alternative acceptor substrates. Quantification of glucose, fructose, sucrose and 1-kestotriose and principal component analysis (PCA identified related banana groups, based on their specific WSC profiles. These data provide new insights in the biochemical diversity of wild and cultivated bananas, and shed light on potential roles that fructans may fulfil across species, during plant development and adaptation to changing environments. Furthermore, the promiscuous behavior of banana fruit invertases (sucrose and fructose as acceptor substrates besides water provides a new avenue to boost future work on structure-function relationships on these enzymes

  16. Magnetic hyperthermia studies on water-soluble polyacrylic acid-coated cobalt ferrite nanoparticles

    Energy Technology Data Exchange (ETDEWEB)

    Krishna Surendra, M. [Indian Institute of Technology Madras, Department of Physics, Nano Functional Materials Technology Centre, Materials Research Centre (India); Annapoorani, S. [Anna University of Technology, Department of Nanotechnology (India); Ansar, Ereath Beeran; Harikrishna Varma, P. R. [Sree Chitra Tirunal Institute for Medical Sciences and Technology, Bioceramics Laboratory (India); Ramachandra Rao, M. S., E-mail: msrrao@iitm.ac.in [Indian Institute of Technology Madras, Department of Physics, Nano Functional Materials Technology Centre, Materials Research Centre (India)

    2014-12-15

    We report on synthesis and hyperthermia studies in the water-soluble ferrofluid made of polyacrylic acid-coated cobalt ferrite (CoFe{sub 2}O{sub 4}) nanoparticles with different particle sizes. Magnetic nanoparticles were synthesized using co-precipitation method and particle size was varied as 6, 10, and 14 nm by varying the precursor to surfactant concentration. PAA surfactant bonding and surfactant thickness were studied by FTIR and thermogravimetric analysis. At room temperature, nanoparticles show superparamagnetism and saturation magnetization was found to vary from 33 to 44 emu/g with increase in the particle size from 6 to 14 nm, and this increase was attributed to the presence of a magnetic inert layer of 4 Å thick. Effect of particle size, concentration, and alternating magnetic field strength at 275 kHz on specific absorption rate were studied by preparing ferrofluids in deionized water at different concentrations. Ferrofluids at a concentration of 1.25 g/L, with 10 min of AMF exposure of strength ∼15.7 kA/m show stable temperatures ∼48, 58, and 68 °C with increase in the particle sizes 6, 10, and 14 nm. A maximum specific absorption rate of 251 W/g for ferrofluid with a particle size of 10 nm at 1.25 g/L, 15.7 kA/m, and 275 kHz was observed. Viability of L929 fibroblasts is measured by MTT assay cytotoxicity studies using the polyacrylic acid-coated CoFe{sub 2}O{sub 4} nanoparticles.

  17. Fructans and other water soluble carbohydrates in vegetative organs and fruits of different Musa spp. accessions

    Science.gov (United States)

    Cruz-Cárdenas, Carlos I.; Miranda-Ham, María L.; Castro-Concha, Lizbeth A.; Ku-Cauich, José R.; Vergauwen, Rudy; Reijnders, Timmy; Van den Ende, Wim; Escobedo-GraciaMedrano, Rosa M.

    2015-01-01

    The water soluble carbohydrates (WSC) glucose, fructose, and sucrose are well-known to the great public, but fructans represent another type of WSC that deserves more attention given their prebiotic and immunomodulatory properties in the food context. Although the occurrence of inulin-type fructo-oligosaccharides (FOS) was proposed in the fruit of some banana accessions, little or no information is available neither on the exact identity of the fructan species, nor on the fructan content in different parts of banana plants and among a broader array of banana cultivars. Here, we investigated the WSC composition in leaves, pulp of ripe fruits and rhizomes from mature banana plants of 11 accessions (I to XI), including both cultivated varieties and wild Musa species. High performance anion exchange chromatography with integrated pulsed amperometric detection (HPAEC-IPAD) showed the presence of 1-kestotriose [GF2], inulobiose [F2], inulotriose [F3], 6-kestotriose and 6G-kestotriose (neokestose) fructan species in the pulp of mature fruits of different accessions, but the absence of 1,1-nystose and 1,1,1 kestopentaose and higher degree of polymerization (DP) inulin-type fructans. This fructan fingerprint points at the presence of one or more invertases that are able to use fructose and sucrose as alternative acceptor substrates. Quantification of glucose, fructose, sucrose and 1-kestotriose and principal component analysis (PCA) identified related banana groups, based on their specific WSC profiles. These data provide new insights in the biochemical diversity of wild and cultivated bananas, and shed light on potential roles that fructans may fulfill across species, during plant development and adaptation to changing environments. Furthermore, the promiscuous behavior of banana fruit invertases (sucrose and fructose as acceptor substrates besides water) provides a new avenue to boost future work on structure-function relationships on these enzymes, potentially leading to

  18. Effects of warm air drying on water sorption, solubility, and adhesive strength of simplified etch-and-rinse adhesives.

    Science.gov (United States)

    Reis, Alessandra; Wambier, Leticia; Malaquias, Tamirez; Wambier, Denise S; Loguercio, Alessandro D

    2013-02-01

    To evaluate the effects of the temperature of air used for solvent evaporation on water sorption, solubility, and ultimate tensile strength (UTS) of simplified etch-and-rinse adhesives. Four commercial simplified etch-and-rinse adhesives (Adper Single Bond 2 [SB]; Te Econom [TE]; XP Bond [XP] and Ambar [AM]) were selected. Disk-shaped specimens were prepared by dispensing the uncured resin into a mold (5.8 mm x 0.8 mm). Solvent evaporation was performed using a warm (60°C) or cold (20°C) air stream for 40 s. After desiccation, the cured specimens were weighed and then stored in distilled water for evaluation of the water diffusion kinetics over a 28-day period. For the UTS measurement, hourglass-shaped specimens of adhesives were prepared and tested in tension. The data from each test were evaluated with two-way ANOVA and Tukey's test at a confidence level of 95%. Water sorption and solubility varied significantly between materials, but no significant difference was observed between warm and cold conditions (p > 0.05). TE and AM showed the lowest water sorption and solubility (p < 0.05). For SB, TE, and XP, the use of a warm air stream resulted in higher ultimate tensile strength (p < 0.05) in both experimental conditions. The water sorption and solubility of the materials seem to be more influenced by their composition than by the temperature used for solvent evaporation. For some adhesives, the use of a warm air stream can yield higher ultimate tensile strength.

  19. Exploiting the biosynthetic machinery of Streptomyces pilosus to engineer a water-soluble zirconium(iv) chelator.

    Science.gov (United States)

    Richardson-Sanchez, Tomas; Tieu, William; Gotsbacher, Michael P; Telfer, Thomas J; Codd, Rachel

    2017-07-21

    The water solubility of a natural product-inspired octadentate hydroxamic acid chelator designed to coordinate Zr(iv)-89 has been improved by using a combined microbiological-chemical approach to engineer four ether oxygen atoms into the main-chain region of a methylene-containing analogue. First, an analogue of the trimeric hydroxamic acid desferrioxamine B (DFOB) that contained three main-chain ether oxygen atoms (DFOB-O3) was generated from cultures of the native DFOB-producer Streptomyces pilosus supplemented with oxybis(ethanamine) (OBEA), which competed against the native 1,5-diaminopentane (DP) substrate during DFOB assembly. This precursor-directed biosynthesis (PDB) approach generated a suite of DFOB analogues containing one (DFOB-O1), two (DFOB-O2) or three (DFOB-O3) ether oxygen atoms, with the latter produced as the major species. Log P measurements showed DFOB-O3 was about 45 times more water soluble than DFOB. Second, a peptide coupling chain-extension reaction between DFOB-O3 and the synthetic ether-containing endo-hydroxamic acid monomer 4-((2-(2-aminoethoxy)ethyl)(hydroxy)amino)-4-oxobutanoic acid (PBH-O1) gave the water soluble tetrameric hydroxamic acid DFOB-O3-PBH-O1 as an isostere of sparingly water soluble DFOB-PBH. The complex between DFOB-O3-PBH-O1 and natZr(iv), examined as a surrogate measure of the radiolabelling procedure, analysed by LC-MS as the protonated adduct ([M + H]+, m/zobs = 855.2; m/zcalc = 855.3), with supporting HRMS data. The use of a microbiological system to generate a water-soluble analogue of a natural product for downstream semi-synthetic chemistry is an attractive pathway for developing new drugs and imaging agents. The improved water solubility of DFOB-O3-PBH-O1 could facilitate the synthesis and purification of downstream products, as part of the ongoing development of ligands optimised for Zr(iv)-89 immunological PET imaging.

  20. Soluble and insoluble fiber (image)

    Science.gov (United States)

    ... stool. There are two types of dietary fiber, soluble and insoluble. Soluble fiber retains water and turns to gel during ... and nutrient absorption from the stomach and intestine. Soluble fiber is found in foods such as oat ...