WorldWideScience

Sample records for water scarcity solutions

  1. China's water scarcity.

    Science.gov (United States)

    Jiang, Yong

    2009-08-01

    China has been facing increasingly severe water scarcity, especially in the northern part of the country. China's water scarcity is characterized by insufficient local water resources as well as reduced water quality due to increasing pollution, both of which have caused serious impacts on society and the environment. Three factors contribute to China's water scarcity: uneven spatial distribution of water resources; rapid economic development and urbanization with a large and growing population; and poor water resource management. While it is nearly impossible to adjust the first two factors, improving water resource management represents a cost-effective option that can alleviate China's vulnerability to the issue. Improving water resource management is a long-term task requiring a holistic approach with constant effort. Water right institutions, market-based approaches, and capacity building should be the government's top priority to address the water scarcity issue.

  2. The end of abundance. Economic solutions to water scarcity

    NARCIS (Netherlands)

    Zetland, D.J.

    2011-01-01

    In a past of abundance, we had clean water to meet our demands for showers, pools, farms and rivers. Our laws and customs did not need to regulate or ration demand. Over time, our demand has grown, and scarcity has replaced abundance. We don't have as much clean water as we want. We can respond to

  3. Four billion people facing severe water scarcity.

    Science.gov (United States)

    Mekonnen, Mesfin M; Hoekstra, Arjen Y

    2016-02-01

    Freshwater scarcity is increasingly perceived as a global systemic risk. Previous global water scarcity assessments, measuring water scarcity annually, have underestimated experienced water scarcity by failing to capture the seasonal fluctuations in water consumption and availability. We assess blue water scarcity globally at a high spatial resolution on a monthly basis. We find that two-thirds of the global population (4.0 billion people) live under conditions of severe water scarcity at least 1 month of the year. Nearly half of those people live in India and China. Half a billion people in the world face severe water scarcity all year round. Putting caps to water consumption by river basin, increasing water-use efficiencies, and better sharing of the limited freshwater resources will be key in reducing the threat posed by water scarcity on biodiversity and human welfare.

  4. Towards Sustainable Water Management in a Country that Faces Extreme Water Scarcity and Dependency: Jordan

    Science.gov (United States)

    Schyns, J.; Hamaideh, A.; Hoekstra, A. Y.; Mekonnen, M. M.; Schyns, M.

    2015-12-01

    Jordan faces a great variety of water-related challenges: domestic water resources are scarce and polluted; the sharing of transboundary waters has led to tensions and conflicts; and Jordan is extremely dependent of foreign water resources through trade. Therefore, sustainable water management in Jordan is a challenging task, which has not yet been accomplished. The objective of this study was to analyse Jordan's domestic water scarcity and pollution and the country's external water dependency, and subsequently review sustainable solutions that reduce the risk of extreme water scarcity and dependency. We have estimated the green, blue and grey water footprint of five different sectors in Jordan: crop production, grazing, animal water supply, industrial production and domestic water supply. Next, we assessed the blue water scarcity ratio for the sum of surface- and groundwater and for groundwater separately, and calculated the water pollution level. Finally, we reviewed the sustainability of proposed solutions to Jordan's domestic water problems and external water dependency in literature, while involving the results and conclusions from our analysis. We have quantified that: even while taking into account the return flows, blue water scarcity in Jordan is severe; groundwater consumption is nearly double the sustainable yield; water pollution aggravates blue water scarcity; and Jordan's external virtual water dependency is 86%. Our review yields ten essential ingredients that a sustainable water management strategy for Jordan, that reduces the risk of extreme water scarcity and dependency, should involve. With respect to these, Jordan's current water policy requires a strong redirection towards water demand management. Especially, more attention should be paid to reducing water demand by changing the consumption patterns of Jordan consumers. Moreover, exploitation of fossil groundwater should soon be halted and planned desalination projects require careful

  5. Four billion people facing severe water scarcity

    NARCIS (Netherlands)

    Mekonnen, Mesfin; Hoekstra, Arjen Ysbert

    2016-01-01

    Freshwater scarcity is increasingly perceived as a global systemic risk. Previous global water scarcity assessments, measuring water scarcity annually, have underestimated experienced water scarcity by failing to capture the seasonal fluctuations in water consumption and availability. We assess blue

  6. Water scarcity and urban forest management: introduction

    Science.gov (United States)

    E. Gregory McPherson; Robert Prince

    2013-01-01

    Between 1997 and 2009 a serious drought affected much of Australia. Whether reasoned or unintentional, water policy decisions closed the tap, turning much of the urban forest’s lifeline into a trickle. Green infrastructure became brown infrastructure, exposing its standing as a low priority relative to other consumptive sources. To share new solutions to water scarcity...

  7. Using Probabilistic Methods in Water Scarcity Assessments: A First Step Towards a Water Scarcity Risk Assessment Framework

    Science.gov (United States)

    Veldkamp, Ted; Wada, Yoshihide; Aerts, Jeroen; Ward, Phillip

    2016-01-01

    Water scarcity -driven by climate change, climate variability, and socioeconomic developments- is recognized as one of the most important global risks, both in terms of likelihood and impact. Whilst a wide range of studies have assessed the role of long term climate change and socioeconomic trends on global water scarcity, the impact of variability is less well understood. Moreover, the interactions between different forcing mechanisms, and their combined effect on changes in water scarcity conditions, are often neglected. Therefore, we provide a first step towards a framework for global water scarcity risk assessments, applying probabilistic methods to estimate water scarcity risks for different return periods under current and future conditions while using multiple climate and socioeconomic scenarios.

  8. MARSOL: Demonstrating Managed Aquifer Recharge as a Solution to Water Scarcity and Drought

    Science.gov (United States)

    Schueth, Christoph

    2014-05-01

    Southern Europe and the Mediterranean region are facing the challenge of managing its water resources under conditions of increasing scarcity and concerns about water quality. Already, the availability of fresh water in sufficient quality and quantity is one of the major factors limiting socio economic development. Innovative water management strategies such as the storage of reclaimed water or excess water from different sources in Managed Aquifer Recharge (MAR) schemes can greatly increase water availability and therefore improve water security. Main objective of the proposed project MARSOL is to demonstrate that MAR is a sound, safe and sustainable strategy that can be applied with great confidence and therefore offering a key approach for tackling water scarcity in Southern Europe. For this, eight field sites were selected that will demonstrate the applicability of MAR using various water sources, ranging from treated wastewater to desalinated seawater, and a variety of technical solutions. Targets are the alleviation of the effect of climate change on water resources, the mitigation of droughts, to countermeasure temporal and spatial misfit of water availability, to sustain agricultural water supply and rural socio-economic development, to combat agricultural related pollutants, to sustain future urban and industrial water supply and to limit seawater intrusion in coastal aquifers. Results of the demonstration sites will be used to develop guidelines for MAR site selection, technical realization, monitoring strategies, and modeling approaches, to offer stakeholders a comprehensive, state of the art and proven toolbox for MAR implementation. Further, the economic and legal aspects of MAR will be analyzed to enable and accelerate market penetration. The MARSOL consortium combines the expertise of consultancies, water suppliers, research institutions, and public authorities, ensuring high practical relevance and market intimacy.

  9. Global assessment of water policy vulnerability under uncertainty in water scarcity projections

    Science.gov (United States)

    Greve, Peter; Kahil, Taher; Satoh, Yusuke; Burek, Peter; Fischer, Günther; Tramberend, Sylvia; Byers, Edward; Flörke, Martina; Eisner, Stephanie; Hanasaki, Naota; Langan, Simon; Wada, Yoshihide

    2017-04-01

    Water scarcity is a critical environmental issue worldwide, which has been driven by the significant increase in water extractions during the last century. In the coming decades, climate change is projected to further exacerbate water scarcity conditions in many regions around the world. At present, one important question for policy debate is the identification of water policy interventions that could address the mounting water scarcity problems. Main interventions include investing in water storage infrastructures, water transfer canals, efficient irrigation systems, and desalination plants, among many others. This type of interventions involve long-term planning, long-lived investments and some irreversibility in choices which can shape development of countries for decades. Making decisions on these water infrastructures requires anticipating the long term environmental conditions, needs and constraints under which they will function. This brings large uncertainty in the decision-making process, for instance from demographic or economic projections. But today, climate change is bringing another layer of uncertainty that make decisions even more complex. In this study, we assess in a probabilistic approach the uncertainty in global water scarcity projections following different socioeconomic pathways (SSPs) and climate scenarios (RCPs) within the first half of the 21st century. By utilizing an ensemble of 45 future water scarcity projections based on (i) three state-of-the-art global hydrological models (PCR-GLOBWB, H08, and WaterGAP), (ii) five climate models, and (iii) three water scenarios, we have assessed changes in water scarcity and the associated uncertainty distribution worldwide. The water scenarios used here are developed by IIASA's Water Futures and Solutions (WFaS) Initiative. The main objective of this study is to improve the contribution of hydro-climatic information to effective policymaking by identifying spatial and temporal policy

  10. Water access, water scarcity, and climate change.

    Science.gov (United States)

    Mukheibir, Pierre

    2010-05-01

    This article investigates the approaches of the various discourses operating in the water sector and how they address the issues of scarcity and equitable access under projected climate change impacts. Little synergy exists between the different approaches dealing with these issues. Whilst being a sustainable development and water resources management issue, a holistic view of access, scarcity and the projected impacts of climate change is not prevalent in these discourses. The climate change discourse too does not adequately bridge the gap between these issues. The projected impacts of climate change are likely to exacerbate the problems of scarcity and equitable access unless appropriate adaptation strategies are adopted and resilience is built. The successful delivery of accessible water services under projected climate change impacts therefore lies with an extension of the adaptive water management approach to include equitable access as a key driver.

  11. Global monthly water scarcity: blue water footprints versus blue water availability.

    Science.gov (United States)

    Hoekstra, Arjen Y; Mekonnen, Mesfin M; Chapagain, Ashok K; Mathews, Ruth E; Richter, Brian D

    2012-01-01

    Freshwater scarcity is a growing concern, placing considerable importance on the accuracy of indicators used to characterize and map water scarcity worldwide. We improve upon past efforts by using estimates of blue water footprints (consumptive use of ground- and surface water flows) rather than water withdrawals, accounting for the flows needed to sustain critical ecological functions and by considering monthly rather than annual values. We analyzed 405 river basins for the period 1996-2005. In 201 basins with 2.67 billion inhabitants there was severe water scarcity during at least one month of the year. The ecological and economic consequences of increasing degrees of water scarcity--as evidenced by the Rio Grande (Rio Bravo), Indus, and Murray-Darling River Basins--can include complete desiccation during dry seasons, decimation of aquatic biodiversity, and substantial economic disruption.

  12. Water scarcity: moving beyond indexes to innovative institutions.

    Science.gov (United States)

    Jarvis, W Todd

    2013-01-01

    Water scarcity is a media darling often times described as a trigger of conflict in arid regions, a by-product of human influences ranging from desertification to climate change, or a combination of natural- and human-induced changes in the water cycle. A multitude of indexes have been developed over the past 20 years to define water scarcity to map the "problem" and guide international donor investment. Few indexes include groundwater within the metrics of "scarcity." Institutional communication contributes to the recognition of local or regional water scarcity. However, evaluations that neglect groundwater resources may incorrectly define conditions as scarce. In cases where there is a perception of scarcity, the incorporation of groundwater and related storage in aquifers, political willpower, new policy tools, and niche diplomacy often results in a revised status, either reducing or even eliminating the moniker locally. Imaginative conceptualization and innovative uses of aquifers are increasingly used to overcome water scarcity. © 2013, National Ground Water Association.

  13. Dealing with uncertainty in water scarcity footprints

    Science.gov (United States)

    Scherer, Laura; Pfister, Stephan

    2016-05-01

    Water scarcity adversely affects ecosystems, human well-being and the economy. It can be described by water scarcity indices (WSIs) which we calculated globally for the decades 1981-1990 and 2001-2010. Based on a model ensemble, we calculated the WSI for both decades including uncertainties. While there is a slight tendency of increased water scarcity in 2001-2010, the likelihood of the increase is rather low (53%). Climate change played only a minor role, but increased water consumption is more decisive. In the last decade, a large share of the global population already lived under highly water scarce conditions with a global average monthly WSI of 0.51 (on a scale from 0 to 1). Considering that globally there are enough water resources to satisfy all our needs, this highlights the need for regional optimization of water consumption. In addition, crop choices within a food group can help reduce humanity’s water scarcity footprint without reducing its nutritional value.

  14. Global monthly water scarcity: Blue water footprints versus blue water availability

    NARCIS (Netherlands)

    Hoekstra, Arjen Ysbert; Mekonnen, Mesfin; Chapagain, Ashok; Mathews, R.E.; Richter, B.D.

    2012-01-01

    Freshwater scarcity is a growing concern, placing considerable importance on the accuracy of indicators used to characterize and map water scarcity worldwide. We improve upon past efforts by using estimates of blue water footprints (consumptive use of ground- and surface water flows) rather than

  15. Efficient dynamic scarcity pricing in urban water supply

    Science.gov (United States)

    Lopez-Nicolas, Antonio; Pulido-Velazquez, Manuel; Rougé, Charles; Harou, Julien J.; Escriva-Bou, Alvar

    2017-04-01

    Water pricing is a key instrument for water demand management. Despite the variety of existing strategies for urban water pricing, urban water rates are often far from reflecting the real value of the resource, which increases with water scarcity. Current water rates do not bring any incentive to reduce water use in water scarcity periods, since they do not send any signal to the users of water scarcity. In California, the recent drought has spurred the implementation of drought surcharges and penalties to reduce residential water use, although it is not a common practice yet. In Europe, the EU Water Framework Directive calls for the implementation of new pricing policies that assure the contribution of water users to the recovery of the cost of water services (financial instrument) while providing adequate incentives for an efficient use of water (economic instrument). Not only financial costs should be recovered but also environmental and resource (opportunity) costs. A dynamic pricing policy is efficient if the prices charged correspond to the marginal economic value of water, which increases with water scarcity and is determined by the value of water for all alternative uses in the basin. Therefore, in the absence of efficient water markets, measuring the opportunity costs of scarce water can only be achieved through an integrated basin-wide hydroeconomic simulation approach. The objective of this work is to design a dynamic water rate for urban water supply accounting for the seasonal marginal value of water in the basin, related to water scarcity. The dynamic pricing policy would send to the users a signal of the economic value of the resource when water is scarce, therefore promoting more efficient water use. The water rate is also designed to simultaneously meet the expected basic requirements for water tariffs: revenue sufficiency (cost recovery) and neutrality, equity and affordability, simplicity and efficiency. A dynamic increasing block rate (IBR

  16. Advanced water treatment as a tool in water scarcity management

    DEFF Research Database (Denmark)

    Harremoes, Poul

    2000-01-01

    of water. In the former case, the water is lost by evaporation and polluted. In the latter case, the water is not lost but heavily polluted. With increasing scarcity, the value of water and the need for controls increase. In this situation, water reuse becomes an option that has been considered exotic......The water resource is under increasing pressure, both from the increase in population and from the wish to improve the living standards of the individual. Water scarcity is defined as the situation where demand is greater than the resource. Water scarcity has two distinctly different dimensions......: water availability and water applicability. The availability is a question of quantitative demand relative to resource. The applicability is a question of quality suitability for the intended use of the water. There is a significant difference in this regard with respect to rural versus urban use...

  17. Water scarcity and drought in WANA countries

    KAUST Repository

    Kharraz, Jauad El

    2012-03-20

    Water Security was a central theme of WANA Forum 2010, where regional experts warned that the wars of the 21st century will be fought over water. Climate change will only exacerbate problems in a region already stressed by lack of water, food and political and social unrest. Across the Arc of Crisis, from Somalia, Sudan and Egypt in Africa to Yemen, Iraq, Pakistan, and Afghanistan in West Asia, water scarcity in the region has already lead to drought and famine, loss of livelihood, the spread of water-borne diseases, forced migrations and open conflict. Water scarcity is closely linked to food and health security, making better water management a key stepping stone for poverty reduction and economic growth. If nothing changes, most of the WANA countries will encounter, in less than a generation, serious problems in managing inland freshwater, the availability of which, in sufficient quantity and quality, may become, as it is already the case in several of these countries, a main challenge for economic and social development. Wastage and pollution will then be such that « water stress » will affect, in a way or another, most of the populations of WANA countries and the poorest first of all. The effects of global warming will increase current trends. On the other hand, water scarcity in the WANA region is an issue of growing concern. With heavy demand from agriculture, growing populations and virtually no remaining untapped water sources, the need to establish water-management strategies in the region is of vital importance. WANA countries can be divided into three major agro-ecologies, each facing slightly different challenges. Rain-fed areas are dependent on a low and extremely variable rainfall, resulting in minimal yields, a problem exacerbated by frequent drought. Rainfall occurs in the form of intense and unpredictable storms, and as a result, the crusting soils are unable to absorb the moisture, which rapidly becomes lost through evaporation or runoff

  18. Applying Place-Based Social-Ecological Research to Address Water Scarcity: Insights for Future Research

    Directory of Open Access Journals (Sweden)

    Antonio J. Castro

    2018-05-01

    Full Text Available Globally, environmental and social change in water-scarce regions challenge the sustainability of social-ecological systems. WaterSES, a sponsored working group within the Program for Ecosystem Change and Society, explores and compares the social-ecological dynamics related to water scarcity across placed-based international research sites with contrasting local and regional water needs and governance, including research sites in Spain and Sweden in Europe, South Africa, China, and Alabama, Idaho, Oklahoma, and Texas in the USA. This paper aims to provide a commentary on insights into conducting future solutions-oriented research on water scarcity based on the understanding of the social-ecological dynamics of water scarce regions.

  19. The inequality of water scarcity events: who is actually being affected?

    Science.gov (United States)

    Veldkamp, Ted I. E.; Wada, Yoshihide; Kummu, Matti; Aerts, Jeroen C. J. H.; Ward, Philip J.

    2015-04-01

    Over the past decades, changing hydro-climatic and socioeconomic conditions increased regional and global water scarcity problems. In the near future, projected changes in human water use and population growth - in combination with climate change - are expected to aggravate water scarcity conditions and its associated impacts on our society. Whilst a wide range of studies have modelled past and future regional and global patterns of change in population or land area impacted by water scarcity conditions, less attention is paid on who is actually affected and how vulnerable this share of the population is to water scarcity conditions. The actual impact of water scarcity events, however, not only depends on the numbers being affected, but merely on how sensitive this population is to water scarcity conditions, how quick and efficient governments can deal with the problems induced by water scarcity, and how many (financial and infrastructural) resources are available to cope with water scarce conditions. Only few studies have investigated the above mentioned interactions between societal composition and water scarcity conditions (e.g. by means of the social water scarcity index and the water poverty index) and, up to our knowledge, a comprehensive global analysis including different water scarcity indicators and multiple climate and socioeconomic scenarios is missing. To address this issue, we assess in this contribution the adaptive capacity of a society to water scarcity conditions, evaluate how this may be driven by different societal factors, and discuss how enhanced knowledge on this topic could be of interest for water managers in their design of adaptation strategies coping with water scarcity events. For that purpose, we couple spatial information on water scarcity conditions with different components from, among others, the Human Development Index and the Worldwide Governance Indicators, such as: the share of the population with an income below the poverty

  20. Water scarcity challenges to business

    NARCIS (Netherlands)

    Hoekstra, Arjen Ysbert

    2014-01-01

    The growing scarcity of freshwater due to rising water demands and a changing climate is increasingly seen as a major risk for the global economy. Consumer awareness, private sector initiatives, governmental regulation and targeted investments are urgently needed to move towards sustainable water

  1. Water scarcity in the Arabian Peninsula and socio-economic implications

    Science.gov (United States)

    Odhiambo, George O.

    2017-09-01

    The Arabian Gulf, one of the driest parts of the world, is already passing the water scarcity line as defined by the World Health Organization (WHO). The scarcity of renewable water resources and the growing discrepancy between demand and supply of water is a major challenge. Water scarcity is further worsened by rapidly growing demands due to rapid population growth, unsustainable consumption, climate change and weak management institutions and regulations. Water scarcity erodes the socio-economic sustainability of the communities that depend on the depleting storage. In this paper, an analysis of the water security situation within the Arabian Gulf region and the consequent socio-economic implications is presented.

  2. Integrated Supply Network Maturity Model: Water Scarcity Perspective

    Directory of Open Access Journals (Sweden)

    Ekaterina Yatskovskaya

    2018-03-01

    Full Text Available Today’s supply chains (SCs are more than ever prone to disruptions caused by natural and man-made events with water scarcity identified as one of the highest impact events among these. Leading businesses, understanding that natural resource scarcity (NRS has become a critical supply chain risk factor, extensively incorporate sustainable water management programmes into their corporate social responsibility and environmental management agenda. The question of how industries can efficiently evaluate the progress of these water scarcity mitigation practices, however, remains open. In order to address this question, the present study proposes a conceptual maturity model. The model is rooted in strategies for water scarcity mitigation using a framework developed by Yatskovskaya and Srai and develops an extensive literature review of recent publications on maturity frameworks in the fields of sustainability and operations management. In order to test the proposed proposed, model an exploratory case study with a leading pharmaceutical company was conducted. The proposed maturity model presents an evaluation tool that allows systematic assessment and visualisation of organisational routines and practices relevant to sustainable manufacturing in the context of water scarcity. This model was designed to help illustrate mitigation capabilities evolution over time, where future state desired capabilities were considered through alternative supply network (SN configurations, network structure, process flow, product architecture, and supply partnerships.

  3. The measurement of water scarcity: Defining a meaningful indicator.

    Science.gov (United States)

    Damkjaer, Simon; Taylor, Richard

    2017-09-01

    Metrics of water scarcity and stress have evolved over the last three decades from simple threshold indicators to holistic measures characterising human environments and freshwater sustainability. Metrics commonly estimate renewable freshwater resources using mean annual river runoff, which masks hydrological variability, and quantify subjectively socio-economic conditions characterising adaptive capacity. There is a marked absence of research evaluating whether these metrics of water scarcity are meaningful. We argue that measurement of water scarcity (1) be redefined physically in terms of the freshwater storage required to address imbalances in intra- and inter-annual fluxes of freshwater supply and demand; (2) abandons subjective quantifications of human environments and (3) be used to inform participatory decision-making processes that explore a wide range of options for addressing freshwater storage requirements beyond dams that include use of renewable groundwater, soil water and trading in virtual water. Further, we outline a conceptual framework redefining water scarcity in terms of freshwater storage.

  4. Multimodel assessment of water scarcity under climate change.

    Science.gov (United States)

    Schewe, Jacob; Heinke, Jens; Gerten, Dieter; Haddeland, Ingjerd; Arnell, Nigel W; Clark, Douglas B; Dankers, Rutger; Eisner, Stephanie; Fekete, Balázs M; Colón-González, Felipe J; Gosling, Simon N; Kim, Hyungjun; Liu, Xingcai; Masaki, Yoshimitsu; Portmann, Felix T; Satoh, Yusuke; Stacke, Tobias; Tang, Qiuhong; Wada, Yoshihide; Wisser, Dominik; Albrecht, Torsten; Frieler, Katja; Piontek, Franziska; Warszawski, Lila; Kabat, Pavel

    2014-03-04

    Water scarcity severely impairs food security and economic prosperity in many countries today. Expected future population changes will, in many countries as well as globally, increase the pressure on available water resources. On the supply side, renewable water resources will be affected by projected changes in precipitation patterns, temperature, and other climate variables. Here we use a large ensemble of global hydrological models (GHMs) forced by five global climate models and the latest greenhouse-gas concentration scenarios (Representative Concentration Pathways) to synthesize the current knowledge about climate change impacts on water resources. We show that climate change is likely to exacerbate regional and global water scarcity considerably. In particular, the ensemble average projects that a global warming of 2 °C above present (approximately 2.7 °C above preindustrial) will confront an additional approximate 15% of the global population with a severe decrease in water resources and will increase the number of people living under absolute water scarcity (water resources, suggesting a high potential for improved water resource projections through hydrological model development.

  5. From water use to water scarcity footprinting in environmentally extended input-output analysis.

    Science.gov (United States)

    Ridoutt, Bradley George; Hadjikakou, Michalis; Nolan, Martin; Bryan, Brett A

    2018-05-18

    Environmentally extended input-output analysis (EEIOA) supports environmental policy by quantifying how demand for goods and services leads to resource use and emissions across the economy. However, some types of resource use and emissions require spatially-explicit impact assessment for meaningful interpretation, which is not possible in conventional EEIOA. For example, water use in locations of scarcity and abundance is not environmentally equivalent. Opportunities for spatially-explicit impact assessment in conventional EEIOA are limited because official input-output tables tend to be produced at the scale of political units which are not usually well aligned with environmentally relevant spatial units. In this study, spatially-explicit water scarcity factors and a spatially disaggregated Australian water use account were used to develop water scarcity extensions that were coupled with a multi-regional input-output model (MRIO). The results link demand for agricultural commodities to the problem of water scarcity in Australia and globally. Important differences were observed between the water use and water scarcity footprint results, as well as the relative importance of direct and indirect water use, with significant implications for sustainable production and consumption-related policies. The approach presented here is suggested as a feasible general approach for incorporating spatially-explicit impact assessment in EEIOA.

  6. Chicago's water market: Dynamics of demand, prices and scarcity rents

    Science.gov (United States)

    Ipe, V.C.; Bhagwat, S.B.

    2002-01-01

    Chicago and its suburbs are experiencing an increasing demand for water from a growing population and economy and may experience water scarcity in the near future. The Chicago metropolitan area has nearly depleted its groundwater resources to a point where interstate conflicts with Wisconsin could accompany an increased reliance on those sources. Further, the withdrawals from Lake Michigan is limited by the Supreme Court decree. The growing demand and indications of possible scarcity suggest a need to reexamine the pricing policies and the dynamics of demand. The study analyses the demand for water and develops estimates of scarcity rents for water in Chicago. The price and income elasticities computed at the means are -0.002 and 0.0002 respectively. The estimated scarcity rents ranges from $0.98 to $1.17 per thousand gallons. The results indicate that the current prices do not fully account for the scarcity rents and suggest a current rate with in the range $1.53 to $1.72 per thousand gallons.

  7. Toward a formal definition of water scarcity in natural human systems

    Science.gov (United States)

    W.K. Jaeger; A.J. Plantinga; H. Chang; K. Dello; G. Grant; D. Hulse; J.J. McDonnell; S. Lancaster; H. Moradkhani; A.T. Morzillo; P. Mote; A. Nolin; M. Santlemann; J. Wu

    2013-01-01

    Water scarcity may appear to be a simple concept, but it can be difficult to apply to complex natural-human systems. While aggregate scarcity indices are straightforward to compute, they do not adequately represent the spatial and temporal variations in water scarcity that arise from complex systems interactions. The uncertain effects of future climate change on water...

  8. Analysis of Water Use and Water Scarcity in Arid and Semi-arid Regions

    Science.gov (United States)

    Samayoa, S. D.

    2017-12-01

    Analysis of Water Use and Water Scarcity in Arid and Semi-arid Regions Susana Samayoa , Muhammed A. G. Chowdhury, Tushar Sinha Department of Environmental Engineering, Texas A & M University - Kingsville Freshwater sustainability in arid and semi-arid regions is highly uncertain under increasing demands due to population growth and urban development as well as limited water supply. In particular, six largest cities by population among the top twenty U.S. cities are located in Texas (TX), which also experience high variability in water availability due to frequent droughts and floods. Similarly, several regions in Arizona (AZ) are rapidly growing (e.g. Phoenix and Tucson) despite receiving scanty rainfall. Thus, the goal of this study is to analyze water use and water scarcity in watersheds within TX and AZ between 1985 and 2010. The water use data from U.S. Geological Survey (USGS) is analyzed by Hydrological Unit Code (HUC) - 8 within TX and AZ. Total freshwater use by county during 1985 and 2010 were converted into water use by HUC-8 using geospatial analysis. Water availability will be estimated by using a large scale Variable Infiltration Capacity (VIC) hydrologic model. The VIC model will be calibrated and validated for multiple basins located in Texas and Arizona. The VIC model simulated total streamflow will be aggregated across the 1/8 degree grids that are within each HUC-8 to estimate water supply. The excess water for upstream HUC-8s (= local supply minus demands) will be routed, in addition to locally generated streamflow, to estimate water availability in downstream HUC-8s. Water Scarcity Index, defined as the ratio of total freshwater demand to supply, will be estimated during 1985 and 2010 to evaluate the effects of water availability and demands on scarcity. Finally, water scarcity and use will be analyzed by HUC-8s within TX and AZ. Such information could be useful in water resources management and planning. Keywords: Water scarcity, water use

  9. Drivers And Uncertainties Of Increasing Global Water Scarcity

    Science.gov (United States)

    Scherer, L.; Pfister, S.

    2015-12-01

    Water scarcity threatens ecosystems and human health and hampers economic development. It generally depends on the ratio of water consumption to availability. We calculated global, spatially explicit water stress indices (WSIs) which describe the vulnerability to additional water consumption on a scale from 0 (low) to 1 (high) and compare them for the decades 1981-1990 and 2001-2010. Input data are obtained from a multi-model ensemble at a resolution of 0.5 degrees. The variability among the models was used to run 1000 Monte Carlo simulations (latin hypercube sampling) and to subsequently estimate uncertainties of the WSIs. Globally, a trend of increasing water scarcity can be observed, however, uncertainties are large. The probability that this trend is actually occurring is as low as 53%. The increase in WSIs is rather driven by higher water use than lower water availability. Water availability is only 40% likely to decrease whereas water consumption is 67% likely to increase. Independent from the trend, we are already living under water scarce conditions, which is reflected in a consumption-weighted average of monthly WSIs of 0.51 in the recent decade. Its coefficient of variation points with 0.8 to the high uncertainties entailed, which might still hide poor model performance where all models consistently over- or underestimate water availability or use. Especially in arid areas, models generally overestimate availability. Although we do not traverse the planetary boundary of freshwater use as global water availability is sufficient, local water scarcity might be high. Therefore the regionalized assessment of WSIs under uncertainty helps to focus on specific regions to optimise water consumption. These global results can also help to raise awareness of water scarcity, and to suggest relevant measures such as more water efficient technologies to international companies, which have to deal with complex and distributed supply chains (e.g. in food production).

  10. Growing water scarcity in agriculture: future challenge to global water security.

    Science.gov (United States)

    Falkenmark, Malin

    2013-11-13

    As water is an essential component of the planetary life support system, water deficiency constitutes an insecurity that has to be overcome in the process of socio-economic development. The paper analyses the origin and appearance of blue as well as green water scarcity on different scales and with particular focus on risks to food production and water supply for municipalities and industry. It analyses water scarcity originating from both climatic phenomena and water partitioning disturbances on different scales: crop field, country level and the global circulation system. The implications by 2050 of water scarcity in terms of potential country-level water deficits for food self-reliance are analysed, and the compensating dependence on trade in virtual water for almost half the world population is noted. Planetary-scale conditions for sustainability of the global water circulation system are discussed in terms of a recently proposed Planetary Freshwater Boundary, and the consumptive water use reserve left to be shared between water requirements for global food production, fuelwood production and carbon sequestration is discussed. Finally, the importance of a paradigm shift in the further conceptual development of water security is stressed, so that adequate attention is paid to water's fundamental role in both natural and socio-economic systems.

  11. Transgenic crops coping with water scarcity.

    Science.gov (United States)

    Cominelli, Eleonora; Tonelli, Chiara

    2010-11-30

    Water scarcity is a serious problem that will be exacerbated by global climate change. Massive quantities of water are used in agriculture, and abiotic stresses, especially drought and increased salinity, are primary causes of crop loss worldwide. Various approaches may be adopted to consume less water in agriculture, one of them being the development of plants that use less water yet maintain high yields in conditions of water scarcity. In recent years several molecular networks concerned with stress perception, signal transduction and stress responses in plants have been elucidated. Consequently, engineering some of the genes involved in these mechanisms promises to enhance plant tolerance to stresses and in particular increase their water use efficiency. Here we review the various approaches used so far to produce transgenic plants having improved tolerance to abiotic stresses, and discuss criteria for choosing which genes to work on (functional and regulatory genes) and which gene expression promoters (constitutive, inducible, and cell-specific) have been used to obtain successful results. Copyright © 2010 Elsevier B.V. All rights reserved.

  12. A Critique of Water Scarcity Discourses in Educational Policy and Textbooks in Jordan

    Science.gov (United States)

    Hussein, Hussam

    2018-01-01

    This article investigates the representation of water scarcity in Jordanian textbooks to understand its role on improving education on environmental sustainability. People's understanding of an issue guides their actions toward finding and implementing appropriate solutions to what they perceive as a problem. Discourses are key in constructing…

  13. Perceptions of water scarcity: The case of Genadendal and outstations

    Science.gov (United States)

    Noemdoe, S.; Jonker, L.; Swatuk, L. A.

    The water resources management regime has shifted from one focusing almost exclusively on augmenting supply to one where ensuring access, equity and sustainability are an integral part of process. It is widely recognized that South Africa will face water scarcity in the near future. But ‘scarcity’, as we show in our case study, is a relative concept. This paper interrogates perceptions of scarcity in the small South African rural community of Greater Genadendal. Using a wide variety of data, we explore the intersection between poverty alleviation and adequate water supply. The results show that notwithstanding sufficient water being available, the community experiences what Mehta [Mehta, L., 2001. The manufacture of popular perceptions of scarcity: dams and water-related narratives in Gujarat, India. World Development 29 (12), 2025-2041] calls ‘manufactured scarcity’. This is due to inadequate infrastructure, institutional incapacity and a history of political inequality. In the case of Greater Genadendal, these forms of scarcity are present simultaneously leading to a very complex situation. Overcoming these types of scarcity, however, require more than just new infrastructure. They require socio-economic and socio-political types of intervention that target the bases for manufactured scarcity: abiding poverty and socio-inequality. However, there appears to be a lack of social capital, in particular the trust that would enable government and local people to work together for improved livelihoods and sustainable water supplies. Joint resource rehabilitation activities may be one way of building social capital and moving toward IWRM in the study area.

  14. Contribution of Nutrient Pollution to Water Scarcity in the Water-Rich Northeastern United States

    Science.gov (United States)

    Hale, R. L.; Lopez, C.; Vorosmarty, C. J.

    2015-12-01

    Most studies of water stress focus on water-scarce regions such as drylands. Yet, even water-rich regions can be water stressed due to local water withdrawals that exceed supply or due to water pollution that makes water unusable. The northeastern United States (NE) is a water-rich region relative to the rest of the country, as it concentrates about 50% of total renewable water of the country. Yes the NE features relatively high water withdrawals, ~50 km3/yr, for thermo-power generation, agriculture, and industry, as well as to support a human population of about 70 million. At the same time, rivers and streams in the NE suffer from nutrient pollution, largely from agricultural and urban land uses. We asked: to what extent is the NE water stressed, and how do water withdrawals and water quality each contribute to water scarcity across the NE? We used information on county-level water withdrawals and runoff to calculate a water scarcity index (WSI) for 200 hydrologic units across the NE from 1987 to 2002. We used data on surface water concentrations of nitrogen to calculate the additional water necessary to dilute surface water pollution to weak, moderate, and strong water quality standards derived from the literature. Only considering withdrawals, we found that approximately 10% of the NE was water stressed. Incorporating a moderate water quality standard, 25% of the NE was water stressed. We calculated a dilution burden by sectors of water users and found that public utilities faced 41% of the total dilution burden for the region, followed by irrigation users at 21%. Our results illustrate that even water rich regions can experience water stress and even scarcity, where withdrawals exceed surface water supplies. Water quality contributes to water stress and can change the spatial patterns of water stress across a region. The common approach to address scarcity has required the use of inter-basin water transfers, or in the case of water quality-caused scarcity

  15. Residential Water Scarcity in Cyprus: Impact of Climate Change and Policy Options

    Directory of Open Access Journals (Sweden)

    Theodoros Zachariadis

    2010-10-01

    Full Text Available This paper presents an assessment of the cost of water scarcity in Cyprus, today and in the next 20 years, taking into account the effect of projected climate change in the region. It focuses on the residential sector, accounting also for tourism and industry. Using a simple demand function, total scarcity costs in Cyprus are computed for the period 2010–2030, and three scenarios of future water demand are presented. The central estimate shows that the present value of total costs due to water shortages will amount to 72 million Euros (at 2009 prices, and, if future water demand increases a little faster, these costs may reach 200 million Euros. Using forecasts of regional climate models, costs are found to be about 20% higher in a “climate change” scenario. Compared to the loss of consumer surplus due to water shortages, desalination is found to be a costly solution, even if environmental damage costs from the operation of desalination plants are not accounted for. Finally, dynamic constrained optimization is employed and shows that efficient residential water prices should include a scarcity price of about 40 Eurocents per cubic meter at  2009 prices; this would constitute a 30–100% increase in current prices faced by residential consumers. Reductions in rainfall due to climate change would raise this price by another 2-3 Eurocents. Such a pricing policy would provide a clear long-term signal to consumers and firms and could substantially contribute to a sustainable use of water resources in the island.

  16. Impact of water scarcity on food security at micro level in Pakistan

    OpenAIRE

    Fahim, Muhammad Amir

    2011-01-01

    Pakistan is confronting the problem of water scarcity which is rendering an adverse impact on food security. The study examines the impact of water scarcity on food security in an era of climate change. It further focuses on projecting the future trends of water and food stock. The research effort probes the links among water scarcity, climate change, food security, water security, food inflation, poverty and management of water resources. Data on food security was collected from the FSA (Foo...

  17. Impact of water scarcity on food security at macro level in Pakistan

    OpenAIRE

    Fahim, Muhammad Amir

    2011-01-01

    Pakistan is confronting the problem of water scarcity which is rendering an adverse impact on food security. The study examines the impact of water scarcity on food security in an era of climate change. It further focuses on projecting the future trends of water and food stock. The research effort probes the links among water scarcity, climate change, food security, water security, food inflation, poverty and management of water resources. Data on food security was collected from the FSA (Foo...

  18. Impact of water scarcity on food security at meso level in Pakistan

    OpenAIRE

    Fahim, Muhammad Amir

    2011-01-01

    Pakistan is confronting the problem of water scarcity which is rendering an adverse impact on food security. The study examines the impact of water scarcity on food security in an era of climate change. It further focuses on projecting the future trends of water and food stock. The research effort probes the links among water scarcity, climate change, food security, water security, food inflation, poverty and management of water resources. Data on food security was collected from the FSA (Foo...

  19. Managing Water Scarcity: Why Water Conservation Matters to Business

    Science.gov (United States)

    Spiwak, Stephen M.

    2013-01-01

    The issue of water scarcity has often hit the headlines in the past several years. Some states have gone to court over water rights and access even as others have agonized over scarce supplies. University presidents and their staff of directors understand that the days of unlimited, inexpensive water are almost over. While it remains inexpensive…

  20. Finding water scarcity amid abundance using human-natural system models.

    Science.gov (United States)

    Jaeger, William K; Amos, Adell; Bigelow, Daniel P; Chang, Heejun; Conklin, David R; Haggerty, Roy; Langpap, Christian; Moore, Kathleen; Mote, Philip W; Nolin, Anne W; Plantinga, Andrew J; Schwartz, Cynthia L; Tullos, Desiree; Turner, David P

    2017-11-07

    Water scarcity afflicts societies worldwide. Anticipating water shortages is vital because of water's indispensable role in social-ecological systems. But the challenge is daunting due to heterogeneity, feedbacks, and water's spatial-temporal sequencing throughout such systems. Regional system models with sufficient detail can help address this challenge. In our study, a detailed coupled human-natural system model of one such region identifies how climate change and socioeconomic growth will alter the availability and use of water in coming decades. Results demonstrate how water scarcity varies greatly across small distances and brief time periods, even in basins where water may be relatively abundant overall. Some of these results were unexpected and may appear counterintuitive to some observers. Key determinants of water scarcity are found to be the cost of transporting and storing water, society's institutions that circumscribe human choices, and the opportunity cost of water when alternative uses compete. Published under the PNAS license.

  1. Causes of Acute Water Scarcity in the Barind Tract, Bangladesh

    Directory of Open Access Journals (Sweden)

    Md. Bazlar Rashid

    2013-06-01

    Full Text Available The Barind tract is an elevated landmass (about 11-48 m amsl comprised with Pleistocene terraces and is situated in the northwestern part of Bangladesh. At present, this area faces scarcity of water. The present study is an attempt to unveil the causes of water scarcity of the area. Several aspects like change in climatic condition, irrigation practice and drainage characteristics of major rivers are the prime factors for water scarcity. Interpretation of recent satellite imagery and historical records reveal that the major rivers of the area like Ganges (Padma, Tista and Kosi have remarkably migrated from Barind tract during last few hundred years. Shifting of these rivers causes great change in hydrodynamics of the Barind tract. As a result, flow of other related rivers of the area like the Mahananda, Kulic, Tangon, Punarbhaba, Atrai, Little Jamuna, Karatoya and Nagar reduces remarkably in the dry season. As a result aquifers in the area are not recharged sufficiently by river water in the dry season. India constructed Farakka barrage on the Ganges (Padma river in 1975 to divert the flow of water from Bangladesh to the other parts of India. This diversion of water also leads to the decreasing of water in the area. Climatic data interpretation of the last 50 years also reveals that annual rainfall in the area is decreasing while overall temperature is increasing. To boost up the cropping intensity (117% to 200% compared to national average of 174% and to meet present demand 74% of cultivable lands are being irrigated with 96% share of groundwater owing to unavailability or scarcity of rainfall and hence surface water. Irrigation by groundwater has dramatically been increased (250 times in the last 30 years. Due to over exploitation, water table progressively declined (av. rate 0.10 m/year which ultimately leads the area to water scarcity zone. The aquifers are confined or semi-confined and do not get appreciable vertical recharge through clay

  2. Global water scarcity: the monthly blue water footprint compared to blue water availability for the world's major river basins

    NARCIS (Netherlands)

    Hoekstra, Arjen Ysbert; Mekonnen, Mesfin

    Conventional blue water scarcity indicators suffer from four weaknesses: they measure water withdrawal instead of consumptive water use, they compare water use with actual runoff rather than natural (undepleted) runoff, they ignore environmental flow requirements and they evaluate scarcity on an

  3. Sensitivity of Water Scarcity Events to ENSO-Driven Climate Variability at the Global Scale

    Science.gov (United States)

    Veldkamp, T. I. E.; Eisner, S.; Wada, Y.; Aerts, J. C. J. H.; Ward, P. J.

    2015-01-01

    Globally, freshwater shortage is one of the most dangerous risks for society. Changing hydro-climatic and socioeconomic conditions have aggravated water scarcity over the past decades. A wide range of studies show that water scarcity will intensify in the future, as a result of both increased consumptive water use and, in some regions, climate change. Although it is well-known that El Niño- Southern Oscillation (ENSO) affects patterns of precipitation and drought at global and regional scales, little attention has yet been paid to the impacts of climate variability on water scarcity conditions, despite its importance for adaptation planning. Therefore, we present the first global-scale sensitivity assessment of water scarcity to ENSO, the most dominant signal of climate variability. We show that over the time period 1961-2010, both water availability and water scarcity conditions are significantly correlated with ENSO-driven climate variability over a large proportion of the global land area (> 28.1 %); an area inhabited by more than 31.4% of the global population. We also found, however, that climate variability alone is often not enough to trigger the actual incidence of water scarcity events. The sensitivity of a region to water scarcity events, expressed in terms of land area or population exposed, is determined by both hydro-climatic and socioeconomic conditions. Currently, the population actually impacted by water scarcity events consists of 39.6% (CTA: consumption-to-availability ratio) and 41.1% (WCI: water crowding index) of the global population, whilst only 11.4% (CTA) and 15.9% (WCI) of the global population is at the same time living in areas sensitive to ENSO-driven climate variability. These results are contrasted, however, by differences in growth rates found under changing socioeconomic conditions, which are relatively high in regions exposed to water scarcity events. Given the correlations found between ENSO and water availability and scarcity

  4. Endogenous technological and demographic change under increasing water scarcity

    Science.gov (United States)

    Pande, Saket; Ertsen, Maurits; Sivapalan, Murugesu

    2014-05-01

    The ancient civilization in the Indus Valley civilization dispersed under extreme dry conditions; there are indications that the same holds for many other ancient societies. Even contemporary societies, such as the one in Murrumbidgee river basin in Australia, have started to witness a decline in overall population under increasing water scarcity. Hydroclimatic change may not be the sole predictor of the fate of contemporary societies in water scarce regions and many critics of such (perceived) hydroclimatic determinism have suggested that technological change may ameliorate the effects of increasing water scarcity and as such counter the effects of hydroclimatic changes. To study the role of technological change on the dynamics of coupled human-water systems, we develop a simple overlapping-generations model of endogenous technological and demographic change. We model technological change as an endogenous process that depends on factors such as the investments that are (endogenously) made in a society, the (endogenous) diversification of a society into skilled and unskilled workers, a society's patience in terms of its present consumption vs. future consumption, production technology and the (endogenous) interaction of all of these factors. In the model the population growth rate is programmed to decline once consumption per capita crosses a "survival" threshold. This means we do not treat technology as an exogenous random sequence of events, but instead assume that it results (endogenously) from societal actions. The model demonstrates that technological change may indeed ameliorate the effects of increasing water scarcity but typically it does so only to a certain extent. It is possible that technological change may allow a society to escape the effect of increasing water scarcity, leading to a (super)-exponential rise in technology and population. However, such cases require the rate of success of investment in technological advancement to be high. In other

  5. Endogenous technological and population change under increasing water scarcity

    Science.gov (United States)

    Pande, S.; Ertsen, M.; Sivapalan, M.

    2013-11-01

    The ancient civilization in the Indus Valley civilization dispersed under extreme dry conditions; there are indications that the same holds for many other ancient societies. Even contemporary societies, such as the one in Murrumbidgee river basin in Australia, have started to witness a decline in overall population under increasing water scarcity. Hydroclimatic change may not be the sole predictor of the fate of contemporary societies in water scarce regions and many critics of such (perceived) hydroclimatic determinism have suggested that technological change may ameliorate the effects of increasing water scarcity and as such counter the effects of hydroclimatic changes. To study the role of technological change on the dynamics of coupled human-water systems, we develop a simple overlapping-generations model of endogenous technological and demographic change. We model technological change as an endogenous process that depends on factors such as the investments that are (endogenously) made in a society, the (endogenous) diversification of a society into skilled and unskilled workers, a society's patience in terms of its present consumption vs. future consumption, production technology and the (endogenous) interaction of all of these factors. In the model the population growth rate is programmed to decline once consumption per capita crosses a "survival" threshold. This means we do not treat technology as an exogenous random sequence of events, but instead assume that it results (endogenously) from societal actions. The model demonstrates that technological change may indeed ameliorate the effects of increasing water scarcity but typically it does so only to a certain extent. It is possible that technological change may allow a society to escape the effect of increasing water scarcity, leading to a (super)-exponential rise in technology and population. However, such cases require the rate of success of investment in technological advancement to be high. In other

  6. Water scarcity assessment of steel production in national integrated steelmaking route

    Directory of Open Access Journals (Sweden)

    D. Burchart-Korol

    2015-01-01

    Full Text Available The main goal of the study was the assessment of the water scarcity in steel production in integrated steelmaking route in Poland. The main goal of Water footprint (WF is quantifying and mapping of direct and indirect water use in life cycle of product or technology. In the paper Water Scarcity Indicators (WSI for steel production and unit processes in integrated steelmaking route was performed.

  7. Sub-seasonal predictability of water scarcity at global and local scale

    Science.gov (United States)

    Wanders, N.; Wada, Y.; Wood, E. F.

    2016-12-01

    Forecasting the water demand and availability for agriculture and energy production has been neglected in previous research, partly due to the fact that most large-scale hydrological models lack the skill to forecast human water demands at sub-seasonal time scale. We study the potential of a sub-seasonal water scarcity forecasting system for improved water management decision making and improved estimates of water demand and availability. We have generated 32 years of global sub-seasonal multi-model water availability, demand and scarcity forecasts. The quality of the forecasts is compared to a reference forecast derived from resampling historic weather observations. The newly developed system has been evaluated for both the global scale and in a real-time local application in the Sacramento valley for the Trinity, Shasta and Oroville reservoirs, where the water demand for agriculture and hydropower is high. On the global scale we find that the reference forecast shows high initial forecast skill (up to 8 months) for water scarcity in the eastern US, Central Asia and Sub-Saharan Africa. Adding dynamical sub-seasonal forecasts results in a clear improvement for most regions in the world, increasing the forecasts' lead time by 2 or more months on average. The strongest improvements are found in the US, Brazil, Central Asia and Australia. For the Sacramento valley we can accurately predict anomalies in the reservoir inflow, hydropower potential and the downstream irrigation water demand 6 months in advance. This allow us to forecast potential water scarcity in the Sacramento valley and adjust the reservoir management to prevent deficits in energy or irrigation water availability. The newly developed forecast system shows that it is possible to reduce the vulnerability to upcoming water scarcity events and allows optimization of the distribution of the available water between the agricultural and energy sector half a year in advance.

  8. Implications of Water Use and Water Scarcity Footprint for Sustainable Rice Cultivation

    Directory of Open Access Journals (Sweden)

    Thapat Silalertruksa

    2017-12-01

    Full Text Available Rice cultivation is a vital economic sector of many countries in Asia, including Thailand, with the well-being of people relying significantly on selling rice commodities. Water-intensive rice cultivation is facing the challenge of water scarcity. The study assessed the volumetric freshwater use and water scarcity footprint of the major and second rice cultivation systems in the Chao Phraya, Tha Chin, Mun, and Chi watersheds of Thailand. The results revealed that a wide range of freshwater use, i.e., 0.9–3.0 m3/kg of major rice and 0.9–2.3 m3/kg of second rice, and a high water use of rice was found among the watersheds in the northeastern region, like the Mun and Chi watersheds. However, the water scarcity footprint results showed that the second rice cultivation in watersheds, like in Chao Phraya and Tha Chin in the central region, need to be focused for improving the irrigation water use efficiency. The alternate wetting and drying (AWD method was found to be a promising approach for substituting the pre-germinated seed broadcasting system to enhance the water use efficiency of second rice cultivation in the central region. Recommendations vis-à-vis the use of the water stress index as a tool for agricultural zoning policy were also discussed.

  9. Mitigating the risk of extreme water scarcity and dependency: the case of Jordan

    NARCIS (Netherlands)

    Schyns, Joseph Franciscus; Hamaideh, A.; Hoekstra, Arjen Ysbert; Mekonnen, Mesfin; Schyns, M.

    2015-01-01

    Jordan faces great internal water scarcity and pollution, conflict over trans-boundary waters, and strong dependency on external water resources through trade. This paper analyzes these issues and subsequently reviews options to reduce the risk of extreme water scarcity and dependency. Based on

  10. Impact of Water Scarcity on the Fenhe River Basin and Mitigation Strategies

    Directory of Open Access Journals (Sweden)

    Weiwei Shao

    2017-01-01

    Full Text Available This study produced a drought map for the Fenhe River basin covering the period from 150 BC to 2012 using regional historical drought records. Based on meteorological and hydrological features, the characteristics and causes of water scarcity in the Fenhe River basin were examined, along with their impact on the national economy and ecological environment. The effects of water scarcity in the basin on the national economy were determined from agricultural, industrial, and domestic perspectives. The impact on aquatic ecosystems was ascertained through an evolution trend analysis of surface water systems, including rivers, wetlands, and slope ecosystems, and subterranean water systems, including groundwater and karst springs. As a result of these analyses, strategies are presented for coping with water scarcity in this basin, including engineering countermeasures, such as the construction of a water network in Shanxi, and the non-engineering approach of groundwater resource preservation. These comprehensive coping strategies are proposed with the aim of assisting the prevention and control of water scarcity in the arid and semi-arid areas of China.

  11. Water Scarcity and Future Challenges for Food Production

    Directory of Open Access Journals (Sweden)

    Noemi Mancosu

    2015-03-01

    Full Text Available Present water shortage is one of the primary world issues, and according to climate change projections, it will be more critical in the future. Since water availability and accessibility are the most significant constraining factors for crop production, addressing this issue is indispensable for areas affected by water scarcity. Current and future issues related to “water scarcity” are reviewed in this paper so as to highlight the necessity of a more sustainable approach to water resource management. As a consequence of increasing water scarcity and drought, resulting from climate change, considerable water use for irrigation is expected to occur in the context of tough competition between agribusiness and other sectors of the economy. In addition, the estimated increment of the global population growth rate points out the inevitable increase of food demand in the future, with an immediate impact on farming water use. Since a noteworthy relationship exists between the water possessions of a country and the capacity for food production, assessing the irrigation needs is indispensable for water resource planning in order to meet food needs and avoid excessive water consumption.

  12. Water Scarcity Hotspots Travel Downstream Due to Human Interventions in the 20th and 21st Century

    Science.gov (United States)

    Veldkamp, T. I. E.; Wada, Y.; Aerts, J. C. J. H.; Doell, P.; Gosling, S. N.; Liu, J.; Masaki, Y.; Oki, T.; Ostberg, S.; Pokhrel, Y.; hide

    2017-01-01

    Water scarcity is rapidly increasing in many regions. In a novel, multi-model assessment, we examine how human interventions (HI: land use and land cover change, man-made reservoirs and human water use) affected monthly river water availability and water scarcity over the period 1971 - 2010. Here we show that HI drastically change the critical dimensions of water scarcity, aggravating water scarcity for 8.8%(7.4 - 16.5 %) ) of the global population but alleviating it for another 8.3 % (6.4 -15.8 %). Positive impacts of HI mostly occur upstream, whereas HI aggravate water scarcity downstream; HI cause water scarcity to travel downstream. Attribution of water scarcity changes to HI components is complex and varies among the hydrological models. Seasonal variation in impacts and dominant HI components is also substantial. A thorough consideration of the spatially and temporally varying interactions among HI components and of uncertainties is therefore crucial for the success of water scarcity adaptation by HI.

  13. Water scarcity hotspots travel downstream due to human interventions in the 20th and 21st century

    Science.gov (United States)

    Veldkamp, T. I. E.; Wada, Y.; Aerts, J. C. J. H.; Döll, P.; Gosling, S. N.; Liu, J.; Masaki, Y.; Oki, T.; Ostberg, S.; Pokhrel, Y.; Satoh, Y.; Kim, H.; Ward, P. J.

    2017-06-01

    Water scarcity is rapidly increasing in many regions. In a novel, multi-model assessment, we examine how human interventions (HI: land use and land cover change, man-made reservoirs and human water use) affected monthly river water availability and water scarcity over the period 1971-2010. Here we show that HI drastically change the critical dimensions of water scarcity, aggravating water scarcity for 8.8% (7.4-16.5%) of the global population but alleviating it for another 8.3% (6.4-15.8%). Positive impacts of HI mostly occur upstream, whereas HI aggravate water scarcity downstream; HI cause water scarcity to travel downstream. Attribution of water scarcity changes to HI components is complex and varies among the hydrological models. Seasonal variation in impacts and dominant HI components is also substantial. A thorough consideration of the spatially and temporally varying interactions among HI components and of uncertainties is therefore crucial for the success of water scarcity adaptation by HI.

  14. Mitigating the Risk of Extreme Water Scarcity and Dependency: The Case of Jordan

    Directory of Open Access Journals (Sweden)

    Joep F. Schyns

    2015-10-01

    Full Text Available Jordan faces great internal water scarcity and pollution, conflict over trans-boundary waters, and strong dependency on external water resources through trade. This paper analyzes these issues and subsequently reviews options to reduce the risk of extreme water scarcity and dependency. Based on estimates of water footprint, water availability, and virtual water trade, we find that groundwater consumption is nearly double the groundwater availability, water pollution aggravates blue water scarcity, and Jordan’s external virtual water import dependency is 86%. The review of response options yields 10 ingredients for a strategy for Jordan to mitigate the risks of extreme water scarcity and dependency. With respect to these ingredients, Jordan’s current water policy requires a strong redirection towards water demand management. Actual implementation of the plans in the national water strategy (against existing oppositions would be a first step. However, more attention should be paid to reducing water demand by changing the consumption pattern of Jordanian consumers. Moreover, unsustainable exploitation of the fossil Disi aquifer should soon be halted and planned desalination projects require careful consideration regarding the sustainability of their energy supply.

  15. Behavioural modelling of irrigation decision making under water scarcity

    Science.gov (United States)

    Foster, T.; Brozovic, N.; Butler, A. P.

    2013-12-01

    Providing effective policy solutions to aquifer depletion caused by abstraction for irrigation is a key challenge for socio-hydrology. However, most crop production functions used in hydrological models do not capture the intraseasonal nature of irrigation planning, or the importance of well yield in land and water use decisions. Here we develop a method for determining stochastic intraseasonal water use that is based on observed farmer behaviour but is also theoretically consistent with dynamically optimal decision making. We use the model to (i) analyse the joint land and water use decision by farmers; (ii) to assess changes in behaviour and production risk in response to water scarcity; and (iii) to understand the limits of applicability of current methods in policy design. We develop a biophysical model of water-limited crop yield building on the AquaCrop model. The model is calibrated and applied to case studies of irrigated corn production in Nebraska and Texas. We run the model iteratively, using long-term climate records, to define two formulations of the crop-water production function: (i) the aggregate relationship between total seasonal irrigation and yield (typical of current approaches); and (ii) the stochastic response of yield and total seasonal irrigation to the choice of an intraseasonal soil moisture target and irrigated area. Irrigated area (the extensive margin decision) and per-area irrigation intensity (the intensive margin decision) are then calculated for different seasonal water restrictions (corresponding to regulatory policies) and well yield constraints on intraseasonal abstraction rates (corresponding to aquifer system limits). Profit- and utility-maximising decisions are determined assuming risk neutrality and varying degrees of risk aversion, respectively. Our results demonstrate that the formulation of the production function has a significant impact on the response to water scarcity. For low well yields, which are the major concern

  16. Assessment of interstate virtual water flows embedded in agriculture to mitigate water scarcity in India (1996-2014)

    Science.gov (United States)

    Katyaini, Suparana; Barua, Anamika

    2017-08-01

    India is the largest global freshwater user despite being highly water scarce. Agriculture is largest consumer of water and is most affected by water scarcity. Water scarcity is a persistent challenge in India, due to a gap in science and policy spheres. Virtual Water (VW) flows concept to mitigate water scarcity is at the science-policy interface. The paper aims to address the gap in VW research in India by first analyzing the interstate VW-flows embedded in food grains, and then linking these VW-flows with the water scarcity situation in the states, and elements of state and national water policies for the postreforms, and recovery periods of India's agriculture. There were net water savings (WS) of 207.5 PL during 1996-2014, indicating sustainable flows at the national level. WS increased from 11.2 TL/yr (1996-2005) to 25931.7 TL/yr (2005-2014), with the increase in interstate movement of food grains, and yield. However, unsustainable flows are seen at subnational scale, as VW-flows are from highly water-scarce states in North to highly water-scarce states in West and South. These flows are causing a concentration of water scarcity in water-scarce zones/states. Net VW imports were found to be driven by larger population and net VW exports by arable land. Further, the absence of state water policy cripples water management. Therefore, the paper argues that there is a need to rethink policy decisions on agriculture at the national and state level by internalizing water as a factor of production, through VW research.

  17. Mapping Monthly Water Scarcity in Global Transboundary Basins at Country-Basin Mesh Based Spatial Resolution.

    Science.gov (United States)

    Degefu, Dagmawi Mulugeta; Weijun, He; Zaiyi, Liao; Liang, Yuan; Zhengwei, Huang; Min, An

    2018-02-01

    Currently fresh water scarcity is an issue with huge socio-economic and environmental impacts. Transboundary river and lake basins are among the sources of fresh water facing this challenge. Previous studies measured blue water scarcity at different spatial and temporal resolutions. But there is no global water availability and footprint assessment done at country-basin mesh based spatial and monthly temporal resolutions. In this study we assessed water scarcity at these spatial and temporal resolutions. Our results showed that around 1.6 billion people living within the 328 country-basin units out of the 560 we assessed in this study endures severe water scarcity at least for a month within the year. In addition, 175 country-basin units goes through severe water scarcity for 3-12 months in the year. These sub-basins include nearly a billion people. Generally, the results of this study provide insights regarding the number of people and country-basin units experiencing low, moderate, significant and severe water scarcity at a monthly temporal resolution. These insights might help these basins' sharing countries to design and implement sustainable water management and sharing schemes.

  18. Food security, irrigation, climate change, and water scarcity in India

    Science.gov (United States)

    Hertel, T. W.; Taheripour, F.; Gopalakrishnan, B. N.; Sahin, S.; Escurra, J.

    2015-12-01

    This paper uses an advanced CGE model (Taheripour et al., 2013) coupled with hydrological projections of future water scarcity and biophysical data on likely crop yields under climate change to examine how water scarcity, climate change, and trade jointly alter land use changes across the Indian subcontinent. Climate shocks to rainfed and irrigated yields in 2030 are based on the p-DSSAT crop model, RCP 2.6, as reported under the AgMIP project (Rosenzweig et al., 2013), accessed through GEOSHARE (Villoria et al, 2014). Results show that, when water scarcity is ignored, irrigated areas grow in the wake of climate change as the returns to irrigation rise faster than for rainfed uses of land within a given agro-ecological zone. When non-agricultural competition for future water use, as well as anticipated supply side limitations are brought into play (Rosegrant et al., 2013), the opportunity cost of water rises across all river basins, with the increase ranging from 12% (Luni) to 44% (Brahmaputra). As a consequence, irrigated crop production is curtailed in most regions (Figure 1), with the largest reductions coming in the most water intensive crops, namely rice and wheat. By reducing irrigated area, which tends to have much higher yields, the combined effects of water scarcity and climate impacts require an increase in total cropped area, which rises by about 240,000 ha. The majority of this area expansion occurs in the Ganges, Indus, and Brahmari river basins. Overall crop output falls by about 2 billion, relative to the 2030 baseline, with imports rising by about 570 million. The combined effects of climate change and water scarcity for irrigation also have macro-economic consequences, resulting in a 0.28% reduction in GDP and an increase in the consumer price index by about 0.4% in 2030, compared the baseline. The national welfare impact on India amounts to roughly 3 billion (at 2007 prices) in 2030. Assuming a 3% social discount rate, the net present value of the

  19. Blue water scarcity and the economic impacts of future agricultural trade and demand

    Science.gov (United States)

    Schmitz, Christoph; Lotze-Campen, Hermann; Gerten, Dieter; Dietrich, Jan Philipp; Bodirsky, Benjamin; Biewald, Anne; Popp, Alexander

    2013-06-01

    An increasing demand for agricultural goods affects the pressure on global water resources over the coming decades. In order to quantify these effects, we have developed a new agroeconomic water scarcity indicator, considering explicitly economic processes in the agricultural system. The indicator is based on the water shadow price generated by an economic land use model linked to a global vegetation-hydrology model. Irrigation efficiency is implemented as a dynamic input depending on the level of economic development. We are able to simulate the heterogeneous distribution of water supply and agricultural water demand for irrigation through the spatially explicit representation of agricultural production. This allows in identifying regional hot spots of blue water scarcity and explicit shadow prices for water. We generate scenarios based on moderate policies regarding future trade liberalization and the control of livestock-based consumption, dependent on different population and gross domestic product (GDP) projections. Results indicate increased water scarcity in the future, especially in South Asia, the Middle East, and north Africa. In general, water shadow prices decrease with increasing liberalization, foremost in South Asia, Southeast Asia, and the Middle East. Policies to reduce livestock consumption in developed countries not only lower the domestic pressure on water but also alleviate water scarcity to a large extent in developing countries. It is shown that one of the two policy options would be insufficient for most regions to retain water scarcity in 2045 on levels comparable to 2005.

  20. Quantification of resilience to water scarcity, a dynamic measure in time and space

    Directory of Open Access Journals (Sweden)

    S. P. Simonovic

    2016-05-01

    Full Text Available There are practical links between water resources management, climate change adaptation and sustainable development leading to reduction of water scarcity risk and re-enforcing resilience as a new development paradigm. Water scarcity, due to the global change (population growth, land use change and climate change, is of serious concern since it can cause loss of human lives and serious damage to the economy of a region. Unfortunately, in many regions of the world, water scarcity is, and will be unavoidable in the near future. As the scarcity is increasing, at the same time it erodes resilience, therefore global change has a magnifying effect on water scarcity risk. In the past, standard water resources management planning considered arrangements for prevention, mitigation, preparedness and recovery, as well as response. However, over the last ten years substantial progress has been made in establishing the role of resilience in sustainable development. Dynamic resilience is considered as a novel measure that provides for better understanding of temporal and spatial dynamics of water scarcity. In this context, a water scarcity is seen as a disturbance in a complex physical-socio-economic system. Resilience is commonly used as a measure to assess the ability of a system to respond and recover from a failure. However, the time independent static resilience without consideration of variability in space does not provide sufficient insight into system's ability to respond and recover from the failure state and was mostly used as a damage avoidance measure. This paper provides an original systems framework for quantification of resilience. The framework is based on the definition of resilience as the ability of physical and socio-economic systems to absorb disturbance while still being able to continue functioning. The disturbance depends on spatial and temporal perspectives and direct interaction between impacts of disturbance (social, health

  1. Irrigation of pistachios : strategies to confront water scarcity

    NARCIS (Netherlands)

    Pérez-López, David; Memmi, Houssem; Gijón-López, Maria del Carmen; Moreno, Marta Maria; Couceiro, José Francisco; Centeno, Ana; Martín-Palomo, Maria J.; Corell, Mireia; Noguera-Artiaga, Luis; Galindo Egea, Alejandro; Torrecillas, Arturo; Moriana, Alfonso; Tejero, Ivan Francisco Garcia; Zuazo, Victor Hugo Duran

    2017-01-01

    Pistachio trees are capable to be profitable under rain-fed conditions. They also have a good response to low amounts of irrigation water, so are a great candidate to be considered for water-scarcity scenarios. The pistachio tree has a singular way of alternate bearing, losing a percentage of its

  2. Towards a Global Water Scarcity Risk Assessment Framework: Incorporation of Probability Distributions and Hydro-Climatic Variability

    Science.gov (United States)

    Veldkamp, T. I. E.; Wada, Y.; Aerts, J. C. J. H.; Ward, P. J.

    2016-01-01

    Changing hydro-climatic and socioeconomic conditions increasingly put pressure on fresh water resources and are expected to aggravate water scarcity conditions towards the future. Despite numerous calls for risk-based water scarcity assessments, a global-scale framework that includes UNISDR's definition of risk does not yet exist. This study provides a first step towards such a risk based assessment, applying a Gamma distribution to estimate water scarcity conditions at the global scale under historic and future conditions, using multiple climate change and population growth scenarios. Our study highlights that water scarcity risk, expressed in terms of expected annual exposed population, increases given all future scenarios, up to greater than 56.2% of the global population in 2080. Looking at the drivers of risk, we find that population growth outweigh the impacts of climate change at global and regional scales. Using a risk-based method to assess water scarcity, we show the results to be less sensitive than traditional water scarcity assessments to the use of fixed threshold to represent different levels of water scarcity. This becomes especially important when moving from global to local scales, whereby deviations increase up to 50% of estimated risk levels.

  3. The world's road to water scarcity: shortage and stress in the 20th century and pathways towards sustainability.

    Science.gov (United States)

    Kummu, M; Guillaume, J H A; de Moel, H; Eisner, S; Flörke, M; Porkka, M; Siebert, S; Veldkamp, T I E; Ward, P J

    2016-12-09

    Water scarcity is a rapidly growing concern around the globe, but little is known about how it has developed over time. This study provides a first assessment of continuous sub-national trajectories of blue water consumption, renewable freshwater availability, and water scarcity for the entire 20 th century. Water scarcity is analysed using the fundamental concepts of shortage (impacts due to low availability per capita) and stress (impacts due to high consumption relative to availability) which indicate difficulties in satisfying the needs of a population and overuse of resources respectively. While water consumption increased fourfold within the study period, the population under water scarcity increased from 0.24 billion (14% of global population) in the 1900s to 3.8 billion (58%) in the 2000s. Nearly all sub-national trajectories show an increasing trend in water scarcity. The concept of scarcity trajectory archetypes and shapes is introduced to characterize the historical development of water scarcity and suggest measures for alleviating water scarcity and increasing sustainability. Linking the scarcity trajectories to other datasets may help further deepen understanding of how trajectories relate to historical and future drivers, and hence help tackle these evolving challenges.

  4. Hydrology, Water Scarcity and Market Economics

    Science.gov (United States)

    Narayanan, M.

    2008-12-01

    Research scientists claim to have documented a six-fold increase in water use in the United States during the last century. It is interesting to note that the population of the United States has hardly doubled during the last century. While this indicates higher living standards, it also emphasizes an urgent need for establishing a strong, sound, sensible and sustainable management program for utilizing the available water supplies efficiently. Dr. Sandra Postel directs the independent Global Water Policy Project, as well as the Center for the Environment at Mount Holyoke College in South Hadley, Massachusetts. Author of the 1998 book, Last Oasis: Facing Water Scarcity, Dr. Postel predicts big water availability problems as populations of so-called "water-stressed" countries jump perhaps six fold over the next 30 years. The United Nations declared the years 2005 - 2015 as the "Water for Life" decade. It is also interesting and important to observe that the Oil - Rich Middle - East suffers from water scarcity to the maximum extent. It is also recognized that almost three-quarters of the globe is covered with water. Regardless, this is salt-water and there is very limited supply of freshwater to meet the needs of exploding global population. In excess of 10,000 desalination plants operate around the world in more than a hundred countries, but such a process is expensive and may seem prohibitive for developing countries with limited resources. Farmers can cut water usage by adopting the method known as drip irrigation which is known to be highly efficient. Drip Irrigation was pioneered by Israel and the Israeli farmers documented their efficiency by reducing the water used for irrigation by more than 30 percent. Unfortunately the rest of the world has failed to follow the lead set by this Great Jewish Nation. Worldwide, hardly 1percent of irrigated land utilizes efficient drip irrigation techniques. The problem lies in the fact that water is considered to be a free

  5. Fruit response to water-scarcity and biochemical changes : Water relations and biochemical changes

    NARCIS (Netherlands)

    Rodríguez, P.; Galindo Egea, Alejandro; Collado-González, J.; Medina, S.; Corell, M.; Memmi, H.; Girón, I.F.; Centeno, A.; Martín-Palomo, M.J.; Cruz, Z.N.; Carbonell-Barrachina, A.A.; Hernandez, F.; Torrecillas, A.; Moriana, A.; Pérez-López, D.; Garcia Tejero, Ivan Francisco; Duran Zuazo, Victor Hugo

    2018-01-01

    The aim of this chapter is to give a general idea of the fruit response to water-scarcity conditions, paying special attention to fruit water relations modification and fruit composition changes, which are key for fruit quality. The strengths and weaknesses of fruit water relations measurement

  6. A global water scarcity assessment under Shared Socio-economic Pathways – Part 1: Water use

    Directory of Open Access Journals (Sweden)

    N. Hanasaki

    2013-07-01

    Full Text Available A novel global water scarcity assessment for the 21st century is presented in a two-part paper. In this first paper, water use scenarios are presented for the latest global hydrological models. The scenarios are compatible with the socio-economic scenarios of the Shared Socio-economic Pathways (SSPs, which are a part of the latest set of scenarios on global change developed by the integrated assessment, the IAV (climate change impact, adaptation, and vulnerability assessment, and the climate modeling community. The SSPs depict five global situations based on substantially different socio-economic conditions during the 21st century. Water use scenarios were developed to reflect not only quantitative socio-economic factors, such as population and electricity production, but also key qualitative concepts such as the degree of technological change and overall environmental consciousness. Each scenario consists of five factors: irrigated area, crop intensity, irrigation efficiency, and withdrawal-based potential industrial and municipal water demands. The first three factors are used to estimate the potential irrigation water demand. All factors were developed using simple models based on a literature review and analysis of historical records. The factors are grid-based at a spatial resolution of 0.5° × 0.5° and cover the whole 21st century in five-year intervals. Each factor shows wide variation among the different global situations depicted: the irrigated area in 2085 varies between 2.7 × 106 and 4.5 × 106 km2, withdrawal-based potential industrial water demand between 246 and 1714 km3 yr−1, and municipal water between 573 and 1280 km3 yr−1. The water use scenarios can be used for global water scarcity assessments that identify the regions vulnerable to water scarcity and analyze the timing and magnitude of scarcity conditions.

  7. The world’s road to water scarcity: shortage and stress in the 20th century and pathways towards sustainability

    Science.gov (United States)

    Kummu, M.; Guillaume, J. H. A.; de Moel, H.; Eisner, S.; Flörke, M.; Porkka, M.; Siebert, S.; Veldkamp, T. I. E.; Ward, P. J.

    2016-01-01

    Water scarcity is a rapidly growing concern around the globe, but little is known about how it has developed over time. This study provides a first assessment of continuous sub-national trajectories of blue water consumption, renewable freshwater availability, and water scarcity for the entire 20th century. Water scarcity is analysed using the fundamental concepts of shortage (impacts due to low availability per capita) and stress (impacts due to high consumption relative to availability) which indicate difficulties in satisfying the needs of a population and overuse of resources respectively. While water consumption increased fourfold within the study period, the population under water scarcity increased from 0.24 billion (14% of global population) in the 1900s to 3.8 billion (58%) in the 2000s. Nearly all sub-national trajectories show an increasing trend in water scarcity. The concept of scarcity trajectory archetypes and shapes is introduced to characterize the historical development of water scarcity and suggest measures for alleviating water scarcity and increasing sustainability. Linking the scarcity trajectories to other datasets may help further deepen understanding of how trajectories relate to historical and future drivers, and hence help tackle these evolving challenges. PMID:27934888

  8. Review and classification of indicators of green water availability and scarcity

    NARCIS (Netherlands)

    Schyns, Joseph Franciscus; Hoekstra, Arjen Ysbert; Booij, Martijn J.

    2015-01-01

    Research on water scarcity has mainly focussed on blue water (ground- and surface water), but green water (soil moisture returning to the atmosphere through evaporation) is also scarce, because its availability is limited and there are competing demands for green water. Crop production, grazing

  9. Water scarcity under scenarios for global climate change and regional development in semiarid Northeastern Brazil

    NARCIS (Netherlands)

    de Araújo, José Carlos; Döll, Petra; Güntner, Andreas; Krol, Martinus S.; Rodrigues Abreu, Cláudia Beghini; Hauschild, Maike; Mendiondo, Eduardo Mario

    2004-01-01

    The State of Ceará, located in semiarid Northeastern Brazil, suffers under irregularly recurring droughts that go along with water scarcity. Structural policies to control and reduce water scarcity, as water supply and demand management, should be seen as long-term planning, and thus have to

  10. The risk of water scarcity at different levels of global warming

    Science.gov (United States)

    Schewe, Jacob; Sharpe, Simon

    2015-04-01

    Water scarcity is a threat to human well-being and economic development in many countries today. Future climate change is expected to exacerbate the global water crisis by reducing renewable freshwater resources different world regions, many of which are already dry. Studies of future water scarcity often focus on most-likely, or highest-confidence, scenarios. However, multi-model projections of water resources reveal large uncertainty ranges, which are due to different types of processes (climate, hydrology, human) and are therefore not easy to reduce. Thus, central estimates or multi-model mean results may be insufficient to inform policy and management. Here we present an alternative, risk-based approach. We use an ensemble of multiple global climate and hydrological models to quantify the likelihood of crossing a given water scarcity threshold under different levels of global warming. This approach allows assessing the risk associated with any particular, pre-defined threshold (or magnitude of change that must be avoided), regardless of whether it lies in the center or in the tails of the uncertainty distribution. We show applications of this method on the country and river basin scale, illustrate the effects of societal processes on the resulting risk estimates, and discuss the further potential of this approach for research and stakeholder dialogue.

  11. Dynamics of Individual and Collective Agricultural Adaptation to Water Scarcity

    Science.gov (United States)

    Burchfield, E. K.; Gilligan, J. M.

    2016-12-01

    Drought and water scarcity are challenging agricultural systems around the world. We draw on extensive field-work conducted with paddy farmers in rural Sri Lanka to study adaptations to water scarcity, including switching to less water-intensive crops, farming collectively on shared land, and turning to groundwater by digging wells. We explore how variability in climate affects agricultural decision-making at the community and individual levels using three decision-making heuristics, each characterized by an objective function: risk-averse expected utility, regret-adjusted expected utility, and prospect theory loss-aversion. We also assess how the introduction of individualized access to irrigation water with wells affects long-standing community-based drought mitigation practices. Results suggest that the growth of well-irrigation may produce sudden disruptions to community-based adaptations, but that this depends on the mental models farmers use to think about risk and make decisions under uncertainty.

  12. Adaptation strategies to water scarcity in the Mediterranean induce a complexification of hydrosystems

    Science.gov (United States)

    La Jeunesse, Isabelle; Cirelli, Claudia; Larrue, Corinne; Aubin, David

    2013-04-01

    The Mediterranean and neighboring countries are already experiencing broad range of natural and man-made threats to water security. According to the latest reports of the intergovernmental panel on climate change, the region is at risk due to its pronounced susceptibility to changes in the hydrological budget and extremes. Such changes are expected to have strong impacts on the management of water resources and security from an ecological, economic and social angle. This communication asks the question of the relevance of the comparison of the solutions implemented to face water scarcity in two cases a priori not comparable: (i) the Thau coastal lagoon and its catchment in the South of France, (ii) the Rio Mannu catchment in Sardinia, the second Island in the South of Italia. The Thau coastal lagoon on the French coast is caracterised by intensive shellfish farming production in the lagoon waters and summer tourism with regard to the mediterranean coast. Its territory is also supporting industrial and commercial activities concentrated around Frontignan and Sète ports and the expansion of the small villages of the catchment as the consequence of the connexion with the city of Montpellier. The catchment of the Rio Mannu in South Sardinia is part of the Campidano plain of the Sardinia Island in Italy and is located 30 km close to the city of Cagliari, the capital of the Island. The basin is mainly covered by agricultural fields and grassland, while only a small percentage of its area is occupied by forests in the south-east of the basin. The communication aims, by presenting results of the FP7 EU CLIMB project, to think about the degree of complexity of the dynamic of the stakeholders system for water allocation in the Mediterranean Region in the context of climate change. After the presentation of the case studies and the perception of the water uses by stakeholders, a reflexion on the capacity of stakeholders to represent the new hydrosystems limits is carried out

  13. Expert forecasts and the emergence of water scarcity on public agendas

    Science.gov (United States)

    Graffy, E.A.

    2006-01-01

    Expert forecasts of worldwide water scarcity depict conditions that call for proactive, preventive, coordinated water governance, but they have not been matched by public agendas of commensurate scope and urgency in the United States. This disconnect can not be adequately explained without some attention to attributes of forecasts themselves. I propose that the institutional fragmentation of water expertise and prevailing patterns of communication about water scarcity militate against the formulation of a common public definition of the problem and encourage reliance on unambiguous crises to stimulate social and policy agenda setting. I do not argue that expert forecasts should drive public agendas deterministically, but if their purpose is to help prevent water crises (not just predict them), then a greater effort is needed to overcome the barriers to meaningful public scrutiny of expert claims and evaluation of water strategies presently in place. Copyright ?? 2006 Taylor & Francis Group, LLC.

  14. Implications of various land use change scenarios on global water scarcity over the 21st century

    Science.gov (United States)

    Liu, Y.; Hejazi, M. I.; Vernon, C. R.; Li, X.; Le Page, Y.; Calvin, K. V.

    2017-12-01

    While the effects of land use and land cover change (LULCC) on hydrological processes (e.g., runoff, peak flow and discharge) and water availability have been extensively researched, the impacts of LULCC on water scarcity has been rarely investigated. Water scarcity, usually defined as the ratio of water demand to available renewable water supply. The involved water demand is an important human-dimension factor, which is affected by both socio-economic conditions (e.g., population, income) as well as LULCC (e.g., the amount of land we dedicate for food, feed, and fuel crops). Recent studies have assessed the combined effects of climate change and human interventions (e.g., dams, water withdrawals and LULCC) on water scarcity, but none to date has focused on the implications of different pathways of LULCC alone on water scarcity. We establish a set of LULCC scenarios under changing climate and socioeconomic pathways using an integrated assessment model - Global Change Assessment Model (GCAM), which integrates natural systems (e.g., water supply, ecosystems, climate) and human systems (e.g., water demand, land use, economy, food, energy, population). The LULCC scenarios encompass varying degrees of protected areas, different magnitudes of crop/bioenergy production and subsidies, and whether to penalize potential land use emissions from bioenergy production (e.g., loss of wood carbon stock from land conversion). Then we investigate how water scarcity responds to LULCC and how the distribution of global population under severe water stress varies in the 21st century. Preliminary results indicate that the LULCC-induced changes in water scarcity are overall small at the global scale (water stress and population being affected. Findings from this research could be used to inform strategies focused on alleviating water stress around the world.

  15. Uncertainty Analysis of the Water Scarcity Footprint Based on the AWARE Model Considering Temporal Variations

    Directory of Open Access Journals (Sweden)

    Jong Seok Lee

    2018-03-01

    Full Text Available The purpose of this paper is to compare the degree of uncertainty of the water scarcity footprint using the Monte Carlo statistical method and block bootstrap method. Using the hydrological data of a water drainage basin in Korea, characterization factors based on the available water remaining (AWARE model were obtained. The uncertainties of the water scarcity footprint considering temporal variations in paddy rice production in Korea were estimated. The block bootstrap method gave five-times smaller percentage uncertainty values of the model output compared to that of the two different Monte Carlo statistical method scenarios. Incorrect estimation of the probability distribution of the AWARE characterization factor model is what causes the higher uncertainty in the water scarcity footprint value calculated by the Monte Carlo statistical method in this study. This is because AWARE characterization factor values partly follows discrete distribution with extreme value on one side. Therefore, this study suggests that the block bootstrap method is a better choice in analyzing uncertainty compared to the Monte Carlo statistical method when using the AWARE model to quantify the water scarcity footprint.

  16. Waters Without Borders: Scarcity and the Future of State Interactions over Shared Water Resources

    Science.gov (United States)

    2010-04-01

    earth’s water is fresh water , stored in rivers, lakes, reservoirs, glaciers, permanent snow, groundwater aquifers, and the atmosphere. 10 This... freshwater resources between and within countries. 13 There is significant media attention given to intra-state water sharing issues. One...intrusion into coastal ground freshwater sources, among other effects. Consequently, water scarcity brought about by climate change could drive

  17. Growing sensitivity of maize to water scarcity under climate change.

    Science.gov (United States)

    Meng, Qingfeng; Chen, Xinping; Lobell, David B; Cui, Zhenling; Zhang, Yi; Yang, Haishun; Zhang, Fusuo

    2016-01-25

    Climate change can reduce crop yields and thereby threaten food security. The current measures used to adapt to climate change involve avoiding crops yield decrease, however, the limitations of such measures due to water and other resources scarcity have not been well understood. Here, we quantify how the sensitivity of maize to water availability has increased because of the shift toward longer-maturing varieties during last three decades in the Chinese Maize Belt (CMB). We report that modern, longer-maturing varieties have extended the growing period by an average of 8 days and have significantly offset the negative impacts of climate change on yield. However, the sensitivity of maize production to water has increased: maize yield across the CMB was 5% lower with rainfed than with irrigated maize in the 1980s and was 10% lower (and even >20% lower in some areas) in the 2000s because of both warming and the increased requirement for water by the longer-maturing varieties. Of the maize area in China, 40% now fails to receive the precipitation required to attain the full yield potential. Opportunities for water saving in maize systems exist, but water scarcity in China remains a serious problem.

  18. Climate change and water scarcity effects on the rural income distribution in the Mediterranean

    Science.gov (United States)

    Quiroga, Sonia; Suárez, Cristina

    2015-04-01

    This paper examines the effects of climate change and water scarcity on the agricultural outputs in the Mediterranean region. By now the effects of water scarcity as a response to climate change or policy restrictions has been analyzed with response functions considering the direct effects on crop productivity. Here we consider a complementary indirect effect on social distribution of incomes which is essential in the long term. We estimate crop production functions for a range of Mediterranean crops in Spain and we use a decomposition of the Gini coefficient to estimate the impact of climate change and water scarcity on yield disparities. This social aspect is important for climate change policies since it can be determinant for the public acceptation of certain adaptation measures in a context of water scarcity. We provide the empirical estimations for the marginal effects on the two considered direct and indirect impacts. In our estimates we consider both bio-physical and socio-economic aspects to conclude that there are long term implications on both competitiveness and social disparities. We find disparities in the adaptation strategies depending on the crop and the region analyzed.

  19. Managing urban water supplies in developing countries Climate change and water scarcity scenarios

    Science.gov (United States)

    Vairavamoorthy, Kala; Gorantiwar, Sunil D.; Pathirana, Assela

    Urban areas of developing countries are facing increasing water scarcity and it is possible that this problem may be further aggravated due to rapid changes in the hydro-environment at different scales, like those of climate and land-cover. Due to water scarcity and limitations to the development of new water resources, it is prudent to shift from the traditional 'supply based management' to a 'demand management' paradigm. Demand management focuses on measures that make better and more efficient use of limited supplies, often at a level significantly below standard service levels. This paper particularly focuses on the intermittent water supplies in the cities of developing countries. Intermittent water supplies need to be adopted due to water scarcity and if not planned properly, results in inequities in water deliveries to consumers and poor levels of service. It is therefore important to recognise these realities when designing and operating such networks. The standard tools available for design of water supply systems often assume a continuous, unlimited supply and the supplied water amount is limited only be the demand, making them unsuitable for designing intermittent supplies that are governed by severely limited water availability. This paper presents details of new guidelines developed for the design and control of intermittent water distribution systems in developing countries. These include a modified network analysis simulation coupled with an optimal design tool. The guidelines are driven by a modified set of design objectives to be met at least cost. These objectives are equity in supply and people driven levels of service (PDLS) expressed in terms of four design parameters namely, duration of the supply; timings of the supply; pressure at the outlet (or flow-rate at outlet); and others such as the type of connection required and the locations of connections (in particular for standpipes). All the four parameters are calculated using methods and

  20. Water scarcity hotspots travel downstream due to human interventions in the 20th and 21st century

    NARCIS (Netherlands)

    Veldkamp, T.I.E.; Wada, Y.; Aerts, J.C.J.H.; Döll, P.; Gosling, S.N.; Liu, J.; Masaki, Y.; Oki, T.; Ostberg, S.; Pokhrel, Y.; Satoh, Y.; Kim, H.; Ward, P.J.

    2017-01-01

    Water scarcity is rapidly increasing in many regions. In a novel, multi-model assessment, we examine how human interventions (HI: land use and land cover change, man-made reservoirs and human water use) affected monthly river water availability and water scarcity over the period 1971–2010. Here we

  1. Effects of water scarcity and chemical pollution in aquatic ecosystems: State of the art.

    Science.gov (United States)

    Arenas-Sánchez, Alba; Rico, Andreu; Vighi, Marco

    2016-12-01

    Water scarcity is an expanding climate and human related condition, which drives and interacts with other stressors in freshwater ecosystems such as chemical pollution. In this study we provide an overview of the existing knowledge regarding the chemical fate, biological dynamics and the ecological risks of chemicals under water scarcity conditions. We evaluated a total of 15 studies dealing with the combined effects of chemicals and water scarcity under laboratory conditions and in the field. The results of these studies have been elaborated in order to evaluate additive, synergistic or antagonistic responses of the studied endpoints. As a general rule, it can be concluded that, in situations of water scarcity, the impacts of extreme water fluctuations are much more relevant than those of an additional chemical stressor. Nevertheless, the presence of chemical pollution may result in exacerbated ecological risks in some particular cases. We conclude that further investigations on this topic would take advantage on the focus on some specific issues. Experimental (laboratory and model ecosystem) studies should be performed on different biota groups and life stages (diapausing eggs, immature stages), with particular attention to those including traits relevant for the adaptation to water scarcity. More knowledge on species adaptations and recovery capacity is essential to predict community responses to multiple stressors and to assess the community vulnerability. Field studies should be performed at different scales, particularly in lotic systems, in order to integrate different functional dynamics of the river ecosystem. Combining field monitoring and experimental studies would be the best option to reach more conclusive, causal relationships on the effects of co-occurring stressors. Contribution of these studies to develop ecological models and scenarios is also suggested as an improvement for the prospective aquatic risk assessment of chemicals in (semi-)arid areas

  2. Hard paths, soft paths or no paths? Cross-cultural perceptions of water solutions

    Science.gov (United States)

    Wutich, A.; White, A. C.; White, D. D.; Larson, K. L.; Brewis, A.; Roberts, C.

    2014-01-01

    In this study, we examine how development status and water scarcity shape people's perceptions of "hard path" and "soft path" water solutions. Based on ethnographic research conducted in four semi-rural/peri-urban sites (in Bolivia, Fiji, New Zealand, and the US), we use content analysis to conduct statistical and thematic comparisons of interview data. Our results indicate clear differences associated with development status and, to a lesser extent, water scarcity. People in the two less developed sites were more likely to suggest hard path solutions, less likely to suggest soft path solutions, and more likely to see no path to solutions than people in the more developed sites. Thematically, people in the two less developed sites envisioned solutions that involve small-scale water infrastructure and decentralized, community-based solutions, while people in the more developed sites envisioned solutions that involve large-scale infrastructure and centralized, regulatory water solutions. People in the two water-scarce sites were less likely to suggest soft path solutions and more likely to see no path to solutions (but no more likely to suggest hard path solutions) than people in the water-rich sites. Thematically, people in the two water-rich sites seemed to perceive a wider array of unrealized potential soft path solutions than those in the water-scarce sites. On balance, our findings are encouraging in that they indicate that people are receptive to soft path solutions in a range of sites, even those with limited financial or water resources. Our research points to the need for more studies that investigate the social feasibility of soft path water solutions, particularly in sites with significant financial and natural resource constraints.

  3. Assessment and management of water resources in Egypt to face drought and water scarcity

    Science.gov (United States)

    Wolters, Wouter; El Guindy, Samia; Salah El Deen, Magdy; Roest, Koen; Smit, Robert; Froebrich, Jochen

    2013-04-01

    Egypt is one of the countries hardest hit by global and climate change. Challenges include population growth; increased demands for food, water, and energy; as well as changing land use patterns and urbanization. Egypt's part of the Mediterranean is characterized by a very complex hydrological system, as it lacks rainfall (Cairo average 30 mm/year) and it is completely dependent on the Nile river flow. The growth of the Egyptian population and its economy in the near future leads to an increase in the demand for water and the overall water allocation priority basically is: first drinking water, then industry, and whatever is remaining will be available for agriculture and nature. Because the agricultural sector uses more than 80 per cent of available water, the main option available to reduce water scarcity in the priority sectors of the economy is to allocate less to the agriculture sector. Scientifically based advances in facing future drought and water scarcity through innovations increasing yields and food security by measures leading to "more crop per drop" are required. New and modern large- and medium-scale agriculture is being developed in desert areas with participation of the private sector for investments. To prepare the farming community and others elsewhere, for the future situation of water shortages, a paradigm shift is needed. New farming systems under tight water supply conditions are in development to prepare for a future with less water. Egyptian farming systems need a major transition to prevent further marginalization of agriculture, which would also have a major impact on food security. Central to this transition should be the increase of value generated per volume available water, also referred to as "more crop per drop" or "more cash per splash". There is room for the urgently required improvement: the present return on water in agriculture in Egypt is about US 0.25 /m3, where values of over US 1 /m3 are "easily" reached elsewhere. Moreover

  4. Improving agricultural production under water scarcity in Fars province, Iran

    NARCIS (Netherlands)

    Hosseini, M.R.; Haile, A.M.; McClain, M.E.

    2012-01-01

    ABSTRACT Water scarcity is one of the major limiting factor for improving agricultural production in the world, which significantly affects agricultural production and livelihood of millions of people who live in arid and semi-arid regions. This case study presents the analysis of the effectiveness

  5. Water scarcity, quality and its impact on health

    International Nuclear Information System (INIS)

    Saqi, S.K.; Kausar, R.; Anwar, S.M.

    2005-01-01

    The scarcity of water has become an established factor now and the intensity of problem is increasing day by day. Human use of natural water, particularly of fresh water resources, has increased steadily over the centuries. It is unlikely that this trend will change given the continued growth of population and the ever-widening utilization of water for agricultural, industrial 'and recreational purposes. This situation has given rise to growing concerns over the availability of adequate water supplies to accommodate the future needs of the populations. Surface-water resources are already being used to their maximum capacity in various regions of the world (Encarta Year Book, February, 2000). One billion people lack access to safe affordable water and over two billion people lack adequate sanitation. Water related diseases are largest cause of death in the world. As the world's population grows and demands for water increases, the UN predicts that two out of three people will be living with serious water shortage by 2025. (author)

  6. Scarcity in abundance. Investing in new scarcities

    International Nuclear Information System (INIS)

    2007-12-01

    The growth of the world population and the rapidly increasing welfare level, especially in emerging economies, will result in strongly increasing demand for raw materials, energy, food and water in the coming decades. Moreover, climate change also contributes to the pressure on the available agricultural lands and water, resulting in growing scarcity. IRIS sees new investment opportunities in raw materials, energy, food, water, air, care and health. [mk] [nl

  7. Energy-Water-Land Nexus: The relative contributions of climate and human systems on global water scarcity

    Science.gov (United States)

    Hejazi, M. I.; Chen, M.; Turner, S. W. D.; Graham, N. T.; Vernon, C. R.; Li, X.; Kim, S. H.; Link, R. P.

    2017-12-01

    There is a growing consensus that energy, water, and land systems are interconnected and should be analyzed as such. New tools are required to represent the interactions between population, economic growth, energy, land, and water resources in a dynamically evolving system. Here we use the Global Change Assessment Model (GCAM) to investigate the relative contributions of climate and human systems on water scarcity regionally and globally under a wide range of scenarios. The model accounts for a variety of human activities, including changing demands for water for agriculture, power generation, industry, and public supply. We find that these activities exert a larger influence on water scarcity than climate in 93% of river basins globally. This work highlights the importance of accounting for human activities in hydrologic modeling applications and how they may change under different pathways of how land use and agricultural systems, energy systems, and economies may evolve in the future.

  8. The world's road to water scarcity: shortage and stress in the 20th century and pathways towards sustainability

    NARCIS (Netherlands)

    Kummu, M.; Guillaume, J.H.A.; de Moel, H.; Eisner, S.; Flörke, M; Porkka, M.; Siebert, S.; Veldkamp, T.I.E.; Ward, P.J.

    2016-01-01

    Water scarcity is a rapidly growing concern around the globe, but little is known about how it has developed over time. This study provides a first assessment of continuous sub-national trajectories of blue water consumption, renewable freshwater availability, and water scarcity for the entire 20th

  9. Water scarcity and oil palm expansion: social views and environmental processes

    Directory of Open Access Journals (Sweden)

    Jennifer Merten

    2016-06-01

    Full Text Available Conversions of natural ecosystems, e.g., from rain forests to managed plantations, result in significant changes in the hydrological cycle including periodic water scarcity. In Indonesia, large areas of forest were lost and extensive oil palm plantations were established over the last decades. We conducted a combined social and environmental study in a region of recent land-use change, the Jambi Province on Sumatra. The objective was to derive complementary lines of arguments to provide balanced insights into environmental perceptions and eco-hydrological processes accompanying land-use change. Interviews with villagers highlighted concerns regarding decreasing water levels in wells during dry periods and increasing fluctuations in stream flow between rainy and dry periods. Periodic water scarcity was found to severely impact livelihoods, which increased social polarization. Sap flux measurements on forest trees and oil palms indicate that oil palm plantations use as much water as forests for transpiration. Eddy covariance analyses of evapotranspiration over oil palm point to substantial additional sources of evaporation in oil palm plantations such as the soil and epiphytes. Stream base flow from a catchment dominated by oil palms was lower than from a catchment dominated by rubber plantations; both showed high peaks after rainfall. An estimate of erosion indicated approximately 30 cm of topsoil loss after forest conversion to both oil palm and rubber plantations. Analyses of climatic variables over the last 20 years and of a standardized precipitation evapotranspiration index for the last century suggested that droughts are recurrent in the area, but have not increased in frequency or intensity. Consequently, we assume that conversions of rain forest ecosystems to oil palm plantations lead to a redistribution of precipitated water by runoff, which leads to the reported periodic water scarcity. Our combined social and environmental approach

  10. Disaggregating Orders of Water Scarcity - The Politics of Nexus in the Wami-Ruvu River Basin, Tanzania

    Directory of Open Access Journals (Sweden)

    Anna Mdee

    2017-02-01

    Full Text Available This article considers the dilemma of managing competing uses of surface water in ways that respond to social, ecological and economic needs. Current approaches to managing competing water use, such as Integrated Water Resources Management (IWRM and the concept of the water-energy-food nexus do not adequately disaggregate the political nature of water allocations. This is analysed using Mehta’s (2014 framework on orders of scarcity to disaggregate narratives of water scarcity in two ethnographic case studies in the WamiRuvu River Basin in Tanzania: one of a mountain river that provides water to urban Morogoro, and another of a large donor-supported irrigation scheme on the Wami River. These case studies allow us to explore different interfaces in the food-water-energy nexus. The article makes two points: that disaggregating water scarcity is essential for analysing the nexus; and that current institutional frameworks (such as IWRM mask the political nature of the nexus, and therefore do not provide an adequate platform for adjudicating the interfaces of competing water use.

  11. Integrated assessment of global water scarcity over the 21st century under multiple climate change mitigation policies

    Energy Technology Data Exchange (ETDEWEB)

    Hejazi, Mohamad I.; Edmonds, James A.; Clarke, Leon E.; Kyle, G. Page; Davies, Evan; Chaturvedi, Vaibhav; Wise, Marshall A.; Patel, Pralit L.; Eom, Jiyong; Calvin, Katherine V.

    2014-08-01

    Water scarcity conditions over the 21st century both globally and regionally are assessed in the context of climate change and climate mitigation policies, by estimating both water availability and water demand within the Global Change Assessment Model (GCAM), a leading community integrated assessment model of energy, agriculture, climate, and water. To quantify changes in future water availability, a new gridded water-balance global hydrologic model – namely, the Global Water Availability Model (GWAM) – is developed and evaluated. Global water demands for six major demand sectors (irrigation, livestock, domestic, electricity generation, primary energy production, and manufacturing) are modeled in GCAM at the regional scale (14 geopolitical regions, 151 sub-regions) and then spatially downscaled to 0.5 o x 0.5o resolution to match the scale of GWAM. Using a baseline scenario (i.e., no climate change mitigation policy) with radiative forcing reaching 8.8 W/m2 (equivalent to the SRES A1Fi emission scenario) and three climate policy scenarios with increasing mitigation stringency of 7.7, 5.5, and 4.2 W/m2 (equivalent to the SRES A2, B2, and B1 emission scenarios, respectively), we investigate the effects of emission mitigation policies on water scarcity. Two carbon tax regimes (a universal carbon tax (UCT) which includes land use change emissions, and a fossil fuel and industrial emissions carbon tax (FFICT) which excludes land use change emissions) are analyzed. The baseline scenario results in more than half of the world population living under extreme water scarcity by the end of the 21st century. Additionally, in years 2050 and 2095, 36% (28%) and 44% (39%) of the global population, respectively, is projected to live in grid cells (in basins) that will experience greater water demands than the amount of available water in a year (i.e., the water scarcity index (WSI) > 1.0). When comparing the climate policy scenarios to the baseline scenario while maintaining

  12. Is physical water scarcity a new phenomenon? Global assessment of water shortage over the last two millennia

    NARCIS (Netherlands)

    Kummu, M.S.; Ward, P.J.; de Moel, H.; Varis, O.

    2010-01-01

    In this letter we analyse the temporal development of physical population-driven water scarcity, i.e. water shortage, over the period 0 AD to 2005 AD. This was done using population data derived from the HYDE dataset, and water resource availability based on the WaterGAP model results for the period

  13. Farmer perceptions on factors influencing water scarcity for goats in resource-limited communal farming environments.

    Science.gov (United States)

    Mdletshe, Zwelethu Mfanafuthi; Ndlela, Sithembile Zenith; Nsahlai, Ignatius Verla; Chimonyo, Michael

    2018-05-09

    The objective of the study was to compare factors influencing water scarcity for goats in areas where there are seasonal and perennial rivers under resource-limited communal farming environments. Data were collected using a structured questionnaire (n = 285) administered randomly to smallholder goat farmers from areas with seasonal and perennial rivers. Ceremonies was ranked as the major reason for keeping goats. Water scarcity was ranked the major constraint to goat production in areas with seasonal rivers when compared to areas with perennial rivers (P goat drinking in areas with seasonal and perennial river systems during cool dry and rainy seasons. Rivers were ranked as an important water source for goat drinking where there are seasonal and perennial river systems during the cool dry season. Households located close (≤ 3 km) to the nearest water source reported drinking water for goats a scarce resource. These results show that river systems, season and distance to the nearest water source from a household were factors perceived by farmers to influence water scarcity for goats in resource-limited communal farming environments. Farmers should explore water-saving strategies such as recycling wastewater from kitchens and bathrooms as an alternative water source. The government may assist farmers through sinking boreholes to supply water for both humans and livestock.

  14. Open Source Tools for Assessment of Global Water Availability, Demands, and Scarcity

    Science.gov (United States)

    Li, X.; Vernon, C. R.; Hejazi, M. I.; Link, R. P.; Liu, Y.; Feng, L.; Huang, Z.; Liu, L.

    2017-12-01

    Water availability and water demands are essential factors for estimating water scarcity conditions. To reproduce historical observations and to quantify future changes in water availability and water demand, two open source tools have been developed by the JGCRI (Joint Global Change Research Institute): Xanthos and GCAM-STWD. Xanthos is a gridded global hydrologic model, designed to quantify and analyze water availability in 235 river basins. Xanthos uses a runoff generation and a river routing modules to simulate both historical and future estimates of total runoff and streamflows on a monthly time step at a spatial resolution of 0.5 degrees. GCAM-STWD is a spatiotemporal water disaggregation model used with the Global Change Assessment Model (GCAM) to spatially downscale global water demands for six major enduse sectors (irrigation, domestic, electricity generation, mining, and manufacturing) from the region scale to the scale of 0.5 degrees. GCAM-STWD then temporally downscales the gridded annual global water demands to monthly results. These two tools, written in Python, can be integrated to assess global, regional or basin-scale water scarcity or water stress. Both of the tools are extensible to ensure flexibility and promote contribution from researchers that utilize GCAM and study global water use and supply.

  15. Managing the effects of multiple stressors on aquatic ecosystems under water scarcity. The GLOBAQUA project.

    Science.gov (United States)

    Navarro-Ortega, Alícia; Acuña, Vicenç; Bellin, Alberto; Burek, Peter; Cassiani, Giorgio; Choukr-Allah, Redouane; Dolédec, Sylvain; Elosegi, Arturo; Ferrari, Federico; Ginebreda, Antoni; Grathwohl, Peter; Jones, Colin; Rault, Philippe Ker; Kok, Kasper; Koundouri, Phoebe; Ludwig, Ralf Peter; Merz, Ralf; Milacic, Radmila; Muñoz, Isabel; Nikulin, Grigory; Paniconi, Claudio; Paunović, Momir; Petrovic, Mira; Sabater, Laia; Sabaterb, Sergi; Skoulikidis, Nikolaos Th; Slob, Adriaan; Teutsch, Georg; Voulvoulis, Nikolaos; Barceló, Damià

    2015-01-15

    Water scarcity is a serious environmental problem in many European regions, and will likely increase in the near future as a consequence of increased abstraction and climate change. Water scarcity exacerbates the effects of multiple stressors, and thus results in decreased water quality. It impacts river ecosystems, threatens the services they provide, and it will force managers and policy-makers to change their current practices. The EU-FP7 project GLOBAQUA aims at identifying the prevalence, interaction and linkages between stressors, and to assess their effects on the chemical and ecological status of freshwater ecosystems in order to improve water management practice and policies. GLOBAQUA assembles a multidisciplinary team of 21 European plus 2 non-European scientific institutions, as well as water authorities and river basin managers. The project includes experts in hydrology, chemistry, biology, geomorphology, modelling, socio-economics, governance science, knowledge brokerage, and policy advocacy. GLOBAQUA studies six river basins (Ebro, Adige, Sava, Evrotas, Anglian and Souss Massa) affected by water scarcity, and aims to answer the following questions: how does water scarcity interact with other existing stressors in the study river basins? How will these interactions change according to the different scenarios of future global change? Which will be the foreseeable consequences for river ecosystems? How will these in turn affect the services the ecosystems provide? How should management and policies be adapted to minimise the ecological, economic and societal consequences? These questions will be approached by combining data-mining, field- and laboratory-based research, and modelling. Here, we outline the general structure of the project and the activities to be conducted within the fourteen work-packages of GLOBAQUA. Copyright © 2014. Published by Elsevier B.V.

  16. Managing the effects of multiple stressors on aquatic ecosystems under water scarcity. The GLOBAQUA project

    Science.gov (United States)

    Navarro-Ortega, Alícia; Acuña, Vicenç; Bellin, Alberto; Burek, Peter; Cassiani, Giorgio; Choukr-Allah, Redouane; Dolédec, Sylvain; Elosegi, Arturo; Ferrari, Federico; Ginebreda, Antoni; Grathwohl, Peter; Jones, Colin; Rault, Philippe Ker; Kok, Kasper; Koundouri, Phoebe; Ludwig, Ralf Peter; Merz, Ralf; Milacic, Radmila; Muñoz, Isabel; Nikulin, Grigory; Paniconi, Claudio; Paunović, Momir; Petrovic, Mira; Sabater, Laia; Sabaterb, Sergi; Skoulikidis, Nikolaos Th.; Slob, Adriaan; Teutsch, Georg; Voulvoulis, Nikolaos; Barceló, Damià

    2015-01-01

    Water scarcity is a serious environmental problem in many European regions, and will likely increase in the near future as a consequence of increased abstraction and climate change. Water scarcity exacerbates the effects of multiple stressors, and thus results in decreased water quality. It impacts river ecosystems, threatens the services they provide, and it will force managers and policy-makers to change their current practices. The EU-FP7 project GLOBAQUA aims at identifying the prevalence, interaction and linkages between stressors, and to assess their effects on the chemical and ecological status of freshwater ecosystems in order to improve water management practice and policies. GLOBAQUA assembles a multidisciplinary team of 21 European plus 2 non-European scientific institutions, as well as water authorities and river basin managers. The project includes experts in hydrology, chemistry, biology, geomorphology, modelling, socio-economics, governance science, knowledge brokerage, and policy advocacy. GLOBAQUA studies six river basins (Ebro, Adige, Sava, Evrotas, Anglian and Souss Massa) affected by water scarcity, and aims to answer the following questions: how does water scarcity interact with other existing stressors in the study river basins? How will these interactions change according to the different scenarios of future global change? Which will be the foreseeable consequences for river ecosystems? How will these in turn affect the services the ecosystems provide? How should management and policies be adapted to minimise the ecological, economic and societal consequences? These questions will be approached by combining data-mining, field- and laboratory-based research, and modelling. Here, we outline the general structure of the project and the activities to be conducted within the fourteen work-packages of GLOBAQUA. PMID:25005236

  17. Analysis of intra-country virtual water trade strategy to alleviate water scarcity in Iran

    Science.gov (United States)

    Faramarzi, M.; Yang, H.; Mousavi, J.; Schulin, R.; Binder, C. R.; Abbaspour, K. C.

    2010-08-01

    Increasing water scarcity has posed a major constraint to sustain food production in many parts of the world. To study the situation at the regional level, we took Iran as an example and analyzed how an intra-country "virtual water trade strategy" (VWTS) may help improve cereal production as well as alleviate the water scarcity problem. This strategy calls, in part, for the adjustment of the structure of cropping pattern (ASCP) and interregional food trade where crop yield and crop water productivity as well as local economic and social conditions are taken into account. We constructed a systematic framework to assess ASCP at the provincial level under various driving forces and constraints. A mixed-integer, multi-objective, linear optimization model was developed and solved by linear programming. Data from 1990-2004 were used to account for yearly fluctuations of water availability and food production. Five scenarios were designed aimed at maximizing the national cereal production while meeting certain levels of wheat self-sufficiency under various water and land constraints in individual provinces. The results show that under the baseline scenario, which assumes a continuation of the existing water use and food policy at the national level, some ASCP scenarios could produce more wheat with less water. Based on different scenarios in ASCP, we calculated that 31% to 100% of the total wheat shortage in the deficit provinces could be supplied by the wheat surplus provinces. As a result, wheat deficit provinces would receive 3.5 billion m3 to 5.5 billion m3 of virtual water by importing wheat from surplus provinces.

  18. Adaptive livelihood strategies for coping with water scarcity in the drylands of central Tanzania

    Science.gov (United States)

    Liwenga, Emma T.

    In this paper, it is argued that local knowledge for adapting to water scarcity is important for integrated resource management by taking into consideration both the natural and social constraints in a particular setting based on accumulated experience. The paper examines the relevance of local knowledge in sustaining agricultural production in the semiarid areas of central Tanzania. The paper specifically focuses on how water scarcity, as the major limiting factor, is addressed in the study area using local knowledge to sustain livelihoods of its people. The study was conducted in four villages; Mzula, Ilolo, Chanhumba and Ngahelezi, situation in Mvumi Division in Dodoma Region. The study mainly employed qualitative data collection techniques. Participatory methods provided a means of exploring perceptions and gaining deeper insights regarding natural resource utilization in terms of problems and opportunities. The main data sources drawn upon in this study were documentation, group interviews and field observations. Group interviews involved discussions with a group of 6-12 people selected on the basis of gender, age and socio-economic groups. Data analysis entailed structural and content analysis within the adaptive livelihood framework in relation to management of water scarcity using local knowledge. The findings confirm that rainfall is the main limiting factor for agricultural activities in the drylands of Central Tanzania. As such, local communities have developed, through time, indigenous knowledge to cope with such environments utilizing seasonality and diversity of landscapes. Use of this local knowledge is therefore effective in managing water scarcity by ensuring a continuous production of crops throughout the year. This practice implies increased food availability and accessibility through sales of such agricultural products. Local innovations for water management, such as cultivation in sandy rivers, appear to be very important means of accessing

  19. Access and Resilience: Analyzing the Construction of Social Resilience to the Threat of Water Scarcity

    Directory of Open Access Journals (Sweden)

    Ruth Langridge

    2006-12-01

    Full Text Available Resilience is a vital attribute that characterizes a system's capacity to cope with stress. Researchers have examined the measurement of resilience in ecosystems and in social-ecological systems, and the comparative vulnerability of social groups. Our paper refocuses attention on the processes and relations that create social resilience. Our central proposition is that the creation of social resilience is linked to a community's ability to access critical resources. We explore this proposition through an analysis of how community resilience to the stress of water scarcity is influenced by historically contingent mechanisms to gain, control, and maintain access to water. Access is defined broadly as the ability of a community to actually benefit from a resource, and includes a wider range of relations than those derived from property rights alone. We provide a framework for assessing the construction of social resilience and use it to examine, first, the different processes and relations that enabled four communities in northern California to acquire access to water, and second, how access contributed to their differential levels of resilience to potential water scarcity. Legal water rights are extremely difficult to alter, and given the variety of mechanisms that can generate access, our study suggests that strengthening and diversifying a range of structural and relational mechanisms to access water can enhance a community's resilience to water scarcity.

  20. Impacts on quality-induced water scarcity: drivers of nitrogen-related water pollution transfer under globalization from 1995 to 2009

    Science.gov (United States)

    Wan, Liyang; Cai, Wenjia; Jiang, Yongkai; Wang, Can

    2016-07-01

    Globalization enables the transfer of impacts on water availability. We argue that the threat should be evaluated not only by decrease of quantity, but more importantly by the degradation of water quality in exporting countries. Grouping the world into fourteen regions, this paper establishes a multi-region input-output framework to calculate the nitrogen-related grey water footprint and a water quality-induced scarcity index caused by pollution, for the period of 1995 to 2009. It is discovered that grey water embodied in international trade has been growing faster than total grey water footprint. China, the USA and India were the three top grey water exporters which accounted for more than half the total traded grey water. Dilemma rose when China and India were facing highest grey water scarcity. The EU and the USA were biggest grey water importers that alleviated their water stress by outsourcing water pollution. A structural decomposition analysis is conducted to study the drivers to the evolution of virtual flows of grey water under globalization during the period of 1995 to 2009. The results show that despite the technical progress that offset the growth of traded grey water, structural effects under globalization including both evolution in the globalized economic system and consumption structure, together with consumption volume made a positive contribution. It is found that the structural effect intensified the pollution-induced water scarcity of exporters as it generally increased all nations’ imported grey water while resulting in increases in only a few nations’ exported grey water, such as Brazil, China and Indonesia. At last, drawing from the ‘cap-and-trade’ and ‘boarder-tax-adjustment’ schemes, we propose policy recommendations that ensure water security and achieve environmentally sustainable trade from both the sides of production and consumption.

  1. Evaluating impacts of climate change on future water scarcity in an intensively managed semi-arid region using a coupled model of biophysical processes and water rights

    Science.gov (United States)

    Han, B.; Flores, A. N.; Benner, S. G.

    2017-12-01

    In semiarid and arid regions where water supply is intensively managed, future water scarcity is a product of complex interactions between climate change and human activities. Evaluating future water scarcity under alternative scenarios of climate change, therefore, necessitates modeling approaches that explicitly represent the coupled biophysical and social processes responsible for the redistribution of water in these regions. At regional scales a particular challenge lies in adequately capturing not only the central tendencies of change in projections of climate change, but also the associated plausible range of variability in those projections. This study develops a framework that combines a stochastic weather generator, historical climate observations, and statistically downscaled General Circulation Model (GCM) projections. The method generates a large ensemble of daily climate realizations, avoiding deficiencies of using a few or mean values of individual GCM realizations. Three climate change scenario groups reflecting the historical, RCP4.5, and RCP8.5 future projections are developed. Importantly, the model explicitly captures the spatiotemporally varying irrigation activities as constrained by local water rights in a rapidly growing, semi-arid human-environment system in southwest Idaho. We use this modeling framework to project water use and scarcity patterns under the three future climate change scenarios. The model is built using the Envision alternative futures modeling framework. Climate projections for the region show future increases in both precipitation and temperature, especially under the RCP8.5 scenario. The increase of temperature has a direct influence on the increase of the irrigation water use and water scarcity, while the influence of increased precipitation on water use is less clear. The predicted changes are potentially useful in identifying areas in the watershed particularly sensitive to water scarcity, the relative importance of

  2. Evaluation of the Water Scarcity Energy Cost for Users

    Directory of Open Access Journals (Sweden)

    Chiara M. Fontanazza

    2013-01-01

    Full Text Available In systems experiencing water scarcity and consequent intermittent supply, users often adopt private tanks that collect water during service periods and supply users when the service is not available. The tank may be fed by gravity or by private pumping stations depending on the network pressure level. Once water resources are collected, the tank can supply users by gravity if it is located on the rooftop or by additional pumping if underground. Private tanks thus increase the energy cost of the water supply service for users by introducing several small pumping structures inside the network. The present paper aims to evaluate this users’ energy cost for different private tank configurations. A real case study was analysed, and the results showed that intermittent distribution causes inequalities not only in users’ access to water resource but also costs that users have to bear to have access to water.

  3. Scarcity of Fresh Water Resources in the Ganges Delta of Bangladesh

    Science.gov (United States)

    Murshed, S. B.; Kaluarachchi, J. J.

    2017-12-01

    The Ganges Delta in Bangladesh is a classical example of water insecurity in a transboundary river basin where limitations in quantity, quality and timing of available water is producing disastrous conditions. Two opposite extreme water conditions, i.e., fresh water scarcity and floods are common in this region during dry and wet seasons, respectively. The purpose of this study is to manage fresh water requirement of people and environment considering the seasonal availability of surface water (SW) and ground water (GW). SW availability was analyzed by incoming stream flow including the effects of upstream water diversion, rainfall, temperature, evapotranspiration (ET). Flow duration curves (FDC), and rainfall and temperature elasticity are used to assess the change of incoming upstream flow. Groundwater data were collected from 285 piezometers and monitoring wells established by Bangladesh water development board. Variation of groundwater depth shows major withdrawals of GW are mostly concentrated in the north part of the study area. Irrigation is the largest sector of off-stream (irrigation, industrial and domestic) water use which occupies 82% SW and 17% GW of total water consumption. Although domestic water use is entirely depend on GW but arsenic pollution is limiting the GW use. FDC depicts a substantial difference between high flow threshold (20%) and low flow threshold (70%) in the Bangladesh part of Ganges River. A large variation of around 83% is observed for instream water volume between wet and dry seasons. The reduction of upstream fresh water flow increased the extent and intensity of salinity intrusion. Presently GW is also contaminated by saline water. This fresh water scarcity is reducing the livelihood options considerably and indirectly forcing population migration from the delta region. This study provides insight to the changes in hydrology and limitations to freshwater availability enabling better formulation of water resources management in

  4. Climate Change and Water Scarcity: The Case of Saudi Arabia.

    Science.gov (United States)

    DeNicola, Erica; Aburizaiza, Omar S; Siddique, Azhar; Khwaja, Haider; Carpenter, David O

    2015-01-01

    Climate change is expected to bring increases in average global temperatures (1.4°C-5.8°C [34.52°F-42.44°F] by 2100) and precipitation levels to varying degrees around the globe. The availability and quality of water will be severely affected, and public health threats from the lack of this valuable resource will be great unless water-scarce nations are able to adapt. Saudi Arabia provides a good example of how the climate and unsustainable human activity go hand in hand in creating stress on and depleting water resources, and an example for adaptation and mitigation. A search of the English literature addressing climate change, water scarcity, human health, and related topics was conducted using online resources and databases accessed through the University at Albany, State University of New York library web page. Water scarcity, which encompasses both water availability and water quality, is an important indicator of health. Beyond drinking, water supply is intimately linked to food security, sanitation, and hygiene, which are primary contributors to the global burden of disease. Poor and disadvantaged populations are the ones who will suffer most from the negative effects of climate change on water supply and associated human health issues. Examples of adaptation and mitigation measures that can help reduce the strain on conventional water resources (surface waters and fossil aquifers or groundwater) include desalination, wastewater recycling and reuse, and outsourcing food items or "virtual water trade." These are strategies being used by Saudi Arabia, a country that is water poor primarily due to decades of irresponsible irrigation practices. The human and environmental health risks associated with these adaptation measures are examined. Finally, strategies to protect human health through international collaboration and the importance of these efforts are discussed. International, multidisciplinary cooperation and collaboration will be needed to promote

  5. Forward and pressure retarded osmosis: potential solutions for global challenges in energy and water supply.

    Science.gov (United States)

    Klaysom, Chalida; Cath, Tazhi Y; Depuydt, Tom; Vankelecom, Ivo F J

    2013-08-21

    Osmotically driven membrane processes (ODMP) have gained renewed interest in recent years and they might become a potential solution for the world's most challenging problems of water and energy scarcity. Though the concept of utilizing osmotic pressure difference between high and low salinity streams across semipermeable membranes has been explored for several decades, lack of optimal membranes and draw solutions hindered competition between forward osmosis (FO) and pressure retarded osmosis (PRO) with existing water purification and power generation technologies, respectively. Driven by growing global water scarcity and by energy cost and negative environmental impacts, novel membranes and draw solutions are being developed for ODMPs, mass and heat transfer in osmotic process are becoming better understood, and new applications of ODMPs are emerging. Therefore, OMDPs might become promising green technologies to provide clean water and clean energy from abundantly available renewable resources. This review focuses primarily on new insights into osmotic membrane transport mechanisms and on novel membranes and draw solutions that are currently being developed. Furthermore, the effects of operating conditions on the overall performance of osmotic membranes will be highlighted and future perspectives will be presented.

  6. Agricultural adaptation to water scarcity in the Sri Lankan dry zone: A comparison of two water managment regimes

    Science.gov (United States)

    Burchfield, E. K.

    2014-12-01

    The island nation of Sri Lanka is divided into two agro-climatic zones: the southwestern wet zone and the northeastern dry zone. The dry zone is exposed to drought-like conditions for several months each year. Due to the sporadic nature of rainfall, dry zone livelihoods depend on the successful storage, capture, and distribution of water. Traditionally, water has been captured in rain-fed tanks and distributed through a system of dug canals. Recently, the Sri Lankan government has diverted the waters of the nation's largest river through a system of centrally managed reservoirs and canals and resettled farmers to cultivate this newly irrigated land. This study uses remotely sensed MODIS and LANDSAT imagery to compare vegetation health and cropping patterns in these distinct water management regimes under different conditions of water scarcity. Of particular interest are the socioeconomic, infrastructural, and institutional factors that affect cropping patterns, including field position, water storage capacity, and control of water resources. Results suggest that under known conditions of water scarcity, farmers cultivate other field crops in lieu of paddy. Cultivation changes depend to a large extent on the institutional distance between water users and water managers as well as the fragmentation of water resources within the system.

  7. FOOD SECURITY IN TUNISIA WITHIN WATER SCARCITY THE RELATIVE IMPORTANCE OF THE MEAT SECTOR

    Directory of Open Access Journals (Sweden)

    Emna Ouertani

    2016-01-01

    Full Text Available This paper analyzes the evolution of food and nutrition security in Tunisia, judges its sustainability within water scarcity conditions and free trade areas, with a specific focus on the meat sector. For such purpose, the FAO indicators and Food Balance Sheets, as well as the Global Food Security Index are all analyzed. Virtual water, owed to meat and cereals for animal feed production and trade, was estimated to expect food security sustainability. Results indicated that Tunisian food and nutrition security (FNS has been improved over the years, but its stability remains vulnerable because of the political and economic risks and the dependence of Tunisia on imported cereals for animal feed due to water scarcity. Tunisian agricultural policy, especially in both sectors of cereals and meat, should be readjusted to guarantee food and nutrition sustainability.

  8. Managing water scarcity in the Magdalena river basin in Colombia.An economic assessment

    Science.gov (United States)

    Bolivar Lobato, Martha Isabel; Schneider, Uwe A.

    2014-05-01

    Key words: global change, water scarcity, river basin In Colombia, serious water conflicts began to emerge with the economic development in the 70ies and 80ies and the term "water scarcity" became a common word in this tropical country. Despite a mean annual runoff of 1840 mm, which classifies Colombia as a water rich country, shortfalls in fresh water availability have become a frequent event in the last two decades. One reason for the manifestation of water scarcity is the long-held perception of invulnerable water abundance, which has delayed technical and political developments to use water more efficiently. The Magdalena watershed is the most important and complex area in Colombia, because of its huge anthropogenic present, economic development and increasing environmental problems. This river basin has a total area of 273,459 km2, equivalent to 24% of the territory of the country. It is home to 79% of the country's population (32.5 million of inhabitants) and approximately 85% of Gross Domestic Product of Colombia is generated in this area. Since the economic development of the 1970s and 1980s, large changes in land cover and related environmental conditions have occurred in the Magdalena basin. These changes include deforestation, agricultural land expansion, soil degradation, lower groundwater and increased water pollution. To assess the consequences of geophysical alteration and economic development, we perform an integrated analysis of water demand, water supply, land use changes and possible water management strategies. The main objective of this study is to determine how global and local changes affect the balance between water supply and demand in the Magdalena river basin in Colombia, the consequences of different water pricing schemes, and the social benefits of public or private investments into various water management infrastructures. To achieve this goal, a constrained welfare maximization model has been developed. The General Algebraic Modeling

  9. Methodology to Analyse the actual and the future effect of water scarcity on the available water resources in Meguellil watershed

    Science.gov (United States)

    Oueslati, I.; Lili-Chabaane, Z.; Shabou, M.; Zribi, M.; Ben Issa, N.; chakroun, H.; Galafassi, D.; Rathwell, K.; Hoff, H.; Pizzigalli, C.

    2012-04-01

    Scarcity often has its roots in water shortage, and it is in the arid and semiarid regions affected by droughts and wide climate variability, combined with population growth and economic development, that the problems of water scarcity are most acute. The Merguellil watershed, situated in the center of Tunisia, represents exactly this state of fact where the agriculture is the main consumer with about 80% of the total water resources because of the continuous increase and intensification of irrigated area. The surface water can satisfy a very low portion of this demand; consequently, the groundwater is overexploited. The irrigation sector is divided into public and private. While the public irrigated areas are well known, the private ones are not sufficiently controlled mainly the water volumes pumped from the aquifer. Therefore, a sustainable management of all available water resources and meeting as much as possible all water demands, is crucial. To analyze the actual and future water balance of the Merguellil watershed, and to identify critical trends and thresholds and effective solutions, a WEAP (Water Evaluation and Planning system) application has been developed. It utilizes a constrained optimization algorithm to allocate water among competing demands in a basin. The year 2009 is considered as the reference one which represents the basic definition of the water system as it currently exists, and forms the foundation of all scenarios analysis. Three scenarios were compared to the reference one. The first combines between the reduction of 10% in precipitation, as it is forseen by the regional climate model RCA (driven by ECHAM5) that provides statistic data of precipitation until 2050, and the increase of 2% per year in irrigated area in the kairouan plain deduced from the land use maps dating from 1991/1992 to 2009/2010 obtained by multi dates remote sensing data. The second scenario is the application of a deficit irrigation that respects the yield

  10. Water Scarcity in England and Wales as a Failure of (metaGovernance

    Directory of Open Access Journals (Sweden)

    Gareth Walker

    2014-06-01

    Full Text Available The water crisis is often said to be a crisis of governance failure rather than of availability per se; yet the sources of this failure are poorly understood. This paper examines contemporary water scarcity in England and Wales as a failure of ecological modernity, in which technical and institutional innovation is promoted as a means of increasing economic efficiency in the allocation and use of water resources. The role of the state in fostering this innovation is explored through exploring a shift from 'government' to 'governance'. The paper employs Jessopʼs theory of meta-governance to examine governance failure. Meta-governance represents the capacity of the state to flank or support the emergence of specific forms of governance through mobilising material or symbolic resources. Three sources of governance failure are explored: (1 the nature of capitalist exchange and its resulting production of nature, (2 the political dimensions implicit in meta-governance, and (3 the nature of governance as a task of self-organisation. The model is then applied to the rise of water scarcity in England and Wales from the 1970s to the present day. The utility of the model in analysing governance failure is discussed.

  11. Constraints on biomass energy deployment in mitigation pathways: the case of water scarcity

    Science.gov (United States)

    Séférian, Roland; Rocher, Matthias; Guivarch, Céline; Colin, Jeanne

    2018-05-01

    To limit global warming to well below 2 ° most of the IPCC-WGIII future stringent mitigation pathways feature a massive global-scale deployment of negative emissions technologies (NETs) before the end of the century. The global-scale deployment of NETs like Biomass Energy with Carbon Capture and Storage (BECCS) can be hampered by climate constraints that are not taken into account by Integrated assessment models (IAMs) used to produce those pathways. Among the various climate constraints, water scarcity appears as a potential bottleneck for future land-based mitigation strategies and remains largely unexplored. Here, we assess climate constraints relative to water scarcity in response to the global deployment of BECCS. To this end, we confront results from an Earth system model (ESM) and an IAM under an array of 25 stringent mitigation pathways. These pathways are compatible with the Paris Agreement long-term temperature goal and with cumulative carbon emissions ranging from 230 Pg C and 300 Pg C from January 1st onwards. We show that all stylized mitigation pathways studied in this work limit warming below 2 °C or even 1.5 °C by 2100 but all exhibit a temperature overshoot exceeding 2 °C after 2050. According to the IAM, a subset of 17 emission pathways are feasible when evaluated in terms of socio-economic and technological constraints. The ESM however shows that water scarcity would limit the deployment of BECCS in all the mitigation pathways assessed in this work. Our findings suggest that the evolution of the water resources under climate change can exert a significant constraint on BECCS deployment before 2050. In 2100, the BECCS water needs could represent more than 30% of the total precipitation in several regions like Europe or Asia.

  12. Managing the Financial Risks of Water Scarcity

    Science.gov (United States)

    Characklis, Greg; Foster, Ben; Kern, Jordan; Meyer, Eliot; Zeff, Harrison

    2015-04-01

    of financial losses experienced by such entities as water utilities, hydropower producers and inland shipping firms as a result of water scarcity, all of which suggest a growing role for financial instruments in managing environmental risk.

  13. The relative impact of climate change mitigation policies and socioeconomic drivers on water scarcity - An integrated assessment modeling approach

    Science.gov (United States)

    Hejazi, M. I.; Edmonds, J. A.; Clarke, L. E.; Kyle, P.; Davies, E. G.; Chaturvedi, V.; Patel, P.; Eom, J.; Wise, M.; Kim, S.; Calvin, K. V.; Moss, R. H.

    2012-12-01

    We investigate the relative effects of climate emission mitigation policies and socioeconomic drivers on water scarcity conditions over the 21st century both globally and regionally, by estimating both water availability and demand within a technologically-detailed global integrated assessment model of energy, agriculture, and climate change - the Global Change Assessment Model (GCAM). We first develop a global gridded monthly hydrologic model that reproduces historical streamflow observations and simulates the future availability of freshwater under both a changing climate and an evolving landscape, and incorporate this model into GCAM. We then develop and incorporate technologically oriented representations of water demands for the agricultural (irrigation and livestock), energy (electricity generation, primary energy production and processing), industrial (manufacturing and mining), and municipal sectors. The energy, industrial, and municipal sectors are represented in fourteen geopolitical regions, with the agricultural sector further disaggregated into as many as eighteen agro-ecological zones (AEZs) within each region. To perform the water scarcity analysis at the grid scale, the global water demands for the six demand sectors are spatially downscaled to 0.5 o x 0.5o resolution to match the scale of GWAM. The water scarcity index (WSI) compares total water demand to the total amount of renewable water available, and defines extreme water scarcity in any region as demand greater than 40% of total water availability. Using a reference scenario (i.e., no climate change mitigation policy) with radiative forcing reaching 8.8 W/m2 by 2095 and a global population of 14 billion, global annual water demand grows from about 9% of total annual renewable freshwater in 2005 to about 32% by 2095. This results in almost half of the world population living under extreme water scarcity by the end of the 21st century. Regionally, the demands for water exceed the total

  14. Integrated System Dynamics Modelling for water scarcity assessment: case study of the Kairouan region.

    Science.gov (United States)

    Sušnik, Janez; Vamvakeridou-Lyroudia, Lydia S; Savić, Dragan A; Kapelan, Zoran

    2012-12-01

    A System Dynamics Model (SDM) assessing water scarcity and potential impacts of socio-economic policies in a complex hydrological system is developed. The model, simulating water resources deriving from numerous catchment sources and demand from four sectors (domestic, industrial, agricultural, external pumping), contains multiple feedback loops and sub-models. The SDM is applied to the Merguellil catchment, Tunisia; the first time such an integrated model has been developed for the water scarce Kairouan region. The application represents an early step in filling a critical research gap. The focus of this paper is to a) assess the applicability of SDM for assessment of the evolution of a water-scarce catchment and b) to analyse the current and future behaviour of the catchment to evaluate water scarcity, focusing on understanding trends to inform policy. Baseline results indicate aquifer over-exploitation, agreeing with observed trends. If current policy and social behaviour continue, serious aquifer depletion is possible in the not too distant future, with implications for the economy and environment. This is unlikely to occur because policies preventing depletion will be implemented. Sensitivity tests were carried out to show which parameters most impacted aquifer behaviour. Results show non-linear model behaviour. Some tests showed negligible change in behaviour. Others showed unrealistic exponential changes in demand, revenue and aquifer water volume. Policy-realistic parameters giving the greatest positive impact on model behaviour were those controlling per-capita domestic water demand and the pumped volume to coastal cities. All potentially beneficial policy options should be considered, giving the best opportunity for preservation of Kairouan aquifer water quantity/quality, ecologically important habitats and the agricultural socio-economic driver of regional development. SDM is a useful tool for assessing the potential impacts of possible policy measures

  15. Evaluating a novel tiered scarcity adjusted water budget and pricing structure using a holistic systems modelling approach.

    Science.gov (United States)

    Sahin, Oz; Bertone, Edoardo; Beal, Cara; Stewart, Rodney A

    2018-06-01

    Population growth, coupled with declining water availability and changes in climatic conditions underline the need for sustainable and responsive water management instruments. Supply augmentation and demand management are the two main strategies used by water utilities. Water demand management has long been acknowledged as a least-cost strategy to maintain water security. This can be achieved in a variety of ways, including: i) educating consumers to limit their water use; ii) imposing restrictions/penalties; iii) using smart and/or efficient technologies; and iv) pricing mechanisms. Changing water consumption behaviours through pricing or restrictions is challenging as it introduces more social and political issues into the already complex water resources management process. This paper employs a participatory systems modelling approach for: (1) evaluating various forms of a proposed tiered scarcity adjusted water budget and pricing structure, and (2) comparing scenario outcomes against the traditional restriction policy regime. System dynamics modelling was applied since it can explicitly account for the feedbacks, interdependencies, and non-linear relations that inherently characterise the water tariff (price)-demand-revenue system. A combination of empirical water use data, billing data and customer feedback on future projected water bills facilitated the assessment of the suitability and likelihood of the adoption of scarcity-driven tariff options for a medium-sized city within Queensland, Australia. Results showed that the tiered scarcity adjusted water budget and pricing structure presented was preferable to restrictions since it could maintain water security more equitably with the lowest overall long-run marginal cost. Copyright © 2018 Elsevier Ltd. All rights reserved.

  16. Water Scarcity and Water Policy in Mexico

    OpenAIRE

    Facchini, Gianluca

    2009-01-01

    This thesis addresses the possible solutions to control demand and supply of water for a sustainable environment in Mexico, along with a detailed analyses of economic implications related to the water sector. At the same time it focuses on the opportunities and constraints to improve the use of water and the allocation in the agricultural sector, by a system of transferable water-use permits. Actual examples are provided nationwide to the current situation in Mexico, focusing on problems rela...

  17. Water Scarcity as a Cause of Conflict in the Nile, Euphrates, and Jordan River Basins

    National Research Council Canada - National Science Library

    Still, Douglas R

    2006-01-01

    The Euphrates, Nile, and Jordan Rivers are at center stage in the continued existence of the peoples in their basins where water scarcity serves as a source of conflict between the region's riparian...

  18. Global Water Scarcity Assessment under Post-SRES Scenarios

    Science.gov (United States)

    Hanasaki, N.; Fujimori, S.

    2011-12-01

    A large number of future projections contributed to the fourth Assessment Report of IPCC were based on Special Report on Emission Scenarios (SRES). Processes toward the fifth Assessment Report are under way, and post-SRES scenarios, called Shared Socio-economic Pathways (SSP) are being prepared. One of the key challenges of SSP is provision of detailed socio-economic scenarios compared to SRES for impact, adaptation and vulnerability studies. In this study, a comprehensive global water scarcity assessment was conducted, using a state of the art global water resources model H08 (Hanasaki et al., 2008a, 2008b, 2010). We used a prototype of SSP developed by National Institute for Environmental Studies, Japan. Two sets of socio economic scenarios and two sets of climate scenarios were prepared to run H08 for the period 2001-2100. Socio-economic scenarios include Business As Usual and High Mitigation Capacity. Climate scenarios include Reference and Mitigation which stabilizes green house gas concentration at a certain level. We analyzed the simulation results of four combinations, particularly focusing on the sensitivity of socio-economic scenarios to major water resources indices.

  19. Overexploitation of karst spring as a measure against water scarcity.

    Science.gov (United States)

    Dimkić, Dejan; Dimkić, Milan; Soro, Andjelko; Pavlović, Dusan; Jevtić, Goran; Lukić, Vladimir; Svrkota, Dragan

    2017-09-01

    Water scarcity, especially in the hydrologically critical part of the year, is a problem often present in many cities and regions, particularly in arid and sub-arid areas. Climate change and human water demand compound the problem. This paper discusses a climate change adaptation measure-the possibility of karst spring overexploitation, where there is a siphon-shaped cavity inside the mountain. The pilot area is near the city of Niš, where a decreasing precipitation trend has already been observed and is expected to continue in the future. The paper also presents some basic information related to the pilot area and undertaken investigations. The project, successfully implemented in 2004, has provided the city of Niš with an additional amount of 200 l/s of spring water during the most critical part of the year.

  20. Mountains in the third millennium - a decade of droughts and water scarcity?

    Science.gov (United States)

    de Jong, C.; Shaban, A.; Belete, T.

    2012-04-01

    Droughts and water scarcity have touched the Alps, Mediterranean and East African mountain chains more intensively since the beginning of the third millennium and pose a major challenge for water management. The year 2011 has been no exception, with the lowest river levels on record over the past 50 years even for alpine rivers. Although considerable climate fluctuations and persistent droughts have occurred in the past, it is quite remarkable that the five hottest summers over the past 500 years in Europe and the Alps have all been concentrated after 2002, falling far outside their normal historical distribution. In most mountain chains drought phenomena are persistent over large areas and over a variety of scales. The hydrological consequences, such as decreased rain- and snowfall, drying of springs, decreased river and groundwater discharge, lowering of lake levels and excessive evaporation etc. are considerable. Seasonality has been considerably affected, with the summer extending well into the spring and autumn. Mountain-fed rivers have experienced unusually low discharge over the last 10 years, with a decreasing trend both in summer and winter discharge. These hydrological changes have multiple impacts on availability of drinking water and the energy sector, decreasing hydroelectric production and availability of cooling water for the nuclear industry and negatively effecting river navigation, irrigation agriculture as well as winter tourism in mountains. Despite these naturally-induced shortcomings, adaptation has not always been rational. In some cases, maladaptation has led to overexploitation of water resources during drought conditions, exasperating water scarcity. For example, for the tourism sector in the Alps, water demand for drinking water and artificial snow making lies far above the available resources during the winter season for numerous resorts. This has long term environmental and socio-economic impacts such as destruction of wetlands

  1. Integrated assessment of global water scarcity over the 21st century - Part 2: Climate change mitigation policies

    Science.gov (United States)

    Hejazi, M. I.; Edmonds, J.; Clarke, L.; Kyle, P.; Davies, E.; Chaturvedi, V.; Eom, J.; Wise, M.; Patel, P.; Calvin, K.

    2013-03-01

    We investigate the effects of emission mitigation policies on water scarcity both globally and regionally using the Global Change Assessment Model (GCAM), a leading community integrated assessment model of energy, agriculture, climate, and water. Three climate policy scenarios with increasing mitigation stringency of 7.7, 5.5, and 4.2 W m-2 in year 2095 (equivalent to the SRES A2, B2, and B1 emission scenarios, respectively), under two carbon tax regimes (a universal carbon tax (UCT) which includes land use change emissions, and a fossil fuel and industrial emissions carbon tax (FFICT) which excludes land use change emissions) are analyzed. The results are compared to a baseline scenario (i.e. no climate change mitigation policy) with radiative forcing reaching 8.8 W m-2 (equivalent to the SRES A1Fi emission scenario) by 2095. When compared to the baseline scenario and maintaining the same baseline socioeconomic assumptions, water scarcity declines under a UCT mitigation policy but increases with a FFICT mitigation scenario by the year 2095 particularly with more stringent climate mitigation targets. The decreasing trend with UCT policy stringency is due to substitution from more water-intensive to less water-intensive choices in food and energy production, and in land use. Under the FFICT scenario, water scarcity is projected to increase driven by higher water demands for bio-energy crops. This study implies an increasingly prominent role for water availability in future human decisions, and highlights the importance of including water in integrated assessment of global change. Future research will be directed at incorporating water shortage feedbacks in GCAM to better understand how such stresses will propagate across the various human and natural systems in GCAM.

  2. Water scarcity under various socio-economic pathways and its potential effects on food production in the Yellow River basin

    Science.gov (United States)

    Yin, Yuanyuan; Tang, Qiuhong; Liu, Xingcai; Zhang, Xuejun

    2017-02-01

    Increasing population and socio-economic development have put great pressure on water resources of the Yellow River (YR) basin. The anticipated climate and socio-economic changes may further increase water stress. Many studies have investigated the changes in renewable water resources under various climate change scenarios, but few have considered the joint pressure from both climate change and socio-economic development. In this study, we assess water scarcity under various socio-economic pathways with emphasis on the impact of water scarcity on food production. The water demands in the 21st century are estimated based on the newly developed shared socio-economic pathways (SSPs) and renewable water supply is estimated using the climate projections under the Representative Concentration Pathway (RCP) 8.5 scenario. The assessment predicts that the renewable water resources would decrease slightly then increase. The domestic and industrial water withdrawals are projected to increase in the next a few decades and then remain at the high level or decrease slightly during the 21st century. The increase in water withdrawals will put the middle and lower reaches in a condition of severe water scarcity beginning in the next a few decades. If 40 % of the renewable water resources were used to sustain ecosystems, a portion of irrigated land would have to be converted to rain-fed agriculture, which would lead to a 2-11 % reduction in food production. This study highlights the links between water, food and ecosystems in a changing environment and suggests that trade-offs should be considered when developing regional adaptation strategies.

  3. Combination of Assessment Indicators for Policy Support on Water Scarcity and Pollution Mitigation

    Directory of Open Access Journals (Sweden)

    Wei Yang

    2016-05-01

    Full Text Available Given increasing concern about seeking solutions to water scarcity and pollution (WSP, this paper is intent on developing significant assessment indicators as decision variables for providing reference for policy proposals on the mitigation of WSP. An indicator package consisting of footprints of freshwater consumption (FC and water pollutant discharge (WPD, virtual contents of freshwater and water pollutants, and inter-sectoral linkages in terms of industrial production, FC and WPD has been newly set up based on an extended input-output model. These indicators allow to provide specific and well-structured analysis on FC, WPD and the economy as well as their implicated interrelationships. The Source Region of Liao River located in northeastern China was selected as an empirical study area to apply the indicator package. The results indicate that farming and production of electricity industries are major contributors to FC; farming and breeding industries, and households are major contributors to WPD. The study area exports a large amount of net virtual total nitrogen, total phosphorus and chemical oxygen demand (29.01 × 103 t, 4.66 × 103 t, 60.38 × 103 t, respectively. Farming and breeding industries are the sectors whose production could be constrained to contribute to mitigating WSP without excessive negative impacts on the economy. Two categories of policies have been proposed to mitigate WSP based on the analysis of the indicator package. One is to introduce direct water pollutant treatment and water-saving policies to the target sectors; the other is to adjust industrial structure. The integrated indicator package developed and the methodology presented are expected to provide policy researchers and decision makers with references for more sound water management.

  4. The relationship between HIV and AIDS and water scarcity in Nyamakate resettlements land, north-central Zimbabwe.

    Science.gov (United States)

    Mbereko, Alexio; Scott, Dianne; John Chimbari, Moses

    2016-12-01

    HIV and AIDS and water variability have been studied separately, yet, they impact on rural households simultaneously in an interactive manner. The study provide narratives on various realities from a study in the Nyamakate community that illustrates the dialectical relationship between HIV and AIDS and water scarcity. A qualitative research methodology was employed, and the following data collection tools were used: semi-structured interviews, focus group discussions (FGDs) and participant observations. The study showed that in the Nyamakate area, HIV- and AIDS-affected households utilise more water if there is a bedridden patient. Such households utilise an average of 145 litres per day and reported a water shortage of 103 litres per day. Although community rules and customs stipulate that water should be accessible to everyone, exclusion of HIV- and AIDS-affected households is underlined by cultural issues, scorn at poor levels of hygiene, infectious opportunistic infections and labour shortage, which limited access to water points by households directly affected by HIV and AIDS. In cases where women were overwhelmed with caregiving roles, men fetch water. We conclude that HIV and AIDS and water scarcity are dialectically related and hence should be considered in an interactive manner in order to understand the challenges faced by affected households.

  5. Evaluating regional water scarcity: Irrigated crop water budgets for groundwater management in the Wisconsin Central Sands

    Science.gov (United States)

    Nocco, M. A.; Kucharik, C. J.; Kraft, G.

    2013-12-01

    Regional water scarcity dilemmas between agricultural and aquatic land users pervade the humid northern lake states of Wisconsin, Minnesota, and Michigan, where agricultural irrigation relies on groundwater drawn from shallow aquifers. As these aquifers have strong connectivity to surface waters, irrigation lowers water levels in lakes and wetlands and reduces stream discharges. Irrigation expansion has cultivated a 60-year water scarcity dilemma in The Wisconsin Central Sands, the largest irrigated region in the humid northern lake states, dedicated to potato, maize, and processing vegetable production. Irrigation has depleted Wisconsin Central Sands surface waters, lowering levels in some lakes by over 2 m and drying some coldwater trout streams. Aquatic ecosystems, property values, and recreational uses in some surface waters have been devastated. While the causal link between pumping and surface water stress is established, understanding crop-mediated processes, such as the timing and magnitude of groundwater consumption by evapotranspiration (ET) and groundwater recharge, will be useful in management of groundwater, irrigated cropping systems, and surface water health. Previous modeling and field efforts have compared irrigated crop water use to a natural reference condition on a net annual basis. As a result, we presently understand that for irrigated potatoes and maize, the average annual ET is greater and therefore, the average annual recharge is less than rainfed row crops, grasslands, and both coniferous and deciduous forests. However, we have a limited understanding of the magnitude and timing of ET and recharge from irrigated cropping systems on shorter time scales that proceed with the annual cropping cycle (i.e. planting, full canopy, harvest, residue cover). We seek to understand the spatiotemporal variability of crop water budgets and associated water scarcity in the Wisconsin Central Sands through detailed measurements of drainage (potential

  6. Resources scarcity: Cause of potential conflicts

    Directory of Open Access Journals (Sweden)

    Beriša Hatidža A.

    2016-01-01

    Full Text Available Natural resources are a common good and the common wealth of each country. Their use, commercial applications and economic evaluation should be planned focused and targeted controlled. In a group of natural resources include: energy resources, water, food, land, mineral resources, biological resources and others. Given that the conditions of resource exploitation variable categories, it can be said that the volume of resources also variable. Abstracting growing problem of resources scarcity of vital importance to the existence in the world, this paper aims to try to shed light on the wider and comprehensive aspects of contemporary global problems in the scarcity of natural resources with a focus on the deficit of food, water and energenata. Search for answers to questions related to the scarcity of the basic needs of some of the world's population, civilizational confrontation about the energy pie, is a research and empirical contribution to the work, which is reflected in the effort to look at global challenges that mankind faces in the second decade of the 21st century.

  7. Alleviating the water scarcity in the North China Plain: the role of virtual water and real water transfer

    Science.gov (United States)

    Zhang, Zhuoying; Yang, Hong; Shi, Minjun

    2016-04-01

    The North China Plain is the most water scarce region in China. Its water security is closely relevant to interregional water movement, which can be realized by real water transfers and/or virtual water transfers. This study investigates the roles of virtual water trade and real water transfer using Interregional Input-Output model. The results show that the region is receiving 19.4 billion m3/year of virtual water from the interregional trade, while exporting 16.4 billion m3/year of virtual water in the international trade. In balance, the region has a net virtual water gain of 3 billion m3/year from outside. Its virtual water inflow is dominated by agricultural products from other provinces, totalling 16.6 billion m3/year, whilst its virtual water export is dominated by manufacturing sectors to other countries, totalling 11.7 billion m3/year. Both virtual water import and real water transfer from South to North Water Diversion Project are important water supplements for the region. The results of this study provide useful scientific references for the establishment of combating strategies to deal with the water scarcity in the future.

  8. Physical water scarcity metrics for monitoring progress towards SDG target 6.4 : An evaluation of indicator 6.4.2 “Level of water stress”

    NARCIS (Netherlands)

    Vanham, D.; Hoekstra, A. Y.; Wada, Y.; Bouraoui, F.; de Roo, A.; Mekonnen, M. M.; van de Bund, W. J.; Batelaan, O.; Pavelic, P.; Bastiaanssen, Wim G M; Kummu, M.; Rockström, J.; Liu, J.; Bisselink, B.; Ronco, P.; Pistocchi, A.; Bidoglio, G.

    2018-01-01

    Target 6.4 of the recently adopted Sustainable Development Goals (SDGs) deals with the reduction of water scarcity. To monitor progress towards this target, two indicators are used: Indicator 6.4.1 measuring water use efficiency and 6.4.2 measuring the level of water stress (WS). This paper aims to

  9. Weekend Warriors for Water: Combating Water Scarcity in West Africa with United States Army National Guard and Reserve Forces

    Science.gov (United States)

    2017-06-09

    vulnerable to “conflict and instability from political, social, economic , and environmental challenges” (United States Africa Command 2017). The...improve regional stability , which in turn increases economic , political, and social development. RC deployments to support water scarcity missions can...Capacity DOD Department of Defense DOS Department of State ECOWAS Economic Community of West African States FHA Foreign Humanitarian Assistance

  10. Assessing the economic impact of North China’s water scarcity mitigation strategy : a multi - region, water - extended computable general equilibrium analysis

    NARCIS (Netherlands)

    Qin, Changbo; Qin, C.; Su, Zhongbo; Bressers, Johannes T.A.; Jia, Y.; Wang, H.

    2013-01-01

    This paper describes a multi-region computable general equilibrium model for analyzing the effectiveness of measures and policies for mitigating North China’s water scarcity with respect to three different groups of scenarios. The findings suggest that a reduction in groundwater use would negatively

  11. Short overview of water scarcity in the basins of the Upper Tietê River and PCJ

    Directory of Open Access Journals (Sweden)

    Luciana Cordeiro de Souza Fernandes

    2015-12-01

    Full Text Available Water scarcity in the region of the Alto Tietê basin and Piracicaba, Capivari and Jundiaí basins (PCJ, southeastern Brazil, it is a concrete fact that should be faced. In our view it is not a simple water crisis, but a water collapse a decade advertised, which shows an inconsistent and ineffective planning, a lack of political management and the flagrant absence of compliance with the legal grounds brought by the National Water Resources Policy Act (Federal Law n. 9433/97.

  12. Potable water scarcity: options and issues in the coastal areas of Bangladesh.

    Science.gov (United States)

    Islam, Atikul; Sakakibara, Hiroyuki; Karim, Rezaul; Sekine, Masahiko

    2013-09-01

    In the coastal areas of Bangladesh, scarcity of drinking water is acute as freshwater aquifers are not available at suitable depths and surface water is highly saline. Households are mainly dependent on rainwater harvesting, pond sand filters and pond water for drinking purposes. Thus, individuals in these areas often suffer from waterborne diseases. In this paper, water consumption behaviour in two southwestern coastal districts of Bangladesh has been investigated. The data for this study were collected through a survey conducted on 750 rural households in 39 villages of the study area. The sample was selected using a random sampling technique. Households' choice of water source is complex and seasonally dependent. Water sourcing patterns, households' preference of water sourcing options and economic feasibility of options suggest that a combination of household and community-based options could be suitable for year-round water supply. Distance and time required for water collection were found to be difficult for water collection from community-based options. Both household and community-based options need regular maintenance. In addition to installation of water supply facilities, it is necessary to make the residents aware of proper operation and maintenance of the facilities.

  13. Environmental Education as a social mobilization strategy to face water scarcity.

    Science.gov (United States)

    Piccoli, Andrezza de Souza; Kligerman, Débora Cynamon; Cohen, Simone Cynamon; Assumpção, Rafaela Facchetti

    2016-03-01

    Article 225 of the Brazilian Constitution establishes that all citizens have the right to an ecologically balanced environment, as a common good that is essential for a healthy life, and that the government and society have the duty to protect and preserve the environment for present and future generations. This article outlines a methodology for promoting social mobilization to address water scarcity developed under the National Environmental Education and Social Mobilization for Sanitation Program (PEAMSS, acronym in Portuguese). The main aim of this article is to show the importance of education as a driving force for empowerment for water resources management. It outlines the main concepts of emancipatory environmental education and then goes on to describe the elaboration of a PEAMMS action plan. It concludes that the universalization of the right to safe and clean drinking water and access to sanitation is only possible through democratic and participatory water resources management. Actions are necessary to evaluate the reach of the PEAMSS and define the way ahead for the program.

  14. Hydro-economic modeling of water scarcity under global change: an application to the Gállego river basin (Spain)

    NARCIS (Netherlands)

    Graveline, N.; Majone, B.; van Duinen, Rianne; Ansink, E.

    2014-01-01

    Integrated approaches are needed to assess the effects of global changes on the future state of water resources at regional scales. We develop a hydro-economic model of the Gállego catchment, Spain, to assess how global change and policy options affect the catchment’s water scarcity and the economic

  15. Development of a stream–aquifer numerical flow model to assess river water management under water scarcity in a Mediterranean basin

    International Nuclear Information System (INIS)

    Mas-Pla, Josep; Font, Eva; Astui, Oihane; Menció, Anna; Rodríguez-Florit, Agustí; Folch, Albert; Brusi, David; Pérez-Paricio, Alfredo

    2012-01-01

    Stream flow, as a part of a basin hydrological cycle, will be sensible to water scarcity as a result of climate change. Stream vulnerability should then be evaluated as a key component of the basin water budget. Numerical flow modeling has been applied to an alluvial formation in a small mountain basin to evaluate the stream–aquifer relationship under these future scenarios. The Arbúcies River basin (116 km 2 ) is located in the Catalan Inner Basins (NE Spain) and its lower reach, which is related to an alluvial aquifer, usually becomes dry during the summer period. This study seeks to determine the origin of such discharge losses whether from natural stream leakage and/or induced capture due to groundwater withdrawal. Our goal is also investigating how discharge variations from the basin headwaters, representing potential effects of climate change, may affect stream flow, aquifer recharge, and finally environmental preservation and human supply. A numerical flow model of the alluvial aquifer, based on MODFLOW and especially in the STREAM routine, reproduced the flow system after the usual calibration. Results indicate that, in the average, stream flow provides more than 50% of the water inputs to the alluvial aquifer, being responsible for the amount of stored water resources and for satisfying groundwater exploitation for human needs. Detailed simulations using daily time-steps permit setting threshold values for the stream flow entering at the beginning of the studied area so surface discharge is maintained along the whole watercourse and ecological flow requirements are satisfied as well. The effects of predicted rainfall and temperature variations on the Arbúcies River alluvial aquifer water balance are also discussed from the outcomes of the simulations. Finally, model results indicate the relevance of headwater discharge management under future climate scenarios to preserve downstream hydrological processes. They also point out that small mountain basins

  16. Is Storage a Solution to End Water Shortage?

    Science.gov (United States)

    Narayanan, M.

    2009-12-01

    Water shortage is a problem of supply and demand. Some authors refer to it as Water Scarcity. The author has discussed this in his previous presentation at the 2008 AGU International Conference. Part of it is reproduced here for purposes of clarification. It is important to recognize that water is essential for the survival of all life on earth. Many water-rich states have thought of water conservation as an art that is practiced mainly in the arid states. But one has to recite the famous quote: “You will never miss water till the well runs dry.” Researchers have also concluded that quantity deficiency experienced by groundwater supplies are affecting many communities around the world. Furthermore federal regulations pertaining to the quality of potable or drinking water have become more stringent (Narayanan, 2008). One must observe that water conservation schemes and efficient utilization practices also benefit the environment to a large extent. These water conservation practicies indeed have a short payback period althought it may seem that there is a heavy initial investment is required. Research scientists have studied MARR (Mean Annual River Runoff) pattern over the years and have arrived at some significant conclusions. Vörsömarty and other scientists have indicated that water scarcity exists when the demand to supply ratio exceeds the number 0.4. (Vörsömarty, 2005). Furthermore other researchers claim to have documented a six-fold increase in water use in the United States during the last century. It is interesting to note that the population of the United States has hardly doubled during the last century. This obviously, is indicative of higher living standards. Nevertheless, it also emphasizes an urgent need for establishing a strong, sound, sensible and sustainable management program for utilizing the available water supplies efficiently (Narayanan, 2008). Author of the 1998 book, Last Oasis: Facing Water Scarcity, Dr. Sandra Postel predicts big

  17. Using an ensemble of regional climate models to assess climate change impacts on water scarcity in European river basins.

    Science.gov (United States)

    Gampe, David; Nikulin, Grigory; Ludwig, Ralf

    2016-12-15

    Climate change will likely increase pressure on the water balances of Mediterranean basins due to decreasing precipitation and rising temperatures. To overcome the issue of data scarcity the hydrological relevant variables total runoff, surface evaporation, precipitation and air temperature are taken from climate model simulations. The ensemble applied in this study consists of 22 simulations, derived from different combinations of four General Circulation Models (GCMs) forcing different Regional Climate Models (RCMs) and two Representative Concentration Pathways (RCPs) at ~12km horizontal resolution provided through the EURO-CORDEX initiative. Four river basins (Adige, Ebro, Evrotas and Sava) are selected and climate change signals for the future period 2035-2065 as compared to the reference period 1981-2010 are investigated. Decreased runoff and evaporation indicate increased water scarcity over the Ebro and the Evrotas, as well as the southern parts of the Adige and the Sava, resulting from a temperature increase of 1-3° and precipitation decrease of up to 30%. Most severe changes are projected for the summer months indicating further pressure on the river basins already at least partly characterized by flow intermittency. The widely used Falkenmark indicator is presented and confirms this tendency and shows the necessity for spatially distributed analysis and high resolution projections. Related uncertainties are addressed by the means of a variance decomposition and model agreement to determine the robustness of the projections. The study highlights the importance of high resolution climate projections and represents a feasible approach to assess climate impacts on water scarcity also in regions that suffer from data scarcity. Copyright © 2016. Published by Elsevier B.V.

  18. Coyotes, Concessions and Construction Companies: Illegal Water Markets and Legally Constructed Water Scarcity in Central Mexico

    Directory of Open Access Journals (Sweden)

    Nadine Reis

    2014-10-01

    Full Text Available Many regions of (semiarid Mexico, such as the Valley of Toluca, face challenges due to rapid growth and the simultaneous overexploitation of groundwater. The water reform of the 1990s introduced individual water rights concessions granted through the National Water Commission (Comisión Nacional del Agua, or CONAGUA. Since then, acquiring new water rights in officially 'water-scarce' aquifers is only possible through official rights transmissions from users ceding their rights. With the law prohibiting the sale of water rights, a profitable illegal market for these rights has emerged. The key actor in the water rights allocation network is the coyote, functioning as a broker between a people wanting to cede water rights and those needing them, and b the formal and informal spheres of water rights allocation. Actors benefitting from water rights trading include the coyote and his 'working brigades', water users selling surplus rights, and (senior and lower-level staff in the water bureaucracy. The paper concludes that legally constructed water scarcity is key to the reproduction of illegal water rights trading. This has important implications regarding the current push for expanding regularisation of groundwater extraction in Mexico. Currently, regularisation does not counter overexploitation, while possibly leading to a de facto privatisation of groundwater.

  19. Change of land-use patterns by planning field shelterbelts on farming Lowlands vulnerable to water scarcity: Romania

    Directory of Open Access Journals (Sweden)

    Vijulie Iuliana

    2013-01-01

    Full Text Available Water scarcity, drought, and land degradation are particularly serious environmental issues in Romania (south-western Boianu Plain and Olt meadow, part of the Vallachian Plain. We propose a possible solution for decreasing the impact of climate change and preventing land degradation by planting shelterbelts. The main research methods approached were: direct observation, investigation method (interview, numerical methods of identifying the ecological potential of the land, selection of the appropriate species to be planted, and GIS mapping. The proposed solution is to create field shelterbelts after a theoretical model of configuring, composing and setting them within a village area in the Boianu Plain. The lack of specialized cadastre and funds hampers the implementation of the project. The locals and landowners in the area must be fully aware of the importance of shelterbelts. Thus, the environmental and their living conditions would be highly improved; the effects of droughts would diminish gradually and agricultural output growth. Another pending issue is to create a methodology in order to compensate the owners who disagree with the changes in land use. The area to be planted with shelterbelts is currently the agricultural land they own.

  20. Diet change and food loss reduction: What is their combined impact on global water use and scarcity?

    Science.gov (United States)

    Jalava, Mika; Guillaume, Joseph H. A.; Kummu, Matti; Porkka, Miina; Siebert, Stefan; Varis, Olli

    2016-03-01

    There is a pressing need to improve food security and reduce environmental impacts of agricultural production globally. Two of the proposed measures are diet change from animal-based to plant-based foodstuffs and reduction of food losses and waste. These two measures are linked, as diet change affects production and consumption of foodstuffs and consequently loss processes through their different water footprints and loss percentages. This paper takes this link into account for the first time and provides an assessment of the combined potential contribution of diet change and food loss reduction for reducing water footprints and water scarcity. We apply scenarios in which we change diets to follow basic dietary recommendations, limit animal-based protein intake to 25% of total protein intake, and halve food losses to study single and combined effects of diet change and loss reduction. Dietary recommendations alone would achieve 6% and 7% reductions of blue and green water consumption, respectively, while changing diets to contain less animal products would result in savings of 11% and 18%, respectively. Halving food loss would alone achieve 12% reductions for both blue and green water. Combining the measures would reduce water consumption by 23% and 28%, respectively, lowering water scarcity in areas with a population of over 600 million. At a global scale, effects of diet change and loss reduction were synergistic with loss reductions being more effective under changed diet. This demonstrates the importance of considering the link between diet change and loss reduction in assessments of food security and resource use.

  1. Benefits of economic criteria for water scarcity management under global changes: insights from a large-scale hydroeconomic framework

    Science.gov (United States)

    Neverre, Noémie; Dumas, Patrice; Nassopoulos, Hypatia

    2016-04-01

    Global changes are expected to exacerbate water scarcity issues in the Mediterranean region in the next decades. In this work, we investigate the impacts of reservoirs operation rules based on an economic criterion. We examine whether can they help reduce the costs of water scarcity, and whether they become more relevant under future climatic and socioeconomic conditions. We develop an original hydroeconomic model able to compare future water supply and demand on a large scale, while representing river basin heterogeneity. On the demand side, we focus on the two main sectors of water use: the irrigation and domestic sectors. Demands are projected in terms of both quantity and economic value. Irrigation requirements are computed for 12 types of crops, at the 0.5° spatial resolution, under future climatic conditions (A1B scenario). The computation of the economic benefits of irrigation water is based on a yield comparison approach between rainfed and irrigated crops. For the domestic sector, we project the combined effects of demographic growth, economic development and water cost evolution on future demands. The economic value of domestic water is defined as the economic surplus. On the supply side, we evaluate the impacts of climate change on water inflows to the reservoirs. Operating rules of the reservoirs are set up using a parameterisation-simulation-optimisation approach. The objective is to maximise water benefits. We introduce prudential parametric rules in order to take into account spatial and temporal trade-offs. The methodology is applied to Algeria at the 2050 horizon. Overall, our results show that the supply-demand imbalance and its costs will increase in most basins under future climatic and socioeconomic conditions. Our results suggest that the benefits of operating rules based on economic criteria are not unequivocally increased with global changes: in some basins the positive impact of economic prioritisation is higher under future conditions

  2. Assessment of freshwater scarcity using a model based on supply and demand law

    OpenAIRE

    Escribano Rodríguez de Robles, Beatriz; Sellarès González, Jordi; Xercavins, Josep

    2011-01-01

    The main goal of this work is to provide an analysis methodology for assessment of water scarcity problems based on supply and demand. To this end, we must first determine what can be considered as supply and demand in the water scarcity problem. Although some variables involved are physical, economical or demographical, in our approach social factors are also included. This leads us to objectify water demand standards in relation to acceptable welfare levels. Within this appro...

  3. Land scarcity in Northern Namibia

    Science.gov (United States)

    Bloemertz, Lena; Dobler, Gregor; Graefe, Olivier; Kuhn, Nikolaus J.; Nghitevelekwa, Romie; Prudat, Brice; Weidmann, Laura

    2015-04-01

    Land access is a major topic in the Namibian population, which can also be seen in political discourses. In North-Central Namibia, the ongoing Communal Land Reform aims at improving tenure security and thereby also hopes to promote sustainable investment in land. Within this context, it is often argued that population growth is leading to an increased scarcity of land. However, this argument falls short of actual issues determining land scarcity in Namibia. In a context, where a large part of the population is still seen as depending on agricultural production, land scarcity has to be measured by different means to assess physical scarcity (population density, farm density, proportion of cultivated areas, or yield per person) as well as the perception of these different scarcities. This paper aims to discuss the different notions of land scarcity and argues that by focusing only on the physical realities of increasing pressure on land because of population growth, important other aspects are neglected. In order to scrutinize those measures, the study will further look at the distribution of different land uses, changing land use practices as connected to changing labour availability and mobility. Special attention will thereby be given to the difference between land scarcity and fertile soil scarcity and their relation to labour availability.

  4. Is physical water scarcity a new phenomenon? Global assessment of water shortage over the last two millennia

    International Nuclear Information System (INIS)

    Kummu, Matti; Varis, Olli; Ward, Philip J; De Moel, Hans

    2010-01-01

    In this letter we analyse the temporal development of physical population-driven water scarcity, i.e. water shortage, over the period 0 AD to 2005 AD. This was done using population data derived from the HYDE dataset, and water resource availability based on the WaterGAP model results for the period 1961-90. Changes in historical water resources availability were simulated with the STREAM model, forced by climate output data of the ECBilt-CLIO-VECODE climate model. The water crowding index, i.e. Falkenmark water stress indicator, was used to identify water shortage in 284 sub-basins. Although our results show a few areas with moderate water shortage (1000-1700 m 3 /capita/yr) around the year 1800, water shortage began in earnest at around 1900, when 2% of the world population was under chronic water shortage ( 3 /capita/yr). By 1960, this percentage had risen to 9%. From then on, the number of people under water shortage increased rapidly to the year 2005, by which time 35% of the world population lived in areas with chronic water shortage. In this study, the effects of changes in population on water shortage are roughly four times more important than changes in water availability as a result of long-term climatic change. Global trends in adaptation measures to cope with reduced water resources per capita, such as irrigated area, reservoir storage, groundwater abstraction, and global trade of agricultural products, closely follow the recent increase in global water shortage.

  5. A generic hydroeconomic model to assess future water scarcity

    Science.gov (United States)

    Neverre, Noémie; Dumas, Patrice

    2015-04-01

    the maximization of water benefits, over time and space. A parameterisation-simulation-optimisation approach is used. This gives a projection of future water scarcity in the different locations and an estimation of the associated direct economic losses from unsatisfied demands. This generic hydroeconomic model can be easily applied to large-scale regions, in particular developing regions where little reliable data is available. We will present an application to Algeria, up to the 2050 horizon.

  6. Water and solute balances as a basis for sustainable irrigation agriculture

    Science.gov (United States)

    Pla-Sentís, Ildefonso

    2015-04-01

    The growing development of irrigated agriculture is necessary for the sustainable production of the food required by the increasing World's population. Such development is limited by the increasing scarcity and low quality of the available water resources and by the competitive use of the water for other purposes. There are also increasing problems of contamination of surface and ground waters to be used for other purposes by the drainage effluents of irrigated lands. Irrigation and drainage may cause drastic changes in the regime and balance of water and solutes (salts, sodium, contaminants) in the soil profile, resulting in problems of water supply to crops and problems of salinization, sodification and contamination of soils and ground waters. This is affected by climate, crops, soils, ground water depth, irrigation and groundwater composition, and by irrigation and drainage management. In order to predict and prevent such problems for a sustainable irrigated agriculture and increased efficiency in water use, under each particular set of conditions, there have to be considered both the hydrological, physical and chemical processes determining such water and solute balances in the soil profile. In this contribution there are proposed the new versions of two modeling approaches (SOMORE and SALSODIMAR) to predict those balances and to guide irrigation water use and management, integrating the different factors involved in such processes. Examples of their application under Mediterranean and tropical climate conditions are also presented.

  7. Shifting Scarcities? The Energy Intensity of Water Supply Alternatives in the Mass Tourist Resort of Benidorm, Spain

    Directory of Open Access Journals (Sweden)

    Hyerim Yoon

    2018-03-01

    Full Text Available The energy intensity of water—‘energy (electricity-for-water’—is calculated for Benidorm, a mass tourism resort in the Spanish Mediterranean coast, where the urban water cycle has evolved in response to a series of episodes of water stress. The analysis is based on primary data compiled from various actors involved in the urban water cycle encompassing water extraction, end uses, and wastewater treatment, including tertiary treatment. The results provide one of the first analyses of the relations between energy and water in a mass tourist center, which may be of potential interest for other tourist areas. It is estimated that a total of 109 GWh/year of electricity is required to operate the water cycle of Benidorm. About 4% of total energy use in Benidorm is dedicated to extracting, transporting, and treating water. The most energy-intensive stage is represented by end uses, which accounts for 20% of the total energy use in Benidorm when the energy required for water pumping and hot water use is considered. Additionally, energy intensity for water extraction was estimated for normal, wet, and two dry year scenarios. In comparison with the normal scenario, energy intensity is six times larger when desalinated water is incorporated during a dry year, whereas the emergency interbasin water transfer resulted in a more moderate increase in energy intensity. While treated wastewater and emergency water transfers appear to be a more convenient solution in energy terms, the strong impulse given to desalination in Spain is forcing local water authorities towards the use of a resource that is much more energy intensive, although, on the other hand, much less dependent on the vagaries of climate. In light of recent technological and managerial developments, the Benidorm case illuminates the challenges appearing in the analysis of the water-energy nexus, especially the fact that scarcity may be transferred from water to energy.

  8. Impact of scarcity on consumer behavior

    Directory of Open Access Journals (Sweden)

    T.U. Kulakovsky

    2016-09-01

    Full Text Available This article analyzes the impact of scarcity on consumer behavior and on perception of scarce goods consumer qualities. The author examines and subjects to the critical analysis the impact of scarcity on consumer behavior within economic theory, the theory of reactance and commodity theory. The differences in explaining the impact of scarcity on consumer behavior in economic and psychological sciences is highlighted. The current researcher experimentally proves the impact of the scarcity as an isolated factor on consumer behavior and the impact of scarcity on consumer perception of product quality. According to the reactance theory, an individual perceives scarcity as the restriction of his freedom that causes resistance in response to a possible restriction of freedom of actions. This reinforces the desire to have such a scarce product. To confirm the psychological impact of scarcity on a domestic consumer the author designs and conducts the experiment that confirms the following hypotheses: scarcity affects consumer behavior and stimulates consumers to purchase scarce commodities; scarcity has impact on the perception of scarce product consumer qualities. Such consumer behavior relatively to scarce goods can be used by marketers to promote products on the market.

  9. Human pharmaceuticals in Portuguese rivers: The impact of water scarcity in the environmental risk.

    Science.gov (United States)

    Pereira, André M P T; Silva, Liliana J G; Laranjeiro, Célia S M; Meisel, Leonor M; Lino, Celeste M; Pena, Angelina

    2017-12-31

    Pharmaceuticals occurrence and environmental risk assessment were assessed in Portuguese surface waters, evaluating the impact of wastewater treatment plants (WWTPs) and river flow rates. Twenty three pharmaceuticals from 6 therapeutic groups, including metabolites and 1 transformation product, were analysed in 72 samples collected from 20 different sites, upstream and downstream the selected WWTPs, in two different seasons. Analysis was performed by solid phase extraction followed by liquid chromatography coupled to tandem mass spectroscopy. Pharmaceuticals were detected in 27.8% of the samples. Selective serotonin reuptake inhibitors (SSRIs), anti-inflammatories and antibiotics presented the highest detection frequencies (27.8, 23.6 and 23.6%, respectively) and average concentrations (37.9, 36.1 and 33.5ngL -1 , respectively). When assessing the impact of WWTPs, an increase of 21.4% in the average concentrations was observed in the samples located downstream these facilities, when compared with the upstream samples. Increased detection frequencies and concentrations were observed at lower flow rates, both when comparing summer and winter campaigns and by evaluating the different rivers. Risk quotients (RQs) higher than one were found for two pharmaceuticals, concerning two trophic levels. However, since Iberian rivers are highly influenced by water scarcity, in drought periods, the flow rates in these rivers can decrease at least ten times from the lowest value observed in the sampling campaigns. In these conditions, RQs higher than 1 would be observed for 5 pharmaceuticals, additionally, all the detected pharmaceuticals (11) would present RQs higher than 0.1. These results emphasize that the river flow rate represents an important parameter influencing pharmaceuticals concentrations, highlighting the ecotoxicological pressure, especially due to water scarcity in drought periods. This should be a priority issue in the environmental policies for minimizing its

  10. Risk of water scarcity and water policy implications for crop production in the Ebro Basin in Spain

    Science.gov (United States)

    Quiroga, S.; Fernández-Haddad, Z.; Iglesias, A.

    2010-08-01

    The increasing pressure on water systems in the Mediterranean enhances existing water conflicts and threatens water supply for agriculture. In this context, one of the main priorities for agricultural research and public policy is the adaptation of crop yields to water pressures. This paper focuses on the evaluation of hydrological risk and water policy implications for food production. Our methodological approach includes four steps. For the first step, we estimate the impacts of rainfall and irrigation water on crop yields. However, this study is not limited to general crop production functions since it also considers the linkages between those economic and biophysical aspects which may have an important effect on crop productivity. We use statistical models of yield response to address how hydrological variables affect the yield of the main Mediterranean crops in the Ebro River Basin. In the second step, this study takes into consideration the effects of those interactions and analyzes gross value added sensitivity to crop production changes. We then use Montecarlo simulations to characterize crop yield risk to water variability. Finally we evaluate some policy scenarios with irrigated area adjustments that could cope in a context of increased water scarcity. A substantial decrease in irrigated land, of up to 30% of total, results in only moderate losses of crop productivity. The response is crop and region specific and may serve to prioritise adaptation strategies.

  11. Physical water scarcity metrics for monitoring progress towards SDG target 6.4: An evaluation of indicator 6.4.2 "Level of water stress".

    Science.gov (United States)

    Vanham, D; Hoekstra, A Y; Wada, Y; Bouraoui, F; de Roo, A; Mekonnen, M M; van de Bund, W J; Batelaan, O; Pavelic, P; Bastiaanssen, W G M; Kummu, M; Rockström, J; Liu, J; Bisselink, B; Ronco, P; Pistocchi, A; Bidoglio, G

    2018-02-01

    Target 6.4 of the recently adopted Sustainable Development Goals (SDGs) deals with the reduction of water scarcity. To monitor progress towards this target, two indicators are used: Indicator 6.4.1 measuring water use efficiency and 6.4.2 measuring the level of water stress (WS). This paper aims to identify whether the currently proposed indicator 6.4.2 considers the different elements that need to be accounted for in a WS indicator. WS indicators compare water use with water availability. We identify seven essential elements: 1) both gross and net water abstraction (or withdrawal) provide important information to understand WS; 2) WS indicators need to incorporate environmental flow requirements (EFR); 3) temporal and 4) spatial disaggregation is required in a WS assessment; 5) both renewable surface water and groundwater resources, including their interaction, need to be accounted for as renewable water availability; 6) alternative available water resources need to be accounted for as well, like fossil groundwater and desalinated water; 7) WS indicators need to account for water storage in reservoirs, water recycling and managed aquifer recharge. Indicator 6.4.2 considers many of these elements, but there is need for improvement. It is recommended that WS is measured based on net abstraction as well, in addition to currently only measuring WS based on gross abstraction. It does incorporate EFR. Temporal and spatial disaggregation is indeed defined as a goal in more advanced monitoring levels, in which it is also called for a differentiation between surface and groundwater resources. However, regarding element 6 and 7 there are some shortcomings for which we provide recommendations. In addition, indicator 6.4.2 is only one indicator, which monitors blue WS, but does not give information on green or green-blue water scarcity or on water quality. Within the SDG indicator framework, some of these topics are covered with other indicators. Copyright © 2017 The Authors

  12. Development of a stream-aquifer numerical flow model to assess river water management under water scarcity in a Mediterranean basin.

    Science.gov (United States)

    Mas-Pla, Josep; Font, Eva; Astui, Oihane; Menció, Anna; Rodríguez-Florit, Agustí; Folch, Albert; Brusi, David; Pérez-Paricio, Alfredo

    2012-12-01

    Stream flow, as a part of a basin hydrological cycle, will be sensible to water scarcity as a result of climate change. Stream vulnerability should then be evaluated as a key component of the basin water budget. Numerical flow modeling has been applied to an alluvial formation in a small mountain basin to evaluate the stream-aquifer relationship under these future scenarios. The Arbúcies River basin (116 km(2)) is located in the Catalan Inner Basins (NE Spain) and its lower reach, which is related to an alluvial aquifer, usually becomes dry during the summer period. This study seeks to determine the origin of such discharge losses whether from natural stream leakage and/or induced capture due to groundwater withdrawal. Our goal is also investigating how discharge variations from the basin headwaters, representing potential effects of climate change, may affect stream flow, aquifer recharge, and finally environmental preservation and human supply. A numerical flow model of the alluvial aquifer, based on MODFLOW and especially in the STREAM routine, reproduced the flow system after the usual calibration. Results indicate that, in the average, stream flow provides more than 50% of the water inputs to the alluvial aquifer, being responsible for the amount of stored water resources and for satisfying groundwater exploitation for human needs. Detailed simulations using daily time-steps permit setting threshold values for the stream flow entering at the beginning of the studied area so surface discharge is maintained along the whole watercourse and ecological flow requirements are satisfied as well. The effects of predicted rainfall and temperature variations on the Arbúcies River alluvial aquifer water balance are also discussed from the outcomes of the simulations. Finally, model results indicate the relevance of headwater discharge management under future climate scenarios to preserve downstream hydrological processes. They also point out that small mountain basins

  13. Energy scarcity and economic growth reconsidered

    International Nuclear Information System (INIS)

    Uri, N.D.

    1995-01-01

    The analysis in this paper is concerned with the effect of energy scarcity on economic growth in the United States. After defining the notion of scarcity and introducing two measures of scarcity, unit costs and relative energy price, changes in the trend in resource scarcity for natural gas, bituminous coal, anthracite coal, and crude oil over the most recent three decades are investigated. Each of the energy resources became significantly more scarce resources during the decade of the 1970s in the Malthusian Stock Scarcity and Malthusian Flow Scarcity sense. Unit costs exhibit a similar change for natural gas and crude oil but not for bituminous coal and anthracite coal. The situation reversed itself during the 1980s. Natural gas, bituminous coal, anthracite coal, and crude oil all became significantly less scarce resources during the decade of the 1980s than they had been during the 1970s. That is, the increase in scarcity as measured by relative energy prices observed during the decade of the 1970s was not reversed completely during the 1980s for natural gas and crude oil. Unit costs for natural gas and crude oil demonstrate analogous patterns and test results. Given that change has taken place, it has implications for future economic growth to the extent resource scarcity and economic growth are interrelated. (author)

  14. Climate-Driven or Human-Induced: Indicating Severe Water Scarcity in the Moulouya River Basin (Morocco

    Directory of Open Access Journals (Sweden)

    Vera Tekken

    2012-12-01

    Full Text Available Many agriculture-based economies are increasingly under stress from climate change and socio-economic pressures. The excessive exploitation of natural resources still represents the standard procedure to achieve socio-economic development. In the area of the Moulouya river basin, Morocco, natural water availability represents a key resource for all economic activities. Agriculture represents the most important sector, and frequently occurring water deficits are aggravated by climate change. On the basis of historical trends taken from CRU TS 2.1, this paper analyses the impact of climate change on the per capita water availability under inclusion of population trends. The Climatic Water Balance (CWB shows a significant decrease for the winter period, causing adverse effects for the main agricultural season. Further, moisture losses due to increasing evapotranspiration rates indicate problems for the annual water budget and groundwater recharge. The per capita blue water availability falls below a minimum threshold of 500 m3 per year, denoting a high regional vulnerability to increasing water scarcity assuming a no-response scenario. Regional development focusing on the water-intense sectors of agriculture and tourism appears to be at risk. Institutional capacities and policies need to address the problem, and the prompt implementation of innovative water production and efficiency measures is recommended.

  15. Use value, exchange value, and resource scarcity

    International Nuclear Information System (INIS)

    Stern, D.I.

    1999-01-01

    The literature on natural resource scarcity indicators is reviewed. Scarcity indicators can be classified by what is being measured: value of the resource stock or value of extracted resource commodities; whose value is considered: social vs. private scarcity; and by the mode of valuation considered: exchange value and use value. Prices and rents are common measures of exchange value or indicators of ''exchange scarcity'' and unit costs can be seen as use value indicators or indicators of u se scarcity . The major aim of this paper is to demonstrate the links between productivity indicators such as unit costs and the classical concept of use value. The two classes of indicator relate to John Commons' discussions of scarcity and efficiency, and a marginal vs. a non-marginal approach to value and scarcity. The classical use value concept also has wider relevance for issues of valuation in energy, resource, and environmental policy. (author)

  16. Estimation of awareness and perception of water scarcity among farmers in the Guanzhong Plain, China, by means of a structural equation model.

    Science.gov (United States)

    Tang, Jianjun; Folmer, Henk; Xue, Jianhong

    2013-09-15

    This paper applies a structural equation model (SEM) to analyze the formation of awareness and perception of water scarcity, based on a cross-sectional dataset of 446 farmers in the Guanzhong Plain, Shaanxi Province, China. We find that age, percentage of time spent on farming and social network are the main determinants of awareness. Water price and drought experience are the most important explanatory variables of perception. In addition, awareness and perception strongly interact. The results obtained in this paper are relevant for policymaking, since environmental behavior, which includes efficient use of natural resources, tends to improve if supported by internalization of social norms, which in its turn, is promoted by awareness and perception. From the analysis it follows that spreading information via social networks, rather than via the media, is an important vehicle to enhance awareness and perception and thus to improve irrigation water use efficiency. Special attention should be paid to part-time farmers who are limited in directly perceiving water scarcity. Finally, more use should be made of the price mechanism to strengthen perception and awareness. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Droughts and governance impacts on water scarcity: an~analysis in the Brazilian semi-arid

    Directory of Open Access Journals (Sweden)

    A. C. S. Silva

    2015-06-01

    Full Text Available Extreme events are part of climate variability. Dealing with variability is still a challenge that might be increased due to climate change. However, impacts of extreme events are not only dependent on their variability, but also on management and governance. In Brazil, its semi-arid region is vulnerable to extreme events, especially droughts, for centuries. Actually, other Brazilian regions that have been mostly concerned with floods are currently also experiencing droughts. This article evaluates how a combination between climate variability and water governance might affect water scarcity and increase the impacts of extreme events on some regions. For this evaluation, Ostrom's framework for analyzing social-ecological systems (SES was applied. Ostrom's framework is useful for understanding interactions between resource systems, governance systems and resource users. This study focuses on social-ecological systems located in a drought-prone region of Brazil. Two extreme events were selected, one in 1997–2000, when Brazil's new water policy was very young, and the other one in 2012–2015. The analysis of SES considering Ostrom's principle "Clearly defined boundaries" showed that deficiencies in water management cause the intensification of drought's impacts for the water users. The reasons are more related to water management and governance problems than to drought event magnitude or climate change. This is a problem that holdup advances in dealing with extreme events.

  18. Droughts and governance impacts on water scarcity: an~analysis in the Brazilian semi-arid

    Science.gov (United States)

    Silva, A. C. S.; Galvão, C. O.; Silva, G. N. S.

    2015-06-01

    Extreme events are part of climate variability. Dealing with variability is still a challenge that might be increased due to climate change. However, impacts of extreme events are not only dependent on their variability, but also on management and governance. In Brazil, its semi-arid region is vulnerable to extreme events, especially droughts, for centuries. Actually, other Brazilian regions that have been mostly concerned with floods are currently also experiencing droughts. This article evaluates how a combination between climate variability and water governance might affect water scarcity and increase the impacts of extreme events on some regions. For this evaluation, Ostrom's framework for analyzing social-ecological systems (SES) was applied. Ostrom's framework is useful for understanding interactions between resource systems, governance systems and resource users. This study focuses on social-ecological systems located in a drought-prone region of Brazil. Two extreme events were selected, one in 1997-2000, when Brazil's new water policy was very young, and the other one in 2012-2015. The analysis of SES considering Ostrom's principle "Clearly defined boundaries" showed that deficiencies in water management cause the intensification of drought's impacts for the water users. The reasons are more related to water management and governance problems than to drought event magnitude or climate change. This is a problem that holdup advances in dealing with extreme events.

  19. Scarcity rents and airport charges

    NARCIS (Netherlands)

    Burghouwt, G.; de Wit, W.

    2015-01-01

    This report addresses the responses related to scarcity rents and airport charges. The Commission has asked ITF/SEO to provide evidence on scarcity rents in the London airport system. Different reports submitted in response to the Commission’s consultation make different assumptions on the way

  20. Future Water Scarcity and Potential Effects on Food Production under Climate Change in the Yellow River Basin

    Science.gov (United States)

    Tang, Q.; Yin, Y. Y.; Liu, X.; Zhang, X.

    2016-12-01

    Increasing population and socio-economic development have put great pressure on water resources of the Yellow River Basin. The anticipated climate and socio-economic changes may further increase water stress. In this study, we assess water scarcity under climate change and various socio-economic pathways with an emphasis on the impact of water shortages on food production. The water demands in the 21st century are projected under the new developed Shared Socio-economic Pathways (SSPs). The renewable water supply is estimated from the climate projections under the Representative Concentration Pathways (RCP) 8.5. The agricultural water use is assumed to have the lowest priority of all water consumers when water shortage occurs. The results show that the water demands in domestic and industrial sectors would grow rapidly. As more water resources would be occupied by domestic and industrial sectors, a portion of irrigated land would have to be converted to rain-fed agriculture which would lead to more than a reduction in food production under various socio-economic pathways. This study highlights the links between water, food and ecosystems in a changing environment and suggests that trade-offs should be considered when developing regional adaptation strategies.

  1. Water Management Strategy in Assessing the Water Scarcity in Northern Western Region of Nile Delta, Egypt

    Science.gov (United States)

    Mabrouk, Badr; Arafa, Salah; Gemajl, Khaled

    2015-04-01

    Sustainable development in the Nile Delta of Egypt is retarded by serious environmental problems, where land-use and land-cover of the region are subjected to continuous changes; including shoreline changes either by erosion or accretion, subsidence of the delta, as well as by sea level rise due to climate change. The current research attempts to; (1) study the vulnerability of the northern western region of the Nile Delta coastal zone to climate change/sea level rise while setting basic challenges, review adaptation strategies based on adaptation policy framework, and highlight recommended programs for preparedness to climate change, (2) study the scarcity of water resources in the area of study with review of the socioeconomic impacts and the critical need of establishing desalination plants with new standards assessing the environmental situation and population clusters, and (3) monitor of the brine water extracted from the desalination plants and injected to subsurface strata. This monitoring process is divided into 3 main directions: 1) studying the chemical characteristics of water extracted from the water desalinations plants qualitatively and quantitatively. 2) mapping the subsurface of which that brine water will be injected to it and the flow directions and effects using resistivity data, and 3) using GIS and suitable numerical models in order to study the effect, volume, flow of the brine water and its long term environmental impacts on the area. The results indicate that the area is particularly vulnerable to the impact of SLR, salt water intrusion, the deterioration of coastal tourism and the impact of extreme dust storms. This in turn will directly affect the agricultural productivity and human settlements in coastal zones. The paper presents different scenarios for water management and recommends the most suitable scenarios in order to establish a core for water management strategy in the region according to existing socio-economic and environmental

  2. Vision on Scarcity of Transportation. Policy with regard to scarcity of transportation capacity in the electricity grid

    International Nuclear Information System (INIS)

    Bruin, K.; Fransen, M.; Kranenburg, J.

    2009-01-01

    The Dutch Competitive Authority NMa established increasing problems that are related to the (possible future) scarcity in transportation capacity in the electricity grid. This vision document aims to inform market parties about the general vision of NMa in relation to the scarcity issue. This document first addresses the problems related to scarcity in transport capacity in the electricity grid. Next policy developments in this area are discussed and NMa's vision is elaborated and explained [nl

  3. Multi-model and multi-scenario assessments of Asian water futures: The Water Futures and Solutions (WFaS) initiative

    Science.gov (United States)

    Satoh, Yusuke; Kahil, Taher; Byers, Edward; Burek, Peter; Fischer, Günther; Tramberend, Sylvia; Greve, Peter; Flörke, Martina; Eisner, Stephanie; Hanasaki, Naota; Magnuszewski, Piotr; Nava, Luzma Fabiola; Cosgrove, William; Langan, Simon; Wada, Yoshihide

    2017-07-01

    This paper presents one of the first quantitative scenario assessments for future water supply and demand in Asia to 2050. The assessment, developed by the Water Futures and Solutions (WFaS) initiative, uses the latest set of global climate change and socioeconomic scenarios and state-of-the-art global hydrological models. In Asia, water demand for irrigation, industry, and households is projected to increase substantially in the coming decades (30-40% by 2050 compared to 2010). These changes are expected to exacerbate water stress, especially in the current hotspots such as north India and Pakistan, and north China. By 2050, 20% of the land area in the Asia-Pacific region, with a population of 1.6-2 billion, is projected to experience severe water stress. We find that socioeconomic changes are the main drivers of worsening water scarcity in Asia, with climate change impacts further increasing the challenge into the 21st century. Moreover, a detailed basin-level analysis of the hydro-economic conditions of 40 Asian basins shows that although the coping capacity of all basins is expected to improve due to gross domestic product (GDP) growth, some basins continuously face severe water challenges. These basins will potentially be home to up to 1.6 billion people by mid-21st century.

  4. Are water markets globally applicable?

    Science.gov (United States)

    Endo, Takahiro; Kakinuma, Kaoru; Yoshikawa, Sayaka; Kanae, Shinjiro

    2018-03-01

    Water scarcity is a global concern that necessitates a global perspective, but it is also the product of multiple regional issues that require regional solutions. Water markets constitute a regionally applicable non-structural measure to counter water scarcity that has received the attention of academics and policy-makers, but there is no global view on their applicability. We present the global distribution of potential nations and states where water markets could be instituted in a legal sense, by investigating 296 water laws internationally, with special reference to a minimum set of key rules: legalization of water reallocation, the separation of water rights and landownership, and the modification of the cancellation rule for non-use. We also suggest two additional globally distributed prerequisites and policy implications: the predictability of the available water before irrigation periods and public control of groundwater pumping throughout its jurisdiction.

  5. A multi-attribute preference model for optimal irrigated crop planning under water scarcity conditions

    Energy Technology Data Exchange (ETDEWEB)

    Montazar, A.; Snyder, R. L.

    2012-11-01

    Water resources sustainability has a key role in the existence and durability of irrigated farming systems and strongly depends on the crop planning. The decision process is complex due to a number of constraints and the desire to secure crop diversification and the involvement of affected various parameters. The objective of the present study was to develop a comprehensive multi-criteria model for selecting adequate cropping pattern in an irrigation district under water scarcity condition. Eleven and nine attribute decisions were considered in ranking the type of crop and determination of the percentage of crop cultivation area as an optimal irrigated crop planning system, respectively. The results indicate that the proposed multi-attribute preference approach can synthesize various sets of criteria in the preference elicitation of the crop type and cultivated area. The predictive validity analysis shows that the preferences acquired by the proposed model are evidently in reasonable accordance with those of the conjunctive water use model. Consequently, the model may be used to aggregate preferences in order to obtain a group decision, improve understanding of the choice problem, accommodate multiple objectives and increase transparency and credibility in decision making by actively involving relevant criteria in the crop planning. (Author) 27 refs.

  6. Potential of Nanotechnology based water treatment solutions for the improvement of drinking water supplies in developing countries

    Science.gov (United States)

    Dutta, Joydeep; Bhattacharya, Prosun; Bundschuh, Jochen

    2016-04-01

    Over the last decades explosive population growth in the world has led to water scarcity across the globe putting additional pressure already scarce ground water resources and is pushing scientists and researchers to come up with new alternatives to monitor and treat water for use by mankind and for food security. Nearly 4 billion people around the world are known to lack access to clean water supply. Systematic water quality data is important for the assessment of health risks as well as for developing appropriate and affordable technologies for waste and drinking water treatments, and long-term decision making policy against water quality management. Traditional water treatment technologies are generally chemical-intensive processes requiring extremely large infrastructural support thus limiting their effective applications in developing nations which creates an artificial barrier to the application of technological solutions for the provision of clean water. Nanotechnology-based systems are in retrospect, smaller, energy and resource efficient. Economic impact assessment of the implementation of nanotechnology in water treatment and studies on cost-effectiveness and environmental and social impacts is of key importance prior to its wide spread acceptance. Government agencies and inter-governmental bodies driving research and development activities need to measure the effective potential of nanotechnology as a solution to global water challenges in order to effectively engage in fiscal, economic and social issues at national and international levels for different types of source waters with new national and international initiatives on nanotechnology and water need to be launched. Environmental pollution and industrialization in global scale is further leading to pollution of available water sources and thus hygienically friendly purification technologies are the need of the hour. Thus cost-effective treatment of pollutants for the transformation of hazardous

  7. Chilean central valley beekeeping as socially inclusive conservation practice in a social water scarcity context

    Directory of Open Access Journals (Sweden)

    Felipe Eduardo Trujillo Bilbao

    2017-07-01

    Full Text Available Through an ethnographic approach that complements conversations, tours and surveys of productive characterization is that the present study aims to approach the domestic beekeeping in the valley of Colliguay, Quilpué, fifth region of Chile. This is an activity that emerges as a result of deep transformations detonated by the neoliberalization of nature in general and water in particular. That is why it seeks to contextualize the situation of water scarcity that displaced livestock and put in place the bees. All of this through a political ecology lens. It is discussed how to achieve an anthropological reading of the ecological scenarios that denaturalize metabolic fractures in an area with a threatened presence of native forest. It is discovered that the outsider is the material and symbolic responsible of an increase in water stress and a key element in the social relations of confrontation of the valley. It is then related how bees have diverted the attention of their human counterparts to the affection and care of the forest that allows them to live, thus reinforcing the idea of a socially inclusive conservation.

  8. Preconditions for market solution to urban water scarcity: Empirical results from Hyderabad City, India

    Science.gov (United States)

    Saleth, R. Maria; Dinar, Ariel

    2001-01-01

    Utilizing both primary and secondary information pertaining to the water sector of Hyderabad City, India, this paper (1) evaluates the economics of various technically feasible supply augmentations options; (2) estimates the group-specific water demand and consumption response functions under alternative pricing behaviors; (3) calculates the net willingness to pay (NWTP, considered to be the value of raw water at source) of different user groups as derived from their respective price elasticities; (4) shows how inadequate the NWTP is to justify most supply augmentation options including intersectoral water transfers under the existing water rate structure; (5) argues that the economic and institutional conditions internal to urban water sector cannot justify an externally imposed water transfers, whether market-based or otherwise, as long as the water rate structure is inefficient and regressive; and (6) concludes by underlining the central role that the pricing option, both the level and structure, plays not only in activating a number of nonprice options but also in generating incentives for the emergence of new and the consolidation of existing institutional conditions needed to support economically rooted water transfers and conservation initiatives.

  9. How downstream sub-basins depend on upstream inflows to avoid scarcity: typology and global analysis of transboundary rivers

    Science.gov (United States)

    Munia, Hafsa Ahmed; Guillaume, Joseph H. A.; Mirumachi, Naho; Wada, Yoshihide; Kummu, Matti

    2018-05-01

    Countries sharing river basins are often dependent upon water originating outside their boundaries; meaning that without that upstream water, water scarcity may occur with flow-on implications for water use and management. We develop a formalisation of this concept drawing on ideas about the transition between regimes from resilience literature, using water stress and water shortage as indicators of water scarcity. In our analytical framework, dependency occurs if water from upstream is needed to avoid scarcity. This can be diagnosed by comparing different types of water availability on which a sub-basin relies, in particular local runoff and upstream inflows. At the same time, possible upstream water withdrawals reduce available water downstream, influencing the latter water availability. By developing a framework of scarcity and dependency, we contribute to the understanding of transitions between system regimes. We apply our analytical framework to global transboundary river basins at the scale of sub-basin areas (SBAs). Our results show that 1175 million people live under water stress (42 % of the total transboundary population). Surprisingly, the majority (1150 million) of these currently suffer from stress only due to their own excessive water use and possible water from upstream does not have impact on the stress status - i.e. they are not yet dependent on upstream water to avoid stress - but could still impact on the intensity of the stress. At the same time, 386 million people (14 %) live in SBAs that can avoid stress owing to available water from upstream and have thus upstream dependency. In the case of water shortage, 306 million people (11 %) live in SBAs dependent on upstream water to avoid possible shortage. The identification of transitions between system regimes sheds light on how SBAs may be affected in the future, potentially contributing to further refined analysis of inter- and intrabasin hydro-political power relations and strategic planning

  10. Modeling water scarcity and droughts for policy adaptation to climate change in arid and semiarid regions

    Science.gov (United States)

    Kahil, Mohamed Taher; Dinar, Ariel; Albiac, Jose

    2015-03-01

    Growing water extractions combined with emerging demands for environment protection increase competition for scarce water resources worldwide, especially in arid and semiarid regions. In those regions, climate change is projected to exacerbate water scarcity and increase the recurrence and intensity of droughts. These circumstances call for methodologies that can support the design of sustainable water management. This paper presents a hydro-economic model that links a reduced form hydrological component, with economic and environmental components. The model is applied to an arid and semiarid basin in Southeastern Spain to analyze the effects of droughts and to assess alternative adaptation policies. Results indicate that drought events have large impacts on social welfare, with the main adjustments sustained by irrigation and the environment. The water market policy seems to be a suitable option to overcome the negative economic effects of droughts, although the environmental effects may weaken its advantages for society. The environmental water market policy, where water is acquired for the environment, is an appealing policy to reap the private benefits of markets while protecting ecosystems. The current water management approach in Spain, based on stakeholders' cooperation, achieves almost the same economic outcomes and better environmental outcomes compared to a pure water market. These findings call for a reconsideration of the current management in arid and semiarid basins around the world. The paper illustrates the potential of hydro-economic modeling for integrating the multiple dimensions of water resources, becoming a valuable tool in the advancement of sustainable water management policies.

  11. A reconsideration of effect of energy scarcity on economic growth

    International Nuclear Information System (INIS)

    Uri, N.D.

    1995-01-01

    This analysis is concerned with the effect of energy scarcity on economic growth in the U.S. After defining the notion of scarcity and introducing measures of scarcity (unit costs and relative energy price), changes in the trend in resource scarcity for NG, bituminous coal, anthracite coal, and crude oil over the most recent three decades are investigated. Each of the energy resources became a significantly scarcer resource during the decade of the 1970s in the Malthusian Stock Scarcity and Malthusian Flow Scarcity sense. Unit costs exhibit a similar change for NG and crude oil but not for bituminous and anthracite coals. The situation reversed itself during the 1980s. NG, bituminous and anthracite coals, and crude oil all became significantly less scarce resources during the decade of the 1980s than they had been during the 1970s, i.e. the increase in scarcity as measured by relative energy prices observed during the decade of the 1970s was not reversed completely during the 1980s for NG and crude oil demonstrate similar patterns. Given that change has taken place, it has implications for future economic growth to the extent resource scarcity and economic growth are interrelated. To see whether this is a relevant concern, subsequent to the examination of changing resource scarcity trends, an objective effort is made to identify a long run equilibrium relationship between energy scarcity and economic growth. Relying on cointegration techniques, only for crude oil is there a suggestion that resource scarcity has affected economic growth in the U.S. over the period 1889-1992. (author)

  12. The Role of Political Action and Media in Increasing Public Awareness of Water Scarcity: Combined Effects on Water Use Behavior

    Science.gov (United States)

    Quesnel, K.; Roby, N.; Gonzales, P.; Ajami, N.

    2016-12-01

    In the midst of California's current drought, authorities have enacted widespread initiatives aimed at coping with water scarcity, for example the first mandatory statewide urban water use reductions in 2015. But to what extent have these measures resulted in decreased water consumption? To answer this question, our research examines the impact of political actions on water use by using media as a proxy. News media outlets have heavily covered the progression of the California drought, and this outreach has played an important role in disseminating information and raising public awareness. To our knowledge, the relationship between political action/media coverage and water use has yet to be examined. In this study, we extract the number of articles related to the term "California Drought" from six widely-read national and statewide newspapers from 2005 to 2015. We study the relationship between media and monthly urban water use at the utility level using multivariate panel regression and principal components analysis to examine how media interacts with other modes of influence such as climate, price, and the state of the economy and how populations of different socio-demographics are affected by media outreach. We also use daily household-level water use readings from recently installed Automated Meter Infrastructure (AMI) in one utility to examine the relationship on a finer spatiotemporal scale. Using a policy timeline, Google search rates, and newspaper article trends confirms the relationship between political actions, public awareness, and media outreach. Preliminary modeling indicates that media plays a significant role in altering water use patterns for residential customers and in utilities with specific local characteristics.

  13. On the Problem of Scarcity

    Directory of Open Access Journals (Sweden)

    Pál GERVAI

    2009-02-01

    Full Text Available A radical change had occurred in the definitionof the economics in Central and Eastern Europeat end of the 80’s. Since then, the theoreticaleconomists focused their attention on the conceptof scarcity. This shift was strongly connected tothe theoretical turn that pointed from the politicaleconomics towards the economics in the Westernsense. In the paper, firstly, we argue that eventhe definition of the economics in the Westernsense was not always attached to the concept ofscarcity, and the scarcity was part of the economicthinking only in the 20thcentury. Secondly, weemphasize that the adaptation of the economicsin the Western sense cannot be successful inCentral and Eastern Europe based merely on theconcept of scarcity. The scarcity, and particularlyits Central and Eastern European interpretationwill not promote the adaptation of the Westernmanagerial culture, on the contrary, it preservesthe bad technical-managerial traditions whoseliquidation was the real sense of the transition.Finally, we make a suggestion for a new approachof the definition of the economics due to the abovementioned. The examination of the philosophicalbasis of the economic thinking is an indispensablepart of this approach. Our standpoint is that theeconomics - as every science - has its ownphilosophical basis, and dealing with this basis isthe integral part of the theoretical economics. Theeconomics of Central and Eastern Europe has acertain tradition that banks on it and this can be thecomparative advantage of the economic researchundertaken in this paper. The rebirth of the politicaleconomy in this sense is a perceptible tendencyin the region.

  14. Development of integrated scenarios to assess future conditions of aquatic ecosystems under water scarcity in the Mediterranean - perspectives from the GLOBAQUA project

    Science.gov (United States)

    Huber-Garcia, Verena; Akinsete, Ebun; Gampe, David; Ker Rault, Philippe; Kok, Kasper; Koundouri, Phoebe; Luttik, Joke; Nikulin, Grigory; Pistocchi, Alberto; Souliotis, Ioannis; Ludwig, Ralf

    2017-04-01

    Water and water-related services are major components of the human wellbeing, and as such are major factors of socio-economic development; yet freshwater systems are under threat by a variety of stressors (organic and inorganic pollution, geomorphological alterations, land cover change, water abstraction, invasive species and pathogens). Water scarcity is most commonly associated with inappropriate water management and resulting river flow reductions. It has become one of the most important drivers of change in freshwater ecosystems. Conjoint occurrence of a myriad of stressors (chemical, geomorphological, biological) under water scarcity will produce novel and unfamiliar synergies and most likely very pronounced effects. Stressors are hierarchically arranged in terms of intensity, frequency and scale, and their effects can be predicted to be from transient to irreversible. Most ecosystems are simulta¬neously exposed to multiple-stress situations. Within the scope of the GLOBAQUA project the effects of multiple stressors on aquatic ecosystems in selected river basins across Europe with a focus on areas suffering from water scarcity are analyzed. In addition, management strategies are improved and adapted with the aim of inhibiting adverse effects on aquatic ecosystems and ensuring the supply with water for all purposes in the study areas also in the future. Policy relevant implications will be given to ensure a best possible status of these aquatic ecosystems also under future conditions. In this context, land use and land cover as well as the meteorological conditions can be seen as two main stressors for the quality and quantity of surface and subsurface water. These factors considerably affect the use and availability of water, especially in regions which already experience water scarcity. If the problem is not addressed correctly, negative effects on biodiversity, water supply as well as important economic consequences may arise. In Europe, many fresh water

  15. Water Footprint and Virtual Water Trade of Brazil

    Directory of Open Access Journals (Sweden)

    Vicente de Paulo R. da Silva

    2016-11-01

    Full Text Available Freshwater scarcity has increased at an alarming rate worldwide; improved water management plays a vital role in increasing food production and security. This study aims to determine the water footprint of Brazil’s national food consumption, the virtual water flows associated with international trade in the main agricultural commodities, as well as water scarcity, water self-sufficiency and water dependency per Brazilian region. While previous country studies on water footprints and virtual water trade focused on virtual water importers or water-scarce countries, this is the first study to concentrate on a water-abundant virtual water-exporting country. Besides, it is the first study establishing international virtual water trade balances per state, which is relevant given the fact that water scarcity varies across states within the country, so the origin of virtual water exports matters. The results show that the average water footprint of Brazilian food consumption is 1619 m3/person/year. Beef contributes most (21% to this total. We find a net virtual water export of 54.8 billion m3/year, mainly to Europe, which imports 41% of the gross amount of the virtual water exported from Brazil. The northeast, the region with the highest water scarcity, has a net import of virtual water. The southeast, next in terms of water scarcity, shows large virtual water exports, mainly related to the export of sugar. The north, which has the most water, does not show a high virtual water export rate.

  16. WaterNet: The NASA Water Cycle Solutions Network

    Science.gov (United States)

    Houser, P. R.; Belvedere, D. R.; Pozzi, W. H.; Imam, B.; Schiffer, R.; Lawford, R.; Schlosser, C. A.; Gupta, H.; Welty, C.; Vorosmarty, C.; Matthews, D.

    2007-12-01

    Water is essential to life and directly impacts and constrains society's welfare, progress, and sustainable growth, and is continuously being transformed by climate change, erosion, pollution, and engineering practices. The water cycle is a critical resource for industry, agriculture, natural ecosystems, fisheries, aquaculture, hydroelectric power, recreation, and water supply, and is central to drought, flood, transportation-aviation, and disease hazards. It is therefore a national priority to use advancements in scientific observations and knowledge to develop solutions to the water challenges faced by society. NASA's unique role is to use its view from space to improve water and energy cycle monitoring and prediction. NASA has collected substantial water cycle information and knowledge that must be transitioned to develop solutions for all twelve National Priority Application (NPA) areas. NASA cannot achieve this goal alone -it must establish collaborations and interoperability with existing networks and nodes of research organizations, operational agencies, science communities, and private industry. Therefore, WaterNet: The NASA Water Cycle Solutions Network goal is to improve and optimize the sustained ability of water cycle researchers, stakeholders, organizations and networks to interact, identify, harness, and extend NASA research results to augment decision support tools and meet national needs. WaterNet is a catalyst for discovery and sharing of creative solutions to water problems. It serves as a creative, discovery process that is the entry-path for a research-to-solutions systems engineering NASA framework, with the end result to ultimately improve decision support.

  17. Book Scarcity, Law Libraries and the Legal Profession in Nigeria.

    Science.gov (United States)

    Jegede, Oluremi

    1992-01-01

    Discussion of the effect of book scarcity on law libraries and the legal profession in Nigeria addresses the country's law library collections, reasons for book scarcity, local publication of legal literature, reasons why Nigerians publish abroad, and measures already taken and suggested measures to combat book scarcity. (14 references) (MES)

  18. Recycling wastewater offers solution to scarcity | IDRC ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2010-12-08

    Dec 8, 2010 ... ... greywater reuse into long-term plans to combat the region's deepening water crisis. ... Network on Water Resources Development and Management. ... Social, Economic and Policy Issues: IDRC book edited by Stephen ...

  19. Water and Benefit Sharing in Transboundary River Basins

    Science.gov (United States)

    Arjoon, D.; Tilmant, A.; Herrmann, M.

    2015-12-01

    Growing water scarcity underlies the importance of cooperation for the effective management of river basins, particularly in the context of international rivers in which unidirectional externalities can lead to asymmetric relationships between riparian countries. Studies have shown that significant economic benefits can be expected through basin-wide cooperation, however, the equitable partitioning of these benefits over the basin is less well studied and tends to overlook the importance of stakeholder input in the definition of equitability. In this study, an institutional arrangement to maximize welfare and then share the scarcity cost in a river basin is proposed. A river basin authority plays the role of a bulk water market operator, efficiently allocating bulk water to the users and collecting bulk water charges which are then equitably redistributed among water users. This highly regulated market restrains the behaviour of water users to control externalities and to ensure basin-wide coordination, enhanced efficiency, and the equitable redistribution of the scarcity cost. The institutional arrangement is implemented using the Eastern Nile River basin as a case study. The importance of this arrangement is that it can be adopted for application in negotiations to cooperate in trans-boundary river basins. The benefit sharing solution proposed is more likely to be perceived as equitable because water users help define the sharing rule. As a result, the definition of the sharing rule is not in question, as it would be if existing rules, such as bankruptcy rules or cooperative game theory solutions, are applied, with their inherent definitions of fairness. Results of the case study show that the sharing rule is predictable. Water users can expect to receive between 93.5% and 95% of their uncontested benefits (benefits that they expect to receive if water was not rationed), depending on the hydrologic scenario.

  20. Contribution of virtual water to improving water security in Tunisia: a case study of wheat and olive growing farms in Zaghouan region

    OpenAIRE

    Souissi, Asma; Benalaya, Abdallah; Abdelkefi, Belhassen; Stambouli, Talel Ben Bechir; Ghezal, Lamia; Belaid, Rabeh; Naceur, Youssef; Oueslati, Marwa; Fekih, Saida; Benabdallah, Saker; Frija, Aymen

    2013-01-01

    Virtual water represents all freshwater used in the process of producing a commodity. In the case of agricultural products, many studies have focused on quantifying virtual water flows through international trade products. The concept of virtual water commercialization should be carefully studied as a potential solution for water scarcity, especially in countries facing risks of water shortage in a few years such as in Tunisia. The main idea of this paper is to optimize water u...

  1. Energy-Water System Solutions | Energy Analysis | NREL

    Science.gov (United States)

    System Solutions Energy-Water System Solutions NREL has been a pioneer in the development of energy -water system solutions that explicitly address and optimize energy-water tradeoffs. NREL has evaluated energy-water system solutions for Department of Defense bases, islands, communities recovering from

  2. Modeling Global Water Use for the 21st Century: Water Futures and Solutions (WFaS) Initiative and Its Approaches

    Science.gov (United States)

    Wada, Y.; Florke, M.; Hanasaki, N.; Eisner, S.; Fischer, G.; Tramberend, S.; Satoh, Y.; van Vliet, M. T. H.; Yillia, P.; Ringler, C.; hide

    2016-01-01

    To sustain growing food demand and increasing standard of living, global water use increased by nearly 6 times during the last 100 years, and continues to grow. As water demands get closer and closer to the water availability in many regions, each drop of water becomes increasingly valuable and water must be managed more efficiently and intensively. However, soaring water use worsens water scarcity conditions already prevalent in semi-arid and arid regions, increasing uncertainty for sustainable food production and economic development. Planning for future development and investments requires that we prepare water projections for the future. However, estimations are complicated because the future of the world's waters will be influenced by a combination of environmental, social, economic, and political factors, and there is only limited knowledge and data available about freshwater resources and how they are being used. The Water Futures and Solutions (WFaS) initiative coordinates its work with other ongoing scenario efforts for the sake of establishing a consistent set of new global water scenarios based on the shared socio-economic pathways (SSPs) and the representative concentration pathways (RCPs). The WFaS "fast track" assessment uses three global water models, namely H08, PCR-GLOBWB, and WaterGAP. This study assesses the state of the art for estimating and projecting water use regionally and globally in a consistent manner. It provides an overview of different approaches, the uncertainty, strengths and weaknesses of the various estimation methods, types of management and policy decisions for which the current estimation methods are useful. We also discuss additional information most needed to be able to improve water use estimates and be able to assess a greater range of management options across the water-energy-climate nexus.

  3. A water productive and economically profitable paddy rice production method to adapt water scarcity in the Vu Gia-Thu Bon river basin, Vietnam

    Directory of Open Access Journals (Sweden)

    Bhone Nay-Htoon

    2013-05-01

    Full Text Available In Vu Gia-Thu Bon river basin, Vietnam, drought during the dry season affected negatively on rice production. High and uneven rainfall distribution cause flooding in the basin during wet season and cause severe agricultural drought during dry season.This study aimed to point out a higher water productive and economically efficient rice production method to adapt water scarcity in the region. Based on available secondary data, water productivity is calculated for different water saving rice production methods, according to Pereira, et al, (2012’s irrigation water productivity and total productivity equations. The profit of technological change is calculated by partial budget analysis of rice production in that area and a sensitivity analysis supports to point out which input factor is sensitive to farmer’s benefit. Farmer’s psychological and social beliefs are used to create fuzzy logic based decision making model. Although water productivities (ranging 0.441 kg/m3/ha to 0.504 kg/m3/ha are ranked as the second after System of Rice Intensification, we demonstrated that Alternate Wetting and Drying method is a recommendable method to the farmer after considering economic profitability and technical simplicity. The System of Rice Intensification method also could be a suitable method to adopt because this method is the highest water productive method (Water Productivities are ranging from 0.77 kg/m3/ha to 1.02 kg/m3/ha coupled with highest yield of rice, subject to certain ecosystem services and payment policies should be developed to subsidize the reduced benefit resulting from this method.

  4. Comparison among different downscaling approaches in building water scarcity scenarios in an Alpine basin.

    Science.gov (United States)

    Guyennon, Nicolas; Romano, Emanuele; Mariani, Davide; Bruna Petrangeli, Anna; Portoghese, Ivan

    2014-05-01

    Various downscaling techniques have been developed to bridge the scale gap between global climate models (GCMs) and finer scales required to assess hydrological impacts of climate change. Although statistical downscaling (SD) has been traditionally seen as an alternative to dynamical downscaling (DD), recent works on statistical downscaling have aimed to combine the benefits of these two approaches. The overall objective of this study is to assess whether a DD processing performed before the SD is able to provide more reliable climate forcing for crop water demand models. The case study presented here focuses on the Maggiore Lake (Alpine region), with a watershed of approximately 4750 km2 and whose waters are mainly used for irrigation purposes in the Lombardia and Piemonte regions. The fifth-generation ECHAM model from the Max-Planck-Institute for Meteorology was adopted as GCM. The DD was carried out with the Protheus system (ENEA), while the SD was performed through a monthly quantile-quantile correction of the precipitation data collected in the period 1950-2012 by the 19 rainfall gauges located in the watershed area (some of them operating not continuously during the study period). The relationship between the precipitation regime and the inflow to the reservoir is obtained through a simple multilinear regression model, validated using both precipitation data and inflow measurements to the lake in the period 1996-2012 then, the same relation has been applied to the control (20c) and scenario (a1b) simulations downscaled by means of the different downscaling approaches (DD, SD and combined DD-SD). The resulting forcing has been used as input to a daily water balance model taking into account the inflow to the lake, the demand for irrigation and the reservoir management policies. The impact of the different downscaling approaches on the water budget scenarios has been evaluated in terms of occurrence, duration and intensity of water scarcity periods.

  5. Water scarcity and institutional change: lessons in adaptive governance from the drought experience of Perth, Western Australia.

    Science.gov (United States)

    Bettini, Y; Brown, R; de Haan, F J

    2013-01-01

    Urban water systems will be increasingly challenged under future climates and global pressures. Meeting challenges by reconfiguring water systems to integrate supplies and deliver multifunctional uses is technically well described. Adjusting the institutions that frame the management of these systems is not well operationalized in practice or conceptualized in theory. This study seeks to address this gap through an institutional analysis of Perth, Australia, a city where drought crisis has put under pressure both management practices and the institutional setting that underlies them. The study found that while trusted practices moderated water scarcity, the stability of the institutional setting may not facilitate a shift toward adaptable institutional configurations suited to future conditions. The results identified three key ingredients for a flexible institutional setting: (i) feedbacks in the system through better information management, (ii) reflexive dialogue and strategic use of projects to generate greater learning opportunities, and (iii) policy level support for sector-wide collaboration through progressive agendas, incentives for innovation and capacity building in stakeholder and community engagement. Further, the results suggest that a deeper understanding of institutional dynamics is needed to enable adaptive governance. The paper provides an analytical framework for diagnosing how greater adaptive capacity might be mobilized through influencing these dynamics.

  6. Water Footprint and Virtual Water Trade of Brazil

    OpenAIRE

    da Silva, Vicente de Paulo R.; de Oliveira, Sonaly D.; Hoekstra, Arjen Ysbert; Neto, Jose Dantas; Campos, João Hugo B.C.; Braga, Celia C.; Araújo, Lincoln Eloi; Oliveira Aleixo, Danilo; de Brito, Jose Ivaldo B.; de Souza, Marcio Dionisio; de Holanda, Romildo M.

    2016-01-01

    Freshwater scarcity has increased at an alarming rate worldwide; improved water management plays a vital role in increasing food production and security. This study aims to determine the water footprint of Brazil’s national food consumption, the virtual water flows associated with international trade in the main agricultural commodities, as well as water scarcity, water self-sufficiency and water dependency per Brazilian region. While previous country studies on water footprints and virtual w...

  7. Virtual scarce water in China.

    Science.gov (United States)

    Feng, Kuishuang; Hubacek, Klaus; Pfister, Stephan; Yu, Yang; Sun, Laixiang

    2014-07-15

    Water footprints and virtual water flows have been promoted as important indicators to characterize human-induced water consumption. However, environmental impacts associated with water consumption are largely neglected in these analyses. Incorporating water scarcity into water consumption allows better understanding of what is causing water scarcity and which regions are suffering from it. In this study, we incorporate water scarcity and ecosystem impacts into multiregional input-output analysis to assess virtual water flows and associated impacts among 30 provinces in China. China, in particular its water-scarce regions, are facing a serious water crisis driven by rapid economic growth. Our findings show that inter-regional flows of virtual water reveal additional insights when water scarcity is taken into account. Consumption in highly developed coastal provinces is largely relying on water resources in the water-scarce northern provinces, such as Xinjiang, Hebei, and Inner Mongolia, thus significantly contributing to the water scarcity in these regions. In addition, many highly developed but water scarce regions, such as Shanghai, Beijing, and Tianjin, are already large importers of net virtual water at the expense of water resource depletion in other water scarce provinces. Thus, increasingly importing water-intensive goods from other water-scarce regions may just shift the pressure to other regions, but the overall water problems may still remain. Using the water footprint as a policy tool to alleviate water shortage may only work when water scarcity is taken into account and virtual water flows from water-poor regions are identified.

  8. Bridging the Gap: Ideas for water sustainability in the western United States

    Science.gov (United States)

    Tidwell, V. C.; Passell, H. D.; Roach, J. D.

    2012-12-01

    Incremental improvements in water sustainability in the western U.S. may not be able to close the growing gap between increasing freshwater demand, climate driven variability in freshwater supply, and growing environmental consciousness. Incremental improvements include municipal conservation, improvements to irrigation technologies, desalination, water leasing, and others. These measures, as manifest today in the western U.S., are successful in themselves but limited in their ability to solve long term water scarcity issues. Examples are plainly evident and range from the steady and long term decline of important aquifers and their projected inability to provide water for future agricultural irrigation, projected declines in states' abilities to meet legal water delivery obligations between states, projected shortages of water for energy production, and others. In many cases, measures that can close the water scarcity gap have been identified, but often these solutions simply shift the gap from water to some other sector, e.g., economics. Saline, brackish or produced water purification, for example, could help solve western water shortages in some areas, but will be extremely expensive, and so shift the gap from water to economics. Transfers of water out of agriculture could help close the water scarcity gap in other areas; however, loss of agriculture will shift the gap to regional food security. All these gaps, whether in water, economics, food security, or other sectors, will have a negative impact on the western states. Narrowing these future gaps requires both technical and policy solutions as well as tools to understand the tradeoffs. Here we discuss several examples from across the western U.S. that span differing scales and decision spaces. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear

  9. Scarcity in a Sea of Plenty? Global Resource Scarcities and Policies in the European Union and the Netherlands

    International Nuclear Information System (INIS)

    Prins, A.G.; Slingerland, S.; Manders, A.J.G.; Lucas, P.L.; Hilderink, H.B.M.; Kok, M.T.J.

    2011-03-01

    Current high prices of food, oil and many other resources are indications of increasing scarcity. This scarcity, however, has little to do with stock depletion. Badly functioning markets and wrong policy reactions play a particularly important role. For most resources, global stocks will be sufficient to meet increasing demand, over the coming decades. However, these stocks are not equally distributed over the world; they tend to be located in a limited number of countries. This causes an increasing European dependency on imports, which, in turn, feeds the fear of a decrease in security of supply.

  10. Climate variability and demand growth as drivers of water scarcity in the Turkwel river basin: a bottom-up risk assessment of a data-sparse basin in Kenya

    Science.gov (United States)

    Hirpa, F. A.; Dyer, E.; Hope, R.; Dadson, S. J.

    2017-12-01

    Sustainable water management and allocation are essential for maintaining human well-being, sustaining healthy ecosystems, and supporting steady economic growth. The Turkwel river basin, located in north-western Kenya, experiences a high level of water scarcity due to its arid climate, high rainfall variability, and rapidly growing water demand. However, due to sparse hydro-climatic data and limited literature, the water resources system of the basin has been poorly understood. Here we apply a bottom-up climate risk assessment method to estimate the resilience of the basin's water resources system to growing demand and climate stressors. First, using a water resource system model and historical climate data, we construct a climate risk map that depicts the way in which the system responds to climate change and variability. Then we develop a set of water demand scenarios to identify the conditions that potentially lead to the risk of unmet water demand and groundwater depletion. Finally, we investigate the impact of climate change and variability by stress testing these development scenarios against historically strong El Niño/Southern Oscillation (ENSO) years and future climate projections from multiple Global Circulation Models (GCMs). The results reveal that climate variability and increased water demand are the main drivers of water scarcity in the basin. Our findings show that increases in water demand due to expanded irrigation and population growth exert the strongest influence on the ability of the system to meet water resource supply requirements, and in all cases considered increase the impacts of droughts caused by future climate variability. Our analysis illustrates the importance of combining analysis of future climate risks with other development decisions that affect water resources planning. Policy and investment decisions which maximise water use efficiency in the present day are likely to impart resilience to climate change and variability under a

  11. Designing monitoring for conservation impact assessment in water funds in Latin America: an approach to address water-data scarcity (Invited)

    Science.gov (United States)

    Nelson, J. L.; Chaplin-Kramer, R.; Ziv, G.; Wolny, S.; Vogl, A. L.; Tallis, H.; Bremer, L.

    2013-12-01

    The risk of water scarcity is a rising threat in a rapidly changing world. Communities and investors are using the new institution of water funds to enact conservation practices in watersheds to bolster a clean, predictable water supply for multiple stakeholders. Water funds finance conservation activities to support water-related ecosystem services, and here we relate our work to develop innovative approaches to experimental design of monitoring programs to track the effectiveness of water funds throughout Latin America. We highlight two examples: the Fund for the Protection of Water (FONAG), in Quito, Ecuador, and Water for Life, Agua por la Vida, in Cali, Colombia. Our approach is meant to test whether a) water funds' restoration and protection actions result in changes in water quality and/or quantity at the site scale and the subwatershed scale, and b) the suite of investments for the whole water fund reach established goals for improving water quality and/or quantity at the basin scale or point of use. Our goal is to create monitoring standards for ecosystem-service assessment and clearly demonstrate translating those standards to field implementation in a statistically robust and cost-effective way. In the gap between data-intensive methods requiring historic, long-term water sampling and more subjective, ad hoc assessments, we have created a quantitative, land-cover-based approach to pairing conservation activity with appropriate controls in order to determine the impact of water-fund actions. To do so, we use a statistical approach in combination with open-source tools developed by the Natural Capital Project to optimize water funds' investments in nature and assess ecosystem-service provision (Resource Investment Optimization System, RIOS, and InVEST). We report on the process of identifying micro-, subwatershed or watershed matches to serve as controls for conservation 'impact' sites, based on globally-available land cover, precipitation, and soil data

  12. Biofuel Crops Expansion: Evaluating the Impact on the Agricultural Water Scarcity Costs and Hydropower Production with Hydro Economic Modeling

    Science.gov (United States)

    Marques, G.

    2015-12-01

    Biofuels such as ethanol from sugar cane remain an important element to help mitigate the impacts of fossil fuels on the atmosphere. However, meeting fuel demands with biofuels requires technological advancement for water productivity and scale of production. This may translate into increased water demands for biofuel crops and potential for conflicts with incumbent crops and other water uses including domestic, hydropower generation and environmental. It is therefore important to evaluate the effects of increased biofuel production on the verge of water scarcity costs and hydropower production. The present research applies a hydro-economic optimization model to compare different scenarios of irrigated biofuel and hydropower production, and estimates the potential tradeoffs. A case study from the Araguari watershed in Brazil is provided. These results should be useful to (i) identify improved water allocation among competing economic demands, (ii) support water management and operations decisions in watersheds where biofuels are expected to increase, and (iii) identify the impact of bio fuel production in the water availability and economic value. Under optimized conditions, adoption of sugar cane for biofuel production heavily relies on the opportunity costs of other crops and hydropower generation. Areas with a lower value crop groups seem more suitable to adopt sugar cane for biofuel when the price of ethanol is sufficiently high and the opportunity costs of hydropower productions are not conflicting. The approach also highlights the potential for insights in water management from studying regional versus larger scales bundled systems involving water use, food production and power generation.

  13. Advancing Water Footprint Assessment Research: Challenges in Monitoring Progress towards Sustainable Development Goal 6

    Directory of Open Access Journals (Sweden)

    Arjen Y. Hoekstra

    2017-06-01

    Full Text Available This special issue is a collection of recent papers in the field of Water Footprint Assessment (WFA, an emerging area of research focused on the analysis of freshwater use, scarcity, and pollution in relation to consumption, production, and trade. As increasing freshwater scarcity forms a major risk to the global economy, sustainable management of water resources is a prerequisite to development. We introduce the papers in this special issue by relating them to Sustainable Development Goal (SDG number 6 of the United Nations, the goal on water. We will particularly articulate how each paper drives the understanding needed to achieve target 6.3 on water quality and pollution and target 6.4 on water-use efficiency and water scarcity. Regarding SDG 6, we conclude that it lacks any target on using green water more efficiently, and while addressing efficiency and sustainability of water use, it lacks a target on equitable sharing of water. The latter issue is receiving limited attention in research as well. By primarily focusing on water-use efficiency in farming and industries at the local level, to a lesser extent to using water sustainably at the level of total water systems (like drainage basins, aquifers, and largely ignoring issues around equitable water use, understanding of our water problems and proposed solutions will likely remain unbalanced.

  14. Insight from the 5th World Water Forum on Securing Water for Food and Ecosystems in Africa : Report on BOCI Project BO-10-004-003: Water Conventions

    NARCIS (Netherlands)

    Wageningen International,

    2009-01-01

    Water scarcity is considered to be one of the largest threats for many parts of Africa. Under water scarce conditions reducing the consumption of water and preventing pollution of accessible water resources is essential. Combating water scarcity in both dimensions of quality and quantity is of

  15. Representing Water Scarcity in Future Agricultural Assessments

    Science.gov (United States)

    Winter, Jonathan M.; Lopez, Jose R.; Ruane, Alexander C.; Young, Charles A.; Scanlon, Bridget R.; Rosenzweig, Cynthia

    2017-01-01

    Globally, irrigated agriculture is both essential for food production and the largest user of water. A major challenge for hydrologic and agricultural research communities is assessing the sustainability of irrigated croplands under climate variability and change. Simulations of irrigated croplands generally lack key interactions between water supply, water distribution, and agricultural water demand. In this article, we explore the critical interface between water resources and agriculture by motivating, developing, and illustrating the application of an integrated modeling framework to advance simulations of irrigated croplands. We motivate the framework by examining historical dynamics of irrigation water withdrawals in the United States and quantitatively reviewing previous modeling studies of irrigated croplands with a focus on representations of water supply, agricultural water demand, and impacts on crop yields when water demand exceeds water supply. We then describe the integrated modeling framework for simulating irrigated croplands, which links trends and scenarios with water supply, water allocation, and agricultural water demand. Finally, we provide examples of efforts that leverage the framework to improve simulations of irrigated croplands as well as identify opportunities for interventions that increase agricultural productivity, resiliency, and sustainability.

  16. If I do not have enough water, then how could I bring additional water for toilet cleaning?! Addressing water scarcity to promote hygienic use of shared toilets in Dhaka, Bangladesh.

    Science.gov (United States)

    Saxton, Ronald E; Yeasmin, Farzana; Alam, Mahbub-Ul; Al-Masud, Abdullah; Dutta, Notan Chandra; Yeasmin, Dalia; Luby, Stephen P; Unicomb, Leanne; Winch, Peter J

    2017-09-01

    Provision of toilets is necessary but not sufficient to impact health as poor maintenance may impair toilet function and discourage their consistent use. Water in urban slums is both scarce and a prerequisite for toilet maintenance behaviours. We describe the development of behaviour change communications and selection of low-cost water storage hardware to facilitate adequate flushing among users of shared toilets. We conducted nine focus group discussions and six ranking exercises with adult users of shared toilets (50 females, 35 males), then designed and implemented three pilot interventions to facilitate regular flushing and improve hygienic conditions of shared toilets. We conducted follow-up assessments 1 and 2 months post-pilot including nine in-depth interviews and three focus group discussions with adult residents (23 females, 15 males) and three landlords in the pilot communities. Periodic water scarcity was common in the study communities. Residents felt embarrassed to carry water for flushing. Reserving water adjacent to the shared toilet enabled slum residents to flush regularly. Signs depicting rules for toilet use empowered residents and landlords to communicate these expectations for flushing to transient tenants. Residents in the pilot reported improvements in cleanliness and reduced odour inside toilet cubicles. Our pilot demonstrates the potential efficacy of low-cost water storage and behaviour change communications to improve maintenance of and user satisfaction with shared toilets in urban slum settings. © 2017 John Wiley & Sons Ltd.

  17. Pretreatment Solution for Water Recovery Systems

    Science.gov (United States)

    Muirhead, Dean (Inventor)

    2018-01-01

    Chemical pretreatments are used to produce usable water by treating a water source with a chemical pretreatment that contains a hexavalent chromium and an acid to generate a treated water source, wherein the concentration of sulfate compounds in the acid is negligible, and wherein the treated water source remains substantially free of precipitates after the addition of the chemical pretreatment. Other methods include reducing the pH in urine to be distilled for potable water extraction by pretreating the urine before distillation with a pretreatment solution comprising one or more acid sources selected from a group consisting of phosphoric acid, hydrochloric acid, and nitric acid, wherein the urine remains substantially precipitate free after the addition of the pretreatment solution. Another method described comprises a process for reducing precipitation in urine to be processed for water extraction by mixing the urine with a pretreatment solution comprising hexavalent chromium compound and phosphoric acid.

  18. Baseline assessment and best practices in urban water cycle services in the city of Hamburg

    OpenAIRE

    van Leeuwen, C.J.; Bertram, N.P.

    2013-01-01

    Megatrends (e.g. demographic changes, water scarcity, water pollution and climate change) pose urgent water challenges in cities. This is highlighted in the European Union (EU) project TRUST (Transitions to the Urban Water Services of Tomorrow; www.trust-i.net/index.php). The main objective of TRUST is to support water authorities and utilities in Europe in formulating and implementing appropriate urban water policies as well as new technology and management solutions in order to enhance urba...

  19. Drought is Coming: Monitoring Vegetation Response to Water Scarcity through Variable Chlorophyll a Fluorescence

    Science.gov (United States)

    Guadagno, C. R.; Beverly, D.; Pleban, J. R.; Speckman, H. N.; Ewers, B. E.; Weinig, C.

    2017-12-01

    Aridity is one of the most pronounced environmental limits to plant survival, and understanding how plants respond to drought and recovery is crucial for predicting impacts on managed and natural ecosystems. Changes in soil moisture conditions induce a suite of physiological responses from the cell to ecosystem scale, complicating the assessment of drought effects. Characterizing early indicators of water scarcity across species can inform biophysical models with improved understanding of plant hydraulics. While indexes exist for drought monitoring across scales, many are unable to identify imminent vegetative drought. We explore a method of early diagnosis using leaf-level and kinetic imaging measures of variable chlorophyll a fluorescence. This is a fast and reliable tool capturing leaf physiological changes in advance of changes in NDVI or passive solar induced fluorescence. Both image and leaf level Pulse Amplitude Method (PAM) measurements illustrate the utility of variable chlorophyll a fluorescence for monitoring vegetative drought. Variable fluorescence was monitored across populations of crops, desert shrubs, montane conifers and riparian deciduous trees under variable water regimes. We found a strong correlation (R = 0.85) between the maximum efficiency of photosystem II measured using variable fluorescence (Fv'Fm') and leaf level electrolyte leakage, a proximal cause of drought stress induced by cellular damage in leaves. This association was confirmed in two gymnosperm species (Picea engelmannii and Pinus contorta) and for diverse varieties of the crop species Brassica rapa. The use of chlorophyll a fluorescence per image also allowed for early detection of drought in aspen (Populus tremuloides). These results provide evidence that variable chlorophyll fluorescence decreases between 25% and 70% in mild and severely droughted twigs with respect to ones collected from trees in wet soil conditions. While current systems for monitoring variable fluorescence

  20. New era / new solutions: The role of alternative tariff structures in water supply projects.

    Science.gov (United States)

    Pinto, F Silva; Marques, R Cunha

    2017-12-01

    Water utilities face different challenges that may force them to seek prioritized objectives. When doing so, particular projects may have to be developed, being important to understand their impact on water tariffs, and thus, on customers. Such consequences may bear an increased relevance in cases stressed with, e.g., resource scarcity, poverty, and the need for infrastructure investments. The resulting cost and revenue variability demand a comprehensive study. If the first may require a stochastic modeling (in major cost components) in order to consider its inherent uncertainty, the second needs to be modeled following context-specific objectives set by the relevant stakeholders. The solutions achieved will likely promote distinct revenue sources, as well as diversified water tariff structures. A multi-objective optimization model (i.e., a Framework for Suitable Prices) is built to deal with those diversified requirements (e.g., stochastic energy costs, affordability, cost recovery, or administrative simplicity). The model is solved through achievement scalarizing functions with several weighting coefficients for a reference point, so as to provide a significant perception of possible revenue options (and their impact) to the decision makers. The proposed method is applied to a case study, Boa Vista Island in Cabo Verde, in which the background characteristics, namely water sources availability (e.g., the adoption of desalination technologies), economic development and other contextual factors were considered. The key role of tariff structure selection is displayed, instead of assuming it a priori, giving important insights regarding project feasibility. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Prediction in Ungauged Basins (PUB) for estimating water availability during water scarcity conditions: rainfall-runoff modelling of the ungauged diversion inflows to the Ridracoli water supply reservoir

    Science.gov (United States)

    Toth, Elena

    2013-04-01

    approach is then applied for modelling the streamflow originated in the fourth, ungauged, diversion watershed. Finally, the potential reservoir water availability is estimated, hypothesising to take from the diversion catchments all the streamflow exceeding the minimum flow requirements. The results indicate that modifying the water intake structures might allow a consistent increase in the storage volumes in the reservoir during the water scarcity periods: the water available to the reservoir would in fact - on average - increase of around the 13% of the abstracted annual volume.

  2. Water Resource Vulnerability Characteristics by District’s Population Size in a Changing Climate Using Subjective and Objective Weights

    Directory of Open Access Journals (Sweden)

    Eun-Sung Chung

    2014-09-01

    Full Text Available The goal of this study is to derive water resource vulnerability characteristics for South Korea according to individual district populations in a changing climate. The definition of water resource vulnerability in this study consists of potential flood damage and potential water scarcity. To quantify these vulnerabilities, key factors, or indicators affecting vulnerability, are integrated with a technique for order of preference by similarity to ideal solution (TOPSIS, which is a multi-criteria decision-making approach to determine the optimal alternative by considering both the best and worst solutions. The weight for each indicator is determined based on both the Delphi technique and Shannon’s entropy, which are employed to reduce the uncertainty in the process of determining the weights. The Delphi technique reflects expert opinions, and Shannon’s entropy reflects the uncertainty of the performance data. Under A1B climate change scenarios, medium-sized districts (200,000–300,000 inhabitants are the most vulnerable regarding potential flood damage; the largest districts (exceeding 500,000 inhabitants are found to be the most vulnerable with respect to potential water scarcity. This result indicates that the local governments of cities or districts with more than 200,000 inhabitants should implement better preventative measures for water resources. In addition, the Delphi and entropy methods show the same rankings for flood vulnerability; however, these approaches produce slightly different rankings regarding water scarcity vulnerability. Therefore, it is suggested that rankings from not only subjective but also objective weights should be considered in making a final decision to implement specific adaptive measures to climate change.

  3. A review of formal institutions affecting water supply and access in Botswana

    Science.gov (United States)

    Mogomotsi, Patricia K.; Mogomotsi, Goemeone E. J.; Matlhola, Dimpho M.

    2018-06-01

    Over the years, many countries across the world have increasingly experienced the collapse of their ecosystems, leading to an elevated increase on the demand for freshwater resources. Botswana is not an exception. The problem of disrupted potable water supply is widespread across the country. However, the physical shortage of water in the country is arguably coupled by lack of effective and efficient water supply and management institutions and water infrastructure. Most of the research on water scarcity in Botswana is mostly inclined towards physical water scarcity, while little is investigated on how the design of institutions for water management in developing countries leads to water scarcity. Furthermore, the premises of most research is neoclassical economics ideas, thereby offering solutions as developing and/or reforming water markets and water pricing mechanisms, among other findings. This paper analyses potable water supply and access in Botswana within a new institutional economics paradigm. The study examines key features of water institutions in Botswana on how they affect water supply and access, applying new institutional economics fundamentals. The study extensively uses various secondary data sources including weather and climate reports, policy documents, maps and charts and survey data, among others. The paper argues that to achieve effective water allocation in Botswana, there is a need to balance social and environmental water resource needs through water policies and other statutory enactments, as well as the crafting of practical management strategies. The country, therefore, requires not only a swift institutional transformation in the water sector, but also needs practical governance structure necessary for implementing integrated water resources management and driving water resources towards sustainability.

  4. Petroleum Scarcity and Public Health: Considerations for Local Health Departments

    Science.gov (United States)

    Parker, Cindy L.; Caine, Virginia A.; McKee, Mary; Shirley, Lillian M.; Links, Jonathan M.

    2011-01-01

    Recognition of petroleum as a finite global resource has spurred increasing interest in the intersection between petroleum scarcity and public health. Local health departments represent a critical yet highly vulnerable component of the public health infrastructure. These frontline agencies currently face daunting resource constraints and rely heavily on petroleum for vital population-based health services. Against this backdrop, petroleum scarcity may necessitate reconfiguring local public health service approaches. We describe the anticipated impacts of petroleum scarcity on local health departments, recommend the use of the 10 Essential Public Health Services as a framework for examining attendant operational challenges and potential responses to them, and describe approaches that local health departments and their stakeholders could consider as part of timely planning efforts. PMID:21778471

  5. Design and Implementation of an Integrated Water Management Approach

    OpenAIRE

    Koundouri, Phoebe

    2005-01-01

    The scarcity of water resources in both arid and temperate countries alike is one of the most pervasive natural resource allocation problems facing water users and policy makers. In the EU this has been recognised in the recent work on the Water Framework Directive. In arid countries this problem is faced each day in the myriad of conflicts that surround its use. Water scarcity is a fact with which all countries have to become increasingly involved. Water scarcity occurs across many dimens...

  6. Coping with scarcity: Fishing adaptability and culture in lake Chapala

    Directory of Open Access Journals (Sweden)

    Carmen Pedroza Gutiérrez

    2017-11-01

    Full Text Available This paper examines different adaptive responses that lakeside communities develop when faced with environmental change. The focus lies particularly on rural towns near lake Chapala, Mexico, affected by water level fluctuations. These situations require social reorganization, especially among groups whose survival is directly dependent on the lake’s integrity, such as fishermen.Using an adaptation and adaptability framework, various historical and current strategies used to confront scarcity and lake stress in La Palma, Michoacán are contrasted. Our aim is to highlight the changing social position of the fishing trade, and its most influential cultural features that have allowed its continuity.

  7. On the history of a reoccurring concept: phosphorus scarcity.

    Science.gov (United States)

    Ulrich, Andrea E; Frossard, Emmanuel

    2014-08-15

    Despite evidence against imminent global phosphate rock depletion, phosphorus (P) scarcity scenarios and the subsequent consequences for global food security continue to be a matter of controversy. We provide a historicizing account to evaluate the degree and relevance of past human experiences with P scarcity. Using more than 80 literature sources, we trace the origin of the P scarcity concept and the first accounts of concerns; we report on three cases of scarcity discourse in the U.S. and revisit the concept of future resources. In addition, we present past evaluations of phosphate rock reserves and lifetime estimates for the world, the U.S., Morocco, and the Western Sahara, as well as past attempts to model phosphorus supply or collect information on phosphate rock. Our results show that current concerns have a long legacy and knowledge base to draw from and that promulgating the notion of depletion is inconsistent with past findings. We find that past depletion concerns were refuted by means of new resource appraisals, indicating that the supply was substantially larger than previously thought. Moreover, recommendations for national P conservation policies and other practices seem to have found little implementation. We demonstrate the merit of historic literacy for social learning and the weakness of the current P sustainability debate because it does not include this past knowledge. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Hydrogen/deuterium substitution methods: understanding water structure in solution

    International Nuclear Information System (INIS)

    Soper, A.K.

    1993-01-01

    The hydrogen/deuterium substitution method has been used for different applications, such as the short range order between water molecules in a number of different environments (aqueous solutions of organic molecules), or to study the partial structure factors of water at high pressure and temperature. The absolute accuracy that can be obtained remains uncertain, but important qualitative information can be obtained on the local organization of water in aqueous solution. Some recent results with pure water, methanol and dimethyl sulphoxide (DMSO) solutions are presented. It is shown that the short range water structure is not greatly affected by most solutes except at high concentrations and when the solute species has its own distinctive interaction with water (such as a dissolved small ion). 3 figs., 14 refs

  9. Modeling water scarcity over south Asia: Incorporating crop growth and irrigation models into the Variable Infiltration Capacity (VIC) model

    Science.gov (United States)

    Troy, Tara J.; Ines, Amor V. M.; Lall, Upmanu; Robertson, Andrew W.

    2013-04-01

    Large-scale hydrologic models, such as the Variable Infiltration Capacity (VIC) model, are used for a variety of studies, from drought monitoring to projecting the potential impact of climate change on the hydrologic cycle decades in advance. The majority of these models simulates the natural hydrological cycle and neglects the effects of human activities such as irrigation, which can result in streamflow withdrawals and increased evapotranspiration. In some parts of the world, these activities do not significantly affect the hydrologic cycle, but this is not the case in south Asia where irrigated agriculture has a large water footprint. To address this gap, we incorporate a crop growth model and irrigation model into the VIC model in order to simulate the impacts of irrigated and rainfed agriculture on the hydrologic cycle over south Asia (Indus, Ganges, and Brahmaputra basin and peninsular India). The crop growth model responds to climate signals, including temperature and water stress, to simulate the growth of maize, wheat, rice, and millet. For the primarily rainfed maize crop, the crop growth model shows good correlation with observed All-India yields (0.7) with lower correlations for the irrigated wheat and rice crops (0.4). The difference in correlation is because irrigation provides a buffer against climate conditions, so that rainfed crop growth is more tied to climate than irrigated crop growth. The irrigation water demands induce hydrologic water stress in significant parts of the region, particularly in the Indus, with the streamflow unable to meet the irrigation demands. Although rainfall can vary significantly in south Asia, we find that water scarcity is largely chronic due to the irrigation demands rather than being intermittent due to climate variability.

  10. 2010 Water & Aqueous Solutions

    Energy Technology Data Exchange (ETDEWEB)

    Dor Ben-Amotz

    2010-08-13

    Water covers more than two thirds of the surface of the Earth and about the same fraction of water forms the total mass of a human body. Since the early days of our civilization water has also been in the focus of technological developments, starting from converting it to wine to more modern achievements. The meeting will focus on recent advances in experimental, theoretical, and computational understanding of the behavior of the most important and fascinating liquid in a variety of situations and applications. The emphasis will be less on water properties per se than on water as a medium in which fundamental dynamic and reactive processes take place. In the following sessions, speakers will discuss the latest breakthroughs in unraveling these processes at the molecular level: Water in Solutions; Water in Motion I and II; Water in Biology I and II; Water in the Environment I and II; Water in Confined Geometries and Water in Discussion (keynote lecture and poster winners presentations).

  11. On the portents of peak oil (and other indicators of resource scarcity)

    International Nuclear Information System (INIS)

    Smith, James L.

    2012-01-01

    Economists have studied various indicators of resource scarcity but largely ignored the phenomenon of “peaking” due to its connection to non-economic (physical) theories of resource exhaustion. I consider peaking from the economic point of view, where economic forces determine the shape of the equilibrium extraction path. Within that framework, I ask whether the timing of peak production reveals anything useful about scarcity. I find peaking to be an ambiguous indicator. If someone announced the peak would arrive earlier than expected, and you believed them, you would not know whether the news was good or bad. However, I also show that the traditional economic indicators of resource scarcity (price, cost, and rent) fare no better, and argue that previous studies have misconstrued the connection between changes in underlying scarcity and movements in these traditional indicators. - Highlights: ► We ask whether “peak oil” provides a useful economic indicator of scarcity. ► Timing of the peak follows Hotelling's model of inter-temporal equilibrium. ► The peak provides an ambiguous signal. ► Unexpectedly early peaking could be good news or bad. ► The traditional indicators (cost, price, and rent) do not fare much better.

  12. What Nurses Do During Time Scarcity-and Why.

    Science.gov (United States)

    Jones, Terry L

    2016-09-01

    Time scarcity is a common occurrence in the nurse work environment that stimulates a decision-making process, known as clinical prioritization or implicit rationing. In implicit rationing, nurses must decide what care they will complete and what they will leave unfinished. Five mechanisms that influence this process are supported in the literature. The effects of these influential mechanisms leave patients vulnerable to unmet educational, psychological, care coordination and discharge planning needs. Potential areas for intervention by nurse leaders include redesigning care delivery models to reduce time scarcity, adding balancing measures to performance monitoring systems to promote patient-centered care, and creating work cultures that support the values of nursing.

  13. Time scarcity and food choices: an overview.

    Science.gov (United States)

    Jabs, Jennifer; Devine, Carol M

    2006-09-01

    Time scarcity, the feeling of not having enough time, has been implicated in changes in food consumption patterns such as a decrease in food preparation at home, an increase in the consumption of fast foods, a decrease in family meals, and an increase in the consumption of convenience or ready-prepared foods. These food choices are associated with less healthful diets and may contribute to obesity and chronic health problems such as cardiovascular disease, diabetes, and cancer. In spite of the potential importance for health, there has been little study of how time scarcity influences people's food choices. This paper presents an overview of time issues related to food choices and discuss applications of time research for nutrition and health researchers, policy makers, and practitioners interested in food choice.

  14. Water Scarcity, Food Insecurity and Drought Induced Displacement in an Arid Ecosystem: A Case Study in Indian Desert

    Science.gov (United States)

    Rehman Siddiqui, Azizur

    2017-04-01

    Indian Arid Ecosystem is characterised by scare as well as seasonal precipitation that have led to long term stress in a fragile ecosystem. In addition to this, over the years, Indian desert has experienced varying magnitude of drought, which have considerably influenced food and fodder production and led to the depletion of surface and ground water table. All these factors mean that the production potential of land is hardly sufficient to feed human as well as livestock population of the desert and this has led to extensive rural to urban migration in Indian Desert. In the present study, satellite data from Landsat TM, AWiFS, NOAA AVHRR have been used to detect the intensity and severity of drought condition, and data collected through primary survey has been used to measure the impact of water scarcity on food insecurity and drought induced migration. Rainfall trend analysis of the study area has been done with the help of Man Kendall Method to assess the meteorological vulnerability. In addition to these, NDVI, VCI, TCI, and VHI have also been used to find out the long term vegetation health in the study area. With the help of these scientific techniques, the paper focuses on the moisture deficiency during growing period and its effect on human population and livestock population. Keywords: Arid Ecosystem, Indian Desert, Drought, Migration

  15. Materials in the economy; material flows, scarcity, and the environment

    Science.gov (United States)

    Wagner, Lorie A.

    2002-01-01

    The importance of materials to the economy of the United States is described, including the levels of consumption and uses of materials. The paths (or flows) that materials take from extraction, through processing, to consumer products, and then final disposition are illustrated. Scarcity and environmental issues as they relate to the flow of materials are discussed. Examples for the three main themes of the report (material flows, scarcity, and the environment) are presented.

  16. Insight from the 5th World Water Forum on Securing Water for Food and Ecosystems in Africa : Report on BOCI Project BO-10-004-003: Water Conventions

    OpenAIRE

    Wageningen International

    2009-01-01

    Water scarcity is considered to be one of the largest threats for many parts of Africa. Under water scarce conditions reducing the consumption of water and preventing pollution of accessible water resources is essential. Combating water scarcity in both dimensions of quality and quantity is of special relevance for the LNV priority regions (including those in Water Mondiaal). Future LNV policies to address food security in Africa will affect the use, spread and fate of agrochemicals as well. ...

  17. Water accounting and vulnerability evaluation (WAVE): considering atmospheric evaporation recycling and the risk of freshwater depletion in water footprinting.

    Science.gov (United States)

    Berger, Markus; van der Ent, Ruud; Eisner, Stephanie; Bach, Vanessa; Finkbeiner, Matthias

    2014-04-15

    Aiming to enhance the analysis of water consumption and resulting consequences along the supply chain of products, the water accounting and vulnerability evaluation (WAVE) model is introduced. On the accounting level, atmospheric evaporation recycling within drainage basins is considered for the first time, which can reduce water consumption volumes by up to 32%. Rather than predicting impacts, WAVE analyzes the vulnerability of basins to freshwater depletion. Based on local blue water scarcity, the water depletion index (WDI) denotes the risk that water consumption can lead to depletion of freshwater resources. Water scarcity is determined by relating annual water consumption to availability in more than 11,000 basins. Additionally, WDI accounts for the presence of lakes and aquifers which have been neglected in water scarcity assessments so far. By setting WDI to the highest value in (semi)arid basins, absolute freshwater shortage is taken into account in addition to relative scarcity. This avoids mathematical artifacts of previous indicators which turn zero in deserts if consumption is zero. As illustrated in a case study of biofuels, WAVE can help to interpret volumetric water footprint figures and, thus, promotes a sustainable use of global freshwater resources.

  18. Analytical steady-state solutions for water-limited cropping systems using saline irrigation water

    Science.gov (United States)

    Skaggs, T. H.; Anderson, R. G.; Corwin, D. L.; Suarez, D. L.

    2014-12-01

    Due to the diminishing availability of good quality water for irrigation, it is increasingly important that irrigation and salinity management tools be able to target submaximal crop yields and support the use of marginal quality waters. In this work, we present a steady-state irrigated systems modeling framework that accounts for reduced plant water uptake due to root zone salinity. Two explicit, closed-form analytical solutions for the root zone solute concentration profile are obtained, corresponding to two alternative functional forms of the uptake reduction function. The solutions express a general relationship between irrigation water salinity, irrigation rate, crop salt tolerance, crop transpiration, and (using standard approximations) crop yield. Example applications are illustrated, including the calculation of irrigation requirements for obtaining targeted submaximal yields, and the generation of crop-water production functions for varying irrigation waters, irrigation rates, and crops. Model predictions are shown to be mostly consistent with existing models and available experimental data. Yet the new solutions possess advantages over available alternatives, including: (i) the solutions were derived from a complete physical-mathematical description of the system, rather than based on an ad hoc formulation; (ii) the analytical solutions are explicit and can be evaluated without iterative techniques; (iii) the solutions permit consideration of two common functional forms of salinity induced reductions in crop water uptake, rather than being tied to one particular representation; and (iv) the utilized modeling framework is compatible with leading transient-state numerical models.

  19. Procedures of water desalination with solar energy and f-chart method

    Directory of Open Access Journals (Sweden)

    Petrović Andrija A.

    2015-01-01

    Full Text Available Due to rapid population growth, and climate change caused by environmental pollution needs for drinking water are increasing while amount of freshwater are decreasing. However possible solution for freshwater scarcity can be found in water desalination procedures. In this article three representative water desalination solar powered plants are described. Except explanation of processes it is also mentioned basic advantages and disadvantages of humidification, reverse osmosis and desalination evaporation by using solar energy. Simulation of the solar desalination system is analyzed with f-chart method monthly, located on located 42 degrees north latitude.

  20. Fouling of Seawater Reverse Osmosis (SWRO) Membrane: Chemical and Microbiological Characterization

    KAUST Repository

    Khan, Muhammad T.

    2013-01-01

    In spite of abundant water resources, world is suffering from the scarcity of usable water. Seawater Reverse Osmosis (SWRO) desalination technology using polymeric membranes has been recognized as a key solution to water scarcity problem. However

  1. Water availability and vulnerability of 225 large cities in the United States

    Science.gov (United States)

    Padowski, Julie C.; Jawitz, James W.

    2012-12-01

    This study presents a quantitative national assessment of urban water availability and vulnerability for 225 U.S. cities with population greater than 100,000. Here, the urban assessments account for not only renewable water flows, but also the extracted, imported, and stored water that urban systems access through constructed infrastructure. These sources represent important hydraulic components of the urban water supply, yet are typically excluded from water scarcity assessments. Results from this hydraulic-based assessment were compared to those obtained using a more conventional method that estimates scarcity solely based on local renewable flows. The inclusion of hydraulic components increased the mean availability to cities, leading to a significantly lower portion of the total U.S. population considered "at risk" for water scarcity (17%) than that obtained from the runoff method (47%). Water vulnerability was determined based on low-flow conditions, and smaller differences were found for this metric between at-risk populations using the runoff (66%) and hydraulic-based (54%) methods. The large increase in the susceptible population between the scarcity measures evaluated using the hydraulic method may better reconcile the seeming contradiction in the United States between perceptions of natural water abundance and widespread water scarcity. Additionally, urban vulnerability measures developed here were validated using a media text analysis. Vulnerability assessments that included hydraulic components were found to correlate with the frequency of urban water scarcity reports in the popular press while runoff-based measures showed no significant correlation, suggesting that hydraulic-based assessments provide better context for understanding the nature and severity of urban water scarcity issues.

  2. Population and water. Interview: Genady Golubev.

    Science.gov (United States)

    1993-01-01

    Irrigated cropland yields 36% of all global food crops. Without dams, some countries are forced to increase arable lands or to boost agricultural production. Dry farming poses environmental problems, e.g, those linked to chemical use. Dams also cause environmental problems. Egypt's Aswan dam has stopped the annual floods replenished the lands with natural fertilizer. On the other hand, it provides almost 25% of Egypt's energy needs. Irrigation has expanded areas on which to plant crops, thereby meeting Egypt's rising food needs. The Nile had very low water levels for 7 years during the 1980s so the dam prevented a disaster. The World Conservation Union does not endorse engineered solutions to water scarcity because they generally result in bad watershed management. An irrigation scheme in the former Soviet Union was handled so poorly that it created 1 of this century;s worst environmental disasters--shrinking of the Aral Sea in Kazakhstan. This resulted in destruction of its fisheries, pollution from pesticides, large scale salinization, inferior water quality, and declining health of the people in the area. The Government of India has embarked on an irrigation scheme, the Narmada River dam project. In April 1993, it cancelled its loans with the World Bank because it could not abide by the Bank's tough environmental conditions, but the government intends to go ahead with the project on its own. Natural drainage is required for sustainable irrigation schemes, some of which have endured for centuries. Most of the 26 intensely water scarce countries have rapidly growing populations and are in Africa and the Middle East. The best way for these countries to address this scarcity is to use existing water better, ideally in a way that minimized environmental damage. By 2025, at least 96 countries will be facing great water shortages. Water scarcity will spark conflicts between countries and within countries. The world probably cannot provide enough water to support 8

  3. Sustainable Water and Agricultural Land Use in the Guanting Watershed under Limited Water Resources

    Science.gov (United States)

    Wechsung, F.; Möhring, J.; Otto, I. M.; Wang, X.; Guanting Project Team

    2012-04-01

    The Yongding River System is an important water source for the northeastern Chinese provinces Shanxi, Hebei, Beijing, and Tianjin. The Guanting Reservoir within this river system is one of the major water sources for Beijing, which is about 70 km away. Original planning assumed a discharge of 44 m3/s for the reservoir, but the current mean discharge rate is only about 5 m3/s; there is often hardly any discharge at all. Water scarcity is a major threat for the socio-economic development of the area. The situation is additionally aggravated by climate change impacts. Typical upstream-downstream conflicts with respect to water quantity and quality requests are mixed up with conflicts between different sectors, mainly mining, industry, and agriculture. These conflicts can be observed on different administrative levels, for example between the provinces, down to households. The German-Chinese research project "Sustainable water and agricultural land use in the Guanting Watershed under limited water resources" investigates problems and solutions related to water scarcity in the Guanting Catchment. The aim of the project is to create a vulnerability study in order to assess options for (and finally achieve) sustainable water and land use management in the Guanting region. This includes a comprehensive characterization of the current state by gap analysis and identification of pressures and impacts. The presentation gives an overview of recent project results regarding regionalization of global change scenarios and specification for water supply, evaluation of surface water quantity balances (supply-demand), evaluation of the surface water quality balances (emissions-impact thresholds), and exploration of integrative measurement planning. The first results show that climate in the area is becoming warmer and drier which leads to even more dramatically shrinking water resources. Water supply is expected to be reduced between one and two thirds. Water demand might be

  4. When less sells more or less : The scarcity principle in wine choice

    NARCIS (Netherlands)

    Van Herpen, Erica; Pieters, Rik; Zeelenberg, Marcel

    2014-01-01

    When buying wine, consumers often need to infer unobservable characteristics of the wines that are available. Product scarcity in the store can signal that the quality of a wine is high, either because the product is deemed exclusive (when scarcity is supply-caused) or because the product is deemed

  5. When less sells more or less: The scarcity principle in wine choice

    NARCIS (Netherlands)

    Herpen, van E.; Pieters, R.; Zeelenberg, M.

    2014-01-01

    When buying wine, consumers often need to infer unobservable characteristics of the wines that are available. Product scarcity in the store can signal that the quality of a wine is high, either because the product is deemed exclusive (when scarcity is supply-caused) or because the product is deemed

  6. Life Cycle Network Modeling Framework and Solution Algorithms for Systems Analysis and Optimization of the Water-Energy Nexus

    Directory of Open Access Journals (Sweden)

    Daniel J. Garcia

    2015-07-01

    Full Text Available The water footprint of energy systems must be considered, as future water scarcity has been identified as a major concern. This work presents a general life cycle network modeling and optimization framework for energy-based products and processes using a functional unit of liters of water consumed in the processing pathway. We analyze and optimize the water-energy nexus over the objectives of water footprint minimization, maximization of economic output per liter of water consumed (economic efficiency of water, and maximization of energy output per liter of water consumed (energy efficiency of water. A mixed integer, multiobjective nonlinear fractional programming (MINLFP model is formulated. A mixed integer linear programing (MILP-based branch and refine algorithm that incorporates both the parametric algorithm and nonlinear programming (NLP subproblems is developed to boost solving efficiency. A case study in bioenergy is presented, and the water footprint is considered from biomass cultivation to biofuel production, providing a novel perspective into the consumption of water throughout the value chain. The case study, optimized successively over the three aforementioned objectives, utilizes a variety of candidate biomass feedstocks to meet primary fuel products demand (ethanol, diesel, and gasoline. A minimum water footprint of 55.1 ML/year was found, economic efficiencies of water range from −$1.31/L to $0.76/L, and energy efficiencies of water ranged from 15.32 MJ/L to 27.98 MJ/L. These results show optimization provides avenues for process improvement, as reported values for the energy efficiency of bioethanol range from 0.62 MJ/L to 3.18 MJ/L. Furthermore, the proposed solution approach was shown to be an order of magnitude more efficient than directly solving the original MINLFP problem with general purpose solvers.

  7. THE RELATIONSHIP BETWEEN SCARCITY OF NATURAL RESOURCES AND THEIR REAL PRICES

    Directory of Open Access Journals (Sweden)

    Roland Toth

    2011-01-01

    Full Text Available There has been a long running concern about resource depletion. Some argue this concern is misplaced, while others consider it to be an urgent problem requiring immediate action. Economists suggest that long term prices, adjusted for inflation (real prices, provide a useful and effective indicator of resource scarcity. This study tests this hypothesis in consideration of the accepted theory that traditional price deflators, such as the US consumer price index, overestimate inflation-, and accordingly-, are likely to underestimate long term commodity prices. To investigate the usefulness of real prices as an indicator of scarcity, a case study of two metals considered to be expensive (platinum and rhodium and two considered to be relatively inexpensive (copper and lead was used. Real long term price indices were constructed and econometric analysis used to determine the direction and significance of long-term price trends and whether real prices were correlated with other scarcity indicators such as the Reserves-toproduction ratio. The results show, when an appropriate adjustment is made to the deflator, long-run trends in real metal prices are all upward, and there is a significant relationship between the real prices and scarcity indicators, such as the reserves-to-production ratios, for platinum and rhodium, but not for copper and lead. These findings suggest that real prices of platinum and rhodium are more affected by their scarcity, while copper and lead prices are likely to be more dependent on other factors such as high substitutability with other virgin and recycled materials.

  8. Interrogating scarcity: how to think about ‘resource-scarce settings’

    Science.gov (United States)

    Schrecker, Ted

    2013-01-01

    The idea of resource scarcity permeates health ethics and health policy analysis in various contexts. However, health ethics inquiry seldom asks—as it should—why some settings are ‘resource-scarce’ and others not. In this article I describe interrogating scarcity as a strategy for inquiry into questions of resource allocation within a single political jurisdiction and, in particular, as an approach to the issue of global health justice in an interconnected world. I demonstrate its relevance to the situation of low- and middle-income countries (LMICs) with brief descriptions of four elements of contemporary globalization: trade agreements; the worldwide financial marketplace and capital flight; structural adjustment; imperial geopolitics and foreign policy. This demonstration involves not only health care, but also social determinants of health. Finally, I argue that interrogating scarcity provides the basis for a new, critical approach to health policy at the interface of ethics and the social sciences, with specific reference to market fundamentalism as the value system underlying contemporary globalization. PMID:22899597

  9. Water Evaporation from Acoustically Levitated Aqueous Solution Droplets.

    Science.gov (United States)

    Combe, Nicole A; Donaldson, D James

    2017-09-28

    We present a systematic study of the effect of solutes on the evaporation rate of acoustically levitated aqueous solution droplets by suspending individual droplets in a zero-relative humidity environment and measuring their size as a function of time. The ratios of the early time evaporation rates of six simple salts (NaCl, NaBr, NaNO 3 , KCl, MgCl 2 , CaCl 2 ) and malonic acid to that of water are in excellent agreement with predictions made by modifying the Maxwell equation to include the time-dependent water activity of the evaporating aqueous salt solution droplets. However, the early time evaporation rates of three ammonium salt solutions (NH 4 Cl, NH 4 NO 3 , (NH 4 ) 2 SO 4 ) are not significantly different from the evaporation rate of pure water. This finding is in accord with a previous report that ammonium sulfate does not depress the evaporation rate of its solutions, despite reducing its water vapor pressure, perhaps due to specific surface effects. At longer evaporation times, as the droplets approach crystallization, all but one (MgCl 2 ) of the solution evaporation rates are well described by the modified Maxwell equation.

  10. Structure of water and the thermodynamics of aqueous solutions

    Energy Technology Data Exchange (ETDEWEB)

    Nemethy, G.

    1970-10-26

    This report represents the summary of a series of lectures held at the Istituto Superiore di Sanita, Laboratori di Fisica, from 18 September to 26 October 1970. The topics discussed were: Intermolecular forces, the individual water molecule and the hydrogen bond, the structures of the solid phases of water, experimental information on the strucuture of liquid water, theoretical models of water structure, experimental properties and theoretical models of aqueous solutions of nonpolar solutes, polar solutes, and electrolytes, the conformational stability of biological macromolecules.

  11. No Solutions: Resisting Certainty in Water Supply Management

    Science.gov (United States)

    Cockerill, K.; Armstrong, M.; Richter, J.; Okie, J. G.

    2017-12-01

    Although most scholars and water managers implicitly understand that managing water resources is an ongoing need, both popular and academic literature routinely use the words `solution' and `solve' in discussing water management concerns. The word `solution' reflects a quest for certainty, stability, permanence. A focus on `solving' creates a simplistic expectation that some person or institution is responsible for implementing a solution and that once `solved' the issue no longer requires attention. The reality, however, is water management is a wicked problem, meaning it is amorphous, involves multiple definitions, is embedded in complex systems, and hence is intractable. By definition, wicked problems defy solution. Our interdisciplinary project integrates research from across a broad spectrum of biological, physical, and social sciences. We find that framing a problem in terms of `solving' affects how people think, feel, behave toward the problem. Further, our work suggests that the prevalence of solution- based language has simultaneously generated expectations that science / scientists can predict and control biophysical systems and that science is not to be trusted because it has failed to deliver on previous promises to permanently `solve' events like floods or droughts. Hydrologic systems, are, of course highly uncertain. Hence, reiterating a simplistic insistence on `solving' water management concerns may result in decreased public attention to or support for more complex policy discussions that could provide long-term management strategies. Using the language of `solutions' with expectations of certainty sets hydrologic researchers and water managers up to fail. Managing water is a social responsibility and it will require consistent attention in the future, just as it has throughout human history. Scientists have a key role to play in explaining how various hydrologic systems function, but they should not be expected to `solve' pressing water management

  12. A Mathematical Model of Solute Coupled Water Transport in Toad Intestine Incorporating Recirculation of the Actively Transported Solute

    DEFF Research Database (Denmark)

    Larsen, Erik Hviid; Sørensen, Jakob Balslev; Sørensen, Jens Nørkær

    2000-01-01

    those of tight junction and interspace basement membrane by convection-diffusion. With solute permeability of paracellular pathway large relative to paracellular water flow, the paracellular flux ratio of the solute (influx/outflux) is small (2-4) in agreement with experiments. The virtual solute......A mathematical model of an absorbing leaky epithelium is developed for analysis of solute coupled water transport. The non-charged driving solute diffuses into cells and is pumped from cells into the lateral intercellular space (lis). All membranes contain water channels with the solute passing...... increases with hydraulic conductance of the pathway carrying water from mucosal solution into lis. Uphill water transport is accomplished, but with high hydraulic conductance of cell membranes strength of transport is obscured by water flow through cells. Anomalous solvent drag occurs when back flux...

  13. Green roofs as contributors for water management schemes within urban areas – a pilot study in Porto

    OpenAIRE

    Monteiro, C. M.; Calheiros, C. S. C.; Pimentel-Rodrigues, C.; Palha, P.; Silva-Afonso, A.; Castro, P. M. L.

    2016-01-01

    Water scarcity is an issue of worldwide concern and a holistic approach to water management is needed to overcome the potential threats that climate change brings to water availability and security in many parts of the globe. Societal and economic challenges need to be addressed when implementing technological solutions to environmental problems. The fact that green areas in the cities have been reduced and replaced by impervious buildings and paved streets has caused a number of problems, su...

  14. Integrating Economic Models with Biophysical Models in the Willamette Water 2100 Project

    Science.gov (United States)

    Jaeger, W. K.; Plantinga, A.

    2013-12-01

    This paper highlights the human system modeling components for Willamette Water 2100, a comprehensive, highly integrated study of hydrological, ecological, and human factors affecting water scarcity in the Willamette River Basin (WRB). The project is developing a spatiotemporal simulation model to predict future trajectories of water scarcity, and to evaluate mitigation policies. Economic models of land use and water use are the main human system models in WW2100. Water scarcity depends on both supply and demand for water, and varies greatly across time and space (Jaeger et al., 2013). Thus, the locations of human water use can have enormous influence on where and when water is used, and hence where water scarcity may arise. Modeling the locations of human uses of water (e.g., urban versus agricultural) as well as human values and choices, are the principal quantitative ways that social science can contribute to research of this kind. Our models are empirically-based models of human resource allocation. Each model reflects private behavior (choices by households, farms, firms), institutions (property rights, laws, markets, regulations), public infrastructure (dams, canals, highways), and also 'external drivers' that influence the local economy (migration, population growth, national markets and policies). This paper describes the main model components, emphasizing similarities between human and biophysical components of the overall project, and the model's linkages and feedbacks relevant to our predictions of changes in water scarcity between now and 2100. Results presented include new insights from individual model components as well as available results from the integrated system model. Issues include water scarcity and water quality (temperature) for out-of-stream and instream uses, the impact of urban expansion on water use and potential flood damage. Changes in timing and variability of spring discharge with climate change, as well as changes in human uses of

  15. Macroecology Meets Macroeconomics: Resource Scarcity and Global Sustainability.

    Science.gov (United States)

    Brown, James H; Burger, Joseph R; Burnside, William R; Chang, Michael; Davidson, Ana D; Fristoe, Trevor S; Hamilton, Marcus J; Hammond, Sean T; Kodric-Brown, Astrid; Mercado-Silva, Norman; Nekola, Jeffrey C; Okie, Jordan G

    2014-04-01

    The current economic paradigm, which is based on increasing human population, economic development, and standard of living, is no longer compatible with the biophysical limits of the finite Earth. Failure to recover from the economic crash of 2008 is not due just to inadequate fiscal and monetary policies. The continuing global crisis is also due to scarcity of critical resources. Our macroecological studies highlight the role in the economy of energy and natural resources: oil, gas, water, arable land, metals, rare earths, fertilizers, fisheries, and wood. As the modern industrial technological-informational economy expanded in recent decades, it grew by consuming the Earth's natural resources at unsustainable rates. Correlations between per capita GDP and per capita consumption of energy and other resources across nations and over time demonstrate how economic growth and development depend on "nature's capital". Decades-long trends of decreasing per capita consumption of multiple important commodities indicate that overexploitation has created an unsustainable bubble of population and economy.

  16. Evaluating the costs of desalination and water transport

    NARCIS (Netherlands)

    Zhou, Y.; Tol, R.S.J.

    2005-01-01

    Many regions of the world are facing formidable freshwater scarcity. Although there is substantial scope for economizing on the consumption of water without affecting its service level, the main response to water scarcity has been to increase the supply. To a large extent, this is done by

  17. Shallow water equations: viscous solutions and inviscid limit

    Science.gov (United States)

    Chen, Gui-Qiang; Perepelitsa, Mikhail

    2012-12-01

    We establish the inviscid limit of the viscous shallow water equations to the Saint-Venant system. For the viscous equations, the viscosity terms are more degenerate when the shallow water is close to the bottom, in comparison with the classical Navier-Stokes equations for barotropic gases; thus, the analysis in our earlier work for the classical Navier-Stokes equations does not apply directly, which require new estimates to deal with the additional degeneracy. We first introduce a notion of entropy solutions to the viscous shallow water equations and develop an approach to establish the global existence of such solutions and their uniform energy-type estimates with respect to the viscosity coefficient. These uniform estimates yield the existence of measure-valued solutions to the Saint-Venant system generated by the viscous solutions. Based on the uniform energy-type estimates and the features of the Saint-Venant system, we further establish that the entropy dissipation measures of the viscous solutions for weak entropy-entropy flux pairs, generated by compactly supported C 2 test-functions, are confined in a compact set in H -1, which yields that the measure-valued solutions are confined by the Tartar-Murat commutator relation. Then, the reduction theorem established in Chen and Perepelitsa [5] for the measure-valued solutions with unbounded support leads to the convergence of the viscous solutions to a finite-energy entropy solution of the Saint-Venant system with finite-energy initial data, which is relative with respect to the different end-states of the bottom topography of the shallow water at infinity. The analysis also applies to the inviscid limit problem for the Saint-Venant system in the presence of friction.

  18. Today's virtual water consumption and trade under future water scarcity

    International Nuclear Information System (INIS)

    Orlowsky, B; Gudmundsson, L; Seneviratne, Sonia I; Hoekstra, A Y

    2014-01-01

    The populations of most nations consume products of both domestic and foreign origin, importing together with the products the water which is expended abroad for their production (termed ‘virtual water’). Therefore, any investigation of the sustainability of present-day water consumption under future climate change needs to consider the effects of potentially reduced water availability both on domestic water resources and on the trades of virtual water. Here we use combinations of Global Climate and Global Impact Models from the ISI–MIP ensemble to derive patterns of future water availability under the RCP2.6 and RCP8.5 greenhouse gas (GHG) concentrations scenarios. We assess the effects of reduced water availability in these scenarios on national water consumptions and virtual water trades through a simple accounting scheme based on the water footprint concept. We thereby identify countries where the water footprint within the country area is reduced due to a reduced within-area water availability, most prominently in the Mediterranean and some African countries. National water consumption in countries such as Russia, which are non-water scarce by themselves, can be affected through reduced imports from water scarce countries. We find overall stronger effects of the higher GHG concentrations scenario, although the model range of climate projections for single GHG concentrations scenarios is in itself larger than the differences induced by the GHG concentrations scenarios. Our results highlight that, for both investigated GHG concentration scenarios, the current water consumption and virtual water trades cannot be sustained into the future due to the projected patterns of reduced water availability. (letter)

  19. Water scarcity, market-based incentives, and consumer response

    Science.gov (United States)

    Krause, K.; Chermak, J. M.; Brookshire, D. S.

    2003-04-01

    Water is an increasingly scarce resource and the future viability of many regions will depend in large part on how efficiently resources are utilized. A key factor to this success will be a thorough understanding of consumers and the characteristics that drive their water use. In this research test and find support for the hypothesis that residential water consumers are heterogeneous. We combine experimental and survey responses to test for statistically significant consumer characteristics that are observable factors of demand for water. Significant factors include "stage of life" (i.e., student versus workforce versus retired), as well as various social and cultural factors including age, ethnicity, political affiliation and religious affiliation. Identification of these characteristics allows us to econometrically estimate disaggregated water demand for a sample of urban water consumers in Albuquerque, New Mexico, USA. The results provide unique parameter estimates for different consumer types. Using these results we design an incentive compatible, non-linear pricing program that allows individual consumers to choose a fixed fee/commodity charge from a menu that not only allows the individual to maximize his or her utility, while meeting the conservation goals of the program. We show that this program, with the attention to consumer differences is more efficient than the traditional "one size fits all" programs commonly employed by many water utilities.

  20. Virtual water: Virtuous impact? : the unsteady state of virtual water

    NARCIS (Netherlands)

    Roth, D.; Warner, J.F.

    2008-01-01

    “Virtual water,” water needed for crop production, is now being mainstreamed in the water policy world. Relying on virtual water in the form of food imports is increasingly recommended as good policy for water-scarce areas. Virtual water globalizes discussions on water scarcity, ecological

  1. Water Footprint and Virtual Water Trade of Brazil

    NARCIS (Netherlands)

    da Silva, Vicente de Paulo R.; de Oliveira, Sonaly D.; Hoekstra, Arjen Ysbert; Neto, Jose Dantas; Campos, João Hugo B.C.; Braga, Celia C.; Araújo, Lincoln Eloi; Oliveira Aleixo, Danilo; de Brito, Jose Ivaldo B.; de Souza, Marcio Dionisio; de Holanda, Romildo M.

    2016-01-01

    Freshwater scarcity has increased at an alarming rate worldwide; improved water management plays a vital role in increasing food production and security. This study aims to determine the water footprint of Brazil’s national food consumption, the virtual water flows associated with international

  2. Access to water: Technical and social solutions help communities ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2010-12-08

    Dec 8, 2010 ... English · Français ... Access to water: Technical and social solutions help communities make the most of ... IDRC-supported research engages communities, and countries, in developing durable solutions to water problems.

  3. Water Management Strategies against Water Shortage in the Alps (Invited)

    Science.gov (United States)

    de Jong, C.

    2009-12-01

    In the European Alps water has been perceived as ubiquitous and not the subject of management. Climate change and anthropogenic pressures have changed demand and supply relations rapidly and over the last 10 years, water problems have increasingly become apparent over temporal and spatial hotspots. Stakeholders in the Alpine Space have been confronted with water management problems in agriculture, tourism and hydropower to such an extent that they approached scientists to create solution strategies based on adaptation and mitigation. In this context, Alp-Water-Scarce, a European project on Water Management Strategies against Water Scarcity in the Alps was funded by the Alpine Space programme as part of the "European Territorial Cooperation" scheme. It has 17 project partners from Austria Switzerland, France, Italy and Slovenia from local governments, provinces, federal institutes and offices, universities, regional agencies, alpine societies, geological surveys, and chambers of agriculture and forestry. The Lead Partner is the Mountain Institute in Savoy, Rhone-Alpes, France. The main challenges of this project are to create local Early Warning Systems against Water Scarcity in the Alps. This system is based on strengthening existing long-term monitoring and modeling and creating new measuring networks in those countries where they do not yet exist. It is anchored strongly and actively within a Stakeholder Interaction Forum linked across comparative and contrasting regions across the Alps. The Early Warning System is based on the linkage and improvement of field monitoring and assemblage of qualitative and quantitative data derived both from natural water reservoirs as well as from anthropogenic water use in 28 selected pilot regions selected in France, Italy, Austria, Slovenia and Switzerland. The objectives are to improve water management at the short term (annual scale) and long term (using future scenarios) based on modelling and application of climate change

  4. Treatment for hydrazine-containing waste water solution

    Science.gov (United States)

    Yade, N.

    1986-01-01

    The treatment for waste solutions containing hydrazine is presented. The invention attempts oxidation and decomposition of hydrazine in waste water in a simple and effective processing. The method adds activated charcoal to waste solutions containing hydrazine while maintaining a pH value higher than 8, and adding iron salts if necessary. Then, the solution is aerated.

  5. Radiation-chemical degradation of chloroform in water solutions

    International Nuclear Information System (INIS)

    Ahmadov, S.A; Gurbanov, M.A; Iskenderova, Z.I; Abdullaev, E.T; Ibadov, N.A.

    2006-01-01

    Full text: Chloroform is the major chlorine-containing compound forming at chlorination of drinking water. As our basic water resources of Kur and Araz rivers are mostly polluted along the territory of the neighbor republics their chlorination for the purpose of biological purification can result in forming of chloroform. Unfortunately, there are only poor data about containing of chloroform in drinking water in the Republic, however the particular problem is to develop new methods of drinking water purification from chloroform, taking into account the high toxicity of this compounds. Appropriate works indicate that radiation-chemical processing can mostly reduce the concentration of chloroform in drinking water. The purification degree can achieve 95-98%. This work studies the tendency of chloroform decomposition at its radiolysis processes in percentage. Taking into account the dissolvability of chloroform in water solutions it can be said that examined water solutions are homogeneous. Following advancements are studied: b Determination of radiation-chemical yield of chloroform decomposition at its various initial concentrations;Impact of adsorbed dose on pH of solutions;Formation of by-products.It is set that radiation-chemical output of chloroform decomposition is equal to 3.10-3-125 mol 100ev.

  6. Bridging Mediterranean cultures in the IYS: A documentary exhibition on irrigation techniques in water scarcity conditions

    Science.gov (United States)

    Barontini, Stefano; Louki, Amina; Ben Slima, Zied; Ezzahra Ghaouch, Fatima; Labaran, Raisa; Raffelli, Giulia; Peli, Marco; Vitale, Nicola

    2015-04-01

    Brescia, an industrial city in Northern Italy, is now experiencing a crucial change in its traditional structure. In recent years in fact it has been elected as living and working seat by many foreigners and it is now one of the cities with the greatest percentage of migrants in the Country. This is an important challenge for the city and an opportunity to merge, compare and integrate different cultures to build its future. In this context some students of different Courses (engineering and medicine), belonging both to the Arabian and local community, met together and with researchers in the study team 'Al-B¯i r¯u n¯i , for culture, science and society'. The team aims at organising cultural events in which, starting from the figure of the Persian scientist Ab¯u Raih. ¯a n Al-B¯i r¯u n¯i (about 973, 1051), the contribution of the Arabian and Islamic culture to the development of the European one in the middle ages is investigated. Moving from the initial idea of the study team Al-B¯i r¯u n¯i and from the suggestions of the World Soil Day 2014 and of the International Year of Soils 2015, we built a documentary exhibition entitled 'Irrigation techniques in water scarcity conditions'. The exhibition, which stresses the importance of the irrigation techniques for the soil conservation, is focused on the idea of disseminating two main concepts, i.e. (1) the technological continuity of some water supply systems in countries, around the Mediterranean Sea, affected by similar conditions of water availability, and (2) the possibility of building environments where, due to severe or extreme climatic conditions, the sustainability is reached when the man lives in equilibrium with the nature. The exhibition, which is written in Italian and will move around in the city during all 2015, consists of about twenty posters organized into three main chapters, corresponding to three main classes of water supply systems which are common in most of the countries surrounding

  7. Radiation-chemical degradation of chloroform in water solutions

    International Nuclear Information System (INIS)

    Ahmadov, S.A.; Gurbanov, M.A.; Iskenderova, Z.I.; Abdullayev, E.T.; Ibadov, N.A.

    2006-01-01

    Full text: Chloroform is the major chlorine-containing compound forming at chlorination of drinking water. As our basic water resources of Kur and Araz rivers are mostly polluted along the territory of the neighbour republics their chlorination for the purpose of biological purification can result in forming of chloroform. Unfortunately, there are only poor data about containing of chloroform in drinking water in the Republic, however the particular problem is to develop new methods of drinking water purification from chloroform, taking into account the high toxicity of this compounds. Appropriate works indicate that radiation-chemical processing can mostly reduce the concentration of chloroform in drinking water. The purification degree can achieve 95-98 percent. This work studies the tendency of chloroform decomposition at its radiolysis processes in water solutions. The concentration of chloroform changed in the range of 0,03-1 weight percentage. Taking into account the dissolvability of chloroform in water solutions it can be said that examined water solutions are homogeneous. Following advancements are studied: 1) Determination of radiation-chemical yield of chloroform decomposition at its various initial concentrations; 2) Impact of adsorbed dose on pH of solutions; 3) Formation of by-products. It is set that radiation-chemical output of chloroform decomposition is equal to 3 * 10 - 3 - 125 mol/100 ev. The high yield of chloroform decomposition can be connected with the chain process of oxidation with presence of dissolved oxygen. However, taking into account the fact that at its water radiolysis the yield of active particles of OH, e - aq, H-atoms does not exceed 6-7 particles/100 ev, the observed high yield can be explained only with the chain process with presence of dissolved oxygen

  8. Effects of water diversion and climate change on the Rur and Meuse in low-flow situations

    NARCIS (Netherlands)

    Pyka, Christiane; Jacobs, Cor; Breuer, Roman; Elbers, Jan; Nacken, Heribert; Sewilam, Hani; Timmerman, Jos

    2016-01-01

    Water scarcity is one of the problems in water management that hinders European rivers in reaching a good ecological status as defined in the European Water Framework Directive. Water scarcity often coincides with high water temperature and low water quality. High water temperatures decrease the

  9. Access to water: Technical and social solutions help communities ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Access to water: Technical and social solutions help communities make the most of available sources. 08 décembre 2010. Image. IDRC Communications. LASTING IMPACTS. IDRC-supported research engages communities, and countries, in developing durable solutions to water problems. Whatever the challenge, people ...

  10. Enthalpy of solution of rubidium nitrate in water

    International Nuclear Information System (INIS)

    Weintraub, R.; Apelblat, A.; Tamir, A.

    1984-01-01

    Molar enthalpies of solution of RbNO 3 in water at 298.15 K were measured in an LKB calorimeter. The molar enthalpies of solution extrapolated to infinite solution are: (36788 +- 30)J. mol -1 (Alfa) and (36539 +- 52)J.mol -1 (Aldrich). (author)

  11. Recycling wastewater offers solution to scarcity | CRDI - Centre de ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The scheme hinged on developing a simple household treatment system that ... water to be circulated to drip irrigation systems that very sparingly irrigate fruit trees, ... construction can be approved if greywater recycling is not part of the design.

  12. Water

    CSIR Research Space (South Africa)

    Van Wyk, Llewellyn V

    2010-08-01

    Full Text Available Water scarcity is without a doubt on of the greatest threats to the human species and has all the potential to destabilise world peace. Falling water tables are a new phenomenon. Up until the development of steam and electric motors, deep groudwater...

  13. The Water Efficiency Paradox, a study of Central Asia

    Science.gov (United States)

    Merks, Joreen; Bastiaanssen, Wim

    2017-04-01

    Water scarcity is a rapidly growing concern in the semi-arid areas of Central Asia. Water savings and efficiency improvement programs are promoted as a possibility to save the Aral Sea. The Aral Seas lost 92% of its volume between 1960 and 2009. Projects on rehabilitating the Aral Sea and increasing the efficiency of water use in the irrigation sector are, however, not making progress. In Central Asia, 90% of the water withdrawal is allocated to agriculture. Irrigation efficiency programs often disregard the downstream connectivity of the water flow path. Not all water being applied is consumed by crop evapotranspiration and in fact an equally great portion of water returns back into the river basin system and is reused downstream. This cascade effect implies that results in one location can induce a scarcity of water in another location. The cascade effect in the Syr Darya has been studied by means of the Aral Sea Basin Management Model (ASBMM) designed by SIC-ICWC and remote sensing data produced by UNESCO-IHE. We will demonstrate the impact of increasing irrigation efficiency locally on the overall water consumption in the basin. We will show that efficiency increases with larger areas, and that there are caps to the maximum efficiency at basin scale. Increasing efficiency is thus not self-evident. Classical solutions on promoting increase of efficiency and water savings are therefore outdated and misleads stakeholders. We will look into the misconceptions and challenges in the communication between researchers and policy makers regarding increasing efficiency.

  14. Effects of Water Solutions on Extracting Green Tea Leaves

    Directory of Open Access Journals (Sweden)

    Wen-Ying Huang

    2013-01-01

    Full Text Available This study investigates the effects of water solutions on the antioxidant content of green tea leaf extracts. Green teas prepared with tap water and distilled water were compared with respect to four antioxidant assays: total phenol content, reducing power, DMPD assay, and trolox equivalent antioxidant capacity assay. The results indicate that green tea prepared with distilled water exhibits higher antioxidant activity than that made with tap water. The high performance liquid chromatography showed that major constituents of green tea were found in higher concentrations in tea made with distilled water than in that made with tap water. This could be due to less calcium fixation in leaves and small water clusters. Water solutions composed of less mineralisation are more effective in promoting the quality of green tea leaf extracts.

  15. Water scarcity and drought in WANA countries

    KAUST Repository

    Kharraz, Jauad El; El-Sadek, Alaa; Ghaffour, NorEddine; Mino, Eric

    2012-01-01

    and reliability of agricultural exports, and the ability of the vulnerable to meet the cost of domestic water. Economically, the adverse impact is displayed in the loss of production of goods, especially agricultural goods, the loss of working hours because

  16. Water Poverty and Rural Development: Evidence from South Africa

    OpenAIRE

    Matshe, Innocent; Moyo-Maposa, Sibonginkosi; Zikhali, Precious

    2013-01-01

    Using household data from the 2009 General Household Survey, this paper examines the role of natural resource scarcity in rural development in South Africa, with a particular focus on water scarcity. It seeks to examine whether there is a direct link between household water and economic poverty of rural households, with households’ total monthly income used as an indicator of economic poverty. An adaptation of a comprehensive water poverty index, which considers water access, quality, use, ...

  17. Evaluation of Polyuria: The Roles of Solute Loading and Water Diuresis.

    Science.gov (United States)

    Bhasin, Bhavna; Velez, Juan Carlos Q

    2016-03-01

    Polyuria, defined as daily urine output in excess of 3.0 to 3.5L/d, can occur due to solute or water diuresis. Solute-induced polyuria can be seen in hospitalized patients after a high solute load from exogenous protein administration or following relief of urinary obstruction. Similar clinical scenarios are rarely encountered in the outpatient setting. We describe a case of polyuria due to high solute ingestion and excessive water intake leading to a mixed picture of solute and water diuresis. Restriction of the daily solute load and water intake resulted in complete resolution of polyuria. Determination of the daily excreted urinary osmoles may yield important clues to the cause of polyuria and should be included in the routine workup of polyuria. Copyright © 2016 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  18. Water and water use in southern Nevada [Chapter 3

    Science.gov (United States)

    Wayne R. Belcher; Michael J. Moran; Megan E. Rogers

    2013-01-01

    Water and water use in southern Nevada is an important issue. The scarcity of water resources for both human and biologic communities often leads to intense competition for both surface and groundwaters. Anthropogenic and climate change impacts on scarce water resources need to be understood to assess human and ecosystem health for the study area.

  19. The future of Managed Aquifer Recharge in Italy: the European FPVII MARSOL Project and the European Innovation Partnership on Water Mar to Market

    Directory of Open Access Journals (Sweden)

    Rudy Rossetto

    2014-09-01

    Full Text Available Water scarcity, especially in the Mediterranean rim, poses the relevant issue of water saving in human activities and of finding new sources of water, also for agro-ecosystem maintenance. Managed Aquifer Recharge (MAR techniques constitute a promising solution to the above-mentioned issue. In this contribution, we discuss the state of MAR application in Italy also in relation to some projects co-funded by the European Union. Some ideas for the large scale application of these techniques for non-conventional water use are presented.

  20. The role of scarcity in global virtual water flows

    OpenAIRE

    Lenzen, Manfred; Bhaduri, Anik; Moran, Daniel; Kanemoto, Keiichiro; Bekchanov, Maksud

    2012-01-01

    Recent analyses of the evolution and structure of trade in virtual water revealed that the number of trade connections and volume of virtual water trade have more than doubled over the past two decades, and that developed countries increasingly draw on the rest of the world to alleviate the pressure on their domestic water resources. Our work builds on these studies, but fills three important gaps in the research on global virtual water trade. First, we note that in previous studies virtual w...

  1. Beyond territory and scarcity

    DEFF Research Database (Denmark)

    The attainment of sound and sustainable environmental management is one of humanity's greatest challenges this century, particularly in Africa, which is still heavily dependent on the exploitation of natural and agricultural resources and is faced with rapid population growth. Yet, this challenge...... alternatives to the strong natural determinism that reduces natural resource management to questions of territory and scarcity. - Presenting material and methodologies that explore the different contexts in which social and cultural values intervene, and discovering more than "rational choice" in the agency...... of individuals. - Examining the relevance of the different conceptions of territory for the ways in which people manage, or attempt to manage, natural resources. - Placing their research within the framework of the developing discussion on policy and politics in natural resource management. The studies are drawn...

  2. Options for improving water use efficiency under worsening scarcity ...

    African Journals Online (AJOL)

    Following the political changes in the early 1990s, the South African government introduced a comprehensive reform process for the water sector with the goal of achieving an enhanced and more equitable water management system. This paper analyses the existing water allocation situations and applies a non-linear ...

  3. QENS and NMR studies of 3-picoline-water solutions

    CERN Document Server

    Almasy, L; Bokor, M; Cser, L; Tompa, K; Zanotti, J M; Jancso, G

    2002-01-01

    Quasi-elastic neutron scattering measurements were performed on aqueous solutions of 3-picoline (3-methylpyridine) at room temperature. H-D substitution on both the solute and the water was used to separate the dynamics of the two species. The analysis of the translational diffusive motion at different concentrations shows that at high picoline content the diffusion coefficient of water decreases strongly and becomes similar to that of the solute, indicating strong coupling between the motions of the solute and the solvent. Activation energies characteristic of the dynamic behavior of the methyl group were determined from sup 1 H spin-lattice relaxation rate measurements for H sub 2 O and D sub 2 O solutions of 3-picoline above 310 K. (orig.)

  4. Calibration of System Input Volume and Non-Revenue Water Index in Edo North, Nigeria

    OpenAIRE

    Philipa O. Idogho; Olotu Yahaya

    2013-01-01

    Water scarcity is a serious problem in developing world. It could be physical scarcity or economic water shortage. The output of physicsbased study conducted in Edo North, Nigeria revealed that physical water losses in the water distribution network have compounded the accessibility and affordability of safe drinking water. Water supply and loss variables such as Water Supply (WS) Physical Water Loss (WLρ) Apparent Water Loss (WLE) Water Loss Reduction Index (WLRI) and Av...

  5. Acidities of Water and Methanol in Aqueous Solution and DMSO

    Science.gov (United States)

    Gao, Daqing

    2009-01-01

    The relative acidities of water and methanol have been a nagging issue. In gas phase, methanol is more acidic than water by 36.0 kJ/mol; however, in aqueous solution, the acidities of methanol and water are almost identical. The acidity of an acid in solution is determined by both the intrinsic gas-phase ionization Gibbs energy and the solvent…

  6. An Integrated and Optimal Joint Scheduling of Energy Resources to Feed Electrical, Thermal and Potable Water Demands in Remote Area

    Directory of Open Access Journals (Sweden)

    R. Ghaffarpour

    2016-12-01

    Full Text Available The continuous spread of distributed energy resources (DERs such as combined heating and power (CHP, diesel generators, boilers and renewable energy sources provide an effective solution to energy related problems to serve the power and heat demands with minimum cost. Moreover, the DERs may play a significant role for supplying power and heat in rural areas, where grid electricity is not available. Also, some dry areas may face water scarcity and salinity problems. So, one important solution is the use of DERs to drive desalination units in order to solve water scarcity and salinity problems. In this study, the optimal scheduling of DERs and reverse osmosis (RO desalination unit that feed the required electric, thermal and potable water demands are determined. The present paper describes the operation constraints and cost function of components of the system in detail. Operation constraints of generation units as well as feasible region of operation CHP in dual dependency characteristic are taken into account. To confirm the performance of the proposed model the approach is tested on a realistic remote area over a 24-h period. The results show that the economical scheduling of DERs and desalination units can be obtained using proposed methodology by implementing the proposed formulation.

  7. Frequency and molecular characterisation of Entamoeba histolytica, Entamoeba dispar, Entamoeba moshkovskii, and Entamoeba hartmanni in the context of water scarcity in northeastern Brazil.

    Science.gov (United States)

    Calegar, Deiviane Aparecida; Nunes, Beatriz Coronato; Monteiro, Kerla Joeline Lima; Santos, Jéssica Pereira Dos; Toma, Helena Keiko; Gomes, Tais Ferreira; Lima, Marli Maria; Bóia, Márcio Neves; Carvalho-Costa, Filipe Anibal

    2016-02-01

    This study aimed to estimate the frequency, associated factors, and molecular characterisation of Entamoeba histolytica, Entamoeba dispar, Entamoeba moshkovskii, andEntamoeba hartmanni infections. We performed a survey (n = 213 subjects) to obtain parasitological, sanitation, and sociodemographic data. Faecal samples were processed through flotation and centrifugation methods.E. histolytica, E. dispar, E. moshkovskii, and E. hartmanni were identified by nested-polymerase chain reaction (PCR). The overall prevalence of infection was 22/213 (10.3%). The infection rate among subjects who drink rainwater collected from roofs in tanks was higher than the rate in subjects who drink desalinated water pumped from wells; similarly, the infection rate among subjects who practice open defecation was significantly higher than that of subjects with latrines. Out of the 22 samples positive for morphologically indistinguishableEntamoeba species, the differentiation by PCR was successful for 21. The species distribution was as follows: 57.1% to E. dispar, 23.8% to E. histolytica, 14.3% toE. histolytica and E. dispar, and 4.8% E. dispar and E. hartmanni. These data suggest a high prevalence of asymptomatic infection by the group of morphologically indistinguishable Entamoeba histolytica/dispar/moshkovskiicomplex and E. hartmanni species. In this context of water scarcity, the sanitary and socioenvironmental characteristics of the region appear to favour transmission.

  8. Frequency and molecular characterisation of Entamoeba histolytica, Entamoeba dispar, Entamoeba moshkovskii, and Entamoeba hartmanni in the context of water scarcity in northeastern Brazil

    Directory of Open Access Journals (Sweden)

    Deiviane Aparecida Calegar

    2016-02-01

    Full Text Available This study aimed to estimate the frequency, associated factors, and molecular characterisation of Entamoeba histolytica, Entamoeba dispar, Entamoeba moshkovskii, andEntamoeba hartmanni infections. We performed a survey (n = 213 subjects to obtain parasitological, sanitation, and sociodemographic data. Faecal samples were processed through flotation and centrifugation methods.E. histolytica, E. dispar, E. moshkovskii, and E. hartmanni were identified by nested-polymerase chain reaction (PCR. The overall prevalence of infection was 22/213 (10.3%. The infection rate among subjects who drink rainwater collected from roofs in tanks was higher than the rate in subjects who drink desalinated water pumped from wells; similarly, the infection rate among subjects who practice open defecation was significantly higher than that of subjects with latrines. Out of the 22 samples positive for morphologically indistinguishableEntamoeba species, the differentiation by PCR was successful for 21. The species distribution was as follows: 57.1% to E. dispar, 23.8% to E. histolytica, 14.3% toE. histolytica and E. dispar, and 4.8% E. dispar and E. hartmanni. These data suggest a high prevalence of asymptomatic infection by the group of morphologically indistinguishable Entamoeba histolytica/dispar/moshkovskiicomplex and E. hartmanni species. In this context of water scarcity, the sanitary and socioenvironmental characteristics of the region appear to favour transmission.

  9. China's rising hydropower demand challenges water sector.

    Science.gov (United States)

    Liu, Junguo; Zhao, Dandan; Gerbens-Leenes, P W; Guan, Dabo

    2015-07-09

    Demand for hydropower is increasing, yet the water footprints (WFs) of reservoirs and hydropower, and their contributions to water scarcity, are poorly understood. Here, we calculate reservoir WFs (freshwater that evaporates from reservoirs) and hydropower WFs (the WF of hydroelectricity) in China based on data from 875 representative reservoirs (209 with power plants). In 2010, the reservoir WF totaled 27.9 × 10(9) m(3) (Gm(3)), or 22% of China's total water consumption. Ignoring the reservoir WF seriously underestimates human water appropriation. The reservoir WF associated with industrial, domestic and agricultural WFs caused water scarcity in 6 of the 10 major Chinese river basins from 2 to 12 months annually. The hydropower WF was 6.6 Gm(3) yr(-1) or 3.6 m(3) of water to produce a GJ (10(9) J) of electricity. Hydropower is a water intensive energy carrier. As a response to global climate change, the Chinese government has promoted a further increase in hydropower energy by 70% by 2020 compared to 2012. This energy policy imposes pressure on available freshwater resources and increases water scarcity. The water-energy nexus requires strategic and coordinated implementations of hydropower development among geographical regions, as well as trade-off analysis between rising energy demand and water use sustainability.

  10. Perceptions of Water Ownership, Water Management, and the Responsibility of Providing Clean Water

    Directory of Open Access Journals (Sweden)

    Jacqueline Noga

    2013-11-01

    Full Text Available Perceptions of water and water related issues still render many under-researched topics. This study aims to further our knowledge regarding people’s perceptions of water and our understanding about the different ways individuals use water. The authors asked the question: Does the way an individual perceives water (i.e., as a commodity, a human right, private resource, public resource and/or natural resource influence consumption and conservation of water, and sentiments towards control and allocation of water? An exploratory online questionnaire was designed to generate qualitative and quantitative data of survey participants’ perceptions, beliefs and actions towards water issues, such as overconsumption and scarcity. Data analysis included comparison of the quantitative data regarding the non-statistical association between how an individual perceives water and the individual’s beliefs, as well as qualitative analysis of the comments using an iterative pattern coding technique. One hundred and sixty four individuals participated in the survey (75% completion rate and over 430 comments were made. Themes that emerged from the comments included: responsibility, scarcity, the value of water, knowledge gained and education needed. Comparison of the different perceptions of water revealed that different perceptions of what water is resulted in different beliefs about what the cost of water should be. These findings have implications for future water use, including what needs to change in order to increase appreciation for water issues.

  11. Measuring scarce water saving from interregional virtual water flows in China

    Science.gov (United States)

    Zhao, X.; Li, Y. P.; Yang, H.; Liu, W. F.; Tillotson, M. R.; Guan, D.; Yi, Y.; Wang, H.

    2018-05-01

    Trade of commodities can lead to virtual water flows between trading partners. When commodities flow from regions of high water productivity to regions of low water productivity, the trade has the potential to generate water saving. However, this accounting of water saving does not account for the water scarcity status in different regions. It could be that the water saving generated from this trade occurs at the expense of the intensified water scarcity in the exporting region, and exerts limited effect on water stress alleviation in importing regions. In this paper, we propose an approach to measure the scarce water saving associated with virtual water trade (measuring in water withdrawal/use). The scarce water is quantified by multiplying the water use in production with the water stress index (WSI). We assessed the scarce water saving/loss through interprovincial trade within China using a multi-region input-output table from 2010. The results show that interprovincial trade resulted in 14.2 km3 of water loss without considering water stress, but only 0.4 km3 scarce water loss using the scarce water concept. Among the 435 total connections of virtual water flows, 254 connections contributed to 20.2 km3 of scarce water saving. Most of these connections are virtual water flows from provinces with lower WSI to that with higher WSI. Conversely, 175 connections contributed to 20.6 km3 of scarce water loss. The virtual water flow connections between Xinjiang and other provinces stood out as the biggest contributors, accounting for 66% of total scarce water loss. The results show the importance of assessing water savings generated from trade with consideration of both water scarcity status and water productivity across regions. Identifying key connections of scarce water saving is useful in guiding interregional economic restructuring towards water stress alleviation, a major goal of China’s sustainable development strategy.

  12. Improving Water Resources Management on Global and Region Scales - Evaluating Strategies for Water Futures with the IIASA's Community Water Model

    Science.gov (United States)

    Burek, P.; Kahil, T.; Satoh, Y.; Greve, P.; Byers, E.; Langan, S.; Wada, Y.

    2017-12-01

    the same time, we assess water needs for humans and environment to identify the population and regions that are vulnerable to changes linked to extremes such as water scarcity, droughts and floods. Different solution-portfolios to facilitate regional water management planning will be further discussed.

  13. Assessment of rain water chemistry in the Lucknow metropolitan city

    Science.gov (United States)

    Sharma, Purnima; Rai, Vibhuti

    2018-05-01

    Lucknow metropolitan city is one of the most populated cities of India, which have been facing many problems such as chaotic urbanization, overpopulation, water scarcity, waterlogging, etc., among these water scarcity is one of the important problem. Rain water harvesting is a futuristic tool for mitigation of water scarcity problem through conservation and storage of rain water. This rain water can be used for all purposes by human beings, thus it is necessary to check the chemistry of rain water. The rain water samples were collected from the five zones of Lucknow city. For the comparative study, water samples have been collected from two different dates first from first rainfall and second after 3 days of interval in the second rainfall. The heavy metal concentrations were found in both first and second rainfall water samples in all zones of Lucknow city. The concentration of chromium, cadmium and lead were found to be sufficiently high in several samples. These heavy metals show the concentration above the permissible limit as set by WHO, which can cause various adverse health impacts.

  14. Water and water use in southern Nevada [Chapter 3] (Executive Summary)

    Science.gov (United States)

    Wayne R. Belcher; Michael J. Moran; Megan E. Rogers

    2013-01-01

    Water and water use in southern Nevada is an important issue. The scarcity of water resources for both human and biologic communities often leads to intense competition for both surface and ground waters. Anthropogenic and climate change impacts on scarce water resources need to be understood to assess human and ecosystem health for southern Nevada. Chapter 3 outlines...

  15. Maldistribution or scarcity of nurses? The devil is in the detail.

    Science.gov (United States)

    Both-Nwabuwe, Jitske M C; Dijkstra, Maria T M; Klink, Ab; Beersma, Bianca

    2018-03-01

    The goal of this paper was to improve our understanding of nursing shortages across the variety of health care sectors and how this may affect the agenda for addressing nursing shortages. A health care sector comprises a number of health care services for one particular type of patient care, for example, the hospital care sector. Most Western countries are shifting health care services from hospital care towards community and home care, thus increasing nursing workforce challenges in home and community care. In order to implement appropriate policy responses to nursing workforce challenges, we need to know if these challenges are caused by maldistribution of nurses and/or the scarcity of nurses in general. Focusing on the Netherlands, we reviewed articles based on data of a labour market research programme and/or data from the Dutch Employed Persons' Insurance Administration Agency. The data were analysed using a data synthesis approach. Nursing shortages are unevenly distributed across the various health care sectors. Shortages of practical nurses are caused by maldistribution, with a long-term projected surplus of practical nurses in hospitals and projected shortages in nursing/convalescent homes and home care. Shortages of first-level registered nurses are caused by general scarcity in the long term, mainly in hospitals and home care. Nursing workforce challenges are caused by a maldistribution of nurses and the scarcity of nurses in general. To implement appropriate policy responses to nursing workforce challenges, integrated health care workforce planning is necessary. Integrated workforce planning models could forecast the impact of health care transformation plans and guide national policy decisions on transitioning programmes. Effective transitioning programmes are required to address nursing shortages and to diminish maldistribution. In addition, increased recruitment and retention as well as new models of care are required to address the scarcity of

  16. Solution enthalpies of alkali metal halides in water and heavy water mixtures with dimethyl sulfoxide

    International Nuclear Information System (INIS)

    Egorov, G.I.

    1994-01-01

    Solution enthalpies of CsF, LiCl, NaI, CsI and some other halides of alkali metals and tetrabutylammonium have been measured by the method of calorimetry. Standard solution enthalpies of all alkali metals (except rubidium) halides in water and heavy water mixtures with dimethylsulfoxide at 298.15 K have been calculated. Isotopic effects in solvation enthalpy of the electrolytes mentioned in aqueous solutions of dimethylsulfoxide have been discussed. 29 refs., 2 figs., 4 tabs

  17. Water security of nations: how international trade affects national water scarity and dependency

    NARCIS (Netherlands)

    Hoekstra, Arjen Ysbert; Jones, J. Anthony A.; Vardanian, Trahel G.; Hakopian, Christina

    2009-01-01

    Import of water in virtual form, i.e. in the form of agricultural and industrial commodities, can be an effective means for water-scarce countries to preserve their domestic water resources. On the other hand, export of water-intensive commodities will increase the use and thus the scarcity of water

  18. Scarcity and the future of politics. [Conceptualizing political system as resource-distribution mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Orr, D W

    1976-06-01

    Assuming that a political system is a resource-distribution mechanism, the author examines the possible effects of the predicted new age of scarcity on the system built on the assumption of continuing abundance of both energy and resource stocks. He does this by examining generally the relationship between the carrying capacity (along a scarcity and abundance continuum) and the value system (along a steady-state and growth-oriented continuum), and showing the possible outcomes of the interaction between the two. 35 references.

  19. Have Chinese water pricing reforms reduced urban residential water demand?

    Science.gov (United States)

    Zhang, B.; Fang, K. H.; Baerenklau, K. A.

    2017-06-01

    China continues to deal with severe levels of water scarcity and water pollution. To help address this situation, the Chinese central government initiated urban water pricing reforms in 2002 that emphasized the adoption of increasing block rate (IBR) price structures in place of existing uniform rate structures. By combining urban water use records with microlevel data from the Chinese Urban Household Survey, this research investigates the effectiveness of this national policy reform. Specifically, we compare household water consumption in 28 cities that adopted IBR pricing structures during 2002-2009, with that of 110 cities that had not yet done so. Based on difference-in-differences models, our results show that the policy reform reduced annual residential water demand by 3-4% in the short run and 5% in the longer run. These relatively modest reductions are consistent with the generous nature of the IBR pricing structures that Chinese cities have typically chosen to implement. Our results imply that more efforts are needed to address China's persistent urban water scarcity challenges.

  20. Incorporating the water footprint and virtual water into policy: reflections from the Mancha Occidental Region, Spain

    NARCIS (Netherlands)

    Martinez-Aldaya, Maite; Martínez-Santos, Pedro; Llamas, M. Ramón

    2010-01-01

    Water resource management is often a controversial issue in semiarid regions. Most water resources experts admit that water conflicts are not caused by the physical water scarcity but they are mainly due to inadequate water management. The virtual water concept (the volume of water used in the

  1. On the scarcity of solutions of the equations of magnetohydrodynamic equilibria with flow

    Energy Technology Data Exchange (ETDEWEB)

    Nunez, Manuel [Departamento de Analisis Matematico, Universidad de Valladolid, 47005 Valladolid (Spain)], E-mail: mnjmhd@am.uva.es

    2008-06-16

    While particular analytic solutions to the equations of axisymmetric MHD equilibria with flow are known, it is not clear what possible choosing of the free parameters of the equation of the magnetic flux will yield a solution. The most important of these is the poloidal stream function. We show that for a given flow to be able to yield an equilibrium, the flow itself must satisfy an analogous equation to the generalized Grad-Shafranov one. The problem therefore turns out to be how common are solutions to this type of equations. It is shown that in a natural space of functions, the set of these solutions is contained within a manifold of infinite codimension: extremely small by any criteria. Hence the class of flows for which an equilibrium, even defined only locally and irrespective of boundary conditions, may be found, is highly constrained.

  2. Recrystallization of freezable bound water in aqueous solutions of medium concentrations

    Institute of Scientific and Technical Information of China (English)

    赵立山; 潘礼庆; 纪爱玲; 曹则贤; 王强

    2016-01-01

    For aqueous solutions with freezable bound water, vitrification and recrystallization are mingled, which brings diffi-culty to application and misleads the interpretation of relevant experiments. Here, we report a quantification scheme for the freezable bound water based on the water-content dependence of glass transition temperature, by which also the concentra-tion range for the solutions that may undergo recrystallization finds a clear definition. Furthermore, we find that depending on the amount of the freezable bound water, different temperature protocols should be devised to achieve a complete recrys-tallization. Our results may be helpful for understanding the dynamics of supercooled aqueous solutions and for improving their manipulation in various industries.

  3. Life cycle impact assessment (LCIA) using the ecological scarcity ...

    African Journals Online (AJOL)

    After it is done, the inventory will be interpreted to the environmental impacts in life cycle impact assessment (LCIA). Two LCIA methods identified were “midpoint and endpoint” approaches. The ecological scarcity (ecopoints) is an LCIA method using “midpoint” approach. From the analysis to both life cycle stages, analysis ...

  4. Characterization factors for water footprint considering the scarcity of green and blue water sources

    Science.gov (United States)

    Oki, T.; Kondo, T.; Pokhrel, Y. N.; Hanasaki, N.

    2011-12-01

    The original concept of virtual water trade was invented to illustrate how much water demand can be reduced by importing food products (Allan 1996), and expanded for meat products and industrial products (Oki and Kanae, 2004). However, there was a confusion between "virtual trade of water" (original) and "trade of virtual water" (misinterpretation but widely accepted), and "virtual water" has been recognized as how much water was used to produce the commodity. Then, the concept has some analogy to carbon footprint (CFP) which is an indicator of total emission of greenhouse gases, and nowadays called water footprint (WFP, Hoekstra, 2004). However, WFP itself is just an inventory of water usages under the framework of life cycle assessment (LCA), and the volume of WFP does not necessary reflect the environmental impacts of water usages because consumptive water use of 100 liter from ground water in arid regions just before rainy season would have more environmental impacts than consumptive water use of 100 liter from rain water in humid regions during snow melt season. In the case of CFP, the emissions of five greenhouse gases except for CO2 were converted into CO2 equivalent volumes by considering the sensitivity for the global warming potential, and summed up into CFP. Here, we propose a new idea objectively determining the weights (characterization factors) for blue water usages, such as from river and ground water, to be converted into green water equivalent in each region and time. The weights are inversely proportional to the area required to obtain the same amount of green water, and water balance model can provide the basic information. The new concept was applied to the WFP of Japan through the imports of major crops. As an inventory, WFP was 15.5 km3/y of rain water, 2.2 km3/y of river water, and 2.0 km3/y of non-renewable and non-local water (NRNL water) for year 2000, however, considering the proposed characterization factors in each region (0.5 x 0

  5. Balancing water scarcity and quality for sustainable irrigated agriculture

    Science.gov (United States)

    Assouline, Shmuel; Russo, David; Silber, Avner; Or, Dani

    2015-05-01

    The challenge of meeting the projected doubling of global demand for food by 2050 is monumental. It is further exacerbated by the limited prospects for land expansion and rapidly dwindling water resources. A promising strategy for increasing crop yields per unit land requires the expansion of irrigated agriculture and the harnessing of water sources previously considered "marginal" (saline, treated effluent, and desalinated water). Such an expansion, however, must carefully consider potential long-term risks on soil hydroecological functioning. The study provides critical analyses of use of marginal water and management approaches to map out potential risks. Long-term application of treated effluent (TE) for irrigation has shown adverse impacts on soil transport properties, and introduces certain health risks due to the persistent exposure of soil biota to anthropogenic compounds (e.g., promoting antibiotic resistance). The availability of desalinated water (DS) for irrigation expands management options and improves yields while reducing irrigation amounts and salt loading into the soil. Quantitative models are used to delineate trends associated with long-term use of TE and DS considering agricultural, hydrological, and environmental aspects. The primary challenges to the sustainability of agroecosystems lies with the hazards of saline and sodic conditions, and the unintended consequences on soil hydroecological functioning. Multidisciplinary approaches that combine new scientific knowhow with legislative, economic, and societal tools are required to ensure safe and sustainable use of water resources of different qualities. The new scientific knowhow should provide quantitative models for integrating key biophysical processes with ecological interactions at appropriate spatial and temporal scales.

  6. Fluid transport with time on peritoneal dialysis: the contribution of free water transport and solute coupled water transport

    NARCIS (Netherlands)

    Coester, Annemieke M.; Smit, Watske; Struijk, Dirk G.; Krediet, Raymond T.

    2009-01-01

    Ultrafiltration in peritoneal dialysis occurs through endothelial water channels (free water transport) and together with solutes across small pores: solute coupled water transport. A review is given of cross-sectional studies and on the results of longitudinal follow-up

  7. Evaluation of water footprint and economic water productivities of dairy products of South Africa

    NARCIS (Netherlands)

    Owusu-Sekyere, Enoch; Jordaan, Henry; Chouchane, Hatem

    2017-01-01

    Assessment of water footprint sustainability indicators and economic water productivities is regarded as a cornerstone of the world's sustainability goal and the reduction of the fresh water scarcity risk. These assessments are gaining much prominence because about four billion people face severe

  8. Efficiency, Equity and Effect: Virtual Water Consumption Characters and Sustainable Consumption on Diet

    OpenAIRE

    Shang Hai-Yang

    2015-01-01

    The scarcity of water is the key factor which restricted the growth of social-economy. The virtual water theory provides a new way to solve the problem of water scarcity. In this thesis, we have calculated the virtual water consumption of each household grouped by income in the cities of Gansu in 1992-2005 after introduced the virtual water theory and calculations briefly. Then we advanced the indicator of virtual water per unit of consumption expenditure to analyze the efficiency of virtual ...

  9. Male partner selectivity, romantic confidence, and media depictions of partner scarcity.

    Science.gov (United States)

    Taylor, Laramie D

    2013-01-18

    An experiment was conducted to explore the effects of exposure to partner scarcity or abundance messages on men's partner selectivity, romantic confidence, and self-assessed attractiveness. Undergraduate male participants watched a soap opera narrative featuring either two men competing over one potential female partner (partner scarcity) or two women competing over one potential male partner (partner abundance). Relative to control subjects, watching either narrative reduced romantic confidence. Experimental condition also affected partner selectivity and self-assessed attractiveness, though both effects were moderated by endorsement of traditional masculine ideology. Viewing the abundance narrative resulted in greater selectivity and self-assessed attractiveness for men high in endorsement of traditional masculinity but diminished selectivity and self-assessed attractiveness for men low in endorsement of traditional masculine identity.

  10. Male Partner Selectivity, Romantic Confidence, and Media Depictions of Partner Scarcity

    Directory of Open Access Journals (Sweden)

    Laramie D. Taylor

    2013-01-01

    Full Text Available An experiment was conducted to explore the effects of exposure to partner scarcity or abundance messages on men's partner selectivity, romantic confidence, and self-assessed attractiveness. Undergraduate male participants watched a soap opera narrative featuring either two men competing over one potential female partner (partner scarcity or two women competing over one potential male partner (partner abundance. Relative to control subjects, watching either narrative reduced romantic confidence. Experimental condition also affected partner selectivity and self-assessed attractiveness, though both effects were moderated by endorsement of traditional masculine ideology. Viewing the abundance narrative resulted in greater selectivity and self-assessed attractiveness for men high in endorsement of traditional masculinity but diminished selectivity and self-assessed attractiveness for men low in endorsement of traditional masculine identity.

  11. Bioinspired Materials for Water Purification

    Directory of Open Access Journals (Sweden)

    Alfredo Gonzalez-Perez

    2016-06-01

    Full Text Available Water scarcity issues associated with inadequate access to clean water and sanitation is a ubiquitous problem occurring globally. Addressing future challenges will require a combination of new technological development in water purification and environmental remediation technology with suitable conservation policies. In this scenario, new bioinspired materials will play a pivotal role in the development of more efficient and environmentally friendly solutions. The role of amphiphilic self-assembly on the fabrication of new biomimetic membranes for membrane separation like reverse osmosis is emphasized. Mesoporous support materials for semiconductor growth in the photocatalytic degradation of pollutants and new carriers for immobilization of bacteria in bioreactors are used in the removal and processing of different kind of water pollutants like heavy metals. Obstacles to improve and optimize the fabrication as well as a better understanding of their performance in small-scale and pilot purification systems need to be addressed. However, it is expected that these new biomimetic materials will find their way into the current water purification technologies to improve their purification/removal performance in a cost-effective and environmentally friendly way.

  12. New methods For Modeling Transport Of Water And Solutes In Soils

    DEFF Research Database (Denmark)

    Møldrup, Per

    Recent models for water and solute transport in unsaturated soils have been mechanistically based but numerically very involved. This dissertation concerns the development of mechanistically-based but numerically simple models for calculating and analyzing transport of water and solutes in soil...

  13. Desalination - A solution to water shortage

    International Nuclear Information System (INIS)

    Shakaib, M.

    2005-01-01

    Pakistan as well as neighbouring countries are faced with critical water shortage for the last few decades. The demand for water has outstripped its supply making the availability of safe water sources an issue Also conflicts over water sharing are expected in many regions of the world. Thus, because of this looming crisis water problems are getting increasing attention all over the world. With the advancement of desalination technology many countries had resorted removal of salts from brackish and sea water as an alternative water supply and they are now viewing desalination as a future solution to problems of lack of water. Today, over 100 countries use desalting requirement. A total of 12,451 desalting units (of a unit size of 100 m/sup 3//d or more) with a total capacity of 22,735,000 m /d had been installed or contracted worldwide. Brackish water desalination plants contribute with 9,400,000 m3/d, whereas the capacity of the sea water plants had reached up to 13,300,000 m3/d. This paper will discuss the use of desalination to produce potable water from saline water for domestic or municipal purposes and also the available desalination techniques that have been developed over the years and have achieved commercial success. (author)

  14. Water Accounting Plus (WA+) – a water accounting procedure for complex river basins based on satellite measurements

    NARCIS (Netherlands)

    Karimi, P.; Bastiaanssen, W.G.M.; Molden, D.

    2013-01-01

    Coping with water scarcity and growing competition for water among different sectors requires proper water management strategies and decision processes. A pre-requisite is a clear understanding of the basin hydrological processes, manageable and unmanageable water flows, the interaction with land

  15. Farmer Perceptions of Conflict Related to Water in Zambia

    Directory of Open Access Journals (Sweden)

    Richard A. Marcantonio

    2018-01-01

    Full Text Available The relationship between climate change, water scarcity, and conflict is still debated. Much of the existing work relating resource scarcity to conflict has involved regional-scale analysis linking instances of violent outbreaks to environmental conditions. But how do individual farmers in Africa define conflict? Do they perceive that conflict will change as a function of water scarcity, and, if so, how? Here, we address these questions by surveying farmers in southern Zambia in 2015, where we asked respondents to define conflict, assessed their perceptions of past and future conflict, as well as perceptions of rainfall and water availability. We find that the majority of our respondents (75% think of conflict as misunderstandings or disagreements between people and that 91% of our sample has experienced past conflict, 70% expect to experience future conflict, and 58% expect to experience future physical violent conflict. When asked about the sources of conflict, respondents mainly mention land grabbing, crop damage by animals, and politics rather than water related issues. However, we find a significant relationship between perceptions of future rainfall decreasing and future physical violent conflict. These results imply that even though respondents do not think water scarcity is a direct source of conflict, the perception of decreased rain in the future is significantly related to the perception that future conflict and future physical violent conflict will occur.

  16. Regional water footprint and water management: the case of Madrid region (Spain)

    OpenAIRE

    Soler Rovira, José; Arroyo Sanz, Juan Manuel; Conde Marcos, Hugo; Sanz Zudaire, Carlos; Mesa Moreno, Alfredo; Gil Pascual, Sergio

    2010-01-01

    Water resources and water footprint of the production and consumption in Madrid region were estimated, considering blue water (water resources), green water (soil moisture), grey water (polluted water) and virtual water (water trade in products imported and exported in the region). Water resources in Madrid relay mainly in surface waters and rainfall, so the periodic occurrence of meteorological droughts implies the scarcity of water supply. The main users of blue water are households, munici...

  17. In Conversation: David Brooks on Water Scarcity and Local-level ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2010-11-26

    Nov 26, 2010 ... While sound water management requires action from all levels, ... Local management is certainly an essential component in managing the world's water crisis. ... case studies that show the promise of local water management.

  18. Ground-water solute transport modeling using a three-dimensional scaled model

    International Nuclear Information System (INIS)

    Crider, S.S.

    1987-01-01

    Scaled models are used extensively in current hydraulic research on sediment transport and solute dispersion in free surface flows (rivers, estuaries), but are neglected in current ground-water model research. Thus, an investigation was conducted to test the efficacy of a three-dimensional scaled model of solute transport in ground water. No previous results from such a model have been reported. Experiments performed on uniform scaled models indicated that some historical problems (e.g., construction and scaling difficulties; disproportionate capillary rise in model) were partly overcome by using simple model materials (sand, cement and water), by restricting model application to selective classes of problems, and by physically controlling the effect of the model capillary zone. Results from these tests were compared with mathematical models. Model scaling laws were derived for ground-water solute transport and used to build a three-dimensional scaled model of a ground-water tritium plume in a prototype aquifer on the Savannah River Plant near Aiken, South Carolina. Model results compared favorably with field data and with a numerical model. Scaled models are recommended as a useful additional tool for prediction of ground-water solute transport

  19. Water and tourism on Mediterranean islands

    Energy Technology Data Exchange (ETDEWEB)

    Igel, Wolf von; Candela, Lucila [Technical Univ. of Catalonia, Barcelona (Spain). Geotechnical Engineering and Geosciences Dept.

    2005-07-01

    An increased tourism development has taken place in the Mediterranean basin. This has induced some positive and negative consequences over diverse aspects of life and the natural system. One important consequence has been the increasing pressure put on natural resources, namely on fresh water resources. The patterns of water use related to tourism activity that lead to a situation of scarcity of water resources in a Mediterranean islands context are presented. Next are presented the main problems of hydrological, environmental and socio-economic nature that are a consequence of the increasing tourism development and accompanying increasing scarcity of water resources. As one of these main problems is often the insufficient water supply to meet the water demand, a discussion of the pros and cons of the diverse alternatives to increase the water supply and an explanation of some alternatives to control the water demand are presented. (orig.)

  20. Virtual water trade and bilateral conflicts

    Science.gov (United States)

    De Angelis, Enrico; Metulini, Rodolfo; Bove, Vincenzo; Riccaboni, Massimo

    2017-12-01

    In light of growing water scarcity, virtual water, or the water embedded in key water-intensive commodities, has been an active area of debate among practitioners and academics alike. As of yet, however, there is no consensus on whether water scarcity affects conflict behavior and we still lack empirical research intending to account for the role of virtual water in affecting the odds of militarized disputes between states. Using quantitative methods and data on virtual water trade, we find that bilateral and multilateral trade openness reduce the probability of war between any given pair of countries, which is consistent with the strategic role of this important commodity and the opportunity cost associated with the loss of trade gains. We also find that the substantive effect of virtual water trade is comparable to that of oil and gas, the archetypal natural resources, in determining interstate conflicts' probability.

  1. Increasing water productivity of irrigated crops under limited water supply at field scale

    NARCIS (Netherlands)

    Vazifedoust, M.; Dam, van J.C.; Feddes, R.A.; Feizi, M.

    2008-01-01

    Borkhar district is located in an and to semi-arid region in Iran and regularly faces widespread drought. Given current water scarcity, the limited available water should be used as efficient and productive as possible. To explore on-farm strategies which result in higher economic gains and water

  2. River water quality modelling under drought situations – the Turia River case

    Directory of Open Access Journals (Sweden)

    J. Paredes-Arquiola

    2016-10-01

    Full Text Available Drought and water shortage effects are normally exacerbated due to collateral impacts on water quality, since low streamflow affects water quality in rivers and water uses depend on it. One of the most common problems during drought conditions is maintaining a good water quality while securing the water supply to demands. This research analyses the case of the Turia River Water Resource System located in Eastern Spain. Its main water demand comes as urban demand from Valencia City, which intake is located in the final stretch of the river, where streamflow may become very low during droughts. As a result, during drought conditions concentrations of pathogens and other contaminants increase, compromising the water supply to Valencia City. In order to define possible solutions for the above-mentioned problem, we have developed an integrated model for simulating water management and water quality in the Turia River Basin to propose solutions for water quality problems under water scarcity. For this purpose, the Decision Support System Shell AQUATOOL has been used. The results demonstrate the importance of applying environmental flows as a measure of reducing pollutant's concentration depending on the evolution of a drought event and the state of the water resources system.

  3. End-user flexibility in periods with scarcity - efficient use of ICT; Effektiv bruk av IKT : forbrukerfleksibilitet i knapphetssituasjoner

    Energy Technology Data Exchange (ETDEWEB)

    Grande, Ove S.; Saele, Hanne

    2002-07-01

    In a period with limited extension of new power production, it is important to utilize the flexibility in consumption for end users. Last winter in Norway there was a new record in demand that outweighed the available power production. In addition, the country is gradually heading towards a larger energy deficit. The problem with power scarcity is concentrated in a limited number of hours and it is important that correct and efficient initiatives arc taken towards end users so that the power problem can be solved without increasing energy consumption. About 30% of the total demand in the Norwegian power system is flexible and can be disconnected or consumption patterns can be changed for shorter periods, but this potential is utilized only to a limited amount. These challenges have been addressed in a new research project ''End-user flexibility by efficient use of ICT'' that was established at SINTEF Energy Research in 2001. The main objective is to increase end-user flexibility in periods of scarcity of both energy and power. The project will test and evaluate different means of stimulating flexibility in consumption, based on the network tariff, the power price and new market solutions such as demand-side bidding. (author)

  4. WaterNet: The NASA water cycle solutions network - Danubian regional applications

    International Nuclear Information System (INIS)

    Matthews, Dave; Brilly, Mitja; Kobold, Mira; Zagar, Mark; Houser, Paul

    2008-01-01

    WaterNet is a new international network of researchers, stakeholders, and end-users of remote sensing tools that will benefit the water resources management community. This paper provides an overview and it discusses the concept of solutions networks focusing on the WaterNet. It invites Danubian research and applications teams to join our WaterNet network. The NASA Water cycle Solutions Network's goal is to improve and optimize the sustained ability of water cycle researchers, stakeholders, organizations and networks to interact, identify, harness, and extend NASA research results to augment decision support tools and meet national needs. Our team will develop WaterNet by engaging relevant NASA water cycle research resources and community-of-practice organizations, to develop what we term an 'actionable database' that can be used to communicate and connect NASA Water cycle research Results (NWRs) towards the improvement of water-related Decision Support Tools (DSTs). Recognizing that the European Commission and European Space Agency have also developed many related Water Research products (EWRs), we seek to learn about these and network with the EU teams to include their information in the WaterNet actionable data base and Community of Practice. WaterNet will then develop strategies to connect researchers and decision-makers via innovative communication strategies, improved user access to NASA and EU - Danubian resources, improved water cycle research community appreciation for user requirements, improved policymaker, management and stakeholder knowledge of research and application products, and improved identification of pathways for progress. Finally, WaterNet will develop relevant benchmarking and metrics, to understand the network's characteristics, to optimize its performance, and to establish sustainability. This paper provides examples of several NASA products based on remote sensing and land data assimilation systems that integrate remotely sensed and in

  5. Water Stress on U.S. Power Production at Decadal Time Horizons

    Energy Technology Data Exchange (ETDEWEB)

    Ganguly, Auroop R. [Northeastern Univ., Boston, MA (United States). Sustainability and Data Sciences Lab.. Civil and Environmental Engineering Dept.; Ganguli, Poulomi [Northeastern Univ., Boston, MA (United States). Sustainability and Data Sciences Lab.; Kumar, Devashish [Northeastern Univ., Boston, MA (United States). Sustainability and Data Sciences Lab.

    2014-09-01

    Thermoelectric power production at risk, owing to current and projected water scarcity and rising stream temperatures, is assessed for the contiguous United States at decadal scales. Regional water scarcity is driven by climate variability and change, as well as by multi-sector water demand. While a planning horizon of zero to about thirty years is occasionally prescribed by stakeholders, the challenges to risk assessment at these scales include the difficulty in delineating decadal climate trends from intrinsic natural or multiple model variability. Current generation global climate or earth system models are not credible at the spatial resolutions of power plants, especially for surface water quantity and stream temperatures, which further exacerbates the assessment challenge. Population changes, which are difficult to project, cannot serve as adequate proxies for changes in the water demand across sectors. The hypothesis that robust assessments of power production at risk are possible, despite the uncertainties, has been examined as a proof of concept. An approach is presented for delineating water scarcity and temperature from climate models, observations and population storylines, as well as for assessing power production at risk by examining geospatial correlations of power plant locations within regions where the usable water supply for energy production happens to be scarcer and warmer. Our analyses showed that in the near term, more than 200 counties are likely to be exposed to water scarcity in the next three decades. Further, we noticed that stream gauges in more than five counties in the 2030s and ten counties in the 2040s showed a significant increase in water temperature, which exceeded the power plant effluent temperature threshold set by the EPA. Power plants in South Carolina, Louisiana, and Texas are likely to be vulnerable owing to climate driven water stresses. In all, our analysis suggests that under various combinations of plausible climate

  6. The Community Water Model (CWATM) / Development of a community driven global water model

    Science.gov (United States)

    Burek, Peter; Satoh, Yusuke; Greve, Peter; Kahil, Taher; Wada, Yoshihide

    2017-04-01

    With a growing population and economic development, it is expected that water demands will increase significantly in the future, especially in developing regions. At the same time, climate change is expected to alter spatial patterns of hydrological cycle and will have global, regional and local impacts on water availability. Thus, it is important to assess water supply, water demand and environmental needs over time to identify the populations and locations that will be most affected by these changes linked to water scarcity, droughts and floods. The Community Water Model (CWATM) will be designed for this purpose in that it includes an accounting of how future water demands will evolve in response to socioeconomic change and how water availability will change in response to climate. CWATM represents one of the new key elements of IIASA's Water program. It has been developed to work flexibly at both global and regional level at different spatial resolutions. The model is open source and community-driven to promote our work amongst the wider water community worldwide and is flexible enough linking to further planned developments such as water quality and hydro-economic modules. CWATM will be a basis to develop a next-generation global hydro-economic modeling framework that represents the economic trade-offs among different water management options over a basin looking at water supply infrastructure and demand managements. The integrated modeling framework will consider water demand from agriculture, domestic, energy, industry and environment, investment needs to alleviate future water scarcity, and will provide a portfolio of economically optimal solutions for achieving future water management options under the Sustainable Development Goals (SDG) for example. In addition, it will be able to track the energy requirements associated with the water supply system e.g., pumping, desalination and interbasin transfer to realize the linkage with the water-energy economy. In

  7. Smart solutions to a worsening water crisis | IDRC - International ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    2013-01-23

    Jan 23, 2013 ... Innovative policies and new technologies that reduce water waste are helping countries across the Middle East and North Africa deal with chronic ... Home · Resources · Publications. Smart solutions to a worsening water crisis.

  8. Water Soluble Vitamins Enhance the Growth of Microorganisms in Peripheral Parenteral Nutrition Solutions.

    Science.gov (United States)

    Omotani, Sachiko; Tani, Katsuji; Nagai, Katsuhito; Hatsuda, Yasutoshi; Mukai, Junji; Myotoku, Michiaki

    2017-01-01

    Peripheral parenteral nutrition (PPN) solutions contain amino acids, glucose, and electrolytes, with or without some water soluble vitamins. Peripheral venous catheters are one of the causes of catheter related blood stream infection (CRBSI), which requires infection control. In Japan, PPN solutions have rarely been prepared under aseptic conditions. However, in recent years, the necessity of adding vitamins to infusions has been reported. Therefore, we investigated the effects of water soluble vitamins on growth of microorganisms in PPN solutions. AMINOFLUID ® (AF), BFLUID ® (BF), PARESAFE ® (PS) and PAREPLUS ® (PP) PPN solutions were used. Water soluble vitamins contained in PP were also used. Causative microorganisms of CRBSI were used. Staphylococcus epidermidis decreased after 24 hours or 48 hours in all solutions. On the other hand, Escherichia coli , Serratia marcescens , Pseudomonas aeruginosa, Staphylococcus aureus and Candida albicans increased, especially in PP. When each water soluble vitamin was added to BF and PS, growth of S. aureus was greater in solutions that contained nicotinamide than in solutions that contained other vitamins. As for C. albicans , they grew in all test solutions. C. albicans grew especially well in solutions that contained biotin. When commercial amino acids and glucose solutions with electrolytes are administered, in particular those containing multivitamins or water soluble vitamins, efforts to control infection must be taken to prevent proliferation of microorganisms.

  9. Scarcity and Environmental Stress in Public Organizations: A Conjectural Essay.

    Science.gov (United States)

    Bozeman, Barry; Slusher, E. Allen

    1979-01-01

    Assuming extreme scarcity, arguments are developed that public organizations could be expected to constrain their domain definition, allow domain selection to dictate technology, seek clientele suited to existing technologies, and, in general, take actions that will ensure that existing technologies are employed at capacity. (Author/IRT)

  10. China’s rising hydropower demand challenges water sector

    Science.gov (United States)

    Liu, Junguo; Zhao, Dandan; Gerbens-Leenes, P. W.; Guan, Dabo

    2015-01-01

    Demand for hydropower is increasing, yet the water footprints (WFs) of reservoirs and hydropower, and their contributions to water scarcity, are poorly understood. Here, we calculate reservoir WFs (freshwater that evaporates from reservoirs) and hydropower WFs (the WF of hydroelectricity) in China based on data from 875 representative reservoirs (209 with power plants). In 2010, the reservoir WF totaled 27.9 × 109 m3 (Gm3), or 22% of China’s total water consumption. Ignoring the reservoir WF seriously underestimates human water appropriation. The reservoir WF associated with industrial, domestic and agricultural WFs caused water scarcity in 6 of the 10 major Chinese river basins from 2 to 12 months annually. The hydropower WF was 6.6 Gm3 yr−1 or 3.6 m3 of water to produce a GJ (109 J) of electricity. Hydropower is a water intensive energy carrier. As a response to global climate change, the Chinese government has promoted a further increase in hydropower energy by 70% by 2020 compared to 2012. This energy policy imposes pressure on available freshwater resources and increases water scarcity. The water-energy nexus requires strategic and coordinated implementations of hydropower development among geographical regions, as well as trade-off analysis between rising energy demand and water use sustainability. PMID:26158871

  11. Analysis of key thresholds leading to upstream dependencies in global transboundary water bodies

    Science.gov (United States)

    Munia, Hafsa Ahmed; Guillaume, Joseph; Kummu, Matti; Mirumachi, Naho; Wada, Yoshihide

    2017-04-01

    Transboundary water bodies supply 60% of global fresh water flow and are home to about 1/3 of the world's population; creating hydrological, social and economic interdependencies between countries. Trade-offs between water users are delimited by certain thresholds, that, when crossed, result in changes in system behavior, often related to undesirable impacts. A wide variety of thresholds are potentially related to water availability and scarcity. Scarcity can occur because of the country's own water use, and that is potentially intensified by upstream water use. In general, increased water scarcity escalates the reliance on shared water resources, which increases interdependencies between riparian states. In this paper the upstream dependencies of global transboundary river basins are examined at the scale of sub-basin areas. We aim to assess how upstream water withdrawals cause changes in the scarcity categories, such that crossing thresholds is interpreted in terms of downstream dependency on upstream water availability. The thresholds are defined for different types of water availability on which a sub-basin relies: - reliable local runoff (available even in a dry year), - less reliable local water (available in the wet year), - reliable dry year inflows from possible upstream area, and - less reliable wet year inflows from upstream. Possible upstream withdrawals reduce available water downstream, influencing the latter two water availabilities. Upstream dependencies have then been categorized by comparing a sub-basin's scarcity category across different water availability types. When population (or water consumption) grows, the sub-basin satisfies its needs using less reliable water. Thus, the factors affecting the type of water availability being used are different not only for each type of dependency category, but also possibly for every sub- basin. Our results show that, in the case of stress (impacts from high use of water), in 104 (12%) sub- basins out of

  12. Fox squirrels match food assessment and cache effort to value and scarcity.

    Directory of Open Access Journals (Sweden)

    Mikel M Delgado

    Full Text Available Scatter hoarders must allocate time to assess items for caching, and to carry and bury each cache. Such decisions should be driven by economic variables, such as the value of the individual food items, the scarcity of these items, competition for food items and risk of pilferage by conspecifics. The fox squirrel, an obligate scatter-hoarder, assesses cacheable food items using two overt movements, head flicks and paw manipulations. These behaviors allow an examination of squirrel decision processes when storing food for winter survival. We measured wild squirrels' time allocations and frequencies of assessment and investment behaviors during periods of food scarcity (summer and abundance (fall, giving the squirrels a series of 15 items (alternating five hazelnuts and five peanuts. Assessment and investment per cache increased when resource value was higher (hazelnuts or resources were scarcer (summer, but decreased as scarcity declined (end of sessions. This is the first study to show that assessment behaviors change in response to factors that indicate daily and seasonal resource abundance, and that these factors may interact in complex ways to affect food storing decisions. Food-storing tree squirrels may be a useful and important model species to understand the complex economic decisions made under natural conditions.

  13. Developing a water market readiness assessment framework

    Science.gov (United States)

    Wheeler, Sarah Ann; Loch, Adam; Crase, Lin; Young, Mike; Grafton, R. Quentin

    2017-09-01

    Water markets are increasingly proposed as a demand-management strategy to deal with water scarcity. Water trading arrangements, on their own, are not about setting bio-physical limits to water-use. Nevertheless, water trading that mitigates scarcity constraints can assist regulators of water resources to keep water-use within limits at the lowest possible cost, and may reduce the cost of restoring water system health. While theoretically attractive, many practitioners have, at best, only a limited understanding of the practical usefulness of markets and how they might be most appropriately deployed. Using lessons learned from jurisdictions around the world where water markets have been implemented, this study attempts to fill the existing water market development gap and provide an initial framework (the water market readiness assessment (WMRA)) to describe the policy and administrative conditions/reforms necessary to enable governments/jurisdictions to develop water trading arrangements that are efficient, equitable and within sustainable limits. Our proposed framework consists of three key steps: 1) an assessment of hydrological and institutional needs; 2) a market evaluation, including assessment of development and implementation issues; and 3) the monitoring, continuous/review and assessment of future needs; with a variety of questions needing assessment at each stage. We apply the framework to three examples: regions in Australia, the United States and Spain. These applications indicate that WMRA can provide key information for water planners to consider on the usefulness of water trading processes to better manage water scarcity; but further practical applications and tests of the framework are required to fully evaluate its effectiveness.

  14. Water Availability and Management of Water Resources

    Science.gov (United States)

    One of the most pressing national and global issues is the availability of freshwater due to global climate change, energy scarcity issues and the increase in world population and accompanying economic growth. Estimates of water supplies and flows through the world's hydrologic c...

  15. Electrolytic separation factors for oxygen isotopes in light and heavy water solutions

    International Nuclear Information System (INIS)

    Gulens, J.; Olmstead, W.J.; Longhurst, T.H.; Gale, K.L.; Rolston, J.H.

    1987-01-01

    The electrolytic separation factor, α, has been measured for /sup 17/O and /sup 18/O at Pt and Ni anodes in both light and heavy water solutions of 6M KOH as a function of current density. For oxygen-17, isotopic separation effects were not observed, within the experimental uncertainty of +-2%, under all conditions studied. For oxygen-18, there is a small difference of 2% in α values between Pt and Ni in both light and heavy water solutions, but there is no significant difference in α values between light and heavy water solutions. In light waters solutions, the separation factor at Pt is small, α(/sup 18/O) ≤ 1.02 for i ≥ 0.1 A/cm/sub 2/. This value agrees reasonably well with theoretical estimates

  16. Linking poverty levels to water resource use and conflicts in rural Tanzania

    Science.gov (United States)

    Madulu, Ndalahwa F.

    Water scarcity is an important environmental constraint to development. Water availability is closely linked to human welfare and health by affecting nutrition status and quantity of drinking water especially for the poor. It has impacts on household labour because of the time and energy spent in obtaining it. These problems are more keenly felt among the poor households and in the agricultural subsistence economy. In many areas, the demand for water has been increasing due to rapid population growth, economic development, and climatic change. Water scarcity also stimulates social conflicts between various water users: individuals, communities, industries, livestock, wildlife, agriculture etc. Consequently, local communities have evolved strategies for coping with water stress and drought. These strategies include use of various sources of water, inaction to strict bye-laws regarding the use of water, crop diversification, wage labour, and possibly seasonal migration. The available strategies are likely to vary from one area to another. Some of these actions have measurable longterm demographic consequences, particularly if water stress is severe or repetitive. Although most governments and donor organizations often put much emphasis on the provision of water for drinking purposes, there is clear evidence that the supply of water for other uses has equal importance especially among rural communities. This observation suggests that putting too much emphasis on drinking water needs, addresses a rather insignificant part of the problem of water resources and biases the range of solutions which are likely to be proposed for perceived shortages. The presence of other water uses necessitates the provision of multi-purpose water sources that can serve a number of contrasting functions. This demand-responsive approach can enable the local communities and the poor households to choose the type of services they require on the basis of perceived needs and their ability to

  17. Private sector embedded water risk: Merging the corn supply chain network and regional watershed depletion

    Science.gov (United States)

    Kim, T.; Brauman, K. A.; Schmitt, J.; Goodkind, A. L.; Smith, T. M.

    2016-12-01

    Water scarcity in US corn farming regions is a significant risk consideration for the ethanol and meat production sectors, which comprise 80% of all US corn demand. Water supply risk can lead to effects across the supply chain, affecting annual corn yields. The purpose of our study is to assess the water risk to the US's most corn-intensive sectors and companies by linking watershed depletion estimates with corn production, linked to downstream companies through a corn transport model. We use a water depletion index as an improved metric for seasonal water scarcity and a corn sourcing supply chain model based on economic cost minimization. Water depletion was calculated as the fraction of renewable (ground and surface) water consumption, with estimates of more than 75% depletion on an annual average basis indicating a significant water risk. We estimated company water risk as the amount of embedded corn coming from three categories of water stressed counties. The ethanol sector had 3.1% of sourced corn grown from counties that were more than 75% depleted while the beef sector had 14.0%. From a firm perspective, Tyson, JBS, Cargill, the top three US corn demanding companies, had 4.5%, 9.6%, 12.8% of their sourced corn respectively, coming from watersheds that are more than 75% depleted. These numbers are significantly higher than the global average of 2.2% of watersheds being classified as more than 75% depleted. Our model enables corn using industries to evaluate their supply chain risk of water scarcity through modeling corn sourcing and watershed depletion, providing the private sector a new method for risk estimation. Our results suggest corn dependent industries are already linked to water scarcity risk in disproportionate amounts due to the spatial heterogeneity of corn sourcing and water scarcity.

  18. Male scarcity is associated with higher prevalence of premature gestation and low birth weight births across the United States.

    Science.gov (United States)

    Kruger, Daniel J; Clark, Jillian; Vanas, Sarah

    2013-01-01

    Modern adverse birth outcomes may partially result from mechanisms evolved to evaluate environmental conditions and regulate maternal investment trade-offs. Male scarcity in a population is associated with a cluster of characteristics related to higher mating effort and lower paternal investment. We predicted that modern populations with male scarcity would have shorter gestational times and lower birth weights on average. We compared US Centers for Disease Control and Prevention county-aggregated year 2000 birth records with US Decennial Census data. We combined these data in a path model with the degree of male scarcity and known socio-economic predictors of birth outcomes as exogenous predictors of prematurity and low birth weight, with single mother households as a proportion of families with children as a mediator (N = 450). Male scarcity was directly associated with higher rates of low birth weight. Male scarcity made significant indirect predictions of rates of prematurity and low birth weight, as mediated by the proportion of families headed by single mothers. Aggregate socio-economic status also indirectly predicted birth outcomes, as mediated by the proportion of families headed by single mothers, whereas the proportion African American retained both direct and indirect predictions of adverse birth outcomes. Male scarcity influences life history tradeoffs, with consequences for important social and public health issues such as adverse birth outcomes. Copyright © 2013 Wiley Periodicals, Inc.

  19. A thermodynamic approach to assess organic solute adsorption onto activated carbon in water

    KAUST Repository

    De Ridder, David J.; Verliefde, Arne R. D.; Heijman, Bas G J; Gelin, Simon; Pereira, Manuel Fernando Ribeiro; Rocha, Raquel P.; Figueiredo, José Luí s M; Amy, Gary L.; Van Dijk, Hans C.

    2012-01-01

    In this paper, the hydrophobicity of 13 activated carbons is determined by various methods; water vapour adsorption, immersion calorimetry, and contact angle measurements. The quantity and type of oxygen-containing groups on the activated carbon were measured and related to the methods used to measure hydrophobicity. It was found that the water-activated carbon adsorption strength (based on immersion calorimetry, contact angles) depended on both type and quantity of oxygen-containing groups, while water vapour adsorption depended only on their quantity. Activated carbon hydrophobicity measurements alone could not be related to 1-hexanol and 1,3-dichloropropene adsorption. However, a relationship was found between work of adhesion and adsorption of these solutes. The work of adhesion depends not only on activated carbon-water interaction (carbon hydrophobicity), but also on solute-water (solute hydrophobicity) and activated carbon-solute interactions. Our research shows that the work of adhesion can explain solute adsorption and includes the effect of hydrogen bond formation between solute and activated carbon. © 2012 Elsevier Ltd. All rights reserved.

  20. A thermodynamic approach to assess organic solute adsorption onto activated carbon in water

    KAUST Repository

    De Ridder, David J.

    2012-08-01

    In this paper, the hydrophobicity of 13 activated carbons is determined by various methods; water vapour adsorption, immersion calorimetry, and contact angle measurements. The quantity and type of oxygen-containing groups on the activated carbon were measured and related to the methods used to measure hydrophobicity. It was found that the water-activated carbon adsorption strength (based on immersion calorimetry, contact angles) depended on both type and quantity of oxygen-containing groups, while water vapour adsorption depended only on their quantity. Activated carbon hydrophobicity measurements alone could not be related to 1-hexanol and 1,3-dichloropropene adsorption. However, a relationship was found between work of adhesion and adsorption of these solutes. The work of adhesion depends not only on activated carbon-water interaction (carbon hydrophobicity), but also on solute-water (solute hydrophobicity) and activated carbon-solute interactions. Our research shows that the work of adhesion can explain solute adsorption and includes the effect of hydrogen bond formation between solute and activated carbon. © 2012 Elsevier Ltd. All rights reserved.

  1. The economics of water reuse and implications for joint water quality-quantity management

    Science.gov (United States)

    Kuwayama, Y.

    2015-12-01

    Traditionally, economists have treated the management of water quality and water quantity as separate problems. However, there are some water management issues for which economic analysis requires the simultaneous consideration of water quality and quantity policies and outcomes. Water reuse, which has expanded significantly over the last several decades, is one of these issues. Analyzing the cost effectiveness and social welfare outcomes of adopting water reuse requires a joint water quality-quantity optimization framework because, at its most basic level, water reuse requires decision makers to consider (a) its potential for alleviating water scarcity, (b) the quality to which the water should be treated prior to reuse, and (c) the benefits of discharging less wastewater into the environment. In this project, we develop a theoretical model of water reuse management to illustrate how the availability of water reuse technologies and practices can lead to a departure from established rules in the water resource economics literature for the optimal allocation of freshwater and water pollution abatement. We also conduct an econometric analysis of a unique dataset of county-level water reuse from the state of Florida over the seventeen-year period between 1996 and 2012 in order to determine whether water quality or scarcity concerns drive greater adoption of water reuse practices.

  2. Regularities of thermochemical characteristics of 1-1, 2-1, 3-1 electrolyte solutions in dimethyl sulfoxide-water and propylene carbonate water mixtures

    International Nuclear Information System (INIS)

    Vorob'ev, A.F.; Monaenkova, A.S.; AlekseeV, G.I.

    1987-01-01

    In an air-tight tilting calorimeter with an isothermal casing enthalpies of praseodymium chloride solution in water, dimethyl sulfoxide (DMSO) - water mixtures, contaning 3.86 and 18.53 mol.% DMSO, and propylene carbonate (PC) - water mixtures, containing 1.85 and 3.23 mol.% PC are measured. The enthalpies of praseodymium chloride solution in the given mixtures in case of infinite solution dilution are determined. Solvation enthalpies of praseodymium and neodymium chlorides, as well as alkali earth metal and magnesium chlorides in water and DMSO - water and PC - water mixtures are calculated. Regularities in thermochemical characteristics of solutions of the given salts in DMSO - water and PC - water mixtures are discussed

  3. Central Asia's raging waters the prospects of water conflict in Central Asia

    OpenAIRE

    Hartman, William B.

    2007-01-01

    This thesis examines the prospects of conflict caused by water scarcity in Central Asia. The thesis analyzes the three most recent political eras of Central Asia, Tsarist Russia, the Soviet Union and independence, utilizing indicators of water tensions including: water quality, water quantity, the management of water for multiple uses, the political divisions and geopolitical setting, state institutions and national water ethos. Although water is not likely to be the sole cause of a majo...

  4. Simulation Games: The Future of Water Resources Education and Management?

    Science.gov (United States)

    Castilla Rho, J. C.; Mariethoz, G.; Rojas, R. F.; Andersen, M. S.; Kelly, B. F.; Holley, C.

    2014-12-01

    Scientists rely on models of the water cycle to describe and predict problems of water scarcity in a changing climate, and to suggest adaptation strategies for securing future water needs. Yet these models are too often complicated for managers, the general public and for students to understand. Simpler modelling environments will help with finding solutions by engaging a broader segment of the population. Such environments will enable education at the earliest stages and collective action. I propose that simulation games can be an effective communication platform between scientists and 'non-experts' and that such games will shed light on problems of pollution and overuse of water resources. In the same way as pilots use flight simulators to become proficient at flying aircraft, simulation games—if underpinned by good science—can be used to educate the public, students and managers about how to best manage our water resources. I aim to motivate young scientists to think about using games to advance water education and management.

  5. Book Scarcity In Nigerian University Libraries:A Menace To Effective ...

    African Journals Online (AJOL)

    Book scarcity has persisted due to poor funding of education by Federal Government, frustration of authors, violation of copyright laws and committing of library crimes by library staff and users. This situation has affected educational standards such that over 100 courses offered in the universities in 2005 were refused ...

  6. ECONOMIC QUESTIONS OF LAND USAGE – SCARCITY, SUSTAINABILITY

    OpenAIRE

    Magda, Robert

    2012-01-01

    The aim of this paper is to show the economic importance of land usage. This topic is important because land is the basis of industrial and agricultural production, as well as energy and environmental security. The focus of the analysis is the relationship between land usage and scarcity and sustainability.

  7. WASTAGE OF UNDERGROUND WATER - STEPS TOWARDS A TRAP?

    Directory of Open Access Journals (Sweden)

    Shibabrata Pattanayak

    2015-06-01

    Full Text Available Underground water is used indiscriminately for the purposes like agriculture, serving purposes of urban people, cold drink and mineral water manufacturing etc. As a matter of policy, the rural areas are supplied with underground water in India without considering the factors like actual requirement of water in a particular area, season of scarcity of water etc. It is very common to see the ever open taps of water supplying lines in rural India thronging water continuously and nobody is there to use it. The discharge rate of underground water is far more than the charging rate. This may lead to a very serious condition of water scarcity in near future. Various steps like holding of rain water in the water bodies, selection of crop with requirement of lesser amount of water during the dry months as well as use of Forward Osmosis (FO technology for Cold drinks or Bottled Drinking Water manufacturing from the sea water are advocated.

  8. Efficient management of municipal water: water scarcity in Taiz City, Yemen - issues and options

    Science.gov (United States)

    Noaman, A.; Al-Sharjabe, A. W.

    2015-04-01

    The city of Taiz is the third largest city in Yemen, located about 250 km south of Sana'a and about 90 km inland from the Red Sea. Taiz is situated on the foothills and slopes of the Jabal Saber Mountain at elevations between 1100 and 1600 m a.s.l. Its population is rapidly increasing and is expected to grow from about 580 000 in 2012 to over 1 000 000 in 2020. Water supply is the most pressing problem in the city of Taiz today due to the significant shortages of supply (the average consumption is 23 L/d) caused by the depletion of existing water resources and the lack of a clear direction in dealing with the problem. This forces frequent service interruptions (30-40 days) and the service is rarely extended to new users (only 57% of the population are covered). Sanitation is another daunting problem. The (poorly maintained) sewerage network covers only 44% of the population. In several unsewered areas to the north, east and west of the city, raw sewage is disposed of directly into wadis, which causes a health hazard and threatens to contaminate groundwater resources. The proper computation of demand and supply is based on the various fields. It was performed under this study with a particular model: the Water Evaluation and Planning System (WEAP) developed by the Stockholm Environment Institute (SEI). WEAP is supported by a geographical information system (GIS). The available and relevant data on poverty and social indicators, water use and sources, surface runoff, surface and groundwater availability, groundwater depletion and management, crop production areas, soil cover, maps, and meteorological information were gathered from a number of sources. There are only two ways to decrease the water deficit: by increasing water supply or decreasing the water demand. Any adaptation project aims at one of the two. Six projects are proposed, with three in each category (1, 2 and 3 to decrease demand, and 4, 5 and 6 to increase supply): - Project 1: Improvement of

  9. The thermodynamic water retention capacity of solutions and gels.

    Science.gov (United States)

    Borchard, W; Jablonski, P

    2003-01-01

    The thermodynamic water retention capacity (WRC) has been defined and applied to different heterogeneous phase equilibria. This definition includes others known from the literature for testing heterogeneous systems. For the type of a real solution it is shown that at constant values of temperature and pressure the WRC is related to the difference of the chemical potential of water between the original state and the state after having applied a constraint. The dependence of WRC on concentration of a solute is predicted to be described by an e-function which has been experimentally confirmed in the literature.

  10. Technical project for a new water purification solution

    Directory of Open Access Journals (Sweden)

    Toma Adina

    2018-01-01

    Full Text Available This research is part of the RO-BG Cross-Border Cooperation Program, project “CLEANDANUBE”, MIS-ETC 653, which has finalised by providing a common strategy to prevent the Danube’s pollution technological risks with oil and oil products. This paper presents a new sustainable water purification solution. A short introduction will be offered and an overview regarding the research and new methods to greening the waste is provided. The theoretical aspects of the centrifugal separation phenomenon are studied and the preliminary project bases were established. The paper conveys the possible constructive variations and the technological implications of those. Ultimately, the technical project for a new water purification solution and conclusions with critical points encountered during the designing phase are presented.

  11. The water-energy-food-climate-economics nexus: solving hunger and resource scarcity

    Science.gov (United States)

    Lall, U.

    2011-12-01

    A nexus refers to the core or to interconnectivity across issues. Addressing the boundary interactions of traditional sectors in an interconnected world as human activities change the physical boundaries of land and climate is an emerging academic and governance discourse. Through contrasting examples from the US and India, I shed light on the descriptive aspects of these connections and feedbacks that define potential impacts or traps for societies, and ponder whether a massive conceptual or numerical Earth System Model can help inform outcomes, or whether there are dominant links at particular scales (physical, social, economic or biological) that characterize the emergent dynamics and define critical equilibrium or transient solutions in certain places. However, the real question is what next given the definition of the nexus? Here, I argue that given the current valuation and management structure of different resource sectors and the associated information flows and sensitivities, the interlinked energy-climate issues can emerge as useful drivers of improved productivity in water-food systems, thus promoting resource and environmental sustainability while promoting economic development. Thus, levers can be found that help steer the course of these complex interacting systems towards desirable sectoral outcomes.

  12. What is Autonomous Adaption? Resource Scarcity and Smallholder Agency in Thailand

    NARCIS (Netherlands)

    Forsyth, T.; Evans, N.C.

    2013-01-01

    The concept of autonomous adaptation is widely used to describe spontaneous acts of reducing risks posed by resource scarcity and, increasingly, climate change. Critics, however, have claimed it is unproven, or simplifies the agency by which smallholders respond to risk. This paper presents

  13. Recirculating cooling water solute depletion models

    International Nuclear Information System (INIS)

    Price, W.T.

    1990-01-01

    Chromates have been used for years to inhibit copper corrosion in the plant Recirculating Cooling Water (RCW) system. However, chromates have become an environmental problem in recent years both in the chromate removal plant (X-616) operation and from cooling tower drift. In response to this concern, PORTS is replacing chromates with Betz Dianodic II, a combination of phosphates, BZT, and a dispersant. This changeover started with the X-326 system in 1989. In order to control chemical concentrations in X-326 and in systems linked to it, we needed to be able to predict solute concentrations in advance of the changeover. Failure to predict and control these concentrations can result in wasted chemicals, equipment fouling, or increased corrosion. Consequently, Systems Analysis developed two solute concentration models. The first simulation represents the X-326 RCW system by itself; and models the depletion of a solute once the feed has stopped. The second simulation represents the X-326, X-330, and the X-333 systems linked together by blowdown. This second simulation represents the concentration of a solute in all three systems simultaneously. 4 figs

  14. Vibrational and orientational dynamics of water in aqueous hydroxide solutions.

    Science.gov (United States)

    Hunger, Johannes; Liu, Liyuan; Tielrooij, Klaas-Jan; Bonn, Mischa; Bakker, Huib

    2011-09-28

    We report the vibrational and orientational dynamics of water molecules in isotopically diluted NaOH and NaOD solutions using polarization-resolved femtosecond vibrational spectroscopy and terahertz time-domain dielectric relaxation measurements. We observe a speed-up of the vibrational relaxation of the O-D stretching vibration of HDO molecules outside the first hydration shell of OH(-) from 1.7 ± 0.2 ps for neat water to 1.0 ± 0.2 ps for a solution of 5 M NaOH in HDO:H(2)O. For the O-H vibration of HDO molecules outside the first hydration shell of OD(-), we observe a similar speed-up from 750 ± 50 fs to 600 ± 50 fs for a solution of 6 M NaOD in HDO:D(2)O. The acceleration of the decay is assigned to fluctuations in the energy levels of the HDO molecules due to charge transfer events and charge fluctuations. The reorientation dynamics of water molecules outside the first hydration shell are observed to show the same time constant of 2.5 ± 0.2 ps as in bulk liquid water, indicating that there is no long range effect of the hydroxide ion on the hydrogen-bond structure of liquid water. The terahertz dielectric relaxation experiments show that the transfer of the hydroxide ion through liquid water involves the simultaneous motion of ~7 surrounding water molecules, considerably less than previously reported for the proton. © 2011 American Institute of Physics

  15. Orientational order and dynamics of water in bulk and in aqueous solutions of uranyl ions

    International Nuclear Information System (INIS)

    Chopra, Manish; Choudhury, Niharendu

    2014-01-01

    Molecular dynamics simulations in canonical ensemble of aqueous solutions of uranyl nitrate and bulk water at ambient condition have been carried out to investigate orientational order and dynamics of water. The orientational distributions of water around a central water molecule in bulk water and around a uranyl ion in an aqueous uranyl solution have been calculated. Orientational dynamics of water in bulk and in aqueous uranyl nitrate solution have also been analysed. (author)

  16. How to meet the increasing demands of water, food and energy in the future?

    Science.gov (United States)

    Shi, Haiyun; Chen, Ji; Sivakumar, Bellie; Peart, Mervyn

    2017-04-01

    Regarded as a driving force in water, food and energy demands, the world's population has been increasing rapidly since the beginning of the 20th century. According to the medium-growth projection scenario of the United Nations, the world's population will reach 9.5 billion by 2050. In response to the continuously growing population during this century, water, food and energy demands have also been increasing rapidly, and social problems (e.g., water, food, and energy shortages) will be most likely to occur, especially if no proper management strategies are adopted. Then, how to meet the increasing demands of water, food and energy in the future? This study focuses on the sustainable developments of population, water, food, energy and dams, and the significances of this study can be concluded as follows: First, we reveal the close association between dams and social development through analysing the related data for the period 1960-2010, and argue that construction of additional large dams will have to be considered as one of the best available options to meet the increasing water, food and energy demands in the future. We conduct the projections of global water, food and energy consumptions and dam development for the period 2010-2050, and the results show that, compared to 2010, the total water, food and energy consumptions in 2050 will increase by 20%, 34% and 37%, respectively. Moreover, it is projected that additional 4,340 dams will be constructed by 2050 all over the world. Second, we analyse the current situation of global water scarcity based on the related data representing water resources availability (per capita available water resources), dam development (the number of dams), and the level of economic development (per capita gross domestic product). At the global scale, water scarcity exists in more than 70% of the countries around the world, including 43 countries suffering from economic water scarcity and 129 countries suffering from physical water

  17. Ranking water transparency of Dutch stock-listed companies

    NARCIS (Netherlands)

    Linneman, Marissa H.; Hoekstra, Arjen Ysbert; Berkhout, Wouter

    2015-01-01

    A growing world population, changing consumption patterns and climate change are affecting water demands, water scarcity and water quality worldwide, while at present, few companies are incorporating good water stewardship. In order to create awareness on this issue and provide an incentive for

  18. Irradiation degradation of chlorpyrifos in water solution and asparagus

    International Nuclear Information System (INIS)

    Zhang Qingfang; Wang Feng; Ha Yiming; Li An; Yin Qinggang

    2009-01-01

    In order to seek an effective technique to degrade chlorpyrifos residue, chlorpyrifos water solution and asparagus containing chlorpyrifos as testing materials were irradiated by 60 Co γ-rays and their degradation rate were determined and compared. The results show the degradation rate in water-solution increases with irradiation dose in the range of 0 and 12 kGy, and it reached 95.5% at 4 kGy. The degradation rate of chlorpyrifos in asparagus is low and comes to the maximum of 30.0% when the dose is 8 kGy. Further study indicates that vitamin C, violaquercitrin and total sugar inhibit the irradiation degradation of chlorpyrifos in asparagus. (authors)

  19. Improving the Performance of Water Policies: Evidence from Drought in Spain

    Directory of Open Access Journals (Sweden)

    Mohamed Taher Kahil

    2016-01-01

    Full Text Available Water scarcity is a critical environmental issue worldwide, especially in arid and semiarid regions. In those regions, climate change projections suggest further reductions in freshwater supplies and increases of the recurrence, longevity and intensity of drought events. At present, one important question for policy debate is the identification of water policies that could address the mounting water scarcity problems. Suitable policies should improve economic efficiency, achieve environmental sustainability, and meet equity needs. This paper develops and applies an integrated hydro-economic model that links hydrological, economic and environmental elements to such issues. The model is used to conduct a direct comparison of water markets, water pricing and institutional cooperation, based on their economic, environmental and equity outcomes. The analysis is performed in the Jucar Basin of Spain, which is a good natural experiment for studying water scarcity and climate change policies. Results indicate that both institutional and water market policies are high performing instruments to limit the economic damage costs of droughts, achieving almost the same social benefits. However, the environmental effects of water markets are worrying. Another important finding is that water pricing is a poor policy option not only in terms of private and environmental benefits but also in terms of equity.

  20. Water partnerships: IAEA regional projects for Africa TAP expertise

    International Nuclear Information System (INIS)

    Boussaha, A.; Kastens, R.F.

    2000-01-01

    Issues of water scarcity are on the top of governmental agendas. The efforts of the IAEA's African Member States to address these issues rely upon increasingly complex requirements for analytical tools, technologies and institutional capacities. National programmes in water resources management are receiving growing attention and a large number of bilateral and multilateral development partners are actively involved in providing technical and financial support. Applications of nuclear techniques in the field of hydrology constitute important, and sometimes unique tools for obtaining critical information needed for water resources management. In most cases, isotope hydrology methodologies provide a qualitative definition or solution of the hydrological problem while in certain circumstances, quantification of hydrological parameters are enabled only by the application of these methodologies. Such information is essential for determining the long-term productive capacity of an aquifer, protecting vulnerable recharge areas from pollution, or limiting saltwater intrusion. Isotopes also provide useful data for constraining and validating groundwater models used for water management

  1. Struggles over Access and Authority in the Governance of new water resources

    DEFF Research Database (Denmark)

    Cold-Ravnkilde, Signe Marie; Funder, Mikkel

    Research on water scarcity in the South has often focused on the impacts of limited water resources for the rural poor, prompted most recently by the climate change debate. Less attention has been drawn to the social and institutional processes surrounding the emergence of new collective water...... of the way we understand the development of new water resources in the current context of inequality, water scarcity and climate change....... resources, and how this affects authority, access rights and social exclusion in local water governance. The paper addresses this issue through a study of local competition over access to new common-pool water resources in isolated rural areas of Zambia and Mali. In Mali, climate change has led...

  2. Water footprinting of dairy farming in Ireland

    NARCIS (Netherlands)

    Murphy, E.; Boer, de I.J.M.; Middelaar, van C.E.; Holden, N.M.; Shalloo, L.; Curran, T.P.; Upton, J.

    2017-01-01

    In the context of global water scarcity, water footprints have become an important sustainability indicator for food production systems. To improve the water footprint of the dairy sector, insight into freshwater consumption of individual farms is required. The objective of this study was to

  3. Temperature dependence of water-water and ion-water correlations in bulk water and electrolyte solutions probed by femtosecond elastic second harmonic scattering

    Science.gov (United States)

    Chen, Yixing; Dupertuis, Nathan; Okur, Halil I.; Roke, Sylvie

    2018-06-01

    The temperature dependence of the femtosecond elastic second harmonic scattering (fs-ESHS) response of bulk light and heavy water and their electrolyte solutions is presented. We observe clear temperature dependent changes in the hydrogen (H)-bond network of water that show a decrease in the orientational order of water with increasing temperature. Although D2O has a more structured H-bond network (giving rise to more fs-ESHS intensity), the relative temperature dependence is larger in H2O. The changes are interpreted in terms of the symmetry of H-bonds and are indicators of nuclear quantum effects. Increasing the temperature in electrolyte solutions decreases the influence of the total electrostatic field from ions on the water-water correlations, as expected from Debye-Hückel theory, since the Debye length becomes longer. The effects are, however, 1.9 times (6.3 times) larger than those predicted for H2O (D2O). Since fs-ESHS responses can be computed from known molecular coordinates, our observations provide a unique opportunity to refine quantum mechanical models of water.

  4. Using Demand Side Management to Adapt to Water Scarcity and ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The Saiss is a sub-basin of the Sebou basin in Northern Morocco. Due to decreased precipitation and increased water demand, the surface waters of the Saiss basin have been greatly reduced. At the current rate of exploitation, the aquifer will be depleted within 25 years. This project will examine whether demand-side ...

  5. Development of seedlings of watermelon cv. Crimson Sweet irrigated with biosaline water

    Directory of Open Access Journals (Sweden)

    José E. S. B. da Silva

    2015-09-01

    Full Text Available ABSTRACTThe limited access and the scarcity of good quality water for agriculture are some of the major problems faced in agricultural areas, particularly in arid and semiarid regions. The aim of this study was to evaluate the quality of watermelon seedlings (cv. Crimson Sweet, irrigated with different concentrations of biosaline water of fish culture. The experimental design was completely randomized with five treatments, corresponding to biosaline water at different concentrations (0, 33, 50, 67 and 100%, and four replicates of 108 seedlings. Watermelon seeds were sown in plastic trays filled with commercial substrate and irrigated with different solutions of biosaline water. Seedlings were harvested for biometric analysis at 14, 21 and 28 days after sowing. The use of biosaline water did not affect emergence and establishment of seedlings until 14 days after sowing, the period recommended for transplantation. However, the use of biosaline water affected the development of seedlings with longer exposure time.

  6. Improved prediction of octanol-water partition coefficients from liquid-solute water solubilities and molar volumes

    Science.gov (United States)

    Chiou, C.T.; Schmedding, D.W.; Manes, M.

    2005-01-01

    A volume-fraction-based solvent-water partition model for dilute solutes, in which the partition coefficient shows a dependence on solute molar volume (V??), is adapted to predict the octanol-water partition coefficient (K ow) from the liquid or supercooled-liquid solute water solubility (Sw), or vice versa. The established correlation is tested for a wide range of industrial compounds and pesticides (e.g., halogenated aliphatic hydrocarbons, alkylbenzenes, halogenated benzenes, ethers, esters, PAHs, PCBs, organochlorines, organophosphates, carbamates, and amidesureas-triazines), which comprise a total of 215 test compounds spanning about 10 orders of magnitude in Sw and 8.5 orders of magnitude in Kow. Except for phenols and alcohols, which require special considerations of the Kow data, the correlation predicts the Kow within 0.1 log units for most compounds, much independent of the compound type or the magnitude in K ow. With reliable Sw and V data for compounds of interest, the correlation provides an effective means for either predicting the unavailable log Kow values or verifying the reliability of the reported log Kow data. ?? 2005 American Chemical Society.

  7. Water-scarcity patterns : spatiotemporal interdependencies between water use and water availability in a semi-arid river basin

    NARCIS (Netherlands)

    van Oel, P.R.

    2009-01-01

    This thesis addresses the interdependencies between water use and water availability and describes a model that has been developed to improve understanding of the processes that drive changes and variations in the spatial and temporal distribution of water resources in a semi-arid river basin. These

  8. Automated Water Supply System and Water Theft Identification Using PLC and SCADA

    OpenAIRE

    Prof. Anubha Panchal,; Ketakee Dagade

    2014-01-01

    In today’s world rapid growing urban residential areas, to avoid scarcity of water problems and requirements of consumers, therefore it is supposed to supply adequate water distribution networks are managed automatically. Along with this another problem in the water supply system is that public is using suction pumps to suck the water directly from the home street pipeline. The best way to improve the automation and monitoring architectures which contain a supervision and contr...

  9. Review of CGE models of water issues

    NARCIS (Netherlands)

    Calzadilla, Alvaro; Rehdanz, Katrin; Roson, Roberto; Sartori, Martina; Tol, Richard S.J.

    2016-01-01

    Computable general equilibrium (CGE) models offer a method of studying the role of water resources and water scarcity in the context of international trade. This chapter reviews the literature on water-related CGE modeling by providing a survey that focuses on the implications of different modeling

  10. Barriers and Solutions to Smart Water Grid Development.

    Science.gov (United States)

    Cheong, So-Min; Choi, Gye-Woon; Lee, Ho-Sun

    2016-03-01

    This limited review of smart water grid (SWG) development, challenges, and solutions provides an initial assessment of early attempts at operating SWGs. Though the cost and adoption issues are critical, potential benefits of SWGs such as efficient water conservation and distribution sustain the development of SWGs around the world. The review finds that the keys to success are the new regulations concerning data access and ownership to solve problems of security and privacy; consumer literacy to accept and use SWGs; active private sector involvement to coordinate SWG development; government-funded pilot projects and trial centers; and integration with sustainable water management.

  11. Formation of by-products at radiation - chemical treatment of water solutions of chloroform

    International Nuclear Information System (INIS)

    Ahmedov, S.A.; Abdullayev, E.T.; Gurbanov, M.A.; Gurbanov, A.H.; Ibadov, N.A.

    2006-01-01

    Full text: Radiation-chemical treatment is considered as a perspective method of water purification from chloroform. It provides the high level of purification (98 percent) of water solutions from chloroform and other chlorine-containing compounds. Meanwhile, other chlorine-containing products can be formed during the process of chloroform degradation and as a result of it the quality of water can change. This work studies the formation of by-products of γ-radiolysis of water solutions at various initial contents of chloroform. Dichlormethane and tetrachlorethane are identified as by-products. It is shown that at high contents of chloroform after certain adsorbed dose the forming products are reducing till their full disappearing. At small contents of chloroform in the studied interval of doses di-chlor-methane is forming. Differences of dose dependences of by-products at various contents of chloroform can be connected with the transition from radical mechanism to chain reaction at high concentrations of chloroform in solutions saturated by oxygen. pH-solutions also reduces during the radiation till pH=1, although this reduction also depends on initial concentration of chloroform. Essential change of pH occurs only at the radiolysis of water solutions containing chloroform ≥0,2 percent. And at radiating of 0,03 percent solution pH reduces only till 4 - 4,5

  12. Assessment of economically optimal water management and geospatial potential for large-scale water storage

    Science.gov (United States)

    Weerasinghe, Harshi; Schneider, Uwe A.

    2010-05-01

    Assessment of economically optimal water management and geospatial potential for large-scale water storage Weerasinghe, Harshi; Schneider, Uwe A Water is an essential but limited and vulnerable resource for all socio-economic development and for maintaining healthy ecosystems. Water scarcity accelerated due to population expansion, improved living standards, and rapid growth in economic activities, has profound environmental and social implications. These include severe environmental degradation, declining groundwater levels, and increasing problems of water conflicts. Water scarcity is predicted to be one of the key factors limiting development in the 21st century. Climate scientists have projected spatial and temporal changes in precipitation and changes in the probability of intense floods and droughts in the future. As scarcity of accessible and usable water increases, demand for efficient water management and adaptation strategies increases as well. Addressing water scarcity requires an intersectoral and multidisciplinary approach in managing water resources. This would in return safeguard the social welfare and the economical benefit to be at their optimal balance without compromising the sustainability of ecosystems. This paper presents a geographically explicit method to assess the potential for water storage with reservoirs and a dynamic model that identifies the dimensions and material requirements under an economically optimal water management plan. The methodology is applied to the Elbe and Nile river basins. Input data for geospatial analysis at watershed level are taken from global data repositories and include data on elevation, rainfall, soil texture, soil depth, drainage, land use and land cover; which are then downscaled to 1km spatial resolution. Runoff potential for different combinations of land use and hydraulic soil groups and for mean annual precipitation levels are derived by the SCS-CN method. Using the overlay and decision tree algorithms

  13. Composite Transport Model and Water and Solute Transport across Plant Roots: An Update.

    Science.gov (United States)

    Kim, Yangmin X; Ranathunge, Kosala; Lee, Seulbi; Lee, Yejin; Lee, Deogbae; Sung, Jwakyung

    2018-01-01

    The present review examines recent experimental findings in root transport phenomena in terms of the composite transport model (CTM). It has been a well-accepted conceptual model to explain the complex water and solute flows across the root that has been related to the composite anatomical structure. There are three parallel pathways involved in the transport of water and solutes in roots - apoplast, symplast, and transcellular paths. The role of aquaporins (AQPs), which facilitate water flows through the transcellular path, and root apoplast is examined in terms of the CTM. The contribution of the plasma membrane bound AQPs for the overall water transport in the whole plant level was varying depending on the plant species, age of roots with varying developmental stages of apoplastic barriers, and driving forces (hydrostatic vs. osmotic). Many studies have demonstrated that the apoplastic barriers, such as Casparian bands in the primary anticlinal walls and suberin lamellae in the secondary cell walls, in the endo- and exodermis are not perfect barriers and unable to completely block the transport of water and some solute transport into the stele. Recent research on water and solute transport of roots with and without exodermis triggered the importance of the extension of conventional CTM adding resistances that arrange in series (epidermis, exodermis, mid-cortex, endodermis, and pericycle). The extension of the model may answer current questions about the applicability of CTM for composite water and solute transport of roots that contain complex anatomical structures with heterogeneous cell layers.

  14. for water adaptation in Uganda

    International Development Research Centre (IDRC) Digital Library (Canada)

    Results 11 - 20 of 1643 ... Adapting to climate change in rural Colombia : the role of water ... in identifying and communicating the importance of specific areas within watersheds. ... project developed an information and communication system employing a mix of ... Using demand side management to adapt to water scarcity and ...

  15. Water productivity in rainfed agriculture; redrawing the rainbow of water to achieve food security in rainfed smallholder systems

    NARCIS (Netherlands)

    Makurira, H.

    2010-01-01

    The challenge of water scarcity as a result of insufficient seasonal rainfall and dry spell occurrences during cropping seasons is compounded by inefficient agricultural practices by smallholder farmers where insignificant soil and water conservation efforts are applied. The hypothesis of this

  16. The association between time scarcity, sociodemographic correlates and consumption of ultra-processed foods among parents in Norway: a cross-sectional study.

    Science.gov (United States)

    Djupegot, Ingrid Laukeland; Nenseth, Camilla Bengtson; Bere, Elling; Bjørnarå, Helga Birgit Torgeirsdotter; Helland, Sissel Heidi; Øverby, Nina Cecilie; Torstveit, Monica Klungland; Stea, Tonje Holte

    2017-05-15

    Use of ultra-processed foods has expanded rapidly over the last decades and high consumption has been positively associated with risk of e.g. overweight, obesity and type 2 diabetes. Ultra-processed foods offer convenience as they require minimal time for preparation. It is therefore reasonable to assume that such foods are consumed more often among people who experience time scarcity. The main aim of this study was to investigate the association between time scarcity and consumption of ultra-processed foods among parents of 2-year olds in Norway. A secondary aim was to investigate the association between sociodemographic correlates, weight status and consumption of ultra-processed foods. This cross-sectional study included 497 participants. Chi-square and cross tabulations were used to calculate proportions of high vs. low consumption of ultra-processed foods in relation to time scarcity, sociodemographic correlates and weight status. Binary logistic regression analyses were performed to test the relationship between independent variables and consumption of ultra-processed foods. Participants reporting medium and high time scarcity were more likely to have a high consumption of ultra-processed dinner products (OR = 3. 68, 95% CI = 2. 32-5.84 and OR = 3.10, 1.80-5.35, respectively) and fast foods (OR = 2.60, 1.62-4.18 and OR = 1.90, 1.08-3.32, respectively) compared to those with low time scarcity. Further, participants with medium time scarcity were more likely to have a high consumption of snacks and soft drinks compared to participants with low time scarcity (OR = 1.63, 1.06-2.49). Finally, gender, ethnicity, educational level, number of children in the household and weight status were identified as important factors associated with the consumption of certain types of ultra-processed foods. Results from the present study showed that time scarcity, various sociodemographic factors and weight status was associated with consumption of processed foods

  17. Forward osmosis :a new approach to water purification and desalination.

    Energy Technology Data Exchange (ETDEWEB)

    Miller, James Edward; Evans, Lindsey R.

    2006-07-01

    Fresh, potable water is an essential human need and thus looming water shortages threaten the world's peace and prosperity. Waste water, brackish water, and seawater have great potential to fill the coming requirements. Unfortunately, the ability to exploit these resources is currently limited in many parts of the world by both the cost of the energy and the investment in equipment required for purification/desalination. Forward (or direct) osmosis is an emerging process for dewatering aqueous streams that might one day help resolve this problem. In FO, water from one solution selectively passes through a membrane to a second solution based solely on the difference in the chemical potential (concentration) of the two solutions. The process is spontaneous, and can be accomplished with very little energy expenditure. Thus, FO can be used, in effect, to exchange one solute for a different solute, specifically chosen for its chemical or physical properties. For desalination applications, the salts in the feed stream could be exchanged for an osmotic agent specifically chosen for its ease of removal, e.g. by precipitation. This report summarizes work performed at Sandia National Laboratories in the area of FO and reviews the status of the technology for desalination applications. At its current state of development, FO will not replace reverse osmosis (RO) as the most favored desalination technology, particularly for routine waters. However, a future role for FO is not out of the question. The ability to treat waters with high solids content or fouling potential is particularly attractive. Although our analysis indicates that FO is not cost effective as a pretreatment for conventional BWRO, water scarcity will likely drive societies to recover potable water from increasingly marginal resources, for example gray water and then sewage. In this context, FO may be an attractive pretreatment alternative. To move the technology forward, continued improvement and

  18. Accès Eau: Enhanced Water Access for Bio-diversity Conservation ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Due to water scarcity, people living here are forced to spend much of their income buying ... researchers will assess current and future water quality and availability. ... of Water, regional and communal boards, and village water committees.

  19. Coconut water solutions for the preservation of spleen, ovary, and skin autotransplants in rats.

    Science.gov (United States)

    Schettino César, J M; Petroianu, A; de Souza Vasconcelos, L; Cardoso, V N; das Graças Mota, L; Barbosa, A J A; Vianna Soares, C D; Lima de Oliveira, A

    2015-03-01

    The purpose of this study was to evaluate the efficacy of coconut water in the preservation of spleen, ovary, and skin autotransplantations in rats. Fifty female Wistar rats were divided randomly into 5 groups on the basis of the following tissue graft preservation solutions: group 1, lactated Ringer's; group 2, Belzer's solution; group 3, mature coconut water; group 4, green coconut water; and group 5, modified green coconut water. In group 5, the green coconut water solution was modified to obtain the same electrolyte composition as Belzer's solution. The spleen, ovaries, and a skin fragment were removed from each animal, stored for 6 hours in one of the solutions, and then re-implanted. The recoveries of tissue functions were assessed 90 days after surgery by means of spleen scintigraphy and blood tests. The implanted tissues were collected for histological analyses. Higher immunoglobulin G levels were observed in the animals of group 5 than in the animals of group 1. Differences in follicle-stimulating hormone levels were observed between groups 1 and 2 (P coconut water group (P coconut water allowed for the preservation of the spleen, ovaries, and skin for 6 hours, and the normal functions of these tissues were maintained in rats. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Web-Gis Solutions Development for Citizens and Water Companies

    Science.gov (United States)

    Şercăianu, M.

    2013-05-01

    This paper describes the development of a web-GIS solution in which urban residents, from Buzau City, could be involved in decision-support process of water companies, in order to reduce water losses, by collecting information directly from citizens. In recent years, reducing material and economic losses, recorded in the entire municipal networks management process has become the main focus of public companies in Romania. Due to problems complexity that arise in collecting information from citizens and issues identified in urban areas, more analyzes were required related to web-GIS solutions used in areas such as local government, public utilities, environmental protection or financial management. Another important problem is the poor infrastructure development of spatial databases founded in public companies, and connection to web platforms. Developing the entire communication process between residents and municipal companies has required the use of concept "citizen-sensor" in the entire reporting process. Reported problems are related to water distribution networks with the possibility of covering the entire public utilities infrastructure.

  1. Cotransport of water and solutes in plant membranes: The molecular basis, and physiological functions

    Directory of Open Access Journals (Sweden)

    Lars H. Wegner

    2017-03-01

    Full Text Available Current concepts of plant membrane transport are based on the assumption that water and solutes move across membranes via separate pathways. According to this view, coupling between the fluxes is more or less exclusively constituted via the osmotic force that solutes exert on water transport. This view is questioned here, and experimental evidence for a cotransport of water and solutes is reviewed. The overview starts with ion channels that provide pathways for both ion and water transport, as exemplified for maxi K+ channels from cytoplasmic droplets of Chara corallina. Aquaporins are usually considered to be selective for water (just allowing for slippage of some other small, neutral molecules. Recently, however, a “dual function” aquaporin has been characterized from Arabidopsis thaliana (AtPIP2.1 that translocates water and at the same time conducts cations, preferentially Na+. By analogy with mammalian physiology, other candidates for solute-water flux coupling are cation-chloride cotransporters of the CCC type, and transporters of sugars and amino acids. The last part is dedicated to possible physiological functions that could rely on solute-water cotransport. Among these are the generation of root pressure, refilling of embolized xylem vessels, fast turgor-driven movements of leaves, cell elongation (growth, osmoregulation and adjustment of buoyancy in marine algae. This review will hopefully initiate further research in the field.

  2. Collection of Condensate Water: Global Potential and Water Quality Impacts

    KAUST Repository

    Loveless, Kolin Joseph

    2012-12-28

    Water is a valuable resource throughout the world, especially in hot, dry climates and regions experiencing significant population growth. Supplies of fresh water are complicated by the economic and political conditions in many of these regions. Technologies that can supply fresh water at a reduced cost are therefore becoming increasingly important and the impact of such technologies can be substantial. This paper considers the collection of condensate water from large air conditioning units as a possible method to alleviate water scarcity issues. Using the results of a climate model that tested data collected from 2000 to 2010, we have identified areas in the world with the greatest collection potential. We gave special consideration to areas with known water scarcities, including the coastal regions of the Arabian Peninsula, Sub-Saharan Africa and South Asia. We found that the quality of the collected water is an important criterion in determining the potential uses for this water. Condensate water samples were collected from a few locations in Saudi Arabia and detailed characterizations were conducted to determine the quality of this water. We found that the quality of condensate water collected from various locations and types of air conditioners was very high with conductivities reaching as low as 18 μS/cm and turbidities of 0. 041 NTU. The quality of the collected condensate was close to that of distilled water and, with low-cost polishing treatments, such as ion exchange resins and electrochemical processes, the condensate quality could easily reach that of potable water. © 2012 Springer Science+Business Media Dordrecht.

  3. Virtual scarce water embodied in inter-provincial electricity transmission in China

    International Nuclear Information System (INIS)

    Zhang, Chao; Zhong, Lijin; Liang, Sai; Sanders, Kelly T.; Wang, Jiao; Xu, Ming

    2017-01-01

    Highlights: • Virtual water in inter-provincial electricity transmission in China is calculated. • A Water Stress Index is used to reflect relative scarcity of water consumption. • West Inner Mongolia is the largest exporter of scarce water. • Hebei, Beijing and Shandong are the three largest receivers of scarce water. - Abstract: Intra-national electricity transmission drives virtual water transfer from electricity production regions to electricity consumption regions. In China, the water-intensive thermoelectric power industry is expanding quickly in many water-scarce energy production hubs in northern and northwestern provinces. This study constructed a node-flow model of inter-provincial electricity transmission to investigate the virtual water and scarcity-adjusted virtual water (or virtual scarce water) embodied in the electricity transmission network. It is revealed that total inter-provincial virtual water transfer embodied in electricity transmission was 623 million m"3 in 2011, equivalent to 12.7% of the national total thermoelectric water consumption. The top three largest single virtual water flows are West Inner Mongolia-to-Beijing (44 million m"3), East Inner Mongolia-to-Liaoning (39 million m"3), and Guizhou-to-Guangdong (37 million m"3). If the actual volumes of consumptive water use are translated into scarcity-adjusted water consumption based on Water Stress Index, West Inner Mongolia (81 million m"3), Shanxi (63 million m"3) and Ningxia (30 million m"3) become the top three exporters of virtual scarce water. Many ongoing long-distance electricity transmission projects in China will enlarge the scale of scarce water outflows from northwestern regions and potentially increase their water stress.

  4. Prolonged river water pollution due to variable-density flow and solute transport in the riverbed

    Science.gov (United States)

    Jin, Guangqiu; Tang, Hongwu; Li, Ling; Barry, D. A.

    2015-04-01

    A laboratory experiment and numerical modeling were used to examine effects of density gradients on hyporheic flow and solute transport under the condition of a solute pulse input to a river with regular bed forms. Relatively low-density gradients due to an initial salt pulse concentration of 1.55 kg m-3 applied in the experiment were found to modulate significantly the pore-water flow and solute transport in the riverbed. Such density gradients increased downward flow and solute transport in the riverbed by factors up to 1.6. This resulted in a 12.2% increase in the total salt transfer from the water column to the riverbed over the salt pulse period. As the solute pulse passed, the effect of the density gradients reversed, slowing down the release of the solute back to the river water by a factor of 3.7. Numerical modeling indicated that these density effects intensified as salt concentrations in the water column increased. Simulations further showed that the density gradients might even lead to unstable flow and result in solute fingers in the bed of large bed forms. The slow release of solute from the bed back to the river led to a long tail of solute concentration in the river water. These findings have implications for assessment of impact of pollution events on river systems, in particular, long-term effects on both the river water and riverbed due to the hyporheic exchange.

  5. MSWT-01, flood disaster water treatment solution from common ideas

    Science.gov (United States)

    Ananto, Gamawan; Setiawan, Albertus B.; Z, Darman M.

    2013-06-01

    Indonesia has a lot of potential flood disaster places with clean water problems faced. Various solution programs always initiated by Government, companies CSR, and people sporadical actions to provide clean water; with their advantages and disadvantages respectively. One solution is easy to operate for instance, but didn't provide adequate capacity, whereas the other had ideal performance but more costly. This situation inspired to develop a water treatment machine that could be an alternative favor. There are many methods could be choosed; whether in simple, middle or high technology, depends on water source input and output result quality. MSWT, Mobile Surface Water Treatment, is an idea for raw water in flood area, basically made for 1m3 per hour. This water treatment design adopted from combined existing technologies and related literatures. Using common ideas, the highlight is how to make such modular process put in compact design elegantly, and would be equipped with mobile feature due to make easier in operational. Through prototype level experiment trials, the machine is capable for producing clean water that suitable for sanitation and cooking/drinking purposes although using contaminated water input source. From the investment point of view, such machine could be also treated as an asset that will be used from time to time when needed, instead of made for project approach only.

  6. MSWT-01, flood disaster water treatment solution from common ideas

    International Nuclear Information System (INIS)

    Ananto, Gamawan; Setiawan, Albertus B; Darman M Z

    2013-01-01

    Indonesia has a lot of potential flood disaster places with clean water problems faced. Various solution programs always initiated by Government, companies CSR, and people sporadical actions to provide clean water; with their advantages and disadvantages respectively. One solution is easy to operate for instance, but didn't provide adequate capacity, whereas the other had ideal performance but more costly. This situation inspired to develop a water treatment machine that could be an alternative favor. There are many methods could be choosed; whether in simple, middle or high technology, depends on water source input and output result quality. MSWT, Mobile Surface Water Treatment, is an idea for raw water in flood area, basically made for 1m 3 per hour. This water treatment design adopted from combined existing technologies and related literatures. Using common ideas, the highlight is how to make such modular process put in compact design elegantly, and would be equipped with mobile feature due to make easier in operational. Through prototype level experiment trials, the machine is capable for producing clean water that suitable for sanitation and cooking/drinking purposes although using contaminated water input source. From the investment point of view, such machine could be also treated as an asset that will be used from time to time when needed, instead of made for project approach only.

  7. The Energy and Water Emergency Module; A containerized solution for meeting the energy and water needs in protracted displacement situations

    International Nuclear Information System (INIS)

    Fuso Nerini, Francesco; Valentini, Francesco; Modi, Anish; Upadhyay, Govinda; Abeysekera, Muditha; Salehin, Sayedus; Appleyard, Eduardo

    2015-01-01

    Highlights: • Energy and water services are a key need in long-term displacement situations. • At present electricity is supplied mostly with diesel generators and water is imported. • On-site electricity and clean water production can decrease costs and increase security. • The proposed containerized solution produces electricity and purifies water locally. • Model results show the cost-competitiveness and technical potential of the solution. - Abstract: The world has faced many natural and man-made disasters in the past few years, resulting in millions of people living in temporary camps across the globe. The energy and clean water needs of the relief operators in such emergency situations are primarily satisfied by diesel engine based generators and importing clean water to the site, in certain cases even for several years after the emergency. This approach results in problems such as low security of supply and high costs. Especially targeting the prolonged displacement situations, this paper presents an alternative solution – the Energy and Water Emergency Module. The proposed solution aims towards reducing the dependency on fossil fuel in prolonged emergency situations to a minimum while including local energy sources in the energy supply in a flexible and reliable way. The proposed module is built in a standard 20 ft container, and encompasses hybrid generation from solar, wind and biomass, with the possibility of using fossil sources too thanks to a dual fuel gas engine. The module can work both in grid connected and stand-alone mode. In addition the module includes a water purification unit to meet the water needs of displaced population. A demonstration unit was assembled at the Royal Institute of Technology in Stockholm during the year 2012 as a ‘concept proof’, and is now being tested and optimized for future deployment on the field. Preliminary testing and modelling shows that the proposed solution can reliably support emergency

  8. Resource scarcity drives lethal aggression among prehistoric hunter-gatherers in central California.

    Science.gov (United States)

    Allen, Mark W; Bettinger, Robert Lawrence; Codding, Brian F; Jones, Terry L; Schwitalla, Al W

    2016-10-25

    The origin of human violence and warfare is controversial, and some scholars contend that intergroup conflict was rare until the emergence of sedentary foraging and complex sociopolitical organization, whereas others assert that violence was common and of considerable antiquity among small-scale societies. Here we consider two alternative explanations for the evolution of human violence: (i) individuals resort to violence when benefits outweigh potential costs, which is likely in resource poor environments, or (ii) participation in violence increases when there is coercion from leaders in complex societies leading to group level benefits. To test these hypotheses, we evaluate the relative importance of resource scarcity vs. sociopolitical complexity by evaluating spatial variation in three macro datasets from central California: (i) an extensive bioarchaeological record dating from 1,530 to 230 cal BP recording rates of blunt and sharp force skeletal trauma on thousands of burials, (ii) quantitative scores of sociopolitical complexity recorded ethnographically, and (iii) mean net primary productivity (NPP) from a remotely sensed global dataset. Results reveal that sharp force trauma, the most common form of violence in the record, is better predicted by resource scarcity than relative sociopolitical complexity. Blunt force cranial trauma shows no correlation with NPP or political complexity and may reflect a different form of close contact violence. This study provides no support for the position that violence originated with the development of more complex hunter-gatherer adaptations in the fairly recent past. Instead, findings show that individuals are prone to violence in times and places of resource scarcity.

  9. Past, current and future water footprints, water scarcity and virtual water flows in China

    NARCIS (Netherlands)

    Zhuo, L.

    2016-01-01

    The increasing water consumption as a result of population growth and economic development, especially in fast growing developing countries, puts an increasing strain on the sustainable use of the globe’s finite freshwater resources and poses a key challenge for the future. The objective of the

  10. Water, solute and heat transport in the soil: the Australian connection

    Science.gov (United States)

    Knight, John

    2016-04-01

    The interest of Peter Raats in water, solute and heat transport in the soil has led to scientific and/or personal interactions with several Australian scientists such as John Philip, David Smiles, Greg Davis and John Knight. Along with John Philip and Robin Wooding, Peter was an early user of the Gardner (1958) linearised model of soil water flow, which brought him into competition with John Philip. I will discuss some of Peter's solutions relevant to infiltration from line and point sources, cavities and basins. A visit to Canberra, Australia in the early 1980s led to joint work on soil water flow, and on combined water and solute movement with David Smiles and others. In 1983 Peter was on the PhD committee for Greg Davis at the University of Wollongong, and some of the methods in his thesis 'Mathematical modelling of rate-limiting mechanisms of pyritic oxidation in overburden dumps' were later used by Peter's student Sjoerd van der Zee. David Smiles and Peter wrote a survey article 'Hydrology of swelling clay soils' in 2005. In the last decade Peter has been investigating the history of groundwater and vadose zone hydrology, and recently he and I have been bringing to light the largely forgotten work of Lewis Fry Richardson on finite difference solution of the heat equation, drainage theory, soil physics, and the soil-plant-atmosphere continuum.

  11. Can virtual water 'trade' reduce water scarcity in semi-arid countries? The case of Spain

    OpenAIRE

    Garrido, Alberto; Novo, Paula; Rodriguez Casado, Roberto; Varela-Ortega, Consuelo

    2009-01-01

    Agricultural trade is by far the largest vehicle to ‘move’ water virtually around the world. Observing that most countries import and export water embedded in the exchanged products, the objective of this study is to assess the virtual water ‘trade’ in Spain for the period 1997-2006. We differentiate between the green and blue components of virtual water from a hydrological and economic perspective. The combination of spatial and time dimensions offers a unique empirical setting to determine ...

  12. Composite Transport Model and Water and Solute Transport across Plant Roots: An Update

    Directory of Open Access Journals (Sweden)

    Yangmin X. Kim

    2018-02-01

    Full Text Available The present review examines recent experimental findings in root transport phenomena in terms of the composite transport model (CTM. It has been a well-accepted conceptual model to explain the complex water and solute flows across the root that has been related to the composite anatomical structure. There are three parallel pathways involved in the transport of water and solutes in roots – apoplast, symplast, and transcellular paths. The role of aquaporins (AQPs, which facilitate water flows through the transcellular path, and root apoplast is examined in terms of the CTM. The contribution of the plasma membrane bound AQPs for the overall water transport in the whole plant level was varying depending on the plant species, age of roots with varying developmental stages of apoplastic barriers, and driving forces (hydrostatic vs. osmotic. Many studies have demonstrated that the apoplastic barriers, such as Casparian bands in the primary anticlinal walls and suberin lamellae in the secondary cell walls, in the endo- and exodermis are not perfect barriers and unable to completely block the transport of water and some solute transport into the stele. Recent research on water and solute transport of roots with and without exodermis triggered the importance of the extension of conventional CTM adding resistances that arrange in series (epidermis, exodermis, mid-cortex, endodermis, and pericycle. The extension of the model may answer current questions about the applicability of CTM for composite water and solute transport of roots that contain complex anatomical structures with heterogeneous cell layers.

  13. Nanotechnology for potable water and general consumption in developing countries

    CSIR Research Space (South Africa)

    Hillie, T

    2012-08-01

    Full Text Available that affect people in developing and developed countries. The challenges outlined are; poor governance, water scarcity, sanitation and climate change. Nanotechnology is sufficiently advanced to help provide potable water and water for general assumption...

  14. 'Virtual Water' - Real People: Useful Concept or Prescriptive Tool?

    NARCIS (Netherlands)

    Warner, J.F.; Johnson, C.L.

    2007-01-01

    The 'virtual water' thesis is beginning to take centre stage in the water security global discourse. From its origins as a conceptual tool for countering the gloomy Malthusian ('water scarcity leads to water wars') argument, it is now increasingly seen as a serious prescriptive tool for the

  15. Improving water use efficiency in drylands

    NARCIS (Netherlands)

    Stroosnijder, L.; Moore, D.; Alharbi, A.; Argaman, E.; Elsen, van den H.G.M.

    2012-01-01

    Drylands cover 41% of the global terrestrial area and 2 billion people use it for grazing and cropping. Food security is low owing to institutional and technical constraints. Absolute water scarcity and also the inability of crops to use available water are major technical issues. Significant

  16. Virtual water trade: an assessment of water use efficiency in the international food trade

    Directory of Open Access Journals (Sweden)

    H. Yang

    2006-01-01

    Full Text Available Amid an increasing water scarcity in many parts of the world, virtual water trade as both a policy instrument and practical means to balance the local, national and global water budget has received much attention in recent years. Building upon the knowledge of virtual water accounting in the literature, this study assesses the efficiency of water use embodied in the international food trade from the perspectives of exporting and importing countries and at the global and country levels. The investigation reveals that the virtual water flows primarily from countries of high crop water productivity to countries of low crop water productivity, generating a global saving in water use. Meanwhile, the total virtual water trade is dominated by green virtual water, which constitutes a low opportunity cost of water use as opposed to blue virtual water. A sensitivity analysis, however, suggests high uncertainties in the virtual water accounting and the estimation of the scale of water saving. The study also raises awareness of the limited effect of water scarcity on the global virtual water trade and the negative implications of the global water saving for the water use efficiency and food security in importing countries and the environment in exporting countries. The analysis shows the complexity in evaluating the efficiency gains in the international virtual water trade. The findings of the study, nevertheless, call for a greater emphasis on rainfed agriculture to improve the global food security and environmental sustainability.

  17. Roles of surface water areas for water and solute cycle in Hanoi city, Viet Nam

    Science.gov (United States)

    Hayashi, Takeshi; Kuroda, Keisuke; Do Thuan, An; Tran Thi Viet, Nga; Takizawa, Satoshi

    2013-04-01

    Hanoi city, the capital of Viet Nam, has developed beside the Red river. Recent rapid urbanization of this city has reduced a large number of natural water areas such as lakes, ponds and canals not only in the central area but the suburban area. Contrary, the urbanization has increased artificial water areas such as pond for fish cultivation and landscaping. On the other hand, the urbanization has induced the inflow of waste water from households and various kinds of factories to these water areas because of delay of sewerage system development. Inflow of the waste water has induced eutrophication and pollution of these water areas. Also, there is a possibility of groundwater pollution by infiltration of polluted surface water. However, the role of these water areas for water cycle and solute transport is not clarified. Therefore, this study focuses on the interaction between surface water areas and groundwater in Hanoi city to evaluate appropriate land development and groundwater resource management. We are carrying out three approaches: a) understanding of geochemical characteristics of surface water and groundwater, b) monitoring of water levels of pond and groundwater, c) sampling of soil and pond sediment. Correlation between d18O and dD of precipitation (after GNIP), the Red River (after GNIR) and the water samples of this study showed that the groundwater is composed of precipitation, the Red River and surface water that has evaporation process. Contribution of the surface water with evaporation process was widely found in the study area. As for groundwater monitoring, the Holocene aquifers at two sites were in unconfined condition in dry season and the groundwater levels in the aquifer continued to increase through rainy season. The results of isotopic analysis and groundwater level monitoring showed that the surface water areas are one of the major groundwater sources. On the other hand, concentrations of dissolved Arsenic (filtered by 0.45um) in the pore

  18. Modeling water flow and solute transport in unsaturated zone inside NSRAWD project

    International Nuclear Information System (INIS)

    Constantin, A.; Diaconu, D.; Bucur, C.; Genty, A.

    2015-01-01

    The NSRAWD project (2010-2013) - Numerical Simulations for Radioactive Waste Disposal was initiated under a collaboration agreement between the Institute for Nuclear Research and the French Alternative Energies and Atomic Energy Commission (CEA). The context of the project was favorable to combine the modeling activities with an experimental part in order to improve and validate the numerical models used so far to simulate water flow and solute transport at Saligny site, Romania. The numerical models developed in the project were refined and validated on new hydrological data gathered between 2010-2012 by a monitoring station existent on site which performs automatic determination of soil water content and matrix potential, as well as several climate parameters (wind, temperature and precipitations). Water flow and solute transport was modeled in transient conditions, by taking into consideration, as well as neglecting the evapotranspiration phenomenon, on the basis of a tracer test launched on site. The determination of dispersivities for solute transport was targeted from the solute plume. The paper presents the main results achieved in the NSRAWD project related to water flow and solute transport in the unsaturated area of the Saligny site. The results indicated satisfactory predictions for the simulation of water flow in the unsaturated area, in steady state and transient conditions. In the case of tracer transport modeling, dispersivity coefficients could not be finally well fitted for the data measured on site and in order to obtain a realistic preview over the values of these parameters, further investigations are recommended. The article is followed by the slides of the presentation

  19. The impact of water scarcity on economic development initiatives#

    African Journals Online (AJOL)

    2009-06-29

    Jun 29, 2009 ... ably is a key issue. Water use cannot continue to grow at current rates indefinitely ..... Hotels. 319.8. 6.11. -0.19. -22.110. Transport services. 497.11. 6.11. -0.19 .... government budget is neutral, since all the revenue that is col-.

  20. A third-order asymptotic solution of nonlinear standing water waves in Lagrangian coordinates

    International Nuclear Information System (INIS)

    Yang-Yih, Chen; Hung-Chu, Hsu

    2009-01-01

    Asymptotic solutions up to third-order which describe irrotational finite amplitude standing waves are derived in Lagrangian coordinates. The analytical Lagrangian solution that is uniformly valid for large times satisfies the irrotational condition and the pressure p = 0 at the free surface, which is in contrast with the Eulerian solution existing under a residual pressure at the free surface due to Taylor's series expansion. In the third-order Lagrangian approximation, the explicit parametric equation and the Lagrangian wave frequency of water particles could be obtained. In particular, the Lagrangian mean level of a particle motion that is a function of vertical label is found as a part of the solution which is different from that in an Eulerian description. The dynamic properties of nonlinear standing waves in water of a finite depth, including particle trajectory, surface profile and wave pressure are investigated. It is also shown that the Lagrangian solution is superior to an Eulerian solution of the same order for describing the wave shape and the kinematics above the mean water level. (general)

  1. China's rising hydropower demand challenges water sector

    NARCIS (Netherlands)

    Liu, Junguo; Zhao, Dandan; Gerbens-Leenes, Winnie; Guan, Dabo

    2015-01-01

    Demand for hydropower is increasing, yet the water footprints (WFs) of reservoirs and hydropower, and their contributions to water scarcity, are poorly understood. Here, we calculate reservoir WFs (freshwater that evaporates from reservoirs) and hydropower WFs (the WF of hydroelectricity) in China

  2. Experimental investigation on an ammonia-water-lithium bromide absorption refrigeration system without solution pump

    International Nuclear Information System (INIS)

    Wu Tiehui; Wu Yuyuan; Yu Zhiqiang; Zhao Haichen; Wu Honglin

    2011-01-01

    Highlights: → An absorption refrigeration system with ternary solution of NH 3 -H 2 O-LiBr was set up. → Performance of the NH 3 -H 2 O-LiBr system without solution pump was firstly tested. → Generator pressure in NH 3 -H 2 O-LiBr system was lower than the one in NH 3 -H 2 O system. → The COP of the NH 3 -H 2 O-LiBr system was 51.89% larger than the NH 3 -H 2 O binary system. → The optimum mass fraction of LiBr of about 23% led to the largest COP of 0.401. -- Abstract: Experimental researches were carried out on a novel ammonia-water-lithium bromide ternary solution absorption refrigeration and air-conditioning system without solution pump and distillation equipments. The experiments were conducted by using three kinds of NH 3 -H 2 O binary solution and 17 kinds of ternary solution with difference in mass fraction of NH 3 and LiBr. The experimental results showed that the vapor pressure of the generator in the system would be lower than that of the generator in an ammonia-water absorption system. In above two situations the same ammonia mass fraction and the same solution temperature were kept. The amplitude of vapor pressure decrease of the system generator would be larger with the increase of the mass fraction of LiBr. The maximum amplitude of decrease would be of 50%. With the increase of the mass fraction of LiBr, the coefficient of performance (COP) of the system would be increased initially, and then decreased later when the mass fraction of LiBr exceeded a certain value. This value was about 23% for the solution with ammonia mass fraction of 50% and 55%, and about 30% for the solution with ammonia mass fraction of 60%. Compared with the ammonia-water system, the COP of the ternary solution system with the same mass fraction of ammonia would increase up to 30%. With the ammonia mass fraction of 60% and LiBr mass fraction of 30% applied, the COP of the ternary solution system was increased up to 0.401. It was 51.89% higher than that when binary

  3. Supercooling of aqueous dimethylsulfoxide solution at normal and high pressures: Evidence for the coexistence of phase-separated aqueous dimethylsulfoxide solutions of different water structures

    Science.gov (United States)

    Kanno, H.; Kajiwara, K.; Miyata, K.

    2010-05-01

    Supercooling behavior of aqueous dimethylsulfoxide (DMSO) solution was investigated as a function of DMSO concentration and at high pressures. A linear relationship was observed for TH (homogeneous ice nucleation temperature) and Tm (melting temperature) for the supercooling of aqueous DMSO solution at normal pressure. Analysis of the DTA (differential thermal analysis) traces for homogeneous ice crystallization in the bottom region of the TH curve for a DMSO solution of R =20 (R: moles of water/moles of DMSO) at high pressures supported the contention that the second critical point (SCP) of liquid water should exist at Pc2=˜200 MPa and at Tc2pressure of SCP, Tc2: temperature of SCP). The presence of two TH peaks for DMSO solutions (R =15, 12, and 10) suggests that phase separation occurs in aqueous DMSO solution (R ≤15) at high pressures and low temperatures (pressure dependence of the two TH curves for DMSO solutions of R =10 and 12 indicates that the two phase-separated components in the DMSO solution of R =10 have different liquid water structures [LDL-like and HDL-like structures (LDL: low-density liquid water, HDL: high-density liquid water)] in the pressure range of 120-230 MPa.

  4. Modelling global water stress of the recent past: on the relative importance of trends in water demand and climate variability

    NARCIS (Netherlands)

    Wada, Y.; Beek, L.P.H. van; Bierkens, M.F.P.

    2011-01-01

    During the past decades, human water use has more than doubled, yet available freshwater resources are finite. As a result, water scarcity has been prevalent in various regions of the world. Here, we present the first global assessment of past development of water stress considering not only climate

  5. Policy and Ethics In Agricultural and Ecological Water Uses.

    Science.gov (United States)

    Appelgren, Bo

    Agricultural water use accounts for about 70 percent of abstracted waters reaching 92 percent of the collective uses of all water resources when rain water is included. Agriculture is the traditional first sector and linked to a wide range of social, economic and cultural issues at local and global level that reach beyond the production of cheap food and industrial fibres. With the dominance in agricultural water uses and linkages with land use and soil conservation the sector is critical to the protection of global and local environmental values especially in sensitive dryland systems. Ethical principles related to development and nature conservation have traditionally been focused on sustainability imperatives building on precaution and preventive action or on indisputable natural systems values, but are by necessity turning more and more towards solidarity-based risk management approaches. Policy and management have in general failed to consider social dimensions with solidarity, consistency and realism for societal acceptance and practical application. As a consequence agriculture and water related land degradation is resulting in accelerated losses in land productivity and biodiversity in dryland and in humid eco- systems. Increasingly faced with the deer social consequences in the form of large man-made hydrological disasters and with pragmatic requirements driven by drastic increases in the related social cost the preferences are moving to short-term risk management approaches with civil protection objectives. Water scarcity assessment combined with crisis diagnoses and overriding statements on demographic growth, poverty and natural resources scarcity and deteriorating food security in developing countries have become common in the last decades. Such studies are increasingly questioned for purpose, ethical integrity and methodology and lack of consideration of interdependencies between society, economy and environment and of society's capacity to adapt to

  6. Water use in a heavily urbanized delta : scenarios and adaptation options for sectorial water use in the Pearl River Basin, China

    NARCIS (Netherlands)

    Yao, Mingtian

    2017-01-01

    Water use is increasing globally to meet the growing demand for food and industrial products, and the rising living standard. Water scarcity has been reported in many regions, questioning the long-term sustainability of water use. The objective of this thesis is to better understand sectorial

  7. Intermittent Domestic Water Supply: A Critical Review and Analysis of Causal-Consequential Pathways

    Directory of Open Access Journals (Sweden)

    S. E. Galaitsi

    2016-06-01

    Full Text Available Communities in many parts of the world, especially in developing countries, face obstacles in supplying continuous water to household consumers. Authorities often cite water scarcity as the cause, but we demonstrate that environmental constraints constitute only one aspect of a multi-dimensional problem. By asking what causes intermittent domestic water supply, this literature review (129 articles identifies 47 conditions of intermittent systems and the causal-consequential pathways between them that can reinforce intermittency. These pathways span several disciplines including engineering, government administration and anthropology, and when viewed together they (1 emphasize the human drivers of intermittency; (2 suggest generalized interventions; and (3 reveal a gap in the literature in terms of meaningful categorizations of the reliability of intermittent supplies. Based on the reliability of consumers’ water access, we propose three categories of intermittency—predictable, irregular, and unreliable—to facilitate comparisons between case studies and transfers of solutions.

  8. Supply chain strategies in an era of natural resource scarcity

    OpenAIRE

    Kalaitzi, Dimitra; Matopoulos, Aristides; Bourlakis, Michael; Tate, Wendy

    2018-01-01

    Purpose – The primary objective of this research is to explore the implications of natural resource scarcity for companies’ supply chain strategies. Design/methodology/approach – Drawing on resource dependence theory, a conceptual model is developed and validated through the means of exploratory research. The empirical work includes the assessment of qualitative data collected via 22 interviews representing 6 large multinational companies from the manufacturing sector. Findings – When the res...

  9. Analysis of the Numerical Solution of the Shallow Water Equations

    National Research Council Canada - National Science Library

    Hamrick, Thomas

    1997-01-01

    .... The two schemes are finite difference method (FDM) and the finite element method (FEM). After presenting the shallow water equations in several formulations, some examples will be presented. The use of the Fourier transform to find the solution of a semidiscrete analog of the shallow water equations is also demonstrated.

  10. Investigation of water and saline solution drops evaporation on a solid substrate

    Directory of Open Access Journals (Sweden)

    Orlova Evgenija G.

    2014-01-01

    Full Text Available Experimental investigation water and saline solution drops evaporation on a solid substrate made of anodized aluminum is presented in the paper. Parameters characterizing drop profile have been obtained (contact angle, contact diameter, height. The specific evaporation rate has been calculated from obtained values. It was found that water and saline solution drops with concentration up to 9.1% evaporate in the pinning mode. However, with increasing the salt concentration in the solution up to 16.7% spreading mode was observed. Two stages of drop evaporation depending on change of the evaporation rate have been separated.

  11. Using UCST ionic liquid as a draw solute in forward osmosis to treat high-salinity water

    KAUST Repository

    Zhong, Yujiang

    2015-12-09

    The concept of using a thermo-responsive ionic liquid (IL) with an upper critical solution temperature (UCST) as a draw solute in forward osmosis (FO) was successfully demonstrated here experimentally. A 3.2 M solution of protonated betaine bis(trifluoromethylsulfonyl)imide ([Hbet][Tf2N]) was obtained by heating and maintaining the temperature above 56°C. This solution successfully drew water from high-salinity water up to 3.0 M through FO. When the IL solution cooled to room temperature, it spontaneously separated into a water-rich phase and an IL-rich phase: the water-rich phase was the produced water that contained a low IL concentration, and the IL-rich phase could be used directly as the draw solution in the next cycle of the FO process. The thermal stability, thermal-responsive solubility and UV-vis absorption spectra of the IL were also studied in detail.

  12. Will water scarcity in semiarid regions limit hydraulic fracturing of shale plays?

    International Nuclear Information System (INIS)

    Scanlon, Bridget R; Reedy, Robert C; Philippe Nicot, Jean

    2014-01-01

    There is increasing concern about water constraints limiting oil and gas production using hydraulic fracturing (HF) in shale plays, particularly in semiarid regions and during droughts. Here we evaluate HF vulnerability by comparing HF water demand with supply in the semiarid Texas Eagle Ford play, the largest shale oil producer globally. Current HF water demand (18 billion gallons, bgal; 68 billion liters, bL in 2013) equates to ∼16% of total water consumption in the play area. Projected HF water demand of ∼330 bgal with ∼62 000 additional wells over the next 20 years equates to ∼10% of historic groundwater depletion from regional irrigation. Estimated potential freshwater supplies include ∼1000 bgal over 20 yr from recharge and ∼10 000 bgal from aquifer storage, with land-owner lease agreements often stipulating purchase of freshwater. However, pumpage has resulted in excessive drawdown locally with estimated declines of ∼100–200 ft in ∼6% of the western play area since HF began in 2009–2013. Non-freshwater sources include initial flowback water, which is ≤5% of HF water demand, limiting reuse/recycling. Operators report shifting to brackish groundwater with estimated groundwater storage of 80 000 bgal. Comparison with other semiarid plays indicates increasing brackish groundwater and produced water use in the Permian Basin and large surface water inputs from the Missouri River in the Bakken play. The variety of water sources in semiarid regions, with projected HF water demand representing ∼3% of fresh and ∼1% of brackish water storage in the Eagle Ford footprint indicates that, with appropriate management, water availability should not physically limit future shale energy production. (letter)

  13. The water needed to have Italians eat pasta and pizza

    NARCIS (Netherlands)

    Martinez-Aldaya, Maite; Hoekstra, Arjen Ysbert

    2009-01-01

    Problems of freshwater scarcity and pollution are related to water use by farmers, industries and households. The term ‘water users’ has always been interpreted as ‘those who apply water for some purpose’. As a result, governments responsible for water resources management have traditionally

  14. The association between time scarcity, sociodemographic correlates and consumption of ultra-processed foods among parents in Norway: a cross-sectional study

    Directory of Open Access Journals (Sweden)

    Ingrid Laukeland Djupegot

    2017-05-01

    Full Text Available Abstract Background Use of ultra-processed foods has expanded rapidly over the last decades and high consumption has been positively associated with risk of e.g. overweight, obesity and type 2 diabetes. Ultra-processed foods offer convenience as they require minimal time for preparation. It is therefore reasonable to assume that such foods are consumed more often among people who experience time scarcity. The main aim of this study was to investigate the association between time scarcity and consumption of ultra-processed foods among parents of 2-year olds in Norway. A secondary aim was to investigate the association between sociodemographic correlates, weight status and consumption of ultra-processed foods. Methods This cross-sectional study included 497 participants. Chi-square and cross tabulations were used to calculate proportions of high vs. low consumption of ultra-processed foods in relation to time scarcity, sociodemographic correlates and weight status. Binary logistic regression analyses were performed to test the relationship between independent variables and consumption of ultra-processed foods. Results Participants reporting medium and high time scarcity were more likely to have a high consumption of ultra-processed dinner products (OR = 3. 68, 95% CI = 2. 32–5.84 and OR = 3.10, 1.80–5.35, respectively and fast foods (OR = 2.60, 1.62–4.18 and OR = 1.90, 1.08–3.32, respectively compared to those with low time scarcity. Further, participants with medium time scarcity were more likely to have a high consumption of snacks and soft drinks compared to participants with low time scarcity (OR = 1.63, 1.06–2.49. Finally, gender, ethnicity, educational level, number of children in the household and weight status were identified as important factors associated with the consumption of certain types of ultra-processed foods. Conclusions Results from the present study showed that time scarcity, various sociodemographic

  15. Water movement through plant roots - exact solutions of the water flow equation in roots with linear or exponential piecewise hydraulic properties

    Science.gov (United States)

    Meunier, Félicien; Couvreur, Valentin; Draye, Xavier; Zarebanadkouki, Mohsen; Vanderborght, Jan; Javaux, Mathieu

    2017-12-01

    In 1978, Landsberg and Fowkes presented a solution of the water flow equation inside a root with uniform hydraulic properties. These properties are root radial conductivity and axial conductance, which control, respectively, the radial water flow between the root surface and xylem and the axial flow within the xylem. From the solution for the xylem water potential, functions that describe the radial and axial flow along the root axis were derived. These solutions can also be used to derive root macroscopic parameters that are potential input parameters of hydrological and crop models. In this paper, novel analytical solutions of the water flow equation are developed for roots whose hydraulic properties vary along their axis, which is the case for most plants. We derived solutions for single roots with linear or exponential variations of hydraulic properties with distance to root tip. These solutions were subsequently combined to construct single roots with complex hydraulic property profiles. The analytical solutions allow one to verify numerical solutions and to get a generalization of the hydric behaviour with the main influencing parameters of the solutions. The resulting flow distributions in heterogeneous roots differed from those in uniform roots and simulations led to more regular, less abrupt variations of xylem suction or radial flux along root axes. The model could successfully be applied to maize effective root conductance measurements to derive radial and axial hydraulic properties. We also show that very contrasted root water uptake patterns arise when using either uniform or heterogeneous root hydraulic properties in a soil-root model. The optimal root radius that maximizes water uptake under a carbon cost constraint was also studied. The optimal radius was shown to be highly dependent on the root hydraulic properties and close to observed properties in maize roots. We finally used the obtained functions for evaluating the impact of root maturation

  16. Water footprint analysis (hydrologic and economic) of the Guadiana river basin

    NARCIS (Netherlands)

    Martinez-Aldaya, Maite; Llamas, M.R.

    2009-01-01

    In most arid and semiarid countries, water resources management is an issue as important as controversial. Today most water resources experts admit that water conflicts are often not caused by physical water scarcity but poor water management or governance. The virtual-water concept, defined as the

  17. Obtention of hydrogels for use as water retainers in soil by gamma irradiation

    International Nuclear Information System (INIS)

    Burillo, G.; Ogawa, T.

    1981-01-01

    We have been studying for some time the radiation induced gelation of aqueous polyacrylamide solutions in order to clarify the relationships between the gel structure and gelation conditions. The application of hydrogels as water retainers has been reported previously by some workers and there exist some commercially produced hydrogels in the market, but their costs are not yet satisfactory for use on a large scale in the agricultural region in northern Mexico, where scarcity of water is always the serious problem. In this work, with an aim of obtaining hydrogels most economically, acrylamide, polyethylene oxide, and mixtures of water soluble polymers with acrylamide monomer, were irradiated in solid state under various conditions, in order to find the optimum conditions for gelation and to obtain the hydrogels most suitable as water retainers in soil. The relationships between the gelation, amount of water in the starting materials, molecular weights of polymers, effects of additives and the dose rates, were studied. (author)

  18. Multi-criteria decision analysis : A strategic planning tool for water loss management

    NARCIS (Netherlands)

    Mutikanga, H.E.; Sharma, S.K.; Vairavamoorthy, K.

    2011-01-01

    Water utilities particularly in the developing countries continue to operate with considerable inefficiencies in terms of water and revenue losses. With increasing water demand and scarcity, utilities require effective strategies for optimum use of available water resources. Diverse water loss

  19. The Modification of Sodium Polyacrylate Water Solution Cooling Properties by AL2O3

    Directory of Open Access Journals (Sweden)

    Wojciech Gęstwa

    2010-01-01

    Based on cooling curves, it can be concluded that for the water solution of sodium polyacrylate with AL2O3 nanoparticles in comparison to water and 10% polymer water solution lower cooling speed is obtained. The cooling medium containing nanoparticles provides lower cooling speed in the smallest surface austenite occurance (500–600 C in the charts of the CTP for most nonalloy structural steels and low-alloy steels. However lower cooling temperature at the beginning of martensitic transformation causes the formation of smaller internal stresses, leading to smaller dimensional changes and hardening deformation. For the quenching media the wetting angle was appointed by the drop-shape method. These studies showed the best wettability of polymer water solution (sodium polyacrylate with the addition of AL2O3 nanoparticles, whose wetting angle was about 65 degrees. Obtaining the smallest wetting angle for the medium containing nanoparticles suggests that the heat transfer to the cooling medium is larger. This allows slower cooling at the same time ensuring its homogeneity. The obtained values of wetting angle confirm the conclusions drawn on the basis of cooling curves and allowus to conclude that in the case of the heat transfer rate it will have a lower value than for water and 10% polymer water solution. In the research on hardened carburized steel samples C10 and 16MnCr5 surface hardness, impact strength and changes in the size of cracks in Navy C-ring sample are examined. On this basis of the obtained results it can be concluded that polymer water solution with nanoparticles allows to obtain a better impact strength at comparable hardness on the surface. Research on the dimensional changes on the basis of the sample of Navy C-ring also shows small dimensional changes for samples carburized and hardened in 10% polymer water solution with the addition of nanoparticles AL2O3. Smaller dimensional changes were obtained for samples of steel 16MnCr5 thanfar C10. The

  20. GlobWat – a global water balance model to assess water use in irrigated agriculture (discussion paper)

    NARCIS (Netherlands)

    Hoogeveen, J.; Faures, J.M.; Peiser, L.; Burke, J.; Van de Giesen, N.C.

    2015-01-01

    GlobWat is a freely distributed, global soil water balance model that is used by FAO to assess water use in irrigated agriculture; the main factor behind scarcity of freshwater in an increasing number of regions. The model is based on spatially distributed high resolution datasets that are

  1. Reclaiming Water from Wastewater using Forward Osmosis

    NARCIS (Netherlands)

    Lutchmiah, K.

    2014-01-01

    Water scarcity is a global issue and waste accumulation is a steadily growing one. The innovative Sewer Mining concept, described in this thesis, is an example of an integrated forward osmosis application which incorporates different technologies to attain one goal: water recovery from wastewater,

  2. Formation of H2O2 at UV-photolysis of water solutions of phenol

    International Nuclear Information System (INIS)

    Guliyeva, U.A.; Gurbanov, M.A.; Mahmudov, H.M.

    2013-01-01

    Non-traditional methods, based on application of ionizing and UV-radiation widely used for cleaning of water solutions from toxic substances, including phenols. These methods have simultaneously effect including of disinfection and chemical cleaning of water solutions from various industrial processes

  3. Quantifying the economic water savings benefit of water hyacinth (Eichhornia crassipes) control in the Vaalharts Irrigation Scheme

    OpenAIRE

    Arp, RS; Fraser, GCG; Hill, MP

    2017-01-01

    Global freshwater resources are threatened by an ever-growing population and continued economic development, highlighting the need for sustainable water management. Sustainable management must include the control of any additional factors that may aggravate water scarcity, such as invasive alien plants. Water hyacinth (Eichhornia crassipes), one of the world's most destructive invasive plants, presents a direct threat to economically productive water resources. Through high levels of evapotra...

  4. Simulations of water and solute movement in the buried waste repository at Vaalputs

    International Nuclear Information System (INIS)

    Hutson, J.L.

    1987-01-01

    A previous series of simulations examined the movement of water through trench cap configurations of several types. The objectives of this series are i) to extent the simulations from the surface to the bottom of the repository, accounting for the placement of drums, ii) to examine the magnitude and direction of water fluxes throughout this depth and iii) to simulate the movement of solutes, using various assumptions regarding solute adsorption. Two models were used. The first was an adaptation of a solute transport model which incorporates the transient water flow model used in previous simulations. This was used primarily to estimate the likely water fluxes in the drum placement region. Since it requires large amounts of computer time this model was used to simulate periods of one or two years only. The second model was a very simple steady state solute transport model which was used to simulate Cs distribution after a 100 year period, using flux data obtained from the transient model simulations. The most important conclusion reached from this series of simulations is that the movement of Cs in the soil under the likely water regime is extremely slow. 'Worst case' situations were simulated. Some of these situations are unlikely in reality but provide a useful indication of the rates of movement of solute under various conditions. For this reason it was assumed that plants were absent in cases when maximum percolation was simulated and present when maximum upward flow was simulated. In no case was a 'wick' (a textural barrier to unsaturated water flow) assumed to be present

  5. WEB-GIS SOLUTIONS DEVELOPMENT FOR CITIZENS AND WATER COMPANIES

    Directory of Open Access Journals (Sweden)

    M. Şercăianu

    2013-05-01

    Full Text Available This paper describes the development of a web-GIS solution in which urban residents, from Buzau City, could be involved in decision-support process of water companies, in order to reduce water losses, by collecting information directly from citizens. In recent years, reducing material and economic losses, recorded in the entire municipal networks management process has become the main focus of public companies in Romania. Due to problems complexity that arise in collecting information from citizens and issues identified in urban areas, more analyzes were required related to web-GIS solutions used in areas such as local government, public utilities, environmental protection or financial management. Another important problem is the poor infrastructure development of spatial databases founded in public companies, and connection to web platforms. Developing the entire communication process between residents and municipal companies has required the use of concept "citizen-sensor" in the entire reporting process. Reported problems are related to water distribution networks with the possibility of covering the entire public utilities infrastructure.

  6. Agricultural water use, crop water footprints and irrigation strategies in the seasonally dry Guanacaste region in Costa Rica

    Science.gov (United States)

    Morillas, Laura; Johnson, Mark S.; Hund, Silja V.; Steyn, Douw G.

    2017-04-01

    Agriculture is the main productive sector and a major water-consuming sector in the seasonally-dry Guanacaste region of north-western Costa Rica. Agriculture in the region is intensifying at the same time that seasonal water scarcity is increasing. The climate of this region is characterized by a prolonged dry season from December to March, followed by a bimodal wet season from April to November. The wet season has historically experienced periodic oscillations in rainfall timing and amounts resulting from variations of several large-scale climatic features (El Niño Southern Oscillation, the Pacific Decadal Oscillation, the Atlantic Multidecadal Oscillation and the North Atlantic Oscillation). However, global circulation models now project more recurrent variations in total annual rainfall, changes in rainfall temporal distribution, and increased temperatures in this region. This may result in a lengthening of the dry season and an increase in water scarcity and water-related conflicts as water resources are already limited and disputed in this area. In fact, this region has just undergone a four-year drought over the 2012-2015 period, which has intensified water related conflicts and put agricultural production at risk. In turn, the recent drought has also increased awareness of the local communities regarding the regional threat of water scarcity and the need of a regional water planning. The overall goal of this research is to generate data to characterize water use by the agricultural sector in this region and asses its sustainability in the regional context. Towards this goal, eddy-covariance flux towers were deployed on two extensive farms growing regionally-representative crops (melon/rice rotation and sugarcane) to evaluate, monitor and quantify water use in large-scale farms. The two identically instrumented stations provide continuous measurements of evapotranspiration and CO2 fluxes, and are equipped with additional instrumentation to monitor

  7. Highly Water-Soluble Magnetic Nanoparticles as Novel Draw Solutes in Forward Osmosis for Water Reuse

    KAUST Repository

    Ling, Ming Ming

    2010-06-16

    Highly hydrophilic magnetic nanoparticles have been molecularly designed. For the first time, the application of highly water-soluble magnetic nanoparticles as novel draw solutes in forward osmosis (FO) was systematically investigated. Magnetic nanoparticles functionalized by various groups were synthesized to explore the correlation between the surface chemistry of magnetic nanoparticles and the achieved osmolality. We verified that magnetic nanoparticles capped with polyacrylic acid can yield the highest driving force and subsequently highest water flux among others. The used magnetic nanoparticles can be captured by the magnetic field and recycled back into the stream as draw solutes in the FO process. In addition, magnetic nanoparticles of different diameters were also synthesized to study the effect of particles size on FO performance. We demonstrate that the engineering of surface hydrophilicity and magnetic nanoparticle size is crucial in the application of nanoparticles as draw solutes in FO. It is believed that magnetic nanoparticles will soon be extensively used in this area. © 2010 American Chemical Society.

  8. Long-term water demand for electricity, industry and households

    NARCIS (Netherlands)

    Bijl, David L.; Bogaart, Patrick W.; Kram, Tom; de Vries, Bert J M; van Vuuren, Detlef P.

    2016-01-01

    Better water demand projections are needed in order to better assess water scarcity. The focus in this paper is on non-agricultural water demand, as this is the fastest-growing and least well-modelled demand component. We describe an end use-oriented model for future water demand in the electricity,

  9. Capacity adequacy in power markets facing energy transition: A comparison of scarcity pricing and capacity mechanism

    International Nuclear Information System (INIS)

    Petitet, Marie; Finon, Dominique; Janssen, Tanguy

    2017-01-01

    This article analyses how a capacity mechanism can address security of supply objectives in a power market undergoing an energy transition that combines energy efficiency efforts to stabilise demand and a rapid increase in the proportion of renewables. To analyse this situation, power markets are simulated over the long term with a System Dynamics model integrating new investment and closure decisions. This last trait is relevant to studying investment in power generation in mature markets undergoing policy shocks. The energy-only market design with a price cap, with and without a capacity mechanism, is compared to scarcity pricing in two investment behaviour scenarios with and without risk aversion. The results show that the three market designs lead to different levels of risk for peaking unit investment and results thus differ according to which risk aversion hypothesis is adopted. Assuming a risk-neutral investor, the results indicate that compared to an energy-only market with a price cap at 3 000 €/MWh, an energy-only market with scarcity pricing and the market design with a capacity mechanism are two efficient options to reach similar levels of load loss. But under the hypothesis of risk aversion, the results highlight the advantage of the capacity mechanism over scarcity pricing. - Highlights: • Investment decisions in electricity markets are simulated by a System Dynamics model. • Capacity mechanism enhances capacity adequacy compared to the energy-only market. • With no risk aversion, capacity mechanism or scarcity pricing provide similar results. • With risk aversion, capacity mechanism appears to be the preferable market design.

  10. Water scarcity management and agricultural production (What we can do to produce more with less water)

    OpenAIRE

    Girona i Gomis, Joan

    2014-01-01

    Crop seasonal sensitivity to water stress is concerned with how to control water stress levels to optimise yield or profitability. It deals with when we can reduce irrigation and impose moderate water deficits without affecting our target, and when we can apply water to avoid too much stress.

  11. Renewable Energies and Water Security: Thermo Solar Energy as an Alternative for Seawater Desalination in North Africa and the Middle East

    Directory of Open Access Journals (Sweden)

    Luiz Enrique Vieira de Souza

    2016-04-01

    Full Text Available Climate change-related events, added to estimations about economical and population growth – tend to aggravate water scarcity, which is already affecting almost every country in the North of Africa and the Middle East. Based on a critical analysis of the “ACQUA-CSP” report, we discuss the initiatives devoted to the mitigation of water stress in these regions, with an emphasis on the seawater desalination processes. Since existing desalination plants are currently powered by fossil fuels, the use of thermo solar energy will be introduced as a sustainable strategy for the increase of water supply. We conclude that, in order to achieve the successful management of water resources, engineering and infrastructure solutions must be oriented by democratic institutions able to mediate conflicts over the allocation of water resources.

  12. Two-dimensional finite element solution for the simultaneous transport of water and solutes through a nonhomogeneous aquifer under transient saturated unsaturated flow conditions

    International Nuclear Information System (INIS)

    Gureghian, A.B.

    1979-01-01

    A mathematical model of ground water transport through an aquifer is presented. The solute of interest is a metal tracer or radioactive material which may undergo decay through a sorbing unconfined aquifer. The subject is developed under the following headings: flow equation, solute equation, boundary conditions, finite element formulation, element formulation, solution scheme (flow equation, solute equation), results and discussions, water movement in a ditch drained aquifer under transient state, water and solute movement in a homogeneous and unsaturated soil, transport of 226 Ra in nonhomogeneous aquifer, tailings pond lined, and tailings pond unlined. It is concluded that this mathematical model may have a wide variety of applications. The uranium milling industry may find it useful to evaluate the hydrogeological suitability of their disposal sites. It may prove suited for the design of clay disposal ponds destined to hold hazardous liquids. It may also provide a means of estimating the long-term impact of radionuclides or other pollutants on the quality of ground water. 31 references, 9 figures, 3 tables

  13. Multiobjective optimization of urban water resources: Moving toward more practical solutions

    Science.gov (United States)

    Mortazavi, Mohammad; Kuczera, George; Cui, Lijie

    2012-03-01

    The issue of drought security is of paramount importance for cities located in regions subject to severe prolonged droughts. The prospect of "running out of water" for an extended period would threaten the very existence of the city. Managing drought security for an urban water supply is a complex task involving trade-offs between conflicting objectives. In this paper a multiobjective optimization approach for urban water resource planning and operation is developed to overcome practically significant shortcomings identified in previous work. A case study based on the headworks system for Sydney (Australia) demonstrates the approach and highlights the potentially serious shortcomings of Pareto optimal solutions conditioned on short climate records, incomplete decision spaces, and constraints to which system response is sensitive. Where high levels of drought security are required, optimal solutions conditioned on short climate records are flawed. Our approach addresses drought security explicitly by identifying approximate optimal solutions in which the system does not "run dry" in severe droughts with expected return periods up to a nominated (typically large) value. In addition, it is shown that failure to optimize the full mix of interacting operational and infrastructure decisions and to explore the trade-offs associated with sensitive constraints can lead to significantly more costly solutions.

  14. Hydrostatic pressure effect on PNIPAM cononsolvency in water-methanol solutions.

    Science.gov (United States)

    Pica, Andrea; Graziano, Giuseppe

    2017-12-01

    When methanol is added to water at room temperature and 1atm, poly (N-isopropylacrylamide), PNIPAM, undergoes a coil-to-globule collapse transition. This intriguing phenomenon is called cononsolvency. Spectroscopic measurements have shown that application of high hydrostatic pressure destroys PNIPAM cononsolvency in water-methanol solutions. We have developed a theoretical approach that identifies the decrease in solvent-excluded volume effect as the driving force of PNIPAM collapse on increasing the temperature. The same approach indicates that cononsolvency, at room temperature and P=1atm, is caused by the inability of PNIPAM to make all the attractive energetic interactions that it could be engaged in, due to competition between water and methanol molecules. The present analysis suggests that high hydrostatic pressure destroys cononsolvency because the coil state becomes more compact, and the quantity measuring PNIPAM-solvent attractions increases in magnitude due to the solution density increase, and the ability of small water molecules to substitute methanol molecules on PNIPAM surface. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Structure of fullerene aggregates in pyridine/water solutions by small-angle neutron scattering

    International Nuclear Information System (INIS)

    Aksenov, V.L.; Belushkin, A.V.; Avdeev, M.V.; Rosta, L.; Mihailovic, D.; Mrzel, A.; Serdyuk, I.N.; Timchenko, A.A.

    2001-01-01

    Results of small-angle neutron scattering experiments on fullerenes (C 60 ) in pyridine/water solutions are reported. They confirm conclusions of the previous studies, in particular, dynamic light scattering experiments. Aggregates with characteristic radius of about 20 nm are formed in the solutions. The contrast variation using different combinations of protonated/deuterated components (water and pyridine) of the solutions points to the small pyridine content inside the aggregates. This fact testifies that the aggregates consist of a massive fullerene core covered by a thin pyridine shell

  16. Osmotic power generation by pressure retarded osmosis using seawater brine as the draw solution and wastewater retentate as the feed

    KAUST Repository

    Wan, Chunfeng

    2015-04-01

    Pressure retarded osmosis (PRO) is a promising technology to produce clean and sustainable osmotic energy from salinity gradient. Fresh water is of scarcity in Singapore; however, alternative sources of feed solutions and draw solutions are well explored. For the first time, seawater brine from the TuaSpring desalination plant and wastewater retentate from the NEWater plant were used in a state-of-the-art TFC-PES hollow fiber membrane PRO process. The highest power densities obtained with 1 M NaCl solution and seawater brine were 27.0 W/m2 and 21.1 W/m2 at 20bar, respectively, when deionized (DI) water was used as the feed solution. However, the highest power density dropped to 4.6W/m2 when wastewater retentate was used as the feed solution. Fouling on the porous substrate induced by the wastewater retentate was identified as the main cause of the reduction in the power densities, while the negative effects of seawater brine on the PRO performances were negligible. Both ultrafiltration (UF) and nanofiltration (NF) pretreatment were employed to mitigate fouling from the wastewater retentate, and the power densities were boosted to 6.6W/m2 and 8.9W/m2, respectively, beyond the power density of 5W/m2 proposed by Statkraft for the PRO process to be economical.

  17. Osmotic power generation by pressure retarded osmosis using seawater brine as the draw solution and wastewater retentate as the feed

    KAUST Repository

    Wan, Chunfeng; Chung, Neal Tai-Shung

    2015-01-01

    Pressure retarded osmosis (PRO) is a promising technology to produce clean and sustainable osmotic energy from salinity gradient. Fresh water is of scarcity in Singapore; however, alternative sources of feed solutions and draw solutions are well explored. For the first time, seawater brine from the TuaSpring desalination plant and wastewater retentate from the NEWater plant were used in a state-of-the-art TFC-PES hollow fiber membrane PRO process. The highest power densities obtained with 1 M NaCl solution and seawater brine were 27.0 W/m2 and 21.1 W/m2 at 20bar, respectively, when deionized (DI) water was used as the feed solution. However, the highest power density dropped to 4.6W/m2 when wastewater retentate was used as the feed solution. Fouling on the porous substrate induced by the wastewater retentate was identified as the main cause of the reduction in the power densities, while the negative effects of seawater brine on the PRO performances were negligible. Both ultrafiltration (UF) and nanofiltration (NF) pretreatment were employed to mitigate fouling from the wastewater retentate, and the power densities were boosted to 6.6W/m2 and 8.9W/m2, respectively, beyond the power density of 5W/m2 proposed by Statkraft for the PRO process to be economical.

  18. Nanofiltration: ion exchange system for effective surfactant removal from water solutions

    Directory of Open Access Journals (Sweden)

    I. Kowalska

    2014-12-01

    Full Text Available A system combining nanofiltration and ion exchange for highly effective separation of anionic surfactant from water solutions was proposed. The subjects of the study were nanofiltration polyethersulfone membranes and ion-exchange resins differing in type and structure. The quality of the treated solution was affected by numerous parameters, such as quality of the feed solution, membrane cut-off, resin type, dose and the solution contact time with the resin. A properly designed purification system made it possible to reduce the concentration of anionic surfactant below 1 mg L-1 from feed solutions containing surfactant in concentrations above the CMC value.

  19. Communication: Modeling of concentration dependent water diffusivity in ionic solutions: Role of intermolecular charge transfer

    Energy Technology Data Exchange (ETDEWEB)

    Yao, Yi; Berkowitz, Max L., E-mail: maxb@unc.edu, E-mail: ykanai@unc.edu; Kanai, Yosuke, E-mail: maxb@unc.edu, E-mail: ykanai@unc.edu [Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599 (United States)

    2015-12-28

    The translational diffusivity of water in solutions of alkali halide salts depends on the identity of ions, exhibiting dramatically different behavior even in solutions of similar salts of NaCl and KCl. The water diffusion coefficient decreases as the salt concentration increases in NaCl. Yet, in KCl solution, it slightly increases and remains above bulk value as salt concentration increases. Previous classical molecular dynamics simulations have failed to describe this important behavior even when polarizable models were used. Here, we show that inclusion of dynamical charge transfer among water molecules produces results in a quantitative agreement with experiments. Our results indicate that the concentration-dependent diffusivity reflects the importance of many-body effects among the water molecules in aqueous ionic solutions. Comparison with quantum mechanical calculations shows that a heterogeneous and extended distribution of charges on water molecules around the ions due to ion-water and also water-water charge transfer plays a very important role in controlling water diffusivity. Explicit inclusion of the charge transfer allows us to model accurately the difference in the concentration-dependent water diffusivity between Na{sup +} and K{sup +} ions in simulations, and it is likely to impact modeling of a wide range of systems for medical and technological applications.

  20. Kinetics of phenol degradation in water solutions under gamma-irradiation

    International Nuclear Information System (INIS)

    Guliyeva, U.A.; Gurbanov, M.A.; Abdullayev, E.T.

    2014-01-01

    Full text : In this work the chemical oxygen demand and change of phenol concentration at the radiolysis of aqueous solutions of phenol was studied. Irradiation conducted under gamma-irradiation of 60Co at static conditions and at room temperature. The main component is water, therefore the radiolysis process of water plays an important role in radiolytic degradation of phenol

  1. Seawater desalination using small and medium light water reactors

    International Nuclear Information System (INIS)

    Shimamura, Kazuo

    2000-01-01

    Water is an essential substance for sustaining human life. As Japan is an island country, surrounded by the sea and having abundant rainfall, there is no scarcity of water in daily life except during abnormally dry summers or after disasters such as earthquakes. Consequently, there is hardly any demand for seawater desalination plants except on remote islands, Okinawa and a part of Kyushu. However, the IAEA has forecast a scarcity of drinking water in developing countries at the beginning of the 21st century. Further, much more irrigation water will be required every year to prevent cultivated areas from being lost by desertification. If developing countries were to produce such water by seawater desalination using current fossil fuel energy technology, it would cause increased air pollution and global warming. This paper explains the concept of seawater desalination plants using small and medium water reactors (hereinafter called 'nuclear desalination'), as well as important matters regarding the export nuclear desalination plants to developing countries. (author)

  2. Removal of Metal Nanoparticles Colloidal Solutions by Water Plants

    Science.gov (United States)

    Olkhovych, Olga; Svietlova, Nataliia; Konotop, Yevheniia; Karaushu, Olena; Hrechishkina, Svitlana

    2016-11-01

    The ability of seven species of aquatic plants ( Elodea canadensis, Najas guadelupensis, Vallisneria spiralis L., Riccia fluitans L., Limnobium laevigatum, Pistia stratiotes L., and Salvinia natans L.) to absorb metal nanoparticles from colloidal solutions was studied. It was established that investigated aquatic plants have a high capacity for removal of metal nanoparticles from aqueous solution (30-100%) which indicates their high phytoremediation potential. Analysis of the water samples content for elements including the mixture of colloidal solutions of metal nanoparticles (Mn, Cu, Zn, Ag + Ag2O) before and after exposure to plants showed no significant differences when using submerged or free-floating hydrophytes so-called pleuston. However, it was found that the presence of submerged hydrophytes in aqueous medium ( E. canadensis, N. guadelupensis, V. spiralis L., and R. fluitans L.) and significant changes in the content of photosynthetic pigments, unlike free-floating hydrophytes ( L. laevigatum, P. stratiotes L., S. natans L.), had occur. Pleuston possesses higher potential for phytoremediation of contaminated water basins polluted by metal nanoparticles. In terms of removal of nanoparticles among studied free-floating hydrophytes, P. stratiotes L. and S. natans L. deserve on special attention.

  3. Water as a solute in aprotic dipolar solvents. 2. D2O-H2O solute isotope effects on the enthalpy of water dissolution in nitromethane, acetonitrile and propylene carbonate at 298.15 K

    International Nuclear Information System (INIS)

    Ivanov, Evgeniy V.; Smirnov, Valeriy I.

    2010-01-01

    The enthalpies of solution of ordinary (H 2 O) and heavy (D 2 O) water in nitromethane (NM), acetonitrile (ACN) and propylene carbonate (PC) were measured calorimetrically at 298.15 K. Standard (at the infinite dilution) enthalpies of solution and solvation, along with D 2 O-H 2 O solute isotope effects on the quantities in question, were calculated. The enthalpies of solution of water H/D isotopologues were found to be positive by sign and substantially increasing in magnitude on going from ACN and PC to NM, whereas the corresponding positive solute H/D isotope effect changes in a consequence: NM > ACN > PC. The qualitative interrelations between the enthalpy-isotopic effect of dissolution (solvation) of water and the electron-accepting/donating ability of aprotic dipolar solvent (within a series considered) were found.

  4. Enthalpy of solution of potassium iodide in the water-formamide-dimethyl sulfoxide mixtures

    International Nuclear Information System (INIS)

    Belova, L.N.; Solov'ev, S.N.; Vorob'ev, A.F.

    1985-01-01

    Solution enthalpies are measured for potassium iodide in the water-formamide-dimethyl sulfoxide mixtures in a sealed oscillating calorimeter with an isothermal shell at a constant water molar fraction equal to 0.3; 0.5 and 0.7 at 298.15 K. A diagram of the dependence of solution enthalpies on the of mixed solvent composition is plotted. Deviations of experimental solution enthalpies from the calculated ones are negative over the entire concentration range studied, which testifies to the preferable solvatation of electrolyte by the formid and dimthyl sulfoxide molecules

  5. CHAPTER 6. Biomimetic Materials for Efficient Atmospheric Water Collection

    KAUST Repository

    Zhang, Lianbin; Wang, Peng

    2016-01-01

    Water scarcity is a severe problem in semi-arid desert regions, land-scarce countries and in countries with high levels of economic activity. In these regions, the collection of atmospheric water - for example, fog - is recognized as an important

  6. Deep subsurface drip irrigation using coal-bed sodic water: part I. water and solute movement

    Science.gov (United States)

    Bern, Carleton R.; Breit, George N.; Healy, Richard W.; Zupancic, John W.; Hammack, Richard

    2013-01-01

    Water co-produced with coal-bed methane (CBM) in the semi-arid Powder River Basin of Wyoming and Montana commonly has relatively low salinity and high sodium adsorption ratios that can degrade soil permeability where used for irrigation. Nevertheless, a desire to derive beneficial use from the water and a need to dispose of large volumes of it have motivated the design of a deep subsurface drip irrigation (SDI) system capable of utilizing that water. Drip tubing is buried 92 cm deep and irrigates at a relatively constant rate year-round, while evapotranspiration by the alfalfa and grass crops grown is seasonal. We use field data from two sites and computer simulations of unsaturated flow to understand water and solute movements in the SDI fields. Combined irrigation and precipitation exceed potential evapotranspiration by 300-480 mm annually. Initially, excess water contributes to increased storage in the unsaturated zone, and then drainage causes cyclical rises in the water table beneath the fields. Native chloride and nitrate below 200 cm depth are leached by the drainage. Some CBM water moves upward from the drip tubing, drawn by drier conditions above. Chloride from CBM water accumulates there as root uptake removes the water. Year over year accumulations indicated by computer simulations illustrate that infiltration of precipitation water from the surface only partially leaches such accumulations away. Field data show that 7% and 27% of added chloride has accumulated above the drip tubing in an alfalfa and grass field, respectively, following 6 years of irrigation. Maximum chloride concentrations in the alfalfa field are around 45 cm depth but reach the surface in parts of the grass field, illustrating differences driven by crop physiology. Deep SDI offers a means of utilizing marginal quality irrigation waters and managing the accumulation of their associated solutes in the crop rooting zone.

  7. Degradation of nicotine in water solutions using a water falling film DBD plasma reactor: direct and indirect treatment

    Science.gov (United States)

    Krupež, Jelena; Kovačević, Vesna V.; Jović, Milica; Roglić, Goran M.; Natić, Maja M.; Kuraica, Milorad M.; Obradović, Bratislav M.; Dojčinović, Biljana P.

    2018-05-01

    Nicotine degradation efficiency in water solutions was studied using a water falling film dielectric barrier discharge (DBD) reactor. Two different treatments were applied: direct treatment, the recirculation of the solution through a DBD reactor, and indirect treatment, the bubbling of the gas from the DBD through the porous filter into the solution. In a separate experiment, samples spiked with nicotine in double distilled water (ddH2O) and tap water were studied and compared after both treatments. Furthermore, the effects of the homogeneous catalysts, namely, Fe2+ and H2O2, were tested in the direct treatment. Nicotine degradation efficiency was determined using high-performance liquid chromatography. A degradation efficiency of 90% was achieved after the direct treatment catalyzed with Fe2+. In order to analyze the biodegradability, mineralization level, and toxicity of the obtained solutions, after all degradation procedures the values of the following parameters were determined: total organic carbon, chemical oxygen demand, biochemical oxygen demand, and the Artemia salina toxicity test. The results showed that an increase in biodegradability was obtained, after all treatments. A partial nicotine mineralization was achieved and the mortality of the A. salina organism decreased in the treated samples, all of which indicating the effective removal of nicotine and the creation of less toxic solutions. Nicotine degradation products were identified using ultrahigh-performance liquid chromatography coupled with a linear ion trap Orbitrap hybrid mass spectrometer and a simple mechanism for oxidative degradation of nicotine in non-thermal plasma systems is proposed.

  8. How Do You Get Your Water? Structural Violence Pedagogy and Women's Access to Water

    Science.gov (United States)

    Keefer, Natalie; Bousalis, Rina

    2015-01-01

    In many parts of the less developed world it is women and girls who are expected to provide water for their family. Frequently, young girls are unable to complete school or get jobs because water scarcity means they are forced to walk miles daily to obtain this most basic need. Since the creation of the United Nations Millennium Goals, progress…

  9. Flow friction and heat transfer of ethanol–water solutions through silicon microchannels

    International Nuclear Information System (INIS)

    Wu Huiying; Wu Xinyu; Wei Zhen

    2009-01-01

    An experimental investigation was performed on the flow friction and convective heat transfer characteristics of the ethanol–water solutions flowing through five sets of trapezoidal silicon microchannels having hydraulic diameters ranging from 141.7 µm to 268.6 µm. Four kinds of ethanol–water solutions with the ethanol volume concentrations ranging from 0 to 0.8 were tested under different flow and heating conditions. It was found that the cross-sectional geometric parameters had great effect on the flow friction and heat transfer, and the microchannels with a larger W b /W t (bottom width-to-top width ratio) and a smaller H/W t (depth-to-top width ratio) usually had a larger friction constant and a higher Nusselt number. Entrance effects were significant for the flow friction and heat transfer in silicon microchannels, and decreased with the increase of dimensionless hydrodynamic length L and dimensionless thermal length L + h . When L > 1.0, the hydrodynamic entrance effect on the flow friction was ignorable. For the developed laminar flow in silicon microchannels, the Navier–Stokes equation was applicable. It was also found that the volume concentrations had different effects on the flow friction and heat transfer. Within the experimental range, the effect of volume concentrations on the flow friction was ignorable, and the friction constants of the ethanol–water solutions having different concentrations were the same as those of the pure water. However, volume concentrations had great effect on the convection heat transfer in silicon microchannels. With the increase of the volume concentrations, the Nusselt number of the ethanol–water solutions increased obviously, which was attributed to the combination effect of the increase in the Prantdtl number as well as the volatilization effect of the ethanol. Based on the experimental data, the dimensionless correlations for the flow friction and heat transfer of the ethanol–water solutions in the silicon

  10. Water movement through plant roots – exact solutions of the water flow equation in roots with linear or exponential piecewise hydraulic properties

    Directory of Open Access Journals (Sweden)

    F. Meunier

    2017-12-01

    Full Text Available In 1978, Landsberg and Fowkes presented a solution of the water flow equation inside a root with uniform hydraulic properties. These properties are root radial conductivity and axial conductance, which control, respectively, the radial water flow between the root surface and xylem and the axial flow within the xylem. From the solution for the xylem water potential, functions that describe the radial and axial flow along the root axis were derived. These solutions can also be used to derive root macroscopic parameters that are potential input parameters of hydrological and crop models. In this paper, novel analytical solutions of the water flow equation are developed for roots whose hydraulic properties vary along their axis, which is the case for most plants. We derived solutions for single roots with linear or exponential variations of hydraulic properties with distance to root tip. These solutions were subsequently combined to construct single roots with complex hydraulic property profiles. The analytical solutions allow one to verify numerical solutions and to get a generalization of the hydric behaviour with the main influencing parameters of the solutions. The resulting flow distributions in heterogeneous roots differed from those in uniform roots and simulations led to more regular, less abrupt variations of xylem suction or radial flux along root axes. The model could successfully be applied to maize effective root conductance measurements to derive radial and axial hydraulic properties. We also show that very contrasted root water uptake patterns arise when using either uniform or heterogeneous root hydraulic properties in a soil–root model. The optimal root radius that maximizes water uptake under a carbon cost constraint was also studied. The optimal radius was shown to be highly dependent on the root hydraulic properties and close to observed properties in maize roots. We finally used the obtained functions for evaluating the impact

  11. Application of Information Technology Solution for Early Warning Systems at Water Utilities

    Directory of Open Access Journals (Sweden)

    Bałut Alicja

    2018-01-01

    Full Text Available Deployment of IT solutions in water utilities in Poland concerns nowadays lots beyond GIS implementation projects [1]. The scope of modern IT platforms is truly advanced software for complete management of water treatment processes and involved objects, including ranges of various types of equipment. There are multiply factors that disrupt required volumes of supplied water. They are normally classified as natural, accidental and intentional. This paper addresses potential residing in already deployed IT solutions of water utilities in and also in new ones being now developed. Primarily- from the perspective of intentional, terrorist threats. This document depicts operating procedures that are called in case of spotted contamination in a water supply (damage of key elements of the network infrastructure or in case of an introduction factors. This paper also discusses relevant IT tools with access provided to network operators or water plant owners that are extremely useful in accurate pinpointing the treat and in following relevant operating procedures and related actions.

  12. Application of Information Technology Solution for Early Warning Systems at Water Utilities

    Science.gov (United States)

    Bałut, Alicja

    2018-02-01

    Deployment of IT solutions in water utilities in Poland concerns nowadays lots beyond GIS implementation projects [1]. The scope of modern IT platforms is truly advanced software for complete management of water treatment processes and involved objects, including ranges of various types of equipment. There are multiply factors that disrupt required volumes of supplied water. They are normally classified as natural, accidental and intentional. This paper addresses potential residing in already deployed IT solutions of water utilities in and also in new ones being now developed. Primarily- from the perspective of intentional, terrorist threats. This document depicts operating procedures that are called in case of spotted contamination in a water supply (damage of key elements of the network infrastructure) or in case of an introduction factors. This paper also discusses relevant IT tools with access provided to network operators or water plant owners that are extremely useful in accurate pinpointing the treat and in following relevant operating procedures and related actions.

  13. Closing of water circuits - a global benchmark on sustainable water management

    Science.gov (United States)

    Fröhlich, Siegmund

    2017-11-01

    Access to clean water resources has always been a crucial factor in the history of mankind. Now, in the 21st century, water, as an increasingly scarce resource, will take a strategic role for the future development of global populations. As the former UN Secretary General Dr. Dr. Boutrous Boutrous Ghali predicts: "The wars of the 21st century will be fought not over oil, they will be fought over water." [1]. In nine global examples will be demonstrated the different ways of dealing with water resources. That are: Mexico City, Egypt, Libya, DOW Terneuzen, Los Angeles, Israel, China and Singapore and also global trends, such as, scarcity & rural exodus and salinization of soil. Thereby, he explains the different kinds of water management to be observed. The most relevant prognosis of the WHO is, that to the end of 21st century Africa's population will grow over proportionally from 1 billion now up to nearly 4 billion [9]. That is why all efforts need to be concentrated on helping Africa create a sustainable economic development. The first and by far most important strategic step is to assure access to clean water resources in the rural and mostly arid regions of the continent. The lecturer shows several technological proposals on how to overcame problems like: water scarcity, rural exodus, salinization of soil and others. Such technologies could be successfully implemented in sustainable development programs in African countries.

  14. Evaluating Water Use for Agricultural Intensification in Southern Amazonia Using the Water Footprint Sustainability Assessment

    Directory of Open Access Journals (Sweden)

    Michael J. Lathuillière

    2018-03-01

    Full Text Available We performed a Water Footprint Sustainability Assessment (WFSA in the Xingu Basin of Mato Grosso (XBMT, Brazil, with the objectives of (1 tracking blue (as surface water and green water (as soil moisture regenerated by precipitation consumption in recent years (2000, 2014; and (2 evaluating agricultural intensification options for future years (2030, 2050 considering the effects of deforestation and climate change on water availability in the basin. The agricultural sector was the largest consumer of water in the basin despite there being almost no irrigation of cropland or pastures. In addition to water use by crops and pasture grass, water consumption attributed to cattle production included evaporation from roughly 9463 ha of small farm reservoirs used to provide drinking water for cattle in 2014. The WFSA showed that while blue and green water consumptive uses were within sustainable limits in 2014, deforestation, cattle confinement, and the use of irrigation to increase cropping frequency could drive water use to unsustainable levels in the future. While land management policies and practices should strive for protection of the remaining natural vegetation, increased agricultural production will require reservoir and irrigation water management to reduce the potential threat of blue water scarcity in the dry season. In addition to providing general guidance for future water allocation decisions in the basin, our study offers an interpretation of blue and green water scarcities with changes in land use and climate in a rapidly evolving agricultural frontier.

  15. Global Energy Development and Climate-Induced Water Scarcity—Physical Limits, Sectoral Constraints, and Policy Imperatives

    Directory of Open Access Journals (Sweden)

    Christopher A. Scott

    2015-08-01

    Full Text Available The current accelerated growth in demand for energy globally is confronted by water-resource limitations and hydrologic variability linked to climate change. The global spatial and temporal trends in water requirements for energy development and policy alternatives to address these constraints are poorly understood. This article analyzes national-level energy demand trends from U.S. Energy Information Administration data in relation to newly available assessments of water consumption and life-cycle impacts of thermoelectric generation and biofuel production, and freshwater availability and sectoral allocations from the U.N. Food and Agriculture Organization and the World Bank. Emerging, energy-related water scarcity flashpoints include the world’s largest, most diversified economies (Brazil, India, China, and USA among others, while physical water scarcity continues to pose limits to energy development in the Middle East and small-island states. Findings include the following: (a technological obstacles to alleviate water scarcity driven by energy demand are surmountable; (b resource conservation is inevitable, driven by financial limitations and efficiency gains; and (c institutional arrangements play a pivotal role in the virtuous water-energy-climate cycle. We conclude by making reference to coupled energy-water policy alternatives including water-conserving energy portfolios, intersectoral water transfers, virtual water for energy, hydropower tradeoffs, and use of impaired waters for energy development.

  16. Modeling Equity for Alternative Water Rate Structures

    Science.gov (United States)

    Griffin, R.; Mjelde, J.

    2011-12-01

    The rising popularity of increasing block rates for urban water runs counter to mainstream economic recommendations, yet decision makers in rate design forums are attracted to the notion of higher prices for larger users. Among economists, it is widely appreciated that uniform rates have stronger efficiency properties than increasing block rates, especially when volumetric prices incorporate intrinsic water value. Yet, except for regions where water market purchases have forced urban authorities to include water value in water rates, economic arguments have weakly penetrated policy. In this presentation, recent evidence will be reviewed regarding long term trends in urban rate structures while observing economic principles pertaining to these choices. The main objective is to investigate the equity of increasing block rates as contrasted to uniform rates for a representative city. Using data from four Texas cities, household water demand is established as a function of marginal price, income, weather, number of residents, and property characteristics. Two alternative rate proposals are designed on the basis of recent experiences for both water and wastewater rates. After specifying a reasonable number (~200) of diverse households populating the city and parameterizing each household's characteristics, every household's consumption selections are simulated for twelve months. This procedure is repeated for both rate systems. Monthly water and wastewater bills are also computed for each household. Most importantly, while balancing the budget of the city utility we compute the effect of switching rate structures on the welfares of households of differing types. Some of the empirical findings are as follows. Under conditions of absent water scarcity, households of opposing characters such as low versus high income do not have strong preferences regarding rate structure selection. This changes as water scarcity rises and as water's opportunity costs are allowed to

  17. Modeling Residential Water Consumption in Amman: The Role of Intermittency, Storage, and Pricing for Piped and Tanker Water

    Directory of Open Access Journals (Sweden)

    Christian Klassert

    2015-07-01

    Full Text Available Jordan faces an archetypal combination of high water scarcity, with a per capita water availability of around 150 m3 per year significantly below the absolute scarcity threshold of 500 m3, and strong population growth, especially due to the Syrian refugee crisis. A transition to more sustainable water consumption patterns will likely require Jordan’s water authorities to rely more strongly on water demand management in the future. We conduct a case study of the effects of pricing policies, using an agent-based model of household water consumption in Jordan’s capital Amman, in order to analyze the distribution of burdens imposed by demand-side policies across society. Amman’s households face highly intermittent piped water supply, leading them to supplement it with water from storage tanks and informal private tanker operators. Using a detailed data set of the distribution of supply durations across Amman, our model can derive the demand for additional tanker water. We find that integrating these different supply sources into our model causes demand-side policies to have strongly heterogeneous effects across districts and income groups. This highlights the importance of a disaggregated perspective on water policy impacts in order to identify and potentially mitigate excessive burdens.

  18. Vulnerability, diversity and scarcity: on universal rights.

    Science.gov (United States)

    Turner, Bryan Stanley; Dumas, Alex

    2013-11-01

    This article makes a contribution to the on-going debates about universalism and cultural relativism from the perspective of sociology. We argue that bioethics has a universal range because it relates to three shared human characteristics,--human vulnerability, institutional precariousness and scarcity of resources. These three components of our argument provide support for a related notion of 'weak foundationalism' that emphasizes the universality and interrelatedness of human experience, rather than their cultural differences. After presenting a theoretical position on vulnerability and human rights, we draw on recent criticism of this approach in order to paint a more nuanced picture. We conclude that the dichotomy between universalism and cultural relativism has some conceptual merit, but it also has obvious limitations when we consider the political economy of health and its impact on social inequality.

  19. Water reuse in river basins with multiple users : A literature review

    NARCIS (Netherlands)

    Simons, G. W H (Gijs); Bastiaanssen, W. G M (Wim); Immerzeel, W. W (Walter)

    2015-01-01

    Unraveling the interaction between water users in a river basin is essential for sound water resources management, particularly in a context of increasing water scarcity and the need to save water. While most attention from managers and decision makers goes to allocation and withdrawals of surface

  20. Approximate analytical solution to the Boussinesq equation with a sloping water-land boundary

    Science.gov (United States)

    Tang, Yuehao; Jiang, Qinghui; Zhou, Chuangbing

    2016-04-01

    An approximate solution is presented to the 1-D Boussinesq equation (BEQ) characterizing transient groundwater flow in an unconfined aquifer subject to a constant water variation at the sloping water-land boundary. The flow equation is decomposed to a linearized BEQ and a head correction equation. The linearized BEQ is solved using a Laplace transform. By means of the frozen-coefficient technique and Gauss function method, the approximate solution for the head correction equation can be obtained, which is further simplified to a closed-form expression under the condition of local energy equilibrium. The solutions of the linearized and head correction equations are discussed from physical concepts. Especially for the head correction equation, the well posedness of the approximate solution obtained by the frozen-coefficient method is verified to demonstrate its boundedness, which can be further embodied as the upper and lower error bounds to the exact solution of the head correction by statistical analysis. The advantage of this approximate solution is in its simplicity while preserving the inherent nonlinearity of the physical phenomenon. Comparisons between the analytical and numerical solutions of the BEQ validate that the approximation method can achieve desirable precisions, even in the cases with strong nonlinearity. The proposed approximate solution is applied to various hydrological problems, in which the algebraic expressions that quantify the water flow processes are derived from its basic solutions. The results are useful for the quantification of stream-aquifer exchange flow rates, aquifer response due to the sudden reservoir release, bank storage and depletion, and front position and propagation speed.

  1. Resource scarcity, effort, and performance in physically demanding jobs: An evolutionary explanation.

    Science.gov (United States)

    Pitesa, Marko; Thau, Stefan

    2018-03-01

    Based on evolutionary theory, we predicted that cues of resource scarcity in the environment (e.g., news of droughts or food shortages) lead people to reduce their effort and performance in physically demanding work. We tested this prediction in a 2-wave field survey among employees and replicated it experimentally in the lab. In Study 1, employees who perceived resources in the environment to be scarce reported exerting less effort when their jobs involved much (but not little) physical work. In Study 2, participants who read that resources in the environment were scarce performed worse on a task demanding more (carrying books) but not less (transcribing book titles) physical work. This result was found even though better performance increased participants' chances of additional remuneration, and even though scarcity cues did not affect individuals' actual ability to meet their energy needs. We discuss implications for managing effort and performance, and the potential of evolutionary psychology to explain core organizational phenomena. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  2. Put a limit on it: The protective effects of scarcity heuristics when self-control is low

    Science.gov (United States)

    Cheung, Tracy TL; Kroese, Floor M; Fennis, Bob M; De Ridder, Denise TD

    2015-01-01

    Low self-control is a state in which consumers are assumed to be vulnerable to making impulsive choices that hurt long-term goals. Rather than increasing self-control, the current research exploits the tendency for heuristic-based thinking in low self-control by employing scarcity heuristics to promote better consumption choices. Results indicate that consumers low in self-control especially benefited and selected more healthy choices when marketed as “scarce” (Study 1), and that a demand (vs supply) scarcity heuristic was most effective in promoting utilitarian products (Study 2) suggests low self-control involves both an enhanced reward orientation and increased tendency to conform to descriptive norms. PMID:28070377

  3. Water and solute transport across the peritoneal membrane.

    Science.gov (United States)

    Morelle, Johann; Devuyst, Olivier

    2015-09-01

    We review the molecular mechanisms of peritoneal transport and discuss how a better understanding of these mechanisms is relevant for dialysis therapy. Peritoneal dialysis involves diffusion and osmosis through the highly vascularized peritoneal membrane. Computer simulations, expression studies and functional analyses in Aqp1 knockout mice demonstrated the critical role of the water channel aquaporin-1 (AQP1) in water removal during peritoneal dialysis. Pharmacologic regulation of AQP1, either through increased expression or gating, is associated with increased water transport in rodent models of peritoneal dialysis. Water transport is impaired during acute peritonitis, despite unchanged expression of AQP1, resulting from the increased microvascular area that dissipates the osmotic gradient across the membrane. In long-term peritoneal dialysis patients, the fibrotic interstitium also impairs water transport, resulting in ultrafiltration failure. Recent data suggest that stroke and drug intoxications might benefit from peritoneal dialysis and could represent novel applications of peritoneal transport in the future. A better understanding of the regulation of osmotic water transport across the peritoneum offers novel insights into the role of water channels in microvascular endothelia, the functional importance of structural changes in the peritoneal interstitium and the transport of water and solutes across biological membranes in general.

  4. Water-Food-Nutrition-Health Nexus: Linking Water to Improving Food, Nutrition and Health in Sub-Saharan Africa.

    Science.gov (United States)

    Mabhaudhi, Tafadzwanashe; Chibarabada, Tendai; Modi, Albert

    2016-01-06

    Whereas sub-Saharan Africa's (SSA) water scarcity, food, nutrition and health challenges are well-documented, efforts to address them have often been disconnected. Given that the region continues to be affected by poverty and food and nutrition insecurity at national and household levels, there is a need for a paradigm shift in order to effectively deliver on the twin challenges of food and nutrition security under conditions of water scarcity. There is a need to link water use in agriculture to achieve food and nutrition security outcomes for improved human health and well-being. Currently, there are no explicit linkages between water, agriculture, nutrition and health owing to uncoordinated efforts between agricultural and nutrition scientists. There is also a need to develop and promote the use of metrics that capture aspects of water, agriculture, food and nutrition. This review identified nutritional water productivity as a suitable index for measuring the impact of a water-food-nutrition-health nexus. Socio-economic factors are also considered as they influence food choices in rural communities. An argument for the need to utilise the region's agrobiodiversity for addressing dietary quality and diversity was established. It is concluded that a model for improving nutrition and health of poor rural communities based on the water-food-nutrition-health nexus is possible.

  5. Effects of virtual water flow on regional water resources stress: A case study of grain in China.

    Science.gov (United States)

    Sun, Shikun; Wang, Yubao; Engel, Bernie A; Wu, Pute

    2016-04-15

    Scarcity of water resources is one of the major challenges in the world, particularly for the main water consumer, agriculture. Virtual water flow (VWF) promotes water redistribution geographically and provides a new solution for resolving regional water shortage and improving water use efficiency in the world. Virtual water transfer among regions will have a significant influence on the water systems in both grain export and import regions. In order to assess the impacts of VWF related grain transfer on regional water resources conditions, the study takes mainland China as study area for a comprehensive evaluation of virtual water flow on regional water resources stress. Results show that Northeast China and Huang-Huai-Hai region are the major grain production regions as well as the major virtual water export regions. National water savings related to grain VWF was about 58Gm(3), with 48Gm(3) blue water and 10Gm(3) green water. VWF changes the original water distribution and has a significant effect on water resources in both virtual water import and export regions. Grain VWF significantly increased water stress in grain export regions and alleviated water stress in grain import regions. Water stress index (WSI) of Heilongjiang and Inner Mongolia has been increased by 138% and 129% due to grain export. Stress from water shortages is generally severe in export regions, and issues with the sustainability of grain production and VWF pattern are worthy of further exploration. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Solvation thermodynamics and heat capacity of polar and charged solutes in water

    Science.gov (United States)

    Sedlmeier, Felix; Netz, Roland R.

    2013-03-01

    The solvation thermodynamics and in particular the solvation heat capacity of polar and charged solutes in water is studied using atomistic molecular dynamics simulations. As ionic solutes we consider a F- and a Na+ ion, as an example for a polar molecule with vanishing net charge we take a SPC/E water molecule. The partial charges of all three solutes are varied in a wide range by a scaling factor. Using a recently introduced method for the accurate determination of the solvation free energy of polar solutes, we determine the free energy, entropy, enthalpy, and heat capacity of the three different solutes as a function of temperature and partial solute charge. We find that the sum of the solvation heat capacities of the Na+ and F- ions is negative, in agreement with experimental observations, but our results uncover a pronounced difference in the heat capacity between positively and negatively charged groups. While the solvation heat capacity ΔCp stays positive and even increases slightly upon charging the Na+ ion, it decreases upon charging the F- ion and becomes negative beyond an ion charge of q = -0.3e. On the other hand, the heat capacity of the overall charge-neutral polar solute derived from a SPC/E water molecule is positive for all charge scaling factors considered by us. This means that the heat capacity of a wide class of polar solutes with vanishing net charge is positive. The common ascription of negative heat capacities to polar chemical groups might arise from the neglect of non-additive interaction effects between polar and apolar groups. The reason behind this non-additivity is suggested to be related to the second solvation shell that significantly affects the solvation thermodynamics and due to its large spatial extent induces quite long-ranged interactions between solvated molecular parts and groups.

  7. Heterogeneous ice nucleation in aqueous solutions: the role of water activity.

    Science.gov (United States)

    Zobrist, B; Marcolli, C; Peter, T; Koop, T

    2008-05-01

    Heterogeneous ice nucleation experiments have been performed with four different ice nuclei (IN), namely nonadecanol, silica, silver iodide and Arizona test dust. All IN are either immersed in the droplets or located at the droplets surface. The IN were exposed to various aqueous solutions, which consist of (NH4)2SO4, H2SO4, MgCl2, NaCl, LiCl, Ca(NO3)2, K2CO3, CH3COONa, ethylene glycol, glycerol, malonic acid, PEG300 or a NaCl/malonic acid mixture. Freezing was studied using a differential scanning calorimeter and a cold finger cell. The results show that the heterogeneous ice freezing temperatures decrease with increasing solute concentration; however, the magnitude of this effect is solute dependent. In contrast, when the results are analyzed in terms of the solution water activity a very consistent behavior emerges: heterogeneous ice nucleation temperatures for all four IN converge each onto a single line, irrespective of the nature of the solute. We find that a constant offset with respect to the ice melting point curve, Deltaaw,het, can describe the observed freezing temperatures for each IN. Such a behavior is well-known for homogeneous ice nucleation from supercooled liquid droplets and has led to the development of water-activity-based ice nucleation theory. The large variety of investigated solutes together with different general types of ice nuclei studied (monolayers, ionic crystals, covalently bound network-forming compounds, and a mixture of chemically different crystallites) underlines the general applicability of water-activity-based ice nucleation theory also for heterogeneous ice nucleation in the immersion mode. Finally, the ice nucleation efficiencies of the various IN, as well as the atmospheric implication of the developed parametrization are discussed.

  8. The governance of major innovation in the water cycle : Examining three prominent technologies

    NARCIS (Netherlands)

    Lulofs, Kris R.D.; Bressers, Hans

    The growing absolute and relative water scarcity requires drastic change in the water cycle in order to target an efficient and robust water supply. The water cycle consists of the production of water, water use, collection of wastewater and its treatment. This article addresses whether the market

  9. Performance of Potassium Bicarbonate and Calcium Chloride Draw Solutions for Desalination of Saline Water Using Forward Osmosis

    Directory of Open Access Journals (Sweden)

    M. Nematzadeh

    2015-01-01

    Full Text Available Forward osmosis (FO has recently drawn attention as a promising membrane based method for seawater and brackish water desalination. In this study, we focus on the use of calciun chloride (CaCl2 and potassium bicarbonate (KHCO3 as inorganic salt draw solution candidates due to their appropriate performance in water flux and reverse salt diffusion as well as reasonable cost. The experiments were carried at 25 °C and cross-flow rate of 3 L min−1.  At the same osmotic pressure, the water flux of CaCl2 draw solution tested against deionized feed water, showed 20% higher permeation than KHCO3, which it was attributed to the lower internal concentration polarization (ICP. The reverse diffusion of CaCl2 was found higher than KHCO3 solution which it would be related to the smaller ionic size and the higher permeation of this salt through the membrane. The water flux for both draw solutions against 0.33 M NaCl feed solution was about 2.8 times lower than deionized feed water because of ICP. Higher concentrations of draw solution is required for increasing the water permeation from saline water feed towards the draw side.

  10. Critical water requirements for food, methodology and policy consequences for food security

    NARCIS (Netherlands)

    Gerbens-Leenes, P.W.; Nonhebel, S.

    2004-01-01

    Food security and increasing water scarcity have a dominant place on the food policy agenda. Food security requires sufficient water of adequate quality because water is a prerequisite for plant growth. Nowadays, agriculture accounts for 70% of the worldwide human fresh water use. The expected

  11. Water poverty indicators: conceptual problems and policy issues

    NARCIS (Netherlands)

    Molle, F.; Mollinga, P.P.

    2003-01-01

    In the wake of a growing concern about both the unchecked rise of poverty and the local and global consequences of water scarcity, the relationships between water and poverty are the object of a sprawling literature. Indicators are presented as indispensable tools for informing and orienting

  12. Aqueous pathways dominate permeation of solutes across Pisum sativum seed coats and mediate solute transport via diffusion and bulk flow of water.

    Science.gov (United States)

    Niemann, Sylvia; Burghardt, Markus; Popp, Christian; Riederer, Markus

    2013-05-01

    The permeability of seed coats to solutes either of biological or anthropogenic origin plays a major role in germination, seedling growth and seed treatment by pesticides. An experimental set-up was designed for investigating the mechanisms of seed coat permeation, which allows steady-state experiments with isolated seed coats of Pisum sativum. Permeances were measured for a set of organic model compounds with different physicochemical properties and sizes. The results show that narrow aqueous pathways dominate the diffusion of solutes across pea seed coats, as indicated by a correlation of permeances with the molecular sizes of the compounds instead of their lipophilicity. Further indicators for an aqueous pathway are small size selectivity and a small effect of temperature on permeation. The application of an osmotic water potential gradient across isolated seed coats leads to an increase in solute transfer, indicating that the aqueous pathways form a water-filled continuum across the seed coat allowing the bulk flow of water. Thus, the uptake of organic solutes across pea testae has two components: (1) by diffusion and (2) by bulk water inflow, which, however, is relevant only during imbibition. © 2012 Blackwell Publishing Ltd.

  13. Cattle pastoralists' strategies to cope with water scarcity in climate ...

    African Journals Online (AJOL)

    ... reveal a pastoral dynamics based on the programmed distance to the best resources, ... This could also enhance adaptation to climate change within the context of the ... Water resources, Pastoralist, Animal route, Adaptation Strategy, Benin ...

  14. Effect of ionizing radiation on solid and water solution Penicillin G

    International Nuclear Information System (INIS)

    Ben Salem, I.; Amine, Kh.M.; Mabrouk, Y.; Saidi, M.; Mezni, M; Boulila, N; Hafez, E

    2015-01-01

    Penicillin G is a conventional antibiotic used for treatment of different kinds of infectious diseases. Due to its huge quantity production and resistance to biodegradability, this molecule has been a serious concern for clinicians and environmentalists. In this study, the effect of ionizing radiation on the penicillin G powder and in water solution was investigated. The Nuclear Magnetic Resonance (NMR) and fourier transform infrared spectroscopy (FTIR) analysis showed that the ionizing radiation at 50 kGy has no effect on the integrity of solid Penicillin G. The anti-microbial assays revealed that the activity of irradiated solid Penicillin G did not reduce and was stable after storage for one month. Ionizing radiation at 50 kGy led to degradation of water solution Penicillin G. The complete disappear of peaks observed in the control sample confirmed the broken of β-lactam ring, the decarboxylation and cleavage of the thiazolidine ring. The product issued from the irradiation of Penicillin G, was completely removed by the bacterium Cupriavidus.metallidurans. Thus, the ionizing irradiation followed by a biological treatment was very effective method for removing of Penicillin G antibiotics residuals from water solution.

  15. Closing of water circuits – a global benchmark on sustainable water management

    Directory of Open Access Journals (Sweden)

    Fröhlich Siegmund

    2017-01-01

    Full Text Available Access to clean water resources has always been a crucial factor in the history of mankind. Now, in the 21st century, water, as an increasingly scarce resource, will take a strategic role for the future development of global populations. As the former UN Secretary General Dr. Dr. Boutrous Boutrous Ghali predicts: “The wars of the 21st century will be fought not over oil, they will be fought over water.” [1]. In nine global examples will be demonstrated the different ways of dealing with water resources. That are: Mexico City, Egypt, Libya, DOW Terneuzen, Los Angeles, Israel, China and Singapore and also global trends, such as, scarcity & rural exodus and salinization of soil. Thereby, he explains the different kinds of water management to be observed. The most relevant prognosis of the WHO is, that to the end of 21st century Africa's population will grow over proportionally from 1 billion now up to nearly 4 billion [9]. That is why all efforts need to be concentrated on helping Africa create a sustainable economic development. The first and by far most important strategic step is to assure access to clean water resources in the rural and mostly arid regions of the continent. The lecturer shows several technological proposals on how to overcame problems like: water scarcity, rural exodus, salinization of soil and others. Such technologies could be successfully implemented in sustainable development programs in African countries.

  16. CHAPTER 6. Biomimetic Materials for Efficient Atmospheric Water Collection

    KAUST Repository

    Zhang, Lianbin

    2016-02-23

    Water scarcity is a severe problem in semi-arid desert regions, land-scarce countries and in countries with high levels of economic activity. In these regions, the collection of atmospheric water - for example, fog - is recognized as an important method of providing water. In nature, through millions of year evolution, some animals and plants in many of the arid regions have developed unique and highly efficient systems with delicate microstructures and composition for the purpose of fog collection to survive the harsh conditions. With the unique ability of fog collection, these creatures could readily cope with insufficient access to fresh water or lack of precipitation. These natural examples have inspired the design and fabrication of artificial fog collection materials and devices. In this chapter, we will first introduce some natural examples for their unique fog collection capability, and then give some examples of the bioinspired materials and devices that are fabricated artificially to mimic these natural creatures for the purpose of fog collection. We believe that the biomimetic strategy is one of the most promising routes for the design and fabrication of functional materials and devices for the solution of the global water crisis.

  17. Hydro-hegemony : a framework for analysis of trans-boundary water conflicts

    NARCIS (Netherlands)

    Zeitoun, M.; Warner, J.F.

    2006-01-01

    The increasing structural and physical scarcity of water across the globe calls for a deeper understanding of trans-boundary water conflicts. Conventional analysis tends to downplay the role that power asymmetry plays in creating and maintaining situations of water conflict that fall short of the

  18. Liquid-phase and vapor-phase dehydration of organic/water solutions

    Science.gov (United States)

    Huang, Yu [Palo Alto, CA; Ly, Jennifer [San Jose, CA; Aldajani, Tiem [San Jose, CA; Baker, Richard W [Palo Alto, CA

    2011-08-23

    Processes for dehydrating an organic/water solution by pervaporation or vapor separation using fluorinated membranes. The processes are particularly useful for treating mixtures containing light organic components, such as ethanol, isopropanol or acetic acid.

  19. A blue/green water-based accounting framework for assessment of water security

    Science.gov (United States)

    Rodrigues, Dulce B. B.; Gupta, Hoshin V.; Mendiondo, Eduardo M.

    2014-09-01

    A comprehensive assessment of water security can incorporate several water-related concepts, while accounting for Blue and Green Water (BW and GW) types defined in accordance with the hydrological processes involved. Here we demonstrate how a quantitative analysis of provision probability and use of BW and GW can be conducted, so as to provide indicators of water scarcity and vulnerability at the basin level. To illustrate the approach, we use the Soil and Water Assessment Tool (SWAT) to model the hydrology of an agricultural basin (291 km2) within the Cantareira Water Supply System in Brazil. To provide a more comprehensive basis for decision making, we analyze the BW and GW-Footprint components against probabilistic levels (50th and 30th percentile) of freshwater availability for human activities, during a 23 year period. Several contrasting situations of BW provision are distinguished, using different hydrological-based methodologies for specifying monthly Environmental Flow Requirements (EFRs), and the risk of natural EFR violation is evaluated by use of a freshwater provision index. Our results reveal clear spatial and temporal patterns of water scarcity and vulnerability levels within the basin. Taking into account conservation targets for the basin, it appears that the more restrictive EFR methods are more appropriate than the method currently employed at the study basin. The blue/green water-based accounting framework developed here provides a useful integration of hydrologic, ecosystem and human needs information on a monthly basis, thereby improving our understanding of how and where water-related threats to human and aquatic ecosystem security can arise.

  20. Seasonal variations in water quality and major threats to Ramsagar ...

    African Journals Online (AJOL)

    EJIRO

    growth of aquatic animals in the reservoir. The above study ... scarcity, especially that of water in view of population growth and ... overall growth and welfare of human beings and are ... resources of planet, water has the unique place. It is.

  1. Vibrational spectra of water solutions of azoles from QM/MM calculations: effects of solvation.

    Science.gov (United States)

    Tanzi, Luana; Ramondo, Fabio; Guidoni, Leonardo

    2012-10-18

    Using microsolvation models and mixed quantum/classical ab initio molecular dynamics simulations, we investigate the vibrational properties of two azoles in water solution: pyrazole and oxazole. The effects of the water-azole hydrogen bonding are rationalized by an extensive comparison between structural parameters and harmonic frequencies obtained by microsolvation models. Following the effective normal-mode analysis introduced by Martinez et al. [Martinez et al., J. Chem. Phys. 2006, 125, 144106], we identify the vibrational frequencies of the solutes using the decomposition of the vibrational density of states of the gas phase and solution dynamics. The calculated shifts from gas phase to solution are fairly in agreement with the available experimental data.

  2. An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale

    Energy Technology Data Exchange (ETDEWEB)

    Matthew Bruff; Ned Godshall; Karen Evans

    2011-04-30

    This Final Scientific/ Technical Report submitted with respect to Project DE-FE0000833 titled 'An Integrated Water Treatment Technology Solution for Sustainable Water Resource Management in the Marcellus Shale' in support of final reporting requirements. This final report contains a compilation of previous reports with the most current data in order to produce one final complete document. The goal of this research was to provide an integrated approach aimed at addressing the increasing water resource challenges between natural gas production and other water stakeholders in shale gas basins. The objective was to demonstrate that the AltelaRain{reg_sign} technology could be successfully deployed in the Marcellus Shale Basin to treat frac flow-back water. That objective has been successfully met.

  3. Don't Cry over Spilled Water: Identifying Risks and Solutions for Produced Water Spills

    Science.gov (United States)

    Shores, Amanda Rose

    Resource requirements and future energy generation requires careful evaluation, particularly due to climate change and water scarcity. This thesis discusses one aspect of energy generation linked to water; oil-and-gas extraction and the large volumes of waste water produced, otherwise known as "produced water". This research focuses on surface spills of produced water, their ramifications, safeguards against groundwater contamination at spill sites and potential remediation strategies. Produced water contains a variety of contaminants that include the group of known toxins, BTEX (benzene, toluene, ethylbenzene and xylene), and high salt concentrations. A combination of factors such as large volumes of generated produced water, the need for storage and transportation across large distances and the toxic-and-mobile nature of produced water constituents creates risks for spills that can pollute groundwater. Spills occur regularly, particularly in Weld County, Colorado, where the demand for natural gas is high. To answer spill-related hypotheses, a multitude of methodology were employed: modeling, greenhouse experimentation, gas chromatography and summarization of spill reports and statistical analyses. Using publically available spill data, this research found that the frequency of oil-and-gas related spills and the average spilled volume has increased in Weld County from 2011-2015. Additionally, the number of spills that have resulted in groundwater contamination has increased in the area. By focusing on the oil-and-gas operators responsible for these spills, a linear relationship was found between the volumes of oil-and-gas produced compared to the volumes of produced-water generated. However, larger oil-and-gas producers did not show a linear relationship between oil-and-gas produced and produced-water generated, such that larger producers were more efficient and generated less water per unit of energy. So while scale-up efficiency seems to exist for produced-water

  4. Solute-vacancy binding in aluminum

    International Nuclear Information System (INIS)

    Wolverton, C.

    2007-01-01

    Previous efforts to understand solute-vacancy binding in aluminum alloys have been hampered by a scarcity of reliable, quantitative experimental measurements. Here, we report a large database of solute-vacancy binding energies determined from first-principles density functional calculations. The calculated binding energies agree well with accurate measurements where available, and provide an accurate predictor of solute-vacancy binding in other systems. We find: (i) some common solutes in commercial Al alloys (e.g., Cu and Mg) possess either very weak (Cu), or even repulsive (Mg), binding energies. Hence, we assert that some previously reported large binding energies for these solutes are erroneous. (ii) Large binding energies are found for Sn, Cd and In, confirming the proposed mechanism for the reduced natural aging in Al-Cu alloys containing microalloying additions of these solutes. (iii) In addition, we predict that similar reduction in natural aging should occur with additions of Si, Ge and Au. (iv) Even larger binding energies are found for other solutes (e.g., Pb, Bi, Sr, Ba), but these solutes possess essentially no solubility in Al. (v) We have explored the physical effects controlling solute-vacancy binding in Al. We find that there is a strong correlation between binding energy and solute size, with larger solute atoms possessing a stronger binding with vacancies. (vi) Most transition-metal 3d solutes do not bind strongly with vacancies, and some are even energetically strongly repelled from vacancies, particularly for the early 3d solutes, Ti and V

  5. ICT Solutions for Highly-Customized Water Demand Management Strategies

    Science.gov (United States)

    Giuliani, M.; Cominola, A.; Castelletti, A.; Fraternali, P.; Guardiola, J.; Barba, J.; Pulido-Velazquez, M.; Rizzoli, A. E.

    2016-12-01

    The recent deployment of smart metering networks is opening new opportunities for advancing the design of residential water demand management strategies (WDMS) relying on improved understanding of water consumers' behaviors. Recent applications showed that retrieving information on users' consumption behaviors, along with their explanatory and/or causal factors, is key to spot potential areas where targeting water saving efforts, and to design user-tailored WDMS. In this study, we explore the potential of ICT-based solutions in supporting the design and implementation of highly customized WDMS. On one side, the collection of consumption data at high spatial and temporal resolutions requires big data analytics and machine learning techniques to extract typical consumption features from the metered population of water users. On the other side, ICT solutions and gamifications can be used as effective means for facilitating both users' engagement and the collection of socio-psychographic users' information. This latter allows interpreting and improving the extracted profiles, ultimately supporting the customization of WDMS, such as awareness campaigns or personalized recommendations. Our approach is implemented in the SmartH2O platform and demonstrated in a pilot application in Valencia, Spain. Results show how the analysis of the smart metered consumption data, combined with the information retrieved from an ICT gamified web user portal, successfully identify the typical consumption profiles of the metered users and supports the design of alternative WDMS targeting the different users' profiles.

  6. The efficiency of drip irrigation unpacked

    NARCIS (Netherlands)

    Kooij, van der S.; Zwarteveen, M.Z.; Boesveld, H.; Kuper, M.

    2013-01-01

    Drip irrigation figures prominently in water policy debates as a possible solution to water scarcity problems, based on the assertion that it will improve water use efficiencies. We use this article to carefully trace the scientific basis of this assertion. Through a systematic review of the

  7. Mechanism of the extraction of nitric acid and water by organic solutions of tertiary alkyl-amines

    International Nuclear Information System (INIS)

    Gourisse, D.

    1966-06-01

    The micellar aggregation of tri-alkyl-ammonium nitrates in low polarity organic solvents has been verified by viscosity, conductivity and sedimentation velocity measurements. The aggregation depends upon the polarity of solvent, the length of the alkyl radicals and the organic concentration of the various constituents (tri-alkyl-ammonium nitrate, tri-alkyl-amine, nitric acid, water). The amine salification law has been established and the excess nitric acid and water solubilities in the organic solutions have been measured. Nitric acid and water are slightly more soluble in micellar organic solutions than in molecular organic solutions. A description of excess nitric acid containing tri-alkyl-ammonium nitrate solutions is proposed. (author) [fr

  8. DMSO-Water Clustering in Solution Observed in Soft X-ray Spectra.

    Science.gov (United States)

    Engel, Nicholas; Atak, Kaan; Lange, Kathrin M; Gotz, Malte; Soldatov, Mikhail; Golnak, Ronny; Suljoti, Edlira; Rubensson, Jan-Erik; Aziz, Emad F

    2012-12-20

    The significant deviation from the ideality of dimethyl sulfoxide (DMSO)/water mixtures can be addressed based on the change of the local molecular orbitals of each solvent upon mixing. Oxygen K-edge absorption and emission spectra of DMSO/water solutions were measured using the liquid microjet technique. The spectra demonstrate that the hydrogen bond network in liquid water is already influenced at small DMSO concentrations, and at the molar fraction xDMSO = 0.43 we find strong evidence of DMSO-water clustering reflected by the influence on the occupied molecular orbitals.

  9. Large-scale hydrological modeling for calculating water stress indices: implications of improved spatiotemporal resolution, surface-groundwater differentiation, and uncertainty characterization.

    Science.gov (United States)

    Scherer, Laura; Venkatesh, Aranya; Karuppiah, Ramkumar; Pfister, Stephan

    2015-04-21

    Physical water scarcities can be described by water stress indices. These are often determined at an annual scale and a watershed level; however, such scales mask seasonal fluctuations and spatial heterogeneity within a watershed. In order to account for this level of detail, first and foremost, water availability estimates must be improved and refined. State-of-the-art global hydrological models such as WaterGAP and UNH/GRDC have previously been unable to reliably reflect water availability at the subbasin scale. In this study, the Soil and Water Assessment Tool (SWAT) was tested as an alternative to global models, using the case study of the Mississippi watershed. While SWAT clearly outperformed the global models at the scale of a large watershed, it was judged to be unsuitable for global scale simulations due to the high calibration efforts required. The results obtained in this study show that global assessments miss out on key aspects related to upstream/downstream relations and monthly fluctuations, which are important both for the characterization of water scarcity in the Mississippi watershed and for water footprints. Especially in arid regions, where scarcity is high, these models provide unsatisfying results.

  10. Innovation and complex governance at times of scarcity of resources : A lesson from history

    NARCIS (Netherlands)

    Peck, D.P.; Bakker, C.A.; Diederen, A.

    2010-01-01

    Historians understand the important role that access to critical raw materials has played in the development of civilizations, however access to materials has regularly led to distrust and conflict. Near future material scarcity scenarios appear to be severe and could include a mix of price

  11. Tapping Into an Ancient Source. Isotope Hydrology Techniques to Help Manage Water Resources

    International Nuclear Information System (INIS)

    Kidambi, Misha

    2011-01-01

    The Water Resources Program at the IAEA uses a powerful tool, isotope hydrology, that aids in coping with water scarcity. IAEA scientists are convinced that if we understand how to manage water efficiently, there will be sufficient renewable and non-renewable water sources for meet global needs

  12. Green, blue and grey water footprint reduction in irrigated crop production

    NARCIS (Netherlands)

    Chukalla, Abebe Demissie

    2017-01-01

    In the face of increasing water scarcity, reducing the consumptive and degradative water use of crop production is important to produce more food and/or for the environment. The thesis explores the potential for reducing the green, blue and grey water footprint (WF) of irrigated crop production by

  13. The solution of the dam-break problem in the Porous Shallow water Equations

    Science.gov (United States)

    Cozzolino, Luca; Pepe, Veronica; Cimorelli, Luigi; D'Aniello, Andrea; Della Morte, Renata; Pianese, Domenico

    2018-04-01

    The Porous Shallow water Equations are commonly used to evaluate the propagation of flooding waves in the urban environment. These equations may exhibit not only classic shocks, rarefactions, and contact discontinuities, as in the ordinary two-dimensional Shallow water Equations, but also special discontinuities at abrupt porosity jumps. In this paper, an appropriate parameterization of the stationary weak solutions of one-dimensional Porous Shallow water Equations supplies the inner structure of the porosity jumps. The exact solution of the corresponding dam-break problem is presented, and six different wave configurations are individuated, proving that the solution exists and it is unique for given initial conditions and geometric characteristics. These results can be used as a benchmark in order to validate one- and two-dimensional numerical models for the solution of the Porous Shallow water Equations. In addition, it is presented a novel Finite Volume scheme where the porosity jumps are taken into account by means of a variables reconstruction approach. The dam-break results supplied by this numerical scheme are compared with the exact dam-break results, showing the promising capabilities of this numerical approach. Finally, the advantages of the novel porosity jump definition are shown by comparison with other definitions available in the literature, demonstrating its advantages, and the issues raising in real world applications are discussed.

  14. Groundwater-Surface Water Interactions and Downstream Transport of Water, Heat, and Solutes in a Hydropeaked River

    Science.gov (United States)

    Ferencz, S. B.; Cardenas, M. B.; Neilson, B. T.; Watson, J.

    2017-12-01

    A majority of the world's largest river systems are regulated by dams. In addition to being used for water resources management and flood prevention, many large dams are also used for hydroelectric power generation. In the United States, dams account for 7% of domestic electricity, and hydropower accounts for 16% of worldwide electricity production. To help meet electricity demand during peak usage times, hydropower utilities often increase their releases of water during high demand periods. This practice, termed hydropeaking, can cause large transient flow regimes downstream of hydroelectric dams. These transient flow increases can result in order of magnitude daily fluctuations in discharge, and the released water can have different thermal and chemical properties than ambient river water. As hydropeaking releases travel downstream, the temporary rise in stage and increase in discharge can enhance surface water-groundwater (SW-GW) exchange between the river and its alluvial aquifer. This dam-induced SW-GW exchange, combined with hydrodynamic attenuation and heat exchange processes, result in complex responses downstream. The dam-regulated Lower Colorado River downstream of Austin, TX was used as a natural laboratory to observe SW-GW interactions and downstream transport of water, heat, and solutes under hydropeaking conditions. To characterize SW-GW interactions, well transects were installed in the banks of the river to observe exchanges between the river and alluvial aquifer. The well transects were installed at three different distances from the dam (15km, 35km, and 80km). At each well transect conductivity, temperature, and pressure sensors were deployed in the monitoring wells and in the channel. Additional conductivity and temperature sensors were deployed along the study reach to provide a more detailed record of heat and solute transport during hydropeaking releases. The field data spans over two months of daily dam releases that were punctuated by two

  15. Water hammer (with FSI): exact solution : parallelization and application

    NARCIS (Netherlands)

    Loh, K.; Tijsseling, A.S.

    2014-01-01

    The 1D fully coupled Fluid-Structure Interaction (FSI) model can adequately describe the water hammer effect on the fluid, and the structural behaviour of the pipe. This paper attempts to increase the capability of using an exact solution of the 1D FSI problem applied to a straight pipe with a

  16. Water-Food-Nutrition-Health Nexus: Linking Water to Improving Food, Nutrition and Health in Sub-Saharan Africa

    Directory of Open Access Journals (Sweden)

    Tafadzwanashe Mabhaudhi

    2016-01-01

    Full Text Available Whereas sub-Saharan Africa’s (SSA water scarcity, food, nutrition and health challenges are well-documented, efforts to address them have often been disconnected. Given that the region continues to be affected by poverty and food and nutrition insecurity at national and household levels, there is a need for a paradigm shift in order to effectively deliver on the twin challenges of food and nutrition security under conditions of water scarcity. There is a need to link water use in agriculture to achieve food and nutrition security outcomes for improved human health and well-being. Currently, there are no explicit linkages between water, agriculture, nutrition and health owing to uncoordinated efforts between agricultural and nutrition scientists. There is also a need to develop and promote the use of metrics that capture aspects of water, agriculture, food and nutrition. This review identified nutritional water productivity as a suitable index for measuring the impact of a water-food-nutrition-health nexus. Socio-economic factors are also considered as they influence food choices in rural communities. An argument for the need to utilise the region’s agrobiodiversity for addressing dietary quality and diversity was established. It is concluded that a model for improving nutrition and health of poor rural communities based on the water-food-nutrition-health nexus is possible.

  17. Water use and groundwater contamination

    International Nuclear Information System (INIS)

    Elton, J.J.; Livingstone, B.

    1998-01-01

    A general review of the groundwater resources in Saskatchewan and their vulnerability to contamination was provided. In particular, the use of water and the effects on water by the oil and gas industry in Saskatchewan were discussed. It was suggested that public concerns over scarcity and contamination of water are gradually changing perceptions about Canada's abundance of water. Saskatchewan's surface water covers 12 per cent of the province. About 90 per cent of the rural populations and 80 per cent of municipalities depend on groundwater supplies. Regulations affecting oil and gas operations that could affect water resources have become more stringent. Techniques used in the detection and monitoring of groundwater affected by salt and petroleum hydrocarbons were described. Electromagnetic surveys are used in detecting salt-affected soils and groundwater. Laboratory analysis of chloride concentrations are needed to define actual chloride concentrations in groundwater. Wells and barriers can be installed to control and recover chloride plumes. Deep well injection and reverse osmosis are other methods, but there is no cheap or simple treatment or disposal method for salt-impacted groundwater. Spills or leaks of petroleum hydrocarbons from various sources can also lead to contamination of groundwater. Various assessment and remediation methods are described. Although there is no scarcity of techniques, all of them are difficult, costly, and may take several years to complete. 11 refs., 1 tab

  18. EXPERIENCE OF SEA WATER HYPERTONIC SOLUTION APPLICATION FOR TOPICAL TREATMENT OF CHRONIC TONSILLITIS

    Directory of Open Access Journals (Sweden)

    E.P. Karpova

    2006-01-01

    Full Text Available The study examined the effectiveness of sea water hypertonic solution (Aqua Maris troath and oral cavity spray, Jadran, Croatia medication to treat chronic tonsillitis of the compensated form on 84 children aged between 5 and 15. All children had their tonsil lacunae rinsed in a day № 6–8. 64 children had them rinsed with the sea water hypertonic solution (main group, while 20 children had them rinsed with the nitrofural solution (comparison group. Treatment effectiveness was determined according to dynamics of main symptoms (odynophagia, dysphagia, hyperemia and mucosa infiltration of pillars of the fauces, as well as the degree of tonsil bacterial number before and after treatment (by the 14th day. The dynamic analysis of subjective data during treatment revealed more significant and positive changes among the children of the main group if compared with patients from the comparison group. After treatment the researchers noticed reduction of tonsil bacterial number among 90,62% of children from the main group, whereas this rate made up 60% in the comparison group. Acquired data allowed recommending this medication for the multimodality therapy of infant adenoid disease.Key words: chronic tonsillitis, treatment, children, sea water hypertonic solution.

  19. Diffusion of aqueous solutions of ionic, zwitterionic, and polar solutes

    Science.gov (United States)

    Teng, Xiaojing; Huang, Qi; Dharmawardhana, Chamila Chathuranga; Ichiye, Toshiko

    2018-06-01

    The properties of aqueous solutions of ionic, zwitterionic, and polar solutes are of interest to many fields. For instance, one of the many anomalous properties of aqueous solutions is the behavior of water diffusion in different monovalent salt solutions. In addition, solutes can affect the stabilities of macromolecules such as proteins in aqueous solution. Here, the diffusivities of aqueous solutions of sodium chloride, potassium chloride, tri-methylamine oxide (TMAO), urea, and TMAO-urea are examined in molecular dynamics simulations. The decrease in the diffusivity of water with the concentration of simple ions and urea can be described by a simple model in which the water molecules hydrogen bonded to the solutes are considered to diffuse at the same rate as the solutes, while the remainder of the water molecules are considered to be bulk and diffuse at almost the same rate as pure water. On the other hand, the decrease in the diffusivity of water with the concentration of TMAO is apparently affected by a decrease in the diffusion rate of the bulk water molecules in addition to the decrease due to the water molecules hydrogen bonded to TMAO. In other words, TMAO enhances the viscosity of water, while urea barely affects it. Overall, this separation of water molecules into those that are hydrogen bonded to solute and those that are bulk can provide a useful means of understanding the short- and long-range effects of solutes on water.

  20. Bridging the climate-induced water gap in the twenty-first century: adaptation support based on water supply, demand, adaptation and financing.

    Science.gov (United States)

    Straatsma, Menno; Droogers, Peter; Brandsma, Jaïrus; Buytaert, Wouter; Karssenberg, Derek; Van Beek, Rens; Wada, Yoshihide; Sutanudjaja, Edwin; Vitolo, Claudia; Schmitz, Oliver; Meijer, Karen; Van Aalst, Maaike; Bierkens, Marc

    2014-05-01

    Water scarcity affects large parts of the world. Over the course of the twenty-first century, water demand is likely to increase due to population growth and associated food production, and increased economic activity, while water supply is projected to decrease in many regions due to climate change. Despite recent studies that analyze the effect of climate change on water scarcity, e.g. using climate projections under representative concentration pathways (RCP) of the fifth assessment report of the IPCC (AR5), decision support for closing the water gap between now and 2100 does not exist at a meaningful scale and with a global coverage. In this study, we aimed (i) to assess the joint impact of climatic and socio-economic change on water scarcity, (ii) to integrate impact and potential adaptation in one workflow, (iii) to prioritize adaptation options to counteract water scarcity based on their financial, regional socio-economic and environmental implications, and (iv) to deliver all this information in an integrated user-friendly web-based service. To enable the combination of global coverage with local relevance, we aggregated all results for 1604 water provinces (food producing units) delineated in this study, which is five times smaller than previous food producing units. Water supply was computed using the PCR-GLOBWB hydrological and water resources model, parameterized at 5 arcminutes for the whole globe, excluding Antarctica and Greenland. We ran PCR-GLOBWB with a daily forcing derived from five different GCM models from the CMIP5 (GFDL-ESM2M, Hadgem2-ES, IPSL-CMA5-LR, MIROC-ESM-CHEM, NorESM1-M) that were bias corrected using observation-based WATCH data between 1960-1999. For each of the models all four RCPs (RCP 2.6, 4.5, 6.0, and 8.5) were run, producing the ensemble of 20 future projections. The blue water supply was aggregated per month and per water province. Industrial, domestic and irrigation water demands were computed for a limited number of

  1. Metal scarcity and sustainability, analyzing the necessity to reduce the extraction of scarce metals

    NARCIS (Netherlands)

    Henckens, M. L C M; Driessen, P. P J; Worrell, E.

    2014-01-01

    There is debate whether or not further growth of metal extraction from the earth's crust will be sustainable in connection with geologic scarcity. Will future generations possibly face a depletion of specific metals? We study whether, for which metals and to what extent the extraction rate would

  2. Effect of dissolved organic carbon in recycled wastewaters on boron adsorption by soils

    Science.gov (United States)

    In areas of water scarcity, recycled municipal wastewaters are being used as water resources for non-potable applications, especially for irrigation. Such wastewaters often contain elevated levels of dissolved organic carbon (DOC) and solution boron (B). Boron adsorption was investigated on eight ...

  3. Scarcity, Alterity and Value: Decline of the Pangolin, the World′s Most Trafficked Mammal

    Directory of Open Access Journals (Sweden)

    Alex Aisher

    2016-01-01

    Full Text Available The pangolin, now recognised as the world's most trafficked mammal, is currently undergoing population collapse across South and Southeast Asia, primarily because of the medicinal value attributed to its meat and scales. This paper explores how scarcity and alterity (otherness drive the perceived value of these creatures for a range of human and more-than-human stakeholders: wildlife traffickers, Traditional Chinese Medicine (TCM practitioners, Asian consumers of their meat and scales, hunters and poachers, pangolin-rearing master-spirits, and conservation organisations. Based on archival research and long-term ethnographic study with indigenous hunters in the Eastern Himalayas, the paper analyses the commodity chains linking hunters and consumers of pangolin across South, Southeast and East Asia. It shows that whilst the nonlinear interaction of scarcity, alterity and value is driving the current overexploitation of pangolins, for some indigenous hunters in the Eastern Himalayas, these same dynamics interact to preserve these animals in the forests where they dwell.

  4. Water, gas and solute movement through argillaceous media

    International Nuclear Information System (INIS)

    Horseman, S.T.; Higgo, J.J.W.; Alexander, J.; Harrington, J.F.

    1996-01-01

    This report was commissioned by a consortium of companies and organisations with a common concern: the capacity of clay-rich media to act as barriers to the movement of radionuclides. Since the migration of such contaminants occurs primarily in aqueous solutions, considerable emphasis is placed on the motion of groundwater in the subsurface environment and on the advective and diffusive transport of solutes within this water. This report examines clay systems at a very wide range of scales, from the molecular-scale interactions between water molecules and clay surfaces, through to large-scale processes such as the movement of fluids in sedimentary basins. Its goal is to study the links between the colloidal interactions between clay mineral particles, the mechanical responses of the system and the movement of fluids. The Darcy's or Fick's laws were adopted as a basis for the phenomenological mass transfer calculations, and a very idealized porous medium having clearly identifiable characteristics and properties was considered to replace the inordinately complex and highly-variable geologic medium. It is also assumed that geological processes, other than transport processes, either cease to operate over the time-scale of interest or can have no secondary effect on mass transport. (J.S.). 737 refs., 25 figs., 4 tabs., 2 appends

  5. Modeling spatially- and temporally-explicit water stress indices for use in life cycle assessment

    Science.gov (United States)

    Scherer, L.; Venkatesh, A.; Karuppiah, R.; Usadi, A.; Pfister, S.; Hellweg, S.

    2013-12-01

    Water scarcity is a regional issue in many areas across the world, and can affect human health and ecosystems locally. Water stress indices (WSIs) have been developed as quantitative indicators of such scarcities - examples include the Falkenmark indicator, Social Water Stress Index, and the Water Supply Stress Index1. Application of these indices helps us understand water supply and demand risks for multiple users, including those in the agricultural, industrial, residential and commercial sectors. Pfister et al.2 developed a method to calculate WSIs that were used to estimate characterization factors (CFs) in order to quantify environmental impacts of freshwater consumption within a life cycle assessment (LCA) framework. Global WSIs were based on data from the WaterGAP model3, and presented as annual averages for watersheds. Since water supply and demand varies regionally and temporally, the resolution used in Pfister et al. does not effectively differentiate between seasonal and permanent water scarcity. This study aims to improve the temporal and spatial resolution of the water scarcity calculations used to estimate WSIs and CFs. We used the Soil and Water Assessment Tool (SWAT)4 hydrological model to properly simulate water supply in different world regions with high spatial and temporal resolution, and coupled it with water use data from WaterGAP3 and Pfister et al.5. Input data to SWAT included weather, land use, soil characteristics and a digital elevation model (DEM), all from publicly available global data sets. Potential evapotranspiration, which affects water supply, was determined using an improved Priestley-Taylor approach. In contrast to most other hydrological studies, large reservoirs, water consumption and major water transfers were simulated. The model was calibrated against observed monthly discharge, actual evapotranspiration, and snow water equivalents wherever appropriate. Based on these simulations, monthly WSIs were calculated for a few

  6. Glass transition and relaxation dynamics of propylene glycol-water solutions confined in clay

    Science.gov (United States)

    Elamin, Khalid; Björklund, Jimmy; Nyhlén, Fredrik; Yttergren, Madeleine; Mârtensson, Lena; Swenson, Jan

    2014-07-01

    The molecular dynamics of aqueous solutions of propylene glycol (PG) and propylene glycol methylether (PGME) confined in a two-dimensional layer-structured Na-vermiculite clay has been studied by broadband dielectric spectroscopy and differential scanning calorimetry. As typical for liquids in confined geometries the intensity of the cooperative α-relaxation becomes considerably more suppressed than the more local β-like relaxation processes. In fact, at high water contents the calorimetric glass transition and related structural α-relaxation cannot even be observed, due to the confinement. Thus, the intensity of the viscosity related α-relaxation is dramatically reduced, but its time scale as well as the related glass transition temperature Tg are for both systems only weakly influenced by the confinement. In the case of the PGME-water solutions it is an important finding since in the corresponding bulk system a pronounced non-monotonic concentration dependence of the glass transition related dynamics has been observed due to the growth of hydrogen bonded relaxing entities of water bridging between PGME molecules [J. Sjöström, J. Mattsson, R. Bergman, and J. Swenson, Phys. Chem. B 115, 10013 (2011)]. The present results suggest that the same type of structural entities are formed in the quasi-two-dimensional space between the clay platelets. It is also observed that the main water relaxation cannot be distinguished from the β-relaxation of PG or PGME in the concentration range up to intermediate water contents. This suggests that these two processes are coupled and that the water molecules affect the time scale of the β-relaxation. However, this is most likely true also for the corresponding bulk solutions, which exhibit similar time scales of this combined relaxation process below Tg. Finally, it is found that at higher water contents the water relaxation does not merge with, or follow, the α-relaxation above Tg, but instead crosses the

  7. Water management paradigms in Iran: technical, social and ethical aspects

    NARCIS (Netherlands)

    Balali, M.R.; Keulartz, F.W.J.; Korthals, M.J.J.A.A.

    2007-01-01

    In Iran, water scarcity is one of the main problems threatening food security. The country is confronted with the challenge to continue the expansion of food production to meet future demand without negative effects on the environment. To illuminate the problems and perspectives of water management

  8. Influence of water and salt solutions on UVB irradiation of normal skin and psoriasis

    International Nuclear Information System (INIS)

    Boer, J.; Schothorst, A.A.; Boom, B.; Suurmond, D.; Hermans, J.

    1982-01-01

    The influence of tap-water (TW) and salt solutions on the minimal erythema dose (MED) was investigated for normal human skin and uninvolved skin of psoriasis patients. MED (UVB) determinations on the forearm revealed that: (1) the MED definitely decreases whenever the arm is immersed in TW or NaCl solutions with a low concentration (4%) prior to UVB exposure, whereas almost saturated NaCl solution (26%), as well as locum Dead Sea water (LDSW), do not produce a change in the MED, and (2) the decrease in MED obtained by wetting the skin with TW was no longer present when the skin was allowed to dry for 20 min. A decrease in water uptake by skin (in vivo) and by callus (in vitro) was found as the salt concentration of the external solution increased. It is proposed that water taken up by the skin plays an important role in the sensitivity of the skin to UVB exposure. Bathing in TW or 4% NaCl prior to UVB exposure offered a slight to moderate improvement in psoriasis over UVB irradiation alone. Finally, it was shown that there is no obvious difference in clearance of the psoriatic skin between a bath in TW, 4% NaCl, or LDSW prior to UVB exposure. (orig.)

  9. Using a hybrid model to predict solute transfer from initially saturated soil into surface runoff with controlled drainage water.

    Science.gov (United States)

    Tong, Juxiu; Hu, Bill X; Yang, Jinzhong; Zhu, Yan

    2016-06-01

    The mixing layer theory is not suitable for predicting solute transfer from initially saturated soil to surface runoff water under controlled drainage conditions. By coupling the mixing layer theory model with the numerical model Hydrus-1D, a hybrid solute transfer model has been proposed to predict soil solute transfer from an initially saturated soil into surface water, under controlled drainage water conditions. The model can also consider the increasing ponding water conditions on soil surface before surface runoff. The data of solute concentration in surface runoff and drainage water from a sand experiment is used as the reference experiment. The parameters for the water flow and solute transfer model and mixing layer depth under controlled drainage water condition are identified. Based on these identified parameters, the model is applied to another initially saturated sand experiment with constant and time-increasing mixing layer depth after surface runoff, under the controlled drainage water condition with lower drainage height at the bottom. The simulation results agree well with the observed data. Study results suggest that the hybrid model can accurately simulate the solute transfer from initially saturated soil into surface runoff under controlled drainage water condition. And it has been found that the prediction with increasing mixing layer depth is better than that with the constant one in the experiment with lower drainage condition. Since lower drainage condition and deeper ponded water depth result in later runoff start time, more solute sources in the mixing layer are needed for the surface water, and larger change rate results in the increasing mixing layer depth.

  10. Effects of climate change on surface-water photochemistry: a review.

    Science.gov (United States)

    De Laurentiis, Elisa; Minella, Marco; Maurino, Valter; Minero, Claudio; Vione, Davide

    2014-10-01

    Information concerning the link between surface-water photochemistry and climate is presently very scarce as only a few studies have been dedicated to the subject. On the basis of the limited knowledge that is currently available, the present inferences can be made as follows: (1) Warming can cause enhanced leaching of ionic solutes from the catchments to surface waters, including cations and more biologically labile anions such as sulphate. Preferential sulphate biodegradation followed by removal as organic sulphides in sediment could increase alkalinity, favouring the generation of the carbonate radical, CO3 (·-). However, this phenomenon would be easily offset by fluctuations of the dissolved organic carbon (DOC), which is strongly anticorrelated with CO3 (·-). Therefore, obtaining insight into DOC evolution is a key issue in understanding the link between photochemistry and climate. (2) Climate change could exacerbate water scarcity in the dry season in some regions. Fluctuations in the water column could deeply alter photochemistry that is usually favoured in shallower waters. However, the way water is lost would strongly affect the prevailing photoinduced processes. Water outflow without important changes in solute concentration would mostly favour reactions induced by the hydroxyl and carbonate radicals (·OH and CO3 (·-)). In contrast, evaporative concentration would enhance reactions mediated by singlet oxygen ((1)O2) and by the triplet states of chromophoric dissolved organic matter ((3)CDOM*). (3) In a warmer climate, the summer stratification period of lakes would last longer, thereby enhancing photochemical reactions in the epilimnion but at the same time keeping the hypolimnion water in the dark for longer periods.

  11. Modelling transport of water and solutes in future wetlands in Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Vikstroem, Maria; Gustafsson, Lars-Goeran [DHI Water and Environment AB, Vaexjoe (Sweden)

    2006-03-15

    been analyzed. Results from the transport modelling show that a solute in the bedrock is transported quickly towards the peat surface in discharge areas for Bolundsfjaerden. After around 10 years, a stationary condition is reached. For the recharge area that develops in large parts of the mire, the solute is transported through horizontal dispersion, which results in much lower concentrations. The solute concentration is at the lowest where the overland water pressure is at the highest close to the south western inlet. Puttan has a vertical flow pattern that differs from Bolundsfjaerden. The pressure from water on the peat surface is considerably lower and for a major part of the year Puttan is a discharge area with an upwards flow direction. The spatial distribution of solutes is more even over the surface than for Bolundsfjaerden, but higher concentrations are found around today's shoreline. A solute reaching the wetland through surface runoff is transported relatively slow through the mire at Bolundsfjaerden. Due to the recharge conditions, the solute is spread to the underlying soil layers. The vertical solute transport follows the discharge and recharge areas, where high concentrations, up to the source strength, are reached in major parts of the formation, while lower concentrations are reached in the discharge areas and underneath clay sediment.

  12. Modelling transport of water and solutes in future wetlands in Forsmark

    International Nuclear Information System (INIS)

    Vikstroem, Maria; Gustafsson, Lars-Goeran

    2006-03-01

    analyzed. Results from the transport modelling show that a solute in the bedrock is transported quickly towards the peat surface in discharge areas for Bolundsfjaerden. After around 10 years, a stationary condition is reached. For the recharge area that develops in large parts of the mire, the solute is transported through horizontal dispersion, which results in much lower concentrations. The solute concentration is at the lowest where the overland water pressure is at the highest close to the south western inlet. Puttan has a vertical flow pattern that differs from Bolundsfjaerden. The pressure from water on the peat surface is considerably lower and for a major part of the year Puttan is a discharge area with an upwards flow direction. The spatial distribution of solutes is more even over the surface than for Bolundsfjaerden, but higher concentrations are found around today's shoreline. A solute reaching the wetland through surface runoff is transported relatively slow through the mire at Bolundsfjaerden. Due to the recharge conditions, the solute is spread to the underlying soil layers. The vertical solute transport follows the discharge and recharge areas, where high concentrations, up to the source strength, are reached in major parts of the formation, while lower concentrations are reached in the discharge areas and underneath clay sediment

  13. Potential of Solar-driven CDI Technology for Water Desalination in Egypt

    Directory of Open Access Journals (Sweden)

    Ashraf Seleym

    2017-12-01

    Full Text Available Freshwater scarcity is one of the most challenging problems facing the world today. Rivers, lakes, and surface ice represent only 1.2% of the fresh water sources on earth, while ground water represent over 30% of the potential fresh water. The Egyptian quota from the Nile River is limited to 55 billion m3/yr, and expected to decrease due to increasing demand of water by other Nile basin countries. According to an Egyptian government report, the total population of Egypt increased from 22 million in 1950 to around 85 million in 2010. This increase in population growth will continue for decades and it is likely to increase to between 120-150 million by 2050. Egypt has reached a state where the quantity of water available is imposing limits on its national economic development.  As indication of water scarcity, Egypt passed the international threshold value of 1000 m3/capita/year in the nineties, and it is expected to cross the threshold of absolute water scarcity of 500 m3/capita/yr by 2025. Capacitive de-ionization (CDI is a relatively new technology that was developed as recently as the late 1960s. In CDI systems, saline water is made to pass between a pair of electrodes connected to a voltage source. Ions are stored inside the pores of electrodes in CDI via the applied electric field strength. CDI is a membrane less technology, and the problems of membrane fouling in the Reverse Osmosis technology is not present in CDI. It has the potential to be energy efficient compared with other related techniques, robust technology for water desalination. This paper explores low cost and efficient desalination technologies for brackish water for irrigation and drinking purposes using the abundant solar energy in Egypt.

  14. Potential of Solar-driven CDI Technology for Water Desalination in Egypt

    Directory of Open Access Journals (Sweden)

    Moustafa El Shafei

    2017-12-01

    Full Text Available Freshwater scarcity is one of the most challenging problems facing the world today. Rivers, lakes, and surface ice represent only 1.2% of the fresh water sources on earth, while ground water represents over 30% of the potential fresh water. The Egyptian quota from the River Nile is limited to 55 billion m/yr, and expected to decrease due to increasing demand of water by other Nile basin countries. According to an Egyptian government report, the total population of Egypt increased from 22 million in 1950 to around 85 million in 2010. This increase in population will continue for decades and it is likely to increase to between 120-150 million by 2050. Egypt has reached a state where the quantity of water available is imposing limits on its national economic development. As indication of water scarcity, Egypt passed the international threshold value of 1000 m3/capita/year in the nineties, and it is expected to cross the threshold of absolute water scarcity of 500 m3/capita/yr by 2025. Capacitive deionization (CDI is a relatively new technology that was developed as recently as the late 1960s. In CDI systems, saline water is made to pass between a pair of electrodes connected to a voltage source. Ions are stored inside the pores of electrodes in CDI via the applied electric field strength. CDI is a membrane less technology and the problems of membrane fouling in the Reverse Osmosis technology are not present in CDI. It has the potential to be energy efficient compared with other related techniques and robust technology for water desalination. This paper explores low cost and efficient desalination technologies for brackish water for irrigation and drinking purposes using the abundant solar energy in Egypt.

  15. Efficiency and productivity terms for water management: A matter of contextual relativism versus general absolutism

    NARCIS (Netherlands)

    Halsema, van G.E.; Vincent, L.F.

    2012-01-01

    Growing water scarcity and increasing demands for agricultural products generate much debate about improving the agricultural sector's water use efficiency and productivity. Agricultural engineering traditions feed this debate with notions such as agricultural yield gaps and low water use

  16. Liquid microjet synchrotron-radiation spectroscopy for biomolecules in water solution 2

    International Nuclear Information System (INIS)

    Shimada, Hiroyuki; Ukai, Masatoshi

    2014-01-01

    A new spectroscopic research of radiation induced damage on DNA and its constituent molecules is proposed, which is made possible using a liquid microjet technique for bio-solution under vacuum in combination with synchrotron-radiation aided site-selective excitation. The latter part of the proposal article describes the present state of research on the selective primary radiation interaction by looking at base moieties of nucleotides. X-ray absorption near edge structure (XANES) spectra at energies around the nitrogen K-edge for nucleotides, adenosine-5'-monophosphate (AMP), guanosine-5'-monophosophate (GMP), cytidine-5'-monophosophate (CMP), and adenosine-5'-triphosphate (ATP) in aqueous solutions are presented. Selective excitation of a base moiety using a synchrotron radiation allows us to investigate the interaction of the base moiety with water solvent. We discuss the change of spectral character of XANES which reveals to the structural change of the base moiety under different pH environmental condition of water solution. Through the present research a scope for cooperative direct and indirect primary radiation effects is given. (author)

  17. Effect of Water Quality and Drip Irrigation Management on Yield and Water Use Efficiency in Late Summer Melon

    OpenAIRE

    javad baghani; A. Alizadeh; H. Ansari; M. Azizi

    2016-01-01

    Introduction: Production and growth of plants in many parts of the world due to degradation and water scarcity have been limited and particularly, in recent decades, agriculture is faced with stress. In the most parts of Iran, especially in the Khorasan Razavi province, drought is a fact and water is very important. Due to melon cultivation in this province, and the conditions of quality and quantity of water resources and water used to produce the melon product in this province, any researc...

  18. Water and wars

    Science.gov (United States)

    Gleick, Peter H.

    In “Challenging the Rhetoric of Water Wars” (Eos, In Brief, September 5, 2000, p. 410) Randy Showstack reported on the speech given by Minister Kader Asmal upon receiving the 2000 Stockholm Water Prize. This prize was well deserved for the tremendous progress South Africa has made under Minister Asmal's leadership in addressing basic water needs after apartheid. Indeed, I was one of his nominators for this prize and am an ardent fan of his bold programs. But his remarks about water-related conflicts need to be qualified. In his speech, Minister Asmal noted that water scarcity is a “crisis of biblical proportion,” but also suggested “there is not a shred of evidence” to back up arguments that there are water “wars.”

  19. Modeling of water flow and solute transport in unsaturated heterogeneous fields

    International Nuclear Information System (INIS)

    Bresler, E.; Dagan, G.

    1982-01-01

    A comprehensive model which considers dispersive solute transport, nonsteady moisture flow regimes and complex boundary conditions is described. The main assumptions are: vertical flow; spatial variability which is associated with the saturated hydraulic conductivity K/sub s/ occurs in the horizontal plane, but is constant in the profile, and has a lognormal probability distribution function (PDF); deterministic recharge and solute concentration are applied during infiltration; the soil is at uniform water content and salt concentration prior to infiltration. The problem is to solve, for arbitrary K/sub s/, the Richards' equation of flow simultaneously with the diffusion-convection equation for salt transport, with the boundary and initial conditions appropriate to infiltration-redistribution. Once this is achieved, the expectation and variance of various quantities of interest (solute concentration, moisture content) are obtained by using the statistical averaging procedure and the given PDF of K/sub s/. Since the solution of Richards' equation for the infiltration-redistribution cycle is extremely difficult (for a given K/sub s/), an approxiate solution is derived by using the concept of piston flow type wetting fronts. Similarly, accurate numerical solutions are used as input for the same statistical averaging procedure. The stochastic model is applied to two spatially variable soils by using both accurate numerical solutions and the simplified water and salt transport models. A comparison between the results shows that the approximate simplified models lead to quite accurate values of the expectations and variances of the flow variables for the entire field. It is suggested that in spatially variable fields, stochastic modeling represents the actual flow phenomena realistically, and provides the main statistical moments by using simplified flow models which can be used with confidence in applications

  20. Using UCST ionic liquid as a draw solute in forward osmosis to treat high-salinity water

    KAUST Repository

    Zhong, Yujiang; Feng, Xiaoshuang; Chen, Wei; Wang, Xinbo; Huang, Kuo-Wei; Gnanou, Yves; Lai, Zhiping

    2015-01-01

    (trifluoromethylsulfonyl)imide ([Hbet][Tf2N]) was obtained by heating and maintaining the temperature above 56°C. This solution successfully drew water from high-salinity water up to 3.0 M through FO. When the IL solution cooled to room temperature, it spontaneously separated into a