WorldWideScience

Sample records for water savings impact

  1. Save water, save money

    Science.gov (United States)

    ,; Fairfax County, VA

    1977-01-01

    The United States uses huge quantities of water. In 1976, for example, it was estimated that for each person in the U.S., about 2,000 gallons of water were used daily in homes, offices, farms, and factories. This means that roughly 420 billion gallons of water were pumped, piped, or diverted each day—about 15 percent more than in 1970. By the year 2000, our daily water needs will probably exceed 800 billion gallons.

  2. Water Saving for Development

    Science.gov (United States)

    Zacharias, Ierotheos

    2013-04-01

    permanent cooperation among Public Bodies and Institutions, with the creation of a transferable model of best practices. WaS4D will carry out initiatives and advisory services aimed to encourage a behavior change, influencing citizens' demand and support consumers who wish to take action to reduce drinking water use: for the civil use, from literature, it's possible to reduce drinkable water consumption up to 50% using simple and economic tools, with a large environmental positive impact. WaS4D mainly focuses on the needs to define a participatory approach to enhance water-saving culture at urban level, encouraging a shift from supply-driven policies to management policies and from a sectorial to an integrated approach. The innovative character of the project is referred to the integrated approach as well as to the creation of new web services & tools.

  3. Save Our Water Resources.

    Science.gov (United States)

    Bromley, Albert W.

    The purpose of this booklet, developed as part of Project SOAR (Save Our American Resources), is to give Scout leaders some facts about the world's resources, the sources of water pollution, and how people can help in obtaining solutions. Among the topics discussed are the world's water resources, the water cycle, water quality, sources of water…

  4. Saving Water Means Saving Life

    Institute of Scientific and Technical Information of China (English)

    韩文盛

    2005-01-01

    On the""""""""World Water Day"""""""" (March 22, 2005) the United Nations began an """"""""International Decade for Action: Water for Life"""""""" to focus the world's attention on water resources. """"""""Water is essential for life"""""""", said the UN Secretary-General, Kofi Annanin, in an address prepared for the ceremony. """"""""This is an urgent matter of human development and human dignity."""""""" Is this matter so important to the Chinese people? What can be done to help solve the water resources problem in China? Please write down your views in a composition in no less than 200 words.

  5. Saving water through global trade

    NARCIS (Netherlands)

    Chapagain, Ashok; Hoekstra, Arjen Ysbert; Savenije, H.H.G.

    2005-01-01

    Many nations save domestic water resources by importing water-intensive products and exporting commodities that are less water intensive. National water saving through the import of a product can imply saving water at a global level if the flow is from sites with high to sites with low water

  6. Unexpected water impacts of energy-saving measures in the iron and steel sector: Tradeoffs or synergies?

    International Nuclear Information System (INIS)

    Wang, Can; Zheng, Xinzhu; Cai, Wenjia; Gao, Xue; Berrill, Peter

    2017-01-01

    Highlights: •Associated water impacts of individual energy conservation measures were evaluated. •Water-energy tradeoffs exist in the production process adjustment of iron sector. •Considering the water impacts can change the priority ranks of technology choice. -- Abstract: Moving towards integrated governance of water and energy requires balancing tradeoffs and taking advantage of synergies through specific technology choice. However, the water-energy conservation relationships of individual conservation measures in industries other than the water and energy sectors have not been investigated in detail. This study develops a hybrid model to estimate the associated water impacts of individual energy conservation measures, using China’s iron and steel industry as a case study. The results reveal that water-energy tradeoffs exist in the production process adjustment, which is conventionally promoted as a key energy-saving measure in iron and steel industry. It is found that replacing the Blast Oxygen Furnace (BOF) process with the Electric Arc Furnace (EAF) in 2007 could save 131–156 kg coal equivalent (kgce) (13.2–15.7%) of embodied energy per ton of crude steel (tcs) at the expenses of an additional 2.5–3.9 m 3 /tcs (10.6–16.4%) of water footprint. Nineteen energy efficiency technologies are studied in this research, and most of them are identified as having water-saving synergies except for the Low Temperature Rolling Technology. Taking these water impacts into consideration can update the priority ranks of the technology choices and inform policy decisions. Although this study focuses on China’s iron and steel sector, the methods and analysis can be extended to other countries, sectors, technologies and environmental impacts.

  7. Investigating the impact of training on water consumption saving in Khorramabad in 2015

    Directory of Open Access Journals (Sweden)

    Mohammad Bazdar

    2016-12-01

    Full Text Available Background: In the water demand management there is a certain relationship between attitudes, beliefs, actual behavior of consumers and water consumption. There are many factors in a positive attitude towards water use. By providing the right information should changed the beliefs and attitudes of citizens towards drinking water habits. The aim of this study was to evaluate the effect of training on water consumption in the Khorramabad city in 1394. Methods: This study was conducted in the Lorestan province and in the Khorramabad city. That the effect of training on water saving was evaluated for 60 households with high water consumption levels. The selected households were randomly assigned to 2 groups: control and treatment. In the treatment group was taught how to properly use in a regular basis and periodically meter reading for both groups took .This study was performed for 6 months in summer and autumn in 1394. Results: The results of this study showed that households in 1393 and 1394 respectively in the control group consumed an average per capita consumption of 60.78 ± 253.7 and 62.35 ± 208 liters per day per person. The average consumption per capita in 93 and 94 in the treatment group was respectively 192.14 ±51.2 and 171.9 ± 48.57 liters per day per person. As well as due to intervention education decrease 9-11% water consumption. Conclusion: The basic results of this study to raise public awareness about the water crisis, stresses and the importance of water using education can affect to water use. It can also promote a culture of right consumption and to change people’s behavior towards water use.

  8. Energy Savings from Industrial Water Reductions

    Energy Technology Data Exchange (ETDEWEB)

    Rao, Prakash; McKane, Aimee; de Fontaine, Andre

    2015-08-03

    Although it is widely recognized that reducing freshwater consumption is of critical importance, generating interest in industrial water reduction programs can be hindered for a variety of reasons. These include the low cost of water, greater focus on water use in other sectors such as the agriculture and residential sectors, high levels of unbilled and/or unregulated self-supplied water use in industry, and lack of water metering and tracking capabilities at industrial facilities. However, there are many additional components to the resource savings associated with reducing site water use beyond the water savings alone, such as reductions in energy consumption, greenhouse gas emissions, treatment chemicals, and impact on the local watershed. Understanding and quantifying these additional resource savings can expand the community of businesses, NGOs, government agencies, and researchers with a vested interest in water reduction. This paper will develop a methodology for evaluating the embedded energy consumption associated with water use at an industrial facility. The methodology developed will use available data and references to evaluate the energy consumption associated with water supply and wastewater treatment outside of a facility’s fence line for various water sources. It will also include a framework for evaluating the energy consumption associated with water use within a facility’s fence line. The methodology will develop a more complete picture of the total resource savings associated with water reduction efforts and allow industrial water reduction programs to assess the energy and CO2 savings associated with their efforts.

  9. Water Saving Strategies & Ecological Modernisation

    DEFF Research Database (Denmark)

    Hoffmann, Birgitte; Jensen, Jesper Ole; Elle, Morten

    2005-01-01

    Drawing on case studies of water saving campaigns and new collaborations, the pa-per will serve, on the one hand, as an interpretation of the water saving strategy in Co-penhagen in the light of Ecological Modernisation, and on the other hand, as a critical discussion of Ecological Modernisation...... as a frame for understanding resource manage-ment. The water management in Copenhagen has in recent years undergone a rather radi-cal transition. Along with strong drivers for resource management in the region the mu-nicipal water supplier has tested and implemented a number of initiatives to promote sus...... to 125 l/capita/day in 2002. A series of different strategies, targets and tools have been implemented: Emphasizing demand side instead of supply side, using and communicating indicators, formulating goals for reducing water consumption and developing learning processes in water management. A main...

  10. Household water saving: Evidence from Spain

    Science.gov (United States)

    Aisa, Rosa; Larramona, Gemma

    2012-12-01

    This article focuses on household water use in Spain by analyzing the influence of a detailed set of factors. We find that, although the presence of both water-saving equipment and water-conservation habits leads to water savings, the factors that influence each are not the same. In particular, our results show that those individuals most committed to the adoption of water-saving equipment and, at the same time, less committed to water-conservation habits tend to have higher incomes.

  11. Creation of Carbon Credits by Water Saving

    Directory of Open Access Journals (Sweden)

    Yasutoshi Shimizu

    2012-07-01

    Full Text Available Until now, as a way of reducing greenhouse gas emissions from Japanese homes, the emphasis has been on reduction of energy consumption for air-conditioning and lighting. In recent years, there has been progress in CO2 emission reduction through research into the water-saving performance of bathroom fixtures such as toilets and showers. Simulations have shown that CO2 emissions associated with water consumption in Japanese homes can be reduced by 25% (1% of Japan’s total CO2 emissions by 2020 through the adoption of the use of water-saving fixtures. In response to this finding, a program to promote the replacement of current fixtures with water-saving toilet bowls and thermally insulated bathtubs has been added to the Government of Japan’s energy-saving policy. Furthermore, CO2 emission reduction through widespread use of water-saving fixtures has been adopted by the domestic credit system promoted by the Government of Japan as a way of achieving CO2 emission-reduction targets; application of this credit system has also begun. As part of a bilateral offset credit mechanism promoted by the Government of Japan, research to evaluate the CO2 reduction potential of the adoption of water-saving fixtures has been done in the city of Dalian, in China.

  12. Quantifying the economic water savings benefit of water hyacinth ...

    African Journals Online (AJOL)

    Quantifying the economic water savings benefit of water hyacinth ... Value Method was employed to estimate the average production value of irrigation water, ... invasions of this nature, as they present significant costs to the economy and ...

  13. Water savings through off-farm employment?

    NARCIS (Netherlands)

    Wachong Castro, V.; Heerink, N.; Shi, X.; Qu, W.

    2010-01-01

    Purpose – The purpose of this paper is to gain more insight into the relationship between off-farm employment of rural households and water-saving investments and irrigation water use in rural China. Design/methodology/approach – Data from a survey held among 317 households in Minle County, Zhangye

  14. User behaviour impact on energy savings potential

    DEFF Research Database (Denmark)

    Rose, Jørgen

    2014-01-01

    and the residents' behaviour and if these defaults do not reflect actual circumstances, it can result in non-realisation of expected energy savings. Furthermore, a risk also exists that residents' behaviour change after the energy upgrading, e.g. to obtain improved comfort than what was possible before......, 3) Domestic hot water consumption and 4) Air change rate. Based on the analysis, a methodology is established that can be used to make more realistic and accurate predictions of expected energy savings associated with energy upgrading taking into account user behaviour....... the upgrading and this could lead to further discrepancies between the calculated and the actual energy savings. This paper presents an analysis on how residents’ behaviour and the use of standard assumptions may influence expected energy savings. The analysis is performed on two typical single-family houses...

  15. Methodology for National Water Savings Model and Spreadsheet Tool—Outdoor Water Use

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Alison, A; Chen, Yuting; Dunham, Camilla; Fuchs, Heidi; Stratton, Hannah

    2018-03-07

    This report describes the method Lawrence Berkeley National Laboratory (LBNL) developed to estimate national impacts of the U.S. Environmental Protection Agency’s (EPA’s) WaterSense labeling program for weather-based irrigation controllers (WBIC). Estimated impacts include the national water savings attributable to the program and the net present value of the lifetime water savings for consumers of irrigation controllers.

  16. Water saving through international trade of agricultural products

    NARCIS (Netherlands)

    Chapagain, Ashok; Hoekstra, Arjen Ysbert; Savenije, H.H.G.

    2006-01-01

    Many nations save domestic water resources by importing water-intensive products and exporting commodities that are less water intensive. National water saving through the import of a product can imply saving water at a global level if the flow is from sites with high to sites with low water

  17. The modern water-saving agricultural technology: Progress and focus

    African Journals Online (AJOL)

    GREGORY

    2010-09-13

    Sep 13, 2010 ... DEVELOPING TENDENCY OF MODERN WATER-. SAVING AGRICULTURAL TECHNOLOGY. Excavation of the own water-saving potential using biotechnology. The biological water-saving technology that uses crop physiology control and modern breeding techniques to increase production and water ...

  18. Energy saving and recovery measures in integrated urban water systems

    Science.gov (United States)

    Freni, Gabriele; Sambito, Mariacrocetta

    2017-11-01

    The present paper describes different energy production, recovery and saving measures which can be applied in an integrated urban water system. Production measures are often based on the installation of photovoltaic systems; the recovery measures are commonly based on hydraulic turbines, exploiting the available pressure potential to produce energy; saving measures are based on substitution of old pumps with higher efficiency ones. The possibility of substituting some of the pipes of the water supply system can be also considered in a recovery scenario in order to reduce leakages and recovery part of the energy needed for water transport and treatment. The reduction of water losses can be obtained through the Active Leakage Control (ALC) strategies resulting in a reduction in energy consumption and in environmental impact. Measures were applied to a real case study to tested it the efficiency, i.e., the integrated urban water system of the Palermo metropolitan area in Sicily (Italy).

  19. SWEEP - Save Water & Energy Education Program

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, Gregory P.; Elliott, Douglas B.; Hillman, Tim C.; Hadley, Adam; Ledbetter, Marc R.; Payson, David R.

    2001-05-03

    The objective of this study was to develop, monitor, analyze, and report on an integrated resource-conservation program highlighting efficient residential appliances and fixtures. The sites of study were 50 homes in two water-constrained communities located in Oregon. The program was designed to maximize water savings to these communities and to serve as a model for other communities seeking an integrated approach to energy and water resource efficiency. The program included the installation and in-place evaluation of energy- and water-efficient devices including the following: horizontal axis clothes washers (and the matching clothes dryers), resource-efficient dishwashers, an innovative dual flush low-flow toilet, low-flow showerheads, and faucet aerators. The significance of this activity lies in its integrated approach and unique metering evaluation of individual end-use, aggregated residential total use, and system-wide energy and water benefits.

  20. Water-saving impacts of Smart Meter technology: An empirical 5 year, whole-of-community study in Sydney, Australia

    Science.gov (United States)

    Davies, Kirsten; Doolan, Corinna; van den Honert, Robin; Shi, Rose

    2014-09-01

    In 2009-2010 Sydney Water, the primary water utility in Sydney, conducted a comprehensive Smart Metering trial in residential homes in the suburb of Westleigh, in Sydney's north. The trial involved 1923 participants residing in 630 households. A whole-of-community method of engagement was applied to capture the views of residents from 12 to 70+ years of age. The trial examined the effects of the technology on the water consumption of an intervention group compared with that of a matched control group. After removing properties that had been sold since the beginning of the trial, properties in the study group were matched with a control group property on the basis of the household size, property size and the presence (or otherwise) of a swimming pool. The effects of the technology on consumption were measured and analyzed for the period July 2009 to June 2010, coupled with qualitative information that was collected throughout the duration of the study. A key finding was that households with the in-home display (IHD) installed, reduced their consumption by an average of over 6.8% over the study period when compared to the control group. Since completion of the study the community has not had any further interventions. The trial created an opportunity to examine the longer-term effects of the technology (June 2008 to September 2013). Consumption data collected over the 3 year posttrial period revealed that the participant group consumed 6.4% per month less water when compared to the pretrial period, whilst the matched control group consumed 1.3% per month more water when compared to the pretrial period. The reduced consumption of the participant group was maintained over time, demonstrating the long-term value of this technology.

  1. Savings impact of a corporate energy manager

    International Nuclear Information System (INIS)

    Sikorski, B.D.; O'Donnell, B.A.

    1999-01-01

    This paper discusses the cost savings impact of employing an energy manager with a 16,000-employee corporation. The corporation, Canada's second largest airline, is currently operating nearly 3,000,000 ft 2 of mixed-use facilities spread across the country, with an annual energy budget for ground facilities of over Cdn $4,000,000. This paper outlines the methodology used by the energy manager to deploy an energy management program over a two-year period between April 1995 and May 1997. The paper examines the successes and the lessons learned during the period and summarizes the costs and benefits of the program. The energy manager position was responsible for developing an energy history database with more than 100 active accounts and for monitoring and verifying energy savings. The energy manager implemented many relatively low-cost energy conservation measures, as well as some capital projects, during the first two years of the program. In total, these measures provided energy cost savings of $210,000 per year, or 5% of the total budget. In each case, technologies installed as part of the energy retrofit projects provided not only cost savings but also better control, reduced maintenance, and improved working conditions for employees

  2. The modern water-saving agricultural technology: Progress and focus

    African Journals Online (AJOL)

    GREGORY

    2010-09-13

    Sep 13, 2010 ... saving agricultural technology, which include modern biological water-saving technology, unconventional ... and innovation, water, nutrient migration theory, regula- .... urban sewage of more than 50%; Mexico City, 90% of.

  3. China energy-water nexus: Assessing the water-saving synergy effects of energy-saving policies during the eleventh Five-year Plan

    International Nuclear Information System (INIS)

    Gu, Alun; Teng, Fei; Wang, Yu

    2014-01-01

    Highlights: • Energy and water limit China’s sustainable development. • Current energy policies fail to address water saving issues. • The energy-water coefficient is estimated for both direct use and indirect use. • Water saving effects associated with energy-saving policies is calculated. • Water-energy nexus should be enhanced in key industrial sectors. - Abstract: Energy and water have become major factors limiting sustainable development in China. Energy efficiency and optimization of water management are critical for the healthy growth of the Chinese economy. Current national energy policies fail to adequately address water use issues. Similarly, current water policies do not consider the impact of energy consumption and greenhouse gas emissions. Consequently, few studies have investigated the relationship between energy consumption and water use. The present study analyzes the energy-water nexus in Chinese industries using input–output tables. Coefficients that characterize the relationship between energy consumption and water are used to describe the supply-consumption relationship between the water supply and primary energy sectors. Next, we calculate the water-saving effects associated with the enforcement of energy-saving policies in selected industrial sectors during the eleventh Five-year Plan, from 2005 to 2010. These calculations address the ferrous metals, non-ferrous metals, petrochemical engineering, building materials, and electricity industries as well as key light industries. Our findings indicate that energy-saving efforts in these industries will result in savings in water consumption. This study suggests that a cooperative relationship between water and energy conservation efforts should be an important factor in creating policies that encourage simultaneous savings of both resources. Additionally, the study indicates that government should promote water- and energy-saving techniques in key industrial sectors to encourage

  4. Do water-saving technologies improve environmental flows?

    Science.gov (United States)

    Batchelor, Charles; Reddy, V. Ratna; Linstead, Conor; Dhar, Murli; Roy, Sumit; May, Rebecca

    2014-10-01

    Water saving and conservation technologies (WCTs) have been promoted widely in India as a practical means of improving the water use efficiency and freeing up water for other uses (e.g. for maintaining environmental flows in river systems). However, there is increasing evidence that, somewhat paradoxically, WCTs often contribute to intensification of water use by irrigated and rainfed farming systems. This occurs when: (1) Increased crop yields are coupled with increased consumptive water use and/or (2) Improved efficiency, productivity and profitability encourages farmers to increase the area cropped and/or to adopt multiple cropping systems. In both cases, the net effect is an increase in annual evapotranspiration that, particularly in areas of increasing water scarcity, can have the trade-off of reduced environmental flows. Recognition is also increasing that the claimed water savings of many WCTs may have been overstated. The root cause of this problem lies in confusion over what constitutes real water saving at the system or basin scales. The simple fact is that some of the water that is claimed to be ‘saved’ by WCTs would have percolated into the groundwater from where it can be and often is accessed and reused. Similarly, some of the “saved” runoff can be used downstream by, for example, farmers or freshwater ecosystems. This paper concludes that, particularly in areas facing increasing water scarcity, environmental flows will only be restored and maintained if they are given explicit (rather than theoretical or notional) attention. With this in mind, a simple methodology is proposed for deciding when and where WCTs may have detrimental impacts on environmental flows.

  5. Resources for National Water Savings for Outdoor Water Use

    Energy Technology Data Exchange (ETDEWEB)

    Melody, Moya [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Stratton, Hannah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Williams, Alison [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dunham, Camilla [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-05-01

    In support of efforts by the U.S. Environmental Agency's (EPA's) WaterSense program to develop a spreadsheet model for calculating the national water and financial savings attributable to WaterSense certification and labeling of weather-based irrigation controllers, Lawrence Berkeley National Laboratory reviewed reports, technical data, and other information related to outdoor water use and irrigation controllers. In this document we categorize and describe the reviewed references, highlighting pertinent data. We relied on these references when developing model parameters and calculating controller savings. We grouped resources into three major categories: landscapes (section 1); irrigation devices (section 2); and analytical and modeling efforts (section 3). Each category is subdivided further as described in its section. References are listed in order of date of publication, most recent first.

  6. Managing water pressure for water savings in developing countries

    African Journals Online (AJOL)

    2014-03-03

    Mar 3, 2014 ... effort into providing customers with a reliable level of service, often via poor water ... budgets. There are many factors contributing to water losses in water .... given relationship does not reflect the impact of pressure on.

  7. Advances in Biological Water-saving Research: Challenge and Perspectives

    Institute of Scientific and Technical Information of China (English)

    Lun Shan; Xiping Deng; Suiqi Zhang

    2006-01-01

    Increasing the efficiency of water use by crops continues to escalate as a topic of concern because drought is a restrictive environmental factor for crop productivity worldwide. Greater yield per unit rainfall is one of the most important challenges in water-saving agriculture. Besides water-saving by irrigation engineering and conservation tillage, a good understanding of factors limiting and/or regulating yield now provides us with an opportunity to identify and then precisely select for physiological and breeding traits that increase the efficiency of water use and drought tolerance under water-limited conditions, biological water-saving is one means of achieving this goat. A definition of biological water-saving measures is proposed which embraces improvements in water-use efficiency (WUE) and drought tolerance, by genetic improvement and physiological regulation. The preponderance of biological water-saving measures is discussed and strategies identified for working within natural resource constraints. The technology and future perspectives of biological water saving could provide not only new water-saving techniques but also a scientific base for application of water-saving irrigation and conservation tillage.

  8. A sub-tank water-saving drinking water station

    Science.gov (United States)

    Zhang, Ting

    2017-05-01

    amount of water consumption, the drinking water station is different from the ordinary drinking water station repeatedly boil, greatly saving energy, embodies the idea of energy saving.

  9. The modern water-saving agricultural technology: Progress and focus

    African Journals Online (AJOL)

    Based on the analysis of water-saving agricultural technology development status and trends in China, and in combination with the development and the needs of modern water-saving agricultural technology, we have put forward a future research emphasis and developing direction of modern watersaving agricultural ...

  10. Systems assessment of water savings impact of controlled environment agriculture (CEA) utilizing wirelessly networked Sense•Decide•Act•Communicate (SDAC) systems.

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, Jonathan T.; Baynes, Edward E., Jr.; Aguirre,Carlos (University of Texas at El Paso, El Paso, TX); Jordan, Jon (University of Arizona, Tucson, AZ); Giacomelli, Gene (University of Arizona, Tucson, AZ); Waggoner, Justin (New Mexico State University, Las Cruces, NM); Loest, Clint (New Mexico State University, Las Cruces, NM); Szumel, Leo; Nakaoka, Tyler; Pate, Ronald C.; Berry, Nina M.; Pohl, Phillip Isabio; Aguirre, Francisco Luis (Invernaderos y Maquinaria Aguirre, Cd., Aldama, Chihuahua, Mexico); Aguilar, Jose (University of Texas at El Paso, El Paso, TX); Gupta, Vipin P.; Ochoa, Juan (University of Texas at El Paso, El Paso, TX); Davis, Jesse Zehring; Ramos, Damian (University of Texas at El Paso, El Paso, TX)

    2005-02-01

    Reducing agricultural water use in arid regions while maintaining or improving economic productivity of the agriculture sector is a major challenge. Controlled environment agriculture (CEA, or, greenhouse agriculture) affords advantages in direct resource use (less land and water required) and productivity (i.e., much higher product yield and quality per unit of resources used) relative to conventional open-field practices. These advantages come at the price of higher operating complexity and costs per acre. The challenge is to implement and apply CEA such that the productivity and resource use advantages will sufficiently outweigh the higher operating costs to provide for overall benefit and viability. This project undertook an investigation of CEA for livestock forage production as a water-saving alternative to open-field forage production in arid regions. Forage production is a large consumer of fresh water in many arid regions of the world, including the southwestern U.S. and northern Mexico. With increasing competition among uses (agriculture, municipalities, industry, recreation, ecosystems, etc.) for limited fresh water supplies, agricultural practice alternatives that can potentially maintain or enhance productivity while reducing water use warrant consideration. The project established a pilot forage production greenhouse facility in southern New Mexico based on a relatively modest and passive (no active heating or cooling) system design pioneered in Chihuahua, Mexico. Experimental operations were initiated in August 2004 and carried over into early-FY05 to collect data and make initial assessments of operational and technical system performance, assess forage nutrition content and suitability for livestock, identify areas needing improvement, and make initial assessment of overall feasibility. The effort was supported through the joint leveraging of late-start FY04 LDRD funds and bundled CY2004 project funding from the New Mexico Small Business Technical

  11. Economic evaluation of water loss saving due to the biological ...

    African Journals Online (AJOL)

    This paper focuses on water loss saving as the benefit derived from biological control of this plant between 1990 and 2013 at New Year's Dam, Alicedale, Eastern Cape, South Africa. Estimates of water loss due to evapotranspiration from water hyacinth vary significantly; therefore, the study used three different rates, high, ...

  12. Leak Detectives Saving Money, Water in Virginia

    Science.gov (United States)

    “Circuit riders” from the Virginia Rural Water Association (VRWA) are traveling to small communities across the Commonwealth using special equipment financed by EPA to locate expensive and wasteful leaks in drinking water distribution systems.

  13. Environmental benefit analysis of strategies for potable water savings in residential buildings.

    Science.gov (United States)

    Marinoski, Ana Kelly; Rupp, Ricardo Forgiarini; Ghisi, Enedir

    2018-01-15

    The objective of this study is to assess the environmental benefit of using rainwater, greywater, water-efficient appliances and their combinations in low-income houses. The study was conducted surveying twenty households located in southern Brazil, which resulted in water end-uses estimation. Then, embodied energy, potential for potable water savings and sewage reduction when using the different strategies were estimated. The environmental benefit analysis of these strategies was performed using an indicator that includes embodied energy, potable water savings, reduction of sewage and energy consumption in the water utility, and sewage production during the life cycle of the system. The results indicated that the strategy with the greatest environmental benefit is the use of water-efficient appliances, which resulted in substantial water savings and reduction of sewage, causing low environmental impact due to lower embodied energy over the life cycle. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. Improved Water Safety Standards May Save Lives.

    Science.gov (United States)

    Crowder, Bland

    1982-01-01

    Computer analysis of over 9,000 records of drownings and near-drownings revealed trends in water accidents. Information derived from this on-going Texas study is used as a predictive tool to help prevent drownings. For example, records of blood tests performed on water-related accident victims revealed that alcohol is a frequent culprit.…

  15. Modelling the impact of social network on energy savings

    International Nuclear Information System (INIS)

    Du, Feng; Zhang, Jiangfeng; Li, Hailong; Yan, Jinyue; Galloway, Stuart; Lo, Kwok L.

    2016-01-01

    Highlights: • Energy saving propagation along a social network is modelled. • This model consists of a time evolving weighted directed network. • Network weights and information decay are applied in savings calculation. - Abstract: It is noted that human behaviour changes can have a significant impact on energy consumption, however, qualitative study on such an impact is still very limited, and it is necessary to develop the corresponding mathematical models to describe how much energy savings can be achieved through human engagement. In this paper a mathematical model of human behavioural dynamic interactions on a social network is derived to calculate energy savings. This model consists of a weighted directed network with time evolving information on each node. Energy savings from the whole network is expressed as mathematical expectation from probability theory. This expected energy savings model includes both direct and indirect energy savings of individuals in the network. The savings model is obtained by network weights and modified by the decay of information. Expected energy savings are calculated for cases where individuals in the social network are treated as a single information source or multiple sources. This model is tested on a social network consisting of 40 people. The results show that the strength of relations between individuals is more important to information diffusion than the number of connections individuals have. The expected energy savings of optimally chosen node can be 25.32% more than randomly chosen nodes at the end of the second month for the case of single information source in the network, and 16.96% more than random nodes for the case of multiple information sources. This illustrates that the model presented in this paper can be used to determine which individuals will have the most influence on the social network, which in turn provides a useful guide to identify targeted customers in energy efficiency technology rollout

  16. Water Savings of Crop Redistribution in the United States

    Directory of Open Access Journals (Sweden)

    Kyle Frankel Davis

    2017-01-01

    Full Text Available Demographic growth, changes in diet, and reliance on first-generation biofuels are increasing the human demand for agricultural products, thereby enhancing the human pressure on global freshwater resources. Recent research on the food-water nexus has highlighted how some major agricultural regions of the world lack the water resources required to sustain current growth trends in crop production. To meet the increasing need for agricultural commodities with limited water resources, the water use efficiency of the agricultural sector must be improved. In this regard, recent work indicates that the often overlooked strategy of changing the crop distribution within presently cultivated areas offers promise. Here we investigate the extent to which water in the United States could be saved while improving yields simply by replacing the existing crops with more suitable ones. We propose crop replacement criteria that achieve this goal while preserving crop diversity, economic value, nitrogen fixation, and food protein production. We find that in the United States, these criteria would greatly improve calorie (+46% and protein (+34% production and economic value (+208%, with 5% water savings with respect to the present crop distribution. Interestingly, greater water savings could be achieved in water-stressed agricultural regions of the US such as California (56% water savings, and other western states.

  17. Measuring scarce water saving from interregional virtual water flows in China

    Science.gov (United States)

    Zhao, X.; Li, Y. P.; Yang, H.; Liu, W. F.; Tillotson, M. R.; Guan, D.; Yi, Y.; Wang, H.

    2018-05-01

    Trade of commodities can lead to virtual water flows between trading partners. When commodities flow from regions of high water productivity to regions of low water productivity, the trade has the potential to generate water saving. However, this accounting of water saving does not account for the water scarcity status in different regions. It could be that the water saving generated from this trade occurs at the expense of the intensified water scarcity in the exporting region, and exerts limited effect on water stress alleviation in importing regions. In this paper, we propose an approach to measure the scarce water saving associated with virtual water trade (measuring in water withdrawal/use). The scarce water is quantified by multiplying the water use in production with the water stress index (WSI). We assessed the scarce water saving/loss through interprovincial trade within China using a multi-region input-output table from 2010. The results show that interprovincial trade resulted in 14.2 km3 of water loss without considering water stress, but only 0.4 km3 scarce water loss using the scarce water concept. Among the 435 total connections of virtual water flows, 254 connections contributed to 20.2 km3 of scarce water saving. Most of these connections are virtual water flows from provinces with lower WSI to that with higher WSI. Conversely, 175 connections contributed to 20.6 km3 of scarce water loss. The virtual water flow connections between Xinjiang and other provinces stood out as the biggest contributors, accounting for 66% of total scarce water loss. The results show the importance of assessing water savings generated from trade with consideration of both water scarcity status and water productivity across regions. Identifying key connections of scarce water saving is useful in guiding interregional economic restructuring towards water stress alleviation, a major goal of China’s sustainable development strategy.

  18. Saving water to save the environment: Contrasting the effectiveness of environmental and monetary appeals in a residential water saving intervention

    NARCIS (Netherlands)

    Tijs, M.S.; Karremans, J.C.T.M.; Veling, H.P.; Lange, M.A. de; Meegeren, P. van; Lion, R.

    2017-01-01

    To convince people to reduce their energy consumption, two types of persuasive appeals often are used by environmental organizations: Monetary appeals (i.e., 'conserving energy will save you money') and environmental appeals (i.e., 'conserving energy will protect the environment'). In this field

  19. Energy Savings and Breakeven Costs for Residential Heat Pump Water Heaters in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, Jeff [National Renewable Energy Lab. (NREL), Golden, CO (United States); Burch, Jay [National Renewable Energy Lab. (NREL), Golden, CO (United States); Merrigan, Tim [National Renewable Energy Lab. (NREL), Golden, CO (United States); Ong, Sean [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-07-01

    Heat pump water heaters (HPWHs) have recently re-emerged in the U.S. residential water heating market and have the potential to provide homeowners with significant energy savings. However, there are questions as to the actual performance and energy savings potential of these units, in particular in regards to the heat pump's performance in unconditioned space and the impact of the heat pump on space heating and cooling loads when it is located in conditioned space. To help answer these questions, NREL performed simulations of a HPWH in both conditioned and unconditioned space at over 900 locations across the continental United States and Hawaii. Simulations included a Building America benchmark home so that any interaction between the HPWH and the home's HVAC equipment could be captured. Comparisons were performed to typical gas and electric water heaters to determine the energy savings potential and cost effectiveness of a HPWH relative to these technologies. HPWHs were found to have a significant source energy savings potential when replacing typical electric water heaters, but only saved source energy relative to gas water heater in the most favorable installation locations in the southern United States. When replacing an electric water heater, the HPWH is likely to break even in California, the southern United States, and parts of the northeast in most situations. However, the HPWH will only break even when replacing a gas water heater in a few southern states.

  20. Energy Savings and Breakeven Cost for Residential Heat Pump Water Heaters in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Maguire, J.; Burch, J.; Merrigan, T.; Ong, S.

    2013-07-01

    Heat pump water heaters (HPWHs) have recently reemerged in the U.S. residential water heating market and have the potential to provide homeowners with significant energy savings. However, there are questions as to the actual performance and energy savings potential of these units, in particular in regards to the heat pump's performance in unconditioned space and the impact of the heat pump on space heating and cooling loads when it is located in conditioned space. To help answer these questions, simulations were performed of a HPWH in both conditioned and unconditioned space at over 900 locations across the continental United States and Hawaii. Simulations included a Building America benchmark home so that any interaction between the HPWH and the home's HVAC equipment could be captured. Comparisons were performed to typical gas and electric water heaters to determine the energy savings potential and cost effectiveness of a HPWH relative to these technologies. HPWHs were found to have a significant source energy savings potential when replacing typical electric water heaters, but only saved source energy relative to gas water heater in the most favorable installation locations in the southern US. When replacing an electric water heater, the HPWH is likely to break even in California, the southern US, and parts of the northeast in most situations. However, the HPWH will only break even when replacing a gas water heater in a few southern states.

  1. The impact on energy consumption of daylight saving clock changes

    Energy Technology Data Exchange (ETDEWEB)

    Hill, S.I.; Desobry, F. [Department of Engineering, University of Cambridge (United Kingdom); Garnsey, E.W. [Institute for Manufacturing, University of Cambridge (United Kingdom); Chong, Y.-F. [IPA Energy and Water Consulting (United Kingdom)

    2010-09-15

    The focus of this work is an investigation of the effect of prevailing time regime on energy consumption. In particular we perform analysis demonstrating potential energy savings which could be obtained were Great Britain to maintain daylight savings time (DST) over winter, instead of reverting to Greenwich mean time (GMT). We review the literature on the effect of DST on energy consumption and show that this indicates a justification for considering the issue. Our headline result is in agreement with many related studies in that advancing the clock by an hour in winter would lead to energy savings of at least 0.3% of daily demand in Great Britain. In deriving this result we have adopted methodologies currently used in load prediction, in particular Support Vector Regression, to estimate energy demand on a half-hourly basis. Corresponding cost savings are found to be higher (due to the nonlinear increase of costs) and we find them to be on the order of 0.6% over the months considered. In terms of environmental impact we find the saving to be approximately equivalent to 450,000 ton of CO{sub 2}. In deriving these results we adopt a conservative approach such that we consider them lower bounds on any true savings. (author)

  2. The impact on energy consumption of daylight saving clock changes

    International Nuclear Information System (INIS)

    Hill, S.I.; Desobry, F.; Garnsey, E.W.; Chong, Y.-F.

    2010-01-01

    The focus of this work is an investigation of the effect of prevailing time regime on energy consumption. In particular we perform analysis demonstrating potential energy savings which could be obtained were Great Britain to maintain daylight savings time (DST) over winter, instead of reverting to Greenwich mean time (GMT). We review the literature on the effect of DST on energy consumption and show that this indicates a justification for considering the issue. Our headline result is in agreement with many related studies in that advancing the clock by an hour in winter would lead to energy savings of at least 0.3% of daily demand in Great Britain. In deriving this result we have adopted methodologies currently used in load prediction, in particular Support Vector Regression, to estimate energy demand on a half-hourly basis. Corresponding cost savings are found to be higher (due to the nonlinear increase of costs) and we find them to be on the order of 0.6% over the months considered. In terms of environmental impact we find the saving to be approximately equivalent to 450,000 ton of CO 2 . In deriving these results we adopt a conservative approach such that we consider them lower bounds on any true savings.

  3. The modern water-saving agricultural technology: Progress and focus

    African Journals Online (AJOL)

    GREGORY

    2010-09-13

    Sep 13, 2010 ... fastest 100-year in human history, in which the world population has .... achieving modern water-saving high-yield and quality type from .... Information technology, intelligent technology and 3S technology ... perfor-mance and longer service life. .... using artificial neural network technology and data commu-.

  4. Save water to save carbon and money: developing abatement costs for expanded greenhouse gas reduction portfolios.

    Science.gov (United States)

    Stokes, Jennifer R; Hendrickson, Thomas P; Horvath, Arpad

    2014-12-02

    The water-energy nexus is of growing interest for researchers and policy makers because the two critical resources are interdependent. Their provision and consumption contribute to climate change through the release of greenhouse gases (GHGs). This research considers the potential for conserving both energy and water resources by measuring the life-cycle economic efficiency of greenhouse gas reductions through the water loss control technologies of pressure management and leak management. These costs are compared to other GHG abatement technologies: lighting, building insulation, electricity generation, and passenger transportation. Each cost is calculated using a bottom-up approach where regional and temporal variations for three different California water utilities are applied to all alternatives. The costs and abatement potential for each technology are displayed on an environmental abatement cost curve. The results reveal that water loss control can reduce GHGs at lower cost than other technologies and well below California's expected carbon trading price floor. One utility with an energy-intensive water supply could abate 135,000 Mg of GHGs between 2014 and 2035 and save--rather than spend--more than $130/Mg using the water loss control strategies evaluated. Water loss control technologies therefore should be considered in GHG abatement portfolios for utilities and policy makers.

  5. How Much Water Can We Save by Achieving Renewable Portfolio Standards in the Southwest United States?

    Directory of Open Access Journals (Sweden)

    Yuzhen Feng

    2018-03-01

    Full Text Available Electricity in the Southwestern United States is primarily generated with water intensive steam turbines. If energy demand continues to rise this will lead to a further rise in water demand. A comprehensive understanding of water consumption and withdrawal for utility scale generation of electricity is necessary before any improvements in the water efficiency of such systems in arid environments can be made. This study estimated and compared the water usage associated with thermoelectric generation (i.e., natural gas, coal, and solar energy, in the five driest Colorado River Basin states: Utah, New Mexico, Nevada, Arizona, and California. This study also examined and compared each state’s Renewable Portfolio Standards (RPS and how this might impact water savings. Results showed that each state’s current RPS goals would reduce the water that is consumed by the generation of electricity. However, the amount of water savings will vary on a state by state basis. In order to reduce water consumption, replacing thermal electric generation with photovoltaic (PV solar can be significant and should be encouraged. The amount of water saved will vary, however, depending on the state’s choice of coal or natural gas.

  6. SWEEP - Save Water and Energy Education Program; FINAL

    International Nuclear Information System (INIS)

    Sullivan, Gregory P; Elliott, Douglas B; Hillman, Tim C; Hadley, Adam; Ledbetter, Marc R; Payson, David R

    2001-01-01

    The objective of this study was to develop, monitor, analyze, and report on an integrated resource-conservation program highlighting efficient residential appliances and fixtures. The sites of study were 50 homes in two water-constrained communities located in Oregon. The program was designed to maximize water savings to these communities and to serve as a model for other communities seeking an integrated approach to energy and water resource efficiency. The program included the installation and in-place evaluation of energy- and water-efficient devices including the following: horizontal axis clothes washers (and the matching clothes dryers), resource-efficient dishwashers, an innovative dual flush low-flow toilet, low-flow showerheads, and faucet aerators. The significance of this activity lies in its integrated approach and unique metering evaluation of individual end-use, aggregated residential total use, and system-wide energy and water benefits

  7. Economic and Environmental Impact of Energy Saving in Healthcare Buildings

    Directory of Open Access Journals (Sweden)

    Justo García-Sanz-Calcedo

    2018-03-01

    Full Text Available The purpose of this article is to estimate the economic and environmental impacts of energy consumption derived from healthcare buildings and proposes several energy-saving options in the sector. An experimental energy consumption study was development between 2005 and 2013 in 12 hospitals and 70 healthcare centres in Spain, built between 1980 and 2005 through audits carried out between 2005 and 2012, performed by the Extremadura Energy Agency. The study focused on electric energy, HVAC, DWH, lighting systems, renewable energies, maintenance strategy, thermal insulation, and optimal building size. Specifically, the following parameters were evaluated: energy savings, investment emission of CO2, NO2, and SO2 gases, and payback. The results revealed that through an appropriate energy management of healthcare buildings it is possible to save up to 8.60 kWh/m2 per year, for buildings of less than 5000 m2 (with no beds, which represents an expense of 1.55 €/m2. In healthcare buildings larger than 5000 m2 (with beds, it was possible to save up to 6.88 kWh/m2 per year, which represents an expense of 1.25 €/m2.

  8. Holistic impact assessment and cost savings of rainwater harvesting at the watershed scale

    Directory of Open Access Journals (Sweden)

    Santosh R. Ghimire

    2017-03-01

    Full Text Available We evaluated the impacts of domestic and agricultural rainwater harvesting (RWH systems in three watersheds within the Albemarle-Pamlico river basin (southeastern U.S. using life cycle assessment (LCA and life cycle cost assessment. Life cycle impact assessment (LCIA categories included energy demand, fossil fuel, metals, ozone depletion, global warming, acidification, smog, blue and green water use, ecotoxicity, eutrophication, and human health effects. Building upon previous LCAs of near-optimal domestic and agricultural RWH systems in the region, we scaled functional unit LCIA scores for adoption rates of 25%, 50%, 75%, and 100% and compared these to conventional municipal water and well water systems. In addition to investigating watershed-scale impacts of RWH adoption, which few studies have addressed, potential life cycle cost savings due to reduced cumulative energy demand were scaled in each watershed for a more comprehensive analysis. The importance of managing the holistic water balance, including blue water (surface/ground water, green water (rainwater use, and annual precipitation and their relationship to RWH are also addressed. RWH contributes to water resource sustainability by offsetting surface and ground water consumption and by reducing environmental and human health impacts compared to conventional sources. A watershed-wide RWH adoption rate of 25% has a number of ecological and human health benefits including blue water use reduction ranging from 2–39 Mm3, cumulative energy savings of 12–210 TJ, and reduced global warming potential of 600–10,100 Mg CO2 eq. Potential maximum lifetime energy cost savings were estimated at $5M and $24M corresponding to domestic RWH in Greens Mill and agricultural RWH in Back Creek watersheds.

  9. "Water Is Life"--Farmer Rationales and Water Saving in Khorezm, Uzbekistan: A Lifeworld Analysis

    Science.gov (United States)

    Oberkircher, Lisa; Hornidge, Anna-Katharina

    2011-01-01

    Khorezm Province is located in the Amu Darya lowlands of Uzbekistan, where unsustainable use of irrigation water has led to the Aral Sea crisis. This study deals with the question of how farmers in Khorezm perceive water and its management and how this facilitates or prevents water conservation, or "water saving," in irrigated…

  10. Methodology for Outdoor Water Savings Model and Spreadsheet Tool for U.S. and Selected States

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Alison A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chen, Yuting [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dunham, Camilla [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Fuchs, Heidi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Sarah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Stratton, Hannah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-07-31

    Green lawns and landscaping are archetypical of the populated American landscape, and typically require irrigation, which corresponds to a significant fraction of residential, commercial, and institutional water use. In North American cities, the estimated portion of residential water used for outdoor purposes ranges from 22-38% in cooler climates up to 59-67% in dry and hot environments, while turfgrass coverage within the United States spans 11.1-20.2 million hectares (Milesi et al. 2009). One national estimate uses satellite and aerial photography data to develop a relationship between impervious surface and lawn surface area, yielding a conservative estimate of 16.4 (± 3.6) million hectares of lawn surface area in the United States—an area three times larger than that devoted to any irrigated crop (Milesi et al. 2005). One approach that holds promise for cutting unnecessary outdoor water use is the increased deployment of “smart” irrigation controllers to increase the water efficiency of irrigation systems. This report describes the methodology and inputs employed in a mathematical model that quantifies the effects of the U.S. Environmental Protection Agency’s WaterSense labeling program for one such type of controller, weather-based irrigation controllers (WBIC). This model builds off that described in “Methodology for National Water Savings Model and Spreadsheet Tool–Outdoor Water Use” and uses a two-tiered approach to quantify outdoor water savings attributable to the WaterSense program for WBIC, as well as net present value (NPV) of that savings. While the first iteration of the model assessed national impacts using averaged national values, this version begins by evaluating impacts in three key large states that make up a sizable portion of the irrigation market: California, Florida, and Texas. These states are considered to be the principal market of “smart” irrigation controllers that may result in the bulk of national savings. Modeled

  11. Self-supporting power plant. Capturing evaporated water and save energy a new source of water

    Energy Technology Data Exchange (ETDEWEB)

    Daal, Ludwin; Vos, Frank de [KEMA Netherlands BV, Arnhem (Netherlands). Process and Cooling Water; KEMA Energy Consulting Co.Ltd, Beijing (China); Wageningen Univ. (Netherlands). Environmental Systems Analysis; Heijboer, Rob [KEMA Netherlands BV, Arnhem (Netherlands). Process and Cooling Water; Bekker, Bert [KEMA Energy Consulting Co.Ltd, Beijing (China); Gao, Xiu Xiu [Wageningen Univ. (Netherlands). Environmental Systems Analysis

    2013-07-01

    One of the major challenges of this century is the provision of water for a growing population and industry. The shortage in water resources in arid areas requires the availability of more efficient and cheaper water production processes. In some arid regions water is even more important than electricity. A large source of water is found in the form of evaporated water emitted from different industrial processes. If for example 20% of the evaporated water from the flue gas stream of a coal fired power plant would be captured, the plant would be self-supporting from a process water point of view. This is about 30m{sup 3} of water per hour. The results of the proof of principle project (2001-2008) show that >40% recovery can be achieved. Also an overall energy efficiency improvement can be achieved for industrial plants that reheat their flue gases. Calculations show that this can be about 1% overall efficiency for a coal fired power plant utilizing flue gas reheating. With an installed capacity of more than 600GWe in China, this energy saving results in a very large economic and fuel (coal) impact. This energy efficiency will most likely be the driving force to implement the technology in both water rich and water poor regions. For the capture of evaporated water no chemicals are used, there is no waste water formed and corrosion attack in stacks is mitigated. These results have led to the set up of a large international project named CapWa which aims to produce a membrane modular system suitable for industrial applications within 2-3years. The produced demin water from this system should be competitive with existing demin water technologies. The starting point will be the water vapour selective composite membranes that are developed in the proof of principle project. The CapWa project started in 2010 and consists of 14 partners of which 9 from the EU, 3 from the African continent and 2 from the Middle East.

  12. Impact of daylight saving time on the Chilean residential consumption

    International Nuclear Information System (INIS)

    Verdejo, Humberto; Becker, Cristhian; Echiburu, Diego; Escudero, William; Fucks, Emiliano

    2016-01-01

    Since 1970 Chile has had a Daylight Saving Time (DST) policy in order to reduce residential electricity consumption in the country. The time change was set for the first time by executive decree in 1970, and since that date it was applied every year without great changes until 2010. Since then, and to date, decrees have been set in order to increase the duration of the DST, arguing that there are reasons associated with energy savings that justify the extension of the measure that has been adopted by the authority in recent years. In the present study the impact of the application of DST in terms of decreased household electricity consumption is analyzed using two complementary methods, one based on a heuristic approach and the other using an econometric model. The results indicate that there is indeed a marginally small reduction in residential electricity consumption, although these results are not homogeneous throughout the country. - Highlights: • The impact of the application of DST is analyzed in Chilean distribution networks. • The results indicate that there is indeed a marginally small reduction in residential electricity consumption. • A total energy reduction is estimated based on the proposed methodology.

  13. Save water or save wildlife? Water use and conservation in the central Sierran foothill oak woodlands of California, USA

    Directory of Open Access Journals (Sweden)

    Lynn Huntsinger

    2017-06-01

    Full Text Available More frequent drought is projected for California. As water supplies constrict, and urban growth and out-migration spread to rural areas, trade-offs in water use for agriculture, biodiversity conservation, fire hazard reduction, residential development, and quality of life will be exacerbated. The California Black Rail (Laterallus jamaicensis coturniculus, state listed as "Threatened," depends on leaks from antiquated irrigation district irrigation systems for much of its remnant small wetland habitat in the north central Sierra Nevada foothills. Residents of the 1295 km² foothill habitat distribution of the Black Rail were surveyed about water use. Results show that the most Black Rail habitat is owned by those purchasing water to irrigate pasture, a use that commonly creates wetlands from leaks and tailwater. Promoting wildlife, agricultural production, and preventing wildfire are common resident goals that call for abundant and inexpensive water; social and economic pressures encourage reduction in water use and the repair of leaks that benefit wildlife and greenery. Broad inflexible state interventions to curtail water use are likely to create a multitude of unintended consequences, including loss of biodiversity and environmental quality, and alienation of residents as valued ecosystem services literally dry up. Adaptive and proactive policies are needed that consider the linkages in the social-ecological system, are sensitive to local conditions, prevent landscape dewatering, and recognize the beneficial use of water to support ecosystem services such as wildlife habitat. Much Black Rail habitat is anthropogenic, created at the nexus of local governance, plentiful water, agricultural practices, historical events, and changing land uses. This history should be recognized and leveraged rather than ignored in a rush to "save" water by unraveling the social-ecological system that created the landscape. Policy and governance needs to identify

  14. Water saving in lowland rice production: an experimental and modeling study

    NARCIS (Netherlands)

    Belder, P.

    2005-01-01

    Increasing demand for rice and decreasing water diversions to agriculture, urge for higher water productivity in rice production systems. One way to deal with this challenge is using water-saving regimes on field scale. The main objective of this study was to quantify the effects of water-saving

  15. The Impact of Process Scaling on Scratchpad Memory Energy Savings

    Directory of Open Access Journals (Sweden)

    Bennion Redd

    2014-09-01

    Full Text Available Scratchpad memories have been shown to reduce power consumption, but the different characteristics of nanometer scale processes, such as increased leakage power, motivate an examination of how the benefits of these memories change with process scaling. Process and application characteristics affect the amount of energy saved by a scratchpad memory. Increases in leakage as a percentage of total power particularly impact applications that rarely access memory. This study examines how the benefits of scratchpad memories have changed in newer processes, based on the measured performance of the WIMS (Wireless Integrated MicroSystems microcontroller implemented in 180- and 65-nm processes and upon simulations of this microcontroller implemented in a 32-nm process. The results demonstrate that scratchpad memories will continue to improve the power dissipation of many applications, given the leakage anticipated in the foreseeable future.

  16. Health belief model and reasoned action theory in predicting water saving behaviors in yazd, iran.

    Science.gov (United States)

    Morowatisharifabad, Mohammad Ali; Momayyezi, Mahdieh; Ghaneian, Mohammad Taghi

    2012-01-01

    People's behaviors and intentions about healthy behaviors depend on their beliefs, values, and knowledge about the issue. Various models of health education are used in deter¬mining predictors of different healthy behaviors but their efficacy in cultural behaviors, such as water saving behaviors, are not studied. The study was conducted to explain water saving beha¬viors in Yazd, Iran on the basis of Health Belief Model and Reasoned Action Theory. The cross-sectional study used random cluster sampling to recruit 200 heads of households to collect the data. The survey questionnaire was tested for its content validity and reliability. Analysis of data included descriptive statistics, simple correlation, hierarchical multiple regression. Simple correlations between water saving behaviors and Reasoned Action Theory and Health Belief Model constructs were statistically significant. Health Belief Model and Reasoned Action Theory constructs explained 20.80% and 8.40% of the variances in water saving beha-viors, respectively. Perceived barriers were the strongest Predictor. Additionally, there was a sta¬tistically positive correlation between water saving behaviors and intention. In designing interventions aimed at water waste prevention, barriers of water saving behaviors should be addressed first, followed by people's attitude towards water saving. Health Belief Model constructs, with the exception of perceived severity and benefits, is more powerful than is Reasoned Action Theory in predicting water saving behavior and may be used as a framework for educational interventions aimed at improving water saving behaviors.

  17. Health Belief Model and Reasoned Action Theory in Predicting Water Saving Behaviors in Yazd, Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Taghi Ghaneian

    2012-12-01

    Full Text Available Background: People's behaviors and intentions about healthy behaviors depend on their beliefs, values, and knowledge about the issue. Various models of health education are used in deter-mining predictors of different healthy behaviors but their efficacy in cultural behaviors, such as water saving behaviors, are not studied. The study was conducted to explain water saving beha-viors in Yazd, Iran on the basis of Health Belief Model and Reasoned Action Theory. Methods: The cross-sectional study used random cluster sampling to recruit 200 heads of households to collect the data. The survey questionnaire was tested for its content validity and reliability. Analysis of data included descriptive statistics, simple correlation, hierarchical multiple regression. Results: Simple correlations between water saving behaviors and Reasoned Action Theory and Health Belief Model constructs were statistically significant. Health Belief Model and Reasoned Action Theory constructs explained 20.80% and 8.40% of the variances in water saving beha-viors, respectively. Perceived barriers were the strongest Predictor. Additionally, there was a sta-tistically positive correlation between water saving behaviors and intention. Conclusion: In designing interventions aimed at water waste prevention, barriers of water saving behaviors should be addressed first, followed by people's attitude towards water saving. Health Belief Model constructs, with the exception of perceived severity and benefits, is more powerful than is Reasoned Action Theory in predicting water saving behavior and may be used as a framework for educational interventions aimed at improving water saving behaviors.

  18. The Life Cycle CO2 (LCCO2 Evaluation of Retrofits for Water-Saving Fittings

    Directory of Open Access Journals (Sweden)

    Yasutoshi Shimizu

    2013-05-01

    Full Text Available As part of measures being taken against global warming, the reduction of CO2 emissions by retrofitting for water-saving fittings in homes is spreading throughout the world. However, although this retrofitting reduces the environmental impact at the use stage, it generates new impacts at the production and disposal stages. In addition, there has been little research that discusses the reduction in environmental impact obtained by retrofitting from the viewpoint of the overall life cycle of such fittings. In this paper, an evaluation of the environmental impact of retrofitting in terms of the entire life cycle was carried out for toilet bowls and showerheads. The findings show that even for a toilet bowl that generates a large environmental load at the production stage, there is no overall increase in the environmental impact by retrofitting for the average usable life of 20 years.

  19. Exploring options for water savings in lowland rice using a modelling approach

    NARCIS (Netherlands)

    Belder, P.; Bouman, B.A.M.; Spiertz, J.H.J.

    2007-01-01

    Water-saving irrigation regimes are needed to deal with a reduced availability of water for rice production. Two important water-saving technologies at field scale are alternately submerged¿nonsubmerged (SNS) and flush irrigated (FI) rice. SNS allows dry periods between submerged soil conditions,

  20. Evaluation of Water consumption and savings achieved in Datacenters through Air side Economization

    Science.gov (United States)

    Mishra, Ravi

    Recent researches and a few facility owners have focused on eliminating the chiller plant altogether by implementing 'Evaporative Cooling', as an alternative or augmentation to compressor-based air conditioning since the energy consumption is dominated by the compressor work (around 41%) in the chiller plant. Because evaporative cooling systems consume water, when evaluating the energy savings potential of these systems, it is imperative to consider not just their impacts on electricity use, but also their impacts on water consumption as well since Joe Kava, Google's head of data center operations, was quoted as saying that water is the "big elephant in the room" for data center companies. The objective of this study was to calculate the savings achieved in water consumption when these evaporative cooling systems were completely or partially marginalized when the facility is strictly working in the Economizer mode also known as 'free cooling' considering other modes of cooling required only for a part of the time when outside temperature, humidity and pollutant level were unfavorable causing improper functioning and reliability issues. The analysis was done on ASHRAE climatic zones with the help of TMY-3 weather data.

  1. [Water-saving mechanisms of intercropping system in improving cropland water use efficiency].

    Science.gov (United States)

    Zhang, Feng-Yun; Wu, Pu-Te; Zhao, Xi-Ning; Cheng, Xue-Feng

    2012-05-01

    Based on the multi-disciplinary researches, and in terms of the transformation efficiency of surface water to soil water, availability of cropland soil water, crop canopy structure, total irrigation volume needed on a given area, and crop yield, this paper discussed the water-saving mechanisms of intercropping system in improving cropland water use efficiency. Intercropping system could promote the full use of cropland water by plant roots, increase the water storage in root zone, reduce the inter-row evaporation and control excessive transpiration, and create a special microclimate advantageous to the plant growth and development. In addition, intercropping system could optimize source-sink relationship, provide a sound foundation for intensively utilizing resources temporally and spatially, and increase the crop yield per unit area greatly without increase of water consumption, so as to promote the crop water use efficiency effectively.

  2. BEST Winery Guidebook: Benchmarking and Energy and Water SavingsTool for the Wine Industry

    Energy Technology Data Exchange (ETDEWEB)

    Galitsky, Christina; Worrell, Ernst; Radspieler, Anthony; Healy,Patrick; Zechiel, Susanne

    2005-10-15

    Not all industrial facilities have the staff or the opportunity to perform a detailed audit of their operations. The lack of knowledge of energy efficiency opportunities provides an important barrier to improving efficiency. Benchmarking has demonstrated to help energy users understand energy use and the potential for energy efficiency improvement, reducing the information barrier. In California, the wine making industry is not only one of the economic pillars of the economy; it is also a large energy consumer, with a considerable potential for energy-efficiency improvement. Lawrence Berkeley National Laboratory and Fetzer Vineyards developed an integrated benchmarking and self-assessment tool for the California wine industry called ''BEST''(Benchmarking and Energy and water Savings Tool) Winery. BEST Winery enables a winery to compare its energy efficiency to a best practice winery, accounting for differences in product mix and other characteristics of the winery. The tool enables the user to evaluate the impact of implementing energy and water efficiency measures. The tool facilitates strategic planning of efficiency measures, based on the estimated impact of the measures, their costs and savings. BEST Winery is available as a software tool in an Excel environment. This report serves as background material, documenting assumptions and information on the included energy and water efficiency measures. It also serves as a user guide for the software package.

  3. The socioeconomic impact of energy saving renovation measures in urban buildings

    OpenAIRE

    Mikulić, Davor; Rašić Bakarić, Ivana; Slijepčević, Sunčana

    2016-01-01

    The purpose of the paper is to investigate the role of measures oriented to energy savings in residential buildings in the economic development at the regional level. The aim of the paper is to estimate overall socio-economic impact of energy saving renovation measures in the Croatian urban areas. Impact assessment is based on input–output methodology which is able to quantify direct and indirect effects of investment in the energy saving projects on the economic activity and employment...

  4. Options for Water, Energy and Chemical Savings for Finitex, Cape Town

    DEFF Research Database (Denmark)

    Schneider, Zsig; Wenzel, Henrik

    An analysis of the options identified for saving of water, energy and chemicals was conducted at Finitex, Cape Town on the 18th October 2002. Cost savings were calculated from an estimation of the reduction in cost of water, energy and chemical usage associated with various interventions. Capital...

  5. Water and energy saving at Dutch pastry factory Verkade; Koekjesbakker bespaart water en energie

    Energy Technology Data Exchange (ETDEWEB)

    Van Gool, J. (ed.)

    2003-11-01

    A pastry factory (Verkade in Zaandam, Netherlands) produces 27,000 ton of cookies and biscuits, using 2.2 million m{sup 3} natural gas, 6.7 million kWh and 67,000 m{sup 3} water. By means of new cooling systems a considerable amount of energy and water is saved. [Dutch] Verkade in Zaandam produceert jaarlijks 27.000 ton biscuit, waarvoor 2,2 miljoen m{sup 3} gas, 6,7 miljoen kilowattuur en 67.000 m{sup 3} water nodig is. Dankzij vernieuwde koelsystemen is het water- en energieverbruik flink gedaald.

  6. Impact of Extended Daylight Saving Time on National Energy Consumption Report to Congress

    Energy Technology Data Exchange (ETDEWEB)

    Belzer, D. B.; Hadley, S. W.; Chin, S-M.

    2008-10-01

    The Energy Policy Act of 2005 (Pub. L. No. 109-58; EPAct 2005) amended the Uniform Time Act of 1966 (Pub. L. No. 89-387) to increase the portion of the year that is subject to Daylight Saving Time. (15 U.S.C. 260a note) EPAct 2005 extended the duration of Daylight Saving Time in the spring by changing its start date from the first Sunday in April to the second Sunday in March, and in the fall by changing its end date from the last Sunday in October to the first Sunday in November. (15 U.S.C. 260a note) EPAct 2005 also called for the Department of Energy to evaluate the impact of Extended Daylight Saving Time on energy consumption in the United States and to submit a report to Congress. (15 U.S.C. 260a note) This report presents the results of impacts of Extended Daylight Saving Time on the national energy consumption in the United States. The key findings are: (1) The total electricity savings of Extended Daylight Saving Time were about 1.3 Tera Watt-hour (TWh). This corresponds to 0.5 percent per each day of Extended Daylight Saving Time, or 0.03 percent of electricity consumption over the year. In reference, the total 2007 electricity consumption in the United States was 3,900 TWh. (2) In terms of national primary energy consumption, the electricity savings translate to a reduction of 17 Trillion Btu (TBtu) over the spring and fall Extended Daylight Saving Time periods, or roughly 0.02 percent of total U.S. energy consumption during 2007 of 101,000 TBtu. (3) During Extended Daylight Saving Time, electricity savings generally occurred over a three- to five-hour period in the evening with small increases in usage during the early-morning hours. On a daily percentage basis, electricity savings were slightly greater during the March (spring) extension of Extended Daylight Saving Time than the November (fall) extension. On a regional basis, some southern portions of the United States exhibited slightly smaller impacts of Extended Daylight Saving Time on energy savings

  7. Numerical assessment of water-saving irrigation on the water cycle at the oasis of the Manas River Basin

    OpenAIRE

    he

    2018-01-01

    As the birthplace of water-saving technology under mulch drip irrigation in China, the Manas River Basin (MRB) has developed into the largest oasis farming area in Xinjiang and the fourth largest irrigated agricultural area in China. This study presents systematic evaluation the effect of water-saving technologies on precipitation, runoff, infiltration and evapotranspiration in this basin. A model of the regional water cycle was developed for quantitatively assessing groundwater balance and g...

  8. Saving water? : analysis of options for rice-based farms in Tamil Nadu, India

    NARCIS (Netherlands)

    Senthilkumar, K.

    2008-01-01

    Keywords: Modified rice cultivation, Water-saving, Farm typology, Technology adoption, Policy interventions, Farmers livelihoods, Resource use efficiency and Linear programming.

    The looming water crisis and water-intensive nature of rice cultivation are driving the search for alternative

  9. Water and energy saving bioprocess for bioethanol production from ...

    African Journals Online (AJOL)

    UP

    2013-10-02

    Oct 2, 2013 ... Poznań University of Life Sciences, Wojska Polskiego 31, 60-624 Poznań, Poland. ... of distillery stillage liquid part instead of process water. ... these conditions distillery yeast Saccharomyces cerevisiae efficiently produced ...

  10. Sino-US cooperation in water saving technologies: essential international problems

    Science.gov (United States)

    The United States and China share many agricultural problems, but one of great importance is the need to produce more crop yield in the face of water scarcity. Common recognition of this problem led to the development of a joint Sino-US Water Saving Technologies Flagship project within the larger US...

  11. Evaluation of some water saving devices in urban areas: A case study from the Sultanate of Oman

    Directory of Open Access Journals (Sweden)

    Hayder A. Abdel Rahman

    2018-01-01

    Full Text Available Water Saving Devices (WSDs sustain demands for potable water, soften impacts on supply systems and inflict a positive effect on wastewater treatment systems. This study evaluated the effect of some WSDs in Oman. A questionnaire survey and some case studies were used. The survey results revealed that the pipe line system network for water supply accounted for about 67.7%, whereas the rest mainly use tankers. Around 37.2% of the participants received consumed 25000 - 45000 liters per household per month. Case studies showed no significant difference in household water usage before and after installation of WSDs due to pre-installed aerators. Toilet bags and dual flush toilets were not effective promoting users to flush. However, WSDs were significantly effective in restaurants, mosques, hotels and government buildings. Water consumption in shopping centres and hospitals slightly decreased. Retrofitting programs that involve replacement of existing plumbing equipment and residential water audit programs are recommended.

  12. Methodology for the National Water Savings Model and Spreadsheet Tool Commercial/Institutional

    Energy Technology Data Exchange (ETDEWEB)

    Chan, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Long, Tim [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Williams, Alison [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Melody, Moya [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-01-01

    Lawrence Berkeley National Laboratory (LBNL) has developed a mathematical model to quantify the water and monetary savings attributable to the United States Environmental Protection Agency’s (EPA’s) WaterSense labeling program for commercial and institutional products. The National Water Savings–Commercial/Institutional (NWS-CI) model is a spreadsheet tool with which the EPA can evaluate the success of its program for encouraging buyers in the commercial and institutional (CI) sectors to purchase more water-efficient products. WaterSense has begun by focusing on three water-using products commonly used in the CI sectors: flushometer valve toilets, urinals, and pre-rinse spray valves. To estimate the savings attributable to WaterSense for each of the three products, LBNL applies an accounting method to national product shipments and lifetimes to estimate the shipments of each product.

  13. Economic assessment of different mulches in conventional and water-saving rice production systems.

    Science.gov (United States)

    Jabran, Khawar; Hussain, Mubshar; Fahad, Shah; Farooq, Muhammad; Bajwa, Ali Ahsan; Alharrby, Hesham; Nasim, Wajid

    2016-05-01

    Water-saving rice production systems including alternate wetting and drying (AWD) and aerobic rice (AR) are being increasingly adopted by growers due to global water crises. Application of natural and artificial mulches may further improve water economy of water-saving rice production systems. Conventionally flooded rice (CFR) system has been rarely compared with AWD and AR in terms of economic returns. In this 2-year field study, we compared CFR with AWD and AR (with and without straw and plastic mulches) for the cost of production and economic benefits. Results indicated that CFR had a higher production cost than AWD and AR. However, application of mulches increased the cost of production of AWD and AR production systems where plastic mulch was expensive than straw mulch. Although the mulching increased the cost of production for AWD and AR, the gross income of these systems was also improved significantly. The gross income from mulched plots of AWD and AR was higher than non-mulched plots of the same systems. In conclusion, AWD and AR effectively reduce cost of production by economizing the water use. However, the use of natural and artificial mulches in such water-saving environments further increased the economic returns. The maximized economic returns by using straw mulch in water-saving rice production systems definitely have pragmatic implications for sustainable agriculture.

  14. Identifying Energy Savings in Water and Wastewater Plants - Illinois

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-03-01

    Since 1976, Industrial Assessment Centers (IACs) administered by the U.S. Department of Energy have supported small and medium-sized American manufacturers to reduce their energy use and improve their productivity and competitiveness. DOE is now offering up to 50 assessments per year at no cost to industrial or municipal water and wastewater plants.

  15. Identifying Energy Savings in Water and Wastewater Plants - Iowa

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-03-01

    Since 1976, Industrial Assessment Centers (IACs) administered by the U.S. Department of Energy have supported small and medium-sized American manufacturers to reduce their energy use and improve their productivity and competitiveness. DOE is now offering up to 50 assessments per year at no cost to industrial or municipal water and wastewater plants.

  16. Identifying Energy Savings in Water and Wastewater Plants - West Virginia

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-03-01

    Since 1976, Industrial Assessment Centers (IACs) administered by the U.S. Department of Energy have supported small and medium-sized American manufacturers to reduce their energy use and improve their productivity and competitiveness. DOE is now offering up to 50 assessments per year at no cost to industrial or municipal water and wastewater plants.

  17. Identifying Energy Savings in Water and Wastewater Plants - Indiana

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-03-01

    Since 1976, Industrial Assessment Centers (IACs) administered by the U.S. Department of Energy have supported small and medium-sized American manufacturers to reduce their energy use and improve their productivity and competitiveness. DOE is now offering up to 50 assessments per year at no cost to industrial or municipal water and wastewater plants.

  18. Identifying Energy Savings in Water and Wastewater Plants - Wisconsin

    Energy Technology Data Exchange (ETDEWEB)

    None

    2016-03-01

    Since 1976, Industrial Assessment Centers (IACs) administered by the U.S. Department of Energy have supported small and medium-sized American manufacturers to reduce their energy use and improve their productivity and competitiveness. DOE is now offering up to 50 assessments per year at no cost to industrial or municipal water and wastewater plants.

  19. Potential water saving through changes in European diets

    NARCIS (Netherlands)

    Vanham, D.; Hoekstra, Arjen Ysbert; Bidoglio, G.

    2013-01-01

    This study quantifies the water footprint of consumption (WFcons) regarding agricultural products for three diets – the current diet (REF), a healthy diet (HEALTHY) and a vegetarian diet (VEG) – for the four EU zones WEST, NORTH, SOUTH and EAST. The WFcons related to the consumption of agricultural

  20. Yield advantage and water saving in maize/pea intercrop

    NARCIS (Netherlands)

    Mao, L.; Zhang, L.; Li, W.; Werf, van der W.; Sun, J.; Spiertz, J.H.J.; Li, L.

    2012-01-01

    Intercropping is a well-established strategy for maximization of yield from limited land, but mixed results have been obtained as to its performance in terms of water use efficiency. Here, two maize/pea intercrop layouts were studied in comparison to sole maize and sole pea with and without plastic

  1. Water saving techniques in the spanish tile industry

    Directory of Open Access Journals (Sweden)

    Enrique, J. E.

    2000-02-01

    Full Text Available A study was conducted on the use of water in the ceramic tile manufacturing process, focussing on water requirements in body and glaze preparation and in washing production equipment and facilities. Water consumption and wastewater reuse systems in ceramic tile manufacture were reviewed. An in-depth, industrial scale study was performed of wastewater reuse in the manufacturing process, examining how wastewater reuse affected pollutant contents in gas emissions and solid waste.

    Se ha estudiado el uso del agua en el proceso de fabricación de baldosas cerámicas y en particular, en las etapas de preparación de la pasta de los esmaltes y limpieza del equipo industrial y de la propia planta.Se ha realizado una revisión del consumo de agua y de los sistemas de reutilización de la misma en el proceso de fabricación de baldosas cerámicas y se ha estudiado con profundidad, a escala industrial, la reutilización del agua residual en el proceso y en particular el efecto de su reutilización sobre la emisión de contaminantes en las emisiones gaseosas y en los residuos sólidos.

  2. Marginal costs of water savings from cooling system retrofits: a case study for Texas power plants

    Science.gov (United States)

    Loew, Aviva; Jaramillo, Paulina; Zhai, Haibo

    2016-10-01

    The water demands of power plant cooling systems may strain water supply and make power generation vulnerable to water scarcity. Cooling systems range in their rates of water use, capital investment, and annual costs. Using Texas as a case study, we examined the cost of retrofitting existing coal and natural gas combined-cycle (NGCC) power plants with alternative cooling systems, either wet recirculating towers or air-cooled condensers for dry cooling. We applied a power plant assessment tool to model existing power plants in terms of their key plant attributes and site-specific meteorological conditions and then estimated operation characteristics of retrofitted plants and retrofit costs. We determined the anticipated annual reductions in water withdrawals and the cost-per-gallon of water saved by retrofits in both deterministic and probabilistic forms. The results demonstrate that replacing once-through cooling at coal-fired power plants with wet recirculating towers has the lowest cost per reduced water withdrawals, on average. The average marginal cost of water withdrawal savings for dry-cooling retrofits at coal-fired plants is approximately 0.68 cents per gallon, while the marginal recirculating retrofit cost is 0.008 cents per gallon. For NGCC plants, the average marginal costs of water withdrawal savings for dry-cooling and recirculating towers are 1.78 and 0.037 cents per gallon, respectively.

  3. Factors Affecting Chinese Farmers' Decisions to Adopt a Water-Saving Technology

    NARCIS (Netherlands)

    Herzfeld, T.; Glauben, T.; Zhang, Y.; Hu, B.

    2008-01-01

    Chinese farm households (N = 240) were interviewed to understand some of the factors affecting their adoption of a water-saving technology called the Ground Cover Rice Production System (GCRPS). A logit model was established on the basis of a survey to estimate the determinants of adoption and to

  4. N balance of different N application rate of winter wheat under water-saving condition

    International Nuclear Information System (INIS)

    Li Shijuan; Zhu Yeping; Sun Kaimeng; E Yue

    2003-01-01

    N uptake and N balance of different N rate applied to wheat under water-saving condition were investigated with 15 N tracer technique and the dynamic N uptake of economic N treatment under two irrigation conditions was compared. The results showed that (1) compared with conventional n treatment, the N loss of economic N treatment reduced while NUE and N residue in soil improved under water-saving condition; (2) Use efficiency of fertilizer applied as basal fertilizer was higher than that as top-dressing fertilizer under water-saving condition; (3) The fertilizer N residue rate was from 29% to 41%, and 60% of N residue, which distributed in 1 m depth soil concentrated in 0-20 cm surface layer; (4) In whole growing stage of wheat, fertilizer N hadn't leach to 130 cm depth; (5) NUE of economic N treatment under conventional irrigation decreased by 16.6% compared with the same n treatment under water-saving condition

  5. Myths and Maths of Water Efficiency: An Analytical Framework to Assess the Real Outcome of Water Saving Technologies in Irrigation

    OpenAIRE

    Gomez Gomez, Carlos Mario; Perez Blanco, Carlos Dionisio

    2013-01-01

    Greening the economy is mostly about improving water governance and not only about putting the existing resource saving technical alternatives into practice. Focusing in the second and forgetting the first risks finishing with a highly efficient use of water services at the level of each individual user but demanding an unsustainable amount of water for the entire economy. This might be happening already in many places with the so-called modernization of irrigated agriculture: the world’s lar...

  6. Water savings from reduced alfalfa cropping in California's Upper San Joaquin Valley

    Science.gov (United States)

    Singh, K. K.; Gray, J.

    2017-12-01

    Water and food and forage security are inextricably linked. In fact, 90% of global freshwater is consumed for food production. Food demand increases as populations grow and diets change, making water increasingly scarce. This tension is particularly acute, contentious, and popularly appreciated in California's Central Valley, which is one of the most important non-grain cropping areas in the United States. While the water-intensive production of tree nuts like almonds and pistachios has received the most popular attention, it is California's nation-leading alfalfa production that consumes the most water. Alfalfa, the "Queen of Forages" is the preferred feedstock for California's prodigious dairy industry. It is grown year-round, and single fields can be harvested more than four times a year; a practice which can require in excess of 1.5 m of irrigation water. Given the water scarcity in the region, the production of alfalfa is under increasing scrutiny with respect to long-term sustainability. However, the potential water savings associated with alternative crops, and various levels of alfalfa replacement have not been quantified. Here, we address that knowledge gap by simulating the ecohydrology of the Upper San Joaquin's cropping system under various scenarios of alfalfa crop replacement with crops of comparable economic value. Specifically, we use the SWAT model to evaluate the water savings that would be realized at 33%, 66%, and 100% alfalfa replacement with economically comparable, but more water efficient crops such as tomatoes. Our results provide an important quantification of the potential water savings under alternative cropping systems that, importantly, also addresses the economic concerns of farmers. Results like these provide critical guidance to farmers and land/water decision makers as they plan for a more sustainable and productive agricultural future.

  7. Nuclear fuel saving assessment of poison-free control in LWRs [light water reactors

    International Nuclear Information System (INIS)

    Abu-Zaied, G.

    1988-01-01

    If neutron losses to control absorbers are to be eliminated, an alternative reactivity control system has to be introduced. Due to improved neutron economy, the fuel utilization of these other alternatives is better than for a conventional poison-controlled PWR [pressurized water reactor]. It is the objective in this work to assess the uranium savings attributable to reactivity control without poison. An investigation into the savings due to the elimination of PWR control by neutron capture has been carried out. The most important finding was that up to a 30% savings in natural uranium can be achieved if fuel to moderator ratio, V f /V m , of SSC [spectral-shift-control] core at EOC [end of cycle] is similar to the standard core V f /V m

  8. Experimental And Numerical Investigation Of The Flow Analysis Of The Water-Saving Safety Valve

    Directory of Open Access Journals (Sweden)

    Muhammed Safa Kamer

    2015-08-01

    Full Text Available Abstract In this study an auto-mechanical safety valve was designed and manufactured in order to prevent possible wastage of water and water raid after instantaneous water cuts during water usage in places where water use is widespread. Safety valve is activated and it switches off the line when water is cut off when mains pressure is equal to atmospheric pressure and as it does not allow water to pass when it comes back it saves water and prevents the formation of raids. An experiment set was conducted in order to measure the pressure drop between the inlet and outlet of the safety valve and it was found that with the increased flow rate the pressure drop increases. The three-dimensional flow analysis of the safety valve was carried out with Ansys-Fluent software package and the results obtained were compared with experimental data and a good harmony was achieved.

  9. Exploring Environmental Awareness and Behavior among Guests at Hotels That Apply Water-Saving Measures

    Directory of Open Access Journals (Sweden)

    Ariadna Gabarda-Mallorquí

    2018-04-01

    Full Text Available The aim of this study was to investigate guest profiles at a hotel that has created a best-practices water management model to determine how different types of guests contribute to saving water during their stay. To do this, we analyzed levels of environmental awareness and pro-environmental behavior among the guests. Information was gathered through 648 structured surveys with guests at Hotel Samba in the Spanish seaside resort of Lloret de Mar between September 2015 and August 2016. Cluster analysis revealed four profiles of guests with different sociodemographic characteristics and different levels of awareness and proactivity in relation to water conservation. We combined our findings to develop a framework that illustrates how the two dimensions of environmental awareness and pro-environmental behavior are related in this setting. This article provides new insights into how hotel guests’ environmental awareness and engagement can influence a hotel’s water-saving efforts. These insights should help hotel operators to devise new, guest-centered strategies for saving water.

  10. Water saving in IC wafer washing process; IC wafer senjo deno sessui taisaku

    Energy Technology Data Exchange (ETDEWEB)

    Harada, H. [Mitsubishi Corp., Tokyo (Japan); Araki, M.; Nakazawa, T.

    1997-11-30

    This paper reports features of a wafer washing technology, a new IC wafer washing process, its pure water saving effect, and a `QC washing` which has pure water saving effect in the wafer washing. Wafer washing processes generally include the SC1 process (using ammonia + hydrogen peroxide aqueous solution) purposed for removing contamination due to ultrafine particles, the SC2 process (using hydrochloric acid + hydrogen peroxide aqueous solution) purposed for removing contamination due to heavy metals, the piranha washing process (using hot sulfuric acid + hydrogen peroxide aqueous solution) purposed for removing contamination due to organic matters, and the DHF (using dilute hydrofluoric acid) purposed for removing natural oxide films. Natural oxide films are now remained as surface protection films, by which surface contamination has been reduced remarkably. A high-temperature washing chemical circulating and filtering technology developed in Japan has brought about a reform in wafer washing processes having been used previously. Spin washing is used as a water saving measure, in which washing chemicals or pure water are sprayed onto one each of wafers which is spin-rotated, allowing washing and rinsing to be made with small amount of washing chemicals and pure water. The QC washing is a method to replace tank interior with pure was as quick as possible in order to increase the rinsing effect. 7 refs., 5 figs.

  11. Energy efficiency improvement and fuel savings in water heaters using baffles

    International Nuclear Information System (INIS)

    Moeini Sedeh, Mahmoud; Khodadadi, J.M.

    2013-01-01

    Highlights: ► Thermal efficiency improved by simple/novel design of baffles inside water reservoir. ► Noticeable steady-state natural gas savings of about 5%. ► Extensive 3-D numerical investigations followed by experimental verifications. ► Baffle designs prototyped in identical water heaters for ANSI/US DOE test protocols. ► Numerical/experimental results verified thermal efficiency improvement and fuel savings. -- Abstract: Thermal efficiency improvement of a water heater was investigated numerically and experimentally in response to presence of a baffle, particularly designed for modifying the flow field within the water reservoir and enhancing heat transfer extracted into the water tank. A residential natural gas-fired water heater was selected for modifying its water tank through introducing a baffle for lowering natural gas consumption by 5% as a target. Based on the geometric features of the selected water heater, three-dimensional models of the water heater subsections were developed. Upon detailed studies of flow and heat transfer in each subsection, various sub-models were integrated to a complete model of the water heater. Thermal performance of the selected water heater was investigated numerically using computational fluid dynamics analysis. Prior to baffle design process and in order to verify the developed model of the water heater, time-dependent numerically-predicted temperatures were compared to the experimentally-measured temperatures under the same conditions at six (6) different locations inside the water tank and good agreement was observed. Upon verifying the numerical model, the fluid flow and heat transfer patterns were characterized for the selected water heater. The overall design of the baffle and its location and orientation were finalized based on the numerical results and a set of parametric studies. Finally, two baffle designs were proposed, with the second design being an optimized version of the first design. The

  12. The economic impact of energy saving retrofits of residential and public buildings in Croatia

    International Nuclear Information System (INIS)

    Mikulić, Davor; Bakarić, Ivana Rašić; Slijepčević, Sunčana

    2016-01-01

    The purpose of this paper is to estimunate the impact of energy saving investment in residential and public buildings in Croatia for the period 2015–2020. The aim is to assess the overall socio-economic impact of energy saving renovation measures defined in Croatian strategic documents in terms of the direct, indirect and induced growth of gross value added, employment and government revenues. An estimate of the avoided costs of air pollution is also included. The overall economic impact assessment is based on an input-output methodology. From the point of view of individual investors, the benefits in terms of reduced future expenses related to energy products are usually below energy efficient renovation investment costs, making an investment financially viable only if government support is provided. If the benefits for society as a whole are included, energy efficient renovation could be assessed as viable even in the short-run. Energy saving retrofits of residential and public buildings positively contribute to economic growth, employment and protection of the environment. Because of economic growth, the tax revenues induced by these investments could compensate for government expenditures, and the overall impact on the public deficit is expected to be neutral even in the short-run. - Highlights: •Estimate of the overall socioeconomic impact of energy saving renovation measures on national economy. •Energy efficient renovation if not subsidised is not financially viable from the owner perspective. •Total social benefits are higher than social costs due to positive externalities. •Impact of subsidies on public deficit is neutral even in the short run.

  13. Water Saving and Cost Analysis of Large-Scale Implementation of Domestic Rain Water Harvesting in Minor Mediterranean Islands

    Directory of Open Access Journals (Sweden)

    Alberto Campisano

    2017-11-01

    Full Text Available This paper describes a novel methodology to evaluate the benefits of large-scale installation of domestic Rain Water Harvesting (RWH systems in multi-story buildings. The methodology was specifically developed for application to small settlements of the minor Mediterranean islands characterized by sharp fluctuations in precipitation and water demands between winter and summer periods. The methodology is based on the combined use of regressive models for water saving evaluation and of geospatial analysis tools for semi-automatic collection of spatial information at the building/household level. An application to the old town of Lipari (Aeolian islands showed potential for high yearly water savings (between 30% and 50%, with return on investment in less than 15 years for about 50% of the installed RWH systems.

  14. The impact of daylight saving time on electricity consumption: Evidence from southern Norway and Sweden

    Energy Technology Data Exchange (ETDEWEB)

    Mirza, Faisal Mehmood, E-mail: faisal.mirza@umb.no [Department of Economics and Resource Management, Norwegian University of Life Sciences (UMB), P.O. Box 5003, 1432 As (Norway); Bergland, Olvar, E-mail: olvar.bergland@umb.no [Department of Economics and Resource Management, Norwegian University of Life Sciences (UMB), P.O. Box 5003, 1432 As (Norway)

    2011-06-15

    This paper examines the impact of daylight saving time (DST) on electricity consumption in southern Norway and Sweden. As DST was implemented in both the countries in 1980, we do not have a clear counterfactual in the form of a control period to identify the impact of DST directly with before and after or with and without analysis. This problem in the study is resolved by using 'equivalent day normalization technique' to identify the impact of DST. The difference-in-difference (DID) average treatment effects model suggests an annual reduction of at least 1.0 percent in electricity consumption for both Norway and Sweden due to DST. The average annual electricity consumption reduction corresponding to DST effects equals 519 and 882 GWh for southern Norway and Sweden, resulting in an annual financial saving of 16.1 million Euros and 30.1 million Euros, respectively. The distribution of treatment effects across different hours of the day indicates a small but significant reduction in electricity consumption during the morning and a steep decline during the evening hours in both countries. - Highlights: > We assess the impact of DST on electricity consumption in southern Norway and Sweden. > DST reduces electricity consumption by 1.3 percent in both countries. > The impact is smaller during the morning hours but larger during evening hours. > Respective annual financial savings equal Euro 16.1 and 30.1 million for Norway and Sweden. > Average annual electricity savings equal 519 and 882 GWh for two countries, respectively.

  15. The impact of daylight saving time on electricity consumption: Evidence from southern Norway and Sweden

    International Nuclear Information System (INIS)

    Mirza, Faisal Mehmood; Bergland, Olvar

    2011-01-01

    This paper examines the impact of daylight saving time (DST) on electricity consumption in southern Norway and Sweden. As DST was implemented in both the countries in 1980, we do not have a clear counterfactual in the form of a control period to identify the impact of DST directly with before and after or with and without analysis. This problem in the study is resolved by using 'equivalent day normalization technique' to identify the impact of DST. The difference-in-difference (DID) average treatment effects model suggests an annual reduction of at least 1.0 percent in electricity consumption for both Norway and Sweden due to DST. The average annual electricity consumption reduction corresponding to DST effects equals 519 and 882 GWh for southern Norway and Sweden, resulting in an annual financial saving of 16.1 million Euros and 30.1 million Euros, respectively. The distribution of treatment effects across different hours of the day indicates a small but significant reduction in electricity consumption during the morning and a steep decline during the evening hours in both countries. - Highlights: → We assess the impact of DST on electricity consumption in southern Norway and Sweden. → DST reduces electricity consumption by 1.3 percent in both countries. → The impact is smaller during the morning hours but larger during evening hours. → Respective annual financial savings equal Euro 16.1 and 30.1 million for Norway and Sweden. → Average annual electricity savings equal 519 and 882 GWh for two countries, respectively.

  16. Energy Saving in an ETC Solar System to Produce High Temperature Water

    Directory of Open Access Journals (Sweden)

    Carlos J. Porras-Prieto

    2018-04-01

    Full Text Available The use of solar water heating systems (SWHS based on evacuated tube collectors (ETC has experienced rapid growth in the residential sector. In contrast, the implementation of these systems in the industrial sector is very limited, due in part to the demand of a higher temperature in water. Taking into account that the final energy of the industrial sector is similar to the residential sector, to increase the generation of renewable energy and energy saving in cities, efforts in this sector should be redoubled. Therefore, the present work characterises the behaviour of a SWHS-ETC with active circulation to produce hot water at 90 °C, determining its performance, energy saving and profitability in different scenarios in Europe. The annual energy savings generated by the SWHS Range between 741 and 435 kWh m−2 (reduction of emissions between 215 and 88 kg CO2 m−2. The results of the analysis of profitability, studying the variation of the conventional energy price, the cost of the investment, the useful life and the energy supplied, in thousands of scenarios, are a valuable tool for correct decision making, as they can be of great utility to increase the implementation of these systems in the industrial sector.

  17. Financial Impact of Cancer Drug Wastage and Potential Cost Savings From Mitigation Strategies.

    Science.gov (United States)

    Leung, Caitlyn Y W; Cheung, Matthew C; Charbonneau, Lauren F; Prica, Anca; Ng, Pamela; Chan, Kelvin K W

    2017-07-01

    Cancer drug wastage occurs when a parenteral drug within a fixed vial is not administered fully to a patient. This study investigated the extent of drug wastage, the financial impact on the hospital budget, and the cost savings associated with current mitigation strategies. We conducted a cross-sectional study in three University of Toronto-affiliated hospitals of various sizes. We recorded the actual amount of drug wasted over a 2-week period while using current mitigation strategies. Single-dose vial cancer drugs with the highest wastage potentials were identified (14 drugs). To calculate the hypothetical drug wastage with no mitigation strategies, we determined how many vials of drugs would be needed to fill a single prescription. The total drug costs over the 2 weeks ranged from $50,257 to $716,983 in the three institutions. With existing mitigation strategies, the actual drug wastage over the 2 weeks ranged from $928 to $5,472, which was approximately 1% to 2% of the total drug costs. In the hypothetical model with no mitigation strategies implemented, the projected drug cost wastage would have been $11,232 to $149,131, which accounted for 16% to 18% of the total drug costs. As a result, the potential annual savings while using current mitigation strategies range from 15% to 17%. The financial impact of drug wastage is substantial. Mitigation strategies lead to substantial cost savings, with the opportunity to reinvest those savings. More research is needed to determine the appropriate methods to minimize risk to patients while using the cost-saving mitigation strategies.

  18. Increasing water productivity, nitrogen economy, and grain yield of rice by water saving irrigation and fertilizer-N management.

    Science.gov (United States)

    Aziz, Omar; Hussain, Saddam; Rizwan, Muhammad; Riaz, Muhammad; Bashir, Saqib; Lin, Lirong; Mehmood, Sajid; Imran, Muhammad; Yaseen, Rizwan; Lu, Guoan

    2018-06-01

    The looming water resources worldwide necessitate the development of water-saving technologies in rice production. An open greenhouse experiment was conducted on rice during the summer season of 2016 at Huazhong Agricultural University, Wuhan, China, in order to study the influence of irrigation methods and nitrogen (N) inputs on water productivity, N economy, and grain yield of rice. Two irrigation methods, viz. conventional irrigation (CI) and "thin-shallow-moist-dry" irrigation (TSMDI), and three levels of nitrogen, viz. 0 kg N ha -1 (N 0 ), 90 kg N ha -1 (N 1 ), and 180 kg N ha -1 (N 2 ), were examined with three replications. Study data indicated that no significant water by nitrogen interaction on grain yield, biomass, water productivity, N uptake, NUE, and fertilizer N balance was observed. Results revealed that TSMDI method showed significantly higher water productivity and irrigation water applications were reduced by 17.49% in TSMDI compared to CI. Thus, TSMDI enhanced root growth and offered significantly greater water saving along with getting more grain yield compared to CI. Nitrogen tracer ( 15 N) technique accurately assessed the absorption and distribution of added N in the soil crop environment and divulge higher nitrogen use efficiency (NUE) influenced by TSMDI. At the same N inputs, the TSMDI was the optimal method to minimize nitrogen leaching loss by decreasing water leakage about 18.63%, which are beneficial for the ecological environment.

  19. Energy-Saving Optimization of Water Supply Pumping Station Life Cycle Based on BIM Technology

    Science.gov (United States)

    Qun, Miao; Wang, Jiayuan; Liu, Chao

    2017-12-01

    In the urban water supply system, pump station is the main unit of energy consumption. In the background of pushing forward the informatization in China, using BIM technology in design, construction and operations of water supply pumping station, can break through the limitations of the traditional model and effectively achieve the goal of energy conservation and emissions reduction. This work researches the way to solve energy-saving optimization problems in the process of whole life cycle of water supply pumping station based on BIM technology, and put forward the feasible strategies of BIM application in order to realize the healthy and sustainable development goals by establishing the BIM model of water supply pumping station of Qingdao Guzhenkou water supply project.

  20. The impact of translucent fabric shades and control strategies on energy savings and visual quality

    Science.gov (United States)

    Wankanapon, Pimonmart

    Translucent fabric shades provide opportunities for building occupants to control sunlight penetration for heat reduction, thermal comfort, and visual quality. Regulating shades affects building energy and can potentially reduce the size of mechanical cooling systems. Shades are not normally included in energy model studies during the design process, even though shades potential impact energy use. This is because the occupants normally leave shades closed a large fraction of the time, but models are generally performed with no shades. Automatic shade control is now available, so it is necessary to understand the impact of shades on visual quality and their energy saving potential in order to optimize their overall performance. There are very limited studies that have address shades and their integrated performance on energy consumption and visual quality. Most of these do not reflected modern shade types and their application. The goals of this study are: First, to determine the impact of shades on total, heating, cooling and lighting energy savings with different design and operation parameters. Second, to study and develop different automatic shade control strategies to promote and optimize energy savings and visual quality. A simulation-based approach using EnergyPlus in a parametric study provide better understanding energy savings under different shade conditions. The parametric runs addressed various building parameters such as geometry, orientation, site climate, glazing/shade properties, and shade control strategies with integrated lighting control. The impact of shades was determined for total building and space heating, cooling and lighting energy savings. The effect of shades on visual quality was studied using EnergyPlus, AGI32 and DAYSIM for several indices such as daylight glare index (DGI), work plane illuminance, luminance ratios and view. Different shade control strategies and integrated lighting control were considered with two translucent fabric

  1. Potential for Potable Water Savings in Buildings by Using Stormwater Harvested from Porous Pavements

    Directory of Open Access Journals (Sweden)

    Lucas Niehuns Antunes

    2016-03-01

    Full Text Available There is a growing concern about the scarcity of water resources due to population growth and increased demand for potable water. Thus, the rational use of water has become necessary for the conservation of such resources. The objective of this study is to estimate the potential for potable water savings in buildings of different sectors—residential, public and commercial—in the city of Florianópolis, southern Brazil, by using stormwater harvested from porous pavements. Models were constructed to assess infiltration and rainwater quality; samples of stormwater from a local road were collected to evaluate its quality; and computer simulation was performed to assess the potential for potable water savings and rainwater tank sizing. Draining asphalt concrete slabs with two types of modifiers were used, i.e., tire rubber and SBS polymer—styrene-butadiene-styrene. The Netuno computer programme was used to simulate the potential for potable water savings considering the use of rainwater for non-potable uses such as flushing toilets and urinals, cleaning external areas, and garden watering. Average stormwater infiltration was 85.4%. It was observed that stormwater is not completely pure. From the models, the pH was 5.4 and the concentrations of ammonia, phosphorus, nitrite, and dissolved oxygen were 0.41, 0.14, 0.002, and 9.0 mg/L, respectively. The results for the stormwater runoff of a paved road were 0.23, 0.11, 0.12, 0.08, 1.41, 2.11, 0.02, and 9.0 mg/L for the parameters aluminium, ammonia, copper, chromium, iron, phosphorus, nitrite, and dissolved oxygen, respectively; and the pH was 6.7. In the city of Florianópolis, which has a surface area of paved roads of approximately 11,044,216 m², the potential for potable water savings ranged from 1.2% to 19.4% in the residential sector, 2.1% to 75.7% in the public sector and 6.5% to 70.0% in the commercial sector.

  2. How More Data About Direct and Virtual Water Use Could Help People Understand Their Water Footprints and Save More Water

    Science.gov (United States)

    Madel, R.; Olson-Sawyer, K.; Hanlon, P.; Rabin, K.

    2017-12-01

    Attari (2014) has shown through online surveys that Americans underestimate their water use, don't know what their water footprint is and don't know how much water it takes to produce food. The more people know about their water use, the better decisions they are capable of making and the more likely they are to conserve, which is especially important during periods of water stress. To increase awareness and help people decrease their daily water use, GRACE Communications Foundation created a Water Footprint Calculator [watercalculator.org] using US-oriented data and presented in US units in both English and Spanish. The calculator is based on direct water use data as well as the water consumed to create food, consumer goods and energy (also known as virtual or indirect water use). We learned that there is a lack of comparably-scaled, consumer-level virtual water research available. The direct use data gathered for the calculator came primarily from a study of residential water use in the US by Mayer et al. (1999), who conducted surveys of households in different US cities and averaged data for both inside and outside the home. The indirect use data came from various sources including the US government (USGS, EPA, EIA, NREL, Energy Star, etc.), the Water Footprint Network and the UN FAO. Much of the indirect use data was aggregated at a national level or came from combinations of various data sets. For all users, the food category accounts for the largest part of their water footprints. Gathering data of comparable scale at a personal consumption level proved to be a challenging exercise and provided several takeaways. While there is recent residential direct water use data at a consumer level, there is a lack of data at the personal, consumer level about indirect water use in manufacturing, energy production and agriculture. Because of this, we had to use national averages and generalized calculations. The resulting tool gives people a sense of the impacts of

  3. Cost-savings for biosimilars in the United States: a theoretical framework and budget impact case study application using filgrastim.

    Science.gov (United States)

    Grewal, Simrun; Ramsey, Scott; Balu, Sanjeev; Carlson, Josh J

    2018-05-18

    Biosimilars can directly reduce the cost of treating patients for whom a reference biologic is indicated by offering a highly similar, lower priced alternative. We examine factors related to biosimilar regulatory approval, uptake, pricing, and financing and the potential impact on drug expenditures in the U.S. We developed a framework to illustrate how key factors including regulatory policies, provider and patient perception, pricing, and payer policies impact biosimilar cost-savings. Further, we developed a budget impact cost model to estimate savings from filgrastim biosimilars under various scenarios. The model uses publicly available data on disease incidence, treatment patterns, market share, and drug prices to estimate the cost-savings over a 5-year time horizon. We estimate five-year cost savings of $256 million, of which 18% ($47 million) are from reduced patient out-of-pocket costs, 34% ($86 million) are savings to commercial payers, and 48% ($123 million) are savings for Medicare. Additional scenarios demonstrate the impact of uncertain factors, including price, uptake, and financing policies. A variety or interrelated factors influence the development, uptake, and cost-savings for Biosimilars use in the U.S. The filgrastim case is a useful example that illustrates these factors and the potential magnitude of costs savings.

  4. THE IMPACT OF LIBERALIZED FINANCIAL SYSTEM ON SAVINGS, INVESTMENT AND GROWTH IN NIGERIA

    Directory of Open Access Journals (Sweden)

    MATTHEW, A. Oluwatoyin

    2011-12-01

    Full Text Available For the past twenty years, an enhanced financial sectoral deregulation has been a major economic tool in the agenda of most less developed economies and Nigeria is no exception. The discouraging level of growth with reference to the savings and investment culture of the people and government involvement in these economies has call to question whether financial sector liberalization have an impact on savings and investment in the economy and by extension on the level of growth and development of such economies. This study attempted to take a cursory look at the issue by examining the impact of financial system liberalization on savings and investment and by extension growth and development in Nigeria between 1997 and 2008. Some of the policy recommendations centred on the government creating an enabling environment for private investment to thrive. This will go a long way in helping to promote private investment with significant benefits in the long run for growth and development to the advantage of the citizenry and the economy at large.

  5. China’s Water-Saving Irrigation Management System: Policy, Implementation, and Challenge

    Directory of Open Access Journals (Sweden)

    Liuyang Yao

    2017-12-01

    Full Text Available In response to the increased competition for water, the Chinese government has determined to promote water-saving irrigation (WSI followed by a range of institutional arrangements and policy goals. Three management mechanisms are analyzed in this study in terms of effectiveness, including the top-down regulation mechanism using direct control or economic instruments, the design-bid funding mechanism mobilizing local governments by competitive grants program, and the bottom-up participation mechanism transferring more irrigation management responsibilities to end-users. Although the WSI management has achieved notable improvements by the combination of different mechanisms, conflicts among different policy goals, uneven distribution of financial resources, and insufficient participation from water users caused the difficulty in aligning stakeholders’ incentives. Approaches are needed to enable sustainable management by coordinating incentives from different stakeholders in the management, as well as incorporating end water users to assist decision-making.

  6. An Information Framework for Facilitating Cost Saving of Environmental Impacts in the Coal Mining Industry in South Africa

    Directory of Open Access Journals (Sweden)

    Mashudu D. Mbedzi

    2018-05-01

    Full Text Available Coal-mining contributes much to the economic welfare of a country. Yet it brings along a number of challenges, notably environmental impacts which include water pollution in a water scarce country such as South Africa. This research is conducted in two phases. The first phase intends to establish environmental and other challenges brought about by the coal-mining industry through a comprehensive analysis of available literature. Combatting these challenges is costly; consequently, our work investigates how established management accounting tools and techniques such as Environmental Management Accounting (EMA, Material Flow Cost Accounting (MFCA and Life Cycle Costing (LCC may facilitate cost savings for the companies involved. These techniques promote increased transparency of material usage by tracing and quantifying the flows and inventories of materials within the coal-mining industry in physical and monetary terms, hence hidden costs are elicited. The researchers postulate that an Information Framework integrating these aspects may be the way forward. To this end existing frameworks in the literature are identified. A number of research questions embodying the above aspects are defined and the objective is to define a conceptual framework to facilitate cost savings for coal-mining companies. The main contribution of this work is an information framework presented towards the end of this article. The second phase of the research will involve fieldwork in the form of a survey among stakeholders in industry to validate the conceptual framework.

  7. Burned forests impact water supplies

    Science.gov (United States)

    Dennis W. Hallema; Ge Sun; Peter V. Caldwell; Steven P. Norman; Erika C. Cohen; Yongqiang Liu; Kevin D. Bladon; Steven G. McNulty

    2018-01-01

    Wildland fire impacts on surface freshwater resources have not previously been measured, nor factored into regional water management strategies. But, large wildland fires are increasing and raise concerns about fire impacts on potable water. Here we synthesize longterm records of wildland fire, climate, and river flow for 168 locations across the United States. We show...

  8. Dingxi Prefecture of Gansu Province's Development of Rainwater Collection and Water-Saving Irrigation to Combat the Arid Environment

    National Research Council Canada - National Science Library

    Zhang, Xiaojun; Dong, Suocheng; Wang, Haiying; Liu, Guihuan; Li, Shuang

    2005-01-01

    .... At the same time, in the long-time practice, Dingxi has taken the rainwater collection and water-saving irrigation as the link for improving eco-environment and increasing field's productivity...

  9. Review of Literature for Inputs to the National Water Savings Model and Spreadsheet Tool-Commercial/Institutional

    Energy Technology Data Exchange (ETDEWEB)

    Whitehead, Camilla Dunham; Melody, Moya; Lutz, James

    2009-05-29

    Lawrence Berkeley National Laboratory (LBNL) is developing a computer model and spreadsheet tool for the United States Environmental Protection Agency (EPA) to help estimate the water savings attributable to their WaterSense program. WaterSense has developed a labeling program for three types of plumbing fixtures commonly used in commercial and institutional settings: flushometer valve toilets, urinals, and pre-rinse spray valves. This National Water Savings-Commercial/Institutional (NWS-CI) model is patterned after the National Water Savings-Residential model, which was completed in 2008. Calculating the quantity of water and money saved through the WaterSense labeling program requires three primary inputs: (1) the quantity of a given product in use; (2) the frequency with which units of the product are replaced or are installed in new construction; and (3) the number of times or the duration the product is used in various settings. To obtain the information required for developing the NWS-CI model, LBNL reviewed various resources pertaining to the three WaterSense-labeled commercial/institutional products. The data gathered ranged from the number of commercial buildings in the United States to numbers of employees in various sectors of the economy and plumbing codes for commercial buildings. This document summarizes information obtained about the three products' attributes, quantities, and use in commercial and institutional settings that is needed to estimate how much water EPA's WaterSense program saves.

  10. Agricultural interventions for water saving and crop yield improvement, in a Mediterranean area - an experimental design

    Science.gov (United States)

    Morianou, Giasemi; Kourgialas, Nektarios; Psarras, George; Koubouris, George; Arampatzis, George; Karatzas, George; Pavlidou, Elisavet

    2017-04-01

    This work is a part of LIFE+ AGROCLIMAWATER project and the aim is to improve the water efficiency, increase the adaptive capacity of tree corps and save water, in a Mediterranean area, under different climatic conditions and agricultural practices. The experimental design as well as preliminary results at farm and river basin scales are presented in this work. Specifically, ten (10) pilot farms, both organic and conventional ones have been selected in the sub-basin of Platanias in western Crete - Greece. These ten pilot farms were selected representing the most typical crops in Platanias area (olive trees and citrus trees), as well as the typical soil, landscape and agricultural practices differentiation for each crop (field slope, water availability, soil type, management regime). From the ten pilot farms, eight were olive farms and the rest two citrus. This proportion correspond adequacy to the presentence of olive and citrus crops in the extended area of Platanias prefecture. Each of the ten pilot farm has been divided in two parts, the first one will be used as a control part, while the other one as the demonstration part where the interventions will be applied. The action plans for each selected farm are based on the following groups of possible interventions: a) reduction of water evaporation losses from soil surface, b) reduction of transpiration water losses through winter pruning and summer pruning, c) reduction of deep percolation water and nutrient losses, d) reduction of surface runoff, e) measures in order to maximize the efficiency of irrigation and f) rationalization of fertilizers and agrochemicals utilized. Preliminary results indicate that water saving and crop yield can be significantly improved based on the above innervations both at farm and river basin scale.

  11. Water Conservation with Water Saving Devices, Proceedings of a Conference. Extension Bulletin 421.

    Science.gov (United States)

    Shelton, Theodore B., Ed.

    Presented are six papers on water conservation which were presented at a conference in New Jersey. The first two papers present recommendations of the New Jersey Department of Environmental Protection on water conservation and a master plan for New Jersey's water supply needs. The following four papers discuss water conservation with water-saving…

  12. Impact of Hybrid Water Supply on the Centralised Water System

    Directory of Open Access Journals (Sweden)

    Robert Sitzenfrei

    2017-11-01

    Full Text Available Traditional (technical concepts to ensure a reliable water supply, a safe handling of wastewater and flood protection are increasingly criticised as outdated and unsustainable. These so-called centralised urban water systems are further maladapted to upcoming challenges because of their long lifespan in combination with their short-sighted planning and design. A combination of (existing centralised and decentralised infrastructure is expected to be more reliable and sustainable. However, the impact of increasing implementation of decentralised technologies on the local technical performance in sewer or water supply networks and the interaction with the urban form has rarely been addressed in the literature. In this work, an approach which couples the UrbanBEATS model for the planning of decentralised strategies together with a water supply modelling approach is developed and applied to a demonstration case. With this novel approach, critical but also favourable areas for such implementations can be identified. For example, low density areas, which have high potential for rainwater harvesting, can result in local water quality problems in the supply network when further reducing usually low pipe velocities in these areas. On the contrary, in high demand areas (e.g., high density urban forms there is less effect of rainwater harvesting due to the limited available space. In these high density areas, water efficiency measures result in the highest savings in water volume, but do not cause significant problems in the technical performance of the potable water supply network. For a more generalised and case-independent conclusion, further analyses are performed for semi-virtual benchmark networks to answer the question of an appropriate representation of the water distribution system in a computational model for such an analysis. Inappropriate hydraulic model assumptions and characteristics were identified for the stated problem, which have more

  13. Impact of daylight savings time on spontaneous pregnancy loss in in vitro fertilization patients.

    Science.gov (United States)

    Liu, Constance; Politch, Joseph A; Cullerton, Evan; Go, Kathryn; Pang, Samuel; Kuohung, Wendy

    2017-01-01

    Transition into daylight savings time (DST) has studied negative impacts on health, but little is known regarding impact on fertility. This retrospective cohort study evaluates DST impact on pregnancy and pregnancy loss rates in 1,654 autologous in vitro fertilization cycles (2009 to 2012). Study groups were identified based on the relationship of DST to embryo transfer. Pregnancy rates were similar in Spring and Fall (41.4%, 42.2%). Pregnancy loss rates were also comparable between Spring and Fall (15.5%, 17.1%), but rates of loss were significantly higher in Spring when DST occurred after embryo transfer (24.3%). Loss was marked in patients with a history of prior spontaneous pregnancy loss (60.5%).

  14. The impact of the daylight saving time on electricity consumption-A case study from Jordan

    International Nuclear Information System (INIS)

    Awad Momani, Mohammad; Yatim, Baharudin; Ali, Mohd Alauddin Mohd

    2009-01-01

    The paper examines the impact of daylight saving time (DST) on electricity consumption in Jordan. Two types of analysis were done: the first analysis examines the impact of DST on the lighting loads based on a survey study made for residential and commercial sectors. The second examines the impact of DST on the over all electricity generation through analyzing the daily load curves (DLCs) before and after the DST onset and removal in 2000 and 2007. The results show that the application of DST during the year 2000 saves the electricity used for illumination by -0.73% but it increases the overall generation at the onset and removal of DST by 0.5% and 1.4% due to increase in the heating and cooling loads. The analysis of DLCs during the year 2007 shows similar effects as in the year 2000 except during the early morning period at the DST onset where DST decreases the demand during this time. The analysis shows that DST decreases the electricity demand at DST onset by 0.2% and increases it at DST removal by 0.3%. A possible decrease in the electricity consumption may take place if the DST is implemented from April to end of August.

  15. Evaluation of water saving measures for mid-sized tourist lodging units: the case of Samos Island, Greece

    Directory of Open Access Journals (Sweden)

    Eleftheria E. Klontza

    2016-06-01

    Full Text Available Hotel sector causes significant environmental stress in both natural and built up areas due to their consumption of water and energy. In addition, the production of large volumes of liquid and solid waste results in a significant environmental footprint. The use of water and energy by hotels is strongly linked (e.g. energy is consumed for hot water, operation of the pool, preparation of meals, etc. and usually referred to as the water – energy nexus. Thus, for big consumers like hotels, water and energy consumption should be addressed collectively as water-saving measures can lead to a reduction in energy consumption. The aim of this study is to assess the environmental performance of mid-sized hotel units by analyzing and quantifying their use of water. An analysis using a two-step approach was made of 8 accommodation facilities located on Samos Island, Greece: (i a mapping of water use by adopting an end-use approach, and then (ii an assessment of saving practices using three main criteria: savings, cost of investment and payback time. The preliminary results indicate that for small sized lodging units, water consumed inside the guest rooms accounts for the majority of all the water used and low-cost water saving measures and actions can reduce the pressure on water resources without disturbing guests, while increasing the financial profitability of a hotel.

  16. Residential energy use in Mexico: Structure, evolution, environmental impacts, and savings potential

    Energy Technology Data Exchange (ETDEWEB)

    Masera, O.; Friedmann, R.; deBuen, O.

    1993-05-01

    This article examines the characteristics of residential energy use in Mexico, its environmental impacts, and the savings potential of the major end-uses. The main options and barriers to increase the efficiency of energy use are discussed. The energy analysis is based on a disaggregation of residential energy use by end-uses. The dynamics of the evolution of the residential energy sector during the past 20 years are also addressed when the information is available. Major areas for research and for innovative decision-making are identified and prioritized.

  17. Saving Lives at Birth; development of a retrospective theory of change, impact framework and prioritised metrics.

    Science.gov (United States)

    Lalli, Marek; Ruysen, Harriet; Blencowe, Hannah; Yee, Kristen; Clune, Karen; DeSilva, Mary; Leffler, Marissa; Hillman, Emily; El-Noush, Haitham; Mulligan, Jo; Murray, Jeffrey C; Silver, Karlee; Lawn, Joy E

    2018-01-29

    Grand Challenges for international health and development initiatives have received substantial funding to tackle unsolved problems; however, evidence of their effectiveness in achieving change is lacking. A theory of change may provide a useful tool to track progress towards desired outcomes. The Saving Lives at Birth partnership aims to address inequities in maternal-newborn survival through the provision of strategic investments for the development, testing and transition-to-scale of ground-breaking prevention and treatment approaches with the potential to leapfrog conventional healthcare approaches in low resource settings. We aimed to develop a theory of change and impact framework with prioritised metrics to map the initiative's contribution towards overall goals, and to measure progress towards improved outcomes around the time of birth. A theory of change and impact framework was developed retrospectively, drawing on expertise across the partnership and stakeholders. This included a document and literature review, and wide consultation, with feedback from stakeholders at all stages. Possible indicators were reviewed from global maternal-newborn health-related partner initiatives, priority indicator lists, and project indicators from current innovators. These indicators were scored across five domains to prioritise those most relevant and feasible for Saving Lives at Birth. These results informed the identification of the prioritised metrics for the initiative. The pathway to scale through Saving Lives at Birth is articulated through a theory of change and impact framework, which also highlight the roles of different actors involved in the programme. A prioritised metrics toolkit, including ten core impact indicators and five additional process indicators, complement the theory of change. The retrospective nature of this development enabled structured reflection of the program mechanics, allowing for inclusion of learning from the first four rounds of the

  18. Analysis of impact of daylight time savings on energy use of buildings in Kuwait

    Energy Technology Data Exchange (ETDEWEB)

    Krarti, Moncef, E-mail: moncef.krarti@colorado.ed [CEAE Department, CB 428, University of Colorado, Boulder, CO 80309 (United States); Hajiah, Ali [Kuwait Institute for Scientific Research, Safat (Kuwait)

    2011-05-15

    In this paper, a detailed simulation-based analysis is conducted to assess the impact of adopting Daylight Saving Time (DST) on the electrical energy use and peak demand in Kuwait. The analysis focused on the impact of DST in the building sector since it represents 90% of electrical energy usage of Kuwait. The simulation results indicate that the adoption of DST has mixed impacts for Kuwait. While the commercial and the governmental sectors may benefit from the DST, the private residences and apartment buildings can see both their annual energy use and peak demand increase slightly by adopting DST. The overall impact of the DST implementation is rather minimal with a slight increase energy use of about 0.07% and a slight reduction in peak demand of 0.14% or about 12 MW based on 2005 electrical peak demand for Kuwait. - Research highlights: {yields} A detailed simulation-based analysis is conducted to assess the impact of adopting Daylight Saving Time (DST) on the electrical energy use and peak demand in Kuwait. {yields} The analysis focused on the impact of DST in the building sector since it represents 90% of electrical energy usage of Kuwait. {yields} It is found that while the commercial and the governmental building sectors may benefit from DST, the private residences and apartment buildings can see both their annual energy use and peak demand increase slightly by adopting DST. {yields} Since the residential sector represents the majority of the electrical load in Kuwait, DST adoption was found to cause slight increase in annual electrical energy use by about 0.07% and a slight reduction in electrical peak electrical demand by about 0.14%.

  19. Analysis of impact of daylight time savings on energy use of buildings in Kuwait

    International Nuclear Information System (INIS)

    Krarti, Moncef; Hajiah, Ali

    2011-01-01

    In this paper, a detailed simulation-based analysis is conducted to assess the impact of adopting Daylight Saving Time (DST) on the electrical energy use and peak demand in Kuwait. The analysis focused on the impact of DST in the building sector since it represents 90% of electrical energy usage of Kuwait. The simulation results indicate that the adoption of DST has mixed impacts for Kuwait. While the commercial and the governmental sectors may benefit from the DST, the private residences and apartment buildings can see both their annual energy use and peak demand increase slightly by adopting DST. The overall impact of the DST implementation is rather minimal with a slight increase energy use of about 0.07% and a slight reduction in peak demand of 0.14% or about 12 MW based on 2005 electrical peak demand for Kuwait. - Research highlights: → A detailed simulation-based analysis is conducted to assess the impact of adopting Daylight Saving Time (DST) on the electrical energy use and peak demand in Kuwait. → The analysis focused on the impact of DST in the building sector since it represents 90% of electrical energy usage of Kuwait. → It is found that while the commercial and the governmental building sectors may benefit from DST, the private residences and apartment buildings can see both their annual energy use and peak demand increase slightly by adopting DST. → Since the residential sector represents the majority of the electrical load in Kuwait, DST adoption was found to cause slight increase in annual electrical energy use by about 0.07% and a slight reduction in electrical peak electrical demand by about 0.14%.

  20. Water Impact Prediction Tool for Recoverable Rockets

    Science.gov (United States)

    Rooker, William; Glaese, John; Clayton, Joe

    2011-01-01

    Reusing components from a rocket launch can be cost saving. NASA's space shuttle system has reusable components that return to the Earth and impact the ocean. A primary example is the Space Shuttle Solid Rocket Booster (SRB) that descends on parachutes to the Earth after separation and impacts the ocean. Water impact generates significant structural loads that can damage the booster, so it is important to study this event in detail in the design of the recovery system. Some recent examples of damage due to water impact include the Ares I-X First Stage deformation as seen in Figure 1 and the loss of the SpaceX Falcon 9 First Stage.To ensure that a component can be recovered or that the design of the recovery system is adequate, an adequate set of structural loads is necessary for use in failure assessments. However, this task is difficult since there are many conditions that affect how a component impacts the water and the resulting structural loading that a component sees. These conditions include the angle of impact with respect to the water, the horizontal and vertical velocities, the rotation rate, the wave height and speed, and many others. There have been attempts to simulate water impact. One approach is to analyze water impact using explicit finite element techniques such as those employed by the LS-Dyna tool [1]. Though very detailed, this approach is time consuming and would not be suitable for running Monte Carlo or optimization analyses. The purpose of this paper is to describe a multi-body simulation tool that runs quickly and that captures the environments a component might see. The simulation incorporates the air and water interaction with the component, the component dynamics (i.e. modes and mode shapes), any applicable parachutes and lines, the interaction of winds and gusts, and the wave height and speed. It is capable of quickly conducting Monte Carlo studies to better capture the environments and genetic algorithm optimizations to reproduce a

  1. Simulation of Crop Growth and Water-Saving Irrigation Scenarios for Lettuce: A Monsoon-Climate Case Study in Kampong Chhnang, Cambodia

    Directory of Open Access Journals (Sweden)

    Pinnara Ket

    2018-05-01

    Full Text Available Setting up water-saving irrigation strategies is a major challenge farmers face, in order to adapt to climate change and to improve water-use efficiency in crop productions. Currently, the production of vegetables, such as lettuce, poses a greater challenge in managing effective water irrigation, due to their sensitivity to water shortage. Crop growth models, such as AquaCrop, play an important role in exploring and providing effective irrigation strategies under various environmental conditions. The objectives of this study were (i to parameterise the AquaCrop model for lettuce (Lactuca sativa var. crispa L. using data from farmers’ fields in Cambodia, and (ii to assess the impact of two distinct full and deficit irrigation scenarios in silico, using AquaCrop, under two contrasting soil types in the Cambodian climate. Field observations of biomass and canopy cover during the growing season of 2017 were used to adjust the crop growth parameters of the model. The results confirmed the ability of AquaCrop to correctly simulate lettuce growth. The irrigation scenario analysis suggested that deficit irrigation is a “silver bullet” water saving strategy that can save 20–60% of water compared to full irrigation scenarios in the conditions of this study.

  2. The potential for energy savings when reducing the water consumption in a kraft pulp mill

    Energy Technology Data Exchange (ETDEWEB)

    Wising, Ulrika; Berntsson, Thore [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept. of Chemical Engineering and Environmental Science; Stuart, Paul [Ecole Polytechnique, Montreal (Canada). Dept. of Chemical Engineering

    2004-05-01

    In this paper an existing pulp and paper mill has been studied in a systematic way regarding the reduction of water consumption, and the resulting increased potential for energy integration. It has been found that when the mill's hot water consumption is decreased, the live steam demand for the mill also decreases. Also when decreasing the hot water consumption, the quantity and temperature of available excess heat increases. This excess heat can be used for evaporation, thereby reducing the live steam demand further by up to 1.5 GJ/t. A pinch analysis was performed at an existing mill and it was found that if pinch violations are removed, the hot water consumption is not an important factor any more. Removing all the pinch violations and using the remaining excess heat for evaporation yields a significantly larger energy savings for the mill (4.0 GJ/t). From an economic optimum perspective it is probably most profitable to do a combination of reducing water consumption, removing pinch violations, and use the remaining excess heat for evaporation.

  3. Shared Urban Greywater Recycling Systems: Water Resource Savings and Economic Investment

    Directory of Open Access Journals (Sweden)

    Dexter V.L. Hunt

    2013-07-01

    Full Text Available The water industry is becoming increasingly aware of the risks associated with urban supplies not meeting demands by 2050. Greywater (GW recycling for non-potable uses (e.g., urinal and toilet flushing provides an urban water management strategy to help alleviate this risk by reducing main water demands. This paper proposes an innovative cross connected system that collects GW from residential buildings and recycles it for toilet/urinal flushing in both residential and office buildings. The capital cost (CAPEX, operational cost (OPEX and water saving potential are calculated for individual and shared residential and office buildings in an urban mixed-use regeneration area in the UK, assuming two different treatment processes; a membrane bioreactor (MBR and a vertical flow constructed wetland (VFCW. The Net Present Value (NPV method was used to compare the financial performance of each considered scenario, from where it was found that a shared GW recycling system (MBR was the most economically viable option. The sensitivity of this financial model was assessed, considering four parameters (i.e., water supply and sewerage charges, discount rate(s, service life and improved technological efficiency, e.g., low flush toilets, low shower heads, etc., from where it was found that shared GW systems performed best in the long-term.

  4. The Impact of Sustainable Development Technology on a Small Economy—The Case of Energy-Saving Technology

    Directory of Open Access Journals (Sweden)

    Xiding Chen

    2018-02-01

    Full Text Available We investigated the impact of a sustainable development technology on the macroeconomic variables in a small economy utilizing a case study with a stochastically improving energy saving technology and a stochastically increasing energy price. The results show the technological displacement effects of energy saving technology are stronger, but there are more ambiguous instantaneous returns to physical capital. However, the energy saving technology’s displacement effects might not affect the conditions under which the Harberger-Laursen-Metzler (HLM effect holds. The effects of rising energy prices on bonds are stronger, and there are more ambiguous instantaneous returns, but the conditions under which the HLM effect holds are different.

  5. The Impact of Sustainable Development Technology on a Small Economy—The Case of Energy-Saving Technology

    Science.gov (United States)

    Huang, Qinghua; Huang, Weilun; Li, Xue

    2018-01-01

    We investigated the impact of a sustainable development technology on the macroeconomic variables in a small economy utilizing a case study with a stochastically improving energy saving technology and a stochastically increasing energy price. The results show the technological displacement effects of energy saving technology are stronger, but there are more ambiguous instantaneous returns to physical capital. However, the energy saving technology’s displacement effects might not affect the conditions under which the Harberger-Laursen-Metzler (HLM) effect holds. The effects of rising energy prices on bonds are stronger, and there are more ambiguous instantaneous returns, but the conditions under which the HLM effect holds are different. PMID:29419788

  6. The Impact of Sustainable Development Technology on a Small Economy-The Case of Energy-Saving Technology.

    Science.gov (United States)

    Chen, Xiding; Huang, Qinghua; Huang, Weilun; Li, Xue

    2018-02-08

    We investigated the impact of a sustainable development technology on the macroeconomic variables in a small economy utilizing a case study with a stochastically improving energy saving technology and a stochastically increasing energy price. The results show the technological displacement effects of energy saving technology are stronger, but there are more ambiguous instantaneous returns to physical capital. However, the energy saving technology's displacement effects might not affect the conditions under which the Harberger-Laursen-Metzler (HLM) effect holds. The effects of rising energy prices on bonds are stronger, and there are more ambiguous instantaneous returns, but the conditions under which the HLM effect holds are different.

  7. Alternate wetting and drying (AWD) of paddy fields: A water-saving technology

    International Nuclear Information System (INIS)

    Salim, M.; Shehzad, F.D.

    2008-01-01

    Rice productivity in Pakistan is lower than in various rice-producing countries of the World. One of the major reasons of low productivity is the shortage of water. It is, therefore, imperative to increase water-use efficiency. Various studies in China and elsewhere have revealed that continuous flooding is not necessary for getting high yield of rice. In China, lot of effort has been made to develop water- saving rice-production technologies. The most important of these is alternate wetting and drying (AWD) of rice-fields, instead of keeping them continuously flooded or submerged. In the present article, salient advantages and disadvantages have been discussed. The advantages include less water-use for paddy-production, high paddy-productivity, and improvement in the environment, with enhanced efficiency of nutrient-use, better utilization of rainwater, less infestation/ population of insect pests. The technology may affect the grain-quality of Basmati rice in Pakistan. It is suggested that studies. on various aspects of the technology should be carried out, in various ecological zones and in different soil-types. The adoption of the technology may prove helpful to enhance rice-productivity and improve the rural economy in Pakistan. (author)

  8. Empirical Analysis of the Impact of Financial Sector Reforms on Savings Mobilization in Nigeria

    Directory of Open Access Journals (Sweden)

    Enobong Udoh

    2017-03-01

    Full Text Available This paper examines whether Nigeria witnessed considerable savings mobilization amidst financial sector reforms from 2007 to 2015 using the estimation method of Autoregressive Distributed Lag. Unlike previous papers in this area that mostly focused on interest rates liberalization thesis, this paper goes deeper by looking at financial reforms across money, capital and foreign exchange markets. The estimation results show that there are still structural rigidities in the money, foreign exchange and equity markets nexus. In that, the following variables that proxy financial sector reforms namely treasury bill yield, interest rate spread, market capitalization ratio and currency in circulation ratio (which proxy technological modernization of payment systems all went against a priori expectation. However, financial reforms had one success story in credit/loans advances to private/public sectors (financial deepening which posted its correct economic sign. In sum, except for the financial deepening variable it can be safely concluded that financial reforms in Nigeria is yet to positively impact savings mobilization. The regulatory and reform authorities must show effectiveness in reforms implementation.

  9. Impact of a University-Based Outpatient Telemedicine Program on Time Savings, Travel Costs, and Environmental Pollutants.

    Science.gov (United States)

    Dullet, Navjit W; Geraghty, Estella M; Kaufman, Taylor; Kissee, Jamie L; King, Jesse; Dharmar, Madan; Smith, Anthony C; Marcin, James P

    2017-04-01

    The objective of this study was to estimate travel-related and environmental savings resulting from the use of telemedicine for outpatient specialty consultations with a university telemedicine program. The study was designed to retrospectively analyze the telemedicine consultation database at the University of California Davis Health System (UCDHS) between July 1996 and December 2013. Travel distances and travel times were calculated between the patient home, the telemedicine clinic, and the UCDHS in-person clinic. Travel cost savings and environmental impact were calculated by determining differences in mileage reimbursement rate and emissions between those incurred in attending telemedicine appointments and those that would have been incurred if a visit to the hub site had been necessary. There were 19,246 consultations identified among 11,281 unique patients. Telemedicine visits resulted in a total travel distance savings of 5,345,602 miles, a total travel time savings of 4,708,891 minutes or 8.96 years, and a total direct travel cost savings of $2,882,056. The mean per-consultation round-trip distance savings were 278 miles, average travel time savings were 245 minutes, and average cost savings were $156. Telemedicine consultations resulted in a total emissions savings of 1969 metric tons of CO 2 , 50 metric tons of CO, 3.7 metric tons of NO x , and 5.5 metric tons of volatile organic compounds. This study demonstrates the positive impact of a health system's outpatient telemedicine program on patient travel time, patient travel costs, and environmental pollutants. Copyright © 2017 International Society for Pharmacoeconomics and Outcomes Research (ISPOR). Published by Elsevier Inc. All rights reserved.

  10. Identifying the Physical Properties of Showers That Influence User Satisfaction to Aid in Developing Water-Saving Showers

    Directory of Open Access Journals (Sweden)

    Minami Okamoto

    2015-07-01

    Full Text Available This research was conducted with the goal of clarifying the required conditions of water-saving showerheads. In order to this, the research analyzes the mutual relationship between water usage flow, the level of satisfaction and the physical properties of spray of showerheads. The physical properties of spray were measured using physical properties test apparatus of standard or scheme for water-saving showerheads issued in several water-saving countries, and satisfaction evaluation data was acquired through bathing experiments. The evaluated showerheads were separated into three groups according to usage water flow and the level of satisfaction. The relationships between usage water flow, the level of satisfaction and physical properties were compared. The results identified that Spray Force and Spray Force-per-Hole were physical properties that influence usage water flow. Spray force-per-hole, water volume ratio in Spray Patterns within φ 100 and φ 150, Temperature Drop and Spray Angle were identified as physical properties that influenced the level of satisfaction. The level of satisfaction and usage water flow has a spurious correlation through the physical properties of Spray Force-per-Hole and Temperature Drop. It is possible to improve the level of satisfaction independent of amount of water usage through designs that set an appropriate value for water volume ratio and Spray Angle for Spray Patterns within φ 100 and φ 150.

  11. Problems of Technology of Energy-Saving Buildings and Their Impact on Energy Efficiency in Buildings

    Science.gov (United States)

    Kwasnowski, Pawel; Fedorczak-Cisak, Malgorzata; Knap, Katarzyna

    2017-10-01

    Introduction of EPBD in legislation of the EU member states caused that buildings must meet very stringent requirements of thermal protection and energy efficiency. On the basis of EPBD provisions, EU Member States introduce standard of NZEB (Nearly Zero-Energy Buildings). Such activities cause a need for new, innovative materials and technologies, and new approaches to design, construction and retrofitting of buildings. Indispensable is the precise coordination of the design of structure and technical installations of building, which may be provided in an integrated design process in the system BIM. Good coordination and cooperation of all contractors during the construction phase is also necessary. The article presents the problems and the new methodology for the design, construction and use of energy efficient buildings in terms of energy saving technologies, including discussion of the significant impact of the automation of technical installations on the building energy efficiency.

  12. Biofuel impacts on water.

    Energy Technology Data Exchange (ETDEWEB)

    Tidwell, Vincent Carroll; Malczynski, Leonard A.; Sun, Amy Cha-Tien

    2011-01-01

    Sandia National Laboratories and General Motors Global Energy Systems team conducted a joint biofuels systems analysis project from March to November 2008. The purpose of this study was to assess the feasibility, implications, limitations, and enablers of large-scale production of biofuels. 90 billion gallons of ethanol (the energy equivalent of approximately 60 billion gallons of gasoline) per year by 2030 was chosen as the book-end target to understand an aggressive deployment. Since previous studies have addressed the potential of biomass but not the supply chain rollout needed to achieve large production targets, the focus of this study was on a comprehensive systems understanding the evolution of the full supply chain and key interdependencies over time. The supply chain components examined in this study included agricultural land use changes, production of biomass feedstocks, storage and transportation of these feedstocks, construction of conversion plants, conversion of feedstocks to ethanol at these plants, transportation of ethanol and blending with gasoline, and distribution to retail outlets. To support this analysis, we developed a 'Seed to Station' system dynamics model (Biofuels Deployment Model - BDM) to explore the feasibility of meeting specified ethanol production targets. The focus of this report is water and its linkage to broad scale biofuel deployment.

  13. Review of the Fuel Saving, Life Cycle GHG Emission, and Ownership Cost Impacts of Lightweighting Vehicles with Different Powertrains.

    Science.gov (United States)

    Luk, Jason M; Kim, Hyung Chul; De Kleine, Robert; Wallington, Timothy J; MacLean, Heather L

    2017-08-01

    The literature analyzing the fuel saving, life cycle greenhouse gas (GHG) emission, and ownership cost impacts of lightweighting vehicles with different powertrains is reviewed. Vehicles with lower powertrain efficiencies have higher fuel consumption. Thus, fuel savings from lightweighting internal combustion engine vehicles can be higher than those of hybrid electric and battery electric vehicles. However, the impact of fuel savings on life cycle costs and GHG emissions depends on fuel prices, fuel carbon intensities and fuel storage requirements. Battery electric vehicle fuel savings enable reduction of battery size without sacrificing driving range. This reduces the battery production cost and mass, the latter results in further fuel savings. The carbon intensity of electricity varies widely and is a major source of uncertainty when evaluating the benefits of fuel savings. Hybrid electric vehicles use gasoline more efficiently than internal combustion engine vehicles and do not require large plug-in batteries. Therefore, the benefits of lightweighting depend on the vehicle powertrain. We discuss the value proposition of the use of lightweight materials and alternative powertrains. Future assessments of the benefits of vehicle lightweighting should capture the unique characteristics of emerging vehicle powertrains.

  14. A procedure for analysing energy savings in multiple small solar water heaters installed in low-income housing in Brazil

    International Nuclear Information System (INIS)

    Giglio, Thalita; Lamberts, Roberto; Barbosa, Miriam; Urbano, Mariana

    2014-01-01

    Due to government subsidies, Brazil has witnessed an increase in the installation and use of small solar water heating systems in low-income housing projects. Although the initiative has reduced the load curve during peak times due to the reduced use of electric showerheads, measurement and verification (M and V) are needed to validate the savings. M and V procedures should take into account the social and economic variability of low-income housing developments. To improve M and V in low-income housing projects, this paper presents a methodology for identifying homogeneous subgroups based on their energy-saving potential. This research strategy involved a cluster analysis designed to improve the understanding of what energy savers and other influencing factors exist. A case study in Londrina Brazil was undertaken with 200 low-income families. Five clusters, created based on savings potential, were defined. The results showed that only two clusters demonstrated good electricity savings, representing 47% of families. However, two clusters, or 37%, did not provide satisfactory savings, and the other 16% did not provide any consumption history due to previous use of illegal city electricity connection practices. Therefore, studies confirm the need for a detailed measurement of the representative subgroups to assess the influence of human behaviour on potential SWHS-induced savings. - Highlights: • M and V is necessary to improve solar collector-area-based subsidy programmes. • M and V in large-scale sample should contemplate the social and economic variability. • Samples with homogeneous subgroups contribute to a consistent energy-saving M and V. • Solar Water Heaters in some cases may not offer energy saving in a low-income context. • SWH performance decreases with low educational level and difficulty of operation

  15. Plant osmoregulation as an emergent water-saving adaptation under salt-stress conditions

    Science.gov (United States)

    Perri, S.; Entekhabi, D.; Molini, A.

    2017-12-01

    emerges as a water-saving behavior similar to the strategies that xerophytes use to cope with aridity. Possible anatomical and morphological adaptations to long-term salinity exposure are addressed through an analysis of transpiration patterns for different values of root and leaf density and for diverse levels of salt-tolerance.

  16. Basin Irrigation Design with Multi-Criteria Analysis Focusing on Water Saving and Economic Returns: Application to Wheat in Hetao, Yellow River Basin

    Directory of Open Access Journals (Sweden)

    Qingfeng Miao

    2018-01-01

    Full Text Available The sustainability of the Hetao Irrigation System, located in the water scarce upper Yellow River basin, is a priority considering the need for water saving, increased water productivity, and higher farmers’ incomes. The upgrading of basin irrigation, the main irrigation method, is essential and includes the adoption of precise land levelling, cut-off management, improved water distribution uniformity, and adequate irrigation scheduling. With this objective, the current study focuses on upgrading wheat basin irrigation through improved design using a decision support system (DSS model, which considers land parcels characteristics, crop irrigation scheduling, soil infiltration, hydraulic simulation, and environmental and economic impacts. Its use includes outlining water saving scenarios and ranking alternative designs through multi-criteria analysis considering the priorities of stakeholders. The best alternatives concern flat level basins with a 100 and 200 m length and inflow rates between 2 and 4 L s−1 m−1. The total irrigation cost of designed projects, including the cost of the autumn irrigation, varies between 2400 and 3300 Yuan ha−1; the major cost component is land levelling, corresponding to 33–46% of total irrigation costs. The economic land productivity is about 18,000 Yuan ha−1. The DSS modelling defined guidelines to be applied by an extension service aimed at implementing better performing irrigation practices, and encouraged a good interaction between farmers and the Water Users Association, thus making easier the implementation of appropriate irrigation management programs.

  17. International Performance Measurement and Verification Protocol: Concepts and Options for Determining Energy and Water Savings, Volume I (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    2002-03-01

    This protocol serves as a framework to determine energy and water savings resulting from the implementation of an energy efficiency program. It is also intended to help monitor the performance of renewable energy systems and to enhance indoor environmental quality in buildings.

  18. Impacts of Water Quality on Residential Water Heating Equipment

    Energy Technology Data Exchange (ETDEWEB)

    Widder, Sarah H.; Baechler, Michael C.

    2013-11-01

    Water heating is a ubiquitous energy use in all residential housing, accounting for 17.7% of residential energy use (EIA 2012). Today, there are many efficient water heating options available for every fuel type, from electric and gas to more unconventional fuel types like propane, solar, and fuel oil. Which water heating option is the best choice for a given household will depend on a number of factors, including average daily hot water use (total gallons per day), hot water draw patterns (close together or spread out), the hot water distribution system (compact or distributed), installation constraints (such as space, electrical service, or venting accommodations) and fuel-type availability and cost. While in general more efficient water heaters are more expensive than conventional water heating technologies, the savings in energy use and, thus, utility bills can recoup the additional upfront investment and make an efficient water heater a good investment over time in most situations, although the specific payback period for a given installation will vary widely. However, the expected lifetime of a water heater in a given installation can dramatically influence the cost effectiveness and savings potential of a water heater and should be considered, along with water use characteristics, fuel availability and cost, and specific home characteristics when selecting the optimum water heating equipment for a particular installation. This report provides recommendations for selecting and maintaining water heating equipment based on local water quality characteristics.

  19. Comparing Sprinkler and Surface Irrigation for Wheat Using Multi-Criteria Analysis: Water Saving vs. Economic Returns

    Directory of Open Access Journals (Sweden)

    Hanaa Darouich

    2017-01-01

    Full Text Available Coping with water scarcity using supplemental irrigation of wheat (Triticum aestivum L. in the semi-arid northeast Syria is a great challenge for sustainable water use in agriculture. Graded borders and set sprinkler systems were compared using multi-criteria analysis. Alternative solutions for surface irrigation and for sprinkler systems were developed with the SADREG and the PROASPER design models, respectively. For each alternative, two deficit irrigation strategies were considered, which were characterized using indicators relative to irrigation water use, yields and water productivity, including farm economic returns. Alternatives were ranked considering two contrasting priorities: economic returns and water saving. A first step in ranking led to a selection of graded borders with and without precise land levelling and of solid set and semi-permanent sprinkler systems. Precise-levelled borders were better for water saving, while non-precise ones ranked higher for economic returns. Semi-permanent set systems have been shown to be better in economic terms and similar to solid set systems when water saving is prioritized. Semi-permanent sprinkler systems rank first when comparing all type of systems together regardless of the considered deficit irrigation strategy. Likely, border irrigation is appropriate when wheat is in rotation with cotton if the latter is surface irrigated. When peace becomes effective, appropriate economic incentives and training for farmers are required to implement innovative approaches.

  20. Exploring Northwest China's agricultural water-saving strategy: analysis of water use efficiency based on an SE-DEA model conducted in Xi'an, Shaanxi Province.

    Science.gov (United States)

    Mu, L; Fang, L; Wang, H; Chen, L; Yang, Y; Qu, X J; Wang, C Y; Yuan, Y; Wang, S B; Wang, Y N

    Worldwide, water scarcity threatens delivery of water to urban centers. Increasing water use efficiency (WUE) is often recommended to reduce water demand, especially in water-scarce areas. In this paper, agricultural water use efficiency (AWUE) is examined using the super-efficient data envelopment analysis (DEA) approach in Xi'an in Northwest China at a temporal and spatial level. The grey systems analysis technique was then adopted to identify the factors that influenced the efficiency differentials under the shortage of water resources. From the perspective of temporal scales, the AWUE increased year by year during 2004-2012, and the highest (2.05) was obtained in 2009. Additionally, the AWUE was the best in the urban area at the spatial scale. Moreover, the key influencing factors of the AWUE are the financial situations and agricultural water-saving technology. Finally, we identified several knowledge gaps and proposed water-saving strategies for increasing AWUE and reducing its water demand by: (1) improving irrigation practices (timing and amounts) based on compatible water-saving techniques; (2) maximizing regional WUE by managing water resources and allocation at regional scales as well as enhancing coordination among Chinese water governance institutes.

  1. Impact of daylight saving time on road traffic collision risk: a systematic review.

    Science.gov (United States)

    Carey, Rachel N; Sarma, Kiran M

    2017-07-02

    Bills have been put forward in the UK and Republic of Ireland proposing a move to Central European Time (CET). Proponents argue that such a change will have benefits for road safety, with daylight being shifted from the morning, when collision risk is lower, to the evening, when risk is higher. Studies examining the impact of daylight saving time (DST) on road traffic collision risk can help inform the debate on the potential road safety benefits of a move to CET. The objective of this systematic review was to examine the impact of DST on collision risk. Major electronic databases were searched, with no restrictions as to date of publication (the last search was performed in January 2017). Access to unpublished reports was requested through an international expert group. Studies that provided a quantitative analysis of the effect of DST on road safety-related outcomes were included. The primary outcomes of interest were road traffic collisions, injuries and fatalities. Twenty-four studies met the inclusion criteria. Seventeen examined the short-term impact of transitions around DST and 12 examined long-term effects. Findings from the short-term studies were inconsistent. The long-term findings suggested a positive effect of DST. However, this cannot be attributed solely to DST, as a range of road collision risk factors vary over time. The evidence from this review cannot support or refute the assertion that a permanent shift in light from morning to evening will have a road safety benefit. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly granted.

  2. Cost-savings of community water fluoridation program; Kerman, Iran, 2016

    Directory of Open Access Journals (Sweden)

    Ali Eskandarizadeh

    2017-04-01

    CONCLUSION: This study indicates significant annual savings from CWFP; additional savings could be achieved if this program is implemented in other regions. We could also receive even more if this program is integrated with other public oral health programs such as screening school children, community dentistry and oral health education.

  3. Rice evapotranspiration at the field and canopy scales under water-saving irrigation

    Science.gov (United States)

    Liu, Xiaoyin; Xu, Junzeng; Yang, Shihong; Zhang, Jiangang

    2018-04-01

    Evapotranspiration (ET) is an important process of land surface water and thermal cycling, with large temporal and spatial variability. To reveal the effect of water-saving irrigation (WSI) on rice ET at different spatial scales and understand the cross spatial scale difference, rice ET under WSI condition at canopy (ETCML) and field scale (ETEC) were measured simultaneously by mini-lysimeter and eddy covariance (EC) in the rice season of 2014. To overcome the shortage of energy balance deficit by EC system, and evaluate the influence of energy balance closure degree on ETEC, ETEC was corrected as {ET}_{EC}^{*} by energy balance closure correction according to the evaporative fraction. Seasonal average daily ETEC, {ET}_{EC}^{*} and ETCML of rice under WSI practice were estimated as 3.12, 4.03 and 4.35 mm day-1, smaller than the values reported in flooded paddy fields. Daily ETEC, {ET}_{EC}^{*} and ETCML varied in a similar trends and reached the maximum in late tillering, then decreased along with the crop growth in late season. The value of ETEC was much lower than ETCML, and was frequently 1-2 h lagged behind ETCML. It indicated that the energy balance deficit resulted in underestimation of crop ET by EC system. The corrected value of {ET}_{EC}^{*} matched ETCML much better than ETEC, with a smaller RMSE (0.086 mm h-1) and higher R 2 (0.843) and IOA (0.961). The time lapse between {ET}_{EC}^{*} and ETCML was mostly shortened to less than 0.5 h. The multiple stepwise regression analysis indicated that net radiation ( R n) is the dominant factor for rice ET, and soil moisture ( θ) is another significant factor ( p rice fields. The difference between ETCML and {ET}_{EC}^{*} ({ET}_{CML} - {ET}_{EC}^{*}) were significantly ( p rice ET in WSI fields, and for its cross scale conversion.

  4. Energy and water saving measures at the Arloev sugar mill. Final report; Energi- och vattenbesparande aatgaerder vid Arloevs Sockerbruk. Slutrapport

    Energy Technology Data Exchange (ETDEWEB)

    Wamsler, M. [AAF-Processdesign AB, Malmoe (Sweden)

    2001-10-01

    The project comprised several, mutually dependent, sub-projects; mapping, investigation of ways to reduce water consumption, membrane tests aiming to find ways to recover sugar, and pinch analysis to evaluate the possibilities for improved process integration. This final report deals with the overall project results. Identified savings opportunities and savings potentials are presented. The presented measures represent an overall optimisation based on the results of all the project parts. Already during the project, measures have been implemented that are calculated to save 65 000 m{sup 3} water annually, corresponding to 10 % of the total water consumption. This saving is in level with the goals for the project. In the table below, these and additional measures are presented with a total savings potential at approximately 200 000 m{sup 3} /year water. The project will then achieve a saving of just below 35 % of present water consumption. Also in the membrane study the results surpassed the expectations. It was found that with nano filtering a sugar concentration of more than 10 %(W) could be reached in the retentate at a flux 50al/m{sup 2}h. The total sugar losses were less than 5 %, i.e. 95 % should be possible to recover. In total, a savings potential of more than 300 tonnes sugar per year is indicated. The Energy savings in the project are calculated to 7,4 GWh/year, of which 0,2 GWh/year by reduced water consumption, 0,6 GWh/year by water recovery, 1,4 GWh/year by membrane technology and 5,2aGWh/year as a result of process integration. This should be compared to the target 2,5 GWh/year. Hence, the results are almost three times the expected. The savings in monetary terms are estimated at just under SEK 5 million per year. The investment is roughly estimated at between SEK 5 and 6 million, of which SEK 4 million for the membrane equipment and SEK 0,5 million for a process water buffer tank. The remaining investment costs cover heat exchangers, control equipment

  5. A comparative analysis of the epidemiological impact and disease cost-savings of HPV vaccines in France

    Science.gov (United States)

    Bresse, Xavier; Adam, Marjorie; Largeron, Nathalie; Roze, Stephane; Marty, Remi

    2013-01-01

    The aim was to compare the epidemiological and economic impact of 16/18 bivalent and 6/11/16/18 quadrivalent HPV vaccination in France, considering differences in licensed outcomes, protection against non-vaccine HPV types and prevention of HPV-6/11-related diseases. The differential impact of the two vaccines was evaluated using a published model adapted to the French setting. The target population was females aged 14–23 y and the time horizon was 100 y. A total of eight different scenarios compared vaccination impact in terms of reduction in HPV-16/18-associated carcinomas (cervical, vulvar, vaginal, anal, penile and head and neck), HPV-6/11-related genital warts and recurrent respiratory papillomatosis, and incremental reduction in cervical cancer due to potential cross-protection. Quadrivalent vaccine was associated with total discounted cost savings ranging from EUR 544–1,020 million vs. EUR 177–538 million with the bivalent vaccination (100-y time horizon). Genital wart prevention thanks to quadrivalent HPV vaccination accounted for EUR 306–380 million savings (37–56% of costs saved). In contrast, the maximal assumed cross-protection against cervical cancer resulted in EUR 13–33 million savings (4%). Prevention of vulvar, vaginal and anal cancers accounted for additional EUR 71–89 million savings (13%). In France, the quadrivalent HPV vaccination would result in significant incremental epidemiological and economic benefits vs. the bivalent vaccination, driven primarily by prevention of genital. The present analysis is the first in the French setting to consider the impact of HPV vaccination on all HPV diseases and non-vaccine types. PMID:23563511

  6. Save Energy: Save Money!

    Science.gov (United States)

    Eccli, Eugene; And Others

    This publication is a collection of inexpensive energy saving tips and home improvements for home owners, particularly in low-income areas or in older homes. Section titles are: (1) Keeping Warm; (2) Getting Heat Where You Need It; (3) Using the Sun; (4) Furnaces, Stoves, and Fireplaces; (5) Insulation and Other Energy Needs; (6) Do-It-Yourself…

  7. Impact of a Novel Cost-Saving Pharmacy Program on Pregabalin Use and Health Care Costs.

    Science.gov (United States)

    Martin, Carolyn; Odell, Kevin; Cappelleri, Joseph C; Bancroft, Tim; Halpern, Rachel; Sadosky, Alesia

    2016-02-01

    Pharmacy cost-saving programs often aim to reduce costs for members and payers by encouraging use of lower-tier or generic medications and lower-cost sales channels. In 2010, a national U.S. health plan began a novel pharmacy program directed at reducing pharmacy expenditures for targeted medications, including pregabalin. The program provided multiple options to avoid higher cost sharing: use mail order pharmacy or switch to a lower-cost alternative medication via mail order or retail. Members who did not choose any option eventually paid the full retail cost of pregabalin. To evaluate the impact of the pharmacy program on pregabalin and alternative medication use, health care costs, and health care utilization. This retrospective analysis of claims data included adult commercial health plan members with a retail claim for pregabalin in the first 13 months of the pharmacy program (identification [ID] period: February 1, 2010-February 28, 2011). Members whose benefit plan included the pharmacy program were assigned to the program cohort; all others were assigned to the nonprogram cohort. The program cohort index date was the first retail pregabalin claim during the ID period and after the program start; the nonprogram cohort index date was the first retail pregabalin claim during the ID period. All members were continuously enrolled for 12 months pre- and post-index and had at least 1 inpatient claim or ≥ 2 ambulatory visit claims for a pregabalin-indicated condition. Cohorts were propensity score matched (PSM) 1:1 with logistic regression on demographic and pre-index characteristics, including mail order and pregabalin use, comorbidity, health care costs, and health care utilization. Pregabalin, gabapentin and other alternative medication use, health care costs, and health care utilization were measured. The program cohort was also divided into 2 groups: members who changed to gabapentin post-index and those who did not. A difference-in-differences (Di

  8. Energy and Economic Impacts of U.S. Federal Energy and Water Conservation Standards Adopted From 1987 through 2012

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, Stephen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Williams, Alison [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chan, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2013-04-01

    This paper presents estimates of the key impacts of Federal energy and water conservation standards adopted from 1987 through 2012. The standards for consumer products and commercial and industrial equipment include those set by legislation as well as standards adopted by DOE through rulemaking. In 2012, the standards saved an estimated 3.6 quads of primary energy, which is equivalent to 3% of total U.S. energy consumption. The savings in operating costs for households and businesses totaled $51.4 billion. The average household saved $347 in operating costs as a result of residential and plumbing product standards. The estimated reduction in CO2 emissions associated with the standards in 2012 was 198 million metric tons, which is equivalent to 3% of total U.S. CO2 emissions. The estimated cumulative energy savings over the period 1990-2070 amount to 179 quads. Accounting for the increased upfront costs of more-efficient products and the operating cost (energy and water) savings over the products’ lifetime, the standards have a past and projected cumulative net present value (NPV) of consumer benefit of between $1,104 billion and $1,390 billion, using 7 percent and 3 percent discount rates, respectively. The water conservation standards, together with energy conservation standards that also save water, reduced water use by 1.8 trillion gallons in 2012, and will achieve cumulative water savings by 2040 of 54 trillion gallons. The estimated consumer savings in 2012 from reduced water use amounted to $13 billon.

  9. Energy and Economic Impacts of U.S. Federal Energy and Water Conservation Standards Adopted From 1987 Through 2015

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, Stephen [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Williams, Alison [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Chan, Peter [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Price, Sarah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-02-17

    This paper presents estimates of the key impacts of Federal energy and water conservation standards adopted from 1987 through 2015. The standards for consumer products and commercial and industrial equipment include those set by legislation as well as standards adopted by DOE through rulemaking. In 2015, the standards saved an estimated 4.49 quads of primary energy, which is equivalent to 5% of total U.S. energy consumption. The savings in operating costs for households and businesses totaled $63.4 billion. The average household saved $320 in operating costs as a result of residential appliance standards. The estimated reduction in CO2 emissions associated with the standards in 2015 was 238 million metric tons, which is equivalent to 4.3% of total U.S. CO2 emissions. The estimated cumulative energy savings over the period 1990-2090 amount to 216.9 quads. Accounting for the increased upfront costs of more-efficient products and the operating cost (energy and water) savings over the products’ lifetime, the standards have a cumulative net present value (NPV) of consumer benefit of between $1,627 billion and $1,887 billion, using 7 percent and 3 percent discount rates, respectively. The water conservation standards, together with energy conservation standards that also save water, reduced water use by 1.9 trillion gallons in 2015 and estimated cumulative water savings by 2090 amount to 55 trillion gallons. The estimated consumer savings in 2015 from reduced water use amounted to $12 billon.

  10. Cropping pattern adjustment in China's grain production and its impact on land and water use

    DEFF Research Database (Denmark)

    Li, Tian-xiang; Zhu, Jing; Balezentis, Tomas

    2016-01-01

    This paper aims at decomposing China's grain output changes into three terms, namely area sown effect, pure yield effect, and cropping pattern adjustment effect. Furthermore, the paper analyses the impact of shifts in cropping pattern on water and land use in China's grain production. An index...... adjustments). However, these effects vary across regions: Southeast China experienced land-saving and water-using changes, while other regions underwent land- and water-saving changes. In general, China's grain output growth has increased the total amount of land and water needed, implying more severe...... played an important role in promoting China's grain production, with a contribution of over 15 per cent during 2003-2012. Moreover, such changes enabled to save about 6.8 million hectares of sown areas and 31.06 billion m3 of water in grain production (if compared to the case without cropping pattern...

  11. Energy saving analysis on mine-water source heat pump in a residential district of Henan province, central China

    Science.gov (United States)

    Wang, Hong; Duan, Huanlin; Chen, Aidong

    2018-02-01

    In this paper, the mine-water source heat pump system is proposed in residential buildings of a mining community. The coefficient of performance (COP) and the efficiency of exergy are analyzed. The results show that the COP and exergy efficiency of the mine-water source heat pump are improved, the exergy efficiency of mine-water source heat pump is more than 10% higher than that of the air source heat pump.The electric power conservation measure of “peak load shifting” is also emphasized in this article. It shows that itis a very considerable cost in the electric saving by adopting the trough period electricity to produce hot water. Due to the proper temperature of mine water, the mine-watersource heat pump unit is more efficient and stable in performance, which further shows the advantage of mine-water source heat pump in energy saving and environmental protection. It provides reference to the design of similar heat pump system as well.

  12. The Monetary Policy of the NBU and its Impact on the Placement of Households’ Savings

    Directory of Open Access Journals (Sweden)

    Perepolkina Olena О.

    2018-03-01

    Full Text Available The article researches the efficiency of implementation of monetary policy in Ukraine in the context of determining the optimal ways to place households’ savings. The prospects of making deposits in both national and foreign currency as the most common directions of savings placement are considered. The research has identified that the main risks in the placement of savings by households as deposits in the national currency are the likelihood of bankruptcy of financial institutions, imperfection of the functioning of deposit guarantee system, inflationary fluctuations, and devaluation processes of the national monetary unit. Significant deterrents to the placement of foreign currency deposits are low interest rates, a large number of restrictions in the currency regulation, and a general low level of trust in the banking system. The directions of increasing the efficiency of monetary policy are proposed, that not only will increase the attractiveness of deposits for households, but also will create the basis for macroeconomic stabilization in Ukraine.

  13. Impacts of Commercial Building Controls on Energy Savings and Peak Load Reduction

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, Nicholas E.P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Katipamula, Srinivas [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Weimin [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Xie, YuLong [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Zhao, Mingjie [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Corbin, Charles D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2017-05-30

    Commercial buildings in the United States use about 18 Quadrillion British thermal units (Quads) of primary energy annually . Studies have shown that as much as 30% of building energy consumption can be avoided by using more accurate sensing, using existing controls better, and deploying advanced controls; hence, the motivation for the work described in this report. Studies also have shown that 10% to 20% of the commercial building peak load can be temporarily managed/curtailed to provide grid services. Although many studies have indicated significant potential for reducing the energy consumption in commercial buildings, very few have documented the actual savings. The studies that did so only provided savings at the whole building level, which makes it difficult to assess the savings potential of each individual measure deployed.

  14. Foreign Direct Investment or External Debt and Domestic Saving: Which has Greater Impact on Growth

    Directory of Open Access Journals (Sweden)

    Horas Djulius

    2018-02-01

    Full Text Available The choice taken by developing countries in meeting the lack of development funds has a varying effect. This study clarifies the role of foreign direct investment (FDI compared to foreign loans and domestic savings in short- and long-term economic growth of Indonesia. Data were obtained from World Bank and Bank Indonesia and used in error correction model to explain the linkage between predictors and economic growth. We show that in the short run, the three explanatory variables significantly affect economic growth. In the long run, compared to FDI and foreign loans, domestic savings positively and significantly affect economic growth. This study emphasizes the importance of sustaining domestic savings to maintain the stability of economic fundamentals in the long term.DOI: 10.15408/etk.v17i1.7120

  15. Saved СО 2 emissions by using renewable sources for hot water yield in Bulgarian dairy farms

    Directory of Open Access Journals (Sweden)

    R. Georgiev

    2017-12-01

    Full Text Available Abstract. In 2014 – 2015 installations for hot water yield from renewable energy sources were built and tested in three dairy farms in Bulgaria. These replace the traditionally used electricity on farms with the aim of decarbonising the energy production. The newly built installations contain three modules for heat yield – from recuperation of the heat from the milked milk, from the solar energy and from wood pellets. In the course of one year the energy obtained from the renewable sources has been measured and assessed. The present article assesses the ecological benefits of the separate renewable sources which are used to reduce СО2 emissions, the main greenhouse gas. For this purpose, the method of environmental life cycle analysis (LCA and assessment of heat/hot water generating systems was used. Coefficients for calculating the primary energy of the saved or replaced energy, as well as their respective carbon ratios, specific for Bulgaria, were used. The results obtained are related to identifying the specific quantities of saved CO2 emissions from the renewable sources used on the experimental farms. It has been found that about 52-57% of CO2 savings are due to the pellets used, 34-42% to the solar heat collectors and about 9% to the recuperated heat from the produced milk.

  16. Save or (over-)spend? : The impact of hard-discounter shopping on consumers' grocery outlay

    NARCIS (Netherlands)

    Gijsbrechts, Els; Campo, K.; Vroegrijk, M.J.J.

    An increasing number of consumers have come to patronize a hard discounter (HD) to save on their grocery budget. Given the HDs' rock-bottom prices, a complete switch from the traditional supermarket (TS) to the HD format would, indeed, substantially reduce grocery spending. However, consumers

  17. Life-cycle savings, bequest, and a diminishing impact of scale on growth

    DEFF Research Database (Denmark)

    Dalgaard, Carl-Johan Lars; Jensen, Martin Kaae

    2009-01-01

    The present paper shows that the savings motive critically affects the size and sign of scale effects in standard endogenous growth models. If the bequest motive dominates, the scale effect is positive. If the life-cycle motive dominates, the scale effect is ambiguous and may even be negative....

  18. Performance analysis of proposed hybrid air conditioning and humidification–dehumidification systems for energy saving and water production in hot and dry climatic regions

    International Nuclear Information System (INIS)

    Nada, S.A.; Elattar, H.F.; Fouda, A.

    2015-01-01

    Highlights: • Integrative air-conditioning (A/C) and humidification–dehumidification desalination systems are proposed. • Effects of operating parameters on the proposed systems are investigated. • System configurations that have the highest fresh water production rate, power saving and total cost saving are identified. - Abstract: Performance of integrative air-conditioning (A/C) and humidification–dehumidification desalination systems proposed for hot and dry climatic regions is theoretically investigated. The proposed systems aim to energy saving and systems utilization in fresh water production. Four systems with evaporative cooler and heat recovery units located at different locations are proposed, analyzed and evaluated at different operating parameters (fresh air ratio, supply air temperature and outside air wet bulb temperature). Other two basic systems are used as reference systems in proposed systems assessment. Fresh water production rate, A/C cooling capacity, A/C electrical power consumption, saving in power consumptions and total cost saving (TCS) parameters are used for systems evaluations and comparisons. The results show that (i) the fresh water production rates of the proposed systems increase with increasing fresh air ratio, supply air temperature and outdoor wet bulb temperature, (ii) powers saving of the proposed systems increase with increasing fresh air ratio and supply air temperature and decreasing of the outdoor air wet bulb temperature, (iii) locating the evaporative cooling after the fresh air mixing remarkably increases water production rate, and (vi) incorporating heat recovery in the air conditioning systems with evaporative cooling may adversely affect both of the water production rate and the total cost saving of the system. Comparison study has been presented to identify systems configurations that have the highest fresh water production rate, highest power saving and highest total cost saving. Numerical correlations for

  19. Socio-Cultural Impact of Energy Saving: Studying the Behaviour of Elementary School Students in Greece

    Directory of Open Access Journals (Sweden)

    Sideri Lefkeli

    2018-03-01

    Full Text Available Education makes it possible for students to become familiar with the rational management of energy as well as learn to implement energy saving practices in their everyday life. The study of certain student characteristics helps in the direction of applying strategies of behavioural change. The aim of this research is to record the knowledge and attitudes of elementary school students in the Prefecture of Evros with regard to energy saving. The collection of research data was done through the use of a structured and anonymous questionnaire with closed questions. The method used for the collection of the research data was cluster sampling. This involved 17 elementary schools of the continental part of the prefecture. 612 questionnaires were completed by students of the 5th and 6th grade of these schools. The evaluation of the research data showed that 69.6% of the students think that the most appropriate house temperature is 20°C with 79.1% of the students keeping the thermostat switched off while the house is aired. With regard to the use of TV, stereo, play station and PC the research showed that 93.8% of the students switch off the above devices when these are not in use. In parallel, 86.6% of the respondents usually or always switch off the lights when coming out of a room and 46.2% of the students use energy saving bulbs. Also, 93% of the students recycle because they believe that doing so contributes to the protection of the environment while 41% always chooses to walk to school. With regard to the significance of reasons concerning energy saving 85.9% thinks that energy saving is important to very important for reducing environmental pollution.

  20. Energy saving potential of natural ventilation in China: The impact of ambient air pollution

    International Nuclear Information System (INIS)

    Tong, Zheming; Chen, Yujiao; Malkawi, Ali; Liu, Zhu; Freeman, Richard B.

    2016-01-01

    Highlights: • Natural ventilation potential is affected largely by ambient air pollution in China. • NV hours of 76 Chinese cities based on weather and ambient air quality are estimated. • Cooling energy savings and carbon reductions of 35 major Chinese cities are estimated. • 8–78% of the cooling energy usage can be potentially reduced by NV. • Our findings provide guidelines to improve energy policies in China. - Abstract: Natural ventilation (NV) is a key sustainable solution for reducing the energy use in buildings, improving thermal comfort, and maintaining a healthy indoor environment. However, the energy savings and environmental benefits are affected greatly by ambient air pollution in China. Here we estimate the NV potential of all major Chinese cities based on weather, ambient air quality, building configuration, and newly constructed square footage of office buildings in the year of 2015. In general, little NV potential is observed in northern China during the winter and southern China during the summer. Kunming located in the Southwest China is the most weather-favorable city for natural ventilation, and reveals almost no loss due to air pollution. Building Energy Simulation (BES) is conducted to estimate the energy savings of natural ventilation in which ambient air pollution and total square footage at each city must be taken into account. Beijing, the capital city, displays limited per-square-meter saving potential due to the unfavorable weather and air quality for natural ventilation, but its largest total square footage of office buildings makes it become the city with the greatest energy saving opportunity in China. Our analysis shows that the aggregated energy savings potential of office buildings at 35 major Chinese cities is 112 GWh in 2015, even after allowing for a 43 GWh loss due to China’s serious air pollution issue especially in North China. 8–78% of the cooling energy consumption can be potentially reduced by natural

  1. Collection of Condensate Water: Global Potential and Water Quality Impacts

    KAUST Repository

    Loveless, Kolin Joseph; Farooq, Aamir; Ghaffour, NorEddine

    2012-01-01

    . Technologies that can supply fresh water at a reduced cost are therefore becoming increasingly important and the impact of such technologies can be substantial. This paper considers the collection of condensate water from large air conditioning units as a

  2. Saving of drinking water in cooling system at Aq aba Thermal Power Station

    International Nuclear Information System (INIS)

    Al-Nsour, A.F.

    2001-01-01

    This paper discussing a new modification, design and implementation to the existing cooling water system of boiler drum continuous blow down water at Aq aba Thermal Power Stations to eliminate drinking water consumption as a coolant medium

  3. Testing the Financial Capability Framework: Findings from YouthSave-Impact Study Kenya.

    Science.gov (United States)

    Kagotho, Njeri; Ssewamala, Fred M; Patak-Pietrafesa, Michele; Byansi, William

    2018-01-01

    In sub-Saharan Africa (SSA), youths (23 years or younger)-who account for almost half the population-are particularly vulnerable to poverty and exclusion from financial markets and intermediaries. In addition, a significant factor in the financial instability of the region appears to be the economic functioning of its youths. In recent years, social work interventions throughout the region have focused on investing in the economic functioning of youths. This study looked at baseline data from one such intervention in Kenya (N = 3,965), using the financial capabilities framework to evaluate the factors related to youths' saving behaviors. Authors investigated the association between youths' financial literacy (that is, knowledge, socialization), financial access, and financial capabilities and savings behaviors. Results indicate that adolescents who rate themselves as financially literate and those living in close proximity to a bank are more likely to report higher capabilities. Furthermore, financial capabilities in turn partially mediate the relationship between financial literacy, access, and savings. Overall, the study's findings point to the positive effect of enhanced financial capabilities among youths and offer support for asset-based interventions targeting youths in SSA. © 2017 National Association of Social Workers.

  4. Characterization of mercury species in brown and white rice (Oryza sativa L.) grown in water-saving paddies

    Energy Technology Data Exchange (ETDEWEB)

    Rothenberg, Sarah E., E-mail: rothenberg.sarah@gmail.com [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 46 Guanshui Lu, Guiyang 550002 (China); Feng Xinbin, E-mail: fengxinbin@vip.skleg.cn [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 46 Guanshui Lu, Guiyang 550002 (China); Dong Bin, E-mail: dongbin@whu.edu.cn [State Key Laboratory of Water Resources and Hydropower Engineering Science, Wuhan University, Wuhan 430072 (China); Shang Lihai, E-mail: shanglihai@vip.gyig.ac.cn [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 46 Guanshui Lu, Guiyang 550002 (China); Yin Runsheng, E-mail: yinrunsheng2002@163.com [State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, 46 Guanshui Lu, Guiyang 550002 (China); Yuan Xiaobo, E-mail: xiantao_131@163.com [College of Resources and the Environment, Southwest University, Chongqing 400716 (China)

    2011-05-15

    In China, total Hg (Hg{sub T}) and methylmercury (MeHg) were quantified in rice grain grown in three sites using water-saving rice cultivation methods, and in one Hg-contaminated site, where rice was grown under flooded conditions. Polished white rice concentrations of Hg{sub T} (water-saving: 3.3 {+-} 1.6 ng/g; flooded: 110 {+-} 9.2 ng/g) and MeHg (water-saving 1.3 {+-} 0.56 ng/g; flooded: 12 {+-} 2.4 ng/g) were positively correlated with root-soil Hg{sub T} and MeHg contents (Hg{sub T}: r{sup 2} = 0.97, MeHg: r{sup 2} = 0.87, p < 0.05 for both), which suggested a portion of Hg species in rice grain was derived from the soil, and translocation of Hg species from soil to rice grain was independent of irrigation practices and Hg levels, although other factors may be important. Concentrations of Hg{sub T} and other trace elements were significantly higher in unmilled brown rice (p < 0.05), while MeHg content was similar (p > 0.20), indicating MeHg infiltrated the endosperm (i.e., white rice) more efficiently than inorganic Hg(II). - Highlights: > First time that Hg{sub T} and MeHg were characterized in both brown and white rice. > MeHg translocation into the endosperm was more efficient than inorganic Hg(II). > In this respect, MeHg behaved like dimethylarsinic acid and organic Se species. > In white rice, Hg{sub T} and MeHg were positively correlated with soil Hg{sub T} and MeHg. > Uptake rates of Hg{sub T} and MeHg were independent of irrigation methods and Hg content. - Methylmercury was more efficiently translocated to the endosperm than inorganic mercury.

  5. Scale Effects of Water Saving on Irrigation Efficiency: Case Study of a Rice-Based Groundwater Irrigation System on the Sanjiang Plain, Northeast China

    Directory of Open Access Journals (Sweden)

    Haorui Chen

    2017-12-01

    Full Text Available This research analyzed the scale effect of water saving in Bielahonghe (BLH Basin, a rice-cultivating district on the Sanjiang Plain, Northeast China. Water budgets with different surface irrigation water supply ratios and water-saving measures were simulated with a semi-distributed water balance model. PFnws, representing the ratio of rice evapotranspiration to net water supply (the total amount of irrigation and precipitation minus the amount of water reused, was employed to assess the water use efficiency. Seven spatial scales (noted from S1 to S7, ranging from a single field (317.87 ha to the whole basin (about 100,800 ha were determined. PFnws values were quantified across scales and several water-saving measures, including water-saving irrigation regimes, canal lining, and a reduction of the surface water supply ratio (SWSR. The results indicated that PFnws increased with scale and could be calculated by a fitted power function (PFnws = 0.736Area0.033, R2 = 0.58. Furthermore, PFnws increased most prominently when the scale increased from S1 to S2. The water-saving irrigation regime (WSIR had the most substantial water-saving effect (WSE at S1. Specifically, PFnws improved by 21.2% at S1 when high-intensity WSIR was applied. Additionally, the WSE values of S3 and S5 were slightly higher than at other scales when the branch canal water delivery coefficient increased from 0.65 to 0.80 through canal lining. Furthermore, the PFnws at each scale varied with SWSR. Specifically, PFnws from S3 to S7 improved as SWSR decreased from 0.4 to 0.3 but remained approximately constant when SWSR decreased from 0.3 to 0.

  6. Spending to save

    DEFF Research Database (Denmark)

    Larsen, Anders

    2013-01-01

    the energy distribution companies meet their overall saving obligation, the net savings impact are about a third of the savings reported by the obligated parties. Further it was found that while energy savings in the public and business sector have a high net impact, some subsidies given under the EEO...... perspective. The evaluation has resulted in noticeable adjustments of the design of the Danish EEO, e.g. introduction of a 1 year payback-time limit for projects receiving subsidies, a minimum baseline for insulation products, and specification of documentation requirements....

  7. Effects of Biochar on the Net Greenhouse Gas Emissions under Continuous Flooding and Water-Saving Irrigation Conditions in Paddy Soils

    Directory of Open Access Journals (Sweden)

    Le Qi

    2018-05-01

    Full Text Available In this study, we investigated the greenhouse gas emission under different application of biochar in the conditions of continuous flooding and water-saving irrigation in paddy fields, whereas, plant and soil carbon sequestration were considered in the calculation of net greenhouse gas emissions. The emission rates of methane (CH4, carbon dioxide (CO2, and nitrous oxide (N2O gases were simultaneously monitored once every 7–10 days using the closed-chamber method. As a whole, the net greenhouse gas emission in the water-saving irrigation was more than that of the continuous flooding irrigation conditions. Compared with the water-saving irrigation, the continuous flooding irrigation significantly increased the CH4 in the control (CK and chemical fertilizer treatments (NPK. The CO2 emissions increased in each treatment of the water-saving irrigation condition, especially in the chemical fertilizer treatments (NPKFW. Similarly, the soil N2O emission was very sensitive to the water-saving irrigation condition. An interesting finding is that the biochar application in soils cut down the soil N2O emission more significantly than NPKFW in the water-saving irrigation condition while the effect of biochar increased under the continuous flooding irrigation condition.

  8. Private Sector Savings

    Directory of Open Access Journals (Sweden)

    Pitonáková Renáta

    2018-03-01

    Full Text Available The majority of household savings are in the form of bank deposits. It is therefore of interest for credit institutions to tailor their deposit policy for getting finances from non-banking entities and to provide the private sector with the loans that are necessary for investment activities and consumption. This paper deals with the determinants of the saving rate of the private sector of Slovakia. Economic, financial and demographic variables influence savings. Growth of income per capita, private disposable income, elderly dependency ratio, real interest rate and inflation have a positive impact on savings, while increases in public savings indicate a crowding out effect. The inflation rate implies precautionary savings, and dependency ratio savings for bequest. There are also implications for governing institutions deciding on the implementation of appropriate fiscal and monetary operations.

  9. Measuring the impact of urban policies on transportation energy saving using a land use-transport model

    Directory of Open Access Journals (Sweden)

    Masanobu Kii

    2014-03-01

    This study demonstrates the applicability of a land-use transport model to the assessment of urban policies for building smart communities. First, we outline a model that explicitly formulates the actors' location-related decisions and travel behavior. Second, we apply this model to two urban policies – road pricing and land-use regulation – to assess their long-term impact on energy saving and sustainability using the case of a simplified synthetic city. Our study verifies that, under assumed conditions, the model has the capacity to assess urban policies on energy use and sustainability in a consistent fashion.

  10. Saving on natural resources with SRO - desalination of industrial waste water for reuse at ESKOM Tutuka (two years operating experience)

    Energy Technology Data Exchange (ETDEWEB)

    Walt, Mike van der; Wessels, A.

    2001-07-01

    Natural resources are protected and saved with the new spiral reverse osmosis (SRO) plant at the Eskom Tutuka power station in the Mpumalanga province of South Africa. 7,000 m{sup 3}/day of saline underground mine water blended with 5,400 m{sup 3}/day of cooling water blowdown is pretreated and desalinated before the product water is returned to the cooling water circuit. Weir Envig designed, constructed, installed and commissioned the plant in phases between August 1998 and April 1999 with innovative use of existing infrastructure and phased removal of the live, ageing electrodialysis reversal plant. The plant performance during two years of operation is presented, which demonstrates that good pretreatment and cleaning system design allows SRO to produce consistent high-quality water from this difficult and varying feed. The result is a coal mine with no effluent problems, a new source of water for the power station and a treatment plant, which produces significantly better condenser cooling water and maintain zero liquid discharge. (orig.)

  11. Thermosyphon Cooler Hybrid System for Water Savings in an Energy-Efficient HPC Data Center: Modeling and Installation: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Carter, Thomas; Liu, Zan; Sickinger, David; Regimbal, Kevin; Martinez, David

    2017-02-01

    The Thermosyphon Cooler Hybrid System (TCHS) integrates the control of a dry heat rejection device, the thermosyphon cooler (TSC), with an open cooling tower. A combination of equipment and controls, this new heat rejection system embraces the 'smart use of water,' using evaporative cooling when it is most advantageous and then saving water and modulating toward increased dry sensible cooling as system operations and ambient weather conditions permit. Innovative fan control strategies ensure the most economical balance between water savings and parasitic fan energy. The unique low-pressure-drop design of the TSC allows water to be cooled directly by the TSC evaporator without risk of bursting tubes in subfreezing ambient conditions. Johnson Controls partnered with the National Renewable Energy Laboratory (NREL) and Sandia National Laboratories to deploy the TSC as a test bed at NREL's high-performance computing (HPC) data center in the first half of 2016. Located in NREL's Energy Systems Integration Facility (ESIF), this HPC data center has achieved an annualized average power usage effectiveness rating of 1.06 or better since 2012. Warm-water liquid cooling is used to capture heat generated by computer systems direct to water; that waste heat is either reused as the primary heat source in the ESIF building or rejected using evaporative cooling. This data center is the single largest source of water and power demand on the NREL campus, using about 7,600 m3 (2.0 million gal) of water during the past year with an hourly average IT load of nearly 1 MW (3.4 million Btu/h) -- so dramatically reducing water use while continuing efficient data center operations is of significant interest. Because Sandia's climate is similar to NREL's, this new heat rejection system being deployed at NREL has gained interest at Sandia. Sandia's data centers utilize an hourly average of 8.5 MW (29 million Btu/h) and are also one of the largest consumers of

  12. Augmenting the Energy-Saving Impact of IEEE 802.3az via the Control Plane

    OpenAIRE

    Thaenchaikun , Chakadkit; Jakllari , Gentian; Paillassa , Béatrice

    2015-01-01

    International audience; IEEE 802.3az, the recent standard for Energy Efficient Ethernet, is one of the main contributions of the ICT industry to the global quest for energy efficiency. Energy consumption reduction is accomplished by essentially replacing the continuous IDLE of legacy IEEE 802.3 cards with a Low Power Idle. While this is an important step in the right direction, studies have shown that the energy saving with IEEE 802.3az highly depends on the traffic load and stops for link ut...

  13. E3 Success Story - Path Toward Sustainability Leads to Significant Water Savings: Southwire

    Science.gov (United States)

    Southwire—a manufacturer of wire and cable products— searched for opportunities to reduce its water use and launched a sustainability campaign that established goals to reduce water use by 15 percent and overall carbon footprint by 10 percent.

  14. Indirect economic impacts in water supplies augmented with desalinated water

    DEFF Research Database (Denmark)

    Rygaard, Martin; Arvin, Erik; Binning, Philip John

    2010-01-01

    Several goals can be considered when optimizing blends from multiple water resources for urban water supplies. Concentration-response relationships from the literature indicate that a changed water quality can cause impacts on health, lifetime of consumer goods and use of water additives like...... going from fresh water based to desalinated water supply. Large uncertainties prevent the current results from being used for or against desalination as an option for Copenhagen's water supply. In the future, more impacts and an uncertainty analysis will be added to the assessment....... softeners. This paper describes potential economic consequences of diluting Copenhagen's drinking water with desalinated water. With a mineral content at 50% of current levels, dental caries and cardiovascular diseases are expected to increase by 51 and 23% respectively. Meanwhile, the number of dish...

  15. The Impact of Minimum Energy Performance Standards (MEPS) Regulation on Electricity Saving in Malaysia

    Science.gov (United States)

    Fatihah Salleh, Siti; Eqwan Roslan, Mohd; Isa, Aishah Mohd; Faizal Basri Nair, Mohd; Syafiqah Salleh, Siti

    2018-03-01

    One of Malaysia’s key strategies to promote efficient energy use in the country is to implement the minimum energy performance standards (MEPS) through the Electricity Regulations (Amendment) 2013. Five selected electrical appliances (refrigerator, air conditioner, television, domestic fans and lamp fittings) must comply with MEPS requirement in order to be sold in Malaysian market. Manufacturers, importers or distributors are issued Certificate of Approval (COA) if products are MEPS-compliant. In 2015, 1,215 COAs were issued but the number of MEPS products in the market is unknown. This work collects sales data from major manufacturers to estimate the annual sales of MEPS appliances and the cumulative electricity consumption and electricity saving. It was found that most products sold have 3-star rating and above. By year 2015, total cumulative electricity savings gained from MEPS implementation is 3,645 GWh, with air conditioner being the highest contributor (30%). In the future, it is recommended that more MEPS products and related incentives be introduced to further improve efficiency of energy use in Malaysia.

  16. The Impact of Social and Financial Education on Savings Attitudes and Behavior Among Primary School Children in Uganda

    NARCIS (Netherlands)

    Supanantaroek, Suthinee; Lensink, Robert; Hansen, Nina

    2017-01-01

    Background: Saving plays a crucial role in the process of economic growth. However, one main reason why poor people often do not save is that they lack financial knowledge. Improving the savings culture of children through financial education is a promising way to develop savings attitudes and

  17. The impact on air quality of energy saving measures in the major cities signatories of the Covenant of Mayors initiative.

    Science.gov (United States)

    Monforti-Ferrario, Fabio; Kona, Albana; Peduzzi, Emanuela; Pernigotti, Denise; Pisoni, Enrico

    2018-06-08

    This study is a first attempt to evaluate how the major efforts made by several European cities in the frame of the Covenant of Mayors (CoM) initiative can impact the air pollution levels in the participating cities. CoM is by no mean one of the major cities initiatives aimed at mitigating climate change, supporting local authorities in the implementation of their climate action plans. Energy savings measures reported in the CoM cities' action plans have been analysed from the air quality perspective in order to find quantitative relations in the way local authorities deal with mitigation and how these practices are expected to have consequences on the air quality at urban level and finally positively impacting the citizens' health. In the paper, the air quality 2713 energy saving measures proposed by 146 cities located in 23 countries in the frame of the CoM are selected and their co-benefits for air quality and public health estimated by means of SHERPA, a fast modelling tool that mimics the behaviour of a full physically-based Chemical Transport Model. Besides evaluating the overall benefits of this subset of mitigation measures for the air quality, the study also investigates the relevance of some factors such as the implementation sector, the city size and the pollution levels in achieving the highest possible co-benefits. The results presented refer to the special field covered by the study, i.e. energy saving measures and are not automatically referable to other types of measures. Nevertheless, they clearly show how climate mitigation and air quality policies are deeply interconnected at the urban level. Copyright © 2018 The Authors. Published by Elsevier Ltd.. All rights reserved.

  18. Chair time saving method for treatment of an impacted maxillary central incisor with 15-month follow-up

    Directory of Open Access Journals (Sweden)

    Saeed Noorollahian

    2018-01-01

    Full Text Available Maxillary permanent incisors have a major role in facial esthetics. Impaction of them has great adverse effect on smile and causes serious concerns in patient and parents. Physical barriers (e.g., overretained primary teeth, supernumerary teeth, and pathologic lesions, space problems, developmental abnormalities, altered eruption sequence, trauma, palatal clefts, and genetics can act as etiologic factors. Currently, the conventional technique to treatment of impacted teeth consists of a combined orthodontic and surgical approach, to guide the impacted teeth in a constant position and surrounded by normal hard and soft tissues. Treatment is challenging because of some limitations such as patient's age, cooperation, anchorage, and mechanotherapy possibilities. Hence, sophisticated treatment planning is crucial. A 9-year-old girl with horizontally impacted maxillary left central incisor treated with surgical exposure and closed orthodontic forced eruption with 2 × 4 partial setup fixed appliances. Force was applied with 0.014 inch nickel–titanium wire as elastic overlay and handmade ligated bracket. To save chair time in each appointment, the overlay was activated by twisting of ligature wire extensions around it. After 16-month treatment, impacted incisor emerged in oral cavity, with accepted alignment and inclination. Handmade ligated bracket with ligature wire extensions is useful for the treatment of impacted teeth. Due to easy activation of overlay in this method, chair time become short in each appointment.

  19. The Development and Calculation of an Energy-saving Plant for Obtaining Water from Atmospheric Air

    Science.gov (United States)

    Uglanov, D. A.; Zheleznyak, K. E.; Chertykovsev, P. A.

    2018-01-01

    The article shows the calculation of characteristics of energy-efficient water generator from atmospheric air. This installation or the atmospheric water generator is the unique mechanism which produces safe drinking water by extraction it from air. The existing atmospheric generators allow to receive safe drinking water by means of process of condensation at air humidity at least equal to 35% and are capable to give to 25 liters of water in per day, and work from electricity. Authors offer to use instead of the condenser in the scheme of installation for increase volume of produced water by generator in per day, the following refrigerating machines: the vapor compression refrigerating machines (VCRM), the thermoelectric refrigerating machines (TRM) and the Stirling-cycle refrigerating machines (SRM). The paper describes calculation methods for each of refrigerating systems. Calculation of technical-and-economic indexes for the atmospheric water generator was carried out and the optimum system with the maximum volume of received water in per day was picked up. The atmospheric water generator which is considered in article will work from autonomous solar power station.

  20. Evaluating the financial efficiency of energy and water saving installations in passive house

    Science.gov (United States)

    Stec, Agnieszka; Mazur, Aleksandra; Słyś, Daniel

    2017-11-01

    The article contains the outcomes of the Life Cycle Cost analysis for alternative energy and water sources utilized in passive buildings. The solutions taken into account included: heat pumps, solar collectors, photovoltaic panels, Drain Water Heat Recovery units, Rain Water Harvesting Systems and Greywater Recycling Systems. In addition, air pollution emission reduction was also calculated for all the installation variants analyzed. The analysis have shown that the systems under consideration could serve as alternatives for traditional installations. Their use has resulted in reductions in the consumption of fossil fuels and natural water resources, thus contributing to environmental improvements.

  1. Evaluating the financial efficiency of energy and water saving installations in passive house

    Directory of Open Access Journals (Sweden)

    Stec Agnieszka

    2017-01-01

    Full Text Available The article contains the outcomes of the Life Cycle Cost analysis for alternative energy and water sources utilized in passive buildings. The solutions taken into account included: heat pumps, solar collectors, photovoltaic panels, Drain Water Heat Recovery units, Rain Water Harvesting Systems and Greywater Recycling Systems. In addition, air pollution emission reduction was also calculated for all the installation variants analyzed. The analysis have shown that the systems under consideration could serve as alternatives for traditional installations. Their use has resulted in reductions in the consumption of fossil fuels and natural water resources, thus contributing to environmental improvements.

  2. Can business impact analysis play a meaningful role in planning a cost-saving programme?

    Science.gov (United States)

    Wright, Trevor

    2011-02-01

    Business continuity as it exists today would appear to have reached something of a plateau. Considering the history of the discipline, and how it has developed from 'simple' disaster recovery to its present position, it is clear that the trend has been to move from a reactive discipline to a proactive process. Following on from this broadly-accepted point, it is perhaps time to consider how the discipline may develop and what wider and deeper contribution the business continuity profession may make to add further value for our clients. In the present climate, it seems appropriate to consider how (and if) business continuity practice can make a meaningful contribution to a cost saving exercise. The public and private sectors are considered and the differences are compared.

  3. Enhancing water and fertilizer saving without compromising rice yield through integrated crop management

    NARCIS (Netherlands)

    Wardana, I.P.; Gani, A.; Abdulrachmann, S.; Bindraban, P.S.; Keulen, van H.

    2010-01-01

    Water and fertilizer scarcity amid the increasing need of rice production challenges today’s agriculture. Integrated crop management (ICM) is a combination of water, crop, and nutrient management that optimizes the synergistic interaction of these components aiming at improving resource use

  4. KOEFISIEN TANAMAN PADI SAWAH PADA SISTEM IRIGASI HEMAT AIR Crop Coefficient for Paddy Rice Field under Water Saving Irrigation Systems

    Directory of Open Access Journals (Sweden)

    Joko Sujono

    2012-05-01

    Full Text Available Traditional irrigation for paddy rice is the leading of consumer of water, about 80 % of the water resource availabilityused for irrigation purpose. This phenomenon is related to the way how to estimate the crop water requirement where crop coefficient for paddy rice (k (Prosida is always greater than one starting from planting up to nearly harvesting. In this research, a number of water saving irrigations (WSI systems for paddy rice cultivation using pots such asalternate wetting and drying (AWD, shallow water depth with wetting and drying (SWD, semi-dry cultivation (SDC, system of rice intensification (SRI, and  AWD with mulch (AWD-Mul were applied. The amount of irrigated water and when it should be irrigated depend on evapotranspiration rate, soil moisture condition and the WSI system used. For this purpose, daily measurement of the pot weight was carried out. Crop coefficient (k  is then caluculated as a cratio between crop and reference evapotranspiration computed using Penman-Montheit  method. Results show that up to 45 days after transplanting, the k of WSI treatments were around half of the k (Prosida values currently used for computing the water requirement, whereas at the productive stage the k of WSI systems were relatively equal (AWD, SDC to or greater (SRI, SWD than the k (Prosida. Based on the the k values, the AWD and the SDC systems could save much water compared to the SRI or the SWD. Water saving could be increased by applying the AWD with mulch. ABSTRAK Irigasi padi sawah dengan sistem tradisional merupakan sistem irigasi  yang boros air, hampir 80 % sumber air yang ada untuk irigasi. Hal ini tidak terlepas dari perhitungan kebutuhan air tanaman dengan nilai koefisien tanaman (k menurut Standar Perencanaan Irigasi (Prosida selalu lebih besar dari satu mulai dari tanam hingga menjelang panen.Dalam penelitian ini beberapa metoda budidaya padi hemat air seperti alternate wetting and drying (AWD, shallow water depth

  5. [Energy Consumption Comparison and Energy Saving Approaches for Different Wastewater Treatment Processes in a Large-scale Reclaimed Water Plant].

    Science.gov (United States)

    Yang, Min; Li, Ya-ming; Wei, Yuan-song; Lü, Jian; Yu, Da-wei; Liu, Ji-bao; Fan, Yao-bo

    2015-06-01

    Energy consumption is the main performance indicator of reclaimed water plant (RWP) operation. Methods of specific energy consumption analysis, unit energy consumption analysis and redundancy analysis were applied to investigate the composition and spatio-temporal distribution of energy consumption in Qinghe RWP with inverted A2/O, A2/O and A2/O-MBR processes. And the A2/ O-MBR process was mainly analyzed to identify the main nodes and causes for high energy consumption, approaches for energy saving were explored, and the energy consumption before and after upgrading for energy saving was compared. The results showed that aeration was the key factor affecting energy consumption in both conventional and A2/O-MBR processes, accounting for 42.97% and 50.65% of total energy consumption, respectively. A pulsating aeration allowed an increasing membrane flux and remarkably reduced the energy consumption of the A2/O-MBR process while still meeting the effluent standard, e.g., the membrane flux was increased by 20%, and the energy consumptions per kiloton wastewater and kilogram COD(removed) were decreased by 42.39% to 0.53 kW-h-kg-3 and by 54.74% to 1.29 kW x h x kg(-1), respectively. The decrease of backflow ratio in the A2/O-MBR process within a certain range would not deteriorate the effluent quality due to its insignificant correlation with the effluent quality, and therefore may be considered as one of the ways for further energy saving.

  6. Household Savings

    DEFF Research Database (Denmark)

    Browning, Martin; Lusardi, Annamaria

    suggested in the informal saving literature can be captured in the standard optimizing model. Particular attention is given to recent work on the precautionary motive and its implications for saving and consumption behavior. We also discuss the "behavioral" or "psychological" approach that eschews the use......In this survey, we review the recent theoretical and empirical literature on household saving and consumption. The discussion is structured around a list of motives for saving and how well the standard theory captures these motives. We show that almost all of the motives for saving that have been...

  7. Energy Saving in Water Distribution Network through Pump as Turbine Generators: Economic and Environmental Analysis

    Directory of Open Access Journals (Sweden)

    Mauro De Marchis

    2016-10-01

    Full Text Available Complex systems of water distribution networks (WDS are used to supply water to users. WDSs are systems where a lot of distributed energy is available. Historically, this energy is artificially dissipated by pressure reduction valves (PRVs, thanks to which water utilities manage the pressure level in selected nodes of the network. The present study explores the use of economic hydraulic machines, pumps as turbines (PATs to produce energy in a small network located in a town close to Palermo (Italy. The main idea is to avoid dissipation in favor of renewable energy production. The proposed study is applied to a WDN typical of the Mediterranean countries, where the users, to collect water during the period of water scarcity conditions, install private tanks. The presence of private tanks deeply modifies the network from its designed condition. In the proposed analysis, the economic benefit of PATs application in water distribution networks has been investigated, accounting for the presence of users’ private tanks. The analysis, carried out by mean of a mathematical model able to dynamically simulate the water distribution network with PATs, shows the advantage of their installation in terms of renewable energy recovery, even though the energy production of PATs is strictly conditioned by their installation position.

  8. New storm water regulations impact industry

    International Nuclear Information System (INIS)

    Gemar, C.

    1991-01-01

    In November 1990, new Environmental Protection Agency (EPA) regulations aimed at governing the discharge of storm water from industrial facilities became effective. Because some industrial runoff contains toxics and other pollutants, the EPA considers storm water a major source of water contamination. The new regulations will have a profound impact on the National Pollutant Discharge Elimination System (NPDES) permit requirements for industry. This paper summarizes the new storm water regulations, focusing on the requirements for industrial facilities. It also presents suggestions for compliance

  9. Effects of water-saving irrigation on emissions of greenhouse gases and prokaryotic communities in rice paddy soil.

    Science.gov (United States)

    Ahn, Jae-Hyung; Choi, Min-Young; Kim, Byung-Yong; Lee, Jong-Sik; Song, Jaekyeong; Kim, Gun-Yeob; Weon, Hang-Yeon

    2014-08-01

    The effects of water-saving irrigation on emissions of greenhouse gases and soil prokaryotic communities were investigated in an experimental rice field. The water layer was kept at 1-2 cm in the water-saving (WS) irrigation treatment and at 6 cm in the continuous flooding (CF) irrigation treatment. WS irrigation decreased CH(4) emissions by 78 % and increased N(2)O emissions by 533 %, resulting in 78 % reduction of global warming potential compared to the CF irrigation. WS irrigation did not affect the abundance or phylogenetic distribution of bacterial/archaeal 16S rRNA genes and the abundance of bacterial/archaeal 16S rRNAs. The transcript abundance of CH(4) emission-related genes generally followed CH(4) emission patterns, but the difference in abundance between mcrA transcripts and amoA/pmoA transcripts best described the differences in CH(4) emissions between the two irrigation practices. WS irrigation increased the relative abundance of 16S rRNAs and functional gene transcripts associated with Anaeromyxobacter and Methylocystis spp., suggesting that their activities might be important in emissions of the greenhouse gases. The N(2)O emission patterns were not reflected in the abundance of N(2)O emission-related genes and transcripts. We showed that the alternative irrigation practice was effective for mitigating greenhouse gas emissions from rice fields and that it did not affect the overall size and structure of the soil prokaryotic community but did affect the activity of some groups.

  10. Holistic impact assessment and cost savings of rainwater harvesting at the watershed scale

    Science.gov (United States)

    We evaluated the impacts of domestic and agricultural rainwater harvesting (RWH) systems in three watersheds within the Albemarle-Pamlico river basin (southeastern U.S.) using life cycle assessment (LCA) and life cycle cost assessment. Life cycle impact assessment (LCIA) categori...

  11. Will farmers save water? A theoretical analysis of groundwater conservation policies

    Science.gov (United States)

    The development of agricultural irrigation systems has generated significant increases in food production and farm income. However, unplanned and unconstrained groundwater use could also cause serious consequences. To extend the economic life of groundwater, water conservation issues have become the...

  12. Hybrid coolers allow important water saving; Les refroidisseurs ''hybrides'' permettent des economies d'eau importantes

    Energy Technology Data Exchange (ETDEWEB)

    Bitsch, V. [Societe Jaeggi-France (France)

    2005-03-01

    Air cooling systems used with refrigerating machineries are in general highly water and electricity consuming. The use of 'hybrid' systems having the characteristics of both close-cycle evaporative systems and dry coolers allow important water saving. This article presents the operation principle and characteristics of such cooling systems. (J.S.)

  13. Quantifying the economic water savings benefit of water hyacinth (Eichhornia crassipes) control in the Vaalharts Irrigation Scheme

    OpenAIRE

    Arp, RS; Fraser, GCG; Hill, MP

    2017-01-01

    Global freshwater resources are threatened by an ever-growing population and continued economic development, highlighting the need for sustainable water management. Sustainable management must include the control of any additional factors that may aggravate water scarcity, such as invasive alien plants. Water hyacinth (Eichhornia crassipes), one of the world's most destructive invasive plants, presents a direct threat to economically productive water resources. Through high levels of evapotra...

  14. Stop saving the planet! Carbon accounting of superheroes and their impacts on climate change

    Science.gov (United States)

    Traer, M. M.; Haupt, R. J.; Grubert, E.

    2017-12-01

    In the pursuit of justice, Superman leaps tall buildings in a single bound (Siegel & Shuster, 1933). Ironman invents and deploys inconceivable technology to defeat evil forces (Lee et al., 1963). And Batman outfits himself with everything a flying-vigilante-mammal needs to battle the corrupt underbelly of Gotham City (Finger & Kane, 1939). In their own way, superheroes try to make the planet a better place for us mere mortals. But given the global environmental crisis underway, shouldn't we examine superheroes more thoroughly? As fellow inhabitants of Earth, don't we owe it to ourselves to question how much Iron-Man and his rocket boots contribute to global warming? Or how many pounds of carbon dioxide the Batmobile releases into the atmosphere? In other words, shouldn't we know which superpowers are really saving the planet, and which might actually be hurting it? In this analysis, we explore nine representative superheroes and use carbon accounting techniques, including life-cycle assessment, to determine which characters are truly best for the environment. We consider a number of super-powers with clear carbon sources including advanced computational technology, extreme calorie-rich diets, maintenance of impressive physiques, and material combustion. We find that, combined, our representative superheroes emit more carbon dioxide than most countries. Of course we're still grateful that our superheroes are protecting us from terrifying threats. But when it comes to climate change, we're all in this together.

  15. Measuring the impact of efficient household travel decisions on potential travel time savings and accessibility gains

    Energy Technology Data Exchange (ETDEWEB)

    Recker, W.W.; McNally, M.G. [University of California, Irvine (United States). Institute of Transportation Studies, Department of Civil and Environmental Engineering; Chen, C. [Ming-Chuan University, Taiwan (China). Department of Tourism Industry

    2001-07-01

    Using the conceptual framework of time-space geography, this paper incorporates both spatio-temporal constraints and household interaction effects into a meaningful measure of the potential of a household to interact with the built environment. Within this context, personal accessibility is described as a measure of the potential ability of individuals within a household not only to reach activity opportunities, but to do so with sufficient time available for participation in those activities, subject to the spatio-temporal constraints imposed by their daily obligations and transportation supply environment. The incorporation of activity-based concepts in the measurement of accessibility as a product of travel time savings not only explicitly acknowledges a temporal dimension in assessing the potential for spatial interaction but also expands the applicability of accessibility consideration to such real-world policy options as the promotion of ride-sharing and trip chaining behaviors. An empirical application of the model system provides an indication of the potential of activity-based modeling approaches to assess the bounds on achievable improvements in accessibility and travel time based on daily household activity patterns. It also provides an assessment of roles for trip chaining and ride-sharing as potentially effective methods to facilitate transportation policy objectives. (author)

  16. Replacement or additional purchase: The impact of energy-efficient appliances on household electricity saving under public pressures

    International Nuclear Information System (INIS)

    Mizobuchi, Kenichi; Takeuchi, Kenji

    2016-01-01

    This study examined the influence of additional and replacement purchases of energy-efficient air-conditioners on power savings. We used a questionnaire survey and measured electricity use data from 339 Japanese households, collected from two city areas with different level of government-requested electricity-saving rates, namely, Osaka (10%) and Matsuyama (5%). The main findings of our study are as follows: (1) Households that purchased energy-efficient air-conditioners saved more electricity than those that did not. (2) “Additional-purchase households” showed significant energy savings, whereas “replacement households” did not. The rebound effect may negate the energy-saving effects of a new air-conditioner. (3) Altruistic attitude is associated with more active participation in power saving. (4) Households in Osaka saved more electricity than those in Matsuyama, probably because the government call to save electricity was more forceful. - Highlights: •Energy efficient air conditioner purchases affect household power savings. •Additional air conditioner purchase led to significant energy savings. •Replacement units did not produce more savings than non-purchase. • “Electricity conservation directives” amount had a significant power-saving effect. •Altruistic households were more likely to cooperate with power-saving requests.

  17. Tillage methods and mulch on water saving and yield of spring maize in Chitwan

    Directory of Open Access Journals (Sweden)

    Ishwari Prasad Upadhyay

    2016-12-01

    Full Text Available Tillage methods and mulch influences the productivity and water requirement of spring maize hence a field experiment was conducted at the National Maize Research Program, Rampur in spring seasons of 2011 and 2012 with the objectives to evaluate different tillage methods with and without mulch on water requirement and grain yield of spring maize. The experiment was laid out in two factors factorial randomized complete design with three replications. The treatments consisted of tillage methods (Permanent bed, Zero tillage and Conventional tillage and mulch (with and without. Irrigation timing was fixed as knee high stage, tasseling stage and milking/dough stage. Data on number of plants, number of ears, thousand grain weight and grain yield were recorded and analysed using GenStat. Two years combined result showed that the effect of tillage methods and mulch significant influenced grain yield and water requirement of spring maize. The maize grain yield was the highest in permanent beds with mulch (4626 kg ha-1 followed by zero tillage with mulch (3838 kg ha-1. Whereas total water applied calculated during the crop period were the highest in conventional tillage without mulch followed by conventional tillage with mulch. The permanent bed with mulch increased the yield and reduced the water requirement of spring maize in Chitwan.

  18. Impact of RO-desalted water on distribution water qualities.

    Science.gov (United States)

    Taylor, J; Dietz, J; Randall, A; Hong, S

    2005-01-01

    A large-scale pilot distribution study was conducted to investigate the impacts of blending different source waters on distribution water qualities, with an emphasis on metal release (i.e. corrosion). The principal source waters investigated were conventionally treated ground water (G1), surface water processed by enhanced treatment (S1), and desalted seawater by reverse osmosis membranes (RO). Due to the nature of raw water quality and associated treatment processes, G1 water had high alkalinity, while S1 and RO sources were characterized as high sulfate and high chloride waters, respectively. The blending ratio of different treated waters determined the quality of finished waters. Iron release from aged cast iron pipes increased significantly when exposed to RO and S1 waters: that is, the greater iron release was experienced with alkalinity reduced below the background of G1 water. Copper release to drinking water, however, increased with increasing alkalinity and decreasing pH. Lead release, on the other hand, increased with increasing chloride and decreasing sulfate. The effect of pH and alkalinity on lead release was not clearly observed from pilot blending study. The flat and compact corrosion scales observed for lead surface exposed to S1 water may be attributable to lead concentration less than that of RO water blends.

  19. Socio-economic impact of antiretroviral treatment in HIV patients. An economic review of cost savings after introduction of HAART.

    Science.gov (United States)

    Gonzalo, Teresa; García Goñi, Manuel; Muñoz-Fernández, María Angeles

    2009-01-01

    Star celebrities such as Rock Hudson, Freddie Mercury, Magic Johnson, and Isaac Asimov have unfortunately something in common: they were all victims of the HIV global pandemic. Since then HIV infection has become considered a pandemic disease, and it is regarded as a priority in healthcare worldwide. It is ranked as the first cause of death among young people in industrialized countries, and it is recognized as a public healthcare problem due to its human, social, mass media, and economic impact. Incorporation of new and highly active antiretroviral treatment, available since 1996 for HIV/AIDS treatment, has provoked a radical change in the disease pattern, as well as in the impact on patient survival and quality of life. The pharmaceutical industry's contribution, based on the research for more active new drugs, has been pivotal. Mortality rates have decreased significantly in 20 years by 50% and now AIDS is considered a chronic and controlled disease. In this review we have studied the impact of HAART treatment on infected patients, allowing them to maintain their status as active workers and the decreased absenteeism from work derived from this, contributing ultimately to overall social wealth and, thus, to economic growth. Furthermore, an analysis of the impact on healthcare costs, quality of life per year, life per year gained, cost economic savings and cost opportunity among other parameters has shown that society and governments are gaining major benefits from the inclusion of antiretroviral therapies in HIV/AIDS patients.

  20. Environmental Impact Assessment in Sustainable Water Resources ...

    African Journals Online (AJOL)

    During project study and design, major environmental impacts of water ... should be identified and made available for decision makers and the public. ... remotely sensed data can be analysed in GIS environment to generate data and map the ...

  1. Modelling of root ABA synthesis, stomatal conductance, transpiration and potato production under water saving irrigation regimes

    DEFF Research Database (Denmark)

    Plauborg, Finn; Abrahamsen, Per; Gjettermann, Birgitte

    2010-01-01

    . Experimental data was compared to simulated results from the new enhanced Daisy model which include modelling 2D soil water flow, abscisic acid (ABA) signalling and its effect on stomatal conductance and hence on transpiration and assimilation, and finally crop yield. The results demonstrated that the enhanced...

  2. Water and chemical savings in cooling towers by using membrane capacitive deionization

    NARCIS (Netherlands)

    Limpt, van B.; Wal, van der A.

    2014-01-01

    Membrane capacitive deionization (MCDI) is a water desalination technology based on applying a voltage difference between two oppositely placed porous carbon electrodes. In front of each electrode, an ion exchange membrane is positioned, and between them, a spacer is situated, which transports the

  3. Institutional and structural barriers for implementing on-farm water saving irrigation systems

    DEFF Research Database (Denmark)

    Pedersen, Søren Marcus; Boesen, Mads Vejlby; Ørum, Jens Erik

    2013-01-01

    institutional and structural barriers for shifting to more water efficient technologies on farms. To deal with the lack of incentives, a holistic and multidisciplinary assessment approach has been taken to cover the various parameters that may influence farmers' choice of technology. A case study analysis has...

  4. THE IMPACT OF PENSIONS SAVING AND EDUCATION DEFICIT ON THE LIVING STANDARDS IN ROMANIA, IN THE POST-ACTIVITY PERIOD

    Directory of Open Access Journals (Sweden)

    SANDRA TEODORESCU

    2011-04-01

    Full Text Available The present paper starts with the study on the annual pension deficit in the EU member states, elaborated by AVIVA and DELOITTE companies in 2010. The paper analyzes the impact of pensions saving and education deficit on the living standards in Romania, in the post-activity period. It comprises the following sections: an introduction to the analysis, several definitions and the calculation method employed in the above-mentioned study, comparisons between Romania and other EU members states, focusing on the pension deficit, as well as a brief overview on the pension systems in Romania. In the end of the paper, we propose a debate on good financial planning that can make the difference between poverty and a decent standard of living at the time of retirement.

  5. Saving Lives at Birth : The Impact of Home Births on Infant Outcomes

    NARCIS (Netherlands)

    Meltem Daysal, N.; Trandafir, M.; van Ewijk, R.

    2012-01-01

    Abstract: Many developed countries have recently experienced sharp increases in home birth rates. This paper investigates the impact of home births on the health of low-risk newborns using data from the Netherlands, the only developed country where home births are widespread. To account for

  6. Saving Lives at Birth: The Impact of Home Births on Infant Outcomes

    NARCIS (Netherlands)

    Daysal, N.M.; Trandafir, M.; van Ewijk, R.

    2015-01-01

    Many developed countries have recently experienced sharp increases in home birth rates. This paper investigates the impact of home births on the health of low-risk newborns using data from the Netherlands, the only developed country where home births are widespread. To account for endogeneity in

  7. Air Evaporation closed cycle water recovery technology - Advanced energy saving designs

    Science.gov (United States)

    Morasko, Gwyndolyn; Putnam, David F.; Bagdigian, Robert

    1986-01-01

    The Air Evaporation water recovery system is a visible candidate for Space Station application. A four-man Air Evaporation open cycle system has been successfully demonstrated for waste water recovery in manned chamber tests. The design improvements described in this paper greatly enhance the system operation and energy efficiency of the air evaporation process. A state-of-the-art wick feed design which results in reduced logistics requirements is presented. In addition, several design concepts that incorporate regenerative features to minimize the energy input to the system are discussed. These include a recuperative heat exchanger, a heat pump for energy transfer to the air heater, and solar collectors for evaporative heat. The addition of the energy recovery devices will result in an energy reduction of more than 80 percent over the systems used in earlier manned chamber tests.

  8. Energy-Saving Vibration Impulse Coal Degradation at Finely Dispersed Coal-Water Slurry Preparation

    Directory of Open Access Journals (Sweden)

    Moiseev V.A.

    2015-01-01

    Full Text Available Theoretical and experimental research results of processes of finely dispersed coal-water slurry preparation for further generation of energetic gas in direct flow and vortex gas generator plants have been presented. It has been stated that frequency parameters of parabolic vibration impulse mill influence degradation degree. Pressure influence on coal parameters in grinding cavity has been proven. Experimental researches have proven efficiency of vibration impulse mill with unbalanced mass vibrator generator development. Conditions of development on intergranular walls of coal cracks have been defined.

  9. Humidifier prevents corrosion and legionella and saves water and energy; Bevochtigingssysteem voorkomt corrosie en legionella en bespaart water en energie

    Energy Technology Data Exchange (ETDEWEB)

    Huizinga, H.T. [Heat Transfer Holland, Zuidwolde (Netherlands)

    2009-04-15

    The renewal of the central water humidifier in the laboratory of DSM-Resins (chemical industry) in Zwolle, Netherlands, leads to a better air conditioning system and prevents corrosion and legionella. At the same time, water and energy consumption are substantially reduced. This renewal fits perfectly within DSM's company policy to decrease the annual energy consumption by 2 %. [Dutch] Het vernieuwen van het centrale waterbevochtigingssysteem in het laboratorium van DSM-Resins te Zwolle verbetert het luchtbehandelingssysteem en voorkomt corrosie en legionella. Tevens vindt er een besparing plaats in water en energiegebruik. Deze vernieuwing past in de beleidsdoelstelling van DSM om iedere jaar 2% minder energie te gebruiken.

  10. Energy and Economic Impacts of U.S. Federal Energy and Water Conservation Standards Adopted From 1987 Through 2013

    Energy Technology Data Exchange (ETDEWEB)

    Meyers, Stephen; Williams, Alison; Chan, Peter

    2014-06-30

    This paper presents estimates of the key impacts of Federal energy and water conservation standards adopted from 1987 through 2013. The standards for consumer products and commercial and industrial equipment include those set by legislation as well as standards adopted by DOE through rulemaking. In 2013, the standards saved an estimated 4.05 quads of primary energy, which is equivalent to 4% of total U.S. energy consumption. The savings in operating costs for households and businesses totaled $56 billion. The average household saved $361 in operating costs as a result of residential and plumbing product standards. The estimated reduction in CO{sub 2} emissions associated with the standards in 2013 was 218 million metric tons, which is equivalent to 4% of total U.S. CO{sub 2} emissions. The estimated cumulative energy savings over the period 1990-2090 amount to 181 quads. Accounting for the increased upfront costs of more-efficient products and the operating cost (energy and water) savings over the products’ lifetime, the standards have a past and projected cumulative net present value (NPV) of consumer benefit of between $1,271 billion and $1,487 billion, using 7 percent and 3 percent discount rates, respectively. The water conservation standards, together with energy conservation standards that also save water, reduced water use by 1.9 trillion gallons in 2013, and will achieve cumulative water savings by 2090 of 55 trillion gallons. The estimated consumer savings in 2013 from reduced water use amounted to $16 billon.

  11. A multi-stakeholder partnership for the dissemination of alternate wetting and drying water-saving technology for rice farmers in the Philippines

    Directory of Open Access Journals (Sweden)

    Florencia G. Palis

    2017-09-01

    Full Text Available To address issues of water scarcity and food security for sustainable rice farming and increasing production, a water-saving technology called alternate wetting and drying (AWD was disseminated in the Philippines. This study assessed the impact of facilitating a network of stakeholders on disseminating AWD in irrigated rice systems in the Philippines. It used both qualitative and quantitative data collected from 2002 to 2012 in study sites in the country. Engaging multi-stakeholders in adaptive research, training, and dissemination facilitated the process of more interaction by partners. All partners joined a knowledge and dissemination alliance for scaling out AWD activities. This in turn effected a policy outcome, and the synergetic interactions of each partner within and outside the current network fast-tracked the dissemination process and adoption of AWD by farmers. The AWD practice resulted in an increase in irrigated rice area but not necessarily in rice production and farmers’ income. It also reduced labor and fuel consumption, especially in deep-well irrigation systems.

  12. Potential for Water Savings by Defoliation of Saltcedar (Tamarix spp.) by Saltcedar Beetles (Diorhabda carinulata) in the Upper Colorado River Basin

    Science.gov (United States)

    Nagler, P. L.; Nguyen, U.; Bateman, H. L.; Jarchow, C.; van Riper, C., III; Waugh, W.; Glenn, E.

    2016-12-01

    Northern saltcedar beetles (Diorhabda carinata) have spread widely in riparian zones on the Colorado Plateau since their initial release in 2002. One goal of the releases was to reduce water consumption by saltcedar in order to conserve water through reduction of evapotranspiration (ET). The beetle moved south on the Virgin River and reached Big Bend State Park in Nevada in 2014, an expansion rate of 60 km/year. This is important because the beetle's photoperiod requirement for diapause was expected to prevent them from moving south of 37°N latitude, where endangered southwest willow flycatcher habitat occurs. In addition to focusing on the rate of dispersal of the beetles, we used remote sensing estimates of ET at 13 sites on the Colorado, San Juan, Virgin and Dolores rivers and their tributaries to estimate riparian zone ET before and after beetle releases. We estimate that water savings from 2007-2015 was 31.5 million m3/yr (25,547 acre-ft/yr), amounting to 0.258 % of annual river flow from the Upper Colorado River Basin to the Lower Basin. Reasons for the relatively low potential water savings are: 1) baseline ET before beetle release was modest (0.472 m/yr); 2) reduction in ET was low (0.061 m/yr) because saltcedar stands tended to recover after defoliation; 3) riparian ET even in the absence of beetles was only 1.8 % of river flows, calculated as the before beetle average annual ET (472 mm/yr) times the total area of saltcedar (51,588 ha) divided by the combined total average annual flows (1964-2015) from the upper to lower catchment areas of the Colorado River Basin at the USGS gages (12,215 million m3/yr or 9.90 million acre-ft). Further research is suggested to concentrate on the ecological impacts (both positive and negative) of beetles on riparian zones and on identifying management options to maximize riparian health.

  13. Perceived agricultural runoff impact on drinking water.

    Science.gov (United States)

    Crampton, Andrea; Ragusa, Angela T

    2014-09-01

    Agricultural runoff into surface water is a problem in Australia, as it is in arguably all agriculturally active countries. While farm practices and resource management measures are employed to reduce downstream effects, they are often either technically insufficient or practically unsustainable. Therefore, consumers may still be exposed to agrichemicals whenever they turn on the tap. For rural residents surrounded by agriculture, the link between agriculture and water quality is easy to make and thus informed decisions about water consumption are possible. Urban residents, however, are removed from agricultural activity and indeed drinking water sources. Urban and rural residents were interviewed to identify perceptions of agriculture's impact on drinking water. Rural residents thought agriculture could impact their water quality and, in many cases, actively avoided it, often preferring tank to surface water sources. Urban residents generally did not perceive agriculture to pose health risks to their drinking water. Although there are more agricultural contaminants recognised in the latest Australian Drinking Water Guidelines than previously, we argue this is insufficient to enhance consumer protection. Health authorities may better serve the public by improving their proactivity and providing communities and water utilities with the capacity to effectively monitor and address agricultural runoff.

  14. Impact of five years of rotavirus vaccination in Finland - And the associated cost savings in secondary healthcare.

    Science.gov (United States)

    Leino, Tuija; Baum, Ulrike; Scott, Peter; Ollgren, Jukka; Salo, Heini

    2017-10-09

    This study aimed to estimate the impact of the national rotavirus (RV) vaccination programme, starting 2009, on the total hospital-treated acute gastroenteritis (AGE) and severe RV disease burden in Finland during the first five years of the programme. This study also evaluated the costs saved in secondary healthcare by the RV vaccination programme. The RV related outcome definitions were based on ICD10 diagnostic codes recorded in the Care Register for Health Care. Incidences of hospitalised and hospital outpatient cases of AGE (A00-A09, R11) and RVGE (A08.0) were compared prior (1999-2005) and after (2010-2014) the start of the programme among children less than five years of age. The reduction in disease burden in 2014, when all children under five years of age have been eligible for RV vaccination, was 92.9% (95%CI: 91.0%-94.5%) in hospitalised RVGE and 68.5% (66.6%-70.3%) in the total hospitalised AGE among children less than five years of age. For the corresponding hospital outpatient cases, there was a reduction of 91.4% (82.4%-96.6%) in the RVGE incidence, but an increase of 6.3% (2.7%-9.9%) in the AGE incidence. The RV vaccination programme prevented 2206 secondary healthcare AGE cases costing €4.5 million annually. As the RV immunisation costs were €2.3 million, the total net savings just in secondary healthcare costs were €2.2 million, i.e. €33 per vaccinated child. The RV vaccination programme clearly controlled the severe, hospital-treated forms of RVGE. The total disease burden is a more valuable end point than mere specifically diagnosed cases as laboratory confirmation practises usually change after vaccine introduction. The RV vaccination programme annually pays for itself at least two times over. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Napa Earthquake impact on water systems

    Science.gov (United States)

    Wang, J.

    2014-12-01

    South Napa earthquake occurred in Napa, California on August 24 at 3am, local time, and the magnitude is 6.0. The earthquake was the largest in SF Bay Area since the 1989 Loma Prieta earthquake. Economic loss topped $ 1 billion. Wine makers cleaning up and estimated the damage on tourism. Around 15,000 cases of lovely cabernet were pouring into the garden at the Hess Collection. Earthquake potentially raise water pollution risks, could cause water crisis. CA suffered water shortage recent years, and it could be helpful on how to prevent underground/surface water pollution from earthquake. This research gives a clear view on drinking water system in CA, pollution on river systems, as well as estimation on earthquake impact on water supply. The Sacramento-San Joaquin River delta (close to Napa), is the center of the state's water distribution system, delivering fresh water to more than 25 million residents and 3 million acres of farmland. Delta water conveyed through a network of levees is crucial to Southern California. The drought has significantly curtailed water export, and salt water intrusion reduced fresh water outflows. Strong shaking from a nearby earthquake can cause saturated, loose, sandy soils liquefaction, and could potentially damage major delta levee systems near Napa. Napa earthquake is a wake-up call for Southern California. It could potentially damage freshwater supply system.

  16. Impact analysis of a water storage tank

    International Nuclear Information System (INIS)

    Jhung, Myung Jo; Jo, Jong Chull; Jeong, Sang Jin

    2006-01-01

    This study investigates the dynamic response characteristics of a structure impacted by a high speed projectile. The impact of a 300 kg projectile on a water storage tank is simulated by the general purpose computer codes ANSYS and LS-DYNA. Several methods to simulate the impact are considered and their results are compared. Based upon this, an alternative impact analysis method that equivalent to an explicit dynamic analysis is proposed. The effect of fluid on the responses of the tank is also addressed

  17. Development of a Computer-based Benchmarking and Analytical Tool. Benchmarking and Energy & Water Savings Tool in Dairy Plants (BEST-Dairy)

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tengfang [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Flapper, Joris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ke, Jing [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kramer, Klaas [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sathaye, Jayant [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-02-01

    The overall goal of the project is to develop a computer-based benchmarking and energy and water savings tool (BEST-Dairy) for use in the California dairy industry – including four dairy processes – cheese, fluid milk, butter, and milk powder.

  18. User's Manual for BEST-Dairy: Benchmarking and Energy/water-Saving Tool (BEST) for the Dairy Processing Industry (Version 1.2)

    Energy Technology Data Exchange (ETDEWEB)

    Xu, T.; Ke, J.; Sathaye, J.

    2011-04-20

    This User's Manual summarizes the background information of the Benchmarking and Energy/water-Saving Tool (BEST) for the Dairy Processing Industry (Version 1.2, 2011), including'Read Me' portion of the tool, the sections of Introduction, and Instructions for the BEST-Dairy tool that is developed and distributed by Lawrence Berkeley National Laboratory (LBNL).

  19. The impact of precise robotic lesion length measurement on stent length selection: ramifications for stent savings.

    Science.gov (United States)

    Campbell, Paul T; Kruse, Kevin R; Kroll, Christopher R; Patterson, Janet Y; Esposito, Michele J

    2015-09-01

    Coronary stent deployment outcomes can be negatively impacted by inaccurate lesion measurement and inappropriate stent length selection (SLS). We compared visual estimate of these parameters to those provided by the CorPath 200® Robotic PCI System. Sixty consecutive patients who underwent coronary stent placement utilizing the CorPath System were evaluated. The treating physician assessed orthogonal images and provided visual estimates of lesion length and SLS. The robotic system was then used for the same measures. SLS was considered to be accurate when visual estimate and robotic measures were in agreement. Visual estimate SLSs were considered to be "short" or "long" if they were below or above the robotic-selected stents, respectively. Only 35% (21/60) of visually estimated lesions resulted in accurate SLS, whereas 33% (20/60) and 32% (19/60) of the visually estimated SLSs were long and short, respectively. In 5 cases (8.3%), 1 less stent was placed based on the robotic lesion measurement being shorter than the visual estimate. Visual estimate assessment of lesion length and SLS is highly variable with 65% of the cases being inaccurately measured when compared to objective measures obtained from the robotic system. The 32% of the cases where lesions were visually estimated to be short represents cases that often require the use of extra stents after the full lesion is not covered by 1 stent [longitudinal geographic miss (LGM)]. Further, these data showed that the use of the robotic system prevented the use of extra stents in 8.3% of the cases. Measurement of lesions with robotic PCI may reduce measurement errors, need for extra stents, and LGM. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Collection of Condensate Water: Global Potential and Water Quality Impacts

    KAUST Repository

    Loveless, Kolin Joseph

    2012-12-28

    Water is a valuable resource throughout the world, especially in hot, dry climates and regions experiencing significant population growth. Supplies of fresh water are complicated by the economic and political conditions in many of these regions. Technologies that can supply fresh water at a reduced cost are therefore becoming increasingly important and the impact of such technologies can be substantial. This paper considers the collection of condensate water from large air conditioning units as a possible method to alleviate water scarcity issues. Using the results of a climate model that tested data collected from 2000 to 2010, we have identified areas in the world with the greatest collection potential. We gave special consideration to areas with known water scarcities, including the coastal regions of the Arabian Peninsula, Sub-Saharan Africa and South Asia. We found that the quality of the collected water is an important criterion in determining the potential uses for this water. Condensate water samples were collected from a few locations in Saudi Arabia and detailed characterizations were conducted to determine the quality of this water. We found that the quality of condensate water collected from various locations and types of air conditioners was very high with conductivities reaching as low as 18 μS/cm and turbidities of 0. 041 NTU. The quality of the collected condensate was close to that of distilled water and, with low-cost polishing treatments, such as ion exchange resins and electrochemical processes, the condensate quality could easily reach that of potable water. © 2012 Springer Science+Business Media Dordrecht.

  1. Water-saving analysis on an effective water reuse system in biodiesel feedstock production based on Chlorella zofingiensis fed-batch cultivation.

    Science.gov (United States)

    Yang, Kang; Qin, Lei; Wang, Zhongming; Feng, Wei; Feng, Pingzhong; Zhu, Shunni; Xu, Jingliang; Yuan, Zhenhong

    2015-01-01

    The micralgae-based biofuel obtained from dairy wastewater (DWW) is considered a promising source of energy. However, this process consumes water due to the concentration of wastewater being normally too high for some micoralgae cultivation, and dilution is always needed. In this work, the cultivation of microalgae has been examined in non-recirculated water (NR) and recirculated water systems (R). The growth of Chlorella zofingiensis and the nutrient removal of DWW have been recorded. The comparison indicates the R had a little more advantage in biomass and lipid output (1.55, 0.22 g, respectively) than the NR (1.51, 0.20 g, respectively). However, the total chemical oxygen demand (COD), total Kjeldahl nitrogen (TKN), and total phosphorus (TP) removals of the R were lower than those of the NR system during the culture. The highest removal of total COD, TKN, and TP were 85.05%, 93.64%, and 98.45%, respectively. Furthermore, no significant difference has been observed in the higher heating value and lipid content of the biomass of the R and NR. The results show the R can save 30% of the total water input during the culture. All above results indicate the R system has great potential in industry.

  2. Deemed Savings Estimates for Legacy Air Conditioning and WaterHeating Direct Load Control Programs in PJM Region

    Energy Technology Data Exchange (ETDEWEB)

    Goldman, Charles

    2007-03-01

    During 2005 and 2006, the PJM Interconnection (PJM) Load Analysis Subcommittee (LAS) examined ways to reduce the costs and improve the effectiveness of its existing measurement and verification (M&V) protocols for Direct Load Control (DLC) programs. The current M&V protocol requires that a PURPA-compliant Load Research study be conducted every five years for each Load-Serving Entity (LSE). The current M&V protocol is expensive to implement and administer particularly for mature load control programs, some of which are marginally cost-effective. There was growing evidence that some LSEs were mothballing or dropping their DLC programs in lieu of incurring the expense associated with the M&V. This project had several objectives: (1) examine the potential for developing deemed savings estimates acceptable to PJM for legacy air conditioning and water heating DLC programs, and (2) explore the development of a collaborative, regional, consensus-based approach for conducting monitoring and verification of load reductions for emerging load management technologies for customers that do not have interval metering capability.

  3. Consumer impacts on dividends from solar water heating

    Energy Technology Data Exchange (ETDEWEB)

    Hill, F.; Levermore, G. [University of Manchester, Manchester (United Kingdom); Lynch, H. [Centre for Alternative Technology, Machynlleth, University of East London, London (United Kingdom)

    2011-01-15

    Common domestic solar water heating system usage patterns were investigated by a survey of 55 installations. These usage patterns were modelled by simulation based on the actual occupants' use of boiler or other auxiliary heating control strategies. These strategies were not optimal, as often assumed. The effectiveness of the technology was found to be highly sensitive to the time settings used for auxiliary water heating, and the 65% of solar householders using their boilers in the mornings were found to be forgoing 75% of their potential savings. Additionally, 92% of consumers were found to be small households, whose potential savings were only 23% of those of larger households, which use more hot water. Overall the majority (at least 60%) of the systems surveyed were found to be achieving no more than 6% of their potential savings. Incorporating consideration of Legionella issues, results indicate that if solar thermal technology is to deliver its potential to CO2 reduction targets: solar householders must avoid any use of their auxiliary water heating systems before the end of the main warmth of the day, grants for solar technology should be focused on households with higher hot water demands, and particularly on those that are dependent on electricity for water heating, health and safety requirements for hot water storage must be reviewed and, if possible, required temperatures should be set at a lower level, so that carbon savings from solar water heating may be optimized.

  4. Can a change in cropping patterns produce water savings and social gains: A case study from the Fergana Valley, Central Asia

    Directory of Open Access Journals (Sweden)

    Karimov Akmal Kh.

    2018-06-01

    Full Text Available The study examines possible water savings by replacing alfalfa with winter wheat in the Fergana Valley, located upstream of the Syrdarya River in Central Asia. Agricultural reforms since the 1990s have promoted this change in cropping patterns in the Central Asian states to enhance food security and social benefits. The water use of alfalfa, winter wheat/fallow, and winter wheat/green gram (double cropping systems is compared for high-deficit, low-deficit, and full irrigation scenarios using hydrological modeling with the HYDRUS-1D software package. Modeling results indicate that replacing alfalfa with winter wheat in the Fergana Valley released significant water resources, mainly by reducing productive crop transpiration when abandoning alfalfa in favor of alternative cropping systems. However, the winter wheat/fallow cropping system caused high evaporation losses from fallow land after harvesting of winter wheat. Double cropping (i.e., the cultivation of green gram as a short duration summer crop after winter wheat harvesting reduced evaporation losses, enhanced crop output and hence food security, while generating water savings that make more water available for other productive uses. Beyond water savings, this paper also discusses the economic and social gains that double cropping produces for the public within a broader developmental context.

  5. Flood impacts on a water distribution network

    Science.gov (United States)

    Arrighi, Chiara; Tarani, Fabio; Vicario, Enrico; Castelli, Fabio

    2017-12-01

    Floods cause damage to people, buildings and infrastructures. Water distribution systems are particularly exposed, since water treatment plants are often located next to the rivers. Failure of the system leads to both direct losses, for instance damage to equipment and pipework contamination, and indirect impact, since it may lead to service disruption and thus affect populations far from the event through the functional dependencies of the network. In this work, we present an analysis of direct and indirect damages on a drinking water supply system, considering the hazard of riverine flooding as well as the exposure and vulnerability of active system components. The method is based on interweaving, through a semi-automated GIS procedure, a flood model and an EPANET-based pipe network model with a pressure-driven demand approach, which is needed when modelling water distribution networks in highly off-design conditions. Impact measures are defined and estimated so as to quantify service outage and potential pipe contamination. The method is applied to the water supply system of the city of Florence, Italy, serving approximately 380 000 inhabitants. The evaluation of flood impact on the water distribution network is carried out for different events with assigned recurrence intervals. Vulnerable elements exposed to the flood are identified and analysed in order to estimate their residual functionality and to simulate failure scenarios. Results show that in the worst failure scenario (no residual functionality of the lifting station and a 500-year flood), 420 km of pipework would require disinfection with an estimated cost of EUR 21 million, which is about 0.5 % of the direct flood losses evaluated for buildings and contents. Moreover, if flood impacts on the water distribution network are considered, the population affected by the flood is up to 3 times the population directly flooded.

  6. Estimate of Cost-Effective Potential for Minimum Efficiency Performance Standards in 13 Major World Economies Energy Savings, Environmental and Financial Impacts

    Energy Technology Data Exchange (ETDEWEB)

    Letschert, Virginie E. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Bojda, Nicholas [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ke, Jing [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); McNeil, Michael A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-07-01

    This study analyzes the financial impacts on consumers of minimum efficiency performance standards (MEPS) for appliances that could be implemented in 13 major economies around the world. We use the Bottom-Up Energy Analysis System (BUENAS), developed at Lawrence Berkeley National Laboratory (LBNL), to analyze various appliance efficiency target levels to estimate the net present value (NPV) of policies designed to provide maximum energy savings while not penalizing consumers financially. These policies constitute what we call the “cost-effective potential” (CEP) scenario. The CEP scenario is designed to answer the question: How high can we raise the efficiency bar in mandatory programs while still saving consumers money?

  7. Nuclear recycling: costs, savings, and safeguards

    International Nuclear Information System (INIS)

    Spinrad, B.I.

    1985-01-01

    This chapter discusses the economics, physical and chemical processes, and safety of nuclear fuel recycling. The spent fuel must be chemically reprocessed in order to recover uranium and plutonium. Topics considered include indifference costs, recycling in light water reactors (LWRs), plutonium in fast reactors, the choice between recycling and storage, safeguards, and weapons proliferation. It is shown that the economics of recycling nuclear fuel involves the actual costs and savings of the recycling operation in terms of money spent, made, and saved, and the impact of the recycling on the future cost of uranium

  8. Effects of water-saving irrigation practices and drought resistant rice variety on greenhouse gas emissions from a no-till paddy in the central lowlands of China

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Ying; Ge, Junzhu; Tian, Shaoyang; Li, Shuya [MOA Key Laboratory of Crop Physiology, Ecology and Cultivation (The Middle Reaches of Yangtze River), Huazhong Agricultural University, Wuhan, Hubei 430070 (China); College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); Nguy-Robertson, Anthony L. [Center for Advanced Land Management Information Technologies, School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583-0973 (United States); Zhan, Ming, E-mail: zhanming@mail.hzau.edu.cn [MOA Key Laboratory of Crop Physiology, Ecology and Cultivation (The Middle Reaches of Yangtze River), Huazhong Agricultural University, Wuhan, Hubei 430070 (China); College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China); Cao, Cougui, E-mail: ccgui@mail.hzau.edu.cn [MOA Key Laboratory of Crop Physiology, Ecology and Cultivation (The Middle Reaches of Yangtze River), Huazhong Agricultural University, Wuhan, Hubei 430070 (China); College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070 (China)

    2015-02-01

    As pressure on water resources increases, alternative practices to conserve water in paddies have been developed. Few studies have simultaneously examined the effectiveness of different water regimes on conserving water, mitigating greenhouse gases (GHG), and maintaining yields in rice production. This study, which was conducted during the drought of 2013, examined all three factors using a split-plot experiment with two rice varieties in a no-till paddy managed under three different water regimes: 1) continuous flooding (CF), 2) flooded and wet intermittent irrigation (FWI), and 3) flooded and dry intermittent irrigation (FDI). The Methane (CH{sub 4}) and nitrous oxide (N{sub 2}O) emissions were measured using static chamber-gas measurements, and the carbon dioxide (CO{sub 2}) emissions were monitored using a soil CO{sub 2} flux system (LI-8100). Compared with CF, FWI and FDI irrigation strategies reduced CH{sub 4} emissions by 60% and 83%, respectively. In contrast, CO{sub 2} and N{sub 2}O fluxes increased by 65% and 9%, respectively, under FWI watering regime and by 104% and 11%, respectively, under FDI managed plots. Although CO{sub 2} and N{sub 2}O emissions increased, the global warming potential (GWP) and greenhouse gas intensity (GHGI) of all three GHG decreased by up to 25% and 29% (p < 0.01), respectively, using water-saving irrigation strategies. The rice variety also affected yields and GHG emissions in response to different water regimes. The drought-resistance rice variety (HY3) was observed to maintain yields, conserve water, and reduce GHG under the FWI irrigation management compared with the typical variety (FYY299) planted in the region. The FYY299 only had significantly lower GWP and GHGI when the yield was reduced under FDI water regime. In conclusion, FWI irrigation strategy could be an effective option for simultaneously saving water and mitigating GWP without reducing rice yields using drought-resistant rice varieties, such as HY3

  9. The impact of rate design and net metering on the bill savings from distributed PV for residential customers in California

    International Nuclear Information System (INIS)

    Darghouth, Naim R.; Barbose, Galen; Wiser, Ryan

    2011-01-01

    Net metering has become a widespread mechanism in the U.S. for supporting customer adoption of distributed photovoltaics (PV), but has faced challenges as PV installations grow to a larger share of generation in a number of states. This paper examines the value of the bill savings that customers receive under net metering, and the associated role of retail rate design, based on a sample of approximately two hundred residential customers of California's two largest electric utilities. We find that the bill savings per kWh of PV electricity generated varies by more than a factor of four across the customers in the sample, which is largely attributable to the inclining block structure of the utilities' residential retail rates. We also compare the bill savings under net metering to that received under three potential alternative compensation mechanisms, based on California's Market Price Referent (MPR). We find that net metering provides significantly greater bill savings than a full MPR-based feed-in tariff, but only modestly greater savings than alternative mechanisms under which hourly or monthly net excess generation is compensated at the MPR rate. - Highlights: → We examine the value of bill savings under net metering to PV owners in California. → Bill savings per kWh of PV generation varies by a factor of four with net metering. The variation is attributable to rate design, the unique inclining block structure. → The median value of bill savings is reduced by 40-67% with MPR feed-in tariff. → The median value of bill savings is reduced by 6-12% with hourly netting.

  10. Customer-economics of residential photovoltaic systems (Part 1): The impact of high renewable energy penetrations on electricity bill savings with net metering

    International Nuclear Information System (INIS)

    Darghouth, Naïm R.; Barbose, Galen; Wiser, Ryan H.

    2014-01-01

    Residential photovoltaic (PV) systems in the US are often compensated at the customer's underlying retail electricity rate through net metering. Given the uncertainty in future retail rates and the inherent links between rates and the customer–economics of behind-the-meter PV, there is growing interest in understanding how potential changes in rates may impact the value of bill savings from PV. In this article, we first use a production cost and capacity expansion model to project California hourly wholesale electricity market prices under two potential electricity market scenarios, including a reference and a 33% renewables scenario. Second, based on the wholesale electricity market prices generated by the model, we develop retail rates (i.e., flat, time-of-use, and real-time pricing) for each future scenario based on standard retail rate design principles. Finally, based on these retail rates, the bill savings from PV is estimated for 226 California residential customers under two types of net metering, for each scenario. We find that high renewable penetrations can drive substantial changes in residential retail rates and that these changes, together with variations in retail rate structures and PV compensation mechanisms, interact to place substantial uncertainty on the future value of bill savings from residential PV. - Highlights: • We investigate the impact of high renewables on customer economics of solar. • We model three types of residential retail electricity rates. • Based on the rates, we calculate the bill savings from photovoltaic (PV) generation. • High renewables penetration can lead to lower bill savings with time-varying rates. • There is substantial uncertainty in the future bill savings from residential PV

  11. Modeling climate change impacts on water trading.

    Science.gov (United States)

    Luo, Bin; Maqsood, Imran; Gong, Yazhen

    2010-04-01

    This paper presents a new method of evaluating the impacts of climate change on the long-term performance of water trading programs, through designing an indicator to measure the mean of periodic water volume that can be released by trading through a water-use system. The indicator is computed with a stochastic optimization model which can reflect the random uncertainty of water availability. The developed method was demonstrated in the Swift Current Creek watershed of Prairie Canada under two future scenarios simulated by a Canadian Regional Climate Model, in which total water availabilities under future scenarios were estimated using a monthly water balance model. Frequency analysis was performed to obtain the best probability distributions for both observed and simulated water quantity data. Results from the case study indicate that the performance of a trading system is highly scenario-dependent in future climate, with trading effectiveness highly optimistic or undesirable under different future scenarios. Trading effectiveness also largely depends on trading costs, with high costs resulting in failure of the trading program. (c) 2010 Elsevier B.V. All rights reserved.

  12. Grey water impact on soil physical properties

    Directory of Open Access Journals (Sweden)

    Miguel L. Murcia-Sarmiento

    2014-01-01

    Full Text Available Due to the increasing demand for food produced by the increase in population, water as an indispensable element in the growth cycle of plants every day becomes a fundamental aspect of production. The demand for the use of this resource is necessary to search for alternatives that should be evaluated to avoid potential negative impacts. In this paper, the changes in some physical properties of soil irrigated with synthetic gray water were evaluated. The experimental design involved: one factor: home water and two treatments; without treated water (T1 and treated water (T2. The variables to consider in the soil were: electrical conductivity (EC, exchangeable sodium percentage (ESP, average weighted diameter (MWD and soil moisture retention (RHS. The water used in drip irrigation high frequency was monitored by tensiometer for producing a bean crop (Phaseolous vulgaris L. As filtration system used was employed a unit composed of a sand filter (FLA and a subsurface flow wetland artificial (HFSS. The treatments showed significant differences in the PSI and the RHS. The FLA+HFSS system is an alternative to the gray water treatment due to increased sodium retention.

  13. The impact of eliminating within-country inequality in health coverage on maternal and child mortality: a Lives Saved Tool analysis

    Directory of Open Access Journals (Sweden)

    Adrienne Clermont

    2017-11-01

    Full Text Available Abstract Background Inequality in healthcare across population groups in low-income countries is a growing topic of interest in global health. The Lives Saved Tool (LiST, which uses health intervention coverage to model maternal, neonatal, and child health outcomes such as mortality rates, can be used to analyze the impact of within-country inequality. Methods Data from nationally representative household surveys (98 surveys conducted between 1998 and 2014, disaggregated by wealth quintile, were used to create a LiST analysis that models the impact of scaling up health intervention coverage for the entire country from the national average to the rate of the top wealth quintile (richest 20% of the population. Interventions for which household survey data are available were used as proxies for other interventions that are not measured in surveys, based on co-delivery of intervention packages. Results For the 98 countries included in the analysis, 24–32% of child deaths (including 34–47% of neonatal deaths and 16–19% of post-neonatal deaths could be prevented by scaling up national coverage of key health interventions to the level of the top wealth quintile. On average, the interventions with most unequal coverage rates across wealth quintiles were those related to childbirth in health facilities and to water and sanitation infrastructure; the most equally distributed were those delivered through community-based mass campaigns, such as vaccines, vitamin A supplementation, and bednet distribution. Conclusions LiST is a powerful tool for exploring the policy and programmatic implications of within-country inequality in low-income, high-mortality-burden countries. An “Equity Tool” app has been developed within the software to make this type of analysis easily accessible to users.

  14. Comparative Study on Water Impact Problem

    OpenAIRE

    Yang, Liang; Yang, Hao; Yan, Shiqiang; Ma, Qingwei; Bihnam, Maria

    2016-01-01

    This paper presents a comparative numerical study for the water impact problems due to dropping of triangular wedges or ship sections. In the numerical investigation, both the dynamic mesh technique and immersed boundary method adopting fixed Cartesian grids have been adopted in order to conform to the motion of the structure. For the former, a multiple-phase solver with the volume of fluid for identifying the free surface is implemented. In the simulation using this method, both the compress...

  15. Centrifugal compressor efficiency improvement and its environmental impact in waste water treatment

    International Nuclear Information System (INIS)

    Viholainen, J.; Grönman, K.; Jaatinen-Värri, A.; Grönman, A.; Ukkonen, P.; Luoranen, M.

    2015-01-01

    Highlights: • Energy performance and environmental impact of the compressor operation was studied. • Diffusers can offer significant energy savings in aeration compressor tasks. • Diffusers used in compressors reduce the environmental impact of the machine use. • The influence of additional material and diffuser manufacturing is insignificant. - Abstract: Energy costs typically dominate the life-cycle costs of centrifugal compressors used in various industrial and municipal processes, making the compressor an attractive target for energy efficiency improvements. This study considers the achievable energy savings of using three different diffuser types in a centrifugal compressor supporting a typical end-use process in a waste water treatment plant. The effect of the energy efficiency improvements on the annual energy use and the environmental impacts are demonstrated with energy calculations and life-cycle assessment considering the selected compressor task in the waste water aeration. Besides the achievable energy saving benefits in the wastewater aeration process, the presented study shows the influence of the additional material needed in the diffuser manufacturing on the total greenhouse gas emissions of the compressor life-cycle. According to the calculations and assessment results, the studied diffuser types have a significant effect on the compressor energy use and environmental impacts when the compressor is operated in the aeration task. The achievable annual energy savings in this case were 2.5–4.9% in comparison with the baseline scenario. Also, the influence of the additional material and energy use for manufacturing the diffuser are insignificant compared with the avoided greenhouse gas reduction potential

  16. Gauging the Impact of Various Definitions of Low- and Moderate-Income Communities on Possible Electricity Savings From Weatherization

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, Ian M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2017-06-20

    With rising interest in lowering energy costs for low- and moderate-income households, the U.S. Department of Energy (DOE) asked Lawrence Berkeley National Laboratory (LBNL) to assess the implications of pursuing energy efficiency neighborhood-by-neighborhood where those households are most prevalent. DOE provided certain scenarios for qualifying geographic areas as “low- and moderate-income communities,” and LBNL used data on demographics, housing types and recent savings from low-income retrofits or weatherization to provide rough electricity savings estimates under those scenarios.

  17. Water saving at the field scale with Irrig-OH, an open-hardware environment device for soil water potential monitoring and irrigation management

    Science.gov (United States)

    Masseroni, Daniele; Facchi, Arianna; Gandolfi, Claudio

    2015-04-01

    -30 kPa and, finally, from the end of May to the harvesting time (maturation process), irrigation was applied when SWP reached -25 kPa. Every time irrigation events were stopped when SWP at the field capacity (-10 kPa) was restored in the upper part of the root zone. Results showed a water saving of nearly 50% using the Irrig-OH device, without consequences on the quantity and quality of the production. Plant physiological status based on LWP, T and CWSI measurements showed that despite the different irrigation treatments adopted, no considerable plant stress was found in both rows. In particular, maximum values of the previous indices, performed at midday, were respectively -2 MPa, 1.4 mm h-1 and 0.6, which were in good agreement with those observed by many researches for no-stressed peach orchards in Mediterranean areas.

  18. Water-quality impact assessment for hydropower

    International Nuclear Information System (INIS)

    Daniil, E.I.; Gulliver, J.; Thene, J.R.

    1991-01-01

    A methodology to assess the impact of a hydropower facility on downstream water quality is described. Negative impacts can result from the substitution of discharges aerated over a spillway with minimally aerated turbine discharges that are often withdrawn from lower reservoir levels, where dissolved oxygen (DO) is typically low. Three case studies illustrate the proposed method and problems that can be encountered. Historic data are used to establish the probability of low-dissolved-oxygen occurrences. Synoptic surveys, combined with downstream monitoring, give an overall picture of the water-quality dynamics in the river and the reservoir. Spillway aeration is determined through measurements and adjusted for temperature. Theoretical computations of selective withdrawal are sensitive to boundary conditions, such as the location of the outlet-relative to the reservoir bottom, but withdrawal from the different layers is estimated from measured upstream and downstream temperatures and dissolved-oxygen profiles. Based on field measurements, the downstream water quality under hydropower operation is predicted. Improving selective withdrawal characteristics or diverting part of the flow over the spillway provided cost-effective mitigation solutions for small hydropower facilities (less than 15 MW) because of the low capital investment required

  19. Saving the Planet’s Climate or Water Resources? The Trade-Off between Carbon and Water Footprints of European Biofuels

    Directory of Open Access Journals (Sweden)

    Markus Berger

    2015-05-01

    Full Text Available Little information regarding the global water footprint of biofuels consumed in Europe is available. Therefore, the ultimate origin of feedstock underlying European biodiesel and bioethanol consumption was investigated and combined with the irrigation requirements of different crops in different countries. A (blue water consumption of 1.9 m3 in 12 countries per GJ of European biodiesel and 3.3 m3 in 23 countries per GJ of bioethanol was determined. Even though this represents an increase by a factor of 60 and 40 compared to fossil diesel and gasoline, these figures are low compared to global average data. The assessment of local consequences has shown that the irrigation of sunflower seed in Spain causes 50% of the impacts resulting from biodiesel—even though it constitutes only 0.9% of the feedstock. In case of bioethanol production, the irrigation of sugar cane in Egypt, which constitutes only 0.7% of the underlying feedstock, causes 20% of the impacts. In a case study on passenger cars, it was shown that biofuels can reduce the global warming potential by circa 50% along the product life cycle. However, the price of this improvement is an approximate 19 times increased water consumption, and resulting local impacts are even more severe.

  20. Forecasting the demand on solar water heating systems and their energy savings potential during the period 2001-2005 in Jordan

    International Nuclear Information System (INIS)

    Kablan, M.M.

    2003-01-01

    Jordan is an example of a developing country that depends almost exclusively on imported oil. Luckily, Jordan is blessed with good solar energy resources. However, only 24% of Jordanian families are installing solar water heating systems (SWHS). The objective of this research is to forecast the yearly demand on SWHS by the household sector during the period 2001-2005 and to compute the potential energy savings throughout the investigated period due to the use of SWHS. It is found that the net energy collected over the entire investigated period is about 1454.4 million kW h. In addition, the capital savings over the entire investigated period is estimated to be 46.28 million US$ if SWHS are used to heat water instead of the commonly used LPG gas cookers. The results of the research may assist decision makers in the energy sector to implement more comprehensive plans that encourage more families to install SWHS and save on imported oil

  1. Enhancing Resilience to Water-Related Impacts of Climate Change ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Enhancing Resilience to Water-Related Impacts of Climate Change in Uganda's ... technologies (ICTs) can be used to help communities address water stress. ... This work will support the Uganda Ministry of Water and Environment's efforts to ...

  2. Swaps and Chains and Vouchers, Oh My!: Evaluating How Saving More Lives Impacts the Equitable Allocation of Live Donor Kidneys.

    Science.gov (United States)

    Tenenbaum, Evelyn M

    2018-03-01

    Live kidney donation involves a delicate balance between saving the most lives possible and maintaining a transplant system that is fair to the many thousands of patients on the transplant waiting list. Federal law and regulations require that kidney allocation be equitable, but the pressure to save patients subject to ever-lengthening waiting times for a transplant has been swinging the balance toward optimizing utility at the expense of justice. This article traces the progression of innovations created to make optimum use of a patient's own live donors. It starts with the simplest - direct donation by family members - and ends with voucher donations, a very recent and unique innovation because the donor can donate 20 or more years before the intended recipient is expected to need a kidney. In return for the donation, the intended recipient receives a voucher that can be redeemed for a live kidney when it is needed. Other innovations that are discussed include kidney exchanges and list paired donation, which are used to facilitate donor swaps when donor/recipient pairs have incompatible blood types. The discussion of each new innovation shows how the equity issues build on each other and how, with each new innovation, it becomes progressively harder to find an acceptable balance between utility and justice. The article culminates with an analysis of two recent allocation methods that have the potential to save many additional lives, but also affirmatively harm some patients on the deceased donor waiting list by increasing their waiting time for a life-saving kidney. The article concludes that saving additional lives does not justify harming patients on the waiting list unless that harm can be minimized. It also proposes solutions to minimize the harm so these new innovations can equitably perform their intended function of stimulating additional transplants and extending the lives of many transplant patients.

  3. Impact of Water Withdrawals from Groundwater and Surface Water on Continental Water Storage Variations

    Science.gov (United States)

    Doell, Petra; Hoffmann-Dobrev, Heike; Portmann, Felix T.; Siebert, Stefan; Eicker, Annette; Rodell, Matthew; Strassberg, Gil

    2011-01-01

    Humans have strongly impacted the global water cycle, not only water flows but also water storage. We have performed a first global-scale analysis of the impact of water withdrawals on water storage variations, using the global water resources and use model WaterGAP. This required estimation of fractions of total water withdrawals from groundwater, considering five water use sectors. According to our assessment, the source of 35% of the water withdrawn worldwide (4300 cubic km/yr during 1998-2002) is groundwater. Groundwater contributes 42%, 36% and 27% of water used for irrigation, households and manufacturing, respectively, while we assume that only surface water is used for livestock and for cooling of thermal power plants. Consumptive water use was 1400 cubic km/yr during 1998-2002. It is the sum of the net abstraction of 250 cubic km/yr of groundwater (taking into account evapotranspiration and return flows of withdrawn surface water and groundwater) and the net abstraction of 1150 km3/yr of surface water. Computed net abstractions indicate, for the first time at the global scale, where and when human water withdrawals decrease or increase groundwater or surface water storage. In regions with extensive surface water irrigation, such as Southern China, net abstractions from groundwater are negative, i.e. groundwater is recharged by irrigation. The opposite is true for areas dominated by groundwater irrigation, such as in the High Plains aquifer of the central USA, where net abstraction of surface water is negative because return flow of withdrawn groundwater recharges the surface water compartments. In intensively irrigated areas, the amplitude of seasonal total water storage variations is generally increased due to human water use; however, in some areas, it is decreased. For the High Plains aquifer and the whole Mississippi basin, modeled groundwater and total water storage variations were compared with estimates of groundwater storage variations based on

  4. Virtual water: Virtuous impact? : the unsteady state of virtual water

    NARCIS (Netherlands)

    Roth, D.; Warner, J.F.

    2008-01-01

    “Virtual water,” water needed for crop production, is now being mainstreamed in the water policy world. Relying on virtual water in the form of food imports is increasingly recommended as good policy for water-scarce areas. Virtual water globalizes discussions on water scarcity, ecological

  5. Water supply impacts of nuclear fall

    International Nuclear Information System (INIS)

    Hobbs, B.F.; Luo, Y.; Maciejowski, M.E.; Chester, C.V.

    1989-01-01

    “Nuclear winter,” more properly called “nuclear fall,” could be caused by injection of large amounts of dust into the atmosphere. Besides causing a decrease in temperature, it could be accompanied by “nuclear drought,” a catastrophic decrease in precipitation. Dry land agriculture would then be impossible, and municipal, industrial, and irrigation water supplies would be diminished. It has been argued that nuclear winter/fall poses a much greater threat to human survival than do fall out or the direct impacts of a conflict. However, this does not appear to be true, at least for the U.S. Even under the unprecedented drought that could result from nuclear fall, water supplies would be available for many essential activities. For the most part, ground water supplies would be relatively invulnerable to nuclear drought, and adequate surface supplies would be available for potable uses. This assumes that conveyance facilities and power supplies survive a conflict largely intact or can be repaired

  6. Positive impact of circuit feedback by means of compensation effects. Energy saving lamps.; Positive Beeinflussung der Netzrueckwirkungen durch Kompensationseffekte. Energiesparlampen

    Energy Technology Data Exchange (ETDEWEB)

    Quadflieg, Dieter [Forum Netztechnik/Netzbetrieb im VDE, Berlin (Germany)

    2012-01-30

    The rectifier of modern energy saving lamps can have disturbing effects on the public power distribution network. An investigation by the Technical University of Dresden (Federal Republic of Germany) on behalf of the Forum Network Technology / Network Operation in VDE association for Electrical, Electronic and Information Technologies (Frankfurt, Federal Republic of Germany) examined the compensation effects during the simultaneous operation of such lamps with other household appliances in a realistic scenario.

  7. Dryland Agrivoltaics: A novel approach to collocating food production and solar renewable energy to maximize food production, water savings, and energy generation

    Science.gov (United States)

    Barron-Gafford, G.; Escobedo, E. B.; Smith, J.; Raub, H.; Jimenez, J. R.; Sutter, L., Jr.; Barnett-Moreno, I.; Blackett, D. T.; Thompson, M. S.; Minor, R. L.; Pavao-Zuckerman, M.

    2017-12-01

    Conventional understanding of land use asserts an inherent "zero-sum-game" of competition between renewable energy and agricultural food production. This discourse is so fundamentally entrenched that it drives most current policy around conservation practices, land and water allotments for agriculture, and permitting for large-scale renewable energy installations. We are investigating a novel approach to solve a problem key to our environment and economy in drylands by creating a hybrid of collocated "green" agriculture and "grey" solar photovoltaic (PV) infrastructure to maximize agricultural production while improving renewable energy production. We are monitoring atmospheric microclimatic conditions, soil moisture, plant ecophysiological function, and biomass production within both this novel "agrivoltaics" ecosystem and in traditional PV installations and agricultural settings (control plot) to quantify tradeoffs associated with this approach. We have found that levels of soil moisture remained higher after each irrigation event within the soils under the agrivoltaics installation than the traditional agricultural setting due to the shading provided by the PV panels overhead. We initiated a drought treatment, which underscored the water-savings under the agrivoltaics installation and increased water use efficiency in this system. We hypothesized that we will see more temperature and drought stresses on photosynthetic capacity and water use efficiency in the control plants relative to the agrivoltaic installation, and we found that several food crops either experienced significantly more production within the agrivoltaics area, whereas others resulted in nearly equal production but at significant water savings. Combined with localized cooling of the PV panels resulting from the transpiration from the vegetative "understory", we are finding a win-win-win at the food-water-energy nexus. photo credit: Bob Demers/UANews

  8. The impact of water use fees on dispatching and water requirements for water-cooled power plants in Texas.

    Science.gov (United States)

    Sanders, Kelly T; Blackhurst, Michael F; King, Carey W; Webber, Michael E

    2014-06-17

    We utilize a unit commitment and dispatch model to estimate how water use fees on power generators would affect dispatching and water requirements by the power sector in the Electric Reliability Council of Texas' (ERCOT) electric grid. Fees ranging from 10 to 1000 USD per acre-foot were separately applied to water withdrawals and consumption. Fees were chosen to be comparable in cost to a range of water supply projects proposed in the Texas Water Development Board's State Water Plan to meet demand through 2050. We found that these fees can reduce water withdrawals and consumption for cooling thermoelectric power plants in ERCOT by as much as 75% and 23%, respectively. To achieve these water savings, wholesale electricity generation costs might increase as much as 120% based on 2011 fuel costs and generation characteristics. We estimate that water saved through these fees is not as cost-effective as conventional long-term water supply projects. However, the electric grid offers short-term flexibility that conventional water supply projects do not. Furthermore, this manuscript discusses conditions under which the grid could be effective at "supplying" water, particularly during emergency drought conditions, by changing its operational conditions.

  9. Environmental impact of by pass channel of surface waters

    International Nuclear Information System (INIS)

    Vismara, R.; Renoldi, M.; Torretta, V.

    1996-01-01

    In this paper are analyzed the impacts generated by surface waters drawing on river course. This impacts are generated also by reduction of water flow. This effect is most important for the presence of biological community: algae, fiches, micro invertebrates. Are also reported regional laws, water master plan of Lombardia region

  10. Could the Hokusai Impact Have Delivered Mercury's Water Ice?

    Science.gov (United States)

    Ernst, C. M.; Chabot, N. L.; Barnouin, O. S.

    2018-05-01

    Hokusai is the best candidate source crater for Mercury’s water-ice inventory if it was primarily delivered by a single impact event. The Hokusai impact could account for the inventory of water ice on Mercury for impact velocities <30 km/s.

  11. Climate impact on BC Hydro's water resources

    International Nuclear Information System (INIS)

    Smith, D.; Rodenhuis, D.

    2008-01-01

    BC Hydro like many other hydro utilities has used the historical record of weather and runoff as the standard description the variability and uncertainty of the key weather drivers for its operation and planning studies. It has been conveniently assumed that this historical record is or has been statistically stationary and therefore is assumed to represent the future characteristics of climatic drivers on our system. This assumption is obviously no longer justifiable. To address the characterisation of future weather, BC Hydro has a multi-year a directed research program with the Pacific Climate Impacts Consortium to evaluate the impacts of climate change on the water resources that BC Hydro manages for hydropower generation and other uses. The objective of this program is to derive climate change adjusted meteorologic and hydrologic sequences suitable for use in system operations and planning studies. These climate-adjusted sequences then can be used to test system sensitivity to climate change scenarios relative to the baseline of the historical record. This paper describes BC Hydro's research program and the results achieved so far. (author)

  12. An Environmental Analysis of the Effect of Energy Saving, Production and Recovery Measures on Water Supply Systems under Scarcity Conditions

    Directory of Open Access Journals (Sweden)

    Valeria Puleo

    2015-06-01

    Full Text Available Water is one of the primary resources provided for maintaining quality of life and social status in urban areas. As potable water is considered to be a primary need, water service has usually been managed without examining the economic and environmental sustainability of supply processes. Currently, due to increases in energy costs and the growth of environment preservation policies, reducing water leakage, energy consumption and greenhouse gas (GHG production have become primary objectives in reducing the environmental footprint of water service. The present paper suggests the implementation of some performance indicators that show the interdependence of water loss, energy consumption and GHG emission. These indicators are used to compare a few possible mitigation scenarios involving water loss reduction and increasing the system’s energy efficiency. The proposed indicators were applied to a complex urban water supply system serving the city of Palermo (Italy.

  13. Cost and impact of scaling up interventions to save lives of mothers and children: taking South Africa closer to MDGs 4 and 5

    Directory of Open Access Journals (Sweden)

    Lumbwe Chola

    2015-04-01

    Full Text Available Background: South Africa has made substantial progress on child and maternal mortality, yet many avoidable deaths of mothers and children still occur. This analysis identifies priority interventions to be scaled up nationally and projects the potential maternal and child lives saved. Design: We modelled the impact of maternal, newborn and child interventions using the Lives Saved Tools Projections to 2015 and used realistic coverage increases based on expert opinion considering recent policy change, financial and resource inputs, and observed coverage change. A scenario analysis was undertaken to test the impact of increasing intervention coverage to 95%. Results: By 2015, with realistic coverage, the maternal mortality ratio (MMR can reduce to 153 deaths per 100,000 and child mortality to 34 deaths per 1,000 live births. Fifteen interventions, including labour and delivery management, early HIV treatment in pregnancy, prevention of mother-to-child transmission and handwashing with soap, will save an additional 9,000 newborns and children and 1,000 mothers annually. An additional US$370 million (US$7 per capita will be required annually to scale up these interventions. When intervention coverage is increased to 95%, breastfeeding promotion becomes the top intervention, the MMR reduces to 116 and the child mortality ratio to 23. Conclusions: The 15 interventions identified were adopted by the National Department of Health, and the Health Minister launched a campaign to encourage Provincial Health Departments to scale up coverage. It is hoped that by focusing on implementing these 15 interventions at high quality, South Africa will reach Millennium Development Goal (MDG 4 soon after 2015 and MDG 5 several years later. Focus on HIV and TB during early antenatal care is essential. Strategic gains could be realised by targeting vulnerable populations and districts with the worst health outcomes. The analysis demonstrates the usefulness of priority

  14. Impact of upstream industrial effluents on irrigation water quality ...

    African Journals Online (AJOL)

    Impact of upstream industrial effluents on irrigation water quality, soils and ... Knowledge of irrigation water quality is critical to predicting, managing and reducing salt ... Presence of heavy metals in concentration higher than the recommended ...

  15. Perceived Impact of Private Sector Involvement In Water Supply on ...

    African Journals Online (AJOL)

    Perceived Impact of Private Sector Involvement In Water Supply on the Urban Poor in Dar es Salaam. ... Tanzania Journal of Development Studies ... Dar es Salaam is not perceived to be a panacea to the water problems facing the urban poor.

  16. Reuse of waste water: impact on water supply planning

    Energy Technology Data Exchange (ETDEWEB)

    Mangan, G.F. Jr.

    1978-06-01

    As the urban population of the world increases and demands on easily developable water supplies are exceeded, cities have recourse to a range of management alternatives to balance municipal water supply and demand. These alternatives range from doing nothing to modifying either the supply or the demand variable in the supply-demand relationship. The reuse or recycling of urban waste water in many circumstances may be an economically attractive and effective management strategy for extending existing supplies of developed water, for providing additional water where no developable supplies exist and for meeting water quality effluent discharge standards. The relationship among municipal, industrial and agricultural water use and the treatment links which may be required to modify the quality of a municipal waste effluent for either recycling or reuse purposes is described. A procedure is described for analyzing water reuse alternatives within a framework of regional water supply and waste water disposal planning and management.

  17. Net savings

    International Nuclear Information System (INIS)

    Roche, P.

    2001-01-01

    The state of e-commerce in the Canadian upstream oil and natural gas sector is examined in an effort to discover the extent to which the .com economy has penetrated the marketplace. The overall assessment is that although the situation varies from producer to producer and process to process, a bustling digital marketplace in the Canadian oil business has yet to emerge. Nevertheless, there are several examples of companies using e-business tools to minimize technology staffing and to eliminate wasteful practices. Initiatives cited include streamlining of supply chains to cut handling costs, using application service providers to trim information technology budgets, and adopting electronic joint interest billing to save on printing, postage and re-entering data. Most notable efforts have been made by companies such as BXL Energy Limited and Genesis Exploration Limited, both of which are boosting efficiency on the inside by contracting out data storage and software applications. For example, BXL has replaced its microfilm log library occupying six cabinets, and totalling about 9,000 lbs., by a fibre optic line. All applications can now be run from a laptop which weighs three to four pounds. In a similar vein, Genesis Exploration started using application service providers (ASPs) to avoid the cost and hassle of buying and maintaining major software applications in-house. By accessing the ASPs, Genesis staff can run software without buying or installing it on their own computers. In yet another example of cutting information technology costs, Pengrowth Corporation has its network administration done remotely over the Internet by Northwest Digital Systems (NWD). As far as the industry at large is concerned, the answer appears to be in a digital marketplace specifically tailored to the upstream sector's unique profile. As a start, a study is underway by Deloitte Consulting to explore producer interest in joining or founding an upstream digital marketplace. The study was

  18. Net savings

    Energy Technology Data Exchange (ETDEWEB)

    Roche, P.

    2001-02-01

    The state of e-commerce in the Canadian upstream oil and natural gas sector is examined in an effort to discover the extent to which the .com economy has penetrated the marketplace. The overall assessment is that although the situation varies from producer to producer and process to process, a bustling digital marketplace in the Canadian oil business has yet to emerge. Nevertheless, there are several examples of companies using e-business tools to minimize technology staffing and to eliminate wasteful practices. Initiatives cited include streamlining of supply chains to cut handling costs, using application service providers to trim information technology budgets, and adopting electronic joint interest billing to save on printing, postage and re-entering data. Most notable efforts have been made by companies such as BXL Energy Limited and Genesis Exploration Limited, both of which are boosting efficiency on the inside by contracting out data storage and software applications. For example, BXL has replaced its microfilm log library occupying six cabinets, and totalling about 9,000 lbs., by a fibre optic line. All applications can now be run from a laptop which weighs three to four pounds. In a similar vein, Genesis Exploration started using application service providers (ASPs) to avoid the cost and hassle of buying and maintaining major software applications in-house. By accessing the ASPs, Genesis staff can run software without buying or installing it on their own computers. In yet another example of cutting information technology costs, Pengrowth Corporation has its network administration done remotely over the Internet by Northwest Digital Systems (NWD). As far as the industry at large is concerned, the answer appears to be in a digital marketplace specifically tailored to the upstream sector's unique profile. As a start, a study is underway by Deloitte Consulting to explore producer interest in joining or founding an upstream digital marketplace. The study

  19. Effects of heat and electricity saving measures in district-heated multistory residential buildings

    International Nuclear Information System (INIS)

    Truong, Nguyen Le; Dodoo, Ambrose; Gustavsson, Leif

    2014-01-01

    Highlights: • We analyzed the potential for energy savings in district heated buildings. • Measures that reduce more peak load production give higher primary energy savings. • Efficient appliances increase heat demand but give net primary energy savings. • Efficient appliances give the largest net primary energy savings. - Abstract: The effects of heat and electricity saving measures in district-heated buildings can be complex because these depend not only on how energy is used on the demand side but also on how energy is provided from the supply side. In this study, we analyze the effects of heat and electricity saving measures in multistory concrete-framed and wood-framed versions of an existing district-heated building and examine the impacts of the reduced energy demand on different district heat (DH) production configurations. The energy saving measures considered are for domestic hot water reduction, building thermal envelope improvement, ventilation heat recovery (VHR), and household electricity savings. Our analysis is based on a measured heat load profile of an existing DH production system in Växjö, Sweden. Based on the measured heat load profile, we model three minimum-cost DH production system using plausible environmental and socio-political scenarios. Then, we investigate the primary energy implications of the energy saving measures applied to the two versions of the existing building, taking into account the changed DH demand, changed cogenerated electricity, and changed electricity use due to heat and electricity saving measures. Our results show that the difference between the final and primary energy savings of the concrete-framed and wood-framed versions of the case-study building is minor. The primary energy efficiency of the energy saving measures depends on the type of measure and on the composition of the DH production system. Of the various energy saving measures explored, electricity savings give the highest primary energy savings

  20. ENTHALPY EU PROJECT: ENABLING THE DRYING PROCESS TO SAVE ENERGY AND WATER, REALISING PROCESS EFFICIENCY IN THE DAIRY CHAIN

    Directory of Open Access Journals (Sweden)

    Berta ALVAREZ PENEDO

    2016-11-01

    Full Text Available The EU funded ENTHALPY project aims to significantly reduce the consumption of water and energy in milk powder production to increase efficiency in the dairy production chain. Using a systematic approach, ENTHALPY project focusses on innovations within the post-harvest chain representing the highest energy and water consumption such as RF heating, solar thermal energy, mono-disperse atomising, dryer modelling, inline monitoring, enzymatic cleaning and membrane technology,

  1. ENTHALPY EU PROJECT: ENABLING THE DRYING PROCESS TO SAVE ENERGY AND WATER, REALISING PROCESS EFFICIENCY IN THE DAIRY CHAIN

    OpenAIRE

    Berta ALVAREZ PENEDO; Sandra FORSTNER; Alexandru RUSU

    2016-01-01

    The EU funded ENTHALPY project aims to significantly reduce the consumption of water and energy in milk powder production to increase efficiency in the dairy production chain. Using a systematic approach, ENTHALPY project focusses on innovations within the post-harvest chain representing the highest energy and water consumption such as RF heating, solar thermal energy, mono-disperse atomising, dryer modelling, inline monitoring, enzymatic cleaning and membrane technology,

  2. Anthropogenic impacts on the water quality of Aba River, southeast ...

    African Journals Online (AJOL)

    Anthropogenic impacts on the water quality of Aba River, southeast Nigeria. ... Ethiopian Journal of Environmental Studies and Management ... of Aba River, southeast Nigeria was studied in four stations from November 2014 to August 2015 to identify the major anthropogenic activities and their impact on the water quality.

  3. Energy savings in the Danish building stock until 2050

    DEFF Research Database (Denmark)

    Wittchen, Kim Bjarne; Kragh, Jesper

    2014-01-01

    are energy upgraded according to the requirements stipulated in the Danish Building Regulations 2010. Furthermore, scenario analyses was made for the potential impact on the energy consumption of introducing different levels of tightening of the energy requirements for existing buildings in the Danish...... Building Regulations. Compliance with the requirements in the Danish Building Regulations will potentially result in energy savings for space heating and domestic hot water around 30 % until 2050. Further tightening of the component insulation level requirements will only result in marginally higher......A study has been conducted analysing the energy savings for space heating and domestic hot water in the Danish building stock due to renovation of building components at the end of their service life. The purpose of the study was to estimate the energy savings until 2050 as building components...

  4. Water Penetration through a Superhydrophobic Mesh During a Drop Impact

    Science.gov (United States)

    Ryu, Seunggeol; Sen, Prosenjit; Nam, Youngsuk; Lee, Choongyeop

    2017-01-01

    When a water drop impacts a mesh having submillimeter pores, a part of the drop penetrates through the mesh if the impact velocity is sufficiently large. Here we show that different surface wettability, i.e., hydrophobicity and superhydrophobicity, leads to different water penetration dynamics on a mesh during drop impact. We show, despite the water repellence of a superhydrophobic surface, that water can penetrate a superhydrophobic mesh more easily (i.e., at a lower impact velocity) over a hydrophobic mesh via a penetration mechanism unique to a superhydrophobic mesh. On a superhydrophobic mesh, the water penetration can occur during the drop recoil stage, which appears at a lower impact velocity than the critical impact velocity for water penetration right upon impact. We propose that this unique water penetration on a superhydrophobic mesh can be attributed to the combination of the hydrodynamic focusing and the momentum transfer from the water drop when it is about to bounce off the surface, at which point the water drop retrieves most of its kinetic energy due to the negligible friction on superhydrophobic surfaces.

  5. Organic fertilizer application increases the soil respiration and net ecosystem carbon dioxide absorption of paddy fields under water-saving irrigation.

    Science.gov (United States)

    Yang, Shihong; Xiao, Ya Nan; Xu, Junzeng

    2018-04-01

    Quantifying carbon sequestration in paddy soil is necessary to understand the effect of agricultural practices on carbon cycles. The objective of this study was to assess the effect of organic fertilizer addition (MF) on the soil respiration and net ecosystem carbon dioxide (CO 2 ) absorption of paddy fields under water-saving irrigation (CI) in the Taihu Lake Region of China during the 2014 and 2015 rice-growing seasons. Compared with the traditional fertilizer and water management (FC), the joint regulation of CI and MF (CM) significantly increased the rice yields and irrigation water use efficiencies of paddy fields by 4.02~5.08 and 83.54~109.97% (p < 0.05). The effects of organic fertilizer addition on soil respiration and net ecosystem CO 2 absorption rates showed inter-annual differences. CM paddy fields showed a higher soil respiration and net CO 2 absorption rates during some periods of the rice growth stage in the first year and during most periods of the rice growth stage in the second year. These fields also had significantly higher total CO 2 emission through soil respiration (total R soil ) and total net CO 2 absorption compared with FC paddy fields (p < 0.05). The total R soil and net ecosystem CO 2 absorption of CM paddy fields were 67.39~91.55 and 129.41~113.75 mol m -2 , which were 27.66~135.52 and 12.96~31.66% higher than those of FC paddy fields. The interaction between water and fertilizer management had significant effects on total net ecosystem CO 2 absorption. The frequent alternate wet-dry cycles of CI paddy fields increased the soil respiration and reduced the net CO 2 absorption. Organic fertilizer promoted the soil respiration of paddy soil but also increased its net CO 2 absorption and organic carbon content. Therefore, the joint regulation of water-saving irrigation and organic fertilizer is an effective measure for maintaining yield, increasing irrigation water use efficiency, mitigating CO 2 emission, and promoting paddy

  6. Water quality impacts of forest fires

    Science.gov (United States)

    Tecle Aregai; Daniel Neary

    2015-01-01

    Forest fires have been serious menace, many times resulting in tremendous economic, cultural and ecological damage to many parts of the United States. One particular area that has been significantly affected is the water quality of streams and lakes in the water thirsty southwestern United States. This is because the surface water coming off burned areas has resulted...

  7. Impact of water drops on small targets

    Science.gov (United States)

    Rozhkov, A.; Prunet-Foch, B.; Vignes-Adler, M.

    2002-10-01

    The collision of water drops against small targets was studied experimentally by means of a high-speed photography technique. The drop impact velocity was about 3.5 m/s. Drop diameters were in the range of 2.8-4.0 mm. The target was a stainless steel disk of 3.9 mm diameter. The drop spread beyond the target like a central cap surrounded by a thin, slightly conical lamella bounded by a thicker rim. By mounting a small obstacle near the target, surface-tension driven Mach waves in the flowing lamella were generated, which are formally equivalent to the familiar compressibility driven Mach waves in gas dynamics. From the measurement of the Mach angle, the values of some flow parameters could be obtained as functions of time, which provided insight into the flow structure. The liquid flowed from the central cap to the liquid rim through the thin lamella at constant momentum flux. At a certain stage of the process, most of the liquid accumulated in the rim and the internal part of the lamella became metastable. In this situation, a rupture wave propagating through the metastable internal part of the lamella caused the rim to retract while forming outwardly directed secondary jets. The jets disintegrated into secondary droplets due to the Savart-Plateau-Rayleigh instability. Prior to the end of the retraction, an internal circular wave of rupture was formed. It originated at the target and then it propagated to meet the retracting rim. Their meeting resulted in a crown of tiny droplets. A theoretical analysis of the ejection process is proposed.

  8. The dilemma of saving water or being cool: What determines the stomatal response under a changing climate?

    Science.gov (United States)

    Haghighi, Erfan; Kirchner, James W.; Entekhabi, Dara

    2017-04-01

    Stomata play a critical role in terrestrial water and carbon cycles, regulating the trade-off between photosynthetic carbon gain and water loss in leaves. They adjust their aperture in response to a number of physiological and environmental factors, yet the mechanisms driving this response, particularly under climate extremes, remain poorly understood. Partial or complete stomatal closure reduces plant water stress under water-limited or high atmospheric evaporative demand conditions, but at the cost of reduced productivity, elevated heat, leaf shedding, and mortality. A proper account of such complex stomatal behavior is of particular importance for current ecosystem models that poorly capture observed vegetation responses in the context of climate change which is predicted to cause more frequent and intense temperature extremes along with an increase in the frequency of drought in many regions in the future. This study seeks to explore stomatal responses to environmental change accounted for by a varying soil-plant resistance under different atmospheric and soil moisture conditions. To this end, we developed a physically based transpiration model that couples stomatal control of leaf gas exchange to the leaf surface energy balance and the entire plant hydraulic system by considering the interdependence of the guard cell water potential (or turgor pressure) and transpiration rates. Model simulations of diurnal variations in transpiration rates were in good agreement with field observations, and facilitated quantitative prediction of stomatal and xylem flow regulation under a wide range of environmental conditions. Preliminary results demonstrate how soil and plant hydraulic conductances regulating stomatal opening and closure can help mitigate climatic water deficit (e.g., at midday) by boosting evaporative cooling. Our results are expected to advance physical understanding of the water cycle in the soil-plant-atmosphere continuum, and shed light on observed

  9. Using the Lives Saved Tool (LiST) to Model mHealth Impact on Neonatal Survival in Resource-Limited Settings

    Science.gov (United States)

    Jo, Youngji; Labrique, Alain B.; Lefevre, Amnesty E.; Mehl, Garrett; Pfaff, Teresa; Walker, Neff; Friberg, Ingrid K.

    2014-01-01

    While the importance of mHealth scale-up has been broadly emphasized in the mHealth community, it is necessary to guide scale up efforts and investment in ways to help achieve the mortality reduction targets set by global calls to action such as the Millennium Development Goals, not merely to expand programs. We used the Lives Saved Tool (LiST)–an evidence-based modeling software–to identify priority areas for maternal and neonatal health services, by formulating six individual and combined interventions scenarios for two countries, Bangladesh and Uganda. Our findings show that skilled birth attendance and increased facility delivery as targets for mHealth strategies are likely to provide the biggest mortality impact relative to other intervention scenarios. Although further validation of this model is desirable, tools such as LiST can help us leverage the benefit of mHealth by articulating the most appropriate delivery points in the continuum of care to save lives. PMID:25014008

  10. Using the lives saved tool (LiST to model mHealth impact on neonatal survival in resource-limited settings.

    Directory of Open Access Journals (Sweden)

    Youngji Jo

    Full Text Available While the importance of mHealth scale-up has been broadly emphasized in the mHealth community, it is necessary to guide scale up efforts and investment in ways to help achieve the mortality reduction targets set by global calls to action such as the Millennium Development Goals, not merely to expand programs. We used the Lives Saved Tool (LiST--an evidence-based modeling software--to identify priority areas for maternal and neonatal health services, by formulating six individual and combined interventions scenarios for two countries, Bangladesh and Uganda. Our findings show that skilled birth attendance and increased facility delivery as targets for mHealth strategies are likely to provide the biggest mortality impact relative to other intervention scenarios. Although further validation of this model is desirable, tools such as LiST can help us leverage the benefit of mHealth by articulating the most appropriate delivery points in the continuum of care to save lives.

  11. The impact of industrial waste of Venezuelan marine water

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Frank [Bechtel Corp., Gaithersburg, MD (United States); Guarino, Carmen [Guarino Engineers, Philadelphia, PA (United States); Arias, Marlene [Ministerio del Ambiente y Recursos Naturales Renovables, Caracas (Venezuela)

    1993-12-31

    The Puerto Cabello-Marron coastal area of Venezuela is an ideal location for industries that require large land areas, water, marine transportation, minimum habitation, cooling water, etc. However, mercury spills have produced concern in the entire coastal zone. The area was investigated and negative impacts were identified. Consequently, recommendations for waste water management were proceeded. 13 refs., 6 figs., 3 tabs.

  12. The impact of industrial waste of Venezuelan marine water

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Frank [Bechtel Corp., Gaithersburg, MD (United States); Guarino, Carmen [Guarino Engineers, Philadelphia, PA (United States); Arias, Marlene [Ministerio del Ambiente y Recursos Naturales Renovables, Caracas (Venezuela)

    1994-12-31

    The Puerto Cabello-Marron coastal area of Venezuela is an ideal location for industries that require large land areas, water, marine transportation, minimum habitation, cooling water, etc. However, mercury spills have produced concern in the entire coastal zone. The area was investigated and negative impacts were identified. Consequently, recommendations for waste water management were proceeded. 13 refs., 6 figs., 3 tabs.

  13. Mitigating the impact of swimming pools on domestic water demand

    African Journals Online (AJOL)

    need to implement desalination schemes by ensuring water is used in in a 'fit for purpose' manner. This study therefore aims to better understand the impact that pools have on residential water demand through the analysis of metered water demand records and end-use modelling. The study site was the Liesbeek.

  14. Seatbelt use to save money: Impact on hospital costs of occupants who are involved in motor vehicle crashes.

    Science.gov (United States)

    Han, Guang-Ming; Newmyer, Ashley; Qu, Ming

    2017-03-01

    Seatbelt use is the single most effective way to save lives in motor vehicle crashes (MVC). However, although safety belt laws have been enacted in many countries, seatbelt usage throughout the world remains below optimal levels, and educational interventions may be needed to further increase seatbelt use. In addition to reducing crash-related injuries and deaths, reduced medical expenditures resulting from seatbelt use are an additional benefit that could make such interventions cost-effective. Accordingly, the objective of this study was to estimate the correlation between seatbelt use and hospital costs of injuries involved in MVC. The data used in this study were from the Nebraska CODES database for motor vehicle crashes that occurred between 2004 and 2013. The hospital cost information and information about other factors were obtained by linking crash reports with hospital discharge data. A multivariable regression model was performed for the association between seatbelt use and hospital costs. Mean hospital costs were significantly lower among motor vehicle occupants using a lap-shoulder seatbelt ($2909), lap-only seatbelt ($2289), children's seatbelt ($1132), or booster ($1473) when compared with those not using any type of seatbelt ($7099). After adjusting for relevant factors, there were still significantly decreased hospital costs for motor vehicle occupants using a lap-shoulder seatbelt (84.7%), lap-only seatbelt (74.1%), shoulder-only seatbelt (40.6%), children's seatbelt (95.9%), or booster (82.8%) compared to those not using a seatbelt. Seatbelt use is significantly associated with reduced hospital costs among injured MVC occupants. The findings in this study will provide important educational information for emergency department nurses who can encourage safety belt use for vehicle occupants. Copyright © 2016. Published by Elsevier Ltd.

  15. Assessing the impact of sinus-saving modifications of carotid endarterectomy on autonomic regulation and central hemodynamics

    Directory of Open Access Journals (Sweden)

    А. А. Фокин

    2016-03-01

    Full Text Available BackgroundSuch complications as myocardial infarction, hyperperfusion syndrome and its effects, postoperative hematomes constitute a life-threatening event during early follow-up of carotid surgery. One of the main risk factors for these complications is a variation of central hemodynamics, especially that leading to arterial hypertension.ObjectiveThe study aimed to evaluate the safety of carotid sinus surgery as a way of preventing arterial hypertension after carotid artery reconstructions. The other objective was to compare the resultant data with the heart rate variations obtained during rhythmocardiography.MethodsThe study focused on central hemodynamics indicators and included 290 cases. All patients were broken down in two groups. 167 patients of the first group underwent dissection of carotid sinus nerves. The carotid sinus nerves of patients from the second group (123 patients were kept intact. Analysis of autonomic regulation of 13 patients from the first group and 17 patients from the other one was then carried out, with the heart rate variations accurately estimated at the neurocardiological laboratory.ResultsOn the first postoperative day all hemodynamic indicators (such as SBP, DBP, pulse pressure, heart rate in the second group were lower than those in the first group of patients (p<0.05, while tending to recover by the third day. This fact kept postoperative complications to a minimum. The patients from the second group also demonstrated a lower activity of the sympathetic nervous system and a higher activity of the parasympathetic one. These results explain the difference between the central hemodynamic indicators in two groups.ConclusionCarotid sinus-saving surgery decreases the risk of early postoperative complications caused by arterial hypertension. 

  16. Seat belt use to save face: impact on drivers' body region and nature of injury in motor vehicle crashes.

    Science.gov (United States)

    Han, Guang-Ming; Newmyer, Ashley; Qu, Ming

    2015-01-01

    Seat belt use is the single most effective way to save lives and reduce injuries in motor vehicle crashes. However, some case reports described seat belt use as a double-edged sword because some injuries are related to seat belt use in motor vehicle crashes. To comprehensively understand the effects of seat belt use, we systemically investigated the association between seat belt use and injuries based on anatomic body region and type of injury in drivers involved in motor vehicle crashes. The injury information was obtained by linking crash reports with hospital discharge data and categorized by using the diagnosis codes based on the Barell injury diagnosis matrix. A total of 10,479 drivers (≥15 years) in passenger vehicles involved in motor vehicle crashes from 2006 to 2011 were included in this study. Seat belt use significantly reduced the proportions of traumatic brain injury (10.4% non-seat belt; 4.1% seat belt) and other head, face, and neck injury (29.3% non-seat belt; 16.6% seat belt) but increased the proportion of spine: thoracic to coccyx injury (17.9% non-seat belt; 35.5% seat belt). Although the proportion of spine: thoracic to coccyx injury was increased in drivers with seat belt use, the severity of injury was decreased, such as fracture (4.2% with seat belt use; 22.0% without seat belt use). Furthermore, the total medical charges decreased due to the change of injury profiles in drivers with seat belt use from a higher percentage of fractures (average cost for per case $26,352) to a higher percentage of sprains and/or strains ($1,897) with spine: thoracic to coccyx injury. This study provide a comprehensive picture for understanding the protective effect of seat belt use on injuries based on anatomic body region and type of injury in drivers involved in motor vehicle crashes.

  17. Water temperature impacts water consumption by range cattle in winter

    Science.gov (United States)

    Water consumption and DMI have been found to be positively correlated, which may interact with ingestion of cold water or grazed frozen forage due to transitory reductions in temperature of ruminal contents. The hypothesis underpinning the study explores the potential that cows provided warm drinkin...

  18. Water, sanitation and hygiene interventions for acute childhood diarrhea: a systematic review to provide estimates for the Lives Saved Tool.

    Science.gov (United States)

    Darvesh, Nazia; Das, Jai K; Vaivada, Tyler; Gaffey, Michelle F; Rasanathan, Kumanan; Bhutta, Zulfiqar A

    2017-11-07

    In the Sustainable Development Goals (SDGs) era, there is growing recognition of the responsibilities of non-health sectors in improving the health of children. Interventions to improve access to clean water, sanitation facilities, and hygiene behaviours (WASH) represent key opportunities to improve child health and well-being by preventing the spread of infectious diseases and improving nutritional status. We conducted a systematic review of studies evaluating the effects of WASH interventions on childhood diarrhea in children 0-5 years old. Searches were run up to September 2016. We screened the titles and abstracts of retrieved articles, followed by screening of the full-text reports of relevant studies. We abstracted study characteristics and quantitative data, and assessed study quality. Meta-analyses were performed for similar intervention and outcome pairs. Pooled analyses showed diarrhea risk reductions from the following interventions: point-of-use water filtration (pooled risk ratio (RR): 0.47, 95% confidence interval (CI): 0.36-0.62), point-of-use water disinfection (pooled RR: 0.69, 95% CI: 0.60-0.79), and hygiene education with soap provision (pooled RR: 0.73, 95% CI: 0.57-0.94). Quality ratings were low or very low for most studies, and heterogeneity was high in pooled analyses. Improvements to the water supply and water disinfection at source did not show significant effects on diarrhea risk, nor did the one eligible study examining the effect of latrine construction. Various WASH interventions show diarrhea risk reductions between 27% and 53% in children 0-5 years old, depending on intervention type, providing ample evidence to support the scale-up of WASH in low and middle-income countries (LMICs). Due to the overall low quality of the evidence and high heterogeneity, further research is required to accurately estimate the magnitude of the effects of these interventions in different contexts.

  19. [The impact of nutrient prosperity of the body on the alimentary status of junior high school pupils within the framework of the implementation of health-saving technologies].

    Science.gov (United States)

    Setko, A G; Trishina, S P; Timoshenko, E P

    2014-01-01

    In the work there was performed the assessment of the actual nutrition of high school pupils, its impact on the nutritional status and efficiency of the implementation in the modern educational process certified vitamin-mineral complexes as a health-saving component of the optimization of rations. The introduction of additional vitamin-mineral complexes into the food of high school pupils was established to lead to the optimization of nutrition content by most of macro- and micronutrients, which in turn contributed to the increase in the number of children with an adequate supply of the body with vitamins and also contributed to the increase of students with a satisfactory adaptation by 44.3%, cases having sufficient performance reserves by 48.4% and the decrease of the number of children with sharply reduced functional reserves by 4 times.

  20. Impact analysis of government investment on water projects in the arid Gansu Province of China

    Science.gov (United States)

    Wang, Zhan; Deng, Xiangzheng; Li, Xiubin; Zhou, Qing; Yan, Haiming

    In this paper, we introduced three-nested Constant Elasticity of Substitution (CES) production function into a static Computable General Equilibrium (CGE) Model. Through four levels of factor productivity, we constructed three nested production function of land use productivity in the conceptual modeling frameworks. The first level of factor productivity is generated by the basic value-added land. On the second level, factor productivity in each sector is generated by human activities that presents human intervention to the first level of factor productivity. On the third level of factor productivity, water allocation reshapes the non-linear structure of transaction among first and second levels. From the perspective of resource utilization, we examined the economic efficiency of water allocation. The scenario-based empirical analysis results show that the three-nested CES production function within CGE model is well-behaved to present the economy system of the case study area. Firstly, water scarcity harmed economic production. Government investment on water projects in Gansu thereby had impacts on economic outcomes. Secondly, huge governmental financing on water projects bring depreciation of present value of social welfare. Moreover, water use for environment adaptation pressures on water supply. The theoretical water price can be sharply increased due to the increasing costs of factor inputs. Thirdly, water use efficiency can be improved by water projects, typically can be benefited from the expansion of water-saving irrigation areas even in those expanding dry area in Gansu. Therefore, increasing governmental financing on water projects can depreciate present value of social welfare but benefit economic efficiency for future generation.

  1. Impact of emerging clean vehicle system on water stress

    International Nuclear Information System (INIS)

    Cai, Hua; Hu, Xiaojun; Xu, Ming

    2013-01-01

    Graphical abstract: Display Omitted - Highlights: • Clean vehicles may increase US water consumption up to 2810 billion gallons/year. • Large-scale clean vehicle adoption could lead to severe regional water stress. • Fuel choice for clean vehicle is crucial in minimizing regional water stress. • Regional optimization illustrated the importance of regional consideration. - Abstract: While clean vehicles (i.e., vehicles powered by alternative fuels other than fossil fuels) offer great potential to reduce greenhouse gas emissions from gasoline-based vehicles, the associated impact on water resources has not yet been fully assessed. This research provides a systematic evaluation of the impact of a fully implemented clean vehicle system on national and state-level water demand and water stress. On the national level, based on existing policies, transitioning the current gasoline-based transportation into one with clean vehicles will increase national annual water consumption by 1950–2810 billion gallons of water, depending on the market penetration of electric vehicles. On the state level, variances of water efficiency in producing different fuels are significant. The fuel choice for clean vehicle development is especially crucial for minimizing water stress increase in states with already high water stress, high travel demands, and significant variations in water efficiency in producing different alternative fuels. Current development of clean vehicle infrastructure, however, has not reflected these state-level variations. This study takes an optimization approach to further evaluate impacts on state-level water stress from a fully implemented clean vehicle system and identified potential roles (fuel producer or consumer) states may play in real world clean vehicle development scenario. With an objective of minimizing overall water stress impact, our optimization model aims to provide an analytical framework to better assess impacts on state-level water

  2. Water in Tektites and Impact Glasses by FTIR Spectrometry

    Science.gov (United States)

    Beran, Anton; Koeberl, Christian

    1997-03-01

    To improve the scarce data base of water content in tektites and impact glasses, we analyzed 26 tektites from all four strewn fields and 25 impact glass samples for their water content. We used the fourier transformed IR (FTIR) spectrometry method, which permits measurement of areas of about 40 mm in diameter. Our results show that the tektites have water contents ranging from 0.002 to 0.030 wt% (average 0.014+/-0.008 wt%). Ivory Coast tektites have the lowest water abundances (0.002-0.003 wt%), and Muong Nong-type indochinites and some North American tektites having the highest contents (up to about 0.03 wt%). Impact glass samples (from the Zhamanshin, Aouelloul, and Rio Cuarto craters) yielded water contents of 0.008 to 0.13 wt% H2O. Typical impact glasses from the Aouelloul and Zhamanshin craters have low water contents (0.008 to 0.063 wt%). Libyan Desert Glasses and Rio Cuarto glasses have higher water contents (about 0.11 wt%). We also analyzed glasses of unknown origin (e.g., urengoites; glass fragments from Tikal), which showed very low water contents, in agreement with an origin by impact. Our data confirm that all tektites found on land have very low water contents (<0.03 wt% water), while impact glasses have slightly higher water contents. Both glass types are very dry compared to volcanic glasses. This study confirms that the low water contents (<0.05 wt%) of such glasses can be considered good evidence for an origin by impact.

  3. Identification and assessment of potential water quality impact factors for drinking-water reservoirs.

    Science.gov (United States)

    Gu, Qing; Deng, Jinsong; Wang, Ke; Lin, Yi; Li, Jun; Gan, Muye; Ma, Ligang; Hong, Yang

    2014-06-10

    Various reservoirs have been serving as the most important drinking water sources in Zhejiang Province, China, due to the uneven distribution of precipitation and severe river pollution. Unfortunately, rapid urbanization and industrialization have been continuously challenging the water quality of the drinking-water reservoirs. The identification and assessment of potential impacts is indispensable in water resource management and protection. This study investigates the drinking water reservoirs in Zhejiang Province to better understand the potential impact on water quality. Altogether seventy-three typical drinking reservoirs in Zhejiang Province encompassing various water storage levels were selected and evaluated. Using fifty-two reservoirs as training samples, the classification and regression tree (CART) method and sixteen comprehensive variables, including six sub-sets (land use, population, socio-economy, geographical features, inherent characteristics, and climate), were adopted to establish a decision-making model for identifying and assessing their potential impacts on drinking-water quality. The water quality class of the remaining twenty-one reservoirs was then predicted and tested based on the decision-making model, resulting in a water quality class attribution accuracy of 81.0%. Based on the decision rules and quantitative importance of the independent variables, industrial emissions was identified as the most important factor influencing the water quality of reservoirs; land use and human habitation also had a substantial impact on water quality. The results of this study provide insights into the factors impacting the water quality of reservoirs as well as basic information for protecting reservoir water resources.

  4. Consuming the savings: Water conservation in a vegetation barrier system at the Central Plateau in Burkina Faso

    OpenAIRE

    Spaan, W.

    2003-01-01

    The vast majority of land users at the Central Plateau of Burkina Faso make a living by farming small plots, where mainly staple crops are produced for subsistence use. Both area interventions and line interventions comprising indigenous techniques as well as introduced techniques can be encountered at the Central Plateau and have proved to be effective. There is a preference for semi-permeable line measures that slow down runoff and prevent water logging in wet periods.In order to ascertain ...

  5. Water-saving ground cover rice production system reduces net greenhouse gas fluxes in an annual rice-based cropping system

    Science.gov (United States)

    Yao, Z.; Du, Y.; Tao, Y.; Zheng, X.; Liu, C.; Lin, S.; Butterbach-Bahl, K.

    2014-11-01

    To safeguard food security and preserve precious water resources, the technology of water-saving ground cover rice production system (GCRPS) is being increasingly adopted for rice cultivation. However, changes in soil water status and temperature under GCRPS may affect soil biogeochemical processes that control the biosphere-atmosphere exchanges of methane (CH4), nitrous oxide (N2O) and carbon dioxide (CO2). The overall goal of this study is to better understand how net ecosystem greenhouse gas exchanges (NEGE) and grain yields are affected by GCRPS in an annual rice-based cropping system. Our evaluation was based on measurements of the CH4 and N2O fluxes and soil heterotrophic respiration (CO2 emissions) over a complete year, and the estimated soil carbon sequestration intensity for six different fertilizer treatments for conventional paddy and GCRPS. The fertilizer treatments included urea application and no N fertilization for both conventional paddy (CUN and CNN) and GCRPS (GUN and GNN), and solely chicken manure (GCM) and combined urea and chicken manure applications (GUM) for GCRPS. Averaging across all the fertilizer treatments, GCRPS increased annual N2O emission and grain yield by 40 and 9%, respectively, and decreased annual CH4 emission by 69%, while GCRPS did not affect soil CO2 emissions relative to the conventional paddy. The annual direct emission factors of N2O were 4.01, 0.09 and 0.50% for GUN, GCM and GUM, respectively, and 1.52% for the conventional paddy (CUN). The annual soil carbon sequestration intensity under GCRPS was estimated to be an average of -1.33 Mg C ha-1 yr-1, which is approximately 44% higher than the conventional paddy. The annual NEGE were 10.80-11.02 Mg CO2-eq ha-1 yr-1 for the conventional paddy and 3.05-9.37 Mg CO2-eq ha-1 yr-1 for the GCRPS, suggesting the potential feasibility of GCRPS in reducing net greenhouse effects from rice cultivation. Using organic fertilizers for GCRPS considerably reduced annual emissions of CH4

  6. Linking economic water use, freshwater ecosystem impacts, and virtual water trade in a Great Lakes watershed

    Science.gov (United States)

    Mubako, S. T.; Ruddell, B. L.; Mayer, A. S.

    2013-12-01

    The impact of human water uses and economic pressures on freshwater ecosystems is of growing interest for water resource management worldwide. This case study for a water-rich watershed in the Great Lakes region links the economic pressures on water resources as revealed by virtual water trade balances to the nature of the economic water use and the associated impacts on the freshwater ecosystem. A water accounting framework that combines water consumption data and economic data from input output tables is applied to quantify localized virtual water imports and exports in the Kalamazoo watershed which comprises ten counties. Water using economic activities at the county level are conformed to watershed boundaries through land use-water use relationships. The counties are part of a region implementing the Michigan Water Withdrawal Assessment Process, including new regulatory approaches for adaptive water resources management under a riparian water rights framework. The results show that at local level, there exists considerable water use intensity and virtual water trade balance disparity among the counties and between water use sectors in this watershed. The watershed is a net virtual water importer, with some counties outsourcing nearly half of their water resource impacts, and some outsourcing nearly all water resource impacts. The largest virtual water imports are associated with agriculture, thermoelectric power generation and industry, while the bulk of the exports are associated with thermoelectric power generation and commercial activities. The methodology is applicable to various spatial levels ranging from the micro sub-watershed level to the macro Great Lakes watershed region, subject to the availability of reliable water use and economic data.

  7. Commercial Integrated Heat Pump with Thermal Storage --Demonstrate Greater than 50% Average Annual Energy Savings, Compared with Baseline Heat Pump and Water Heater (Go/No-Go) FY16 4th Quarter Milestone Report

    Energy Technology Data Exchange (ETDEWEB)

    Shen, Bo [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Baxter, Van D. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Rice, C. Keith [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Abu-Heiba, Ahmad [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-03-01

    For this study, we authored a new air source integrated heat pump (AS-IHP) model in EnergyPlus, and conducted building energy simulations to demonstrate greater than 50% average energy savings, in comparison to a baseline heat pump with electric water heater, over 10 US cities, based on the EnergyPlus quick-service restaurant template building. We also assessed water heating energy saving potentials using ASIHP versus gas heating, and pointed out climate zones where AS-IHPs are promising.

  8. Public Interest Energy Research (PIER) Program Development of a Computer-based Benchmarking and Analytical Tool. Benchmarking and Energy & Water Savings Tool in Dairy Plants (BEST-Dairy)

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Tengfang [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Flapper, Joris [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Ke, Jing [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Kramer, Klaas [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Sathaye, Jayant [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2012-02-01

    The overall goal of the project is to develop a computer-based benchmarking and energy and water savings tool (BEST-Dairy) for use in the California dairy industry - including four dairy processes - cheese, fluid milk, butter, and milk powder. BEST-Dairy tool developed in this project provides three options for the user to benchmark each of the dairy product included in the tool, with each option differentiated based on specific detail level of process or plant, i.e., 1) plant level; 2) process-group level, and 3) process-step level. For each detail level, the tool accounts for differences in production and other variables affecting energy use in dairy processes. The dairy products include cheese, fluid milk, butter, milk powder, etc. The BEST-Dairy tool can be applied to a wide range of dairy facilities to provide energy and water savings estimates, which are based upon the comparisons with the best available reference cases that were established through reviewing information from international and national samples. We have performed and completed alpha- and beta-testing (field testing) of the BEST-Dairy tool, through which feedback from voluntary users in the U.S. dairy industry was gathered to validate and improve the tool's functionality. BEST-Dairy v1.2 was formally published in May 2011, and has been made available for free downloads from the internet (i.e., http://best-dairy.lbl.gov). A user's manual has been developed and published as the companion documentation for use with the BEST-Dairy tool. In addition, we also carried out technology transfer activities by engaging the dairy industry in the process of tool development and testing, including field testing, technical presentations, and technical assistance throughout the project. To date, users from more than ten countries in addition to those in the U.S. have downloaded the BEST-Dairy from the LBNL website. It is expected that the use of BEST-Dairy tool will advance understanding of energy and

  9. Underground coal mine subsidence impacts on surface water

    International Nuclear Information System (INIS)

    Stump, D.E. Jr.

    1992-01-01

    This paper reports that subsidence from underground coal mining alters surface water discharge and availability. The magnitude and areal extent of these impacts are dependent on many factors, including the amount of subsidence, topography, geology, climate, surface water - ground water interactions, and fractures in the overburden. There alterations may have positive and/or negative impacts. One of the most significant surface water impacts occurred in July 1957 near West Pittston, Pennsylvania. Subsidence in the Knox Mine under the Coxton Yards of the Lehigh Valley Railroad allowed part of the discharge in the Susquehanna River to flow into the mine and create a crater 200 feet in diameter and 300 feet deep. Fourteen railroad gondola cars fell into the hole which was eventually filled with rock, sand, and gravel. Other surface water impacts from subsidence may include the loss of water to the ground water system, the gaining of water from the ground water system, the creation of flooded subsidence troughs, the increasing of impoundment storage capacity, the relocation of water sources (springs), and the alteration of surface drainage patterns

  10. Impact on rock, water, and air

    Science.gov (United States)

    Ahrens, Thomas J.; O'Keefe, John D.

    1986-01-01

    It is argued that the meteorite-impact accretion is a process vital to the formation of the earth and terrestrial planets and that the evolution of the surfaces with time is affected by impacts. The paper reviews the previous calculations of Ahrens and O'Keefe of the effect of meteorite impacts on the rock surface of the earth, on the ocean, and the atmosphere, and presents some new work on the mechanism of impact-induced atmospheric escape. Using the similarity solution, the mass of atmosphere lost due to the impacts of 1 to 5 kg radius projectiles is calculated. It is shown that no atmosphere is lost for surface sources with energies less than 10 to the 27th erg. Impact of objects in the energy range 10 to the 27th to 10 to the 30th ergs causes gas losses of 10 to the 11th to 10 to the 14th kg (i.e., 10 to the -8th to 10 to the -5th of the total present atmospheric budget). Impact energies of greater than 10 to the 30th ergs cause little increase in atmospheric loss.

  11. Potential Well Water Contaminants and Their Impacts

    Science.gov (United States)

    The first step to protect your health and the health of your family is learning about what may pollute your source of drinking water. Potential contamination may occur naturally, or as a result of human activity.

  12. Energy saving and cost saving cooling; Energie und Kosten sparende Kuehlung

    Energy Technology Data Exchange (ETDEWEB)

    Koenig, Klaus W. [Architektur- und Fachpressebuero Klaus W. Koenig, Ueberlingen (Germany)

    2012-07-01

    In the case of cost reduction, energy conservation and resource savings, rain water is an ideal medium offering more advantages in comparison to the cooling with drinking water. There are no fees for the drinking water and drainage of rain water. It is not necessary to soften rain water so that further operational costs for the treatment and drainage of waste water can be saved. The avoidance of the related material flows and necessary energy is a practiced environmental protection and climate protection.

  13. Compounding Impacts of Human-Induced Water Stress and Climate Change on Water Availability

    Science.gov (United States)

    Mehran, Ali; AghaKouchak, Amir; Nakhjiri, Navid; Stewardson, Michael J.; Peel, Murray C.; Phillips, Thomas J.; Wada, Yoshihide; Ravalico, Jakin K.

    2017-01-01

    The terrestrial phase of the water cycle can be seriously impacted by water management and human water use behavior (e.g., reservoir operation, and irrigation withdrawals). Here we outline a method for assessing water availability in a changing climate, while explicitly considering anthropogenic water demand scenarios and water supply infrastructure designed to cope with climatic extremes. The framework brings a top-down and bottom-up approach to provide localized water assessment based on local water supply infrastructure and projected water demands. When our framework is applied to southeastern Australia we find that, for some combinations of climatic change and water demand, the region could experience water stress similar or worse than the epic Millennium Drought. We show considering only the influence of future climate on water supply, and neglecting future changes in water demand and water storage augmentation might lead to opposing perspectives on future water availability. While human water use can significantly exacerbate climate change impacts on water availability, if managed well, it allows societies to react and adapt to a changing climate. The methodology we present offers a unique avenue for linking climatic and hydrologic processes to water resource supply and demand management and other human interactions.

  14. Taxation and the household saving rate: evidence from OECD countries

    Directory of Open Access Journals (Sweden)

    Vito Tanzi

    2000-03-01

    Full Text Available This paper analyzes anew the relationship between taxation and the household saving rate. On the basis of standard savings and tax revenue data from a sample of OECD countries, it provides compelling empirical evidence of a powerful impact of taxes on household savings. In particular, income taxes are shown to affect negatively the household saving rate much more than consumption taxes.

  15. Freshwater savings from marine protein consumption

    International Nuclear Information System (INIS)

    Gephart, Jessica A; Pace, Michael L; D’Odorico, Paolo

    2014-01-01

    Marine fisheries provide an essential source of protein for many people around the world. Unlike alternative terrestrial sources of protein, marine fish production requires little to no freshwater inputs. Consuming marine fish protein instead of terrestrial protein therefore represents freshwater savings (equivalent to an avoided water cost) and contributes to a low water footprint diet. These water savings are realized by the producers of alternative protein sources, rather than the consumers of marine protein. This study quantifies freshwater savings from marine fish consumption around the world by estimating the water footprint of replacing marine fish with terrestrial protein based on current consumption patterns. An estimated 7 600 km 3  yr −1 of water is used for human food production. Replacing marine protein with terrestrial protein would require an additional 350 km 3  yr −1 of water, meaning that marine protein provides current water savings of 4.6%. The importance of these freshwater savings is highly uneven around the globe, with savings ranging from as little as 0 to as much as 50%. The largest savings as a per cent of current water footprints occur in Asia, Oceania, and several coastal African nations. The greatest national water savings from marine fish protein occur in Southeast Asia and the United States. As the human population increases, future water savings from marine fish consumption will be increasingly important to food and water security and depend on sustainable harvest of capture fisheries and low water footprint growth of marine aquaculture. (paper)

  16. Impacts of invasive alien plants on water quality, with particular ...

    African Journals Online (AJOL)

    Impacts of invasive alien plants on water quality, with particular emphasis on South ... their spread results in native species loss, increased biomass and fire intensity ... areas by changing the size, distribution and plant chemistry of the biomass.

  17. Elevated carbon dioxide: impacts on soil and plant water relations

    National Research Council Canada - National Science Library

    Kirkham, M. B

    2011-01-01

    .... Focusing on this critical issue, Elevated Carbon Dioxide: Impacts on Soil and Plant Water Relations presents research conducted on field-grown sorghum, winter wheat, and rangeland plants under elevated CO2...

  18. Federal Aviation Administration retained savings program proposal

    International Nuclear Information System (INIS)

    Hostick, D.J.; Larson, L.L.; Hostick, C.J.

    1998-03-01

    Federal legislation allows federal agencies to retain up to 50% of the savings associated with implementing energy efficiency and water conservation measures and practices. Given budget pressures to reduce expenditures, the use of retained savings to fund additional projects represents a source of funds outside of the traditional budget cycle. The Southwest Region Federal Aviation Administration (FAA) has tasked Pacific Northwest National Laboratory (PNNL) to develop a model retained savings program for Southwest Region FAA use and as a prototype for consideration by the FAA. PNNL recommends the following steps be taken in developing a Southwest Region FAA retained savings program: Establish a retained savings mechanism. Determine the level at which the retained savings should be consolidated into a fund. The preliminary recommendation is to establish a revolving efficiency loan fund at the regional level. Such a mechanism allows some consolidation of savings to fund larger projects, while maintaining a sense of facility ownership in that the funds will remain within the region

  19. Can switching fuels save water? A life cycle quantification of freshwater consumption for Texas coal- and natural gas-fired electricity

    International Nuclear Information System (INIS)

    Grubert, Emily A; Beach, Fred C; Webber, Michael E

    2012-01-01

    Thermal electricity generation is a major consumer of freshwater for cooling, fuel extraction and air emissions controls, but the life cycle water impacts of different fossil fuel cycles are not well understood. Much of the existing literature relies on decades-old estimates for water intensity, particularly regarding water consumed for fuel extraction. This work uses contemporary data from specific resource basins and power plants in Texas to evaluate water intensity at three major stages of coal and natural gas fuel cycles: fuel extraction, power plant cooling and power plant emissions controls. In particular, the water intensity of fuel extraction is quantified for Texas lignite, conventional natural gas and 11 unconventional natural gas basins in Texas, including major second-order impacts associated with multi-stage hydraulic fracturing. Despite the rise of this water-intensive natural gas extraction method, natural gas extraction appears to consume less freshwater than coal per unit of energy extracted in Texas because of the high water intensity of Texas lignite extraction. This work uses new resource basin and power plant level water intensity data to estimate the potential effects of coal to natural gas fuel switching in Texas’ power sector, a shift under consideration due to potential environmental benefits and very low natural gas prices. Replacing Texas’ coal-fired power plants with natural gas combined cycle plants (NGCCs) would reduce annual freshwater consumption in the state by an estimated 53 billion gallons per year, or 60% of Texas coal power’s water footprint, largely due to the higher efficiency of NGCCs. (letter)

  20. Maximizing the value of limited irrigation water: USDA researchers study how producers on limited irrigation can save water and be profitable

    Science.gov (United States)

    Water shortages are responsible for the greatest crop losses around the world and are expected to worsen. In arid areas where agriculture is dependent on irrigation, various forms of deficit irrigation management have been suggested to optimize crop yields for available soil water. The relationshi...

  1. Cost Analysis of Water Transport for Climate Change Impact Assessment

    Science.gov (United States)

    Szaleniec, V.; Buytaert, W.

    2012-04-01

    It is expected that climate change will have a strong impact on water resources worldwide. Many studies exist that couple the output of global climate models with hydrological models to assess the impact of climate change on physical water availability. However, the water resources topology of many regions and especially that of cities can be very complex. Changes in physical water availability do therefore not translate easily into impacts on water resources for cities. This is especially the case for cities with a complex water supply topology, for instance because of geographical barriers, strong gradients in precipitation patterns, or competing water uses. In this study we explore the use of cost maps to enable the inclusion of water supply topologies in climate change impact studies. We use the city of Lima as a case study. Lima is the second largest desert city in the world. Although Peru as a whole has no water shortage, extreme gradients exist. Most of the economic activities including the city of Lima are located in the coastal desert. This region is geographically disconnected from the wet Amazon basin because of the Andes mountain range. Hence, water supply is precarious, provided by a complex combination of high mountain ecosystems including wetlands and glaciers, as well as groundwater aquifers depending on recharge from the mountains. We investigate the feasibility and costs of different water abstraction scenarios and the impact of climate change using cost functions for different resources. The option of building inter basins tunnels across the Andes is compared to the costs of desalinating seawater from the Pacific Ocean under different climate change scenarios and population growth scenarios. This approach yields recommendations for the most cost-effective options for the future.

  2. Energy to save the world: use of portable nuclear energy for hydrocarbon recovery, electrical generation, and water reclamation

    International Nuclear Information System (INIS)

    Deal, John R. Grizz; Pearson, Cody

    2010-01-01

    Nuclear-based electric and steam generation has traditionally been limited to large-scale plants that require enormous capital and infrastructure. A new wave of nuclear reactors is ready for introduction into locales and industry that previously have been unable to take advantage of the clean, safe, and cheap energy nuclear affords. One of these 'new kids on the block' is the Hyperion Power Module (HPM), an original design developed in Los Alamos National Laboratory. Through the U.S. government's technology transfer initiative, the exclusive license to develop and commercialize the invention has been granted to Hyperion Power Generation (HPG). The Hyperion Power 'Module' was specifically designed for applications in remote areas where cost, safety, and security is of concern. The Hyperion Power Module, a self-contained, self-regulating reactor, is breaking new ground in the nuclear industry and filling a heretofore-unmet need for moderately sized power applications either distributed or dedicated. Employing proven science in a new way, Hyperion provides a safe, clean power solution for remote locations or locations that must currently employ less than satisfactory alternatives. Generating nearly 70 megawatts of thermal energy and from 25 to 30 megawatts of electrical energy, the Power Module is the world's first small mobile reactor, taking advantage of the natural laws of chemistry and physics and leveraging all of the engineering and technology advancements made over the last fifty years. The HPM is comparable in size to a deep residential hot tub and is designed to be cited underground in a containment vessel. The CEO of Hyperion will outline the benefits of small nuclear reactors by examining their impact on the U.S. economy, national security, the environment, remote regions, and developing nations. The speaker will also focus on the four main applications of the Hyperion Reactor: military bases; oil and gas recovery and refining; remote communities lacking

  3. Impacts of Personal Experience: Informing Water Conservation Extension Education

    Science.gov (United States)

    Huang, Pei-wen; Lamm, Alexa J.

    2017-01-01

    Extension educators have diligently educated the general public about water conservation. Incorporating audiences' personal experience into educational programming is recommended as an approach to effectively enhance audiences' adoption of water conservation practices. To ensure the impact on the audiences and environment, understanding the…

  4. Economic Impacts of Surface Mining on Household Drinking Water Supplies

    Science.gov (United States)

    This report provides information on the economic and social impacts of contaminated surface and ground water supplies on residents and households near surface mining operations. The focus is on coal slurry contamination of water supplies in Mingo County, West Virginia, and descr...

  5. Impact of pipes networks simplification on water hammer phenomenon

    Indian Academy of Sciences (India)

    Simplification of water supply networks is an indispensible design step to make the original network easier to be analysed. The impact of networks' simplification on water hammer phenomenon is investigated. This study uses two loops network with different diameters, thicknesses, and roughness coefficients. The network is ...

  6. Macrophyte abundance and water quality status of three impacted ...

    African Journals Online (AJOL)

    Assessment of macrophyte abundance and water quality of three impacted inlet streams along Ikpa River Basin were investigated. A 5m x 5m quadrat through systematic sampling was used to sample the vegetation for density and frequency of species. Sediment and water samples were collected and analyzed using ...

  7. The Environmental Impact of Oilfield Formation Water on a ...

    African Journals Online (AJOL)

    A comparative analysis of the physico-chemical parameters of treated oilfield formation water and that of a freshwater stream with no previous history of pollution from oil exploration activities was determined. The environmental impact resulting from the discharge of treated oilfield formation water into freshwater samples ...

  8. Water Landing Impact of Recovery Space Capsule: A Research Overview

    OpenAIRE

    Nakano, Eiichiro; Uchikawa, Hideaki; Tanno, Hideyuki; Sugimoto, Ryu

    2014-01-01

    For the design of a manned or cargo space capsule, it is important to precisely estimate the Earth landing loads to the crew or cargo, and to limit the loads to within a permissible range. Water landing simulations and scale-model water landing tests with varying conditions for descending velocity, pitch angle, and horizontal velocity during splashdown were conducted to estimate the magnitude of water impact on the recovery space capsule. This paper describes the results of the simulation and...

  9. Energy to save the world: use of portable nuclear energy for hydrocarbon recovery, electrical generation, and water reclamation

    Energy Technology Data Exchange (ETDEWEB)

    Deal, John R. Grizz; Pearson, Cody [Hyperion Power Generation, Inc., 369 Montezuma Ave, Suite 508, Santa Fe, NM 87501 (United States)

    2010-07-01

    Nuclear-based electric and steam generation has traditionally been limited to large-scale plants that require enormous capital and infrastructure. A new wave of nuclear reactors is ready for introduction into locales and industry that previously have been unable to take advantage of the clean, safe, and cheap energy nuclear affords. One of these 'new kids on the block' is the Hyperion Power Module (HPM), an original design developed in Los Alamos National Laboratory. Through the U.S. government's technology transfer initiative, the exclusive license to develop and commercialize the invention has been granted to Hyperion Power Generation (HPG). The Hyperion Power 'Module' was specifically designed for applications in remote areas where cost, safety, and security is of concern. The Hyperion Power Module, a self-contained, self-regulating reactor, is breaking new ground in the nuclear industry and filling a heretofore-unmet need for moderately sized power applications either distributed or dedicated. Employing proven science in a new way, Hyperion provides a safe, clean power solution for remote locations or locations that must currently employ less than satisfactory alternatives. Generating nearly 70 megawatts of thermal energy and from 25 to 30 megawatts of electrical energy, the Power Module is the world's first small mobile reactor, taking advantage of the natural laws of chemistry and physics and leveraging all of the engineering and technology advancements made over the last fifty years. The HPM is comparable in size to a deep residential hot tub and is designed to be cited underground in a containment vessel. The CEO of Hyperion will outline the benefits of small nuclear reactors by examining their impact on the U.S. economy, national security, the environment, remote regions, and developing nations. The speaker will also focus on the four main applications of the Hyperion Reactor: military bases; oil and gas recovery and refining

  10. The impact of water vapour on climate

    International Nuclear Information System (INIS)

    Zittel, W.; Altmann, M.

    1994-01-01

    Do water vapour emissions from a solar hydrogen system affect the climate? This question was investigated by the authors. They state: The comparison with natural emissions by evaporation shows that emissions caused by energy generation, regardless of whether they stem from fossil, nuclear or regenerative energy systems, are negligible with a proportion of 0.005%. On the other hand, carbon dioxide emissions with a proportion of 4%, constitute a factor which already impedes the natural cycle. (orig.) [de

  11. Impacts of mining on water and soil.

    Science.gov (United States)

    Warhate, S R; Yenkie, M K N; Pokale, W K

    2007-04-01

    Out of seven coal mines situated in Wardha River Valley located at Wani (Dist. Yavatmal), five open caste coal mines are run by Western Coal Field Ltd, India. The results of 25 water and 19 soil samples (including one over burden) from Nilapur, Bramhani, Kolera, Gowari, Pimpari and Aheri for their pH, TDS, hardness, alkalinity, fluoride, chloride, nitrite, nitrate, phosphate, sulfate, cadmium, lead, zinc, copper, nickel, arsenic, manganese, sodium and potassium are studied in the present work. Statistical analysis and graphical presentation of the results are discussed in this paper.

  12. Impact of industrial effluents on surface waters

    International Nuclear Information System (INIS)

    Ahmed, K.

    2000-01-01

    The indiscriminate discharge of untreated municipal and industrial effluents has given rise to serious problems of water pollution and human health in Pakistan. The City of Lahore discharges about 365 mgd of wastewater with a BOD load of 250 tons per day, without treatment, into Ravi river. Because of the untreated industrial discharges, river Ravi is devoid of dissolved oxygen through most of its react between Lahore and Upper Chenab Canal under low flow conditions. Pollution levels can be controlled if each industry treats its own wastewater prior to disposal, in accordance with NEQS (Pakistan). (author)

  13. Impacts of thermal and chemical discharges to surface water

    International Nuclear Information System (INIS)

    Stober, Q.J.

    1974-01-01

    Various aspects of thermal and chemical discharges to surface water are outlined. The major impacts of nuclear power plants on aquatic resources are disruption during construction, intake of cooling water, discharge problems, and interactions with other water users. The following topics are included under the heading, assessment of aquatic ecology: identification of flora and fauna; abundance of aquatic organisms; species-environment relationships; and identification of pre-existing environmental stress. The following topics are included under the heading, environmental effects of plant operation: entrapment of fish by cooling water; passage of plankton through cooling system; discharge area and thermal plume; chemical effluents; and plant construction. (U.S.)

  14. Impact of Climate Change on Water Resources in Taiwan

    OpenAIRE

    An-Yuan Tsai Wen-Cheng Huang

    2011-01-01

    This paper establishes a comprehensive assessment model to measure the regional impact of climate change on Taiwan¡¦s water resources. Working from future rainfall data simulated by Japan¡¦s high-resolution GCM model JMA/MRI TL959L60 in a SRES-A1B scenario, we first apply climate change to an assessment model of renewable water resources to estimate the volume of renewable water resources on a regional basis. We then conduct a water resources system simulation based on estimates of future wat...

  15. "You can also save a life!": children's drawings as a non-verbal assessment of the impact of cardiopulmonary resuscitation training.

    Science.gov (United States)

    Petriş, Antoniu Octavian; Tatu-Chiţoiu, Gabriel; Cimpoeşu, Diana; Ionescu, Daniela Florentina; Pop, Călin; Oprea, Nadia; Ţînţ, Diana

    2017-04-01

    Drawings made by training children into cardiopulmonary resuscitation (CPR) during the special education week called "School otherwise" can be used as non-verbal means of expression and communication to assess the impact of such training. We analyzed the questionnaires and drawings completed by 327 schoolchildren in different stages of education. After a brief overview of the basic life support (BLS) steps and after watching a video presenting the dynamic performance of the BLS sequence, subjects were asked to complete a questionnaire and make a drawing to express main CPR messages. Questionnaires were filled completely in 97.6 % and drawings were done in 90.2 % cases. Half of the subjects had already witnessed a kind of medical emergency and 96.94 % knew the correct "112" emergency phone number. The drawings were single images (83.81 %) and less cartoon strips (16.18 %). Main themes of the slogans were "Save a life!", "Help!", "Call 112!", "Do not be indifferent/insensible/apathic!" through the use of drawings interpretation, CPR trainers can use art as a way to build a better relation with schoolchildren, to connect to their thoughts and feelings and obtain the highest quality education.

  16. Telecardiology application in jordan: its impact on diagnosis and disease management, patients' quality of life, and time- and cost-savings.

    Science.gov (United States)

    Khader, Yousef Saleh; Jarrah, Mohamad Ismail; Al-Shudifat, Abde-Ellah M; Shdaifat, Amjad; Aljanabi, Husham; Al-Fakeh, Shadwan Ismeil; Turk, Elias Emil; Zayed, Khaled Ali; Al Quran, Hanadi A; Ellauzi, Ziad Mohd; Al Tahan, Mohammad

    2014-01-01

    Objectives. To assess the impact of live interactive telecardiology on diagnosis and disease management, patients' quality of life, and time- and cost-savings. Methods. All consecutive patients who attended or were referred to the teleclinics for suspected cardiac problems in two hospitals in remote areas of Jordan during the study period were included in the study. Patients were interviewed for relevant information and their quality of life was assessed during the first visit and 8 weeks after the last visit. Results. A total of 76 patients were included in this study. Final diagnosis and treatment plan were established as part of the telecardiology consultations in 71.1% and 77.3% of patients, respectively. Patients' travel was avoided for 38 (50.0%) who were managed locally. The majority of patients perceived that the visit to the telecardiology clinic results in less travel time (96.1%), less waiting time (98.1%), and lower cost (100.0%). Telecardiology consultations resulted in an improvement in the quality of life after two months of the first visit. Conclusions. Telecardiology care in remote areas of Jordan would improve the access to health care, help to reach proper diagnosis and establish the treatment plan, and improve the quality of life.

  17. Concepts. Environmental care through energy saving

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, G.

    1987-04-01

    Energy saving is an important ingredient of a preventive energy policy. It helps to reduce pollutants which are one essential source of damage done to air, water and soil. But even the environmentally damaging side effects of energy production, storage and distribution can be cut down through energy saving.

  18. Saving Energy. Managing School Facilities, Guide 3.

    Science.gov (United States)

    Department for Education and Employment, London (England). Architects and Building Branch.

    This guide offers information on how schools can implement an energy saving action plan to reduce their energy costs. Various low-cost energy-saving measures are recommended covering heating levels and heating systems, electricity demand reduction and lighting, ventilation, hot water usage, and swimming pool energy management. Additional…

  19. Three-Dimensional Simulations of Oblique Asteroid Impacts into Water

    Science.gov (United States)

    Gisler, G. R.; Ferguson, J. M.; Heberling, T.; Plesko, C. S.; Weaver, R.

    2016-12-01

    Waves generated by impacts into oceans may represent the most significant danger from near-earth asteroids and comets. For impacts near populated shores, the crown splash and subsequent waves, accompanied by sediment lofting and high winds, could be more damaging than storm surges from the strongest hurricanes. For asteroids less than 500 m in diameter that impact into deep water far from shores, the waves produced will be detectable over large distances, but probably not significantly dangerous. We present new three-dimensional simulations of oblique impacts into deep water, with trajectory angles ranging from 20 degrees to 60 degrees (where 90 degrees is vertical). These simulations are performed with the Los Alamos Rage hydrocode, and include atmospheric effects including ablation and airbursts. These oblique impact simulations are specifically performed in order to help determine whether there are additional dangers from the obliquity of impact not covered by previous two-dimensional studies. Water surface elevation profiles, surface pressures, and depth-averaged mass fluxes within the water are prepared for use in propagation studies.

  20. Environmental impacts and sustainability of degraded water reuse

    Energy Technology Data Exchange (ETDEWEB)

    Corwin, D.L.; Bradford, S.A. [USDA ARS, Riverside, CA (United States). US Salin Laboratory

    2008-09-15

    Greater urban demand for finite water resources to meet domestic, agricultural, industrial, and recreational needs; increased frequency of drought resulting from erratic weather; and continued degradation of available water resources from point and nonpoint sources of pollution have focused attention on the reuse of degraded waters as a potential water source. However, short- and long-term detrimental environmental impacts and sustainability of degraded water reuse are not well known or understood. These concerns led to the organization of the 2007 ASA-CSSA-SSSA Symposium entitled Environmental Impacts and Sustainability of Degraded Water Reuse. Out of this symposium came a special collection of 4 review papers and 12 technical research papers focusing on various issues associated with the reuse of agricultural drainage water, well water generated in the production of natural gas from coalbeds, municipal wastewater and biosolids, wastewater from confined animal operations, urban runoff, and food-processing wastewater. Overviews of the papers, gaps in knowledge, and future research directions are presented. The future prognosis of degraded water reuse is promising, provided close attention is paid to managing constituents that pose short- and long-term threats to the environment and the health of humankind.

  1. Retrospective comparison of Traditional vs. LigaSure impact dissection during pancreatoduodenectomy: how to save money by using an expensive device.

    Science.gov (United States)

    Piccinni, Giuseppe; Pasculli, Alessandro; D'Ambrosio, Erasmina; Gurrado, Angela; Lissidini, Germana; Testini, Mario

    2013-09-01

    Pancreatoduodenectomy is an exceptional procedure that requires an extensive dissection of the supramesocolic region extended to the first jejunal limb. Lymphadenectomy, required for cancer, increases the dissection surface. The extensive preparation of the area is traditionally conducted with bipolar ormonopolar instruments, while clips, ligatures, and sutures are used for haemostasis. LigaSure™ vessel sealing(LSVS; Valleylab, Boulder, CO) is a technology that obtains vessel closure by using the body's own collagen and elastin to create a permanent fusion zone. This is obtained by a combination of forceps pressure and radio frequency. This effect has been improved by the introduction of the Force Triad™ (Valleylab, Boulder,CO) energy platform, controlled by TissueFect™ (Valleylab, Boulder, CO) sensing technology. With this device, the surgeon is able to fuse vessels up to 7 mm, lymphatics, tissue bundles, and pulmonary vasculature in a fast-seal cycle of almost 4 seconds. In our daily practice of open surgery we observe a rapid improvement of abdominal drainage output with a drastic reduction of protein loss. Its practical significance is, in our opinion, that we obtain a rapid recovery of normal serum protein levels with a low number of blood/plasmasac transfusions and a real improvement of anastomosis healing. Moreover, the efficacy and the speed of work of the device allow us to reduce the operating time significantly but safely. We performed a retrospective analysis of the data of 20 pancreatic resections conducted both with traditional dissection and with the Liga-Sure Impact device with Force Triad platform in order to verify whether observed data were real. Our clinical results show that the use of the LigaSure Impact device with Force Triad energy platform is really useful in open surgery to save operating time, number of postoperative days, and hemoderivate administration.

  2. Measuring the Impact of Convenient Water Supply on Household Time Use in Rural Ethiopia

    Science.gov (United States)

    Cook, J.; Masuda, Y.; Fortmann, L.; Smith-Nilson, M.; Gugerty, M.

    2012-12-01

    What is the impact of providing convenient water supply on water carriers' pattern of time use? How much of the freed time is re-allocated to paid market work, education (for girls), agricultural labor, or leisure? Do women report spending more time on activities they enjoy? Does convenient water supply lead to a re-allocation of leisure time to other household members? These questions are an important, but largely missing, piece of the economic evidence base for investment in the water supply sector. Cairncross and Valdmanis (2007) observe that "given the relevance of the time-saving benefit to water supply policy and the fact that the benefit is usually uppermost in the mind of the consumer, it is remarkable how few data have been collected on the amounts of time spent collecting water". We address this gap by measuring changes in time use among female water carriers before and after new water systems are installed in three rural villages in the Oromia region of Ethiopia. The timing of completion of the projects in the three villages was staggered over time for logistical reasons, so our quasi-experimental design allows us to control for any region-wide changes in time use. Because of low literacy levels, we used a pictorial time use elicitation approach based on respondents' recall of the previous day as well as the standard questions used in the DHS and LSMS ("how many minutes..."). We measured time use for all household members over the age of 10. We use this unique panel dataset with both pre- and post-project time use data to examine not only the effect on water carriers' time use but also any intra-household reallocation of time savings. In total, we interviewed 454 randomly-selected households in the three villages over three rainy seasons, and collected time use information on 1,590 household members. Primary water carriers spend (pre-project) an average of 110 minutes per day collecting water, roughly representative of water collection times reported in

  3. Impact of watercourse lining on water conservation in the gadeji minor command, sindh pakistan

    International Nuclear Information System (INIS)

    Solangi, G.S.; Panhawar, S.; Katbar, N.M.; Khokhar, J.I.

    2018-01-01

    Looming water scarcity could be curtailed with intelligent water losses control. Present study was designed to assess the relative effect of watercourse lining in prospect of seepage minimization. Qualitative as well as quantitative analysis was undertaken using water conveyance efficiency, annual water saving, increase in cropping intensities, time and land saving along with labor saving indictors over Gadeji minor in Sindh, Pakistan. Primary data was collected from field measurements while secondary data was gathered from NPIW (National Program for Improvement of Watercourses), Irrigation Department, personal interviews and site survey. The analysis revealed that lining of 30 percent initial portion of watercourses resulted average annual water saving of 10.32 hectare-m. Similarly, the cropping intensity increased 15% in Rabi and 14 percent in Kharif seasons. Crop yield increased by 17 percent for wheat crop, 14% for cottoncrop, 12 percent for sugarcane, 17 percent for chilies, 11% for onion crop and 20% for rice crop after lining the selected watercourses. Thus, it is concluded that watercourse lining has noticeable effect for seepage control which yielded a significant water saving. In future, economic viability of watercourse lining may be assessed for obtaining optimum benefits. (author)

  4. Impact of Watercourse Lining on Water Conservation in the Gadeji Minor Command, Sindh, Pakistan

    Directory of Open Access Journals (Sweden)

    Ghulam Shabir Solangi

    2018-01-01

    Full Text Available Looming water scarcity could be curtailed with intelligent water losses control. Present study was designed to assess the relative effect of watercourse lining in prospect of seepage minimization. Qualitative as well as quantitative analysis was undertaken using water conveyance efficiency, annual water saving, increase in cropping intensities, time and land saving along with labor saving indictors over Gadeji minor in Sindh, Pakistan. Primary data was collected from field measurements while secondary data was gathered from NPIW (National Program for Improvement of Watercourses, Irrigation Department, personal interviews and site survey. The analysis revealed that lining of 30% initial portion of watercourses resulted average annual water saving of 10.32 hectare-m. Similarly, the cropping intensity increased 15% in Rabi and 14% in Kharif seasons. Crop yield increased by 17% for wheat crop, 14% for cottoncrop, 12% for sugarcane, 17% for chilies, 11% for onion crop and 20% for rice crop after lining the selected watercourses. Thus, it is concluded that watercourse lining has noticeable effect for seepage control which yielded a significant water saving. In future, economic viability of watercourse lining may be assessed for obtaining optimum benefits.

  5. Orion Ground Test Article Water Impact Tests: Photogrammetric Evaluation of Impact Conditions

    Science.gov (United States)

    Vassilakos, Gregory J.; Mark, Stephen D.

    2018-01-01

    The Ground Test Article (GTA) is an early production version of the Orion Crew Module (CM). The structural design of the Orion CM is being developed based on LS-DYNA water landing simulations. As part of the process of confirming the accuracy of LS-DYNA water landing simulations, the GTA water impact test series was conducted at NASA Langley Research Center (LaRC) to gather data for comparison with simulations. The simulation of the GTA water impact tests requires the accurate determination of the impact conditions. To accomplish this, the GTA was outfitted with an array of photogrammetry targets. The photogrammetry system utilizes images from two cameras with a specialized tracking software to determine time histories for the 3-D coordinates of each target. The impact conditions can then be determined from the target location data.

  6. Impacts of extreme flooding on riverbank filtration water quality.

    Science.gov (United States)

    Ascott, M J; Lapworth, D J; Gooddy, D C; Sage, R C; Karapanos, I

    2016-06-01

    Riverbank filtration schemes form a significant component of public water treatment processes on a global level. Understanding the resilience and water quality recovery of these systems following severe flooding is critical for effective water resources management under potential future climate change. This paper assesses the impact of floodplain inundation on the water quality of a shallow aquifer riverbank filtration system and how water quality recovers following an extreme (1 in 17 year, duration >70 days, 7 day inundation) flood event. During the inundation event, riverbank filtrate water quality is dominated by rapid direct recharge and floodwater infiltration (high fraction of surface water, dissolved organic carbon (DOC) >140% baseline values, >1 log increase in micro-organic contaminants, microbial detects and turbidity, low specific electrical conductivity (SEC) 400% baseline). A rapid recovery is observed in water quality with most floodwater impacts only observed for 2-3 weeks after the flooding event and a return to normal groundwater conditions within 6 weeks (lower fraction of surface water, higher SEC, lower DOC, organic and microbial detects, DO). Recovery rates are constrained by the hydrogeological site setting, the abstraction regime and the water quality trends at site boundary conditions. In this case, increased abstraction rates and a high transmissivity aquifer facilitate rapid water quality recoveries, with longer term trends controlled by background river and groundwater qualities. Temporary reductions in abstraction rates appear to slow water quality recoveries. Flexible operating regimes such as the one implemented at this study site are likely to be required if shallow aquifer riverbank filtration systems are to be resilient to future inundation events. Development of a conceptual understanding of hydrochemical boundaries and site hydrogeology through monitoring is required to assess the suitability of a prospective riverbank filtration

  7. The Climaware project: Impacts of climate change on water resources management - regional strategies and European view

    Science.gov (United States)

    Thirel, Guillaume; D'Agostino, Daniela; Démerliac, Stéphane; Dorchies, David; Flörke, Martina; Jay-Allemand, Maxime; Jost, Claudine; Kehr, Katrin; Perrin, Charles; Scardigno, Alessandra; Schneider, Christof; Theobald, Stephan; Träbing, Klaus

    2014-05-01

    an integrated analysis across different spatial scales. To fulfil the objectives of the ClimAware project, the following modelling methodology was implemented. Starting from a European modelling approach of water availability and use based on the WaterGAP3 model, the changes in the hydrologic regimes and water use of different sectors were analysed. Subsequently three case studies were used to investigate the impacts of CC at a regional scale. Regional models from three different countries and focusing on three types of water management issues were developed: • Hydromorphology (Eder basin, Germany): By using different scenarios, the influence of CC on the hydromorphological characteristics of the River Weser according to the WFD was evaluated and proposals for implementation were given. The objective was to examine, on typical river sections, how the WFD objectives can be implemented under CC constraints. • Dam management (Seine basin, France): Water management on the River Seine for water supply and flood alleviation is partly based on the management of artificial reservoirs. The case study developed scenarios linking the impact of CC on water resources and the expected change on the uses and on the management of the system. • Agricultural water use (Apulia region, Italy): In this region, economic and demographic changes cause an increase in the demand for good-quality municipal and industrial water. Besides, changes in the agricultural practices increase the demand for water in the agricultural sector. Since water is scarce in this region, the study focuses on the agricultural sector, which has the largest water saving potential. The final assessment comprises a cross-scale integration between the European and regional modelling frameworks in order to facilitate knowledge transfer and to help establishing sustainable and integrated water resources management plans.

  8. Spring cleaning: rural water impacts, valuation, and property rights institutions.

    Science.gov (United States)

    Kremer, Michael; Leino, Jessica; Miguel, Edward; Zwane, Alix Peterson

    2011-01-01

    Using a randomized evaluation in Kenya, we measure health impacts of spring protection, an investment that improves source water quality. We also estimate households' valuation of spring protection and simulate the welfare impacts of alternatives to the current system of common property rights in water, which limits incentives for private investment. Spring infrastructure investments reduce fecal contamination by 66%, but household water quality improves less, due to recontamination. Child diarrhea falls by one quarter. Travel-cost based revealed preference estimates of households' valuations are much smaller than both stated preference valuations and health planners' valuations, and are consistent with models in which the demand for health is highly income elastic. We estimate that private property norms would generate little additional investment while imposing large static costs due to above-marginal-cost pricing, private property would function better at higher income levels or under water scarcity, and alternative institutions could yield Pareto improvements.

  9. Impact of disinfection on drinking water biofilm bacterial community.

    Science.gov (United States)

    Mi, Zilong; Dai, Yu; Xie, Shuguang; Chen, Chao; Zhang, Xiaojian

    2015-11-01

    Disinfectants are commonly applied to control the growth of microorganisms in drinking water distribution systems. However, the effect of disinfection on drinking water microbial community remains poorly understood. The present study investigated the impacts of different disinfectants (chlorine and chloramine) and dosages on biofilm bacterial community in bench-scale pipe section reactors. Illumina MiSeq sequencing illustrated that disinfection strategy could affect both bacterial diversity and community structure of drinking water biofilm. Proteobacteria tended to predominate in chloraminated drinking water biofilms, while Firmicutes in chlorinated and unchlorinated biofilms. The major proteobacterial groups were influenced by both disinfectant type and dosage. In addition, chloramination had a more profound impact on bacterial community than chlorination. Copyright © 2015. Published by Elsevier B.V.

  10. Performance Evaluation of Pressure Transducers for Water Impacts

    Science.gov (United States)

    Vassilakos, Gregory J.; Stegall, David E.; Treadway, Sean

    2012-01-01

    The Orion Multi-Purpose Crew Vehicle is being designed for water landings. In order to benchmark the ability of engineering tools to predict water landing loads, test programs are underway for scale model and full-scale water impacts. These test programs are predicated on the reliable measurement of impact pressure histories. Tests have been performed with a variety of pressure transducers from various manufacturers. Both piezoelectric and piezoresistive devices have been tested. Effects such as thermal shock, pinching of the transducer head, and flushness of the transducer mounting have been studied. Data acquisition issues such as sampling rate and anti-aliasing filtering also have been studied. The response of pressure transducers have been compared side-by-side on an impulse test rig and on a 20-inch diameter hemisphere dropped into a pool of water. The results have identified a range of viable configurations for pressure measurement dependent on the objectives of the test program.

  11. Water Footprint and Impact of Water Consumption for Food, Feed, Fuel Crops Production in Thailand

    Directory of Open Access Journals (Sweden)

    Shabbir H. Gheewala

    2014-06-01

    Full Text Available The proliferation of food, feed and biofuels demands promises to increase pressure on water competition and stress, particularly for Thailand, which has a large agricultural base. This study assesses the water footprint of ten staple crops grown in different regions across the country and evaluates the impact of crop water use in different regions/watersheds by the water stress index and the indication of water deprivation potential. The ten crops include major rice, second rice, maize, soybean, mungbean, peanut, cassava, sugarcane, pineapple and oil palm. The water stress index of the 25 major watersheds in Thailand has been evaluated. The results show that there are high variations of crop water requirements grown in different regions due to many factors. However, based on the current cropping systems, the Northeastern region has the highest water requirement for both green water (or rain water and blue water (or irrigation water. Rice (paddy farming requires the highest amount of irrigation water, i.e., around 10,489 million m3/year followed by the maize, sugarcane, oil palm and cassava. Major rice cultivation induces the highest water deprivation, i.e., 1862 million m3H2Oeq/year; followed by sugarcane, second rice and cassava. The watersheds that have high risk on water competition due to increase in production of the ten crops considered are the Mun, Chi and Chao Phraya watersheds. The main contribution is from the second rice cultivation. Recommendations have been proposed for sustainable crops production in the future.

  12. Removing the impact of water abstractions on flow duration curves

    Science.gov (United States)

    Masoero, Alessandro; Ganora, Daniele; Galeati, Giorgio; Laio, Francesco; Claps, Pierluigi

    2015-04-01

    Changes and interactions between human system and water cycle are getting increased attention in the scientific community. Commonly discharge data needed for water resources studies were collected close to urban or industrial settlements, thus in environments where the interest for surveying was not merely scientific, but also for socio-economical purposes. Working in non-natural environments we must take into account human impacts, like the one due to water intakes for irrigation or hydropower generation, while assessing the actual water availability and variability in a river. This can became an issue in alpine areas, where hydropower exploitation is heavy and it is common to have water abstraction before a gauge station. To have a gauge station downstream a water intake can be useful to survey the environmental flow release and to record the maximum flood values, which should not be affected by the water abstraction. Nevertheless with this configuration we are unable to define properly the water volumes available in the river, information crucial to assess low flows and investigate drought risk. This situation leads to a substantial difference between observed data (affected by the human impact) and natural data (as would have been without abstraction). A main issue is how to correct these impacts and restore the natural streamflow values. The most obvious and reliable solution would be to ask for abstraction data to water users, but these data are hard to collect. Usually they are not available, because not public or not even collected by the water exploiters. A solution could be to develop a rainfall-run-off model of the basin upstream the gauge station, but this approach needs a great number of data and parameters Working in a regional framework and not on single case studies, our goal is to provide a consistent estimate of the non-impacted statistics of the river (i.e. mean value, L-moments of variation and skewness). We proposed a parsimonious method, based

  13. Impacts of climate change on the municipal water management system in the Kingdom of Bahrain: Vulnerability assessment and adaptation options

    Directory of Open Access Journals (Sweden)

    Waleed K. Al-Zubari

    Full Text Available An assessment of the vulnerability of the municipal water management system to the impacts of climate change in the Kingdom of Bahrain, manifested by the increase in demands due to increase in temperatures, is conducted using a dynamic mathematical model representing the water sector in the kingdom. The model is developed using WEAP software and was calibrated and validated by historical matching utilizing data for the period 2000–2012. The model is used in the evaluation of the municipal water sector performance in terms of municipal water demands and their associated cost without and with climate change impacts scenarios for the period 2012–2030. The impact of climate change on the municipal water system is quantified as the difference between the two scenarios in three selected cost indicators: financial (production, conveyance and distribution costs, economic (natural gas asset consumption by desalination plants, and environmental (CO2 emissions by desalination plants. The vulnerability assessment indicated that the current municipal water management system in Bahrain is generally inefficient and associated with relatively high costs, which are expected to increase with time under the current policies and management approach focusing on supply-side management. The increase in temperature will increase these already high costs, and would exacerbate the water management challenges in Bahrain. However, these mounting challenges also present an opportune moment for Bahrain to review its current water resources management approaches and practices and to integrate climate change adaptation measures into its water planning and policies. In order to build an adaptive management capacity of the municipal water management system in Bahrain, a number of management interventions are proposed and evaluated, individually and combined, for their effectiveness in enhancing the efficiency of the management system using the developed dynamic model. These

  14. Effects of pulsating water jet impact on aluminium surface

    Czech Academy of Sciences Publication Activity Database

    Foldyna, Josef; Sitek, Libor; Ščučka, Jiří; Martinec, Petr; Valíček, Jan; Páleníková, K.

    2009-01-01

    Roč. 2009, č. 20 (2009), s. 6174-6180 ISSN 0924-0136 R&D Projects: GA ČR GA101/07/1451; GA ČR GP101/07/P512 Institutional research plan: CEZ:AV0Z30860518 Keywords : pulsating water jet * jet impact * material erosion * surface characteristics Subject RIV: JQ - Machines ; Tools Impact factor: 1.420, year: 2009 http://www.sciencedirect.com/science

  15. Regulatory Impacts on Sustainable Drinking Water Supply: A Comparative Study on Dutch Water Companies

    NARCIS (Netherlands)

    Dalhuisen, J.M.; Nijkamp, P.

    2006-01-01

    Regulatory changes have exerted deep impacts on public service provision. This paper aims to disentangle recent differences in the external production circumstances of Dutch regional water companies in order to identify the crucial regulatory factors influencing the supply of water to various users

  16. Regulatory Impacts on Sustainable Drinking Water Supply: A Comparative Study on Dutch Water Companies

    NARCIS (Netherlands)

    Dalhuisen, J.M.; Nijkamp, P.

    2007-01-01

    Regulatory changes have exerted deep impacts on public service provision. This paper aims to disentangle recent differences in the external production circumstances of Dutch regional water companies in order to identify the crucial regulatory factors influencing the supply of water to various users

  17. Mathematical model for water quality impact assessment and its computer application in coal mine water

    International Nuclear Information System (INIS)

    Sundararajan, M.; Chakraborty, M.K.; Gupta, J.P.; Saxena, N.C.; Dhar, B.B.

    1994-01-01

    This paper presents a mathematical model to assess the Water Quality Impact in coal mine or in river system by accurate and rational method. Algorithm, flowchart and computer programme have been developed upon this model to assess the quality of coal mine water. 3 refs., 2 figs., 2 tabs

  18. Water footprint of European cars: potential impacts of water consumption along automobile life cycles.

    Science.gov (United States)

    Berger, Markus; Warsen, Jens; Krinke, Stephan; Bach, Vanessa; Finkbeiner, Matthias

    2012-04-03

    Due to global increase of freshwater scarcity, knowledge about water consumption in product life cycles is important. This study analyzes water consumption and the resulting impacts of Volkswagen's car models Polo, Golf, and Passat and represents the first application of impact-oriented water footprint methods on complex industrial products. Freshwater consumption throughout the cars' life cycles is allocated to material groups and assigned to countries according to import mix shares or location of production sites. Based on these regionalized water inventories, consequences for human health, ecosystems, and resources are determined by using recently developed impact assessment methods. Water consumption along the life cycles of the three cars ranges from 52 to 83 m(3)/car, of which more than 95% is consumed in the production phase, mainly resulting from producing iron, steel, precious metals, and polymers. Results show that water consumption takes place in 43 countries worldwide and that only 10% is consumed directly at Volkswagen's production sites. Although impacts on health tend to be dominated by water consumption in South Africa and Mozambique, resulting from the production of precious metals and aluminum, consequences for ecosystems and resources are mainly caused by water consumption of material production in Europe.

  19. Long-Term No-Tillage Direct Seeding Mode for Water-Saving and Drought-Resistance Rice Production in Rice-Rapeseed Rotation System

    Directory of Open Access Journals (Sweden)

    Xing-bin DU

    2014-07-01

    Full Text Available To study the effects of long-term no-tillage direct seeding mode on rice yield and the soil physiochemical property in a rice-rapeseed rotation system, a comparative experiment with a water-saving and drought-resistance rice (WDR variety and a double low rapeseed variety as materials was conducted under no-tillage direct seeding (NTDS mode and conventional tillage direct seeding (CTDS mode for four years, using the CTDS mode as the control. Compared with the CTDS mode, the actual rice yield of WDR decreased by 8.10% at the first year, whereas the plant height, spikelet number per panicle, spikelet fertility, 1000-grain weight, grain yield, actual yield, and harvest index increased with no-tillage years, which led to the actual yield increase by 6.49% at the fourth year. Correlation analysis showed that the panicle length was significantly related to the actual yield of WDR. Compared with the CTDS mode in terms of the soil properties, the pH value of the NTDS mode decreased every year, whereas the contents of soil organic matter and total N of the NTDS mode increased. In the 0–5 cm layer of the NTDS mode, the soil bulk decreased, whereas the contents of soil organic matter, total N, and available N increased. In the 5–20 cm layer of the NTDS mode, the available N and K decreased, whereas the soil bulk, contents of soil organic matter, and total N increased. In summary, the NTDS mode increased the rice yield, and could improve the paddy soil fertility of the top layer.

  20. Research of natural resources saving by design studies of Pressurized Light Water Reactors and High Conversion PWR cores with mixed oxide fuels composed of thorium/uranium/plutonium

    International Nuclear Information System (INIS)

    Vallet, V.

    2012-01-01

    Within the framework of innovative neutronic conception of Pressurized Light Water Reactors (PWR) of 3. generation, saving of natural resources is of paramount importance for sustainable nuclear energy production. This study consists in the one hand to design high Conversion Reactors exploiting mixed oxide fuels composed of thorium/uranium/plutonium, and in the other hand, to elaborate multi-recycling strategies of both plutonium and 233 U, in order to maximize natural resources economy. This study has two main objectives: first the design of High Conversion PWR (HCPWR) with mixed oxide fuels composed of thorium/uranium/plutonium, and secondly the setting up of multi-recycling strategies of both plutonium and 233 U, to better natural resources economy. The approach took place in four stages. Two ways of introducing thorium into PWR have been identified: the first is with low moderator to fuel volume ratios (MR) and ThPuO 2 fuel, and the second is with standard or high MR and ThUO 2 fuel. The first way led to the design of under-moderated HCPWR following the criteria of high 233 U production and low plutonium consumption. This second step came up with two specific concepts, from which multi-recycling strategies have been elaborated. The exclusive production and recycling of 233 U inside HCPWR limits the annual economy of natural uranium to approximately 30%. It was brought to light that the strong need in plutonium in the HCPWR dedicated to 233 U production is the limiting factor. That is why it was eventually proposed to study how the production of 233 U within PWR (with standard MR), from 2020. It was shown that the anticipated production of 233 U in dedicated PWR relaxes the constraint on plutonium inventories and favours the transition toward a symbiotic reactor fleet composed of both PWR and HCPWR loaded with thorium fuel. This strategy is more adapted and leads to an annual economy of natural uranium of about 65%. (author) [fr

  1. Changes in DNA Methylation Pattern at Two Seedling Stages in Water Saving and Drought-Resistant Rice Variety after Drought Stress Domestication

    Directory of Open Access Journals (Sweden)

    Xiao-guo ZHENG

    2014-09-01

    Full Text Available Recent studies revealed that DNA methylation plays an important role in plant growth and development. In this study, a water-saving and drought-resistant rice variety Huhan 3 was subjected to drought stress from tillering to grain-filling stages in six successive growth cycles. The variations in DNA methylation pattern between the original generation (G0 and the sixth generation (G6 were analyzed by using methylation sensitive amplification polymorphism method. The results revealed that the methylated loci accounted for 34.3% to 34.8% of the total loci. Among these methylated loci, 83.1% to 84.8% were full- and hyper-methylated and 15.2% to 16.9% were hemi-methylated. The DNA methylation level decreased from the three-leaf to four-leaf stages in Huhan 3. Differentially methylated loci (DML between generations or/and between different developmental stages accounted for 4.0% of the total loci, most of which were only related to plant development (57.9%. Compared to G0, the DNA methylation pattern of G6 changed after drought domestication, at the three-leaf stage, de-methylation accounting for 59.1%, while at the four-leaf stage, re-methylation for 47.9%. Genome-wide alternations of DNA methylation were observed between the two seedling stages, and DML mainly occurred on the gene's promoter and exon region. The genes related to DML involved in a wide range of functional biology and participated in many important biological processes.

  2. Impact of Interfacial Water Transport in PEMFCs on Cell Performance

    International Nuclear Information System (INIS)

    Kotaka, Toshikazu; Tabuchi, Yuichiro; Pasaogullari, Ugur; Wang, Chao-Yang

    2014-01-01

    Coupled cell performance evaluation, liquid water visualization by neutron radiography (NRG) and numerical modeling based on multiphase mixture (M2) model were performed with three types of GDMs: Micro Porous Layer (MPL) free; Carbon Paper (CP) with MPL; and CP free to investigate interfacial liquid water transport phenomena in PEMFCs and its effect on cell performance. The visualized results of MPL free GDM with different wettability of bi-polar plates (BPPs) showed hydrophilic BPP improved liquid water transport at the interface between CP and channel. Numerical modeling results indicated that this difference with BPP wettability was caused by the liquid water coverage difference on CP surface. Thus, controlling liquid water coverage is the one of the key strategies for improving cell performance. Additionally, liquid water distributions across the cell for three types of GDMs were compared and significant difference in liquid water content at the interface between Catalyst Layer (CL) and GDM was observed. Numerical modeling suggests this difference is influenced by the gap at the interface and that the MPL could minimize this effect. The CP free cell (i.e. only MPL) showed the best performance and the lowest liquid water content. There were multiple impacts of interfacial liquid water transport both at CL-GDM and GDM-channel interfaces. High hydrophobicity and fine structure of MPLs contributed to enhanced liquid water transport at GDM-channel interface and as a result reduced the liquid water coverage. At the same time, MPL improves contact at the CL-GDM interface in the same manner as seen in CP with MPL case. Thus, the CP free concept showed the best performance. It is suggested that the design of the interface between each component of the PEMFC has a great impact on cell performance and plays a significant role in achievement of high current density operation and cost reduction in FCEVs

  3. Potential impacts of changing supply-water quality on drinking water distribution: A review.

    Science.gov (United States)

    Liu, Gang; Zhang, Ya; Knibbe, Willem-Jan; Feng, Cuijie; Liu, Wentso; Medema, Gertjan; van der Meer, Walter

    2017-06-01

    Driven by the development of water purification technologies and water quality regulations, the use of better source water and/or upgraded water treatment processes to improve drinking water quality have become common practices worldwide. However, even though these elements lead to improved water quality, the water quality may be impacted during its distribution through piped networks due to the processes such as pipe material release, biofilm formation and detachment, accumulation and resuspension of loose deposits. Irregular changes in supply-water quality may cause physiochemical and microbiological de-stabilization of pipe material, biofilms and loose deposits in the distribution system that have been established over decades and may harbor components that cause health or esthetical issues (brown water). Even though it is clearly relevant to customers' health (e.g., recent Flint water crisis), until now, switching of supply-water quality is done without any systematic evaluation. This article reviews the contaminants that develop in the water distribution system and their characteristics, as well as the possible transition effects during the switching of treated water quality by destabilization and the release of pipe material and contaminants into the water and the subsequent risks. At the end of this article, a framework is proposed for the evaluation of potential transition effects. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. CFD based investigation on the impact acceleration when a gannet impacts with water during plunge diving

    International Nuclear Information System (INIS)

    Wang, T M; Yang, X B; Liang, J H; Yao, G C; Zhao, W D

    2013-01-01

    Plunge diving is the most commonly used feeding method of a gannet, which can make the gannet transit from air to water rapidly and successfully. A large impact acceleration can be generated due to the air-to-water transition. However, the impact acceleration experienced by the gannet during plunge diving has not been studied. In this paper, this issue is investigated by using the CFD method. The effect of the dropping height and the water-entry inclination angle on the impact acceleration is considered. The results reveal that the impact acceleration along the longitudinal body axis increases with either of the two parameters. The peak time decreases with the dropping height. A quadratic relation is found between the peak impact acceleration and the initial water-entry velocity. According to the computation, when the dropping height is 30 m (most of gannets plunge from about this height), the peak impact acceleration can reach about 23 times the gravitational acceleration, which will exert a considerable force on the gannet body. Furthermore, the pressure distribution of different water-entry inclination angles indicates that the large pressure asymmetry caused by a small oblique angle may lead to a large impact acceleration in the direction perpendicular to the longitudinal body axis and cause damage to the neck of the gannet, which partly explains the reason why a gannet performing a high plunge diving in nature enters water with a large oblique angle from the perspective of impact mechanics. The investigation on the plunge-diving behavior in this paper will inspire and promote the development of a biomimetic amphibious robot that transits from air to water with the plunge-diving mode. (paper)

  5. Calculations of Asteroid Impacts into Deep and Shallow Water

    Science.gov (United States)

    Gisler, Galen; Weaver, Robert; Gittings, Michael

    2011-06-01

    Contrary to received opinion, ocean impacts of small (dangerous features of ocean impacts, just as for land impacts, are the atmospheric effects. We present illustrative hydrodynamic calculations of impacts into both deep and shallow seas, and draw conclusions from a parameter study in which the size of the impactor and the depth of the sea are varied independently. For vertical impacts at 20 km/s, craters in the seafloor are produced when the water depth is less than about 5-7 times the asteroid diameter. Both the depth and the diameter of the transient crater scale with the asteroid diameter, so the volume of water excavated scales with the asteroid volume. About a third of the crater volume is vaporised, because the kinetic energy per unit mass of the asteroid is much larger than the latent heat of vaporisation of water. The vaporised water carries away a considerable fraction of the impact energy in an explosively expanding blast wave which is responsible for devastating local effects and may affect worldwide climate. Of the remaining energy, a substantial portion is used in the crown splash and the rebound jet that forms as the transient crater collapses. The collapse and rebound cycle leads to a propagating wave with a wavelength considerably shorter than classical tsunamis, being only about twice the diameter of the transient crater. Propagation of this wave is hindered somewhat because its amplitude is so large that it breaks in deep water and is strongly affected by the blast wave's perturbation of the atmosphere. Even if propagation were perfect, however, the volume of water delivered per metre of shoreline is less than was delivered by the Boxing Day 2004 tsunami for any impactor smaller than 500 m diameter in an ocean of 5 km depth or less. Near-field effects are dangerous for impactors of diameter 200 m or greater; hurricane-force winds can extend tens of kilometers from the impact point, and fallout from the initial splash can be extremely violent

  6. Impact of Yangtze river water transfer on the water quality of the Lixia river watershed, China.

    Directory of Open Access Journals (Sweden)

    Xiaoxue Ma

    Full Text Available To improve water quality and reduce the negative impacts of sudden inputs of water pollution in the Lixia River watershed, China, a series of experimental water transfers from the Yangtze River to the Lixia River were conducted from 2 December 2006 to 7 January 2007. Water samples were collected every six days at 55 monitoring sites during this period. Eight water parameters (water temperature, pH, dissolved oxygen (DO, chemical oxygen demand (COD, potassium permanganate index (CODMn, ammonia nitrogen (NH4+-N, electrical conductivity (EC, and water transparency (WT were analyzed to determine changes in nutrient concentrations during water transfers. The comprehensive pollution index (Pi and single-factor (Si evaluation methods were applied to evaluate spatio-temporal patterns of water quality during water transfers. Water quality parameters displayed different spatial and temporal distribution patterns within the watershed. Water quality was improved significantly by the water transfers, especially for sites closer to water intake points. The degree of improvement is positively related to rates of transfer inflow and drainage outflow. The effects differed for different water quality parameters at each site and at different water transfer times. There were notable decreases in NH4+-N, DO, COD, and CODMn across the entire watershed. However, positive effects on EC and pH were not observed. It is concluded that freshwater transfers from the Yangtze River can be used as an emergency measure to flush pollutants from the Lixia River watershed. Improved understanding of the effects of water transfers on water quality can help the development and implementation of effective strategies to improve water quality within this watershed.

  7. Impacts of the regulatory model for market risk capital: application in a special savings company, an insurance company, and a pension fund

    Directory of Open Access Journals (Sweden)

    Betty Lilian Chan

    Full Text Available ABSTRACT In line with the regulation brought in by Solvency II, the Superintendence of Private Insurance (Susep introduced the market risk capital requirement at the end of 2015, with 50% of the minimum capital for this type of risk being required by December 31st 2016 and 100% the following year. This regulatory model consists of calculating parametric value at risk with a 99% confidence level and a three month time horizon, using the net exposure of expected cash flows from assets and liabilities and a covariance matrix updated with market data up to July 2014. One limitation of this regulatory approach is that the updating of the covariance matrix depends on prior approval by the National Council of Private Insurance, which can limit the frequency the covariance matrix is updated and the model’s adherence to the current market reality. As this matrix considers the period before the presidential election, the country’s loss of investment grade status, and the impeachment process, which all contributed to an increase in market volatility, this paper analyses the impacts of applying the regulatory model, considering the market volatility updated to December 31st 2015, for a special savings company (sociedade de capitalização, an insurance company, and an pension fund. Furthermore, the paper discusses the practical implications of the new market risk requirement for managing the investments of the entities supervised by Susep, listing the various assumptions that can be used in the regulated entities’ Asset and Liability Management decision models and possible trade-offs to be addressed in this process.

  8. Impact of Climate Change on Water Resources in Taiwan

    Directory of Open Access Journals (Sweden)

    An-Yuan Tsai Wen-Cheng Huang

    2011-01-01

    Full Text Available This paper establishes a comprehensive assessment model to measure the regional impact of climate change on Taiwan¡¦s water resources. Working from future rainfall data simulated by Japan¡¦s high-resolution GCM model JMA/MRI TL959L60 in a SRES-A1B scenario, we first apply climate change to an assessment model of renewable water resources to estimate the volume of renewable water resources on a regional basis. We then conduct a water resources system simulation based on estimates of future water needs, regional reservoir effective capacity and renewable water resource volume. This paper uses three water resource assessment indicators: the annual water utilization ratio indicator, the water shortage indicator and the extreme event occurrence indicator. Through fuzzy comprehensive assessment, we divide the evaluation set into five levels: very good (L1, good (L2, fair (L3, poor (L4 and very poor (L5. Results indicate that, given the effects of future climate change (2080 - 2099 and the increase in water demand, future water resources conditions in northern and eastern Taiwan will not be significantly different from historical levels (1979 - 1998 and will maintain a ¡§good¡¨ level (L2, while the conditions in southern Taiwan will visibly deteriorate from its historical ¡§fair¡¨ level (L3 to ¡§poor¡¨ (L4; and the future conditions for central Taiwan will be ¡§poor¡¨ (L4. The initiation of adaptation options for water management in southern and central Taiwan would be needed by increasing reservoir capacity and reducing overall water use.

  9. Impact of nutritional strategies on water productivity indicators for pigs

    Directory of Open Access Journals (Sweden)

    Julio Cesar Pascale Palhares

    2013-12-01

    Full Text Available The productivity of water is a poorly considered indicator in animal agriculture. This is because water is a resource still believed by persons in the production network to be abundant and of good quality. The aim of this study was to evaluate the impact of nutritional strategies in water productivity indicators for growing and slaughtering pigs. Five strategies were evaluated: control diet (T1, with a reduction in the level of crude protein (T2, phytase (T3, organic minerals (T4 and the three nutritional strategies combined (T5. The water productivity indicator is defined as the quantity of product by water used. The following indicators were calculated: total weight (kg L-1, cold carcass (kg L-1 lean carcass (L kg-1, and nutrition (kcal L-1. T5 showed the best productivities for each liter of water used. The total weight productivity in this treatment was 3.0 kg L-1, while in T1 was 2.5 kg L-1. T3 had the lowest productivities. The nutritional water productivities were 2,512, 2,763, 2,657, 2,814, and 3,039 kcal L-1, respectively for T1, T2, T3, T4, and T5. Nutritional strategies reduce the use of drinking water and therefore improve water productivities. The best productivities were observed when combining the strategies.

  10. Big Data and Heath Impacts of Drinking Water Quality Violation

    Science.gov (United States)

    Allaire, M.; Zheng, S.; Lall, U.

    2017-12-01

    Health impacts of drinking water quality violations are only understood at a coarse level in the United States. This limits identification of threats to water security in communities across the country. Substantial under-reporting is suspected due to requirements at U.S. public health institutes that water borne illnesses be confirmed by health providers. In the era of `big data', emerging information sources could offer insight into waterborne disease trends. In this study, we explore the use of fine-resolution sales data for over-the-counter medicine to estimate the health impacts of drinking water quality violations. We also demonstrate how unreported water quality issues can be detected by observing market behavior. We match a panel of supermarket sales data for the U.S. at the weekly level with geocoded violations data from 2006-2015. We estimate the change in anti-diarrheal medicine sale due to drinking water violations using a fixed effects model. We find that water quality violations have considerable effects on medicine sales. Sales nearly double due to Tier 1 violations, which pose an immediate health risk, and sales increase 15.1 percent due to violations related to microorganisms. Furthermore, our estimate of diarrheal illness cases associated with water quality violations indicates that the Centers for Disease Control and Prevention (CDC) reporting system may only capture about one percent of diarrheal cases due to impaired water. Incorporating medicine sales data could offer national public health institutes a game-changing way to improve monitoring of disease outbreaks. Since many disease cases are not formally diagnosed by health providers, consumption information could provide additional information to remedy under-reporting issues and improve water security in communities across the United States.

  11. Water depth effects on impact loading, kinematic and physiological variables during water treadmill running.

    Science.gov (United States)

    Macdermid, Paul W; Wharton, Josh; Schill, Carina; Fink, Philip W

    2017-07-01

    The purpose of this study was to compare impact loading, kinematic and physiological responses to three different immersion depths (mid-shin, mid-thigh, and xiphoid process) while running at the same speed on a water based treadmill. Participants (N=8) ran on a water treadmill at three depths for 3min. Tri-axial accelerometers were used to identify running dynamics plus measures associated with impact loading rates, while heart rate data were logged to indicate physiological demand. Participants had greater peak impact accelerations (prunning immersed to the xiphoid process. Physiological effort determined by heart rate was also significantly less (prunning immersed to the xiphoid process. Water immersed treadmill running above the waistline alters kinematics of gait, reduces variables associated with impact, while decreasing physiological demand compared to depths below the waistline. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Impact of Water on the Rheology of Lubricating Greases

    NARCIS (Netherlands)

    Cyriac, F.; Lugt, Pieter Martin; Bosman, Rob

    2016-01-01

    The operational life of bearings is often determined by the performance of the lubricating grease. The consistency of the grease prevents it from leaking out of the bearing and provides good sealing properties. The possible ingress of water into the bearing will have a considerable impact not only

  13. Impact of water hardness on energy consumption of geyser heating ...

    African Journals Online (AJOL)

    Therefore, the Eskom Research, Testing, and Development Business Unit embarked on a study to examine total water hardness as a chemical parameter that may impact the power consumption of electrical geyser heating elements. An accelerated scaling method was developed to lime-scale the geyser heating elements ...

  14. Assessing climate change impacts on water balance in the Mount

    Indian Academy of Sciences (India)

    A statistical downscaling known for producing station-scale climate information from GCM output was preferred to evaluate the impacts of climate change within the Mount Makiling forest watershed, Philippines. The lumped hydrologic BROOK90 model was utilized for the water balance assessment of climate change ...

  15. The Impact of Water Shortages on Educational Delivery in Selected ...

    African Journals Online (AJOL)

    The goal of the study was to investigate the impact of water shortages on educational delivery in selected schools in Harare East District. The population included school heads, teachers and pupils all drawn from selected schools of Harare East District. The sample consisted of five school heads, fifty teachers and one ...

  16. Factor 4 working group: preparing future is urgent. Energy saving certificates. The tax credit boosts the solar water heater and heat pump sales. Climatic change and energy: the Californian example

    International Nuclear Information System (INIS)

    Laverne, R.; Rabany, B.; Leclercq, M.; Lorec, Ph.; Schweitzer, J.Ph.

    2007-01-01

    This issue of 'Energies et Matieres Premieres' newsletter comprises 4 articles dealing with: the concluding report of the 'Factor 4' working group which expresses 28 recommendations in the form of energy policy proposals necessary to be implemented as soon as possible in order for France to start a society and economy transition and to reach the 2050 goal of dividing the present day greenhouse gas emissions by a factor 4; the energy saving certificates implemented with the July 13, 2005 law of energy policy choices, which targets the diffuse energy saving sources in the residential and tertiary sectors; the success of the tax credit for the use of solar thermal water heaters, wood-fuel space heating appliances and air/water and geothermal heat pumps, in particular in the residential sector; the problem of the links between climatic change and energy and the lessons learnt from the example of the 'new sustainable economy' of California (USA). (J.S.)

  17. Residential tap water contamination following the Freedom Industries chemical spill: perceptions, water quality, and health impacts.

    Science.gov (United States)

    Whelton, Andrew J; McMillan, LaKia; Connell, Matt; Kelley, Keven M; Gill, Jeff P; White, Kevin D; Gupta, Rahul; Dey, Rajarshi; Novy, Caroline

    2015-01-20

    During January 2014, an industrial solvent contaminated West Virginia’s Elk River and 15% of the state population’s tap water. A rapid in-home survey and water testing was conducted 2 weeks following the spill to understand resident perceptions, tap water chemical levels, and premise plumbing flushing effectiveness. Water odors were detected in all 10 homes sampled before and after premise plumbing flushing. Survey and medical data indicated flushing caused adverse health impacts. Bench-scale experiments and physiochemical property predictions showed flushing promoted chemical volatilization, and contaminants did not appreciably sorb into cross-linked polyethylene (PEX) pipe. Flushing reduced tap water 4-methylcyclohexanemethanol (4-MCHM) concentrations within some but not all homes. 4-MCHM was detected at unflushed (waters contained less 4-MCHM than the 1000 μg/L Centers for Disease Control drinking water limit, but one home exceeded the 120 μg/L drinking water limit established by independent toxicologists. Nearly all households refused to resume water use activities after flushing because of water safety concerns. Science based flushing protocols should be developed to expedite recovery, minimize health impacts, and reduce concentrations in homes when future events occur.

  18. Proactive modeling of water quality impacts of extreme precipitation events in a drinking water reservoir.

    Science.gov (United States)

    Jeznach, Lillian C; Hagemann, Mark; Park, Mi-Hyun; Tobiason, John E

    2017-10-01

    Extreme precipitation events are of concern to managers of drinking water sources because these occurrences can affect both water supply quantity and quality. However, little is known about how these low probability events impact organic matter and nutrient loads to surface water sources and how these loads may impact raw water quality. This study describes a method for evaluating the sensitivity of a water body of interest from watershed input simulations under extreme precipitation events. An example application of the method is illustrated using the Wachusett Reservoir, an oligo-mesotrophic surface water reservoir in central Massachusetts and a major drinking water supply to metropolitan Boston. Extreme precipitation event simulations during the spring and summer resulted in total organic carbon, UV-254 (a surrogate measurement for reactive organic matter), and total algae concentrations at the drinking water intake that exceeded recorded maximums. Nutrient concentrations after storm events were less likely to exceed recorded historical maximums. For this particular reservoir, increasing inter-reservoir transfers of water with lower organic matter content after a large precipitation event has been shown in practice and in model simulations to decrease organic matter levels at the drinking water intake, therefore decreasing treatment associated oxidant demand, energy for UV disinfection, and the potential for formation of disinfection byproducts. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Impacts of Triclosan in Grey water on Soil Microorganisms

    International Nuclear Information System (INIS)

    Harrow, D.I; Felker, J.M; Baker, K.H

    2011-01-01

    The use of grey water for irrigation is becoming a common practice in arid regions such as the Southwestern US, the Middle East, Australia, and China. While grey water supplies nutrients to soil ecosystems, the possible impact of trace contaminants, particularly pharmaceuticals and personal care products, has not been determined. This paper examined the impact of triclosan, an antibacterial agent commonly added to consumer products, on microbial populations and microbial diversity in soil irrigated with grey water. While there was no change in the total number of heterotrophic microorganisms in the soil, both the types and the antibiotic resistance of the microorganisms were significantly influenced by triclosan. The proportion of the microbial isolates resistant to antibiotics increased while at the same time, overall diversity of the microbial community decreased.

  20. Climate change impacts on water barriers and possibilities

    DEFF Research Database (Denmark)

    Frederiksen, Peter

    in precipitation in 2100 and regional warming. Peak run-off will be displaced from spring to winter, run-off may be reduced by more than 40 % because of warming and rivers in the driest valleys may become intermittent streams with no water for irrigation except if minor reservoirs are constructed. In conclusion......The purpose is to elucidate climate change impacts on water related to precipitation, catchment hydrology, water management and land development in fruit export regions at the desert margin in Chile. The case is a region exposed to intense globalization and severe climate change. A timeline (past......, present, future) was applied to four valleys for comparative purposes. Data collection included field observations, semi-structured interviews, archives and library investigations. Precipitation decreased during the last century and varied as a function of El Niño Southern Oscillation impacts...

  1. An analysis of Water Supply Heat Pump's Capability of Energy Storage and Energy Saving Using Electricity%水源热泵系统蓄能节能的可行性

    Institute of Scientific and Technical Information of China (English)

    吴薇; 张小松

    2002-01-01

    In this paper, the characteristic of water supply heat pump (WLHP) is introduced. The thermal performanceand effect of energy saving that can be used to heating and cooling at the same time (the distinctive working mode) is em-phasized. A new idea of heat input using wave trough electricity instead of boilers is brought up, the effect and significance ofthis new method is discussed.

  2. Energy saving certificates

    International Nuclear Information System (INIS)

    2005-11-01

    The French ministry of economy, finances and industry and the French agency of environment and energy mastery (Ademe) have organized on November 8, 2005, a colloquium for the presentation of the energy saving certificates, a new tool to oblige the energy suppliers to encourage their clients to make energy savings. This document gathers the transparencies presented at this colloquium about the following topics: state-of-the-art and presentation of the energy saving certificates system: presentation of the EEC system, presentation of the EEC standard operations; the energy saving certificates in Europe today: energy efficiency commitment in UK, Italian white certificate scheme, perspectives of the different European systems. (J.S.)

  3. Climate-Determined Suitability of the Water Saving Technology "Alternate Wetting and Drying" in Rice Systems: A Scalable Methodology demonstrated for a Province in the Philippines.

    Directory of Open Access Journals (Sweden)

    Andrew Nelson

    Full Text Available 70% of the world's freshwater is used for irrigated agriculture and demand is expected to increase to meet future food security requirements. In Asia, rice accounts for the largest proportion of irrigated water use and reducing or conserving water in rice systems has been a long standing goal in agricultural research. The Alternate Wetting and Drying (AWD technique has been developed to reduce water use by up to 30% compared to the continuously flooded conditions typically found in rice systems, while not impacting yield. AWD also reduces methane emissions produced by anaerobic archae and hence has applications for reducing water use and greenhouse gas emissions. Although AWD is being promoted across Asia, there have been no attempts to estimate the suitable area for this promising technology on a large scale. We present and demonstrate a spatial and temporal climate suitability assessment method for AWD that can be widely applied across rice systems in Asia. We use a simple water balance model and easily available spatial and temporal information on rice area, rice seasonality, rainfall, potential evapotranspiration and soil percolation rates to assess the suitable area per season. We apply the model to Cagayan province in the Philippines and conduct a sensitivity analysis to account for uncertainties in soil percolation and suitability classification. As expected, the entire dry season is climatically suitable for AWD for all scenarios. A further 60% of the wet season area is found suitable contradicting general perceptions that AWD would not be feasible in the wet season and showing that spatial and temporal assessments are necessary to explore the full potential of AWD.

  4. Accounting for the water impacts of ethanol production

    International Nuclear Information System (INIS)

    Fingerman, Kevin R; Torn, Margaret S; Kammen, Daniel M; O'Hare, Michael H

    2010-01-01

    Biofuels account for 1-2% of global transportation fuel and their share is projected to continue rising, with potentially serious consequences for water resources. However, current literature does not present sufficient spatial resolution to characterize this localized effect. We used a coupled agro-climatic and life cycle assessment model to estimate the water resource impacts of bioenergy expansion scenarios at a county-level resolution. The study focused on the case of California, with its range of agroecological conditions, water scarcity, and aggressive alternative fuel incentive policies. Life cycle water consumption for ethanol production in California is up to 1000 times that of gasoline due to a cultivation phase that consumes over 99% of life cycle water use for agricultural biofuels. This consumption varies by up to 60% among different feedstocks and by over 350% across regions in California. Rigorous policy analysis requires spatially resolved modeling of water resource impacts and careful consideration of the various metrics that might act to constrain technology and policy options.

  5. Water-energy nexus: Impact on electrical energy conversion and mitigation by smart water resources management

    International Nuclear Information System (INIS)

    Gjorgiev, Blaže; Sansavini, Giovanni

    2017-01-01

    Highlights: • The issues to energy conversion stemming from the water-energy nexus are investigated. • The objective is to minimize power curtailments caused by critical river water conditions. • A water-energy nexus model for smart management of water resources is developed. • Systemic risks to energy conversion stem from critical temperature and flow regimes. • Full coordination of the hydrologically-linked units provides the most effective strategy. - Abstract: The water-energy nexus refers to the water used to generate electricity and to the electric energy used to collect, clean, move, store, and dispose of water. Water is used in all stages of electric energy conversion making power systems vulnerable to water scarcity and warming. In particular, a water flow decrease and temperature increase in rivers can significantly limit the generation of electricity. This paper investigates the issues to energy conversion stemming from the water-energy nexus and mitigates them by developing a model for the smart utilization of water resources. The objective is to minimize power curtailments caused by a river water flow decrease and a temperature increase. The developed water-energy nexus model integrates the operational characteristics of hydro power plants, the environmental conditions, the river water temperature prediction and thermal load release in river bodies. The application to a hydraulic cascade of hydro and a thermal power plants under drought conditions shows that smart water management entails a significant reduction of power curtailments. In general, the full coordination of the power outputs of the units affected by the hydrological link provides the most effective mitigations of the potential issues stemming from the water-energy nexus. Finally, critical temperature and flow regimes are identified which severely impact the energy conversion and may cause systemic risks in case the generators in one region must be simultaneously curtailed.

  6. Environmental Impact Assessment of a Water Transfer Project

    Directory of Open Access Journals (Sweden)

    Pazoki

    2015-07-01

    Full Text Available Background Reliable water supplies for drinking and agriculture are some of the objectives for the sustainable development of every country. However, constructed facilities such as dams and irrigation networks and drainage can exert positive and negative effects directly or indirectly on the environment. The environmental impact assessment is a method for identifying the positive and negative effects caused by a plan and suggests performance management best practices aimed at lessening the negative impacts and augmenting the positive ones. Objectives The present study sought to evaluate the environmental impacts of the water transfer project of the Jooban Dam in two phases of preparation and operation. Materials and Methods A checklist containing the positive, negative, short-term, and long-term effects as well as the continuation and probable occurrence of these effects was used. Results The results showed that the negative environmental and social impacts of the project outweighed the positive impacts in terms of type, number, and intensity. Conclusions Unless there are well-thought out strategies for minimizing the undesirable impact on the environment, it is not advisable that such projects be permitted.

  7. Water demand and supply co-adaptation to mitigate climate change impacts in agricultural water management

    Science.gov (United States)

    Giuliani, Matteo; Mainardi, Matteo; Castelletti, Andrea; Gandolfi, Claudio

    2013-04-01

    Agriculture is the main land use in the world and represents also the sector characterised by the highest water demand. To meet projected growth in human population and per-capita food demand, agricultural production will have to significantly increase in the next decades. Moreover, water availability is nowadays a limiting factor for agricultural production, and is expected to decrease over the next century due to climate change impacts. To effectively face a changing climate, agricultural systems have therefore to adapt their strategies (e.g., changing crops, shifting sowing and harvesting dates, adopting high efficiency irrigation techniques). Yet, farmer adaptation is only one part of the equation because changes in water supply management strategies, as a response to climate change, might impact on farmers' decisions as well. Despite the strong connections between water demand and supply, being the former dependent on agricultural practices, which are affected by the water available that depends on the water supply strategies designed according to a forecasted demand, an analysis of their reciprocal feedbacks is still missing. Most of the recent studies has indeed considered the two problems separately, either analysing the impact of climate change on farmers' decisions for a given water supply scenario or optimising water supply for different water demand scenarios. In this work, we explicitly connect the two systems (demand and supply) by activating an information loop between farmers and water managers, to integrate the two problems and study the co-evolution and co-adaptation of water demand and water supply systems under climate change. The proposed approach is tested on a real-world case study, namely the Lake Como serving the Muzza-Bassa Lodigiana irrigation district (Italy). In particular, given an expectation of water availability, the farmers are able to solve a yearly planning problem to decide the most profitable crop to plant. Knowing the farmers

  8. The Impact of Rhizosphere Processes on Water Flow and Root Water Uptake

    Science.gov (United States)

    Schwartz, Nimrod; Kroener, Eva; Carminati, Andrea; Javaux, Mathieu

    2015-04-01

    For many years, the rhizosphere, which is the zone of soil in the vicinity of the roots and which is influenced by the roots, is known as a unique soil environment with different physical, biological and chemical properties than those of the bulk soil. Indeed, in recent studies it has been shown that root exudate and especially mucilage alter the hydraulic properties of the soil, and that drying and wetting cycles of mucilage result in non-equilibrium water dynamics in the rhizosphere. While there are experimental evidences and simplified 1D model for those concepts, an integrated model that considers rhizosphere processes with a detailed model for water and roots flow is absent. Therefore, the objective of this work is to develop a 3D physical model of water flow in the soil-plant continuum that take in consideration root architecture and rhizosphere specific properties. Ultimately, this model will enhance our understanding on the impact of processes occurring in the rhizosphere on water flow and root water uptake. To achieve this objective, we coupled R-SWMS, a detailed 3D model for water flow in soil and root system (Javaux et al 2008), with the rhizosphere model developed by Kroener et al (2014). In the new Rhizo-RSWMS model the rhizosphere hydraulic properties differ from those of the bulk soil, and non-equilibrium dynamics between the rhizosphere water content and pressure head is also considered. We simulated a wetting scenario. The soil was initially dry and it was wetted from the top at a constant flow rate. The model predicts that, after infiltration the water content in the rhizosphere remained lower than in the bulk soil (non-equilibrium), but over time water infiltrated into the rhizosphere and eventually the water content in the rhizosphere became higher than in the bulk soil. These results are in qualitative agreement with the available experimental data on water dynamics in the rhizosphere. Additionally, the results show that rhizosphere processes

  9. Energy Savings Lifetimes and Persistence

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, Ian M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schiller, Steven R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Todd, Annika [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Billingsley, Megan A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Goldman, Charles A. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Schwartz, Lisa C. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-02-01

    This technical brief explains the concepts of energy savings lifetimes and savings persistence and discusses how program administrators use these factors to calculate savings for efficiency measures, programs and portfolios. Savings lifetime is the length of time that one or more energy efficiency measures or activities save energy, and savings persistence is the change in savings throughout the functional life of a given efficiency measure or activity. Savings lifetimes are essential for assessing the lifecycle benefits and cost effectiveness of efficiency activities and for forecasting loads in resource planning. The brief also provides estimates of savings lifetimes derived from a national collection of costs and savings for electric efficiency programs and portfolios.

  10. Contract saving schemes

    NARCIS (Netherlands)

    Ronald, R.; Smith, S.J.; Elsinga, M.; Eng, O.S.; Fox O'Mahony, L.; Wachter, S.

    2012-01-01

    Contractual saving schemes for housing are institutionalised savings programmes normally linked to rights to loans for home purchase. They are diverse types as they have been developed differently in each national context, but normally fall into categories of open, closed, compulsory, and ‘free

  11. The EU must triple its energy saving policy effect

    NARCIS (Netherlands)

    Wesselink, B.; Eichhammer, W.; Harmsen, R.

    2010-01-01

    The impact of EU energy savings policy must triple to achieve the bloc’s 2020 energy savings goal. But such efforts could get a much better foundation if European leaders set a binding energy consumption target, rather than the current indicative savings target. The evidence for such

  12. Model potentials in liquid water ionization by fast electron impact

    International Nuclear Information System (INIS)

    De Sanctis, M L; Stia, C R; Fojón, O A; Politis, M-F; Vuilleumier, R

    2015-01-01

    We study the ionization of water molecules in liquid phase by fast electron impact. We use our previous first-order model within an independent electron approximation that allows the reduction of the multielectronic problem into a monoelectronic one. The initial molecular states of the liquid water are represented in a realistic way through a Wannier orbital formalism. We complete our previous study by taking into account approximately the influence of the passive electrons of the target by means of different model potentials. We compute multiple differential cross sections for the most external orbital 1B 1 and compare them with other results

  13. Saving electricity in a hurry - update 2011

    Energy Technology Data Exchange (ETDEWEB)

    Pasquier, Sara Bryan

    2011-06-15

    As demonstrated by the March 2011 earthquake and tsunami-triggered blackouts in Japan, electricity shortfalls can happen anytime and anywhere. Countries can minimise the negative economic, social and environmental impacts of such electricity shortfalls by developing emergency energy-saving strategies before a crisis occurs. This new IEA report highlights preliminary findings and conclusions from electricity shortfalls in Japan, the United States, New Zealand, South Africa and Chile. It draws on recent analysis to: reinforce well-established guidelines on diagnosing electricity shortfalls, identifying energy-saving opportunities and selecting a package of energy-saving measures; and highlight proven practice for implementing emergency energy-saving programmes. This paper will be valuable to government, academic, private-sector and civil-society stakeholders who inform, develop and implement electricity policy in general, and emergency energy-saving programmes in particular.

  14. Measuring industrial energy savings

    International Nuclear Information System (INIS)

    Kelly Kissock, J.; Eger, Carl

    2008-01-01

    Accurate measurement of energy savings from industrial energy efficiency projects can reduce uncertainty about the efficacy of the projects, guide the selection of future projects, improve future estimates of expected savings, promote financing of energy efficiency projects through shared-savings agreements, and improve utilization of capital resources. Many efforts to measure industrial energy savings, or simply track progress toward efficiency goals, have had difficulty incorporating changing weather and production, which are frequently major drivers of plant energy use. This paper presents a general method for measuring plant-wide industrial energy savings that takes into account changing weather and production between the pre and post-retrofit periods. In addition, the method can disaggregate savings into components, which provides additional resolution for understanding the effectiveness of individual projects when several projects are implemented together. The method uses multivariable piece-wise regression models to characterize baseline energy use, and disaggregates savings by taking the total derivative of the energy use equation. Although the method incorporates search techniques, multi-variable least-squares regression and calculus, it is easily implemented using data analysis software, and can use readily available temperature, production and utility billing data. This is important, since more complicated methods may be too complex for widespread use. The method is demonstrated using case studies of actual energy assessments. The case studies demonstrate the importance of adjusting for weather and production between the pre- and post-retrofit periods, how plant-wide savings can be disaggregated to evaluate the effectiveness of individual retrofits, how the method can identify the time-dependence of savings, and limitations of engineering models when used to estimate future savings

  15. Interval Optimization Model Considering Terrestrial Ecological Impacts for Water Rights Transfer from Agriculture to Industry in Ningxia, China.

    Science.gov (United States)

    Sun, Lian; Li, Chunhui; Cai, Yanpeng; Wang, Xuan

    2017-06-14

    In this study, an interval optimization model is developed to maximize the benefits of a water rights transfer system that comprises industry and agriculture sectors in the Ningxia Hui Autonomous Region in China. The model is subjected to a number of constraints including water saving potential from agriculture and ecological groundwater levels. Ecological groundwater levels serve as performance indicators of terrestrial ecology. The interval method is applied to present the uncertainty of parameters in the model. Two scenarios regarding dual industrial development targets (planned and unplanned ones) are used to investigate the difference in potential benefits of water rights transfer. Runoff of the Yellow River as the source of water rights fluctuates significantly in different years. Thus, compensation fees for agriculture are calculated to reflect the influence of differences in the runoff. Results show that there are more available water rights to transfer for industrial development. The benefits are considerable but unbalanced between buyers and sellers. The government should establish a water market that is freer and promote the interest of agriculture and farmers. Though there has been some success of water rights transfer, the ecological impacts and the relationship between sellers and buyers require additional studies.

  16. Impact of climate forcing uncertainty and human water use on global and continental water balance components

    Directory of Open Access Journals (Sweden)

    H. Müller Schmied

    2016-10-01

    Full Text Available The assessment of water balance components using global hydrological models is subject to climate forcing uncertainty as well as to an increasing intensity of human water use within the 20th century. The uncertainty of five state-of-the-art climate forcings and the resulting range of cell runoff that is simulated by the global hydrological model WaterGAP is presented. On the global land surface, about 62 % of precipitation evapotranspires, whereas 38 % discharges into oceans and inland sinks. During 1971–2000, evapotranspiration due to human water use amounted to almost 1 % of precipitation, while this anthropogenic water flow increased by a factor of approximately 5 between 1901 and 2010. Deviation of estimated global discharge from the ensemble mean due to climate forcing uncertainty is approximately 4 %. Precipitation uncertainty is the most important reason for the uncertainty of discharge and evapotranspiration, followed by shortwave downward radiation. At continental levels, deviations of water balance components due to uncertain climate forcing are higher, with the highest discharge deviations occurring for river discharge in Africa (−6 to 11 % from the ensemble mean. Uncertain climate forcings also affect the estimation of irrigation water use and thus the estimated human impact of river discharge. The uncertainty range of global irrigation water consumption amounts to approximately 50 % of the global sum of water consumption in the other water use sector.

  17. Influence of malaxation time of olive paste on oil extraction yields and chemical and organoleptic characteristics of virgin olive oil obtained by a centrifugal decanter at water saving

    Directory of Open Access Journals (Sweden)

    Serraiocco, A.

    2002-06-01

    Full Text Available Experimental tests were carried out to ascertain the influence of malaxation time of olive paste on extraction yields and qualitative characteristics of virgin olive oils obtained by a centrifugal decanter at water saving. Results show that malaxation time has to be no less than 45 minutes to have a satisfactory oil extraction yield. Furthermore, it was ascertained that the malaxation time, protracted up to 90 minutes, does not have influence upon qualitative and organoleptic characteristics of oils. Only the total phenols content of oils changed significantly when the malaxation time of olive paste increased from 15 to 90 minutes. However, in this research has been demonstrated that in some cases the total phenols content of oils increased during the first 30-45 minutes of malaxation and after it diminished. This is due to the variation of total phenols content of vegetable water that in the first time increased and after diminished very quickly. Because of the partition equilibrium law, the total phenols content of oil changed in the same way. Finally, results show that the composition of volatile substances of head-space of oils did not change increasing the malaxation time of olive paste obtained from good quality olive fruits.Se realizaron pruebas experimentales para verificar la influencia del tiempo de batido sobre los rendimientos en aceite y sobre las características de la calidad de los aceites obtenidos con un decanter centrifugo con ahorro de agua. Los resultados conseguidos indicaron que el tiempo de batido no debe ser inferior a 45 minutos para poder obtener rendimientos en aceite satisfactorios. Además, se pudo verificar que la operación de batido, aun siendo prolongada a 90 minutos, no influencia significativamente en las características cualitativas y organolépticas de los aceites. Solo el contenido de fenoles totales en los aceites disminuyó cuando el tiempo de batido fue incrementado de 15 a 90 minutos. Sin embargo, se

  18. Assessment of cyanobacteria impact on bathing water quality in Poland

    Directory of Open Access Journals (Sweden)

    Krzysztof Skotak

    2012-12-01

    Full Text Available Introduction: Quality of bathing water is of key importance for bathers’ health, mainly due to the fact, that each year millions of people use bathing sites as places for recreation and sport activities. Most of the bathing sites are of adequate quality of water, but still there are cases of health risk because bathing water is polluted. One of the main health risk factor in bathing water are cyanobacteria and their blooms. Cyanobacteria are microorganisms of morphological features of bacteria and algae. They live in colonies, which in large quantities show up as streaks, dense foam on the water surface. The aim of this paper was to assess the impact of cyanobacteria blooms on health regarding bathing water quality in Poland. Materials and methods: Assessment covered all bathing sites in Poland supervised by Polish National Sanitary Inspection (PIS in the period from 2007 to 2009. The base was data collected during bathing water monitoring conducted by PIS and their formal decisions of bathing bans introduced in response to revealed bathing water pollution. Results and discussion: The results of assessment indicate, that about one-fourth of all bathing bans in Poland was due to cyanobacteria blooms. Conclusions: Every fifth bathing sites located on artificial lake or water reservoir and every tenth on the sea bathing sites were polluted. Average period of bathing ban due to cyanobacteria blooms in Poland varies. Relatively the shortest bathing bans were observed on the sea bathing sites (no longer than one week on average. Much longer were bathing bans on lakes and artificial lakes (one month on average.

  19. Climate change impacts on boundary and transboundary water management

    Energy Technology Data Exchange (ETDEWEB)

    Bruce, J.P.; Martin, H.; Colucci, P. [Global Change Strategies International, Ottawa, ON (Canada); McBean, G. [Institute for Catastrophic Loss Reduction, Toronto, ON (Canada); McDougall, J.; Shrubsole, D.; Whalley, J. [Western Ontario Univ., London, ON (Canada); Halliday, R. [R. Halliday and Associates, Saskatoon, SK (Canada); Alden, M.; Mortsch, L.; Mills, B. [Environment Canada, Downsview, ON (Canada). Meteorological Service of Canada; Coleman, C.; Zhang, Y.; Jia, J.; Porco, M.; Henstra, S.

    2003-06-30

    Climate change will have an impact on water cycles, with increased river flows in some areas, and decreased river flows in others. This report focuses on climate change related issues of water management in boundary and transboundary areas between Canada and the United States. Water resources in these areas are governed by agreements between provinces, territories and the federal governments of Canada and the United States. The Climate Change Action Fund and Natural Resources Canada launched a project through a partnership between the Global Change Strategies International (GCSI), the Institute for Catastrophic Loss Reduction (ICLR) and the Meteorological Services of Canada (MSC). The objective was to address potential difficulties in water management resources within North America. This report presents the results of the collaboration. It includes climate scenarios and climate model outputs on future temperature and precipitation by 2050, under a range of emission scenarios. It also includes an analysis of Canada-United States transboundary water instruments for vulnerability to climate change, as well as perceptions of fairness in allocating water in the Saskatchewan River Basin. This report also includes a review of the terms of existing Treaties and Agreements of 11 river basins between Canada and the United States on boundary and transboundary waters. The report concludes that it is very likely that much of Canada will see increased intense precipitation events while the interior regions will have increased risk of drought. These two projections will have major implications for river flows and the management of water resource. Seven recommendations were presented to ensure that water is allocated fairly and responsibly. refs., tabs., figs.

  20. Energy Saver: Tips on Saving Money & Energy at Home

    Energy Technology Data Exchange (ETDEWEB)

    None

    2017-09-01

    Provides consumers with home energy and money savings tips such as insulation, weatherization, heating, cooling, water heating, energy efficient windows, landscaping, lighting, and energy efficient appliances.

  1. Energy Savers Tips on Saving Energy& Money at Home

    Energy Technology Data Exchange (ETDEWEB)

    2003-06-01

    Provides consumers with home energy and money savings tips such as insulation, weatherization, heating, cooling, water heating, energy efficient windows, landscaping, lighting, and energy efficient appliances

  2. Energy Savers: Tips on Saving Money & Energy at Home

    Energy Technology Data Exchange (ETDEWEB)

    None

    2011-12-01

    Provides consumers with home energy and money savings tips such as insulation, weatherization, heating, cooling, water heating, energy efficient windows, landscaping, lighting, and energy efficient appliances.

  3. Energy Savers: Tips on Saving Money & Energy at Home

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-05-01

    Provides consumers with home energy and money savings tips such as insulation, weatherization, heating, cooling, water heating, energy efficient windows, landscaping, lighting, and energy efficient appliances.

  4. Selecting downscaled climate projections for water resource impacts and adaptation

    Science.gov (United States)

    Vidal, Jean-Philippe; Hingray, Benoît

    2015-04-01

    Increasingly large ensembles of global and regional climate projections are being produced and delivered to the climate impact community. However, such an enormous amount of information can hardly been dealt with by some impact models due to computational constraints. Strategies for transparently selecting climate projections are therefore urgently needed for informing small-scale impact and adaptation studies and preventing potential pitfalls in interpreting ensemble results from impact models. This work proposes results from a selection approach implemented for an integrated water resource impact and adaptation study in the Durance river basin (Southern French Alps). A large ensemble of 3000 daily transient gridded climate projections was made available for this study. It was built from different runs of 4 ENSEMBLES Stream2 GCMs, statistically downscaled by 3 probabilistic methods based on the K-nearest neighbours resampling approach (Lafaysse et al., 2014). The selection approach considered here exemplifies one of the multiple possible approaches described in a framework for identifying tailored subsets of climate projections for impact and adaptation studies proposed by Vidal & Hingray (2014). It was chosen based on the specificities of both the study objectives and the characteristics of the projection dataset. This selection approach aims at propagating as far as possible the relative contributions of the four different sources of uncertainties considered, namely GCM structure, large-scale natural variability, structure of the downscaling method, and catchment-scale natural variability. Moreover, it took the form of a hierarchical structure to deal with the specific constraints of several types of impact models (hydrological models, irrigation demand models and reservoir management models). The implemented 3-layer selection approach is therefore mainly based on conditioned Latin Hypercube sampling (Christierson et al., 2012). The choice of conditioning

  5. Human impact on the microbiological water quality of the rivers

    OpenAIRE

    P?ll, Em?ke; Niculae, Mihaela; Kiss, Timea; ?andru, Carmen Dana; Sp?nu, Marina

    2013-01-01

    Microbiological contamination is an important water-quality problem worldwide. Human impact on this category of contamination is significant and several human-related activities, and also the population explosion, have affected and are still affecting dramatically the aquatic environment. Extensive industrialization and agriculture have led to increased pollution and hydromorphological changes in many river basins. The Danube river is one of the most affected by these changes where human invo...

  6. Water Quality Impacts of Cover Crop/Manure Management Systems

    OpenAIRE

    Kern, James Donald

    1997-01-01

    Crop production, soil system, water quality, and economic impacts of four corn silage production systems were compared through a field study including 16 plots (4 replications of each treatment). Systems included a rye cover crop and application of liquid dairy manure in the spring and fall. The four management systems were: 1) traditional, 2) double- crop, 3) roll-down, and 4) undercut. In the fourth system, manure was applied below the soil surface during the ...

  7. l'impatto della politica fiscale e dell'inflazione sul risparmio nazionale: il caso italiano.(The impact of fiscal policy and inflation on national saving: the Italian case

    Directory of Open Access Journals (Sweden)

    F. MODIGLIANI

    2013-12-01

    Full Text Available Oltre al reddito ci sono altri due influenze principali sul risparmio nazionale : la politica fiscale e l'inflazione . Gli autori costruiscono un modello dell'economia italiana per analizzare l'impatto di queste due variabili correlate. Si è concluso che i disavanzi pubblici del passato hanno prodotto una riduzione proporzionale del risparmio nazionale . A partire dai primi anni 1960 risparmi nazionali sono diminuiti di quasi 9 punti percentuali , di cui 3,6 punti percentuali possono essere contabilizzati da un aumento del 4 per cento nel deficit del governo . I risultati per quanto riguarda l'impatto dell'inflazione non sono definiti , e non è possibile stabilirli .Apart from income there are two other main influences on national savings: fiscal policy and inflation. The authors construct a model of the Italian economy to analyse the impact of these two related variables. It is concluded that past government deficits have produced a proportional reduction in national saving. Since the early 1960s national savings have declined by nearly 9 percentage points, of which 3.6 percentage points can be accounted for by a 4 per cent increase in the government's deficit. The results regarding the impact of inflation are not definite, and no conclusion is drawn.JEL: E21, E31, E62,

  8. Impact of highway construction on water bodies: a geospatial assessment.

    Science.gov (United States)

    Vijay, Ritesh; Kushwaha, Vikash K; Mardikar, Trupti; Labhasetwar, P K

    2017-08-01

    India has witnessed a massive infrastructure boom in the past few years. One of such projects is National Highway-7 (NH-7), a North-South highway connecting Kanyakumari, Tamil Nadu, to Varanasi, Uttar Pradesh, traversing many water bodies. The present study aims to assess the pre- and post-construction impact due to existing, new and widened NH-7 on the physical status of the water bodies, using remote sensing techniques. Satellite images spanning 22 years were procured and analysed for change detection in land use and land cover within the waterbodies. The study indicates that construction activities have led to transformation within the water bodies regarding reduction in area and inter-changing of land use and land cover classes, in turn leading to siltation and reduction of recharge.

  9. Impact on surface water quality due to coke oven effluents

    International Nuclear Information System (INIS)

    Ghose, M.K.; Roy, S.

    1994-01-01

    Large quantities of water are used for the quenching of hot coke and also for washing the gas produced from the coke ovens. Liquid effluents thus generated are highly polluted and are being discharged into the river Damodar without proper treatment. Four coke plants of Bharat Coking Coal Ltd.(BCCL) have been surveyed for characterization and to assess the impact on surface water quality. About 175-200 kilolitres of waste water is being generated per day by each of the coke plants. The concentration of CO, BOD, COD, TSS, phenol and cyanide in each of the coke plants were found to exceed the limits specified by pollution control board. Ammonia, oil and grease and TDS were found to be 19.33 mg/l, 7.81 mg/l, 1027.75 mg/l respectively. Types of samples collected, sampling frequencies, sample preservation and the results obtained have been discussed. (author). 6 refs., 1 tab., 1 fig

  10. WATER QUALITY ANALYSIS OF AGRICULTURALLY IMPACTED TIDAL BLACKBIRD CREEK, DELAWARE

    Directory of Open Access Journals (Sweden)

    Matthew Stone

    2016-11-01

    Full Text Available Blackbird Creek, Delaware is a small watershed in northern Delaware that has a significant proportion of land designated for agricultural land use. The Blackbird Creek water monitoring program was initiated in 2012 to assess the condition of the watershed’s habitats using multiple measures of water quality. Habitats were identified based on percent adjacent agricultural land use. Study sites varying from five to fourteen were sampled biweekly during April and November, 2012-2015. Data were analyzed using principal component analysis and generalized linear modeling. Results from these first four years of data documented no significant differences in water quality parameters (dissolved oxygen, pH, temperature, salinity, inorganic nitrate, nitrite, ammonia, orthophosphate, alkalinity, and turbidity between the two habitats, although both orthophosphate and turbidity were elevated beyond EPA-recommended values. There were statistically significant differences for all of the parameters between agriculture seasons. The lack of notable differences between habitats suggests that, while the watershed is generally impacted by agricultural land use practices, there appears to be no impact on the surface water chemistry. Because there were no differences between habitats, it was concluded that seasonal differences were likely due to basic seasonal variation and were not a function of agricultural land use practices.

  11. Drought evolution: greater and faster impacts on blue water than on green water

    Science.gov (United States)

    Destouni, G.; Orth, R.

    2017-12-01

    Drought propagates through the terrestrial water cycle, affecting different interlinked geospheres which have so far been mostly investigated separately and without direct comparison. By use of comprehensive multi-decadal data from >400 near-natural catchments along a steep climate gradient across Europe we here analyze drought propagation from precipitation (deficits) through soil moisture to runoff (blue water) and evapotranspiration (green water). We show that soil-moisture droughts reduce runoff stronger and faster than evapotranspiration. While runoff responds within weeks, evapotranspiration can be unaffected for months, or even entirely as in central and northern Europe. Understanding these different drought pathways towards blue and green water resources contributes to improve food and water security and offers early warning potential to mitigate (future) drought impacts on society and ecosystems.

  12. Evaluation of Water Efficiency in Green Building in Taiwan

    Directory of Open Access Journals (Sweden)

    Cheng-Li Cheng

    2016-06-01

    Full Text Available Low carbon policies, including those aimed at increasing water efficiency, have been adopted as a crucial strategy for combating global warming and climate change. The green building evaluation system used in Taiwan was first applied in 1999 and initially utilized a building’s water efficiency as the threshold index for determining the building’s environmental impact. Since 1999, more than a thousand buildings have been certified as green buildings using this evaluation system. The quantitative effects of water conservation efforts should be provided to policy makers as a form of positive feedback. To that end, the present study offers a calculation process for estimating the quantitative volume of water saved by practical green buildings. The baseline water usage for all kinds of buildings was determined to serve as the criterion for determining the water-saving efficiency of individual buildings. An investigation of the average water-saving rate from 2000 to 2013 for 1320 buildings certified as green buildings was also conducted to validate the estimation results and found that these green buildings saved an average of approximately 37.6% compared to the baseline water usage rate for all buildings. Water savings will inevitably follow from the use of water-saving appliances or water-saving designs for buildings. The proposed calculation process can be used to clarify the relationships between specific water-saving concepts and the real water usage efficiency of green buildings.

  13. Downscaling climate model output for water resources impacts assessment (Invited)

    Science.gov (United States)

    Maurer, E. P.; Pierce, D. W.; Cayan, D. R.

    2013-12-01

    Water agencies in the U.S. and around the globe are beginning to wrap climate change projections into their planning procedures, recognizing that ongoing human-induced changes to hydrology can affect water management in significant ways. Future hydrology changes are derived using global climate model (GCM) projections, though their output is at a spatial scale that is too coarse to meet the needs of those concerned with local and regional impacts. Those investigating local impacts have employed a range of techniques for downscaling, the process of translating GCM output to a more locally-relevant spatial scale. Recent projects have produced libraries of publicly-available downscaled climate projections, enabling managers, researchers and others to focus on impacts studies, drawing from a shared pool of fine-scale climate data. Besides the obvious advantage to data users, who no longer need to develop expertise in downscaling prior to examining impacts, the use of the downscaled data by hundreds of people has allowed a crowdsourcing approach to examining the data. The wide variety of applications employed by different users has revealed characteristics not discovered during the initial data set production. This has led to a deeper look at the downscaling methods, including the assumptions and effect of bias correction of GCM output. Here new findings are presented related to the assumption of stationarity in the relationships between large- and fine-scale climate, as well as the impact of quantile mapping bias correction on precipitation trends. The validity of these assumptions can influence the interpretations of impacts studies using data derived using these standard statistical methods and help point the way to improved methods.

  14. NASA's Impacts Towards Improving International Water Management Using Satellites

    Science.gov (United States)

    Toll, D. L.; Doorn, B.; Searby, N. D.; Entin, J. K.; Lawford, R. G.; Mohr, K. I.; Lee, C. M.

    2013-12-01

    Key objectives of the NASA's Water Resources and Capacity Building Programs are to discover and demonstrate innovative uses and practical benefits of NASA's advanced system technologies for improved water management. This presentation will emphasize NASA's water research, applications, and capacity building activities using satellites and models to contribute to water issues including water availability, transboundary water, flooding and droughts to international partners, particularly developing countries. NASA's free and open exchange of Earth data observations and products helps engage and improve integrated observation networks and enables national and multi-national regional water cycle research and applications that are especially useful in data sparse regions of most developing countries. NASA satellite and modeling products provide a huge volume of valuable data extending back over 50 years across a broad range of spatial (local to global) and temporal (hourly to decadal) scales and include many products that are available in near real time (see earthdata.nasa.gov). To further accomplish these objectives NASA works to actively partner with public and private groups (e.g. federal agencies, universities, NGO's, and industry) in the U.S. and internationally to ensure the broadest use of its satellites and related information and products and to collaborate with regional end users who know the regions and their needs best. The event will help demonstrate the strong partnering and the use of satellite data to provide synoptic and repetitive spatial coverage helping water managers' deal with complex issues. This presentation will outline and describe NASA's international water related research, applications and capacity building programs' efforts to address developing countries critical water challenges in Asia, African and Latin America. This will specifically highlight impacts and case studies from NASA's programs in Water Resources (e.g., drought, snow

  15. Field measurement of soil water repellency and its impact on water flow under different vegetation

    Czech Academy of Sciences Publication Activity Database

    Lichner, Ľ.; Hallett, P. D.; Feeney, D. S.; Ďugová, O.; Šír, Miloslav; Tesař, Miroslav

    2007-01-01

    Roč. 62, č. 5 (2007), s. 537-541 ISSN 0006-3088 R&D Projects: GA ČR GA205/05/2312 Institutional research plan: CEZ:AV0Z20600510 Keywords : vegetation * sandy soil * water repellency * hydraulic conductivity Subject RIV: DA - Hydrology ; Limnology Impact factor: 0.207, year: 2007

  16. Impacts of water quality on the corrosion of cast iron pipes for water distribution and proposed source water switch strategy.

    Science.gov (United States)

    Hu, Jun; Dong, Huiyu; Xu, Qiang; Ling, Wencui; Qu, Jiuhui; Qiang, Zhimin

    2018-02-01

    Switch of source water may induce "red water" episodes. This study investigated the impacts of water quality on iron release, dissolved oxygen consumption (ΔDO), corrosion scale evolution and bacterial community succession in cast iron pipes used for drinking water distribution at pilot scale, and proposed a source water switch strategy accordingly. Three sets of old cast iron pipe section (named BP, SP and GP) were excavated on site and assembled in a test base, which had historically transported blended water, surface water and groundwater, respectively. Results indicate that an increasing Cl - or SO 4 2- concentration accelerated iron release, but alkalinity and calcium hardness exhibited an opposite tendency. Disinfectant shift from free chlorine to monochloramine slightly inhibited iron release, while the impact of peroxymonosulfate depended on the source water historically transported in the test pipes. The ΔDO was highly consistent with iron release in all three pipe systems. The mass ratio of magnetite to goethite in the corrosion scales of SP was higher than those of BP and GP and kept almost unchanged over the whole operation period. Siderite and calcite formation confirmed that an increasing alkalinity and hardness inhibited iron release. Iron-reducing bacteria decreased in the BP but increased in the SP and GP; meanwhile, sulfur-oxidizing, sulfate-reducing and iron oxidizing bacteria increased in all three pipe systems. To avoid the occurrence of "red water", a source water switch strategy was proposed based on the difference between local and foreign water qualities. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Sulphate content of the Muntimpa dam water and its impact on water quality

    International Nuclear Information System (INIS)

    Tembo, F; Shitumbanuma, V; Simukanga, S; Mudenda, G; Chileshe, P; Mulenga, S; Phiri, Y

    2004-01-01

    This article presents results of a study of the quality of water from Muntimpa Dam, a reservior of waste mine water released from the processing of copper and cobalt ores by Konkola Copper Mines(KCM) Plc in Chingola. The mine water is discharged into the local Muntimpa stream, a possible source of drinking and domestic water for the local population. The purpose of the study was to determine levels of sulphate in the dam and stream water and recommend possible methods of partial sulphate removal to levels below the recommended statutory limits and secondly, to assess the impact of high sulphate levels on water quality. Study methods included the sampling of water from the Muntimpa dam and catchment area. Stream water samples were collected about 5m from the stream banks while water samples from the dam were randomly collected from the near the centre of the dam at a depth of 50cm. Laboratory methods involved the determination of physical and chemical properties of the water using standard analytical techniques. Results of the study indicate that both total (2470mg/l) and available (1965mg/l) sulphate concentrations are higher than the recommended statutory limit for the discharge of sulphates into natural streams of 1500mg/l. From the study it is concluded that water in Muntimpa dam and stream is not suitable for drinking and other domestic use due to the high sulphate levels. From theorectical considerations, it was established that sulphate reduction could be achieved by addition of lime, which however had the consquence of increasing the pH of the water in excess of the recommended Zambian statutory value of nine, and would thus require an additional process to reduce the pH. (author)

  18. Invisible costs, visible savings.

    Science.gov (United States)

    Lefever, G

    1999-08-01

    By identifying hidden inventory costs, nurse managers can save money for the organization. Some measures include tracking and standardizing supplies, accurately evaluating patients' needs, and making informed purchasing decisions.

  19. Realized Cost Savings 2016

    Data.gov (United States)

    Department of Veterans Affairs — This dataset is provided as a requirement of OMB’s Integrated Data Collection (IDC) and links to VA’s Realized Cost Savings and Avoidances data in JSON format. Cost...

  20. Impacts of crop insurance on water withdrawals for irrigation

    Science.gov (United States)

    Deryugina, Tatyana; Konar, Megan

    2017-12-01

    Agricultural production remains particularly vulnerable to weather fluctuations and extreme events, such as droughts, floods, and heat waves. Crop insurance is a risk management tool developed to mitigate some of this weather risk and protect farmer income in times of poor production. However, crop insurance may have unintended consequences for water resources sustainability, as the vast majority of freshwater withdrawals go to agriculture. The causal impact of crop insurance on water use in agriculture remains poorly understood. Here, we determine the empirical relationship between crop insurance and irrigation water withdrawals in the United States. Importantly, we use an instrumental variables approach to establish causality. Our methodology exploits a major policy change in the crop insurance system - the 1994 Federal Crop Insurance Reform Act - which imposed crop insurance requirements on farmers. We find that a 1% increase in insured crop acreage leads to a 0.223% increase in irrigation withdrawals, with most coming from groundwater aquifers. We identify farmers growing more groundwater-fed cotton as an important mechanism contributing to increased withdrawals. A 1% increase in insured crop acreage leads to a 0.624% increase in cotton acreage, or 95,602 acres. These results demonstrate that crop insurance causally leads to more irrigation withdrawals. More broadly, this work underscores the importance of determining causality in the water-food nexus as we endeavor to achieve global food security and water resources sustainability.

  1. Investigation of impact of water type on borate ore flotation.

    Science.gov (United States)

    Ozkan, S G; Acar, A

    2004-04-01

    In this work, the impact of water type on borate ore flotation was investigated, while various physical parameters during flotation were considered in order to compare the results. Two different colemanite samples from Emet deposits of Turkey, named as Emet-A and Emet-B contained 44% B(2)O(3) and 40% B(2)O(3), respectively. The flotation tests were performed at feed particle size range of -210 +20 microm. Optimal consumption values for the reagents were determined as 2000 gt(-1) for AeroPromoter R825 from Cytec Company, a sulphonate type collector, 1500 gt(-1) for Procol CA927 from Allied Colloids Company, a sulphosuccinamate type collector and 100 gt(-1) for AeroFrother 70 from Cytec Company, an alcohol-type frother. In the tests, the impeller speed of the Denver-type flotation machine was set to 1200 rpm and the samples were fed into a litre cell at 25% solid/liquid ratio and at natural pH value of the slurry at room temperature. The flotation results obtained from the tests with use of tap water, demineralised water and the artificial water prepared with Ca(2+) and Mg(2+) cations deliberately added into demineralised water were compared to each other in optimal flotation conditions.

  2. The impact of land use on microbial surface water pollution.

    Science.gov (United States)

    Schreiber, Christiane; Rechenburg, Andrea; Rind, Esther; Kistemann, Thomas

    2015-03-01

    Our knowledge relating to water contamination from point and diffuse sources has increased in recent years and there have been many studies undertaken focusing on effluent from sewage plants or combined sewer overflows. However, there is still only a limited amount of microbial data on non-point sources leading to diffuse pollution of surface waters. In this study, the concentrations of several indicator micro-organisms and pathogens in the upper reaches of a river system were examined over a period of 16 months. In addition to bacteria, diffuse pollution caused by Giardia lamblia and Cryptosporidium spp. was analysed. A single land use type predestined to cause high concentrations of all microbial parameters could not be identified. The influence of different land use types varies between microbial species. The microbial concentration in river water cannot be explained by stable non-point effluent concentrations from different land use types. There is variation in the ranking of the potential of different land use types resulting in surface water contamination with regard to minimum, median and maximum effects. These differences between median and maximum impact indicate that small-scale events like spreading manure substantially influence the general contamination potential of a land use type and may cause increasing micro-organism concentrations in the river water by mobilisation during the next rainfall event. Copyright © 2014 Elsevier GmbH. All rights reserved.

  3. Electric energy saving and its impact in the mining industry; El ahorro de energia electrica y su impacto en la industria minera

    Energy Technology Data Exchange (ETDEWEB)

    Urteaga Dufour, Jose Antonio [Fideicomiso de Apoyo al Programa de Ahorro de Energia del Sector Electrico (FIDE), Mexico, D. F. (Mexico)

    1994-12-31

    In this paper are shown the most important results of the energy diagnosis performed in some representative industries of the mining industry, where opportunity areas were detected in electric energy saving, starting from those measures that do not require investment up to the ones that require medium investment, recoverable in less than two years terms as a maximum and with electric energy saving ranging from 10% to 25%. [Espanol] En este trabajo, se presentan los resultados mas importantes, obtenidos en el diagnostico energetico realizado en algunas empresas representativas de la rama de la mineria, en donde se detectaron areas de oportunidad de ahorro de energia electrica que van desde aquellas medidas que no requieren inversiones hasta las que requieren medianas inversiones, recuperables en menos de dos anos como maximo y con ahorros de energia que van desde un 10% hasta un 25%.

  4. Electric energy saving and its impact in the mining industry; El ahorro de energia electrica y su impacto en la industria minera

    Energy Technology Data Exchange (ETDEWEB)

    Urteaga Dufour, Jose Antonio [Fideicomiso de Apoyo al Programa de Ahorro de Energia del Sector Electrico (FIDE), Mexico, D. F. (Mexico)

    1993-12-31

    In this paper are shown the most important results of the energy diagnosis performed in some representative industries of the mining industry, where opportunity areas were detected in electric energy saving, starting from those measures that do not require investment up to the ones that require medium investment, recoverable in less than two years terms as a maximum and with electric energy saving ranging from 10% to 25%. [Espanol] En este trabajo, se presentan los resultados mas importantes, obtenidos en el diagnostico energetico realizado en algunas empresas representativas de la rama de la mineria, en donde se detectaron areas de oportunidad de ahorro de energia electrica que van desde aquellas medidas que no requieren inversiones hasta las que requieren medianas inversiones, recuperables en menos de dos anos como maximo y con ahorros de energia que van desde un 10% hasta un 25%.

  5. Impact of heated waters on water quality and macroinvertebrate community in the Narew River (Poland

    Directory of Open Access Journals (Sweden)

    Krolak Elzbieta

    2017-07-01

    Full Text Available The effect of heated waters from coal-burning power stations on the water parameters and the occurrence of macroinvertebrates depends on the individual characteristics of the river to which the heated waters are discharged. The objective of the study was to assess the impact of heated water from the Ostrołęka Power Station on selected water properties and the macroinvertebrate community in the Narew River. Samples were collected in years: 2013-2016 along two river stretches: upstream and downstream of the canal. The water temperature was higher and the oxygen concentrations were lower at the downstream sites compared to the upstream sites of the canal. The values of conductivity, concentrations of nitrates, phosphates, chlorides and calcium were similar at the sampling sites. A total of 33 families of macrozoobenthos were found. The numbers of families were positively correlated with the temperature and conductivity and negatively correlated with oxygen. The heated waters were found to have no effect on the Shannon-Wiener diversity index. The inflow of heated waters increased the percentage of Gammaridae, represented by species Dikerogammarus haemobaphes (Eichwald, 1841 and decreased the percentage of Chironomidae. The presence of the thermophilous bivalve Sinanodonta woodiana (Lea, 1934 was noted downstream of the canal.

  6. In-office diagnostic arthroscopy for knee and shoulder intra-articular injuries its potential impact on cost savings in the United States

    Science.gov (United States)

    2014-01-01

    Background The purpose of this analysis was to determine whether in office diagnostic needle arthroscopy (Visionscope Imaging System [VSI]) can provide for improved diagnostic assessment and; more cost effective care. Methods Data on arthroscopy procedures in the US for deep seated pathology in the knee and shoulder were used (Calendar Year 2012). These procedures represent approximately 25-30% of all arthroscopic procedures performed annually. Sensitivities, specificities, positive predictive, and negative predictive values for MRI analysis of this deep seated pathology from systematic reviews and meta-analyses were used in assessing for false positive and false negative MRI findings. The costs of performing diagnostic and surgical arthroscopy procedures (using 2013 Medicare reimbursement amounts); costs associated with false negative findings; and the costs for treating associated complications arising from diagnostic and therapeutic arthroscopy procedures were then assessed. Results In patients presenting with medial meniscal pathology (ICD9CM diagnosis 836.0 over 540,000 procedures in CY 2012); use of the VSI system in place of MRI assessment (standard of care) resulted in a net cost savings to the system of $151 million. In patients presenting with rotator cuff pathology (ICD9CM 840.4 over 165,000 procedures in CY2012); use of VSI in place of MRI similarly saved $59 million. These savings were realized along with more appropriate care as; fewer patients were exposed to higher risk surgical arthroscopic procedures. Conclusions The use of an in-office arthroscopy system can: possibly save the US healthcare system money; shorten the diagnostic odyssey for patients; potentially better prepare clinicians for arthroscopic surgery (when needed) and; eliminate unnecessary outpatient arthroscopy procedures, which commonly result in surgical intervention. PMID:24885678

  7. Development of the Workplace Health Savings Calculator: a practical tool to measure economic impact from reduced absenteeism and staff turnover in workplace health promotion.

    Science.gov (United States)

    Baxter, Siyan; Campbell, Sharon; Sanderson, Kristy; Cazaly, Carl; Venn, Alison; Owen, Carole; Palmer, Andrew J

    2015-09-18

    Workplace health promotion is focussed on improving the health and wellbeing of workers. Although quantifiable effectiveness and economic evidence is variable, workplace health promotion is recognised by both government and business stakeholders as potentially beneficial for worker health and economic advantage. Despite the current debate on whether conclusive positive outcomes exist, governments are investing, and business engagement is necessary for value to be realised. Practical tools are needed to assist decision makers in developing the business case for workplace health promotion programs. Our primary objective was to develop an evidence-based, simple and easy-to-use resource (calculator) for Australian employers interested in workplace health investment figures. Three phases were undertaken to develop the calculator. First, evidence from a literature review located appropriate effectiveness measures. Second, a review of employer-facilitated programs aimed at improving the health and wellbeing of employees was utilised to identify change estimates surrounding these measures, and third, currently available online evaluation tools and models were investigated. We present a simple web-based calculator for use by employers who wish to estimate potential annual savings associated with implementing a successful workplace health promotion program. The calculator uses effectiveness measures (absenteeism and staff turnover rates) and change estimates sourced from 55 case studies to generate the annual savings an employer may potentially gain. Australian wage statistics were used to calculate replacement costs due to staff turnover. The calculator was named the Workplace Health Savings Calculator and adapted and reproduced on the Healthy Workers web portal by the Australian Commonwealth Government Department of Health and Ageing. The Workplace Health Savings Calculator is a simple online business tool that aims to engage employers and to assist participation

  8. The estimated impact of California’s urban water conservation mandate on electricity consumption and greenhouse gas emissions

    Science.gov (United States)

    Spang, Edward S.; Holguin, Andrew J.; Loge, Frank J.

    2018-01-01

    In April 2015, the Governor of California mandated a 25% statewide reduction in water consumption (relative to 2013 levels) by urban water suppliers. The more than 400 public water agencies affected by the regulation were also required to report monthly progress towards the conservation goal to the State Water Resources Control Board. This paper uses the reported data to assess how the water utilities have responded to this mandate and to estimate the electricity savings and greenhouse gas (GHG) emissions reductions associated with reduced operation of urban water infrastructure systems. The results show that California succeeded in saving 524 000 million gallons (MG) of water (a 24.5% decrease relative to the 2013 baseline) over the mandate period, which translates into 1830 GWh total electricity savings, and a GHG emissions reduction of 521 000 metric tonnes of carbon dioxide equivalents (MT CO2e). For comparison, the total electricity savings linked to water conservation are approximately 11% greater than the savings achieved by the investor-owned electricity utilities’ efficiency programs for roughly the same time period, and the GHG savings represent the equivalent of taking about 111 000 cars off the road for a year. These indirect, large-scale electricity and GHG savings were achieved at costs that were competitive with existing programs that target electricity and GHG savings directly and independently. Finally, given the breadth of the results produced, we built a companion website, called ‘H2Open’ (https://cwee.shinyapps.io/greengov/), to this research effort that allows users to view and explore the data and results across scales, from individual water utilities to the statewide summary.

  9. A statistical analysis of the energy policy act of 2005, its changes to the daylight saving program, and impact on residential energy consumption

    Science.gov (United States)

    Murray, Patrick L.

    Government programs designed to decrease resource consumption, improve productivity and capitalize on extended daylight hours in the summer have been developed and implemented throughout the world for nearly three hundred years. In 2005, The United States government adopted an extended daylight savings program that increases the number of weeks where the country observes Daylight Saving Time (DST) from 31 to 35 weeks. The program took effect in March 2007. Arguments in support of DST programs highlight the portion of electricity consumption attributed to residential lighting in the evening hours. Adjusting clocks forward by one hour in summer months is believed to reduce electricity consumption due to lighting and therefore significantly reduce residential energy consumption during the period of DST. This paper evaluates the efficacy of the changes to DST resulting from the Energy Policy Act of 2005. The study focuses on changes to household electricity consumption during the extended four weeks of DST. Arizona, one of two states that continue to opt out of DST serves as the study's control for a comparison with neighboring states, Colorado, Nebraska, Nevada, New Mexico, Oklahoma, Texas and Utah. Results from the regression analysis of a Difference in Difference model indicate that contrary to evaluations by Congress and the Department of Energy, the four week period of Extended Daylight Saving Time does not produce a significant decrease in per capita electricity consumption in Southwestern states.

  10. Impact of fertilizer plant effluent on water quality

    International Nuclear Information System (INIS)

    Obire, O.; Ogan, A.; Okigbo, R. N.

    2008-01-01

    The impact of National Fertilizer Company of Nigeria out fall effluent on the physico chemistry and bacteriology of Okrika creek was investigated during the sampling period from May to December, 1998. The National Fertilizer Company of Nigeria out fall effluent, the Okrika creek water and the lkpukulubie creek (control) water samples were collected. The physico-chemical parameters analyzed for all the samples included temperature, p H, total chloride, total dissolved solids, dissolved oxygen, conductivity, free ammonia, total phosphate, urea, zinc and iron, while the bacteriological determinations were total culturable aerobic heterotrophic bacteria count and identification of representative isolates. The Okrika creek recorded higher concentrations for all the physicochemical parameters and bacteria load than the control creek. The higher values of p H, Free NH 3 , urea, TDS and the conductivity of the National Fertilizer Company of Nigeria out fall effluent above the FEPA standards reflect the poor effluent quality generated by National Fertilizer Company of Nigeria. The bacteria species isolated from the samples include Aerococcus viridans, Alcaligenes faecalis, Bacillus cereus, Citrobacter freundii, Escherichia coli, Klebsiella pneumoniae, Proteus vulgaris, Pseudomonas aeruginosa, Serratia marcescens and Staphylococcus aureus. In general, the investigation revealed that there was an extremely adverse impact on the physico-chemical and bacteriological water quality characteristics of the Okrika creek as a result of the discharge of poor quality effluent from National Fertilizer Company of Nigeria operations

  11. IMPACT OF HYDRAULIC FRACTURING ON THE QUALITY OF NATURAL WATERS

    Directory of Open Access Journals (Sweden)

    Wojciech Cel

    2017-03-01

    Full Text Available Poland, due to the estimated shale gas deposits amounting to 346-768 billion m3 has become one of the most attractive regions for shale gas exploration in Europe. Throughout the period 2010-2015, 72 exploratory drillings have been made (as of 4.01.2016 while hydraulic fracturing was carried out 25 times. Employing new drilling and shale gas prospecting technologies raises a question pertaining to their impact on the environment. The number of chemical compounds used (approximately 2000 for the production of new technological fluids may potentially pollute the environment. The fact that the composition of these fluids remains undisclosed hinders the assessment of their impact on the environment and devising optimal methods for managing this type of waste. The presented work indicates the chemical compounds which may infiltrate to groundwater, identified on the basis of technological fluids characteristics, as well as the review of studies pertaining to their impact on potable water carried out in the United States. The study focused on marking heavy metals, calcium, sodium, magnesium, potassium, chlorides and sulphates in the surface waters collected in proximity of Lewino well.

  12. Anticipated SWOT Observations of Human Impacts on the Water Cycle

    Science.gov (United States)

    Clark, E.; Andreadis, K.; Moller, D.; Lettenmaier, D. P.

    2012-12-01

    The impoundment of water behind dams alters the timing and magnitude of the discharge of rivers to the ocean, and hence sea level, as well as evaporation from the global land areas, and, through irrigation, the storage of water on land in the soil column. The impact of these effects on the global hydrologic cycle globally is difficult to estimate given currently available (and shared) observations of temporally varying reservoir storage. The upcoming joint U.S.-France Surface Water and Ocean Topography (SWOT) mission* will measure terrestrial surface water storage dynamics with unprecedented global coverage for managed reservoirs, as well as natural lakes and rivers. Previous studies have investigated SWOT's potential ability to measure storage change for some lakes; however, because reservoirs are typically located in flooded river valleys, they tend to be more elongate than the high latitude lakes that have been studied, and have more complex shorelines (and hence a longer land-water boundary). Furthermore, for reservoirs in mountainous regions, SWOT observations will be prone to topographic layover effects. Finally, the temporal variability of water levels in reservoirs is determined by management goals (i.e., hydropower, flood control, irrigation, supply, recreation), rather than climate, as in the case of natural lakes. We report an investigation of the potential accuracy of SWOT observations of storage change over selected managed reservoirs in the United States. First, we developed a time series of water height maps over each reservoir by combining available bathymetry data with observations of reservoir storage. We then simulated realistic SWOT observations of water level over these water bodies, given the planned SWOT orbital parameters, anticipated noise, and topographic layover errors. We also simulated a realistic tropospheric delay, modeled from daily MERRA reanalysis data. From these synthetic observations, we estimate the number of overpasses needed

  13. 工程型太阳能热泵热水系统节能效益分析%Energy-saving Benefit Analysis of Engineering Type Solar Energy Hot Water System in Conjunction with Heat Pump

    Institute of Scientific and Technical Information of China (English)

    2013-01-01

    According to the engineering case region meteorological data and solar resource characteristics,the solar energy centralized heating system in Conjunction with heat pump used in the hotel is analyzed based on saving benefits. By means of comprehensive analyzing of annual amount of energy saving,cost saving,payback period for the increase of the initial investment,as well as environmental benefits of the solar energy heat pump hot water system,it is indicated that solar energy heat pump hot water system project not only has the very high heat efficiency and environmental adaptability but also has high economy efficiency. It is a kind of heating water systems of ideal high quality.%  根据工程案例地区气象参数及太阳能资源特点,对已投入宾馆使用的太阳能热泵集中供热水系统进行节能效益分析。通过对太阳能热泵热水系统的年节能量,节省费用,系统增加的初投资的回收年限,以及太阳能热泵热水系统的环保效益进行综合分析。表明工程型太阳能热泵热水系统不仅具有很高的热效率和环境适应性同时具有较高的经济性,是一种理想的高品质供热水系统。

  14. Human impact on the microbiological water quality of the rivers.

    Science.gov (United States)

    Páll, Emőke; Niculae, Mihaela; Kiss, Timea; Şandru, Carmen Dana; Spînu, Marina

    2013-11-01

    Microbiological contamination is an important water-quality problem worldwide. Human impact on this category of contamination is significant and several human-related activities, and also the population explosion, have affected and are still affecting dramatically the aquatic environment. Extensive industrialization and agriculture have led to increased pollution and hydromorphological changes in many river basins. The Danube river is one of the most affected by these changes where human involvement is undeniable, and subsequently, the Danube Delta Biosphere Reserve became one of the most vulnerable ecosystems. This review is an attempt to analyse the microbiological contamination and to identify the major role human activities play in altering the water quality of the rivers.

  15. Assessment of human impact on water quality along Manyame River

    Directory of Open Access Journals (Sweden)

    Tirivashe P. Masere

    2012-12-01

    Full Text Available Human activities such as urbanization, agriculture, sewage treatment and industrialization are affecting water resources both quantitatively and qualitatively. The impact of these activities were studied by measuring and determining the concentration and values of eight selected water quality parameters namely nitrates, phosphates, copper, iron, biochemical oxygen demand (BOD, dissolved oxygen (DO, pH and turbidity along Manyame River, in the Manyame Catchment. Thirty five sites were sampled from the source of the river which is at Seke Dam, along Manyame River and on the tributaries (Ruwa, Nyatsime, Mukuvisi and Marimba just before they join the river. The 35 sites were categorized into 5 groups (A, B, C, D and E with group A and E being the upstream and downstream of Manyame. The analysis of results was undertaken using a simple one-way ANOVA with group as the only source of variation. Turbidity values, nitrate and phosphate concentrations were found to be higher than the Zimbabwe National Water Authority (ZINWA maximum permissible standards for surface waters. DO saturation in the downstream groups was less than 75% (ZINWA standard. Agricultural and urban runoff and sewage effluent were responsible of the high nutrient levels and turbidity, which in turn, reduced the dissolved oxygen (DO.

  16. Impact of major volcanic eruptions on stratospheric water vapour

    Directory of Open Access Journals (Sweden)

    M. Löffler

    2016-05-01

    Full Text Available Volcanic eruptions can have a significant impact on the Earth's weather and climate system. Besides the subsequent tropospheric changes, the stratosphere is also influenced by large eruptions. Here changes in stratospheric water vapour after the two major volcanic eruptions of El Chichón in Mexico in 1982 and Mount Pinatubo on the Philippines in 1991 are investigated with chemistry–climate model simulations. This study is based on two simulations with specified dynamics of the European Centre for Medium-Range Weather Forecasts Hamburg – Modular Earth Submodel System (ECHAM/MESSy Atmospheric Chemistry (EMAC model, performed within the Earth System Chemistry integrated Modelling (ESCiMo project, of which only one includes the long-wave volcanic forcing through prescribed aerosol optical properties. The results show a significant increase in stratospheric water vapour induced by the eruptions, resulting from increased heating rates and the subsequent changes in stratospheric and tropopause temperatures in the tropics. The tropical vertical advection and the South Asian summer monsoon are identified as sources for the additional water vapour in the stratosphere. Additionally, volcanic influences on tropospheric water vapour and El Niño–Southern Oscillation (ENSO are evident, if the long-wave forcing is strong enough. Our results are corroborated by additional sensitivity simulations of the Mount Pinatubo period with reduced nudging and reduced volcanic aerosol extinction.

  17. Impacts of mining activities on water and soil.

    Science.gov (United States)

    Warhate, S R; Yenkie, M K N; Chaudhari, M D; Pokale, W K

    2006-04-01

    Seven coal mines are situated in Wardha River Valley. These mines are located at Wani (Dist. Yavatmal of Maharashtra). Out of these, 5 open cast coal mines are run by Western Coal Field Ltd. India. The present study has been undertaken to assess the impacts of mining activities in the adjacent areas. Total 25 samples of water and 19 samples of soil from Nilapur, Bramhani, Kolera, Gowari, Pimpari and Aheri were analyzed for pH, TDS, hardness, alkalinity, fluoride, chloride, nitrite, nitrate, phosphate, sulfate, cadmium, lead, zinc, copper, nickel, arsenic, manganese, sodium and potassium, and the results were compared with the limits of Indian Standards: 10500.

  18. Impact of gari consumption on the water resource of Nigeria | Adeoti ...

    African Journals Online (AJOL)

    household level (blue water use), while water pollution impacts during processing and consumption (at households) are neglected. Using the 2007 cassava production estimates for Nigeria as baseline, the water impact related to the consumption of gari either as snack or as “eba” (gari reconstituted with hot water to form a ...

  19. Potential Impacts of Organic Wastes on Small Stream Water Quality

    Science.gov (United States)

    Kaushal, S. S.; Groffman, P. M.; Findlay, S. E.; Fischer, D. T.; Burke, R. A.; Molinero, J.

    2005-05-01

    We monitored concentrations of dissolved organic carbon (DOC), dissolved oxygen (DO) and other parameters in 17 small streams of the South Fork Broad River (SFBR) watershed on a monthly basis for 15 months. The subwatersheds were chosen to reflect a range of land uses including forested, pasture, mixed, and developed. The SFBR watershed is heavily impacted by organic wastes, primarily from its large poultry industry, but also from its rapidly growing human population. The poultry litter is primarily disposed of by application to pastures. Our monthly monitoring results showed a strong inverse relationship between mean DOC and mean DO and suggested that concentrations of total nitrogen (TN), DOC, and the trace gases nitrous oxide, methane and carbon dioxide are impacted by organic wastes and/or nutrients from animal manure applied to the land and/or human wastes from wastewater treatment plants or septic tanks in these watersheds. Here we estimate the organic waste loads of these watersheds and evaluate the impact of organic wastes on stream DOC and alkalinity concentrations, electrical conductivity, sediment potential denitrification rate and plant stable nitrogen isotope ratios. All of these water quality parameters are significantly correlated with watershed waste loading. DOC is most strongly correlated with total watershed waste loading whereas conductivity, alkalinity, potential denitrification rate and plant stable nitrogen isotope ratio are most strongly correlated with watershed human waste loading. These results suggest that more direct inputs (e.g., wastewater treatment plant effluents, near-stream septic tanks) have a greater relative impact on stream water quality than more dispersed inputs (land applied poultry litter, septic tanks far from streams) in the SFBR watershed. Conductivity, which is generally elevated in organic wastes, is also significantly correlated with total watershed waste loading suggesting it may be a useful indicator of overall

  20. Impact of water scarcity on food security at micro level in Pakistan

    OpenAIRE

    Fahim, Muhammad Amir

    2011-01-01

    Pakistan is confronting the problem of water scarcity which is rendering an adverse impact on food security. The study examines the impact of water scarcity on food security in an era of climate change. It further focuses on projecting the future trends of water and food stock. The research effort probes the links among water scarcity, climate change, food security, water security, food inflation, poverty and management of water resources. Data on food security was collected from the FSA (Foo...

  1. Impact of water scarcity on food security at macro level in Pakistan

    OpenAIRE

    Fahim, Muhammad Amir

    2011-01-01

    Pakistan is confronting the problem of water scarcity which is rendering an adverse impact on food security. The study examines the impact of water scarcity on food security in an era of climate change. It further focuses on projecting the future trends of water and food stock. The research effort probes the links among water scarcity, climate change, food security, water security, food inflation, poverty and management of water resources. Data on food security was collected from the FSA (Foo...

  2. Impact of water scarcity on food security at meso level in Pakistan

    OpenAIRE

    Fahim, Muhammad Amir

    2011-01-01

    Pakistan is confronting the problem of water scarcity which is rendering an adverse impact on food security. The study examines the impact of water scarcity on food security in an era of climate change. It further focuses on projecting the future trends of water and food stock. The research effort probes the links among water scarcity, climate change, food security, water security, food inflation, poverty and management of water resources. Data on food security was collected from the FSA (Foo...

  3. 10 CFR 436.21 - Savings-to-investment ratio.

    Science.gov (United States)

    2010-01-01

    ... is the ratio of the present value savings to the present value costs of an energy or water conservation measure. The numerator of the ratio is the present value of net savings in energy or water and non... conservation measure. The denominator of the ratio is the present value of the net increase in investment and...

  4. Estimating the Mediterranean Sea Water Budget: impact of RCM design

    Science.gov (United States)

    Somot, S.; Elguindi, N.; Sanchez-Gomez, E.; Herrmann, M.; Déqué, M.

    2009-09-01

    The Mediterranean Sea can be considered as a thermodynamic machine that exchanges water and heat with the Atlantic Ocean through the Strait of Gibraltar and with the atmosphere through its surface. Considering the Mediterranean Sea Water Budget (MSWB) multi-year mean, the Mediterranean basin looses water at the surface due to an excess of evaporation over freshwater input (precipitation, river runoff, Black Sea input). Moreover the MSWB largely drives the Mediterranean Sea water mass formation and therefore a large part of its thermohaline circulation. This could even have an impact on the characteristics of the Atlantic thermohaline circulation through the Mediterranean Outflow Waters that flow into the Atlantic at a depth of about 1000 m. From a climate point of view, the MSWB acts as a water source for the Mediterranean countries and therefore plays an important role on the water resources of the region. The regional physical characteristics of the Mediterranean basin (complex orography, strong land-sea contrast, land-atmosphere coupling, air-sea coupling, river inflow, Gibraltar Strait constraint and complex ocean bathymetry) strongly influence the various components of the MSWB. Moreover extreme precipitation events over land and strong evaporation events over the sea due to local winds can play a non-negligible role on the mean MSWB despite their small spatial and temporal scales. Therefore, modelling the mean behaviour, the interannual variability and the trends of the MSWB is a challenging task of the Regional Climate Model community in the context of climate change. It is actually one of the highlighted issues of the HyMex project planned for the 2010-2020 period. We propose here to start investigating some key scientific issues of the regional modelling of the Mediterranean Sea Water Budget using a wide range of regional climate simulations performed at Météo-France or in the framework of FP6 European projects (ENSEMBLES, CIRCE). The addressed

  5. New policies and measures for saving a great manmade reservoir providing drinking water for 20 million people in the Republic of Korea.

    Science.gov (United States)

    Ahn, K H

    2000-01-01

    Water quality of the Paldang reservoir, the largest drinking water supply source in the Republic Korea provides raw water for about 20 million people living in Seoul Metropolitan area. Water quality has been deteriorating mainly due to improperly treated livestock waste and domestic wastewater discharged from motels, restaurants, and private homes. A recent survey conducted by the Ministry of Environment (MOE) showed that the water quality of this reservoir has been identified as Class III must contain less than 6 ppm of BOD, which will require advanced purification treatment before it can be used as drinking water. The MOE also announced that this water source would no longer be potable unless wastewater in the catchment is treated efficiently. To protect drinking water resources, the MOE has set up comprehensive management. These programmes include new regulations, measures, land use planning and economic incentives.

  6. Proceedings of the CEATI water management 2008 workshop : climate change impacts on hydroelectric water resource management

    International Nuclear Information System (INIS)

    2008-01-01

    Hydroelectric power will occupy a significant portion of future renewable energy sources. This conference provided a forum for scientists, industry experts, and utility operators to discuss methods of determining and managing the potential impacts of climatic change on water resources. Attendants at the conference discussed issues related to future water supplies, and examined methods of predicting hydrological shifts and pattern changes for various watersheds and basins. Methods of using global climate and regional climate models for predicting the impacts of climatic change on water resources were reviewed, and new strategies for simulating and predicting shifts in sedimentation and shoreline erosion were discussed. New technologies and tools designed to improve the accuracy of utility risk assessments were also presented. The conference was divided into the following 11 sessions: (1) climate change impacts, (2) hydroclimatic variability, (3) downscaling of climate models, (4) global climate models and regional climate models, (5) watershed modelling, (6) adaptation on short-, medium-, and long-term planning, (7) climate change adaptation, (8) operations and planning, (9) risk assessment and uncertainty, (10) operations and planning, and (11) extreme events. A series of workshop posters presented new forecasting and simulation tools. The conference featured 35 presentations, of which 11 have been catalogued separately for inclusion in this database. tabs., figs

  7. Estimates of Savings Achievable from Irrigation Controller

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Alison; Fuchs, Heidi; Whitehead, Camilla Dunham

    2014-03-28

    This paper performs a literature review and meta-analysis of water savings from several types of advanced irrigation controllers: rain sensors (RS), weather-based irrigation controllers (WBIC), and soil moisture sensors (SMS).The purpose of this work is to derive average water savings per controller type, based to the extent possible on all available data. After a preliminary data scrubbing, we utilized a series of analytical filters to develop our best estimate of average savings. We applied filters to remove data that might bias the sample such as data self-reported by manufacturers, data resulting from studies focusing on high-water users, or data presented in a non-comparable format such as based on total household water use instead of outdoor water use. Because the resulting number of studies was too small to be statistically significant when broken down by controller type, this paper represents a survey and synthesis of available data rather than a definitive statement regarding whether the estimated water savings are representative.

  8. A saving solution.

    Science.gov (United States)

    Mckee, N

    1983-10-01

    transmission is not associated with water. Water can affect the incidence of diarrhea in several ways. The mother's hygiene can be affected by the availability of water, not just the quality but also the quantity. A most exciting study going on now is measuring the impact of water and sanitation on diarrheal diseases.

  9. Hydraulic "fracking": are surface water impacts an ecological concern?

    Science.gov (United States)

    Burton, G Allen; Basu, Niladri; Ellis, Brian R; Kapo, Katherine E; Entrekin, Sally; Nadelhoffer, Knute

    2014-08-01

    Use of high-volume hydraulic fracturing (HVHF) in unconventional reservoirs to recover previously inaccessible oil and natural gas is rapidly expanding in North America and elsewhere. Although hydraulic fracturing has been practiced for decades, the advent of more technologically advanced horizontal drilling coupled with improved slickwater chemical formulations has allowed extensive natural gas and oil deposits to be recovered from shale formations. Millions of liters of local groundwaters are utilized to generate extensive fracture networks within these low-permeability reservoirs, allowing extraction of the trapped hydrocarbons. Although the technology is relatively standardized, the geographies and related policies and regulations guiding these operations vary markedly. Some ecosystems are more at risk from these operations than others because of either their sensitivities or the manner in which the HVHF operations are conducted. Generally, the closer geographical proximity of the susceptible ecosystem to a drilling site or a location of related industrial processes, the higher the risk of that ecosystem being impacted by the operation. The associated construction of roads, power grids, pipelines, well pads, and water-extraction systems along with increased truck traffic are common to virtually all HVHF operations. These operations may result in increased erosion and sedimentation, increased risk to aquatic ecosystems from chemical spills or runoff, habitat fragmentation, loss of stream riparian zones, altered biogeochemical cycling, and reduction of available surface and hyporheic water volumes because of withdrawal-induced lowering of local groundwater levels. The potential risks to surface waters from HVHF operations are similar in many ways to those resulting from agriculture, silviculture, mining, and urban development. Indeed, groundwater extraction associated with agriculture is perhaps a larger concern in the long term in some regions. Understanding the

  10. Watered down : overcoming federal inaction on the impact of oil sands development to water resources

    International Nuclear Information System (INIS)

    Droitsch, D.

    2009-11-01

    The oil sands industry is having a negative impact on Canada's fresh water resources and aquatic ecosystems. Members of the Government of the Northwest Territories (NT) and experts from scientific, non-governmental, and First Nations groups have stated at federal hearings that the federal government must involve itself in the protection of Canada's water resources. This report discussed compelling testimony from recent federal hearings by the House of Commons Standing Committee on Environment and Sustainable Development.The federal government must establish enforceable standards for key toxic substances created by oil sands activity. A water-sharing agreement must be established between Alberta, NT, Saskatchewan, and First Nations governments. Other recommendations included the establishment of a peer-reviewed assessment of the health impacts of industrial oil sands development on First Nations communities; the establishment of cumulative effects assessment procedures; the identification and protection of listed species at risk; and the establishment of proactive measures designed to ensure that oil sands operators pay for the environmental damage caused to water resources. 94 refs., 4 figs.

  11. Impacts of Participatory Modeling on Climate Change-related Water Management Impacts in Sonora, Mexico

    Science.gov (United States)

    Halvorsen, K. E.; Kossak, D. J.; Mayer, A. S.; Vivoni, E. R.; Robles-Morua, A.; Gamez Molina, V.; Dana, K.; Mirchi, A.

    2013-12-01

    Climate change-related impacts on water resources are expected to be particularly severe in the arid developing world. As a result, we conducted a series of participatory modeling workshops on hydrologic and water resources systems modeling in the face of climate change in Sonora, Mexico. Pre-surveys were administered to participants on Day 1 of a series of four workshops spaced out over three months in 2013. Post-surveys repeated many pre-survey questions and included questions assessing the quality of the workshops and models. We report on significant changes in participant perceptions of water resource models and problems and their assessment of the workshops. These findings will be of great value to future participatory modeling efforts, particularly within the developing world.

  12. Hurricane Impact on Seepage Water in Larga Cave, Puerto Rico

    Science.gov (United States)

    Vieten, Rolf; Warken, Sophie; Winter, Amos; Schröder-Ritzrau, Andrea; Scholz, Denis; Spötl, Christoph

    2018-03-01

    Hurricane-induced rainfall over Puerto Rico has characteristic δ18O values which are more negative than local rainfall events. Thus, hurricanes may be recorded in speleothems from Larga cave, Puerto Rico, as characteristic oxygen isotope excursions. Samples of 84 local rainfall events between 2012 and 2013 ranged from -6.2 to +0.3‰, whereas nine rainfall samples belonging to a rainband of hurricane Isaac (23-24 August 2012) ranged from -11.8 to -7.1‰. Cave monitoring covered the hurricane season of 2014 and investigated the impact of hurricane rainfall on drip water chemistry. δ18O values were measured in cumulative monthly rainwater samples above the cave. Inside the cave, δ18O values of instantaneous drip water samples were analyzed and drip rates were recorded at six drip sites. Most effective recharge appears to occur during the wet months (April-May and August-November). δ18O values of instantaneous drip water samples ranged from -3.5 to -2.4‰. In April 2014 and April 2015 some drip sites showed more negative δ18O values than the effective rainfall (-2.9‰), implying an influence of hurricane rainfall reaching the cave via stratified seepage flow months to years after the event. Speleothems from these drip sites in Larga cave have a high potential for paleotempestology studies.

  13. Minimizing Adverse Environmental Impact: How Murky the Waters

    Directory of Open Access Journals (Sweden)

    Reed W. Super

    2002-01-01

    Full Text Available The withdrawal of water from the nation’s waterways to cool industrial facilities kills billions of adult, juvenile, and larval fish each year. U.S. Environmental Protection Agency (EPA promulgation of categorical rules defining the best technology available to minimize adverse environmental impact (AEI could standardize and improve the control of such mortality. However, in an attempt to avoid compliance costs, industry has seized on the statutory phrase “adverse environmental impact” to propose significant procedural and substantive hurdles and layers of uncertainty in the permitting of cooling-water intakes under the Clean Water Act. These include, among other things, a requirement to prove that a particular facility threatens the sustainability of an aquatic population as a prerequisite to regulation. Such claims have no foundation in science, law, or the English language. Any nontrivial aquatic mortality constitutes AEI, as the EPA and several state and federal regulatory agencies have properly acknowledged. The focus of scientists, lawyers, regulators, permit applicants, and other interested parties should not be on defining AEI, but rather on minimizing AEI, which requires minimization of impingement and entrainment.

  14. Joint verification project on environmentally friendly coal utilization systems. Joint verification project on the water-saving coal preparation system; Kankyo chowagata sekitan riyo system kyodo jissho jigyo. Shosuigata sentan system kyodo jissho jigyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    In this verification project, clean technology which should be spread in China was verified and the base structure for its spread was prepared for the purpose of controlling emissions of environmental pollutants associated with the coal utilization in China and of contributing to secure energy acquisition of Japan. As joint verification projects, a general rehabilitation type coal preparation system was installed in the Wangfenggang coal preparation plant, and a central control coal preparation system was installed in the Qingtan coal preparation plant. In the former, a system is verified in which optimum operation, water-saving, high quality, and heightening of efficiency can be obtained by introducing two computing systems for operation control and quality control, various measuring instruments, and analyzers to coal preparation plants where analog operation is conducted helped by Russia and Porland and have problems about quality control. In the latter, a central control system achieving water saving is verified by introducing rapid ash meters, scales, desitometers and computers to coal preparation plants having zigzag or heavy-fluid cyclon and connecting various kinds of information through network. For fiscal 1994, investigation and study were conducted. 51 figs., 9 tabs.

  15. Fiscal 1995 survey report on the environmentally friendly type coal utilization system joint demonstration project. Water-saving coal preparation system joint demonstration project; Kankyo chowagata sekitan riyo system kyodo jissho jigyo. Shosuigata sentan system kyodo jissho jigyo

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    This project makes demonstration of clean coal technology (CCT) in China and preparation for the base of its spread, controlled environmental pollution due to the coal use by the countries concerned, and contributes to stably secure energy of Japan. The paper made analog operation in the 1960s-1970s, supported by Russia and Poland, introduced two computer systems for operational control and quality control, densimeter, level meter, flow meter and analyzer to coal preparation plants having problems on productivity and quality control, made the optimum operational diagnosis for the plants, and at the same time, demonstrated the comprehensive rehabilitation type system by which water saving, high quality and high effectiveness are obtained. Various types of sensors such as rapid ash meter, scale and densitometer and computers are introduced to coal preparation plants which were recently constructed in China, have jig or heavy liquid cyclone as main preparation equipment and conducts operational control. There, the central control system was demonstrated in which various information collected in the central operation room and in-site equipment is combined by network for high-grade data processing and water saving is achieved. 50 figs., 11 tabs.

  16. Electric power saving in the drinkable water, sewage and sanitation system, La Piedad; Ahorro de energia electrica en el sistema de agua potable, alcantarillado y saneamiento de La Piedad

    Energy Technology Data Exchange (ETDEWEB)

    Sistema de Agua Potable, Alcantarillado y Saneamiento de la Piedad (Mexico). E-mail: sapaslapiedad@prodigy.net.mx

    2006-04-15

    In Michoacan, Mexico, a project who seeks to benefice the Municipal public resources was crated in 1994. It would be achieved trough the electric power saving in the public lighting system, and drinkable water pumping and black water, since those activities required the budget biggest part. The program could be developed recently and the saving was significant. In addition the electromechanical efficiency increased in the equipment installation. This work is an example for other States to do something similar that can improve their conditions. [Spanish] En el estado de Michoacan, Mexico se creo un proyecto en el ano de 1994, el cual buscaba beneficiar los recursos publicos municipales, a traves del ahorro de la energia electrica en los sistemas de alumbrado publico y bombeo de agua potable y aguas negras, ya que estas actividades son las que requieren la mayor parte del presupuesto. El programa pudo llevarse a cabo en anos recientes y el ahorro fue significativo, ademas de que aumento la eficiencia electromecanica en los equipos que se instalaron, y esta obra ha servido de ejemplo a otros estados para que realicen algo similar que pueda mejorar su situacion.

  17. Seismo-Acoustic Numerical Investigation of Land Impacts, Water Impacts, or Air Bursts of Asteroids

    Science.gov (United States)

    Ezzedine, S. M.; Dearborn, D. S.; Miller, P. L.

    2017-12-01

    The annual probability of an asteroid impact is low, but over time, such catastrophic events are inevitable. Interest in assessing the impact consequences has led us to develop a physics-based framework to seamlessly simulate the event from entry to impact, including air, water and ground shock propagation and wave generation. The non-linear effects are simulated using the hydrodynamics code GEODYN. As effects propagate outward, they become a wave source for the linear-elastic-wave propagation code and simulated using SAW or SWWP, depends on whether the asteroid impacts the land or the ocean, respectively. The GEODYN-SAW-SWWP coupling is based on the structured adaptive-mesh-refinement infrastructure, SAMRAI, and has been used in FEMA table-top exercises conducted in 2013 and 2014, and more recently, the 2015 Planetary Defense Conference exercise. Moreover, during atmospheric entry, asteroids create an acoustic trace that could be used to infer several physical characteristics of asteroid itself. Using SAW we explore the physical space parameters in order to rank the most important characteristics; Results from these simulations provide an estimate of onshore and offshore effects and can inform more sophisticated inundation and structural models. The capabilities of this methodology are illustrated by providing results for different impact locations, and an exploration of asteroid size on the waves arriving at the shoreline of area cities. We constructed the maximum and minimum envelops of water-wave heights or acceleration spectra given the size of the asteroid and the location of the impact along the risk corridor. Such profiles can inform emergency response and disaster-mitigation efforts. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  18. Modernized approach for the remediation of produced water impacted sites

    Energy Technology Data Exchange (ETDEWEB)

    Knafla, A.; Carey, J. [Equilibrium Environmental Inc., Calgary, AB (Canada); Stokes, D. [Talisman Energy Inc., Calgary, AB (Canada); Carey, J.; Sunita, R.

    2007-10-01

    This article described a project conducted to remediate a site in southeast Saskatchewan polluted by releases of produced water-related salts and boron during the 1960s. A risk assessment was conducted to define endpoints based on equivalent land capability and the potential for health risks. Multiple toxic stressors complicated the assessment, and limited published data were available regarding cumulative and interactive effects. Boron concentrations exceeded recommended guidelines, and the poor permeability of surface soils caused reduced infiltration and increased run-off. An automated pumping system was designed to allow for variable leachate removal rates depending on groundwater elevations. A distillation system using moderately saline water from a nearby source was designed to offset scaling that occurred due to high calcium sulfate concentrations. Results of the project suggested that the combination of groundwater control, improving surface soil permeability, establishing plant growth, and available water for infiltration resulted in significant improvements in soil quality and an approach towards land capability endpoints. The use of moderately saline irrigation water led to significant improvements in the soil salinity of heavily impacted areas. Test plots were then formed to test the efficacy of manure and calcium nitrate as a remediation technique. Test plots were treated with Roundup, and calcium nitrate before seeding, or with manure and calcium nitrate followed by rototilling and seeding. In treated plots, plant growth was observed for barley, alkali grass, wheatgrasses, orchard grass, rye, and alfalfa. Greater plant height and yield was visible in the manure and calcium nitrate treated plots. A decrease in boron topsoil concentrations was also observed. Average bioconcentration factors was calculated as 29.5. It was concluded that the method can provide a 20 per cent annual soil concentration reduction rate. 6 figs.

  19. Sign Up for Savings.

    Science.gov (United States)

    Kennedy, Mike

    2002-01-01

    Discusses performance service contracts between educational facilities and energy services companies, in which the company provides the money for energy-efficiency improvements and the school pays the company an annual fee. The company guarantees the savings will meet or exceed the fee. (EV)

  20. Saving Malta's music memory

    OpenAIRE

    Sant, Toni

    2013-01-01

    Maltese music is being lost. Along with it Malta loses its culture, way of life, and memories. Dr Toni Sant is trying to change this trend through the Malta Music Memory Project (M3P) http://www.um.edu.mt/think/saving-maltas-music-memory-2/

  1. Gun control saves lives

    African Journals Online (AJOL)

    gun control legislation. One study estimated that more than 4 500 lives were saved across five SA cities from 2001 to 2005.[5] Pro-gun interest groups seeking to promote gun ownership and diffusion have attacked these findings, suggesting that stricter gun control was only enacted in 2004 following the publication of ...

  2. Water Matters: Assessing the Impacts of Water and Sanitation Infrastructure in the U.S./Mexico Border Region

    Science.gov (United States)

    Hargrove, W. L.; Del Rio, M.; Korc, M.

    2017-12-01

    Using Health Impact Assessment methods, we determined: 1) the impact of water and sanitation infrastructure installed about 15 years ago in two Texas border communities; 2) the impact of failing septic tanks in a neighborhood where septic systems are more than 20 years old and failing; and 3) the impacts of hauled water as the main household water source in a colonia. We obtained a total of 147 household surveys related to water and sanitation in four communities. Households who had obtained water and sanitation infrastructure had less skin problems, neuropathy, gastrointestinal illness, and stomach infections compared to an earlier time when they relied on local domestic wells or hauled water and septic tanks. Hepatitis A incidence in El Paso County, TX dropped precipitously after the implementation of water and sanitation infrastructure. Hauling water contributed to mental stress and anxiety and was risky in terms of road safety. We also assessed the economic and community development impacts of water and sanitation infrastructure. Communities benefitted from higher property values, expanded health care services, more parks and recreation, more local businesses, and improved fire safety. We argue that though water and sanitation infrastructure is a significant contributor to addressing inequities in the border region, much remains to be done to achieve water justice in this challenging region.

  3. Climate Change-Related Water Disasters' Impact on Population Health.

    Science.gov (United States)

    Veenema, Tener Goodwin; Thornton, Clifton P; Lavin, Roberta Proffitt; Bender, Annah K; Seal, Stella; Corley, Andrew

    2017-11-01

    Rising global temperatures have resulted in an increased frequency and severity of cyclones, hurricanes, and flooding in many parts of the world. These climate change-related water disasters (CCRWDs) have a devastating impact on communities and the health of residents. Clinicians and policymakers require a substantive body of evidence on which to base planning, prevention, and disaster response to these events. The purpose of this study was to conduct a systematic review of the literature concerning the impact of CCRWDs on public health in order to identify factors in these events that are amenable to preparedness and mitigation. Ultimately, this evidence could be used by nurses to advocate for greater preparedness initiatives and inform national and international disaster policy. A systematic literature review of publications identified through a comprehensive search of five relevant databases (PubMed, Cumulative Index to Nursing and Allied Health Literature [CINAHL], Embase, Scopus, and Web of Science) was conducted using a modified Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) approach in January 2017 to describe major themes and associated factors of the impact of CCRWDs on population health. Three major themes emerged: environmental disruption resulting in exposure to toxins, population susceptibility, and health systems infrastructure (failure to plan-prepare-mitigate, inadequate response, and lack of infrastructure). Direct health impact was characterized by four major categories: weather-related morbidity and mortality, waterborne diseases/water-related illness, vector-borne and zoonotic diseases, and psychiatric/mental health effects. Scope and duration of the event are factors that exacerbate the impact of CCRWDs. Discussion of specific factors amenable to mitigation was limited. Flooding as an event was overrepresented in this analysis (60%), and the majority of the research reviewed was conducted in high-income or upper

  4. The primary processes by impact of ionizing radiations with water

    International Nuclear Information System (INIS)

    Znamirovschi, V.; Mastan, I.; Cozar, O.

    1976-01-01

    The problem concerning primary processes in radiolysis of water is discussed. The results on the excitation and ionization of water molecule, dissociation of the parent-molecular ion of water and dissociation of excited molecule of water are presented. (author)

  5. the impact of community participation in rural water management in

    African Journals Online (AJOL)

    USER

    2016-04-14

    Apr 14, 2016 ... underdeveloped areas with poor water resources. ... rural water management is purportedly a key element for community water pro ects to ..... inclusive and integrated approach to water ... Implementation: A regional response.

  6. Energy saving type area hot water supply system using heat of hot waste water from the sludge center as hot source for hot water; New energy rokko airando CITY. Surajjisenta karano onhaisuinetsu wo kyuyuyo netsugen ni riyosuru sho energy gata chiiki onsui kyokyu system

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-01-01

    Heat source of area hot water supply system in Rokko island City (man-made island) is heat of combustion at the sludge center (sludge incineration plant) in this island. Dehydrated sludge cakes (230ton/day) brought from seven sewage disposal plants in Kobe City is combusted (850degC) in the fluid bed hearth. Combustion gas washed in the scrubber, hot waste water after the washing give heat into heat transfer water in the first heat exchanger. Temperature being 64degC in summer and about 50degC in winter, this heat transfer water is sent into the second heat exchanger at every condominium building throughout the pipe line system circulating in the area. At each home, gas heater and hot water supply devices fitted, additional combustion is not necessary in summer but is used according to demand in other seasons. This hot water supply service has been carried out since 1988 and at present has been used by 3600 homes. Amount of supplying hot water being about 3000cu.m/day, saving is calculated roughly as 60% of gas for hot water supply. Fee for this system is 1500/yen/month uniformly for each home. 14 figs.

  7. Slowly biodegradable organic compounds impact the biostability of non-chlorinated drinking water produced from surface water

    NARCIS (Netherlands)

    Hijnen, W.A.M.; Schurer, R.; Bahlman, J.A.; Ketelaars, H.A.M.; Italiaander, R.; Wal, van der A.; Wielen, van der P.W.J.J.

    2018-01-01

    It is possible to distribute drinking water without a disinfectant residual when the treated water is biologically stable. The objective of this study was to determine the impact of easily and slowly biodegradable compounds on the biostability of the drinking water at three full-scale production

  8. Impact of reactor water chemistry on cladding performance

    International Nuclear Information System (INIS)

    Cox, B.

    1997-01-01

    Water chemistry may have a major impact on fuel cladding performance in PWRs. If the saturation temperature on the surface of fuel cladding is exceeded, either because of the thermal hydraulics of the system, or because of crud deposition, then LiOH concentration can occur within thick porous oxide films on the cladding. This can degrade the protective film and accelerate the corrosion rate of the cladding. If sufficient boric acid is also present in the coolant then these effects may be mitigated. This is normally the case through most of any reactor fuel cycle. Extensive surface boiling may disrupt this equilibrium because of the volatility of boric acid in steam. Under such conditions severe cladding corrosion can ensue. The potential for such effects on high burnup cladding in CANDU reactors, where bone acid is not present in the primary coolant, is discussed. (author)

  9. Impact of reactor water chemistry on cladding performance

    Energy Technology Data Exchange (ETDEWEB)

    Cox, B. [University of Toronto, Centre for Nuclear Engineering, Toronto, Ontario (Canada)

    1997-07-01

    Water chemistry may have a major impact on fuel cladding performance in PWRs. If the saturation temperature on the surface of fuel cladding is exceeded, either because of the thermal hydraulics of the system, or because of crud deposition, then LiOH concentration can occur within thick porous oxide films on the cladding. This can degrade the protective film and accelerate the corrosion rate of the cladding. If sufficient boric acid is also present in the coolant then these effects may be mitigated. This is normally the case through most of any reactor fuel cycle. Extensive surface boiling may disrupt this equilibrium because of the volatility of boric acid in steam. Under such conditions severe cladding corrosion can ensue. The potential for such effects on high burnup cladding in CANDU reactors, where bone acid is not present in the primary coolant, is discussed. (author)

  10. Uranium mining impacts on water resources in Brazil

    International Nuclear Information System (INIS)

    Simoes Filho, Francisco Fernando Lamego; Lauria, Dejanira C.; Vasconcellos, Luisa M.H.; Fernandes, Horst M.; Clain, Almir F.; Silva, Liliane F.

    2009-01-01

    Uranium mining and milling activities started operations in Brazil during the 80's. The first production Center was deployed in Pocos de Caldas (CIPC) State of Minas Gerais. The mine was exhausted in 1997, after has produced only 1200 t of U 3 O 8 . The second uranium plant began the operations in Caetite (URA), Bahia State, since 1999 and keeps operations until now with an annual U 3 O 8 production of up to 400 t. The company plans to double this mark in Caetite production center with the exploration of another uranium deposits and initiate underground operations of current open-pit mine. Simultaneously, they are seeking a license for a third plant in the State of Ceara that could produce the double of foreseen capacity in URA. This scenery drives to some issues related to the impact of uranium production on water resources of the respective watersheds. The CIPC plant is a closing mine site, which requires permanent treatment of the company due to the fact their sources of pollutants are subject to the occurrence of Acid Mine Drainage. The URA plant is located in a semi-arid region of Brazil. The extraction of uranium from the ore is achieved by means of a Heap-Leach process, which has low water demand supplied by a network of wells and from a dam, but can contribute to change the groundwater quality and in some cases the extinguishing of wells was observed. An overall assessment of these impacts in national level could produce some lessons that we must take advantage for the ongoing project of Santa Quiteria or even in future sites. (author)

  11. Anthropogenic Impacts on Biological Carbon Sequestration in the Coastal Waters

    Science.gov (United States)

    Jiao, N.

    2016-02-01

    The well-known biological mechanism for carbon sequestration in the ocean is the biological pump (BP) which is driven by primary production initially in the surface water and then dependent on particulate organic carbon sinking process in the water column. In contrast microbial carbon pump (MCP) depends on microbial transformation of dissolved organic carbon (DOC) to refractory DOC (RDOC).Although the BP and the MCP are distinct mechanisms, they are intertwined. Both mechanisms should be considered regarding maximum sequestration of carbon in the ocean. Recent studies have showed that excess nutrients could facilitate the uptake of DOC and enhance both bacterial production and respiration. Bacterial growth efficiency increases with increasing nitrogen concentration to certain levels and then decreases thereafter, while the remaining DOC in the water usually decreases with increasing nitrogen concentration, suggesting that excess nitrogen could simulate uptake of DOC in the environment and thus have negative impacts on the ocean DOC storage.This is somehow against the case of the BP which is known to increase with increasing availability of nutrients. Another responsible factor is the nature of algal products. If it is labile, the organic carbon cannot be preserved in the environment.On top of that, labile organic carbon has priming effects for river discharged semi-labile DOC for bacterial respiration.That is, labile organic matter will become the incubator for bacteria. While bacteria respire DOC into CO2, they consume oxygen, and finally result in hypoxia. Under anoxic condition, anaerobic bacteria successively work on the rest of the organic carbon and produce harmful gasses such as methane and H2S. Such story did have happened during geological events in the history of the earth. The above processes not only result in ecological disasters but also reduce the capacity of carbon sequestration in the ocean. To achieve maximum carbon sinks, both BP and MCP should

  12. Impacts on water quality by hydraulic fracturing in Pennsylvania

    Science.gov (United States)

    Yan, B.; Stute, M.; Chillrud, S. N.; Ross, J. M.; Howarth, M.; Panettieri, R.; Saberi, P.

    2015-12-01

    Shale gas development, including drilling and hydraulic fracturing, is rapidly increasing throughout the United States and, indeed, the rest of the world. Systematic surveys of water quality both pre- and post drilling/production are sparse. To examine the impacts of shale gas production on water quality, pilot studies have been conducted in adjacent counties of western NY (Chemung, Tioga, Broome, and Delaware) and northern PA (Bradford, Susquehanna, and Wayne). These 7 counties along the border of NY and PA share similar geology and demographic compositions and have been identified as a key area to develop shale gas with the key difference that active fracking is occurring in PA but there is no fracking yet in NY. Measurements include a suite of major and trace elements, methane and its stable isotopes, noble gases and tritium for dating purposes, and the primary radioactive elements of potential concern, radon and radium. We found elevated methane levels on both sides of the border. Higher levels of major ions were observed in PA samples close to the gas wells in the valley, possibly from hydraulic fracturing activities. The lab analysis of samples collected in recently launched 100 Bottom Project is ongoing and the results will be presented in this conference.

  13. Prediction of projectile ricochet behavior after water impact.

    Science.gov (United States)

    Baillargeon, Yves; Bergeron, Guy

    2012-11-01

    Although not very common, forensic investigation related to projectile ricochet on water can be required when undesirable collateral damage occurs. Predicting the ricochet behavior of a projectile is challenging owing to numerous parameters involved: impact velocity, incident angle, projectile stability, angular velocity, etc. Ricochet characteristics of different projectiles (K50 BMG, 0.5-cal Ball M2, 0.5-cal AP-T C44, 7.62-mm Ball C21, and 5.56-mm Ball C77) were studied in a pool. The results are presented to assess projectile velocity after ricochet, ricochet angle, and projectile azimuth angle based on impact velocity or incident angle for each projectile type. The azimuth ranges show the highest variability at low postricochet velocity. The critical ricochet angles were ranging from 15 to 30°. The average ricochet angles for all projectiles were pretty close for all projectiles at 2.5 and 10° incident angles for the range of velocities studied. © 2012 Her Majesty the Queen in Right of Canada 2012. Reproduced with the permission of the Minister of the Department of National Defence.

  14. Sector-wise midpoint characterization factors for impact assessment of regional consumptive and degradative water use.

    Science.gov (United States)

    Lin, Chia-Chun; Lin, Jia-Yu; Lee, Mengshan; Chiueh, Pei-Te

    2017-12-31

    Water availability, resulting from either a lack of water or poor water quality is a key factor contributing to regional water stress. This study proposes a set of sector-wise characterization factors (CFs), namely consumptive and degradative water stresses, to assess the impact of water withdrawals with a life cycle assessment approach. These CFs consider water availability, water quality, and competition for water between domestic, agricultural and industrial sectors and ecosystem at the watershed level. CFs were applied to a case study of regional water management of industrial water withdrawals in Taiwan to show that both regional or seasonal decrease in water availability contributes to a high consumptive water stress, whereas water scarcity due to degraded water quality not meeting sector standards has little influence on increased degradative water stress. Degradative water stress was observed more in the agricultural sector than in the industrial sector, which implies that the agriculture sector may have water quality concerns. Reducing water intensity and alleviating regional scale water stresses of watersheds are suggested as approaches to decrease the impact of both consumptive and degradative water use. The results from this study may enable a more detailed sector-wise analysis of water stress and influence water resource management policies. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Diet change and food loss reduction: What is their combined impact on global water use and scarcity?

    Science.gov (United States)

    Jalava, Mika; Guillaume, Joseph H. A.; Kummu, Matti; Porkka, Miina; Siebert, Stefan; Varis, Olli

    2016-03-01

    There is a pressing need to improve food security and reduce environmental impacts of agricultural production globally. Two of the proposed measures are diet change from animal-based to plant-based foodstuffs and reduction of food losses and waste. These two measures are linked, as diet change affects production and consumption of foodstuffs and consequently loss processes through their different water footprints and loss percentages. This paper takes this link into account for the first time and provides an assessment of the combined potential contribution of diet change and food loss reduction for reducing water footprints and water scarcity. We apply scenarios in which we change diets to follow basic dietary recommendations, limit animal-based protein intake to 25% of total protein intake, and halve food losses to study single and combined effects of diet change and loss reduction. Dietary recommendations alone would achieve 6% and 7% reductions of blue and green water consumption, respectively, while changing diets to contain less animal products would result in savings of 11% and 18%, respectively. Halving food loss would alone achieve 12% reductions for both blue and green water. Combining the measures would reduce water consumption by 23% and 28%, respectively, lowering water scarcity in areas with a population of over 600 million. At a global scale, effects of diet change and loss reduction were synergistic with loss reductions being more effective under changed diet. This demonstrates the importance of considering the link between diet change and loss reduction in assessments of food security and resource use.

  16. Modelling the impact of Water Sensitive Urban Design technologies on the urban water cycle

    DEFF Research Database (Denmark)

    Locatelli, Luca

    Alternative stormwater management approaches for urban developments, also called Water Sensitive Urban Design (WSUD), are increasingly being adopted with the aims of providing flood control, flow management, water quality improvements and opportunities to harvest stormwater for non-potable uses....... To model the interaction of infiltration based WSUDs with groundwater. 4. To assess a new combination of different WSUD techniques for improved stormwater management. 5. To model the impact of a widespread implementation of multiple soakaway systems at the catchment scale. 6. Test the models by simulating...... the hydrological performance of single devices relevant for urban drainage applications. Moreover, the coupling of soakaway and detention storages is also modeled to analyze the benefits of combining different local stormwater management systems. These models are then integrated into urban drainage network models...

  17. Tip Saves Energy, Money for Pennsylvania Plant

    Science.gov (United States)

    A wastewater treatment plant in Berks County, Pennsylvania is saving nearly $45,000 a year and reducing hundreds of metric tons of greenhouse gases since employing an energy conservation tip offered by the Water Protection Division in EPA’s R3 and PADEP.

  18. Environmental impacts of a large-scale incinerator with mixed MSW of high water content from a LCA perspective.

    Science.gov (United States)

    Lou, Ziyang; Bilitewski, Bernd; Zhu, Nanwen; Chai, Xiaoli; Li, Bing; Zhao, Youcai

    2015-04-01

    Large-scale incinerators are applied widely as a result of the heavy burden of municipal solid waste (MSW) generated, while strong opposition is arising from the public living nearby. A large-scale working incineration plant of 1500 ton/day was chosen for evaluation using life cycle assessment. It was found that the corresponding human toxicity impacts via soil (HTs), human toxicity impacts via water (HTw) and human toxicity impacts via air (HTa) categories are 0.213, 2.171, and 0.012 personal equivalents (PE), and global warming (GW100) and nutrient enrichment (NE) impacts are 0.002 and 0.001 PE per ton of waste burned for this plant. Heavy metals in flue gas, such as Hg and Pb, are the two dominant contributors to the toxicity impact categories, and energy recovery could reduce the GW100 and NE greatly. The corresponding HTs, HTw and HTa decrease to 0.087, 0.911 and 0.008 PE, and GW100 turns into savings of -0.007 PE due to the increase of the heating value from 3935 to 5811 kJ/kg, if a trommel screener of 40 mm mesh size is used to pre-separate MSW. MSW sorting and the reduction of water content by physical pressure might be two promising pre-treatment methods to improve the combustion performance, and the application of stricter standards for leachate discharge and the flue gas purification process are two critical factors for improvement of the environmental profile identified in this work. Copyright © 2015. Published by Elsevier B.V.

  19. Modelling income distribution impacts of water sector projects in Bangladesh.

    Science.gov (United States)

    Ahmed, C S; Jones, S

    1991-09-01

    Dynamic analysis was conducted to assess the long-term impacts of water sector projects on agricultural income distribution, and sensitivity analysis was conducted to check the robustness of the 5 assumptions in this study of income distribution and water sector projects in Bangladesh. 7 transitions are analyzed for mutually exclusive irrigation and flooding projects: Nonirrigation to 1) LLP irrigation, 2) STW irrigation, 3) DTW irrigation, 4) major gravity irrigation, and manually operated shallow tubewell irrigation (MOSTI) and Flood Control Projects (FCD) of 6) medium flooded to shallow flooded, and 7) deeply flooded to shallow flooded. 5 analytical stages are involved: 1) farm budgets are derived with and without project cropping patterns for each transition. 2) Estimates are generated for value added/hectare from each transition. 3) Assumptions are made about the number of social classes, distribution of land ownership between classes, extent of tenancy for each social class, term of tenancy contracts, and extent of hiring of labor for each social class. 4) Annual value added/hectare is distributed among social classes. 5) Using Gini coefficients and simple ratios, the distribution of income between classes is estimated for with and without transition. Assumption I is that there are 4 social classes defined by land acreage: large farmers (5 acres), medium farmers (1.5-5.0), small farmers, (.01-1.49), and landless. Assumption II is that land distribution follows the 1978 Land Occupancy Survey (LOS). Biases, if any, are indicated. Assumption III is that large farmers sharecrop out 15% of land to small farmers. Assumption IV is that landlords provide nonirrigated crop land and take 50% of the crop, and, under irrigation, provide 50% of the fertilizer, pesticide, and irrigation costs and take 50% of the crop. Assumption V is that hired and family labor is assumed to be 40% for small farmers, 60% for medium farmers, and 80% for large farmers. It is understood that

  20. Water Delivery and Giant Impacts in the 'Grand Tack' Scenario

    Science.gov (United States)

    O'Brien, David P.; Walsh, Kevin J.; Morbidelli, Alessandro; Raymond, Sean N.; Mandell, Avi M.

    2014-01-01

    A new model for terrestrial planet formation has explored accretion in a truncated protoplanetary disk, and found that such a configuration is able to reproduce the distribution of mass among the planets in the Solar System, especially the Earth/Mars mass ratio, which earlier simulations have generally not been able to match. Walsh et al. tested a possible mechanism to truncate the disk-a two-stage, inward-then-outward migration of Jupiter and Saturn, as found in numerous hydrodynamical simulations of giant planet formation. In addition to truncating the disk and producing a more realistic Earth/Mars mass ratio, the migration of the giant planets also populates the asteroid belt with two distinct populations of bodies-the inner belt is filled by bodies originating inside of 3 AU, and the outer belt is filled with bodies originating from between and beyond the giant planets (which are hereafter referred to as 'primitive' bodies). One implication of the truncation mechanism proposed in Walsh et al. is the scattering of primitive planetesimals onto planet-crossing orbits during the formation of the planets. We find here that the planets will accrete on order 1-2% of their total mass from these bodies. For an assumed value of 10% for the water mass fraction of the primitive planetesimals, this model delivers a total amount of water comparable to that estimated to be on the Earth today. The radial distribution of the planetary masses and the dynamical excitation of their orbits are a good match to the observed system. However, we find that a truncated disk leads to formation timescales more rapid than suggested by radiometric chronometers. In particular, the last giant impact is typically earlier than 20 Myr, and a substantial amount of mass is accreted after that event. This is at odds with the dating of the Moon-forming impact and the estimated amount of mass accreted by Earth following that event. However, 5 of the 27 planets larger than half an Earth mass formed in

  1. Life cycle environmental impacts of domestic solar water heaters in Turkey: The effect of different climatic regions.

    Science.gov (United States)

    Uctug, Fehmi Gorkem; Azapagic, Adisa

    2018-05-01

    Solar water heating (SWH) systems could help reduce environmental impacts from energy use but their performance and impacts depend on the climate. This paper considers how these vary for residential SWH across four different climatic regions in Turkey, ranging from hot to cold climates. Life cycle assessment was used for these purposes. The results suggest that in the hotter regions, the impacts of SWH are 1.5-2 times lower than those of natural gas boilers. A similar trend was observed in the two colder regions except for acidification, which was four times higher than that of the boiler. The raw materials and electricity required for the manufacturing of the systems were found to be the most important contributors to the impacts. Recycling the major components instead of landfilling reduced human toxicity potential by 50% but had only a small effect (5%) on the other impacts. The impacts were highly sensitive to the type of material used for the construction of the hot storage tank, but were not affected by transport and end-of life recycling. The only exception to the latter is human toxicity potential which decreased significantly with greater recycling. Extrapolating the results at the national level showed that SWH systems could reduce the annual greenhouse gas emissions in Turkey by 790kt CO 2 -eq. and would save the economy $162.5millionperyear through the avoided imports of natural gas. All other impacts would also be reduced significantly (3-32 times), except for acidification which would double. Therefore, SWH systems should be deployed more extensively in Turkey but government incentives may be needed to stimulate the uptake. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Save energy - for industry

    International Nuclear Information System (INIS)

    Anon.

    1983-01-01

    The article is an interview with Glenn Bjorklund, Vice President of SCalEd (Southern California Edison). The variations in Californian power demand and public electricity consumption habits are explained, together with types of power source used in electricity production. Questions are posed concerning SCalEd's energy saving strategy. The political implications of electricity charge changes are discussed. The planned energy resources for 1982-1992 are given with nuclear power being the largest contributor. (H.J.P./G.T.H.)

  3. Impact of water quality and irrigation management on soil salinization in the Drâa valley of Morocco.

    Science.gov (United States)

    Beff, L.; Descamps, C.; Dufey, J.; Bielders, C.

    2009-04-01

    of well water needed to satisfy the crop water requirements as well as the leaching requirement had the lowest impact on soil salinization but resulted in a very low water use efficiency of 0.2 (water transpired / water added). This demonstrates the importance of using larger amounts of water than plant water requirements in this region in order to leach out salt of the root zone. However, in arid region, water is often limited and thus farmers can not afford to waste it. In that case, it is necessary to find a compromise between salinization, sodification and saving water. References: Jacques D., Šimůnek J. (2005). User Manual of the Multicomponent Variably-Saturated Flow and Transport Model HP1. Waste and Disposal Department, Mol, Belgium. USDA, United States Department of Agriculture (1969). Diagnosis and Improvement of Saline and Alkali Soils. United States Salinity Laboratory Staff, Agriculture Handbook No. 60, 160p.

  4. Impact of fog processing on water soluble organic aerosols.

    Science.gov (United States)

    Tripathi, S. N.; Chakraborty, A.; Gupta, T.

    2017-12-01

    Fog is a natural meteorological phenomenon that occurs all around the world, and contains a substantial quantity of liquid water. Fog is generally seen as a natural cleansing agent but can also form secondary organic aerosols (SOA) via aqueous processing of ambient organics. Few field studies have reported elevated O/C ratio and SOA mass during or after fog events. However, mechanism behind aqueous SOA formation and its contribution to total organic aerosols (OA) still remains unclear. In this study we have tried to explore the impact of fog/aqueous processing on the characteristics of water soluble organic aerosols (WSOC), which to our knowledge has not been studied before. To assess this, both online (using HR-ToF-AMS) and offline (using a medium volume PM2.5 sampler and quartz filter) aerosol sampling were carried out at Kanpur, India from 15 December 2014 - 10 February 2015. Further, offline analysis of the aqueous extracts of the collected filters were carried out by AMS to characterize the water soluble OA (WSOA). Several (17) fog events occurred during the campaign and high concentrations of OA (151 ± 68 µg/m3) and WSOA (47 ± 19 µg/m3) were observed. WSOA/OA ratios were similar during fog (0.36 ± 0.14) and nofog (0.34 ± 0.15) periods. WSOA concentrations were also similar (slightly higher) during foggy (49 ± 18 µg/m3) and non-foggy periods (46 ± 20 µg/m3), in spite of fog scavenging. However, WSOA was more oxidized during foggy period (average O/C = 0.81) than non foggy periods (average O/C = 0.70). Like WSOA, OA was also more oxidized during foggy periods (average O/C = 0.64) than non foggy periods (average O/C = 0.53). During fog, WSOA to WIOA (water insoluble OA) ratios were higher (0.65 ± 0.16) compared to non foggy periods (0.56 ± 0.15). These observations clearly showed that WSOA become more dominant and processed during fog events, possibly due to the presence of fog droplets. This study highlights that fog processing of soluble organics

  5. Quantifying the impact of climate change on enteric waterborne pathogen concentrations in surface water

    NARCIS (Netherlands)

    Hofstra, N.

    2011-01-01

    Climate change, among other factors, will impact waterborne pathogen concentrations in surface water worldwide, possibly increasing the risk of diseases caused by these pathogens. So far, the impacts are only determined qualitatively and thorough quantitative estimates of future pathogen

  6. Spatio-temporal impacts of dairy lagoon water reuse on soil: Heavy metals and salinity

    Science.gov (United States)

    Diminishing freshwater resources have brought attention to the reuse of degraded water as a water resource rather than a disposal problem. Dairy lagoon water is degraded water that is often in large supply on concentrated animal feeding operations (CAFOs), but the impact and sustainability of its r...

  7. Regulatory impact analysis of the proposed great lakes water quality guidance. Final report

    International Nuclear Information System (INIS)

    Raucher, R.; Dixon, A.; Trabka, E.

    1993-01-01

    The Regulatory Impact Analysis provides direction to the Great Lakes States and Tribes on minimum water quality standards and contains numerical water quality criteria for 32 pollutants as well as methodologies for the development of water quality criteria for additional pollutants discharged to these waters. It also provides guidance to the Great Lakes States and Tribes on antidegradation policies and standards and implementation procedures

  8. Energy saving program in an operating potable water and sanitation organism; Programa de ahorro de energia en un organismo operador de agua potable y saneamiento

    Energy Technology Data Exchange (ETDEWEB)

    Flores Cruz, Juan Jose [Fideicomiso para el Ahorro de la Energia Electrica, (Mexico)

    2001-03-01

    For the achievement of the objectives it was decided to use, among others, the following strategies: Personnel training, increase of the efficiency of the electromechanical equipment, study of Comision Federal de Electricidad (CFE) tariffs, correction of low power factors, increase of load factors, operation automate, regulation of the operation times, preventive maintenance of the equipment, establishment of technical standards, rational and efficient use of air conditioning equipment and illumination. So that these actions were applied in an easy and opportune form, it was established that within the structure of the General Coordination of Foreign Municipalities, the Program of Energy Saving depended directly of the Technical Management of CFE. In this way, the recommendations are first put under consideration of high-level officers, and then are lowered to the operative departments. [Spanish] Para el logro de los objetivos se acordo utilizar, entre otras, las siguientes estrategias: capacitacion del personal; aumentar la eficiencia de los equipos electromecanicos; estudio de tarifas de la Comision Federal de Electricidad (CFE); correccion de bajos factores de potencia; aumento de los factores de carga; automatizar la operacion; regular de los tiempos de operacion; mantenimiento preventivo a los equipos; establecimiento de normas tecnicas; uso racional y eficiente de aire acondicionado e iluminacion. Para que estas acciones se aplicaran en forma agil y oportuna, se establecio que dentro de la estructura de la Coordinacion General de Municipios Foraneos, el Programa de Ahorro de Energia dependiera directamente de la Gerencia Tecnica de la CRE. De esta forma, las recomendaciones primero se someten a consideracion de los funcionarios de alto nivel, y luego bajan a los departamentos operativos.

  9. Economic Energy Savings Potential in Federal Buildings

    Energy Technology Data Exchange (ETDEWEB)

    Brown, Daryl R.; Dirks, James A.; Hunt, Diane M.

    2000-09-04

    The primary objective of this study was to estimate the current life-cycle cost-effective (i.e., economic) energy savings potential in Federal buildings and the corresponding capital investment required to achieve these savings, with Federal financing. Estimates were developed for major categories of energy efficiency measures such as building envelope, heating system, cooling system, and lighting. The analysis was based on conditions (building stock and characteristics, retrofit technologies, interest rates, energy prices, etc.) existing in the late 1990s. The potential impact of changes to any of these factors in the future was not considered.

  10. Raising household saving: does financial education work?

    Science.gov (United States)

    Gale, William G; Harris, Benjamin H; Levine, Ruth

    2012-01-01

    This article highlights the prevalence and economic outcomes of financial illiteracy among American households, and reviews previous research that examines how improving financial literacy affects household saving. Analysis of the research literature suggests that previous financial literacy efforts have yielded mixed results. Evidence suggests that interventions provided for employees in the workplace have helped increase household saving, but estimates of the magnitude of the impact vary widely. For financial education initiatives targeted to other groups, the evidence is much more ambiguous, suggesting a need for more econometrically rigorous evaluations.

  11. Impact location of objects hitting the water surface

    Science.gov (United States)

    Kadri, Usama

    2017-04-01

    Analysis of data, recorded on March 8th 2014 at the Comprehensive Test ban Treaty Organisation's hydroacoustic station off Cape Leeuwin Western Australia, reveal pressure signatures of objects impacting at the sea surface which could be associated with falling meteorites as well as the missing Malaysian MH370 airplane. The location of the sources are identified analytically by an inverse solution based on acoustic-gravity wave theory (e.g. see references below) which have been developed and validated experimentally. Apart from the direct contribution to the search efforts after the missing airplane, the method we describe here is very efficient for identifying the location of sources that result in a sudden change in the water pressure in general. References 1. T.Yamamoto,1982.Gravity waves and acoustic waves generated by submarine earthquakes, Soil Dyn. Earthquake Eng., 1, 75-82. 2. M. Stiassnie, 2010. Tsunamis and acoustic-gravity waves from underwater earthquakes, J. Eng. Math., 67, 23-32, doi:10.1007/s10665-009-9323-x. 3. U. Kadri and M. Staissnie, 2012. Acoustic-gravity waves interacting with the shelf break. J. Geophys. Res., 117, C03035, doi: 10.1029/2011JC007674. 4. E. Eyov, A. Klar, U. Kadri and M. Stiassnie, 2013. Progressive waves in a compressible ocean with elastic bottom, Wave Motion 50, 929-939. doi: 10.1016/j.wavemoti.2013.03.003 5. G. Hendin and M. Stiassnie, 2013. Tsunami and acoustic-gravity waves in water of constant depth, Phys. Fluids 25, 086103, doi: 10.1063/1.481799. 6. U. Kadri, 2016. Acoustic-gravity waves from an oscillating ice-block in arctic zones. Advances in Acoustics and Vibration, 8076108, http://dx.doi.org/10.1155/2016/8076108 7. T.C.A. Oliveira, U. Kadri, 2016. Acoustic-gravity waves from the 2004 Indian Ocean earthquake and tsunami. Journal of Geophysical Research: Oceans. doi: 10.1002/2016JC011742

  12. Energy saving in the auxiliaries consumption for circulation water pumps optimizing the thermal regime; Ahorro en el consumo de auxiliares por bombas de agua de circulacion optimando el regimen termico

    Energy Technology Data Exchange (ETDEWEB)

    Orozco Martinez, Roni [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1999-12-31

    A methodology is proposed that should be followed in any thermal electric power plant to determine the load value at which a unit requires a second circulation water pump without affecting the thermal regime and avoiding an excessive auxiliaries consumption in partial loads. In applying this method the power plant would have an energy saving equivalent to the auxiliaries consumption during an hour, when the unit as operating at full load. [Espanol] Se propone una metodologia que debe seguirse en cualquier central termoelectrica para determinar el valor de la carga en la cual una unidad requiere de la segunda bomba de agua de circulacion sin afectar el regimen termico y evitadose un excesivo consumo de auxiliares en cargas parciales. Al aplicar este metodo la central tendria un ahorro de energia equivalente al consumo de auxiliares durante una hora cuando la unidad esta generando su maxima carga.

  13. Energy saving in the auxiliaries consumption for circulation water pumps optimizing the thermal regime; Ahorro en el consumo de auxiliares por bombas de agua de circulacion optimando el regimen termico

    Energy Technology Data Exchange (ETDEWEB)

    Orozco Martinez, Roni [Instituto de Investigaciones Electricas, Cuernavaca (Mexico)

    1998-12-31

    A methodology is proposed that should be followed in any thermal electric power plant to determine the load value at which a unit requires a second circulation water pump without affecting the thermal regime and avoiding an excessive auxiliaries consumption in partial loads. In applying this method the power plant would have an energy saving equivalent to the auxiliaries consumption during an hour, when the unit as operating at full load. [Espanol] Se propone una metodologia que debe seguirse en cualquier central termoelectrica para determinar el valor de la carga en la cual una unidad requiere de la segunda bomba de agua de circulacion sin afectar el regimen termico y evitadose un excesivo consumo de auxiliares en cargas parciales. Al aplicar este metodo la central tendria un ahorro de energia equivalente al consumo de auxiliares durante una hora cuando la unidad esta generando su maxima carga.

  14. Evaluation of Some Agroecological Characteristics of Basil (Ocimum basilicum L. as Affected by Simultaneous Application of Water-Saving Superabsorbent Hydrogel in Soil and Foliar Application of Humic Acid under Different Irrigation Intervals in a Low Inp

    Directory of Open Access Journals (Sweden)

    M. Jahan

    2016-02-01

    Full Text Available Introduction: Basil (Ocimum basilicum L. is an annual herbaceous plant that belongs to lamiaceae family. This plant is native of India country and other countries in south of Asia. Nowadays, the use of water superabsorbent polymers is increased in agriculture and their role in reducing the drought stress and increasing the crops production has been demonstrated in many researches. Superabsorbent polymers can absorb lots of water and keep it in their structure and give it to plant under drought stress conditions (9. Humic substances are a group of heterogeneous molecules that are bonded together by weak forces, therefore they have high chemical stability. Humic acid comprise 65 to 80 percent of total soil organic matter (6. According to medicinal importance of Basil and its roles in the food and pharmaceutical industries, beside the limited water resources and need to increase water use efficiency through using ecological inputs, this study designed and conducted aimed to evaluate agroecological characteristics of Basil as affected by application of water-saving superabsorbent and humic acid under irrigation intervals. Materials and Methods: In order to evaluate the effects of different amounts of water-saving superabsorbent and foliar application of humic acid and irrigation intervals on some quantitative characteristics of basil (Ocimum basilicum L., a split strip plot experiment was conducted based on RCBD design with three replications at The Research Farm of Ferdowsi University of Mashhad, Iran during growing season of 2012-13. Experimental factors included three levels of water-saving superabsorbent (0, 40 and 80 kg ha-1 as the main plot factor, two levels of humic acid (0 and 3 kg ha-1 as the sub plot factor and two levels of irrigation interval (5 and 10 days as the strip plot factor. Studied traits were seed number and weight per plant, plant height, number of lateral branches per plant, seed yield, biological yield and harvest index

  15. Entrepreneurial Saving Practices and Reinvestment

    NARCIS (Netherlands)

    Beck, Thorsten; Pamuk, Haki; Uras, Burak R.

    2017-01-01

    We use a novel enterprise survey to gauge the relationship between saving instruments and entrepreneurial reinvestment. We show that while most informal saving practices are not associated with a lower likelihood of reinvestment when compared with formal saving practices, there is a significantly

  16. Social Capital and Savings Behavior

    DEFF Research Database (Denmark)

    Newman, Carol; Tarp, Finn; Khai, Luu Duc

    In this paper, we analyze household savings in rural Vietnam paying particular attention to the factors that determine the proportion of savings held as formal deposits. Our aim is to explore the extent to which social capital can play a role in promoting formal savings behavior. Social capital...

  17. Chinese hotel general managers' perspectives on energy-saving practices

    Science.gov (United States)

    Zhu, Yidan

    As hotels' concern about sustainability and budget-control is growing steadily, energy-saving issues have become one of the important management concerns hospitality industry face. By executing proper energy-saving practices, previous scholars believed that hotel operation costs can decrease dramatically. Moreover, they believed that conducting energy-saving practices may eventually help the hotel to gain other benefits such as an improved reputation and stronger competitive advantage. The energy-saving issue also has become a critical management problem for the hotel industry in China. Previous research has not investigated energy-saving in China's hotel segment. To achieve a better understanding of the importance of energy-saving, this document attempts to present some insights into China's energy-saving practices in the tourist accommodations sector. Results of the study show the Chinese general managers' attitudes toward energy-saving issues and the differences among the diverse hotel managers who responded to the study. Study results indicate that in China, most of the hotels' energy bills decrease due to the implementation of energy-saving equipments. General managers of hotels in operation for a shorter period of time are typically responsible for making decisions about energy-saving issues; older hotels are used to choosing corporate level concerning to this issue. Larger Chinese hotels generally have official energy-saving usage training sessions for employees, but smaller Chinese hotels sometimes overlook the importance of employee training. The study also found that for the Chinese hospitality industry, energy-saving practices related to electricity are the most efficient and common way to save energy, but older hotels also should pay attention to other ways of saving energy such as water conservation or heating/cooling system.

  18. An energy saving system for hospital laundries

    Energy Technology Data Exchange (ETDEWEB)

    Katsanis, J.S.; Tsarabaris, P.T.; Polykrati, A.D.; Proios, A.N. [National Technical Univ. of Athens, Athens (Greece). School of Electrical and Computer Engineering; Koufakis, E.I. [Public Power Corp. S.A., Crete (Greece)

    2009-07-01

    Hospital laundries are one of the largest consumers of water and electrical and thermal energy. This paper examined the energy savings achieved by a system using the hot wastewater from the washing process. Hospital laundries consume thermal energy using steam, which is produced in boilers by burning diesel oil or natural gas. Electrical energy for the mechanical drives, ventilation and also the lighting required in the laundry area are big consumers of energy. The paper presented the proposed system and discussed the parameters of the system and system dimensioning. The paper also provided and discussed an interpretation of steam and energy savings. The proposed system was considered to be economically viable, simple in its construction, installation and operation. From the application of the suggested system, the cost savings resulted in a satisfactory payback period for the capital invested of approximately three to five years. 14 refs., 4 tabs., 2 figs.

  19. casual relationship between gross domestic saving and economic

    African Journals Online (AJOL)

    TOSHIBA

    private saving has both direct and indirect effects on economic growth. ... sector have a bigger impact on GDP than gross domestic savings. ... Development economists have been concerned for decades about the crucial role of ..... higher investment and higher economic growth is not supported by East African countries.

  20. Low velocity impact on polymer composite plates in contact with water

    Directory of Open Access Journals (Sweden)

    Y Kwon

    2016-09-01

    Full Text Available In this study, composite materials were tested in two different environments to determine the role of Fluid Structure Interaction with composites under a low velocity impact. This was done using a low velocity impact machine and polymer composite plates. The composite is made of laminated symmetrical plain weave E-glass fabrics. The test area of the composite plates is 30.5 cm by 30.5 cm with clamped boundary conditions. The testing was done using a drop weight system to impact the center of the test area. One testing was performed with composite plates in air, called dry impact. The other testing was conducted while composite plates were submerged in water, called wet impact. A Plexiglas box in conjunction with the impact machine was used to keep the top of the composite sample dry while it was submerged in an anechoic water tank, so called water-backed air impact. Output from the tests was recorded using strain gauges and a force impact sensor. The results show that an added mass effect from the water plays a large role in the Fluid Structure Interaction with composites due to the similar densities of water and the composites. The wet impact results in a larger impact force and damage than the dry impact under the same impact condition, i.e., the same impact mass and drop height.

  1. Energy. Saving 'Private' Areva

    International Nuclear Information System (INIS)

    Dupin, Ludovic

    2015-01-01

    While Areva keeps on loosing money (billions of euros for 2014), the saving of this company is at stake. Staff is already planned to be reduced in La Hague, and other staff reductions might occur after the failure of a previous strategic plan. Various activities could be sold (dismantling, mining). The article outlines the difficult relationships between Areva and EDF and the problems also faced by EDF. Some actors think that Areva should remain independent from EDF in order to be free to compete on international bidding. The rapprochement between these two companies is said to be necessary for the Ministry but seems very difficult to achieve

  2. Savings for the Poor

    OpenAIRE

    Ignacio Mas

    2010-01-01

    This paper reviews the relevance of formal financial services – in particular, savings – to poor people, the economic factors that have hindered the mass-scale delivery of such services in developing countries, and the technology-based opportunities that exist today to make massive gains in financial inclusion. It also highlights the benefits to government from universal financial access, as well as the key policy enablers that would need to be put in place to allow the necessary innovati...

  3. Locomotive energy savings possibilities

    Directory of Open Access Journals (Sweden)

    Leonas Povilas LINGAITIS

    2009-01-01

    Full Text Available Economic indicators of electrodynamic braking have not been properly estimated. Vehicles with alternative power trains are transitional stage between development of pollution- free vehicles. According to these aspects the investigation on conventional hybrids drives and their control system is carried out in the article. The equation that allows evaluating effectiveness of regenerative braking for different variants of hybrid drive are given. Presenting different types of locomotive energy savings power systems, which are using regenerative braking energy any form of hybrid traction vehicles systems, circuit diagrams, electrical parameters curves.

  4. Assessing the impact of energy saving measures on the future energy demand and related GHG (greenhouse gas) emission reduction of Croatia

    DEFF Research Database (Denmark)

    Pukšec, Tomislav; Mathiesen, Brian Vad; Novosel, Tomislav

    2014-01-01

    In the light of European energy-climate package and its measures for increasing security of supply, decreasing the impact on environment and stimulating sustainability, Croatia as a new EU (European Union) member state needs to reconsider and develop new energy policy towards energy efficiency...

  5. A Spreadsheet Model That Estimates the Impact of Reduced Distribution Time on Inventory Investment Savings: What is a Day Taken Out of the Pipeline Worth in Inventory?

    Science.gov (United States)

    2012-03-01

    fall-2006/lecture-notes/lect11.pdf Chang, C.-T. (2005). A Linearization Approach for Inventory Models with Variable Lead Time. International Journal of Production Economics , 263...Demand and Lead Time are Stochastic. International Journal of Production Economics , 595-605. Hayya, J. C., Harrison, T. P., & He, X. (2011). The Impact

  6. Field testing hot water temperature reduction as an energy-saving measure--does the Legionella presence change in a clinic's plumbing system?

    Science.gov (United States)

    Völker, Sebastian; Kistemann, Thomas

    2015-01-01

    Legionella spp. represent a significant health risk for humans. To ensure hygienically safe drinking water, technical guidelines recommend a central potable water hot (PWH) supply temperature of at least 60°C at the calorifier. In a clinic building we monitored whether slightly lowered temperatures in the PWH system led to a systemic change in the growth of these pathogens. In four separate phases we tested different scenarios concerning PWH supply temperatures and disinfection with chlorine dioxide (ClO2). In each phase, we took 5 sets of samples at 17 representative sampling points in the building's drinking water plumbing system. In total we collected 476 samples from the PWH system. All samples were tested (culture-based) for Legionella spp. and serogroups. Additionally, quantitative parameters at each sampling point were collected, which could possibly be associated with the presence of Legionella spp. (Pseudomonas aeruginsoa, heterotrophic plate count at 20°C and 36°C, temperatures, time until constant temperatures were reached, and chlorine dioxide concentration). The presence of Legionella spp. showed no significant reactions after reducing the PWH supply temperature from 63°C to 60°C and 57°C, as long as disinfection with ClO2 was maintained. After omitting the disinfectant, the PWH system showed statistically significant growth rates at 57°C. PWH temperatures which are permanently lowered to less than recommended values should be carefully accompanied by frequent testing, a thorough evaluation of the building's drinking water plumbing system, and hygiene expertise.

  7. Preparation of hot water with body heat. Energy saving master plan for a fitness club; Mit Koerperwaerme Warmwasser bereiten. Energiesparendes Gesamtkonzept fuer einen Fitness-Club

    Energy Technology Data Exchange (ETDEWEB)

    Gaupp, Kai-Uwe [Mitsubishi Electric Europe B.V., Filderstadt-Bonlanden (Germany)

    2011-07-01

    As a flagship, the Josko Fitness club (Binzen, Federal Republic of Germany) attaches great value to a proximity to its customers and illustrates a pronounced consciousness for holistic well-being. This is valid also within the range of the technical building equipment. Here, apart from comfort the operator completely pays attention to environmental awareness and an economic viewpoint. A characteristic of this plant is the use of surplus heat from the sport areas for the drinking warm water.

  8. 209 Effect of Cooperatives on the Savings Behaviour of Members in ...

    African Journals Online (AJOL)

    First Lady

    2013-01-28

    Jan 28, 2013 ... impacted positively on the savings behavior of members. .... On a second side, savings can be actively planned in binding agreements, like .... theory based on the permanent income over the life-cycle of a household, and.

  9. Impacts of Combined Cooling, Heating and Power Systems, and Rainwater Harvesting on Water Demand, Carbon Dioxide, and NOx Emissions for Atlanta.

    Science.gov (United States)

    James, Jean-Ann; Sung, Sangwoo; Jeong, Hyunju; Broesicke, Osvaldo A; French, Steven P; Li, Duo; Crittenden, John C

    2018-01-02

    The purpose of this study is to explore the potential water, CO 2 and NO x emission, and cost savings that the deployment of decentralized water and energy technologies within two urban growth scenarios can achieve. We assess the effectiveness of urban growth, technological, and political strategies to reduce these burdens in the 13-county Atlanta metropolitan region. The urban growth between 2005 and 2030 was modeled for a business as usual (BAU) scenario and a more compact growth (MCG) scenario. We considered combined cooling, heating and power (CCHP) systems using microturbines for our decentralized energy technology and rooftop rainwater harvesting and low flow fixtures for the decentralized water technologies. Decentralized water and energy technologies had more of an impact in reducing the CO 2 and NO x emissions and water withdrawal and consumption than an MCG growth scenario (which does not consider energy for transit). Decentralized energy can reduce the CO 2 and NO x emissions by 8% and 63%, respectively. Decentralized energy and water technologies can reduce the water withdrawal and consumption in the MCG scenario by 49% and 50% respectively. Installing CCHP systems on both the existing and new building stocks with a net metering policy could reduce the CO 2 , NO x , and water consumption by 50%, 90%, and 75% respectively.

  10. Energy saving in the pumping of drinking water, Municipality of San Felipe, Guanajuato; Ahorro de energia electrica en bombeo de agua potable, en el municipio de San Felipe, Gto.

    Energy Technology Data Exchange (ETDEWEB)

    Gamiz Sanchez, Lorenzo [Applied Technology Center de Mexico, S.A. de C.V. (Mexico)

    2006-01-15

    This paper shows the results attained in energy saving through a project of potable water pumping, which took an investment of $433,043.00 and an internal rate of return of 126%. This project puts into evidence that it is possible to reduce between 15 and 30% of the total invoicing for energy consumption in potable water pumping if an equipment of poor efficiency is replaced by another of high efficiency. The project was requested by the Guanajuato's State Water Comision and the Municipal Bureau of Sewage and Potable Water, with the double intention of reducing the energy consumption along with the corresponding invoicing and incrementing the output of the wells in order to improve the potable water supply. In the site two high efficiency submersible motor-pumps were installed previously to the energy diagnosis that triggered profitable operation results and a convenient invoicing. [Spanish] Se documentan los resultados obtenidos en un proyecto de ahorro de energia en el bombeo de agua potable realizado con una inversion de $433,043.00 y con una tasa interna de retorno de 126%. Este proyecto pone en evidencia que es posible reducir entre el 15 y 30% de la facturacion total por consumo de energia electrica en el bombeo de agua potable si se sustituye un equipo poco eficiente por otro de alta eficiencia. El proyecto fue solicitado por la Comision Estatal del Agua de Guanajuato y la Junta Municipal de Agua Potable y Alcantarillado del municipio, con un doble proposito, reducir el consumo de energia junto con la facturacion correspondiente e incrementar la capacidad de produccion de los pozos con la intencion de mejorar el abasto de agua potable. En el lugar se instalaron dos motobombas sumergibles de alta eficiencia previo diagnostico energetico que desencadenaron rentables resultados operativos y de facturacion.

  11. Impacts of forest to urban land conversion and ENSO phase on water quality of a public water supply reservoir

    Science.gov (United States)

    We used coupled watershed and reservoir models to evaluate the impacts of deforestation and ENSO phase on drinking water quality. Source water total organic carbon (TOC) is especially important due to the potential for production of carcinogenic disinfection byproducts (DBPs). The Environmental Flui...

  12. Learning to save lives!

    CERN Document Server

    2003-01-01

    They're all around you and watch over you, but you won't be aware of them unless you look closely at their office doors. There are 308 of them and they have all been given 12 hours of training with the CERN Fire Brigade. Who are they? Quite simply, those who could one day save your life at work, the CERN first-aiders. First-aiders are recruited on a volunteer basis. "Training is in groups of 10 to 12 people and a lot of emphasis is placed on the practical to ensure that they remember the life-saving techniques we show them", explains Patrick Berlinghi, a CERN first-aid instructor from TIS Division. He is looking forward to the arrival of four new instructors, which will bring the total number to twelve (eleven firemen and one member of the Medical Service). "The new instructors were trained at CERN from 16 to 24 May by Marie-Christine Boucher Da Ros (a member of the Commission Pédagogie de l'Observatoire National Français du Secourisme, the education commission of France's national first-aid body). This in...

  13. Potential impacts of changing supply-water quality on drinking water distribution : A review

    NARCIS (Netherlands)

    Liu, Gang; Zhang, Ya; Knibbe, Willem Jan; Feng, Cuijie; Liu, Wentso; Medema, Gertjan; van der Meer, Walter

    Driven by the development of water purification technologies and water quality regulations, the use of better source water and/or upgraded water treatment processes to improve drinking water quality have become common practices worldwide. However, even though these elements lead to improved water

  14. Hydrological impacts of global land cover change and human water use

    NARCIS (Netherlands)

    Bosmans, J.H.C.; van Beek, L.P.H.; Sutanudjaja, E.H.; Bierkens, M.F.P.

    2017-01-01

    Human impacts on global terrestrial hydrology have been accelerating during the 20th century. These human impacts include the effects of reservoir building and human water use, as well as land cover change. To date, many global studies have focussed on human water use, but only a few focus on or

  15. Evaluation of Climate Change Impact on Drinking Water Treatment Plant Operation

    Science.gov (United States)

    It is anticipated that global climate change will adversely impact source water quality in many areas of the United States and, therefore, will influence the design and operation of current and future drinking water treatment systems. Some of these impacts may lead to violations ...

  16. Draft programmatic environmental impact statement for the Uranium Mill Tailings Remedial Action Ground Water Project

    International Nuclear Information System (INIS)

    1994-04-01

    The purpose of the UMTRA Ground Water Project is to protect human health and the environment by meeting the proposed EPA standards in areas where ground water has been contaminated. The first step in the UMTRA Ground Water Project is the preparation of this programmatic environmental impact statement (PEIS). This document analyzes potential impacts of four programmatic alternatives, including the proposed action. The alternatives do not address site-specific ground water compliance. Rather, the PEIS is a planning document that provides a framework for conducting the Ground Water Project; assesses the potential programmatic impacts of conducting the Ground Water Project; provides a method for determining the site-specific ground water compliance strategies; and provides data and information that can be used to prepare site-specific environmental impacts analyses more efficiently. This PEIS differs substantially from a site-specific environmental impact statement because multiple ground water compliance strategies, each with its own unique set of potential impacts, could be used to implement all the alternatives except the no action alternative. Implementing a PEIS alternative means applying a ground water compliance strategy or strategies at a specific site. It is the use of a strategy or a combination of strategies that would result in site-specific impacts

  17. Human Impacts on the Hydrologic Cycle: Comparing Global Climate Change and Local Water Management

    Science.gov (United States)

    Ferguson, I. M.; Maxwell, R. M.

    2010-12-01

    Anthropogenic climate change is significantly altering the hydrologic cycle at global and regional scales, with potentially devastating impacts on water resources. Recent studies demonstrate that hydrologic response to climate change will depend on local-scale feedbacks between groundwater, surface water, and land surface processes. These studies suggest that local water management practices that alter the quantity and distribution of water in the terrestrial system—e.g., groundwater pumping and irrigation—may also feed back across the hydrologic cycle, with impacts on land-atmosphere fluxes and thus weather and climate. Here we use an integrated hydrologic model to compare the impacts of large-scale climate change and local water management practices on water and energy budgets at local and watershed scales. We consider three climate scenarios (hot, hot+wet, and hot+dry) and three management scenarios (pumping only, irrigation only, and pumping+irrigation). Results demonstrate that impacts of local water management on basin-integrated groundwater storage, evapotranspiration, and stream discharge are comparable to those of changing climate conditions. However, impacts of climate change are shown to have a smaller magnitude and greater spatial extent, while impacts of pumping and irrigation are shown to have a greater magnitude but are local to areas where pumping and irrigation occur. These results have important implications regarding the scales of human impacts on both water resources and climate and the sustainability of water resources.

  18. Impact on a utility, utility customers and the environment of an ensemble of solar domestic hot water systems

    International Nuclear Information System (INIS)

    Cragan, K.E.; Klein, S.A.; Beckman, W.A.

    1995-01-01

    The benefits of the installation of a large number of solar domestic hot water (SDHW) systems are identified and quantified. The benefits of SDHW systems include reduced energy use, reduced electrical demand, and reduced pollution. The avoided emissions, capacity contribution, energy and demand savings were evaluated using the power generation schedules, emissions data and annual hourly load profiles from a Wisconsin utility. It is shown that each six square meter solar water heater system can save annually: 3,560 kWh of energy, 0.66 kW of peak demand, and over four tons of pollution

  19. Hierarchical biodiversity and environment impact assessment of South-to-North Water Diversion Project of China

    OpenAIRE

    Youhua Chen

    2013-01-01

    In this brief review, the potential environmental and biodiversity impact of South-to-North Water Diversion (SNWD) project in China on regional environments was assessed. I used the hierarchical environmental impact assessment to classify the possible impacts into three orders caused by the construction of SNWD and then presented the current research advances on each order of the impacts. Further impact assessments should be reinforced during the construction period of SNDW project for the su...

  20. Impact of pipes networks simplification on water hammer phenomenon

    Indian Academy of Sciences (India)

    problem; the finite difference method using water hammer and mass oscillation ... Mohamed (2003) introduced the effect of different parameters such as time of valve closure, ..... for computing the water age equivalent diameter, Dew. Dew = ⎡.