WorldWideScience

Sample records for water sampling geochemical

  1. Neutron activation analysis of geochemical samples

    International Nuclear Information System (INIS)

    Rosenberg, R.; Zilliacus, R.; Kaistila, M.

    1983-06-01

    The present paper will describe the work done at the Technical Research Centre of Finland in developing methods for the large-scale activation analysis of samples for the geochemical prospecting of metals. The geochemical prospecting for uranium started in Finland in 1974 and consequently a manually operated device for the delayed neutron activation analysis of uranium was taken into use. During 1974 9000 samples were analyzed. The small capacity of the analyzer made it necessary to develop a completely automated analyzer which was taken into use in August 1975. Since then 20000-30000 samples have been analyzed annually the annual capacity being about 60000 samples when running seven hours per day. Multielemental instrumental neutron activation analysis is used for the analysis of more than 40 elements. Using instrumental epithermal neutron activation analysis 25-27 elements can be analyzed using one irradiation and 20 min measurement. During 1982 12000 samples were analyzed for mining companies and Geological Survey of Finland. The capacity is 600 samples per week. Besides these two analytical methods the analysis of lanthanoids is an important part of the work. 11 lanthanoids have been analyzed using instrumental neutron activation analysis. Radiochemical separation methods have been developed for several elements to improve the sensitivity of the analysis

  2. Geochemical characterization of fluoride in water, table salt, active sediment, rock and soil samples, and its possible relationship with the prevalence of enamel fluorosis in children in four municipalities of the department of Huila (Colombia).

    Science.gov (United States)

    Martignon, Stefania; Opazo-Gutiérrez, Mario Omar; Velásquez-Riaño, Möritz; Orjuela-Osorio, Iván Rodrigo; Avila, Viviana; Martinez-Mier, Esperanza Angeles; González-Carrera, María Clara; Ruiz-Carrizosa, Jaime Alberto; Silva-Hermida, Blanca Cecilia

    2017-06-01

    Fluoride is an element that affects teeth and bone formation in animals and humans. Though the use of systemic fluoride is an evidence-based caries preventive measure, excessive ingestion can impair tooth development, mainly the mineralization of tooth enamel, leading to a condition known as enamel fluorosis. In this study, we investigated the geochemical characterization of fluoride in water, table salt, active sediment, rock and soil samples in four endemic enamel fluorosis sentinel municipalities of the department of Huila, Colombia (Pitalito, Altamira, El Agrado and Rivera), and its possible relationship with the prevalence of enamel fluorosis in children. The concentration of fluoride in drinking water, table salt, active sediment, rock, and soil was evaluated by means of an ion selective electrode and the geochemical analyses were performed using X-ray fluorescence. Geochemical analysis revealed fluoride concentrations under 15 mg/kg in active sediment, rock and soil samples, not indicative of a significant delivery to the watersheds studied. The concentration of fluoride in table salt was found to be under the inferior limit (less than 180 μg/g) established by the Colombian regulations. Likewise, exposure doses for fluoride water intake did not exceed the recommended total dose for all ages from 6 months. Although the evidence does not point out at rocks, soils, fluoride-bearing minerals, fluoridated salt and water, the hypothesis of these elements as responsible of the current prevalence of enamel fluorosis cannot be discarded since, aqueducts might have undergone significant changes overtime.

  3. Alaska Geochemical Database (AGDB)-Geochemical data for rock, sediment, soil, mineral, and concentrate sample media

    Science.gov (United States)

    Granitto, Matthew; Bailey, Elizabeth A.; Schmidt, Jeanine M.; Shew, Nora B.; Gamble, Bruce M.; Labay, Keith A.

    2011-01-01

    The Alaska Geochemical Database (AGDB) was created and designed to compile and integrate geochemical data from Alaska in order to facilitate geologic mapping, petrologic studies, mineral resource assessments, definition of geochemical baseline values and statistics, environmental impact assessments, and studies in medical geology. This Microsoft Access database serves as a data archive in support of present and future Alaskan geologic and geochemical projects, and contains data tables describing historical and new quantitative and qualitative geochemical analyses. The analytical results were determined by 85 laboratory and field analytical methods on 264,095 rock, sediment, soil, mineral and heavy-mineral concentrate samples. Most samples were collected by U.S. Geological Survey (USGS) personnel and analyzed in USGS laboratories or, under contracts, in commercial analytical laboratories. These data represent analyses of samples collected as part of various USGS programs and projects from 1962 to 2009. In addition, mineralogical data from 18,138 nonmagnetic heavy mineral concentrate samples are included in this database. The AGDB includes historical geochemical data originally archived in the USGS Rock Analysis Storage System (RASS) database, used from the mid-1960s through the late 1980s and the USGS PLUTO database used from the mid-1970s through the mid-1990s. All of these data are currently maintained in the Oracle-based National Geochemical Database (NGDB). Retrievals from the NGDB were used to generate most of the AGDB data set. These data were checked for accuracy regarding sample location, sample media type, and analytical methods used. This arduous process of reviewing, verifying and, where necessary, editing all USGS geochemical data resulted in a significantly improved Alaska geochemical dataset. USGS data that were not previously in the NGDB because the data predate the earliest USGS geochemical databases, or were once excluded for programmatic reasons

  4. Geochemical Modeling of ILAW Lysimeter Water Extracts

    Energy Technology Data Exchange (ETDEWEB)

    Cantrell, Kirk J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2014-12-22

    Geochemical modeling results of water extracts from simulated immobilized low-activity waste (ILAW) glasses, placed in lysimeters for eight years suggest that the secondary phase reaction network developed using product consistency test (PCT) results at 90°C may need to be modified for field conditions. For sediment samples that had been collected from near the glass samples, the impact of glass corrosion could be readily observed based upon the pH of their water extracts. For unimpacted sediments the pH ranged from 7.88 to 8.11 with an average of 8.04. Sediments that had observable impacts from glass corrosion exhibited elevated pH values (as high as 9.97). For lysimeter sediment samples that appear to have been impacted by glass corrosion to the greatest extent, saturation indices determined for analcime, calcite, and chalcedony in the 1:1 water extracts were near equilibrium and were consistent with the secondary phase reaction network developed using PCT results at 90°C. Fe(OH)3(s) also appears to be essentially at equilibrium in extracts impacted by glass corrosion, but with a solubility product (log Ksp) that is approximately 2.13 units lower than that used in the secondary phase reaction network developed using PCT results at 90°C. The solubilities of TiO2(am) and ZrO2(am) also appear to be much lower than that assumed in the secondary phase reaction network developed using PCT results at 90°C. The extent that the solubility of TiO2(am) and ZrO2(am) were reduced relative to that assumed in the secondary phase reaction network developed using PCT results at 90°C could not be quantified because the concentrations of Ti and Zr in the extracts were below the estimated quantification limit. Gibbsite was consistently highly oversaturated in the extract while dawsonite was at or near equilibrium. This suggests that dawsonite might be a more suitable phase for the secondary phase reaction network

  5. Baseline geochemical data for stream sediment and surface water samples from Panther Creek, the Middle Fork of the Salmon River, and the Main Salmon River from North Fork to Corn Creek, collected prior to the severe wildfires of 2000 in central Idaho

    Science.gov (United States)

    Eppinger, Robert G.; Briggs, Paul H.; Brown, Zoe Ann; Crock, James G.; Meier, Allen; Theodorakos, Peter M.; Wilson, Stephen A.

    2001-01-01

    In 1996, the U.S. Geological Survey conducted a reconnaissance baseline geochemical study in central Idaho. The purpose of the baseline study was to establish a 'geochemical snapshot' of the area, as a datum for monitoring future change in the geochemical landscape, whether natural or human-induced. This report presents the methology, analytical results, and sample descriptions for water, sediment, and heavy-mineral concentrate samples collected during this geochemical investigation. In the summer of 2000, the Clear Creek, Little Pistol, and Shellrock wildfires swept across much of the area that was sampled. Thus, these data represent a pre-fire baseline geochemical dataset. A 2001 post- fire study is planned and will involve re-sampling of the pre-fire baseline sites, to allow for pre- and post-fire comparison.

  6. MINTEQ, Geochemical Equilibria in Ground Water

    International Nuclear Information System (INIS)

    Krupka, K.M.

    1990-01-01

    1 - Description of program or function: MINTEQ is a geochemical program to model aqueous solutions and the interactions of aqueous solutions with hypothesized assemblages of solid phases. It was developed for the Environmental Protection Agency to perform the calculations necessary to simulate the contact of waste solutions with heterogeneous sediments or the interaction of ground water with solidified wastes. MINTEQ can calculate ion speciation/solubility, adsorption, oxidation-reduction, gas phase equilibria, and precipitation/dissolution of solid phases. MINTEQ can accept a finite mass for any solid considered for dissolution and will dissolve the specified solid phase only until its initial mass is exhausted. This ability enables MINTEQ to model flow-through systems. In these systems the masses of solid phases that precipitate at earlier pore volumes can be dissolved at later pore volumes according to thermodynamic constraints imposed by the solution composition and solid phases present. The ability to model these systems permits evaluation of the geochemistry of dissolved traced metals, such as low-level waste in shallow land burial sites. MINTEQ was designed to solve geochemical equilibria for systems composed of one kilogram of water, various amounts of material dissolved in solution, and any solid materials that are present. Systems modeled using MINTEQ can exchange energy and material (open systems) or just energy (closed systems) with the surrounding environment. Each system is composed of a number of phases. Every phase is a region with distinct composition and physically definable boundaries. All of the material in the aqueous solution forms one phase. The gas phase is composed of any gaseous material present, and structurally distinct solid forms a separate phase. 2 - Method of solution: MINTEQ applies the fundamental principles of thermodynamics to solve geochemical equilibria from a set of mass balance equations, one for each component. Because the

  7. Geochemical porosity values obtained in core samples from different clay-rocks

    International Nuclear Information System (INIS)

    Fernandez, A.M.

    2010-01-01

    Document available in extended abstract form only. Argillaceous formations of low permeability are considered in many countries as potential host rocks for the disposal of high level radioactive wastes (HLRW). In order to determine their suitability for waste disposal, evaluations of the hydro-geochemistry and transport mechanisms from such geologic formations to the biosphere must be undertaken. One of the key questions about radionuclide diffusion and retention is to know the chemistry and chemical reactions and sorption processes that will occur in the rock and their effects on radionuclide mobility. In this context, the knowledge of the pore water chemistry is essential for performance assessment purposes. This information allows to establish a reliable model for the main water-rock interactions, which control the physico-chemical parameters and the chemistry of the major elements of the system. An important issue in order to model the pore water chemistry in clayey media is to determine the respective volume accessible to cations and anions, i.e, the amount of water actually available for chemical reactions/solute transport. This amount is usually referred as accessible porosity or geochemical porosity. By using the anion inventories, i.e. the anion content obtained from aqueous leaching, and assuming that all Cl - , Br - and SO4 2- leached in the aqueous extracts originates from pore water, the concentration of a conservative ion can be converted into the real pore water concentration if the accessible porosity is known. In this work, the accessible porosity or geochemical porosity has been determined in core samples belonging to four different formations: Boom Clay from Hades URL (Belgium, BE), Opalinus Clay from Mont Terri (Switzerland, CH), and Callovo-Oxfordian argillite from Bure URL (France, FR). The geochemical or chloride porosity was defined as the ratio between the pore water volume containing Cl-bearing pore water and the total volume of a sample

  8. Radiochemical neutron activation analysis of gold in geochemical samples

    International Nuclear Information System (INIS)

    Zilliacus, R.

    1983-01-01

    A fast method for the radiochemical neutron activation analysis of gold in geochemical samples is described. The method is intended for samples having background concentrations of gold. The method is based on the dissolution of samples with hydrofluoric acid and aqua regia followed by the dissolution of the fluorides with boric acid and hydrochloric acid. Gold is then adsorbed on activated carbon by filtrating the solution through a thin carbon layer. The activity measurements are carried out using a Ge(Li)-detector and a multichannel analyzer. The chemical yields of the separation determined by reirradiation vary between 60 and 90%. The detection limit of the method is 0.2 ng/g gold in rock samples. USGS standard rocks and exploration reference materials are analyzed and the results are presented and compared with literature data. (author)

  9. Determination of sampling constants in NBS geochemical standard reference materials

    International Nuclear Information System (INIS)

    Filby, R.H.; Bragg, A.E.; Grimm, C.A.

    1986-01-01

    Recently Filby et al. showed that, for several elements, National Bureau of Standards (NBS) Fly Ash standard reference material (SRM) 1633a was a suitable reference material for microanalysis (sample weights 2 , and the mean sample weight, W vector, K/sub s/ = (S/sub s/%) 2 W vector, could not be determined from these data because it was not possible to quantitate other sources of error in the experimental variances. K/sub s/ values for certified elements in geochemical SRMs provide important homogeneity information for microanalysis. For mineralogically homogeneous SRMs (i.e., small K/sub s/ values for associated elements) such as the proposed clays, it is necessary to determine K/sub s/ by analysis of very small sample aliquots to maximize the subsampling variance relative to other sources of error. This source of error and the blank correction for the sample container can be eliminated by determining K/sub s/ from radionuclide activities of weighed subsamples of a preirradiated SRM

  10. Quantitative determination of 210Po in geochemical samples

    International Nuclear Information System (INIS)

    Dyck, W.; Bristow, Q.

    1984-01-01

    To test the usefulness of 210 Po in soils as a means of detecting buried U mineralization, methods for the determination of 210 Po were investigated and adapted for routine production of 210 Po data from geochemical samples. A number of conditions affecting autodeposition and detection of 210 Po were investigated. The optimum area of deposition with a 450 mm 2 solid state detector was found to be 300 mm 2 . Convenience dictated room temperature over-night deposition times, although increased temperature increased speed and efficiency of deposition. A clear inverse relationship was observed between volume of solution and deposition efficiency with stirring times of less than 2 hours. For routine analysis, soil and rock powders were dissolved by leaching 1 g samples in teflon beakers successively with conc. HNO 3 , HF, and HNO 3 -HClO 4 , evaporating the solution to dryness between leaches, and taking the residue up in 20 mL 0.5 M HCl. The 210 Po was deposited on 19 mm diameter Ni discs and counted with an alpha spectrometer system employing 450 mm 2 ruggedized surface barrier detectors. The method achieved 90 percent recovery of 210 Po from solution and a detection efficiency of 30 percent. With a counting time of 3 hours, the method is capable of detecting 0.2 pCi of 210 Po per gram of sample

  11. Geochemical water signature in the Bahariya Depression, Western Desert, Egypt

    Science.gov (United States)

    Sciarra, Alessandra; Mazzini, Adriano; Lupi, Matteo; Hammed, Mohammed S.

    2017-04-01

    The Bahariya Oasis is located about 200 km SW of Cairo in the central part of the Western Desert of Egypt. It occupies a sub-elliptic 40 km wide depression stretching NE-SW for approximately 90 km. The Bahariya Oasis has been targeted for numerous geological studies on structural geology, stratigraphy, and iron ore deposits. The oasis was characterized since the Roman times by the presence of natural hydrothermal springs venting water from the relatively shallow Nubia Sandstone formation. Inside the depression are visible numerous circular concentric features that morphologically resemble the hydrothermal vent complexes observed at igneous provinces in other localities of the planet. In order to investigate the origin and the mechanisms of formation of these features, we conducted a fieldwork survey as well as fluids sampling from the available well sites. The aim was to constrain the origin of the fluids that potentially triggered or facilitated the formation of the concentric structures observed on the field. This study presents the geochemical results of groundwaters and soil gas samples. Ten samples were collected from deep wells present in the area. In particular, 8 warm waters were collected by wells between 800 m and 1200 m deep. The measured temperatures at these sites range from 36.5 °C to 52.3°C, while the coldest wells have temperatures ranging from 27.9 °C to 36.5°C. For each sample collected from the wells we analyzed the major, minor and trace elements, dissolved gases (He, Ne, H2, O2, N2, CH4, CO2, Rn), and relative isotopic values. In the areas around the wells we measured CO2 and CH4 fluxes as well as radon activity. Overall, the water showed a high value of dissolved Rn, ranging from 9 to 43 Bq/l, and dissolved CO2 ranging from 5.9 to 17.4 cc/l. The waters show a radiogenic signature of isotopic helium, highlighting very prolonged interaction with local crust enriched in radiogenic elements. The isotopic values of δ18O and δD show a clear

  12. Developing Water Sampling Standards

    Science.gov (United States)

    Environmental Science and Technology, 1974

    1974-01-01

    Participants in the D-19 symposium on aquatic sampling and measurement for water pollution assessment were informed that determining the extent of waste water stream pollution is not a cut and dry procedure. Topics discussed include field sampling, representative sampling from storm sewers, suggested sampler features and application of improved…

  13. Central Colorado Assessment Project (CCAP)-Geochemical data for rock, sediment, soil, and concentrate sample media

    Science.gov (United States)

    Granitto, Matthew; DeWitt, Ed H.; Klein, Terry L.

    2010-01-01

    This database was initiated, designed, and populated to collect and integrate geochemical data from central Colorado in order to facilitate geologic mapping, petrologic studies, mineral resource assessment, definition of geochemical baseline values and statistics, environmental impact assessment, and medical geology. The Microsoft Access database serves as a geochemical data warehouse in support of the Central Colorado Assessment Project (CCAP) and contains data tables describing historical and new quantitative and qualitative geochemical analyses determined by 70 analytical laboratory and field methods for 47,478 rock, sediment, soil, and heavy-mineral concentrate samples. Most samples were collected by U.S. Geological Survey (USGS) personnel and analyzed either in the analytical laboratories of the USGS or by contract with commercial analytical laboratories. These data represent analyses of samples collected as part of various USGS programs and projects. In addition, geochemical data from 7,470 sediment and soil samples collected and analyzed under the Atomic Energy Commission National Uranium Resource Evaluation (NURE) Hydrogeochemical and Stream Sediment Reconnaissance (HSSR) program (henceforth called NURE) have been included in this database. In addition to data from 2,377 samples collected and analyzed under CCAP, this dataset includes archived geochemical data originally entered into the in-house Rock Analysis Storage System (RASS) database (used by the USGS from the mid-1960s through the late 1980s) and the in-house PLUTO database (used by the USGS from the mid-1970s through the mid-1990s). All of these data are maintained in the Oracle-based National Geochemical Database (NGDB). Retrievals from the NGDB and from the NURE database were used to generate most of this dataset. In addition, USGS data that have been excluded previously from the NGDB because the data predate earliest USGS geochemical databases, or were once excluded for programmatic reasons

  14. Identification of hydrologic and geochemical pathways using high frequency sampling, REE aqueous sampling and soil characterization at Koiliaris Critical Zone Observatory, Crete

    Energy Technology Data Exchange (ETDEWEB)

    Moraetis, Daniel, E-mail: moraetis@mred.tuc.gr [Department of Environmental Engineering, Technical University of Crete, 73100 Chania (Greece); Stamati, Fotini; Kotronakis, Manolis; Fragia, Tasoula; Paranychnianakis, Nikolaos; Nikolaidis, Nikolaos P. [Department of Environmental Engineering, Technical University of Crete, 73100 Chania (Greece)

    2011-06-15

    Highlights: > Identification of hydrological and geochemical pathways within a complex watershed. > Water increased N-NO{sub 3} concentration and E.C. values during flash flood events. > Soil degradation and impact on water infiltration within the Koiliaris watershed. > Analysis of Rare Earth Elements in water bodies for identification of karstic water. - Abstract: Koiliaris River watershed is a Critical Zone Observatory that represents severely degraded soils due to intensive agricultural activities and biophysical factors. It has typical Mediterranean soils under the imminent threat of desertification which is expected to intensify due to projected climate change. High frequency hydro-chemical monitoring with targeted sampling for Rare Earth Elements (REE) analysis of different water bodies and geochemical characterization of soils were used for the identification of hydrologic and geochemical pathways. The high frequency monitoring of water chemical data highlighted the chemical alterations of water in Koiliaris River during flash flood events. Soil physical and chemical characterization surveys were used to identify erodibility patterns within the watershed and the influence of soils on surface and ground water chemistry. The methodology presented can be used to identify the impacts of degraded soils to surface and ground water quality as well as in the design of methods to minimize the impacts of land use practices.

  15. Petrologic and geochemical characterization of the Bullfrog Member of the Crater Flat Tuff: outcrop samples used in waste package experiments

    International Nuclear Information System (INIS)

    Knauss, K.G.

    1983-09-01

    In support of the Waste Package Task within the Nevada Nuclear Waste Storage Investigation (NNWSI), experiments on hydrothermal rock/water interaction, corrosion, thermomechanics, and geochemical modeling calculations are being conducted. All of these activities require characterization of the initial bulk composition, mineralogy, and individual phase geochemistry of the potential repository host rock. This report summarizes the characterization done on samples of the Bullfrog Member of the Crater Flat Tuff (Tcfb) used for Waste Package experimental programs. 11 references, 17 figures, 3 tables

  16. Determination of geochemical characters of insterstitial waters of pleistocene Italian clay formations

    International Nuclear Information System (INIS)

    Fontanive, A.; Gragnani, R.; Mignuzzi, C.; Spat, G.

    1985-01-01

    The geochemical characters of clay formations and of their pore water are fundamental with regards to the mobility of the radionuclides as well as to the corrosion processes on enginered barriers. Experimental researches have been carried out in different types of clay, which represent Italian formations, for the characterization of pore water. A squeezer system, which reaches 1500 Kg/cm 2 in pressure, and an analytical micro-scale methodology, for the determination of dissolved constituents in pore water, were set up. The extracted pore water ranges from 60% to 85% in relation to consolidation state of clay. The chemical composition of the extracted fluid has been checked during the squeezing. During this step the observed variations were smaller than those between the different specimens of the same sample. The comparison between the results obtained by squeezing and by a multiple washing technique, using increasing water/sediment ratios, shows that the last one does not give reliable results on the chemical composition of pore water. This is due to the presence of easily weatherable minerals and to the exchange processes between the clayey minerals and the solution. Nevertheless both these techniques have supplied complementary information about geochemical processes in water-rock interaction. The salinity of pore water ranges from 0.45 g/l to 24.5 g/l and the chemism always shows a high content of calcium-magnesium sulfate, or sodium chloride or calcium-magnesium-sulfate with sodium chloride. The correlation between geochemical composition of pore water and mineralogical composition of clay is not significant

  17. Reactor water sampling device

    International Nuclear Information System (INIS)

    Sakamaki, Kazuo.

    1992-01-01

    The present invention concerns a reactor water sampling device for sampling reactor water in an in-core monitor (neutron measuring tube) housing in a BWR type reactor. The upper end portion of a drain pipe of the reactor water sampling device is attached detachably to an in-core monitor flange. A push-up rod is inserted in the drain pipe vertically movably. A sampling vessel and a vacuum pump are connected to the lower end of the drain pipe. A vacuum pump is operated to depressurize the inside of the device and move the push-up rod upwardly. Reactor water in the in-core monitor housing flows between the drain pipe and the push-up rod and flows into the sampling vessel. With such a constitution, reactor water in the in-core monitor housing can be sampled rapidly with neither opening the lid of the reactor pressure vessel nor being in contact with air. Accordingly, operator's exposure dose can be reduced. (I.N.)

  18. Determining origin of underground water in coal mines by means of natural isotopes and other geochemical parameters

    Energy Technology Data Exchange (ETDEWEB)

    Dolenec, T; Pezdic, J; Herlec, U; Kuscer, D; Mitrevski, G [Institut Josef Stefan, Ljubljana (Yugoslavia)

    1989-07-01

    Presents a preliminary report on origin of water in Slovenian brown coal mines. Water, coal and strata samples from the Hrastnik and Ojstro mines were analyzed for changes in chemical composition. Water samples were also analyzed for changes in isotopic composition and inorganic carbon and sulfur contents. Chemical, isotopic and geochemical techniques are described and results are presented with 21 diagrams. An attempt is made to explain the origin and age of water flowing from mine aquifers into mine rooms, and to explain the interdependence of surface and underground water flow. 10 refs.

  19. Leachate Geochemical Results for Ash Samples from the June 2007 Angora Wildfire Near Lake Tahoe in Northern California

    Science.gov (United States)

    Hageman, Philip L.; Plumlee, Geoffrey S.; Martin, Deborah A.; Hoefen, Todd M.; Adams, Monique; Lamothe, Paul J.; Todorov, Todor I.; Anthony, Michael W.

    2008-01-01

    This report releases leachate geochemical data for ash samples produced by the Angora wildfire that burned from June 24 to July 2, 2007, near Lake Tahoe in northern California. The leaching studies are part of a larger interdisciplinary study whose goal is to identify geochemical characteristics and properties of the ash that may adversely affect human health, water quality, air quality, animal habitat, endangered species, debris flows, and flooding hazards. The leaching study helps characterize and understand the interactions that occur when the ash comes in contact with rain or snowmelt, and helps identify the constituents that may be mobilized as run-off from these materials. Similar leaching studies were conducted on ash and burned soils from the October 2007 southern California wildfires (Hageman and others, 2008; Plumlee and others, 2007).

  20. Geochemical signature of land-based activities in Caribbean coral surface samples

    Science.gov (United States)

    Prouty, N.G.; Hughen, K.A.; Carilli, J.

    2008-01-01

    Anthropogenic threats, such as increased sedimentation, agrochemical run-off, coastal development, tourism, and overfishing, are of great concern to the Mesoamerican Caribbean Reef System (MACR). Trace metals in corals can be used to quantify and monitor the impact of these land-based activities. Surface coral samples from the MACR were investigated for trace metal signatures resulting from relative differences in water quality. Samples were analyzed at three spatial scales (colony, reef, and regional) as part of a hierarchical multi-scale survey. A primary goal of the paper is to elucidate the extrapolation of information between fine-scale variation at the colony or reef scale and broad-scale patterns at the regional scale. Of the 18 metals measured, five yielded statistical differences at the colony and/or reef scale, suggesting fine-scale spatial heterogeneity not conducive to regional interpretation. Five metals yielded a statistical difference at the regional scale with an absence of a statistical difference at either the colony or reef scale. These metals are barium (Ba), manganese (Mn), chromium (Cr), copper (Cu), and antimony (Sb). The most robust geochemical indicators of land-based activities are coral Ba and Mn concentrations, which are elevated in samples from the southern region of the Gulf of Honduras relative to those from the Turneffe Islands. These findings are consistent with the occurrence of the most significant watersheds in the MACR from southern Belize to Honduras, which contribute sediment-laden freshwater to the coastal zone primarily as a result of human alteration to the landscape (e.g., deforestation and agricultural practices). Elevated levels of Cu and Sb were found in samples from Honduras and may be linked to industrial shipping activities where copper-antimony additives are commonly used in antifouling paints. Results from this study strongly demonstrate the impact of terrestrial runoff and anthropogenic activities on coastal water

  1. Petrologic and geochemical characterization of the Topopah Spring Member of the Paintbrush Tuff: outcrop samples used in waste package experiments

    International Nuclear Information System (INIS)

    Knauss, K.G.

    1984-06-01

    This report summarizes characterization studies conducted with outcrop samples of Topopah Spring Member of the Paintbrush Tuff (Tpt). In support of the Waste Package Task within the Nevada Nuclear Waste Storage Investigation (NNWSI), Tpt is being studied both as a primary object and as a constituent used to condition water that will be reacted with waste form, canister, or packing material. These studies directly or indirectly support NNWSI subtasks concerned with waste package design and geochemical modeling. To interpret the results of subtask experiments, it is necessary to know the exact nature of the starting material in terms of the intial bulk composition, mineralogy, and individual phase geochemistry. 31 figures, 5 tables

  2. Petrologic and geochemical characterization of the Topopah Spring Member of the Paintbrush Tuff: outcrop samples used in waste package experiments

    Energy Technology Data Exchange (ETDEWEB)

    Knauss, K.G.

    1984-06-01

    This report summarizes characterization studies conducted with outcrop samples of Topopah Spring Member of the Paintbrush Tuff (Tpt). In support of the Waste Package Task within the Nevada Nuclear Waste Storage Investigation (NNWSI), Tpt is being studied both as a primary object and as a constituent used to condition water that will be reacted with waste form, canister, or packing material. These studies directly or indirectly support NNWSI subtasks concerned with waste package design and geochemical modeling. To interpret the results of subtask experiments, it is necessary to know the exact nature of the starting material in terms of the intial bulk composition, mineralogy, and individual phase geochemistry. 31 figures, 5 tables.

  3. Principal aquifers can contribute radium to sources of drinking water under certain geochemical conditions

    Science.gov (United States)

    Szabo, Zoltan; Fischer, Jeffrey M.; Hancock, Tracy Connell

    2012-01-01

    What are the most important factors affecting dissolved radium concentrations in principal aquifers used for drinking water in the United States? Study results reveal where radium was detected and how rock type and chemical processes control radium occurrence. Knowledge of the geochemical conditions may help water-resource managers anticipate where radium may be elevated in groundwater and minimize exposure to radium, which contributes to cancer risk. Summary of Major Findings: * Concentrations of radium in principal aquifers used for drinking water throughout the United States generally were below 5 picocuries per liter (pCi/L), the U.S. Environmental Protection Agency (USEPA) maximum contaminant level (MCL) for combined radium - radium-226 (Ra-226) plus radium-228 (Ra-228) - in public water supplies. About 3 percent of sampled wells had combined radium concentrations greater than the MCL. * Elevated concentrations of combined radium were more common in groundwater in the eastern and central United States than in other regions of the Nation. About 98 percent of the wells that contained combined radium at concentrations greater than the MCL were east of the High Plains. * The highest concentrations of combined radium were in the Mid-Continent and Ozark Plateau Cambro-Ordovician aquifer system and the Northern Atlantic Coastal Plain aquifer system. More than 20 percent of sampled wells in these aquifers had combined radium concentrations that were greater than or equal to the MCL. * Concentrations of Ra-226 correlated with those of Ra-228. Radium-226 and Ra-228 occur most frequently together in unconsolidated sand aquifers, and their presence is strongly linked to groundwater chemistry. * Three common geochemical factors are associated with the highest radium concentrations in groundwater: (1) oxygen-poor water, (2) acidic conditions (low pH), and (3) high concentrations of dissolved solids.

  4. Expression of Geochemical Controls on Water Quality in Loch Vale, Rocky Mountain National Park

    Science.gov (United States)

    Podzorski, H.; Navarre-Sitchler, A.; Stets, E.; Clow, D. W.

    2017-12-01

    Relationships between concentrations of rock weathering products and discharge provide insight into the interactions between climate and solute dynamics. This concentration-discharge (C-Q) relationship is especially interesting in high alpine regions, due to their susceptibility to changes in the timing and magnitude of snowmelt. Previous studies looking at C-Q relationships have concluded that concentrations of conservative solutes remain relatively constant as discharge varies; however, these results may be due to relatively small sample sizes, especially at higher discharge values. Using water chemistry data collected regularly by the U.S. Geological Survey from Loch Vale, a high-elevation catchment in Rocky Mountain National Park, C-Q relationships were examined to determine possible geochemical controls on stream solute concentrations. A record of over 20 years of C-Q data resulted in a pattern that shows little variation in conservative solute concentrations during base flow and larger variations in concentrations around peak discharge. This observed pattern is consistent with accumulation of solutes in pore water during base flow, which are then flushed out and diluted by snowmelt. Further evidence of this flushing out mechanism is found in patterns of hysteresis that are present in annual C-Q relationships. Before peak discharge, concentrations of weathering products are higher than after peak discharge at similar values of discharge. Based on these observations, we hypothesize that the geochemical processes controlling stream chemistry vary by season. During the winter, solute concentrations are transport-limited due to slow subsurface flushing resulting in concentrations that are effectively constant and close to equilibrium. During the spring and summer, concentrations drop sharply after peak discharge due to a combination of dilution and reaction-limited processes under conditions with faster subsurface flow and continued snowmelt. This study provides

  5. The WIPP Water Quality Sampling Program

    International Nuclear Information System (INIS)

    Uhland, D.; Morse, J.G.; Colton, D.

    1986-01-01

    The Waste Isolation Pilot Plant (WIPP), a Department of Energy facility, will be used for the underground disposal of wastes. The Water Quality Sampling Program (WQSP) is designed to obtain representative and reproducible water samples to depict accurate water composition data for characterization and monitoring programs in the vicinity of the WIPP. The WQSP is designed to input data into four major programs for the WIPP project: Geochemical Site Characterization, Radiological Baseline, Environmental Baseline, and Performance Assessment. The water-bearing units of interest are the Culebra and Magneta Dolomite Members of the Rustler Formation, units in the Dewey Lake Redbeds, and the Bell Canyon Formation. At least two chemically distinct types of water occur in the Culebra, one being a sodium/potassium chloride water and the other being a calcium/magnesium sulfate water. Water from the Culebra wells to the south of the WIPP site is distinctly fresher and tends to be of the calcium/magnesium sulfate type. Water in the Culebra in the north and around the WIPP site is distinctly fresher and tends to be of the sodium/potassium chloride type and is much higher in total dissolved solids. The program, which is currently 1 year old, will continue throughout the life of the facility as part of the Environmental Monitoring Program

  6. Spatial and Temporal Water Quality Dynamics in the Lake Maumelle Reservoir (Arkansas): Geochemical and Planktonic Variance in a Drinking Water Source

    Science.gov (United States)

    Carey, M. D.; Ruhl, L. S.

    2017-12-01

    The Lake Maumelle reservoir is Central Arkansas's main water supply. Maintaining a high standard of water quality is important to the over 400,000 residents of this area whom rely on this mesotrophic waterbody for drinking water. Lake Maumelle is also a scenic attraction for recreational boating and fishing. Past research has focused primarily on watershed management with land use/land cover modeling and quarterly water sampling of the 13.91mi2 reservoir. The surrounding land within the watershed is predominately densely forested, with timber farms and the Ouachita National Forest. This project identifies water quality changes spatially and temporally, which have not been as frequently observed, over a 6-month timespan. Water samples were collected vertically throughout the water column and horizontally throughout the lake following reservoir zonation. Parameters collected vertically for water quality profiles are temperature, dissolved oxygen, electrical conductivity, salinity, and pH. Soft sediment samples were collected and pore water was extracted by centrifuge. Cation and anion concentrations in the water samples were determined using ion chromatography, and trace element concentrations were determined using ICPMS. Planktonic abundances were determined using an inverted microscope and a 5ml counting chamber. Trace element, cation, and anion concentrations have been compared with planktonic abundance and location to determine microorganismal response to geochemical variance. During June 2017 sampling, parameters varied throughout the water column (temperature decreased 4 degrees Celsius and dissolved oxygen decreased from 98% to 30% from surface to bottom depths), revealing that the reservoir was becoming stratified. Collected plankton samples revealed the presence of copepod, daphnia, and dinoflagellate algae. Utricularia gibba was present in the littoral zone. Low electrical conductivity readings and high water clarity are consistent with the lake

  7. Geochemical soil sampling for deeply-buried mineralized breccia pipes, northwestern Arizona

    Science.gov (United States)

    Wenrich, K.J.; Aumente-Modreski, R. M.

    1994-01-01

    Thousands of solution-collapse breccia pipes crop out in the canyons and on the plateaus of northwestern Arizona; some host high-grade uranium deposits. The mineralized pipes are enriched in Ag, As, Ba, Co, Cu, Mo, Ni, Pb, Sb, Se, V and Zn. These breccia pipes formed as sedimentary strata collapsed into solution caverns within the underlying Mississippian Redwall Limestone. A typical pipe is approximately 100 m (300 ft) in diameter and extends upward from the Redwall Limestone as much as 1000 m (3000 ft). Unmineralized gypsum and limestone collapses rooted in the Lower Permian Kaibab Limestone or Toroweap Formation also occur throughout this area. Hence, development of geochemical tools that can distinguish these unmineralized collapse structures, as well as unmineralized breccia pipes, from mineralized breccia pipes could significantly reduce drilling costs for these orebodies commonly buried 300-360 m (1000-1200 ft) below the plateau surface. Design and interpretation of soil sampling surveys over breccia pipes are plagued with several complications. (1) The plateau-capping Kaibab Limestone and Moenkopi Formation are made up of diverse lithologies. Thus, because different breccia pipes are capped by different lithologies, each pipe needs to be treated as a separate geochemical survey with its own background samples. (2) Ascertaining true background is difficult because of uncertainties in locations of poorly-exposed collapse cones and ring fracture zones that surround the pipes. Soil geochemical surveys were completed on 50 collapse structures, three of which are known mineralized breccia pipes. Each collapse structure was treated as an independent geochemical survey. Geochemical data from each collapse feature were plotted on single-element geochemical maps and processed by multivariate factor analysis. To contrast the results between geochemical surveys (collapse structures), a means of quantifying the anomalousness of elements at each site was developed. This

  8. Geochemical and isotopic study of soils and waters from an Italian contaminated site: Agro Aversano (Campania)

    Science.gov (United States)

    Bove, M.A.; Ayuso, R.A.; de Vivo, B.; Lima, A.; Albanese, S.

    2011-01-01

    Lead isotope applications have been widely used in recent years in environmental studies conducted on different kinds of sampled media. In the present paper, Pb isotope ratios have been used to determine the sources of metal pollution in soils and waters in the Agro Aversano area. During three different sampling phases, a total of 113 surface soils (5-20. cm), 20 samples from 2 soil profiles (0-1. m), 11 stream waters and 4 groundwaters were collected. Major element concentrations in sampled media have been analyzed by the ICP-MS technique. Surface soils (20 samples), all soil profiles and all waters have been also analyzed for Pb isotope compositions by thermal ionization (TIMS). The geochemical data were assessed using statistic methods and cartographically elaborated in order to have a clear picture of the level of disturbance of the area. Pb isotopic data were studied to discriminate between anthropogenic and geologic sources. Our results show that As (5.6-25.6. mg/kg), Cu (9-677. mg/kg), Pb (22-193. mg/kg), Tl (0.53-3.62. mg/kg), V (26-142. mg/kg) and Zn (34-215. mg//kg) contents in analyzed soils, exceed the intervention limits fixed by the Italian Environmental Law for residential areas in some of the sampled sites, while intervention limit for industrial areas is exceeded only for Cu concentrations. Lead isotopic data, show that there is a high similarity between the ratios measured in the leached soil samples and those deriving from anthropic activities. This similarity with anthropogenic Pb is also evident in the ratios measured in both groundwater and stream water samples. ?? 2010 Elsevier B.V.

  9. Geochemical processes controlling water salinization in an irrigated basin in Spain: Identification of natural and anthropogenic influence

    Energy Technology Data Exchange (ETDEWEB)

    Merchán, D., E-mail: d.merchan@igme.es [Geological Survey of Spain — IGME, C/Manuel Lasala 44 9B, 50006 Zaragoza (Spain); Auqué, L.F.; Acero, P.; Gimeno, M.J. [University of Zaragoza — Department of Earth Sciences (Geochemical Modelling Group), C/Pedro Cerbuna 12, 50009 Zaragoza (Spain); Causapé, J. [Geological Survey of Spain — IGME, C/Manuel Lasala 44 9B, 50006 Zaragoza (Spain)

    2015-01-01

    Salinization of water bodies represents a significant risk in water systems. The salinization of waters in a small irrigated hydrological basin is studied herein through an integrated hydrogeochemical study including multivariate statistical analyses and geochemical modeling. The study zone has two well differentiated geologic materials: (i) Quaternary sediments of low salinity and high permeability and (ii) Tertiary sediments of high salinity and very low permeability. In this work, soil samples were collected and leaching experiments conducted on them in the laboratory. In addition, water samples were collected from precipitation, irrigation, groundwater, spring and surface waters. The waters show an increase in salinity from precipitation and irrigation water to ground- and, finally, surface water. The enrichment in salinity is related to the dissolution of soluble mineral present mainly in the Tertiary materials. Cation exchange, precipitation of calcite and, probably, incongruent dissolution of dolomite, have been inferred from the hydrochemical data set. Multivariate statistical analysis provided information about the structure of the data, differentiating the group of surface waters from the groundwaters and the salinization from the nitrate pollution processes. The available information was included in geochemical models in which hypothesis of consistency and thermodynamic feasibility were checked. The assessment of the collected information pointed to a natural control on salinization processes in the Lerma Basin with minimal influence of anthropogenic factors. - Highlights: • Salinization in Lerma Basin was controlled by the dissolution of soluble salts. • Water salinization and nitrate pollution were found to be independent processes. • High NO{sub 3}, fresh groundwater evolved to lower NO{sub 3}, higher salinity surface water. • Inverse and direct geochemical modeling confirmed the hypotheses. • Salinization was a natural ongoing process

  10. Geochemical and isotope-geochemical investigations on thermal waters from the Urach-Kirchheim thermal anomaly

    International Nuclear Information System (INIS)

    Koller, B.

    1980-01-01

    To confirm possible circulation systems, the 18 O/ 16 O D/H isotope conditions of the surface waters and the thermal waters in the investigation area were determined. The circulation systems are due to crosswise anomalies, the geologic situation and a trough-shaped lowering of the permianbeds. A decisive influence of meteoric water could not be detected. A depletion in 18 O with increasing depth was established. Obviously, there has been interaction with water. The applicability of chemical thermometers was tested. (DG) [de

  11. Geochemical analysis of brine samples for exploration of Borate deposits in the South of Sabzevar

    Directory of Open Access Journals (Sweden)

    Mahdi Bemani

    2016-07-01

    Full Text Available Introduction Mohammad-abad Oryan is the only potential source of borate in the North-east of Iran located in 50 km South of Sabzevar. The area is located in tuff marl, tuffaceous marl, volcanic braccia and tuff braccia structures. Remote sensing techniques, geological studies and integration of this data in GIS were applied in an area of about 600 square kilometers to locate the promising areas of borate mineralization for detailed studies (Bemani, 2012. The aim of this detailed geochemical study is to confine the anomaly areas for exploratory drilling and trenching. Materials and methods Field studies were carried out in 9 geological traverses, mainly in Tonakar and Borje Kharkan area and 126 brine samples were taken from hydrothermal springs and 13 rock samples were taken from trenches. All the samples were analyzed for four elements, including B, K, Li and Mg. In order to determine the threshold quantities of the samples and isolation of anomaly, the data were analyzed using statistical methods including classical statistics, fractal geometry and EDA methods (Bemani, 2012. Result Initial data analysis showed that there were no censored data. Also, by applying statistical hypothesis testing, no significant relation was observed between the elements in the two areas (except for Li. Therefore, all the statistical analyses were carried out separately. After outlier correction, based on the amount of skewedness and histograms and probability plots of different elements, it became clear that none of the elements in the raw data distribution were normal and required to be transformed to be close to normal. In this study, logarithmic and three-parameter logarithm transformation were used in order to normalize the data . Based on the mean values, standard deviation of the normalized data, and background value and threshold, probable and possible anomalies were obtained and geochemical anomaly maps were drawn to identify the promising areas. With the

  12. Geochemical reanalysis of historical U.S. Geological Survey sediment samples from the Tonsina area, Valdez Quadrangle, Alaska

    Science.gov (United States)

    Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.

    2015-01-01

    The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential. The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska. For this report, DGGS funded reanalysis of 128 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from the Tonsina area in the Chugach Mountains, Valdez quadrangle, Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical analyses obtained through the USGS contract lab. The new geochemical data are published in this report as a coauthored DGGS report, and will be incorporated into the statewide geochemical databases of both agencies

  13. Geochemical reanalysis of historical U.S. Geological Survey sediment samples from the Zane Hills, Hughes and Shungnak quadrangles, Alaska

    Science.gov (United States)

    Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.

    2015-01-01

    The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential.The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska.For this report, DGGS funded reanalysis of 105 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from the Zane Hills area in the Hughes and Shungnak quadrangles, Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical analyses obtained through the USGS contract lab. The new geochemical data are published in this report as a coauthored DGGS report, and will be incorporated into the statewide geochemical databases of both agencies.

  14. Geochemical processes controlling water salinization in an irrigated basin in Spain: identification of natural and anthropogenic influence.

    Science.gov (United States)

    Merchán, D; Auqué, L F; Acero, P; Gimeno, M J; Causapé, J

    2015-01-01

    Salinization of water bodies represents a significant risk in water systems. The salinization of waters in a small irrigated hydrological basin is studied herein through an integrated hydrogeochemical study including multivariate statistical analyses and geochemical modeling. The study zone has two well differentiated geologic materials: (i) Quaternary sediments of low salinity and high permeability and (ii) Tertiary sediments of high salinity and very low permeability. In this work, soil samples were collected and leaching experiments conducted on them in the laboratory. In addition, water samples were collected from precipitation, irrigation, groundwater, spring and surface waters. The waters show an increase in salinity from precipitation and irrigation water to ground- and, finally, surface water. The enrichment in salinity is related to the dissolution of soluble mineral present mainly in the Tertiary materials. Cation exchange, precipitation of calcite and, probably, incongruent dissolution of dolomite, have been inferred from the hydrochemical data set. Multivariate statistical analysis provided information about the structure of the data, differentiating the group of surface waters from the groundwaters and the salinization from the nitrate pollution processes. The available information was included in geochemical models in which hypothesis of consistency and thermodynamic feasibility were checked. The assessment of the collected information pointed to a natural control on salinization processes in the Lerma Basin with minimal influence of anthropogenic factors. Copyright © 2014 Elsevier B.V. All rights reserved.

  15. SITE-94. Geochemical characterization of Simpevarp ground waters near the Aespoe Hard Rock Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Glynn, P D; Voss, C I [US Geological Survey, Reston, VA (United States)

    1999-09-01

    The present report analyzes the geochemical data in order to evaluate collection and interpretation techniques that will be used to site the repository and to assess its safety. Ground waters near the Aespoe Hard Rock Laboratory (HRL) may be grouped into five chemically and isotopically distinct water types, on the basis of their deuterium and chloride contents: 1) recent waters, 2) 5 g/L chloride waters, 3) deep waters, 4) seawater imprint waters, and 5) glacial melt waters. The sampled ground waters show a progressive change from a predominantly NaHCO{sub 3} composition at shallow depth to a CaCl{sub 2}-rich composition at depth. Despite the proximity of the Baltic, relatively few of the sampled ground waters contain any evidence of a seawater component. This finding, together with the rather shallow depths at which saline waters were found, indicates that Aespoe island is presently in a regional ground-water discharge area. The chemical and isotopic composition of the sampled waters also indicates that local recharge of dilute recent waters occurs only down to shallow depths (generally less than 100 in). The Aespoe ground waters are sulfidic and do not presently contain any dissolved oxygen. Measured E{sub H} values are generally near -300 mV, and on average are only about 50 mV lower than E{sub H} values calculated from the sulfide/sulfate couple. Maintenance of reducing conditions, such as presently found at the Aespoe HRL, is an important consideration in assessing the performance of nuclear waste disposal sites. Measurements of dissolved radon and of uranium concentrations in fracture-fill materials were used to calculate an average effective flow-wetted surface area of 3.1 m{sup 2} per liter of water for the Aespoe site. Estimation of flow-wetted surface areas is essential in determining the importance of matrix diffusion and surface sorption processes for radionuclide release calculations. The Rn calculation technique shows promise in helping narrow the

  16. Geochemical and isotopic characterization of the ground water of Oued Laya

    International Nuclear Information System (INIS)

    Hkiri, Sabrine

    2010-01-01

    In the Sahel region of Sousse (Tunisia Center East), almost all of the deep groundwater has undergone over the last decade, a general decline of groundwater level. This decrease is caused by two factors, the intensive farming and drought. These aquifers, despite their often poor quality (high salinity), are increasingly used, so they are now home to intense exploitation, whose consequences have emerged as significant declines of groundwater level and degradation of the chemical quality of their water. This study concerns a groundwater aquifer that is under stress and anthropogenic climate severe enough: the coastal aquifer of Wad Laya present quality of groundwater qualified low salinity point of view compared to other neighboring aquifers. The salinity is apparently not related to over exploitation as the majority of coastal aquifers but seems it is due to the geological nature which forms the water table. The region's climate is semiarid with an average annual rainfall of 320 mm by 100 years; the FTE is 1750 mm / year resulting in a water deficit of more than 1.4 m / year. Renewable resources are estimated at 3.3 million m3, while for the levy is estimated to be 2.7 million m3 which the dry residue is currently spent 5g / l (CRDA Sousse, 2009). The objective of this study included hydrogeological characterization of the aquifer using geophysical tools and identification of mechanisms of salination using geochemical and isotopic tools to determine the possible origins of mineralization. For this campaign sampling and measurement was made in the region over a thirty water points in order to measure the electrical conductivity, groundwater level and analyze the chemical composition (major and trace elements). Initial findings from this study are summarized in: Completion of piezometric maps and potentiometric study of the evolution in some wells show a decline of water table caused by the increased exploitation and lower rainfall, which resulted in an increase in

  17. Possible uses of geochemical and isotopical investigations of ground waters in oil and gas prospecting

    International Nuclear Information System (INIS)

    Mercado, A.; Kahanovitz, Y.

    1978-07-01

    This work describes the use of geochemical investigation of ground waters for finding deep organic accumulations. It is based on the identification of abnormal values of chemical and isotopical parameters: bicarbonates, CO 2 , sulfates, carbon 13 and carbon 14. Further improvements will make this method a useful tool in oil and gas prospecting and detection as well as in the detection of geochemical anomalies. The advantages of the method are its low cost and relative rapidity; the disadvantage is that it can be carried out only when water sources are present in the exploration field. (B.G.)

  18. Multi-elemental analysis of aqueous geochemical samples by quadrupole inductively coupled plasma-mass spectrometry (ICP-MS)

    Science.gov (United States)

    Wolf, Ruth E.; Adams, Monique

    2015-01-01

    Typically, quadrupole inductively coupled plasma-mass spectrometry (ICP-MS) is used to determine as many as 57 major, minor, and trace elements in aqueous geochemical samples, including natural surface water and groundwater, acid mine drainage water, and extracts or leachates from geological samples. The sample solution is aspirated into the inductively coupled plasma (ICP) which is an electrodeless discharge of ionized argon gas at a temperature of approximately 6,000 degrees Celsius. The elements in the sample solution are subsequently volatilized, atomized, and ionized by the ICP. The ions generated are then focused and introduced into a quadrupole mass filter which only allows one mass to reach the detector at a given moment in time. As the settings of the mass analyzer change, subsequent masses are allowed to impact the detector. Although the typical quadrupole ICP-MS system is a sequential scanning instrument (determining each mass separately), the scan speed of modern instruments is on the order of several thousand masses per second. Consequently, typical total sample analysis times of 2–3 minutes are readily achievable for up to 57 elements.

  19. SITE-94. Geochemical characterization of Simpevarp ground waters near the Aespoe Hard Rock Laboratory

    International Nuclear Information System (INIS)

    Glynn, P.D.; Voss, C.I.

    1999-09-01

    The present report analyzes the geochemical data in order to evaluate collection and interpretation techniques that will be used to site the repository and to assess its safety. Ground waters near the Aespoe Hard Rock Laboratory (HRL) may be grouped into five chemically and isotopically distinct water types, on the basis of their deuterium and chloride contents: 1) recent waters, 2) 5 g/L chloride waters, 3) deep waters, 4) seawater imprint waters, and 5) glacial melt waters. The sampled ground waters show a progressive change from a predominantly NaHCO 3 composition at shallow depth to a CaCl 2 -rich composition at depth. Despite the proximity of the Baltic, relatively few of the sampled ground waters contain any evidence of a seawater component. This finding, together with the rather shallow depths at which saline waters were found, indicates that Aespoe island is presently in a regional ground-water discharge area. The chemical and isotopic composition of the sampled waters also indicates that local recharge of dilute recent waters occurs only down to shallow depths (generally less than 100 in). The Aespoe ground waters are sulfidic and do not presently contain any dissolved oxygen. Measured E H values are generally near -300 mV, and on average are only about 50 mV lower than E H values calculated from the sulfide/sulfate couple. Maintenance of reducing conditions, such as presently found at the Aespoe HRL, is an important consideration in assessing the performance of nuclear waste disposal sites. Measurements of dissolved radon and of uranium concentrations in fracture-fill materials were used to calculate an average effective flow-wetted surface area of 3.1 m 2 per liter of water for the Aespoe site. Estimation of flow-wetted surface areas is essential in determining the importance of matrix diffusion and surface sorption processes for radionuclide release calculations. The Rn calculation technique shows promise in helping narrow the possible range of values

  20. Geochemical evolution of acidic ground water at a reclaimed surface coal mine in western Pennsylvania

    Science.gov (United States)

    Cravotta,, Charles A.

    1991-01-01

    Concentrations of dissolved sulfate and acidity in ground water increase downflow in mine spoil and underlying bedrock at a reclaimed surface coal mine in the bituminous field of western Pennsylvania. Elevated dissolved sulfate and negligible oxygen in ground water from bedrock about 100 feet below the water table suggest that pyritic sulfur is oxidized below the water table, in a system closed to oxygen. Geochemical models for the oxidation of pyrite (FeS2) and production of sulfate (SO42-) and acid (H+) are presented to explain the potential role of oxygen (O2) and ferric iron (Fe3+) as oxidants. Oxidation of pyrite by O2 and Fe3+ can occur under oxic conditions above the water table, whereas oxidation by Fe3+ also can occur under anoxic conditions below the water table. The hydrated ferric-sulfate minerals roemerite [Fe2+Fe43+(SO4)4·14H2O], copiapite [Fe2+Fe43+(SO4)6(OH)2·20H20], and coquimbite [Fe2(SO4)3·9H2O] were identified with FeS2 in coal samples, and form on the oxidizing surface of pyrite in an oxic system above the water table. These soluble ferric-sulfate 11 salts11 can dissolve with recharge waters or a rising water table releasing Fe3+, SO42-. and H+, which can be transported along closed-system ground-water flow paths to pyrite reaction sites where O2 may be absent. The Fe3+ transported to these sites can oxidize pyritic sulfur. The computer programs WATEQ4F and NEWBAL were used to compute chemical speciation and mass transfer, respectively, considering mineral dissolution and precipitation reactions plus mixing of waters from different upflow zones. Alternative mass-balance models indicate that (a) extremely large quantities of O2, over 100 times its aqueous solubility, can generate the observed concentrations of dissolved SO42- from FeS2, or (b) under anoxic conditions, Fe3+ from dissolved ferric-sulfate minerals can oxidize FeS2 along closed-system ground-water flow paths. In a system open to O2, such as in the unsaturated zone, the aqueous

  1. geochemical characterization the waters of foggaras the continental

    African Journals Online (AJOL)

    B. Benaricha, A. Khaldi, A. Elouissi, S. Mouassa, M. Zaagane

    2017-01-01

    Jan 1, 2017 ... supplied by the water of Foggaras system from the underground water ... The fougaras irrigation technique is to install a slightly sloping gallery that drains ..... track their hearts occupied by Triassic salt-bearing rocks , rainwater ...

  2. Geochemical Data for Samples Collected in 2007 Near the Concealed Pebble Porphyry Cu-Au-Mo Deposit, Southwest Alaska

    Science.gov (United States)

    Fey, David L.; Granitto, Matthew; Giles, Stuart A.; Smith, Steven M.; Eppinger, Robert G.; Kelley, Karen D.

    2008-01-01

    In the summer of 2007, the U.S. Geological Survey (USGS) began an exploration geochemical research study over the Pebble porphyry copper-gold-molydenum (Cu-Au-Mo) deposit in southwest Alaska. The Pebble deposit is extremely large and is almost entirely concealed by tundra, glacial deposits, and post-Cretaceous volcanic and volcaniclastic rocks. The deposit is presently being explored by Northern Dynasty Minerals, Ltd., and Anglo-American LLC. The USGS undertakes unbiased, broad-scale mineral resource assessments of government lands to provide Congress and citizens with information on national mineral endowment. Research on known deposits is also done to refine and better constrain methods and deposit models for the mineral resource assessments. The Pebble deposit was chosen for this study because it is concealed by surficial cover rocks, it is relatively undisturbed (except for exploration company drill holes), it is a large mineral system, and it is fairly well constrained at depth by the drill hole geology and geochemistry. The goals of the USGS study are (1) to determine whether the concealed deposit can be detected with surface samples, (2) to better understand the processes of metal migration from the deposit to the surface, and (3) to test and develop methods for assessing mineral resources in similar concealed terrains. This report presents analytical results for geochemical samples collected in 2007 from the Pebble deposit and surrounding environs. The analytical data are presented digitally both as an integrated Microsoft 2003 Access? database and as Microsoft 2003 Excel? files. The Pebble deposit is located in southwestern Alaska on state lands about 30 km (18 mi) northwest of the village of Illiamna and 320 km (200 mi) southwest of Anchorage (fig. 1). Elevations in the Pebble area range from 287 m (940 ft) at Frying Pan Lake just south of the deposit to 1146 m (3760 ft) on Kaskanak Mountain about 5 km (5 mi) to the west. The deposit is in an area of

  3. UMTRA project water sampling and analysis plan, Gunnison, Colorado

    International Nuclear Information System (INIS)

    1994-06-01

    This water sampling and analysis plan summarizes the results of previous water sampling activities and the plan for water sampling activities for calendar year 1994. A buffer zone monitoring plan is included as an appendix. The buffer zone monitoring plan is designed to protect the public from residual contamination that entered the ground water as a result of former milling operations. Surface remedial action at the Gunnison Uranium Mill Tailings Remedial Action Project site began in 1992; completion is expected in 1995. Ground water and surface water will be sampled semiannually in 1994 at the Gunnison processing site (GUN-01) and disposal site (GUN-08). Results of previous water sampling at the Gunnison processing site indicate that ground water in the alluvium is contaminated by the former uranium processing activities. Background ground water conditions have been established in the uppermost aquifer (Tertiary gravels) at the Gunnison disposal site. The monitor well locations provide a representative distribution of sampling points to characterize ground water quality and ground water flow conditions in the vicinity of the sites. The list of analytes has been modified with time to reflect constituents that are related to uranium processing activities and the parameters needed for geochemical evaluation. Water sampling will be conducted at least semiannually during and one year following the period of construction activities, to comply with the ground water protection strategy discussed in the remedial action plan (DOE, 1992a)

  4. Isotopic and geochemical tracers for fingerprinting process-affected waters in the oil sands industry: a pilot study

    Energy Technology Data Exchange (ETDEWEB)

    Gibson, J.J.; Birks, S.J.; Moncur, M.; Yi, Y.; Tattrie, K.; Jasechko, S.; Richardson, K.; Eby, P. [Alberta Innovates - Technology Futures (Canada)

    2011-04-15

    During 2009 and 2010, Alberta Innovates - Technology Futures carried out a pilot study for Alberta Environment to examine the possibility of labeling process affected water from oil sands operations with isotropic and geochemical tracers. For the study, 3 oil sands operators furnished logistical support and personnel, 39 samples were gathered and several isotope tracers were measured. In addition, geotechnical analyses were performed and the presence of organic compounds in the samples was scanned using Fourier transform ion cyclotron resonance mass spectrometry. Results showed that the selected tracers were able to label water sources in some locations, however they cannot be used as a universal method and a case by case approach needs to be adopted. This study pointed out that Fourier transform ion cyclotron resonance mass spectrometry is the best way to construct a dataset for use in identification of process affected waters.

  5. Application of the PHREEQC geochemical computer model during the design and operation of UK mine water treatment schemes

    Energy Technology Data Exchange (ETDEWEB)

    Croxford, S.J.; England, A.; Jarvis, A.P. [IMC White Young Green Engineering and Environment, Sutton-in-Ashfield (United Kingdom)

    2004-07-01

    The UK Coal Authority operates more than 20 full-scale mine water treatment schemes. The PHREEQC geochemical model has been used during the design and operation of two of the UK Coal Authority's treatment systems to assess whether it is possible to more accurately predict the fate and behaviour of contaminants through the treatment process. These systems are at Frances Colliery, Fife, Scotland, and at Horden Colliery, County Durham, England. The characteristics of the mine water at these sites, and the treatment systems installed to remediate them, are described. At Frances Colliery the following issues have been investigated using the PHREEQC model: determination of optimum alkali dose rate; and investment of secondary mineralization that causes pipe fouling. At Horden Colliery areas investigated using the PHREEQC model are: prediction of sludge volume production for various alkali reagents; predication of the influence of elevated carbon dioxide partial pressures on alkali requirements; and influence of elevated chloride concentration on sludge characteristics and production. The results of the investigation are presented and discussed. The study suggests that geochemical modelling may be a useful tool in determining both the geochemical processes occurring within a mine water treatment system and ultimately the likely costs involved during the operation of a particular scheme. Plans for future work include further validation of the PHREEQC model predictions by careful sampling and analysis of water chemistry and secondary mineral phases through the treatment systems. In the future it is hoped that the PHREEQC model may become a useful tool in the design phase of mine water treatment systems. 7 refs., 8 tabs.

  6. Geochemical drainage surveys for uranium: sampling and analytical methods based on trial surveys in Pennsylvania

    International Nuclear Information System (INIS)

    Rose, A.W.; Keith, M.L.; Suhr, N.H.

    1976-01-01

    Geochemical surveys near sandstone-type uranium prospects in northeastern and north-central Pennsylvania show that the deposits can be detected by carefully planned stream sediment surveys, but not by stream water surveys. Stream waters at single sites changed in U content by x10 to 50 during the 18 months of our studies, and even near known prospects, contain less than 0.2 ppB U most of the time. Uranium extractable from stream sediment by acetic acid--H 2 O 2 provides useful contrast between mineralized and nonmineralized drainages of a square mile or less; total U in sediment does not. High organic material results in increased U content of sediments and must be corrected. Changes in U content of sediment with time reach a maximum of x3 and appear to be of short duration. A sediment of about 200 mi 2 near Jim Thorpe detects anomalies extending over several square miles near known occurrences and a second anomaly about two miles northeast of Penn Haven Jct. A similar survey in Lycoming-Sullivan Counties shows anomalous zones near known prospects of the Beaver Lake area and northwest of Muncy Creek. As, Mn, Pb, and V are enriched in the mineralized zones, and perhaps in surrounding halo zones, but do not appear to be pathfinder elements useful for reconnaissance exploration

  7. Geochemical Investigations In Soils And Waters Of Ischia Island (southern Italy)

    Science.gov (United States)

    Avino, R.; Capaldi, G.; Di Matteo, V.; Pece, R.

    The island of Ischia is localized in the Gulf of Naples and is a volcanic field belonging to the volcanic district of the Phlegraean Fields. It covers an area of about 42 Km2 and is characterized by a complex system of faults and fractures of tectonic and volcano- tectonic origin. The highest peak of the island is Mt Epomeo (787 m), situated in the central part of Ischia. The last eruption on this island took place in 1302 (Arso) and from that time the volcanic activity has reduced only to hydrothermal manifestations (fumaroles and thermal springs) localized especially along the faults that border Mt Epomeo. So the area around the Epomeo is an area of great interest for geochemical investigations, and in fact in this place high concentration of mercury, carbon dioxide and radon have been measured. In this work are presented the data of a study on the concentration of CO2 and mercury and of the activity of radon in the soils and in the waters of the island of Ischia. For these investigations 184 samples of soils have been collected and analyzed in laboratory to calculate the concentration of mercury using the Jerome 511 Mercury Vapor Analyzer. In the same sampling sites measurements of CO2 and of the activity of radon-222 in the soils have also been made using the Track- etch@ method. As regards the waters, a sampling of 50 wells localized all around the coast of the island has been carried out. In these waters measures of mercury and of the activity of some radioactive elements have been done. The measures of radioactivity has been carried out by gamma spectrometry with a HPE Ge detector. All the investigations (in soils and in waters) allow to have preliminary information about the concentrations of these investigated elements and will be a starting-point for a more detailed sampling in those place where anomalies have been found. This set of data can also help to better understand the degassing process of these elements through the principal structures of the

  8. Geochemical modelling of CO2-water-rock interactions for carbon storage : data requirements and outputs

    International Nuclear Information System (INIS)

    Kirste, D.

    2008-01-01

    A geochemical model was used to predict the short-term and long-term behaviour of carbon dioxide (CO 2 ), formation water, and reservoir mineralogy at a carbon sequestration site. Data requirements for the geochemical model included detailed mineral petrography; formation water chemistry; thermodynamic and kinetic data for mineral phases; and rock and reservoir physical characteristics. The model was used to determine the types of outputs expected for potential CO 2 storage sites and natural analogues. Reaction path modelling was conducted to determine the total reactivity or CO 2 storage capability of the rock by applying static equilibrium and kinetic simulations. Potential product phases were identified using the modelling technique, which also enabled the identification of the chemical evolution of the system. Results of the modelling study demonstrated that changes in porosity and permeability over time should be considered during the site selection process.

  9. Geochemical tracing and hydrogeochemical modelling of water-rock interactions during salinization of alluvial groundwater (Upper Rhine Valley, France)

    Energy Technology Data Exchange (ETDEWEB)

    Lucas, Y., E-mail: yann.lucas@eost.u-strasbg.fr [Universite de Strasbourg et CNRS, Laboratoire d' Hydrologie et de Geochimie de Strasbourg, Ecole et Observatoire des Sciences de la Terre, 1, rue Blessig, 67084 Strasbourg Cedex (France); Schmitt, A.D., E-mail: anne-desiree.schmitt@univ-fcomte.fr [Universite de Strasbourg et CNRS, Laboratoire d' Hydrologie et de Geochimie de Strasbourg, Ecole et Observatoire des Sciences de la Terre, 1, rue Blessig, 67084 Strasbourg Cedex (France)] [Universite de Franche-Comte et CNRS-UMR 6249, Chrono-Environnement, 16, Route de Gray, 25030 Besancon Cedex (France); Chabaux, F., E-mail: francois.chabaux@eost.u-strasbg.fr [Universite de Strasbourg et CNRS, Laboratoire d' Hydrologie et de Geochimie de Strasbourg, Ecole et Observatoire des Sciences de la Terre, 1, rue Blessig, 67084 Strasbourg Cedex (France); Clement, A.; Fritz, B. [Universite de Strasbourg et CNRS, Laboratoire d' Hydrologie et de Geochimie de Strasbourg, Ecole et Observatoire des Sciences de la Terre, 1, rue Blessig, 67084 Strasbourg Cedex (France); Elsass, Ph. [BRGM, GEODERIS, 1, rue Claude Chappe, 57070 Metz (France); Durand, S. [Universite de Strasbourg et CNRS, Laboratoire d' Hydrologie et de Geochimie de Strasbourg, Ecole et Observatoire des Sciences de la Terre, 1, rue Blessig, 67084 Strasbourg Cedex (France)

    2010-11-15

    Research highlights: {yields} Major and trace elements along with strontium and uranium isotopic ratios show that groundwater geochemical characteristics along the saline plumes cannot reflect a conservative mixing. {yields} A coupled hydrogeochemical model demonstrates that cationic exchange between alkalis from polluted waters and alkaline-earth elements from montmorillonite present in the host rock of the aquifer is the primary process. {yields} The model requires only a small amount of montmorillonite. {yields} It is necessary to consider the pollution history to explain the important chloride, sodium and calcium concentration modifications. {yields} The model shows that the rapidity of the cationic exchange reactions insures a reversibility of the cation fixation on clays in the aquifer. - Abstract: In the southern Upper Rhine Valley, groundwater has undergone intensive saline pollution caused by the infiltration of mining brines, a consequence of potash extraction carried out during the 20th century. Major and trace elements along with Sr and U isotopic ratios show that groundwater geochemical characteristics along the saline plumes cannot reflect conservative mixing between saline waters resulting from the dissolution of waste heaps and one or more unpolluted end-members. The results imply the occurrence of interactions between host rocks and polluted waters, and they suggest that cationic exchange mechanisms are the primary controlling process. A coupled hydrogeochemical model has been developed with the numerical code KIRMAT, which demonstrates that cationic exchange between alkalis from polluted waters and alkaline-earth elements from montmorillonite present in the host rock of the aquifer is the primary process controlling the geochemical evolution of the groundwater. The model requires only a small amount of montmorillonite (between 0.75% and 2.25%), which is in agreement with the observed mineralogical composition of the aquifer. The model also proves

  10. UMTRA project water sampling and analysis plan, Naturita, Colorado

    International Nuclear Information System (INIS)

    1994-04-01

    Surface remedial action is scheduled to begin at the Naturita UMTRA Project processing site in the spring of 1994. No water sampling was performed during 1993 at either the Naturita processing site (NAT-01) or the Dry Flats disposal site (NAT-12). Results of previous water sampling at the Naturita processing site indicate that ground water in the alluvium is contaminated as a result of uranium processing activities. Baseline ground water conditions have been established in the uppermost aquifer at the Dry Flats disposal site. Water sampling activities scheduled for April 1994 include preconstruction sampling of selected monitor wells at the processing site, surface water sampling of the San Miguel River, sampling of several springs/seeps in the vicinity of the disposal site, and sampling of two monitor wells in Coke Oven Valley. The monitor well locations provide sampling points to characterize ground water quality and flow conditions in the vicinity of the sites. The list of analytes has been updated to reflect constituents related to uranium processing activities and the parameters needed for geochemical evaluation. Water sampling will be conducted annually at minimum during the period of construction activities

  11. Application of isotopic and hydro-geochemical methods in identifying sources of mine inrushing water

    Institute of Scientific and Technical Information of China (English)

    Dou Huiping; Ma Zhiyuan; Cao Haidong; Liu Feng; Hu Weiwei; Li Ting

    2011-01-01

    Isotopic and hydro-geochemical surveys were carried out to identify the source of mine inrushing water at the #73003 face in the Laohutai Mine.Based on the analysis of isotopes and hydro-chemical features of surface water,groundwater from different levels and the inrushing water,a special relationship between water at the #73003 face and cretaceous water has been found.The results show that the isotopic and hydro-chemical features of the inrushing water are completely different from those of other groundwater bodies,except for the cretaceous water.The isotopic and hydrochemical characteristics of cretaceous water are similar to the inrushing water of the #73003 face,which aided with obtaining the evidence for the possible source of the inrushing water at the #73003 face.The isotope calculations show that the inrushing water at the #73003 face is a mixture of cretaceous water and Quaternary water,water from the cretaceous conglomerate is the main source,accounting for 67% of the inrushing water,while the Quaternary water accounts for 33%.The conclusion is also supported by a study of inrushing-water channels and an active fault near the inrushing-water plot on the #73003 face.

  12. Heavy metal transport processes in surface water and groundwater. Geochemical and isotopic aspects

    International Nuclear Information System (INIS)

    Tricca, A.

    1997-01-01

    This work deals with the transport mechanisms of trace elements in natural aquatic systems. The experimental field is situated in the Upper Rhine Rift Valley because of the density and variety of its hydrological net. This study focused on three aspects: the isotopic tracing with Sr, Nd and O allowed to characterize the hydro-system. The 87 Sr/ 86 Sr and 143 Nd/ 144 Nd ratios show that the system is controlled by two natural end members a carbonate and a silicate one and a third end member of anthropogenic origin. The isotopic data allowed also to investigate the exchange processes between the dissolved and the particulate phases of the water samples. Because of their use in the industry and their very low concentrations in natural media, the Rare Earth Elements (REE) are very good tracers of anthropogenic contamination. Furthermore, due to their similar chemical properties with the actinides,they constitute excellent analogues to investigate the behaviour of fission products in the nature. In this study we determined the distribution of the REE within a river between the dissolved, the colloidal and the particulate phases. Among the REE of the suspended load, we distinguished between the exchangeable and the residual REE by means OF IN HCl leading experiments. The third topic is the investigation of uranium series disequilibrium using α-Spectrometry. The determination of ratios 234 U/ 238 U as well as of the activities short-lived radionuclides like 222 Rn, 224 Ra, 226 Ra, 228 Ra, 210 Po and 210 Pb have been performed. Their activities are controlled by chemical and physical parameters and depend also on the lithology of the source area. The combination of the three aspects provided relevant informations about the exchanges between the different water masses, about the transport mechanisms of the REE. Furthermore, the uranium series disequilibrium provided informations about the geochemical processes at a micro-scale. (author)

  13. Impact assessment of artificial recharge and geo-chemical characterization of the waters of the slick Tebolba (Eastern Tunisia)

    International Nuclear Information System (INIS)

    Ferchichi, Hajer

    2007-01-01

    This study concerned the impact assessment of artificial recharge of a coastal aquifer (Tebolba) from the waters of the dam Nebhana and chemical characterization of its waters. The analysis maps piezometric drawn and salinity at various dates since 1940, the establishment of chronic recharge from the years 1992 to 2006, as well as geochemical study of groundwater in the slick Tebolba have enabled us to reach the many results. This study using a multidisciplinary approach (hydrodynamics and geochemical) seeks an assessment of impacts of recharging the water table in Tebolba from the waters of the dam Nebhana through the history of the qualitative and quantitative water the water and a hydro-geochemical study the current state of the waters of the water. (Author). 45 refs

  14. Statistical characterization of a large geochemical database and effect of sample size

    Science.gov (United States)

    Zhang, C.; Manheim, F.T.; Hinde, J.; Grossman, J.N.

    2005-01-01

    The authors investigated statistical distributions for concentrations of chemical elements from the National Geochemical Survey (NGS) database of the U.S. Geological Survey. At the time of this study, the NGS data set encompasses 48,544 stream sediment and soil samples from the conterminous United States analyzed by ICP-AES following a 4-acid near-total digestion. This report includes 27 elements: Al, Ca, Fe, K, Mg, Na, P, Ti, Ba, Ce, Co, Cr, Cu, Ga, La, Li, Mn, Nb, Nd, Ni, Pb, Sc, Sr, Th, V, Y and Zn. The goal and challenge for the statistical overview was to delineate chemical distributions in a complex, heterogeneous data set spanning a large geographic range (the conterminous United States), and many different geological provinces and rock types. After declustering to create a uniform spatial sample distribution with 16,511 samples, histograms and quantile-quantile (Q-Q) plots were employed to delineate subpopulations that have coherent chemical and mineral affinities. Probability groupings are discerned by changes in slope (kinks) on the plots. Major rock-forming elements, e.g., Al, Ca, K and Na, tend to display linear segments on normal Q-Q plots. These segments can commonly be linked to petrologic or mineralogical associations. For example, linear segments on K and Na plots reflect dilution of clay minerals by quartz sand (low in K and Na). Minor and trace element relationships are best displayed on lognormal Q-Q plots. These sensitively reflect discrete relationships in subpopulations within the wide range of the data. For example, small but distinctly log-linear subpopulations for Pb, Cu, Zn and Ag are interpreted to represent ore-grade enrichment of naturally occurring minerals such as sulfides. None of the 27 chemical elements could pass the test for either normal or lognormal distribution on the declustered data set. Part of the reasons relate to the presence of mixtures of subpopulations and outliers. Random samples of the data set with successively

  15. Geochemical Analyses of Rock, Sediment, and Water from the Region In and Around the Tuba City Landfill, Tuba City, Arizona

    Science.gov (United States)

    Johnson, Raymond H.; Wirt, Laurie

    2009-01-01

    The Tuba City Landfill (TCL) started as an unregulated waste disposal site in the 1940s and was administratively closed in 1997. Since the TCL closure, radionuclides have been detected in the shallow ground water. In 2006, the Bureau of Indian Affairs (BIA) contracted with the U.S. Geological Survey (USGS) to better understand the source of radionuclides in the ground water at the TCL compared to the surrounding region. This report summarizes those data and presents interpretations that focus on the geochemistry in the rocks and water from the Tuba City region. The TCL is sited on Navajo Sandstone above the contact with the Kayenta Formation. These formations are not rich in uranium but generally are below average crustal abundance values for uranium. Uranium ores in the area were mined nearby in the Chinle Formation and processed at the Rare Metals mill (RMM). Regional samples of rock, sediment, leachates, and water were collected in and around the TCL site and analyzed for major and minor elements, 18O, 2H, 3H, 13C, 14C,34S, 87Sr, and 234U/238U, as appropriate. Results of whole rock and sediment samples, along with leachates, suggest the Chinle Formation is a major source of uranium and other trace elements in the area. Regional water samples indicate that some of the wells within the TCL site have geochemical signatures that are different from the regional springs and surface water. The geochemistry from these TCL wells is most similar to leachates from the Chinle Formation rocks and sediments. Isotope samples do not uniquely identify TCL-derived waters, but they do provide a useful indicator for shallow compared to deep ground-water flow paths and general rock/water interaction times. Information in this report provides a comparison between the geochemistry within the TCL and in the region as a whole.

  16. The outlier sample effects on multivariate statistical data processing geochemical stream sediment survey (Moghangegh region, North West of Iran)

    International Nuclear Information System (INIS)

    Ghanbari, Y.; Habibnia, A.; Memar, A.

    2009-01-01

    In geochemical stream sediment surveys in Moghangegh Region in north west of Iran, sheet 1:50,000, 152 samples were collected and after the analyze and processing of data, it revealed that Yb, Sc, Ni, Li, Eu, Cd, Co, as contents in one sample is far higher than other samples. After detecting this sample as an outlier sample, the effect of this sample on multivariate statistical data processing for destructive effects of outlier sample in geochemical exploration was investigated. Pearson and Spear man correlation coefficient methods and cluster analysis were used for multivariate studies and the scatter plot of some elements together the regression profiles are given in case of 152 and 151 samples and the results are compared. After investigation of multivariate statistical data processing results, it was realized that results of existence of outlier samples may appear as the following relations between elements: - true relation between two elements, which have no outlier frequency in the outlier sample. - false relation between two elements which one of them has outlier frequency in the outlier sample. - complete false relation between two elements which both have outlier frequency in the outlier sample

  17. Geochemical characteristics of Au in the water systemfrom abandoned gold mines area

    Science.gov (United States)

    Cho, Kanghee; Kim, Bongju; Kim, Byungjoo; Park, Cheonyoung; Choi, Nagchoul

    2013-04-01

    The AMD (acid mine drainage) poses a threat not only to the aquatic life in mountain streams and rivers, but can also contaminate groundwater and downstream water bodies. Besides pyrite, sulfides of copper, zinc, cadmium, lead and arsenic in the drainage tunnels and tailings piles also undergo similar geochemical reactions, releasing toxic metals and more H+ into the mine drainage. The fate of gold in the AMD system is reduced and precipitated with iron oxides by oxidation-reduction reaction between ferrous/ferric iron and Au3+/Au0. The objective of this study was to investigate the influence of the transport characteristic on the distance through distribution of heavy metals and gold on the interrelation between acid mine drainage and sediments in the abandoned Gwang-yang gold mine, Korea. We conducted to confirm the chemical (chemical analysis and sequential extraction) and mineralogical property (XRD, SEM-EDS and polarization microscope) from AMD, sediments and tailing samples. The result of chemical analysis showed that Fe contents in the AMD and sediments from the upstream to the downstream ranged of 10.99 to 18.60 mg/L and 478.74 to 542.98 mg/kg, respectively. Also the contents of Au and As in the sediment were respectively ranged from 14.06 to 22.85 g/t and 0.245 to 0.612 mg/kg. In XRD analysis of the sediments, x-ray diffracted d-value belong to quartz, geothite was observed. The results of SEM-EDS analysis revealed that iron hydroxide were observed in the sediment and tailing. The result of sequential extraction for Au from the sediment showed that Au predominated in 26 to 27% of Organic matter fraction(STEP 4), and 24 to 25% of Residual fraction(STEP 5).

  18. Geochemical study of water-rock interaction processes on geothermal systems of alkaline water in granitic massif

    International Nuclear Information System (INIS)

    Buil gutierrez, B.; Garcia Sanz, S.; Lago San Jose, M.; Arranz Yague, E.; Auque Sanz, L.

    2002-01-01

    The study of geothermal systems developed within granitic massifs (with alkaline waters and reducing ORP values) is a topic of increasing scientific interest. These systems are a perfect natural laboratory for studying the water-rock interaction processes as they are defined by three main features: 1) long residence time of water within the system, 2) temperature in the reservoir high enough to favour reaction kinetics and finally, 3) the comparison of the chemistry of the incoming and outgoing waters of the system allows for the evaluation of the processes that have modified the water chemistry and its signature, The four geothermal systems considered in this paper are developed within granitic massifs of the Spanish Central Pyrenes; these systems were studied from a geochemical point of view, defining the major, trace and REE chemistry of both waters and host rocks and then characterizing the composition and geochemical evolution of the different waters. Bicarbonate-chloride-sodic and bicarbonate-sodic compositions are the most representative of the water chemistry in the deep geothermal system, as they are not affected by secondary processes (mixing, conductive cooling, etc). (Author)

  19. Geochemical sampling scheme optimization on mine wastes based on hyperspectral data

    CSIR Research Space (South Africa)

    Zhao, T

    2008-07-01

    Full Text Available decontamination, for example, acid-generating minerals. Acid rock drainage can adversely have an impact on the quality of drinking water and the health of riparian ecosystems. To assess or monitor environmental impact of mining, sampling of mine waste is required...

  20. The Survey of hydro-geochemical and health related of water quality in Ramian city, Golestan province

    Directory of Open Access Journals (Sweden)

    fahimeh Khanduzi

    2015-12-01

    Full Text Available Background and Purpose: Investigation of water quality is an important step for the suitable use of water resources in order to drinking and irrigation. Water quality affects agriculture programming.  Hence the need of the study of water quality is strongly considered in the water resources management. Material and Methods: In this study Hydro-geochemical quality of ground water resources in the Ramian city -Golestan province has been studied for drinking and agriculture purpose. For this purpose, 15 qualitative characteristics of the 13 wells of Golestan province in two dry and wet seasons in 2011-2012 were analyzed by Aua Chem and Aq-qa. Results: The results showed that the ground water in the study area is classified in hard and very hard water. The original cations and anions in water are Ca2+> Mg2+> Na+ and HCO3-> Cl-> SO42-. Based on hydro-chemical diagram the dominant of water type is classified as Ca-HCO3. Salinity index of water indicated that more samples in two seasons are in the middle class. According to Schuler and Wilcox groundwater quality index, they are moderate suitable for agricultural and drinking consumption and in for agricultural purpose and 77% cases are in C3-S1 category. Conclusion: The results show that too much salt is one of the most important problems of water supply in the Ramian city for irrigation. This reduced plant growth or even stops the growth of some plant. If water resources in this area do not manage, after shortly time the soil will be suffered and polluted.

  1. Ground-water-quality assessment of the Central Oklahoma Aquifer, Oklahoma: geochemical and geohydrologic investigations

    Science.gov (United States)

    Parkhurst, David L.; Christenson, Scott C.; Breit, George N.

    1993-01-01

    The National Water-Quality Assessment pilot project for the Central Oklahoma aquifer examined the chemical and isotopic composition of ground water, the abundances and textures of minerals in core samples, and water levels and hydraulic properties in the flow system to identify geochemical reactions occurring in the aquifer and rates and directions of ground-water flow. The aquifer underlies 3,000 square miles of central Oklahoma and consists of Permian red beds, including parts of the Permian Garber Sandstone, Wellington Formation, and Chase, Council Grove, and Admire Groups, and Quaternary alluvium and terrace deposits.In the part of the Garber Sandstone and Wellington Formation that is not confined by the Permian Hennessey Group, calcium, magnesium, and bicarbonate are the dominant ions in ground water; in the confined part of the Garber Sandstone and Wellington Formation and in the Chase, Council Grove, and Admire Groups, sodium and bicarbonate are the dominant ions in ground water. Nearly all of the Central Oklahoma aquifer has an oxic or post-oxic environment as indicated by the large dissolved concentrations of oxygen, nitrate, arsenic(V), chromium(VI), selenium(VI), vanadium, and uranium. Sulfidic and methanic environments are virtually absent.Petrographic textures indicate dolomite, calcite, sodic plagioclase, potassium feldspars, chlorite, rock fragments, and micas are dissolving, and iron oxides, manganese oxides, kaolinite, and quartz are precipitating. Variations in the quantity of exchangeable sodium in clays indicate that cation exchange is occurring within the aquifer. Gypsum may dissolve locally within the aquifer, as indicated by ground water with large concentra-tions of sulfate, but gypsum was not observed in core samples. Rainwater is not a major source for most elements in ground water, but evapotranspiration could cause rainwater to be a significant source of potassium, sulfate, phosphate and nitrogen species. Brines derived from seawater are

  2. Instrumental neutron activation analysis of geochemical samples by k{sub 0} standardization method using short lived nuclides

    Energy Technology Data Exchange (ETDEWEB)

    Oura, Yasuji; Kanzaki, Chinatsu; Ebihara, Mitsuru [Tokyo Metropolitan Univ., Graduate School of Science, Tokyo (Japan)

    2003-03-01

    Mg, Al, Ca, Ti, V, and Mn contents in geochemical and cosmochemical samples were analyzed by both k{sub 0} standardization INAA and conventional INAA by a comparison method. The contents of Mg, Al, and Mn by k{sub 0} method were consistent with recommended values and ones by comparison methods. For Ti and V their values are slightly higher than recommended ones. The values by k{sub 0} method were reliable within {+-}10%. (author)

  3. Geochemical Results of Lysimeter Sampling at the Manning Canyon Repository in the Mercur Mining District, Utah

    Science.gov (United States)

    Earle, John; Choate, LaDonna

    2010-01-01

    This report presents chemical characteristics of transient unsaturated-zone water collected by lysimeter from the Manning Canyon repository site in Utah. Data collected by U.S. Geological Survey and U.S. Department of the Interior, Bureau of Land Management scientists under an intragovernmental order comprise the existing body of hydrochemical information on unsaturated-zone conditions at the site and represent the first effort to characterize the chemistry of the soil pore water surrounding the repository. Analyzed samples showed elevated levels of arsenic, barium, chromium, and strontium, which are typical of acidic mine drainage. The range of major-ion concentrations generally showed expected soil values. Although subsequent sampling is necessary to determine long-term effects of the repository, current results provide initial data concerning reactive processes of precipitation on the mine tailings and waste rock stored at the site and provide information on the effectiveness of reclamation operations at the Manning Canyon repository.

  4. Geochemical study of evaporite and clay mineral-oxyhydroxide samples from the Waste Isolation Pilot Plant site

    International Nuclear Information System (INIS)

    Brookins, D.G.

    1993-06-01

    Samples of clay minerals, insoluble oxyhydroxides, and their host evaporites from the WIPP site have been studied for their major and minor elements abundances, x-ray diffraction characteristics, K-Ar ages, and Rb-Sr ages. This study was undertaken to determine their overall geochemical characteristics and to investigate possible interactions between evaporates and insoluble constituents. The evaporite host material is water-soluble, having Cl/Br ratios typical of marine evaporites, although the Br content is low. Insoluble material (usually a mixture of clay minerals and oxyhydroxide phases) yields very high Cl/Br ratios, possibly because of Cl from admixed halide minerals. This same material yields K/Rb and Th/U ratios in the normal range for shales; suggesting little, if any, effect of evaporite-induced remobilization of U, K, or Rb in the insoluble material. The rare-earth element (REE) data also show normal REE/chondrite (REE/CHON) distribution patterns, supporting the K/Rb and Th/U data. Clay minerals yield K-Ar dates in the range 365 to 390 Ma and a Rb-Sr isochron age of 428 ± 7 Ma. These ages are well in excess of the 220- to 230-Ma formational age of the evaporites, and confirm the detrital origin of the clays. The ages also show that any evaporite or clay mineral reactions that might have occurred at or near the time of sedimentation and diagenesis were not sufficient to reset the K-Ar and Rb-Sr systematics of the clay minerals. Further, x-ray data indicate a normal evaporitic assemblage of clay minerals and Fe-rich oxyhydroxide phases. The clay minerals and other insoluble material appear to be resistant to the destructive effects of their entrapment in the evaporites, which suggests that these insoluble materials would be good getters for any radionuclides (hypothetically) released from the storage of radioactive wastes in the area

  5. Geochemical reanalysis of historical U.S. Geological Survey sediment samples from the northeastern Alaska Range, Healy, Mount Hayes, Nabesna, and Tanacross quadrangles, Alaska

    Science.gov (United States)

    Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.

    2015-01-01

    The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential. The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska. For this report, DGGS funded reanalysis of 670 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from the northeastern Alaska Range, in the Healy, Mount Hayes, Nabesna, and Tanacross quadrangles, Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical analyses obtained through the USGS contract lab. The new geochemical data are published in this report as a coauthored DGGS report, and will be incorporated into the statewide geochemical

  6. Geochemical reanalysis of historical U.S. Geological Survey sediment samples from the Kougarok area, Bendeleben and Teller quadrangles, Seward Peninsula, Alaska

    Science.gov (United States)

    Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.

    2015-01-01

    The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential. The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska. For this report, DGGS funded reanalysis of 302 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from the Kougarok River drainage as well as smaller adjacent drainages in the Bendeleben and Teller quadrangles, Seward Peninsula, Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical analyses obtained through the USGS contract lab. The new geochemical data are published in this report as a coauthored DGGS report, and will be incorporated

  7. Preliminary geochemical assessment of water in selected streams, springs, and caves in the Upper Baker and Snake Creek drainages in Great Basin National Park, Nevada, 2009

    Science.gov (United States)

    Paul, Angela P.; Thodal, Carl E.; Baker, Gretchen M.; Lico, Michael S.; Prudic, David E.

    2014-01-01

    Water in caves, discharging from springs, and flowing in streams in the upper Baker and Snake Creek drainages are important natural resources in Great Basin National Park, Nevada. Water and rock samples were collected from 15 sites during February 2009 as part of a series of investigations evaluating the potential for water resource depletion in the park resulting from the current and proposed groundwater withdrawals. This report summarizes general geochemical characteristics of water samples collected from the upper Baker and Snake Creek drainages for eventual use in evaluating possible hydrologic connections between the streams and selected caves and springs discharging in limestone terrain within each watershed.Generally, water discharging from selected springs in the upper Baker and Snake Creek watersheds is relatively young and, in some cases, has similar chemical characteristics to water collected from associated streams. In the upper Baker Creek drainage, geochemical data suggest possible hydrologic connections between Baker Creek and selected springs and caves along it. The analytical results for water samples collected from Wheelers Deep and Model Caves show characteristics similar to those from Baker Creek, suggesting a hydrologic connection between the creek and caves, a finding previously documented by other researchers. Generally, geochemical evidence does not support a connection between water flowing in Pole Canyon Creek to that in Model Cave, at least not to any appreciable extent. The water sample collected from Rosethorn Spring had relatively high concentrations of many of the constituents sampled as part of this study. This finding was expected as the water from the spring travelled through alluvium prior to being discharged at the surface and, as a result, was provided the opportunity to interact with soil minerals with which it came into contact. Isotopic evidence does not preclude a connection between Baker Creek and the water discharging from

  8. Air-segmented continuous-flow analysis for molybdenum in various geochemical samples

    International Nuclear Information System (INIS)

    Harita, Y.; Sugiyama, M.; Hori, T.

    2003-01-01

    An air-segmented continuous-flow method has been developed for the determination of molybdenum at ultra trace levels using the catalytic effect of molybdate during the oxidation of L-ascorbic acid by hydrogen peroxide. Incorporation of an on-line ion exchange column improved the tolerance limit for various ions. The detection limits with and without the column were 64 pmol L m1 and 17 pmol L m1 , and the reproducibilities at 10 nmol L m1 were 2.1 % and 0.2 %, respectively. The proposed method was applied to the determination of molybdenum in seawater and lake water as well as in rock and sediment samples. This method has the highest sensitivity among the available literature to our knowledge, and is also convenient for routine analysis of molybdenum in various natural samples. (author)

  9. Geochemical and isotopic determination of deep groundwater contributions and salinity to the shallow groundwater and surface water systems, Mesilla Basin, New Mexico, Texas, and Mexico

    Science.gov (United States)

    Robertson, A.; Carroll, K. C.; Kubicki, C.; Purtshert, R.

    2017-12-01

    The Mesilla Basin/Conejos-Médanos aquifer system, extending from southern New Mexico to Chihuahua, Mexico, is a priority transboundary aquifer under the 2006 United States­-Mexico Transboundary Aquifer Assessment Act. Declining water levels, deteriorating water quality, and increasing groundwater use by municipal, industrial, and agricultural users on both sides of the international border raise concerns about long-term aquifer sustainability. Relative contributions of present-day and "paleo" recharge to sustainable fresh groundwater yields has not been determined and evidence suggests that a large source of salinity at the distal end of the Mesilla Basin is saline discharge from deep groundwater flow. The magnitude and distribution of those deep saline flow paths are not determined. The contribution of deep groundwater to discharge and salinity in the shallow groundwater and surface water of the Mesilla Basin will be determined by collecting discrete groundwater samples and analyzing for aqueous geochemical and isotopic tracers, as well as the radioisotopes of argon and krypton. Analytes include major ions, trace elements, the stable isotopes of water, strontium and boron isotopes, uranium isotopes, the carbon isotopes of dissolved inorganic carbon, noble gas concentrations and helium isotope ratios. Dissolved gases are extracted and captured from groundwater wells using membrane contactors in a process known as ultra-trace sampling. Gas samples are analyzed for radioisotope ratios of krypton by the ATTA method and argon by low-level counting. Effectiveness of the ultra-trace sampling device and method was evaluated by comparing results of tritium concentrations to the krypton-85 content. Good agreement between the analyses, especially in samples with undetectable tritium, indicates that the ultra-trace procedure is effective and confirms that introduction of atmospheric air has not occurred. The geochemistry data indicate a complex system of geochemical

  10. Geochemical and Mineralogical Changes in Compacted MX-80 Bentonite Submitted to Heat and Water Gradients

    International Nuclear Information System (INIS)

    Gomez-Espina, R.; Villar, M. V.

    2010-01-01

    A 20-cm high column of MX80 bentonite compacted at dry density 1.70 g/cm 3 with an initial water content of 16 percent was submitted to heating and hydration by opposite ends for 496 days (TH test). The temperature at the bottom of the column was set at 140 degree centigrade and on top at 30 degree centigrade, and deionised water was injected on top at a pressure of 0.01 MPa. Upon dismantling water content, dry density, mineralogy, specific surface area, cation exchange capacity, content of exchangeable cations, and concentration of soluble salts and pH of aqueous extracts were determined in different positions along the bentonite column. The pore water composition was modelled with a geochemical software. The test tried to simulate the conditions of an engineered barrier in a deep geological repository for high-level radioactive waste. The water intake and distribution of water content and dry density along the bentonite were conditioned by the thermal gradient. Liquid water did not penetrate into the column beyond the area in which the temperature was higher than 100 degree centigrade. A convection cell was formed above this area, and liquid water loaded with ions evaporated towards cooler bentonite as it reached the area where the temperature was too high. In this area precipitation of mineral phases took place, Advection, interlayer exchange and dissolution/precipitation processes conditioned the composition of the pore water along the column. In most of the column the pore water was Na-SO 4 2 - type, and changed to Na-Cl near the heater. TH treatment did not cause significant changes in the smectite content or the other mineral phases of the bentonite. (Author) 41 refs.

  11. Geochemical and Mineralogical Changes in Compacted MX-80 Bentonite Submitted to Heat and Water Gradients

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Espina, R.; Villar, M. V.

    2010-05-01

    A 20-cm high column of MX80 bentonite compacted at dry density 1.70 g/cm{sup 3} with an initial water content of 16 percent was submitted to heating and hydration by opposite ends for 496 days (TH test). The temperature at the bottom of the column was set at 140 degree centigrade and on top at 30 degree centigrade, and deionised water was injected on top at a pressure of 0.01 MPa. Upon dismantling water content, dry density, mineralogy, specific surface area, cation exchange capacity, content of exchangeable cations, and concentration of soluble salts and pH of aqueous extracts were determined in different positions along the bentonite column. The pore water composition was modelled with a geochemical software. The test tried to simulate the conditions of an engineered barrier in a deep geological repository for high-level radioactive waste. The water intake and distribution of water content and dry density along the bentonite were conditioned by the thermal gradient. Liquid water did not penetrate into the column beyond the area in which the temperature was higher than 100 degree centigrade. A convection cell was formed above this area, and liquid water loaded with ions evaporated towards cooler bentonite as it reached the area where the temperature was too high. In this area precipitation of mineral phases took place, Advection, interlayer exchange and dissolution/precipitation processes conditioned the composition of the pore water along the column. In most of the column the pore water was Na-SO{sub 4} {sup 2}- type, and changed to Na-Cl near the heater. TH treatment did not cause significant changes in the smectite content or the other mineral phases of the bentonite. (Author) 41 refs.

  12. Geochemical and hydrological characterization of shallow aquifer water following a nearby deep CO2 injection in Wellington, Kansas

    Science.gov (United States)

    Datta, S.; Andree, I.; Johannesson, K. H.; Kempton, P. D.; Barker, R.; Birdie, T. R.; Watney, W. L.

    2017-12-01

    Salinization or CO2 leakage from local Enhanced Oil Recovery (EOR) projects has become a possible source for contamination and water quality degradation for local irrigation or potable well users in Wellington, Kansas. Shallow domestic and monitoring wells, as well as surface water samples collected from the site, were analyzed for a wide array of geochemical proxies including major and trace ions, rare earth elements (REE), stable isotopes, dissolved organic carbon and dissolved hydrocarbons; these analytes were employed as geotracers to understand the extent of hydrologic continuity throughout the Paleozoic stratigraphic section. Previous research by Barker et al. (2012) laid the foundation through a mineralogical and geochemical investigation of the Arbuckle injection zone and assessment of overlying caprock integrity, which led to the conclusion that the 4,910-5,050' interval will safely sequester CO2 with high confidence of a low leakage potential. EOR operations using CO2 as the injectant into the Mississippian 3,677-3,706' interval was initiated in Jan 2016. Two groundwater sampling events were conducted to investigate any temporal changes in the surface and subsurface waters. Dissolved (Ca+Mg)/Na and Na/Cl mass ratio values of two domestic wells and one monitoring well ranged from 0.67 to 2.01 and 0.19 to 0.39, respectively, whereas a nearby Mississippian oil well had values of 0.20 and 0.62, respectively . δ18O and δ2H ranged from -4.74 to -5.41 ‰VSMOW and -31.4 to -34.3 ‰VSMOW, respectively, among the domestic wells and shallowest monitoring well. Conservative ion relationships in drill-stem-test waters from Arbuckle and Mississippian injection zones displayed significant variability, indicating limited vertical hydrologic communication. Total aquifer connectivity is inconclusive based on the provided data; however, a paleoterrace and incised valley within the study site are thought to be connected through a Mississippian salt plume migration

  13. PHAST--a program for simulating ground-water flow, solute transport, and multicomponent geochemical reactions

    Science.gov (United States)

    Parkhurst, David L.; Kipp, Kenneth L.; Engesgaard, Peter; Charlton, Scott R.

    2004-01-01

    The computer program PHAST simulates multi-component, reactive solute transport in three-dimensional saturated ground-water flow systems. PHAST is a versatile ground-water flow and solute-transport simulator with capabilities to model a wide range of equilibrium and kinetic geochemical reactions. The flow and transport calculations are based on a modified version of HST3D that is restricted to constant fluid density and constant temperature. The geochemical reactions are simulated with the geochemical model PHREEQC, which is embedded in PHAST. PHAST is applicable to the study of natural and contaminated ground-water systems at a variety of scales ranging from laboratory experiments to local and regional field scales. PHAST can be used in studies of migration of nutrients, inorganic and organic contaminants, and radionuclides; in projects such as aquifer storage and recovery or engineered remediation; and in investigations of the natural rock-water interactions in aquifers. PHAST is not appropriate for unsaturated-zone flow, multiphase flow, density-dependent flow, or waters with high ionic strengths. A variety of boundary conditions are available in PHAST to simulate flow and transport, including specified-head, flux, and leaky conditions, as well as the special cases of rivers and wells. Chemical reactions in PHAST include (1) homogeneous equilibria using an ion-association thermodynamic model; (2) heterogeneous equilibria between the aqueous solution and minerals, gases, surface complexation sites, ion exchange sites, and solid solutions; and (3) kinetic reactions with rates that are a function of solution composition. The aqueous model (elements, chemical reactions, and equilibrium constants), minerals, gases, exchangers, surfaces, and rate expressions may be defined or modified by the user. A number of options are available to save results of simulations to output files. The data may be saved in three formats: a format suitable for viewing with a text editor; a

  14. Some results of processing NURE geochemical sampling in the northern Rocky Mountain area

    International Nuclear Information System (INIS)

    Thayer, P.A.; Cook, J.R.; Price, V. Jr.

    1980-01-01

    The National Uranium Resource Evaluation (NURE) program was begun in the spring of 1973 to evaluate domestic uranium resources in the continental United States and to identify areas favorable for uranium exploration. The significance of the distribution of uranium in natural waters and sediments will be assessed as an indicator of favorable areas for the discovery of uranium deposits. This paper is oriented primarily to the discussion of stream sediments. Data for the Challis 1 0 x 2 0 NTMS quadrangle will be used for specific samples of NURE data processing. A high-capacity neutron activation analysis facility at SRL is used to determine uranium and about 19 other elements in hydrogeochemical samples. Evaluation of the areal distributions of uranium ratios demonstrate that most of the high U/Hf, U/Th and U/(Th + Hf) ratios occur scattered throughout the western two-thirds of the quadrangle. Most of the higher ratio values are found in samples taken at sites underlain by granitic rocks of the Idaho batholith or Tertiary-age plutons

  15. A comparative study of stream water and stream sediment as geochemical exploration media in the Rio Tanama porphyry copper district, Puerto Rico

    Science.gov (United States)

    Learned, R.E.; Chao, T.T.; Sanzolone, R.F.

    1985-01-01

    To test the relative effectiveness of stream water and sediment as geochemical exploration media in the Rio Tanama porphyry copper district of Puerto Rico, we collected and subsequently analyzed samples of water and sediment from 29 sites in the rivers and tributaries of the district. Copper, Mo, Pb, Zn, SO42-, and pH were determined in the waters; Cu, Mo, Pb, and Zn were determined in the sediments. In addition, copper in five partial extractions from the sediments was determined. Geochemical contrast (anomaly-to-background quotient) was the principal criterion by which the effectiveness of the two media and the five extractions were judged. Among the distribution patterns of metals in stream water, that of copper most clearly delineates the known porphyry copper deposits and yields the longest discernable dispersion train. The distribution patterns of Mo, Pb, and Zn in water show little relationship to the known mineralization. The distribution of SO42- in water delineates the copper deposits and also the more extensive pyrite alteration in the district; its recognizable downstream dispersion train is substantially longer than those of the metals, either in water or sediment. Low pH values in small tributaries delineate areas of known sulfide mineralization. The distribution patterns of copper in sediments clearly delineate the known deposits, and the dispersion trains are longer than those of copper in water. The partial determinations of copper related to secondary iron and manganese oxides yield the strongest geochemical contrasts and longest recognizable dispersion trains. Significantly high concentrations of molybdenum in sediments were found at only three sites, all within one-half km downstream of the known copper deposits. The distribution patterns of lead and zinc in sediments are clearly related to the known primary lead-zinc haloes around the copper deposits. The recognizable downstream dispersion trains of lead and zinc are shorter than those of

  16. Geochemical evidence of water-soluble gas accumulation in the Weiyuan gas field, Sichuan Basin

    Directory of Open Access Journals (Sweden)

    Shengfei Qin

    2016-01-01

    Full Text Available At present, there are several different opinions on the formation process of the Weiyuan gas field in the Sichuan Basin and the source of its natural gas. In view of the fact that the methane carbon isotope of the natural gas in the Weiyuan gas field is abnormally heavy, the geologic characteristics of gas reservoirs and the geochemical characteristics of natural gas were first analyzed. In the Weiyuan gas field, the principal gas reservoirs belong to Sinian Dengying Fm. The natural gas is mainly composed of methane, with slight ethane and trace propane. The gas reservoirs are higher in water saturation, with well preserved primary water. Then, it was discriminated from the relationship of H2S content vs. methane carbon isotope that the heavier methane carbon isotope of natural gas in this area is not caused by thermochemical sulfate reduction (TSR. Based on the comparison of methane carbon isotope in this area with that in adjacent areas, and combined with the tectonic evolution background, it is regarded that the natural gas in the Weiyuan gas field is mainly derived from water-soluble gas rather than be migrated laterally from adjacent areas. Some conclusions are made. First, since methane released from water is carbon isotopically heavier, the water-soluble gas accumulation after degasification results in the heavy methane carbon isotope of the gas produced from Weiyuan gas field. Second, along with Himalayan movement, great uplift occurred in the Weiyuan area and structural traps were formed. Under high temperature and high pressure, the gas dissolved in water experienced decompression precipitation, and the released natural gas accumulated in traps, consequently leading to the formation of Weiyuan gas field. Third, based on calculation, the amount of natural gas released from water which is entrapped in the Weiyuan gas field after the tectonic uplift is basically equal to the proved reserves of this field, confirming the opinion of water

  17. Geochemical orientation survey of stream sediment, stream water, and ground water near uranium prospects, Monticello area, New York. National Uranium Resource Evaluation Program

    International Nuclear Information System (INIS)

    Rose, A.W.; Smith, A.T.; Wesolowski, D.

    1982-08-01

    A detailed geochemical test survey has been conducted in a 570 sq km area around six small copper-uranium prospects in sandstones of the Devonian Catskill Formation near Monticello in southern New York state. This report summarizes and interprets the data for about 500 stream sediment samples, 500 stream water samples, and 500 ground water samples, each analyzed for 40 to 50 elements. The groundwater samples furnish distinctive anomalies for uranium, helium, radon, and copper near the mineralized localities, but the samples must be segregated into aquifers in order to obtain continuous well-defined anomalies. Two zones of uranium-rich water (1 to 16 parts per billion) can be recognized on cross sections; the upper zone extends through the known occurrences. The anomalies in uranium and helium are strongest in the deeper parts of the aquifers and are diluted in samples from shallow wells. In stream water, copper and uranium are slightly anomalous, as in an ore factor derived from factor analysis. Ratios of copper, uranium, and zinc to conductivity improve the resolution of anomalies. In stream sediment, extractable uranium, copper, niobium, vanadium, and an ore factor furnish weak anomalies, and ratios of uranium and copper to zinc improve the definition of anomalies. The uranium/thorium ratio is not helpful. Published analyses of rock samples from the nearby stratigraphic section show distinct anomalies in the zone containing the copper-uranium occurrences. This report is being issued without the normal detailed technical and copy editing, to make the data available to the public before the end of the National Uranium Reconnaissance Evaluation program

  18. Geochemical orientation survey of stream sediment, stream water, and ground water near uranium prospects, Monticello area, New York. National Uranium Resource Evaluation Program

    Energy Technology Data Exchange (ETDEWEB)

    Rose, A. W.; Smith, A. T.; Wesolowski, D.

    1982-08-01

    A detailed geochemical test survey has been conducted in a 570 sq km area around six small copper-uranium prospects in sandstones of the Devonian Catskill Formation near Monticello in southern New York state. This report summarizes and interprets the data for about 500 stream sediment samples, 500 stream water samples, and 500 ground water samples, each analyzed for 40 to 50 elements. The groundwater samples furnish distinctive anomalies for uranium, helium, radon, and copper near the mineralized localities, but the samples must be segregated into aquifers in order to obtain continuous well-defined anomalies. Two zones of uranium-rich water (1 to 16 parts per billion) can be recognized on cross sections; the upper zone extends through the known occurrences. The anomalies in uranium and helium are strongest in the deeper parts of the aquifers and are diluted in samples from shallow wells. In stream water, copper and uranium are slightly anomalous, as in an ore factor derived from factor analysis. Ratios of copper, uranium, and zinc to conductivity improve the resolution of anomalies. In stream sediment, extractable uranium, copper, niobium, vanadium, and an ore factor furnish weak anomalies, and ratios of uranium and copper to zinc improve the definition of anomalies. The uranium/thorium ratio is not helpful. Published analyses of rock samples from the nearby stratigraphic section show distinct anomalies in the zone containing the copper-uranium occurrences. This report is being issued without the normal detailed technical and copy editing, to make the data available to the public before the end of the National Uranium Reconnaissance Evaluation program.

  19. Radon measurement in Malaysia water samples

    International Nuclear Information System (INIS)

    Ibrahim, A.B.; Rosli Mahat; Yusof Md Amin

    1995-01-01

    This paper reported the results of the measurement of radon in local water. The water samples collected were rainwater, river water, seawater, well water or ground water at area of State of Selangor and Kuala Lumpur. The samples were collected in scintillation cell ZnS(Ag) through Radon Degassing Unit RDU 200. Alpha activity was counted with scintillation counters RD 200 at energy 5.5 MeV. (author)

  20. Qualification of Thermodynamic Data for Geochemical Modeling of Mineral-Water Interactions in Dilute Systems

    International Nuclear Information System (INIS)

    T. J. Wolery; C.F. Jove-Colon

    2004-01-01

    The purpose of this analysis report is to qualify the thermochemical database data0.ymp.R2 (DTN: MO0302SPATHDYN.000 [DIRS 161756], qualified by this report) and supporting calculations (DTNs: MO0302SPATHDYN.001 [DIRS 161886], and MO0303SPASPEQ2.000 [DIRS 162278]), which were originally documented in ''Data Qualification: Update and Revision of the Geochemical Thermodynamic Database, Data0.ymp'' (Steinborn et al. 2003 [DIRS 161956]). This original document still serves as the record of development of the data0.ymp.R2 database (DTN: MO0302SPATHDYN.000 [DIRS 161756]). The data0.ymp.R2 thermodynamic database (DTN: MO0302SPATHDYN.000 [DIRS 161756]) was developed for use with software code EQ3/6 (EQ3/6 V8.0, STN: 10813-8.0-00) (BSC 2003 [DIRS 162228]) and software code EQ6 (EQ6 V7.2bLV, STN: 10075-7.2bLV-02) (BSC 2002 [DIRS 159731]) to conduct geochemical modeling of mineral-fluid interactions involving aqueous solutions (ionic strengths of up to one molal; see Section 6.5) and temperatures of up to 300 C along the liquid-vapor saturation curve of pure water. The data0.ymp.R2 database (DTN: MO0302SPATHDYN.000 [DIRS 161756]) is an update of the previously qualified predecessor database data0.ymp.R0 (DTN: MO0009THRMODYN.001 [DIRS 152576]). The scope of this report is limited to qualification of the updates, as well as identification and evaluation of certain errors and discrepancies as discussed

  1. Analytical methods used by the geochemical section: water; Methodes d'analyses utilisees par la section de geochimie: les eaux

    Energy Technology Data Exchange (ETDEWEB)

    Berthollet, P; Cavalier, G [Commissariat a l' Energie Atomique, Fontenay-aux-Roses (France). Centre d' Etudes Nucleaires

    1971-07-01

    The authors describe the analytical methods used by the C.E.A. Geochemical Section to determine the chemical composition of natural waters encountered during the prospecting of uraniferous deposits or in the course of mining operations. Because of the diversity of the samples and the different items of information requested, methods were selected and adapted to answer to the demands peculiar to mining research. Methods and know-how concerning the quantitative analysis of natural water to find out the concentration of the following chemicals are reviewed: carbonates and bicarbonates, calcium, magnesium, chlorides, sodium and potassium, sulfates, nitrates, silica, phosphates, iron, manganese, aluminium, fluorides, dissolved oxygen, CO{sub 2}, SH{sub 2} and sulphur, and uranium. (authors) [French] Les auteurs decrivent les methodes d'analyses utilisees par la Section de Geochimie du C.E.A., pour la determination de la composition chimique des eaux naturelles rencontrees au cours de prospections de gites uraniferes ou de travaux miniers. La diversite des echantillons et les differents renseignements demandes a l'analyse les ont conduit a selectionner et a adapter des methodes afin qu'elles repondent aux exigences particulieres de la recherche miniere. Les methodes concernant le dosage dans les eaux superficielles et eaux souterraines des elements qui suivent sont presentees : carbonates and bicarbonates, calcium, magnesium, chlorures, sodium et potassium, sulfates, nitrates, silice, phosphates, fer ferreus et ferrique, manganese, aluminium, fluorures, oxygene dissous, CO{sub 2} libre, SH{sub 2} et soufre total, et uranium. (auteurs)

  2. Water born pollutants sampling using porous suction samples

    International Nuclear Information System (INIS)

    Baig, M.A.

    1997-01-01

    The common standard method of sampling water born pollutants in the vadoze zone is core sampling and it is followed by extraction of pore fluid. This method does not allow sampling at the same location next time and again later on. There is an alternative approach for sampling fluids (water born pollutants) from both saturated and unsaturated regions of vadose zone using porous suction samplers. There are three types of porous suction samplers, vacuum-operated, pressure-vacuum lysimeters, high pressure vacuum samples. The suction samples are operated in the range of 0-70 centi bars and usually consist of ceramic and polytetrafluorethylene (PTFE). The operation range of PTFE is higher than ceramic cups. These samplers are well suited for in situ and repeated sampling form the same location. This paper discusses the physical properties and operating condition of such samplers to the utilized under our environmental sampling. (author)

  3. Stable isotope geochemical study of Pamukkale travertines: New evidences of low-temperature non-equilibrium calcite-water fractionation

    Science.gov (United States)

    Kele, Sándor; Özkul, Mehmet; Fórizs, István; Gökgöz, Ali; Baykara, Mehmet Oruç; Alçiçek, Mehmet Cihat; Németh, Tibor

    2011-06-01

    In this paper we present the first detailed geochemical study of the world-famous actively forming Pamukkale and Karahayit travertines (Denizli Basin, SW-Turkey) and associated thermal waters. Sampling was performed along downstream sections through different depositional environments (vent, artificial channel and lake, terrace-pools and cascades of proximal slope, marshy environment of distal slope). δ 13C travertine values show significant increase (from + 6.1‰ to + 11.7‰ PDB) with increasing distance from the spring orifice, whereas the δ 18O travertine values show only slight increase downstream (from - 10.7‰ to - 9.1‰ PDB). Mainly the CO 2 outgassing caused the positive downstream shift (~ 6‰) in the δ 13C travertine values. The high δ 13C values of Pamukkale travertines located closest to the spring orifice (not affected by secondary processes) suggest the contribution of CO 2 liberated by thermometamorphic decarbonation besides magmatic sources. Based on the gradual downstream increase of the concentration of the conservative Na +, K +, Cl -, evaporation was estimated to be 2-5%, which coincides with the moderate effect of evaporation on the water isotope composition. Stable isotopic compositions of the Pamukkale thermal water springs show of meteoric origin, and indicate a Local Meteoric Water Line of Denizli Basin to be between the Global Meteoric Water Line (Craig, 1961) and Western Anatolian Meteoric Water Line (Şimşek, 2003). Detailed evaluation of several major and trace element contents measured in the water and in the precipitated travertine along the Pamukkale MM section revealed which elements are precipitated in the carbonate or concentrated in the detrital minerals. Former studies on the Hungarian Egerszalók travertine (Kele et al., 2008a, b, 2009) had shown that the isotopic equilibrium is rarely maintained under natural conditions during calcite precipitation in the temperature range between 41 and 67 °C. In this paper

  4. Characterization of water reservoirs affected by acid mine drainage: geochemical, mineralogical, and biological (diatoms) properties of the water.

    Science.gov (United States)

    Valente, T; Rivera, M J; Almeida, S F P; Delgado, C; Gomes, P; Grande, J A; de la Torre, M L; Santisteban, M

    2016-04-01

    This work presents a combination of geochemical, mineralogical, and biological data obtained in water reservoirs located in one of the most paradigmatic mining regions, suffering from acid mine drainage (AMD) problems: the Iberian Pyrite Belt (IPB). Four water reservoirs located in the Spanish sector of the IBP, storing water for different purposes, were selected to achieve an environmental classification based on the effects of AMD: two mining dams (Gossan and Águas Ácidas), a reservoir for industrial use (Sancho), and one with water used for human supply (Andévalo). The results indicated that the four reservoirs are subject to the effect of metallic loads from polluted rivers, although with different levels: Águas Ácidas > Gossan > Sancho ≥ Andévalo. In accordance, epipsammic diatom communities have differences in the respective composition and dominant taxa. The dominant diatoms in each reservoir indicated acid water: Pinnularia acidophila and Pinnularia aljustrelica were found in the most acidic dams (Gossan and Águas Ácidas, with pH <3), Pinnularia subcapitata in Sancho (pH 2.48-5.82), and Eunotia exigua in Andévalo (pH 2.34-6.15).

  5. Determination of Phthalates in Drinking Water Samples

    African Journals Online (AJOL)

    user

    successfully applied to the analysis of phthalate esters contamination in bottled drinking water samples. ... esters are used in the manufacturing of polyvinyl chloride. (PVC). ... water, soil, air, food products and the human body. (Castillo et al.

  6. Water sample-collection and distribution system

    Science.gov (United States)

    Brooks, R. R.

    1978-01-01

    Collection and distribution system samples water from six designated stations, filtered if desired, and delivers it to various analytical sensors. System may be controlled by Water Monitoring Data Acquisition System or operated manually.

  7. Geochemical reanalysis of historical U.S. Geological Survey sediment samples from the Haines area, Juneau and Skagway quadrangles, southeast Alaska

    Science.gov (United States)

    Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.

    2015-01-01

    The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential. The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska. For this report, DGGS funded reanalysis of 212 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from the Chilkat, Klehini, Tsirku, and Takhin river drainages, as well as smaller drainages flowing into Chilkat and Chilkoot Inlets near Haines, Skagway Quadrangle, Southeast Alaska. Additionally some samples were also chosen from the Juneau gold belt, Juneau Quadrangle, Southeast Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical

  8. Prospective and retrospective spatial sampling scheme to characterize geochemicals in a mine tailings area

    CSIR Research Space (South Africa)

    Debba, Pravesh

    2009-07-01

    Full Text Available This study demonstrates that designing sampling schemes using simulated annealing results in much better selection of samples from an existing scheme in terms of prediction accuracy. The presentation to the SASA Eastern Cape Chapter as an invited...

  9. Geochemical investigations of sea water and manganese nodules in the Pacific Ocean

    International Nuclear Information System (INIS)

    Roncal, R.Z.

    1976-01-01

    Surface water, deep water, and pore water samples from the central Pacific Ocean were investigated for their Mn, Fe, Co, Ni, and Cu contents. The data were interpreted with the aid of thermodynamic calculations in order to gain new knowledge on the heavy water compounds possibly contained in the water. The relationships between the elements Co, Ni, and Cu and the Mn and Fe phases were determined with the aid of chemical and mineralogical investigations of typical Mu and Fe hydroxides and manganese nodules from the same region of the Pacific Ocean. (orig.) [de

  10. Geochemical evolution processes and water-quality observations based on results of the National Water-Quality Assessment Program in the San Antonio segment of the Edwards aquifer, 1996-2006

    Science.gov (United States)

    Musgrove, MaryLynn; Fahlquist, Lynne; Houston, Natalie A.; Lindgren, Richard J.; Ging, Patricia B.

    2010-01-01

    As part of the National Water-Quality Assessment Program, the U.S. Geological Survey collected and analyzed groundwater samples during 1996-2006 from the San Antonio segment of the Edwards aquifer of central Texas, a productive karst aquifer developed in Cretaceous-age carbonate rocks. These National Water-Quality Assessment Program studies provide an extensive dataset of groundwater geochemistry and water quality, consisting of 249 groundwater samples collected from 136 sites (wells and springs), including (1) wells completed in the shallow, unconfined, and urbanized part of the aquifer in the vicinity of San Antonio (shallow/urban unconfined category), (2) wells completed in the unconfined (outcrop area) part of the regional aquifer (unconfined category), and (3) wells completed in and springs discharging from the confined part of the regional aquifer (confined category). This report evaluates these data to assess geochemical evolution processes, including local- and regional-scale processes controlling groundwater geochemistry, and to make water-quality observations pertaining to sources and distribution of natural constituents and anthropogenic contaminants, the relation between geochemistry and hydrologic conditions, and groundwater age tracers and travel time. Implications for monitoring water-quality trends in karst are also discussed. Geochemical and isotopic data are useful tracers of recharge, groundwater flow, fluid mixing, and water-rock interaction processes that affect water quality. Sources of dissolved constituents to Edwards aquifer groundwater include dissolution of and geochemical interaction with overlying soils and calcite and dolomite minerals that compose the aquifer. Geochemical tracers such as magnesium to calcium and strontium to calcium ratios and strontium isotope compositions are used to evaluate and constrain progressive fluid-evolution processes. Molar ratios of magnesium to calcium and strontium to calcium in groundwater typically

  11. Pilot studies for the North American Soil Geochemical Landscapes Project - Site selection, sampling protocols, analytical methods, and quality control protocols

    Science.gov (United States)

    Smith, D.B.; Woodruff, L.G.; O'Leary, R. M.; Cannon, W.F.; Garrett, R.G.; Kilburn, J.E.; Goldhaber, M.B.

    2009-01-01

    In 2004, the US Geological Survey (USGS) and the Geological Survey of Canada sampled and chemically analyzed soils along two transects across Canada and the USA in preparation for a planned soil geochemical survey of North America. This effort was a pilot study to test and refine sampling protocols, analytical methods, quality control protocols, and field logistics for the continental survey. A total of 220 sample sites were selected at approximately 40-km intervals along the two transects. The ideal sampling protocol at each site called for a sample from a depth of 0-5 cm and a composite of each of the O, A, and C horizons. The Ca, Fe, K, Mg, Na, S, Ti, Ag, As, Ba, Be, Bi, Cd, Ce, Co, Cr, Cs, Cu, Ga, In, La, Li, Mn, Mo, Nb, Ni, P, Pb, Rb, Sb, Sc, Sn, Sr, Te, Th, Tl, U, V, W, Y, and Zn by inductively coupled plasma-mass spectrometry and inductively coupled plasma-atomic emission spectrometry following a near-total digestion in a mixture of HCl, HNO3, HClO4, and HF. Separate methods were used for Hg, Se, total C, and carbonate-C on this same size fraction. Only Ag, In, and Te had a large percentage of concentrations below the detection limit. Quality control (QC) of the analyses was monitored at three levels: the laboratory performing the analysis, the USGS QC officer, and the principal investigator for the study. This level of review resulted in an average of one QC sample for every 20 field samples, which proved to be minimally adequate for such a large-scale survey. Additional QC samples should be added to monitor within-batch quality to the extent that no more than 10 samples are analyzed between a QC sample. Only Cr (77%), Y (82%), and Sb (80%) fell outside the acceptable limits of accuracy (% recovery between 85 and 115%) because of likely residence in mineral phases resistant to the acid digestion. A separate sample of 0-5-cm material was collected at each site for determination of organic compounds. A subset of 73 of these samples was analyzed for a suite of

  12. Geochemical and mineralogical study of selected weathered samples from Olkiluoto site

    International Nuclear Information System (INIS)

    Lindberg, A.

    2009-02-01

    Optical microscopy, chemical analyses and X-ray diffraction method were used to study the influence of weathering from 11 drill core samples from shallow depths (< 25 m). The samples, 4 to 22 cm in length were drilled from Olkiluoto study site, Eurajoki, and they represent the common rock types of local bedrock: mica gneiss, tonalitic and granodioritic gneiss. Two of the samples were macroscopically unweathered and 9 of them were remarkably altered. The alteration was shown as porosity, the abundance of chlorite instead of biotite and pink, unclear feldspars. Many samples also contained red-brown hematite and fractures, some of them coated with secondary minerals, even clay. Microscopically the most visible feature of weathering was the total alteration of plagioclase and cordierite to sericite. In many samples also biotite was richly altered to chlorite and opaque minerals. Microfractures were common and they were filled by hematite, kaolinite and fine-grained muscovite (sericite). Hematite was, in some cases, also largely replacing the weathered minerals, feldspars and cordierite. Chemical alteration was not clear, because the alteration of main minerals have produced secondary minerals with almost the same chemical composition without any reasonable depleting or enrichment of certain elements. X-ray diffraction determination of samples proved, that often plagioclase was replaced by mica and biotite by chlorite. In some cases the samples contained products of chemical weathering, kaolinite and smectite. (orig.)

  13. Rock–water interactions and pollution processes in the volcanic aquifer system of Guadalajara, Mexico, using inverse geochemical modeling

    International Nuclear Information System (INIS)

    Morán-Ramírez, J.; Ledesma-Ruiz, R.; Mahlknecht, J.; Ramos-Leal, J.A.

    2016-01-01

    In order to understand and mitigate the deterioration of water quality in the aquifer system underlying Guadalajara metropolitan area, an investigation was performed developing geochemical evolution models for assessment of groundwater chemical processes. The models helped not only to conceptualize the groundwater geochemistry, but also to evaluate the relative influence of anthropogenic inputs and natural sources of salinity to the groundwater. Mixing processes, ion exchange, water–rock–water interactions and nitrate pollution and denitrification were identified and confirmed using mass-balance models constraint by information on hydrogeology, groundwater chemistry, lithology and stability of geochemical phases. The water–rock interactions in the volcanic setting produced a dominant Na−HCO_3 water type, followed by Na−Mg−Ca−HCO_3 and Na−Ca−HCO_3. For geochemical evolution modeling, flow sections were selected representing recharge and non-recharge processes and a variety of mixing conditions. Recharge processes are dominated by dissolution of soil CO_2 gas, calcite, gypsum, albite and biotite, and Ca/Na exchange. Non-recharge processes show that the production of carbonic acid and Ca/Na exchange are decreasing, while other minerals such as halite and amorphous SiO_2 are precipitated. The origin of nitrate pollution in groundwater are fertilizers in rural plots and wastewater and waste disposal in the urban area. This investigation may help water authorities to adequately address and manage groundwater contamination. - Highlights: • The Inverse geochemical modeling was used to study to processes occurring in a volcanic aquifer. • Three flow sections were selected to apply inverse hydrogeochemical modeling. • Three main groundwater flows were identified: a local, intermediate and regional flow. • The models show that in the study area that groundwater is mixed with local recharge. • In the south, the aquifer has thermal influence.

  14. Regional geochemical maps of the Tonopah 1 degree by 2 degrees Quadrangle, Nevada, based on samples of stream sediment and nonmagnetic heavy-mineral concentrate

    Science.gov (United States)

    Nash, J.T.; Siems, D.F.

    1988-01-01

    This report is part of a series of geologic, geochemical, and geophysical maps of the Tonopah 1° x 2° quadrangle, Nevada, prepared during studies of the area for the Conterminous United States Mineral Assessment Program (CUSMAP). Included here are 21 maps showing the distributions of selected elements or combinations of elements. These regional geochemical maps are based on chemical analyses of the minus-60 mesh (0.25 mm) fraction of stream-sediment samples and the nonmagnetic heavy-mineral concentrate derived from stream sediment. Stream sediments were collected at 1,217 sites. Our geochemical studies of mineralized rock samples provide a framework for evaluating the results from stream sediments.

  15. Advances in Radiocarbon Measurement of Water Samples

    Energy Technology Data Exchange (ETDEWEB)

    Janovics, R.; Molnar, M.; Major, I. [Institute of Nuclear Research (ATO MKI), Hungarian Academy of Sciences, H-4001 Debrecen (Hungary); Svetlik, I. [Department of Radiation Dosimetry, Nuclear Physics Institute AS CR, Prague (Czech Republic); Wacker, L. [Institute for Particle Physics, ETH Hoenggerberg, Zuerich (Switzerland)

    2013-07-15

    In this paper two very different and novel methods for the {sup 14}C measurement of water samples are presented. The first method uses direct absorption into a scintillation cocktail and a following liquid scintillation measurement. Typical sample size is 20-40 L and overall uncertainty is {+-} 2% for modern samples. It is a very cost effective and easy to use method based on a novel and simple static absorption process for the CO{sub 2} extracted from groundwater. The other very sensitive method is based on accelerator mass spectrometry (AMS) using a gas ion source. With a MICADAS type AMS system we demonstrated that you can routinely measure the {sup 14}C content of 1 mL of water sample with better than 1% precision (for a modern sample). This direct {sup 14}C AMS measurement of water takes less than 20 minutes including sample preparation. (author)

  16. Reactivity of the calcite–water-interface, from molecular scale processes to geochemical engineering

    International Nuclear Information System (INIS)

    Heberling, Frank; Bosbach, Dirk; Eckhardt, Jörg-Detlef; Fischer, Uwe; Glowacky, Jens; Haist, Michael; Kramar, Utz; Loos, Steffen; Müller, Harald S.; Neumann, Thomas; Pust, Christopher; Schäfer, Thorsten; Stelling, Jan

    2014-01-01

    Highlights: • The current state of some aspects of calcite–water-interface chemistry is reviewed. • The interface structure is characterized at a molecular scale. • Experimental and theoretical studies on contaminant sorption at calcite are presented. • The influence of phosphonates on calcite growth is investigated. • The effect of limestone on the workability of cement suspensions is addressed. - Abstract: Surface reactions on calcite play an important role in geochemical and environmental systems, as well as many areas of industry. In this review, we present investigations of calcite that were performed in the frame of the joint research project “RECAWA” (reactivity of calcite–water-interfaces: molecular process understanding for technical applications). As indicated by the project title, work within the project comprised a large range of length scales. The molecular scale structure of the calcite (1 0 4)–water-interface is refined based on surface diffraction data. Structural details are related to surface charging phenomena, and a simplified basic stern surface complexation model is proposed. As an example for trace metal interactions with calcite surfaces we review and present new spectroscopic and macroscopic experimental results on Selenium interactions with calcite. Results demonstrate that selenate (SeO 4 2− ) shows no significant interaction with calcite at our experimental conditions, while selenite (SeO 3 2− ) adsorbs at the calcite surface and can be incorporated into the calcite structure. Atomistic calculations are used to assess the thermodynamics of sulfate (SO 4 2− ), selenate (SeO 4 2− ), and selenite (SeO 3 2− ) partitioning in calcite and aragonite. The results show that incorporation of these oxo-anions into the calcite structure is so highly endothermic that incorporation is practically impossible at bulk equilibrium and standard conditions. This indicates that entrapment processes are involved when

  17. Paloma-radon: Atmospheric radon-222 as a geochemical probe for water in the Martian subsoil.

    Science.gov (United States)

    Sabroux, J.-C.; Michielsen, N.; Voisin, V.; Ferry, C.; Richon, P.; Pineau, J.-F.; Le Roulley, J.-C.; Chassefière, E.

    2003-04-01

    Radon exhalation from a porous soil is known to depend strongly on the soil moisture content: a minute amount of water, or water ice, in the pore space increases dramatically the possibility for radon to migrate far from its parent mineral. We propose to take advantage of this characteristic by using atmospheric radon-222 as a geochemical probe for water in the Martian soil, at least one order of magnitude deeper than the current Mars Odyssey neutron data. Strong thermal inversions during the Martian night will accumulate radon in the lowest atmospheric boundary layer, up to measurable levels despite the comparatively high environmental (cosmic and solar) background radiation and the assumed low uranium content of the upper crust of the planet. Preliminary studies and development of an instrument for the measurement of the Martian atmospheric alpha radioactivity is part of the CNES-supported PALOMA experiment. Two test benches have been implemented, one of them allowing differential measurements of the diffusion of radon in the Martian soil simulant NASA JSC Mars-1, under relevant temperatures and pressures. The other, a 1 m^3 radon-dedicated test bench, aims to characterize the instrument that will measure radon in the Mars environment (7 mb CO_2). Tests on several nuclear radiation detectors show that semiconductor alpha-particle detectors (PIPS) are the best option (already on board the Mars Pathfinder Rover and other platforms). In addition, the detection volume is left open in order to capitalize upon the long (ca. 4 m) alpha track at this low pressure. A stationary diffusion model was developed in order to assess the radon flux at the Mars soil surface. Diffusion of gas in Martian soil is governed by Knudsen diffusion. The radon Knudsen diffusion coefficient was estimated, depending on the soil moisture and relevant structural properties, leading to a radon diffusion length of the order of 20 m. The landed platform PALOMA-Radon instrument will consist of a

  18. Paloma-radon: atmospheric radon 222 as a geochemical probe for water in the martian subsoil

    International Nuclear Information System (INIS)

    Sabroux, J.Ch.; Michielsen, N.; Voisin, V.

    2003-01-01

    Radon exhalation from a porous soil is known to depend strongly on the soil moisture content: a minute amount of water, or water ice, in the pore space increases dramatically the possibility for radon to migrate far from its parent mineral. We propose to take advantage of this characteristic by using atmospheric radon 222 as a geochemical probe for water in the Martian soil, at least one order of magnitude deeper than the current Mars Odyssey neutron data. Strong thermal inversions during the Martian night will accumulate radon in the lowest atmospheric boundary layer, up to measurable levels despite the comparatively high environmental (cosmic and solar) background radiation and the assumed low uranium content of the upper crust of the planet. Preliminary studies and development of an instrument for the measurement of the Martian atmospheric alpha radioactivity is part of the CNES supported PALOMA experiment. Two test benches have been implemented, one of them allowing differential measurements of the diffusion of radon in the Martian soil simulant NASA JSC Mars-1, under relevant temperatures and pressures. The other, a 1 m3 radon-dedicated test bench, aims to characterize the instrument that will measure radon in the Mars environment (7 mb CO 2 ). Tests on several nuclear radiation detectors show that semiconductor alpha-particle detectors (PIPS) are the best option. In addition, the detection volume is left open in order to capitalize upon the long (ca. 4 m) alpha track at this low pressure. A stationary diffusion model was developed in order to assess the radon flux at the Mars soil surface. Diffusion of gas in Martian soil is governed by Knudsen diffusion. The radon Knudsen diffusion coefficient was estimated, depending on the soil moisture and relevant structural properties, leading to a radon diffusion length of the order of 20 m. The landed platform PALOMA-Radon instrument will consist of a set of alpha detectors connected to an electronic spectrometer, a

  19. Paloma-radon: atmospheric radon 222 as a geochemical probe for water in the martian subsoil

    Energy Technology Data Exchange (ETDEWEB)

    Sabroux, J.Ch.; Michielsen, N.; Voisin, V

    2003-07-01

    Radon exhalation from a porous soil is known to depend strongly on the soil moisture content: a minute amount of water, or water ice, in the pore space increases dramatically the possibility for radon to migrate far from its parent mineral. We propose to take advantage of this characteristic by using atmospheric radon 222 as a geochemical probe for water in the Martian soil, at least one order of magnitude deeper than the current Mars Odyssey neutron data. Strong thermal inversions during the Martian night will accumulate radon in the lowest atmospheric boundary layer, up to measurable levels despite the comparatively high environmental (cosmic and solar) background radiation and the assumed low uranium content of the upper crust of the planet. Preliminary studies and development of an instrument for the measurement of the Martian atmospheric alpha radioactivity is part of the CNES supported PALOMA experiment. Two test benches have been implemented, one of them allowing differential measurements of the diffusion of radon in the Martian soil simulant NASA JSC Mars-1, under relevant temperatures and pressures. The other, a 1 m3 radon-dedicated test bench, aims to characterize the instrument that will measure radon in the Mars environment (7 mb CO{sub 2}). Tests on several nuclear radiation detectors show that semiconductor alpha-particle detectors (PIPS) are the best option. In addition, the detection volume is left open in order to capitalize upon the long (ca. 4 m) alpha track at this low pressure. A stationary diffusion model was developed in order to assess the radon flux at the Mars soil surface. Diffusion of gas in Martian soil is governed by Knudsen diffusion. The radon Knudsen diffusion coefficient was estimated, depending on the soil moisture and relevant structural properties, leading to a radon diffusion length of the order of 20 m. The landed platform PALOMA-Radon instrument will consist of a set of alpha detectors connected to an electronic spectrometer

  20. Water Sample Points, Navajo Nation, 2000, USACE

    Data.gov (United States)

    U.S. Environmental Protection Agency — This point shapefile presents the locations and results for water samples collected on the Navajo Nation by the US Army Corps of Engineers (USACE) for the US...

  1. A geochemical characterization of cold-water natural acid rock drainage at the Zn–Pb XY deposit, Yukon, Canada

    International Nuclear Information System (INIS)

    Gault, Kristen B.; Gammon, Paul; Fortin, Danielle

    2015-01-01

    Highlights: • Characterizes the waters and minerals of a natural acid rock drainage (ARD). • Demonstrates that cold climate ARD is mostly similar to temperate systems. • Cold-climate differences impact kinetic rates and hydrologic seasonality. • Demonstrates that thermodynamic equilibrium governs the ARD system. • Demonstrates that extraneous inputs can be detected in the system. - Abstract: Acid rock drainage (ARD) is considered to be temperature-limited due to the diminished activity of Fe(II)-oxidizing microbes at low temperatures. Nonetheless, ARD streams are present in cold climates. This study presents a geochemical characterization of a cold climate ARD creek at the Zn–Pb XY deposit in Yukon, Canada, which showed highly elevated concentrations of dissolved zinc (up to 475 mg/L). Acid rock drainage at the XY deposit is likely generated via subsurface abiotic and biotic oxidation of sulfide minerals, and then exits as seeps at the headwaters of the creek. The uppermost reaches of the creek have the lowest pH levels (pH 3.3) and highest metal concentrations, with prolific precipitation of iron-hydroxysulfate and -oxyhydroxide mineral precipitates (schwertmannite, jarosite, and goethite), present as terraced iron formations (TIFs) at one sampling location. The lower reaches of the creek show a progressive pH increase (up to pH level 4.9) which occurs due to Fe(III)- and Al-hydrolysis, the neutralizing influence of carbonate-rich strata and/or ground waters, and dilution by surface waters entering the creek. Progressive pH neutralization causes a change in precipitate mineralogy to X-ray amorphous Al-hydroxysulfates, with a composition similar to aluminite and hydrobasaluminite, and amorphous Al(OH)_3. Natural attenuation of Cd, Zn, and Pb occurred downstream from the headwater seeps, which was likely influenced by adsorption reactions involving both metal-sulfate anions and metal-sulfate ternary complexes. Generally, the concentrations of Cd, Zn, and

  2. Multielement neutron activation analysis of underground water samples

    International Nuclear Information System (INIS)

    Kusaka, Yuzuru; Tsuji, Haruo; Fujimoto, Yuzo; Ishida, Keiko; Mamuro, Tetsuo.

    1980-01-01

    An instrumental neutron activation analysis by gamma-ray spectrometry with high resolution and large volume Ge (Li) detectors followed by data processing with an electronic computer was applied to the multielemental analysis to elucidate the chemical qualities of the underground water which has been widely used in the sake brewing industries in Mikage, Uozaki and Nishinomiya districts, called as miyamizu. The evaporated residues of the water samples were subjected to the neutron irradiations in reactor for 1 min at a thermal flux of 1.5 x 10 12 n.cm -2 .sec -1 and for 30 hrs at a thermal flux of 9.3 x 10 11 n.cm -2 .sec -1 or for 5 hrs at a thermal flux of 3.9 x 10 12 n.cm -2 .sec -1 . Thus, 11 elements in the former short irradiation and 38 elements in the latter two kinds of long irradiation can be analyzed. Conventional chemical analysis including atomic absorption method and others are also applied on the same samples, and putting the all results together, some considerations concerning the geochemical meaning of the analytical values are made. (author)

  3. Management of Reclaimed Produced Water in the Rocky Mountain States Enhanced with the Expanded U.S. Geological Survey Produced Waters Geochemical Database

    Science.gov (United States)

    Gans, K. D.; Blondes, M. S.; Reidy, M. E.; Conaway, C. H.; Thordsen, J. J.; Rowan, E. L.; Kharaka, Y. K.; Engle, M.

    2016-12-01

    The Rocky Mountain states; Wyoming, Colorado, Montana, New Mexico and Utah produce annually approximately 470,000 acre-feet (3.66 billion barrels) of produced water - water that coexists with oil and gas and is brought to the surface with the pumping of oil and gas wells. Concerns about severe drought, groundwater depletion, and contamination have prompted petroleum operators and water districts to examine the recycling of produced water. Knowledge of the geochemistry of produced waters is valuable in determining the feasibility of produced water reuse. Water with low salinity can be reclaimed for use inside and outside of the petroleum industry. Since a great proportion of petroleum wells in the Rocky Mountain states, especially coal-bed methane wells, have produced water with relatively low salinity (generally oil recovery, and even for municipal uses, such as drinking water. The USGS Produced Waters Geochemical Database, available at http://eerscmap.usgs.gov/pwapp, has 60,000 data points in this region (this includes 35,000 new data points added to the 2002 database) and will facilitate studies on the management of produced water for reclamation in the Rocky Mountain region. Expanding on the USGS 2002 database, which contains geochemical analyses of major ions and total dissolved solids, the new data also include geochemical analyses of minor ions and stable isotopes. We have added an interactive web map application which allows the user to filter data on chosen fields (e.g. TDS data set can provide critical insight for better management of produced waters in water-constrained regions of the Rocky Mountains.

  4. Geochemical modelling of water-rock interactions at the Osamu Utsumi mine and Morro do Ferro analogue study sites, Pocos de Caldas, Brazil

    International Nuclear Information System (INIS)

    Nordstrom, D.K.; Puigdomenech, I.; McNutt, R.H.

    1990-01-01

    Geochemical processes involving water-rock interactions have been modelled using groundwater composition, mineralogical data, ion plots and computations of speciation, non-thermodynamic mass balance and thermodynamic mass transfer for two natural analogue sites near Pocos de Caldas, Brazil: the Osamu Utsumi mine and Morro do Ferro. The main rock type is an alkaline igneous complex composed of volcanic and sub-volcanic phonolites that have been hydrothermally altered and highly weathered. This altered rock mass grades from a laterite at the surface to a saprolite and finally to unweathered, hydrothermally altered bedrock at depth. The mine site contains high concentrations of uranium and Morro do Ferro contains high concentrations of thorium and rare-earths. The reaction models can reproduce the water chemistry and mineral occurences and they were validated by predicting the masses of minerals precipitated and the pH of the final water. The model computations can also reproduce the pH and iron concentrations of the water samples during CO 2 degassing and iron(II) oxidation from exposure to air. The results from the geochemical reaction models reveal that the dominant processes are production of CO 2 in the soil zone through aerobic decay of organic matter, dissolution of fluorite, calcite, K-feldspar, albite and manganese oxides, oxidation of pyrite and sphalerite and precipitation of ferric oxides, silica and kaolinite. Recharge waters are undersaturated with respect to barite and discharging waters and deeper groundwaters are saturated to supersaturated with respect to barite, demonstrating a strong equilibrium solubility control. Strontium isotope data demonstrate that sources other than calcium-bearing minerals are required to account for the dissolved strontium in the ground. These may include K-feldspar, smectite-chlorite mixed-layer clays and goyazite. (author) 24 figs., 4 tabs., 18 refs

  5. Geochemical controls on the composition of soil pore waters beneath a mixed waste disposal site in the unsaturated zone

    International Nuclear Information System (INIS)

    Rawson, S.A.; Hubbell, J.M.

    1989-01-01

    Soil pore waters are collected routinely to monitor a thick unsaturated zone that separates a mixed waste disposal site containing transuranic and low-level radioactive wastes from the Snake River Plain aquifer. The chemistry of the soil pore waters has been studied to evaluate the possible control on the water composition by mineral equilibria and determine the extent, if any, of migration of radionuclides from the disposal site. Geochemical codes were used to perform speciation calculations for the waters. The results of speciation calculations suggest that the installation of the lysimeters affects the observed silica contents of the soil pore waters. The results also establish those chemical parameters that are controlled by secondary mineral precipitation. 15 refs., 6 figs., 1 tab

  6. Water sampling techniques for continuous monitoring of pesticides in water

    Directory of Open Access Journals (Sweden)

    Šunjka Dragana

    2017-01-01

    Full Text Available Good ecological and chemical status of water represents the most important aim of the Water Framework Directive 2000/60/EC, which implies respect of water quality standards at the level of entire river basin (2008/105/EC and 2013/39/EC. This especially refers to the control of pesticide residues in surface waters. In order to achieve the set goals, a continuous monitoring program that should provide a comprehensive and interrelated overview of water status should be implemented. However, it demands the use of appropriate analysis techniques. Until now, the procedure for sampling and quantification of residual pesticide quantities in aquatic environment was based on the use of traditional sampling techniques that imply periodical collecting of individual samples. However, this type of sampling provides only a snapshot of the situation in regard to the presence of pollutants in water. As an alternative, the technique of passive sampling of pollutants in water, including pesticides has been introduced. Different samplers are available for pesticide sampling in surface water, depending on compounds. The technique itself is based on keeping a device in water over a longer period of time which varies from several days to several weeks, depending on the kind of compound. In this manner, the average concentrations of pollutants dissolved in water during a time period (time-weighted average concentrations, TWA are obtained, which enables monitoring of trends in areal and seasonal variations. The use of these techniques also leads to an increase in sensitivity of analytical methods, considering that pre-concentration of analytes takes place within the sorption medium. However, the use of these techniques for determination of pesticide concentrations in real water environments requires calibration studies for the estimation of sampling rates (Rs. Rs is a volume of water per time, calculated as the product of overall mass transfer coefficient and area of

  7. Impact of geo-chemical environment of subsurface water on the measurement of ultra trace level of uranium in ground water by adsorptive stripping voltammetry

    International Nuclear Information System (INIS)

    Singhal, R.K.; Preetha, J.; Karpe, Rupali; Ajay Kumar; Hegde, A.G.

    2005-01-01

    During the present work, impacts of cations (Ca 2+ , Mg 2+ , K + ,), anions (Cl -1 , F -1 , and PO 4 3- ) and DOC (Dissolved Organic Carbon) on the measurement of ultra trace level of uranium (VI) in subsurface water by adsorptive stripping voltammetry (AdSV) is studied. The concentrations of these anions, cations and DOC in subsurface water changes due to change in the geo-chemical environment at different locations. In AdSV, concentration of U was determined by forming an uranium-chloranilic acid complex (2,5-dichloro- 3,6-dihydroxy-1,4-benzoquinone). AdSV measurements were carried out in the differential pulse (DP) mode using a pulse amplitude of -50 mV, a pulse time of 30 ms and a potential step of 4 mV. The detection limit, was calculated to 2+ , Mg 2+ , K + ) and anions (Cl -1 , F -1 , and PO 4 3- ) was carried out by using Ion Chromatography. Ground water samples were spiked with varying degree of cations, anions and DOC (dissolved organic carbon). DOC in ground waters were measured by Total Organic Carbon (TOC) analyzer. Various experiments show that analysis of uranium in the concentration range of 2+ , Mg 2+ , K + , Cl -1 , F -1 , and PO 4 3- . In case of DOC there is no interference observed in the concentration range of 0.02-15 ppm but beyond 15 ppm the concentration of uranium decrease sharply. Further, if DOC exceeded 16 ppm it was not possible to do the analysis of uranium by AdSV without destruction of DOC, as DOC is surface active organic compound and accumulates on Hg electrode preferentially over uranium-chloroanailic complex. (author)

  8. UMTRA Project water sampling and analysis plan, Gunnison, Colorado: Revision 1

    International Nuclear Information System (INIS)

    1994-11-01

    This water sampling and analysis plan summarizes the results of previous water sampling activities and the plan for future water sampling activities, in accordance with the Guidance Document for Preparing Sampling and Analysis Plans for UMTRA Sites. A buffer zone monitoring plan for the Dos Rios Subdivision is included as an appendix. The buffer zone monitoring plan was developed to ensure continued protection to the public from residual contamination. The buffer zone is beyond the area depicted as contaminated ground water due to former milling operations. Surface remedial action at the Gunnison Uranium Mill Tailings Remedial Action Project site began in 1992; completion is expected in 1995. Ground water and surface water will be sampled semiannually at the Gunnison processing site and disposal site. Results of previous water sampling at the Gunnison processing site indicate that ground water in the alluvium is contaminated by the former uranium processing activities. Background ground water conditions have been established in the uppermost aquifer at the Gunnison disposal site. The monitor well locations provide a representative distribution of sampling points to characterize ground water quality and ground water flow conditions in the vicinity of the sites. The list of analytes has been modified with time to reflect constituents that are related to uranium processing activities and the parameters needed for geochemical evaluation

  9. Questa baseline and premining ground-water quality investigation. 8. Lake-sediment geochemical record from 1960 to 2002, Eagle Rock and Fawn Lakes, Taos County, New Mexico

    Science.gov (United States)

    Church, S.E.; Fey, D.L.; Marot, M.E.

    2005-01-01

    Geochemical studies of lake sediment from Eagle Rock Lake and upper Fawn Lake were conducted to evaluate the effect of mining at the Molycorp Questa porphyry molybdenum deposit located immediately north of the Red River. Two cores were taken, one from each lake near the outlet where the sediment was thinnest, and they were sampled at 1-cm intervals to provide geochemical data at less than 1-year resolution. Samples from the core intervals were digested and analyzed for 34 elements using ICP-AES (inductively coupled plasma-atomic emission spectrometry). The activity of 137Cs has been used to establish the beginning of sedimentation in the two lakes. Correlation of the geochemistry of heavy-mineral suites in the cores from both Fawn and Eagle Rock Lakes has been used to develop a sedimentation model to date the intervals sampled. The core from upper Fawn Lake, located upstream of the deposit, provided an annual sedimentary record of the geochemical baseline for material being transported in the Red River, whereas the core from Eagle Rock Lake, located downstream of the deposit, provided an annual record of the effect of mining at the Questa mine on the sediment in the Red River. Abrupt changes in the concentrations of many lithophile and deposit-related metals occur in the middle of the Eagle Rock Lake core, which we correlate with the major flood-of-record recorded at the Questa gage at Eagle Rock Lake in 1979. Sediment from the Red River collected at low flow in 2002 is a poor match for the geochemical data from the sediment core in Eagle Rock Lake. The change in sediment geochemistry in Eagle Rock Lake in the post-1979 interval is dramatic and requires that a new source of sediment be identified that has substantially different geochemistry from that in the pre-1979 core interval. Loss of mill tailings from pipeline breaks are most likely responsible for some of the spikes in trace-element concentrations in the Eagle Rock Lake core. Enrichment of Al2O3, Cu, and Zn

  10. A comparison of iron oxide-rich joint coatings and rock chips as geochemical sampling media in exploration for disseminated gold deposits

    Science.gov (United States)

    Crone, W.; Larson, L.T.; Carpenter, R.H.; Chao, T.T.; Sanzolone, R.F.

    1984-01-01

    We evaluated the effectiveness of iron oxide-rich fracture coatings as a geochemical sampling medium for disseminated gold deposits, as compared with conventional lithogeochemical methods, for samples from the Pinson mine and Preble prospect in southeastern Humboldt County, Nevada. That disseminated gold mineralization is associated with Hg, As, and Sb is clearly demonstrated in these deposits for both fracture coatings and rock chip samples. However, the relationship is more pronounced for fracture coatings. Fracture coatings at Pinson contain an average of 3.61, 5.13, 14.37, and 3.42 times more Au, As, Sb and Hg, respectively, than adjacent rock samples. At Preble, fracture coatings contain 3.13, 9.72, 9.18, and 1.85 times more Au, As, Sb and Hg, respectively, than do adjacent rock samples. Geochemical anomalies determined from fracture coatings are thus typically more intense than those determined from rock samples for these elements. The sizes of anomalies indicated by fracture coatings are also somewhat larger, but this is less obvious. In both areas, Sb anomalies are more extensive in fracture coatings. At Preble, some Hg and Au anomalies are also more extensive in fracture coatings. In addition to halos formed by the Hg, As and Sb, high values for Au/Ag and Zn/(Fe + Mn) are closely associated with gold mineralization at the Pinson mine. The large enhancement in geochemical response afforded by fracture coatings indicates a definite potential in the search for buried disseminated gold deposits. ?? 1984.

  11. The water-soluble fraction of potentially toxic elements in contaminated soils: relationships between ecotoxicity, solubility and geochemical reactivity.

    Science.gov (United States)

    Rocha, L; Rodrigues, S M; Lopes, I; Soares, A M V M; Duarte, A C; Pereira, E

    2011-09-01

    To better understand the impacts posed by soil contamination to aquatic ecosystems it is crucial to characterise the links between ecotoxicity, chemical availability and geochemical reactivity of potentially toxic elements (PTE's) in soils. We evaluated the adverse effects of water extracts obtained from soils contaminated by chemical industry and mining, using a test battery including organisms from different trophic levels (bacteria, algae and daphnids). These tests provided a quick assessment of the ecotoxicity of soils with respect to possible adverse effects on aquatic organisms although the ecotoxicological responses could be related to the solubility of PTE's only to a limited extent. The analysis of results of bioassays together with the chemical characterisation of water extracts provided additional relevant insight into the role of conductivity, pH, Al, Fe, and Mn of soil extracts on toxicity to organisms. Furthermore, an important conclusion of this study was that the toxicity of extracts to the aquatic organisms could also be related to the soil properties (pH, Org C and Fe(ox)) and to the reactivity of PTE's in soils which in fact control the soluble fraction of the contaminants. The combined assessment of ecotoxicity in water fractions, solubility and geochemical reactivity of PTE's in soils provided a more comprehensive understanding of the bioavailability of inorganic contaminants than ecotoxicological or chemical studies alone and can therefore be most useful for environmental risks assessment of contaminated soils. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Wet-dry seasonal and vertical geochemical variations in soil water and their driving forces under different land covers in southwest China karst

    Science.gov (United States)

    Wang, Peng; Hu, Bill X.; Wu, Chuanhao; Xu, Kai

    2017-04-01

    Karst aquifers supply drinking water for 25% of the world's population, and they are, however, vulnerable to climate change. Bimonthly hydrochemical data in karst soil water samples from July 2010 to July 2011 were obtained to reveal the seasonal and vertical geochemical variations in soil water under five vegetation types in Qingmuguan, a small karst catchment in southwest China. Soil water chemistry was dominated by Ca2+, HCO3-, and SO42- because of the dissolution of limestone, dolomite, and gypsum minerals in the strata. The predominant hydrochemical types in soil water were Ca2+-HCO3-, Ca2+-SO42-, and mixed Ca2+-HCO3-SO42-. Ca2+ and HCO3- concentrations ranked in the following order: shrub land > dry land > afforestation farmland > bamboo land > grassland. In warm and wet seasons, the main ion concentrations in soil water from grasslands were low. Na+, K+, Ca2+, Mg2+, HCO3-, SO42-, and Cl- concentrations in soil water from other lands were high. An opposite trend was observed in cold and dry seasons. Marked seasonal variations were observed in Ca2+, HCO3-, and NO3- in soil water from dry land. The main ion concentrations in soil water from bamboo lands decreased as soil depth increased. By contrast, the chemistry of soil water from other lands increased as soil depth increased. Their ions were accumulated in depth. A consistent high and low variation between the main ions in soil water and the contents of carbonate and CO2 was found in the soil. Hydrochemical changes in soil water were regulated by the effects of dilution and soil CO2.

  13. Geochemical studies of fluoride and other water quality parameters of ground water in Dhule region Maharashtra, India.

    Science.gov (United States)

    Patil, Dilip A; Deshmukh, Prashant K; Fursule, Ravindra A; Patil, Pravin O

    2010-07-01

    This study has been carried out to find out the water pollutants and to test the suitability of water for drinking and irrigation purposes in Dhule and surrounding areas in Maharashtra State in India. The analysis was carried out for the parameters pH, DO (dissolved oxygen), BOD (biological oxygen demand), Cl-, NO3-, F-, S(2)-, total alkalinity, total solid, total dissolved solids (TDS), total suspended solids (TSS), total hardness, calcium, magnesium, carbonate and noncarbonate hardness, and concentrations of calcium and magnesium. These parameters were compared against the standards laid down by World Health Organization (WHO) and Indian Council of Medical Research (ICMR) for drinking water quality. High levels of NO(3)-, Cl-, F-, S(2)-, total solid, TDS, TSS, total hardness, magnesium and calcium have been found in the collected samples. From these observations, it has been found that fluoride is present as per the permissible limit (WHO 2003) in some of the villages studied, but both fluoride and nitrate levels are unacceptable in drinking water samples taken from several villages in Dhule. This is a serious problem and, therefore, requires immediate attention. Excess of theses impurities in water causes many diseases in plants and animals. This study has been carried out to find out the water pollutants and to test the suitability of water for drinking and irrigation purposes in Dhule and surrounding areas in Maharashtra.

  14. Geochemical modelling and speciation studies of metal pollutants present in selected water systems in South Africa

    Science.gov (United States)

    Magu, M. M.; Govender, P. P.; Ngila, J. C.

    2016-04-01

    Metal pollutants in water poses great threats to living beings and hence requires to be monitored regularly to avoid loss of lives. Various analytical methods are available to monitor these pollutants in water and can be improved with time. Modelling of metal pollutants in any water system helps chemists, engineers and environmentalists to greatly understand the various chemical processes in such systems. Water samples were collected from waste water treatment plant and river from highlands close to its source all the way to the ocean as it passing through areas with high anthropogenic activities. Pre-concentration of pollutants in the samples was done through acid digestion and metal pollutants were analysed using inductively coupled plasma-optical emission spectra (ICP-OES) to determine the concentration levels. Metal concentrations ranged between 0.1356-0.4658 mg/L for Al; 0.0031-0.0050 mg/L for Co, 0.0019-0.0956 mg/L for Cr; 0.0028-0.3484 mg/L for Cu; 0.0489-0.3474 mg/L for Fe; 0.0033-0.0285 mg/L for Mn; 0.0056-0.0222 mg/L for Ni; 0.0265-0.4753 mg/L for Pb and 0.0052-0.5594 mg/L for Zn. Modelling work was performed using PHREEQC couple with Geochemist's workbench (GWB) to determine speciation dynamics and bioavailability of these pollutants. Modelling thus adds value to analytical methods and hence a better complementary tool to laboratory-based experimental studies.

  15. GEOCHEMICAL AND ISOTOPIC CONSTRAINTS ON GROUND-WATER FLOW DIRECTIONS, MIXING AND RECHARGE AT YUCCA MOUNTAIN, NEVADA

    International Nuclear Information System (INIS)

    A. Meijer; E. Kwicklis

    2000-01-01

    This analysis is governed by the Office of Civilian Radioactive Waste Management (OCRWM) Analysis and Modeling Report Development Plan entitled ''Geochemical and Isotopic Constraints on Groundwater Flow Directions, Mixing and Recharge at Yucca Mountain'' (CRWMS M and O 1999a). As stated in this Development Plan, the purpose of the work is to provide an analysis of groundwater recharge rates, flow directions and velocities, and mixing proportions of water from different source areas based on groundwater geochemical and isotopic data. The analysis of hydrochemical and isotopic data is intended to provide a basis for evaluating the hydrologic system at Yucca Mountain independently of analyses based purely on hydraulic arguments. Where more than one conceptual model for flow is possible, based on existing hydraulic data, hydrochemical and isotopic data may be useful in eliminating some of these conceptual models. This report documents the use of geochemical and isotopic data to constrain rates and directions of groundwater flow near Yucca Mountain and the timing and magnitude of recharge in the Yucca Mountain vicinity. The geochemical and isotopic data are also examined with regard to the possible dilution of groundwater recharge from Yucca Mountain by mixing with groundwater downgradient from the potential repository site. Specifically, the primary tasks of this report, as listed in the AMR Development Plan (CRWMS M and O 1999a), consist of the following: (1) Compare geochemical and isotopic data for perched and pore water in the unsaturated zone with similar data from the saturated zone to determine if local recharge is present in the regional groundwater system; (2) Determine the timing of the recharge from stable isotopes such as deuterium ( 2 H) and oxygen-18 ( 18 O), which are known to vary over time as a function of climate, and from radioisotopes such as carbon-14 ( 14 C) and chlorine-36 ( 36 Cl); (3) Determine the magnitude of recharge from relatively

  16. Summary of Inorganic Compositional Data for Groundwater, Soil-Water, and Surface-Water Samples at the Headgate Draw Subsurface Drip Irrigation Site

    Energy Technology Data Exchange (ETDEWEB)

    Geboy, Nicholas J.; Engle, Mark A.; Schroeder, Karl T.; Zupanic, John W.

    2007-01-01

    As part of a 5-year project on the impact of subsurface drip irrigation (SDI) application of coalbed-methane (CBM) produced waters, water samples were collected from the Headgate Draw SDI site in the Powder River Basin, Wyoming, USA. This research is part of a larger study to understand short- and long-term impacts on both soil and water quality from the beneficial use of CBM waters to grow forage crops through use of SDI. This document provides a summary of the context, sampling methodology, and quality assurance and quality control documentation of samples collected prior to and over the first year of SDI operation at the site (May 2008-October 2009). This report contains an associated database containing inorganic compositional data, water-quality criteria parameters, and calculated geochemical parameters for samples of groundwater, soil water, surface water, treated CBM waters, and as-received CBM waters collected at the Headgate Draw SDI site.

  17. UMTRA Project water sampling and analysis plan, Gunnison, Colorado. Revision 2

    International Nuclear Information System (INIS)

    1995-09-01

    Surface remedial action at the Gunnison Uranium Mill Tailings Remedial Action Project site began in 1992; completion is expected in 1995. Ground water and surface water will be sampled semiannually at the Gunnison processing site (GUN-01) and disposal site (GUN-08). Results of previous water sampling at the Gunnison processing site indicate that ground water in the alluvium is contaminated by the former uranium processing activities. Background ground water conditions have been established in the uppermost aquifer (Tertiary gravels) at the Gunnison disposal site. Semiannual water sampling is scheduled for the spring and fall. Water quality sampling is conducted at the processing site (1) to ensure protection of human health and the environment, (2) for ground water compliance monitoring during remedial action construction, and (3) to define the extent of contamination. At the processing site, the frequency and duration of sampling will be dependent upon the nature and extent of residual contamination and the compliance strategy chosen. The monitor well locations provide a representative distribution of sampling points to characterize ground water quality and ground water flow conditions in the vicinity of the sites. The list of analytes has been modified with time to reflect constituents that are related to uranium processing activities and the parameters needed for geochemical evaluation

  18. Portable field water sample filtration unit

    International Nuclear Information System (INIS)

    Hebert, A.J.; Young, G.G.

    1977-01-01

    A lightweight back-packable field-tested filtration unit is described. The unit is easily cleaned without cross contamination at the part-per-billion level and allows rapid filtration of boiling hot and sometimes muddy water. The filtration results in samples that are free of bacteria and particulates and which resist algae growth even after storage for months. 3 figures

  19. Modelling of water-gas-rock geo-chemical interactions. Application to mineral diagenesis in geological reservoirs

    International Nuclear Information System (INIS)

    Bildstein, Olivier

    1998-01-01

    Mineral diagenesis in tanks results from interactions between minerals, water, and possibly gases, over geological periods of time. The associated phenomena may have a crucial importance for reservoir characterization because of their impact on petrophysical properties. The objective of this research thesis is thus to develop a model which integrates geochemical functions necessary to simulate diagenetic reactions, and which is numerically efficient enough to perform the coupling with a transport model. After a recall of thermodynamic and kinetic backgrounds, the author discusses how the nature of available analytic and experimental data influenced choices made for the formalization of physical-chemical phenomena and for behaviour laws to be considered. Numerical and computational aspects are presented in the second part. The model is validated by using simple examples. The different possible steps during the kinetic competition between two mineral are highlighted, as well the competition between mineral reaction kinetics and water flow rate across the rock. Redox reactions are also considered. In the third part, the author reports the application of new model functions, and highlights the contribution of the modelling to the understanding of some complex geochemical phenomena and to the prediction of reservoir quality. The model is applied to several diagenetic transformations: cementation of dolomitic limestone by anhydride, illite precipitation, and thermal reduction of sulphates [fr

  20. Water sampling device for detecting fuel failure

    International Nuclear Information System (INIS)

    Masubuchi, Yukio.

    1997-01-01

    A notched portion is formed at the lower end of an outer cap, and an extensible air bag is disposed being in contact with the inner side of the notched portion. A compressed air is sent into the outer gap through an air supply pipe to urge coolants thereby lowering the water level. A portion of the compressed air gets out of the outer gap from the notched portion, and if air bubbles are observed on the surface of coolants in a pressure vessel of a reactor, the outer cap is confirmed to be attached to the upper lattice plate. Compressed air is supplied to the air bag to close the notched portion. Then, coolants are sucked from a water level confirmation pipe. The level of coolants is further lowered, and the compressed air is sucked from the water level confirmation pipe instead of the coolants. Then, the level of the coolants at the inner side of the inner cap is confirmed to be made lower than the upper end of the channel box of a reactor fuel assembly. Then, coolants in the channel box are sampled, as a specimen water, through a water sampling pipe. (I.N.)

  1. Quest to identify geochemical risk factors associated with chronic kidney disease of unknown etiology (CKDu) in an endemic region of Sri Lanka-a multimedia laboratory analysis of biological, food, and environmental samples.

    Science.gov (United States)

    Levine, Keith E; Redmon, Jennifer Hoponick; Elledge, Myles F; Wanigasuriya, Kamani P; Smith, Kristin; Munoz, Breda; Waduge, Vajira A; Periris-John, Roshini J; Sathiakumar, Nalini; Harrington, James M; Womack, Donna S; Wickremasinghe, Rajitha

    2016-10-01

    The emergence of a new form of chronic kidney disease of unknown etiology (CKDu) in Sri Lanka's North Central Province (NCP) has become a catastrophic health crisis. CKDu is characterized as slowly progressing, irreversible, and asymptomatic until late stages and, importantly, not attributed to diabetes, hypertension, or other known risk factors. It is postulated that the etiology of CKDu is multifactorial, involving genetic predisposition, nutritional and dehydration status, exposure to one or more environmental nephrotoxins, and lifestyle factors. The objective of this limited geochemical laboratory analysis was to determine the concentration of a suite of heavy metals and trace element nutrients in biological samples (human whole blood and hair) and environmental samples (drinking water, rice, soil, and freshwater fish) collected from two towns within the endemic NCP region in 2012 and 2013. This broad panel, metallomics/mineralomics approach was used to shed light on potential geochemical risk factors associated with CKDu. Based on prior literature documentation of potential nephrotoxins that may play a role in the genesis and progression of CKDu, heavy metals and fluoride were selected for analysis. The geochemical concentrations in biological and environmental media areas were quantified. Basic statistical measurements were subsequently used to compare media against applicable benchmark values, such as US soil screening levels. Cadmium, lead, and mercury were detected at concentrations exceeding US reference values in many of the biological samples, suggesting that study participants are subjected to chronic, low-level exposure to these elements. Within the limited number of environmental media samples, arsenic was determined to exceed initial risk screening and background concentration values in soil, while data collected from drinking water samples reflected the unique hydrogeochemistry of the region, including the prevalence of hard or very hard water, and

  2. An integrated geochemical, geophysical and mineralogical study of river sediments in alpine area and soil samples near steel plant, in Austria

    Science.gov (United States)

    Irfan, M. I.; Meisel, T.

    2012-04-01

    Concentration of nickel and chromium in any part of the ecosystem is important for environmental concerns in particular human health due to the reason that some species of them can cause health problem e.g. dermatitis and cancer. Sediment samples collected form a river Vordernberger Bach (Leoben, Austria) in an alpine region and soil samples collected in an area adjacent to steel production unit in same narrow valley were investigated. In previous studies a correlation between magnetic susceptibility values and concentration of nickel and chromium showed that a magnetic susceptibility meter can be used to point out the contaminated areas as in-situ device. The purpose of the whole study is to understand the real (point or diffuse, anthropogenic or geogenic) sources of contamination of soils, water and river sediments through heavy metal deposition. Unseparated, magnetic and non-magnetic fractions of soil samples were investigated for geochemical and mineralogical aspects with XRF, ICP-MS, EMPA, Multi-Functional Kappabridge (MFK1) and laser ablation coupled with ICP-MS. Mineralogical study of sediment samples for several sampling points with higher Ni and Cr content was performed. Sediment samples were sieved below 1.4 mm and then a concentrate of heavy minerals was prepared in the field through panning. Concentrated heavy minerals were then subjected for heavy liquid separation in the laboratory. Separated magnetic and non-magnetic fractions below 0.71/0.1 mm and density greater than 2.9 g/cm3 were selected for mineralogical investigation. The abundance of typical anthropogenic particles, e.g., spherical, tinder, roasted ores, iron and steel mill slag was observed under the microscope. Magnetite (mostly anthropogenic), maghemite, chromspinel, chromite (type I & II), (Ca,Al)-ferrite, wustite, apatite (anthropogenic), olivine mixed crystals, calcium silicate and spinel (anthropogenic) are found in magnetic fraction. Non-magnetic fractions contain hematite, siderite

  3. Geochemical distribution and fate of arsenic in water and sediments of rivers from the Hokusetsu area, Japan

    Directory of Open Access Journals (Sweden)

    Emilie Even

    2017-02-01

    New hydrological insights for the region: The geochemical mapping showed that As in river water exceeded the maximum limit concentration of 10 ppb in several places. The highest As levels (waters and sediments correlated well with the surface geologies, concentrating in a halo around granitic intrusion and nearby faults. The isotopic analysis of sulfur revealed the occurrence of two kinds of sulfide mineralizations responsible for As contamination: one from Late Paleozoic submarine volcanism in sedimentary rocks, and one from Late Cretaceous igneous activities in contact-metamorphosed rocks disseminated with sulfides. The transport of As along river courses occurred mainly as a dissolved species rather than absorbed on Fe/Mn/Al particles, signifying the least role of iron oxy-hydroxides in As adsorption.

  4. Semi-detailed uranium geochemical survey in Northwestern Samar (27 March 1979 - 4 July 1979)

    International Nuclear Information System (INIS)

    Santos, G. Jr.; Ogena, M.; Tauli, G.

    1980-04-01

    A uranium geochemical survey was conducted to delineate in detail the uranium prospective area(s) in northwestern Samar. A total of 805 stream sediments and 1.115 water samples were obtained from the target areas from uranium analysis. Geochemical anomalies were indicated in San Isidro and Mauo. Geochemical correlations between uranium and trace elements (Pb, Ag, Ni, Cu, Co, Zn and Mn) were generally poor. (ELC)

  5. PIXE analysis applied to characterized water samples

    International Nuclear Information System (INIS)

    Santos, Maristela S.; Carneiro, Luana Gomes; Medeiros, Geiza; Sampaio, Camilla; Martorell, Ana Beatriz Targino; Gouvea, Stella; Cunha, Kenya Moore Dias da

    2011-01-01

    Araxa, in Brazil, is a naturally high background area located in the State of Minas Gerais with a population of about 93 672 people. Araxa is historical city famous for its mineral water sources and mud from Termas de Araxa spa, which have been used for therapeutic, and recreation purposes. Other important aspect of economy of the city are mining and metallurgic industries. In the Araxa area is located the largest deposit of pyrochlore, a niobium mineral, and also a deposit of apatite, a phosphate mineral both containing Th and U associated to crystal lattice. The minerals are obtained from open pit mines, the minerals are processed in industrial also located in city of Araxa, these plants process the pyrochlore and apatite to obtain the Fe-Nb alloy and the concentrate of phosphate, respectively. Studies were developed in this area to assessment the occupational risk of the workers due to exposure to dust particles during the routine working, however very few studies evaluated the water contamination outside the mines in order to determine the metal (stables elements) concentrations in water and also the concentrations of the radionuclides in water. This paper presents the previous results of a study to identify and determine the concentrations of metals (stables elements) and radionuclides in river around the city. The water from these rivers is used as drinking water and irrigation water. The water samples were collected in different rivers around the Araxa city and the samples were analyzed using PIXE technique. A proton beam of 2 MeV obtained from the van de Graaff electrostatic accelerator was used to induce the characteristic X-rays. S, K, Ca, Cr, Mn, Fe, Ni, Zn, Ba, Pb and U were identified in the mass spectrum of the samples. The elemental mass concentrations were compared using a non-parametric statistical test. The results of the statistical test showed that the elemental mass concentrations did not present the same distribution. These results indicated

  6. Determination of 40K in water samples

    International Nuclear Information System (INIS)

    Delgado, C. E.; Miranda C, L.; Cuevas J, A. K.; Vega C, H. R.

    2014-10-01

    The natural water used for human consumption comes from different sources, which may contain suspended solids in varying proportions. In groundwater, the source of suspended solids is related to the dissolution of mineral strata by the waters and leaching of rocks. Also, the radioactivity could concentrate on the bodies of slow-moving water that eventually could present a risk to ecosystems, as well as for the consumer. The water usually contains several natural radionuclides as: tritium, radon, radio, uranium isotopes, etc. The objective of this study was to evaluate the concentration of 40 K in water from different areas of Zacatecas state (Mexico). Four water samples were taken in triplicate from different areas; the 40 K concentration was measured with a spectrum metric system of gamma radiation with NaI (Tl) scintillation detector of 7.62 cm. In the measuring process a standard was prepared using water and KCl analytic grade where the 40 K concentration is 6.25 mol/Lt adding 250 mg/ml of potassium. Also the system was calibrated in energy using 3 point sources of 137 Cs, diameter 22 Na and 7.62 cm of height, using containers Marinelli and 60 Co. In the obtained spectra was observed that the photon of 1.432 MeV that emits the 40 K when decaying is the most important. The highest concentration was of 123 ± 5.2 Bq/lt and the lowest was of 9 ± 0.4 Bq/lt. Under the standards of drinking water, an amount of 40 K deposits an effective dose which contributes to annual dose received by people. (Author)

  7. Observations of mechanical-hydraulic-geochemical interactions due to drainage of a surface water reservoir in Switzerland

    Science.gov (United States)

    Lunn, R. J.; Kinali, M.; Pytharouli, S.; Shipton, Z.; Stillings, M.; Lord, R.

    2016-12-01

    The drainage and refilling of a surface water reservoir beside the Grimsel Test Site (GTS) underground rock laboratory in Switzerland, has provided a unique opportunity to study in-situ rock mechanical, hydraulic and chemical interactions under large-scale stress changes. The reservoir was drained in October/November 2014 to enable dam maintenance and extension of the regional hydropower tunnel system. Reservoir drainage will have caused rapid unloading of the surrounding rock mass. The GTS sits 37m below the top of the reservoir and 200-600m away laterally within the mountainside on the eastern bank of the reservoir. Gradual refilling of the reservoir, via natural snowmelt and runoff, commenced in February 2015. As part of the European LASMO Project, researchers at Strathclyde, funded by Radioactive Waste Management Ltd., have been investigating mechanical-chemical-hydraulic coupling within the rock mass as an analogue for glacial unloading and loading of a future Geological Disposal Facility. We have deployed three 3-component and 6 single-component micro-seismometers within the GTS and surrounding hydropower tunnel network. In parallel, we have implemented a groundwater sampling programme, using boreholes within the GTS, for temporal determination of geochemistry and flow rate. Preliminary data analyses show geochemical anomalies during unloading, as well as detection of microseismic events. The signal-to-noise ratio of the micro-seismic data is extremely poor. Noise amplitude, and frequency content, variy throughout each day, between days, and from month-to-month on a highly unpredictable basis. This is probably due to the multitude of hydropower turbines and pump-storage systems within the surrounding mountains. To discriminate micro-seismic events, we have developed a new methodology for characterizing background noise within the seismic signal and combined this with cross-correlations techniques generally applied in microseismic analysis of hydraulic

  8. The relationship of the Yucca Mountain repository block to the regional ground-water system: A geochemical model

    International Nuclear Information System (INIS)

    Matuska, N.A.; Hess, J.W.

    1989-08-01

    Yucca Mountain, in southern Nevada, is being studied by the Department of Energy and the State of Nevada as the site of a high-level nuclear waste repository. Geochemical and isotopic modeling were used in this study to define the relationship of the volcanic tuff aquifers and aquitards to the underlying regional carbonate ground-water system. The chemical evolution of a ground water as it passes through a hypothetical tuffaceous aquifer was developed using computer models PHREEQE, WATEQDR and BALANCE. The tuffaceous system was divided into five parts, with specific mineralogies, reaction steps and temperatures. The initial solution was an analysis of a soil water from Rainier Mesa. The ending solution in each part became the initial solution in the next part. Minerals consisted of zeolites, smectites, authigenic feldspars and quartz polymorphs from described diagentic mineral zones. Reaction steps were ion exchange with zeolites. The solution from the final zone, Part V, was chosen as most representative, in terms of pH, element molalities and mineral solubilities, of tuffaceous water. This hypothetical volcanic water from Part V was mixed with water from the regional carbonate aquifer, and the results compared to analyses of Yucca Mountain wells. Mixing and modeling attempts were conducted on wells in which studies indicated upward flow

  9. Geochemical Investigations of Groundwater Stability

    International Nuclear Information System (INIS)

    Bath, Adrian

    2006-05-01

    palaeohydrogeological conditions. It is likely that inland areas have had longer durations of post-glacial fresh water infiltration than coastal areas, possibly causing greater degrees of dilution and dispersion of preexisting groundwaters and thus overprinting their hydrochemical and isotopic 'fingerprints'. Lower post-glacial hydraulic gradients relative to inland sites may account for the occurrence of more relict cold-climate water at coastal sites. Some general observations are based on rather thin evidence and therefore speculative. Firstly, it seems that glacial melt water penetrated many hundreds of metres and in some places to at least 1,000 m depth. However the low remaining proportions of melt water and of much older saline Shield water suggest that melt water flux did not fully displace pre-existing groundwaters at these depths. Secondly, where there has been post-glacial infiltration of palaeo-Baltic sea water, the density stratification or compartmentalisation effect coupled with low hydraulic gradient has reduced rates of subsequent fresh water circulation after shoreline recession. There are many uncertainties in interpreting these geochemical indicators in terms of the penetration depths of glacial melt waters and the degree to which they replace preexisting groundwaters, of other aspects of groundwater stability, and of comparisons between inland and coastal groundwater systems. Uncertainties derive partly from the reliability of groundwater samples as being representative of in situ conditions, and partly from the non-uniqueness of interpretative models. Future investigations using these approaches need to improve sampling, to make conjunctive use of geochemical and isotopic indicators which have varying timescales and sensitivities, and to integrate these indicators with palaeohydrogeological modelling to support the development of reliable groundwater flow and solute transport models for Performance Assessment

  10. Geochemical Investigations of Groundwater Stability

    Energy Technology Data Exchange (ETDEWEB)

    Bath, Adrian [Intellisci Ltd., Loughborough (United Kingdom)

    2006-05-15

    local palaeohydrogeological conditions. It is likely that inland areas have had longer durations of post-glacial fresh water infiltration than coastal areas, possibly causing greater degrees of dilution and dispersion of preexisting groundwaters and thus overprinting their hydrochemical and isotopic 'fingerprints'. Lower post-glacial hydraulic gradients relative to inland sites may account for the occurrence of more relict cold-climate water at coastal sites. Some general observations are based on rather thin evidence and therefore speculative. Firstly, it seems that glacial melt water penetrated many hundreds of metres and in some places to at least 1,000 m depth. However the low remaining proportions of melt water and of much older saline Shield water suggest that melt water flux did not fully displace pre-existing groundwaters at these depths. Secondly, where there has been post-glacial infiltration of palaeo-Baltic sea water, the density stratification or compartmentalisation effect coupled with low hydraulic gradient has reduced rates of subsequent fresh water circulation after shoreline recession. There are many uncertainties in interpreting these geochemical indicators in terms of the penetration depths of glacial melt waters and the degree to which they replace preexisting groundwaters, of other aspects of groundwater stability, and of comparisons between inland and coastal groundwater systems. Uncertainties derive partly from the reliability of groundwater samples as being representative of in situ conditions, and partly from the non-uniqueness of interpretative models. Future investigations using these approaches need to improve sampling, to make conjunctive use of geochemical and isotopic indicators which have varying timescales and sensitivities, and to integrate these indicators with palaeohydrogeological modelling to support the development of reliable groundwater flow and solute transport models for Performance Assessment.

  11. Investigative studies on water contamination in Bangladesh. Primary treatment of water samples at the sampling site

    International Nuclear Information System (INIS)

    Sera, K.; Islam, Md. Shafiqul; Takatsuji, T.; Nakamura, T.; Goto, S.; Takahashi, C.; Saitoh, Y.

    2010-01-01

    Arsenic concentration in 13 well waters, 9 pond waters, 10 agricultural waters and a coconut juice taken in Comilla district, Bangladesh, where the problem of arsenic pollution is the most severe, was investigated. High-level arsenic is detected even in the well water which has been kept drinking by the people. Relatively high arsenic concentration was detected for some pond and farm waters even though the sampling was performed just after the rainy season and the waters were expected to be highly diluted. Clear relationship was observed in elemental compositions between the pond water and the coconut juice collected at the edge of the water. These results are expected to become the basic information for evaluating the risk of individual food such as cultured fishes, shrimps and farm products, and for controlling total intakes of arsenic. In order to solve the problem of transportation of water samples internationally, a simple method of target preparation performed at the sampling site was established and its validity was confirmed. All targets were prepared at the sampling sites in this study on the basis of this method. (author)

  12. Microbiological and Geochemical Survey of CO2-Dominated Mofette and Mineral Waters of the Cheb Basin, Czech Republic

    Directory of Open Access Journals (Sweden)

    Patryk Krauze

    2017-12-01

    Full Text Available The Cheb Basin (NW Bohemia, Czech Republic is a shallow, neogene intracontinental basin. It is a non-volcanic region which features frequent earthquake swarms and large-scale diffuse degassing of mantle-derived CO2 at the surface that occurs in the form of CO2-rich mineral springs and wet and dry mofettes. So far, the influence of CO2 degassing onto the microbial communities has been studied for soil environments, but not for aquatic systems. We hypothesized, that deep-trenching CO2 conduits interconnect the subsurface with the surface. This admixture of deep thermal fluids should be reflected in geochemical parameters and in the microbial community compositions. In the present study four mineral water springs and two wet mofettes were investigated through an interdisciplinary survey. The waters were acidic and differed in terms of organic carbon and anion/cation concentrations. Element geochemical and isotope analyses of fluid components were used to verify the origin of the fluids. Prokaryotic communities were characterized through quantitative PCR and Illumina 16S rRNA gene sequencing. Putative chemolithotrophic, anaerobic and microaerophilic organisms connected to sulfur (e.g., Sulfuricurvum, Sulfurimonas and iron (e.g., Gallionella, Sideroxydans cycling shaped the core community. Additionally, CO2-influenced waters form an ecosystem containing many taxa that are usually found in marine or terrestrial subsurface ecosystems. Multivariate statistics highlighted the influence of environmental parameters such as pH, Fe2+ concentration and conductivity on species distribution. The hydrochemical and microbiological survey introduces a new perspective on mofettes. Our results support that mofettes are either analogs or rather windows into the deep biosphere and furthermore enable access to deeply buried paleo-sediments.

  13. Geochemical indicators and characterization of soil water repellence in three dominant ecosystems of Western Australia

    Science.gov (United States)

    Muñoz-Rojas, Miriam; Jiménez-Morillo, Nicasio T.; Jordan, Antonio; Zavala, Lorena M.; Stevens, Jason; González-Pérez, Jose Antonio

    2016-04-01

    Introduction Soil water repellency (SWR) has critical implications for restoration of vegetation in degraded areas as it is responsible of poor plant establishment and a high incidence of erosion processes. Different organic substances are capable of inducing SWR but polar molecules such as certain fatty acids, and waxes i.e. esters and salts of fatty acids, appear to be the main constituents of hydrophobic coatings on soil mineral particles (Doerr et al., 2005). Plant species most commonly associated with SWR are evergreen trees with a considerable amount of resins, waxes or aromatic oils such as eucalypts and pines. Most of these substances are abundant in ecosystems and are released to soil by plants as root exudates or decaying organic debris, and by soil fauna, fungi and other microorganisms, but a thorough knowledge of substances capable of inducing hydrophobicity in soils is still not complete (Jordan et al., 2013). Although SWR has been reported in most continents of the world for different soil types, climate conditions and land uses, there are still many research gaps in this area, particularly in semi-arid areas largely affected by this phenomenon. Materials and methods This research was conducted in three dominant ecosystems of Western Australia (WA), e.g. semi-arid grassland in the Pilbara region (North WA), Banksia woodland, and a coastal dune (both located in South WA). These environments have different climate characteristics and soil types but similar vegetation communities. Soil samples were collected under the canopy of a broad range of plant species that compose the dominant vegetation communities of these ecosystems, and SWR was measured under lab conditions in oven-dry samples (48 h, 105 °C). Soil microbial activity was measured with the 1-day CO2 test, a cost-effective and rapid method to determine soil microbial respiration rate based on the measurement of the CO2 burst produced after moistening dry soil (Muñoz-Rojas et al., 2016). Soil p

  14. Geochemical reanalysis of historical U.S. Geological Survey sediment samples from the Inmachuk, Kugruk, Kiwalik, and Koyuk River drainages, Granite Mountain, and the northern Darby Mountains, Bendeleben, Candle, Kotzebue, and Solomon quadrangles, Alaska

    Science.gov (United States)

    Werdon, Melanie B.; Granitto, Matthew; Azain, Jaime S.

    2015-01-01

    The State of Alaska’s Strategic and Critical Minerals (SCM) Assessment project, a State-funded Capital Improvement Project (CIP), is designed to evaluate Alaska’s statewide potential for SCM resources. The SCM Assessment is being implemented by the Alaska Division of Geological & Geophysical Surveys (DGGS), and involves obtaining new airborne-geophysical, geological, and geochemical data. As part of the SCM Assessment, thousands of historical geochemical samples from DGGS, U.S. Geological Survey (USGS), and U.S. Bureau of Mines archives are being reanalyzed by DGGS using modern, quantitative, geochemical-analytical methods. The objective is to update the statewide geochemical database to more clearly identify areas in Alaska with SCM potential. The USGS is also undertaking SCM-related geologic studies in Alaska through the federally funded Alaska Critical Minerals cooperative project. DGGS and USGS share the goal of evaluating Alaska’s strategic and critical minerals potential and together created a Letter of Agreement (signed December 2012) and a supplementary Technical Assistance Agreement (#14CMTAA143458) to facilitate the two agencies’ cooperative work. Under these agreements, DGGS contracted the USGS in Denver to reanalyze historical USGS sediment samples from Alaska. For this report, DGGS funded reanalysis of 653 historical USGS sediment samples from the statewide Alaska Geochemical Database Version 2.0 (AGDB2; Granitto and others, 2013). Samples were chosen from an area covering portions of the Inmachuk, Kugruk, Kiwalik, and Koyuk river drainages, Granite Mountain, and the northern Darby Mountains, located in the Bendeleben, Candle, Kotzebue, and Solomon quadrangles of eastern Seward Peninsula, Alaska (fig. 1). The USGS was responsible for sample retrieval from the National Geochemical Sample Archive (NGSA) in Denver, Colorado through the final quality assurance/quality control (QA/QC) of the geochemical analyses obtained through the USGS contract

  15. High-frequency, long-duration water sampling in acid mine drainage studies: a short review of current methods and recent advances in automated water samplers

    Science.gov (United States)

    Chapin, Thomas

    2015-01-01

    Hand-collected grab samples are the most common water sampling method but using grab sampling to monitor temporally variable aquatic processes such as diel metal cycling or episodic events is rarely feasible or cost-effective. Currently available automated samplers are a proven, widely used technology and typically collect up to 24 samples during a deployment. However, these automated samplers are not well suited for long-term sampling in remote areas or in freezing conditions. There is a critical need for low-cost, long-duration, high-frequency water sampling technology to improve our understanding of the geochemical response to temporally variable processes. This review article will examine recent developments in automated water sampler technology and utilize selected field data from acid mine drainage studies to illustrate the utility of high-frequency, long-duration water sampling.

  16. Some results of NURE uranium geochemical studies

    International Nuclear Information System (INIS)

    Price, V. Jr.

    1979-01-01

    Some technical developments of the National Uranium Resource Evaluation Program which are of general application in geochemical exploration are being studied. Results of stream water and suspended and bottom sediment analyses are compared for an area near Williamsport, Pennsylvania. Variations of uranium content of water samples with time in the North Carolina Piedmont are seen to correlate with rainfall. Ground water samples from coastal and piedmont areas were analyzed for helium. All media sampled provide useful information when properly analyzed and interpreted as part of a total geological analysis of an area

  17. Geochemical characteristics of cave drip water respond to ENSO based on a 6-year monitoring work in Yangkou Cave, Southwest China

    Science.gov (United States)

    Chen, Chao-Jun; Li, Ting-Yong

    2018-06-01

    The scientific explanation of speleothem δ18O in Chinese monsoon region is a greatly debated issue. Modern cave monitoring combined with instrument observation maybe is an essential solution to deal with this issue. During the period from 2011 to 2016, we monitored local precipitation, soil water in three soil profiles, and six drip water sites in Yangkou Cave, which is located in Chongqing City, Southwest China. This article presents measurements about δ18O, δD and Mg/Ca ratios of drip water and compared these geochemical proxies with contemporaneous atmospheric circulations. The main conclusions are: (1) As water migrates from precipitation to soil water to cave drip water, the amplitudes of seasonal variations in δD and δ18O decreased gradually. Due to the existence of complex hydrogeological conditions, the range of variation and the seasonal characteristics of δD and δ18O differ among the drip sites where samples were collected, but the interannual variability is nearly the same. The drip water Mg/Ca ratios are mainly regulated by changes in hydrological conditions in the epikarst zone, with higher values during winter months than that during summer months. (2) When an El Niño event occurs, the Western Pacific Subtropical High (WPSH) is migrated westward, and the production of near-source water vapor from the western Pacific and the South China Sea increases, leading to higher δ18O values in the precipitation and the cave drip water. The drip water Mg/Ca ratios were significantly lower with increased summer precipitation. On the other hand, during La Niña events, the WPSH is migrated eastward, and inputs of water vapor that has traveled greater distances (from the Indian Ocean) become comparatively important, resulting in lower δ18O values in the precipitation and the cave drip water. The drip water Mg/Ca ratios were higher with decreased summer precipitation. In summary, the interannual variability of δ18O in the drip waters of Yangkou Cave

  18. Water evaporation: a transition path sampling study.

    Science.gov (United States)

    Varilly, Patrick; Chandler, David

    2013-02-07

    We use transition path sampling to study evaporation in the SPC/E model of liquid water. On the basis of thousands of evaporation trajectories, we characterize the members of the transition state ensemble (TSE), which exhibit a liquid-vapor interface with predominantly negative mean curvature at the site of evaporation. We also find that after evaporation is complete, the distributions of translational and angular momenta of the evaporated water are Maxwellian with a temperature equal to that of the liquid. To characterize the evaporation trajectories in their entirety, we find that it suffices to project them onto just two coordinates: the distance of the evaporating molecule to the instantaneous liquid-vapor interface and the velocity of the water along the average interface normal. In this projected space, we find that the TSE is well-captured by a simple model of ballistic escape from a deep potential well, with no additional barrier to evaporation beyond the cohesive strength of the liquid. Equivalently, they are consistent with a near-unity probability for a water molecule impinging upon a liquid droplet to condense. These results agree with previous simulations and with some, but not all, recent experiments.

  19. Geochemical and Geophysical Study in a Degraded Area Used for Disposal of Sludge from a Water Treatment Plant

    International Nuclear Information System (INIS)

    Moreira, R.C.A.; Nunes, S.A.; Da Silva, D.R.; Lira, C.P.; Boaventura, G.R.; Do Nascimento, C.T.C.; Moreira, R.C.A.; Pinheiro, L.A.

    2011-01-01

    The effects of disposal of sludge from water treatment plant (WTS) in area damaged by laterite extraction and its consequences to soil and groundwater were investigated. Therefore, the presence and concentration of anthropogenic elements and chemical compounds were determinated. WTS disposal's influence was characterized by electroresistivity method. The WTS's geochemical dispersion was noticed in the first meters of the non saturated zone from the lending area. Lateritic profiles were characterized due to the large variation in chemical composition between the horizons. Infiltration and percolation of rainwater through the WTS have caused migration of total dissolved solids to the groundwater. WTS's disposing area has more similarities to local preserved vegetation than to gravel bed area. WTS can be considered a noninert residue if disposed in degraded areas located in regions with similar geological and hydrochemical characteristics.

  20. Hydro-geochemical and isotopic composition of ground water in Helwan area

    Directory of Open Access Journals (Sweden)

    W.M. Salem

    2015-12-01

    The environmental stable isotopes oxygen and hydrogen (18O, and deuterium were studied and used to identify the sources of recharge. The studied ground waters are enriched in D and 18O and the isotopic features suggest that most of the ground water recharged indirectly after evaporation prior to infiltration from irrigation return water as well as the contribution from Nile water.

  1. Meteoric diagenesis of Upper Cretaceous and Paleocene-Eocene shallow-water carbonates in the Kruja Platform (Albania): geochemical evidence

    Science.gov (United States)

    Heba, Grigor; Prichonnet, Gilbert; El Albani, Abderrazak

    2009-04-01

    In the central part of the Kruja Platform (Albania) located in the Apulian passive margin, geochemical analyses (calcimetry, Sr, REE and isotopic, δ13C and δ18O) coupled with sedimentological and sequence stratigraphic study were carried out on Upper Cretaceous (CsB4, CsB5, CsB6 Biozones) and Paleocene to Middle Eocene shallow-water carbonates that crop out in the Kruje-Dajt massif (L'Escalier section) and Makareshi massif (La Route section). The lower values in Sr contents, the homogeneous δ18O values in both sections and the covariance between δ13C and δ18O values (La Route section) are attributed to diagenesis influence by a meteoric water-buffer system, supported by petrographic observations. Moreover, a new exposure surface during the Late Cretaceous time (between CsB5 and CsB6 Biozones) may be proposed according to the low or negative excursions of Sr values, the negative excursions of isotopic values in both sections and a positive peak of normalized REE values (La Route section). These variations correlate with the geochemical signal reported by the decreasing strontium isotope values of rudist shells in the Island of Brač carbonate platform (Apulia domain) during the late Middle Campanian (77.3 Ma). Also, this continental exposure is consistent with the global sea-level fall reported from the Boreal Realm, North Atlantic, and the southern Tethyan margin. This geochemical evidence is a complementary tool for the sedimentological analysis and suggests a maximum regression (a sea-level fall) at the transition between the CsB5 and CsB6 Biozones. The high values of Sr content in Middle Eocene carbonates (L'Escalier section) reflect changes in depositional environment from restricted to open marine conditions. REE values increase through transgressive systems tract, characterized by small increase of detrital input. However, anomalies of certain values in both sections suggest disturbances linked either to the changes in clay input and to diagenetic

  2. Geochemical exploration for uranium

    International Nuclear Information System (INIS)

    Rose, A.W.

    1977-01-01

    The processes and types of dispersion that produce anomalies in stream water, stream sediment, and ground water, and the factors that must be considered in planning and interpreting geochemical surveys are reviewed. Examples of surveys near known deposits show the types of results to be expected. Background values depend mainly on the content of U in rocks of the drainage area. In igneous rocks, U tends to increase with potassium from ultramafic rocks (0.01 ppM) to granitic rocks (1 to 5 ppM). Some alkalic rocks have unusually high contents of U (15 to 100 ppM). Uranium-rich provinces marked by igneous rocks unusually rich in U are recognized in several areas and appear to have a deep crustal or mantle origin. In western U.S., many tertiary tuffaceous rocks have a high U content. Sandstones, limestones, and many shales approximate the crustal abundance at 0.5 to 4 ppM, but black shales, phosphates, and some organic materials are notably enriched in U. Uranium is very soluble in most oxidizing waters at the earth's surface, but is precipitated by reducing agents (organic matter, H 2 S) and adsorbed by organic material and some Fe oxides. In most surface and ground waters, U correlates approximately with the total dissolved solids, conductivity, and bicarbonate concentration of the water, and with the U content of rocks it comes into contact with. Most surveys of stream water near known districts show distinct anomalies extending a few km to tens of km downstream. A complication with water is the large variability with time, up to x 50, as a result of changes in the ratio of ground water to direct runoff, and changes in rate of oxidation and leaching. Collection and analysis of water samples also pose some difficulties

  3. Geochemical baseline studies and relations between water quality and streamflow in the upper Blackfoot Watershed, Montana: data for July 1997-December 1998

    Science.gov (United States)

    Nagorski, Sonia A.; Moore, Johnnie N.; Smith, David B.

    2001-01-01

    We used ultraclean sampling techniques to study the solute (operationally defined as water geochemistry at five sites along the Upper Blackfoot River and four sites along the Landers Fork, some in more detail and more regularly than others. We collected samples also from Hogum Creek, a tributary to the Blackfoot, from Copper Creek, a tributary to the Landers Fork, and from ground water seeps contributing to the flow along the Landers Fork. To better define the physical dynamics of the hydrologic system and to determine geochemical loads, we measured streamflow at all the sites where we took samples for water quality analysis. The Upper Blackfoot River, which drains historic mines ca. 20 Km upstream of the study area, had higher trace metal concentrations than did the Landers Fork, which drains the pristine Scapegoat Wilderness area. In both rivers, many of the major elements were inversely related to streamflow, and at some sites, several show a hysteresis effect in which the concentrations were lower on the rising limb of the hydrograph than on the falling limb. However, many of the trace elements followed far more irregular trends, especially in the Blackfoot River. Elements such as As, Cu, Fe, Mn, S, and Zn exhibited complex and variable temporal patterns, which included almost no response to streamflow differences, increased concentrations following a summer storm and at the start of snowmelt in the spring, and/or increased concentrations throughout the course of spring runoff. In summary, complex interactions between the timing and magnitude of streamflow with physical and chemical processes within the watershed appeared to greatly influence the geochemistry at the sites, and streamflow values alone were not good predictors of solute concentrations in the rivers.

  4. Mineralogical and geochemical characterization of the Old Tailings Dam, Australia: Evaluating the effectiveness of a water cover for long-term AMD control

    International Nuclear Information System (INIS)

    Jackson, Laura M.; Parbhakar-Fox, Anita

    2016-01-01

    Establishing a shallow water cover over tailings deposited in a designated storage facility is one option to limit oxygen diffusion and retard oxidation of sulfides which have the potential to form acid mine drainage (AMD). The Old Tailings Dam (OTD) located at the Savage River mine, western Tasmania contains 38 million tonnes of pyritic tailings deposited from 1967 to 1982, and is actively generating AMD. The OTD was constructed on a natural gradient, resulting in sub-aerial exposure of the southern area, with the northern area under a natural water cover. This physical contrast allowed for the examination of tailings mineralogy and geochemistry as a function of water cover depth across the OTD. Tailings samples (n = 144, depth: ≤ 1.5 m) were collected and subjected to a range of geochemical and mineralogical evaluations. Tailings from the southern and northern extents of the OTD showed similar AMD potential based on geochemical (NAG pH range: 2.1 to 4.2) and bulk mineralogical parameters, particularly at depth. However, sulfide alteration index (SAI) assessments highlighted the microscale contrast in oxidation. In the sub-aerial zone pyrite grains are moderately oxidized to a depth of 0.3 m (maximum SAI of 6/10), under both gravel fill and oxidized covers, with secondary minerals (e.g., ferrihydrite and goethite) developed along rims and fractures. Beneath this, mildly oxidized pyrite is seen in fresh tailings (SAI = 2.9/10 to 5.8/10). In the sub-aqueous zone, the degree of pyrite oxidation demonstrates a direct relationship with cover depth, with unoxidized, potentially reactive tailings identified from 2.5 m, directly beneath an organic-rich sediment layer (SAI = 0 to 1/10). These findings are broadly similar to other tailings storage facilities e.g., Fox Lake, Sherritt-Gordon Zn−Cu mine, Canada and Stekenjokk mine, Sweden where water covers up to 2 m have successfully reduced AMD. Whilst geotechnical properties of the OTD restrict the extension

  5. Stable sulfur and oxygen isotopes as geochemical tracers of sulfate in karst waters

    Science.gov (United States)

    Sun, Jing; Kobayashi, Tatsuaki; Strosnider, William H. J.; Wu, Pan

    2017-08-01

    Karst water resources, which are extremely sensitive to mining activities, are critical for the support of human societies and ecological systems in many regions worldwide. In order to determine the sources and fate of dissolved sulfate in low-pH karst waters, hydrochemical variations of karst waters with and without acid mine drainage (AMD) impacts were investigated along with stable isotope dynamics. As expected, hydrochemical characteristics and isotopic compositions of the AMD and AMD-downstream water (ADW) were dramatically different from that of the non-AMD-impacted water (NAW). The sources of sulfur isotopes in sulfate were predominantly pyrite oxidation for the AMD and ADW, and atmospheric deposition for the NAW. Based on the general isotope-balance model, the relative proportions of sulfate oxygen derived from water and air were calculated. The mean proportion of sulfate oxygen derived from water in ADW was roughly double that of AMD. This suggests that the sulfate associated with AMD is predominantly influenced by aerobic pyrite oxidation, while that of ADW is likely affected by the dissolution of pyrite under anaerobic conditions in reservoir sediment. This observation was coincident with the noted variations of hydrochemical characteristics and was supported by principal component analysis. These results provide a better understanding of how stable isotopes of sulfate and water can be used to track mining contamination in karst aquifers, which could benefit remediation planning for these distinctive systems.

  6. Behaviour of uranium series radionuclides in surface water (Crouzille, Limousin). Geochemical implications

    International Nuclear Information System (INIS)

    Moulin, J.

    2008-06-01

    Understanding natural radionuclides behaviour in surface water is a required step to achieve uranium mine rehabilitation and preserve water quality. The first objective of this thesis is to determine which are the radionuclides sources in a drinking water reservoir. The second objective is to improve the knowledge about the behaviour of uranium series radionuclides, especially actinium. The investigated site is a brook (Sagnes, Limousin, France) which floods a peat bog contaminated by a former uranium mine and which empties into the Crouzille lake. It allows studying radionuclides transport in surface water and radionuclides retention through organic substance or water reservoir. Radionuclides distribution in particulate, colloidal and dissolved phases is determined thanks to ultra-filtrations. Gamma spectrometry allows measuring almost all natural radionuclides with only two counting stages. However, low activities of 235 U series radionuclides impose the use of very low background well-type Ge detectors, such as those of the Underground Laboratory of Modane (France). Firstly, this study shows that no or few radionuclides are released by the Sagnes peat bog, although its radioactivity is important. Secondly, it provides details on the behaviour of uranium series radionuclides in surface water. More specifically, it provides the first indications of actinium solubility in surface water. Actinium's behaviour is very close to uranium's even if it is a little less soluble. (author)

  7. Isotopic and geochemical evidence of recharge sources and water quality in the Quaternary aquifer beneath Jinchang city, NW China

    International Nuclear Information System (INIS)

    Ma Jinzhu; Pan Feng; Chen Lihua; Edmunds, W. Mike; Ding Zhenyu; He Jianhua; Zhou Kunpeng; Huang Tianming

    2010-01-01

    Multiple isotopic and hydrogeochemical tracers were utilized to understand the recharge sources and geochemical evolution of groundwater in the Quaternary aquifer beneath Jinchang city and the adjacent Gobi desert area. The groundwater shows markedly depleted stable isotopic composition compared to modern rainfall. The signature of groundwaters from Jinchang and the northern Gobi desert area differ clearly from that of the alluvial fan in the south Yongchang basin and modern rainfall, and has lower or non-detectable 3 H activity, implying that the aquifer is likely maintained by palaeowater. This groundwater in the Gobi desert has a 14 C age older than 12 ka, indicating that the groundwater resources are non-renewable. The build-up of dissolved solids through evaporation is a major control on groundwater composition, and the dominant anion species change systematically from HCO 3 - , SO 4 2- to Cl - , but cations from weathering of albite, calcite, dolomite and gypsum also make a significant contribution. The scientific results have important implications for groundwater management in Jinchang city and as well as in the Shiyang River basin under China's West Development Strategy. It is recommended that the water allocation program of diverting water from the Dongda river to the Minqin basin be reconsidered.

  8. Geochemical records of salt-water inflows into the deep basins of the Baltic Sea

    DEFF Research Database (Denmark)

    Neumann, T.; Christiansen, C.; Clasen, S.

    1997-01-01

    The estuarine circulation system of the Baltic Sea promotes stable stratification and bottom water anoxia in sedimentary basins of the Baltic proper. Ingressions of saline, oxygen-rich waters from the North Sea replace the oxygen depleted deep water. Timing and extent of the ingressions vary...... on time-scales of years to decades, and are largely determined by wind-strength and storm frequency over the North Atlantic Ocean and Europe. Mn/Fe-ratios in sediments from a dated sediment core of the Gotland Deep (250 m water depth) record variations in redox conditions that can be linked to historical......-pressure areas over the North Atlantic in more recent times. The last three events have also been observed by hydrographic measurements. During the long time stagnation periods, Fe and Mn will be segregated into a particulate phase (iron sulfide) which accumulates at the seafloor and a dissolved phase (Mn2...

  9. Geochemical and strontium isotope characterization of produced waters from Marcellus Shale natural gas extraction.

    Science.gov (United States)

    Chapman, Elizabeth C; Capo, Rosemary C; Stewart, Brian W; Kirby, Carl S; Hammack, Richard W; Schroeder, Karl T; Edenborn, Harry M

    2012-03-20

    Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of ~375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (ε(Sr)(SW) = +13.8 to +41.6, where ε(Sr) (SW) is the deviation of the (87)Sr/(86)Sr ratio from that of seawater in parts per 10(4)); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.

  10. Investigation of geochemical characteristics of some natural water systems by nondestructive radioactivation analysis

    International Nuclear Information System (INIS)

    Draskovic, R.

    1977-01-01

    In this thesis the new theoretical and systematized approaches to the investigation of continental water systems (rivers, lakes, swamps etc) with the aim of its biogeochemical characterization are given and discussed. By nondestructive radioactivation analysis some elements (Cr, Fe, Co, Sb, Sc, Na acro and trace elements level) in components of investigated water system are determined. These elements has been determined in materials dissolved in water, suspended and bed materials, soils and the living matter populating the rivers systems Danube, Sava, V.Morava, Tisa, Karas and some lakes also (plankton, algae, benthos, crustacea, benthos, shalls and fishes) in Yugoslavia. The results are presented and discussed on the basis of parameters ''content of elements'' (new theoretical approaches) for these systems (Csub(w)-water; Csub(s)-suspended and bed materials; Csub(t)-soils; Csub(vivo)-living matter: plankton - Csub(p); aglae - Csub(al); benthos - Csub(b); crustacea - Csub(c); fishes - Csub(f)) expressed in ppm. Distribution on parameters (Fsub(x,y)) for the pairs of components of water systems also are given. The ''contents of elements'' - parameters are biogeochemical standards characterizing investigated water systems and ecological and environmental important parameters, too

  11. Enzyme leaching of surficial geochemical samples for detecting hydromorphic trace-element anomalies associated with precious-metal mineralized bedrock buried beneath glacial overburden in northern Minnesota

    Science.gov (United States)

    Clark, Robert J.; Meier, A.L.; Riddle, G.; ,

    1990-01-01

    One objective of the International Falls and Roseau, Minnesota, CUSMAP projects was to develop a means of conducting regional-scale geochemical surveys in areas where bedrock is buried beneath complex glacially derived overburden. Partial analysis of B-horizon soils offered hope for detecting subtle hydromorphic trace-element dispersion patterns. An enzyme-based partial leach selectively removes metals from oxide coatings on the surfaces of soil materials without attacking their matrix. Most trace-element concentrations in the resulting solutions are in the part-per-trillion to low part-per-billion range, necessitating determinations by inductively coupled plasma/mass spectrometry. The resulting data show greater contrasts for many trace elements than with other techniques tested. Spatially, many trace metal anomalies are locally discontinuous, but anomalous trends within larger areas are apparent. In many instances, the source for an anomaly seems to be either basal till or bedrock. Ground water flow is probably the most important mechanism for transporting metals toward the surface, although ionic diffusion, electrochemical gradients, and capillary action may play a role in anomaly dispersal. Sample sites near the Rainy Lake-Seine River fault zone, a regional shear zone, often have anomalous concentrations of a variety of metals, commonly including Zn and/or one or more metals which substitute for Zn in sphalerite (Cd, Ge, Ga, and Sn). Shifts in background concentrations of Bi, Sb, and As show a trend across the area indicating a possible regional zoning of lode-Au mineralization. Soil anomalies of Ag, Co, and Tl parallel basement structures, suggesting areas that may have potential for Cobalt/Thunder Baytype silver viens. An area around Baudette, Minnesota, which is underlain by quartz-chlorite-carbonate-altered shear zones, is anomalous in Ag, As, Bi, Co, Mo, Te, Tl, and W. Anomalies of Ag, As, Bi, Te, and W tend to follow the fault zones, suggesting potential

  12. Ground-water sampling of the NNWSI (Nevada Nuclear Waste Storage Investigation) water table test wells surrounding Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Matuska, N.A.

    1988-12-01

    The US Geological Survey (USGS), as part of the Nevada Nuclear Waste Storage Investigation (NNWSI) study of the water table in the vicinity of Yucca Mountain, completed 16 test holes on the Nevada Test Site and Bureau of Land Management-administered lands surrounding Yucca Mountain. These 16 wells are monitored by the USGS for water-level data; however, they had not been sampled for ground-water chemistry or isotropic composition. As part of the review of the proposed Yucca Mountain high-level nuclear waste repository, the Desert Research Institute (DRI) sampled six of these wells. The goal of this sampling program was to measure field-dependent parameters of the water such as electrical conductivity, pH, temperature and dissolved oxygen, and to collect samples for major and minor element chemistry and isotopic analysis. This information will be used as part of a program to geochemically model the flow direction between the volcanic tuff aquifers and the underlying regional carbonate aquifer

  13. Contribution of isotopic and geochemical tracers to the administration of water resources: the strontium case

    International Nuclear Information System (INIS)

    Verdoux, P.; Lancelot, J.; Faillat, J.P.

    1995-01-01

    A better understanding of groundwater origin(s) and a quantitative and qualitative evaluation of exploited resources is a preliminary condition for rational administration and preventive actions. The determination of Sr contents and isotopic compositions associated or not to other elements is a new method applied in underground domains which has proven to be effective for example in Languedoc-Rousillon, particularly in areas where classical natural and even artificial tracers are unreliable. The use of 87 Sr/ 86 Sr tracer is based on the condition that each analysed rock-system is defined by a typical isotopic composition. In the Cevennes and Lozere, sedimentary carbonate rocks display 87 Sr/ 86 Sr ratios ranging from 0.707 to 0.709, similar to those of seawater,while silicate rocks exhibit values from 0.710 to 0.750, depending on Rb/Sr ratios, ages and resistance of the different minerals to weathering processes. Sr data obtained in the Lozere suggest important binary mixing of water between an homogeneous end member representing the composition of water flowing on the crystalline basement and a second component corresponding to water from karstic springs and to captive waters of the lower aquifer reached at 200 m in depth by borehole. Calculated mixing curves between the basement and the karstic water end members would allow to define the nature and volumetric importance of storage and to evaluate pollution risks. (J.S.). 17 refs., 9 figs., 3 tabs

  14. MININR: a geochemical computer program for inclusion in water flow models - an application study

    Energy Technology Data Exchange (ETDEWEB)

    Felmy, A.R.; Reisenauer, A.E.; Zachara, J.M.; Gee, G.W.

    1984-02-01

    MININR is a reduced form of the computer program MINTEQ which calculates equilibrium precipitation/dissolution of solid phases, aqueous speciation, adsorption, and gas phase equilibrium. The user-oriented features in MINTEQ were removed to reduce the size and increase the computational speed. MININR closely resembles the MINEQL computer program developed by Westall (1976). The main differences between MININR and MINEQL involve modifications to accept an initial starting mass of solid and necessary changes for linking with a water flow model. MININR in combination with a simple water flow model which considers only dilution was applied to a laboratory column packed with retorted oil shale and percolated with distilled water. Experimental and preliminary model simulation results are presented for the constituents K/sup +/, Na/sup +/, SO/sub 4//sup 2 -/, Mg/sup 2 +/, Ca/sup 2 +/, CO/sub 3//sup 2 -/ and pH.

  15. Geochemical behavior of 210Pb and 210Po in the nearshore waters off western Taiwan

    International Nuclear Information System (INIS)

    Wei, Ching-Ling; Lin, Shiao-Yu; Wen, Liang-Saw; Sheu, David D.-D.

    2012-01-01

    Highlights: ► 210 Pb and 210 Po in the nearshore waters were determined off western coast of Taiwan. ► Partitioning of the radionuclides in turbid waters was discussed. ► Removal flux of particulate organic carbon was quantified using 210 Po proxy. - Abstract: Dissolved and particulate 210 Pb and 210 Po were determined at 15 stations along the coastline off western Taiwan in April 2007. The 210 Pb activities in dissolved and particulate phases fell within a relatively small range of 2.4–5.2 dpm 100 L −1 and 1.0–3.2 dpm 100 L −1 , respectively. The dissolved and particulate 210 Po activities also fell within a small range of 0.8–3.4 dpm 100 L −1 and 1.1–2.9 dpm 100 L −1 , respectively. The correlation of the distribution coefficients (K d ) of 210 Pb and 210 Po with particle concentration in turbid waters are not as evident as in the open ocean. The mass balance calculation shows that the residence times of 210 Pb and 210 Po with respect to particle removal from the nearshore waters ranges from 3 to 15 days and from 14 to 125 days, respectively. The flux of particulate organic carbon was estimated by 210 Po proxy and ranged from 4.8 to 33.7 mmol-C m −2 d −1 .

  16. Investigating geochemical aspects of managed aquifer recharge by column experiments with alternating desalinated water and groundwater.

    Science.gov (United States)

    Ronen-Eliraz, Gefen; Russak, Amos; Nitzan, Ido; Guttman, Joseph; Kurtzman, Daniel

    2017-01-01

    Managed aquifer recharge (MAR) events are occasionally carried out with surplus desalinated seawater that has been post-treated with CaCO 3 in infiltration ponds overlying the northern part of the Israeli Coastal Aquifer. This water's chemical characteristics differ from those of any other water recharged to the aquifer and of the natural groundwater. As the MAR events are short (hours to weeks), the sediment under the infiltration ponds will intermittently host desalinated and natural groundwater. As part of comprehensive research on the influence of those events, column experiments were designed to simulate the alternation of the two water types: post-treated desalinated seawater (PTDES) and natural groundwater (GW). Each experiment included three stages: (i) saturation with GW; (ii) inflow of PTDES; (iii) inflow of GW. Three runs were conducted, each with different sediments extracted from the field and representing a different layer below the infiltration pond: (i) sand (<1% CaCO 3 ), (ii) sand containing 7% CaCO 3 , and (iii) crushed calcareous sandstone (35% CaCO 3 ). The results from all columns showed enrichment of K + and Mg 2+ (up to 0.4meq/L for 20 pore volumes) when PTDES replaced GW, whereas an opposite trend of Ca 2+ depletion (up to 0.5meq/L) was observed only in the columns that contained a high percentage of CaCO 3 . When GW replaced PTDES, depletion of Mg 2+ and K + was noted. The results indicated that adsorption/desorption of cations are the main processes causing the observed enrichment/depletion. It was concluded that the high concentration of Ca 2+ (relative to the total concentration of cations) and the low concentration of Mg 2+ in the PTDES relative to natural GW are the factors controlling the main sediment-water interaction. The enrichment of PTDES with Mg 2+ may be viewed as an additional post-treatment. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. UMTRA project water sampling and analysis plan, Maybell, Colorado

    International Nuclear Information System (INIS)

    1994-06-01

    This water sampling and analysis plan (WSAP) describes planned water sampling activities and provides the regulatory and technical basis for ground water sampling in 1994 at the US Department of Energy's (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site in Maybell, Colorado. The WSAP identifies and justifies sampling locations, analytical parameters, and sampling frequencies at the site. The ground water data will be used for site characterization and risk assessment. The regulatory basis for the ground water and surface water monitoring activities is derived from the EPA regulations in 40 CFR Part 192 (1993) and the proposed EPA standards of 1987 (52 FR 36000). Sampling procedures are guided by the UMTRA Project standard operating procedures (SOP) (JEG, n.d.), the Technical Approach Document (TAD) (DOE, 1989), and the most effective technical approach for the site. This WSAP also includes a summary and the results of water sampling activities from 1989 through 1992 (no sampling was performed in 1993)

  18. Geochemical analysis of atlantic rim water, carbon county, wyoming: New applications for characterizing coalbed natural gas reservoirs

    Science.gov (United States)

    McLaughlin, J.F.; Frost, C.D.; Sharma, Shruti

    2011-01-01

    Coalbed natural gas (CBNG) production typically requires the extraction of large volumes of water from target formations, thereby influencing any associated reservoir systems. We describe isotopic tracers that provide immediate data on the presence or absence of biogenic natural gas and the identify methane-containing reservoirs are hydrologically confined. Isotopes of dissolved inorganic carbon and strontium, along with water quality data, were used to characterize the CBNG reservoirs and hydrogeologic systems of Wyoming's Atlantic Rim. Water was analyzed from a stream, springs, and CBNG wells. Strontium isotopic composition and major ion geochemistry identify two groups of surface water samples. Muddy Creek and Mesaverde Group spring samples are Ca-Mg-S04-type water with higher 87Sr/86Sr, reflecting relatively young groundwater recharged from precipitation in the Sierra Madre. Groundwaters emitted from the Lewis Shale springs are Na-HCO3-type waters with lower 87Sr/86Sr, reflecting sulfate reduction and more extensive water-rock interaction. To distinguish coalbed waters, methanogenically enriched ??13CDIC wasused from other natural waters. Enriched ??13CDIC, between -3.6 and +13.3???, identified spring water that likely originates from Mesaverde coalbed reservoirs. Strongly positive ??13CDIC, between +12.6 and +22.8???, identified those coalbed reservoirs that are confined, whereas lower ??13CDIC, between +0.0 and +9.9???, identified wells within unconfined reservoir systems. Copyright ?? 2011. The American Association of Petroleum Geologists. All rights reserved.

  19. UMTRA water sampling and analysis plan, Green River, Utah

    International Nuclear Information System (INIS)

    Papusch, R.

    1993-12-01

    The purpose of this water sampling and analysis plan (WSAP) is to provide a basis for groundwater and surface water sampling at the Green River Uranium Mill Tailing Remedial Action (UMTRA) Project site. This WSAP identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequency for the monitoring locations

  20. Use of Tesla NZK 203 neutron probe in studying water as geochemical factor in weathering zone

    International Nuclear Information System (INIS)

    Hally, J.

    1980-01-01

    The Tesla NZK 203 neutron moisture gage was used for determining soil moisture in depths of 1 and 2 meters in the Luha-Kacerov profile in the Zelivka water reservoir basin. The borehole spacing was 100 m. Measurements were made once a month between May and October 1978. The results were compared with the granulometric composition and the values of the specific surface areas of earths in the area. The Tesla NZK 203 moisture gage was fully proven for speedy measurement of volume moisture at constant measuring points. (Ha)

  1. Atmospheric pollution in the mediterranean area: geochemical studies of aerosols and rain waters

    International Nuclear Information System (INIS)

    Caboi, R.; Chester, R.

    1998-01-01

    It is now recognised that the atmosphere is a major pathway for the transport of material to the oceans. The material in the atmosphere is present as gaseous and particulate (aerosol) phases. Aerosols may be removed from the atmosphere by a combination of 'dry' (i.e. not involving an atmospheric aqueous phase) and 'wet' (precipitation scavenging) processes. Thus, aerosols are intimately related to rain waters, and interactions between the two are discusses below in relation to the input of material to the Mediterranean Sea

  2. Geochemical characterisation of seepage and drainage water quality from two sulphide mine tailings impoundments: Acid mine drainage versus neutral mine drainage

    Science.gov (United States)

    Heikkinen, P.M.; Raisanen, M.L.; Johnson, R.H.

    2009-01-01

    Seepage water and drainage water geochemistry (pH, EC, O2, redox, alkalinity, dissolved cations and trace metals, major anions, total element concentrations) were studied at two active sulphide mine tailings impoundments in Finland (the Hitura Ni mine and Luikonlahti Cu mine/talc processing plant). The data were used to assess the factors influencing tailings seepage quality and to identify constraints for water treatment. Changes in seepage water quality after equilibration with atmospheric conditions were evaluated based on geochemical modelling. At Luikonlahti, annual and seasonal changes were also studied. Seepage quality was largely influenced by the tailings mineralogy, and the serpentine-rich, low sulphide Hitura tailings produced neutral mine drainage with high Ni. In contrast, drainage from the high sulphide, multi-metal tailings of Luikonlahti represented typical acid mine drainage with elevated contents of Zn, Ni, Cu, and Co. Other factors affecting the seepage quality included weathering of the tailings along the seepage flow path, process water input, local hydrological settings, and structural changes in the tailings impoundment. Geochemical modelling showed that pH increased and some heavy metals were adsorbed to Fe precipitates after net alkaline waters equilibrated with the atmosphere. In the net acidic waters, pH decreased and no adsorption occurred. A combination of aerobic and anaerobic treatments is proposed for Hitura seepages to decrease the sulphate and metal loading. For Luikonlahti, prolonged monitoring of the seepage quality is suggested instead of treatment, since the water quality is still adjusting to recent modifications to the tailings impoundment.

  3. Geochemical Exploration Techniques Applicable in the Search for Copper Deposits

    Science.gov (United States)

    Chaffee, Maurice A.

    1975-01-01

    Geochemical exploration is an important part of copper-resource evaluation. A large number of geochemical exploration techniques, both proved and untried, are available to the geochemist to use in the search for new copper deposits. Analyses of whole-rock samples have been used in both regional and local geochemical exploration surveys in the search for copper. Analyses of mineral separates, such as biotite, magnetite, and sulfides, have also been used. Analyses of soil samples are widely used in geochemical exploration, especially for localized surveys. It is important to distinguish between residual and transported soil types. Orientation studies should always be conducted prior to a geochemical investigation in a given area in order to determine the best soil horizon and the best size of soil material for sampling in that area. Silty frost boils, caliche, and desert varnish are specialized types of soil samples that might be useful sampling media. Soil gas is a new and potentially valuable geochemical sampling medium, especially in exploring for buried mineral deposits in arid regions. Gaseous products in samples of soil may be related to base-metal deposits and include mercury vapor, sulfur dioxide, hydrogen sulfide, carbon oxysulfide, carbon dioxide, hydrogen, oxygen, nitrogen, the noble gases, the halogens, and many hydrocarbon compounds. Transported materials that have been used in geochemical sampling programs include glacial float boulders, glacial till, esker gravels, stream sediments, stream-sediment concentrates, and lake sediments. Stream-sediment sampling is probably the most widely used and most successful geochemical exploration technique. Hydrogeochemical exploration programs have utilized hot- and cold-spring waters and their precipitates as well as waters from lakes, streams, and wells. Organic gel found in lakes and at stream mouths is an unproved sampling medium. Suspended material and dissolved gases in any type of water may also be useful

  4. Statistical interpretation of geochemical data

    International Nuclear Information System (INIS)

    Carambula, M.

    1990-01-01

    Statistical results have been obtained from a geochemical research from the following four aerial photographies Zapican, Carape, Las Canias, Alferez. They have been studied 3020 samples in total, to 22 chemical elements using plasma emission spectrometry methods.

  5. Par Pond refill water quality sampling

    International Nuclear Information System (INIS)

    Koch, J.W. II; Martin, F.D.; Westbury, H.M.

    1996-08-01

    This study was designed to document anoxia and its cause in the event that the anoxia caused a fish kill. However, no fish kill was observed during this study, and dissolved oxygen and nutrient concentrations generally remained within the range expected for southeastern reservoirs. Par Pond water quality monitoring will continue during the second summer after refill as the aquatic macrophytes become reestablished and nutrients in the sediments are released to the water column

  6. Physico-chemical characteristics of water sample from Aiba Stream ...

    African Journals Online (AJOL)

    This study aimed at assessing the effectiveness of solar distillation in purification of water. The water sample collected from Aiba stream was subjected to double slope solar water distillation unit. The physico- chemical characteristics of the raw sample and the distillate were determined using standard methods. The.

  7. Iron, Sulfur, Arsenic and Water: Geochemical Implications of Facultative Anoxygenic Photosynthesis in Cyanobacteria and the Slow Rise of Oxygen

    Science.gov (United States)

    Wolfe-Simon, F.; Johnston, D. T.; Girguis, P. R.; Pearson, A.; Knoll, A. H.

    2008-12-01

    Over geologic time, the global rise in atmospheric oxygen (O2) is attributed to the evolution and wide spread proliferation of oxygenic photosynthesis in cyanobacteria. However, cyanobacteria maintain a metabolic flexibility that may not always result in O2 release. Specifically, cyanobacteria can use a variety of alternative electron donors, rather than water, that are also readily oxidized. These may include sulfur, iron, and arsenic. Cyanobacteria are thus not uniquely constrained towards O2 production. Changes in the bioavailability of these key elements may have had dramatic consequences for and resulted in the slow accumulation of O2 in the atmosphere. In particular, by using facultative anoxygenic photosynthesis the cells maintain advantageous anaerobic conditions for N2-fixation. Although other types of bacteria are capable of N2-fixation, cyanobacteria singularly possess the dynamic capability of generating and surviving O2. These two processes "pull" the cells in opposite directions, metabolically speaking, around an aerobic-anaerobic continuum. Such a strategy also confers a distinct competitive advantage for cyanobacteria over photosynthetic eukaryotes, as they can endure widespread euxinia and maintain their cellular N quota. In an anoxic and/or sulfidic ocean, cyanobacteria would be expected to dominate over eukaryotic algae. Here we present Bayesian constructed phylogenetic distribution of specific genes and the metabolic role of key enzymes that form the basis of this hypothesis. We further suggest that the consequences of this proposed ecosystem structure altered the redox balance of the fluid Earth (atmosphere and oceans) and can help explain the observed long-term geochemical stasis and slow rates of eukaryotic diversification. We suggest that the underlying control for global oxygenation was a synergistic interplay between the evolution and elastic physiology of cyanobacteria as they impacted the redox state of early Earth.

  8. Analysis of phthalate esters contamination in drinking water samples ...

    African Journals Online (AJOL)

    The optimum condition method was successfully applied to the analysis of phthalate esters contamination in bottled drinking water samples. The concentration of DMP, DEP and DBP in drinking water samples were below allowable levels, while the DEHP concentration in three samples was found to be greater than the ...

  9. Guidelines for sampling fish in inland waters

    National Research Council Canada - National Science Library

    Backiel, Tadeusz; Welcomme, R. L

    1980-01-01

    The book is addressed mainly to Fishery Biologists but it is hoped that Fishing Gear Technologists also can acquire some basic knowledge of sampling problems and procedures which, in turn, can result...

  10. UMTRA project water sampling and analysis plan -- Shiprock, New Mexico

    International Nuclear Information System (INIS)

    1994-02-01

    Water sampling and analysis plan (WSAP) is required for each U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site to provide a basis for ground water and surface water sampling at disposal and former processing sites. This WSAP identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequency for the monitoring stations at the Navaho Reservation in Shiprock, New Mexico, UMTRA Project site. The purposes of the water sampling at Shiprock for fiscal year (FY) 1994 are to (1) collect water quality data at new monitoring locations in order to build a defensible statistical data base, (2) monitor plume movement on the terrace and floodplain, and (3) monitor the impact of alluvial ground water discharge into the San Juan River. The third activity is important because the community of Shiprock withdraws water from the San Juan River directly across from the contaminated alluvial floodplain below the abandoned uranium mill tailings processing site

  11. Spectrophotometric Determination of Boron in Environmental Water Samples

    International Nuclear Information System (INIS)

    San San; Khin Win Kyi; Kwaw Naing

    2002-02-01

    The present paper deals with the study on the methods for the determination of boron in the environmental water samples. The standard methods which are useful for this determination are discussed thoroughly in this work. Among the standard methods approved by American Public Health Association, the carmine method was selected for this study. Prior to the determination of boron in the water samples, the precision and accuracy of the methods of choice were examined by using standard boron solutions. The determination of Boron was carried out by using water samples, waste water from Aquaculture Research Centre, University of Yangon, the Ayeyarwady River water near Magway Myathalon Pagoda in Magway Division, ground water from Sanchaung Township, and tap water from Universities' Research Centre, University of Yangon. Analyses of these water samples were done and statistical treatment of the results was carried out. (author)

  12. Robowell: An automated process for monitoring ground water quality using established sampling protocols

    Science.gov (United States)

    Granato, G.E.; Smith, K.P.

    1999-01-01

    Robowell is an automated process for monitoring selected ground water quality properties and constituents by pumping a well or multilevel sampler. Robowell was developed and tested to provide a cost-effective monitoring system that meets protocols expected for manual sampling. The process uses commercially available electronics, instrumentation, and hardware, so it can be configured to monitor ground water quality using the equipment, purge protocol, and monitoring well design most appropriate for the monitoring site and the contaminants of interest. A Robowell prototype was installed on a sewage treatment plant infiltration bed that overlies a well-studied unconfined sand and gravel aquifer at the Massachusetts Military Reservation, Cape Cod, Massachusetts, during a time when two distinct plumes of constituents were released. The prototype was operated from May 10 to November 13, 1996, and quality-assurance/quality-control measurements demonstrated that the data obtained by the automated method was equivalent to data obtained by manual sampling methods using the same sampling protocols. Water level, specific conductance, pH, water temperature, dissolved oxygen, and dissolved ammonium were monitored by the prototype as the wells were purged according to U.S Geological Survey (USGS) ground water sampling protocols. Remote access to the data record, via phone modem communications, indicated the arrival of each plume over a few days and the subsequent geochemical reactions over the following weeks. Real-time availability of the monitoring record provided the information needed to initiate manual sampling efforts in response to changes in measured ground water quality, which proved the method and characterized the screened portion of the plume in detail through time. The methods and the case study described are presented to document the process for future use.

  13. Geochemical modeling: a review

    International Nuclear Information System (INIS)

    Jenne, E.A.

    1981-06-01

    Two general families of geochemical models presently exist. The ion speciation-solubility group of geochemical models contain submodels to first calculate a distribution of aqueous species and to secondly test the hypothesis that the water is near equilibrium with particular solid phases. These models may or may not calculate the adsorption of dissolved constituents and simulate the dissolution and precipitation (mass transfer) of solid phases. Another family of geochemical models, the reaction path models, simulates the stepwise precipitation of solid phases as a result of reacting specified amounts of water and rock. Reaction path models first perform an aqueous speciation of the dissolved constituents of the water, test solubility hypotheses, then perform the reaction path modeling. Certain improvements in the present versions of these models would enhance their value and usefulness to applications in nuclear-waste isolation, etc. Mass-transfer calculations of limited extent are certainly within the capabilities of state-of-the-art models. However, the reaction path models require an expansion of their thermodynamic data bases and systematic validation before they are generally accepted

  14. Geochemical modeling: a review

    Energy Technology Data Exchange (ETDEWEB)

    Jenne, E.A.

    1981-06-01

    Two general families of geochemical models presently exist. The ion speciation-solubility group of geochemical models contain submodels to first calculate a distribution of aqueous species and to secondly test the hypothesis that the water is near equilibrium with particular solid phases. These models may or may not calculate the adsorption of dissolved constituents and simulate the dissolution and precipitation (mass transfer) of solid phases. Another family of geochemical models, the reaction path models, simulates the stepwise precipitation of solid phases as a result of reacting specified amounts of water and rock. Reaction path models first perform an aqueous speciation of the dissolved constituents of the water, test solubility hypotheses, then perform the reaction path modeling. Certain improvements in the present versions of these models would enhance their value and usefulness to applications in nuclear-waste isolation, etc. Mass-transfer calculations of limited extent are certainly within the capabilities of state-of-the-art models. However, the reaction path models require an expansion of their thermodynamic data bases and systematic validation before they are generally accepted.

  15. A comparison of geochemical exploration techniques and sample media within accretionary continental margins: an example from the Pacific Border Ranges, Southern Alaska, U.S.A.

    Science.gov (United States)

    Sutley, S.J.; Goldfarb, R.J.; O'Leary, R. M.; Tripp, R.B.

    1990-01-01

    The Pacific Border Ranges of the southern Alaskan Cordillera are composed of a number of allochthonous tectonostratigraphic terranes. Within these terranes are widespread volcanogenic, massive sulfide deposits in and adjacent to portions of accreted ophiolite complexes, bands and disseminations of chromite in accreted island-arc ultramafic rocks, and epigenetic, gold-bearing quartz veins in metamorphosed turbidite sequences. A geochemical pilot study was undertaken to determine the most efficient exploration strategy for locating these types of mineral deposits within the Pacific Border Ranges and other typical convergent continental margin environments. High-density sediment sampling was carried out in first- and second-order stream channels surrounding typical gold, chromite and massive sulfide occurrences. At each site, a stream-sediment and a panned-concentrate sample were collected. In the laboratory, the stream sediments were sieved into coarse-sand, fine- to medium-sand, and silt- to clay-size fractions prior to analysis. One split of the panned concentrates was retained for analysis; a second split was further concentrated by gravity separation in heavy liquids and then divided into magnetic, weakly magnetic and nonmagnetic fractions for analysis. A number of different techniques including atomic absorption spectrometry, inductively coupled plasma atomic emission spectrometry and semi-quantitative emission spectrography were used to analyze the various sample media. Comparison of the various types of sample media shows that in this tectonic environment it is most efficient to include a silt- to clay-size sediment fraction and a panned-concentrate sample. Even with the relatively low detection limits for many elements by plasma spectrometry and atomic absorption spectrometry, anomalies reflecting the presence of gold veins could not be identified in any of the stream-sediment fractions. Unseparated panned-concentrate samples should be analyzed by emission

  16. chemical and microbiological assessment of surface water samples

    African Journals Online (AJOL)

    PROF EKWUEME

    were investigated in this study: Nine samples from different surface water bodies, two samples from two effluent sources ... Ezeagu, Udi, Nkanu, Oji River and some parts of Awgu and Aninri ..... Study of Stream Output from Small Catchments.

  17. Preconcentration NAA for simultaneous multielemental determination in water sample

    International Nuclear Information System (INIS)

    Chatt, A.

    1999-01-01

    Full text: Environment concerns with water, air, land and their interrelationship viz., human beings, fauna and flora. One of the important environmental compartments is water. Elements present in water might face a whole lot of physico-chemical conditions. This poses challenges to measure their total concentrations as well as different species. Preconcentration of the elements present in water samples is a necessary requisites in water analysis. For multi elements concentration measurements, Neutron Activation Analysis (NAA) is one of the preferred analytical techniques due to its sensitivity and selectivity. In this talk preconcentration NAA for multielemental determination in water sample determination will be discussed

  18. Environmental-geochemical characteristics of Cu in the soil and water in copper-rich deposit area of southeastern Hubei Province, along the middle Yangtze River, Central China

    International Nuclear Information System (INIS)

    Zhang Ling; Wang Lu; Yin Kedong; Lv Ying; Zhang Derong

    2009-01-01

    In this study, the natural Cu background concentration and Cu natural and anthropogenic contamination in soil, water and crop were investigated systematically in Huangshi area. The results show that regional geology is the dominant factor controlling the natural Cu background concentration in soil and water, and that pH is important to control the vertical distribution of Cu in soil under the same geographical and climatic conditions. The mineralization of rock bodies causes the natural Cu increase in soil and water, whereas, a large number of mining-smelting plants and chemical works are the main sources of Cu anthropogenic contamination. Cu in naturally and anthropogenically polluted soil displays differences in total and available contents, vertical distribution patterns and physico-chemical properties, the same happens in water. - Consider the rock-soil-water-crop as a system to study the geochemical activities and environmental pollution of copper.

  19. Measurement of radioactivity in water samples

    International Nuclear Information System (INIS)

    Richards, L.

    1990-01-01

    Public concern about the levels of radioactivity release to the environment whether authorised discharges or resulting from nuclear accident, has increased in recent years. Consequently there is increasing pressure for reliable data on the distribution of radioactivity and the extent of its intrusion into food chains and water supplies. As a result a number of laboratories not experienced in radioactivity measurements have acquired nucleonic counting equipment. These notes explore the underlying basics and indicate sources of essential data and information which are required for a better understanding of radioactivity measurements. Particular attention is directed to the screening tests which are usually designated ''gross'' alpha and ''gross'' beta activity measurement. (author)

  20. Selenium isotope studies in plants. Development and validation of a novel geochemical tool and its application to organic samples

    Energy Technology Data Exchange (ETDEWEB)

    Banning, Helena

    2016-03-12

    Selenium (Se), being an essential nutrient and a toxin, enters the food chain mainly via plants. Selenium isotope signatures were proved to be an excellent redox tracer, making it a promising tool for the exploration of the Se cycle in plants. The analytical method is sensitive on organic samples and requires particular preparation methods, which were developed and validated in this study. Plant cultivation setups revealed the applicability of these methods to trace plant internal processes.

  1. PCR detection of Burkholderia multivorans in water and soil samples.

    Science.gov (United States)

    Peeters, Charlotte; Daenekindt, Stijn; Vandamme, Peter

    2016-08-12

    Although semi-selective growth media have been developed for the isolation of Burkholderia cepacia complex bacteria from the environment, thus far Burkholderia multivorans has rarely been isolated from such samples. Because environmental B. multivorans isolates mainly originate from water samples, we hypothesized that water rather than soil is its most likely environmental niche. The aim of the present study was to assess the occurrence of B. multivorans in water samples from Flanders (Belgium) using a fast, culture-independent PCR assay. A nested PCR approach was used to achieve high sensitivity, and specificity was confirmed by sequencing the resulting amplicons. B. multivorans was detected in 11 % of the water samples (n = 112) and 92 % of the soil samples (n = 25) tested. The percentage of false positives was higher for water samples compared to soil samples, showing that the presently available B. multivorans recA primers lack specificity when applied to the analysis of water samples. The results of the present study demonstrate that B. multivorans DNA is commonly present in soil samples and to a lesser extent in water samples in Flanders (Belgium).

  2. Microbial Condition of Water Samples from Foreign Fuel Storage Facilities

    International Nuclear Information System (INIS)

    Berry, C.J.

    1998-01-01

    In order to assess the microbial condition of foreign spent nuclear fuel storage facilities and their possible impact on SRS storage basins, twenty-three water samples were analyzed from 12 different countries. Fifteen of the water samples were analyzed and described in an earlier report (WSRC-TR-97-00365 [1]). This report describes nine additional samples received from October 1997 through March 1998. The samples include three from Australia, two from Denmark and Germany and one sample from Italy and Greece. Each water sample was analyzed for microbial content and activity as determined by total bacteria, viable aerobic bacteria, viable anaerobic bacteria, viable sulfate-reducing bacteria, viable acid-producing bacteria and enzyme diversity. The results for each water sample were then compared to all other foreign samples analyzed to date and monthly samples pulled from the receiving basin for off-site fuel (RBOF), at SRS. Of the nine samples analyzed, four samples from Italy, Germany and Greece had considerably higher microbiological activity than that historically found in the RBOF. This microbial activity included high levels of enzyme diversity and the presence of viable organisms that have been associated with microbial influenced corrosion in other environments. The three samples from Australia had microbial activities similar to that in the RBOF while the two samples from Denmark had lower levels of microbial activity. These results suggest that a significant number of the foreign storage facilities have water quality standards that allow microbial proliferation and survival

  3. Ground water chemistry and geochemical modeling of water-rock interactions at the Osamu Utsumi mine and the Morro do Ferro analogue study sites, Poços de Caldas, Minas Gerais, Brazil

    Science.gov (United States)

    Nordstrom, D. Kirk; McNutt, R.H.; Puigdomenech, I.; Smellie, John A.T.; Wolf, M.

    1992-01-01

    Surface and ground waters, collected over a period of three years from the Osamu Utsumi uranium mine and the Morro do Ferro thorium/rare-earth element (Th/REE) deposits, were analyzed and interpreted to identify the major hydrogeochemical processes. These results provided information on the current geochemical evolution of ground waters for two study sites within the Poços de Caldas Natural Analogue Project.

  4. Natural Radioactivity Pattern of Surabaya Water Environmental Samples

    International Nuclear Information System (INIS)

    Rosidi; Agus Taftazani

    2007-01-01

    The gross β radioactivity and natural radionuclide of Surabaya environmental samples pattern have been evaluated. The environmental samples were chosen randomly at 12 locations. The environment samples were water (fresh, estuary and coastal), sediment, eichhornia crassipes (Mart) Solms, Mangrove (Rhizophora stylosa), (Moolgarda delicatus) fish and (Johnius (Johnieops) borneensis) (Sharpnose hammer croaker) fish. The water sample was evaporated; the sediment sample was dried and ground; the biotic samples was burnt at the temperature 500 °C ; The gross β measurement using GM detector and the radionuclides has been identified by γ spectrometer. From the investigation results could be concluded that the natural radioactivity of environmental samples was very low. gross-β of water samples were lower than the threshold value of local government regulation of Surabaya no: 2 year 2004 (1 Bq/L). The distribution of gross-β activity of eichhornia crassipes (Mart) Solms was higher than the other biotic, water and sediment samples as well as the accumulation of radionuclides in the water organism was taken place. The result of identification using γ spectrometer has detected 7 of radionuclides, i.e 210 Pb, 212 Pb, 214 Pb, 208 Tl, 214 Bi, 228 Ac, and 40 K in all sample. The distribution factor of sediment F D was less than bioaccumulation factor of biotic F B and it indicates that there the radionuclide accumulation migration follows the pattern of water - sediment - biotic sample. (author)

  5. Sampling procedure, receipt and conservation of water samples to determine environmental radioactivity

    International Nuclear Information System (INIS)

    Herranz, M.; Navarro, E.; Payeras, J.

    2009-01-01

    The present document informs about essential goals, processes and contents that the subgroups Sampling and Samples Preparation and Conservation believe they should be part of the procedure to obtain a correct sampling, receipt, conservation and preparation of samples of continental, marine and waste water before qualifying its radioactive content.

  6. Radioactivity in waste water samples from COGEMA supplied by Greenpeace

    International Nuclear Information System (INIS)

    Reinen, H.A.J.M.; Kwakman, P.J.M.; Overwater, R.M.W.; Tax, R.B.; Nissan, L.A.

    1999-01-01

    The environmental organization Greenpeace sampled waste water from the reprocessing plant COGEMA in La Hague, France, in May 1999. On request of the Inspection Environmental Hygiene, The Dutch National Institute for Public Health and Environmental Protection (RIVM) determined the radioactivity of the waste water samples. 5 refs

  7. Determination of Phenols in Water Samples using a Supported ...

    African Journals Online (AJOL)

    The sample preparation method was tested for the determination of phenols in river water samples and landfill leachate. Concentrations of phenols in river water were found to be in the range 4.2 μg L–1 for 2-chlorophenol to 50 μg L–1 for 4-chlorophenol. In landfill leachate, 4-chlorophenol was detected at a concentration ...

  8. Measurement of 90Sr in fresh water samples

    International Nuclear Information System (INIS)

    Belanova, A.; Meresova, J.; Svetlik, I.; Tomaskova, L.

    2008-01-01

    This preliminary study show new experimental approach to the determination of the radionuclide 90 Sr in water samples. The new method of dynamic windows utilizing liquid scintillation counting was applied on model and surface water samples. Our results show the demand of separation technique with significantly higher yields. (authors)

  9. Sampling procedure for lake or stream surface water chemistry

    Science.gov (United States)

    Robert Musselman

    2012-01-01

    Surface waters collected in the field for chemical analyses are easily contaminated. This research note presents a step-by-step detailed description of how to avoid sample contamination when field collecting, processing, and transporting surface water samples for laboratory analysis.

  10. UMTRA project water sampling and analysis plan, Grand Junction, Colorado

    International Nuclear Information System (INIS)

    1994-07-01

    Surface remedial action will be completed at the Grand Junction processing site during the summer of 1994. Results of 1993 water sampling indicate that ground water flow conditions and ground water quality at the processing site have remained relatively constant with time. Uranium concentrations in ground water continue to exceed the maximum concentration limits, providing the best indication of the extent of contaminated ground water. Evaluation of surface water quality of the Colorado River indicate no impact from uranium processing activities. No compliance monitoring at the Cheney disposal site has been proposed because ground water in the Dakota Sandstone (uppermost aquifer) is classified as limited-use (Class 111) and because the disposal cell is hydrogeologically isolated from the uppermost aquifer. The following water sampling and water level monitoring activities are planned for calendar year 1994: (i) Semiannual (early summer and late fall) sampling of six existing monitor wells at the former Grand Junction processing site. Analytical results from this sampling will be used to continue characterizing hydrogeochemical trends in background ground water quality and in the contaminated ground water area resulting from source term (tailings) removal. (ii) Water level monitoring of approximately three proposed monitor wells projected to be installed in the alluvium at the processing site in September 1994. Data loggers will be installed in these wells, and water levels will be electronically monitored six times a day. These long-term, continuous ground water level data will be collected to better understand the relationship between surface and ground water at the site. Water level and water quality data eventually will be used in future ground water modeling to establish boundary conditions in the vicinity of the Grand Junction processing site. Modeling results will be used to help demonstrate and document the potential remedial alternative of natural flushing

  11. Reaction of Topopah Spring tuff with J-13 water: a geochemical modeling approach using the EQ3/6 reaction path code

    Energy Technology Data Exchange (ETDEWEB)

    Delany, J.M.

    1985-11-25

    EQ3/6 geochemical modeling code package was used to investigate the interaction of the Topopah Spring Tuff and J-13 water at high temperatures. EQ3/6 input parameters were obtained from the results of laboratory experiments using USW G-1 core and J-13 water. Laboratory experiments were run at 150 and 250{sup 0}C for 66 days using both wafer-size and crushed tuff. EQ3/6 modeling reproduced results of the 150{sup 0}C experiments except for a small increase in the concentration of potassium that occurs in the first few days of the experiments. At 250{sup 0}C, the EQ3/6 modeling reproduced the major water/rock reactions except for a small increase in potassium, similar to that noted above, and an overall increase in aluminum. The increase in potassium concentration cannot be explained at this time, but the increase in A1 concentration is believed to be caused by the lack of thermodynamic data in the EQ3/6 data base for dachiardite, a zeolite observed as a run product at 250{sup 0}C. The ability to reproduce the majority of the experimental rock/water interactions at 150{sup 0}C validates the use of EQ3/6 as a geochemical modeling tool that can be used to theoretically investigate physical/chemical environments in support of the Waste Package Task of NNWSI.

  12. Reaction of Topopah Spring tuff with J-13 water: a geochemical modeling approach using the EQ3/6 reaction path code

    International Nuclear Information System (INIS)

    Delany, J.M.

    1985-01-01

    EQ3/6 geochemical modeling code package was used to investigate the interaction of the Topopah Spring Tuff and J-13 water at high temperatures. EQ3/6 input parameters were obtained from the results of laboratory experiments using USW G-1 core and J-13 water. Laboratory experiments were run at 150 and 250 0 C for 66 days using both wafer-size and crushed tuff. EQ3/6 modeling reproduced results of the 150 0 C experiments except for a small increase in the concentration of potassium that occurs in the first few days of the experiments. At 250 0 C, the EQ3/6 modeling reproduced the major water/rock reactions except for a small increase in potassium, similar to that noted above, and an overall increase in aluminum. The increase in potassium concentration cannot be explained at this time, but the increase in A1 concentration is believed to be caused by the lack of thermodynamic data in the EQ3/6 data base for dachiardite, a zeolite observed as a run product at 250 0 C. The ability to reproduce the majority of the experimental rock/water interactions at 150 0 C validates the use of EQ3/6 as a geochemical modeling tool that can be used to theoretically investigate physical/chemical environments in support of the Waste Package Task of NNWSI

  13. A Comparison of Soil-Water Sampling Techniques

    Science.gov (United States)

    Tindall, J. A.; Figueroa-Johnson, M.; Friedel, M. J.

    2007-12-01

    The representativeness of soil pore water extracted by suction lysimeters in ground-water monitoring studies is a problem that often confounds interpretation of measured data. Current soil water sampling techniques cannot identify the soil volume from which a pore water sample is extracted, neither macroscopic, microscopic, or preferential flowpath. This research was undertaken to compare values of extracted suction lysimeters samples from intact soil cores with samples obtained by the direct extraction methods to determine what portion of soil pore water is sampled by each method. Intact soil cores (30 centimeter (cm) diameter by 40 cm height) were extracted from two different sites - a sandy soil near Altamonte Springs, Florida and a clayey soil near Centralia in Boone County, Missouri. Isotopically labeled water (O18? - analyzed by mass spectrometry) and bromide concentrations (KBr- - measured using ion chromatography) from water samples taken by suction lysimeters was compared with samples obtained by direct extraction methods of centrifugation and azeotropic distillation. Water samples collected by direct extraction were about 0.25 ? more negative (depleted) than that collected by suction lysimeter values from a sandy soil and about 2-7 ? more negative from a well structured clayey soil. Results indicate that the majority of soil water in well-structured soil is strongly bound to soil grain surfaces and is not easily sampled by suction lysimeters. In cases where a sufficient volume of water has passed through the soil profile and displaced previous pore water, suction lysimeters will collect a representative sample of soil pore water from the sampled depth interval. It is suggested that for stable isotope studies monitoring precipitation and soil water, suction lysimeter should be installed at shallow depths (10 cm). Samples should also be coordinated with precipitation events. The data also indicate that each extraction method be use to sample a different

  14. Investigation of Geochemical Characteristics and Controlling Processes of Groundwater in a Typical Long-Term Reclaimed Water Use Area

    Directory of Open Access Journals (Sweden)

    Yong Xiao

    2017-10-01

    Full Text Available The usage of reclaimed water can efficiently mitigate water crises, but it may cause groundwater pollution. To clearly understand the potential influences of long-term reclaimed water usage, a total of 91 samples of shallow and deep groundwater were collected from a typical reclaimed water use area during the dry and rainy seasons. The results suggest both shallow and deep groundwater are mainly naturally alkaline freshwater, which are composed mainly of Ca-HCO3, followed by mixed types such as Ca-Na-HCO3 and Ca-Mg-HCO3. A seasonal desalination trend was observed in both shallow and deep aquifers due to dilution effects in the rainy season. Groundwater chemical compositions in both shallow and deep aquifers are still dominantly controlled by natural processes such as silicate weathering, minerals dissolution and cation exchange. Human activities are also the factors influencing groundwater chemistry. Urbanization has been found responsible for the deterioration of groundwater quality, especially in shallow aquifers, because of the relative thin aquitard. Reclaimed water usage for agricultural irrigation and landscape purposes has nearly no influences on groundwater quality in rural areas due to thick aquitards. Therefore, reclaimed water usage should be encouraged in arid and semiarid areas with proper hydrogeological condition.

  15. Input of 87Sr/86Sr ratios and Sr geochemical signatures to update knowledge on thermal and mineral waters flow paths in fractured rocks (N-Portugal)

    International Nuclear Information System (INIS)

    Marques, J.M.; Carreira, P.M.; Goff, F.; Eggenkamp, H.G.M.; Antunes da Silva, M.

    2012-01-01

    Strontium isotopes and other geochemical signatures are used to determine the relationships between CO 2 -rich thermal (Chaves: 76 °C) and mineral (Vilarelho da Raia, Vidago and Pedras Salgadas: 17 °C) waters discharging along one of the major NNE–SSW trending faults in the northern part of mainland Portugal. The regional geology consists of Hercynian granites (syn-tectonic-310 Ma and post-tectonic-290 Ma) intruding Silurian metasediments (quartzites, phyllites and carbonaceous slates). Thermal and mineral waters have 87 Sr/ 86 Sr isotopic ratios between 0.716713 and 0.728035. 87 Sr/ 86 Sr vs. 1/Sr define three end-members (Vilarelho da Raia/Chaves, Vidago and Pedras Salgadas thermal and mineral waters) trending from rainfall composition towards that of the CO 2 -rich thermal and mineral waters, indicating different underground flow paths. Local granitic rocks have 87 Sr/ 86 Sr ratios of 0.735697–0.789683. There is no indication that equilibrium was reached between the CO 2 -rich thermal and mineral waters and the granitic rocks. The mean 87 Sr/ 86 Sr ratio of the thermal and mineral waters (0.722419) is similar to the Sr isotopic ratios of the plagioclases of the granitic rocks (0.71261–0.72087). The spatial distribution of Sr isotope and geochemical signatures of waters and the host rocks suggests that the thermal and mineral waters circulate in similar but not the same hydrogeological system. Results from this study could be used to evaluate the applicability of this isotope approach in other hydrogeologic investigations.

  16. Monitoring and sampling perched ground water in a basaltic terrain

    International Nuclear Information System (INIS)

    Hubbell, J.M.

    1990-01-01

    Perched ground water zones can provide significant information on water and contaminant movement. This paper presents information about perched ground water obtained from drilling and monitoring at a hazardous and radioactive waste disposal site at the Idaho National Engineering Laboratory. Six of forty-five wells drilled at the Radioactive Waste Management Complex have detected perched water in basalts above sedimentary interbeds. This paper describes the distribution and characteristics of perched ground water. It discusses perched water below the surficial sediments in wells at the RWMC, the characteristics of chemical constituents found in perched water, the implications for contaminant transport in the unsaturated zone of water, and the lateral extent of perched water. Recommendations are made to increase the probability of detecting and sampling low yield perched water zones. 6 refs., 6 figs., 2 tabs

  17. Soil Gas Sample Handling: Evaluation of Water Removal and Sample Ganging

    Energy Technology Data Exchange (ETDEWEB)

    Fritz, Brad G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Abrecht, David G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hayes, James C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mendoza, Donaldo P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2016-10-31

    Soil gas sampling is currently conducted in support of Nuclear Test Ban treaty verification. Soil gas samples are collected and analyzed for isotopes of interest. Some issues that can impact sampling and analysis of these samples are excess moisture and sample processing time. Here we discuss three potential improvements to the current sampling protocol; a desiccant for water removal, use of molecular sieve to remove CO2 from the sample during collection, and a ganging manifold to allow composite analysis of multiple samples.

  18. UMTRA water sampling and analysis plan, Tuba City, Arizona

    International Nuclear Information System (INIS)

    1993-09-01

    The purpose of this document is to provide background, guidance, and justification for fiscal year (FY) 1994 water sampling activities for the uranium mil tailings site at Tuba City, Arizona. This sampling and analysis plan will form the basis for groundwater sampling and analysis work orders to be implemented in FY94

  19. Granite-repository - geochemical environment

    International Nuclear Information System (INIS)

    1979-04-01

    Some geochemical data of importance for a radioactive waste repository in hard rock are reviewed. The ground water composition at depth is assessed. The ground water chemistry in the vicinity of uranium ores is discussed. The redox system in Swedish bedrock is described. Influences of extreme climatic changes and of repository mining and construction are also evaluated

  20. Geochemical computer codes. A review

    International Nuclear Information System (INIS)

    Andersson, K.

    1987-01-01

    In this report a review of available codes is performed and some code intercomparisons are also discussed. The number of codes treating natural waters (groundwater, lake water, sea water) is large. Most geochemical computer codes treat equilibrium conditions, although some codes with kinetic capability are available. A geochemical equilibrium model consists of a computer code, solving a set of equations by some numerical method and a data base, consisting of thermodynamic data required for the calculations. There are some codes which treat coupled geochemical and transport modeling. Some of these codes solve the equilibrium and transport equations simultaneously while other solve the equations separately from each other. The coupled codes require a large computer capacity and have thus as yet limited use. Three code intercomparisons have been found in literature. It may be concluded that there are many codes available for geochemical calculations but most of them require a user that us quite familiar with the code. The user also has to know the geochemical system in order to judge the reliability of the results. A high quality data base is necessary to obtain a reliable result. The best results may be expected for the major species of natural waters. For more complicated problems, including trace elements, precipitation/dissolution, adsorption, etc., the results seem to be less reliable. (With 44 refs.) (author)

  1. Procedures for field chemical analyses of water samples

    International Nuclear Information System (INIS)

    Korte, N.; Ealey, D.

    1983-12-01

    A successful water-quality monitoring program requires a clear understanding of appropriate measurement procedures in order to obtain reliable field data. It is imperative that the responsible personnel have a thorough knowledge of the limitations of the techniques being used. Unfortunately, there is a belief that field analyses are simple and straightforward. Yet, significant controversy as well as misuse of common measurement techniques abounds. This document describes procedures for field measurements of pH, carbonate and bicarbonate, specific conductance, dissolved oxygen, nitrate, Eh, and uranium. Each procedure section includes an extensive discussion regarding the limitations of the method as well as brief discussions of calibration procedures and available equipment. A key feature of these procedures is the consideration given to the ultimate use of the data. For example, if the data are to be used for geochemical modeling, more precautions are needed. In contrast, routine monitoring conducted merely to recognize gross changes can be accomplished with less effort. Finally, quality assurance documentation for each measurement is addressed in detail. Particular attention is given to recording sufficient information such that decisions concerning the quality of the data can be easily made. Application of the procedures and recommendations presented in this document should result in a uniform and credible water-quality monitoring program. 22 references, 4 figures, 3 tables

  2. Water sampling device for fuel rod failure monitoring

    International Nuclear Information System (INIS)

    Oogami, Hideaki; Echigoya, Hironori; Matsuoka, Tesshi.

    1991-01-01

    The device of the present invention accurately samples coolants in a channel box as sampling water even if the upper end of the channel box of a fuel assembly is positioned at the same height or lower than the upper end of an upper lattice plate. An existent device comprises an outer cap, an inner cap, an air supply pipe and a water sampling tube. In addition, the device of the present invention comprises a sealing material disposed at the end of the outer cap for keeping liquid sealing with the upper lattice plate and a water level monitoring pipe extended to lower than the inner cap passing through the liquid sealing of the outer cap for sucking the atmosphere in the outer cap. Pressurized air is sent through the air supply pipe, to lower the water level of the coolants in the outer cap and the water level monitoring pipe sucks the pressurized air, by which the inside and the outside of the channel box are partitioned. Subsequently, if the sample water is sampled by a sampling tube, sampling water which enables accurate evaluation for radioactivity concentration in the fuel assembly can be obtained. (I.S.)

  3. Catch me if you can: Comparing ballast water sampling skids to traditional net sampling

    Science.gov (United States)

    Bradie, Johanna; Gianoli, Claudio; Linley, Robert Dallas; Schillak, Lothar; Schneider, Gerd; Stehouwer, Peter; Bailey, Sarah

    2018-03-01

    With the recent ratification of the International Convention for the Control and Management of Ships' Ballast Water and Sediments, 2004, it will soon be necessary to assess ships for compliance with ballast water discharge standards. Sampling skids that allow the efficient collection of ballast water samples in a compact space have been developed for this purpose. We ran 22 trials on board the RV Meteor from June 4-15, 2015 to evaluate the performance of three ballast water sampling devices (traditional plankton net, Triton sampling skid, SGS sampling skid) for three organism size classes: ≥ 50 μm, ≥ 10 μm to Natural sea water was run through the ballast water system and untreated samples were collected using paired sampling devices. Collected samples were analyzed in parallel by multiple analysts using several different analytic methods to quantify organism concentrations. To determine whether there were differences in the number of viable organisms collected across sampling devices, results were standardized and statistically treated to filter out other sources of variability, resulting in an outcome variable representing the mean difference in measurements that can be attributed to sampling devices. These results were tested for significance using pairwise Tukey contrasts. Differences in organism concentrations were found in 50% of comparisons between sampling skids and the plankton net for ≥ 50 μm, and ≥ 10 μm to < 50 μm size classes, with net samples containing either higher or lower densities. There were no differences for < 10 μm organisms. Future work will be required to explicitly examine the potential effects of flow velocity, sampling duration, sampled volume, and organism concentrations on sampling device performance.

  4. UMTRA project water sampling and analysis plan, Tuba City, Arizona

    International Nuclear Information System (INIS)

    1996-02-01

    Planned, routine ground water sampling activities at the U.S. Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site in Tuba City, Arizona, are described in the following sections of this water sampling and analysis plan (WSAP). This plan identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequency for the stations routinely monitored at the site. The ground water data are used for site characterization and risk assessment. The regulatory basis for routine ground water monitoring at UMTRA Project sites is derived from the U.S. Environmental Protection Agency (EPA) regulations in 40 CFR Part 192 (1994) and the final EPA standards of 1995 (60 FR 2854). Sampling procedures are guided by the UMTRA Project standard operating procedures (SOP) (JEG, n.d.), and the most effective technical approach for the site

  5. Monitoring and sampling perched ground water in a basaltic terrain

    International Nuclear Information System (INIS)

    Hubbell, J.M.

    1990-01-01

    Perched ground water zones are often overlooked in monitoring plans, but they can provide significant information on water and contaminant movement. This paper presents information about perched ground water obtained from drilling and monitoring at a hazardous and radioactive waste disposal site at the Idaho National Engineering Laboratory. Six of forty-five wells drilled at the Radioactive Waste Management Complex have detected perched water in basalts above sedimentary interbeds. Perched water has been detected at depths of 90 and 210 ft below land surface, approximately 370 ft above the regional water table. Eighteen years of water level measurements from one well at a depth of 210 ft indicate a consistent source of water. Water level data indicate a seasonal fluctuation. The maximum water level in this well varies within a 0.5 ft interval, suggesting the water level reaches equilibrium with the inflow to the well at this height. Volatile organic constituents have been detected in concentrations from 1.2 to 1.4 mg/L of carbon tetrachloride. Eight other volatile organics have been detected. The concentrations of organics are consistent with the prevailing theory of movement by diffusion in the gaseous phase. Results of tritium analyses indicate water has moved to a depth of 86 ft in 17 yr. Results of well sampling analyses indicate monitoring and sampling of perched water can be a valuable resource for understanding the hydrogeologic environment of the vadose zone at disposal sites

  6. Data for the geochemical investigation of UMTRAP designated site at Monument Valley, Arizona

    International Nuclear Information System (INIS)

    Markos, G.; Bush, K.J.

    1983-09-01

    This report contains the geochemical data and the methods of data collection from the former tailings site at Monument Valley, Arizona. Data are from a one-time sampling of waters and solid material from the background, the area adjacent to the site, and the site. Selected solid samples are water extracted to remove easily soluble salts. The waters and extracts of solid samples were analyzed for selected major and trace elements. 3 refs., 2 figs., 1 tab

  7. UMTRA project water sampling and analysis plan, Monument Valley, Arizona

    International Nuclear Information System (INIS)

    1994-04-01

    The Monument Valley Uranium Mill Tailings Remedial Action (UMTRA) Project site in Cane Valley is a former uranium mill that has undergone surface remediation in the form of tailings and contaminated materials removal. Contaminated materials from the Monument Valley (Arizona) UMTRA Project site have been transported to the Mexican Hat (Utah) UMTRA Project site for consolidation with the Mexican Hat tailings. Tailings removal was completed in February 1994. Three geologic units at the site contain water: the unconsolidated eolian and alluvial deposits (alluvial aquifer), the Shinarump Conglomerate (Shinarump Member), and the De Chelly Sandstone. Water quality analyses indicate the contaminant plume has migrated north of the site and is mainly in the alluvial aquifer. An upward hydraulic gradient in the De Chelly Sandstone provides some protection to that aquifer. This water sampling and analysis plan recommends sampling domestic wells, monitor wells, and surface water in April and September 1994. The purpose of sampling is to continue periodic monitoring for the surface program, evaluate changes to water quality for site characterization, and provide data for the baseline risk assessment. Samples taken in April will be representative of high ground water levels and samples taken in September will be representative of low ground water levels. Filtered and nonfiltered samples will be analyzed for plume indicator parameters and baseline risk assessment parameters

  8. Radon in water samples around Ningyo Toge area

    Energy Technology Data Exchange (ETDEWEB)

    Furuta, Sadaaki [Power Reactor and Nuclear Fuel Development Corp., Kamisaibara, Okayama (Japan). Ningyo Toge Works

    1997-02-01

    Radon concentrations of river water and drinking water were surveyed. Water samples were collected from the region around Ningyo-Toge Works which were positioned on a granitic layer having uranium deposit. Each sample was taken using a separating funnel and the radioactivity was counted by liquid scintillation counter (ALOKA, LB-2). Since there were old working places of mine in the region, mine drainages from them were also analyzed. The radon concentration of drinking water from the region ranged from 0.1 to 230 Bq/l. The samples with a higher activity than 100 Bq/l were water from springs or wells and the area of the highest Rn concentration was on a typical granitic layer, suggesting some geographic effects on Rn concentration. Some samples of drinking water had slightly higher levels of Rn, probably due to the utilization of underflow as its source. The mean concentration of Rn became higher in the order; river water, drinking water, mine drainage in the region. In addition, a negative correlation between Rn concentration of water and the river flow rate was observed in this region. (M.N.)

  9. Sampling and Analysis Plan for the 105-N Basin Water

    International Nuclear Information System (INIS)

    R.O. Mahood

    1997-01-01

    This sampling and analysis plan defines the strategy, and field and laboratory methods that will be used to characterize 105-N Basin water. The water will be shipped to the 200 Area Effluent Treatment Facility for treatment and disposal as part of N Reactor deactivation. These analyses are necessary to ensure that the water will meet the acceptance criteria of the ETF, as established in the Memorandum of Understanding for storage and treatment of water from N-Basin (Appendix A), and the characterization requirements for 100-N Area water provided in a letter from ETF personnel (Appendix B)

  10. Validation of single-sample doubly labeled water method

    International Nuclear Information System (INIS)

    Webster, M.D.; Weathers, W.W.

    1989-01-01

    We have experimentally validated a single-sample variant of the doubly labeled water method for measuring metabolic rate and water turnover in a very small passerine bird, the verdin (Auriparus flaviceps). We measured CO 2 production using the Haldane gravimetric technique and compared these values with estimates derived from isotopic data. Doubly labeled water results based on the one-sample calculations differed from Haldane values by less than 0.5% on average (range -8.3 to 11.2%, n = 9). Water flux computed by the single-sample method differed by -1.5% on average from results for the same birds based on the standard, two-sample technique (range -13.7 to 2.0%, n = 9)

  11. Preconcentration of uranium in water samples using dispersive ...

    African Journals Online (AJOL)

    Preconcentration of uranium in water samples using dispersive liquid-liquid micro- extraction coupled with solid-phase extraction and determination with inductively coupled plasma-optical emission spectrometry.

  12. bacteriological analysis of well water samples in sagamu.

    African Journals Online (AJOL)

    Dr Oboro VO

    Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Olabisi Onabanjo University, Ago-Iwoye, Nigeria. *Correspondence. ... All the water samples exceeded the standard limit of the most probable ... or disinfection and this could lead to outbreak of water borne diseases. ... The bottle was brought up to a surface.

  13. Contamination of Ground Water Samples from Well Installations

    DEFF Research Database (Denmark)

    Grøn, Christian; Madsen, Jørgen Øgaard; Simonsen, Y.

    1996-01-01

    Leaching of a plasticizer, N-butylbenzenesulfonamide, from ground water multilevel sampling installations in nylon has been demonstrated. The leaching resulted in concentrations of DOC and apparent AOX, both comparable with those observed in landfill contaminated ground waters. It is concluded...... that nylon should not be used in studies of contamination with organic compounds....

  14. Bacterial contamination of water samples in Gabon, 2013

    Directory of Open Access Journals (Sweden)

    Jonas Ehrhardt

    2017-10-01

    Full Text Available Contamination of water is a major burden in the public health setting of developing countries. We therefore assessed the quality of water samples in Gabon in 2013. The main findings were a contamination rate with coliforms of 13.5% and the detection of a possible environmental reservoir for extended spectrum beta-lactamase-producing bacteria.

  15. Diffuse Volcanism at the Young End of the Walvis Ridge - Tristan - Gough Seamount Province: Geochemical Sampling and Constraints on Plume Dynamics

    Science.gov (United States)

    Class, C.; Koppers, A. A. P.; Sager, W. W.; Schnur, S.

    2014-12-01

    The Walvis Ridge-Tristan/Gough seamount province in the South Atlantic represents 130 Myr of continuous intra-plate volcanism that can be connected to the once conjunct Parana-Etendeka flood basalt province. With this it represents one of the few primary hotspots consistent with the thermal plume model. However, around 60 Ma, the morphological expression of the Walvis Ridge changed drastically from a robust 200 km wide aseismic ridge into a 400 km wide region of diffuse and diminished volcanism. As a result, this part of the plume trail has been described by two subtracks, one ending at Tristan da Cunha and another at Gough Island more than 400 km to the SSE. Where the Walvis Ridge forks into these two tracks there is a center prong. There is also the 39.5°S lineament of seamounts between, but oblique to, the two subtracks, which is parallel to the local fracture zone directions. All these features are at odds with the classical definition of a narrow hotspot track although Rohde et al. (2013) showed that the Tristan and Gough subtracks retain a distinct geochemical signature over 70 Myr and are consistent with a zoned, deep-seated plume. The first Sr-Nd-Hf-Pb isotopic and trace element analyses from the detailed dredge sampling cruise MV1203 show that samples from two prominent seamounts at the western end of the 39.5°S lineament have a Gough-type signature, which makes an upper mantle source for this lineament unlikely but rather indicates that the Gough-type source stretches some 200 km NNW from Gough. Tristan track seamount samples are comparable with published data, however, one new sample has a Gough-type composition suggesting leakage of this component into the Tristan-type plume zone. Seamounts on the middle prong of the Walvis Ridge fork have compositions intermediate to Gough and Tristan domains, suggesting mixing between sources or melts of the two domains. Thus, the Gough-component in the last 60 Myr of plume activity is volumetrically much more

  16. Use of multiple attributes decision-making Technique for Order Preference by Similarity to Ideal Solution (TOPSIS for Ghare-Gheshlagh calcite in determination of optimum geochemical sampling sites

    Directory of Open Access Journals (Sweden)

    Mansour Rezaei Azizi

    2015-04-01

    Full Text Available Introduction Several valuable calcite deposits are located in Ghare-Gheshlagh, south basin of Urmia Lake, NW Iran. Ghare-Gheshlagh area is situated in the northern part of tectono-sedimentary unit, forming NW part of Tertiary Sanandaj-Sirjan geological belt (Stocklin and Nabavi, 1972. The predominant rock types of the area include light color limestones (Qom Formation and Quaternary alluviums and underlined dolomite in depth (Eftekharnejhad, 1973. The thickness of these units varies between 10 cm and 6 meters and up to some hundred meters in length. In the present study, the effect of geochemical parameters responsible for precipitating calcite from the carbonate aqueous fluids is interpreted by the TOPSIS method to find the most preferable sampling sites and geochemical data. Materials and Methods A total of 20 samples were taken from a NE-SW trending profile including 15 calcites of fresh surface outcrops (5 samples per each colored calcite units in order to determine the nature of the rocks. The mineral assemblages were analyzed by optical methods in combination with XRD powder diffraction analysis. Major elements were determined by X-Ray Fluorescence Spectrometry (XRF, trace and rare earth elements were determined by Inductively Coupled Plasma Mass Spectrometry (ICP-MS in Geological Survey of Iran. Results The abundances of trace elements were normalized to the continental crust values (Taylor and McLennan, 1981. The green calcite revealed enrichment in Rb and Sr, while green and white calcite were enriched in U. The U enrichment in the green calcite indicates the reduction condition of deposition. Incompatible elements such as Ba, Th, Nb and P depleted in all calcites. Varying the Sr/Ba value between 3.18 and 5.21% indicates the continental deposition environment and non-magmatic waters as well (Cheng et al., 2013. The Sr2+ content of calcites varies from 123 to 427 ppm, indicates suitable condition for calcite precipitation. Eu anomalies

  17. Ion Chromatographic Analyses of Sea Waters, Brines and Related Samples

    OpenAIRE

    Nataša Gros

    2013-01-01

    This review focuses on the ion chromatographic methods for the analyses of natural waters with high ionic strength. At the beginning a natural diversity in ionic composition of waters is highlighted and terminology clarified. In continuation a brief overview of other review articles of potential interest is given. A review of ion chromatographic methods is organized in four sections. The first section comprises articles focused on the determination of ionic composition of water samples as com...

  18. Reduction of hexavalent chromium in water samples acidified for preservation

    Science.gov (United States)

    Stollenwerk, K.G.; Grove, D.B.

    1985-01-01

    Reduction of hexavalent chromium, Cr(VI), in water samples, preserved by standard techniques, was investigated. The standard preservation technique for water samples that are to be analyzed for Cr(VI) consists of filtration through a 0.45-??m membrane, acidification to a pH plastic bottles. Batch experiments were conducted to evaluate the effect of H+ concentration, NO2, temperature, and dissolved organic carbon (DOC) on the reduction of Cr(VI) to Cr(III). The rate of reduction of Cr(VI) to Cr(III) increased with increasing NO2, DOC, H+, and temperature. Reduction of Cr(VI) by organic matter occurred in some samples even though the samples were unacidified. Reduction of Cr(VI) is inhibited to an extent by storing the sample at 4??C. Stability of Cr(VI) in water is variable and depends on the other constituents present in the sample. Water samples collected for the determination of Cr(VI) should be filtered (0.45-??m membrane), refrigerated, and analyzed as quickly as possible. Water samples should not be acidified. Measurement of total Cr in addition to Cr(VI) can serve as a check for Cr(VI) reduction. If total Cr is greater than Cr(VI), the possibility that Cr(VI) reduction has occurred needs to be considered.The rate of reduction of Cr(VI) to Cr(III) increased with increasing NO//2, DOC, H** plus , and temperature. Reduction of Cr(VI) by organic matter occurred in some samples even though the samples were unacidified. Reduction of Cr(VI) is inhibited to an extent by storing the sample at 4 degree C. Stability of Cr(VI) in water is variable and depends on the other constituents present in the sample. Water samples collected for the determination of Cr(VI) should be filtered (0. 45- mu m membrane), refrigerated, and analyzed as quickly as possible. Water samples should not be acidified. Measurement of total Cr in addition to Cr(VI) can serve as a check for Cr(VI) reduction. If total Cr is greater than Cr(VI), the possibility that Cr(VI) reduction has occurred needs

  19. Vegetation-induced soil water repellency as a strategy in arid ecosystems. A geochemical approach in Banksia woodlands (SW Australia)

    Science.gov (United States)

    Muñoz-Rojas, Miriam; Jiménez-Morillo, Nicasio T.; González-Pérez, Jose Antonio; Zavala, Lorena M.; Stevens, Jason; Jordan, Antonio

    2016-04-01

    research aims to study SWR and its impact on water economy in relation with soil functioning and plant strategies for water uptake in pristine BW. Results are expected to shed light on the origin and implications of SWR in the area and provide useful information for improving ongoing restoration plans. Materials and methods The study was conducted in natural BW of WA. Soil samples were collected at different soil depths (0-1, 1-10, 20-30 and 40-50 cm). Rationale for sampling depths was based on the different severities of SWR at each layer under field conditions. Soil water repellency was assessed under laboratory conditions in oven-dry samples (48 h, 105 °C) and the chemical organic assemblage of bulked soil subsamples from each layer was analysed by direct analytical pyrolysis (Py-GC/MS). Results and discussion Soil water repellency distributed discontinuously through the soil profile. The first thin layer (0-1 cm) composed of coarse sand and litter, located immediately above Banksia root clusters, showed wettable conditions. In contrast, the relatively well aggregated soil layer where the Banksia cluster root system is located (1-10 cm) was severely water-repellent. The 20-30 and 40-50 cm deep layers rendered wettable or subcritically water-repellent. After Py-GC/MS analysis, major compounds were identified and grouped according to their probable biogenic origin (lignin, polysaccharides, peptides, etc.). Among other soil organic compounds, well resolved bimodal alkane/akene (C8-C31, maxima at C13 and C26) and fatty acids series (short-chained, C5-C9, and long-chained even-numbered C12-C18) were associated to the root cluster soil layer (1-10 cm). Also, a relatively high contribution of fire-derived polycyclic aromatic hydrocarbons (PAHs) was observed (7%), which is consistent with frequent fires occurring in BW. These results point to possible indirect links between organic substances released by roots and soil wettability involving soil microorganisms. Further

  20. Comparison of geochemical data obtained using four brine sampling methods at the SECARB Phase III Anthropogenic Test CO2 injection site, Citronelle Oil Field, Alabama

    Science.gov (United States)

    Conaway, Christopher; Thordsen, James J.; Manning, Michael A.; Cook, Paul J.; Trautz, Robert C.; Thomas, Burt; Kharaka, Yousif K.

    2016-01-01

    The chemical composition of formation water and associated gases from the lower Cretaceous Paluxy Formation was determined using four different sampling methods at a characterization well in the Citronelle Oil Field, Alabama, as part of the Southeast Regional Carbon Sequestration Partnership (SECARB) Phase III Anthropogenic Test, which is an integrated carbon capture and storage project. In this study, formation water and gas samples were obtained from well D-9-8 #2 at Citronelle using gas lift, electric submersible pump, U-tube, and a downhole vacuum sampler (VS) and subjected to both field and laboratory analyses. Field chemical analyses included electrical conductivity, dissolved sulfide concentration, alkalinity, and pH; laboratory analyses included major, minor and trace elements, dissolved carbon, volatile fatty acids, free and dissolved gas species. The formation water obtained from this well is a Na–Ca–Cl-type brine with a salinity of about 200,000 mg/L total dissolved solids. Differences were evident between sampling methodologies, particularly in pH, Fe and alkalinity. There was little gas in samples, and gas composition results were strongly influenced by sampling methods. The results of the comparison demonstrate the difficulty and importance of preserving volatile analytes in samples, with the VS and U-tube system performing most favorably in this aspect.

  1. Geochemical study of water-rock interaction processes on geothermal systems of alkaline water in granitic massif; Estudio geoquimico de los procesos de interaccion agua-roca sobre sistemas goetermales de aguas alcalinas en granitoides

    Energy Technology Data Exchange (ETDEWEB)

    Buil gutierrez, B; Garcia Sanz, S; Lago San Jose, M; Arranz Uague, E; Auque Sanz, L [Universidad de Zaragoza (Spain)

    2002-07-01

    The study of geothermal systems developed within granitic massifs (with alkaline waters and reducing ORP values) is a topic of increasing scientific interest. These systems are a perfect natural laboratory for studying the water-rock interaction processes as they are defined by three main features: 1) long residence time of water within the system, 2) temperature in the reservoir high enough to favour reaction kinetics and finally, 3) the comparison of the chemistry of the incoming and outgoing waters of the system allows for the evaluation of the processes that have modified the water chemistry and its signature, The four geothermal systems considered in this paper are developed within granitic massifs of the Spanish Central Pyrenes; these systems were studied from a geochemical point of view, defining the major, trace and REE chemistry of both waters and host rocks and then characterizing the composition and geochemical evolution of the different waters. Bicarbonate-chloride-sodic and bicarbonate-sodic compositions are the most representative of the water chemistry in the deep geothermal system, as they are not affected by secondary processes (mixing, conductive cooling, etc). (Author)

  2. Effect of source integration on the geochemical fluxes from springs

    International Nuclear Information System (INIS)

    Frisbee, Marty D.; Phillips, Fred M.; White, Art F.; Campbell, Andrew R.; Liu, Fengjing

    2013-01-01

    Geochemical fluxes from watersheds are typically defined using mass-balance methods that essentially lump all weathering processes operative in a watershed into a single flux of solute mass measured in streamflow at the watershed outlet. However, it is important that we understand how weathering processes in different hydrological zones of a watershed (i.e., surface, unsaturated, and saturated zones) contribute to the total geochemical flux from the watershed. This capability will improve understanding of how geochemical fluxes from these different zones may change in response to climate change. Here, the geochemical flux from weathering processes occurring solely in the saturated zone is investigated. This task, however, remains exceedingly difficult due to the sparsity of subsurface sampling points, especially in large, remote, and/or undeveloped watersheds. In such cases, springflow is often assumed to be a proxy for groundwater (defined as water residing in fully saturated geologic formations). However, springflow generation may integrate different sources of water including, but not limited to, groundwater. The authors’ hypothesis is that long-term estimates of geochemical fluxes from groundwater using springflow proxies will be too large due to the integrative nature of springflow generation. Two conceptual models of springflow generation are tested using endmember mixing analyses (EMMA) on observations of spring chemistries and stable isotopic compositions in a large alpine watershed in the San Juan Mountains of southwestern Colorado. In the “total springflow” conceptual model, springflow is assumed to be 100% groundwater. In the “fractional springflow” conceptual model, springflow is assumed to be an integration of different sources of water (e.g., groundwater, unsaturated flow, preferential flow in the soil, etc.) and groundwater is only a fractional component. The results indicate that groundwater contributions in springflow range from 2% to 100

  3. UMTRA project water sampling and analysis plan, Mexican Hat, Utah

    International Nuclear Information System (INIS)

    1994-04-01

    The Mexican Hat, Utah, Uranium Mill Tailings Remedial Action (UMTRA) Project site is a former uranium mill that is undergoing surface remediation in the form of on-site tailings stabilization. Contaminated surface materials from the Monument Valley, Arizona, UMTRA Project site have been transported to the Mexican Hat site and are being consolidated with the Mexican Hat tailings. The scheduled completion of the tailings disposal cell is August 1995. Water is found in two geologic units at the site: the Halgaito Shale Formation and the Honaker Trail Formation. The tailings rest on the Halgaito Shale, and water contained in that unit is a result of milling activities and, to a lesser extent, water released from the tailings from compaction during remedial action construction of the disposal cell. Water in the Halgaito Shale flows through fractures and discharges at seeps along nearby arroyos. Flow from the seeps will diminish as water drains from the unit. Ground water in the lower unit, the Honaker Trail Formation, is protected from contamination by an upward hydraulic gradient. There are no nearby water supply wells because of widespread poor background ground water quality and quantity, and the San Juan River shows no impacts from the site. This water sampling and analysis plan (WSAP) recommends sampling six seeps and one upgradient monitor well compared in the Honaker Trail Formation. Samples will be taken in April 1994 (representative of high group water levels) and September 1994 (representative of low ground water levels). Analyses will be performed on filtered samples for plume indicator parameters

  4. A geochemical atlas of North Carolina, USA

    Science.gov (United States)

    Reid, J.C.

    1993-01-01

    A geochemical atlas of North Carolina, U.S.A., was prepared using National Uranium Resource Evaluation (NURE) stream-sediment data. Before termination of the NURE program, sampling of nearly the entire state (48,666 square miles of land area) was completed and geochemical analyses were obtained. The NURE data are applicable to mineral exploration, agriculture, waste disposal siting issues, health, and environmental studies. Applications in state government include resource surveys to assist mineral exploration by identifying geochemical anomalies and areas of mineralization. Agriculture seeks to identify areas with favorable (or unfavorable) conditions for plant growth, disease, and crop productivity. Trace elements such as cobalt, copper, chromium, iron, manganese, zinc, and molybdenum must be present within narrow ranges in soils for optimum growth and productivity. Trace elements as a contributing factor to disease are of concern to health professionals. Industry can use pH and conductivity data for water samples to site facilities which require specific water quality. The North Carolina NURE database consists of stream-sediment samples, groundwater samples, and stream-water analyses. The statewide database consists of 6,744 stream-sediment sites, 5,778 groundwater sample sites, and 295 stream-water sites. Neutron activation analyses were provided for U, Br, Cl, F, Mn, Na, Al, V, Dy in groundwater and stream water, and for U, Th, Hf, Ce, Fe, Mn, Na, Sc, Ti, V, Al, Dy, Eu, La, Sm, Yb, and Lu in stream sediments. Supplemental analyses by other techniques were reported on U (extractable), Ag, As, Ba, Be, Ca, Co, Cr, Cu, K, Li, Mg, Mo, Nb, Ni, P, Pb, Se, Sn, Sr, W, Y, and Zn for 4,619 stream-sediment samples. A small subset of 334 stream samples was analyzed for gold. The goal of the atlas was to make available the statewide NURE data with minimal interpretation to enable prospective users to modify and manipulate the data for their end use. The atlas provides only

  5. Determination and interpretation of environmental water samples contaminated by uranium mining activities

    International Nuclear Information System (INIS)

    Meinrath, G.; Volke, P.; Helling, C.; Merkel, B.J.; Dudel, E.G.

    1999-01-01

    Interpretation of environmental behavior of uranium is based on several steps of data analysis and statistical inference. First step is sampling and analyzing of uranium in field samples by routine laboratory methods. Such methods have to fulfill multiple requirements like robustness, efficiency, low detection limit and precision. A comparison of different approaches in assigning uncertainty to experimentally obtained analytical data shows that classical error estimation is not significantly inferior to more sophisticated modern techniques like inverse regression or orthogonal regression. A second step is the correlation of analytical data with current state of insight into environmental behavior of uranium. Such a correlation furthers the choice of adequate geochemical models and quality of geochemical data base for subsequent detailed analysis, e.g. by geochemical modeling. An appraisal of the individual steps in this complex analysis is given on the basis of statistical procedures for calibration and an E H -pH diagram of uranium for atmospheric conditions. (orig.)

  6. A suspended-particle rosette multi-sampler for discrete biogeochemical sampling in low-particle-density waters

    Energy Technology Data Exchange (ETDEWEB)

    Breier, J. A.; Rauch, C. G.; McCartney, K.; Toner, B. M.; Fakra, S. C.; White, S. N.; German, C. R.

    2010-06-22

    To enable detailed investigations of early stage hydrothermal plume formation and abiotic and biotic plume processes we developed a new oceanographic tool. The Suspended Particulate Rosette sampling system has been designed to collect geochemical and microbial samples from the rising portion of deep-sea hydrothermal plumes. It can be deployed on a remotely operated vehicle for sampling rising plumes, on a wire-deployed water rosette for spatially discrete sampling of non-buoyant hydrothermal plumes, or on a fixed mooring in a hydrothermal vent field for time series sampling. It has performed successfully during both its first mooring deployment at the East Pacific Rise and its first remotely-operated vehicle deployments along the Mid-Atlantic Ridge. It is currently capable of rapidly filtering 24 discrete large-water-volume samples (30-100 L per sample) for suspended particles during a single deployment (e.g. >90 L per sample at 4-7 L per minute through 1 {mu}m pore diameter polycarbonate filters). The Suspended Particulate Rosette sampler has been designed with a long-term goal of seafloor observatory deployments, where it can be used to collect samples in response to tectonic or other events. It is compatible with in situ optical sensors, such as laser Raman or visible reflectance spectroscopy systems, enabling in situ particle analysis immediately after sample collection and before the particles alter or degrade.

  7. Geochemical and Pb isotopic characterization of soil, groundwater, human hair, and corn samples from the Domizio Flegreo and Agro Aversano area (Campania region, Italy)

    Science.gov (United States)

    Rezza, Carmela; Albanese, Stefano; Ayuso, Robert A.; Lima, Annamaria; Sorvari, Jaana; De Vivo, Benedetto

    2018-01-01

    A geochemical survey was carried out to investigate metal contamination in the Domizio Littoral and Agro Aversano area (Southern Italy) by means of soil, groundwater, human hair and corn samples. Pb isotope ratios were also determined to identify the sources of metals. Specifically, the investigation focused on topsoils (n = 1064), groundwater (n = 26), 25 human hair (n = 24) and corn samples (n = 13). Topsoils have been sampled and analysed in a previous study for 53 elements (including potentially harmful ones), and determined by ICP-MS after dissolving with aqua regia. Groundwater was analysed for 72 elements by ICP-MS and by ICP-ES. Samples of human hair were prepared and analysed for 16 elements by ICP-MS. Dried corn collected at several farms were also analysed for 53 elements by ICP-MS. The isotopic ratios of 206Pb/207Pb and 208Pb/207Pb in selected topsoil (n = 24), groundwater (n = 9), human hair (n = 9) and corn (n = 4) samples were analysed from both eluates and residues to investigate possible anthropogenic contamination and geogenic contributions. All data were processed and mapped by ArcGis software to produce interpolated maps and contamination factor maps of potentially harmful elements, in accordance with Italian Environmental Law (Legislative Decree 152/06). Results show that soil sampling sites are characterized by As, Cd, Co, Cr, Cu, Hg, Pb, Se, and Zn contents exceeding the action limits established for residential land use (RAL) and, in some cases, also the action limits for industrial land use (IAL) as established by Legislative Decree 152/06. A map of contamination factors and a map showing the degrees of contamination indicate that the areas in the municipalities of Acerra, Casoria and Giugliano have been affected by considerable anthropogenic-related pollution. To interpret the isotopic data and roughly estimate proportion of Pb from an anthropogenic source we broadly defined possible natural and anthropogenic Pb end

  8. Heavy water standards. Qualitative analyses, sample treating, stocking and manipulation

    International Nuclear Information System (INIS)

    Pavelescu, M.; Steflea, D.; Mihancea, I.; Varlam, M.; Irimescu, R.

    1995-01-01

    This paper presents methods and procedures for measuring heavy water concentration, and also sampling, stocking and handling of samples to be analysed. The main concentration analysis methods are: mass spectrometry, for concentrations less then 1%, densitometry, for concentrations within the range 1% - 99% and infrared spectrometry for concentrations above 99%. Procedures of sampling, processing and purification appropriate to these measuring methods were established. 1 Tab

  9. Major inorganic elements in tap water samples in Peninsular Malaysia.

    Science.gov (United States)

    Azrina, A; Khoo, H E; Idris, M A; Amin, I; Razman, M R

    2011-08-01

    Quality drinking water should be free from harmful levels of impurities such as heavy metals and other inorganic elements. Samples of tap water collected from 24 locations in Peninsular Malaysia were determined for inorganic element content. Minerals and heavy metals were analysed by spectroscopy methods, while non-metal elements were analysed using test kits. Minerals and heavy metals determined were sodium, magnesium, potassium, calcium, chromium, manganese, iron, nickel, copper, zinc, arsenic, cadmium and lead while the non-metal elements were fluoride, chloride, nitrate and sulphate. Most of the inorganic elements found in the samples were below the maximum permitted levels recommended by inter-national drinking water standard limits, except for iron and manganese. Iron concentration of tap water from one of the locations was higher than the standard limit. In general, tap water from different parts of Peninsular Malaysia had low concentrations of heavy metals and inorganic elements.

  10. Geochemical prospect ion results of Treinta y Tres aerial photo

    International Nuclear Information System (INIS)

    Zeegers, H.; Bonnefoy, D.; Garau, M.; Spangenberg, J.

    1981-01-01

    This report shows the geochemical prospect ion results carried out within the framework of the multielemental geochemical strategy. The samples were studied by e spectrometry in the laboratories of Orleans.

  11. Quality-control design for surface-water sampling in the National Water-Quality Network

    Science.gov (United States)

    Riskin, Melissa L.; Reutter, David C.; Martin, Jeffrey D.; Mueller, David K.

    2018-04-10

    The data-quality objectives for samples collected at surface-water sites in the National Water-Quality Network include estimating the extent to which contamination, matrix effects, and measurement variability affect interpretation of environmental conditions. Quality-control samples provide insight into how well the samples collected at surface-water sites represent the true environmental conditions. Quality-control samples used in this program include field blanks, replicates, and field matrix spikes. This report describes the design for collection of these quality-control samples and the data management needed to properly identify these samples in the U.S. Geological Survey’s national database.

  12. Hydro-geochemical characterization of Treated Domestic Waste Water for possible use in homestead irrigation and managed aquifer recharge in the coastal city of Khulna, Bangladesh

    Science.gov (United States)

    Hamid, T.; Ahmed, K. M.

    2016-12-01

    Bangladesh is among the most densely populated countries in the world. Rapid and unplanned urbanization in Bangladesh has resulted in heterogeneous land use pattern and larger demands for municipal water. To meet the ever-increasing demand of water for such population, the usage of treated domestic waste water (DWW) has become a viable option that can serve specific purposes, i.e. homestead irrigation, managed aquifer recharge (MAR) in major cities like Khulna, the largest city in the southwest coastal region. It is an attractive solution to minimize the deficit between the demand and supply of water in the study area where, in specific parts, city-dwellers suffer year round shortage of potable water due to high salinity in shallow depths. However, certain degree of treatment is mandatory for DWW in order to ensure the compliance of the output water with a set of standards and regulations for the DWW reuse. At present, the DWW is being treated through Constructed Wetlands but the treated water is not used and discharged into the sewer system. Wastewater that has been treated through a constructed wetland is a resource that can be used for productive uses in homestead garden irrigation, artificial aquifer recharge, and other non-potable uses. The study addresses the effectiveness of constructed wetlands in improving the quality of wastewater through on the hydro-geochemical characterization of both raw and treated DWW as well as baseline water quality analysis of surface and ground water in and around the treatment plant with consideration of seasonal variations. The study aims at sustainable development through conservation of water, satisfaction of demands, reliability of water supply, contribution to urban food supply, sustenance of livelihood and replenishment of the depleting aquifer by assessing the suitability of the treated DWW for various non-potable uses and also to provide guidelines for possible uses of treated DWW without adverse impact on environment

  13. Using water chemistry, isotopes and microbiology to evaluate groundwater sources, flow paths and geochemical reactions in the Death Valley flow system, USA

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, James M.; Hershey, Ronald L. [Desert Research Institute, 2215 Raggio Pwky, Reno, NV, USA 89512 (United States); Moser, Duane P.; Fisher, Jenny C.; Reihle, Jessica; Wheatley, Alexandra [Desert Research Institute, 755 E. Flamingo Rd, Las Vegas, NV, USA 89130 (United States); Baldino, Cristi; Weissenfluh, Darrick [US Fish and Wildlife Service, Ash Meadows NWR, Amargosa Valley, NV, USA 89020 (United States)

    2013-07-01

    Springs of Ash Meadows and Furnace Creek (near or in Death Valley, CA) have nearly constant flow, temperature, chemistry, and similar δ{sup 2}H and δ{sup 18}O signatures. These factors indicate shared water sources and/or analogous geochemical reactions along similar flow paths. DNA-based (16S rRNA gene) microbial diversity assessments further illuminate these relationships. Whereas, all Ash Meadows springs share related archaea populations, variations in carbon-14 (Crystal Spring) and strontium isotopes, Na{sup +}, SO{sub 4}{sup 2-}, and methane concentrations (Big Spring), correspond with microbial differences within and between the two discharge areas. Similar geochemical signatures linking Ash Meadows and Furnace Creek springs appear to support a distinct end member at Big Spring in Ash Meadows, which is also supported by coincident enrichment in microbial methanogens and methanotrophs. Conversely, DNA libraries from a deep carbonate well (878 m) located between Ash Meadows and Furnace Creek (BLM-1), indicate no shared microbial diversity between Ash Meadows or Furnace Creek springs. (authors)

  14. The collection and field chemical analysis of water samples

    International Nuclear Information System (INIS)

    Korte, N.E.; Ealey, D.T.; Hollenbach, M.H.

    1984-01-01

    A successful water sampling program requires a clear understanding of appropriate measurement and sampling procedures in order to obtain reliable field data and representative samples. It is imperative that the personnel involved have a thorough knowledge of the limitations of the techniques being used. Though this seems self-evident, many sampling and field-chemical-analysis programs are still not properly conducted. Recognizing these problems, the Department of Energy contracted with Bendix Field Engineering Corporation through the Technical Measurements Center to develop and select procedures for water sampling and field chemical analysis at waste sites. The fundamental causese of poor field programs are addressed in this paper, largely through discussion of specific field-measurement techniques and their limitations. Recommendations for improvement, including quality-assurance measures, are also presented

  15. Geochemical processes in acidic water caused by the weathering of metal sulphides; Procesos geoquimicos en aguas acidas por meteorizacion de sulfuros

    Energy Technology Data Exchange (ETDEWEB)

    Asta Andres, M. P.; Acero Salazar, P.; Auque Sanz, L. F.; Gimeno Serrano, M. J.; Gomez Jimenez, J. B.

    2011-07-01

    Acid generated by the oxidative dissolution of metal sulphides is one of the main sources of pollution in runoff water, groundwater, soils and sediments throughout the world. These types of water are very acidic and contain high concentrations of sulphate and other potentially contaminating elements such Fe, As, Cd, Sb, Zn and Cu. The acidity generated by sulphide oxidation processes is mainly controlled by the type, quantity and distribution of the sulphide-rich rocks, by the physical characteristics of the rocks (since they determine the accessibility of aqueous solutions and gases to the sulphides), by the presence of microorganisms able to catalyze the main chemical reactions involved in the formation of acid drainage, and by the existence of minerals capable of neutralizing acidity. As a result, the generation of acidic water is a very complex problem, the study of which must be undertaken via a multidisciplinary approach, taking into account geological, geochemical, mineralogical and microbiological aspects among others. The aim of our work is to provide a general overview of these processes and other factors that influence the generation and evolution of these systems, together with information concerning current scientific knowledge about each of these approaches. Thus we hope to provide a basic background to the understanding and study of acid-water systems associated with the weathering of metal sulphides and the processes involved in the generation, migration, evolution and natural attenuation of acidic waters in these environments. (Author) 65 refs.

  16. Geochemical prospecting for uranium and thorium deposits

    International Nuclear Information System (INIS)

    Boyle, R.W.

    1980-01-01

    A brief review of analytical geochemical prospecting methods for uranium and thorium is given excluding radiometric techniques, except those utilized in the determination of radon. The indicator (pathfinder) elements useful in geochemical surveys are listed for each of the types of known uranium and thorium deposits; this is followed by sections on analytical geochemical surveys based on rocks (lithochemical surveys), unconsolidated materials (pedochemical surveys), natural waters and sediments (hydrochemical surveys), biological materials (biogeochemical surveys) and gases (atmochemical surveys). All of the analytical geochemical methods are applicable in prospecting for thorium and uranium, particularly where radiometric methods fail due to attenuation by overburden, water, deep leaching and so on. Efficiency in the discovery of uranium and/or thorium orebodies is promoted by an integrated methods approach employing geological pattern recognition in the localization of deposits, analytical geochemical surveys, and radiometric surveys. (author)

  17. A device for fresh water sampling before radioactive measurements

    International Nuclear Information System (INIS)

    Maubert, Henri; Picat, Philippe.

    1982-06-01

    On account of the many field operations carried out by the laboratory, a water sampling device has been developed. This portable autonomous device performs in situ water filtration and concentration on ion exchange resins and activated carbon columns. The device is described and the trapping performance for 8 radionuclides is given. A comparison is made with the so-called evaporation method. The effects of the treatment of the filtrating elements on the radioactive results are studied. This sampling method is very sensitive [fr

  18. Gas-driven pump for ground-water samples

    Science.gov (United States)

    Signor, Donald C.

    1978-01-01

    Observation wells installed for artificial-recharge research and other wells used in different ground-water programs are frequently cased with small-diameter steel pipe. To obtain samples from these small-diameter wells in order to monitor water quality, and to calibrate solute-transport models, a small-diameter pump with unique operating characteristics is required that causes a minimum alternation of samples during field sampling. A small-diameter gas-driven pump was designed and built to obtain water samples from wells of two-inch diameter or larger. The pump is a double-piston type with the following characteristics: (1) The water sample is isolated from the operating gas, (2) no source of electricity is ncessary, (3) operation is continuous, (4) use of compressed gas is efficient, and (5) operation is reliable over extended periods of time. Principles of operation, actual operation techniques, gas-use analyses and operating experience are described. Complete working drawings and a component list are included. Recent modifications and pump construction for high-pressure applications also are described. (Woodard-USGS)

  19. Geologic Mapping and Paired Geochemical-Paleomagnetic Sampling of Reference Sections in the Grande Ronde Basalt: An Example from the Bingen Section, Columbia River Gorge, Washington

    Science.gov (United States)

    Sawlan, M.; Hagstrum, J. T.; Wells, R. E.

    2011-12-01

    We have completed comprehensive geochemical (GC) and paleomagnetic (PM) sampling of individual lava flows from eight reference stratigraphic sections in the Grande Ronde Basalt (GRB), Columbia River Basalt Group [Hagstrum et al., 2009, GSA Ann. Mtg, Portland (abst); Hagstrum et al., 2010, AGU Fall Mtg, San Francisco (abst)]. These sections, distributed across the Columbia Plateau and eastern Columbia River Gorge, contain as many as 30 flows, are up to 670 m thick, span upper magneto-stratigraphic zones R2 and N2, and, in some locations, also contain one or more N1 flows. In concert with GC and PM sampling, we have carried out detailed geologic mapping of these sections, typically at a scale of 1:3,000 to 1:5,000, using GPS, digital imagery from the National Aerial Imagery Program (NAIP), and compilation in GIS. GRB member and informal unit names of Reidel et al. [1989, GSA Sp. Paper 239] generally have been adopted, although two new units are identified and named within the N2 zone. Notably, a distinctive PM direction for intercalated lavas of several lower N2 units indicates coeval eruption of compositionally distinct units; this result contrasts with the scenario of serial stratigraphic succession of GRB units proposed by Reidel et al. [1989]. Our objectives in the mapping include: Confirming the integrity of the stratigraphic sequences by documenting flow contacts and intraflow horizons (changes in joint patterns or vesicularity); assessing fault displacements; and, establishing precisely located samples in geologic context such that selected sites can be unambiguously reoccupied. A geologic map and GC-PM data for the Bingen section, along the north side of the Columbia River, are presented as an example of our GRB reference section mapping and sampling. One of our thicker sections (670 m) along which 30 flows are mapped, the Bingen section spans 7 km along WA State Hwy 14, from near the Hood River Bridge ESE to Locke Lake. This section cuts obliquely through a

  20. UMTRA project water sampling and analysis plan, Durango, Colorado

    International Nuclear Information System (INIS)

    1994-01-01

    Surface remedial action has been completed at the Uranium Mill Tailings Remedial Action Project in Durango, Colorado. Contaminated soil and debris have been removed from the former processing site and placed in the Bodo Canyon disposal cell. Ground water at the former uranium mill/tailings site and raffinate pond area has been contaminated by the former milling operations. The ground water at the disposal site was not impacted by the former milling operations at the time of the cell's construction. Activities for fiscal 1994 involve ground water sampling and site characterization of the disposal site

  1. Water and steam sampling systems; Provtagningssystem foer vatten och aanga

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Mats

    2009-10-15

    The supervision of cycle chemistry can be divided into two parts, the sampling system and the chemical analysis. In modern steam generating plants most of the chemical analyses are carried out on-line. The detection limits of these analyzers are pushed downward to the ppt-range (parts per trillion), however the analyses are not more correct than the accuracy of the sampling system. A lot of attention has been put to the analyzers and the statistics to interpret the results but the sampling procedures has gained much less attention. This report aims to give guidance of the considerations to be made regarding sampling systems. Sampling is necessary since most analysis of interesting parameters cannot be carried out in- situ on-line in the steam cycle. Today's on-line instruments for pH, conductivity, silica etc. are designed to meet a water sample at a temperature of 10-30 deg C. This means that the sampling system has to extract a representative sample from the process, transport and cool it down to room temperature without changing the characteristics of the fluid. In the literature research work, standards and other reports can be found. Although giving similar recommendations in most aspects there are some discrepancies that may be confusing. This report covers all parts in the sampling system: Sample points and nozzles; Sample lines; Valves, regulating and on-off; Sample coolers; Temperature, pressure and flow rate control; Cooling water; and Water recovery. On-line analyzers connecting to the sampling system are not covered. This report aims to clarify what guidelines are most appropriate amongst the existing ones. The report should also give guidance to the design of the sampling system in order to achieve representative samples. In addition to this the report gives an overview of the fluid mechanics involved in sampling. The target group of this report is owners and operators of steam generators, vendors of power plant equipment, consultants working in

  2. Ground-water flow and quality, and geochemical processes, in Indian Wells Valley, Kern, Inyo, and San Bernardino counties, California, 1987-88

    Science.gov (United States)

    Berenbrock, Charles; Schroeder, R.A.

    1994-01-01

    An existing water-quality data base for the 300- square-mile Indian Wells Valley was updated by means of chemical and isotopic analysis of ground water. The wide range in measured concentrations of major ions and of minor constituents such as fluoride, borate, nitrate, manganese, and iron is attributed to geochemical reactions within lacustrine deposits of the valley floor. These reactions include sulfate reduction accompanied by generation of alkalinity, precipitation of carbonates, exchange of aqueous alkaline-earth ions for sodium on clays, and dissolution of evaporite minerals. Differences in timing and location of recharge, which originates primarily in the Sierra Nevada to the west, and evapotranspiration from a shallow water table on the valley floor result in a wide range in ratios of stable hydrogen and oxygen isotopes. As ground water moves from alluvium into lustrine deposits of the ancestral China Lake, dissolved-solids concen- trations increase from about 200 to more than 1,000 milligrams per liter; further large increases to several thousand milligrams per liter occur beneath the China Lake playa. Historical data show an increase during the past 20 years in dissolved- solids concentration in several wells in the principal pumping areas at Ridgecrest and between Ridgecrest and Inyokern. The increase apparently is caused by induced flow of saline ground water from nearby China, Mirror, and Satellite Lakes. A simplified advective-transport model calculates ground-water travel times between parts of the valley of at least several thousand years, indi- cating the presence of old ground water. A local ground-water line and an evaporation line estimated using isotopic data from the China Lake area inter- sect at a delta-deuterium value of about -125 permil. This indicates that late Pleistocene recharge was 15 to 35 permil more negative than current recharge.

  3. Establishing nursery estuary otolith geochemical tags for Sea Bass (Dicentrarchus labrax): Is temporal stability estuary dependent?

    Science.gov (United States)

    Ryan, Diarmuid; Wögerbauer, Ciara; Roche, William

    2016-12-01

    The ability to determine connectivity between juveniles in nursery estuaries and adult populations is an important tool for fisheries management. Otoliths of juvenile fish contain geochemical tags, which reflect the variation in estuarine elemental chemistry, and allow discrimination of their natal and/or nursery estuaries. These tags can be used to investigate connectivity patterns between juveniles and adults. However, inter-annual variability of geochemical tags may limit the accuracy of nursery origin determinations. Otolith elemental composition was used to assign a single cohort of 0-group sea bass Dicentrarchus labrax to their nursery estuary thus establishing an initial baseline for stocks in waters around Ireland. Using a standard LDFA model, high classification accuracies to nursery sites (80-88%) were obtained. Temporal stability of otolith geochemical tags was also investigated to assess if annual sampling is required for connectivity studies. Geochemical tag stability was found to be strongly estuary dependent.

  4. Sampling art for ground-water monitoring wells in nuclide migration

    International Nuclear Information System (INIS)

    Liu Wenyuan; Tu Guorong; Dang Haijun; Wang Xuhui; Ke Changfeng

    2010-01-01

    Ground-Water sampling is one of the key parts in field nuclide migration. The objective of ground-water sampling program is to obtain samples that are representative of formation-quality water. In this paper, the ground-water sampling standards and the developments of sampling devices are reviewed. We also designed the sampling study projects which include the sampling methods, sampling parameters and the elementary devise of two types of ground-Water sampling devices. (authors)

  5. Filtration recovery of extracellular DNA from environmental water samples

    Science.gov (United States)

    qPCR methods are able to analyze DNA from microbes within hours of collecting water samples, providing the promptest notification and public awareness possible when unsafe pathogenic levels are reached. Health risk, however, may be overestimated by the presence of extracellular ...

  6. Determination of thiobencarb in water samples by gas ...

    African Journals Online (AJOL)

    Homogeneous liquid-liquid microextraction via flotation assistance (HLLME-FA) coupled with gas chromatography-flame ionization detection (GC-FID) was applied for the extraction and determination of thiobencarb in water samples. In this study, a special extraction cell was designed to facilitate collection of the ...

  7. Determination of lead at nanogram level in water samples by ...

    African Journals Online (AJOL)

    A novel method of chemistry applicable to the determination of trace lead in water samples based on the resonance light scattering (RLS) technique has been developed. In dilute phosphoric acid medium, in the presence of a large excess of I-, Pb(II) can form [PbI4]2-, which further reacts with tetrabutyl ammonium bromide ...

  8. preconcentration of uranium in water samples using dispersive

    African Journals Online (AJOL)

    B. S. Chandravanshi

    Atomic Energy Organization of Iran, P.O. Box 14395-836, Tehran, Iran. 2Department of ... A new liquid phase microextraction method based on the dispersion of an extraction solvent into aqueous phase ... optical emission spectrometry, Uranium, Water samples ..... The validation of the presented procedure was performed ...

  9. In situ sampling of interstitial water from lake sediments

    NARCIS (Netherlands)

    Brinkman, Albertus G.; van Raaphorst, Wim; Lijklema, Lambertus

    1982-01-01

    A sampler with a relatively high resolution has been developed, which allows interstitial water to be obtained from lake sediments at well defined depths, without serious disturbance of sediment structure. Oxidation effects are excluded. Sampling time is in the order of a day. Installation requires

  10. Ground-water sample collection and analysis plan for the ground-water surveillance project

    International Nuclear Information System (INIS)

    Bryce, R.W.; Evans, J.C.; Olsen, K.B.

    1991-12-01

    The Pacific Northwest Laboratory performs ground-water sampling activities at the US Department of Energy's (DOE's) Hanford Site in support of DOE's environmental surveillance responsibilities. The purpose of this document is to translate DOE's General Environmental Protection Program (DOE Order 5400.1) into a comprehensive ground-water sample collection and analysis plan for the Hanford Site. This sample collection and analysis plan sets forth the environmental surveillance objectives applicable to ground water, identifies the strategy for selecting sample collection locations, and lists the analyses to be performed to meet those objectives

  11. Calibration of a PHREEQC-based geochemical model to predict surface water discharge from an operating uranium mill in the Athabasca Basin

    International Nuclear Information System (INIS)

    Mahoney, J.; Ryan, F.

    2014-01-01

    A PHREEQC based geochemical model has been developed to predict impacts from the McClean Lake Mill discharges through three lakes in the Athabasca Basin, Saskatchewan, Canada. The model is primarily a mixing calculation that uses site specific water balances and water compositions from five sources: 1) two water treatment plants, 2) waters from pit dewatering wells, 3) run-off into the lakes from surface waters, 4) ambient lake compositions, and 5) precipitation (rain and snow) onto the pit lake surface. The model allows for the discharge of these waters into the first lake, which then flows into another nearby lake and finally into a third larger lake. Water losses through evaporation and the impact of subsequent evapoconcentration processes are included in the model. PHREEQC has numerous mass transfer options including mixing, user specified reactions, equilibration with gas and solid phases, and surface complexation. Thus this program is ideally suited to this application. Preparation of such a complicated model is facilitated by an EXCEL Spreadsheet, which converts the water balance into appropriately formatted mixing proportions and to prepare portions of the PHREEQC input file in a format directly useable by PHREEQC. This allows for a high level of flexibility, while reducing transcription errors. For each scenario, the model path involves mixing of the waters in the first lake, followed by evapoconcentration, equilibration of the resulting solution with gas phases, including carbon dioxide and oxygen and with minerals and surfaces. The resultant composition is mixed in the second lake with more surface water, lake water and precipitation, and then re-equilibrated. This water represents the flow into the final lake; further mixing/dilution is accommodated; chemical equilibration may also occur. Because of the numerous steps and processes that define the pathway, each annual step requires approximately 200 lines of input in PHREEQC. Models used in the initial

  12. Spatial Variability of Metals in Surface Water and Sediment in the Langat River and Geochemical Factors That Influence Their Water-Sediment Interactions

    Directory of Open Access Journals (Sweden)

    Wan Ying Lim

    2012-01-01

    Full Text Available This paper determines the controlling factors that influence the metals’ behavior water-sediment interaction facies and distribution of elemental content (75As, 111Cd, 59Co, 52Cr, 60Ni, and 208Pb in water and sediment samples in order to assess the metal pollution status in the Langat River. A total of 90 water and sediment samples were collected simultaneously in triplicate at 30 sampling stations. Selected metals were analyzed using ICP-MS, and the metals’ concentration varied among stations. Metal concentrations of water ranged between 0.08–24.71 μg/L for As, <0.01–0.53 μg/L for Cd, 0.06–6.22 μg/L for Co, 0.32–4.67 μg/L for Cr, 0.80–24.72 μg/L for Ni, and <0.005–6.99 μg/L for Pb. Meanwhile, for sediment, it ranged between 4.47–30.04 mg/kg for As, 0.02–0.18 mg/kg for Cd, 0.87–4.66 mg/kg for Co, 4.31–29.04 mg/kg for Cr, 2.33–8.25 mg/kg for Ni and 5.57–55.71 mg/kg for Pb. The average concentration of studied metals in the water was lower than the Malaysian National Standard for Drinking Water Quality proposed by the Ministry of Health. The average concentration for As in sediment was exceeding ISQG standards as proposed by the Canadian Sediment Quality Guidelines. Statistical analyses revealed that certain metals (As, Co, Ni, and Pb were generally influenced by pH and conductivity. These results are important when making crucial decisions in determining potential hazardous levels of these metals toward humans.

  13. Algae viability over time in a ballast water sample

    Science.gov (United States)

    Gollasch, Stephan; David, Matej

    2018-03-01

    The biology of vessels' ballast water needs to be analysed for several reasons, one of these being performance tests of ballast water management systems. This analysis includes a viability assessment of phytoplankton. To overcome logistical problems to get algae sample processing gear on board of a vessel to document algae viability, samples may be transported to land-based laboratories. Concerns were raised how the storage conditions of the sample may impact algae viability over time and what the most appropriate storage conditions were. Here we answer these questions with a long-term algae viability study with daily sample analysis using Pulse-Amplitude Modulated (PAM) fluorometry. The sample was analysed over 79 days. We tested different storage conditions: fridge and room temperature with and without light. It seems that during the first two weeks of the experiment the viability remains almost unchanged with a slight downwards trend. In the continuing period, before the sample was split, a slightly stronger downwards viability trend was observed, which occurred at a similar rate towards the end of the experiment. After the sample was split, the strongest viability reduction was measured for the sample stored without light at room temperature. We concluded that the storage conditions, especially regarding temperature and light exposure, have a stronger impact on algae viability compared to the storage duration and that inappropriate storage conditions reduce algal viability. A sample storage time of up to two weeks in a dark and cool environment has little influence on the organism viability. This indicates that a two week time duration between sample taking on board a vessel and the viability measurement in a land-based laboratory may not be very critical.

  14. Demonstration of the Gore Module for Passive Ground Water Sampling

    Science.gov (United States)

    2014-06-01

    Organization for Standardization ( ISO )/International Electrotechnical Commission ( IEC ) 17025 , DoD ELAP, and NELAC quality standards for USEPA Method...mass spectrometry GCB Geochemical Sciences Branch GT glacial till HSE Health and Safety Executive IEC International Electrotechnical Commission...IRP Installation Restoration Program ACRONYMS AND ABBREVIATIONS (continued) x ISO International Organization for Standardization ITRC

  15. Collection and preparation of water samples for hydrogeochemical reconnaissance

    International Nuclear Information System (INIS)

    Baucom, E.I.; Ferguson, R.B.; Wallace, R.M.

    1977-01-01

    A method based on ion exchange and neutron activation analysis (NAA) was developed and field-tested to determine uranium over the range 0.02 to 10,000 ppb in natural water using a single procedure. Water samples are filtered in the field using a specially-designed one-liter filter apparatus pressurized to 40 psig with an inert gas. The filtered water is treated with a high purity, mixed cation-anion resin in the hydronium-hydroxide form. All ions are removed from solution under the strong driving force of the neutralization reaction. Anionic, cationic, and natural complexes of uranium can be concentrated with this method. Field tests showed greater than 95 percent recovery of 13 elements analyzed (including greater than 99 percent recovery of uranium) and greater than or equal to 90 percent recovery of 4 other elements. Uranium collected on the resin was quantitatively determined by NAA. Coefficient of variation for sampling plus analysis was less than 20 percent for samples containing more than 0.1 ppb uranium. Advantages of this method include: (1) wide dynamic range, (2) low detection limit for uranium (0.02 ppb), (3) high precision and accuracy, (4) relatively low cost, (5) high-yield recovery from low-level aqueous samples without risk of loss to containers, (6) decreased risk of significant sample contamination compared with other low-level methods, (7) production of stable samples suitable for retrievable storage, and(8) concentration of other ions that can be determined by NAA. This paper presents (1) background regarding development of procedures for sample collection and preparation, (2) results of development programs, (3) description of equipment and field procedures, and (4) preliminary conclusions regarding use of this technology for hydrogeochemical reconnaissance for uranium

  16. Determination of Cs-134 and Cs-137 rain water samples

    International Nuclear Information System (INIS)

    Lima, M.F.; Mazzilli, B.

    1988-01-01

    In order to setting an environmental monitoring program at IPEN, was developed a fast and simple methodology for concentration of Cs-134 and Cs-137 in rain water. This procedure consists in the precipitation of cesium and others cathions of its family (NH 4 + , K + and Rb + ) by ammonium molybdophosphate. The measures of the desintegration rates of Cs-134 and Cs-137 was done by gamma spectrometry in a Ge(Li) detector. After setting up the ideal experimental conditions, the procedure was used to analyze four samples of rain water. (author) [pt

  17. Hexagonal ice in pure water and biological NMR samples

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Thomas; Gath, Julia; Hunkeler, Andreas; Ernst, Matthias, E-mail: maer@ethz.ch [ETH Zurich, Physical Chemistry (Switzerland); Böckmann, Anja, E-mail: a.bockmann@ibcp.fr [UMR 5086 CNRS, Université de Lyon 1, Institut de Biologie et Chimie des Protéines (France); Meier, Beat H., E-mail: beme@ethz.ch [ETH Zurich, Physical Chemistry (Switzerland)

    2017-01-15

    Ice, in addition to “liquid” water and protein, is an important component of protein samples for NMR spectroscopy at subfreezing temperatures but it has rarely been observed spectroscopically in this context. We characterize its spectroscopic behavior in the temperature range from 100 to 273 K, and find that it behaves like pure water ice. The interference of magic-angle spinning (MAS) as well as rf multiple-pulse sequences with Bjerrum-defect motion greatly influences the ice spectra.

  18. Proceedings of the workshop on geochemical modeling

    International Nuclear Information System (INIS)

    1986-01-01

    The following collection of papers was presented at a workshop on geochemical modeling that was sponsored by the Office of Civilian Radioactive Waste Management Program at the Lawrence Livermore National Laboratory (LLNL). The LLNL Waste Management Program sponsored this conference based on their belief that geochemical modeling is particularly important to the radioactive waste disposal project because of the need to predict the consequences of long-term water-rock interactions at the proposed repository site. The papers included in this volume represent a subset of the papers presented at the Fallen Leaf Lake Conference and cover a broad spectrum of detail and breadth in a subject that reflects the diverse research interests of the conference participants. These papers provide an insightful look into the current status of geochemical modeling and illustrate how various geochemical modeling codes have been applied to problems of geochemical interest. The emphasis of these papers includes traditional geochemical modeling studies of individual geochemical systems, the mathematical and theoretical development and refinement of new modeling capabilities, and enhancements of data bases on which the computations are based. The papers in this proceedings volume have been organized into the following four areas: Geochemical Model Development, Hydrothermal and Geothermal Systems, Sedimentary and Low Temperature Environments, and Data Base Development. The participants of this symposium and a complete list of the talks presented are listed in the appendices

  19. Proceedings of the workshop on geochemical modeling

    Energy Technology Data Exchange (ETDEWEB)

    1986-01-01

    The following collection of papers was presented at a workshop on geochemical modeling that was sponsored by the Office of Civilian Radioactive Waste Management Program at the Lawrence Livermore National Laboratory (LLNL). The LLNL Waste Management Program sponsored this conference based on their belief that geochemical modeling is particularly important to the radioactive waste disposal project because of the need to predict the consequences of long-term water-rock interactions at the proposed repository site. The papers included in this volume represent a subset of the papers presented at the Fallen Leaf Lake Conference and cover a broad spectrum of detail and breadth in a subject that reflects the diverse research interests of the conference participants. These papers provide an insightful look into the current status of geochemical modeling and illustrate how various geochemical modeling codes have been applied to problems of geochemical interest. The emphasis of these papers includes traditional geochemical modeling studies of individual geochemical systems, the mathematical and theoretical development and refinement of new modeling capabilities, and enhancements of data bases on which the computations are based. The papers in this proceedings volume have been organized into the following four areas: Geochemical Model Development, Hydrothermal and Geothermal Systems, Sedimentary and Low Temperature Environments, and Data Base Development. The participants of this symposium and a complete list of the talks presented are listed in the appendices.

  20. Geochemical Tracing of Potential Hydraulic Connections between Groundwater and Run-Off Water in Northeastern Kansas, USA

    Directory of Open Access Journals (Sweden)

    Norbert Clauer

    2017-11-01

    Full Text Available This study is focused on establishing the extent of potential hydraulic connections of local lowland aquifers with the run-off waters of a nearby creek and two major rivers in and around Fort Riley in northeastern Kansas, USA. It is based on collective evidence by combining the contents of several major and trace elements of the waters with their oxygen, hydrogen and Sr isotopic compositions. The area of investigation is located a few miles to the west of the Kansas Konza Prairie, which is a United States designated site for regular monitoring of ecological and environmental configurations. The δ18O and δD of the run-off waters from the two rivers and the creek, and of the ground waters from local aquifers are almost identical. Relative to the General Meteoric Water Line, the δ18O-δD data have a tendency to deviate towards relatively lower δ18O values, as do generally the sub-surface waters of intra-continental basins. The observed stable isotope compositions for these waters preclude any significant impact by either an evapo-transpiration process by the vegetation, or an interaction with immediate mineral-rock matrices. The 87Sr/86Sr ratios of the aquifer waters collected from wells close to the Kansas River were markedly different from those of the river waters, confirming a lack of hydraulic interactions between the aquifers and the river. On the contrary, ground waters from wells at a relative distance from the Kansas River have 87Sr/86Sr ratios, Sr contents and Sr/Ca ratios that are similar to those of the river water, suggesting a hydraulic connection between these aquifers and the river, as well as a lack of any impact of the vegetation. An underground water supply from nearby Summer Hill located to the north of the study area has also been detected, except for its western border where no interactions occurred apparently between the aquifer waters and the reservoir rocks, or with the creek and river waters. The 87Sr/86Sr signatures

  1. Determination of Sr-90 in rain water samples

    International Nuclear Information System (INIS)

    Lima, M.F.; Cunha, I.I.L.

    1988-01-01

    A work that aim is to establish radiochemical method for the determination of Sr-90 in rain water samples has been studied, as a step in an environmental monitoring program of radioactive elements. The analysis includes the preconcentration of strontium diluted in a large volume sample by precipitation of strontium as carbonate, separation of strontium from interfering elements (calcium, barium and rare earths), separation of strontium from ytrium, precipitation of purified strontium and ytrium respectively as carbonate and oxalate, and counting of Sr-90 and Y-90 activities in a low background anticoincidence beta counter. (author) [pt

  2. Monolith Chromatography as Sample Preparation Step in Virome Studies of Water Samples.

    Science.gov (United States)

    Gutiérrez-Aguirre, Ion; Kutnjak, Denis; Rački, Nejc; Rupar, Matevž; Ravnikar, Maja

    2018-01-01

    Viruses exist in aquatic media and many of them use this media as transmission route. Next-generation sequencing (NGS) technologies have opened new doors in virus research, allowing also to reveal a hidden diversity of viral species in aquatic environments. Not surprisingly, many of the newly discovered viruses are found in environmental fresh and marine waters. One of the problems in virome research can be the low amount of viral nucleic acids present in the sample in contrast to the background ones (host, eukaryotic, prokaryotic, environmental). Therefore, virus enrichment prior to NGS is necessary in many cases. In water samples, an added problem resides in the low concentration of viruses typically present in aquatic media. Different concentration strategies have been used to overcome such limitations. CIM monoliths are a new generation of chromatographic supports that due to their particular structural characteristics are very efficient in concentration and purification of viruses. In this chapter, we describe the use of CIM monolithic chromatography for sample preparation step in NGS studies targeting viruses in fresh or marine water. The step-by-step protocol will include a case study where CIM concentration was used to study the virome of a wastewater sample using NGS.

  3. Fluoroquinolone antibiotics in environmental waters: sample preparation and determination.

    Science.gov (United States)

    Speltini, Andrea; Sturini, Michela; Maraschi, Federica; Profumo, Antonella

    2010-04-01

    The aim of this review is to provide a general overview on the analytical methods proposed in the last decade for trace fluoroquinolone (FQ) determination in environmental waters. A large number of studies have been developed on this topic in reason of the importance of their monitoring in the studies of environmental mobility and potential degradation pathways. Every step of the analysis has been carefully considered, with a particular attention to sample preparation, in relationship with the problems involved in the analysis of real matrices. The different strategies to minimise interference from organic matter and to achieve optimal sensitivity, especially important in those samples with lower FQ concentrations, were also highlighted. Results and progress in this field have been described and critically commented. Moreover, a worldwide overview on the presence of FQs in the environmental waters has been reported.

  4. An opacity-sampled treatment of water vapor

    Science.gov (United States)

    Alexander, David R.; Augason, Gordon C.; Johnson, Hollis R.

    1989-01-01

    Although the bands of H2O are strong in the spectra of cool stars and calculations have repeatedly demonstrated their significance as opacity sources, only approximate opacities are currently available, due both to the difficulty of accounting for the millions of lines involved and to the inadequacy of laboratory and theoretical data. To overcome these obstacles, a new treatment is presented, based upon a statistical representation of the water vapor spectrum derived from available laboratory data. This statistical spectrum of water vapor employs an exponential distribution of line strengths and random positions of lines whose overall properties are forced to reproduce the mean opacities observed in the laboratory. The resultant data set is then treated by the opacity-sampling method exactly as are all other lines, both molecular and atomic. Significant differences are found between the results of this improved treatment and the results obtained with previous treatments of water-vapor opacity.

  5. GROUND WATER SAMPLING OF VOCS IN THE WATER/CAPILLARY FRINGE AREA FOR VAPOR INTRUSION ASSESSMENT

    Science.gov (United States)

    Vapor intrusion has recently been considered a major pathway for increased indoor air contamination from certain volatile organic contaminants (VOCs). The recent Draft EPA Subsurface Vapor Intrusion Guidance Document states that ground water samples should be obtained from the u...

  6. Monitoring of fluoride in water samples using a smartphone

    Energy Technology Data Exchange (ETDEWEB)

    Levin, Saurabh [Akvo Foundation (Netherlands); Krishnan, Sunderrajan [INREM Foundation (India); Rajkumar, Samuel; Halery, Nischal; Balkunde, Pradeep [Akvo Foundation (Netherlands)

    2016-05-01

    In several parts of India, groundwater is the only reliable, year round source for drinking water. Prevention of fluorosis, a chronic disease resulting from excess intake of fluoride, requires the screening of all groundwater sources for fluoride in endemic areas. In this paper, the authors present a field deployable colorimetric analyzer based on an inexpensive smartphone embedded with digital camera for taking photograph of the colored solution as well as an easy-fit, and compact sample chamber (Akvo Caddisfly). Phones marketed by different smartphone makers were used. Commercially available zirconium xylenol orange reagent was used for determining fluoride concentration. A software program was developed to use with the phone for recording and analyzing the RGB color of the picture. Linear range for fluoride estimation was 0–2 mg l{sup −1}. Around 200 samples, which consisted of laboratory prepared as well as field samples collected from different locations in Karnataka, India, were tested with Akvo Caddisfly. The results showed a significant positive correlation between Ion Selective Electrode (ISE) method and Akvo Caddisfly (Phones A, B and C), with correlation coefficient ranging between 0.9952 and 1.000. In addition, there was no significant difference in the mean fluoride content values between ISE and Phone B and C except for Phone A. Thus the smartphone method is economical and suited for groundwater fluoride analysis in the field. - Highlights: • Fluoride is an inorganic pollutant in ground water, affecting human health. • A colorimetric method for measurement of fluoride in drinking water with smartphone • Measurement is by mixing water with zirconyl xylenol orange complex reagent. • Results are comparable with laboratory-based ion selective fluoride electrode method.

  7. Monitoring of fluoride in water samples using a smartphone

    International Nuclear Information System (INIS)

    Levin, Saurabh; Krishnan, Sunderrajan; Rajkumar, Samuel; Halery, Nischal; Balkunde, Pradeep

    2016-01-01

    In several parts of India, groundwater is the only reliable, year round source for drinking water. Prevention of fluorosis, a chronic disease resulting from excess intake of fluoride, requires the screening of all groundwater sources for fluoride in endemic areas. In this paper, the authors present a field deployable colorimetric analyzer based on an inexpensive smartphone embedded with digital camera for taking photograph of the colored solution as well as an easy-fit, and compact sample chamber (Akvo Caddisfly). Phones marketed by different smartphone makers were used. Commercially available zirconium xylenol orange reagent was used for determining fluoride concentration. A software program was developed to use with the phone for recording and analyzing the RGB color of the picture. Linear range for fluoride estimation was 0–2 mg l"−"1. Around 200 samples, which consisted of laboratory prepared as well as field samples collected from different locations in Karnataka, India, were tested with Akvo Caddisfly. The results showed a significant positive correlation between Ion Selective Electrode (ISE) method and Akvo Caddisfly (Phones A, B and C), with correlation coefficient ranging between 0.9952 and 1.000. In addition, there was no significant difference in the mean fluoride content values between ISE and Phone B and C except for Phone A. Thus the smartphone method is economical and suited for groundwater fluoride analysis in the field. - Highlights: • Fluoride is an inorganic pollutant in ground water, affecting human health. • A colorimetric method for measurement of fluoride in drinking water with smartphone • Measurement is by mixing water with zirconyl xylenol orange complex reagent. • Results are comparable with laboratory-based ion selective fluoride electrode method.

  8. Groundwater sampling in uranium reconnaissance

    International Nuclear Information System (INIS)

    Butz, T.R.

    1977-03-01

    The groundwater sampling program is based on the premise that ground water geochemistry reflects the chemical composition of, and geochemical processes active in the strata from which the sample is obtained. Pilot surveys have shown that wells are the best source of groundwater, although springs are sampled on occasion. The procedures followed in selecting a sampling site, the sampling itself, and the field measurements, as well as the site records made, are described

  9. Ion Chromatographic Analyses of Sea Waters, Brines and Related Samples

    Directory of Open Access Journals (Sweden)

    Nataša Gros

    2013-06-01

    Full Text Available This review focuses on the ion chromatographic methods for the analyses of natural waters with high ionic strength. At the beginning a natural diversity in ionic composition of waters is highlighted and terminology clarified. In continuation a brief overview of other review articles of potential interest is given. A review of ion chromatographic methods is organized in four sections. The first section comprises articles focused on the determination of ionic composition of water samples as completely as possible. The sections—Selected Anions, Selected Cations and Metals—follow. The most essential experimental conditions used in different methods are summarized in tables for a rapid comparison. Techniques encountered in the reviewed articles comprise: direct determinations of ions in untreated samples with ion- or ion-exclusion chromatography, or electrostatic ion chromatography; matrix elimination with column-switching; pre-concentration with a chelation ion chromatography and purge-and-trap pre-concentration. Different detection methods were used: non-suppressed conductometric or suppressed conductometric, direct spectrometric or spectrometric after a post-column derivetization, and inductively coupled plasma in combination with optical emission or mass spectrometry.

  10. Micellar electrokinetic chromatographic determination of triazine herbicides in water samples.

    Science.gov (United States)

    Li, Zhi; Zhang, Shuaihua; Yin, Xiaofang; Wang, Chun; Wang, Zhi

    2014-09-01

    Dispersive liquid-liquid microextraction combined with online sweeping preconcentration in micellar electrokinetic chromatography was developed for the simultaneous determination of five triazine herbicides (atrazine, simazine, propazine, prometon and simetryn) in water samples. Several experimental parameters affecting the extraction efficiencies such as the type and volume of both the extraction and dispersive solvents, the addition of salt to sample solution, the extraction time and the pH of the sample solution were investigated. Under optimum conditions, the linearity of the method was good in the range from 0.33 to 20 ng mL(-1) for simazine, propazine, atrazine and simetryn, and from 0.17 to 20 ng mL(-1) for prometon, respectively. The sensitivity enrichment factors were in the range from 1750 to 2100, depending on the compound. The limit of detection (S/N = 3) ranged from 0.05 to 0.10 ng mL(-1). The developed method was successfully applied to the analysis of the five triazines in river, ground and well waters. © The Author [2013]. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. Microbial analyses of clay and water from different samples from the Mont Terri Rock Laboratory (RL), Switzerland

    International Nuclear Information System (INIS)

    Sergeant, C.; Vesvres, M.H.; Barsotti, V.; Stroes-Gascoyne, S.; Hamon, C.J.; Neble, S.; Shippers, A.; Le Marrec, C.; Vinsot, A.; Schwyn, B.

    2010-01-01

    Document available in extended abstract form only. Exploration of deep subsurface microbial life has increased for very diverse motives. One of them is that these environments are potential host rocks for radioactive waste repositories and that microorganisms may influence geochemical conditions around such sites and migration properties of radionuclides. The pore water Chemistry experiment (PC) was conducted at the Mont Terri-RL to measure in situ the pH, Eh, and other geochemical parameters within the pore water of the Opalinus Clay formation. The borehole for PC was drilled with N 2 under clean but not aseptic conditions, filled immediately with synthetic pore water, which was circulated and monitored for five years. Soon after initiation of PC it was evident that microbial activity affected the borehole water geochemistry. Microbial analyses, including molecular biology and culturing methods, were performed repeatedly during PC (2003-2006), with detailed analysis of water and over-core clay upon termination in 2007. Results indicated the presence of heterotrophic aerobes and anaerobes, nitrate-reducers, iron-reducers, sulphate-reducers and Archaea, which together with geochemical data suggested a reducing environment with sulphate reduction in the water and adjacent clay. A black precipitate containing pyrite and a strong H 2 S smell confirmed the occurrence of sulphate reduction. Specific species identified (> 98% similarity) in PC water included Pseudomonas stutzeri, Bacillus licheniformis, and Desulfosporosinus sp., with similar and additional species (e.g., Trichococcus sp.; Koccuria sp.) in the clay. The origin of these (mostly anaerobic) species cannot be determined with certainty. Some species likely resulted from contamination, but others could be revived species indigenous in the Opalinus Clay. The microbial processes that occurred in PC are not representative of the processes in the undisturbed formation but illustrate the potential for microbial

  12. Coupling of transport and geochemical models

    International Nuclear Information System (INIS)

    Noy, D.J.

    1986-01-01

    This report considers mass transport in the far-field of a radioactive waste repository, and detailed geochemical modelling of the ground-water in the near-field. A parallel approach to this problem of coupling transport and geochemical codes is the subject of another CEC report (ref. EUR 10226). Both studies were carried out in the framework of the CEC project MIRAGE. (Migration of radionuclides in the geosphere)

  13. Differences in microbial community composition between injection and production water samples of water flooding petroleum reservoirs

    Directory of Open Access Journals (Sweden)

    P. K. Gao

    2015-06-01

    Full Text Available Microbial communities in injected water are expected to have significant influence on those of reservoir strata in long-term water flooding petroleum reservoirs. To investigate the similarities and differences in microbial communities in injected water and reservoir strata, high-throughput sequencing of microbial partial 16S rRNA of the water samples collected from the wellhead and downhole of injection wells, and from production wells in a homogeneous sandstone reservoir and a heterogeneous conglomerate reservoir were performed. The results indicate that a small number of microbial populations are shared between the water samples from the injection and production wells in the sandstone reservoir, whereas a large number of microbial populations are shared in the conglomerate reservoir. The bacterial and archaeal communities in the reservoir strata have high concentrations, which are similar to those in the injected water. However, microbial population abundance exhibited large differences between the water samples from the injection and production wells. The number of shared populations reflects the influence of microbial communities in injected water on those in reservoir strata to some extent, and show strong association with the unique variation of reservoir environments.

  14. Geochemical Constraints for Mercury's PCA-Derived Geochemical Terranes

    Science.gov (United States)

    Stockstill-Cahill, K. R.; Peplowski, P. N.

    2018-05-01

    PCA-derived geochemical terranes provide a robust, analytical means of defining these terranes using strictly geochemical inputs. Using the end members derived in this way, we are able to assess the geochemical implications for Mercury.

  15. Nuclear power plants and the environment. Water samplings and releases

    International Nuclear Information System (INIS)

    Hartmann, Philippe; Bordet, Francois; Chevalier, Christian; Colin, Jean-Luc; Khalanski, Michel

    2013-01-01

    This voluminous and illustrated guide aims at giving detailed information on the nature of waters used by nuclear power plants and of releases, on how these samplings and controls are performed, on the associated risks for the environment and public health, and on how public is informed. After a general overview of these issues, a chapter addresses the protection of nature and biodiversity and the actions performed by EDF in this respect. The next chapter deals with public information. The next chapters discuss the water needs of a nuclear power plant, effluent releases and their impacts. Two chapters are dedicated to the monitoring and control of the environment, and to the various techniques of environmental metrology. Legal and regulatory aspects are then presented

  16. Methane seepage along the Hikurangi Margin of New Zealand : geochemical and physical data from the water column, sea surface and atmosphere

    OpenAIRE

    Faure, Kevin; Greinert, Jens; Schneider, Jens; McGinnis, Daniel; Kipfer, Rolf; Linke, Peter

    2010-01-01

    The concentration and carbon isotope values of dissolved methane were measured in the water column at Rock Garden, Omakere Ridge and Wairarapa areas in the first dedicated cold seep investigation along the Hikurangi Margin of New Zealand. These measurements provide a high resolution impression of the methane distribution in the water column and show that these seep sites are actively venting methane with varying intensity. The highest concentrations (up to 3500 nM) measured in water samples o...

  17. Geochemical investigation of UMTRAP designated site at Durango, Colorado

    International Nuclear Information System (INIS)

    Markos, G.; Bush, K.J.

    1983-09-01

    This report is the result of a geochemical investigation of the former uranium mill and tailings site at Durango, Colorado. This is one in a series of site specific geochemical investigations performed on the inactive uranium mill tailings included in the UMTRA Project. The objectives of the investigation are to characterize the geochemistry, to determine the contaminant distribution resulting from the former milling activities and tailings, and to infer chemical pathways and transport mechanisms from the contaminant distribution. The results will be used to model contaminant migration and to develop criteria for long-term containment media such as a cover system which is impermeable to contaminant migration. This report assumes a familiarity with the hydrologic conditions of the site and the geochemical concepts underlying the investigation. The results reported are based on a one-time sampling of waters and solid material from the background, the area adjacent to the site, and the site. The solid samples are water extracted remove easily soluble salts and acids extracted to remove cabonates and hydroxides. The water extracts and solid samples were analyzed for the major and trace elements. A limited number of samples were analyzed for radiological components. The report includes the methods of sampling, sample processing, analysis, and data interpretation. Three major conclusions are: (1) carbonate salts and low TDS characterize the tailings; (2) the adjacent area and raffinate ponds contain contaminants deposited by a single event of fluid permeation of the soils; and (3) the Animas River adjacent to the site has elevated gross alpha activity attributed to 226 Ra in the sediments derived from the tailings or milling activities

  18. UMTRA Project water sampling and analysis plan, Salt Lake City, Utah. Revision 1

    International Nuclear Information System (INIS)

    1995-06-01

    This water sampling and analysis plan describes planned, routine ground water sampling activities at the US Department of Energy Uranium Mill Tailings Remedial Action Project site in Salt Lake City, Utah. This plan identifies and justifies sampling locations, analytical parameters, detection limits, and sampling frequencies for routine monitoring of ground water, sediments, and surface waters at monitoring stations on the site

  19. Pathogen Decay during Managed Aquifer Recharge at Four Sites with Different Geochemical Characteristics and Recharge Water Sources.

    Science.gov (United States)

    Sidhu, J P S; Toze, S; Hodgers, L; Barry, K; Page, D; Li, Y; Dillon, P

    2015-09-01

    Recycling of stormwater water and treated effluent via managed aquifer recharge (MAR) has often been hampered because of perceptions of low microbiological quality of recovered water and associated health risks. The goal of this study was to assess the removal of selected pathogens in four large-scale MAR schemes and to determine the influence of aquifer characteristics, geochemistry, and type of recharge water on the pathogen survival times. Bacterial pathogens tested in this study had the shortest one log removal time (, 200 d). Human adenovirus and rotavirus were relatively persistent under anaerobic conditions (, >200 d). Human adenovirus survived longer than all the other enteric virus tested in the study and hence could be used as a conservative indicator for virus removal in groundwater during MAR. The results suggest that site-specific subsurface conditions such as groundwater chemistry can have considerable influence on the decay rates of enteric pathogens and that viruses are likely to be the critical pathogens from a public health perspective. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. Haemorrhagic diarrhoea and reproductive failure in Bonsmara cattle resulting from anomalous heavy metal concentrations in soils, forages and drinking water associated with geochemical anomalies of toxic elements on the farm Puntlyf, South Africa

    Science.gov (United States)

    Elsenbroek, J. H.; Meyer, J.; Myburgh, J.

    2003-05-01

    Poor livestock health conditions are associated with geochemical Pb anomalies on a farm approximately 40km east of Pretoria, South Africa. A generic risk assessment of drinking water for Bonsmara cattle obtained from three separate subterranean water sources on the farm, revealed the presence of several potentially hazardous constituents suspected for the development of adverse health effects in the herd. The two main symptoms of the herd, namely, severe haemorrhagic diarrhoea in calves and reproductive failure in cows, have been investigated. A selenium-induced copper deficiency was proposed as the main cause to the calf diarrhoea, due to complexing between high concentrations of Se, Mo, Hg and Pb in drinking water. It was also anticipated that such Cu deficiencies would lead to low systemic Se inducing hypothyroidism in the cows due to inadequate iodine activation required for thyroid hormone formation and consequently adversely affect reproduction. The anomalous Pb in borehole drinking water on the southem part of the farm, suggests a clear genetic link with the underlying geochemical Pb anomalies detected by means of an ongoing regional geochemical survey.

  1. Geochemical Parameters Required from the SKB Site Characterisation Programme

    International Nuclear Information System (INIS)

    Bath, Adrian

    2002-01-01

    . This approach will also help to clarify the rationale for taking samples and making particular measurements and will indicate the tolerances in terms of data error and interpretative uncertainty. Geochemical parameters that are required from rock, mineral, water and dissolved gas samples are listed and discussed along with the reasons for requiring the data. Measures that need to be taken to optimise the quality and representativeness of samples are also discussed because these are paramount in determining the ultimate reliability of data. Finally, interpretative tools that are used to convert raw data into knowledge and confidence in understanding of processes have been briefly considered. These may have additional 'supporting' data requirements and also need to be critically reviewed for their applicability and for the robustness of the conceptual models on which they are based

  2. Geochemical Parameters Required from the SKB Site Characterisation Programme

    Energy Technology Data Exchange (ETDEWEB)

    Bath, Adrian [Intellisci Ltd., Loughborough (United Kingdom)

    2002-01-01

    processes. This approach will also help to clarify the rationale for taking samples and making particular measurements and will indicate the tolerances in terms of data error and interpretative uncertainty. Geochemical parameters that are required from rock, mineral, water and dissolved gas samples are listed and discussed along with the reasons for requiring the data. Measures that need to be taken to optimise the quality and representativeness of samples are also discussed because these are paramount in determining the ultimate reliability of data. Finally, interpretative tools that are used to convert raw data into knowledge and confidence in understanding of processes have been briefly considered. These may have additional 'supporting' data requirements and also need to be critically reviewed for their applicability and for the robustness of the conceptual models on which they are based.

  3. Origin of nickel in water solution of the chalk aquifer in the north of France and influence of geochemical factors

    Science.gov (United States)

    Bernard, Daniel; El Khattabi, Jamal; Lefevre, Emilie; Serhal, Hani; Bastin-Lacherez, Sabine; Shahrour, Isam

    2008-01-01

    In the north of France, high registers of nickel are sometimes recorded within the chalk aquifer. In a confined context, the presence of pyrite in the covering clays or in the marcasite nodules encrusted in the clay may constitute a natural source of trace metals. With an objective of sanitary control, the limits of chemical contents regulating the quality of water destined for human consumption have been lowered by the European Framework Directive in the field of water policy (2000/60/EC). As a result, nickel limits have been reduced from 50 to 20 μg/l. The analyses, carried out on three water catchment fields in our area of study, were centred on variable parameters (Eh, O2(d), pH, Conductivity, T°), major elements (SO4, NO3) and metals (Fe, Ni, Mn, Co). The acquired data enabled us to identify from one hand, the conditions which are presented within the site, special thanks to the evolution of nitrate and iron contents and on the other hand, the natural origin (geological) of nickel for two of the three sites studied based essentially on the evaluation of the Nickel/Cobalt ratio. Thus, on the first site, the evolution of nickel content and nitrate content showed the influence of the phenomenon of denitrification on the re-mobilisation of the nickel. Whereas on the second site, a high variation of total iron content and oxygen dissolved in solution highlighted a particular phenomenon of oxidation of the pyrite through molecular oxygen. Finally, the correlation with the sulphates clearly showed behaviour of the nickel, once released, that was entirely dependent on the phenomenon of adsorption on the iron and manganese hydroxides.

  4. Geochemical exploration for uranium

    International Nuclear Information System (INIS)

    1988-01-01

    This Technical Report is designed mainly to introduce the methods and techniques of uranium geochemical exploration to exploration geologists who may not have had experience with geochemical exploration methods in their uranium programmes. The methods presented have been widely used in the uranium exploration industry for more than two decades. The intention has not been to produce an exhaustive, detailed manual, although detailed instructions are given for a field and laboratory data recording scheme and a satisfactory analytical method for the geochemical determination of uranium. Rather, the intention has been to introduce the concepts and methods of uranium exploration geochemistry in sufficient detail to guide the user in their effective use. Readers are advised to consult general references on geochemical exploration to increase their understanding of geochemical techniques for uranium

  5. Geochemical and stable isotopic constraints on the generation and passive treatment of acidic, Fe-SO{sub 4} rich waters

    Energy Technology Data Exchange (ETDEWEB)

    Matthies, Romy, E-mail: rmatthies@uwaterloo.ca [School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, NE1 7RU (United Kingdom); Aplin, Andrew C., E-mail: andrew.aplin@ncl.ac.uk [School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, NE1 7RU (United Kingdom); Boyce, Adrian J., E-mail: a.boyce@suerc.gla.ac.uk [Scottish Universities Environment Research Centre, East Kilbride, G75 0QF (United Kingdom); Jarvis, Adam P., E-mail: a.p.jarvis@ncl.ac.uk [School of Civil Engineering and Geosciences, Newcastle University, Newcastle upon Tyne, NE1 7RU (United Kingdom)

    2012-03-15

    Reducing and Alkalinity Producing Systems (RAPS) remediate net-acidic metalliferous mine drainage by creating anoxic conditions in which bacterial sulfate reduction (BSR) raises alkalinity and drives the precipitation of iron and other chalcophilic elements as sulfides. We report chemical and stable isotopic data from a study monitoring the biogeochemical processes involved in the generation of mine waters and their remediation by two RAPS. Sulfur isotopes show that sulfate in all mine waters has a common source (pyrite oxidation), whilst oxygen isotopes show that oxidation of pyritic sulfur is mediated by Fe(III){sub aq}. The isotopic composition of dissolved sulfide, combined with the sulfur and oxygen isotopic composition of sulfate in RAPS effluents, proves BSR and details its dual isotope systematics. The occurrence and isotopic composition of solid phase iron sulfides indicate the removal of reduced sulfur within the RAPS, with significant amounts of elemental sulfur indicating reoxidation steps. However, only 0 to 9% of solid phase iron occurs as Fe sulfides, with approximately 70% of the removed iron occurs as Fe(III) (hydr)oxides. Some of the (hydr)oxide is supplied to the wetland as solids and is simply filtered by the wetland substrate, playing no role in alkalinity generation or proton removal. However, the majority of iron is supplied as dissolved Fe(II), indicating that acid generating oxidation and hydrolysis reactions dominate iron removal. The overall contribution of BSR to the sulfur geochemistry in the RAPS is limited and sulfate retention is dominated by sulfate precipitation, comparable to aerobic treatment systems, and show that the proton acidity resulting from iron oxidation and hydrolysis must be subsequently neutralised by calcite dissolution and/or BSR deeper in the RAPS sediments. BSR is not as important as previously thought for metal removal in RAPS. The results have practical consequences for the design, treatment performance and long

  6. Determination of 210Pb and 210Po in water samples

    International Nuclear Information System (INIS)

    Ayranov, M.; Tosheva, Z.; Kies, A.

    2004-01-01

    Lead-210 and Polonium-210 are naturally occurring members of the Uranium-238 decay series. They could be found in various environmental samples, such as groundwater, fish and shellfish, contributing an important component of the human natural radiation background. For this reason the development of a fast, reproducible and sensitive method for determination of 210 Pb and 210 Po is of a great concern. The aims of our study were to adopt procedures for radiochemical separation of these radionuclides and radioanalytical methods for their determination. The combination of electrochemical deposition, co-precipitation and extraction chromatography gives the opportunity for fast and effective radiochemical separation of the analytes. Polonium was spontaneously plated on copper disk from the stock solution. Lead was co-precipitated with Fe(OH) 3 and further purified by extraction chromatography on Sr Spec columns. Alpha spectra of polonium were collected on Canberra PIPS detectors with 900 mm 2 active surface. The activities of lead were determined by LSC (Gardian Wallac Oy). The minimum detectable activities for sample size 1000 mL and chemical yield of 88 % for the polonium and 85 % for the lead are presented. The proposed method proved to be fast, accurate and reproducible for routine determination of lead and polonium in environmental water samples. (authors)

  7. [Study on the method for the determination of trace boron, molybdenum, silver, tin and lead in geochemical samples by direct current arc full spectrum direct reading atomic emission spectroscopy (DC-Arc-AES)].

    Science.gov (United States)

    Hao, Zhi-hong; Yao, Jian-zhen; Tang, Rui-ling; Zhang, Xue-mei; Li, Wen-ge; Zhang, Qin

    2015-02-01

    The method for the determmation of trace boron, molybdenum, silver, tin and lead in geochemical samples by direct current are full spectrum direct reading atomic emission spectroscopy (DC-Arc-AES) was established. Direct current are full spectrum direct reading atomic emission spectrometer with a large area of solid-state detectors has functions of full spectrum direct reading and real-time background correction. The new electrodes and new buffer recipe were proposed in this paper, and have applied for national patent. Suitable analytical line pairs, back ground correcting points of elements and the internal standard method were selected, and Ge was used as internal standard. Multistage currents were selected in the research on current program, and each current set different holding time to ensure that each element has a good signal to noise ratio. Continuous rising current mode selected can effectively eliminate the splash of the sample. Argon as shielding gas can eliminate CN band generating and reduce spectral background, also plays a role in stabilizing the are, and argon flow 3.5 L x min(-1) was selected. Evaporation curve of each element was made, and it was concluded that the evaporation behavior of each element is consistent, and combined with the effects of different spectrographic times on the intensity and background, the spectrographic time of 35s was selected. In this paper, national standards substances were selected as a standard series, and the standard series includes different nature and different content of standard substances which meet the determination of trace boron, molybdenum, silver, tin and lead in geochemical samples. In the optimum experimental conditions, the detection limits for B, Mo, Ag, Sn and Pb are 1.1, 0.09, 0.01, 0.41, and 0.56 microg x g(-1) respectively, and the precisions (RSD, n=12) for B, Mo, Ag, Sn and Pb are 4.57%-7.63%, 5.14%-7.75%, 5.48%-12.30%, 3.97%-10.46%, and 4.26%-9.21% respectively. The analytical accuracy was

  8. Sources, migration and transformation of antimony contamination in the water environment of Xikuangshan, China: Evidence from geochemical and stable isotope (S, Sr) signatures

    International Nuclear Information System (INIS)

    Wen, Bing; Zhou, Jianwei; Zhou, Aiguo; Liu, Cunfu; Xie, Lina

    2016-01-01

    The Xikuangshan (XKS) mine in central China is the largest antimony (Sb) mine in the world. The mining activity has seriously contaminated the waters in the area. To determine the sources, migration and transformation of Sb contamination, 32 samples from groundwater (aquifer water), surface water and mine water were collected for water chemistry, trace element and S_S_O_4 and Sr stable isotope analyses. The results showed that the groundwater and surface water were in an oxidized environment. The S_S_O_4 and Sr isotope compositions in the water indicated that dissolved Sb and SO_4"2 originated from sulfide mineral (Sb_2S_3) oxidation, whereas radiogenic Sr may have been sourced from silicified limestone and stibnite in the Shetianqiao aquifer. Furthermore, a positive correlation between δ"3"4S_S_O_4 and δ"8"7Sr values revealed that the Sr, S and Sb in the waters had a common contamination source, i.e., silicified limestone and stibnite, whereas the Sr, S and Sb in rock and ore were sourced from Proterozoic basement clastics. The analysis also indicated that the isotope composition of dissolved SO_4"2 "− had been influenced by slight bacterial SO_4 reduction in the Magunao aquifer. Mining or rock collapse may have caused Shetianqiao aquifer water to contaminate the Magunao aquifer water via mixing. This study has demonstrated that the stable isotopes of "3"4S_S_O_4 and "8"7Sr, combined with hydrochemical methods, are effective in tracking the sources, migration and transformation of Sb contamination. - Highlights: • Mining activities at XKS mine have caused serious water contamination. • The characteristics of Sb contamination in water environment are still unclear. • Combine S isotopes of sulfate and Sr isotopes with hydrochemical methods. • Sr, S, and Sb in natural water had a common source: silicified limestone and stibnite. • Shetianqiao aquifer water contaminated the Magunao aquifer water via mixing.

  9. Application of multiple geochemical indicators, including the stable isotopes of water, to differentiate water quality evolution in a region influenced by various agricultural practices and domestic wastewater treatment and disposal

    International Nuclear Information System (INIS)

    Butler, Thomas W.

    2007-01-01

    Spatial and temporal variations in groundwater chemistry indicate that the use of low TDS lake water for irrigation, on land located just south of the City of Dixon, Solano County, California, is primarily responsible for improving groundwater quality with regards to salts. The stable isotopes of water further support this finding and suggest that TDS concentrations decrease as groundwater evolves to a more highly evaporated state. This seemingly contradictory finding was primarily attributed to infiltration of low TDS Lake Berryessa surface water, which has an isotopic signature indicative of an evaporated source and is used extensively for irrigation in the area, mixing with poorer quality locally recharged shallow groundwater. Geochemical modeling using the program PHREEQC further supports the anthropogenic aquifer freshening hypotheses through computed reductions in the saturation state of carbonate minerals in the vicinity of land irrigated by lake derived water, which is undersaturated with regards to modeled carbonates. Additionally, δ 18 O and δ 2 H were found to be useful in estimating climatic variables such as temperature and humidity, illustrating the potential for applying these models in hydrologic investigations within the area. It was however found that USDA NRCS soils data and measured water chemistry were not well correlated and thus the use of soils classifications to assess potential groundwater quality impacts was of limited utility

  10. Geochemical modelling of the evolution of a granite-concrete-water system around a repository for spent nuclear fuel

    International Nuclear Information System (INIS)

    Fritz, B.; Made, B.; Tardy, Y.

    1988-04-01

    The interactions between a granitic rock and concrete due to the natural solutions circulating around a repository for spent nuclear fuel has been simulated considering the dissolution of Ca(OH) 2 as the major source of alkalinity due to the concrete. This study follows a previous one considering the same interaction without concrete at 25, 60 and 100 deg C. The temperature range has been extended to 150 deg C. The results of the modelling are considered as following: - evolution of the water chemistry due to detected pssible chemical reactions. - minerals produced and dissolved. The calculations give mass transfers and volumic consequences (opening or closing tendencies). The conclusions of this yearly report are mainly the following: (1) the extent of the temperature range for the storage (up to 150 deg C) does not change the tendencies previously detected in the same conditions without any particular alkaline effect due to concrete dissolution, the reactions occurring tend to decrease the porosity of the rock by a sealing effect due to calcite precipitation and clays formation. (2) The effect of an alkaline concrete dissolution is clearly important, pH may reach very high values in closed system, and the volumic consequence is found in favour of an opening of the porosity, at the stage of saturation of the portlandite. This is probably an important point considering the security of natural barriers around such a repository. (authors)

  11. Fluorescent determination of graphene quantum dots in water samples

    Energy Technology Data Exchange (ETDEWEB)

    Benítez-Martínez, Sandra; Valcárcel, Miguel, E-mail: qa1meobj@uco.es

    2015-10-08

    This work presents a simple, fast and sensitive method for the preconcentration and quantification of graphene quantum dots (GQDs) in aqueous samples. GQDs are considered an object of analysis (analyte) not an analytical tool which is the most frequent situation in Analytical Nanoscience and Nanotechnology. This approach is based on the preconcentration of graphene quantum dots on an anion exchange sorbent by solid phase extraction and their subsequent elution prior fluorimetric analysis of the solution containing graphene quantum dots. Parameters of the extraction procedure such as sample volume, type of solvent, sample pH, sample flow rate and elution conditions were investigated in order to achieve extraction efficiency. The limits of detection and quantification were 7.5 μg L{sup −1} and 25 μg L{sup −1}, respectively. The precision for 200 μg L{sup −1}, expressed as %RSD, was 2.8%. Recoveries percentages between 86.9 and 103.9% were obtained for two different concentration levels. Interferences from other nanoparticles were studied and no significant changes were observed at the concentration levels tested. Consequently, the optimized procedure has great potential to be applied to the determination of graphene quantum dots at trace levels in drinking and environmental waters. - Highlights: • Development of a novel and simple method for determination of graphene quantum dots. • Preconcentration of graphene quantum dots by solid phase extraction. • Fluorescence spectroscopy allows fast measurements. • High sensitivity and great reproducibility are achieved.

  12. Isotopic and geochemical evolution of ground and surface waters in a karst dominated geological setting: a case study from Belize, Central America

    International Nuclear Information System (INIS)

    Marfia, A.M.; Krishnamurthy, R.V.; Atekwana, E.A.; Panton, W.F.

    2004-01-01

    Analysis of stable isotopes and major ions in groundwater and surface waters in Belize, Central America was carried out to identify processes that may affect drinking water quality. Belize has a subtropical rainforest/savannah climate with a varied landscape composed predominantly of carbonate rocks and clastic sediments. Stable oxygen (δ 18 O) and hydrogen (δD) isotope ratios for surface and groundwater have a similar range and show high d-excess (10-40.8%o). The high d-excess in water samples suggest secondary continental vapor flux mixing with incoming vapor from the Caribbean Sea. Model calculations indicate that moisture derived from continental evaporation contributes 13% to overhead vapor load. In surface and groundwater, concentrations of dissolved inorganic carbon (DIC) ranged from 5.4 to 112.9 mg C/l and δ 13 C DIC ranged from -7.4 to -17.4%o. SO 4 2 , Ca 2+ and Mg 2+ in the water samples ranged from 2-163, 2-6593 and 2-90 mg/l, respectively. The DIC and δ 13 C DIC indicate both open and closed system carbonate evolution. Combined δ 13 C DIC and Ca 2+ , Mg 2+ , and SO 4 2- suggest additional groundwater evolution by gypsum dissolution and calcite precipitation. The high SO 4 2- content of some water samples indicates regional geologic control on water quality. Similarity in the range of δ 18 O, δD and δ 13 C DIC for surface waters and groundwater used for drinking water supply is probably due to high hydraulic conductivities of the karstic aquifers. The results of this study indicate rapid recharge of groundwater aquifers, groundwater influence on surface water chemistry and the potential of surface water to impact groundwater quality and vise versa

  13. Liquid Water from First Principles: Validation of Different Sampling Approaches

    Energy Technology Data Exchange (ETDEWEB)

    Mundy, C J; Kuo, W; Siepmann, J; McGrath, M J; Vondevondele, J; Sprik, M; Hutter, J; Parrinello, M; Mohamed, F; Krack, M; Chen, B; Klein, M

    2004-05-20

    A series of first principles molecular dynamics and Monte Carlo simulations were carried out for liquid water to assess the validity and reproducibility of different sampling approaches. These simulations include Car-Parrinello molecular dynamics simulations using the program CPMD with different values of the fictitious electron mass in the microcanonical and canonical ensembles, Born-Oppenheimer molecular dynamics using the programs CPMD and CP2K in the microcanonical ensemble, and Metropolis Monte Carlo using CP2K in the canonical ensemble. With the exception of one simulation for 128 water molecules, all other simulations were carried out for systems consisting of 64 molecules. It is found that the structural and thermodynamic properties of these simulations are in excellent agreement with each other as long as adiabatic sampling is maintained in the Car-Parrinello molecular dynamics simulations either by choosing a sufficiently small fictitious mass in the microcanonical ensemble or by Nos{acute e}-Hoover thermostats in the canonical ensemble. Using the Becke-Lee-Yang-Parr exchange and correlation energy functionals and norm-conserving Troullier-Martins or Goedecker-Teter-Hutter pseudopotentials, simulations at a fixed density of 1.0 g/cm{sup 3} and a temperature close to 315 K yield a height of the first peak in the oxygen-oxygen radial distribution function of about 3.0, a classical constant-volume heat capacity of about 70 J K{sup -1} mol{sup -1}, and a self-diffusion constant of about 0.1 Angstroms{sup 2}/ps.

  14. Determination of trihalomethanes in water samples: A review

    Energy Technology Data Exchange (ETDEWEB)

    Perez Pavon, Jose Luis [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias Quimicas, Universidad de Salamanca, 37008 Salamanca (Spain)], E-mail: jlpp@usal.es; Herrero Martin, Sara; Garcia Pinto, Carmelo; Moreno Cordero, Bernardo [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias Quimicas, Universidad de Salamanca, 37008 Salamanca (Spain)

    2008-11-23

    This article reviews the most recent literature addressing the analytical methods applied for trihalomethanes (THMs) determination in water samples. This analysis is usually performed with gas chromatography (GC) combined with a preconcentration step. The detectors most widely used in this type of analyses are mass spectrometers (MS) and electron capture detectors (ECD). Here, we review the analytical characteristics, the time required for analysis, and the simplicity of the optimised methods. The main difference between these methods lies in the sample pretreatment step; therefore, special emphasis is placed on this aspect. The techniques covered are direct aqueous injection (DAI), liquid-liquid extraction (LLE), headspace (HS), and membrane-based techniques. We also review the main chromatographic columns employed and consider novel aspects of chromatographic analysis, such as the use of fast gas chromatography (FGC). Concerning the detection step, besides the common techniques, the use of uncommon detectors such as fluorescence detector, pulsed discharge photoionization detector (PDPID), dry electrolytic conductivity detector (DELCD), atomic emission detector (AED) and inductively coupled plasma-mass spectrometry (ICP-MS) for this type of analysis is described.

  15. Review of samples of sediment, tailings, and waters adjacent to the Cactus Queen gold mine, Kern County, California

    Science.gov (United States)

    Rytuba, James J.; Kim, Christopher S.; Goldstein, Daniel N.

    2011-01-01

    The Cactus Queen Mine is located in the western Mojave Desert in Kern County, California. The Cactus Queen gold-silver (Au-Ag) deposit is similar to other Au-Ag deposits hosted in Miocene volcanic rocks that consist of silicic domes and associated flows, pyroclastic rocks, and subvolcanic intrusions. The volcanic rocks were emplaced onto a basement of Mesozoic silicic intrusive rocks. A part of the Cactus Queen Mine is located on Federal land managed by the U.S. Bureau of Land Management (BLM). Staff from the BLM initially sampled the mine area and documented elevated concentrations of arsenic (As) in tailings and sediment. BLM then requested that the U.S. Geological Survey (USGS), in collaboration with Chapman University, measure and characterize As and other geochemical constituents in sediment, tailings, and waters on the part of the mine on Federal lands. This report is made in response to the request by the BLM, the lead agency mandated to conduct a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) - Removal Site Investigation (RSI). The RSI applies to the potential removal of As-contaminated mine waste from the Cactus Queen Mine as a means of reducing As release and exposure to humans and biota. This report summarizes data obtained from field sampling of sediments, mine tailings, and surface waters at the Cactus Queen Mine on January 27, 2008. Our results provide a preliminary assessment of the sources of As and associated chemical constituents that could potentially impact humans and biota.

  16. Geochemical characterization of water, sediment, and biota affected by mercury contamination and acidic drainage from historical gold mining, Greenhorn Creek, Nevada County, California, 1999-2001

    Science.gov (United States)

    Alpers, Charles N.; Hunerlach, Michael P.; May, Jason T.; Hothem, Roger L.; Taylor, Howard E.; Antweiler, Ronald C.; De Wild, John F.; Lawler, David A.

    2005-01-01

    In 1999, the U.S. Geological Survey (USGS) initiated studies of mercury and methylmercury occurrence, transformation, and transport in the Bear River and Yuba River watersheds of the northwestern Sierra Nevada. Because these watersheds were affected by large-scale, historical gold extraction using mercury amalgamation beginning in the 1850s, they were selected for a pilot study of mercury transport by the USGS and other cooperating agencies. This report presents data on methylmercury (MeHg) and total mercury (THg) concentrations in water, bed sediment, invertebrates, and frogs collected at 40 stations during 1999-2001 in the Greenhorn Creek drainage, a major tributary to Bear River. Results document several mercury contamination ?hot spots? that represent potential targets for ongoing and future remediation efforts at abandoned mine sites in the study area. Water-quality samples were collected one or more times at each of 29 stations. The concentrations of total mercury in 45 unfiltered water samples ranged from 0.80 to 153,000 nanograms per liter (ng/L); the median was 9.6 ng/L. Total mercury concentrations in filtered water (41 samples) ranged from less than 0.3 to 8,000 ng/L; the median was 2.7 ng/L. Concentrations of methylmercury in the unfiltered water (40 samples) ranged from less than 0.04 to 9.1 ng/L; the median was 0.07 ng/L. Methylmercury in filtered water (13 samples) ranged from less than 0.04 to 0.27 ng/L; the median was 0.04 ng/L. Acidic drainage with pH values as low as 3.4 was encountered in some of the mined areas. Elevated concentrations of aluminum, cadmium, copper, iron, manganese, nickel, and zinc were found at several stations, especially in the more acidic water samples. Total mercury concentrations in sediment were determined by laboratory and field methods. Total mercury concentrations (determined by laboratory methods) in ten samples from eight stations ranged from about 0.0044 to 12 ?g/g (microgram per gram, equivalent to parts per

  17. Sampling and analysis for radon-222 dissolved in ground water and surface water

    Science.gov (United States)

    DeWayne, Cecil L.; Gesell, T.F.

    1992-01-01

    Radon-222 is a naturally occurring radioactive gas in the uranium-238 decay series that has traditionally been called, simply, radon. The lung cancer risks associated with the inhalation of radon decay products have been well documented by epidemiological studies on populations of uranium miners. The realization that radon is a public health hazard has raised the need for sampling and analytical guidelines for field personnel. Several sampling and analytical methods are being used to document radon concentrations in ground water and surface water worldwide but no convenient, single set of guidelines is available. Three different sampling and analytical methods - bubbler, liquid scintillation, and field screening - are discussed in this paper. The bubbler and liquid scintillation methods have high accuracy and precision, and small analytical method detection limits of 0.2 and 10 pCi/l (picocuries per liter), respectively. The field screening method generally is used as a qualitative reconnaissance tool.

  18. Reconnaissance Geochemical Study

    African Journals Online (AJOL)

    distribution patterns. The geochemical distribution maps of the elements reveal that Cu, Pb, Zn, Co, Sc, Ni, Cr, .... After filtration, the leached solutions were diluted with ultra ...... some other rare earth elements in the study area. The occurrence ...

  19. Sampling trace organic compounds in water: a comparison of a continuous active sampler to continuous passive and discrete sampling methods.

    Science.gov (United States)

    Coes, Alissa L; Paretti, Nicholas V; Foreman, William T; Iverson, Jana L; Alvarez, David A

    2014-03-01

    A continuous active sampling method was compared to continuous passive and discrete sampling methods for the sampling of trace organic compounds (TOCs) in water. Results from each method are compared and contrasted in order to provide information for future investigators to use while selecting appropriate sampling methods for their research. The continuous low-level aquatic monitoring (CLAM) sampler (C.I.Agent® Storm-Water Solutions) is a submersible, low flow-rate sampler, that continuously draws water through solid-phase extraction media. CLAM samplers were deployed at two wastewater-dominated stream field sites in conjunction with the deployment of polar organic chemical integrative samplers (POCIS) and the collection of discrete (grab) water samples. All samples were analyzed for a suite of 69 TOCs. The CLAM and POCIS samples represent time-integrated samples that accumulate the TOCs present in the water over the deployment period (19-23 h for CLAM and 29 days for POCIS); the discrete samples represent only the TOCs present in the water at the time and place of sampling. Non-metric multi-dimensional scaling and cluster analysis were used to examine patterns in both TOC detections and relative concentrations between the three sampling methods. A greater number of TOCs were detected in the CLAM samples than in corresponding discrete and POCIS samples, but TOC concentrations in the CLAM samples were significantly lower than in the discrete and (or) POCIS samples. Thirteen TOCs of varying polarity were detected by all of the three methods. TOC detections and concentrations obtained by the three sampling methods, however, are dependent on multiple factors. This study found that stream discharge, constituent loading, and compound type all affected TOC concentrations detected by each method. In addition, TOC detections and concentrations were affected by the reporting limits, bias, recovery, and performance of each method. Published by Elsevier B.V.

  20. Sampling trace organic compounds in water: a comparison of a continuous active sampler to continuous passive and discrete sampling methods

    Science.gov (United States)

    Coes, Alissa L.; Paretti, Nicholas V.; Foreman, William T.; Iverson, Jana L.; Alvarez, David A.

    2014-01-01

    A continuous active sampling method was compared to continuous passive and discrete sampling methods for the sampling of trace organic compounds (TOCs) in water. Results from each method are compared and contrasted in order to provide information for future investigators to use while selecting appropriate sampling methods for their research. The continuous low-level aquatic monitoring (CLAM) sampler (C.I.Agent® Storm-Water Solutions) is a submersible, low flow-rate sampler, that continuously draws water through solid-phase extraction media. CLAM samplers were deployed at two wastewater-dominated stream field sites in conjunction with the deployment of polar organic chemical integrative samplers (POCIS) and the collection of discrete (grab) water samples. All samples were analyzed for a suite of 69 TOCs. The CLAM and POCIS samples represent time-integrated samples that accumulate the TOCs present in the water over the deployment period (19–23 h for CLAM and 29 days for POCIS); the discrete samples represent only the TOCs present in the water at the time and place of sampling. Non-metric multi-dimensional scaling and cluster analysis were used to examine patterns in both TOC detections and relative concentrations between the three sampling methods. A greater number of TOCs were detected in the CLAM samples than in corresponding discrete and POCIS samples, but TOC concentrations in the CLAM samples were significantly lower than in the discrete and (or) POCIS samples. Thirteen TOCs of varying polarity were detected by all of the three methods. TOC detections and concentrations obtained by the three sampling methods, however, are dependent on multiple factors. This study found that stream discharge, constituent loading, and compound type all affected TOC concentrations detected by each method. In addition, TOC detections and concentrations were affected by the reporting limits, bias, recovery, and performance of each method.

  1. Inferences on the hydrothermal system beneath the resurgent dome in Long Valley Caldera, east-central California, USA, from recent pumping tests and geochemical sampling

    Science.gov (United States)

    Farrar, Christopher D.; Sorey, Michael L.; Roeloffs, Evelyn; Galloway, Devin L.; Howle, James F.; Jacobson, Ronald

    2003-10-01

    Quaternary volcanic unrest has provided heat for episodic hydrothermal circulation in the Long Valley caldera, including the present-day hydrothermal system, which has been active over the past 40 kyr. The most recent period of crustal unrest in this region of east-central California began around 1980 and has included periods of intense seismicity and ground deformation. Uplift totaling more than 0.7 m has been centered on the caldera's resurgent dome, and is best modeled by a near-vertical ellipsoidal source centered at depths of 6-7 km. Modeling of both deformation and microgravity data now suggests that (1) there are two inflation sources beneath the caldera, a shallower source 7-10 km beneath the resurgent dome and a deeper source ˜15 km beneath the caldera's south moat and (2) the shallower source may contain components of magmatic brine and gas. The Long Valley Exploration Well (LVEW), completed in 1998 on the resurgent dome, penetrates to a depth of 3 km directly above this shallower source, but bottoms in a zone of 100°C fluid with zero vertical thermal gradient. Although these results preclude extrapolations of temperatures at depths below 3 km, other information obtained from flow tests and fluid sampling at this well indicates the presence of magmatic volatiles and fault-related permeability within the metamorphic basement rocks underlying the volcanic fill. In this paper, we present recently acquired data from LVEW and compare them with information from other drill holes and thermal springs in Long Valley to delineate the likely flow paths and fluid system properties under the resurgent dome. Additional information from mineralogical assemblages in core obtained from fracture zones in LVEW documents a previous period of more vigorous and energetic fluid circulation beneath the resurgent dome. Although this system apparently died off as a result of mineral deposition and cooling (and/or deepening) of magmatic heat sources, flow testing and tidal

  2. Geochemical conditions and the occurrence of selected trace elements in groundwater basins used for public drinking-water supply, Desert and Basin and Range hydrogeologic provinces, 2006-11: California GAMA Priority Basin Project

    Science.gov (United States)

    Wright, Michael T.; Fram, Miranda S.; Belitz, Kenneth

    2015-01-01

    The geochemical conditions, occurrence of selected trace elements, and processes controlling the occurrence of selected trace elements in groundwater were investigated in groundwater basins of the Desert and Basin and Range (DBR) hydrogeologic provinces in southeastern California as part of the Priority Basin Project (PBP) of the Groundwater Ambient Monitoring and Assessment (GAMA) Program. The GAMA PBP is designed to provide an assessment of the quality of untreated (raw) groundwater in the aquifer systems that are used for public drinking-water supply. The GAMA PBP is being conducted by the California State Water Resources Control Board in collaboration with the U.S. Geological Survey and the Lawrence Livermore National Laboratory.

  3. Geochemical investigation of UMTRAP designated site at Grand Junction, Colorado

    International Nuclear Information System (INIS)

    Markos, G.; Bush, K.J.

    1983-09-01

    This report is the result of a geochemical investigation of the former uranium mill and tailings site at Grand Junction, Colorado. The objectives of the investigation are to characterize the geochemistry, to determine the contaminant distribution resulting from the former milling activities and tailings, and to infer chemical pathways and transport mechanisms from the contaminant distribution. The results should be used to model contaminant migration and to develop criteria for long-term containment media, such as a cover system which is impermeable to contaminant migration. This report assumes a familiarity with the hydrologic conditions of the site and the geochemical concepts underlying the investigation. The results reported are based on a sampling of waters in two seasons and solid material from the background, the area adjacent to the site, and the site. The solid samples were water extracted to remove easily soluble salts and acid extracted to remove carbonates and hydroxides. The water extracts and solid samples were analyzed for the major and trace elements. A limited number of samples were analyzed for radiological components. The report includes the methods of sampling, sample processing, analysis, and data interpretation. Four major conclusions are: (1) trace element concentrations in shallow subsurface waters adjacent to the tailings temporally vary up to an order of magnitude; (2) the riverbank soils and borehole waters are contaminated with uranium, radium, and trace elements from discharge of tailings solids and solutions during the active time of the mill; however, the movement of contaminants toward the Colorado River does not appear to be significant; (3) the Colorado River adjacent to the tailings is not contaminated; and (4) trace metals have accumulated at both the tailings/cover and tailings/soil interface because of precipitation reactions caused by chemical differences between the two materials

  4. Petrographic, mineralogical and geochemical characterization of the Serrinha coal waste pile (Douro Coalfield, Portugal) and the potential environmental impacts on soil, sediments and surface waters

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, J. [Centro de Geologia, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal); Ferreira da Silva, E. [GeoBioTec, Geobiosciences, Geotechnologies and Geoengineering Research Center, Universidade de Aveiro, Campus de Santiago, 3810-193 Aveiro (Portugal); Li, Z.; Ward, C. [School of Biological, Earth and Environmental Sciences, University of New South Wales. Sydney, NSW 2052 (Australia); Flores, D. [Departamento de Geociencias, Ambiente e Ordenamento do Territorio, Faculdade de Ciencias, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto (Portugal)

    2010-09-01

    Serrinha is the largest coal waste pile resulting from mining activities in the Douro Coalfield, Portugal. The exploitation of anthracite in tens of small mines caused some environmental impacts, as is the case of the coal waste piles that exist in old mines and adjacent areas. The Serrinha waste pile is essentially made up of 2 million tonnes of shales and carbonaceous shales, deposited in a topographical depression over about 30 years. Despite the environmental restoration accomplished in the Serrinha waste pile, some environmental problems seem to persist. In this study a petrographic, mineralogical and geochemical characterization was done in order to recognize and understand these problems. The materials studied were coal waste, sediments and waters from the drainage system and decanting basins, soils from the surrounding areas, leachates from waste material and neoformed minerals formed at the bottom of the waste pile. The main lithologies (carbonaceous shale and lithic arenite) and coal from the Douro Coalfield were also analyzed. Petrographic analysis shows some evidence of weathering (on organic and inorganic matter) related to the time of exposure to the weathering agents and the easy access of air within the waste pile (due to both the poor compaction and the heterogeneity of the material). Mineralogically, the composition of coal waste material has contributions from both the coal and the associated lithologies. R-type cluster analysis of the waste pile material allows two distinct clusters to be identified. In the first cluster a sulfide fraction is represented by the association of As, Cd, Cu, Pb, Ni and Zn, while Fe clustered with Al, Co, and Ti indicates that some of the Fe and the other elements are likely associated with silicate minerals such as clays. The second cluster, represented by Cr, V, Zr, Rb, REE, Mn, Li and Ba, probably represent a silicate fraction, perhaps detrital accessory minerals. The waste pile material, leachates, soils

  5. Assessment of Sr-90 in water samples: precision and accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Nisti, Marcelo B.; Saueia, Cátia H.R.; Castilho, Bruna; Mazzilli, Barbara P., E-mail: mbnisti@ipen.br, E-mail: chsaueia@ipen.br, E-mail: bcastilho@ipen.br, E-mail: mazzilli@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2017-11-01

    The study of artificial radionuclides dispersion into the environment is very important to control the nuclear waste discharges, nuclear accidents and nuclear weapons testing. The accidents in Fukushima Daiichi Nuclear Power Plant and Chernobyl Nuclear Power Plant, released several radionuclides in the environment by aerial deposition and liquid discharge, with various level of radioactivity. The {sup 90}Sr was one of the elements released into the environment. The {sup 90}Sr is produced by nuclear fission with a physical half-life of 28.79 years with decay energy of 0.546 MeV. The aims of this study are to evaluate the precision and accuracy of three methodologies for the determination of {sup 90}Sr in water samples: Cerenkov, LSC direct method and with radiochemical separation. The performance of the methodologies was evaluated by using two scintillation counters (Quantulus and Hidex). The parameters Minimum Detectable Activity (MDA) and Figure Of Merit (FOM) were determined for each method, the precision and accuracy were checked using {sup 90}Sr standard solutions. (author)

  6. Verification of spectrophotometric method for nitrate analysis in water samples

    Science.gov (United States)

    Kurniawati, Puji; Gusrianti, Reny; Dwisiwi, Bledug Bernanti; Purbaningtias, Tri Esti; Wiyantoko, Bayu

    2017-12-01

    The aim of this research was to verify the spectrophotometric method to analyze nitrate in water samples using APHA 2012 Section 4500 NO3-B method. The verification parameters used were: linearity, method detection limit, level of quantitation, level of linearity, accuracy and precision. Linearity was obtained by using 0 to 50 mg/L nitrate standard solution and the correlation coefficient of standard calibration linear regression equation was 0.9981. The method detection limit (MDL) was defined as 0,1294 mg/L and limit of quantitation (LOQ) was 0,4117 mg/L. The result of a level of linearity (LOL) was 50 mg/L and nitrate concentration 10 to 50 mg/L was linear with a level of confidence was 99%. The accuracy was determined through recovery value was 109.1907%. The precision value was observed using % relative standard deviation (%RSD) from repeatability and its result was 1.0886%. The tested performance criteria showed that the methodology was verified under the laboratory conditions.

  7. Legionella saoudiensis sp. nov., isolated from a sewage water sample.

    Science.gov (United States)

    Bajrai, Leena Hussein; Azhar, Esam Ibraheem; Yasir, Muhammad; Jardot, Priscilla; Barrassi, Lina; Raoult, Didier; La Scola, Bernard; Pagnier, Isabelle

    2016-11-01

    A Gram-stain-negative, bacilli-shaped bacterial strain, LS-1T, was isolated from a sewage water sample collected in Jeddah, Saudi Arabia. The taxonomic position of strain LS-1T was investigated using a polyphasic taxonomic approach. Phylogenetic analysis based on 16S rRNA gene sequences and those of four other genes indicated that strain LS-1T belongs to the genus Legionella in the family Legionellaceae. Regarding the 16S rRNA gene, the most closely related species are Legionella rowbothamii LLAP-6T (98.6 %) and Legionella lytica L2T (98.5 %). The mip gene sequence of strain LS-1T showed 94 % sequence similarity with that of L. lytica L2T and 93 % similarity with that of L. rowbothamii LLAP-6T. Strain LS-1T grew optimally at a temperature of 32 °C on a buffered charcoal yeast extract (BCYE) agar plate in a 5 % CO2 atmosphere and had a flagellum. The combined phylogenetic, phenotypic and genomic sequence data suggest that strain LS-1T represents a novel species of the genus Legionella, for which the name Legionella saoudiensis sp. nov. is proposed. The type strain is LS-1T (=DSM 101682T=CSUR P2101T).

  8. Methods to maximise recovery of environmental DNA from water samples.

    Directory of Open Access Journals (Sweden)

    Rheyda Hinlo

    Full Text Available The environmental DNA (eDNA method is a detection technique that is rapidly gaining credibility as a sensitive tool useful in the surveillance and monitoring of invasive and threatened species. Because eDNA analysis often deals with small quantities of short and degraded DNA fragments, methods that maximize eDNA recovery are required to increase detectability. In this study, we performed experiments at different stages of the eDNA analysis to show which combinations of methods give the best recovery rate for eDNA. Using Oriental weatherloach (Misgurnus anguillicaudatus as a study species, we show that various combinations of DNA capture, preservation and extraction methods can significantly affect DNA yield. Filtration using cellulose nitrate filter paper preserved in ethanol or stored in a -20°C freezer and extracted with the Qiagen DNeasy kit outperformed other combinations in terms of cost and efficiency of DNA recovery. Our results support the recommendation to filter water samples within 24hours but if this is not possible, our results suggest that refrigeration may be a better option than freezing for short-term storage (i.e., 3-5 days. This information is useful in designing eDNA detection of low-density invasive or threatened species, where small variations in DNA recovery can signify the difference between detection success or failure.

  9. Assessment of Sr-90 in water samples: precision and accuracy

    International Nuclear Information System (INIS)

    Nisti, Marcelo B.; Saueia, Cátia H.R.; Castilho, Bruna; Mazzilli, Barbara P.

    2017-01-01

    The study of artificial radionuclides dispersion into the environment is very important to control the nuclear waste discharges, nuclear accidents and nuclear weapons testing. The accidents in Fukushima Daiichi Nuclear Power Plant and Chernobyl Nuclear Power Plant, released several radionuclides in the environment by aerial deposition and liquid discharge, with various level of radioactivity. The 90 Sr was one of the elements released into the environment. The 90 Sr is produced by nuclear fission with a physical half-life of 28.79 years with decay energy of 0.546 MeV. The aims of this study are to evaluate the precision and accuracy of three methodologies for the determination of 90 Sr in water samples: Cerenkov, LSC direct method and with radiochemical separation. The performance of the methodologies was evaluated by using two scintillation counters (Quantulus and Hidex). The parameters Minimum Detectable Activity (MDA) and Figure Of Merit (FOM) were determined for each method, the precision and accuracy were checked using 90 Sr standard solutions. (author)

  10. Sources, migration and transformation of antimony contamination in the water environment of Xikuangshan, China: Evidence from geochemical and stable isotope (S, Sr) signatures

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Bing [Geological Survey, China University of Geosciences (Wuhan), Lumo Rd 388, Wuhan 430074, Hubei (China); State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Lumo Rd 388, Wuhan 430074, Hubei (China); Zhou, Jianwei, E-mail: jw.zhou@cug.edu.cn [School of Environmental Studies, China University of Geosciences (Wuhan), Lumo Rd 388, Wuhan 430074, Hubei (China); Zhou, Aiguo; Liu, Cunfu [School of Environmental Studies, China University of Geosciences (Wuhan), Lumo Rd 388, Wuhan 430074, Hubei (China); Xie, Lina [School of Environmental Studies, China University of Geosciences (Wuhan), Lumo Rd 388, Wuhan 430074, Hubei (China); State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Lumo Rd 388, Wuhan 430074, Hubei (China)

    2016-11-01

    The Xikuangshan (XKS) mine in central China is the largest antimony (Sb) mine in the world. The mining activity has seriously contaminated the waters in the area. To determine the sources, migration and transformation of Sb contamination, 32 samples from groundwater (aquifer water), surface water and mine water were collected for water chemistry, trace element and S{sub SO4} and Sr stable isotope analyses. The results showed that the groundwater and surface water were in an oxidized environment. The S{sub SO4} and Sr isotope compositions in the water indicated that dissolved Sb and SO{sub 4}{sup 2} originated from sulfide mineral (Sb{sub 2}S{sub 3}) oxidation, whereas radiogenic Sr may have been sourced from silicified limestone and stibnite in the Shetianqiao aquifer. Furthermore, a positive correlation between δ{sup 34}S{sub SO4} and δ{sup 87}Sr values revealed that the Sr, S and Sb in the waters had a common contamination source, i.e., silicified limestone and stibnite, whereas the Sr, S and Sb in rock and ore were sourced from Proterozoic basement clastics. The analysis also indicated that the isotope composition of dissolved SO{sub 4}{sup 2} {sup −} had been influenced by slight bacterial SO{sub 4} reduction in the Magunao aquifer. Mining or rock collapse may have caused Shetianqiao aquifer water to contaminate the Magunao aquifer water via mixing. This study has demonstrated that the stable isotopes of {sup 34}S{sub SO4} and {sup 87}Sr, combined with hydrochemical methods, are effective in tracking the sources, migration and transformation of Sb contamination. - Highlights: • Mining activities at XKS mine have caused serious water contamination. • The characteristics of Sb contamination in water environment are still unclear. • Combine S isotopes of sulfate and Sr isotopes with hydrochemical methods. • Sr, S, and Sb in natural water had a common source: silicified limestone and stibnite. • Shetianqiao aquifer water contaminated the Magunao

  11. Applications of prospecting geochemical techniques to the search for and to the study of uranium deposits in metropolitan France

    International Nuclear Information System (INIS)

    Grimbert, Arnold

    1957-01-01

    After having recalled facts which leaded the CEA to use new geochemical techniques for the prospecting of uranium deposits through sampling and analysis of soils and waters, the author describes the organisation and methods implemented for this prospecting activity: team composition for sampling and analysis, role of each engineer and technician in the prospecting stages (preliminary study, routine prospecting, result interpretation), sampling and analysis processes. He also reports campaigns of geochemical prospecting: study of the La Chapelle Largeau deposit (objectives, geological context, preliminary study, routine prospecting, study of geochemical anomalies), tactical research on Verneix indices (study of radioactivity anomaly discovered by radio-prospecting), strategical searches in a non prospected area in the South of Avallon. The author discusses the issues of efficiency and cost price of this geochemical prospecting technique in soils and in waters. Appendices present the equipment and operation modality for soil sampling, and for soil sample preparation, and principles, equipment and products for soil analysis and for water analysis [fr

  12. Geochemical Interactions and Viral-Prokaryote Relationships in Freshwater Environments

    Science.gov (United States)

    Kyle, J. E.; Ferris, G.

    2009-05-01

    Viral and prokaryotic abundances were surveyed throughout southern Ontario aquatic habitats to determine relationships with geochemical parameters in the natural environment. Surface water samples were collected from acid mine drainage in summer of 2007 and 2008 and from circum-neutral pH environments in October to November 2008. Site determination was based on collecting samples from various aquatic habitats (acid mine drainage, lakes, rivers, tributaries, wetlands) with differing bedrock geology (limestone and shale dominated vs granitic Canadian Shield) to obtain a range of geochemical conditions. At each site, measurements of temperature, pH, and Eh were conducted. Samples collected for microbial counts and electron imaging were preserved to a final concentration of 2.5 % (v/v) glutaraldehyde. Additional sample were filtered into 60 mL nalgene bottles and amber EPA certified 40 mL glass vials to determine chemical constituents and dissolved organic carbon (DOC), respectively. Water was also collected to determine additional physiochemical parameters (dissolved total iron, ferric iron, nitrate, sulfate, phosphate, alkalinity, and turbidity). All samples were stored at 4 °C until analysis. Viral and prokaryotic abundance was determined by staining samples with SYBR Green I and examining with a epifluorescence microscope under blue excitation. Multiple regression analysis using stepwise backwards regression and general linear models revealed that viral abundance was the most influential predictor of prokaryotic abundance. Additional predictors include pH, sulfate, phosphate, and magnesium. The strength of the model was very strong with 90 % of the variability explained (R2 = 0.90, p < 0.007). This is the first report, to our knowledge, of viruses exhibiting such strong controls over prokaryotic abundance in the natural environment. All relationships are positively correlated with the exception of Mg, which is negatively correlated. Iron was also noted as a

  13. Geochemical modelling baseline compositions of groundwater

    DEFF Research Database (Denmark)

    Postma, Diederik Jan; Kjøller, Claus; Andersen, Martin Søgaard

    2008-01-01

    and variations in water chemistry that are caused by large scale geochemical processes taking place at the timescale of thousands of years. The most important geochemical processes are ion exchange (Valreas and Aveiro) where freshwater solutes are displacing marine ions from the sediment surface, and carbonate......Reactive transport models, were developed to explore the evolution in groundwater chemistry along the flow path in three aquifers; the Triassic East Midland aquifer (UK), the Miocene aquifer at Valreas (F) and the Cretaceous aquifer near Aveiro (P). All three aquifers contain very old groundwaters...... dissolution (East Midlands, Valreas and Aveiro). Reactive transport models, employing the code PHREEQC, which included these geochemical processes and one-dimensional solute transport were able to duplicate the observed patterns in water quality. These models may provide a quantitative understanding...

  14. chemical and microbiological assessment of surface water samples

    African Journals Online (AJOL)

    PROF EKWUEME

    concentrations and bacteriological content. Evaluation of the results ... and Aninri local government areas of Enugu state. Surface water ... surface water bodies are prone to impacts from ... Coal Measures (Akamigbo, 1987). The geologic map ...

  15. Propagation of errors from a null balance terahertz reflectometer to a sample's relative water content

    International Nuclear Information System (INIS)

    Hadjiloucas, S; Walker, G C; Bowen, J W; Zafiropoulos, A

    2009-01-01

    The THz water content index of a sample is defined and advantages in using such metric in estimating a sample's relative water content are discussed. The errors from reflectance measurements performed at two different THz frequencies using a quasi-optical null-balance reflectometer are propagated to the errors in estimating the sample water content index.

  16. Bacteriological analysis of well water samples in Sagamu | Idowu ...

    African Journals Online (AJOL)

    Majority of the population in semi-urban and urban areas of Nigeria depend on wells as their source of water supply. Due to increasing cases of water-borne diseases in recent times, this study was carried out to examine the microbial quality of well water in Sagamu, Nigeria as a way of safeguarding public health against ...

  17. The geochemical atlas of Alaska, 2016

    Science.gov (United States)

    Lee, Gregory K.; Yager, Douglas B.; Mauk, Jeffrey L.; Granitto, Matthew; Denning, Paul; Wang, Bronwen; Werdon, Melanie B.

    2016-06-21

    A rich legacy of geochemical data produced since the early 1960s covers the great expanse of Alaska; careful treatment of such data may provide significant and revealing geochemical maps that may be used for landscape geochemistry, mineral resource exploration, and geoenvironmental investigations over large areas. To maximize the spatial density and extent of data coverage for statewide mapping of element distributions, we compiled and integrated analyses of more than 175,000 sediment and soil samples from three major, separate sources: the U.S. Geological Survey, the National Uranium Resource Evaluation program, and the Alaska Division of Geological & Geophysical Surveys geochemical databases. Various types of heterogeneity and deficiencies in these data presented major challenges to our development of coherently integrated datasets for modeling and mapping of element distributions. Researchers from many different organizations and disparate scientific studies collected samples that were analyzed using highly variable methods throughout a time period of more than 50 years, during which many changes in analytical techniques were developed and applied. Despite these challenges, the U.S. Geological Survey has produced a new systematically integrated compilation of sediment and soil geochemical data with an average sample site density of approximately 1 locality per 10 square kilometers (km2) for the entire State of Alaska, although density varies considerably among different areas. From that compilation, we have modeled and mapped the distributions of 68 elements, thus creating an updated geochemical atlas for the State.

  18. Geochemical modelling of worst-case leakage scenarios at potential CO2-storage sites - CO2 and saline water contamination of drinking water aquifers

    Science.gov (United States)

    Szabó, Zsuzsanna; Edit Gál, Nóra; Kun, Éva; Szőcs, Teodóra; Falus, György

    2017-04-01

    Carbon Capture and Storage is a transitional technology to reduce greenhouse gas emissions and to mitigate climate change. Following the implementation and enforcement of the 2009/31/EC Directive in the Hungarian legislation, the Geological and Geophysical Institute of Hungary is required to evaluate the potential CO2 geological storage structures of the country. Basic assessment of these saline water formations has been already performed and the present goal is to extend the studies to the whole of the storage complex and consider the protection of fresh water aquifers of the neighbouring area even in unlikely scenarios when CO2 injection has a much more regional effect than planned. In this work, worst-case scenarios are modelled to understand the effects of CO2 or saline water leaks into drinking water aquifers. The dissolution of CO2 may significantly change the pH of fresh water which induces mineral dissolution and precipitation in the aquifer and therefore, changes in solution composition and even rock porosity. Mobilization of heavy metals may also be of concern. Brine migration from CO2 reservoir and replacement of fresh water in the shallower aquifer may happen due to pressure increase as a consequence of CO2 injection. The saline water causes changes in solution composition which may also induce mineral reactions. The modelling of the above scenarios has happened at several methodological levels such as equilibrium batch, kinetic batch and kinetic reactive transport simulations. All of these have been performed by PHREEQC using the PHREEQC.DAT thermodynamic database. Kinetic models use equations and kinetic rate parameters from the USGS report of Palandri and Kharaka (2004). Reactive transport modelling also considers estimated fluid flow and dispersivity of the studied formation. Further input parameters are the rock and the original ground water compositions of the aquifers and a range of gas-phase CO2 or brine replacement ratios. Worst-case scenarios

  19. Real-time analysis of water movement in plant sample

    International Nuclear Information System (INIS)

    Yokota, Harumi; Furukawa, Jun; Tanoi, Keitaro

    2000-01-01

    To know the effect of drought stress on two cultivars of cowpea, drought tolerant (DT) and drought sensitive (DS), and to estimate vanadium treatment on plant activity, we performed real time 18 F labeled water uptake measurement by PETIS. Fluoride-18 was produced by bombarding a cubic ice target with 50 MeV protons using TIARA AVF cyclotron. Then 18 F labeled water was applied to investigate water movement in a cowpea plant. Real time water uptake manner could be monitored by PETIS. After the analysis by PETIS, we also measured the distribution of 18 F in a whole plant by BAS. When a cowpea plant was treated with drought stress, there was a difference in water uptake manner between DT and DS cultivar. When a cowpea plant was treated with V for 20 hours before the water uptake experiment, the total amount of 18 F labeled water absorption was found to be drastically decreased. (author)

  20. Real-time analysis of water movement in plant sample

    Energy Technology Data Exchange (ETDEWEB)

    Yokota, Harumi; Furukawa, Jun; Tanoi, Keitaro [Graduate School, Tokyo Univ. (Japan)

    2000-07-01

    To know the effect of drought stress on two cultivars of cowpea, drought tolerant (DT) and drought sensitive (DS), and to estimate vanadium treatment on plant activity, we performed real time{sup 18}F labeled water uptake measurement by PETIS. Fluoride-18 was produced by bombarding a cubic ice target with 50 MeV protons using TIARA AVF cyclotron. Then {sup 18}F labeled water was applied to investigate water movement in a cowpea plant. Real time water uptake manner could be monitored by PETIS. After the analysis by PETIS, we also measured the distribution of {sup 18}F in a whole plant by BAS. When a cowpea plant was treated with drought stress, there was a difference in water uptake manner between DT and DS cultivar. When a cowpea plant was treated with V for 20 hours before the water uptake experiment, the total amount of {sup 18}F labeled water absorption was found to be drastically decreased. (author)

  1. Geochemical Variability and the Potential for Beneficial Use of Waste Water Coproduced with Oil from Permian Basin of the Southwest USA

    Science.gov (United States)

    Khan, N. A.; Holguin, F. O.; Xu, P.; Engle, M.; Dungan, B.; Hunter, B.; Carroll, K. C.

    2014-12-01

    The U.S. generates 21 billion barrels/year of coproduced water from oil and gas exploration, which is generally considered waste water. Growth in unconventional oil and gas production has spurred interest in beneficial uses of produced water, especially in arid regions such as the Permian Basin of Texas and New Mexico, the largest U.S. tight oil producer. Produced waters have variable chemistries, but generally contain high levels of organics and salts. In order to evaluate the environmental impact, treatment, and reuse potential, there is a need to characterize the compositional variability of produced water. In the present study, produced water samples were collected from 12 wells across the Permian Basin. Compositional analyses including coupled gas chromatography-time of flight-mass spectrometry and inductively coupled plasma-optical emission spectroscopy were conducted. The samples show elevated benzene, ethylbenzene, toluene, xylene, alkyl benzenes, propyl-benzene, and naphthalene compared to other heteroaromatics; they also contain complex hydrocarbon compounds containing oxygen, nitrogen, and sulfur. Van Krevelen diagrams show an increase in the concentration of heteroaromatic hydrocarbons with increasing well depth. The salinity, dominated by sodium-chloride, also increases with depth, ranging from 37-150 g/L TDS. Depth of wells (or producing formation) is a primary control on predicting water quality for treatment and beneficial use. Our results suggest that partial treatment by removing suspended solids and organic contaminants would support some beneficial uses such as onsite reuse, bioenergy production, and other industrial uses. Due to the high salinity, conventional desalination processes are not applicable or very costly, making beneficial uses requiring low salinity not feasible.

  2. LASL approach to uranium geochemical reconnaissance

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, R.R. Jr.

    1977-01-01

    The US ERDA, as part of the NURE program, has initiated a nationwide Hydrogeochemical and Stream Sediment Reconnaissance (HSSR). The aims of the NURE program are to provide data on which to base more accurate estimates of US uranium reserves for long-range planning and to aid in meeting the nation's projected uranium demands into the next century. The HSSR objective is to complete, by 1980, a reconnaissance of the nation's surface waters, ground waters, and stream and lake sediments, to aid in assessment of uranium reserves and identification of areas of interest for exploration. Patterned after extensive uranium reconnaissance done in many other countries, the LASL project is comprised of the following five components: (1) organization and planning, which includes management, design, and execution; (2) field sampling, which includes orientation studies, generation of specifications, and contracting and inspection of field work; (3) sample receiving and analysis, which includes development of methods and hardware, quality assurance, and archival storage; (4) data handling and presentation, including verification, storage, output, and plotting; and (5) data evaluation and publication, which incorporates geochemical, geological, statistical, and empirical evaluation and report writing. The LASL approach to each component and the current status in each state are described.

  3. LASL approach to uranium geochemical reconnaissance

    International Nuclear Information System (INIS)

    Sharp, R.R. Jr.

    1977-01-01

    The US ERDA, as part of the NURE program, has initiated a nationwide Hydrogeochemical and Stream Sediment Reconnaissance (HSSR). The aims of the NURE program are to provide data on which to base more accurate estimates of US uranium reserves for long-range planning and to aid in meeting the nation's projected uranium demands into the next century. The HSSR objective is to complete, by 1980, a reconnaissance of the nation's surface waters, ground waters, and stream and lake sediments, to aid in assessment of uranium reserves and identification of areas of interest for exploration. Patterned after extensive uranium reconnaissance done in many other countries, the LASL project is comprised of the following five components: (1) organization and planning, which includes management, design, and execution; (2) field sampling, which includes orientation studies, generation of specifications, and contracting and inspection of field work; (3) sample receiving and analysis, which includes development of methods and hardware, quality assurance, and archival storage; (4) data handling and presentation, including verification, storage, output, and plotting; and (5) data evaluation and publication, which incorporates geochemical, geological, statistical, and empirical evaluation and report writing. The LASL approach to each component and the current status in each state are described

  4. Methods for geochemical analysis

    Science.gov (United States)

    Baedecker, Philip A.

    1987-01-01

    The laboratories for analytical chemistry within the Geologic Division of the U.S. Geological Survey are administered by the Office of Mineral Resources. The laboratory analysts provide analytical support to those programs of the Geologic Division that require chemical information and conduct basic research in analytical and geochemical areas vital to the furtherance of Division program goals. Laboratories for research and geochemical analysis are maintained at the three major centers in Reston, Virginia, Denver, Colorado, and Menlo Park, California. The Division has an expertise in a broad spectrum of analytical techniques, and the analytical research is designed to advance the state of the art of existing techniques and to develop new methods of analysis in response to special problems in geochemical analysis. The geochemical research and analytical results are applied to the solution of fundamental geochemical problems relating to the origin of mineral deposits and fossil fuels, as well as to studies relating to the distribution of elements in varied geologic systems, the mechanisms by which they are transported, and their impact on the environment.

  5. Development of analytical techniques for water and environmental samples (2)

    Energy Technology Data Exchange (ETDEWEB)

    Eum, Chul Hun; Jeon, Chi Wan; Jung, Kang Sup; Song, Kyung Sun; Kim, Sang Yeon [Korea Institute of Geology Mining and Materials, Taejon (Korea)

    1998-12-01

    The purpose of this study is to develop new analytical methods with good detection limit for toxic inorganic and organic compounds. The analyses of CN, organic acids, particulate materials in environmental samples have been done using several methods such as Ion Chromatography, SPE, SPME, GC/MS, GC/FID, SPLITT (split-flow thin cell fractionation) during the second year of this project. Advantage and disadvantage of several distillation method (by KS, JIS, EPA) for CN analysis in wastewater were investigated. As the results, we proposed new distillation apparatus for CN analysis, which was proved to be simpler, faster and to get better recovery than conventional apparatus. And ion chromatograph/pulsed amperometric detector (IC/PAD) system instead of colorimetry for CN detection was setup to solve matrix interference. And SPE(solid phase extraction) and SPME (solid phase micro extraction) as liquid-solid extraction technique were applied to the analysis of phenols in wastewater. Optimum experimental conditions and factors influencing analytical results were determined. From these results, It could be concluded that C{sub 18} cartridge and polystyrene-divinylbenzene disk in SPE method, polyacrylate fiber in SPME were proper solid phase adsorbent for phenol. Optimum conditions to analyze phenol derivatives simultaneously were established. Also, Continuous SPLITT (Split-flow thin cell) Fractionation (CSF) is a new preparative separation technique that is useful for fractionation of particulate and macromolecular materials. CSF is carried out in a thin ribbon-like channel equipped with two splitters at both inlet and outlet of the channel. In this work, we set up a new CSF system, and tested using polystyrene latex standard particles. And then we fractionated particles contained in air and underground water based on their sedimentation coefficients using CSF. (author). 27 refs., 13 tabs., 31 figs.

  6. Evaluation of storage and filtration protocols for alpine/subalpine lake water quality samples

    Science.gov (United States)

    John L. Korfmacher; Robert C. Musselman

    2007-01-01

    Many government agencies and other organizations sample natural alpine and subalpine surface waters using varying protocols for sample storage and filtration. Simplification of protocols would be beneficial if it could be shown that sample quality is unaffected. In this study, samples collected from low ionic strength waters in alpine and subalpine lake inlets...

  7. Sample-scale zircon geochemical and geochronological heterogeneities as indicators of residual liquid infiltration events in the incrementally assembled Caleu Pluton, Central Chile

    Science.gov (United States)

    Molina, P. G.; Parada, M. A.; Gutiérrez, F. J.; Ma, C.; Li, J.; Liu, Y.

    2013-12-01

    The Upper Cretaceous metaluminous Caleu Pluton is emplaced at a depth equivalent of 2kbar and consists of four lithological zones: the Gabbro-Dioritic Zone (GDZ), the Quartz-Monzodioritic Zone (QMDZ), the Granodioritic Zone (GZ) and the Monzogranitic Zone (MGZ). The zones would have been fed from a deeper magma reservoir emplaced at a 4 kbar. U238/Pb206 LA-ICP-MS geochronology of zircon grains of the four lithological zones (82 analyzed spots, 4 samples) indicates a maximum zircon crystallization range of ca. 106-91 Ma for the pluton as a whole. The U-Pb zircon age distribution of the four samples shows three inflection points at about 101, 99 and 96 Ma, separating four zircon crystallization events with the following weighted average ages and 2σ confidence intervals: 103.×1.6 Ma (n=4), 100.3×0.68 Ma (n=14), 97.49×0.49 Ma (n=25) and 94.66×0.44 Ma (n=30). The GDZ sample records the first three events, the GZ and QMDZ samples record the last three events while the MGZ only have zircons formed during the last two events. It is interesting to note that the youngest event of zircon formation coincide with the Ar/Ar cooling ages (95-93 Ma) previously obtained in hornblende, biotite and plagioclase of the four lithological zones, as a consequence of a rapid pluton exhumation. Temperatures of zircon crystallization (Ti-in-Zrn) obtained in each sample are variable and roughly lower than the zircon saturation temperatures. Most of the Ti-in-Zrn temperatures indicate late-stage crystallization conditions, consistent with the calculated melt composition from which zircons would have crystallized and the observed coexistence of zircons with quartz-orthoclase symplectites, hornblende and interstitial anhedral biotite. There are variable and overlapped total incompatible element concentrations in zircons of the four lithological zones regardless its age and Ti-in-Zrn temperatures, indicating that the melts from which zircon crystallized at different moments, were equivalent

  8. Levels of Cadmium in Soil, Sediment and Water Samples from ...

    African Journals Online (AJOL)

    cce

    The agricultural application of phosphate fertilizers represents a direct ... The samples were put into clean plastic containers and sealed. The plastic ... dried samples were ground and homogenized in a porcelain mortar, sieved to 40 mesh size.

  9. Using geochemical investigations for determining the interaction between groundwater and saline water in arid areas: case of the Wadi Ouazzi basin (Morocco

    Directory of Open Access Journals (Sweden)

    R. El Moukhayar

    2015-04-01

    Full Text Available The characteristics of the Essaouira basin water resources are a semi-arid climate, which is severely impacted by the climate (quantity and quality. Considering the importance of the Essaouira aquifer in the groundwater supply of the region, a study was conducted in order to understand groundwater evolution in this aquifer. The Essaouira aquifer is a coastal aquifer located on the Atlantic coastline of southern Morocco, corresponding to a sedimentary basin with an area of nearly 200 km2. The control of the fluid exchange and the influence of mixing zones between the groundwater and saline water was investigated by sampling from 20 wells, drillings and sources belonging to the Plio-Quaternary and Turonian aquifers. It is hypothesized that groundwater major ions chemistry can be employed to determine the interaction between the groundwater and saline water (coastal aquifers. Groundwater samples examined for electric conductivity and temperature showed that waters belonging to the Plio-Quaternary and Turonian aquifers present very variable electric conductivities, from 900 μs/cm to 3880 μs/cm. Despite this variability, they are from the same family and are characterized by sodium-chloride facies. However, a good correlation exists between the electrical conductivity and chloride and sodium contents. The lower electrical conductivities are situated in the North quarter immediately to the south of the Wadi Ouazzi.

  10. Tritium concentrations in environmental water and food samples collected around the vicinity of the PNPP-1

    International Nuclear Information System (INIS)

    Garcia, T.Y.; Enriquez, S.O.; Duran, E.B.

    1986-01-01

    The natural radioactivity levels of tritium in environmental samples collected around the vicinity and more distant environment of the first Philippine Nuclear Power Plant (PNPP-1) in Bataan were assessed. The samples analyzed consisted of water samples such as seawater, freshwater, drinking water, groundwater and rainwater; and food samples such as cereals, vegetables, fruits; meat, milk fish and crustaceans. Tritium concentrations in water samples were determined by distillation and liquid scintillation counting techniques. The food samples were analyzed for tissue-free water tritium by the freezing-drying method followed by liquid scintillation counting techniques. (Auth.) 13 refs

  11. Evaluation Of Sachet Water Samples In Owerri Metropolis | Nwosu ...

    African Journals Online (AJOL)

    Other surveys revealed that 12 brands had fake manufactures' address, 2 brands had NAFDAC registration number while 3 brands had genuine manufacturers' address on them. It was discovered that the producers packaged the water from their water source without any form of treatment or analysis on it. Key words: ...

  12. Soluble and insoluble pollutants in fog and rime water samples

    Czech Academy of Sciences Publication Activity Database

    Fišák, Jaroslav; Stoyanova, V.; Chaloupecký, Pavel; Řezáčová, Daniela; Tsacheva, Ts.; Kupenova, T.; Marinov, M.

    2009-01-01

    Roč. 4, Sp. Iss. 2 (2009), S123-S130 ISSN 1801-5395 R&D Projects: GA ČR GA205/09/1918; GA AV ČR 1QS200420562 Institutional research plan: CEZ:AV0Z30420517 Keywords : fog water * rime water * pollutant concentration Subject RIV: DG - Athmosphere Sciences, Meteorology

  13. Regional geochemical maps of uranium in Northern Scotland. Environmental and economic considerations

    International Nuclear Information System (INIS)

    Plant, J.

    1978-01-01

    The Institute of Geological Studies geochemical mapping programme is outlined. The natural levels of uranium in rocks, soils and waters are discussed. Some practical details of geochemical mapping are given. Applications of geochemical maps of uranium in Scotland are considered: economic applications and medical geography and agriculture. A list of 38 references is appended. (U.K.)

  14. Analysis of the geochemical gradient created by surface-groundwater interactions within riverbanks of the East River in Crested Butte, Colorado

    Science.gov (United States)

    Lunzer, J.; Williams, K. H.; Malenda, H. F.; Nararne-Sitchler, A.

    2016-12-01

    An improved understanding of the geochemical gradient created by the mixing of surface and groundwater of a river system will have considerable impact on our understanding of microorganisms, organic cycling and biogeochemical processes within these zones. In this study, the geochemical gradient in the hyporheic zone is described using a variety of geochemical properties. A system of shallow groundwater wells were installed in a series of transects along a stream bank. Each transect consists of several wells that progress away from the river bank in a perpendicular fashion. From these wells, temperature, conductivity and pH of water samples were obtained via hand pumping or bailing. These data show a clear geochemical gradient that displays a distinct zone in the subsurface where the geochemical conditions change from surface water dominated to groundwater dominated. For this study, the East River near Crested Butte, Colorado has been selected as the river of interest due the river being a relatively undisturbed floodplain. Additionally, the specific section chosen on the East River displays relatively high sinuosity meaning that these meandering sections will produce hyporheic zones that are more laterally expansive than what would be expected on a river of lower sinuosity. This increase in lateral extension of the hyporheic zone will make depicting the subtle changes in the geochemical gradient much easier than that of a river system in which the hyporheic zone is not as laterally extensive. Data has been and will be continued to be collected at different river discharges to evaluate the geochemical gradient at differing rates. Overall, this characterization of the geochemical gradient along stream banks will produce results that will aid in the further use of geochemical methods to classify and understand hyporheic exchange zones and the potential expansion of these techniques to river systems of differing geologic and geographic conditions.

  15. Geochemical prospecting for thorium and uranium deposits

    International Nuclear Information System (INIS)

    Boyle, R.W.

    1982-01-01

    The basic purpose of this book is to present an analysis of the various geochemical methods applicable in the search for all types of thorium and uranium deposits. The general chemistry and geochemistry of thorium and uranium are briefly described in the opening chapter, and this is followed by a chapter on the deposits of the two elements with emphasis on their indicator (pathfinder) elements and on the primary and secondary dispersion characteristics of thorium and uranium in the vicinity of their deposits. The next seven chapters form the main part of the book and describe geochemical prospecting for thorium and uranium, stressing selection of areas in which to prospect, radiometric surveys, analytical geochemical surveys based on rocks (lithochemical surveys), unconsolidated materials (pedochemical surveys), natural waters and sediments (hydrochemical surveys), biological materials (biogeochemical surveys), gases (atmochemical surveys), and miscellaneous methods. A final brief chapter reviews radiometric and analytical methods for the detection and estimation of thorium and uranium. (Auth.)

  16. Storm Water Sampling Data 11-16-17.

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Robert C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-12-01

    In the California Industrial General Permit (IGP) 2014-0057-DWQ for storm water monitoring, effective July 1, 2015, there are 21 contaminants that have been assigned NAL (Numeric Action Level) values, both annual and instantaneous.

  17. Mutagenicity of drinking water sampled from the Yangtze River and Hanshui River (Wuhan section) and correlations with water quality parameters.

    Science.gov (United States)

    Lv, Xuemin; Lu, Yi; Yang, Xiaoming; Dong, Xiaorong; Ma, Kunpeng; Xiao, Sanhua; Wang, Yazhou; Tang, Fei

    2015-03-31

    A total of 54 water samples were collected during three different hydrologic periods (level period, wet period, and dry period) from Plant A and Plant B (a source for Yangtze River and Hanshui River water, respectively), and several water parameters, such as chemical oxygen demand (COD), turbidity, and total organic carbon (TOC), were simultaneously analyzed. The mutagenicity of the water samples was evaluated using the Ames test with Salmonella typhimurium strains TA98 and TA100. According to the results, the organic compounds in the water were largely frame-shift mutagens, as positive results were found for most of the tests using TA98. All of the finished water samples exhibited stronger mutagenicity than the relative raw and distribution water samples, with water samples collected from Plant B presenting stronger mutagenic strength than those from Plant A. The finished water samples from Plant A displayed a seasonal-dependent variation. Water parameters including COD (r = 0.599, P = 0.009), TOC (r = 0.681, P = 0.02), UV254 (r = 0.711, P = 0.001), and total nitrogen (r = 0.570, P = 0.014) exhibited good correlations with mutagenicity (TA98), at 2.0 L/plate, which bolsters the argument of the importance of using mutagenicity as a new parameter to assess the quality of drinking water.

  18. Geochemical prospecting in Guiana

    International Nuclear Information System (INIS)

    Coulomb, R.

    1957-01-01

    During the last few years geochemical prospecting techniques have become common usage in the field of mineral deposit prospecting. The real scope of these methods lies in their use in the prospecting of large areas. The most promising use of the geochemistry and hydro-geochemistry of uranium is in heavily forested tropical territories, with few outcrops, where radiometry is strongly handicapped. (author) [fr

  19. Geochemical dispersion of uranium near prospects in Pennsylvania

    International Nuclear Information System (INIS)

    Rose, A.W.; Schmiermund, R.L.; Mahar, D.L.

    1977-06-01

    The geochemical dispersion of U was investigated near sedimentary uranium prospects in eastern and north-central Pennsylvania. Near Jim Thorpe, known uranium occurrences in the Catskill Fm. are limited to the base of the Duncannon member. At Penn Haven Junction, roll-type U deposits with appreciable Pb and Se are localized adjacent to an oxidized tongue of channel-filling conglomeratic sandstone. The channel and encircling U occurrences furnish a large target for geochemical exploration. Selective extractions show that the organic, Fe-oxide, sand and silt fractions of stream sediments are the major hosts for U in stream sediments. Fe-oxides have a greater affinity for U than organic matter but are less abundant. The U content of organic matter is about 10 5 times the U content of stream water. Stream sediments furnish a representative sample of the average content of U, Zn, Cu, and major elements in soils of a drainage basin in north-central Pennsylvania, so a semiquantitative appraisal of weathering uranium occurrences can be made from stream sediments in climates and topography like Pennsylvania. The flux of uranium leaving the basin in solution is about equal to that leaving as sediment. Uranium is considerably less mobile than Ca and Na. A new method of extracting uranium from water samples, using a liquid ion exchanger (Amberlite LA-1), shows promise for simple field application

  20. Geophysical, geochemical and hydrological analyses of water-resource vulnerability to salinization: case of the Uburu-Okposi salt lakes and environs, southeast Nigeria

    Science.gov (United States)

    Ukpai, S. N.; Okogbue, C. O.

    2017-11-01

    Until this study, the location and depth of the saline units in Uburu-Okposi salt lake areas and environs have been unknown. This study aimed at delineating the saline lithofacies and dispersal configurations to water bodies, using electrical geophysical methods such as constant separation traversing (CST) and vertical electrical sounding (VES). Results showed weathered zones that represent aquifers mostly at the fourth geoelectric layer: between upper layered aquitards and underlying aquitards at depths 30-140 m. Lateral distribution of resistivity variance was defined by the CST, whereas the VES tool, targeted at low-resistivity zones, detected isolated saline units with less than 10 ohm-m at depths generally >78 m. The saline lithofacies were suspected to link freshwater zones via shear zones, which steer saline water towards the salt lakes and influence the vulnerability of groundwater to salinization. The level of salinization was verified by water sampling and analysis, and results showed general alkaline water type with a mean pH of 7.66. Water pollution was indicated: mean total dissolved solids (TDS) 550 mg/l, electrical conductivity (EC) 510 μS/cm, salinity 1.1‰, Cl- 200 mg/l, N03 -35.5 mg/l, Na+ 19.6 mg/l and Ca2+ 79.3 mg/l. The salinity is controlled by NaCl salt, as deduced from correlation analysis using the software package Statistical Product for Service Solutions (SPSS). Generally, concentrations of dissolved ions in the water of the area are enhanced via mechanisms such as evaporation, dissociation of salts, precipitation run off and leaching of dissolved rock minerals.

  1. Measurements of natural radioactivity concentration in drinking water samples of Shiraz city and springs of the Fars province, Iran, and dose estimation

    International Nuclear Information System (INIS)

    Mehdizadeh, S.; Faghihi, R.; Sina, S.; Derakhshan, S.

    2013-01-01

    The Fars province is located in the south-west region of Iran where different nuclear sites has been established, such as Bushehr Nuclear Power Plant. In this research, 92 water samples from the water supplies of Shiraz city and springs of the Fars province were investigated with regard to the concentrations of natural radioactive elements, total uranium, 226 Ra, gross alpha and gross beta. 226 Ra concentration was determined by the 222 Rn emanation method. To measure the total uranium concentration, a laser fluorimetry analyzer (UA-3) was used. The mean concentration of 226 Ra in Shiraz's water resources was 23.9 mBq l -1 , while 93% of spring waters have a concentration 2 mBq l -1 . The results of uranium concentration measurements show the mean concentrations of 7.6 and 6 mg l -1 in the water of Shiraz and springs of Fars, respectively. The gross alpha and beta concentrations measured by the evaporation method were lower than the limit of detection of the measuring instruments used in this survey. The mean annual effective doses of infants, children and adults from 238 U and 226 Ra content of Shiraz's water and spring waters were estimated. According to the results of this study, the activity concentration in water samples were below the maximum permissible concentrations determined by the World Health Organization and the US Environmental Protection Agency. Finally, the correlation between 226 Ra and total U activity concentrations and geochemical properties of water samples, i.e. pH, total dissolve solids and SO 4 2- , were estimated. (authors)

  2. UMTRA Project water sampling and analysis plan: Canonsburg and Burrell, Pennsylvania

    International Nuclear Information System (INIS)

    1994-03-01

    Surface remedial action was completed at the Canonsburg and Burrell UMTRA Project sites in southwestern Pennsylvania in 1985 and 1987, respectively. Results of 1993 water sampling indicate ground water flow conditions and ground water quality at both sites have remained relatively consistent with time. Uranium concentrations in ground water continue to exceed the maximum concentration limit (MCL) at the Canonsburg site; no MCLs are exceeded in ground water at the Burrell site. Surface water quality shows no evidence of impact from the sites

  3. Total and inorganic arsenic in fish samples from Norwegian waters

    DEFF Research Database (Denmark)

    Julshamn, K.; Nilsen, B. M.; Frantzen, S.

    2012-01-01

    The contents of total arsenic and inorganic arsenic were determined in fillet samples of Northeast Arctic cod, herring, mackerel, Greenland halibut, tusk, saithe and Atlantic halibut. In total, 923 individual fish samples were analysed. The fish were mostly caught in the open sea off the coast......-assisted dissolution of the samples. The concentrations found for total arsenic varied greatly between fish species, and ranged from 0.3 to 110 mg kg–1 wet weight. For inorganic arsenic, the concentrations found were very low (...

  4. Methodological approaches in estimating anomalous geochemical field structure

    International Nuclear Information System (INIS)

    Gavrilov, R; Rudmin, M

    2015-01-01

    Mathematical statistic methods were applied to analyze the core samples from vertical expendable wells in Chertovo Koryto gold ore field. The following methods were used to analyse gold in samples: assay tests and atomic absorption method (AAS), while emission spectrum semiquantative method was applied to identify traces. The analysis of geochemical association distribution in one central profile demonstrated that bulk metasomatic aureoles are characteristic of concentric zonal structure. The distribution of geochemical associations is correlated to the hydrothermal stages of mineral formation identified in this deposit. It was proved that the processed geochemical data by factor and cluster analyses provided additional information on the anomalous geochemical field structure in gold- bearing black-shale strata. Such methods are effective tools in interpretating specific features of geochemical field structures in analogous potential ore-bearing areas

  5. Mass transfer of H2O between petroleum and water: implications for oil field water sample quality

    International Nuclear Information System (INIS)

    McCartney, R.A.; Ostvold, T.

    2005-01-01

    Water mass transfer can occur between water and petroleum during changes in pressure and temperature. This process can result in the dilution or concentration of dissolved ions in the water phase of oil field petroleum-water samples. In this study, PVT simulations were undertaken for 4 petroleum-water systems covering a range of reservoir conditions (80-185 o C; 300-1000 bar) and a range of water-petroleum mixtures (volume ratios of 1:1000-300:1000) to quantify the extent of H 2 O mass transfer as a result of pressure and temperature changes. Conditions were selected to be relevant to different types of oil field water sample (i.e. surface, downhole and core samples). The main variables determining the extent of dilution and concentration were found to be: (a) reservoir pressure and temperature, (b) pressure and temperature of separation of water and petroleum, (c) petroleum composition, and (d) petroleum:water ratio (PWR). The results showed that significant dilution and concentration of water samples could occur, particularly at high PWR. It was not possible to establish simple guidelines for identifying good and poor quality samples due to the interplay of the above variables. Sample quality is best investigated using PVT software of the type used in this study. (author)

  6. LTRM Water Quality Sampling Strata, UMRS La Grange Reach

    Data.gov (United States)

    Department of the Interior — The data set includes delineation of sampling strata for the six study reaches of the UMRR Program’s LTRM element. Separate strata coverages exist for each of the...

  7. Review of samples of water, sediment, tailings, and biota at the Little Bonanza mercury mine, San Luis Obispo County, California

    Science.gov (United States)

    Rytuba, James J.; Hothem, Roger L.; Goldstein, Daniel N.; Brussee, Brianne E.; May, Jason T.

    2011-01-01

    Background and Objectives The Little Bonanza mercury (Hg) mine, located in San Luis Obispo County, California, is a relatively small mine with, a historical total Hg production of about 1,000 flasks. The mine workings and tailings are located in the headwaters of the previously unnamed west fork of Las Tablas Creek (WF Las Tablas Creek), which flows into the Nacimiento Reservoir. Wasterock and tailings eroded from the Little Bonanza Hg Mine have contributed Hg-enriched mine wastes to the headwaters of WF Las Tablas Creek. The mine is located on Federal land managed by the U.S. Bureau of Land Management (BLM), which requested that the U.S. Geological Survey (USGS) measure and characterize Hg and other geochemical constituents in tailings, sediment, water, and biota at and downstream from the minesite. This report is in response that request, from the lead agency which is mandated to conduct a Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) - Removal Site Investigation (RSI). The RSI applies to removal of Hg-contaminated mine waste from the Little Bonanza minesite as a means of reducing Hg transport to WF Las Tablas Creek. This report summarizes data obtained from field sampling of mine tailings, wasterock, sediment, water, and biota at the Little Bonanza Mine that was completed on April 6, 2010. Conditions during sampling were dry and no rain had occurred in the watershed for several weeks. Our results permit a preliminary assessment of the mining sources of Hg and associated chemical constituents that could produce elevated levels of monomethyl mercury (MMeHg) in WF Las Tablas Creek and in biota.

  8. Difficulties in obtaining representative samples for compliance with the Ballast Water Management Convention

    Digital Repository Service at National Institute of Oceanography (India)

    Carney, K.J; Basurko, O.C; Pazouki, K.; Marsham, S.; Delany, J; Desai, D.V.; Anil, A.C; Mesbahi, E.

    water, the shape, size and number of ballast tanks and the heterogeneous distribution of organisms within tanks. These factors hinder efforts to obtain samples that truly represent the total ballast water onboard a vessel. A known cell density...

  9. High - velocity water jet impact on concrete samples

    Czech Academy of Sciences Publication Activity Database

    Mádr, V.; Uhlář, R.; Hlaváč, L. M.; Sitek, Libor; Foldyna, Josef; Hela, R.; Bodnárová, L.; Kaličinský, J.

    2009-01-01

    Roč. 2, č. 4 (2009), s. 43-48 ISSN 2067-3809 Institutional research plan: CEZ:AV0Z30860518 Keywords : water jet * concrete * depth of penetration * disintegration volume Subject RIV: JM - Building Engineering http://acta.fih.upt.ro/pdf/2009-4/ACTA-2009-4-08.pdf

  10. Beryllium-10 concentrations in water samples of high northern latitudes

    Energy Technology Data Exchange (ETDEWEB)

    Strobl, C.; Eisenhauer, A.; Schulz, V.; Baumann, S.; Mangini, A. [Heidelberger Akademie der Wissenschaften, Heildelberg (Germany); Kubik, P.W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1997-09-01

    {sup 10}Be concentrations in the water column of high northern latitudes were not available so far. We present different {sup 10}Be profiles from the Norwegian-Greenland Sea, the Arctic Ocean, and the Laptev Sea. (author) 3 fig., 3 refs.

  11. Identifying potential surface water sampling sites for emerging ...

    African Journals Online (AJOL)

    Emerging chemical pollutants (ECPs) are defined as new chemicals which do not have a regulatory status, but which may have an adverse effect on human health and the environment. The occurrence and concentrations of ECPs in South African water bodies are largely unknown, so monitoring is required in order to ...

  12. Sample container and storage for paclobutrazol monitoring in irrigation water

    Science.gov (United States)

    Paclobutrazol is a plant growth retardant commonly used on greenhouse crops. Residues from paclobutrazol applications can accumulate in recirculated irrigation water. Given that paclobutrazol has a long half-life and potential biological activity in parts per billion concentrations, it would be de...

  13. Coastal Aquifer Contamination and Geochemical Processes Evaluation in Tugela Catchment, South Africa—Geochemical and Statistical Approaches

    Directory of Open Access Journals (Sweden)

    Badana Ntanganedzeni

    2018-05-01

    Full Text Available Assessment of groundwater quality, contamination sources and geochemical processes in the coastal aquifer of Tugela Catchment, South Africa were carried out by the geochemical and statistical approach using major ion chemistry of 36 groundwater samples. Results suggest that the spatial distribution pattern of EC, TDS, Na, Mg, Cl and SO4 are homogenous and elevated concentrations are observed in the wells in the coastal region and few wells near the Tugela River. Wells located far from the coast are enriched by Ca, HCO3 and CO3. Durov diagrams, Gibbs plots, ionic ratios, chloro alkaline indices (CAI1 and CAI2 and correlation analysis imply that groundwater chemistry in the coastal aquifer of Tugela Catchment is regulated by the ion exchange, mineral dissolution, saline sources, and wastewater infiltration from domestic sewage; septic tank leakage and irrigation return flow. Principle component analysis also ensured the role of saline and anthropogenic sources and carbonates dissolution on water chemistry. Spatial distributions of factor score also justify the above predictions. Groundwater suitability assessment indicates that around 80% and 90% of wells exceeded the drinking water standards recommended by the WHO and South African drinking water standards (SAWQG, respectively. Based on SAR, RSC, PI, and MH classifications, most of the wells are suitable for irrigation in the study region. USSL classification suggests that groundwater is suitable for coarse-textured soils and salt-tolerant crops. The study recommends that a proper management plan is required to protect this coastal aquifer efficiently.

  14. UMTRA Project water sampling and analysis plan, Grand Junction, Colorado. Revision 1, Version 6

    International Nuclear Information System (INIS)

    1995-09-01

    This water sampling and analysis plan describes the planned, routine ground water sampling activities at the Grand Junction US DOE Uranium Mill Tailings Remedial Action (UMTRA) Project site (GRJ-01) in Grand Junction, Colorado, and at the Cheney Disposal Site (GRJ-03) near Grand Junction. The plan identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequencies for the routine monitoring stations at the sites. Regulatory basis is in the US EPA regulations in 40 CFR Part 192 (1994) and EPA ground water quality standards of 1995 (60 FR 2854). This plan summarizes results of past water sampling activities, details water sampling activities planned for the next 2 years, and projects sampling activities for the next 5 years

  15. Polymeric ionic liquid-based portable tip microextraction device for on-site sample preparation of water samples.

    Science.gov (United States)

    Chen, Lei; Pei, Junxian; Huang, Xiaojia; Lu, Min

    2018-06-05

    On-site sample preparation is highly desired because it avoids the transportation of large-volume samples and ensures the accuracy of the analytical results. In this work, a portable prototype of tip microextraction device (TMD) was designed and developed for on-site sample pretreatment. The assembly procedure of TMD is quite simple. Firstly, polymeric ionic liquid (PIL)-based adsorbent was in-situ prepared in a pipette tip. After that, the tip was connected with a syringe which was driven by a bidirectional motor. The flow rates in adsorption and desorption steps were controlled accurately by the motor. To evaluate the practicability of the developed device, the TMD was used to on-site sample preparation of waters and combined with high-performance liquid chromatography with diode array detection to measure trace estrogens in water samples. Under the most favorable conditions, the limits of detection (LODs, S/N = 3) for the target analytes were in the range of 4.9-22 ng/L, with good coefficients of determination. Confirmatory study well evidences that the extraction performance of TMD is comparable to that of the traditional laboratory solid-phase extraction process, but the proposed TMD is more simple and convenient. At the same time, the TMD avoids complicated sampling and transferring steps of large-volume water samples. Copyright © 2018 Elsevier B.V. All rights reserved.

  16. SEAMIST trademark soil sampling for tritiated water: First year's results

    International Nuclear Information System (INIS)

    Mallon, B.; Martins, S.A.; Houpis, J.L.; Lowry, W.; Cremer, C.D.

    1992-01-01

    SEAMIST trademark is a recently developed sampling system that enables one to measure various soil parameters by means of an inverted, removable, impermeable membrane tube inserted in a borehole. This membrane tube can have various measuring devices installed on it, such as gas ports, adsorbent pads, and electrical sensors. These membrane tubes are made of a laminated polymer. The Lawrence Livermore National Laboratory in Livermore, California, has installed two of these systems to monitor tritium in soil resulting from a leak in an underground storage tank. One tube is equipped with gas ports to sample soil vapor and the other with adsorbent pads to sample soil moisture. Borehole stability was maintained using either sand-filled or air-inflated tubes. Both system implementations yielded concentrations or activities that compared well with the measured concentrations of tritium in the soil taken during borehole construction. In addition, an analysis of the data suggest that both systems prevented the vertical migration of tritium in the boreholes. Also, a neutron probe was successfully used in a blank membrane inserted in one of the boreholes to monitor the moisture in the soil without exposing the probe to the tritium. The neutron log showed excellent agreement with the soil moisture content measured in soil samples taken during borehole construction. This paper describes the two SEAMIST trademark systems used and presents sampling results and comparisons

  17. Total and inorganic arsenic in fish samples from Norwegian waters.

    Science.gov (United States)

    Julshamn, Kaare; Nilsen, Bente M; Frantzen, Sylvia; Valdersnes, Stig; Maage, Amund; Nedreaas, Kjell; Sloth, Jens J

    2012-01-01

    The contents of total arsenic and inorganic arsenic were determined in fillet samples of Northeast Artic cod, herring, mackerel, Greenland halibut, tusk, saithe and Atlantic halibut. In total, 923 individual fish samples were analysed. The fish were mostly caught in the open sea off the coast of Norway, from 40 positions. The determination of total arsenic was carried out by inductively coupled plasma mass spectrometry following microwave-assisted wet digestion. The determination of inorganic arsenic was carried out by high-performance liquid chromatography-ICP-MS following microwave-assisted dissolution of the samples. The concentrations found for total arsenic varied greatly between fish species, and ranged from 0.3 to 110 mg kg(-1) wet weight. For inorganic arsenic, the concentrations found were very low (fish used in the recent EFSA opinion on arsenic in food.

  18. An integrated geophysical and geochemical exploration of critical zone weathering on opposing montane hillslope

    Science.gov (United States)

    Singha, K.; Navarre-Sitchler, A.; Bandler, A.; Pommer, R. E.; Novitsky, C. G.; Holbrook, S.; Moore, J.

    2017-12-01

    Quantifying coupled geochemical and hydrological properties and processes that operate in the critical zone is key to predicting rock weathering and subsequent transmission and storage of water in the shallow subsurface. Geophysical data have the potential to elucidate geochemical and hydrologic processes across landscapes over large spatial scales that are difficult to achieve with point measurements alone. Here, we explore the connections between weathering and fracturing, as measured from integrated geochemical and geophysical borehole data and seismic velocities on north- and south-facing aspects within one watershed in the Boulder Creek Critical Zone Observatory. We drilled eight boreholes up to 13 m deep on north- and south-facing aspects within Upper Gordon Gulch, and surface seismic refraction data were collected near these wells to explore depths of regolith and bedrock, as well as anisotropic characteristics of the subsurface material due to fracturing. Optical televiewer data were collected in these wells to infer the dominant direction of fracturing and fracture density in the near surface to corroborate with the seismic data. Geochemical samples were collected from four of these wells and a series of shallow soil pits for bulk chemistry, clay fraction, and exchangeable cation concentrations to identify depths of chemically altered saprolite. Seismic data show that depth to unweathered bedrock, as defined by p-wave seismic velocity, is slightly thicker on the north-facing slopes. Geochemical data suggest that the depth to the base of saprolite ranges from 3-5 m, consistent with a p-wave velocity value of 1200 m/s. Based on magnitude and anisotropy of p-wave velocities together with optical televiewer data, regolith on north-facing slopes is thought to be more fractured than south-facing slopes, while geochemical data indicate that position on the landscape is another important characteristic in determining depths of weathering. We explore the importance

  19. Determination of Phenols in Water Samples using a Supported ...

    African Journals Online (AJOL)

    NJD

    This was achieved by pH adjustments in the sample and acceptor phases. The method was ... during wastewater treatment, since chlorine is added as a disinfectant. ... they give a high degree of selectivity and clean-up, use little or no organic ...

  20. Geochemical mapping study of Panjang island

    International Nuclear Information System (INIS)

    Sutisna; Sumardjo

    2010-01-01

    Impact of industrial and regional development are not only related to an improvement of socio-economic, but also to an environmental conservation and sustainable. This impact could be observed on a change of geochemical mapping before and after an operational of the industry. In the relation with a regional development and resources utilization, the geochemical mapping have been done in the aim to know a resources and an elemental distribution at Panjang island. In this research, ko-Instrumental Neutron Activation Analysis (k_0-INAA) have been applied in an elemental quantification on the geochemical mapping. Pencuplikan of geochemical sample have been carried out by using a grid systematic method with a sample density of about 10 sample per square kilometre involved 85 pencuplikan point. The geochemical sample of sediment and soil have been provided as a dry weight of 100 mesh. Internal quality control have done by using a number of Standard Reference Materials obtained from US. Geological Survey. Fifteen elements of Sc, Co, In, Rb, Mo, Ba, Ce, Nd, Eu, La, Yb, Th, U, lr and Hf contained in standard materials have been evaluated. The analysis result show that a relative standard deviation less than 11 %, except for Mo (13 %) and lr (26 %). Fourteen elements of Al, Br, Ca, Co, Eu, Fe, La, U, Na, Ce, Mn, As, Sc and Th have been mapped and presented in this paper. The major elements of Ca, Al and Fe, and minor elements of Mn, U and Sc are distributed at all region. The lanthanide elements of La, Ce and Eu have vary concentration and could be found at the middle to the north of the island. (author)

  1. Geochemical baseline studies of soil in Finland

    Science.gov (United States)

    Pihlaja, Jouni

    2017-04-01

    The soil element concentrations regionally vary a lot in Finland. Mostly this is caused by the different bedrock types, which are reflected in the soil qualities. Geological Survey of Finland (GTK) is carrying out geochemical baseline studies in Finland. In the previous phase, the research is focusing on urban areas and mine environments. The information can, for example, be used to determine the need for soil remediation, to assess environmental impacts or to measure the natural state of soil in industrial areas or mine districts. The field work is done by taking soil samples, typically at depth between 0-10 cm. Sampling sites are chosen to represent the most vulnerable areas when thinking of human impacts by possible toxic soil element contents: playgrounds, day-care centers, schools, parks and residential areas. In the mine districts the samples are taken from the areas locating outside the airborne dust effected areas. Element contents of the soil samples are then analyzed with ICP-AES and ICP-MS, Hg with CV-AAS. The results of the geochemical baseline studies are published in the Finnish national geochemical baseline database (TAPIR). The geochemical baseline map service is free for all users via internet browser. Through this map service it is possible to calculate regional soil baseline values using geochemical data stored in the map service database. Baseline data for 17 elements in total is provided in the map service and it can be viewed on the GTK's web pages (http://gtkdata.gtk.fi/Tapir/indexEN.html).

  2. UMTRA Project water sampling and analysis plan, Belfield and Bowman, North Dakota

    International Nuclear Information System (INIS)

    1994-08-01

    Surface remedial action is scheduled to begin at the Belfield and Bowman Uranium Mill Tailings Remedial Action (UMTRA) Project sites in the spring of 1996. Water sampling was conducted in 1993 at both the Belfield processing site and the Bowman processing/disposal site. Results of the sampling at both sites indicate that ground water conditions have remained relatively stable over time. Water sampling activities are not scheduled for 1994 because ground water conditions at the two sites are relatively stable, the 1993 sampling was comprehensive, and surface remediation activities are not scheduled to start until 1996. The next water sampling event is scheduled before the start of remedial activities and will include sampling selected monitor wells at both sites and several domestic wells in the vicinity

  3. Concentration of polycyclic aromatic hydrocarbons in water samples from different stages of treatment

    Science.gov (United States)

    Pogorzelec, Marta; Piekarska, Katarzyna

    2017-11-01

    The aim of this study was to analyze the presence and concentration of selected polycyclic aromatic hydrocarbons in water samples from different stages of treatment and to verify the usefulness of semipermeable membrane devices for analysis of drinking water. For this purpose, study was conducted for a period of 5 months. Semipermeable membrane devices were deployed in a surface water treatment plant located in Lower Silesia (Poland). To determine the effect of water treatment on concentration of PAHs, three sampling places were chosen: raw water input, stream of water just before disinfection and treated water output. After each month of sampling SPMDs were changed for fresh ones and prepared for further analysis. Concentrations of fifteen polycyclic aromatic hydrocarbons were determined by high performance liquid chromatography (HPLC). Presented study indicates that the use of semipermeable membrane devices can be an effective tool for the analysis of aquatic environment, including monitoring of drinking water, where organic micropollutants are present at very low concentrations.

  4. Reconnaissance geochemical survey for uranium and related industrial minerals in Cebu Island

    International Nuclear Information System (INIS)

    Reyes, R.Y.; Ramos, A.F.; Magsambol, W.N.; Hernandez, E.

    1989-03-01

    Consistent with the program of evaluating the nuclear mineral resource potential and related industrial minerals of the Philippines, a reconnaissance geochemical survey was conducted in Cebu with considerable success. The total area covered by the survey was about 5,088 sq. kms. The survey consisted of systematic collection of 857 geochemical stream and water and heavy mineral samples, and measurement of radioactivity in over 352 stations. The average sampling density was about one set of samples per 15 to 30 sq. kms. All solid samples were analyzed for U, Cu, Pb, Zn, Mn, Ag, Co and Ni. Uranium, radon and conductivity were measured on most water samples collected. A total of 4,518 elemental determinations were involved. All field and analytical data were treated by statistics, and the computed parameters data were correlated with the geology of the area to establish anomalous zones. Four areas were delineated for possible uranium mineralization. Of the areas, the Mandaue river area is the most interesting for uranium. The contact zone between the diorite and the sedimentary rocks in this area appears to be a favorable geological environment for uranium mineralization. The other anomalous uranium values were found to be related with the guano and phosphate deposits. Uranium was also shown to be independent of the other seven elements in the geologic environment of Cebu. No definite elemental association could be established at present. This study also marks the thorough utilization of Q'GAS, Cadplot and Autocad, all microcomputer-based programs/systems, in the evaluation and interpretation of exploration-oriented geochemical and geological data, and with more significance in the sense that computer generated quality geochemical maps were produced, a first in the country. (Author). Appendices (23); 23 figs; 13 refs.; 4 tabs

  5. Application of cluster analysis to geochemical compositional data for identifying ore-related geochemical anomalies

    Science.gov (United States)

    Zhou, Shuguang; Zhou, Kefa; Wang, Jinlin; Yang, Genfang; Wang, Shanshan

    2017-12-01

    Cluster analysis is a well-known technique that is used to analyze various types of data. In this study, cluster analysis is applied to geochemical data that describe 1444 stream sediment samples collected in northwestern Xinjiang with a sample spacing of approximately 2 km. Three algorithms (the hierarchical, k-means, and fuzzy c-means algorithms) and six data transformation methods (the z-score standardization, ZST; the logarithmic transformation, LT; the additive log-ratio transformation, ALT; the centered log-ratio transformation, CLT; the isometric log-ratio transformation, ILT; and no transformation, NT) are compared in terms of their effects on the cluster analysis of the geochemical compositional data. The study shows that, on the one hand, the ZST does not affect the results of column- or variable-based (R-type) cluster analysis, whereas the other methods, including the LT, the ALT, and the CLT, have substantial effects on the results. On the other hand, the results of the row- or observation-based (Q-type) cluster analysis obtained from the geochemical data after applying NT and the ZST are relatively poor. However, we derive some improved results from the geochemical data after applying the CLT, the ILT, the LT, and the ALT. Moreover, the k-means and fuzzy c-means clustering algorithms are more reliable than the hierarchical algorithm when they are used to cluster the geochemical data. We apply cluster analysis to the geochemical data to explore for Au deposits within the study area, and we obtain a good correlation between the results retrieved by combining the CLT or the ILT with the k-means or fuzzy c-means algorithms and the potential zones of Au mineralization. Therefore, we suggest that the combination of the CLT or the ILT with the k-means or fuzzy c-means algorithms is an effective tool to identify potential zones of mineralization from geochemical data.

  6. Determination of rare earth elements in natural water samples – A review of sample separation, preconcentration and direct methodologies

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Andrew, E-mail: afisher@plymouth.ac.uk [School of Geography, Earth and Environmental Sciences, Plymouth University, Drake Circus, Plymouth, Devon, PL4 8AA (United Kingdom); Kara, Derya [Department of Chemistry, Art and Science Faculty, Balikesir University, 10100, Balikesir (Turkey)

    2016-09-07

    This review discusses and compares the methods given for the determination of rare earth elements (REE) in natural water samples, including sea, river, lake, tap, ground and waste waters as well as Antarctic ice. Since REE are at very low concentrations in natural waters, numerous different preconcentration methods have been proposed to enable their measurement. These include liquid liquid extraction, dispersive liquid-liquid micro-extraction and solidified floating drop micro-extraction. In addition to liquid-liquid extraction methods, solid phase extraction using commercial resins, resins made in-house, silica-based exchange materials and other solid media is also discussed. These and other techniques such as precipitation/co-precipitation and flotation are compared in terms of speed, preconcentration factors achieved, precision, accuracy and limits of detection (LOD). Some papers have discussed the direct determination of REE in these sample types. Some have used specialised sample introduction systems such as ultrasonic nebulization whereas others have used a standard sample introduction system coupled with inductively coupled plasma mass spectrometry (ICP-MS) detection. These direct methods have also been discussed and compared. - Highlights: • The determination of rare earth elements in waters is reviewed. • Assorted preconcentration techniques are discussed and evaluated. • Detection techniques include atomic spectrometry, potentiometry and spectrophotometry. • Special nebulisers and electrothermal vaporization approaches are reviewed.

  7. 222Rn in water: A comparison of two sample collection methods and two sample transport methods, and the determination of temporal variation in North Carolina ground water

    International Nuclear Information System (INIS)

    Hightower, J.H. III

    1994-01-01

    Objectives of this field experiment were: (1) determine whether there was a statistically significant difference between the radon concentrations of samples collected by EPA's standard method, using a syringe, and an alternative, slow-flow method; (2) determine whether there was a statistically significant difference between the measured radon concentrations of samples mailed vs samples not mailed; and (3) determine whether there was a temporal variation of water radon concentration over a 7-month period. The field experiment was conducted at 9 sites, 5 private wells, and 4 public wells, at various locations in North Carolina. Results showed that a syringe is not necessary for sample collection, there was generally no significant radon loss due to mailing samples, and there was statistically significant evidence of temporal variations in water radon concentrations

  8. [Detection of Cryptospordium spp. in environmental water samples by FTA-PCR].

    Science.gov (United States)

    Zhang, Xiao-Ping; Zhu, Qian; He, Yan-Yan; Jiang, Li; Jiang, Shou-Fu

    2011-02-01

    To establish a FTA-polymeras chain reaction (FTA-PCR) method in detection of Cryptospordium spp. in different sources of water. The semi automated immunomagnetic separation (IMS) of Cryptospordium oocysts in environmental water samples was performed firstly, and then genomic DNA of Cryptospordium oocysts was extracted by FTA filters disk. Oligonucleotide primers were designed based on the DNA fragment of the 18 S rRNA gene from C. parvum. Plate DNA was amplified with primers in PCR. The control DNA samples from Toxoplasma gondii,Sarcocystis suihominis, Echinococcus granulosus, and Clonorchis sinensis were amplified simultaneously. All PCR products were detected by agar electrophoresis dyed with ethidium bromide. The 446 bp fragment of DNA was detected in all samples of C. parvum, C. andersoni, and C. baileyi, while it was not detected in control groups in laboratory. No positive samples were found from 10 samples collected from tape water in 5 districts of Shanghai City by FTA-PCR. Nine positive samples were detected totally from 70 different environmental water samples, there were 0 out of 15 samples from the source of tape water, 2 out of 25 from the Huangpu River, 5 out of 15 from rivers around the animal farmers, 1 out of 9 from output water of contaminating water treatment factory, 1 out of 6 from the out gate of living contaminating water. The 446 bp fragment was detected from all the amplified positive water samples. FTA-PCR is an efficient method for gene detection of Cryptospordium oocysts, which could be used in detection of environmental water samples. The contamination degree of Cryptospordium oocysts in the river water around animal farms is high.

  9. Geochemical Characterization of the Upper and Middle Floridan Aquifer System, South Florida

    Science.gov (United States)

    Mirecki, J.; Richardson, E.; Bennett, M.; Hendel, J.

    2008-05-01

    Our study focus is to characterize the water quality and geochemical environment of the Floridan Aquifer System (FAS) throughout the regional flowpath. A synoptic survey of 21 wells (n=15, upper FAS; n=6 middle FAS) was supplemented by additional samples (n=11) obtained during exploratory well development at 4 aquifer storage recovery (ASR) pilot sites. Synoptic survey samples were analyzed intensively, yielding a dataset that consists of major and trace dissolved constituents (including metals), stable isotopes (δ18O, δ13C, δD, δ34S in sulfate and sulfide), carbon species (carbonate alkalinity and organic carbon), uranium-series radionuclides, nutrients, and selected microbes and pathogens. The objectives of this study are three-fold: 1) to provide baseline water-quality and geochemical information prior to initiation of ASR activities that are part of the Comprehensive Everglades Restoration Plan; 2) to quantify the major controls on geochemical evolution along upper and middle FAS flowpaths using geochemical modeling methods; and 3) to identify areas where water- quality may limit the feasibility of ASR methods in the FAS. Preliminary interpretations water quality changes along the regional FAS flowpath can be summarized as follows. Concentrations of dissolved constituents increase from north to south along the flow path; generally, the upper FAS has lower total dissolved solids than the middle FAS at locations where well pairs were analyzed. The redox environment changes from oxic to strongly anoxic, very close to the recharge area. Redox measurements, dissolved iron, sulfide, and sulfur isotope data are consistent with sulfate-reducing conditions. Uranium-series isotope concentrations and activities generally are below regulatory criteria, with few exceptions in both the upper and middle FAS. Areas with greater radionuclide activity occur primarily at distal flowpath locations or at the coast.

  10. Geochemical investigation of UMTRAP designated site at Salt Lake City, Utah

    International Nuclear Information System (INIS)

    Markos, G.; Bush, K.J.

    1983-09-01

    This report is the result of a geochemical investigation of the former uranium mill and tailings site at Salt Lake City, Utah. This is one in a series of site specific geochemical investigations performed on the inactive uranium mill tailings included in the Uranium Mill Tailings Remedial Action Project. The objectives of the investigation are to characterize the geochemistry, to determine the contaminant distribution resulting from the former milling activities and tailings, and to infer chemical pathways and transport mechanisms from the contaminant distribution. The results will be used to model contaminant migration and to develop criteria for long-term containment media such as a cover system which is impermeable to contaminant migration. This report assumes a familiarity with the hydrologic conditions of the site and the geochemical concepts underlying the investigation. The results reported are based on a one-time sampling of waters and solid material from the background, the area adjacent to the site, and the site. The solid samples were water extracted to remove easily soluble salts and acid extracted to remove carbonates and hydroxides. The water extracts and solid samples were anlyzed for the major and trace elements. The report includes the methods of sampling, sample processing, analysis, and data interpretation. Four major conclusions are: (1) sediments in the ditches and creeks adjacent to the site contain tailings, however, the waters were generally not contaminated; (2) tailings are mixed with the soils within a meter below the tailings in some locations, however, water-soluble contaminants decrease to below background levels within 30 cm below the tailings; (3) there has not been significant acid seepage into the soils below the tailings; and (4) salt crusts on the tailings contain trace elements, with the elements that form chloride complexes having the greatest accumulation

  11. Determination of radiocesium in environmental water samples using copper ferro(II)cyanide and sodium tetraphenylborate

    International Nuclear Information System (INIS)

    Popov, L.; Kuleff, I.; Djingova, R.

    2006-01-01

    A procedure for the radiochemical separation and radiochemical purification of radiocesium ( 134 Cs and 137 Cs) in bulk environmental water samples is proposed. Radiocesium was removed from the water by cation-exchange with copper ferro(II)cyanide and was purified by precipitation with sodium tetraphenylborate. The influence of the concentration of potassium in the water sample on the chemical yield was investigated. The validation of the proposed method was carried out by analyzing reference materials. The application of the method was demonstrated with the determination of the concentration of radiocesium in water samples from rivers around NPP 'Kozloduy', Bulgaria, Danube and Ogosta. (author)

  12. Uranium content measurement in drinking water samples using track etch technique

    International Nuclear Information System (INIS)

    Kumar, Mukesh; Kumar, Ajay; Singh, Surinder; Mahajan, R.K.; Walia, T.P.S.

    2003-01-01

    The concentration of uranium has been assessed in drinking water samples collected from different locations in Bathinda district, Punjab, India. The water samples are taken from hand pumps and tube wells. Uranium is determined using fission track technique. Uranium concentration in the water samples varies from 1.65±0.06 to 74.98±0.38 μg/l. These values are compared with safe limit values recommended for drinking water. Most of the water samples are found to have uranium concentration above the safe limit. Analysis of some heavy metals (Zn, Cd, Pb and Cu) in water is also done in order to see if some correlation exists between the concentration of uranium and these heavy metals. A weak positive correlation has been observed between the concentration of uranium and heavy metals of Pb, Cd and Cu

  13. Application of 234U/238U isotope ratio data for the study of geochemical problems associated with local water sources from Aguas da Prata (SP, Brazil)

    International Nuclear Information System (INIS)

    Bonotto, D.M.

    1982-01-01

    The uranium-238, uranium-234 and radon content of spring waters of Aguas da Prata (SP) - Platina, Paiol, Villela, Sao Bento, Prata-Radioativa, Prata-Nova, Boi, Vitoria and Prata-Antiga - was found; the activity ratio AR ( 234 U/ 238 U) was applied to the geochemistry of local water sources. The uranium analysis procedure consisted of the following steps: adition of 232 U- 228 Th spike to the samples, coprecipitation with iron, iron extraction with organic solvent, separation on anion-exchange resin, extraction with TTA, deposition on stainless steel disc and determination of uranium content by alpha spectrometry. The uranium-238 content changed from 0,10 to 11,56 ppb (average value = 2,3 ppb). The higher values were observed for the waters circulating through sandstones and the lower through volcanic rocks. The inverse correlation (r sub(s) =-0,76) between pH and uranium-238 content confirmed the contribution of this factor on its solubility. The significative correlation r sub(s) = 0,76 between dissolved oxygen and uranium-238 content also confirmed the higher uranium on the more oxidizing zones. The AR changed from 2,84 to 11,68 (average value = 6). These values defined the regional aquifer systems as mineralized in uranium. The higher AR were observed for the deep groundwaters and the lower for the shallow one. Because the 238 U→ 234 Th decay, the 234 Th ejection to the solution was confirmed as the most important factor responsible for the extreme observed isotopic fractionation. (Author) [pt

  14. USDA Forest Service national protocols for sampling air pollution-sensitive waters

    Science.gov (United States)

    T. J. Sullivan

    2012-01-01

    The first step in designing a surface water sampling program is identifying one or more problems or questions that require information on water quality. Common water quality problems include nutrient enrichment (from a variety of causes), effects of atmospheric deposition (acidification, eutrophication, toxicity), and effects of major disturbances such as fire or pest...

  15. Evaluation of the Bacterial Status of Water Samples at Umudike Abia ...

    African Journals Online (AJOL)

    77.78%), Proteus spp.(66.67%), Serratia spp.(55.5%) and Vibro spp.(22.2%). The occurrence of the water borne pathogens appeared limited to the stream water samples, hence, continuous consumption without adequate treatment is potentially dangerous. Keywords: Water, rainwater, stream, bacteria, coliforms, pathogen ...

  16. UMTRA Project water sampling and analysis plan, Durango, Colorado. Revision 1

    International Nuclear Information System (INIS)

    1995-09-01

    Planned, routine ground water sampling activities at the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site in Durango, Colorado, are described in this water sampling and analysis plan. The plan identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequency for the routine monitoring stations at the site. The ground water data are used to characterize the site ground water compliance strategies and to monitor contaminants of potential concern identified in the baseline risk assessment (DOE, 1995a). Regulatory basis for routine ground water monitoring at UMTRA Project sites is derived from the US EPA regulations in 40 CFR Part 192 (1994) and EPA standards of 1995 (60 FR 2854). Sampling procedures are guided by the UMTRA Project standard operating procedures (SOP) (JEG, n.d.), the Technical Approach Document (TAD) (DOE, 1989), and the most effective technical approach for the site

  17. Water sampling using a drone at Yugama crater lake, Kusatsu-Shirane volcano, Japan

    Science.gov (United States)

    Terada, Akihiko; Morita, Yuichi; Hashimoto, Takeshi; Mori, Toshiya; Ohba, Takeshi; Yaguchi, Muga; Kanda, Wataru

    2018-04-01

    Remote sampling of water from Yugama crater lake at Kusatsu-Shirane volcano, Japan, was performed using a drone. Despite the high altitude of over 2000 m above sea level, our simple method was successful in retrieving a 250 mL sample of lake water. The procedure presented here is easy for any researcher to follow who operates a drone without additional special apparatus. We compare the lake water sampled by drone with that sampled by hand at a site where regular samplings have previously been carried out. Chemical concentrations and stable isotope ratios are largely consistent between the two techniques. As the drone can fly automatically with the aid of navigation by Global Navigation Satellite System (GNSS), it is possible to repeatedly sample lake water from the same location, even when entry to Yugama crater lake is restricted due to the risk of eruption.[Figure not available: see fulltext.

  18. National Coral Reef Monitoring Program: Water Chemistry of the Coral Reefs in American Samoa from Water Samples collected since 2015

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water samples are collected and analyzed to assess spatial and temporal variation in the seawater carbonate systems of coral reef ecosystems in the Hawaiian and...

  19. Overview of the geochemical code MINTEQ: applications to performance assessment for low-level wastes

    International Nuclear Information System (INIS)

    Graham, M.J.; Peterson, S.R.

    1985-09-01

    The MINTEQ geochemical computer code, developed at Pacific Northwest Laboratory, integrates many of the capabilities of its two immediate predecessors, WATEQ3 and MINEQL. MINTEQ can be used to perform the calculations necessary to simulate (model) the contact of low-level waste solutions with heterogeneous sediments or the interaction of ground water with solidified low-level wastes. The code is capable of performing calculations of ion speciation/solubility, adsorption, oxidation-reduction, gas phase equilibria, and precipitation/dissolution of solid phases. Under the Special Waste Form Lysimeters-Arid program, the composition of effluents (leachates) from column and batch experiments, using laboratory-scale waste forms, will be used to develop a geochemical model of the interaction of ground water with commercial solidified low-level wastes. The wastes being evaluated include power reactor waste streams that have been solidified in cement, vinyl ester-styrene, and bitumen. The thermodynamic database for the code is being upgraded before the geochemical modeling is performed. Thermodynamic data for cobalt, antimony, cerium, and cesium solid phases and aqueous species are being added to the database. The need to add these data was identified from the characterization of the waste streams. The geochemical model developed from the laboratory data will then be applied to predict the release from a field-lysimeter facility that contains full-scale waste samples. The contaminant concentrations migrating from the wastes predicted using MINTEQ will be compared to the long-term lysimeter data. This comparison will constitute a partical field validation of the geochemical model. 28 refs

  20. An overview of the geochemical code MINTEQ: Applications to performance assessment for low-level wastes

    International Nuclear Information System (INIS)

    Peterson, S.R.; Opitz, B.E.; Graham, M.J.; Eary, L.E.

    1987-03-01

    The MINTEQ geochemical computer code, developed at the Pacific Northwest Laboratory (PNL), integrates many of the capabilities of its two immediate predecessors, MINEQL and WATEQ3. The MINTEQ code will be used in the Special Waste Form Lysimeters-Arid program to perform the calculations necessary to simulate (model) the contact of low-level waste solutions with heterogeneous sediments of the interaction of ground water with solidified low-level wastes. The code can calculate ion speciation/solubilitya, adsorption, oxidation-reduction, gas phase equilibria, and precipitation/dissolution of solid phases. Under the Special Waste Form Lysimeters-Arid program, the composition of effluents (leachates) from column and batch experiments, using laboratory-scale waste forms, will be used to develop a geochemical model of the interaction of ground water with commercial, solidified low-level wastes. The wastes being evaluated include power-reactor waste streams that have been solidified in cement, vinyl ester-styrene, and bitumen. The thermodynamic database for the code was upgraded preparatory to performing the geochemical modeling. Thermodynamic data for solid phases and aqueous species containing Sb, Ce, Cs, or Co were added to the MINTEQ database. The need to add these data was identified from the characterization of the waste streams. The geochemical model developed from the laboratory data will then be applied to predict the release from a field-lysimeter facility that contains full-scale waste samples. The contaminant concentrations migrating from the waste forms predicted using MINTEQ will be compared to the long-term lysimeter data. This comparison will constitute a partial field validation of the geochemical model

  1. UMTRA project water sampling and analysis plan, Salt Lake City, Utah

    International Nuclear Information System (INIS)

    1994-06-01

    Surface remedial action was completed at the Salt Lake City, Utah, Uranium Mill Tailings Remedial Action (UMTRA) Project site in the fall of 1987. Results of water sampling for the years 1992 to 1994 indicate that site-related ground water contamination occurs in the shallow unconfined aquifer (the uppermost aquifer). With respect to background ground water quality, contaminated ground water in the shallow, unconfined aquifer has elevated levels of chloride, sodium, sulfate, total dissolved solids, and uranium. No contamination associated with the former tailings pile occurs in levels exceeding background in ground water in the deeper confined aquifer. This document provides the water sampling and analysis plan for ground water monitoring at the former uranium processing site in Salt Lake City, Utah (otherwise known as the ''Vitro'' site, named after the Vitro Chemical Company that operated the mill). All contaminated materials removed from the processing site were relocated and stabilized in a disposal cell near Clive, Utah, some 85 miles west of the Vitro site (known as the ''Clive'' disposal site). No ground water monitoring is being performed at the Clive disposal site, since concurrence of the remedial action plan by the US Nuclear Regulatory Commission and completion of the disposal cell occurred before the US Environmental Protection Agency issued draft ground water standards in 1987 (52 FR 36000) for cleanup, stabilization, and control of residual radioactive materials at the disposal site. In addition, the likelihood of post-closure impact on the ground water is minimal to nonexistent, due to the naturally poor quality of the ground water. Water sampling activities planned for calendar year 1994 consist of sampling ground water from nine monitor wells to assess the migration of contamination within the shallow unconfined aquifer and sampling ground water from two existing monitor wells to assess ground water quality in the confined aquifer

  2. Geochemical sensitivity analysis: Identification of important geochemical parameters for performance assessment studies

    International Nuclear Information System (INIS)

    Siegel, M.; Guzowski, R.; Rechard, R.; Erickson, K.

    1986-01-01

    The EPA Standard for geologic disposal of high level waste requires demonstration that the cumulative discharge of individual radioisotopes over a 10,000 year period at points 5 kilometers from the engineered barrier system will not exceed the limits prescribed in 40 CFR Part 191. The roles of the waste package, engineered facility, hydrogeology and geochemical processes in limiting radionuclide releases all must be considered in calculations designed to assess compliance of candidate repositories with the EPA Standard. In this talk, they will discuss the geochemical requirements of calculations used in these compliance assessments. In addition, they will describe the complementary roles of (1) simple models designed to bound the radionuclide discharge over the widest reasonable range of geochemical conditions and scenarios and (2) detailed geochemical models which can provide insights into the actual behavior of the radionuclides in the ground water. Finally, they will discuss development of sensitivity/uncertainty techniques designed to identify important site-specific geochemical parameters and processes using data from a basalt formation

  3. Enrichment and determination of small amounts of 90Sr/90Y in water samples

    International Nuclear Information System (INIS)

    Mundschenk, H.

    1979-01-01

    Small amounts of 90 Sr/ 90 Y can be concentrated from large volumes of surface water (100 l) by precipitation of the phosphates, using bentonite as adsorber matrix. In the case of samples containing no or nearly no suspended matter (tap water, ground water, sea water), the daughter 90 Y can be extracted directly by using filter beds impregnated with HDEHP. The applicability of both techniques is demonstrated under realistic conditions. (orig.) 891 HP/orig. 892 MKO [de

  4. Determination of pyridine in soil and water samples of a polluted area

    International Nuclear Information System (INIS)

    Peters, R.J.B.; Renesse van Duivenbode, J.A.D. van

    1994-01-01

    A method for the analyses of pyridine in environmental samples is described. For soil samples a distillation procedure followed by an extraction, an acidic extraction or a Soxhlet extraction can be used. For water samples a distillation procedure followed by extraction can be employed. Deuterated pyridine is used as an internal standard and the extracts are analyzed by GC-MS. The recoveries of the methods are higher than 80%; the detection limits for pyridine are 0.01 mg/kg for soil samples and 0.2 μg/l for water samples. (orig.)

  5. Laboratory batch experiments and geochemical modelling of water-rock-supercritical CO2 reactions in Southern San Joaquin Valley, California oil field sediments: Implications for future carbon capture and sequestration projects.

    Science.gov (United States)

    Mickler, P. J.; Rivas, C.; Freeman, S.; Tan, T. W.; Baron, D.; Horton, R. A.

    2015-12-01

    Storage of CO2 as supercritical liquid in oil reservoirs has been proposed for enhanced oil recovery and a way to lower atmospheric CO2 levels. The fate of CO2 after injection requires an understanding of mineral dissolution/precipitation reactions occurring between the formation minerals and the existing formation brines at formation temperatures and pressures in the presence of supercritical CO2. In this study, core samples from three potential storage formations, the Vedder Fm. (Rio Bravo oil field), Stevens Fm. (Elk Hills oil field) and Temblor Fm. (McKittrick oil field) were reacted with a synthetic brine and CO2(sc) at reservoir temperature (110°C) and pressure (245-250 bar). A combination of petrographic, SEM-EDS and XRD analyses, brine chemistry, and PHREEQ-C modelling were used to identify geochemical reactions altering aquifer mineralogy. XRD and petrographic analyses identified potentially reactive minerals including calcite and dolomite (~2%), pyrite (~1%), and feldspars (~25-60%). Despite the low abundance, calcite dissolution and pyrite oxidation were dominant geochemical reactions. Feldspar weathering produced release rates ~1-2 orders of magnitude slower than calcite dissolution. Calcite dissolution increased the aqueous concentrations of Ca, HCO3, Mg, Mn and Sr. Silicate weathering increased the aqueous concentrations of Si and K. Plagioclase weathering likely increased aqueous Ca concentrations. Pyrite oxidation, despite attempts to remove O2 from the experiment, increased the aqueous concentration of Fe and SO4. SEM-EDS analysis of post-reaction samples identified mixed-layered illite-smectites associated with feldspar grains suggesting clay mineral precipitation in addition to calcite, pyrite and feldspar dissolution. The Vedder Fm. sample underwent complete disaggregation during the reaction due to cement dissolution. This may adversely affect Vedder Formation CCS projects by impacting injection well integrity.

  6. Water quality monitoring: A comparative case study of municipal and Curtin Sarawak's lake samples

    Science.gov (United States)

    Anand Kumar, A.; Jaison, J.; Prabakaran, K.; Nagarajan, R.; Chan, Y. S.

    2016-03-01

    In this study, particle size distribution and zeta potential of the suspended particles in municipal water and lake surface water of Curtin Sarawak's lake were compared and the samples were analysed using dynamic light scattering method. High concentration of suspended particles affects the water quality as well as suppresses the aquatic photosynthetic systems. A new approach has been carried out in the current work to determine the particle size distribution and zeta potential of the suspended particles present in the water samples. The results for the lake samples showed that the particle size ranges from 180nm to 1345nm and the zeta potential values ranges from -8.58 mV to -26.1 mV. High zeta potential value was observed in the surface water samples of Curtin Sarawak's lake compared to the municipal water. The zeta potential values represent that the suspended particles are stable and chances of agglomeration is lower in lake water samples. Moreover, the effects of physico-chemical parameters on zeta potential of the water samples were also discussed.

  7. Recovery of diverse microbes in high turbidity surface water samples using dead-end ultrafiltration.

    Science.gov (United States)

    Mull, Bonnie; Hill, Vincent R

    2012-12-01

    Dead-end ultrafiltration (DEUF) has been reported to be a simple, field-deployable technique for recovering bacteria, viruses, and parasites from large-volume water samples for water quality testing and waterborne disease investigations. While DEUF has been reported for application to water samples having relatively low turbidity, little information is available regarding recovery efficiencies for this technique when applied to sampling turbid water samples such as those commonly found in lakes and rivers. This study evaluated the effectiveness of a DEUF technique for recovering MS2 bacteriophage, enterococci, Escherichia coli, Clostridium perfringens, and Cryptosporidium parvum oocysts in surface water samples having elevated turbidity. Average recovery efficiencies for each study microbe across all turbidity ranges were: MS2 (66%), C. parvum (49%), enterococci (85%), E. coli (81%), and C. perfringens (63%). The recovery efficiencies for MS2 and C. perfringens exhibited an inversely proportional relationship with turbidity, however no significant differences in recovery were observed for C. parvum, enterococci, or E. coli. Although ultrafilter clogging was observed, the DEUF method was able to process 100-L surface water samples at each turbidity level within 60 min. This study supports the use of the DEUF method for recovering a wide array of microbes in large-volume surface water samples having medium to high turbidity. Published by Elsevier B.V.

  8. Pesticide residues analysis in water samples of Nagarpur and Saturia Upazila, Bangladesh

    Science.gov (United States)

    Hasanuzzaman, M.; Rahman, M. A.; Islam, M. S.; Salam, M. A.; Nabi, M. R.

    2018-03-01

    Pesticides used to protect the crops from pest attack in the agricultural fields pose harmful effect to the non-target organisms such as human and many other aquatic and terrestrial organisms either directly or indirectly through food chain. The present study was conducted to monitor a total of seven pesticide residues under organochlorine, organophosphorus and carbamate pesticides in three different sources of pond water, paddy field water and tube-well water from Nagarpur Upazila and paddy field water in the company of Dhaleshwari and Gazikhali river water from Saturia Upazila, Bangladesh. A total of 40 water samples were analyzed using high-performance liquid chromatography equipped with ultraviolet detector. Among the organophosphorus pesticides, diazinon was detected in eight water samples at a concentration ranging from 4.11 to 257.91 μg/l whereas, malathion was detected only in one water sample at a concentration of 84.64 μg/l and chlorpyrifos pesticide was also detected only in one water sample and the concentration was 37.3 μg/l. Trace amount of carbaryl was identified but it was below the detection limit. None of the tested water samples was found to be contaminated with DDT or its metabolites (DDE and DDD). The water samples contaminated with the suspected pesticides were above the acceptable limit except for the fish pond samples of Sahabatpur and Dubaria union. To control the misuse of pesticides and to reduce the possible health risk, appropriate control systems of pests such as integrated pest management system should be implemented immediately by the authorities of the country.

  9. First Total Reflection X-Ray Fluorescence round-robin test of water samples: Preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Borgese, Laura; Bilo, Fabjola [Chemistry for Technologies Laboratory, University of Brescia, Brescia (Italy); Tsuji, Kouichi [Graduate School of Engineering, Osaka City University, Osaka (Japan); Fernández-Ruiz, Ramón [Servicio Interdepartamental de Investigación (SIdI), Laboratorio de TXRF, Universidad Autónoma de Madrid, Madrid (Spain); Margui, Eva [Department of Chemistry, University of Girona, Girona (Spain); Streli, Christina [TU Wien, Atominstitut,Radiation Physics, Vienna (Austria); Pepponi, Giancarlo [Fondazione Bruno Kessler, Povo, Trento (Italy); Stosnach, Hagen [Bruker Nano GmbH, Berlin (Germany); Yamada, Takashi [Rigaku Corporation, Takatsuki, Osaka (Japan); Vandenabeele, Peter [Department of Archaeology, Ghent University, Ghent (Belgium); Maina, David M.; Gatari, Michael [Institute of Nuclear Science and Technology, University of Nairobi, Nairobi (Kenya); Shepherd, Keith D.; Towett, Erick K. [World Agroforestry Centre (ICRAF), Nairobi (Kenya); Bennun, Leonardo [Laboratorio de Física Aplicada, Departamento de Física, Universidad de Concepción (Chile); Custo, Graciela; Vasquez, Cristina [Gerencia Química, Laboratorio B025, Centro Atómico Constituyentes, San Martín (Argentina); Depero, Laura E., E-mail: laura.depero@unibs.it [Chemistry for Technologies Laboratory, University of Brescia, Brescia (Italy)

    2014-11-01

    Total Reflection X-Ray Fluorescence (TXRF) is a mature technique to evaluate quantitatively the elemental composition of liquid samples deposited on clean and well polished reflectors. In this paper the results of the first worldwide TXRF round-robin test of water samples, involving 18 laboratories in 10 countries are presented and discussed. The test was performed within the framework of the VAMAS project, interlaboratory comparison of TXRF spectroscopy for environmental analysis, whose aim is to develop guidelines and a standard methodology for biological and environmental analysis by means of the TXRF analytical technique. - Highlights: • The discussion of the first worldwide TXRF round-robin test of water samples (18 laboratories of 10 countries) is reported. • Drinking, waste, and desalinated water samples were tested. • Data dispersion sources were identified: sample concentration, preparation, fitting procedure, and quantification. • The protocol for TXRF analysis of drinking water is proposed.

  10. Presence of pesticide residues in water, sediment and biological samples taken from aquatic environments in Honduras

    International Nuclear Information System (INIS)

    Meyer, D.E.

    1999-01-01

    The objective of this study was to detect the presence of persistent pesticides in water, sediment and biological samples taken from aquatic environments in Honduras during the period 1995-98. Additionally, the LC 50 for 2 fungicides and 2 insecticides on post-larval Penaeus vannamei was determined in static water bioassays. A total of 80 water samples, 16 sediment samples and 7 biological samples (fish muscle tissue) were analyzed for detection of organochlorine and organophosphate pesticide residues. The results of sample analyses indicate a widespread contamination of Honduran continental and coastal waters with organochlorine pesticides. Most detections were of low ( 50 values and were therefore found to be much more toxic to the post-larval shrimp than the fungicides tridemorph and propiconazole. (author)

  11. A QUANTITATIVE EVALUATION OF THE WATER DISTRIBUTION IN A SOIL SAMPLE USING NEUTRON IMAGING

    Directory of Open Access Journals (Sweden)

    Jan Šácha

    2016-10-01

    Full Text Available This paper presents an empirical method by Kang et al. recently proposed for correcting two-dimensional neutron radiography for water quantification in soil. The method was tested on data from neutron imaging of the water infiltration in a soil sample. The raw data were affected by neutron scattering and by beam hardening artefacts. Two strategies for identifying the correction parameters are proposed in this paper. The method has been further developed for the case of three-dimensional neutron tomography. In a related experiment, neutron imaging is used to record ponded-infiltration experiments in two artificial soil samples. Radiograms, i.e., two-dimensional projections of the sample, were acquired during infiltration. A calculation was made of the amount of water and its distribution within the radiograms, in the form of two-dimensional water thickness maps. Tomograms were reconstructed from the corrected and uncorrected water thickness maps to obtain the 3D spatial distribution of the water content within the sample. Without the correction, the beam hardening and the scattering effects overestimated the water content values close to the perimeter of the sample, and at the same time underestimated the values close to the centre of the sample. The total water content of the entire sample was the same in both cases. The empirical correction method presented in this study is a relatively accurate, rapid and simple way to obtain the quantitatively determined water content from two-dimensional and three-dimensional neutron images. However, an independent method for measuring the total water volume in the sample is needed in order to identify the correction parameters.

  12. Sampling designs and methods for estimating fish-impingement losses at cooling-water intakes

    International Nuclear Information System (INIS)

    Murarka, I.P.; Bodeau, D.J.

    1977-01-01

    Several systems for estimating fish impingement at power plant cooling-water intakes are compared to determine the most statistically efficient sampling designs and methods. Compared to a simple random sampling scheme the stratified systematic random sampling scheme, the systematic random sampling scheme, and the stratified random sampling scheme yield higher efficiencies and better estimators for the parameters in two models of fish impingement as a time-series process. Mathematical results and illustrative examples of the applications of the sampling schemes to simulated and real data are given. Some sampling designs applicable to fish-impingement studies are presented in appendixes

  13. Geochemical interpretation of Kings Mountain, North Carolina, orientation area

    International Nuclear Information System (INIS)

    Price, V.; Ferguson, R.B.

    1977-01-01

    An orientation study has been made of uranium occurrences in the area of Kings Mountain, North Carolina. This is one of the orientation studies of known uranium occurrences that are being conducted in several geologic provinces and under various climatic (weathering) conditions to provide the technical basis for design and interpretation of NURE geochemical reconnaissance programs. The Kings Mountain area was chosen for study primarily because of the reported presence of high-uranium monazite. This 750-mi 2 area is in the deeply weathered southern Appalachian Piedmont and spans portions of the Inner Piedmont, Kings Mountain, and Charlotte geologic belts. Uranium concentration maps for ground and surface water samples clearly outline the outcrop area of the Cherryville Quartz Monzonite with highs up to 10 ppb uranium near the reported uraninite. Several surface water samples appear to be anomalous because of trace industrial contamination. Uranium concentration maps for -100 to +200 mesh stream sediments indicate the area of monazite abundance. Several samples with >100 ppM uranium content appear to be high in uranium-rich resistate minerals. When the uranium content of sediment samples is ratioed to the sum of Hf, Dy, and Th, the anomaly pattern shifts to coincide with uranium highs in ground and surface water samples. False anomalies from concentrations of monazite (Ce,ThPO 4 ), xenotime (Y,DyPO 4 ), and zircon (Zr,HfSiO 4 ) in stream sediment samples can thus be eliminated. Residual anomalies should be related to unusual uranium enrichment of these common minerals or to the presence of an uncommon uranium-rich mineral. Tantalum, beryllium, and tin in stream sediments correspond to high concentrations of uranium in stream and ground water but not to uranium in sediments. In an initial reconnaissance, several media should be sampled, and it is essential to correct uranium in sediments for the sample mineralogy

  14. Experimental studies on the geochemical behaviour of 54-Mn considering coastal and deep sea sediments

    International Nuclear Information System (INIS)

    Guegueniat, P.; Boust, D.; Aprosi, G.

    1986-01-01

    In order to study the geochemical behaviour of 54-Mn in the marine environment (Mn 2+ ) 200 sediments gathered in deep sea and in coastal waters were contaminated experimentally. To correlate the various results, the oxidation processes occuring with or without sediments should be specified. Without sediments, in 'blanks', the deposition rate of 54-Mn on the walls brings into play oxidation developing approximately according to a single order linear function. Consequently, it is characterized by a half-life (time for half 54-Mn to be retained) very similar to a residence time (Tsub(R)). In our water samples, Tsub(R) ranged from 12 to 150 days. (author)

  15. Instrumenting caves to collect hydrologic and geochemical data: case study from James Cave, Virginia

    Science.gov (United States)

    Schreiber, Madeline E.; Schwartz, Benjamin F.; Orndorff, William; Doctor, Daniel H.; Eagle, Sarah D.; Gerst, Jonathan D.

    2015-01-01

    Karst aquifers are productive groundwater systems, supplying approximately 25 % of the world’s drinking water. Sustainable use of this critical water supply requires information about rates of recharge to karst aquifers. The overall goal of this project is to collect long-term, high-resolution hydrologic and geochemical datasets at James Cave, Virginia, to evaluate the quantity and quality of recharge to the karst system. To achieve this goal, the cave has been instrumented for continuous (10-min interval) measurement of the (1) temperature and rate of precipitation; (2) temperature, specific conductance, and rate of epikarst dripwater; (3) temperature of the cave air; and (4) temperature, conductivity, and discharge of the cave stream. Instrumentation has also been installed to collect both composite and grab samples of precipitation, soil water, the cave stream, and dripwater for geochemical analysis. This chapter provides detailed information about the instrumentation, data processing, and data management; shows examples of collected datasets; and discusses recommendations for other researchers interested in hydrologic and geochemical monitoring of cave systems. Results from the research, briefly described here and discussed in more detail in other publications, document a strong seasonality of the start of the recharge season, the extent of the recharge season, and the geochemistry of recharge.

  16. Estimation of uranium in drinking water samples collected from different locations across Tarapur, India

    International Nuclear Information System (INIS)

    Dusane, C.B.; Maity, Sukanta; Sahu, S.K.; Pandit, G.G.

    2015-01-01

    In this study, drinking water samples were collected from different locations across Tarapur, India for screening uranium contents. Uranium concentrations were determined by differential pulse adsorptive stripping voltammetry (DPASV). Uranium concentration in water samples varied in a wide range from 0.6-7.9 μg L -1 . Results were compared with the international water quality guidelines World Health Organization (WHO, 2011) and were found within the permissible limit. Results were also compared with the safe limit values for drinking water recommended by national organization like Atomic Energy Regulatory Board (AERB). (author)

  17. Evaluation of the Purge Water Management System (PWMS) monitor well sampling technology at SRS

    International Nuclear Information System (INIS)

    Hiergesell, R.A.; Cardoso-Neto, J.E.; Williams, D.W.

    1997-01-01

    Due to the complex issues surrounding Investigation Derived Waste (IDW) at SRS, the Environmental Restoration Division has been exploring new technologies to deal with the purge water generated during monitoring well sampling. Standard procedures for sampling generates copious amounts of purge water that must be managed as hazardous waste, when containing hazardous and/or radiological contaminants exceeding certain threshold levels. SRS has obtained Regulator approval to field test an innovative surface release prevention mechanism to manage purge water. This mechanism is referred to as the Purge Water Management System (PWMS) and consists of a collapsible bladder situated within a rigid metal tank

  18. Uranium and thorium determination in water samples taken along River Kura

    International Nuclear Information System (INIS)

    Ahmadov, M.M.; Ibadov, N.A.; Safarova, K.S.; Humbatov, F.Y.; Suleymanov, B.A.

    2014-01-01

    Full text : In the present investigation, uranium and thorium concentration in rivers water of Azerbaijan has been measured using inductively coupled plasma mass spectrometry. The Agilent 7700x series ICP-MS applied for analysis of water samples. This method is based on direct introduction of samples, without any chemical pre-treatment, into an inductively coupled plasma plasma mass spectrometer. Uranium and thorium was determined at the mass mass numbers of 238 and 232 respectively using Bi-209 as internal standard. The main purpose of the study is to measure the level of uranium and thorium in water samples taken along river Kura

  19. Estimating an appropriate sampling frequency for monitoring ground water well contamination

    International Nuclear Information System (INIS)

    Tuckfield, R.C.

    1994-01-01

    Nearly 1,500 ground water wells at the Savannah River Site (SRS) are sampled quarterly to monitor contamination by radionuclides and other hazardous constituents from nearby waste sites. Some 10,000 water samples were collected in 1993 at a laboratory analysis cost of $10,000,000. No widely accepted statistical method has been developed, to date, for estimating a technically defensible ground water sampling frequency consistent and compliant with federal regulations. Such a method is presented here based on the concept of statistical independence among successively measured contaminant concentrations in time

  20. Monitoring the aftermath of Flint drinking water contamination crisis: Another case of sampling bias?

    Science.gov (United States)

    Goovaerts, Pierre

    2017-07-15

    The delay in reporting high levels of lead in Flint drinking water, following the city's switch to the Flint River as its water supply, was partially caused by the biased selection of sampling sites away from the lead pipe network. Since Flint returned to its pre-crisis source of drinking water, the State has been monitoring water lead levels (WLL) at selected "sentinel" sites. In a first phase that lasted two months, 739 residences were sampled, most of them bi-weekly, to determine the general health of the distribution system and to track temporal changes in lead levels. During the same period, water samples were also collected through a voluntary program whereby concerned citizens received free testing kits and conducted sampling on their own. State officials relied on the former data to demonstrate the steady improvement in water quality. A recent analysis of data collected by voluntary sampling revealed, however, an opposite trend with lead levels increasing over time. This paper looks at potential sampling bias to explain such differences. Although houses with higher WLL were more likely to be sampled repeatedly, voluntary sampling turned out to reproduce fairly well the main characteristics (i.e. presence of lead service lines (LSL), construction year) of Flint housing stock. State-controlled sampling was less representative; e.g., sentinel sites with LSL were mostly built between 1935 and 1950 in lower poverty areas, which might hamper our ability to disentangle the effects of LSL and premise plumbing (lead fixtures and pipes present within old houses) on WLL. Also, there was no sentinel site with LSL in two of the most impoverished wards, including where the percentage of children with elevated blood lead levels tripled following the switch in water supply. Correcting for sampling bias narrowed the gap between sampling programs, yet overall temporal trends are still opposite. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Recent developments and evaluation of selected geochemical techniques applied to uranium exploration

    International Nuclear Information System (INIS)

    Wenrich-Verbeek, K.J.; Cadigan, R.A.; Felmlee, J.K.; Reimer, G.M.; Spirakis, C.S.

    1976-01-01

    Various geochemical techniques for uranium exploration are currently under study by the geochemical techniques team of the Branch of Uranium and Thorium Resources, US Geological Survey. Radium-226 and its parent uranium-238 occur in mineral spring water largely independently of the geochemistry of the solutions and thus are potential indicators of uranium in source rocks. Many radioactive springs, hot or cold, are believed to be related to hydrothermal systems which contain uranium at depth. Radium, when present in the water, is co-precipitated in iron and/or manganese oxides and hydroxides or in barium sulphate associated with calcium carbonate spring deposits. Studies of surface water samples have resulted in improved standardized sample treatment and collection procedures. Stream discharge has been shown to have a significant effect on uranium concentration, while conductivity shows promise as a ''pathfinder'' for uranium. Turbid samples behave differently and consequently must be treated with more caution than samples from clear streams. Both water and stream sediments should be sampled concurrently, as anomalous uranium concentrations may occur in only one of these media and would be overlooked if only one, the wrong one, were analysed. The fission-track technique has been applied to uranium determinations in the above water studies. The advantages of the designed sample collecting system are that only a small quantity, typically one drop, of water is required and sample manipulation is minimized, thereby reducing contamination risks. The fission-track analytical technique is effective at the uranium concentration levels commonly found in natural waters (5.0-0.01 μg/litre). Landsat data were used to detect alteration associated with uranium deposits. Altered areas were detected but were not uniquely defined. Nevertheless, computer processing of Landsat data did suggest a smaller size target for further evaluation and thus is useful as an exploration tool

  2. Geochemical evolution of groundwater in carbonate aquifers of southern Latium region, central Italy

    Directory of Open Access Journals (Sweden)

    Giuseppe Sappa

    2013-03-01

    Full Text Available Spring and well water samples, from carbonate aquifers of Latium region, have been characterized to determine the hydrochemical processes governing the evolution of the groundwater. Most of the spring samples, issuing from Lepini, Ausoni and Aurunci Mts., are characterized as alkaline earth HCO3 waters, however, some samples show a composition of Cl--SO4 -- alkaline earth waters. Groundwater samples from Pontina Plain shows three different hydrochemical facies: alkaline earth HCO3 type, Cl-- SO4 -- alkaline earth type and Cl--SO4 -- alkaline type waters. Geochemical modeling and saturation index computation of the sampled waters show an interaction with calcareous and calcareous-dolomitic lithologies. Most of the springs and wells was kinetically saturated with respect to calcite and dolomite, and all the samples were below the equilibrium state with gypsum. This indicates that the groundwater has capacity to dissolve the gypsum along the flow paths. The electrical conductivity and Cl- concentrations of the sampled waters show a positive trend with the decrease in the distance from the coast, highlighting seawater intrusion in the coastal area. According to hydrochemistry results and geochemical modeling, the dominant factors in controlling the hydrochemical characteristics of groundwater are: (i water rock interaction with calcareous and calcareous-dolomitic lithologies; (ii seawater intrusion in the coastal area; (iii dissolution and/or precipitation of carbonate and (i.e. dolomite and calcite evaporate minerals (gypsum determined by saturation indexes; (iv mineral weathering process; (the high Mg/Ca ratio due to the weathering of Mg-rich dolomite.

  3. Understanding the origin and evolution of water in the Moon through lunar sample studies.

    Science.gov (United States)

    Anand, Mahesh; Tartèse, Romain; Barnes, Jessica J

    2014-09-13

    A paradigm shift has recently occurred in our knowledge and understanding of water in the lunar interior. This has transpired principally through continued analysis of returned lunar samples using modern analytical instrumentation. While these recent studies have undoubtedly measured indigenous water in lunar samples they have also highlighted our current limitations and some future challenges that need to be overcome in order to fully understand the origin, distribution and evolution of water in the lunar interior. Another exciting recent development in the field of lunar science has been the unambiguous detection of water or water ice on the surface of the Moon through instruments flown on a number of orbiting spacecraft missions. Considered together, sample-based studies and those from orbit strongly suggest that the Moon is not an anhydrous planetary body, as previously believed. New observations and measurements support the possibility of a wet lunar interior and the presence of distinct reservoirs of water on the lunar surface. Furthermore, an approach combining measurements of water abundance in lunar samples and its hydrogen isotopic composition has proved to be of vital importance to fingerprint and elucidate processes and source(s) involved in giving rise to the lunar water inventory. A number of sources are likely to have contributed to the water inventory of the Moon ranging from primordial water to meteorite-derived water ice through to the water formed during the reaction of solar wind hydrogen with the lunar soil. Perhaps two of the most striking findings from these recent studies are the revelation that at least some portions of the lunar interior are as water-rich as some Mid-Ocean Ridge Basalt source regions on Earth and that the water in the Earth and the Moon probably share a common origin. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  4. Design, analysis, and interpretation of field quality-control data for water-sampling projects

    Science.gov (United States)

    Mueller, David K.; Schertz, Terry L.; Martin, Jeffrey D.; Sandstrom, Mark W.

    2015-01-01

    The process of obtaining and analyzing water samples from the environment includes a number of steps that can affect the reported result. The equipment used to collect and filter samples, the bottles used for specific subsamples, any added preservatives, sample storage in the field, and shipment to the laboratory have the potential to affect how accurately samples represent the environment from which they were collected. During the early 1990s, the U.S. Geological Survey implemented policies to include the routine collection of quality-control samples in order to evaluate these effects and to ensure that water-quality data were adequately representing environmental conditions. Since that time, the U.S. Geological Survey Office of Water Quality has provided training in how to design effective field quality-control sampling programs and how to evaluate the resultant quality-control data. This report documents that training material and provides a reference for methods used to analyze quality-control data.

  5. Ionizing radiation as optimization method for aluminum detection from drinking water samples

    International Nuclear Information System (INIS)

    Bazante-Yamguish, Renata; Geraldo, Aurea Beatriz C.; Moura, Eduardo; Manzoli, Jose Eduardo

    2013-01-01

    The presence of organic compounds in water samples is often responsible for metal complexation; depending on the analytic method, the organic fraction may dissemble the evaluation of the real values of metal concentration. Pre-treatment of the samples is advised when organic compounds are interfering agents, and thus sample mineralization may be accomplished by several chemical and/or physical methods. Here, the ionizing radiation was used as an advanced oxidation process (AOP), for sample pre-treatment before the analytic determination of total and dissolved aluminum by ICP-OES in drinking water samples from wells and spring source located at Billings dam region. Before irradiation, the spring source and wells' samples showed aluminum levels of 0.020 mg/l and 0.2 mg/l respectively; after irradiation, both samples showed a 8-fold increase of aluminum concentration. These results are discussed considering other physical and chemical parameters and peculiarities of sample sources. (author)

  6. Analytical study on the determination of boron in environmental water samples

    International Nuclear Information System (INIS)

    Lopez, F.J.; Gimenez, E.; Hernandez, F.

    1993-01-01

    An analytical study on the determination of boron in environmental water samples was carried out. The curcumin and carmine standard methods were compared with the most recent Azomethine-H method in order to evaluate their analytical characteristics and feasibility for the analysis of boron in water samples. Analyses of synthetic water, ground water, sea water and waste water samples were carried out and a statistical evaluation of the results was made. The Azomethine-H method was found to be the most sensitive (detection limit 0.02 mg l -1 ) and selective (no interference of commonly occurring ions in water was observed), showing also the best precision (relative standard deviation lower than 4%). Moreover, it gave good results for all types of samples analyzed. The accuracy of this method was tested by the addition of known amounts of standard solutions to different types of water samples. The slopes of standard additions and direct calibration graphs were similar and recoveries of added boron ranged from 99 to 107%. (orig.)

  7. Estimation of uranium in different types of water and sand samples by adsorptive stripping voltammetry

    International Nuclear Information System (INIS)

    Bhalke, Sunil; Raghunath, Radha; Mishra, Suchismita; Suseela, B.; Tripathi, R.M.; Pandit, G.G.; Shukla, V.K.; Puranik, V.D.

    2005-01-01

    A method is standardized for the estimation of uranium by adsorptive stripping voltammetry using chloranilic acid (CAA) as complexing agent. The optimum parameters to get best sensitivity and good reproducibility for uranium were 60s adsorption time, pH 1.8, chloranilic acid (2x10 -4 M) and 0.002M EDTA. The peak potential under this condition was found to be -0.03 V. With these optimum parameters a sensitivity of 1.19 nA/nM uranium was observed. Detection limit for this optimum parameter was found to be 0.55 nM. This can be further improved by increasing adsorption time. Using this method, uranium was estimated in different type of water samples such as seawater, synthetic seawater, stream water, tap water, well water, bore well water and process water. This method has also been used for estimation of uranium in sand, organic solvent used for extraction of uranium from phosphoric acid and its raffinate. Sample digestion procedures used for estimation of uranium in various matrices are discussed. It has been observed from the analysis that the uranium peak potentials changes with matrix of the sample, hence, standard addition method is the best method to get reliable and accurate results. Quality assurance of the standardized method is verified by analyzing certified reference water sample from USDOE, participating intercomparison exercises and also by estimating uranium content in water samples both by differential pulse adsorptive stripping voltammetric and laser fluorimetric techniques. (author)

  8. Identification and quantification of pesticide residues in water samples of Dhamrai Upazila, Bangladesh

    Science.gov (United States)

    Hasanuzzaman, M.; Rahman, M. A.; Salam, M. A.

    2017-10-01

    Being agricultural country, different types of pesticides are widely used in Bangladesh to prevent the crop losses due to pest attack which are ultimately drain to the water bodies. The present study was conducted to identify and quantify the organochlorine (DDT, DDE and DDD), organophosphorus (malathion, diazinon and chloropyrifos) and carbamate (carbaryl) residues in water samples of different sources from Dhamrai upazila of Bangladesh using high performance liquid chromatography (HPLC) equipped with ultra violate (UV) detector. Thirty water samples from fish pond, cultivated land and tube-well were collected in winter season to analyze the pesticide residues. Among the organophosphorus pesticides, malathion was present in seven water samples ranging from 42.58 to 922.8 μg/L, whereas diazinon was detected in water sample-8 (WS-8) and the concentration was 31.5 μg/L. None of the tested water samples was found to be contaminated with chlorpyrifos, carbaryl or DDT and its metabolites (DDE and DDD). Except for a tube-well water sample, concentrations of the detected residues are above the acceptable limit for human body as assigned by different organizations. To avoid the possible health hazards, the indiscriminate application of pesticides should be restricted and various substitute products like bio-pesticide should be introduced in a broad scale as soon as possible.

  9. Extreme drought decouples silicon and carbon geochemical linkages in lakes.

    Science.gov (United States)

    Li, Tianyang; Li, Siyue; Bush, Richard T; Liang, Chuan

    2018-09-01

    Silicon and carbon geochemical linkages were usually regulated by chemical weathering and organism activity, but had not been investigated under the drought condition, and the magnitude and extent of drought effects remain poorly understood. We collected a comprehensive data set from a total of 13 sampling sites covering the main water body of the largest freshwater lake system in Australia, the Lower Lakes. Changes to water quality during drought (April 2008-September 2010) and post-drought (October 2010-October 2013) were compared to reveal the effects of drought on dissolved silica (DSi) and bicarbonate (HCO 3 - ) and other environmental factors, including sodium (Na + ), pH, electrical conductivity (EC), chlorophyll a (Chl-a), total dissolved solids (TDS), dissolved inorganic nitrogen (DIN), total nitrogen (TN), total phosphorus (TP) and water levels. Among the key observations, concentrations of DSi and DIN were markedly lower in drought than in post-drought period while pH, EC and concentrations of HCO 3 - , Na + , Chl-a, TDS, TN, TP and the ratio TN:TP had inverse trends. Stoichiometric ratios of DSi:HCO 3 - , DSi:Na + and HCO 3 - :Na + were significantly lower in the drought period. DSi exhibited significantly negative relationships with HCO 3 - , and DSi:Na + was strongly correlated with HCO 3 - :Na + in both drought and post-drought periods. The backward stepwise regression analysis that could avoid multicollinearity suggested that DSi:HCO 3 - ratio in drought period had significant relationships with fewer variables when compared to the post-drought, and was better predictable using nutrient variables during post-drought. Our results highlight the drought effects on variations of water constituents and point to the decoupling of silicon and carbon geochemical linkages in the Lower Lakes under drought conditions. Copyright © 2018 Elsevier B.V. All rights reserved.

  10. Geochemical approach to evaluate deforest of mangroves

    OpenAIRE

    Ishiga, Hiroaki; Diallo, Ibrahima M'bemba; Bah Mamadou Lamine Malick,; Ngulimi. Faustine Miguta,; Magai. Paschal Justin,; Shati Samwel Stanley,

    2016-01-01

    Processes of mangrove deforest related human activities were examined. To evaluate changes of soil feature, multielements geochemical compositions of mangrove muds and soils of deforest were analyzed. To describe present situation of the mangrove, Conakry in Guinea, Dar es Salaam in Tanzania, Sundarbans of Bangladesh and Nago in Okinawa of Japan were selected. Soil samples of the forests were evaluated enrichment of biologically concentrated heavy metals such as Zn, Cu and Fe, and TS (total s...

  11. “Nanofiltration” Enabled by Super-Absorbent Polymer Beads for Concentrating Microorganisms in Water Samples

    Science.gov (United States)

    Xie, Xing; Bahnemann, Janina; Wang, Siwen; Yang, Yang; Hoffmann, Michael R.

    2016-01-01

    Detection and quantification of pathogens in water is critical for the protection of human health and for drinking water safety and security. When the pathogen concentrations are low, large sample volumes (several liters) are needed to achieve reliable quantitative results. However, most microbial identification methods utilize relatively small sample volumes. As a consequence, a concentration step is often required to detect pathogens in natural waters. Herein, we introduce a novel water sample concentration method based on superabsorbent polymer (SAP) beads. When SAP beads swell with water, small molecules can be sorbed within the beads, but larger particles are excluded and, thus, concentrated in the residual non-sorbed water. To illustrate this approach, millimeter-sized poly(acrylamide-co-itaconic acid) (P(AM-co-IA)) beads are synthesized and successfully applied to concentrate water samples containing two model microorganisms: Escherichia coli and bacteriophage MS2. Experimental results indicate that the size of the water channel within water swollen P(AM-co-IA) hydrogel beads is on the order of several nanometers. The millimeter size coupled with a negative surface charge of the beads are shown to be critical in order to achieve high levels of concentration. This new concentration procedure is very fast, effective, scalable, and low-cost with no need for complex instrumentation. PMID:26876979

  12. Methods for collecting algal samples as part of the National Water-Quality Assessment Program

    Science.gov (United States)

    Porter, Stephen D.; Cuffney, Thomas F.; Gurtz, Martin E.; Meador, Michael R.

    1993-01-01

    Benthic algae (periphyton) and phytoplankton communities are characterized in the U.S. Geological Survey's National Water-Quality Assessment Program as part of an integrated physical, chemical, and biological assessment of the Nation's water quality. This multidisciplinary approach provides multiple lines of evidence for evaluating water-quality status and trends, and for refining an understanding of the factors that affect water-quality conditions locally, regionally, and nationally. Water quality can be characterized by evaluating the results of qualitative and quantitative measurements of the algal community. Qualitative periphyton samples are collected to develop of list of taxa present in the sampling reach. Quantitative periphyton samples are collected to measure algal community structure within selected habitats. These samples of benthic algal communities are collected from natural substrates, using the sampling methods that are most appropriate for the habitat conditions. Phytoplankton samples may be collected in large nonwadeable streams and rivers to meet specific program objectives. Estimates of algal biomass (chlorophyll content and ash-free dry mass) also are optional measures that may be useful for interpreting water-quality conditions. A nationally consistent approach provides guidance on site, reach, and habitat selection, as well as information on methods and equipment for qualitative and quantitative sampling. Appropriate quality-assurance and quality-control guidelines are used to maximize the ability to analyze data locally, regionally, and nationally.

  13. Use of an Electronic Tongue System and Fuzzy Logic to Analyze Water Samples

    Science.gov (United States)

    Braga, Guilherme S.; Paterno, Leonardo G.; Fonseca, Fernando J.

    2009-05-01

    An electronic tongue (ET) system incorporating 8 chemical sensors was used in combination with two pattern recognition tools, namely principal component analysis (PCA) and Fuzzy logic for discriminating/classification of water samples from different sources (tap, distilled and three brands of mineral water). The Fuzzy program exhibited a higher accuracy than the PCA and allowed the ET to classify correctly 4 in 5 types of water. Exception was made for one brand of mineral water which was sometimes misclassified as tap water. On the other hand, the PCA grouped water samples in three clusters, one with the distilled water; a second with tap water and one brand of mineral water, and the third with the other two other brands of mineral water. Samples in the second and third clusters could not be distinguished. Nevertheless, close grouping between repeated tests indicated that the ET system response is reproducible. The potential use of the Fuzzy logic as the data processing tool in combination with an electronic tongue system is discussed.

  14. Genotoxicity assessment of water sampled from R-11 reservoir by means of allium test

    Energy Technology Data Exchange (ETDEWEB)

    Bukatich, E.; Pryakhin, E. [Urals Research Center for Radiation Medicine (Russian Federation); Geraskin, S. [Russian Institute of Agricultural Radiology and Agroecology (Russian Federation)

    2014-07-01

    The Mayak PA was the first enterprise for the production of weapon-grade plutonium in Russia and it incorporates uranium-graphite reactors for plutonium production and radiochemical facilities for its separation. Radiochemical processing resulted in huge volumes of liquid radioactive wastes of different specific activities. To reduce the radionuclides release into the environment, a system of bypasses and ponds (the Techa Cascade Reservoirs system) to store low-activity liquid wastes has been constructed in the upper reaches of the Techa River. Currently, industrial reservoirs of Mayak PA contain over 350 million m{sup 3} of low-level radioactive liquid wastes with total activity over 7.4 x 10{sup 15} Bq. Reservoir R-11 is the final reservoir in the Techa Cascade Reservoirs system. The average specific activity of main radionuclides in the water of R-11 are: {sup 90}Sr - 1.4x10{sup 3} Bq/l; {sup 137}Cs - 3 Bq/l; {sup 3}H - 7x10{sup 2} Bq/l; α-emitting radionuclides - 2.6 x 10{sup -1} Bq/l. In our study the Allium-test was employed to estimate reservoir R-11 water genotoxic effects. In 2012, 3 water samples were collected in different parts of reservoir R-11. Water samples from the Shershnevskoye reservoir (artificial reservoir on the Miass River designed for Chelyabinsk city water supply) were used as natural control. Samples of distilled and bottled water were used as an additional laboratory control. The common onion, Allium cepa L. (Stuttgarter Riesen) was used. Healthy equal-sized bulbs were soaked for 24 hours at +4±2 deg. C to synchronize cell division. The bulbs were maintained in distilled water at +23 deg. C until roots have grown up to 2±1 mm length and then plunged into water samples. Control samples remained in distilled and bottled water as well as in water samples from the Shershnevskoye reservoir (natural control). Roots of the 18±3 mm length were randomly sampled and fixed in an alcohol/acetic acid mixture. For microscopic analysis, squashed

  15. Prevalence of Cryptosporidium and Giardia lamblia in Water Samples from Jeddah and Makkah Cities

    Directory of Open Access Journals (Sweden)

    Haytham Ahmed Zakai

    2014-01-01

    Full Text Available Water contamination by Giardia lamblia and Cryptosporidium is one of the causes of diarrhoea throughout the world.  A total of 161 and 84 samples were collected from Jeddah and Makkah cities, respectively.  Each sample was concentrated by double centrifugation and the sediment was examined as a wet smear and after staining with Trichrome and Kinyoun stains.  The results showed that 56 (35% and 1 (0.62 % samples of Jeddah were positive for the oocyst of Cryptosporidium and cyst of Giardia, whereas only 21 (25% and 2 (2.4 % samples of Makkah showed positivity for oocysts and cyst of these parasites. Overall Cryptosporidium contamination in bottled water and water from filling stations was 6.8% and 17.4%, respectively. Maximum contamination for Cryptosporidium was recorded in tap water which was 51% and 25% in Jeddah and Makkah, respectively.

  16. Exploring the Legionella pneumophila positivity rate in hotel water samples from Antalya, Turkey.

    Science.gov (United States)

    Sepin Özen, Nevgün; Tuğlu Ataman, Şenay; Emek, Mestan

    2017-05-01

    The genus Legionella is a fastidious Gram-negative bacteria widely distributed in natural waters and man made water supply systems. Legionella pneumophila is the aetiological agent of approximately 90% of reported Legionellosis cases, and serogroup 1 is the most frequent cause of infections. Legionnaires' disease is often associated with travel and continues to be a public health concern at present. The correct water management quality practices and rapid methods for analyzing Legionella species in environmental water is a key point for the prevention of Legionnaires' disease outbreaks. This study aimed to evaluate the positivity rates and serotyping of Legionella species from water samples in the region of Antalya, Turkey, which is an important tourism center. During January-December 2010, a total of 1403 samples of water that were collected from various hotels (n = 56) located in Antalya were investigated for Legionella pneumophila. All samples were screened for L. pneumophila by culture method according to "ISO 11731-2" criteria. The culture positive Legionella strains were serologically identified by latex agglutination test. A total of 142 Legionella pneumophila isolates were recovered from 21 (37.5%) of 56 hotels. The total frequency of L. pneumophila isolation from water samples was found as 10.1%. Serological typing of 142 Legionella isolates by latex agglutination test revealed that strains belonging to L. pneumophila serogroups 2-14 predominated in the examined samples (85%), while strains of L. pneumophila serogroup 1 were less numerous (15%). According to our knowledge, our study with the greatest number of water samples from Turkey demonstrates that L. pneumophila serogroups 2-14 is the most common isolate. Rapid isolation of L. pneumophila from environmental water samples is essential for the investigation of travel related outbreaks and the possible resources. Further studies are needed to have epidemiological data and to determine the types of L

  17. Geochemical Survey of Pernambuco

    International Nuclear Information System (INIS)

    Horowitz, A.; Duarte, P.J.; Almeida, M.G. de; Medeiros, M.O.

    1988-01-01

    The area studied i this work is located in a triangle formed by the Sibiro and Boca da Mata Sugar-Mills and Serinhaem country. In the Cabo Formation the search determinated conglomerates, arcos and clays. Although the highest geochemical activity have been done in the decomposed crystalin, and the values from Cabo Formation don't be encourager, this formation has lithology compatible with uranium mineralization. The Cabo Formation's sediments presents lithologic variations very expressives, with conglomerates, arcoses and clay silts, which determinate the choise of the area. This area presented favorable to uranium prospecting and to others elements interesting to ragional geochemistry. The atomic absorption analysis, fluorimetry and spectrometry were done for the following elements: Zn, V, Ti, Ni, Pb, Mn, Ga, Cu, Co, Bi, Ag, B, Mo, and U. (C.D.G.) [pt

  18. Uranium geochemical exploration in northwestern Luzon

    International Nuclear Information System (INIS)

    Santos, G. Jr.; Fernandez, L.; Ogena, M.; Tauli, G.

    1980-01-01

    A reconnaissance geochemical stream water and sediment survey which was conducted in northwestern Luzon was able to detect ten (10) uranium anomalous areas. These anomalous areas are located along a north-south trending zone of Miocene marine clastics and sedimentary rocks with tuffaceous sediment intercalations. In general, northwest Luzon has low radioactivity except for two anomalous areas which have 3 to 6 times background radioactivity. Radon anomalies occur in sparsely scattered locations. The anomalous zones appear to be related to major north-south faults and secondary northeast-southwest trending structures. Geochemical correlations between uranium and other elements such as copper, lead, zinc, manganese, silver, cobalt and nickel are generally very poor. (author)

  19. Panay carborne radiometric and geochemical surveys

    International Nuclear Information System (INIS)

    Santos, G. Jr.

    1981-09-01

    A carborne radiometric survey and stream sediments collection were conducted in Panay and Guimaras Islands. An area in Nabas, Aklan, situated in the northwestern tip of Panay (Buruanga Peninsula) which indicated 2 to 3 times above background radioactivity was delineated. Uranium content in the stream sediment samples collected from Buruanga Peninsula was generally higher than those obtained in other parts of the island. Radioactivity measurements and uranium content in stream sediments were found to be within background levels. It is recommended that follow-up radiometric and geochemical surveys be undertaken in Buruanga Peninsula and additional stream sediments samples be collected in Panay to achieve better sampling density and coverage. (author)

  20. Supplement to the UMTRA project water sampling and analysis plan, Slick Rock, Colorado

    International Nuclear Information System (INIS)

    1995-09-01

    The water sampling and analysis plan (WSAP) provides the regulatory and technical basis for ground water and surface water sampling at the Uranium Mill Tailings Remedial Action (UMTRA) Project Union Carbide (UC) and North Continent (NC) processing sites and the Burro Canyon disposal site near Slick Rock, Colorado. The initial WSAP was finalized in August 1994 and will be completely revised in accordance with the WSAP guidance document (DOE, 1995) in late 1996. This version supplements the initial WSAP, reflects only minor changes in sampling that occurred in 1995, covers sampling scheduled for early 1996, and provides a preliminary projection of the next 5 years of sampling and monitoring activities. Once surface remedial action is completed at the former processing sites, additional and more detailed hydrogeologic characterization may be needed to develop the Ground Water Program conceptual ground water model and proposed compliance strategy. In addition, background ground water quality needs to be clearly defined to ensure that the baseline risk assessment accurately estimated risks from the contaminants of potential concern in contaminated ground water at the UC and NC sites

  1. Microbiology of the surface water samples in the high background radiation areas of Ramsar, Iran

    International Nuclear Information System (INIS)

    Motamedifar, Mohammad; Zamani, Khosrow; Sedigh, Hadi; Mortazavi, Seyed Mohammad Javad; Taeb, Shahram; Haghani, M.; Mortazavi, Seyed Ali Reza; Soofi, Amir

    2014-01-01

    Residents of high background radiation areas of Ramsar have lived in these areas for many generations and received radiation doses much higher than the dose limit recommended by ICRP for radiation workers. The radioactivity of the high background radiation areas of Ramsar is reported to be due to 226 Ra and its decay products, which have been brought to the surface by the waters of hot springs. Over the past years the department has focused on different aspects of the health effects of the elevated levels of natural radiation in Ramsar. This study was aimed to perform a preliminary investigation on the bioeffects of exposure to elevated levels of natural radiation on the microbiology of surface water samples. Water samples were collected from surface water streams in Talesh Mahalleh district, Ramsar as well as a nearby area with normal levels of background radiation. Only two strains of bacteria, that is, Providencia stuartii and Shimwellia blattae, could be isolated from the water samples collected from high background radiation areas, while seven strains (Escherichia coli, Enterobacter asburiae, Klebsiella pneumoniae, Shigella dysenteriae, Buttiauxella agerstis, Tatumella punctuata and Raoultella ornithinolytica) were isolated from the water samples collected from normal background radiation areas. All the bacteria isolated from water samples of high and normal background radiation areas were sensitive to ultraviolet radiation, heat, betadine, alcohol, and deconex. Although other investigators have reported that bacteria isolated from hot springs show radioresistance, the results reported here do not reveal any adaptive response. (author)

  2. Review of robust measurement of phosphorus in river water: sampling, storage, fractionation and sensitivity

    Directory of Open Access Journals (Sweden)

    H. P. Jarvie

    2002-01-01

    Full Text Available This paper reviews current knowledge on sampling, storage and analysis of phosphorus (P in river waters. Potential sensitivity of rivers with different physical, chemical and biological characteristics (trophic status, turbidity, flow regime, matrix chemistry is examined in terms of errors associated with sampling, sample preparation, storage, contamination, interference and analytical errors. Key issues identified include: The need to tailor analytical reagents and concentrations to take into account the characteristics of the sample matrix. The effects of matrix interference on the colorimetric analysis. The influence of variable rates of phospho-molybdenum blue colour formation. The differing responses of river waters to physical and chemical conditions of storage. The higher sensitivities of samples with low P concentrations to storage and analytical errors. Given high variability of river water characteristics in space and time, no single standardised methodology for sampling, storage and analysis of P in rivers can be offered. ‘Good Practice’ guidelines are suggested, which recommend that protocols for sampling, storage and analysis of river water for P is based on thorough site-specific method testing and assessment of P stability on storage. For wider sampling programmes at the regional/national scale where intensive site-specific method and stability testing are not feasible, ‘Precautionary Practice’ guidelines are suggested. The study highlights key areas requiring further investigation for improving methodological rigour. Keywords: phosphorus, orthophosphate, soluble reactive, particulate, colorimetry, stability, sensitivity, analytical error, storage, sampling, filtration, preservative, fractionation, digestion

  3. Guidance document for preparing water sampling and analysis plans for UMTRA Project sites. Revision 1

    International Nuclear Information System (INIS)

    1995-09-01

    A water sampling and analysis plan (WSAP) is prepared for each Uranium Mill Tailings Remedial Action (UMTRA) Project site to provide the rationale for routine ground water sampling at disposal sites and former processing sites. The WSAP identifies and justifies the sampling locations, analytical parameters, detection limits, and sampling frequency for the routine ground water monitoring stations at each site. This guidance document has been prepared by the Technical Assistance Contractor (TAC) for the US Department of Energy (DOE). Its purpose is to provide a consistent technical approach for sampling and monitoring activities performed under the WSAP and to provide a consistent format for the WSAP documents. It is designed for use by the TAC in preparing WSAPs and by the DOE, US Nuclear Regulatory Commission, state and tribal agencies, other regulatory agencies, and the public in evaluating the content of WSAPS

  4. Soil and Water – What is Detectable through Microbiological Sample Preparation Techniques

    Science.gov (United States)

    The concerns of a potential terrorist’s use of biological agents in soil and ground water are articulated by comparisons to major illnesses in this Country involving contaminated drinking water sources. Objectives are focused on the importance of sample preparation in the rapid, ...

  5. Analysis of trace uranium and plutonium in environmental water sample by ICP-MS

    International Nuclear Information System (INIS)

    Liu Xuemei

    2004-12-01

    The analysis of trace Uranium and Plutonium in environmental water is very important in the environment inspect. The preparation method of water samples are introduced and several common used method are compared. The analysis process and the calibration method with ICP-MS are discussed in detail considering present conditions. (author)

  6. Natural radioactivity in various water samples and radiation dose estimations in Bolu province, Turkey.

    Science.gov (United States)

    Gorur, F Korkmaz; Camgoz, H

    2014-10-01

    The level of natural radioactivity for Bolu province of north-western Turkey was assessed in this study. There is no information about radioactivity measurement reported in water samples in the Bolu province so far. For this reason, gross α and β activities of 55 different water samples collected from tap, spring, mineral, river and lake waters in Bolu were determined. The mean activity concentrations were 68.11 mBq L(-1), 169.44 mBq L(-1) for gross α and β in tap water. For all samples the gross β activity is always higher than the gross α activity. All value of the gross α were lower than the limit value of 500 mBq L(-1) while two spring and one mineral water samples were found to have gross β activity concentrations of greater than 1000 mBq L(-1). The associated age-dependent dose from all water ingestion in Bolu was estimated. The total dose for adults had an average value exceeds the WHO recommended limit value. The risk levels from the direct ingestion of the natural radionuclides in tap and mineral water in Bolu were determinated. The mean (210)Po and (228)Ra risk the value of tap and mineral waters slightly exceeds what some consider on acceptable risk of 10(-4) or less. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Stable isotope ratio measurements on highly enriched water samples by means of laser spectrometry

    NARCIS (Netherlands)

    van Trigt, R; Kerstel, E.R.T.; Visser, GH; Meijer, H.A.J.

    2001-01-01

    We demonstrate the feasibility of using laser spectrometry (LS) to analyze isotopically highly enriched water samples (i.e., delta H-2 less than or equal to 15000 parts per thousand, delta O-18 less than or equal to 1200 parts per thousand), as often used in the biomedical doubly labeled water (DLW)

  8. Quality control on the accuracy of the total Beta activity index in different sample matrices water

    International Nuclear Information System (INIS)

    Pujol, L.; Pablo, M. A. de; Payeras, J.

    2013-01-01

    The standard ISO/IEC 17025:2005 of general requirements for the technical competence of testing and calibration laboratories, provides that a laboratory shall have quality control procedures for monitoring the validity of tests and calibrations ago. In this paper, the experience of Isotopic Applications Laboratory (CEDEX) in controlling the accuracy rate of total beta activity in samples of drinking water, inland waters and marine waters is presented. (Author)

  9. Introduction of Flame Atomic Absorption Spectrometry (FAAS) For River Water Samples Analysis

    International Nuclear Information System (INIS)

    Shakirah Abd Shukor; Mohd Suhaimi Hamzah; Shamsiah Abdul Rahman

    2015-01-01

    Metal contamination in water is a major component in the determination of water quality monitoring. In spite of the viability of several other metal ion analysis techniques for river water, atomic absorption spectroscopy (AAS) method is most commonly used due to the reproducibility results, short analysis time, cost effective, lower level detection and robust. Therefore, this article gives an overview on the principles, instrumentation techniques, sample preparations, instrument calibration and data analysis in a simple manner for beginner. (author)

  10. Landscape-geochemical factors of deposit formation

    International Nuclear Information System (INIS)

    Batulin, S.G.

    1980-01-01

    Effect of landscape-geochemical factors on hydrogenic formation of uranium ores is considered. The primary attention is paid to finding reasons for hydrogeochemical background increase in the regions of arid climate. Problems of uranium distribution in alluvial landscapes, hydrogeochemical regime of ground waters, reflecting the effect of waters of the zone of aeration are revealed. Chemical composition of porous solutions in the zone of aeration, as well as historical geochemindstry of landscape a its role from the view point of uranium solution formation in the arid zone are considered [ru

  11. Qualilty, isotopes, and radiochemistry of water sampled from the Upper Moenkopi Village water-supply wells, Coconino County, Arizona

    Science.gov (United States)

    Carruth, Rob; Beisner, Kimberly; Smith, Greg

    2013-01-01

    The Hopi Tribe Water Resources Program has granted contracts for studies to evaluate water supply conditions for the Moenkopi villages in Coconino County, Arizona. The Moenkopi villages include Upper Moenkopi Village and the village of Lower Moencopi, both on the Hopi Indian Reservation south of the Navajo community of Tuba City. These investigations have determined that water supplies are limited and vulnerable to several potential sources of contamination, including the Tuba City Landfill and a former uranium processing facility known as the Rare Metals Mill. Studies are ongoing to determine if uranium and other metals in groundwater beneath the landfill are greater than regional groundwater concentrations. The source of water supply for the Upper Moenkopi Village is three public-supply wells. The wells are referred to as MSW-1, MSW-2, and MSW-3 and all three wells obtain water from the regionally extensive N aquifer. The N aquifer is the principal aquifer in this region of northern Arizona and consists of thick beds of sandstone between less permeable layers of siltstone and mudstone. The relatively fine-grained character of the N aquifer inhibits rapid movement of water and large yields to wells. In recent years, water levels have declined in the three public-supply wells, causing concern that the current water supply will not be able to accommodate peak demand and allow for residential and economic growth. Analyses of major ions, nutrients, selected trace metals, stable and radioactive isotopes, and radiochemistry were performed on the groundwater samples from the three public-supply wells to describe general water-quality conditions and groundwater ages in and immediately surrounding the Upper Moenkopi Village area. None of the water samples collected from the public-supply wells exceeded the U.S. Environmental Protection Agency primary drinking water standards. The ratios of the major dissolved ions from the samples collected from MSW-1 and MSW-2 indicate

  12. Absolute measurement of the isotopic ratio of a water sample with very low deuterium content

    International Nuclear Information System (INIS)

    Hagemann, R.; Nief, G.; Roth, E.

    1968-01-01

    The presence of H 3+ ions which are indistinguishable from HD + ions presents the principal difficulty encountered in the measurement of isotopic ratios of water samples with very low deuterium contents using a mass spectrometer. Thus, when the sample contains no deuterium, the mass spectrometer does not indicate zero. By producing, in situ, from the sample to be measured, water vapor with an isotopic ratio very close to zero using a small distilling column, this difficulty is overcome. This column, its operating parameters, as well as the way in which the measurements are made are described. An arrangement is employed in which the isotopic ratios can be measured with a sensitivity better than 0.01 x 10 -6 . The method is applied to the determination of the isotopic ratios of three low deuterium content water samples. The results obtained permit one to assign to the sample with the lowest deuterium content an absolute value equal to 1.71 ± 0.03 ppm. This water sample is a primary standard from which is determined the isotopic ratio of a natural water sample which serves as the laboratory standard. (author) [fr

  13. Sampling

    CERN Document Server

    Thompson, Steven K

    2012-01-01

    Praise for the Second Edition "This book has never had a competitor. It is the only book that takes a broad approach to sampling . . . any good personal statistics library should include a copy of this book." —Technometrics "Well-written . . . an excellent book on an important subject. Highly recommended." —Choice "An ideal reference for scientific researchers and other professionals who use sampling." —Zentralblatt Math Features new developments in the field combined with all aspects of obtaining, interpreting, and using sample data Sampling provides an up-to-date treat

  14. The relation between geochemical characteristics and landslide in Hungtsaiping area, Nantou, Taiwan

    Science.gov (United States)

    Lin, P.; Tsai, L.

    2009-12-01

    Hungtsaiping is located at the south bank of the Yonglu stream, Chungliao Village of Nantou County, central Taiwan. Hungtsaiping landslide was triggered by the Chi-Chi earthquake (Mw=7.6) occurring on September 20, 1999 UTC near the town of Chi-Chi in Nantou County, central Taiwan. Coping with the geological and geomorphologic investigations, this study makes an attempt to find the relation between geochemical characteristics and landslide in Hungtsaiping area. Water samples were collected from spring waters, creeks, ponds, groundwater and the Yonglu stream once every month from May 2008 to May 2009. Oxygen and hydrogen stable isotopic, ionic concentrations, as well as electrical conductivity and pH value were analyzed. The results indicate that calcium and magnesium bicarbonate-rich water was found on the top and the middle part of the slope. On the other hand, sodium bicarbonate-rich water as well as exceptionally high sulfate concentration was found on the foot of the slope, the sulfate content decreased with increasing elevations until the middle part of slope. A conceptual model of flow process and water origin in Hungtsaiping landslide was established by summarizing the features of hydrogeochemical analyses and the profiles in this study. Keywords: landslide, geochemical characteristics, isotope, hydrochemistry. Fig. 1 The sampling locations of Hungtsaiping landslide. Fig. 2 Isogram: the concentration of sulfate in May 2008 in Hungtsaiping area.

  15. The origin and relation among hot and cold CO{sub 2}-rich mineral waters in Vilarelho da Raia - Pedras Salgadas region, northern Portugal: A geochemical approach

    Energy Technology Data Exchange (ETDEWEB)

    Marques, J.M.; Aires-Barros, L.; Graca, R.C. [Technical Univ. of Lisbon, Lisboa (Portugal)

    1996-12-31

    Coupled isotopic and chemical studies, carried out on hot and cold CO{sub 2}-rich mineral waters discharging in Vilarelho da Raia - Pedras Salgadas region (northern Portugal), have been adopted to purpose some hypothesis on the origin and path-ways of fluids emerging along one of the major regional NNE-trending faults (the so called {open_quotes}Chaves Depression{close_quotes}). Chemical and isotopic ({delta}{sup 18}O and {delta}D) composition of Vilarelho da. Raia cold waters indicate that these waters could be traced as a ramification of the Chaves thermal waters. The enrichment in {sup 18}O and D content in Vidago and Pedras Salgadas cold waters could be attributed either to different recharge altitudes or mixing between deep regional waters with more recent waters derived from local infiltration, in accordance with {sup 3}H activity. Geothermometric interpretation indicates that hot and cold mineral waters have had deep circulation. Model calculations to estimate circulation depth of the groundwater flow system are also indicate deep (about 4km) circulation. Regarding the origin of CO{sub 2} in the thermal and cold mineral waters, two hypothesis could be considered: deep-seated (mantle degassing) or rock (graphitic slates) leaching.

  16. Physicochemical transformation and algal toxicity of engineered nanoparticles in surface water samples

    International Nuclear Information System (INIS)

    Zhang, Luqing; Li, Jingyi; Yang, Kun; Liu, Jingfu; Lin, Daohui

    2016-01-01

    Most studies on the behavior and toxicity of engineered nanoparticles (NPs) have been conducted in artificial water with well-controlled conditions, which are dramatically different from natural waters with complex compositions. To better understand the fate and toxicity of NPs in the natural water environment, physicochemical transformations of four NPs (TiO_2, ZnO, Ag, and carbon nanotubes (CNTs)) and their toxicities towards a unicellular green alga (Chlorella pyrenoidosa) in four fresh water and one seawater sample were investigated. Results indicated that water chemistry had profound effects on aggregation, dissolution, and algal toxicity of the NPs. The strongest homoaggregation of the NPs was associated with the highest ionic strength, but no obvious correlation was observed between the homoaggregation of NPs and pH or dissolved organic matter content of the water samples. The greatest dissolution of ZnO NPs also occurred in seawater with the highest ionic strength, while the dissolution of Ag NPs varied differently from ZnO NPs. The released Zn"2"+ and especially Ag"+ mainly accounted for the algal toxicity of ZnO and Ag NPs, respectively. The NP-cell heteroagglomeration occurred generally for CNTs and Ag NPs, which contributed to the observed nanotoxicity. However, there was no significant correlation between the observed nanotoxicity and the type of NP or the water chemistry. It was thus concluded that the physicochemical transformations and algal toxicities of NPs in the natural water samples were caused by the combined effects of complex water quality parameters rather than any single influencing factor alone. These results will increase our knowledge on the fate and effects of NPs in the aquatic environment. - Highlights: • Transformation and algal toxicity of four NPs in five surface water samples were studied. • The transformation and toxicity were dependent on the types of NPs and water samples. • No single water parameter alone was

  17. Petrological mineralogical and geochemical characterization of the granitoids and fracture fillings developed in Ratones Mines (Spain)

    International Nuclear Information System (INIS)

    Buil Gutierrez, B.

    2002-01-01

    The petrological, mineralogical and geochemical characterisation of the granitoids and fracture fillings developed in the Ratones Mine (Caceres, Spain) has been done in order to understand rock-water interaction processes which control water geochemical parameters. Special interest has been devoted to the analysis and interpretation of REE patterns in the solid phase (granitoids and fracture fillings) because they constitute geochemical tracers in water-rock interaction process. Moreover, REE are considered as actinide analogues. In order to characterise the solid phase (granitoids and fracture fillings) several investigation scales (system, outcrop, whole rock, mineral and geochemical components) have been considered and different types of samples have been analysed. These factors control the methodological approach used in this investigation. The analytical methods we have used in this investigation are microscope, qualitative and semi-quantitative methods (XRD, SEM,EDAX) and quantitative methods (ICP-MS, XRF, EM, LAM-IC-MS). The bulk of the granitoids located around the Ratones Mine Belongs to the alkaline feldspar granite-sienogranite lihotype and they show a peraluminous and subalkaline pattern. From the mineralogical point of view, they are composed by quartz, K-feldspar (Or>90%), showing sericitation, moscovitization and turmolinization altherations, alkaline plagioclase (An-=-3%), usually altered to sericite, saussirite and less frequently affected by moscovitization processes, Fe-Al biotite, frequently affected by chloritization processes and sometimes replaced by muscovite, and finally muscovite (>2% celadonite and <4% paragonite) both of primary and secondary origin. The differences observed between the different lithotypes are related with the modal proportion of the principal minerals,with the presence or absence of certain accessory minerals ( turmaline, cordierite), with specific textural patterns, grain size and also with the richness in specific

  18. Evaluation of the Validity of Groundwater Samples Obtained Using the Purge Water Management System at SRS

    International Nuclear Information System (INIS)

    Beardsley, C.C.

    1999-01-01

    As part of the demonstration testing of the Purge Water Management System (PWMS) technology at the Savannah River Site (SRS), four wells were equipped with PWMS units in 1997 and a series of sampling events were conducted at each during 1997-1998. Three of the wells were located in A/M Area while the fourth was located at the Old Radioactive Waste Burial Ground in the General Separations Area.The PWMS is a ''closed-loop'', non-contact, system used to collect and return purge water to the originating aquifer after a sampling event without having significantly altered the water quality. One of the primary concerns as to its applicability at SRS, and elsewhere, is whether the PWMS might resample groundwater that is returned to the aquifer during the previous sampling event. The purpose of the present investigation was to compare groundwater chemical analysis data collected at the four test wells using the PWMS vs. historical data collected using the standard monitoring program methodology to determine if the PWMS provides representative monitoring samples.The analysis of the groundwater chemical concentrations indicates that the PWMS sampling methodology acquired representative groundwater samples at monitoring wells ABP-1A, ABP-4, ARP-3 and BGO-33C. Representative groundwater samples are achieved if the PWMS does not resample groundwater that has been purged and returned during a previous sampling event. Initial screening calculations, conducted prior to the selection of these four wells, indicated that groundwater velocities were high enough under the ambient hydraulic gradients to preclude resampling from occurring at the time intervals that were used at each well. Corroborating evidence included a tracer test that was conducted at BGO-33C, the high degree of similarity between analyte concentrations derived from the PWMS samples and those obtained from historical protocol sampling, as well as the fact that PWMS data extend all previously existing concentration

  19. Characterization samples of Tigris river water treated with nano colloidal silver (physically, chemically, microbiologically)

    International Nuclear Information System (INIS)

    Dumboos, H. I.; Beden, S. J.; Zouari, K.; Chkir, N.; Ahmed, H. A.

    2012-12-01

    Many researches of using nano silver in purification of drinking water from bacteria and its effect on stan dared properties as drinking water were established. Two stages accomplished in these projects. First stage include preparation of colloidal silver with characterization process and prepare water samples through sedimentation, filtration process, PH and turbidity measure then treated with colloidal silver in volume ratio (0.1-Λ) ml/100ml. The second stage represent select the better results from stage one and take samples to determine the standard characterization values with chemical, physical and microbiological taste. Results will be compared with Iraq standard certification. (Author)

  20. Determination of natural uranium, thorium and radium isotopes in water and soil samples by alpha spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Le Cong; Tao, Chau Van; Thong, Luong Van; Linh, Duong Mong [University of Science Ho Chi Minh City (Viet Nam). Faculty of Physics and Engineering Physics; Dong, Nguyen Van [University of Science Ho Chi Minh City (Viet Nam). Faculty of Chemistry

    2011-08-15

    In this study, a simple procedure for the determination of natural uranium, thorium and radium isotopes in water and soil samples by alpha spectroscopy is described. This procedure allows a sequential extraction polonium, uranium, thorium and radium radionuclides from the same sample in two to three days. It was tested and validated with the analysis of certified reference materials from the IAEA. (orig.)

  1. Use of passive sampling devices for monitoring and compliance checking of POP concentrations in water

    NARCIS (Netherlands)

    Lohmann, R.; Booij, K.; Smedes, F.; Vrana, B.

    2012-01-01

    The state of the art of passive water sampling of (nonpolar) organic contaminants is presented. Its suitability for regulatory monitoring is discussed, with an emphasis on the information yielded by passive sampling devices (PSDs), their relevance and associated uncertainties. Almost all persistent

  2. Study of the concentration of 7 Be in samples of rain water

    International Nuclear Information System (INIS)

    Quintero P, E.; Rojas M, V.P.

    2004-01-01

    This work shows the methodology carried out for the determination of 7 Be in samples of rain water and the obtained results of the concentration of having said radionuclide in this sampled matrix during the last five years in the Nuclear Center of Mexico. (Author)

  3. Study of changes in bacterial and viral abundance in formaldehyde - Fixed water samples by epifluorescence microscopy

    Digital Repository Service at National Institute of Oceanography (India)

    Parvathi, A.; Radhakrishnan, S.; Sajila, M.P.; Jacob, B.

    of bacteria and viruses in water samples from Cochin Backwater was determined by SYBR Green I staining and epifluorescence microscopy. The counts were determined for 45 days in samples fixed with 1–6% formaldehyde. The results suggest rapid decline in counts...

  4. PASSIVE SAMPLING OF GROUND WATER MONITORING WELLS WITHOUT PURGING MULTILEVEL WELL CHEMISTRY AND TRACER DISAPPEARANCE

    Science.gov (United States)

    It is essential that the sampling techniques utilized in groundwater monitoring provide data that accurately depicts the water quality of the sampled aquifer in the vicinity of the well. Due to the large amount of monitoring activity currently underway in the U.S.A. it is also im...

  5. Concentration of ions in selected bottled water samples sold in Malaysia

    Science.gov (United States)

    Aris, Ahmad Zaharin; Kam, Ryan Chuan Yang; Lim, Ai Phing; Praveena, Sarva Mangala

    2013-03-01

    Many consumers around the world, including Malaysians, have turned to bottled water as their main source of drinking water. The aim of this study is to determine the physical and chemical properties of bottled water samples sold in Selangor, Malaysia. A total of 20 bottled water brands consisting of `natural mineral (NM)' and `packaged drinking (PD)' types were randomly collected and analyzed for their physical-chemical characteristics: hydrogen ion concentration (pH), electrical conductivity (EC) and total dissolved solids (TDS), selected major ions: calcium (Ca), potassium (K), magnesium (Mg) and sodium (Na), and minor trace constituents: copper (Cu) and zinc (Zn) to ascertain their suitability for human consumption. The results obtained were compared with guideline values recommended by World Health Organization (WHO) and Malaysian Ministry of Health (MMOH), respectively. It was found that all bottled water samples were in accordance with the guidelines set by WHO and MMOH except for one sample (D3) which was below the pH limit of 6.5. Both NM and PD bottled water were dominated by Na + K > Ca > Mg. Low values for EC and TDS in the bottled water samples showed that water was deficient in essential elements, likely an indication that these were removed by water treatment. Minerals like major ions were present in very low concentrations which could pose a risk to individuals who consume this water on a regular basis. Generally, the overall quality of the supplied bottled water was in accordance to standards and guidelines set by WHO and MMOH and safe for consumption.

  6. DETERMINATION OF ORGANOCHLORINE PESTICIDES IN DRINKING WATERS SAMPLED FROM CLUJ AND HUNEDOARA COUNTIES

    Directory of Open Access Journals (Sweden)

    MARIA-ELISABETA LOVÁSZ

    2011-03-01

    Full Text Available Determination of organochlorine pesticides in drinking waterssampled from Cluj and Hunedoara counties. Pesticides are found scattered indifferent environmental factors (water, air, soil wherefrom they are drawn off byvegetal and animal organisms. Water pollution by pesticides results from the plantprotection products industry and also from massive application of these resourcesin agriculture and other branches of economy. Pesticides can reach surface wateralong with dripping waters and by infiltration may reach the groundwater layers,organochlorine pesticides are most often found in the water sources (dieldrin,endrin, DDT, aldrin, lindane, heptachlor, etc. due to their increased persistence inthe external environment. This study followed up the determination oforganochlorine pesticides in 14 drinking water samples collected from the outputof water treatment plants in Cluj and Hunedoara counties that process surfacewater and deep-water sources. For identification of organochlorine pesticides, thegas chromatographic method after liquid-liquid extraction was used, by a gascromatograph Shimadzu GC 2010 with detector ECD (Electron CaptureDetection. There were not detected higher values than the method detection limit(0.01 μg/l in the drinking water samples collected and analyzed for both totalorganochlorine pesticides and components, which were well below the maximumconcentration admitted by Law 452/2002 regarding drinking water quality. Resultsare correlated with the sanitary protection areas for water sources and with the useof agricultural lands in the area. The solution to reduce risk of pesticides use isecological agriculture , which gains increasingly more ground in Romania too.

  7. Baseline and premining geochemical characterization of mined sites

    Science.gov (United States)

    Nordstrom, D. Kirk

    2015-01-01

    A rational goal for environmental restoration of new, active, or inactive mine sites would be ‘natural background’ or the environmental conditions that existed before any mining activities or other related anthropogenic activities. In a strictly technical sense, there is no such thing as natural background (or entirely non-anthropogenic) existing today because there is no part of the planet earth that has not had at least some chemical disturbance from anthropogenic activities. Hence, the terms ‘baseline’ and ‘pre-mining’ are preferred to describe these conditions. Baseline conditions are those that existed at the time of the characterization which could be pre-mining, during mining, or post-mining. Protocols for geochemically characterizing pre-mining conditions are not well-documented for sites already mined but there are two approaches that seem most direct and least ambiguous. One is characterization of analog sites along with judicious application of geochemical modeling. The other is reactive-transport modeling (based on careful synoptic sampling with tracer-injection) and subtracting inputs from known mining and mineral processing. Several examples of acidic drainage are described from around the world documenting the range of water compositions produced from pyrite oxidation in the absence of mining. These analog sites provide insight to the processes forming mineralized waters in areas untouched by mining. Natural analog water-chemistry data is compared with the higher metal concentrations, metal fluxes, and weathering rates found in mined areas in the few places where comparisons are possible. The differences are generally 1–3 orders of magnitude higher for acid mine drainage.

  8. May 2011 Groundwater and Surface Water Sampling at the Rio Blanco, Colorado, Site (Data Validation Package)

    International Nuclear Information System (INIS)

    2011-01-01

    Annual sampling was conducted at the Rio Blanco, Colorado, site for the Long-Term Hydrologic Monitoring Program May 16-17, 2011, to monitor groundwater and surface water for potential radionuclide contamination. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location Johnson Artesian WL. Samples were analyzed by the U.S. Environmental Protection Agency (EPA) Radiation&Indoor Environments National Laboratory in Las Vegas, Nevada. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry, and for tritium using the conventional method. Tritium was not measured using the enrichment method because the EPA laboratory no longer offers that service. Results of this monitoring at the Rio Blanco site demonstrate that groundwater and surface water outside the boundaries have not been affected by project-related contaminants.

  9. Performance of a hydrostatic sampler for collecting samples at the water-sediment interface in lakes

    Directory of Open Access Journals (Sweden)

    Fernando PEDROZO

    2008-02-01

    Full Text Available The water-sediment interface plays a significant role in the determination of the trophic degree of a waterbody. Numerous redox reactions take place there, resulting in the release of contaminants from the sediments to the water column. The aim of the present work was to develop an equipment for collecting samples from the water-sediment interface. Such equipment was to have a simple design, low construction cost, no depth limitations, and high levels of personal safety and to be reliable in the collection of samples. The performance of the hydrostatic sampler thus developed was tested against samples collected either remotely with a corer or directly with syringes by autonomous divers. The hydrostatic sampler permits access to depths where the costs of the traditional diving methodology are expensive, and where working conditions are dangerous for the diver. The hydrostatic sampler provides an additional means of collecting samples from the water-sediment interface, which together with pore-water samples, facilitates the investigation and understanding of chemical mechanisms in lakes, for instance, those that control the P release from sediment to the water column.

  10. [Detecting Thallium in Water Samples using Dispersive Liquid Phase Microextraction-Graphite Furnace Atomic Absorption Spectroscopy].

    Science.gov (United States)

    Zhu, Jing; Li, Yan; Zheng, Bo; Tang, Wei; Chen, Xiao; Zou, Xiao-li

    2015-11-01

    To develope a method of solvent demulsification dispersive liquid phase microextraction (SD-DLPME) based on ion association reaction coupled with graphite furnace atomic absorption spectroscopy (GFAAS) for detecting thallium in water samples. Methods Thallium ion in water samples was oxidized to Tl(III) with bromine water, which reacted with Cl- to form TlCl4-. The ionic associated compound with trioctylamine was obtained and extracted. DLPME was completed with ethanol as dispersive solvent. The separation of aqueous and organic phase was achieved by injecting into demulsification solvent without centrifugation. The extractant was collected and injected into GFAAS for analysis. With palladium colloid as matrix modifier, a two step drying and ashing temperature programming process was applied for high precision and sensitivity. The linear range was 0.05-2.0 microg/L, with a detection limit of 0.011 microg/L. The relative standard derivation (RSD) for detecting Tl in spiked water sample was 9.9%. The spiked recoveries of water samples ranged from 94.0% to 103.0%. The method is simple, sensitive and suitable for batch analysis of Tl in water samples.

  11. White HDPE bottles as source of serious contamination of water samples with Ba and Zn.

    Science.gov (United States)

    Reimann, Clemens; Grimstvedt, Andreas; Frengstad, Bjørn; Finne, Tor Erik

    2007-03-15

    During a recent study of surface water quality factory new white high-density polyethylene (HDPE) bottles were used for collecting the water samples. According to the established field protocol of the Geological Survey of Norway the bottles were twice carefully rinsed with water in the field prior to sampling. Several blank samples using milli-Q (ELGA) water (>18.2 MOmega) were also prepared. On checking the analytical results the blanks returned values of Ag, Ba, Sr, V, Zn and Zr. For Ba and Zn the values (c. 300 microg/l and 95 microg/l) were about 10 times above the concentrations that can be expected in natural waters. A laboratory test of the bottles demonstrated that the bottles contaminate the samples with significant amounts of Ba and Zn and some Sr. Simple acid washing of the bottles prior to use did not solve the contamination problem for Ba and Zn. The results suggest that there may exist "clean" and "dirty" HDPE bottles depending on manufacturer/production process. When collecting water samples it is mandatory to check bottles regularly as a possible source of contamination.

  12. Effects of sterilization treatments on the analysis of TOC in water samples.

    Science.gov (United States)

    Shi, Yiming; Xu, Lingfeng; Gong, Dongqin; Lu, Jun

    2010-01-01

    Decomposition experiments conducted with and without microbial processes are commonly used to study the effects of environmental microorganisms on the degradation of organic pollutants. However, the effects of biological pretreatment (sterilization) on organic matter often have a negative impact on such experiments. Based on the principle of water total organic carbon (TOC) analysis, the effects of physical sterilization treatments on determination of TOC and other water quality parameters were investigated. The results revealed that two conventional physical sterilization treatments, autoclaving and 60Co gamma-radiation sterilization, led to the direct decomposition of some organic pollutants, resulting in remarkable errors in the analysis of TOC in water samples. Furthermore, the extent of the errors varied with the intensity and the duration of sterilization treatments. Accordingly, a novel sterilization method for water samples, 0.45 microm micro-filtration coupled with ultraviolet radiation (MCUR), was developed in the present study. The results indicated that the MCUR method was capable of exerting a high bactericidal effect on the water sample while significantly decreasing the negative impact on the analysis of TOC and other water quality parameters. Before and after sterilization treatments, the relative errors of TOC determination could be controlled to lower than 3% for water samples with different categories and concentrations of organic pollutants by using MCUR.

  13. Set Up of an Automatic Water Quality Sampling System in Irrigation Agriculture

    Directory of Open Access Journals (Sweden)

    Emanuel Heinz

    2013-12-01

    Full Text Available We have developed a high-resolution automatic sampling system for continuous in situ measurements of stable water isotopic composition and nitrogen solutes along with hydrological information. The system facilitates concurrent monitoring of a large number of water and nutrient fluxes (ground, surface, irrigation and rain water in irrigated agriculture. For this purpose we couple an automatic sampling system with a Wavelength-Scanned Cavity Ring Down Spectrometry System (WS-CRDS for stable water isotope analysis (δ2H and δ18O, a reagentless hyperspectral UV photometer (ProPS for monitoring nitrate content and various water level sensors for hydrometric information. The automatic sampling system consists of different sampling stations equipped with pumps, a switch cabinet for valve and pump control and a computer operating the system. The complete system is operated via internet-based control software, allowing supervision from nearly anywhere. The system is currently set up at the International Rice Research Institute (Los Baños, The Philippines in a diversified rice growing system to continuously monitor water and nutrient fluxes. Here we present the system’s technical set-up and provide initial proof-of-concept with results for the isotopic composition of different water sources and nitrate values from the 2012 dry season.

  14. Determination of total alpha index in samples of see water by coprecipitation method

    International Nuclear Information System (INIS)

    Suarez-Navarro, J.A.; Pujol, L.; Pozuelo, M.; Pablo, A. de

    1998-01-01

    An environmental radiological monitoring network in the Spanish sea waters was set up by CEDEX in 1993. Water radioactivity is determined quarterly in eleven sampling points along the Spanish coast. The gross alpha activity is one of the parameters to be determined. The usual method for monitoring the gross alpha activity includes sample evaporation to dryness on a disk and counting using ZnS(Ag) scintillation detector. Nevertheless, the gross alpha activity determination in saline waters, such as sea waters, is troublesome, because mass attenuation is high and a very small of water is needed (0.2 ml). The coprecipitation method allows to analyze 500 ml water samples, so the detection limit is reduced and sensitivity is improved. In this work, the coprecipitation method was used to determine the gross alpha activity in the radiological network of the Spanish coast sea waters during 1996 and 1997. Gross alpha activity was very homogenous. It averaged 0.0844±0.0086 Bq.1''1 and ranged from 0.062 to 0.102 Bq.1''1. In collaboration with CIEMAT a set of samples was analyzed, they averaged 0.0689±0.0074 Bq.1''1 and ranged from 0.056 to 0.082 Bq.1''1. (Author) 5 refs

  15. A rapid and sensitive analytical method for the determination of 14 pyrethroids in water samples.

    Science.gov (United States)

    Feo, M L; Eljarrat, E; Barceló, D

    2010-04-09

    A simple, efficient and environmentally friendly analytical methodology is proposed for extracting and preconcentrating pyrethroids from water samples prior to gas chromatography-negative ion chemical ionization mass spectrometry (GC-NCI-MS) analysis. Fourteen pyrethroids were selected for this work: bifenthrin, cyfluthrin, lambda-cyhalothrin, cypermethrin, deltamethrin, esfenvalerate, fenvalerate, fenpropathrin, tau-fluvalinate, permethrin, phenothrin, resmethrin, tetramethrin and tralomethrin. The method is based on ultrasound-assisted emulsification-extraction (UAEE) of a water-immiscible solvent in an aqueous medium. Chloroform was used as extraction solvent in the UAEE technique. Target analytes were quantitatively extracted achieving an enrichment factor of 200 when 20 mL aliquot of pure water spiked with pyrethroid standards was extracted. The method was also evaluated with tap water and river water samples. Method detection limits (MDLs) ranged from 0.03 to 35.8 ng L(-1) with RSDs values or =0.998. Recovery values were in the range of 45-106%, showing satisfactory robustness of the method for analyzing pyrethroids in water samples. The proposed methodology was applied for the analysis of river water samples. Cypermethrin was detected at concentration levels ranging from 4.94 to 30.5 ng L(-1). Copyright 2010 Elsevier B.V. All rights reserved.

  16. Water-quality assessment of south-central Texas : comparison of water quality in surface-water samples collected manually and by automated samplers

    Science.gov (United States)

    Ging, Patricia B.

    1999-01-01

    Surface-water sampling protocols of the U.S. Geological Survey National Water-Quality Assessment (NAWQA) Program specify samples for most properties and constituents to be collected manually in equal-width increments across a stream channel and composited for analysis. Single-point sampling with an automated sampler (autosampler) during storms was proposed in the upper part of the South-Central Texas NAWQA study unit, raising the question of whether property and constituent concentrations from automatically collected samples differ significantly from those in samples collected manually. Statistical (Wilcoxon signed-rank test) analyses of 3 to 16 paired concentrations for each of 26 properties and constituents from water samples collected using both methods at eight sites in the upper part of the study unit indicated that there were no significant differences in concentrations for dissolved constituents, other than calcium and organic carbon.

  17. Determination of radiocaesium in agriculture-related water samples containing suspended solids using gelling method

    International Nuclear Information System (INIS)

    Matsunami, Hisaya; Shin, Moono; Takahashi, Yoshihiko; Shinano, Takuro; Kitajima, Shiori; Tsuchiya, Takashi

    2015-01-01

    After the TEPCO Fukushima Dai-ichi Nuclear Power Plant accident in 2011, the radiocaesium, which flowed into the paddy fields via irrigation water, have been widely investigated. When the concentration of radiocaesium in the water samples containing suspended solids were directly measured using a high purity germanium detector with a 2 L marinelli beaker, the radiocaesium concentration might be overestimated due to the sedimentation of the suspended solids during the measurement time. In fact, the values obtained by the direct method were higher than those obtained by the filtering method and/or the gelling method in most of the agriculture-related water samples. We concluded that the gelling method using sodium polyacrylate can be widely adapted for the analysis of the total radiocaesium in the agriculture-related water samples because of its many advantage such as simple preparation procedure, accurate analysis values, excellent long-term stability of geometry and low operating cost. (author)

  18. Analysis of bromate in drinking water using liquid chromatography-tandem mass spectrometry without sample pretreatment.

    Science.gov (United States)

    Kosaka, Koji; Asami, Mari; Takei, Kanako; Akiba, Michihiro

    2011-01-01

    An analytical method for determining bromate in drinking water was developed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The (18)O-enriched bromate was used as an internal standard. The limit of quantification (LOQ) of bromate was 0.2 µg/L. The peak of bromate was separated from those of coexisting ions (i.e., chloride, nitrate and sulfate). The relative and absolute recoveries of bromate in two drinking water samples and in a synthesized ion solution (100 mg/L chloride, 10 mg N/L nitrate, and 100 mg/L sulfate) were 99-105 and 94-105%, respectively. Bromate concentrations in 11 drinking water samples determined by LC-MS/MS were water without sample pretreatment.

  19. May 2013 Groundwater and Surface Water Sampling at the Rio Blanco, Colorado, Site (Data Validation Package)

    Energy Technology Data Exchange (ETDEWEB)

    Hutton, Rick [S.M. Stoller Corporation, Broomfield, CO (United States)

    2013-10-01

    Annual sampling was conducted at the Rio Blanco, Colorado, site for the Long-Term Hydrologic Monitoring Program May 14-16, 2013, to monitor groundwater and surface water for potential radionuclide contamination. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location CER #1 Black Sulphur. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry and for tritium using the conventional and enrichment methods.

  20. Geochemical and hydrodynamic phosphorus retention mechanisms in lowland catchments

    NARCIS (Netherlands)

    van der Grift, B.

    2017-01-01

    The release of phosphorus (P) to surface water from heavily fertilised agricultural fields is of major importance for surface water quality. The research reported in this thesis examined the role of geochemical and hydrodynamic processes controlling P speciation and transport in lowland catchments