Sample records for water samples utilizing

  1. Developing Water Sampling Standards (United States)

    Environmental Science and Technology, 1974


    Participants in the D-19 symposium on aquatic sampling and measurement for water pollution assessment were informed that determining the extent of waste water stream pollution is not a cut and dry procedure. Topics discussed include field sampling, representative sampling from storm sewers, suggested sampler features and application of improved…

  2. Cooling clothing utilizing water evaporation

    DEFF Research Database (Denmark)

    Sakoi, Tomonori; Tominaga, Naoto; Melikov, Arsen Krikor


    We developed cooling clothing that utilizes water evaporation to cool the human body and has a mechanism to control the cooling intensity. Clean water was supplied to the outer surface of the T-shirt of the cooling clothing, and a small fan was used to enhance evaporation on this outer surface....... To prevent wet discomfort, the T-shirt was made of a polyester material having a water-repellent silicon coating on the inner surface. The chest, front upper arms, and nape of the neck were adopted as the cooling areas of the human body. We conducted human subject experiments in an office with air...... temperature ranging from 27.4 to 30.7 °C to establish a suitable water supply control method. A water supply control method that prevents water accumulation in the T-shirt and water dribbling was validated; this method is established based on the concept of the water evaporation capacity under the applied...

  3. Determining sample size for tree utilization surveys (United States)

    Stanley J. Zarnoch; James W. Bentley; Tony G. Johnson


    The U.S. Department of Agriculture Forest Service has conducted many studies to determine what proportion of the timber harvested in the South is actually utilized. This paper describes the statistical methods used to determine required sample sizes for estimating utilization ratios for a required level of precision. The data used are those for 515 hardwood and 1,557...

  4. A personal ammonia monitor utilizing permeation sampling

    Energy Technology Data Exchange (ETDEWEB)

    Benedict, A.F. (Occupational Safety and Health Administration, Baton Rouge, LA); Reiszner, K.D.; West, P.W.


    A method has been developed for the determination of the time-weighted-average personal exposure to ammonia. Sample collection was achieved by permeation through a silicone membrane into a boric acid solution. The trapped ammonia was then determined spectrophotometrically with Nessler's reagent or potentiometrically with an ion selective electrode. The device may be used for sampling periods as short as 5 minutes and was not affected by changes in the environmental parameters normally encountered at industrial locations. The detection limit is 0.4 ppm for an 8 hr sampling period and the monitor responds linearly to at least 150 ppm. The Nessler's method may be utilized in industrial environments containing monoethanol amine in conjunction with ammonia with no significant interference. Although some interference was observed from ethylenediamine with the Nessler's technique, little interference was found with the potentiometric determination.

  5. Method and apparatus utilizing ionizing and microwave radiation for saturation determination of water, oil and a gas in a core sample (United States)

    Maerefat, Nicida L.; Parmeswar, Ravi; Brinkmeyer, Alan D.; Honarpour, Mehdi


    A system for determining the relative permeabilities of gas, water and oil in a core sample has a microwave emitter/detector subsystem and an X-ray emitter/detector subsystem. A core holder positions the core sample between microwave absorbers which prevent diffracted microwaves from reaching a microwave detector where they would reduce the signal-to-noise ratio of the microwave measurements. The microwave emitter/detector subsystem and the X-ray emitter/detector subsystem each have linear calibration characteristics, allowing one subsystem to be calibrated with respect to the other subsystem. The dynamic range of microwave measurements is extended through the use of adjustable attenuators. This also facilitates the use of core samples with wide diameters. The stratification characteristics of the fluids may be observed with a windowed cell separator at the outlet of the core sample. The condensation of heavy hydrocarbon gas and the dynamic characteristics of the fluids are observed with a sight glass at the outlet of the core sample.

  6. Asset Management for Water and Wastewater Utilities (United States)

    Renewing and replacing the nation's public water infrastructure is an ongoing task. Asset management can help a utility maximize the value of its capital as well as its operations and maintenance dollars.

  7. Bayesian stratified sampling to assess corpus utility

    Energy Technology Data Exchange (ETDEWEB)

    Hochberg, J.; Scovel, C.; Thomas, T.; Hall, S.


    This paper describes a method for asking statistical questions about a large text corpus. The authors exemplify the method by addressing the question, ``What percentage of Federal Register documents are real documents, of possible interest to a text researcher or analyst?`` They estimate an answer to this question by evaluating 200 documents selected from a corpus of 45,820 Federal Register documents. Bayesian analysis and stratified sampling are used to reduce the sampling uncertainty of the estimate from over 3,100 documents to fewer than 1,000. A possible application of the method is to establish baseline statistics used to estimate recall rates for information retrieval systems.

  8. Are we Utilizing our Water Resources Wisely?

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 21; Issue 1. Are we Utilizing our Water Resources Wisely? B P Radhakrishna. Classics Volume 21 Issue 1 January 2016 pp 93-104 ... Author Affiliations. B P Radhakrishna1. Geological Society of India, P.B. No.1922, Gavipuram P.O., Bangalore, India.

  9. Healthcare Cost and Utilization Project (HCUP) - National Inpatient Sample (United States)

    U.S. Department of Health & Human Services — 2001 forward. The National (Nationwide) Inpatient Sample (NIS) is part of a family of databases and software tools developed for the Healthcare Cost and Utilization...

  10. The Legal Conditions for Water Utilities Eco-Innovation as Energy Smart Water Utilities

    DEFF Research Database (Denmark)

    Basse, Ellen Margrethe


    water needs for supply, purification, distribution, and treatment of wastewater requires energy sources. Water and energy utilities are however regulated without a specific focus on the interdependency of the two sectors and the possibilities to ensure sustainable use of the resources and reduction......Welfare and green growth rest havely on an appropriate supply of safe water, the provision of adequate sewage, and on energy services. These services are interdependent, as water is an integral part of electric-power generation. Energy is also an integrated part of water services, as satisfying...... of greenhouse gasses by a better coordination. The article explains the possibilities of sustainable consumption and production of energy in the water utilities. It highlights EU legal framework that makes coordination at national level possible, and it gives examples and concludes on the obstacles...

  11. bacteriological quality of water samples in

    African Journals Online (AJOL)

    The well water samples examined were found to fall short of the WHO recommendation for drinking water, while the tap water was adjudged fit for consumption. INTRODUCTION source by lining and covering, diversion of. Man's assessment of the value surface drainage, catchments protection to of water is very low until he ...

  12. The Utility of IRT in Small-Sample Testing Applications. (United States)

    Sireci, Stephen G.

    The utility of modified item response theory (IRT) models in small sample testing applications was studied. The modified IRT models were modifications of the one- and two-parameter logistic models. One-, two-, and three-parameter models were also studied. Test data were from 4 years of a national certification examination for persons desiring…

  13. Modeling regulated water utility investment incentives (United States)

    Padula, S.; Harou, J. J.


    This work attempts to model the infrastructure investment choices of privatized water utilities subject to rate of return and price cap regulation. The goal is to understand how regulation influences water companies' investment decisions such as their desire to engage in transfers with neighbouring companies. We formulate a profit maximization capacity expansion model that finds the schedule of new supply, demand management and transfer schemes that maintain the annual supply-demand balance and maximize a companies' profit under the 2010-15 price control process in England. Regulatory incentives for costs savings are also represented in the model. These include: the CIS scheme for the capital expenditure (capex) and incentive allowance schemes for the operating expenditure (opex) . The profit-maximizing investment program (what to build, when and what size) is compared with the least cost program (social optimum). We apply this formulation to several water companies in South East England to model performance and sensitivity to water network particulars. Results show that if companies' are able to outperform the regulatory assumption on the cost of capital, a capital bias can be generated, due to the fact that the capital expenditure, contrarily to opex, can be remunerated through the companies' regulatory capital value (RCV). The occurrence of the 'capital bias' or its entity depends on the extent to which a company can finance its investments at a rate below the allowed cost of capital. The bias can be reduced by the regulatory penalties for underperformances on the capital expenditure (CIS scheme); Sensitivity analysis can be applied by varying the CIS penalty to see how and to which extent this impacts the capital bias effect. We show how regulatory changes could potentially be devised to partially remove the 'capital bias' effect. Solutions potentially include allowing for incentives on total expenditure rather than separately for capex and opex and allowing

  14. bacteriological quality of water samples in

    African Journals Online (AJOL)

    saprophyte encountered in the soil (10) and could have been carried along with soil that sticks to the containers used for fetching water. CONCLUSION. The well water samples were particularly observed to fall below the WHO recommendation which states that water should contain no microorganism known.

  15. Assessing the performance of urban water utilities in Mozambique ...

    African Journals Online (AJOL)

    Benchmarking analysis has become a strategic tool through which water regulators around the world measure the performance of water utilities. Since 2008, the Water Regulatory Council of Mozambique has been implementing a benchmarking framework to analyse the performance of urban water utilities. This paper ...

  16. The Existing Regulatory Conditions for 'Energy Smart Water Utilities'

    DEFF Research Database (Denmark)

    Basse, Ellen Margrethe


    . As the competences related to energy–smart water utilities are shared between the EU and its Member States, and as the relevant EU legislation is of a minimum harmonising nature, the Member States have an important role to play in the design of the legal conditions for the utilities in the EU. The importance......This chapter is focused on the legal conditions that exist for the energy–smart water utilities in the European Union (EU). In section 2 the interdependencies of water and energy services and the growing interest in solving these problems that may arise from this interdependence by regulatory...... initiatives are shortly described. One of the solutions needed is a reduction of energy use in the water utilities by their utilisation of renewable sources – acting as energy–smart water utilities. Such utilities are described in section 3. The policy and law regulating the water utilities are important...

  17. Water Sample Points, Navajo Nation, 2000, USACE (United States)

    U.S. Environmental Protection Agency — This point shapefile presents the locations and results for water samples collected on the Navajo Nation by the US Army Corps of Engineers (USACE) for the US...

  18. 75 FR 54871 - National Drinking Water Advisory Council's Climate Ready Water Utilities Working Group Meeting... (United States)


    ... AGENCY National Drinking Water Advisory Council's Climate Ready Water Utilities Working Group Meeting... Water Utilities (CRWU) Working Group of the National Drinking Water Advisory Council (NDWAC). The.... Environmental Protection Agency, Office of Ground Water and Drinking Water, Water Security Division (Mail Code...

  19. The perceived and actual diagnostic utility of veterinary cytological samples. (United States)

    Skeldon, N; Dewhurst, E


    To establish the proportion of cytology samples sent to a commercial veterinary laboratory that yields diagnostically useful information in the context of current use and perceptions of cytology. Nine hundred and forty-five cytology submissions were retrospectively collected and categorised according to diagnostic utility. A survey into the use and perceptions of cytology was distributed at the British Small Animal Veterinary Association Congress 2008. A specific diagnosis was reached in 23.1 per cent of samples and a cytological diagnosis in 35.3 per cent. 22.4 per cent of samples yielded some useful information, but 19.2 per cent were unacceptable. Seventy-four participants in the survey took an average of 3.9 cytological samples per week, of which they examined 27.0 per cent in-house only, 21.6 per cent in-house before sending to an external laboratory and 51.4 per cent were sent externally without prior examination. "To obtain a definitive diagnosis" was the principal reason cited for performing cytology. Results suggest that cytology is underused and may be applied in an inappropriate context in the UK. It is hoped that illustrating the diagnostic outcome of samples received by a commercial laboratory will encourage increased, appropriate use of cytology.

  20. Water sampling techniques for continuous monitoring of pesticides in water

    Directory of Open Access Journals (Sweden)

    Šunjka Dragana


    Full Text Available Good ecological and chemical status of water represents the most important aim of the Water Framework Directive 2000/60/EC, which implies respect of water quality standards at the level of entire river basin (2008/105/EC and 2013/39/EC. This especially refers to the control of pesticide residues in surface waters. In order to achieve the set goals, a continuous monitoring program that should provide a comprehensive and interrelated overview of water status should be implemented. However, it demands the use of appropriate analysis techniques. Until now, the procedure for sampling and quantification of residual pesticide quantities in aquatic environment was based on the use of traditional sampling techniques that imply periodical collecting of individual samples. However, this type of sampling provides only a snapshot of the situation in regard to the presence of pollutants in water. As an alternative, the technique of passive sampling of pollutants in water, including pesticides has been introduced. Different samplers are available for pesticide sampling in surface water, depending on compounds. The technique itself is based on keeping a device in water over a longer period of time which varies from several days to several weeks, depending on the kind of compound. In this manner, the average concentrations of pollutants dissolved in water during a time period (time-weighted average concentrations, TWA are obtained, which enables monitoring of trends in areal and seasonal variations. The use of these techniques also leads to an increase in sensitivity of analytical methods, considering that pre-concentration of analytes takes place within the sorption medium. However, the use of these techniques for determination of pesticide concentrations in real water environments requires calibration studies for the estimation of sampling rates (Rs. Rs is a volume of water per time, calculated as the product of overall mass transfer coefficient and area of

  1. Resilience Mitigation Financing for Water and Wastewater Utilities Webinar (United States)

    The Resilience Mitigation Financing for Water and Wastewater Utilities webinar focuses on tools and financing resources to conduct resilience planning and to mitigate impacts before a disaster strikes.

  2. Managerial ownership and urban water utilities efficiency in Uganda


    Mbuvi, D.; Tarsim, A.


    This paper assesses the impact of the early 1980s neoliberalistic reform strategies in urban water distribution in developing countries. It examines in particular, the technical efficiency of two heterogeneous urban water utility-groups in Uganda. Performance is considered in light of the key urban water sector objectives that are to universally increase qualitative water coverage and enhance utility revenue. Using a two-staged bias-corrected metafrontier based on the data envelopment analysi...

  3. Mars sample return mission architectures utilizing low thrust propulsion (United States)

    Derz, Uwe; Seboldt, Wolfgang


    The Mars sample return mission is a flagship mission within ESA's Aurora program and envisioned to take place in the timeframe of 2020-2025. Previous studies developed a mission architecture consisting of two elements, an orbiter and a lander, each utilizing chemical propulsion and a heavy launcher like Ariane 5 ECA. The lander transports an ascent vehicle to the surface of Mars. The orbiter performs a separate impulsive transfer to Mars, conducts a rendezvous in Mars orbit with the sample container, delivered by the ascent vehicle, and returns the samples back to Earth in a small Earth entry capsule. Because the launch of the heavy orbiter by Ariane 5 ECA makes an Earth swing by mandatory for the trans-Mars injection, its total mission time amounts to about 1460 days. The present study takes a fresh look at the subject and conducts a more general mission and system analysis of the space transportation elements including electric propulsion for the transfer. Therefore, detailed spacecraft models for orbiters, landers and ascent vehicles are developed. Based on that, trajectory calculations and optimizations of interplanetary transfers, Mars entries, descents and landings as well as Mars ascents are carried out. The results of the system analysis identified electric propulsion for the orbiter as most beneficial in terms of launch mass, leading to a reduction of launch vehicle requirements and enabling a launch by a Soyuz-Fregat into GTO. Such a sample return mission could be conducted within 1150-1250 days. Concerning the lander, a separate launch in combination with electric propulsion leads to a significant reduction of launch vehicle requirements, but also requires a large number of engines and correspondingly a large power system. Therefore, a lander performing a separate chemical transfer could possibly be more advantageous. Alternatively, a second possible mission architecture has been developed, requiring only one heavy launch vehicle (e.g., Proton). In that

  4. Sampling and quantifying invertebrates from drinking water distribution mains. (United States)

    van Lieverloo, J Hein M; Bosboom, Dick W; Bakker, Geo L; Brouwer, Anke J; Voogt, Remko; De Roos, Josje E M


    Water utilities in the Netherlands aim at controlling the multiplication of (micro-) organisms by distributing biologically stable water through biologically stable materials. Disinfectant residuals are absent or very low. To be able to assess invertebrate abundance, methods for sampling and quantifying these animals from distribution mains were optimised and evaluated. The presented method for collecting invertebrates consists of unidirectionally flushing a mains section with a flow rate of 1 ms(-1) and filtering the flushed water in two separate flows with 500 microm and 100 microm mesh plankton gauze filters. Removal efficiency from mains was evaluated in nine experiments by collecting the invertebrates removed from the mains section by intensive cleaning immediately subsequent to sampling. Of 12 taxa distinguished, all except case-building Chironomidae larvae (2%) and Oligochaeta (30%) were removed well (51-75%). Retention of invertebrates in 100 microm filters was evaluated by filtering 39 filtrates using 30 microm filters. Except for flexible and small invertebrates such as Turbellaria (13%), Nematoda (11%) and Copepoda larvae (24%), most taxa were well retained in the 100 microm filters (53-100%). During sample processing, the method for taking sub-samples with a 10 ml pipette from the suspension of samples with high sediment concentrations was found to perform well in 75% of the samples. During a 2-year national survey in the Netherlands and consecutive investigations, the method appeared to be very suitable to assess the abundance of most invertebrate taxa in drinking water distribution systems and to be practicable for relatively inexperienced sampling and lab technicians. Although the numbers of small, less abundant or sessile taxa were not accurately assessed using the method, these taxa probably should not be the primary focus of monitoring by water utilities, as consumer complaints are not likely to be caused by these invertebrates. The accuracy of

  5. Utilizing electron microscopy and spectroscopy methods to understand water structure and water doping (United States)

    Miller, Lior

    Water is the second most common element in the universe and the most studied material on earth. Most of the studies concerning water are from the fields of chemistry and biology. Hence, the structure of water molecules and short range order and interactions are well characterized and understood. However, the collective arrangement of water molecules and the long range order are still missing. Understanding of this long range order in water is needed, as it is the key to many water activities. To fill this gap, this study utilizes a new direct method for characterization of water in the vapor phase. Water samples from different water types were characterized using electron energy loss spectroscopy (EELS) within a transmission electron microscope (TEM). Prior to characterizing water vapor, the measurement method for in-situ gas analysis was developed using pure gases. Water samples were also characterized using more conventional techniques, including: using cryogenic scanning electron microscopy (Cryo-SEM) in the solid state, after rapid freezing; and using high resolution TEM (HRTEM) and scanning TEM (STEM) after drying. Many other characterization techniques were evaluated but most of them were found to be not suitable, mainly due to detection limits. EELS characterization showed that samples from different water types have different electronic configurations, and they all have structures that are large enough in order to scatter electrons. From cryo SEM characterization it was found that water has nanoparticles inside with a size range of 10-100 nm, and these particles are ~500 nm apart. HRTEM/STEM characterization showed that particles from different water types have different shapes. The presence of particles provide surfaces to support water structures and the difference between the particles can explain the different properties of different water types Using tools and methods that are conventional in materials science for characterization of bulk materials and

  6. Water Utility Planning for an Emergency Drinking Water Supply (United States)

    Reviews roles and responsibilities among various levels of government regarding emergency water supplies and seeks to encourage collaboration and partnership regarding emergency water supply planning.

  7. Water Quality Response to Forest Biomass Utilization (United States)

    Benjamin Rau; Augustine Muwamba; Carl Trettin; Sudhanshu Panda; Devendra Amatya; Ernest Tollner


    Forested watersheds provide approximately 80% of freshwater drinking resources in the United States (Fox et al. 2007). The water originating from forested watersheds is typically of high quality when compared to agricul¬tural watersheds, and concentrations of nitrogen and phosphorus are nine times higher, on average, in agricultur¬al watersheds when compared to...

  8. The novel use of climate information in water utility planning (United States)

    Yates, D. N.


    Municipal water utilities have a long history of planning and yet their traditional use of climate information has been rather static in nature, using approaches such as 'safe-yield' to design their water infrastructure. New planning paradigms, such as triple-bottom-line approaches that integerate environemntal, social, and financial aspects of the water enterprise have led water utilies to use climate information in a much more rich and informative way. This presentation will describe examples of how climate climate information, hydrologic modeling, and water systems decision support tools are uniquely bleneded to help water utilties make informed decisions.

  9. Dynamic Coupling Analysis of Urbanization and Water Resource Utilization Systems in China

    Directory of Open Access Journals (Sweden)

    Hailiang Ma


    Full Text Available While urbanization brings economic and social benefits, it also causes water pollution and other environmental ecological problems. This paper provides a theoretical framework to quantitatively analyze the dynamic relationship between water resource utilization and the process of urbanization. Using data from Jiangsu province, we first construct indices to evaluate urbanization and water resource utilization. We then adopt an entropy model to examine the correlation between urbanization and water resource utilization. In addition, we introduce a dynamic coupling model to analyze and predict the coupling degree between urbanization and water resource utilization. Our analyses show that pairing with rising urbanization during 2002–2014, the overall index of water resource utilization in Jiangsu province has experienced a “decline -rise-decline” trend. Specifically, after the index of water resource utilization reached its lowest point in 2004, it gradually began to rise. Water resource utilization reached its highest value in 2010. The coupling degree between urbanization and water resource utilization was relatively low in 2002 and 2003 varying between −90° and 0°. It has been rising since then. Out-of-sample forecasts indicate that the coupling degree will reach its highest value of 74.799° in 2016, then will start to gradually decline. Jiangsu province was chosen as our studied area because it is one of the selected pilot provinces for China’s economic reform and social development. The analysis of the relationship between provincial water resource utilization and urbanization is essential to the understanding of the dynamic relationship between these two systems. It also serves as an important input for developing national policies for sustainable urbanization and water resource management.

  10. Rapid detection of Naegleria fowleri in water distribution pipeline biofilms and drinking water samples. (United States)

    Puzon, Geoffrey J; Lancaster, James A; Wylie, Jason T; Plumb, Iason J


    Rapid detection of pathogenic Naegleria fowler in water distribution networks is critical for water utilities. Current detection methods rely on sampling drinking water followed by culturing and molecular identification of purified strains. This culture-based method takes an extended amount of time (days), detects both nonpathogenic and pathogenic species, and does not account for N. fowleri cells associated with pipe wall biofilms. In this study, a total DNA extraction technique coupled with a real-time PCR method using primers specific for N. fowleri was developed and validated. The method readily detected N. fowleri without preculturing with the lowest detection limit for N. fowleri cells spiked in biofilm being one cell (66% detection rate) and five cells (100% detection rate). For drinking water, the detection limit was five cells (66% detection rate) and 10 cells (100% detection rate). By comparison, culture-based methods were less sensitive for detection of cells spiked into both biofilm (66% detection for pipe wall biofilm samples obtained from a distribution network enabled the detection of N. fowleri in under 6 h, versus 3+ daysforthe culture based method. Further, comparison of the real-time PCR data from the field samples and the standard curves enabled an approximation of N. fowleri cells in the biofilm and drinking water. The use of such a method will further aid water utilities in detecting and managing the persistence of N. fowleri in water distribution networks.

  11. A form of two-phase sampling utilizing regression analysis (United States)

    Michael A. Fiery; John R. Brooks


    A two-phase sampling technique was introduced and tested on several horizontal point sampling inventories of hardwood tracts located in northern West Virginia and western Maryland. In this sampling procedure species and dbh are recorded for all “in-trees” on all sample points. Sawlog merchantable height was recorded on a subsample of intensively measured (second phase...

  12. Seabirds utilizing the Northeast Water polynya (United States)

    Falk, K.; Hjort, C.; Andreasen, C.; Christensen, K. D.; Elander, M.; Ericson, M.; Kampp, K.; Kristensen, R. M.; Møbjerg, N.; Møller, S.; Weslawski, J. M.


    A small seabird community depends on the resources of the Northeast Water (NEW) polynya. In spring, at least 1000 King Eiders and 2500 Common Eiders form pre-breeding congregations at Ob Bank before dispersing in mid June to breeding areas. The most abundant species is the Fulmar, which breeds in six colonies with a total of 2550 "apparently occupied sites", corresponding to approx. 1475 active pairs in 1993. Kittiwakes occupied almost 900 sites at Mallemukfjeld, with an estimated 733 breeding pairs. The entire NEW area probably holds 400-500 pairs of Ivory Gulls, and about 500 individuals were associated with a colony on Henrik Krøyer Holme; this is one of the world's largest known colonies. Sabine's Gulls breed at the same islands and on Kilen (approx. 50 pairs in each place). Small colonies (total less than 1000 birds) of Arctic Terns are distributed along the edge of the polynya, with the largest colony of about 100 pairs on Henrik Krøyer Holme. The Black Guillemot is the only breeding auk species (< 20 pairs) in the area. Small numbers of Red Phalaropes were observed in the polynya in 1992 and 1993, and the species may have bred at Henrik Krøyer Holme in 1993; the polynya area may also serve as a staging area for transpolar migrants. In late summer a few hundreds of Ross's Gull—non-breeding adults and immatures—show up in and around the polynya, and in recent years a few cases of breeding have also been recorded. The relatively small seabird populations are evidence of a generally low carrying capacity of the polynya area. Apart from the benthic foraging eiders and the Black Guillemot, the seabird community of NEW consists of surface feeders—Fulmars and gulls—dependent on small fish and zooplankton. During their stay in the NEW area, the five most abundant surface feeders will annually consume approximately 243,000 kg (wet weight) of food, of which the Fulmars alone take 67%. Food demand in relation to area of open water in the polynya is highest in

  13. Utilization of Water Resources and Food Security in Seka Woreda ...

    African Journals Online (AJOL)

    For efficient utilization of water resources for small-scale irrigation, the households need supports such as guidance, skilled manpower, access to loan services, fertilizers, selected seeds, access to market, cooperation, water pumps. Thus governmental and non-governmental bodies found at different levels should endeavor ...

  14. Water quality, compliance, and health outcomes among utilities implementing Water Safety Plans in France and Spain. (United States)

    Setty, Karen E; Kayser, Georgia L; Bowling, Michael; Enault, Jerome; Loret, Jean-Francois; Serra, Claudia Puigdomenech; Alonso, Jordi Martin; Mateu, Arnau Pla; Bartram, Jamie


    Water Safety Plans (WSPs), recommended by the World Health Organization since 2004, seek to proactively identify potential risks to drinking water supplies and implement preventive barriers that improve safety. To evaluate the outcomes of WSP application in large drinking water systems in France and Spain, we undertook analysis of water quality and compliance indicators between 2003 and 2015, in conjunction with an observational retrospective cohort study of acute gastroenteritis incidence, before and after WSPs were implemented at five locations. Measured water quality indicators included bacteria (E. coli, fecal streptococci, total coliform, heterotrophic plate count), disinfectants (residual free and total chlorine), disinfection by-products (trihalomethanes, bromate), aluminum, pH, turbidity, and total organic carbon, comprising about 240K manual samples and 1.2M automated sensor readings. We used multiple, Poisson, or Tobit regression models to evaluate water quality before and after the WSP intervention. The compliance assessment analyzed exceedances of regulated, recommended, or operational water quality thresholds using chi-squared or Fisher's exact tests. Poisson regression was used to examine acute gastroenteritis incidence rates in WSP-affected drinking water service areas relative to a comparison area. Implementation of a WSP generally resulted in unchanged or improved water quality, while compliance improved at most locations. Evidence for reduced acute gastroenteritis incidence following WSP implementation was found at only one of the three locations examined. Outcomes of WSPs should be expected to vary across large water utilities in developed nations, as the intervention itself is adapted to the needs of each location. The approach may translate to diverse water quality, compliance, and health outcomes. Copyright © 2017 Elsevier GmbH. All rights reserved.

  15. Low Cost Mars Sample Return Utilizing Dragon Lander Project (United States)

    Stoker, Carol R.


    We studied a Mars sample return (MSR) mission that lands a SpaceX Dragon Capsule on Mars carrying sample collection hardware (an arm, drill, or small rover) and a spacecraft stack consisting of a Mars Ascent Vehicle (MAV) and Earth Return Vehicle (ERV) that collectively carry the sample container from Mars back to Earth orbit.

  16. A bottom-landing water sampling system for the benthic boundary layer (United States)

    Bale, A. J.; Barrett, C. D.

    A novel water sampling device which enables vertical profiles of water samples to be obtained within the benthic boundary layer in shelf sea waters is described. A maximum of ten samples spread over 2 m immediately above the seabed can be obtained on each deployment. The design of the sample bottles minimizes disturbances to particle aggregates and positive displacement sampling ensures that the samples are representative of the environment. Suspended-solids profiles sampled in the benthic boundary layer over 15-hour period at a station in the English Channel are presented to demonstrate the utility of the system.

  17. Co-producing actionable science for water utilities

    Directory of Open Access Journals (Sweden)

    Jason Vogel


    Full Text Available This article explores the efforts of four water utilities to co-produce actionable science by forging partnerships with scientific institutions to explore integrating climate considerations into their specific management context. The experiences of these four utilities and their scientific partners, as part of the Piloting Utility Modeling Applications project of the Water Utility Climate Alliance, provide a wealth of empirical evidence to illustrate some of the core concepts formulated to explain how to produce usable information and how to link research to decision making. Through these four case studies of co-production, we identify three findings that bridge principles and practice: each utility engaged in contextualizing research; in building and leveraging knowledge networks; and in embracing an entrepreneurial approach to their research agenda. In several instances, unanticipated but innovative assessment techniques were developed by science partners in collaboration with water utilities to fit the utility’s specific needs. The paper concludes by discussing some of the hard realities of co-production illustrated by these cases that should be kept in mind by people contemplating similar projects.

  18. Handbook for Sampling and Sample Preservation of Water and Wastewater (United States)


    from: National Technical Information Service (NTIS), 5285 Port Royal Road, Springfield VA 22161. DARRIN L. CURTIS, Capt, USAF, BSC EDWARD F. MAHER...Water and Wastewater 6. AUTHOR(S) Edward L. Berg Reprint Darrin L. Curtis 7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B. PERFORMING municipal wastewaters. It can cause serious diseases and other health problems in drinking water supplies and in recreational, agricultural, or

  19. Uses of communication satellites in water utility operations (United States)

    Tighe, W. S.

    This paper proposes a system to serve the communications needs of the operating side of a water utility and estimates the requirements and capabilities of the equipment needed. The system requires the shared use of a satellite transponder with 100% backup. Messages consist of data packets containing data and control information, plus voice transmission. Satellite communication may have a price advantage in some instances over wire line or VHF radio and have greater survivability in case of a natural disaster. Water and other utilities represent a significant market for low cost mass produced satellite earth terminals.

  20. Analysis of thermal water utilization in the northeastern Slovenia

    Directory of Open Access Journals (Sweden)

    Nina Rman


    Full Text Available The presented research aims at identification of thermal water users in NE Slovenia, at finding type and amountof the produced thermal water as well as its utilization practice. The energetic overview has been upgradedby a description of current observational monitoring practice and thermal waste water management, but technologicalproblems of thermal water use and their mitigation are discussed also. We have ascertained that 14 of 26active geothermalwells tap the Mura Formation aquifer in which the only reinjection well is perforated also. Totalthermal water abstraction summed to 3.29 million m3 in 2011. Cascade use of thermal water is abundant, whereindividual space and sanitary water heating is followed by heating of spa infrastructure and balneology. Greenhouseheating systems and district heating were also identified. Operational monitoring of these geothermal wellsis generally insufficient, and geothermal aquifers are overexploited due to decades of historical water abstraction.All these facts indicate the need for applying appropriate measures which will improve their natural conditions aswell as simultaneously enable further and even higher thermal water utilization in the future.

  1. Water, Electricity, and the Poor : Who Benefits from Utility Subsidies?


    Kristin Komives; Vivien Foster; Jonathan Halpern; Quentin Wodon; Roohi Abdullah


    Utility subsidies to consumers of water and electricity services are often justified as a mechanism for making services affordable for the poor. After all, an estimated 1.1 billion people in the developing world lack access to safe water, 2 billion are without electricity, and 2.4 billion without sanitation. But critics object that such subsidies can work against improving quality of service to ...

  2. Chapter 5: Surface water quality sampling in streams and canals (United States)

    Surface water sampling and water quality assessments have greatly evolved in the United States since the 1970s establishment of the Clean Water Act. Traditionally, water quality referred to only the chemical characteristics of the water and its toxicological properties related to drinking water or ...

  3. Bacteriological quality of water samples in Osogbo Metropolis ...

    African Journals Online (AJOL)

    The bacteriological qualities of samples of some sachet water, tap water and well water were examined. Some physicochemical parameters (pH and suspended solids) indicative of water quality as well as the total bacterial and total coliform counts were examined. The pH of the samples range between 6.5 and 7.2.

  4. Potential Chemical Effects of Changes in the Source of Water Supply for the Albuquerque Bernalillo County Water Utility Authority (United States)

    Bexfield, Laura M.; Anderholm, Scott K.


    Chemical modeling was used by the U.S. Geological Survey, in cooperation with the Albuquerque Bernalillo County Water Utility Authority (henceforth, Authority), to gain insight into the potential chemical effects that could occur in the Authority's water distribution system as a result of changing the source of water used for municipal and industrial supply from ground water to surface water, or to some mixture of the two sources. From historical data, representative samples of ground-water and surface-water chemistry were selected for modeling under a range of environmental conditions anticipated to be present in the distribution system. Mineral phases calculated to have the potential to precipitate from ground water were compared with the compositions of precipitate samples collected from the current water distribution system and with mineral phases calculated to have the potential to precipitate from surface water and ground-water/surface-water mixtures. Several minerals that were calculated to have the potential to precipitate from ground water in the current distribution system were identified in precipitate samples from pipes, reservoirs, and water heaters. These minerals were the calcium carbonates aragonite and calcite, and the iron oxides/hydroxides goethite, hematite, and lepidocrocite. Several other minerals that were indicated by modeling to have the potential to precipitate were not found in precipitate samples. For most of these minerals, either the kinetics of formation were known to be unfavorable under conditions present in the distribution system or the minerals typically are not formed through direct precipitation from aqueous solutions. The minerals with potential to precipitate as simulated for surface-water samples and ground-water/surface-water mixtures were quite similar to the minerals with potential to precipitate from ground-water samples. Based on the modeling results along with kinetic considerations, minerals that appear most likely to

  5. Utilization of warm well water, eastern Washington state (United States)


    Utilizing the warm well water for a geothermal greenhouse heating system is highly economically feasible. This is based on using the 88 F water from Anderson Well No. 1 to heat greenhouses totaling approximately 10.6 acres. The additional investment of $640,000 above the cost for a conventional electric boiler system shows a rate of return of 48.3% on a 20 year life cycle analysis. The simple payback is 3 years. The 88 F well water is not warm enough for prawn (Macrobrachium rosenbergii) aquaculture, since water flow requirements are excessive to maintain the desired 80 F pond temperature. However, the water is warm enough to maintain a 60 F pond temperature for trout farming. Trout farming using the 88 F well water directly is probably not economically feasible due to high electrical pumping cost (34,626 per year) for the seven 1/2 acre ponds that could be heated. Trout farming using the 75 F effluent water from the 10.6 acre greenhouse to heat four 1/2 acre ponds may be economically feasible since the water booster pumping cost is low ($1189 per year).

  6. Utilization of warm well water, eastern Washington State

    Energy Technology Data Exchange (ETDEWEB)


    Utilizing the warm well water for a geothermal greenhouse heating system is highly economically feasible. This is based on using the 88/sup 0/F water from Anderson Well No. 1 to heat greenhouses totaling approximately 10.6 acres. The additional investment of $640,000 above the cost for a conventional electric boiler system shows a rate of return of 48.3% on a 20 year life cycle analysis. The simple payback is 3 years. The 88/sup 0/F well water is not warm enough for prawn (Macrobrachium rosenbergii) aquaculture, since water flow requirements are excessive to maintain the desired 80/sup 0/F pond temperature. However, the water is warm enough to maintain a 60/sup 0/F pond temperature for trout farming. Trout farming using the 88/sup 0/F well water directly is probably not economically feasible due to high electrical pumping cost (34,626 per year) for the seven 1/2 acre ponds that could be heated. Trout farming using the 75/sup 0/F effluent water from the 10.6 acre greenhouse to heat four 1/2 acre ponds may be economically feasible since the water booster pumping cost is low $1189 per year.

  7. Sampling Methodologies and Approaches for Ballast Water Management Compliance Monitoring


    Stephan Gollasch; Matej David


    The human-mediated transfer of harmful organisms via shipping, especially via ballast water transport, has raised considerable attention especially in the last decade due to the negative associated impacts. Ballast water sampling is important to assess the compliance with ballast water management requirements (i.e. compliance monitoring). The complexity of ballast water sampling is a result of organism diversity and behaviour which may require different sampling strategies, as well as ship de...

  8. Methods for collection and analysis of water samples (United States)

    Rainwater, Frank Hays; Thatcher, Leland Lincoln


    This manual contains methods used by the U.S. Geological Survey to collect, preserve, and analyze water samples. Throughout, the emphasis is on obtaining analytical results that accurately describe the chemical composition of the water in situ. Among the topics discussed are selection of sampling sites, frequency of sampling, field equipment, preservatives and fixatives, analytical techniques of water analysis, and instruments. Seventy-seven laboratory and field procedures are given for determining fifty-three water properties.

  9. Business Opportunity Prospectus for Utilities in Solar Water Heating

    Energy Technology Data Exchange (ETDEWEB)

    Energy Alliance Group


    Faced with deregulation and increasingly aggressive competition, utilities are looking for new products and services to increase revenues, improve customer loyalty and retention, and establish barriers to market erosion. With open access now a reality, and retail wheeling just around the corner, business expansion via new products and services is now the central goal for most utilities in the United States. It may seem surprising that solar thermal energy as applied to heating domestic hot water - an idea that has been around for a long time - offers what utilities and their residential customers want most in a new product/service. This document not only explains how and why, it shows how to get into the business and succeed on a commercial scale.

  10. Dechlorination Technology Manual. Final report. [Utility cooling water discharge systems

    Energy Technology Data Exchange (ETDEWEB)

    Aschoff, A.F.; Chiesa, R.J.; Jacobs, M.H.; Lee, Y.H.; Mehta, S.C.; Meko, A.C.; Musil, R.R.; Sopocy, D.M.; Wilson, J.A.


    On November 19, 1982, the United States Environmental Protection Agency (EPA) promulgated regulations severely restricting chlorination practices as they relate to utility cooling water discharge systems. EPRI authorized the preparation of a manual on dechlorination technology to assist utilities in evaluating the various alternatives available to them to meet these new requirements. The Dechlorination Technology Manual emphasizes the engineering aspects involved in the selection and design of dechlorination systems. However, background information is included concerning chemistry, regulatory requirements, environmental considerations and aquatic impacts. There is also a brief discussion of the various alternatives to dechlorination. Case studies are given to acquaint the user with the use of the manual for the design of chlorination facilities given various site-related characteristics, such as salt versus fresh waters. Numerous graphs and tables are presented to facilitate the selection and design process. 207 references, 66 figures, 60 tables.


    It is essential that the sampling techniques utilized in groundwater monitoring provide data that accurately depicts the water quality of the sampled aquifer in the vicinity of the well. Due to the large amount of monitoring activity currently underway in the U.S.A. it is also im...

  12. Advanced Water Purification System for In Situ Resource Utilization Project (United States)

    Anthony, Stephen M.


    A main goal in the field of In Situ Resource Utilization is to develop technologies that produce oxygen from regolith to provide consumables to an extratrrestrial outpost. The processes developed reduce metal oxides in the regolith to produce water, which is then electrolyzed to produce oxygen. Hydrochloric and hydrofluoric acids are byproducts of the reduction processes, which must be removed to meet electrolysis purity standards. We previously characterized Nation, a highly water selective polymeric proton-exchange membrane, as a filtrtion material to recover pure water from the contaminated solution. While the membranes successfully removed both acid contaminants, the removal efficiency of and water flow rate through the membranes were not sufficient to produce large volumes of electrolysis-grade water. In the present study, we investigated electrodialysis as a potential acid removable technique. Our studies have show a rapid and significant reduction in chloride and fluoride concentrations in the feed solution, while generating a relatively small volume of concentrated waste water. Electrodialysis has shown significant promise as the primary separation technique in ISRU water purification processes.

  13. Physico-chemical characteristics of water sample from Aiba Stream ...

    African Journals Online (AJOL)

    This study aimed at assessing the effectiveness of solar distillation in purification of water. The water sample collected from Aiba stream was subjected to double slope solar water distillation unit. The physicochemical characteristics of the raw sample and the distillate were determined using standard methods. The results ...

  14. Effective drinking water collaborations are not accidental: interagency relationships in the international water utility sector. (United States)

    Jalba, D I; Cromar, N J; Pollard, S J T; Charrois, J W; Bradshaw, R; Hrudey, S E


    The role that deficient institutional relationships have played in aggravating drinking water incidents over the last 30 years has been identified in several inquiries of high profile drinking water safety events, peer-reviewed articles and media reports. These indicate that collaboration between water utilities and public health agencies (PHAs) during normal operations, and in emergencies, needs improvement. Here, critical elements of these interagency collaborations, that can be integrated within the corporate risk management structures of water utilities and PHAs alike, were identified using a grounded theory approach and 51 semi-structured interviews with utility and PHA staff. Core determinants of effective interagency relationships are discussed. Intentionally maintained functional relationships represent a key ingredient in assuring the delivery of safe, high quality drinking water. © 2013.

  15. Determination of Phenols in Water Samples using a Supported ...

    African Journals Online (AJOL)

    A simple, selective and inexpensive miniaturized sample preparation method based on a supported liquid membrane extraction probe is described for the extraction and preconcentration in a single step of phenols in water samples. The phenols were extracted from 5 mL aqueous water samples into 0.4 mL aqueous ...

  16. Analysis of phthalate esters contamination in drinking water samples ...

    African Journals Online (AJOL)

    The optimum condition method was successfully applied to the analysis of phthalate esters contamination in bottled drinking water samples. The concentration of DMP, DEP and DBP in drinking water samples were below allowable levels, while the DEHP concentration in three samples was found to be greater than the ...

  17. Advanced Water Purification System for In Situ Resource Utilization (United States)

    Anthony, Stephen M.; Jolley, Scott T.; Captain, James G.


    One of NASA's goals is to enable longterm human presence in space, without the need for continuous replenishment of consumables from Earth. In situ resource utilization (ISRU) is the use of extraterrestrial resources to support activities such as human life-support, material fabrication and repair, and radiation shielding. Potential sources of ISRU resources include lunar and Martian regolith, and Martian atmosphere. Water and byproducts (including hydrochloric and hydrofluoric acids) can be produced from lunar regolith via a high-temperature hydrogen reduction reaction and passing the produced gas through a condenser. center dot Due to the high solubility of HCI and HF in water, these byproducts are expected to be present in the product stream (up to 20,000 ppm) and must be removed (less than 10 ppm) prior to water consumption or electrolysis.

  18. Guidelines for sampling fish in inland waters

    National Research Council Canada - National Science Library

    Backiel, Tadeusz; Welcomme, R. L


    The book is addressed mainly to Fishery Biologists but it is hoped that Fishing Gear Technologists also can acquire some basic knowledge of sampling problems and procedures which, in turn, can result...

  19. Water Electrolysis for In-Situ Resource Utilization (ISRU) (United States)

    Lee, Kristopher A.


    Sending humans to Mars for any significant amount of time will require capabilities and technologies that enable Earth independence. To move towards this independence, the resources found on Mars must be utilized to produce the items needed to sustain humans away from Earth. To accomplish this task, NASA is studying In Situ Resource Utilization (ISRU) systems and techniques to make use of the atmospheric carbon dioxide and the water found on Mars. Among other things, these substances can be harvested and processed to make oxygen and methane. Oxygen is essential, not only for sustaining the lives of the crew on Mars, but also as the oxidizer for an oxygen-methane propulsion system that could be utilized on a Mars ascent vehicle. Given the presence of water on Mars, the electrolysis of water is a common technique to produce the desired oxygen. Towards this goal, NASA designed and developed a Proton Exchange Membrane (PEM) water electrolysis system, which was originally slated to produce oxygen for propulsion and fuel cell use in the Mars Atmosphere and Regolith COllector/PrOcessor for Lander Operations (MARCO POLO) project. As part of the Human Exploration Spacecraft Testbed for Integration and Advancement (HESTIA) project, this same electrolysis system, originally targeted at enabling in situ propulsion and power, operated in a life-support scenario. During HESTIA testing at Johnson Space Center, the electrolysis system supplied oxygen to a chamber simulating a habitat housing four crewmembers. Inside the chamber, oxygen was removed from the atmosphere to simulate consumption by the crew, and the electrolysis system's oxygen was added to replenish it. The electrolysis system operated nominally throughout the duration of the HESTIA test campaign, and the oxygen levels in the life support chamber were maintained at the desired levels.

  20. PCR detection of Burkholderia multivorans in water and soil samples


    Peeters, C.; Daenekindt, S. (Stijn); Vandamme, Anne Mieke


    Background Although semi-selective growth media have been developed for the isolation of Burkholderia cepacia complex bacteria from the environment, thus far Burkholderia multivorans has rarely been isolated from such samples. Because environmental B. multivorans isolates mainly originate from water samples, we hypothesized that water rather than soil is its most likely environmental niche. The aim of the present study was to assess the occurrence of B. multivorans in water samples from Fland...

  1. Comprehensive workflow for wireline fluid sampling in an unconsolidated formations utilizing new large volume sampling equipment

    Energy Technology Data Exchange (ETDEWEB)

    Kvinnsland, S.; Brun, M. [TOTAL EandP Norge (Norway); Achourov, V.; Gisolf, A. [Schlumberger (Canada)


    Precise and accurate knowledge of fluid properties is essential in unconsolidated formations to the design of production facilities. Wireline formation testers (WFT) have a wide range of applications and the latest WFT can be used to define fluid properties in the wells drilled with oil based mud (OBM) by acquiring PVT and large volume samples. To use these technologies, a comprehensive workflow has to be implemented and the aim of this paper is to present such a workflow. A sampling was conducted in highly unconsolidated sand saturated with biodegradable fluid in the Hild filed in the North Sea. Results showed the use of comprehensive workflow to be successful in obtaining large volume samples with the contamination level below 1%. Oil was precisely characterized thanks to these samples and design updates to the project were made possible. This paper highlighted that the use of the latest WFT technologies can help better characterize fluids in unconsolidated formations and thus optimize production facilities design.

  2. Healthcare Cost and Utilization Project (HCUP) - National Inpatient Sample - CVD Indicators (United States)

    U.S. Department of Health & Human Services — 2001 forward. The National (Nationwide) Inpatient Sample (NIS) is part of a family of databases and software tools developed for the Healthcare Cost and Utilization...

  3. Analysis of uranium concentration in drinking water samples using ICPMS. (United States)

    Rani, Asha; Mehra, Rohit; Duggal, Vikas; Balaram, V


    Uranium concentration in drinking water samples collected from some areas of Northern Rajasthan has been measured using inductively coupled plasma mass spectrometry. The water samples were taken from hand pumps. The uranium concentration in water samples varies from 2.54-133.0 μg L with a mean value of 38.48 μg L. The uranium concentration in most of the drinking water samples exceeds the safe limit (30 μg L) recommended by the World Health Organization. The annual effective dose associated with drinking water due to uranium concentration is estimated from its annual intake using dosimetric information based on ICRP 72. The resulting value of the annual effective dose from drinking water sources is in the range of 2.11-110.45 μSv. The annual effective dose in one of the samples was found to be greater than WHO-recommended level of 100 μSv y.

  4. Utilizing heavy metal-laden water hyacinth biomass in vermicomposting. (United States)

    Tereshchenko, Natalya N; Akimova, Elena E; Pisarchuk, Anna D; Yunusova, Tatyana V; Minaeva, Oksana M


    We studied the efficiency of water treatment by water hyacinth (Eichhornia crassipes) from heavy metals (Zn, Cd, Pb, Cu), as well as a possibility of using water hyacinth biomass obtained during treatment for vermicomposting by Eisenia fetida and the vermicompost quality in a model experiment. The results showed that the concentration of heavy metals in the trials with water hyacinth decreased within 35 days. We introduced water hyacinth biomass to the organic substrate for vermicomposting, which promoted a significant weight gain of earthworms and growth in their number, as well as a 1.5- to 3-fold increase in coprolite production. In the trial with 40 % of Eichhornia biomass in the mixture, we observed a 26-fold increase in the number and a 16-fold weight gain of big mature individuals with clitellum; an increase in the number of small individuals 40 times and in the number of cocoons 140 times, as compared to the initial substrate. The utilization of water hyacinth biomass containing heavy metals in the mixture led to a 10-fold increase in the number of adult individuals and cocoons, which was higher than in control. We found out that adding 10 % of Eichhornia biomass to the initial mixture affected slightly the number of microorganisms and their species diversity in the vermicompost. Adding Eichhornia biomass with heavy metals reduced the total number of microorganisms and sharply diminished their species diversity. In all trials, adding water hyacinth in the mixture for vermicomposting had a positive impact on wheat biometric parameters in a 14-day laboratory experiment, even in the trial with heavy metals.

  5. Evaluation of Universitas Indonesia’s Recharge Pond Performance and Potential Utilization for Raw Water Source

    Directory of Open Access Journals (Sweden)

    Nyoman Suwartha


    Full Text Available The UI recharge pond has been constructed 5 years ago. However, monitoring and evaluation activities on its performances are very lack. Aims of this study are to understand the recharge rate, and to evaluate existing quantity and water quality of the pond during dry and rainy season. Measurement of water depth, rainfall intensity, and evaporation is conducted to determine water availability, recharge rate, and water balance of the recharge pond. Amount of surface water is collected from recharge pond and river at three sampling point to determine existing water quality of the pond. The results showed that recharge rate of the pond between dry season (3.2 mm/day and wet season (6.1 mm/day are considered as insignificant different. The water balance of the recharge pond shows an excessive rate. Various physics and chemical parameters (turbidity, color, TDS, pH, and  Cl are found to have concentration lower than the water quality standard. The results suggest that the pond surface water is remain suitable to be recharged into aquifer zone so that sustaining ground water conservation campaign, and it is potential to be utilized as an additional  raw water source for domestic water demand of UI Campus Depok.

  6. PCR detection of Burkholderia multivorans in water and soil samples. (United States)

    Peeters, Charlotte; Daenekindt, Stijn; Vandamme, Peter


    Although semi-selective growth media have been developed for the isolation of Burkholderia cepacia complex bacteria from the environment, thus far Burkholderia multivorans has rarely been isolated from such samples. Because environmental B. multivorans isolates mainly originate from water samples, we hypothesized that water rather than soil is its most likely environmental niche. The aim of the present study was to assess the occurrence of B. multivorans in water samples from Flanders (Belgium) using a fast, culture-independent PCR assay. A nested PCR approach was used to achieve high sensitivity, and specificity was confirmed by sequencing the resulting amplicons. B. multivorans was detected in 11 % of the water samples (n = 112) and 92 % of the soil samples (n = 25) tested. The percentage of false positives was higher for water samples compared to soil samples, showing that the presently available B. multivorans recA primers lack specificity when applied to the analysis of water samples. The results of the present study demonstrate that B. multivorans DNA is commonly present in soil samples and to a lesser extent in water samples in Flanders (Belgium).

  7. Conversion of Blue Water into Green Water for Improving Utilization Ratio of Water Resources in Degraded Karst Areas

    Directory of Open Access Journals (Sweden)

    Ke Chen


    Full Text Available Vegetation deterioration and soil loss are the main causes of more precipitation leakages and surface water shortages in degraded karst areas. In order to improve the utilization of water resources in such regions, water storage engineering has been considered; however, site selection and cost associated with the special karstic geological structure have made this difficult. According to the principle of the Soil Plant Atmosphere Continuum, increasing both vegetation cover and soil thickness would change water cycle process, resulting in a transformation from leaked blue water (liquid form into green water (gas or saturated water form for terrestrial plant ecosystems, thereby improving the utilization of water resources. Using the Soil Vegetation Atmosphere Transfer model and the geographical distributed approach, this study simulated the conversion from leaked blue water (leakage into green water in the environs of Guiyang, a typical degraded karst area. The primary results were as follows: (1 Green water in the area accounted for <50% of precipitation, well below the world average of 65%; (2 Vegetation growth played an important role in converting leakage into green water; however, once it increased to 56%, its contribution to reducing leakage decreased sharply; (3 Increasing soil thickness by 20 cm converted the leakage considerably. The order of leakage reduction under different precipitation scenarios was dry year > normal year > rainy year. Thus, increased soil thickness was shown effective in improving the utilization ratio of water resources and in raising the amount of plant ecological water use; (4 The transformation of blue water into green water, which avoids constructions of hydraulic engineering, could provide an alternative solution for the improvement of the utilization of water resources in degraded karst area. Although there are inevitable uncertainties in simulation process, it has important significance for overcoming similar

  8. Sampling procedure for lake or stream surface water chemistry (United States)

    Robert Musselman


    Surface waters collected in the field for chemical analyses are easily contaminated. This research note presents a step-by-step detailed description of how to avoid sample contamination when field collecting, processing, and transporting surface water samples for laboratory analysis.

  9. Physico-chemical characteristics of water sample from Aiba Stream ...

    African Journals Online (AJOL)

    irrigation practices and motor park (Atobatele and Olutona, 2013). Sample collection. The water sample was collected ... logarithm of hydrogen ion concentration. (Jayalaskhmi et al., 2011). pH is one of the most important ... hydrogen sulphide (H2S), which gives a rotten egg smell. The presence of sulphate in drinking water ...

  10. Determination of Phenols in Water Samples using a Supported ...

    African Journals Online (AJOL)


    aSchool of Chemistry, University of the Witwatersrand, Johannesburg, 2050, South Africa. ... industries.1 Phenols are also used as part of the raw materials in .... Procedures. 2.6.1. Sample Preparation. River water samples for optimization of the extraction proce- dure were first filtered with 0.45 µm Whatman paper. Water.

  11. bacteriological analysis of well water samples in sagamu.

    African Journals Online (AJOL)

    Dr Oboro VO

    have water supply surveillance as a way of keeping a careful watch at all times from the public health point of view, over the safety and acceptability of drinking ..... encountered in well water samples. However, the sanitary quality of potable water is determined primarily by the kinds of micro-organisms present rather than by ...

  12. Utilities:Water:Spring Water Lines at Pipe Spring National Monument, Arizona (Utilities.gdb:Water:springwtr) (United States)

    National Park Service, Department of the Interior — This feature class represents spring water lines at Pipe Spring National Monument, Arizona. The data were collected using Trimble Global Positioning System (GPS)...

  13. Utilities:Water:Water Infrastructure Vaults at Pipe Spring National Monument, Arizona (Utilities.gdb:Water:vaults) (United States)

    National Park Service, Department of the Interior — This feature class represents vaults associated with the water infrastructure at Pipe Spring National Monument, Arizona. The vaults data were collected using Trimble...

  14. UMTRA Project water sampling and analysis plan, Falls City, Texas

    Energy Technology Data Exchange (ETDEWEB)


    Surface remedial action will be completed at the Falls City, Texas, Uranium Mill Tailings Remedial Action Project site in the spring of 1994. Results of water sampling activity from 1989 to 1993 indicate that ground water contamination occurs primarily in the Deweesville/Conquista aquifer (the uppermost aquifer) and that the contamination migrates along four distinct contaminant plumes. Contaminated ground water from some wells in these regions has significantly elevated levels of aluminum, arsenic, cadmium, manganese, molybdenum, selenium, sulfate, and uranium. Contamination in the Dilworth aquifer was identified in monitor well 977 and in monitor well 833 at the southern edge of former tailings pile 4. There is no evidence that surface water quality in Tordilla and Scared Dog Creeks is impacted by tailings seepage. The following water sampling activities are planned for calendar year 1994: (1) Ground water sampling from 15 monitor wells to monitor the migration of the four major contaminant plumes within the Deweesville/Conquista aquifer. (2) Ground water sampling from five monitor wells to monitor contaminated and background ground water quality conditions in the Dilworth aquifer. Because of disposal cell construction activities, all plume monitor wells screened in the Dilworth aquifer were abandoned. No surface water locations are proposed for sampling. The monitor well locations provide a representative distribution of sampling points to characterize ground water quality and ground water flow conditions in the Deweesville/Conquista aquifer downgradient of the disposal cell. The list of analytes has been modified with time to reflect constituents currently related to uranium processing activities and natural uranium mineralization. Water sampling is normally conducted biannually in late summer and midwinter.

  15. Soil Gas Sample Handling: Evaluation of Water Removal and Sample Ganging

    Energy Technology Data Exchange (ETDEWEB)

    Fritz, Brad G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Abrecht, David G. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Hayes, James C. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Mendoza, Donaldo P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)


    Soil gas sampling is currently conducted in support of Nuclear Test Ban treaty verification. Soil gas samples are collected and analyzed for isotopes of interest. Some issues that can impact sampling and analysis of these samples are excess moisture and sample processing time. Here we discuss three potential improvements to the current sampling protocol; a desiccant for water removal, use of molecular sieve to remove CO2 from the sample during collection, and a ganging manifold to allow composite analysis of multiple samples.

  16. Preconcentration of uranium in water samples using dispersive ...

    African Journals Online (AJOL)

    Preconcentration of uranium in water samples using dispersive liquid-liquid micro- extraction coupled with solid-phase extraction and determination with ... After concentration and purification of the samples in SPE C18 sorbent, 1.5 mL elution sample containing 40.0 µL chlorobenzene was injected into the 5.0 mL pure ...

  17. 75 FR 20352 - National Drinking Water Advisory Council's Climate Ready Water Utilities Working Group Meeting... (United States)


    ... to be climate ready, enabling environment recommendations, and climate-related tools to support... findings on the water sector and climate change, a draft adaptive response framework that describes actions... create a supportive environment in which a utility can take steps to be climate ready. The Working Group...

  18. Sampling and Analysis Plan for the 105-N Basin Water

    Energy Technology Data Exchange (ETDEWEB)

    R.O. Mahood


    This sampling and analysis plan defines the strategy, and field and laboratory methods that will be used to characterize 105-N Basin water. The water will be shipped to the 200 Area Effluent Treatment Facility for treatment and disposal as part of N Reactor deactivation. These analyses are necessary to ensure that the water will meet the acceptance criteria of the ETF, as established in the Memorandum of Understanding for storage and treatment of water from N-Basin (Appendix A), and the characterization requirements for 100-N Area water provided in a letter from ETF personnel (Appendix B)

  19. Urban water infrastructure asset management - a structured approach in four water utilities. (United States)

    Cardoso, M A; Silva, M Santos; Coelho, S T; Almeida, M C; Covas, D I C


    Water services are a strategic sector of large social and economic relevance. It is therefore essential that they are managed rationally and efficiently. Advanced water supply and wastewater infrastructure asset management (IAM) is key in achieving adequate levels of service in the future, particularly with regard to reliable and high quality drinking water supply, prevention of urban flooding, efficient use of natural resources and prevention of pollution. This paper presents a methodology for supporting the development of urban water IAM, developed during the AWARE-P project as well as an appraisal of its implementation in four water utilities. Both water supply and wastewater systems were considered. Due to the different contexts and features of the utilities, the main concerns vary from case to case; some problems essentially are related to performance, others to risk. Cost is a common deciding factor. The paper describes the procedure applied, focusing on the diversity of drivers, constraints, benefits and outcomes. It also points out the main challenges and the results obtained through the implementation of a structured procedure for supporting urban water IAM.

  20. Implications of heterogeneous distributions of organisms on ballast water sampling. (United States)

    Costa, Eliardo G; Lopes, Rubens M; Singer, Julio M


    Ballast water sampling is one of the problems still needing investigation in order to enforce the D-2 Regulation of the International Convention for the Control and Management of Ship Ballast Water and Sediments. Although statistical "representativeness" of the sample is an issue usually discussed in the literature, neither a definition nor a clear description of its implications are presented. In this context, we relate it to the heterogeneity of the distribution of organisms in ballast water and show how to specify compliance tests under different models based on the Poisson and negative binomial distributions. We provide algorithms to obtain minimum sample volumes required to satisfy fixed limits on the probabilities of Type I and II errors. We show that when the sample consists of a large number of aliquots, the Poisson model may be employed even under moderate heterogeneity of the distribution of the organisms in the ballast water tank. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. ISS Potable Water Sampling and Chemical Analysis Results for 2016 (United States)

    Straub, John E., II; Plumlee, Debrah K.; Wallace, William T.; Alverson, James T.; Benoit, Mickie J.; Gillispie, Robert L.; Hunter, David; Kuo, Mike; Rutz, Jeffrey A.; Hudson, Edgar K.; hide


    This paper continues the annual tradition, at this conference, of summarizing the results of chemical analyses performed on archival potable water samples returned from the International Space Station (ISS). 2016 represented a banner year for life aboard the ISS, including the successful conclusion for 2 crewmembers of a record 1-year mission. Water reclaimed from urine and/or humidity condensate remained the primary source of potable water for the crewmembers of ISS Expeditions 46-50. The year was also marked by the end of a long-standing tradition of U.S. sampling and monitoring of Russian Segment potable water sources. Two water samples, taken during Expedition 46 and returned on Soyuz 44 in March 2016, represented the final Russian Segment samples to be collected and analyzed by the U.S. side. Although anticipated for 2016, a rise in the total organic carbon (TOC) concentration of the product water from the U.S. water processor assembly due to breakthrough of organic contaminants from the system did not materialize, as evidenced by the onboard TOC analyzer and archival sample results.

  2. Identifying potential surface water sampling sites for emerging ...

    African Journals Online (AJOL)

    The occurrence and concentrations of ECPs in South African water bodies are largely unknown, so monitoring is required in order to determine the potential threat that these ECPs may pose. Relevant surface water sampling sites in the Gauteng Province of South Africa were identified utilising a geographic information ...

  3. Microbial Bioload of Some Tap Water Samples from Enugu, Enugu ...

    African Journals Online (AJOL)

    Shigella species and Salmonella species in sample groups collected. Suggestions were proffered as to the methods of avoiding possible epidemic as a result of operating water supply unit which fall below WHO standards. Keywords: microbial bioload, tap water, Enugu, bacteriological screening, coliform. Nigerian Journal ...

  4. Bacterial contamination of water samples in Gabon, 2013

    Directory of Open Access Journals (Sweden)

    Jonas Ehrhardt


    Full Text Available Contamination of water is a major burden in the public health setting of developing countries. We therefore assessed the quality of water samples in Gabon in 2013. The main findings were a contamination rate with coliforms of 13.5% and the detection of a possible environmental reservoir for extended spectrum beta-lactamase-producing bacteria.

  5. Contamination of Ground Water Samples from Well Installations

    DEFF Research Database (Denmark)

    Grøn, Christian; Madsen, Jørgen Øgaard; Simonsen, Y.


    Leaching of a plasticizer, N-butylbenzenesulfonamide, from ground water multilevel sampling installations in nylon has been demonstrated. The leaching resulted in concentrations of DOC and apparent AOX, both comparable with those observed in landfill contaminated ground waters. It is concluded...



    文, 勇起; BUN, Yuki


    In recent years, many flood damage and drought attributed to urbanization has occurred. At present infiltration facility is suggested for the solution of these problems. Based on this background, the purpose of this study is investigation of quantification of flood control and water utilization effect of rainfall infiltration facility by using water balance analysis model. Key Words : flood control, water utilization , rainfall infiltration facility


    It has been over 10 years since the low-flow ground water purging and sampling method was initially reported in the literature. The method grew from the recognition that well purging was necessary to collect representative samples, bailers could not achieve well purging, and high...

  8. Determination of Phenols in Water Samples using a Supported ...

    African Journals Online (AJOL)


    A simple, selective and inexpensive miniaturized sample preparation method based on a supported liquid membrane extraction probe is described for ... Supported liquid membrane extraction probe, selectivity, chlorophenols, water samples. 1. ... explosives, fertilizers, paint, paint removers, textiles and drugs.2,3. They have ...

  9. Study of water quality improvements during riverbank filtration at three midwestern United States drinking water utilities (United States)

    Weiss, W.; Bouwer, E.; Ball, W.; O'Melia, C.; Lechevallier, M.; Arora, H.; Aboytes, R.; Speth, T.


    Riverbank filtration (RBF) is a process during which surface water is subjected to subsurface flow prior to extraction from wells. During infiltration and soil passage, surface water is subjected to a combination of physical, chemical, and biological processes such as filtration, dilution, sorption, and biodegradation that can significantly improve the raw water quality (Tufenkji et al, 2002; Kuehn and Mueller, 2000; Kivimaki et al, 1998; Stuyfzand, 1998). Transport through alluvial aquifers is associated with a number of water quality benefits, including removal of microbes, pesticides, total and dissolved organic carbon (TOC and DOC), nitrate, and other contaminants (Hiscock and Grischek, 2002; Tufenkji et al., 2002; Ray et al, 2002; Kuehn and Mueller, 2000; Doussan et al, 1997; Cosovic et al, 1996; Juttner, 1995; Miettinen et al, 1994). In comparison to most groundwater sources, alluvial aquifers that are hydraulically connected to rivers are typically easier to exploit (shallow) and more highly productive for drinking water supplies (Doussan et al, 1997). Increased applications of RBF are anticipated as drinking water utilities strive to meet increasingly stringent drinking water regulations, especially with regard to the provision of multiple barriers for protection against microbial pathogens, and with regard to tighter regulations for disinfection by-products (DBPs), such as trihalomethanes (THMs) and haloacetic acids (HAAs). In the above context, research was conducted to document the water quality benefits during RBF at three major river sources in the mid-western United States, specifically with regard to DBP precursor organic matter and microbial pathogens. Specific objectives were to: 1. Evaluate the merits of RBF for removing/controlling DBP precursors and certain other drinking water contaminants (e.g. microorganisms). 2. Evaluate whether RBF can improve finished drinking water quality by removing and/or altering natural organic matter (NOM) in a

  10. User manuals for the Delaware River Basin Water Availability Tool for Environmental Resources (DRB–WATER) and associated WATER application utilities (United States)

    Williamson, Tanja N.; Lant, Jeremiah G.


    The Water Availability Tool for Environmental Resources (WATER) is a decision support system (DSS) for the nontidal part of the Delaware River Basin (DRB) that provides a consistent and objective method of simulating streamflow under historical, forecasted, and managed conditions. WATER integrates geospatial sampling of landscape characteristics, including topographic and soil properties, with a regionally calibrated hillslope-hydrology model, an impervious-surface model, and hydroclimatic models that have been parameterized using three hydrologic response units—forested, agricultural, and developed land cover. It is this integration that enables the regional hydrologic-modeling approach used in WATER without requiring site-specific optimization or those stationary conditions inferred when using a statistical model. The DSS provides a “historical” database, ideal for simulating streamflow for 2001–11, in addition to land-cover forecasts that focus on 2030 and 2060. The WATER Application Utilities are provided with the DSS and apply change factors for precipitation, temperature, and potential evapotranspiration to a 1981–2011 climatic record provided with the DSS. These change factors were derived from a suite of general circulation models (GCMs) and representative concentration pathway (RCP) emission scenarios. These change factors are based on 25-year monthly averages (normals) that are centere on 2030 and 2060. The WATER Application Utilities also can be used to apply a 2010 snapshot of water use for the DRB; a factorial approach enables scenario testing of increased or decreased water use for each simulation. Finally, the WATER Application Utilities can be used to reformat streamflow time series for input to statistical or reservoir management software. 

  11. Toward Complete Utilization of Miscanthus in a Hot-Water Extraction-Based Biorefinery

    Directory of Open Access Journals (Sweden)

    Kuo-Ting Wang


    Full Text Available Miscanthus (Miscanthus sp. Family: Poaceae was hot-water extracted (two h, at 160 °C at three scales: laboratory (Parr reactor, 300 cm3, intermediate (M/K digester, 4000 cm3, and pilot (65 ft3-digester, 1.841 × 106 cm3. Hot-water extracted miscanthus, hydrolyzate, and lignin recovered from hydrolyzate were characterized and evaluated for potential uses aiming at complete utilization of miscanthus. Effects of scale-up on digester yield, removal of hemicelluloses, deashing, delignification degree, lignin recovery and purity, and cellulose retention were studied. The scale-dependent results demonstrated that before implementation, hot-water extraction (HWE should be evaluated on a scale larger than a laboratory scale. The production of energy-enriched fuel pellets from hot-water extracted miscanthus, especially in combination with recovered lignin is recommended, as energy of combustion increased gradually from native to hot-water extracted miscanthus to recovered lignin. The native and pilot-scale hot-water extracted miscanthus samples were also subjected to enzymatic hydrolysis using a cellulase-hemicellulase cocktail, to produce fermentable sugars. Hot-water extracted biomass released higher amount of glucose and xylose verifying benefits of HWE as an effective pretreatment for xylan-rich lignocellulosics. The recovered lignin was used to prepare a formaldehyde-free alternative to phenol-formaldehyde resins and as an antioxidant. Promising results were obtained for these lignin valorization pathways.

  12. Adsorption of Water on JSC-1A Lunar Simulant Samples (United States)

    Goering, John; Sah, Shweta; Burghaus, Uwe; Street, Kenneth W.


    Remote sensing probes sent to the moon in the 1990s indicated that water may exist in areas such as the bottoms of deep, permanently shadowed craters at the lunar poles, buried under regolith. Water is of paramount importance for any lunar exploration and colonization project which would require self-sustainable systems. Therefore, investigating the interaction of water with lunar regolith is pertinent to future exploration. The lunar environment can be approximated in ultra-high vacuum systems such as those used in thermal desorption spectroscopy (TDS). Questions about water dissociation, surface wetting, degree of crystallization, details of water-ice transitions, and cluster formation kinetics can be addressed by TDS. Lunar regolith specimens collected during the Apollo missions are still available though precious, so testing with simulant is required before applying to use lunar regolith samples. Hence, we used for these studies JSC-1a, mostly an aluminosilicate glass and basaltic material containing substantial amounts of plagioclase, some olivine and traces of other minerals. Objectives of this project include: 1) Manufacturing samples using as little raw material as possible, allowing the use of surface chemistry and kinetics tools to determine the feasibility of parallel studies on regolith, and 2) Characterizing the adsorption kinetics of water on the regolith simulant. This has implications for the probability of finding water on the moon and, if present, for recovery techniques. For condensed water films, complex TDS data were obtained containing multiple features, which are related to subtle rearrangements of the water adlayer. Results from JSC-1a TDS studies indicate: 1) Water dissociation on JSC-1a at low exposures, with features detected at temperatures as high as 450 K and 2) The formation of 3D water clusters and a rather porous condensed water film. It appears plausible that the sub- m sized particles act as nucleation centers.

  13. Water source utilization by Pinus jeffreyi and Arctostaphylos patula on thin soils over bedrock. (United States)

    Rose, K L; Graham, R C; Parker, D R


    Stable isotopes were used to evaluate water sources for co-occurring Jeffrey pine (Pinus jeffreyi Grev & Balf.) and greenleaf manzanita (Arctostaphylos patula Greene) in the southern Sierra Nevada, California, where soils averaged only 75 cm thick but were underlain by up to 5 m of weathered granitic bedrock. Soils and underlying weathered bedrock were sampled three times during both the 1997 and 1998 growing seasons, in 25 cm increments, from 0 to 400 cm or until hard bedrock was reached, and plant stem tissue was sampled simultaneously. Extracted water from the soil/bedrock substrate and plant tissue was analyzed for delta(18)O and/or deltaD, and depth of water source was determined by inference in conjunction with moisture status of the substrate. Water source utilization over the growing seasons for both plants generally followed a pattern similar to that observed for water depletion. Predominant water use was initially from the surface soils. Progressively deeper water sources, including weathered bedrock to a depth of several meters, were exploited as the season progressed and the overlying substrate was depleted of moisture. Early in the growing season, stable isotope values were slightly lower for pine than for manzanita (e.g., average deltaD in June 1997 was -81 per thousand for pine and -77 per thousand for manzanita), and suggest that the functional rooting depth for pine may have been slightly greater than for manzanita. In September 1997, manzanita deltaD values averaged -57 per thousand while pine values averaged -85 per thousand, indicating that manzanita opportunistically utilized summer precipitation while pine used more dependable bedrock water. In 1998, soils remained moist through July due to a late snowfall. Unlike the previous year, pine and manzanita deltaD values were not significantly different in mid- and late-growing season, and both plants exploited bedrock-derived water as soil water was depleted. Water held within bedrock was essential

  14. Determination of fluoride level in drinking water from water samples in Navi Mumbai, Maharashtra

    Directory of Open Access Journals (Sweden)

    Sabita M Ram


    Full Text Available Introduction: The concentration of fluoride in drinking water influences the dental caries situation in the region. There are no studies reported determining the fluoride levels in drinking water supplies of Navi Mumbai. Aim: The aim of this study is to determine the fluoride level in drinking water samples from different areas of Navi Mumbai region. Materials and Methods: In an in vitro experimental study, water samples were collected from seven different locations of Navi Mumbai region. Water samples were collected from the Morbe dam, water purification plant at Bhokarpada in Raigad district, and five randomly selected residential areas of Navi Mumbai region. A total of 35 water subsamples were analyzed for fluoride content using fluoride analysis kit (HiMedia AQUACheck Fluoride Testing Kit. Results: The mean concentration of fluoride level in water samples from dam, water purification plant, as well as the five random residential areas was 0.5 mg/L (1 mg/L = 1 ppm. The fluoride level remained constant throughout from the source till the end consumer. Conclusion: There was no effect of water purification process at the plant on fluoride content of water samples. Similarly, the fluoride content was constant in the distributed purified water to residential areas. In this study, it was observed that the fluoride level in drinking water of Navi Mumbai was below the recommended levels by the World Health Organization as well as the Ministry of Health, Government of India.

  15. Utilizing online monitoring of water wells for detecting earthquake precursors (United States)

    Reuveni, Y.; Anker, Y.; Inbar, N.; Yellin-Dror, A.; Guttman, J.; Flexer, A.


    Groundwater reaction to earthquakes is well known and documented, mostly as changes in water levels or springs discharge, but also as changes in groundwater chemistry. During 2004 groundwater level undulations preceded a series of moderate (ML~5) earthquakes, which occurred along the Dead Sea Rift System (DSRS). In order to try and validate these preliminary observations monitoring of several observation wells was initiated. The monitoring and telemetry infrastructure as well as the wells were allocated specifically for the research by the Israeli National Water Company (Mekorot LTD.). Once several earthquake events were skipped due to insufficient sampling frequency and owing to insufficient storage capacity that caused loss of data, it was decided to establish an independent monitoring system. This current stage of research had commenced at 2011 and just recently became fully operative. At present there are four observation wells that are located along major faults, adjacent to the DSRS. The wells must be inactive and with a confined production layer. The wells are equipped with sensors for groundwter level, water conductivity and groundwater temperature measurements. The data acquisition and transfer resolution is of one minute and the dataset is being transferred through a GPRS network to a central database server. Since the start of the present research stage, most of the earthquakes recorded at the vicinity of the DSRS were smaller then ML 5, with groundwater response only after the ground movement. Nonetheless, distant earthquakes occurring as far as 300 km along a DSRS adjacent fault (ML~3), were noticed at the observation wells. A recent earthquake precursory reoccurrence was followed by a 5.5ML earthquake with an epicenter near the eastern shore of the Red Sea about 400km south to the wells that alerted the quake (see figure). In both wells anomalies is water levels and conductivity were found few hours before the quake, although any single anomaly cannot

  16. Utilization of Groundwater, Spring, and the Surface Water for Drinking Water Service for the People of Surakarta


    Team PDAM Surakarta


    Case study: utilizing the groundwater, water resources, and surface of water to supply the drinking water for the inhabitants is Surakarta. Of the early target at 75%, the supply of drinking water for the inhabitants in Surakarta only achieves 44%. Because of this, the Regional Drinking Water ompany (PDAM) of Surakarta made a decision to: 1) utilize the debit of water production by making a deep well at a capacity of 30 liters a second for a short term, and on the basis of the study of water ...


    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, S


    There is a need for fast, reliable methods for the determination of actinides and Sr-89/90 analysis on environmental and bioassay samples in response to an emergency radiological incident. The SRS (Savannah River Site) Environmental Bioassay Laboratory participated in the National Institute of Standards and Technology Radiochemistry Intercomparison Program (NRIP-06) and analyzed water and urine samples within 8 hours of receipt. The SRS Environmental Laboratory was the only lab that participated in the program that analyzed these samples for both actinides and Sr-89/90 within the requested 8 hour turnaround time. A new, rapid actinide and strontium 89/90 separation method was used for both urine and water samples. This method uses stacked TEVA Resin{reg_sign}, TRU Resin{reg_sign} and Sr-Resin{reg_sign} cartridges from Eichrom Technologies (Darien, IL, USA) that allows the rapid separation of plutonium (Pu), neptunium (Np), uranium (U), and americium (Am), curium (Cm) and thorium (Th) using a single multi-stage column combined with alpha spectrometry. By using vacuum box cartridge technology and stacked cartridges with rapid flow rates, sample preparation time was minimized. This paper discusses the technology and conditions employed for both water and urine samples and presents the SRS performance data on the NRIP-06 samples.

  18. Utilization of substrates by bacterial communities (biofilm) as they develop on stored chicken meat samples. (United States)

    Boothe, D D; Arnold, J W; Chew, V


    Understanding and controlling the metabolic processes of microorganisms associated with chicken meat can lead to safer poultry products with a longer shelf life. The objective of the present study was threefold: 1) to determine the feasibility of using 96-well Biolog GN microtiter plates to assess substrate utilization profiles of bacterial communities (biofilm) as they develop on poultry products, 2) to identify substrates metabolized by microbial populations associated with stored chicken meat, and 3) to compare the substrate utilization profiles of biofilm communities as they develop on meat stored at 4 C (refrigeration temperature) for up to 5 d or at 13 C (a temperature common in poultry processing areas) for 2 d. The protocol used herein for preparing inocula for microplates was acceptable for the collection of optical density values (590 nm) in microplate wells as an indicator of microbial substrate utilization over time. Data from treatment of chicken meat samples using this protocol indicate that most of the 95 substrates tested were metabolized by microbial communities present as early as 1 d after storage at 4 or at 13 C. However, the rapidity (incubation time required for initial substrate utilization) and frequency (percentage of plates positive for transformation of an individual substrate) of metabolism of the substrates by the biofilm communities varied from 4 to 164 h of plate incubation and from 17 to 100% of microplates, respectively. At 13 C, polymers were the most rapidly metabolized substrate group, followed by carbohydrates, carboxylic acids, miscellaneous or amino acids, and amides or amines. Initial utilization of these substrate groups at 4 C occurred within a consistently shorter period (24 h of plate incubation). The frequency of metabolism of each individual substrate group varied only 3 to 16% between samples stored at 4 and 13 C. However, a greater difference in frequency of utilization of some individual substrates was noted. Such

  19. Optimal urban water conservation strategies considering embedded energy: coupling end-use and utility water-energy models. (United States)

    Escriva-Bou, A.; Lund, J. R.; Pulido-Velazquez, M.; Spang, E. S.; Loge, F. J.


    Although most freshwater resources are used in agriculture, a greater amount of energy is consumed per unit of water supply for urban areas. Therefore, efforts to reduce the carbon footprint of water in cities, including the energy embedded within household uses, can be an order of magnitude larger than for other water uses. This characteristic of urban water systems creates a promising opportunity to reduce global greenhouse gas emissions, particularly given rapidly growing urbanization worldwide. Based on a previous Water-Energy-CO2 emissions model for household water end uses, this research introduces a probabilistic two-stage optimization model considering technical and behavioral decision variables to obtain the most economical strategies to minimize household water and water-related energy bills given both water and energy price shocks. Results show that adoption rates to reduce energy intensive appliances increase significantly, resulting in an overall 20% growth in indoor water conservation if household dwellers include the energy cost of their water use. To analyze the consequences on a utility-scale, we develop an hourly water-energy model based on data from East Bay Municipal Utility District in California, including the residential consumption, obtaining that water end uses accounts for roughly 90% of total water-related energy, but the 10% that is managed by the utility is worth over 12 million annually. Once the entire end-use + utility model is completed, several demand-side management conservation strategies were simulated for the city of San Ramon. In this smaller water district, roughly 5% of total EBMUD water use, we found that the optimal household strategies can reduce total GHG emissions by 4% and utility's energy cost over 70,000/yr. Especially interesting from the utility perspective could be the "smoothing" of water use peaks by avoiding daytime irrigation that among other benefits might reduce utility energy costs by 0.5% according to our

  20. Health care utilization in a sample of Canadian lesbian women: predictors of risk and resilience. (United States)

    Bergeron, Sherry; Senn, Charlene Y


    This study was designed to test an exploratory path model predicting health care utilization by lesbian women. Using structural equation modeling we examined the joint influence of internalized homophobia, feminism, comfort with health care providers (HCPs), education, and disclosure of sexual identity both in one's life and to one's HCP on health care utilization. Surveys were completed by 254 Canadian lesbian women (54% participation rate) recruited through snowball sampling and specialized media. The majority (95%) of women were White, 3% (n = 7) were women of colour, and the remaining six women did not indicate ethnicity. Participants ranged in age from 18 to 67 with a mean age of 38.85 years (SD = 9.12). In the final path model, higher education predicted greater feminism, more disclosure to HCPs, and better utilization of health services. Feminism predicted both decreased levels of internalized homophobia and increased disclosure across relationships. Being more open about one's sexual identity was related to increased disclosure to HCPs, which in turn, led to better health care utilization. Finally, the more comfortable women were with their HCP the more likely they were to seek preventive care. All paths were significant at p < .01. The path model offers insight into potential target areas for intervention with the goal of improving health care utilization in lesbian women.

  1. Water and steam sampling systems; Provtagningssystem foer vatten och aanga

    Energy Technology Data Exchange (ETDEWEB)

    Hellman, Mats


    The supervision of cycle chemistry can be divided into two parts, the sampling system and the chemical analysis. In modern steam generating plants most of the chemical analyses are carried out on-line. The detection limits of these analyzers are pushed downward to the ppt-range (parts per trillion), however the analyses are not more correct than the accuracy of the sampling system. A lot of attention has been put to the analyzers and the statistics to interpret the results but the sampling procedures has gained much less attention. This report aims to give guidance of the considerations to be made regarding sampling systems. Sampling is necessary since most analysis of interesting parameters cannot be carried out in- situ on-line in the steam cycle. Today's on-line instruments for pH, conductivity, silica etc. are designed to meet a water sample at a temperature of 10-30 deg C. This means that the sampling system has to extract a representative sample from the process, transport and cool it down to room temperature without changing the characteristics of the fluid. In the literature research work, standards and other reports can be found. Although giving similar recommendations in most aspects there are some discrepancies that may be confusing. This report covers all parts in the sampling system: Sample points and nozzles; Sample lines; Valves, regulating and on-off; Sample coolers; Temperature, pressure and flow rate control; Cooling water; and Water recovery. On-line analyzers connecting to the sampling system are not covered. This report aims to clarify what guidelines are most appropriate amongst the existing ones. The report should also give guidance to the design of the sampling system in order to achieve representative samples. In addition to this the report gives an overview of the fluid mechanics involved in sampling. The target group of this report is owners and operators of steam generators, vendors of power plant equipment, consultants working in

  2. Aqueous Processing of Atmospheric Organic Particles in Cloud Water Collected via Aircraft Sampling

    Energy Technology Data Exchange (ETDEWEB)

    Boone, Eric J.; Laskin, Alexander; Laskin, Julia; Wirth, Christopher; Shepson, Paul B.; Stirm, Brian H.; Pratt, Kerri A.


    Cloud water and below-cloud atmospheric particle samples were collected onboard a research aircraft during the Southern Oxidant and Aerosol Study (SOAS) over a forested region of Alabama in June 2013. The organic molecular composition of the samples was studied to gain insights into the aqueous-phase processing of organic compounds within cloud droplets. High resolution mass spectrometry with nanospray desorption electrospray ionization and direct infusion electrospray ionization were utilized to compare the organic composition of the particle and cloud water samples, respectively. Isoprene and monoterpene-derived organosulfates and oligomers were identified in both the particles and cloud water, showing the significant influence of biogenic volatile organic compound oxidation above the forested region. While the average O:C ratios of the organic compounds were similar between the atmospheric particle and cloud water samples, the chemical composition of these samples was quite different. Specifically, hydrolysis of organosulfates and formation of nitrogen-containing compounds were observed for the cloud water when compared to the atmospheric particle samples, demonstrating that cloud processing changes the composition of organic aerosol.

  3. Estimated Buried Utility Water and Wastewater Lines at Little Bighorn Battlefield National Monument, Montana (United States)

    National Park Service, Department of the Interior — The water and wastewater lines were compiled from utility lines collected with GPS equipment in the summer of 2003 and then merged with older water line data...

  4. Rapid determination of 210Po in water samples

    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, Sherrod L.; Culligan, Brian K.; Hutchison, Jay B.; Utsey, Robin C.; McAlister, Daniel R.


    A new rapid method for the determination of 210Po in water samples has been developed at the Savannah River National Laboratory (SRNL) that can be used for emergency response or routine water analyses. If a radiological dispersive device (RDD) event or a radiological attack associated with drinking water supplies occurs, there will be an urgent need for rapid analyses of water samples, including drinking water, ground water and other water effluents. Current analytical methods for the assay of 210Po in water samples have typically involved spontaneous auto-deposition of 210Po onto silver or other metal disks followed by counting by alpha spectrometry. The auto-deposition times range from 90 minutes to 24 hours or more, at times with yields that may be less than desirable. If sample interferences are present, decreased yields and degraded alpha spectrums can occur due to unpredictable thickening in the deposited layer. Separation methods have focused on the use of Sr Resin, often in combination with 210Pb analysis. A new rapid method for 210Po in water samples has been developed at the Savannah River National Laboratory (SRNL) that utilizes a rapid calcium phosphate co-precipitation method, separation using DGA Resin (N,N,N,N-tetraoctyldiglycolamide extractant-coated resin, Eichrom Technologies or Triskem-International), followed by rapid microprecipitation of 210Po using bismuth phosphate for counting by alpha spectrometry. This new method can be performed quickly with excellent removal of interferences, high chemical yields and very good alpha peak resolution, eliminating any potential problems with the alpha source preparation for emergency or routine samples. A rapid sequential separation method to separate 210Po and actinide isotopes was also developed. This new approach, rapid separation with DGA Resin plus microprecipitation for alpha source preparation, is a significant advance in

  5. Utilization of Groundwater, Spring, and the Surface Water for Drinking Water Service for the People of Surakarta

    Directory of Open Access Journals (Sweden)

    Team PDAM Surakarta


    Full Text Available Case study: utilizing the groundwater, water resources, and surface of water to supply the drinking water for the inhabitants is Surakarta. Of the early target at 75%, the supply of drinking water for the inhabitants in Surakarta only achieves 44%. Because of this, the Regional Drinking Water ompany (PDAM of Surakarta made a decision to: 1 utilize the debit of water production by making a deep well at a capacity of 30 liters a second for a short term, and on the basis of the study of water resource for Surakarta, for a long term; 2 minimize the water loss from 37% to 22%; and 3 fix and extend the network of distribution. In a comprehensive consideration, there are two alternatives to add the debit of water production water: 1 utilazing the water supply at 50 liters a second from Mount Lawu. However, this is not sufficient to supply the drinking water at a capacity of 200 liters a second; and 2 utilizing the water from Colo Dam with the IPA system. This can hopefully fulfill a lack of drinking water supply at 200 liters a second. However, utilizing the natural water from the groundwater must be continued to decrease PDAM’s supply.

  6. Determining Canadian water utility preparedness for the impacts of climate change

    Directory of Open Access Journals (Sweden)

    Brettle Meagan


    Full Text Available General warming and extreme weather events associated with climate change are expected to negatively impact water utilities. Water utilities will need to adapt to continue providing safe drinking water and wastewater services. In 2012, the Canadian Water and Wastewater Association (CWWA conducted a survey of 53 water utility officials to understand the expert perceptions of climate change risks and preparedness of Canadian utilities for current and future impacts. Results indicated that there is low awareness among water utility officials (30% of thepossible impacts of climate change on water utilities, and more than half have not conducted climate change vulnerability assessments (65% and do not have operational plans to address climate change impacts (56%. Officials from smaller utilities, which are considered to be more vulnerable to impacts, were of those less aware of these risks and reported taking fewer preparedness activities. Efforts to prepare water utilities for climate change impacts in Canada would benefit from education of utility officials about possible climate change risks, encouraging assessments of vulnerabilities, and increased training with new adaptation tools and resources.

  7. Total Water Content Measurements with an Isokinetic Sampling Probe (United States)

    Reehorst, Andrew L.; Miller, Dean R.; Bidwell, Colin S.


    The NASA Glenn Research Center has developed a Total Water Content (TWC) Isokinetic Sampling Probe. Since it is not sensitive to cloud water particle phase nor size, it is particularly attractive to support super-cooled large droplet and high ice water content aircraft icing studies. The instrument is comprised of the Sampling Probe, Sample Flow Control, and Water Vapor Measurement subsystems. Analysis and testing have been conducted on the subsystems to ensure their proper function and accuracy. End-to-end bench testing has also been conducted to ensure the reliability of the entire instrument system. A Stokes Number based collection efficiency correction was developed to correct for probe thickness effects. The authors further discuss the need to ensure that no condensation occurs within the instrument plumbing. Instrument measurements compared to facility calibrations from testing in the NASA Glenn Icing Research Tunnel are presented and discussed. There appears to be liquid water content and droplet size effects in the differences between the two measurement techniques.

  8. determination of lead at nanogram level in water samples

    African Journals Online (AJOL)

    Preferred Customer

    ABSTRACT. A novel method of chemistry applicable to the determination of trace lead in water samples based on the resonance light scattering (RLS) technique has been developed. In dilute phosphoric acid medium, in the presence of a large excess of I-, Pb(II) can form [PbI4]2-, which further reacts with tetrabutyl ...

  9. Determination of lead at nanogram level in water samples by ...

    African Journals Online (AJOL)

    A novel method of chemistry applicable to the determination of trace lead in water samples based on the resonance light scattering (RLS) technique has been developed. In dilute phosphoric acid medium, in the presence of a large excess of I-, Pb(II) can form [PbI4]2-, which further reacts with tetrabutyl ammonium bromide ...

  10. In situ sampling of interstitial water from lake sediments

    NARCIS (Netherlands)

    Brinkman, Albertus G.; van Raaphorst, Wim; Lijklema, Lambertus


    A sampler with a relatively high resolution has been developed, which allows interstitial water to be obtained from lake sediments at well defined depths, without serious disturbance of sediment structure. Oxidation effects are excluded. Sampling time is in the order of a day. Installation requires

  11. Determination of thiobencarb in water samples by gas ...

    African Journals Online (AJOL)

    Homogeneous liquid-liquid microextraction via flotation assistance (HLLME-FA) coupled with gas chromatography-flame ionization detection (GC-FID) was applied for the extraction and determination of thiobencarb in water samples. In this study, a special extraction cell was designed to facilitate collection of the ...

  12. Filtration recovery of extracellular DNA from environmental water samples (United States)

    qPCR methods are able to analyze DNA from microbes within hours of collecting water samples, providing the promptest notification and public awareness possible when unsafe pathogenic levels are reached. Health risk, however, may be overestimated by the presence of extracellular ...

  13. Physico-chemical characteristics of water sample from Aiba Stream ...

    African Journals Online (AJOL)

    areas of the developing countries like Nigeria; this make the efforts to improve on this old technology inevitable. Therefore, this work presents the physico-chemical characteristics of raw water sample of Aiba stream in Iwo and the distillate gotten from it using a double slope solar distillation unit. MATERIALS AND METHODS.

  14. Balance in Training for Latin American Water and Wastewater Utilities (United States)

    Carefoot, Neil F.


    Using a Peru case study, this article examines the problem of training imbalance for water and wastewater operators. Guidelines towards achieving adequate training for all water and wastewater personnel are suggested. (Author/MA)

  15. Utility of Satellite LIDAR Waveform Data in Shallow Water (United States)


    5 Figure 3. ALH operation over water (From LaRocque, 1999) .........................................7...seasonally influenced. 7 Figure 3. ALH operation over water (From LaRocque, 1999) Figure 4. Geometry of laser into water (From LaRocque...Bathymetry (ALB) (also known as Airborne Laser Hydrography ALH ) can be complemented with surface sonar bathymetry and vice versa. EAARL uses two

  16. Towards utilization of water hyacinth for industrial products: A ...

    African Journals Online (AJOL)

    Water hyacinth is a useful weed in the cleaning of water bodies loaded with industrial effluent but can become an environmental problem if its growth is not controlled. Water hyacinth is a potential raw material of several industrial applications. However chemical structure of the lignocellulosic hyacinth biomass has to be ...

  17. Reducing Operating Costs and Energy Consumption at Water Utilities (United States)

    Due to their unique combination of high energy usage and potential for significant savings, utilities are turning to energy-efficient technologies to help save money. Learn about cost and energy saving technologies from this brochure.

  18. Dual water supply system as a way to better resources utilization. The case of Paris.


    Seidl, Martin; Trinh, Claire,; Imbert, Dominique; Hubert, Gilles


    International audience; Dual water supply system can be used to optimize and diversify the water resources utilization. In the case of Paris the non drinking water network can be used to combine several resources like leakage water, river water and reclaimed water. The article propose, to re-evaluate for the city Paris for the existing uses, the actual distribution using mass flow analysis and potential energy considerations.

  19. Clinical utility and performance of sock sampling in weaner pig diarrhoea

    DEFF Research Database (Denmark)

    Pedersen, Ken Steen; Okholm, Elisabeth; Johansen, Markku


    Low pathogen diarrhoea is a group-level diagnosis, characterised by non-haemorrhagic diarrhoea. In the current study, the apparent prevalence of low pathogen diarrhoea outbreaks in Danish herds was investigated along with the clinical utility of a laboratory examination for intestinal disease......, agreement between three consecutive herd examinations from the same herd and agreement between quantitative PCR results from pooled faecal samples and sock samples.Twenty-four veterinarians submitted faecal and sock samples for quantitative PCR testing from outbreaks of diarrhoea in nursery pigs (n=38 herds.......18–0.50) of the herds, changes were related to the diagnostic results from the laboratory examination performed in the study.In 0.16 (95% CL: 0.05–0.36) of the herds, the same infections were demonstrated at all three consecutive examinations. No herds had three consecutive diarrhoea outbreaks classified as low...

  20. A vastly improved method for in situ stable isotope analysis of very small water samples. (United States)

    Coleman, M. L.; Christensen, L. E.; Kriesel, J.; Kelly, J.; Moran, J.; Vance, S.


    The stable isotope compositions of hydrogen and oxygen in water, ice and hydrated minerals are key characteristics to determine the origin and history of the material. Originally, analyses were performed by separating hydrogen and preparing CO2 from the oxygen in water for stable isotope ratio mass spectrometry. Subsequently, infrared absorption spectrometry in either a Herriot cell or by cavity ring down allowed direct analysis of water vapor. We are developing an instrument, intended for spaceflight and in situ deployment, which will exploit Capillary Absorption Spectrometry (CAS) for the H and O isotope analysis and a laser to sample planetary ices and hydrated minerals. The Tunable Laser Spectrometer (TLS) instrument (part of SAM on the MSL rover Curiosity) works by infrared absorption and we use its performance as a benchmark for comparison. TLS has a relatively large sample chamber to contain mirrors which give a long absorption pathlength. CAS works on the same principle but utilizes a hollow optic fiber, greatly reducing the sample volume. The fiber is a waveguide, enhancing the laser - water-vapor interaction and giving more than four orders of magnitude increase in sensitivity, despite a shorter optical path length. We have calculated that a fiber only 2 m long will be able to analyze 5 nanomoles of water with a precision of less than 1 per mil for D?H. The fiber is coiled to minimize instrument volume. Our instrument will couple this analytical capability with laser sampling to free water from hydrated minerals and ice and ideally we would use the same laser via a beam-splitter both for sampling and analysis. The ability to analyze very small samples is of benefit in two ways. In this concept it will allow much faster analysis of small sub-samples, while the high spatial sampling resolution offered by the laser will allow analysis of the heterogeneity of isotopic composition within grains or crystals, revealing the history of their growth.

  1. Interstitial water studies on small core samples, Leg 9 (United States)

    Sayles, F.L.; Waterman, L.S.; Manheim, F. T.


    The chemistry of the pore fluids obtained on Leg 9 is remarkable primarily in its constancy. Excepting silicon and strontium, only at one site do the concentrations of the major and minor constituents deviate notably from sea water concentrations (see Tables 1 and 2). The trends, or lack of them, seen in these samples have been discussed previously and only references will be given here. The constancy of composition and similarity to sea water is particularly noteworthy, as the sediments at all of the 9 sites are thought to be intruded by the basal basalt. The pore fluid chemistry exhibits no evidence of intrusion except possibly at Site 84.

  2. Hexagonal ice in pure water and biological NMR samples

    Energy Technology Data Exchange (ETDEWEB)

    Bauer, Thomas; Gath, Julia; Hunkeler, Andreas; Ernst, Matthias, E-mail: [ETH Zurich, Physical Chemistry (Switzerland); Böckmann, Anja, E-mail: [UMR 5086 CNRS, Université de Lyon 1, Institut de Biologie et Chimie des Protéines (France); Meier, Beat H., E-mail: [ETH Zurich, Physical Chemistry (Switzerland)


    Ice, in addition to “liquid” water and protein, is an important component of protein samples for NMR spectroscopy at subfreezing temperatures but it has rarely been observed spectroscopically in this context. We characterize its spectroscopic behavior in the temperature range from 100 to 273 K, and find that it behaves like pure water ice. The interference of magic-angle spinning (MAS) as well as rf multiple-pulse sequences with Bjerrum-defect motion greatly influences the ice spectra.

  3. Utilization of composite fecal samples for detection of anthelmintic resistance in gastrointestinal nematodes of cattle. (United States)

    George, Melissa M; Paras, Kelsey L; Howell, Sue B; Kaplan, Ray M


    Recent reports indicate that anthelmintic resistance in gastrointestinal nematodes of cattle is becoming increasingly prevalent worldwide. Presently, the fecal egg count reduction test (FECRT) is the only means available for detection of resistance to anthelmintics in cattle herds at the farm level. However, the FECRT is labor and cost intensive, and consequently is only rarely performed on cattle farms unless for research purposes. If costs could be reduced, cattle producers might be more likely to pursue drug resistance testing on their farms. One approach to reducing the cost of the FECRT, is the use of composite fecal samples for performing fecal egg counts (FEC), rather than conducting FEC on fecal samples from 15 to 20 individual animals. In this study FECRT were performed on 14 groups of cattle using both individual and composite FEC methods To measure how well the results of composite sampling reproduce those of individual sampling, Lin's Concordance Correlation Coefficient was utilized to describe both the linear relationship between methods and the slope and y-intercept of the line relating the data sets. There was little difference between the approaches with 98% agreement in mean FEC found between methods Mean FEC based on individual counts ranged between 0 and 670.6 eggs per gram of feces, indicating that the results of this study are applicable to a wide range of FEC levels. Standard error of the mean FEC and range of FEC are reported for each group prior to and following treatment to describe the variability of the data set. There was greater than 95% agreement in drug efficacy between individual and composite sampling methods, demonstrating composite sampling is appropriate to evaluate drug efficacy. Notably, for all groups tested the efficacy calculated by composite sampling was within the 95% confidence interval for efficacy calculated using individual sampling. The use of composite samples was shown to reduce the number of FEC required by 79

  4. Equity in the Utilization of Healthcare Services in India: Evidence from National Sample Survey

    Directory of Open Access Journals (Sweden)

    Soumitra Ghosh


    Full Text Available Background The pursuit of equity in health and healthcare has been the key feature of health policy in India. However, despite the policy significance, the volume of literature available on this issue is scarce. Therefore, this paper is an attempt to examine the horizontal inequities in healthcare utilization, consisting of outpatient and inpatient care in 15 major states and north-eastern region of India. Methods Cross-sectional data were taken from the National Sample Survey Organization (NSSO 60th round (2004, the survey on ‘morbidity and healthcare’. While outpatient care was assessed using the probability of outpatient visit 15 days prior to the survey date, the indicators of inpatient care utilization were based on the following variables: the probability of hospital admission and length of stay in hospital over a 12-month period. All these measures of healthcare utilization were standardized for need differences and controlled for socio-economic factors. Need standardized concentration indices were used to measure interstate and intrastate income-related inequities in healthcare utilization. Results Absolute inequalities were found between states in the proportion of the population reporting a visit to an outpatient provider, in the range of 4.42% to 21.72%. Similarly, inpatient care varied from 1% to 10%. The magnitude of inequity for both outpatient and inpatient care was pro-rich across rural and urban areas of India and in majority of the states. In fact, in majority of the states, the horizontal inequity across types of curative care was noticeably higher within the rural population than in the urban population. The analysis demonstrated that high per capita government health spending was significantly associated with low inequity in utilization of inpatient care. Conclusion The study concludes that it would be necessary to address the prevailing inequities in healthcare by substantially scaling up the public spending on health

  5. Climate Variability and Access to and Utilization of Water Resources ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    The methods used to analyze and interpret the quantitative data gathered on the availability and quality of water will be essentially statistical. The cartography of the way the settlements are structured will reveal local determinants that aggravate the effects of climate variability on water availability. The team will also rely on ...

  6. Water and feed utilization relationship in West African Dwarf (Forest ...

    African Journals Online (AJOL)

    There was no significant difference in the average water intake between the groups but feed intake was significantly different between the groups (P<0.05). Feed efficiency was very similar· between the groups; Dry Matter (DM) intake to water intake ratios were 0.21 and 0.27 respectively while mean daily liveweight gains ...

  7. Climate Change and Urban Water Utilities : Challenges and Opportunities


    Jacobsen, Michael; Dickson, Eric; Danilenko, Alexander


    The impact of climate change is increasingly important for the design, construction, and maintenance of water sector infrastructure. Average global temperatures are on the rise, causing cycles of extreme weather: droughts and flooding are becoming common; seawater levels are rising; and many locations are considerably drier, impacting water sources such as lakes and rivers. Groundwater sup...

  8. CLASSICS Are we Utilizing our Water Resources Wisely?

    Indian Academy of Sciences (India)

    IAS Admin

    something no one can fail to be interested in – water. It reveals aspects of his many-sided personality which went beyond the geologist in him. He belonged to the first generation serving and proud of a newly independent India. The broad vision of linking scientific, social, political, and economic aspects of water for.

  9. Water vapor measurement system in global atmospheric sampling program, appendix (United States)

    Englund, D. R.; Dudzinski, T. J.


    The water vapor measurement system used in the NASA Global Atmospheric Sampling Program (GASP) is described. The system used a modified version of a commercially available dew/frostpoint hygrometer with a thermoelectrically cooled mirror sensor. The modifications extended the range of the hygrometer to enable air sample measurements with frostpoint temperatures down to -80 C at altitudes of 6 to 13 km. Other modifications were made to permit automatic, unattended operation in an aircraft environment. This report described the hygrometer, its integration with the GASP system, its calibration, and operational aspects including measurement errors. The estimated uncertainty of the dew/frostpoint measurements was + or - 1.7 Celsius.

  10. Improved method for isotopic and quantitative analysis of dissolved inorganic carbon in natural water samples. (United States)

    Assayag, Nelly; Rivé, Karine; Ader, Magali; Jézéquel, Didier; Agrinier, Pierre


    We present here an improved and reliable method for measuring the concentration of dissolved inorganic carbon (DIC) and its isotope composition (delta(13)C(DIC)) in natural water samples. Our apparatus, a gas chromatograph coupled to an isotope ratio mass spectrometer (GCIRMS), runs in a quasi-automated mode and is able to analyze about 50 water samples per day. The whole procedure (sample preparation, CO(2(g))-CO(2(aq)) equilibration time and GCIRMS analysis) requires 2 days. It consists of injecting an aliquot of water into a H(3)PO(4)-loaded and He-flushed 12 mL glass tube. The H(3)PO(4) reacts with the water and converts the DIC into aqueous and gaseous CO(2). After a CO(2(g))-CO(2(aq)) equilibration time of between 15 and 24 h, a portion of the headspace gas (mainly CO(2)+He) is introduced into the GCIRMS, to measure the carbon isotope ratio of the released CO(2(g)), from which the delta(13)C(DIC) is determined via a calibration procedure. For standard solutions with DIC concentrations ranging from 1 to 25 mmol . L(-1) and solution volume of 1 mL (high DIC concentration samples) or 5 mL (low DIC concentration samples), delta(13)C(DIC) values are determined with a precision (1sigma) better than 0.1 per thousand. Compared with previously published headspace equilibration methods, the major improvement presented here is the development of a calibration procedure which takes the carbon isotope fractionation associated with the CO(2(g))-CO(2(aq)) partition into account: the set of standard solutions and samples has to be prepared and analyzed with the same 'gas/liquid' and 'H(3)PO(4)/water' volume ratios. A set of natural water samples (lake, river and hydrothermal springs) was analyzed to demonstrate the utility of this new method.


    Zeolites are well known for their ion exchange and adsorption properties. So far the cation exchanger properties of zeolites have been extensively studied and utilized. The anion exchanger properties of zeolites are less studied. Zeolite Faujasite Y has been used to remove arseni...

  12. 40 CFR 258.53 - Ground-water sampling and analysis requirements. (United States)


    ... 40 Protection of Environment 24 2010-07-01 2010-07-01 false Ground-water sampling and analysis....53 Ground-water sampling and analysis requirements. (a) The ground-water monitoring program must... parameters in ground-water samples. Ground-water samples shall not be field-filtered prior to laboratory...


    Energy Technology Data Exchange (ETDEWEB)

    Maxwell, S.; Culligan, B.


    The Savannah River Site Environmental Bioassay Lab participated in the 2008 NRIP Emergency Response program administered by the National Institute for Standards and Technology (NIST) in May, 2008. A new rapid column separation method was used for analysis of actinides and {sup 90}Sr the NRIP 2008 emergency water and urine samples. Significant method improvements were applied to reduce analytical times. As a result, much faster analysis times were achieved, less than 3 hours for determination of {sup 90}Sr and 3-4 hours for actinides. This represents a 25%-33% improvement in analysis times from NRIP 2007 and a {approx}100% improvement compared to NRIP 2006 report times. Column flow rates were increased by a factor of two, with no significant adverse impact on the method performance. Larger sample aliquots, shorter count times, faster cerium fluoride microprecipitation and streamlined calcium phosphate precipitation were also employed. Based on initial feedback from NIST, the SRS Environmental Bioassay Lab had the most rapid analysis times for actinides and {sup 90}Sr analyses for NRIP 2008 emergency urine samples. High levels of potential matrix interferences may be present in emergency samples and rugged methods are essential. Extremely high levels of {sup 210}Po were found to have an adverse effect on the uranium results for the NRIP-08 urine samples, while uranium results for NRIP-08 water samples were not affected. This problem, which was not observed for NRIP-06 or NRIP-07 urine samples, was resolved by using an enhanced {sup 210}Po removal step, which will be described.

  14. Adaptive Kalman Filter Based on Adjustable Sampling Interval in Burst Detection for Water Distribution System

    Directory of Open Access Journals (Sweden)

    Doo Yong Choi


    Full Text Available Rapid detection of bursts and leaks in water distribution systems (WDSs can reduce the social and economic costs incurred through direct loss of water into the ground, additional energy demand for water supply, and service interruptions. Many real-time burst detection models have been developed in accordance with the use of supervisory control and data acquisition (SCADA systems and the establishment of district meter areas (DMAs. Nonetheless, no consideration has been given to how frequently a flow meter measures and transmits data for predicting breaks and leaks in pipes. This paper analyzes the effect of sampling interval when an adaptive Kalman filter is used for detecting bursts in a WDS. A new sampling algorithm is presented that adjusts the sampling interval depending on the normalized residuals of flow after filtering. The proposed algorithm is applied to a virtual sinusoidal flow curve and real DMA flow data obtained from Jeongeup city in South Korea. The simulation results prove that the self-adjusting algorithm for determining the sampling interval is efficient and maintains reasonable accuracy in burst detection. The proposed sampling method has a significant potential for water utilities to build and operate real-time DMA monitoring systems combined with smart customer metering systems.

  15. Utilization of water-reducing admixtures in cemented paste backfill of sulphide-rich mill tailings. (United States)

    Ercikdi, Bayram; Cihangir, Ferdi; Kesimal, Ayhan; Deveci, Haci; Alp, Ibrahim


    This study presents the effect of three different water-reducing admixtures (WRAs) on the rheological and mechanical properties of cemented paste backfill (CPB) samples. A 28-day strength of > or = 0.7 MPa and the maintenance of the stability (i.e. > or = 0.7 MPa) over 360 days of curing were desired as the design criteria. Ordinary Portland cement (OPC) and Portland composite cement (PCC) were used as binders at 5 wt.% dose. WRAs were initially tested to determine the dosage of a WRA for a required consistency of 7'' for CPB mixtures. A total of 192 CPB samples were then prepared using WRAs. The utilization of WRAs enhanced the flow characteristics of the CPB mixture and allowed to achieve the same consistency at a lower water-to-cement ratio. For OPC, the addition of WRAs appeared to improve the both short- and long-term performance of CPB samples. However, only polycarboxylate-based superplasticiser produced the desired 28-day strength of > or = 0.7 MPa when PCC was used as the binder. These findings suggest that WRAs can be suitably exploited for CPB of sulphide-rich tailings to improve the strength and stability in short and long terms allowing to reduce binder costs in a CPB plant. 2010 Elsevier B.V. All rights reserved.

  16. Advanced Water Purification System For In Situ Resource Utilization Project (United States)

    National Aeronautics and Space Administration — Prior to electrolysis, the water generated as an intermediate product must be treated to remove absorbed hydrochloric and hydrofluoric acids, byproducts derived from...


    Zeolites are well known for their ion exchange, adsorption and acid catalysis properties. Different inorganic pollutants have been removed from water at room temperature by using synthetic zeolites. Zeolite Faujasite Y has been used to remove inorganic pollutants including arseni...

  18. Land utilization and water resource inventories over extended test sites (United States)

    Hoffer, R. M.


    In addition to the work on the corn blight this year, several other analysis tests were completed which resulted in significant findings. These aspects are discussed as follows: (1) field spectral measurements of soil conditions; (2) analysis of extended test site data; this discussion involves three different sets of data analysis sequences; (3) urban land use analysis, for studying water runoff potentials; and (4) thermal data quality study, as an expansion of our water resources studies involving temperature calibration techniques.

  19. Optimal approaches for inline sampling of organisms in ballast water: L-shaped vs. Straight sample probes (United States)

    Wier, Timothy P.; Moser, Cameron S.; Grant, Jonathan F.; Riley, Scott C.; Robbins-Wamsley, Stephanie H.; First, Matthew R.; Drake, Lisa A.


    Both L-shaped (;L;) and straight (;Straight;) sample probes have been used to collect water samples from a main ballast line in land-based or shipboard verification testing of ballast water management systems (BWMS). A series of experiments was conducted to quantify and compare the sampling efficiencies of L and Straight sample probes. The findings from this research-that both L and Straight probes sample organisms with similar efficiencies-permit increased flexibility for positioning sample probes aboard ships.

  20. Monitoring of fluoride in water samples using a smartphone

    Energy Technology Data Exchange (ETDEWEB)

    Levin, Saurabh [Akvo Foundation (Netherlands); Krishnan, Sunderrajan [INREM Foundation (India); Rajkumar, Samuel; Halery, Nischal; Balkunde, Pradeep [Akvo Foundation (Netherlands)


    In several parts of India, groundwater is the only reliable, year round source for drinking water. Prevention of fluorosis, a chronic disease resulting from excess intake of fluoride, requires the screening of all groundwater sources for fluoride in endemic areas. In this paper, the authors present a field deployable colorimetric analyzer based on an inexpensive smartphone embedded with digital camera for taking photograph of the colored solution as well as an easy-fit, and compact sample chamber (Akvo Caddisfly). Phones marketed by different smartphone makers were used. Commercially available zirconium xylenol orange reagent was used for determining fluoride concentration. A software program was developed to use with the phone for recording and analyzing the RGB color of the picture. Linear range for fluoride estimation was 0–2 mg l{sup −1}. Around 200 samples, which consisted of laboratory prepared as well as field samples collected from different locations in Karnataka, India, were tested with Akvo Caddisfly. The results showed a significant positive correlation between Ion Selective Electrode (ISE) method and Akvo Caddisfly (Phones A, B and C), with correlation coefficient ranging between 0.9952 and 1.000. In addition, there was no significant difference in the mean fluoride content values between ISE and Phone B and C except for Phone A. Thus the smartphone method is economical and suited for groundwater fluoride analysis in the field. - Highlights: • Fluoride is an inorganic pollutant in ground water, affecting human health. • A colorimetric method for measurement of fluoride in drinking water with smartphone • Measurement is by mixing water with zirconyl xylenol orange complex reagent. • Results are comparable with laboratory-based ion selective fluoride electrode method.

  1. Evaluation of surface sampling techniques for collection of Bacillus spores on common drinking water pipe materials. (United States)

    Packard, Benjamin H; Kupferle, Margaret J


    Drinking water utilities may face biological contamination of the distribution system from a natural incident or deliberate contamination. Determining the extent of contamination or the efficacy of decontamination is a challenge, because it may require sampling of the wetted surfaces of distribution infrastructure. This study evaluated two sampling techniques that utilities might use to sample exhumed pipe sections. Polyvinyl chloride (PVC), cement-lined ductile iron, and ductile iron pipe coupons (3 cm x 14 cm) cut from new water main piping were conditioned for three months in dechlorinated Cincinnati, Ohio tap water. Coupons were spiked with Bacillus atrophaeus subsp. globigii, a surrogate for Bacillus anthracis. Brushing and scraping were used to recover the inoculated spores from the coupons. Mean recoveries for all materials ranged from 37 +/- 30% to 43 +/- 20% for brushing vs. 24 +/- 10% to 51 +/- 29% for scraping. On cement-lined pipe, brushing yielded a significantly different recovery than scraping. No differences were seen between brushing and scraping the PVC and iron pipe coupons. Mean brushing and scraping recoveries from PVC coupons were more variable than mean recoveries from cement-lined and iron coupons. Spore retention differed between pipe materials and the presence of established biofilms also had an impact. Conditioned PVC coupons (with established biofilms) had significantly lower spore retention (31 +/- 11%) than conditioned cement-lined coupons (61 +/- 14%) and conditioned iron coupons (71 +/- 8%).

  2. Groundwater science in water-utility operations: global reflections on current status and future needs (United States)

    Foster, Stephen; Sage, Rob


    The relevance of groundwater science to water-utility operations is analysed from a broad international perspective, identifying key concerns and specific opportunities for the future. The strategic importance worldwide of water utilities assuming the role of lead stakeholders for integrated groundwater resource management, recognizing their often considerable technical know-how and highly significant data holdings, is emphasized. Concurrently, the utilities themselves will need an ever-closer appreciation of groundwater-system behaviour if they are to manage efficiently their water-supply and wastewater operations.

  3. Differences in microbial community composition between injection and production water samples of water flooding petroleum reservoirs

    Directory of Open Access Journals (Sweden)

    P. K. Gao


    Full Text Available Microbial communities in injected water are expected to have significant influence on those of reservoir strata in long-term water flooding petroleum reservoirs. To investigate the similarities and differences in microbial communities in injected water and reservoir strata, high-throughput sequencing of microbial partial 16S rRNA of the water samples collected from the wellhead and downhole of injection wells, and from production wells in a homogeneous sandstone reservoir and a heterogeneous conglomerate reservoir were performed. The results indicate that a small number of microbial populations are shared between the water samples from the injection and production wells in the sandstone reservoir, whereas a large number of microbial populations are shared in the conglomerate reservoir. The bacterial and archaeal communities in the reservoir strata have high concentrations, which are similar to those in the injected water. However, microbial population abundance exhibited large differences between the water samples from the injection and production wells. The number of shared populations reflects the influence of microbial communities in injected water on those in reservoir strata to some extent, and show strong association with the unique variation of reservoir environments.

  4. Water Utility Management Strategies in Turkey: The current situation and the challenges (United States)

    Alp, E.; Aksoy, M. N.; Koçer, B.


    As the effects of climate change becomes more prominent, current challenges related to water and wastewater management is becoming more serious. Providing water that satisfies environmental and safety standards in terms of quantity and quality is needed to maintain human life without compromising the need of future generations. Besides providing safe and affordable water, necessary treatment should be achieved according to several important factors such as receiving body standards, discharge standards, water reuse options. Therefore, management of water becomes more crucial than ever that states have to provide accessibility of safe water with affordable cost to its citizens with the means of effective utility management, including water treatment facilities, wastewater treatment facilities, water supply facilities and water distribution systems. Water utilities encounter with several challenges related to cost, infrastructure, population, legislation, workforce and resource. This study aims to determine the current situation and the necessary strategies to improve utility management in Turkish municipalities in a sustainable manner. US Environment Protection Agency (EPA) has formed a tool on effective utility management that assists utilities to provide a solution for both current and future challenges. In this study, we used EPA's guidelines and developed a survey consists of 60 questions under 10 sub-topics (Product Quality, Employee & Leadership Development, Stakeholder Understanding & Support, Operational Optimization, Infrastructure Stability, Financial Viability, Community Sustainability, Customer Satisfaction, Operational Resiliency, and Water Resource Adequacy). This survey was sent to the managers of 25 metropolitan municipalities in Turkey to assess the current condition of municipalities. After the evaluation of the survey results for each topic, including the importance given by managers, facilities were rated according to their level of achievement

  5. Utility of a Lateral Flow Immunoassay (LFI to Detect Burkholderia pseudomallei in Soil Samples.

    Directory of Open Access Journals (Sweden)

    Patpong Rongkard


    Full Text Available Culture is the gold standard for the detection of environmental B. pseudomallei. In general, soil specimens are cultured in enrichment broth for 2 days, and then the culture broth is streaked on an agar plate and incubated further for 7 days. However, identifying B. pseudomallei on the agar plates among other soil microbes requires expertise and experience. Here, we evaluate a lateral flow immunoassay (LFI developed to detect B. pseudomallei capsular polysaccharide (CPS in clinical samples as a tool to detect B. pseudomallei in environmental samples.First, we determined the limit of detection (LOD of LFI for enrichment broth of the soil specimens. Soil specimens (10 grams/specimen culture negative for B. pseudomallei were spiked with B. pseudomallei ranging from 10 to 105 CFU, and incubated in 10 ml of enrichment broth in air at 40°C. Then, on day 2, 4 and 7 of incubation, 50 μL of the upper layer of the broth were tested on the LFI, and colony counts to determine quantity of B. pseudomallei in the broth were performed. We found that all five soil specimens inoculated at 10 CFU were negative by LFI on day 2, but four of those five specimens were LFI positive on day 7. The LOD of the LFI was estimated to be roughly 3.8x106 CFU/ml, and culture broth on day 7 was selected as the optimal sample for LFI testing. Second, we evaluated the utility of the LFI by testing 105 soil samples from Northeast Thailand. All samples were also tested by standard culture and quantitative PCR (qPCR targeting orf2. Of 105 soil samples, 35 (33% were LFI positive, 25 (24% were culture positive for B. pseudomallei, and 79 (75% were qPCR positive. Of 11 LFI positive but standard culture negative specimens, six were confirmed by having the enrichment broth on day 7 culture positive for B. pseudomallei, and an additional three by qPCR. The LFI had 97% (30/31 sensitivity to detect soil specimens culture positive for B. pseudomallei.The LFI can be used to detect B

  6. Utilizing land and water resources at Apoje sub-basin ...

    African Journals Online (AJOL)

    Of the three statistical distributions used to analyse the steam flow discharges of this sub-basin, the Log-Pearson Type III distribution gives the best fit with coefficient of correlation R2 of 0.99. The distribution also gives the Upper and Lower limits of flood of 553.85m3/s and 344.45m3/s respectively. Keywords: land and water ...

  7. Public Versus Private Water Utilities: Empirical Evidence for Brazilian Companies


    Tito Belchior Moreira; Geraldo da Silva Souza; Ricardo Coelho Faria


    This paper compares the technical efficiency of Brazilian public and private companies in water supply. To measure efficiency a stochastic production frontier model is estimated using two competitive distributions for the inefficiency error component: truncated normal and exponential. The exponential distribution showed a superior fit and was used to assess differences in technical efficiency between public and private companies. The statistical results show that private companies are only ma...

  8. Water isotopic ratios from a continuously melted ice core sample (United States)

    Gkinis, V.; Popp, T. J.; Blunier, T.; Bigler, M.; Schüpbach, S.; Kettner, E.; Johnsen, S. J.


    A new technique for on-line high resolution isotopic analysis of liquid water, tailored for ice core studies is presented. We built an interface between a Wavelength Scanned Cavity Ring Down Spectrometer (WS-CRDS) purchased from Picarro Inc. and a Continuous Flow Analysis (CFA) system. The system offers the possibility to perform simultaneuous water isotopic analysis of δ18O and δD on a continuous stream of liquid water as generated from a continuously melted ice rod. Injection of sub μl amounts of liquid water is achieved by pumping sample through a fused silica capillary and instantaneously vaporizing it with 100% efficiency in a~home made oven at a temperature of 170 °C. A calibration procedure allows for proper reporting of the data on the VSMOW-SLAP scale. We apply the necessary corrections based on the assessed performance of the system regarding instrumental drifts and dependance on the water concentration in the optical cavity. The melt rates are monitored in order to assign a depth scale to the measured isotopic profiles. Application of spectral methods yields the combined uncertainty of the system at below 0.1‰ and 0.5‰ for δ18O and δD, respectively. This performance is comparable to that achieved with mass spectrometry. Dispersion of the sample in the transfer lines limits the temporal resolution of the technique. In this work we investigate and assess these dispersion effects. By using an optimal filtering method we show how the measured profiles can be corrected for the smoothing effects resulting from the sample dispersion. Considering the significant advantages the technique offers, i.e. simultaneuous measurement of δ18O and δD, potentially in combination with chemical components that are traditionally measured on CFA systems, notable reduction on analysis time and power consumption, we consider it as an alternative to traditional isotope ratio mass spectrometry with the possibility to be deployed for field ice core studies. We present

  9. Water isotopic ratios from a continuously melted ice core sample

    Directory of Open Access Journals (Sweden)

    V. Gkinis


    Full Text Available A new technique for on-line high resolution isotopic analysis of liquid water, tailored for ice core studies is presented. We built an interface between a Wavelength Scanned Cavity Ring Down Spectrometer (WS-CRDS purchased from Picarro Inc. and a Continuous Flow Analysis (CFA system. The system offers the possibility to perform simultaneuous water isotopic analysis of δ18O and δD on a continuous stream of liquid water as generated from a continuously melted ice rod. Injection of sub μl amounts of liquid water is achieved by pumping sample through a fused silica capillary and instantaneously vaporizing it with 100% efficiency in a~home made oven at a temperature of 170 °C. A calibration procedure allows for proper reporting of the data on the VSMOW–SLAP scale. We apply the necessary corrections based on the assessed performance of the system regarding instrumental drifts and dependance on the water concentration in the optical cavity. The melt rates are monitored in order to assign a depth scale to the measured isotopic profiles. Application of spectral methods yields the combined uncertainty of the system at below 0.1‰ and 0.5‰ for δ18O and δD, respectively. This performance is comparable to that achieved with mass spectrometry. Dispersion of the sample in the transfer lines limits the temporal resolution of the technique. In this work we investigate and assess these dispersion effects. By using an optimal filtering method we show how the measured profiles can be corrected for the smoothing effects resulting from the sample dispersion. Considering the significant advantages the technique offers, i.e. simultaneuous measurement of δ18O and δD, potentially in combination with chemical components that are traditionally measured on CFA systems, notable reduction on analysis time and power consumption, we consider it as an alternative to traditional isotope ratio mass spectrometry with the possibility to

  10. Utilization of professional psychological care in a large German sample of cancer patients. (United States)

    Faller, Hermann; Weis, Joachim; Koch, Uwe; Brähler, Elmar; Härter, Martin; Keller, Monika; Schulz, Holger; Wegscheider, Karl; Boehncke, Anna; Hund, Bianca; Reuter, Katrin; Richard, Matthias; Sehner, Susanne; Wittchen, Hans-Ulrich; Mehnert, Anja


    Although one-third of cancer patients are perceived to have a need for psychological support based on the percentage of mental disorders, little is known about the actual utilization of psychological care in cancer. We aimed to assess cancer patients' reported use of psychological care and its correlates in a large, representative sample. In a multicenter, cross-sectional study in Germany, 4020 cancer patients (mean age 58 years, 51% women) were evaluated. We obtained self-reports of use of psychotherapy and psychological counseling. We measured distress with the Distress Thermometer, symptoms of depression with the Patient Health Questionnaire, anxiety with the Generalized Anxiety Disorder Scale, and social support with the Illness-specific Social Support Scale. In a subsample of 2141, we evaluated the presence of a mental disorder using the Composite International Diagnostic Interview. In total, 28.9% (95% confidence interval 27.4%-30.4%) reported having used psychotherapy or psychological counseling or both because of distress due to cancer. Independent correlates of utilization included age (odds ratio [OR] = 0.97 per year], sex (male, OR = 0.55), social support (OR = 0.96), symptoms of depression (OR = 1.04) and anxiety (OR = 1.08), the diagnosis of a mental disorder (OR = 1.68), and a positive attitude toward psychosocial support (OR = 1.27). Less than half of those currently diagnosed with a mental disorder reported having taken up psychological support offers. Special efforts should be made to reach populations that report low utilization of psychological care in spite of having a need for support. Copyright © 2016 John Wiley & Sons, Ltd.

  11. BLASST: Band Limited Atomic Sampling With Spectral Tuning With Applications to Utility Line Noise Filtering. (United States)

    Ball, Kenneth Ray; Hairston, W David; Franaszczuk, Piotr J; Robbins, Kay A


    In this paper, we present and test a new method for the identification and removal of nonstationary utility line noise from biomedical signals. The method, band limited atomic sampling with spectral tuning (BLASST), is an iterative approach that is designed to 1) fit nonstationarities in line noise by searching for best-fit Gabor atoms at predetermined time points, 2) self-modulate its fit by leveraging information from frequencies surrounding the target frequency, and 3) terminate based on a convergence criterion obtained from the same surrounding frequencies. To evaluate the performance of the proposed algorithm, we generate several simulated and real instances of nonstationary line noise and test BLASST along with alternative filtering approaches. We find that BLASST is capable of fitting line noise well and/or preserving local signal features relative to tested alternative filtering techniques. BLASST may present a useful alternative to bandpass, notch, or other filtering methods when experimentally relevant features have significant power in a spectrum that is contaminated by utility line noise, or when the line noise in question is highly nonstationary. This is of particular significance in electroencephalography experiments, where line noise may be present in the frequency bands of neurological interest and measurements are typically of low enough strength that induced line noise can dominate the recorded signals. In conjunction with this paper, the authors have released a MATLAB toolbox that performs BLASST on real, vector-valued signals (available at


    National Research Council Canada - National Science Library

    Samuel de Barros Moraes; Celi Langhi; Marcos Crivelaro


      This case study, based on interviews and technical analysis of a Brazilian water utility with more than 10 million clients, aims to understand what kind of adjusts on a telecommunications network...

  13. Climate Change Vulnerability Assessments: Four Case Studies of Water Utility Practices (2011 Final) (United States)

    EPA has released the final report titled, Climate Change Vulnerability Assessments: Four Case Studies of Water Utility Practices. This report was prepared by the National Center for Environmental Assessment's Global Climate Research Staff in the Office of Research and D...

  14. Fluorescent determination of graphene quantum dots in water samples. (United States)

    Benítez-Martínez, Sandra; Valcárcel, Miguel


    This work presents a simple, fast and sensitive method for the preconcentration and quantification of graphene quantum dots (GQDs) in aqueous samples. GQDs are considered an object of analysis (analyte) not an analytical tool which is the most frequent situation in Analytical Nanoscience and Nanotechnology. This approach is based on the preconcentration of graphene quantum dots on an anion exchange sorbent by solid phase extraction and their subsequent elution prior fluorimetric analysis of the solution containing graphene quantum dots. Parameters of the extraction procedure such as sample volume, type of solvent, sample pH, sample flow rate and elution conditions were investigated in order to achieve extraction efficiency. The limits of detection and quantification were 7.5 μg L(-1) and 25 μg L(-1), respectively. The precision for 200 μg L(-1), expressed as %RSD, was 2.8%. Recoveries percentages between 86.9 and 103.9% were obtained for two different concentration levels. Interferences from other nanoparticles were studied and no significant changes were observed at the concentration levels tested. Consequently, the optimized procedure has great potential to be applied to the determination of graphene quantum dots at trace levels in drinking and environmental waters. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Utilization of immobilized urease for waste water treatment (United States)

    Husted, R. R.


    The feasibility of using immobilized urease for urea removal from waste water for space system applications is considered, specifically the elimination of the urea toxicity problem in a 30-day Orbiting Frog Otolith (OFO) flight experiment. Because urease catalyzes the hydrolysis of urea to ammonia and carbon dioxide, control of their concentrations within nontoxic limits was also determined. The results of this study led to the use of free urease in lieu of the immobilized urease for controlling urea concentrations. An ion exchange resin was used which reduced the NH3 level by 94% while reducing the sodium ion concentration only 10%.

  16. 75 FR 51806 - Climate Change Vulnerability Assessment: Four Case Studies of Water Utility Practices (United States)


    ...-0701] Climate Change Vulnerability Assessment: Four Case Studies of Water Utility Practices AGENCY...-day public comment period for the draft document titled, ``Climate Change Vulnerability Assessment... utilities to assess their vulnerability to future climate change. The report is intended to illustrate the...

  17. An experiment in representative ground-water sampling for water- quality analysis (United States)

    Huntzinger, T.L.; Stullken, L.E.


    Obtaining a sample of groundwater that accurately represents the concentration of a chemical constituent in an aquifer is an important aspect of groundwater-quality studies. Varying aquifer and constituent properties may cause chemical constituents to move within selectively separate parts of the aquifer. An experiment was conducted in an agricultural region in south-central Kansas to address questions related to representative sample collection. Concentrations of selected constituents in samples taken from observation wells completed in the upper part of the aquifer were compared to concentrations in samples taken from irrigation wells to determine if there was a significant difference. Water in all wells sampled was a calcium bicarbonate type with more than 200 mg/L hardness and about 200 mg/L alkalinity. Sodium concentrations were also quite large (about 40 mg/L). There was a significant difference in the nitrite-plus-nitrate concentrations between samples from observation and irrigation wells. The median concentration of nitrite plus nitrate in water from observation wells was 5.7 mg/L compared to 3.4 mg/L in water from irrigation wells. The differences in concentrations of calcium, magnesium, and sodium (larger in water from irrigation wells) were significant at the 78% confidence level but not at the 97% confidence level. Concentrations of the herbicide, atrazine, were less than the detection limit of 0.1 micrograms/L in all but one well. (USGS)

  18. Efficiency of Brazilian public and private water utilities

    Directory of Open Access Journals (Sweden)

    Geraldo da Silva e Souza


    Full Text Available This paper compares cost efficiencies of Brazilian public and private companies of water supply. To measure efficiency a Cobb-Douglas stochastic cost frontier model including technical effects is estimated by maximum likelihood to a panel of Brazilian firms for the period 2002 -2004. The statistical results indicate that there is evidence that public firms are more efficient although the difference in efficiency is declining over time. Overall the system of water and sewerage supply is becoming more efficient over time.Este artigo compara eficiências custo de empresas publicas e privadas brasileiras de oferta de água. Para mensurar a eficiência faz-se uso de um modelo de fronteira estocástica definido por meio de uma função custo na família Cobb-Douglas. A especificação da fronteira inclui efeitos técnicos. Estima-se o modelo pelo método de máxima verossimilhança para um painel de firmas brasileiras observadas no período 20022004. Os resultados estatísticos indicam evidência de que as firmas públicas são mais eficientes, embora a diferença em eficiência esteja declinando no período analisado. De um modo geral, o sistema de oferta de água e saneamento está se tornando mais eficiente ao longo do tempo.

  19. Preliminary study of water sources for maintenance and water utilization strategies of Haloxylon ammodendron in the arid desert area of northwestern China


    Liu, Guojun; Lv, Jinling; Zhang, Ximing


    Natural vegetation in arid desert areas has been severely affected by uneven spatial-temporal precipitation and underground water distribution. Therefore, it is quite necessary to reserve maintenance water sources and water utilization strategies of natural vegetation. In our experiment, the Haloxylon ammodendron was selected to learn about the maintenance water sources and water utilization strategies. The results displayed that H. ammodendron could utilize various water sources, in which gr...

  20. Quality of nutrient data from streams and ground water sampled during water years 1992-2001 (United States)

    Mueller, David K.; Titus, Cindy J.


    Proper interpretation of water-quality data requires consideration of the effects that bias and variability might have on measured constituent concentrations. In this report, methods are described to estimate the bias due to contamination of samples in the field or laboratory and the variability due to sample collection, processing, shipment, and analysis. Contamination can adversely affect interpretation of measured concentrations in comparison to standards or criteria. Variability can affect interpretation of small differences between individual measurements or mean concentrations. Contamination and variability are determined for nutrient data from quality-control samples (field blanks and replicates) collected as part of the National Water-Quality Assessment (NAWQA) Program during water years 1992-2001. Statistical methods are used to estimate the likelihood of contamination and variability in all samples. Results are presented for five nutrient analytes from stream samples and four nutrient analytes from ground-water samples. Ammonia contamination can add at least 0.04 milligram per liter in up to 5 percent of all samples. This could account for more than 22 percent of measured concentrations at the low range of aquatic-life criteria (0.18 milligram per liter). Orthophosphate contamination, at least 0.019 milligram per liter in up to 5 percent of all samples, could account for more than 38 percent of measured concentrations at the limit to avoid eutrophication (0.05 milligram per liter). Nitrite-plus-nitrate and Kjeldahl nitrogen contamination is less than 0.4 milligram per liter in 99 percent of all samples; thus there is no significant effect on measured concentrations of environmental significance. Sampling variability has little or no effect on reported concentrations of ammonia, nitrite-plus-nitrate, orthophosphate, or total phosphorus sampled after 1998. The potential errors due to sampling variability are greater for the Kjeldahl nitrogen analytes and

  1. A case study of electric utility demand reduction with commerical solar water heaters

    Energy Technology Data Exchange (ETDEWEB)

    Ewert, M.; Hoffner, J.E.; Panico, D. (City of Austin Electric Utility Dept., Austin, TX (US))


    The City of Austin, is studying the impact of solar water heaters on summer peak electric demand. One passive and two active solar water heating systems were installed on city owned commercial buildings which had electric water heaters in 1985 and have been monitored for two years. This paper reports on a method that has been developed to determine the peak demand reduction attributable to the solar systems. Results show that solar water heating systems are capable of large demand reductions as long as there is a large hot water demand to displace. The average noncoincident demand reduction (during the water heater's peak output) ranged from 0.8 to 5.8 kilowatts per system, however, the coincident demand reduction during the utility peak demand period was 0.3 to 0.8 kilowatts per system. Thus, a critical factor when assessing the benefit to the electric utility is the time of hot water demand.

  2. Microfluidic chip with optical sensor for rapid detection of nerve agent Sarin in water samples (United States)

    Tan, Hsih Yin; Nguyen, Nam-Trung; Loke, Weng Keong; Tan, Yong Teng


    The chemical warfare agent Sarin is an organophosphate that is highly toxic to humans as they can act as cholinesterase inhibitors, that disrupts neuromuscular transmission. As these nerve agents are colorless, odorless and highly toxic, they can be introduced into drinking water as a means of terrorist sabotage. Hence, numerous innovative devices and methods have been developed for rapid detection of these organophosphates. Microfluidic technology allows the implementation of fast and sensitive detection of Sarin. In this paper, a micro-total analysis systems (TAS), also known as Lab-on-a-chip, fitted with an optical detection system has been developed to analyze the presence of the nerve agent sarin in water samples. In the present set-up, inhibition of co-introduced cholinesterase and water samples containing trace amounts of nerve agent sarin into the microfluidic device was used as the basis for selective detection of sarin. The device was fabricated using polymeric micromachining with PMMA (poly (methymethacrylate)) as the substrate material. A chromophore was utilized to measure the activity of remnant cholinesterase activity, which is inversely related to the amount of sarin present in the water samples. Comparisons were made between two different optical detection techniques and the findings will be presented in this paper. The presented measurement method is simple, fast and as sensitive as Gas Chromatography.

  3. Below-ground interspecific competition for water in a rubber agroforestry system may enhance water utilization in plants


    Junen Wu; Wenjie Liu; Chunfeng Chen


    Rubber-based (Hevea brasiliensis) agroforestry systems are regarded as the best way to improve the sustainability of rubber monocultures, but few reports have examined water use in such systems. Accordingly, we tested whether interplanting facilitates water utilization of rubber trees using stable isotope (?D, ?18O, and ?13C) methods and by measuring soil water content (SWC), shoot potential, and leaf C and N concentrations in a Hevea-Flemingia agroforestry system in Xishuangbanna, southweste...

  4. Study of the possibility of thermal utilization of contaminated water in low-power boilers (United States)

    Roslyakov, P. V.; Proskurin, Y. V.; Zaichenko, M. N.


    The utilization of water contaminated with oil products is a topical problem for thermal power plants and boiler houses. It is reasonable to use special water treatment equipment only for large power engineering and industry facilities. Thermal utilization of contaminated water in boiler furnaces is proposed as an alternative version of its utilization. Since there are hot-water fire-tube boilers at many enterprises, it is necessary to study the possibility of thermal utilization of water contaminated with oil products in their furnaces. The object of this study is a KV-GM-2.0 boiler with a heating power of 2 MW. The pressurized burner developed at the Moscow Power Engineering Institute, National Research University, was used as a burner device for supplying liquid fuel. The computational investigations were performed on the basis of the computer simulation of processes of liquid fuel atomization, mixing, ignition, and burnout; in addition, the formation of nitrogen oxides was simulated on the basis of ANSYS Fluent computational dynamics software packages, taking into account radiative and convective heat transfer. Analysis of the results of numerical experiments on the combined supply of crude oil and water contaminated with oil products has shown that the thermal utilization of contaminated water in fire-tube boilers cannot be recommended. The main causes here are the impingement of oil droplets on the walls of the flame tube, as well as the delay in combustion and increased emissions of nitrogen oxides. The thermal utilization of contaminated water combined with diesel fuel can be arranged provided that the water consumption is not more than 3%; however, this increases the emission of nitrogen oxides. The further increase in contaminated water consumption will lead to the reduction of the reliability of the combustion process.

  5. Below-ground interspecific competition for water in a rubber agroforestry system may enhance water utilization in plants. (United States)

    Wu, Junen; Liu, Wenjie; Chen, Chunfeng


    Rubber-based (Hevea brasiliensis) agroforestry systems are regarded as the best way to improve the sustainability of rubber monocultures, but few reports have examined water use in such systems. Accordingly, we tested whether interplanting facilitates water utilization of rubber trees using stable isotope (δD, δ(18)O, and δ(13)C) methods and by measuring soil water content (SWC), shoot potential, and leaf C and N concentrations in a Hevea-Flemingia agroforestry system in Xishuangbanna, southwestern China. We detected a big difference in the utilization of different soil layer water between both species in this agroforestry system, as evidenced by the opposite seasonal fluctuations in both δD and δ(18)O in stem water. However, similar predawn shoot potential of rubber trees at both sites demonstrating that the interplanted species did not affect the water requirements of rubber trees greatly. Rubber trees with higher δ(13)C and more stable physiological indexes in this agroforestry system showed higher water use efficiency (WUE) and tolerance ability, and the SWC results suggested this agroforestry is conductive to water conservation. Our results clearly indicated that intercropping legume plants with rubber trees can benefit rubber trees own higher N supply, increase their WUE and better utilize soil water of each soil layer.

  6. EPA, Albuquerque Water Utility Agree to Penalties for Sewage Overflows and E. Coli Violations (United States)

    DALLAS - (March 22, 2016) The U.S. Environmental Protection Agency (EPA) and the Albuquerque Bernalillo County Water Utility Authority (ABCWUA) have agreed to a settlement for violations of the Clean Water Act. ABCUWA will pay a civil penalty of $33

  7. Analysis on Impact Factors of Water Utilization Structure in Tianjin, China

    Directory of Open Access Journals (Sweden)

    Conglin Zhang


    Full Text Available Water is an essential foundation for socio-economic development and environmental protection. As such, it is very critical for a city’s sustainable development. This study analyzed the changes in water utilization structure and its impact factors using water consumption data for agricultural, industrial, domestic and ecological areas in the city of Tianjin, China from 2004 to 2013. On this base, the evolution law and impact factors of water utilization structure were depicted by information entropy and grey correlation respectively. These analyses lead to three main results. First, the total amount of water consumption in Tianjin increased slightly from 2004 to 2013. Second, the information entropy and equilibrium degree peaked in 2010. From 2004 to 2010, the water utilization structure tended to be more disordered and balanced. Third, the economic and social factors seemed to influence the water utilization structure, while the main impact factors were industrial structure, per capita green area, cultivated area, effective irrigation area, rural electricity consumption, animal husbandry output, resident population, per capita domestic water etc.

  8. Sex Differences in rt-PA Utilization at Hospitals Treating Stroke: The National Inpatient Sample

    Directory of Open Access Journals (Sweden)

    Amelia K. Boehme


    Full Text Available Background and purposeSex and race disparities in recombinant tissue plasminogen activator (rt-PA use have been reported. We sought to explore sex and race differences in the utilization of rt-PA at primary stroke centers (PSCs compared to non-PSCs across the US.MethodsData from the National (Nationwide Inpatient Sample (NIS 2004–2010 was utilized to assess sex differences in treatment for ischemic stroke in PSCs compared to non-PSCs.ResultsThere were 304,152 hospitalizations with a primary diagnosis of ischemic stroke between 2004 and 2010 in the analysis: 75,160 (24.7% patients were evaluated at a PSC. A little over half of the patients evaluated at PSCs were female (53.8%. A lower proportion of women than men received rt-PA at both PSCs (6.8 vs. 7.5%, p < 0.001 and non-PSCs (2.3 vs. 2.8%, p < 0.001. After adjustment for potential confounders the odds of being treated with rt-PA remained lower for women regardless of presentation to a PSC (OR 0.87, 95% CI 0.81–0.94 or non-PSC (OR 0.88, 95% CI 0.82–0.94. After stratifying by sex and race, the lowest absolute treatment rates were observed in black women (4.4% at PSC, 1.9% at non-PSC. The odds of treatment, relative to white men, was however lowest for white women (PSC OR = 0.85, 95% CI 0.78–0.93; non-PSC OR = 0.80, 95% CI 0.75–0.85. In the multivariable model, sex did not modify the effect of PSC certification on rt-PA utilization (p-value for interaction = 0.58.ConclusionWomen are less likely to receive rt-PA than men at both PSCs and non-PSCs. Absolute treatment rates are lowest in black women, although the relative difference in men and women was greatest for white women.

  9. Fluorescent determination of graphene quantum dots in water samples

    Energy Technology Data Exchange (ETDEWEB)

    Benítez-Martínez, Sandra; Valcárcel, Miguel, E-mail:


    This work presents a simple, fast and sensitive method for the preconcentration and quantification of graphene quantum dots (GQDs) in aqueous samples. GQDs are considered an object of analysis (analyte) not an analytical tool which is the most frequent situation in Analytical Nanoscience and Nanotechnology. This approach is based on the preconcentration of graphene quantum dots on an anion exchange sorbent by solid phase extraction and their subsequent elution prior fluorimetric analysis of the solution containing graphene quantum dots. Parameters of the extraction procedure such as sample volume, type of solvent, sample pH, sample flow rate and elution conditions were investigated in order to achieve extraction efficiency. The limits of detection and quantification were 7.5 μg L{sup −1} and 25 μg L{sup −1}, respectively. The precision for 200 μg L{sup −1}, expressed as %RSD, was 2.8%. Recoveries percentages between 86.9 and 103.9% were obtained for two different concentration levels. Interferences from other nanoparticles were studied and no significant changes were observed at the concentration levels tested. Consequently, the optimized procedure has great potential to be applied to the determination of graphene quantum dots at trace levels in drinking and environmental waters. - Highlights: • Development of a novel and simple method for determination of graphene quantum dots. • Preconcentration of graphene quantum dots by solid phase extraction. • Fluorescence spectroscopy allows fast measurements. • High sensitivity and great reproducibility are achieved.

  10. New role for communication fibre optic cables in water utility for leak detection on main water pipeline

    Directory of Open Access Journals (Sweden)

    Graovac Radojica M.


    Full Text Available During construction of main water pipeline it is usual practice to lay fibre optic communication cable along water pipe. This cable is one of the up to date communication media which is used for the connection purposes of water control SCADA equipment as well as for establishing of telephone communication between water utility plants. By developing of new electronic equipment known as DTS (Distributed Temperature Sensing and DAS (Distributed Acoustic Sensing equipment it has been opened the possibility, with this equipment and by utilizing of dedicated optical fibres of optical fibre communication cable as a sensor, to detect leakage point by temperature monitoring or monitoring of acoustic changes along water pipeline (as detection of temperature change of soil at leakage point or detection of acoustic change at leakage point.

  11. Differentiating sources of anthropogenic loading to impaired water bodies utilizing ratios of sucralose and other microconstituents. (United States)

    Oppenheimer, Joan A; Badruzzaman, Mohammad; Jacangelo, Joseph G


    Previous studies have suggested the use of sucralose, a synthetic non-nutritive sweetener, as an indicator of domestic wastewater loading to surface waters. This paper presents a novel flow schematic approach for quantifying volumetric load contributions from different water sources by utilizing sucralose as a master diagnostic variable in combination with other trace compounds. This conceptual approach was validated through demonstration of sucralose presence at positive field sites susceptible to either water reuse or septic infiltration and its absence at negative field sites. Differences in the ratios of carbamazepine to sucralose and gadolinium anomaly to sucralose were demonstrated for eight septic and water reuse effluents. Utilization of these ratios as a means of distinguishing septic and water reuse loading to water bodies merits additional study. In the absence of sustained loading, the use of carbamazepine might be hindered by photolysis and gadolinium anomaly might be hindered when volumetric loading is less than 20%. Copyright © 2012 Elsevier Ltd. All rights reserved.

  12. Climate Change Projections: A User Community Perspective from the Water Utility Climate Alliance (WUCA) (United States)

    Behar, D.; Fleming, P.; Stickel, L.; Kaatz, L.; Smyth, T.


    The Water Utility Climate Alliance (WUCA) is a coalition of eight large water providers from around the United States formed in 2007 to address climate change adaptation challenges faced by water utilities. WUCA members include the San Francisco Public Utilities Commission, Seattle Public Utilities, Denver Water, New York City Department of Environmental Protection, Portland Water Bureau, Metropolitan Water District of Southern California, San Diego County Water Authority, and Southern Nevada Water Authority. As water utilities contemplate hundreds of billions of dollars in renewal and replacement investment in their aging infrastructures in the coming decades, and the implications of these investments for their ratepayers, they now recognize that those decisions must be made in the context of climate change. Yet long- and short- term climate projections currently provide a wide array of potential climate change effects, in some cases contradictory effects, for such factors as temperature, precipitation, and hydrologic variability. One of the WUCA's early objectives, therefore, has been to raise the urgency level within the climate research community as to the need for climate projections that can be incorporated into water management and planning. In particular, WUCA has identified a need for greater investment and research in higher resolution modeling, at the watershed level or finer grid scale, and in improvements in certain model parameters, such as precipitation, on the part of the climate modeling community. For example, in comments to the federal umbrella effort, the Climate Change Science Program, the Alliance has urged improved data gathering and increased modeling investment. Finally, for this and other programs seeking higher level scientific understanding of climate change, WUCA has found that communication between the climate research community and the "user community" must be enhanced from present levels.

  13. Risk analysis and management in the water utility sector - a review of drivers, tools and techniques


    Pollard, Simon J. T.; Strutt, J. E.; MacGillivray, Brian H.; Hamilton, Paul D.; Hrudey, Steve E.


    The provision of wholesome, affordable and safe drinking water that has the trust of customers is the goal of the international water utility sector. Risk management, in terms of protecting the public health from pathogenic and chemical hazards has driven and continues to drive developments within the sector. In common with much of industry, the water sector is formalizing and making explicit approaches to risk management and decision-making that have formerly been implicit....


    Directory of Open Access Journals (Sweden)



    Full Text Available In order to mitigate Hungary’s vulnerability in energy supply and accomplish the renewable energy production targets, it is essential to discover exploitable alternative opportunities for energy production and step up the utilization of the available capacities. The purpose of this publication is to map up the utilization structure of the existing Hungarian thermal water wells, describe its changes over the past 16 years, reveal the associated reasons and define the unutilized well capacities that may contribute to increasing the exploitation of geothermal heat by municipalities. The studies have been conducted in view of the Cadaster of Thermal Water Wells of Hungary compiled in 1994, the well cadasters kept by the regional water management directorates, as well as the data of the digital thermal water cadaster of 2010. The calculations performed for the evaluation of data have been based on the ratios and respective utilization areas of the existing wells. In the past 150 years, nearly 1500 thermal water wells have been drilled for use by a broad range of economic operations. The principal goals of constructing thermal water wells encompass the use of water in balneology, water and heat supply to the agriculture, hydrocarbon research and the satisfaction of municipal water demands. In 1994, 26% of the facilities was operated as baths, 21% was used by agriculture, while 13% and 12% served communal and waterworks supply, respectively. Then in 2010, 31% of thermal water wells was continued to be used for the water supply of bathing establishments, followed by 20% for agricultural use, 19% for utilization by waterworks, 11% for observation purposes and 10% for communal use. During the 16 years between 1994 and 2010, the priorities of utilization often changed, new demands emerged in addition to the former utilization goals of thermal water wells. The economic landscape and changes in consumer habits have transformed the group of consumers, which

  15. Determination of trihalomethanes in water samples: A review

    Energy Technology Data Exchange (ETDEWEB)

    Perez Pavon, Jose Luis [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias Quimicas, Universidad de Salamanca, 37008 Salamanca (Spain)], E-mail:; Herrero Martin, Sara; Garcia Pinto, Carmelo; Moreno Cordero, Bernardo [Departamento de Quimica Analitica, Nutricion y Bromatologia, Facultad de Ciencias Quimicas, Universidad de Salamanca, 37008 Salamanca (Spain)


    This article reviews the most recent literature addressing the analytical methods applied for trihalomethanes (THMs) determination in water samples. This analysis is usually performed with gas chromatography (GC) combined with a preconcentration step. The detectors most widely used in this type of analyses are mass spectrometers (MS) and electron capture detectors (ECD). Here, we review the analytical characteristics, the time required for analysis, and the simplicity of the optimised methods. The main difference between these methods lies in the sample pretreatment step; therefore, special emphasis is placed on this aspect. The techniques covered are direct aqueous injection (DAI), liquid-liquid extraction (LLE), headspace (HS), and membrane-based techniques. We also review the main chromatographic columns employed and consider novel aspects of chromatographic analysis, such as the use of fast gas chromatography (FGC). Concerning the detection step, besides the common techniques, the use of uncommon detectors such as fluorescence detector, pulsed discharge photoionization detector (PDPID), dry electrolytic conductivity detector (DELCD), atomic emission detector (AED) and inductively coupled plasma-mass spectrometry (ICP-MS) for this type of analysis is described.

  16. Detection and spatial mapping of mercury contamination in water samples using a smart-phone. (United States)

    Wei, Qingshan; Nagi, Richie; Sadeghi, Kayvon; Feng, Steve; Yan, Eddie; Ki, So Jung; Caire, Romain; Tseng, Derek; Ozcan, Aydogan


    Detection of environmental contamination such as trace-level toxic heavy metal ions mostly relies on bulky and costly analytical instruments. However, a considerable global need exists for portable, rapid, specific, sensitive, and cost-effective detection techniques that can be used in resource-limited and field settings. Here we introduce a smart-phone-based hand-held platform that allows the quantification of mercury(II) ions in water samples with parts per billion (ppb) level of sensitivity. For this task, we created an integrated opto-mechanical attachment to the built-in camera module of a smart-phone to digitally quantify mercury concentration using a plasmonic gold nanoparticle (Au NP) and aptamer based colorimetric transmission assay that is implemented in disposable test tubes. With this smart-phone attachment that weighs smart application was utilized to process each acquired transmission image on the same phone to achieve a limit of detection of ∼ 3.5 ppb. Using this smart-phone-based detection platform, we generated a mercury contamination map by measuring water samples at over 50 locations in California (USA), taken from city tap water sources, rivers, lakes, and beaches. With its cost-effective design, field-portability, and wireless data connectivity, this sensitive and specific heavy metal detection platform running on cellphones could be rather useful for distributed sensing, tracking, and sharing of water contamination information as a function of both space and time.

  17. Diagnostic utility of the Impact of Event Scale-Revised in two samples of survivors of war

    NARCIS (Netherlands)

    Morina, N.; Ehring, T.; Priebe, S.


    The study aimed at examining the diagnostic utility of the Impact of Event Scale-Revised (IES-R) as a screening tool for post-traumatic stress disorder (PTSD) in survivors of war. The IES-R was completed by two independent samples that had survived the war in the Balkans: a sample of randomly

  18. Effective utilization of waste water through recycling, reuse, and remediation for sustainable agriculture. (United States)

    Raman, Rajamani; Krishnamoorthy, Renga


    Water is vital for human, animal, and plant life. Water is one of the most essential inputs for the production of crops. Plants need it in enormous quantities continuously during their life. The role of water is felt everywhere; its scarcity causes droughts and famines, its excess causes floods and deluge. During the next two decades, water will increasingly be considered a critical resource for the future survival of the arid and semiarid countries. The requirement of water is increasing day by day due to intensive agriculture practices, urbanization, population growth, industrialization, domestic use, and other uses. On the other hand, the availability of water resources is declining and the existing water is not enough to meet the needs. To overcome this problem, one available solution is utilization of waste water by using recycling, reuse, and remediation process.

  19. Sampling trace organic compounds in water: a comparison of a continuous active sampler to continuous passive and discrete sampling methods (United States)

    Coes, Alissa L.; Paretti, Nicholas V.; Foreman, William T.; Iverson, Jana L.; Alvarez, David A.


    A continuous active sampling method was compared to continuous passive and discrete sampling methods for the sampling of trace organic compounds (TOCs) in water. Results from each method are compared and contrasted in order to provide information for future investigators to use while selecting appropriate sampling methods for their research. The continuous low-level aquatic monitoring (CLAM) sampler (C.I.Agent® Storm-Water Solutions) is a submersible, low flow-rate sampler, that continuously draws water through solid-phase extraction media. CLAM samplers were deployed at two wastewater-dominated stream field sites in conjunction with the deployment of polar organic chemical integrative samplers (POCIS) and the collection of discrete (grab) water samples. All samples were analyzed for a suite of 69 TOCs. The CLAM and POCIS samples represent time-integrated samples that accumulate the TOCs present in the water over the deployment period (19–23 h for CLAM and 29 days for POCIS); the discrete samples represent only the TOCs present in the water at the time and place of sampling. Non-metric multi-dimensional scaling and cluster analysis were used to examine patterns in both TOC detections and relative concentrations between the three sampling methods. A greater number of TOCs were detected in the CLAM samples than in corresponding discrete and POCIS samples, but TOC concentrations in the CLAM samples were significantly lower than in the discrete and (or) POCIS samples. Thirteen TOCs of varying polarity were detected by all of the three methods. TOC detections and concentrations obtained by the three sampling methods, however, are dependent on multiple factors. This study found that stream discharge, constituent loading, and compound type all affected TOC concentrations detected by each method. In addition, TOC detections and concentrations were affected by the reporting limits, bias, recovery, and performance of each method.

  20. Rapid quantitative analysis of microcystins in raw surface waters with MALDI MS utilizing easily synthesized internal standards. (United States)

    Roegner, Amber F; Schirmer, Macarena Pírez; Puschner, Birgit; Brena, Beatriz; Gonzalez-Sapienza, Gualberto


    The freshwater cyanotoxins, microcystins (MCs), pose a global public health threat as potent hepatotoxins in cyanobacterial blooms; their persistence in drinking and recreational water has been associated with potential chronic effects in addition to acute intoxications. Rapid and accurate detection of the over 80 structural congeners is challenged by the rigorous and time consuming clean up required to overcome interference found in raw water samples. MALDI-MS has shown promise for rapid quantification of individual congeners in raw water samples, with very low operative cost, but so far limited sensitivity and lack of available and versatile internal standards (ISs) has limited its use. Two easily synthesized S-hydroxyethyl-Cys(7)-MC-LR and -RR ISs were used to generate linear standard curves in a reflectron MALDI instrument, reproducible across several orders of magnitude for MC-LR, -RR and -YR. Minimum quantification limits in direct water samples with no clean up or concentration step involved were consistently below 7 μg/L, with recoveries from spiked samples between 80 and 119%. This method improves sensitivity by 30 fold over previous reports of quantitative MALDI-TOF applications to MCs and provides a salient option for rapid throughput analysis for multiple MC congeners in untreated raw surface water blooms as a means to identify source public health threats and target intervention strategies within a watershed. As demonstrated by analysis of a set of samples from Uruguay, utilizing the reaction of different MC congeners with alternate sulfhydryl compounds, the m/z of the IS can be customized to avoid overlap with interfering compounds in local surface water samples. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. When the 'soft-path' gets hard: demand management and financial instability for water utilities (United States)

    Zeff, H. B.; Characklis, G. W.


    In the past, cost benefit analysis (CBA) has been viewed as an effective means of evaluating water utility strategies, particularly those that were dependent on the construction of new supply infrastructure. As water utilities have begun to embrace 'soft-path' approaches as a way to reduce the need for supply-centric development, CBA fails to recognize some important financial incentives affected by reduced water consumption. Demand management, both as a short-term response to drought and in longer-term actions to accommodate demand growth, can introduce revenue risks that adversely affect a utility's ability to repay debt, re-invest in aging infrastructure, or maintain reserve funds for use in a short-term emergency. A utility that does not generate sufficient revenue to support these functions may be subject to credit rating downgrades, which in turn affect the interest rate it pays on its debt. Interest rates are a critical consideration for utility managers in the capital-intensive water sector, where debt payments for infrastructure often account for a large portion of a utility's overall costs. Even a small increase in interest rates can add millions of dollars to the cost of new infrastructure. Recent studies have demonstrated that demand management techniques can lead to significant revenue variability, and credit rating agencies have begun to take notice of drought response plans when evaluating water utility credit ratings, providing utilities with a disincentive to fully embrace soft-path approaches. This analysis examines the impact of demand management schemes on key credit rating metrics for a water utility in Raleigh, North Carolina. The utility's consumer base is currently experiencing rapid population growth, and demand management has the potential to reduce the dependence on costly new supply infrastructure but could lead to financial instability that will significantly increase the costs of financing future projects. This work analyzes how 'soft

  2. Laser based water equilibration method for d18O determination of water samples (United States)

    Mandic, Magda; Smajgl, Danijela; Stoebener, Nils


    Determination of d18O with water equilibration method using mass spectrometers equipped with equilibration unit or Gas Bench is known already for many years. Now, with development of laser spectrometers this extends methods and possibilities to apply different technologies in laboratory but also in the field. The Thermo Scientific™ Delta Ray™ Isotope Ratio Infrared Spectrometer (IRIS) analyzer with the Universal Reference Interface (URI) Connect and Teledyne Cetac ASX-7100 offers high precision and throughput of samples. It employs optical spectroscopy for continuous measurement of isotope ratio values and concentration of carbon dioxide in ambient air, and also for analysis of discrete samples from vials, syringes, bags, or other user-provided sample containers. Test measurements and conformation of precision and accuracy of method determination d18O in water samples were done in Thermo Fisher application laboratory with three lab standards, namely ANST, Ocean II and HBW. All laboratory standards were previously calibrated with international reference material VSMOW2 and SLAP2 to assure accuracy of the isotopic values of the water. With method that we present in this work achieved repeatability and accuracy are 0.16‰ and 0.71‰, respectively, which fulfill requirements of regulatory method for wine and must after equilibration with CO2.

  3. Preliminary Investigation on the Effects of Shockwaves on Water Samples Using a Portable Semi-Automatic Shocktube (United States)

    Wessley, G. Jims John


    The propagation of shock waves through any media results in an instantaneous increase in pressure and temperature behind the shockwave. The scope of utilizing this sudden rise in pressure and temperature in new industrial, biological and commercial areas has been explored and the opportunities are tremendous. This paper presents the design and testing of a portable semi-automatic shock tube on water samples mixed with salt. The preliminary analysis shows encouraging results as the salinity of water samples were reduced up to 5% when bombarded with 250 shocks generated using a pressure ratio of 2. 5. Paper used for normal printing is used as the diaphragm to generate the shocks. The impact of shocks of much higher intensity obtained using different diaphragms will lead to more reduction in the salinity of the sea water, thus leading to production of potable water from saline water, which is the need of the hour.

  4. The Key Components of Job Satisfaction in Malaysian Water Utility Industry


    Khalizani Khalid; Hanisah M. Salim; Siew-Phaik Loke; Khalisanni Khalid


    Problem statement: This study aimed to examine the impacts of employees rewards and employees motivation on employees job satisfaction between public and private water utility organization in Malaysia. Approach: A total of 689 employees from both sectors participated. While hierarchical regression analysis was conducted to test the relationship between employees rewards, employees motivation and employees job satisfaction, gap analysis was utilized to determine the si...

  5. Feasibility of direct utilization of selected geothermal water for aquaculture of macrobrachium rosenbergii. Technical report

    Energy Technology Data Exchange (ETDEWEB)

    Spinosa, C.


    The feasibility was tested of direct utilization of geothermal water for the aquaculture of Malaysian freshwater prawns (Macrobrachium rosenbergii). A problem with using geothermal water for aquaculture is the chemical composition of the water with high flouride levels being a particular problem. Results show that (1) some geothermal water in Idaho can be used directly for the aquaculture of Macrobrachium rosenbergii, (2) high flouride levels cannot be directly correlated with high mortality rates and (3) low flouride levels do not correlate with high growth rates.

  6. Assessment of Sr-90 in water samples: precision and accuracy

    Energy Technology Data Exchange (ETDEWEB)

    Nisti, Marcelo B.; Saueia, Cátia H.R.; Castilho, Bruna; Mazzilli, Barbara P., E-mail:, E-mail:, E-mail:, E-mail: [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)


    The study of artificial radionuclides dispersion into the environment is very important to control the nuclear waste discharges, nuclear accidents and nuclear weapons testing. The accidents in Fukushima Daiichi Nuclear Power Plant and Chernobyl Nuclear Power Plant, released several radionuclides in the environment by aerial deposition and liquid discharge, with various level of radioactivity. The {sup 90}Sr was one of the elements released into the environment. The {sup 90}Sr is produced by nuclear fission with a physical half-life of 28.79 years with decay energy of 0.546 MeV. The aims of this study are to evaluate the precision and accuracy of three methodologies for the determination of {sup 90}Sr in water samples: Cerenkov, LSC direct method and with radiochemical separation. The performance of the methodologies was evaluated by using two scintillation counters (Quantulus and Hidex). The parameters Minimum Detectable Activity (MDA) and Figure Of Merit (FOM) were determined for each method, the precision and accuracy were checked using {sup 90}Sr standard solutions. (author)

  7. Verification of spectrophotometric method for nitrate analysis in water samples (United States)

    Kurniawati, Puji; Gusrianti, Reny; Dwisiwi, Bledug Bernanti; Purbaningtias, Tri Esti; Wiyantoko, Bayu


    The aim of this research was to verify the spectrophotometric method to analyze nitrate in water samples using APHA 2012 Section 4500 NO3-B method. The verification parameters used were: linearity, method detection limit, level of quantitation, level of linearity, accuracy and precision. Linearity was obtained by using 0 to 50 mg/L nitrate standard solution and the correlation coefficient of standard calibration linear regression equation was 0.9981. The method detection limit (MDL) was defined as 0,1294 mg/L and limit of quantitation (LOQ) was 0,4117 mg/L. The result of a level of linearity (LOL) was 50 mg/L and nitrate concentration 10 to 50 mg/L was linear with a level of confidence was 99%. The accuracy was determined through recovery value was 109.1907%. The precision value was observed using % relative standard deviation (%RSD) from repeatability and its result was 1.0886%. The tested performance criteria showed that the methodology was verified under the laboratory conditions.

  8. Legionella saoudiensis sp. nov., isolated from a sewage water sample. (United States)

    Bajrai, Leena Hussein; Azhar, Esam Ibraheem; Yasir, Muhammad; Jardot, Priscilla; Barrassi, Lina; Raoult, Didier; La Scola, Bernard; Pagnier, Isabelle


    A Gram-stain-negative, bacilli-shaped bacterial strain, LS-1T, was isolated from a sewage water sample collected in Jeddah, Saudi Arabia. The taxonomic position of strain LS-1T was investigated using a polyphasic taxonomic approach. Phylogenetic analysis based on 16S rRNA gene sequences and those of four other genes indicated that strain LS-1T belongs to the genus Legionella in the family Legionellaceae. Regarding the 16S rRNA gene, the most closely related species are Legionella rowbothamii LLAP-6T (98.6 %) and Legionella lytica L2T (98.5 %). The mip gene sequence of strain LS-1T showed 94 % sequence similarity with that of L. lytica L2T and 93 % similarity with that of L. rowbothamii LLAP-6T. Strain LS-1T grew optimally at a temperature of 32 °C on a buffered charcoal yeast extract (BCYE) agar plate in a 5 % CO2 atmosphere and had a flagellum. The combined phylogenetic, phenotypic and genomic sequence data suggest that strain LS-1T represents a novel species of the genus Legionella, for which the name Legionella saoudiensis sp. nov. is proposed. The type strain is LS-1T (=DSM 101682T=CSUR P2101T).

  9. Methods to maximise recovery of environmental DNA from water samples.

    Directory of Open Access Journals (Sweden)

    Rheyda Hinlo

    Full Text Available The environmental DNA (eDNA method is a detection technique that is rapidly gaining credibility as a sensitive tool useful in the surveillance and monitoring of invasive and threatened species. Because eDNA analysis often deals with small quantities of short and degraded DNA fragments, methods that maximize eDNA recovery are required to increase detectability. In this study, we performed experiments at different stages of the eDNA analysis to show which combinations of methods give the best recovery rate for eDNA. Using Oriental weatherloach (Misgurnus anguillicaudatus as a study species, we show that various combinations of DNA capture, preservation and extraction methods can significantly affect DNA yield. Filtration using cellulose nitrate filter paper preserved in ethanol or stored in a -20°C freezer and extracted with the Qiagen DNeasy kit outperformed other combinations in terms of cost and efficiency of DNA recovery. Our results support the recommendation to filter water samples within 24hours but if this is not possible, our results suggest that refrigeration may be a better option than freezing for short-term storage (i.e., 3-5 days. This information is useful in designing eDNA detection of low-density invasive or threatened species, where small variations in DNA recovery can signify the difference between detection success or failure.

  10. Methods to maximise recovery of environmental DNA from water samples. (United States)

    Hinlo, Rheyda; Gleeson, Dianne; Lintermans, Mark; Furlan, Elise


    The environmental DNA (eDNA) method is a detection technique that is rapidly gaining credibility as a sensitive tool useful in the surveillance and monitoring of invasive and threatened species. Because eDNA analysis often deals with small quantities of short and degraded DNA fragments, methods that maximize eDNA recovery are required to increase detectability. In this study, we performed experiments at different stages of the eDNA analysis to show which combinations of methods give the best recovery rate for eDNA. Using Oriental weatherloach (Misgurnus anguillicaudatus) as a study species, we show that various combinations of DNA capture, preservation and extraction methods can significantly affect DNA yield. Filtration using cellulose nitrate filter paper preserved in ethanol or stored in a -20°C freezer and extracted with the Qiagen DNeasy kit outperformed other combinations in terms of cost and efficiency of DNA recovery. Our results support the recommendation to filter water samples within 24hours but if this is not possible, our results suggest that refrigeration may be a better option than freezing for short-term storage (i.e., 3-5 days). This information is useful in designing eDNA detection of low-density invasive or threatened species, where small variations in DNA recovery can signify the difference between detection success or failure.

  11. A New Framework for Assessing the Sustainability Reporting Disclosure of Water Utilities

    Directory of Open Access Journals (Sweden)

    Silvia Cantele


    Full Text Available Sustainability reporting is becoming more and more widespread among companies aiming at disclosing their contribution to sustainable development and gaining legitimacy from stakeholders. This is more significant for firms operating in a public services’ context and mainly when supplying a fundamental public resource, like water utilities. While the literature on sustainability reporting in the water sector is scant, there is an increasing need to study the usefulness and quality of its sustainability disclosures to adequately inform the stakeholders about the activities of water utilities to protect this fundamental resource and general sustainable development. This article presents a novel assessment framework based on a scoring technique and an empirical analysis on the sustainability reports of Italian water utilities carried out through it. The results highlight a low level of disclosure on the sustainability indicators suggested by the main sustainability reporting guidelines (Global Reporting Initiative, (GRI, and Sustainability Accounting Standard Board, (SASB; most companies tend to disclose only qualitative information and fail to inform about some material aspects of water management, such as water recycled, network resilience, water sources, and effluent quality. These findings indicate that sustainability reporting is mainly considered as a communication tool, rather than a performance measurement and an accountability tool, but also suggest the need for a new and international industry-specific sustainability reporting standard.

  12. A holistic framework for design of cost-effective minimum water utilization network. (United States)

    Wan Alwi, S R; Manan, Z A; Samingin, M H; Misran, N


    Water pinch analysis (WPA) is a well-established tool for the design of a maximum water recovery (MWR) network. MWR, which is primarily concerned with water recovery and regeneration, only partly addresses water minimization problem. Strictly speaking, WPA can only lead to maximum water recovery targets as opposed to the minimum water targets as widely claimed by researchers over the years. The minimum water targets can be achieved when all water minimization options including elimination, reduction, reuse/recycling, outsourcing and regeneration have been holistically applied. Even though WPA has been well established for synthesis of MWR network, research towards holistic water minimization has lagged behind. This paper describes a new holistic framework for designing a cost-effective minimum water network (CEMWN) for industry and urban systems. The framework consists of five key steps, i.e. (1) Specify the limiting water data, (2) Determine MWR targets, (3) Screen process changes using water management hierarchy (WMH), (4) Apply Systematic Hierarchical Approach for Resilient Process Screening (SHARPS) strategy, and (5) Design water network. Three key contributions have emerged from this work. First is a hierarchical approach for systematic screening of process changes guided by the WMH. Second is a set of four new heuristics for implementing process changes that considers the interactions among process changes options as well as among equipment and the implications of applying each process change on utility targets. Third is the SHARPS cost-screening technique to customize process changes and ultimately generate a minimum water utilization network that is cost-effective and affordable. The CEMWN holistic framework has been successfully implemented on semiconductor and mosque case studies and yielded results within the designer payback period criterion.

  13. Bacteriological analysis of well water samples in Sagamu | Idowu ...

    African Journals Online (AJOL)

    Majority of the population in semi-urban and urban areas of Nigeria depend on wells as their source of water supply. Due to increasing cases of water-borne diseases in recent times, this study was carried out to examine the microbial quality of well water in Sagamu, Nigeria as a way of safeguarding public health against ...

  14. Development of communication networks and water quality early warning detection systems at drinking water utilities in the Ohio River Valley Basin. (United States)

    Schulte, J G; Vicory, A H


    Source water quality is of major concern to all drinking water utilities. The accidental introduction of contaminants to their source water is a constant threat to utilities withdrawing water from navigable or industrialized rivers. The events of 11 September, 2001 in the United States have heightened concern for drinking water utility security as their source water and finished water may be targets for terrorist acts. Efforts are underway in several parts of the United States to strengthen early warning capabilities. This paper will focus on those efforts in the Ohio River Valley Basin.

  15. Drinking water sources, availability, quality, access and utilization for goats in the Karak Governorate, Jordan. (United States)

    Al-Khaza'leh, Ja'far Mansur; Reiber, Christoph; Al Baqain, Raid; Valle Zárate, Anne


    Goat production is an important agricultural activity in Jordan. The country is one of the poorest countries in the world in terms of water scarcity. Provision of sufficient quantity of good quality drinking water is important for goats to maintain feed intake and production. This study aimed to evaluate the seasonal availability and quality of goats' drinking water sources, accessibility, and utilization in different zones in the Karak Governorate in southern Jordan. Data collection methods comprised interviews with purposively selected farmers and quality assessment of water sources. The provision of drinking water was considered as one of the major constraints for goat production, particularly during the dry season (DS). Long travel distances to the water sources, waiting time at watering points, and high fuel and labor costs were the key reasons associated with the problem. All the values of water quality (WQ) parameters were within acceptable limits of the guidelines for livestock drinking WQ with exception of iron, which showed slightly elevated concentration in one borehole source in the DS. These findings show that water shortage is an important problem leading to consequences for goat keepers. To alleviate the water shortage constraint and in view of the depleted groundwater sources, alternative water sources at reasonable distance have to be tapped and monitored for water quality and more efficient use of rainwater harvesting systems in the study area is recommended.

  16. Utilization of abrasive water jet for cutting parts of intricate shapes

    Directory of Open Access Journals (Sweden)

    Al-Qawabah Safwan M. A.


    Full Text Available As early as 1974 the British Hydrodynamic Research Association, BHRA, held the First International Conference on Cutting by Water Jets. The subject was at its early stages. Since then a large amount of research work has been carried out and the process has been greatly developed. In this paper, utilization of water jets for flexible cutting parts of intricate shapes in steel plates and granite is presented and discussed.

  17. Real-time analysis of water movement in plant sample

    Energy Technology Data Exchange (ETDEWEB)

    Yokota, Harumi; Furukawa, Jun; Tanoi, Keitaro [Graduate School, Tokyo Univ. (Japan)


    To know the effect of drought stress on two cultivars of cowpea, drought tolerant (DT) and drought sensitive (DS), and to estimate vanadium treatment on plant activity, we performed real time{sup 18}F labeled water uptake measurement by PETIS. Fluoride-18 was produced by bombarding a cubic ice target with 50 MeV protons using TIARA AVF cyclotron. Then {sup 18}F labeled water was applied to investigate water movement in a cowpea plant. Real time water uptake manner could be monitored by PETIS. After the analysis by PETIS, we also measured the distribution of {sup 18}F in a whole plant by BAS. When a cowpea plant was treated with drought stress, there was a difference in water uptake manner between DT and DS cultivar. When a cowpea plant was treated with V for 20 hours before the water uptake experiment, the total amount of {sup 18}F labeled water absorption was found to be drastically decreased. (author)

  18. Emergy Evaluation of a Production and Utilization Process of Irrigation Water in China

    Directory of Open Access Journals (Sweden)

    Dan Chen


    Full Text Available Sustainability evaluation of the process of water abstraction, distribution, and use for irrigation can contribute to the policy of decision making in irrigation development. Emergy theory and method are used to evaluate a pumping irrigation district in China. A corresponding framework for its emergy evaluation is proposed. Its emergy evaluation shows that water is the major component of inputs into the irrigation water production and utilization systems (24.7% and 47.9% of the total inputs, resp. and that the transformities of irrigation water and rice as the systems’ products (1.72E+05 sej/J and 1.42E+05 sej/J, resp.; sej/J = solar emjoules per joule represent their different emergy efficiencies. The irrigated agriculture production subsystem has a higher sustainability than the irrigation water production subsystem and the integrated production system, according to several emergy indices: renewability ratio (%R, emergy yield ratio (EYR, emergy investment ratio (EIR, environmental load ratio (ELR, and environmental sustainability index (ESI. The results show that the performance of this irrigation district could be further improved by increasing the utilization efficiencies of the main inputs in both the production and utilization process of irrigation water.

  19. Emergy evaluation of a production and utilization process of irrigation water in China. (United States)

    Chen, Dan; Luo, Zhao-Hui; Chen, Jing; Kong, Jun; She, Dong-Li


    Sustainability evaluation of the process of water abstraction, distribution, and use for irrigation can contribute to the policy of decision making in irrigation development. Emergy theory and method are used to evaluate a pumping irrigation district in China. A corresponding framework for its emergy evaluation is proposed. Its emergy evaluation shows that water is the major component of inputs into the irrigation water production and utilization systems (24.7% and 47.9% of the total inputs, resp.) and that the transformities of irrigation water and rice as the systems' products (1.72E + 05 sej/J and 1.42E + 05 sej/J, resp.; sej/J = solar emjoules per joule) represent their different emergy efficiencies. The irrigated agriculture production subsystem has a higher sustainability than the irrigation water production subsystem and the integrated production system, according to several emergy indices: renewability ratio (%R), emergy yield ratio (EYR), emergy investment ratio (EIR), environmental load ratio (ELR), and environmental sustainability index (ESI). The results show that the performance of this irrigation district could be further improved by increasing the utilization efficiencies of the main inputs in both the production and utilization process of irrigation water.

  20. Separation and concentration of water-borne contaminants utilizing insulator-based dielectrophoresis.

    Energy Technology Data Exchange (ETDEWEB)

    Lapizco-Encinas, Blanca Hazalia; Fiechtner, Gregory J.; Cummings, Eric B.; Davalos, Rafael V.; Kanouff, Michael P.; Simmons, Blake Alexander; McGraw, Gregory J.; Salmi, Allen J.; Ceremuga, Joseph T.; Fintschenko, Yolanda


    This report focuses on and presents the capabilities of insulator-based dielectrophoresis (iDEP) microdevices for the concentration and removal of water-borne bacteria, spores and inert particles. The dielectrophoretic behavior exhibited by the different particles of interest (both biological and inert) in each of these systems was observed to be a function of both the applied electric field and the characteristics of the particle, such as size, shape, and conductivity. The results obtained illustrate the potential of glass and polymer-based iDEP devices to act as a concentrator for a front-end device with significant homeland security and industrial applications for the threat analysis of bacteria, spores, and viruses. We observed that the polymeric devices exhibit the same iDEP behavior and efficacy in the field of use as their glass counterparts, but with the added benefit of being easily mass fabricated and developed in a variety of multi-scale formats that will allow for the realization of a truly high-throughput device. These results also demonstrate that the operating characteristics of the device can be tailored through the device fabrication technique utilized and the magnitude of the electric field gradient created within the insulating structures. We have developed systems capable of handling numerous flow rates and sample volume requirements, and have produced a deployable system suitable for use in any laboratory, industrial, or clinical setting.

  1. Water footprints as an indicator for the equitable utilization of shared water resources. (Case study: Egypt and Ethiopia shared water resources in Nile Basin) (United States)

    Sallam, Osama M.


    The question of "equity." is a vague and relative term in any event, criteria for equity are particularly difficult to determine in water conflicts, where international water law is ambiguous and often contradictory, and no mechanism exists to enforce principles which are agreed-upon. The aim of this study is using the water footprints as a concept to be an indicator or a measuring tool for the Equitable Utilization of shared water resources. Herein Egypt and Ethiopia water resources conflicts in Nile River Basin were selected as a case study. To achieve this study; water footprints, international virtual water flows and water footprint of national consumption of Egypt and Ethiopia has been analyzed. In this study, some indictors of equitable utilization has been gained for example; Egypt water footprint per capita is 1385 CM/yr/cap while in Ethiopia is 1167 CM/yr/cap, Egypt water footprint related to the national consumption is 95.15 BCM/yr, while in Ethiopia is 77.63 BCM/yr, and the external water footprints of Egypt is 28.5%, while in Ethiopia is 2.3% of the national consumption water footprint. The most important conclusion of this study is; natural, social, environmental and economical aspects should be taken into account when considering the water footprints as an effective measurable tool to assess the equable utilization of shared water resources, moreover the water footprints should be calculated using a real data and there is a necessity to establishing a global water footprints benchmarks for commodities as a reference.

  2. The growth of seedlings of rhizophoraceae in the nursery utilizing fresh water

    Directory of Open Access Journals (Sweden)

    Sarno Sarno


    Full Text Available The recovery of the mangrove areas that have been degraded needs mangrove seedlings in large quantity. A mangrove nursery is generally located on the land close to the planting site and brackish water. The mangrove nursery by means of fresh water is an innovation in the provision of seeds. The objective of this experiment was to determine the growth of seedlings of Rhizophoraceae in fresh water based on the parameters of the number of leaves and the height of the shoots. The method of breeding utilizes fresh water and to keep the water remains available the water circulation is regulated. The results of the observations show that the number of leaves of Bruguiera gymnorrhiza has the number of pairs of leaves compared with Rhizophora apiculata dn R. mucronata. The average height of the shoots up to the age of 5 months after planting, the highest seedlings are R. mucronata seedlings. In general, mangrove nursery with fresh water can be utilized as a means for providing seedlings for rehabilitation of mangrove. Key words: fresh water, mangrove, propagules, Rhizophoraceae, seedlings.

  3. Sampling and Analysis for Lead in Water and Soil Samples on a University Campus: A Student Research Project. (United States)

    Butala, Steven J.; Zarrabi, Kaveh


    Describes a student research project that determined concentrations of lead in water drawn from selected drinking fountains and in selected soil samples on the campus of the University of Nevada, Las Vegas. (18 references) (DDR)

  4. Representation of solid and nutrient concentrations in irrigation water from tailwater recovery systems by surface water grab samples (United States)

    Tailwater recovery (TWR) systems are being implemented on agricultural landscapes to create an additional source of irrigation water. Existing studies have sampled TWR systems using grab samples; however, the applicability of solids and nutrient concentrations in these samples to water being irrigat...

  5. Evaluation of storage and filtration protocols for alpine/subalpine lake water quality samples (United States)

    John L. Korfmacher; Robert C. Musselman


    Many government agencies and other organizations sample natural alpine and subalpine surface waters using varying protocols for sample storage and filtration. Simplification of protocols would be beneficial if it could be shown that sample quality is unaffected. In this study, samples collected from low ionic strength waters in alpine and subalpine lake inlets...

  6. Managerial autonomy: Does it matter for the performance of water utilities?

    NARCIS (Netherlands)

    Braadbaart, O.D.; Eybergen, Van N.; Hoffer, J.


    The public administration literature asserts that autonomy is central to performance. In this article we develop a managerial autonomy index, which we apply to 22 water utilities in Africa, Asia and the Middle East. The 16 items that underlie our composite autonomy index display a high degree of

  7. The Effects of Operational and Environmental Variables on Efficiency of Danish Water and Wastewater Utilities

    Directory of Open Access Journals (Sweden)

    Andrea Guerrini


    Full Text Available Efficiency improvement is one of three patterns a public utility should follow in order to get funds for investments realization. The other two are recourse to bank loans or to private equity and tariff increase. Efficiency can be improved, for example, by growth and vertical integration and may be conditioned by environmental variables, such as customer and output density. Prior studies into the effects of these variables on the efficiency of water utilities do not agree on certain points (e.g., scale and economies of scope and rarely consider others (e.g., density economies. This article aims to contribute to the literature by analysing the efficiency of water utilities in Denmark, observing the effects of operational and environmental variables. The method is based on two-stage Data Envelopment Analysis (DEA applied to 101 water utilities. We found that the efficiency of the water sector was not affected by the observed variables, whereas that of wastewater was improved by smaller firm size, vertical integration strategy, and higher population density.

  8. Water use and supply concerns for utility-scale solar projects in the Southwestern United States.

    Energy Technology Data Exchange (ETDEWEB)

    Klise, Geoffrey Taylor; Tidwell, Vincent Carroll; Reno, Marissa Devan; Moreland, Barbara Denise.; Zemlick, Katie M.; Macknick, Jordan


    As large utility-scale solar photovoltaic (PV) and concentrating solar power (CSP) facilities are currently being built and planned for locations in the U.S. with the greatest solar resource potential, an understanding of water use for construction and operations is needed as siting tends to target locations with low natural rainfall and where most existing freshwater is already appropriated. Using methods outlined by the Bureau of Land Management (BLM) to determine water used in designated solar energy zones (SEZs) for construction and operations & maintenance, an estimate of water used over the lifetime at the solar power plant is determined and applied to each watershed in six Southwestern states. Results indicate that that PV systems overall use little water, though construction usage is high compared to O&M water use over the lifetime of the facility. Also noted is a transition being made from wet cooled to dry cooled CSP facilities that will significantly reduce operational water use at these facilities. Using these water use factors, estimates of future water demand for current and planned solar development was made. In efforts to determine where water could be a limiting factor in solar energy development, water availability, cost, and projected future competing demands were mapped for the six Southwestern states. Ten watersheds, 9 in California, and one in New Mexico were identified as being of particular concern because of limited water availability.

  9. Advances in management and utilization of invasive water hyacinth (Eichhornia crassipes) in aquatic ecosystems - a review. (United States)

    Yan, Shao-Hua; Song, Wei; Guo, Jun-Yao


    The objective of this review is to provide a concise summary of literature in the Chinese language since late 1970s and focuses on recent development in global scenarios. This work will replenish the FAO summary of water hyacinth utilization from 1917 to 1979 and review ecological and socioeconomic impacts of the water hyacinth from 1980 to 2010. This review also discusses the debate on whether the growth of the water hyacinth is a problem, a challenge or an opportunity. Literature suggested that integrated technologies and good management may be an effective solution and the perception of water hyacinth could change from that of a notorious aquatic weed to a valuable resource, including its utilization as a biological agent for the application in bioremediation for removing excess nutrients from eutrophic water bodies at low cost. Key aspects on system integration and innovation may focus on low-cost and efficient equipment and the creation of value-added goods from water hyacinth biomass. In the socioeconomic and ecological domain of global development, all the successful and sustainable management inputs for the water hyacinth must generate some sort of social and economic benefit simultaneously, as well as benefiting the ecosystem. Potential challenges exist in linkages between the management of water hyacinth on the large scale to the sustainable development of agriculture based on recycling nutrients, bio-energy production or silage and feed production. Further research and development may focus on more detailed biology of water hyacinth related with its utilization, cost-benefit analysis of middle to large-scale application of the technologies and innovation of the equipment used for harvesting and dehydrating the plant.

  10. 75 FR 1380 - National Drinking Water Advisory Council's Climate Ready Water Utilities Working Group Meeting... (United States)


    ... meeting is for the Working Group to discuss the attributes and enabling environment of climate ready water.... Background: The Agency's National Water Program Strategy: Response to Climate Change (2008) identified the... associated with climate change and to identify potential adaptation strategies. The NDWAC, established under...

  11. Utilization of industrial enzymes in the evaluation of neutral detergent insoluble fiber content in high-starch samples

    Directory of Open Access Journals (Sweden)

    Daiany Íris Gomes


    Full Text Available It were performed two experiments to evaluate the utilization of industrial enzymes in the evaluation of NDF contents in high-starch materials. In the first experiment, it was verified the accuracy of estimates of neutral detergent fiber (NDF obtained with the utilization of three industrial enzymes (Termamyl 2X, Liquozyme Supra 2.2.X, and Amylase AG 300L at different volumes (50, 100, 250 or 500 mL/ sample. Samples were simulated to contain starch at 0, 100, 300, 500 and 1000 g/kg using purified cellulose and starch (n = 240. In the second experiment, samples of corn grain and sorghum grain were evaluated considering the same enzyme types and volumes used in the first experiment adding aliquots without using enzyme (n = 104. There was no significant bias of NDF recovery for simulated samples containing starch up to 300 g/kg. Considering those samples, none difference among enzymes was observed. It was observed a more intense decrease in NDF content according to each enzyme unit added on corn when compared to sorghum. Considering NDF evaluation in samples with mass of 0.7 to 1.0 g, it can be recommended the utilization of 250 mL the ?-amylases Termamyl and 2X Liquozyme 2.2X with activities of 240 and 300 KNU/g, respectively.

  12. Assessment of management approaches in a public water utility: A case study of the Namibia water corporation (NAMWATER) (United States)

    Ndokosho, Johnson; Hoko, Zvikomborero; Makurira, Hodson

    More than 90% of urban water supply and sanitation services in developing countries are provided by public organizations. However, public provision of services has been inherently inefficient. As a result a number of initiatives have emerged in recent years with a common goal to improve service delivery. In Namibia, the water sector reform resulted in the creation of a public utility called the Namibia Water Corporation (NAMWATER) which is responsible for bulk water supply countrywide. Since its inception in 1998, NAMWATER has been experiencing poor financial performance. This paper presents the findings of a case study that compared the management approaches of NAMWATER to the New Public Management (NPM) paradigm. The focus of the NPM approach is for the public water sector to mirror private sector methods of management so that public utilities can accrue the benefits of effectiveness, efficiency and flexibility often associated with private sector. The study tools used were a combination of literature review, interviews and questionnaires. It was found out that NAMWATER has a high degree of autonomy in its operations, albeit government approved tariffs and sourcing of external financing. The utility reports to government annually to account for results. The utility embraces a notion of good corporate culture and adheres to sound management practices. NAMWATER demonstrated a strong market-orientation indicated by the outsourcing of non-core functions but benchmarking was poorly done. NAMWATER’s customer-orientation is poor as evidenced by the lack of customer care facilities. NAMWATER’s senior management delegated operational authority to lower management to facilitate flexibility and eliminate bottlenecks. The lower management is in turn held accountable for performance by the senior management. There are no robust methods of ensuring sufficient accountability indicated by absence of performance contracts or service level agreements. It was concluded that

  13. Patterns and predictors of health service utilization in adolescents with pain: comparison between a community and a clinical pain sample. (United States)

    Toliver-Sokol, Marisol; Murray, Caitlin B; Wilson, Anna C; Lewandowski, Amy; Palermo, Tonya M


    There is limited research describing the patterns of healthcare utilization in adolescents with chronic pain. This study describes healthcare utilization in a clinical chronic pain sample, and compares the patterns of service use of this group to a community sample with intermittent pain complaints. We also investigated demographic and clinical factors that predicted healthcare visits and medication use in the clinical sample. Data on 117 adolescents (aged 12-18; n = 59 clinical pain sample, n = 58 community) were collected. Caregivers and adolescents reported on sociodemographics, medical visits, current medications, pain, activity limitations, and depression. As hypothesized, the clinical pain sample had higher rates of healthcare consultation on all types of medical visits (general, specialty care, complementary medicine, mental health, OT/PT), and higher medication use compared to the community sample. Regression analyses revealed that higher annual income, greater pain frequency, and higher levels of caregiver-reported activity limitations were associated with a greater number of healthcare visits for the total sample. Within the clinical pain sample, higher pain frequency and greater activity limitations (caregiver report) predicted more specialty care visits. Additionally, higher income and greater levels of depressive symptoms predicted a higher number of prescribed medications. This study contributes to the limited available data on health service and medication use in a clinical chronic pain sample versus a community sample of adolescents. We also identify clinical factors (pain frequency, parent-reported activity limitations, depressive symptoms) and demographic factors (gender, income) associated with healthcare utilization. Copyright © 2011 American Pain Society. Published by Elsevier Inc. All rights reserved.

  14. Algorithmic network monitoring for a modern water utility: a case study in Jerusalem. (United States)

    Armon, A; Gutner, S; Rosenberg, A; Scolnicov, H


    We report on the design, deployment, and use of TaKaDu, a real-time algorithmic Water Infrastructure Monitoring solution, with a strong focus on water loss reduction and control. TaKaDu is provided as a commercial service to several customers worldwide. It has been in use at HaGihon, the Jerusalem utility, since mid 2009. Water utilities collect considerable real-time data from their networks, e.g. by means of a SCADA system and sensors measuring flow, pressure, and other data. We discuss how an algorithmic statistical solution analyses this wealth of raw data, flexibly using many types of input and picking out and reporting significant events and failures in the network. Of particular interest to most water utilities is the early detection capability for invisible leaks, also a means for preventing large visible bursts. The system also detects sensor and SCADA failures, various water quality issues, DMA boundary breaches, unrecorded or unintended network changes (like a valve or pump state change), and other events, including types unforeseen during system design. We discuss results from use at HaGihon, showing clear operational value.

  15. chemical and microbiological assessment of surface water samples ...

    African Journals Online (AJOL)


    are to assess, ascertain and evaluate the level, degree and type of pollution that characterize the surface water resources of Enugu area of southeastern Nigeria in terms of physico-chemical and bacterialogical constituents. Field measurements of ... suggest possible solutions to the problems of water supply. THE STUDY ...

  16. physico-chemical properties of well water samples from some

    African Journals Online (AJOL)


    industrial, domestic and agricultural wastes to ground water reservoirs at alarming rate (Aremu et al., ... activities and any pollution either physical or chemical causes changes to the quality of the receiving water body ... Toxic doses of chemicals cause either acute or chronic health effect. An acute effect usually follows a ...

  17. Evaluation Of Sachet Water Samples In Owerri Metropolis | Nwosu ...

    African Journals Online (AJOL)

    Other surveys revealed that 12 brands had fake manufactures' address, 2 brands had NAFDAC registration number while 3 brands had genuine manufacturers' address on them. It was discovered that the producers packaged the water from their water source without any form of treatment or analysis on it. Key words: ...

  18. Climate Narratives: Combing multiple sources of information to develop risk management strategies for a municipal water utility (United States)

    Yates, D. N.; Basdekas, L.; Rajagopalan, B.; Stewart, N.


    Municipal water utilities often develop Integrated Water Resource Plans (IWRP), with the goal of providing a reliable, sustainable water supply to customers in a cost-effective manner. Colorado Springs Utilities, a 5-service provider (potable and waste water, solid waste, natural gas and electricity) in Colorado USA, recently undertook an IWRP. where they incorporated water supply, water demand, water quality, infrastructure reliability, environmental protection, and other measures within the context of complex water rights, such as their critically important 'exchange potential'. The IWRP noted that an uncertain climate was one of the greatest sources of uncertainty to achieving a sustainable water supply to a growing community of users. We describe how historic drought, paleo-climate, and climate change projections were blended together into climate narratives that informed a suite of water resource systems models used by the utility to explore the vulnerabilities of their water systems.

  19. Reorganization of water utilities - regionalization, an opportunity to increase their efficiency A comparative literature - Albania Case

    Directory of Open Access Journals (Sweden)

    Julian Naqellari


    Full Text Available The purpose of this research is the study and analysis of factors affecting the need for reorganization of entities engaged in water supply services. From this perspective, the research seeks to identify international practices made in this regard and how they can be adapted to water utilities in Albania. The objective of this paper is to show that regionalization of water utilities is a successful development direction not only of studied literature but also practice in Albania. The study is based on sources of information taken from primary and secondary sources. The selected method for collecting and processing information from primary sources is the empirical method through direct surveys and questionnaires, whereas from secondary sources is descriptive and analytical method. As secondary sources, we are consulted and referred to academic resources, such as articles, books, studies and reports carried out and published by national organizations, local and foreign companies in this field.

  20. Utilization of Thermal Energy of Mine Waters from Flooded Underground Mines

    Directory of Open Access Journals (Sweden)

    Arnošt Grmela


    Full Text Available Dozens of ore, uranium and coal underground mines have been closed in the Czech Republic recently as a result of ending or considerable cutting down the mining of raw materials. After the completion of all necessary works associated with the decommissioning of underground mine workings, the mines were mostly left to spontaneous natural flooding with water. The volumes of mine waters in the underground reach up to millions of cubic metres. Taking into account the huge volumes and temperature of waters, which is in range of 10 to 290C at the site of draining from the underground, mine waters represent a considerable and stable source of thermal energy, the utilization of which is still wholly neglected. The authors inform about the principles of the use of mine waters for this purpose and about two projects that are in a different stage of realization.

  1. Exploring the Utility of the NEO-PI-R in a Sample of South African ...

    African Journals Online (AJOL)

    A non-experimental cross-sectional design was used to determine which items of the NEO-PI-R are culturally and linguistically inappropriate. ... A thematic content analysis conducted on the focus group session revealed 6 themes in terms of the utility of the NEO-PI-R, namely, language, culture, psychometric testing, ...

  2. An improved technique for soil solution sampling in the vadose zone utilizing real-time data (United States)

    Singer, J. H.; Seaman, J. C.; Aburime, S. A.; Harris, J.; Karapatakis, D.


    The vadose zone is an area of ongoing concern because of its role in the fate and transport of chemicals resulting from waste disposal and agricultural practices. The degree of contamination and movement of solutes in soil solution are often difficult to assess due to temporal variability in precipitation or irrigation events and spatial variability in soil physical properties. For this reason, modeling groundwater and contaminant flow in unsaturated soil is crucial in determining the extent of the contamination. Unfortunately, manual methods used to sample soil solutions and validate model results are often difficult due to the variable nature of unsaturated soil systems. Manual techniques are traditionally performed without specific knowledge of the conditions in the soil at the time of sampling. This hit or miss approach can lead to missed samples, unsuccessful sampling, and samples that are not representative of the event of interest. In an effort to target specific soil conditions at the point of sampling that are conducive to successful sample acquisition, an automated lysimeter sampling and fraction collector system was developed. We demonstrate an innovative technique coupling real-time data with soil solution sampling methods which will improve the efficiency and accuracy of contaminant sampling in the field. The infrastructure of this system can also be implemented in a laboratory setting which adds to its practicality in model development.

  3. Utility of magnetic susceptibility values for the petrographic analysis of weathering crust basement samples

    Directory of Open Access Journals (Sweden)

    Alfredo Hernández-Ramsay


    Full Text Available This article exposes the resolving power of the magnetic susceptibility measurements in basement minerals samples of the lateritic weathering profile as an element of complementary analysis in the petrographic characterization of the rocks, and useful in the mapping of the magnetic heterogeneities of the basement. The comparison of the magnetic susceptibility data with the petrographic data of different samples revealed that even in samples that correspond to homogeneous lithotypes, great heterogeneities and differences can be manifested from the physical-mineralogical point of view. In general, a high concordance was observed between the intensity of the weathering processes in the rock samples, and the values of the magnetic susceptibility of such samples. The results support the possibility of extrapolating the composition information to samples with magnetic susceptibility measurements and without petrographic studies.

  4. Storm Water Sampling Data 11-16-17.

    Energy Technology Data Exchange (ETDEWEB)

    Holland, Robert C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)


    In the California Industrial General Permit (IGP) 2014-0057-DWQ for storm water monitoring, effective July 1, 2015, there are 21 contaminants that have been assigned NAL (Numeric Action Level) values, both annual and instantaneous.

  5. Application of Information Technology Solution for Early Warning Systems at Water Utilities

    Directory of Open Access Journals (Sweden)

    Bałut Alicja


    Full Text Available Deployment of IT solutions in water utilities in Poland concerns nowadays lots beyond GIS implementation projects [1]. The scope of modern IT platforms is truly advanced software for complete management of water treatment processes and involved objects, including ranges of various types of equipment. There are multiply factors that disrupt required volumes of supplied water. They are normally classified as natural, accidental and intentional. This paper addresses potential residing in already deployed IT solutions of water utilities in and also in new ones being now developed. Primarily- from the perspective of intentional, terrorist threats. This document depicts operating procedures that are called in case of spotted contamination in a water supply (damage of key elements of the network infrastructure or in case of an introduction factors. This paper also discusses relevant IT tools with access provided to network operators or water plant owners that are extremely useful in accurate pinpointing the treat and in following relevant operating procedures and related actions.

  6. Formulation and utilization of choline based samples for dissolution dynamic nuclear polarization

    DEFF Research Database (Denmark)

    Bowen, Sean; Ardenkjær-Larsen, Jan Henrik


    Hyperpolarization by the dissolution dynamic nuclear polarization (DNP) technique permits the generation of high spin polarization of solution state. However, sample formulation for dissolution-DNP is often difficult, as concentration and viscosity must be optimized to yield a dissolved sample...

  7. Utilization of Tabu search heuristic rules in sampling-based motion planning (United States)

    Khaksar, Weria; Hong, Tang Sai; Sahari, Khairul Salleh Mohamed; Khaksar, Mansoor


    Path planning in unknown environments is one of the most challenging research areas in robotics. In this class of path planning, the robot acquires the information from its sensory system. Sampling-based path planning is one of the famous approaches with low memory and computational requirements that has been studied by many researchers during the past few decades. We propose a sampling-based algorithm for path planning in unknown environments using Tabu search. The Tabu search component of the proposed method guides the sampling to find the samples in the most promising areas and makes the sampling procedure more intelligent. The simulation results show the efficient performance of the proposed approach in different types of environments. We also compare the performance of the algorithm with some of the well-known path planning approaches, including Bug1, Bug2, PRM, RRT and the Visibility Graph. The comparison results support the claim of superiority of the proposed algorithm.

  8. WRI 50: Strategies for Cooling Electric Generating Facilities Utilizing Mine Water

    Energy Technology Data Exchange (ETDEWEB)

    Joseph J. Donovan; Brenden Duffy; Bruce R. Leavitt; James Stiles; Tamara Vandivort; Paul Ziemkiewicz


    Power generation and water consumption are inextricably linked. Because of this relationship DOE/NETL has funded a competitive research and development initiative to address this relationship. This report is part of that initiative and is in response to DOE/NETL solicitation DE-PS26-03NT41719-0. Thermal electric power generation requires large volumes of water to cool spent steam at the end of the turbine cycle. The required volumes are such that new plant siting is increasingly dependent on the availability of cooling circuit water. Even in the eastern U.S., large rivers such as the Monongahela may no longer be able to support additional, large power stations due to subscription of flow to existing plants, industrial, municipal and navigational requirements. Earlier studies conducted by West Virginia University (WV 132, WV 173 phase I, WV 173 Phase II, WV 173 Phase III, and WV 173 Phase IV in review) have identified that a large potential water resource resides in flooded, abandoned coal mines in the Pittsburgh Coal Basin, and likely elsewhere in the region and nation. This study evaluates the technical and economic potential of the Pittsburgh Coal Basin water source to supply new power plants with cooling water. Two approaches for supplying new power plants were evaluated. Type A employs mine water in conventional, evaporative cooling towers. Type B utilizes earth-coupled cooling with flooded underground mines as the principal heat sink for the power plant reject heat load. Existing mine discharges in the Pittsburgh Coal Basin were evaluated for flow and water quality. Based on this analysis, eight sites were identified where mine water could supply cooling water to a power plant. Three of these sites were employed for pre-engineering design and cost analysis of a Type A water supply system, including mine water collection, treatment, and delivery. This method was also applied to a ''base case'' river-source power plant, for comparison. Mine-water

  9. Streamline-based purification of bacterial samples from liquefied sputum utilizing microfluidics. (United States)

    Wu, Tian; Shao, Changjun; Li, Lingjun; Wang, Shujing; Ouyang, Qi; Kang, Yu; Luo, Chunxiong


    The separation or purification of bacterial samples from a mixed cell suspension is critical in a variety of biomedical applications, such as sputum diagnostics and cell biology studies. We propose a streamline-based microfluidic filtration device for highly efficient purification of bacterial samples from a mixed cell suspension. The device is composed of tens of repeated streamline-based separation units that continuously filter the solution. By injecting a liquid sample such as liquefied human sputum solution through the device, approximately 50% of the injected sample solution can be collected from the filtration collection channels, which filter approximately 99.9% of the mammalian cells but retain approximately 60% to 90% of the bacteria. Different injection rates (0.2 ml h-1 to 30 ml h-1), different sample viscosities, and different initial bacterial densities were tested and confirmed that our separation method was robust. The easy operation, robustness and high efficiency indicate that our method may be useful for the separation or purification of bacterial samples from a mixed cell suspension, such as bacterial samples for sputum diagnostics.

  10. Influence of sampling strategy on detecting preferential flow paths in water-repellent sand

    NARCIS (Netherlands)

    Ritsema, C.J.; Dekker, L.W.


    A sample spacing up to 22 cm over a distance of several metres is just sufficient to collect information about preferential flow paths in a water-repellent sandy soil. When larger sample spacings were used, the water content distributions became more horizontally stratified. Increasing the sample

  11. 75 FR 35458 - National Drinking Water Advisory Council's Climate Ready Water Utilities Working Group Meeting... (United States)


    ... From the Federal Register Online via the Government Publishing Office ENVIRONMENTAL PROTECTION... Announcement AGENCY: Environmental Protection Agency (EPA). ACTION: Notice. SUMMARY: The U.S. Environmental... adaptation and mitigation strategies by the water sector. DATES: The fourth in-person CRWU Working Group...

  12. Robotic, MEMS-based Multi Utility Sample Preparation Instrument for ISS Biological Workstation Project (United States)

    National Aeronautics and Space Administration — This project will develop a multi-functional, automated sample preparation instrument for biological wet-lab workstations on the ISS. The instrument is based on a...

  13. Evaluation of supercritical water gasification and biomethanation for wet biomass utilization in Japan

    Energy Technology Data Exchange (ETDEWEB)

    Matsumura, Yukihiko [Hiroshima Univ., Dept. of Mechanical System Engineering, Hiroshima (Japan)


    Two wet biomass gasification processes, supercritical water gasification and biomethanation, were evaluated from energy, environmental, and economic aspects. Gasification of 1 dry-t/d of water hyacinth was taken as a model case. Assumptions were made that system should be energetically independent, that no environmentally harmful material should be released, and that carbon dioxide should be removed from the product gas. Energy efficiency, carbon dioxide payback time, and price of the product gas were chosen as indices for energy, environmental, and economic evaluations, respectively. Under the conditions assumed here, supercritical water gasifications is evaluated to be more advantageous over biomethanation, but the cost of the product gas is still 1.86 times more expensive than city gas in Tokyo. To improve efficiency of supercritical water gasification, improvement of heat exchanger efficiency is effective. Utilization of fermentation sludge will make biomethanation much more advantageous. (Author)

  14. PCR detection of Burkholderia multivorans in water and soil samples

    NARCIS (Netherlands)

    Peeters, C. (Charlotte); Daenekindt, S. (Stijn); A.M. Vandamme (Anne Mieke)


    textabstractBackground: Although semi-selective growth media have been developed for the isolation of Burkholderia cepacia complex bacteria from the environment, thus far Burkholderia multivorans has rarely been isolated from such samples. Because environmental B. multivorans isolates mainly

  15. Passive sampling of perfluorinated chemicals in water: Flow rate effects on chemical uptake

    NARCIS (Netherlands)

    Kaserzon, S.L.; Vermeirssen, E.L.M.; Hawker, D.W.; Kennedy, K.; Bentley, C.; Thompson, J.; Booij, K.; Mueller, J.F.


    A recently developed modified polar organic chemical integrative sampler (POCIS) provides a means for monitoring perfluorinated chemicals (PFCs) in water. However, changes in external flow rates may alter POCIS sampling behaviour and consequently affect estimated water concentrations of analytes. In

  16. EPA Technology Available for Licensing: Portable Device to Concentrate Water Samples for Microorganism Analysis (United States)

    Using a computer controlled system, this ultrafiltration device automates the process of concentrating a water sample and can be operated in the field. The system was also designed to reduce human exposure to potentially contaminated water.

  17. Chemical and microbiological assessment of surface water samples ...

    African Journals Online (AJOL)

    The objectives of the study are to assess, ascertain and evaluate the level, degree and type of pollution that characterize the surface water resources of Enugu area of southeastern Nigeria in terms of physico-chemical and bacterialogical constituents. Field measurements of physical parameters were preceded by chemical ...

  18. Beryllium-10 concentrations in water samples of high northern latitudes

    Energy Technology Data Exchange (ETDEWEB)

    Strobl, C.; Eisenhauer, A.; Schulz, V.; Baumann, S.; Mangini, A. [Heidelberger Akademie der Wissenschaften, Heildelberg (Germany); Kubik, P.W. [Paul Scherrer Inst. (PSI), Villigen (Switzerland)


    {sup 10}Be concentrations in the water column of high northern latitudes were not available so far. We present different {sup 10}Be profiles from the Norwegian-Greenland Sea, the Arctic Ocean, and the Laptev Sea. (author) 3 fig., 3 refs.


    Low densities of coliform bacteria introduced into distribution systems may survive in protected habitats. These organisms may interfere with and cause confusion in the use of the coliforms as indicators of sewage contamination of drinking water. Methods of increasing the probabi...

  20. determination of thiobencarb in water samples by gas ...

    African Journals Online (AJOL)

    Preferred Customer

    Aqua MaxTM- ultra, Korea) was used for purification of water. Instrumentation. Separation and quantification of thiobencarb were carried out using an Agilent 7890 gas chromatograph, equipped with a FID detector and a DB-5 fused-silica capillary ...

  1. Scenario-based water resources planning for utilities in the Lake Victoria region (United States)

    Mehta, V. K.; Aslam, O.; Dale, L.; Miller, N.; Purkey, D.


    Cities in the Lake Victoria (LV) region are experiencing the highest growth rates in Africa, at the same time that their water resource is threatened by domestic waste and industrial pollution. Urban centers use local springs, wetlands and Lake Victoria as source waters. As efforts to meet increasing demand accelerate, integrated water resources management (IWRM) tools provide opportunities for utilities and other stakeholders to develop a planning framework comprehensive enough to include short term (e.g. landuse change), as well as longer term (e.g. climate change) scenarios. This paper presents IWRM models built using the Water Evaluation And Planning (WEAP) decision support system, for three pilot towns in the LV region - Bukoba (Tanzania), Masaka (Uganda), and Kisii (Kenya). Their current populations are 100,000, 70,000 and 200,000 respectively. Demand coverage is ~70% in Masaka and Bukoba, and less than 50% in Kisii. IWRM models for each town were calibrated under current system performance based on site visits, utility reporting and interviews. Projected water supply, demand, revenues and costs were then evaluated against a combination of climate, demographic and infrastructure scenarios upto 2050. In Masaka, flow and climate data were available to calibrate a runoff model to simulate streamflow at water intake. In Masaka, without considering climate change, the system is infrastructure-limited and not water availability (hydrology) limited until 2035, under projected population growth of 2.17%. Under a wet climate scenario as projected by GCM’s for the LV region, the current wetland source could supply all expected demands until 2050. Even under a drought scenario, the wetland could supply all demand until 2032, if the supply infrastructure is updated at an estimated cost of USD 10.8 million. However, demand targets can only be met at the expense of almost no water returning to the wetland downstream of the intake by 2035, unless substantial investments

  2. Utilizing the International GeoSample Number Concept during ICDP Expedition COSC (United States)

    Conze, Ronald; Lorenz, Henning; Ulbricht, Damian; Gorgas, Thomas; Elger, Kirsten


    The concept of the International GeoSample Number (IGSN) was introduced to uniquely identify and register geo-related sample material, and make it retrievable via electronic media (e.g., SESAR - The general aim of the IGSN concept is to improve accessing stored sample material worldwide, enable the exact identification, its origin and provenance, and also the exact and complete citation of acquired samples throughout the literature. The ICDP expedition COSC (Collisional Orogeny in the Scandinavian Caledonides, prompted for the first time in ICDP's history to assign and register IGSNs during an ongoing drilling campaign. ICDP drilling expeditions are using commonly the Drilling Information System DIS ( for the inventory of recovered sample material. During COSC IGSNs were assigned to every drill hole, core run, core section, and sample taken from core material. The original IGSN specification has been extended to achieve the required uniqueness of IGSNs with our offline-procedure. The ICDP name space indicator and the Expedition ID (5054) are forming an extended prefix (ICDP5054). For every type of sample material, an encoded sequence of characters follows. This sequence is derived from the DIS naming convention which is unique from the beginning. Thereby every ICDP expedition has an unlimited name space for IGSN assignments. This direct derivation of IGSNs from the DIS database context ensures the distinct parent-child hierarchy of the IGSNs among each other. In the case of COSC this method of inventory-keeping of all drill cores was done routinely using the ExpeditionDIS during field work and subsequent sampling party. After completing the field campaign, all sample material was transferred to the "Nationales Bohrkernlager" in Berlin-Spandau, Germany. Corresponding data was subsequently imported into the CurationDIS used at the aforementioned core storage

  3. Total and inorganic arsenic in fish samples from Norwegian waters

    DEFF Research Database (Denmark)

    Julshamn, K.; Nilsen, B. M.; Frantzen, S.


    The contents of total arsenic and inorganic arsenic were determined in fillet samples of Northeast Arctic cod, herring, mackerel, Greenland halibut, tusk, saithe and Atlantic halibut. In total, 923 individual fish samples were analysed. The fish were mostly caught in the open sea off the coast...... of Norway, from 40 positions. The determination of total arsenic was carried out by inductively coupled plasma mass spectrometry following microwave-assisted wet digestion. The determination of inorganic arsenic was carried out by high-performance liquid chromatography–ICP-MS following microwave......-assisted dissolution of the samples. The concentrations found for total arsenic varied greatly between fish species, and ranged from 0.3 to 110 mg kg–1 wet weight. For inorganic arsenic, the concentrations found were very low (...

  4. Utilization of the water quality index method as a classification tool. (United States)

    Boyacioglu, Hülya


    The study comprised modification of the Canadian Council of Ministers of the Environment (CCME) Water Quality Index (CCMEWQI) to obtain a tool in classification of surface waters according to quality defined by the European Legislation-75/440/EEC. Three categories were proposed, and the category ranges of CCMEWQI have been modified depending on the objective chosen. The application of the CCMEWQI with modified categorization scheme was demonstrated to assess overall water quality by integrating observed water quality determinants in the Kucuk Menderes Basin, Turkey. In this scope, the samples analyzed for pH, total dissolved solids (TDS), chlorides (Cl), nitrate-nitrogen (NO3-N), dissolved oxygen (DO), biochemical oxygen demand (BOD5), sulfate (SO4), and boron (B), variables taken monthly over 2 years from the five monitoring sites, were processed. Results revealed that the overall surface water mainly fell within the A2 water class. The CCMEWQI with modified categorization scheme is believed to assist water managers to integrate and interpret the picture of overall water quality based on the European legislation concerning the quality required of surface water intended for the abstraction of drinking water in the Member States (75/440/EEC).

  5. Presence of enteric viruses in water samples for consumption in Colombia: Challenges for supply systems. (United States)

    Peláez, Dioselina; Guzmán, Blanca Lisseth; Rodríguez, Johanna; Acero, Felipe; Nava, Gerardo


    Since drinking water can be a vehicle for the transmission of pathogens, the detection of enteric viruses in these water samples is essential to establish the appropriate measures to control and prevent associated diseases.  To analyze the results obtained for enteric viruses in water samples for human consumption received at the Colombian Instituto Nacional de Salud and establish their association with the data on water quality in Colombian municipalities.  We conducted a descriptive-retrospective analysis of the results obtained in the detection of rotavirus, enterovirus, hepatitis A virus and adenovirus in water samples received for complementary studies of enteric hepatitis, acute diarrheal disease and foodborne diseases. Data were correlated with the results of water quality surveillance determined by the national human consumption water quality index (IRCA).  Of the 288 samples processed from 102 Colombian municipalities, 50.7% were positive for viruses: 26.73% for hepatitis A virus, 20.48% for enterovirus and rotavirus and 18.05% for adenovirus. Viruses were detected in 48.26% of non-treated water samples and in 45.83% of treated water samples. The IRCA index showed no correlation with the presence of viruses.  The presence of viruses in water represents a public health risk and, therefore, the prevention of virus transmission through water requires appropriate policies to reinforce water supply systems and improve epidemiological surveillance.

  6. [Effects of ground cover and water-retaining agent on winter wheat growth and precipitation utilization]. (United States)

    Wu, Ji-Cheng; Guan, Xiu-Juan; Yang, Yong-Hui


    An investigation was made at a hilly upland in western Henan Province to understand the effects of water-retaining agent (0, 45, and 60 kg x hm(-2)), straw mulching (3000 and 6000 kg x hm(-2)), and plastic mulching (thickness straw- or plastic mulching was combined with the use of water-retaining agent. Comparing with the control, all the measures increased the soil moisture content at different growth stages by 0.1%-6.5%. Plastic film mulching had the best water-retention effect before jointing stage, whereas water-retaining agent showed its best effect after jointing stage. Soil moisture content was the lowest at flowering and grain-filling stages. Land cover increased the grain yield by 2.6%-20.1%. The yield increment was the greatest (14.2%-20.1%) by the combined use of straw mulching and water-retaining agent, followed by plastic mulching combined with water-retaining agent (11.9% on average). Land cover also improved the precipitation use efficiency (0.4-3.2 kg x mm(-1) x hm(-2)) in a similar trend as the grain yield. This study showed that land cover and water-retaining agent improved soil moisture and nutrition conditions and precipitation utilization, which in turn, promoted the tillering of winter wheat, and increased the grain number per ear and the 1000-grain mass.

  7. 40 CFR 257.23 - Ground-water sampling and analysis requirements. (United States)


    ...: (1) Sample collection; (2) Sample preservation and shipment; (3) Analytical procedures; (4) Chain of custody control; and (5) Quality assurance and quality control. (b) The ground-water monitoring program...



    A. Sh. Ramazanov; M. A. Kasparova; I. V. Saraeva; A. B. Alkhasov; O. M. Ramazanov; M. I. Akhmedov


    Aim. The aim of the study is to develop technologies for processing geothermal brine produced with the extraction of oil as well as to solve environmental problems in the region.Methods. In order to determine the chemical composition and radioactivity of the geothermal water and solid samples, we used atomic absorption and gamma spectrometry. Evaluation of the effectiveness of the technology was made on the basis of experimental studies.Results. In the geothermal water, eight radionuclides we...

  9. Ecological water games. Recycling of grey water with double utilization of water; Oekologische Wasserspiele. Grauwasser-Recycling mit zweifacher Wassernutzung

    Energy Technology Data Exchange (ETDEWEB)

    Bunkus, Michael [Pontos GmbH, Aachen (Germany)


    A combination of heat recovery and grey water recycling not only preserves the resources water, but also reduces the need of heating energy. Two examples from Hamburg and Ludwigsburg point out the ways in order to save costs several times. In particular, the AquaCycle plant of Pontos GmbH (Offenburg, Federal Republic of Germany) processes about 5,000 litres waste water biological-mechanically. The waste water purification takes place in four stages: (a) Separation of rough ingredients by means of filtration; (b) Biological degradation of dirt components; (c) Regular evacuating of the organic sediments; (d) Destruction of the germs by means of ultraviolet light.

  10. Decision rules and associated sample size planning for regional approval utilizing multiregional clinical trials. (United States)

    Chen, Xiaoyuan; Lu, Nelson; Nair, Rajesh; Xu, Yunling; Kang, Cailian; Huang, Qin; Li, Ning; Chen, Hongzhuan


    Multiregional clinical trials provide the potential to make safe and effective medical products simultaneously available to patients globally. As regulatory decisions are always made in a local context, this poses huge regulatory challenges. In this article we propose two conditional decision rules that can be used for medical product approval by local regulatory agencies based on the results of a multiregional clinical trial. We also illustrate sample size planning for such trials.


    Directory of Open Access Journals (Sweden)

    A. Sh. Ramazanov


    Full Text Available Aim. The aim of the study is to develop technologies for processing geothermal brine produced with the extraction of oil as well as to solve environmental problems in the region.Methods. In order to determine the chemical composition and radioactivity of the geothermal water and solid samples, we used atomic absorption and gamma spectrometry. Evaluation of the effectiveness of the technology was made on the basis of experimental studies.Results. In the geothermal water, eight radionuclides were recognized and quantified with the activity of 87 ± 5 Bq / dm3. For the processing of this water to produce lithium carbonate and other components we propose a technological scheme, which provides a step of water purification from radio-nuclides. As a result of aeration and alkalinization, we can observe deactivation and purification of the geothermal water from mechanical impurities, iron ions, hydrogen carbonates and organic substances. Water treatment allows recovering lithium carbonate, magnesite caustic powder and salt from geothermal water. The mother liquors produced during manufacturing operations meet the requirements for the water suitable for waterflooding of oil reservoirs and can be injected for maintaining the reservoir pressure of the deposits.Conclusion. The implementation of the proposed processing technology of mineralized geothermal water produced with the extraction of oil in the Northern Dagestan will contribute to extend the life of the oil fields and improve the environmental problems. It will also allow import substitution in Russia for lithium carbonate and edible salt.

  12. Concentration of polycyclic aromatic hydrocarbons in water samples from different stages of treatment (United States)

    Pogorzelec, Marta; Piekarska, Katarzyna


    The aim of this study was to analyze the presence and concentration of selected polycyclic aromatic hydrocarbons in water samples from different stages of treatment and to verify the usefulness of semipermeable membrane devices for analysis of drinking water. For this purpose, study was conducted for a period of 5 months. Semipermeable membrane devices were deployed in a surface water treatment plant located in Lower Silesia (Poland). To determine the effect of water treatment on concentration of PAHs, three sampling places were chosen: raw water input, stream of water just before disinfection and treated water output. After each month of sampling SPMDs were changed for fresh ones and prepared for further analysis. Concentrations of fifteen polycyclic aromatic hydrocarbons were determined by high performance liquid chromatography (HPLC). Presented study indicates that the use of semipermeable membrane devices can be an effective tool for the analysis of aquatic environment, including monitoring of drinking water, where organic micropollutants are present at very low concentrations.

  13. Presence of Cryptosporidium parvum and Giardia lamblia in water samples from Southeast Asia: towards an integrated water detection system. (United States)

    Kumar, Thulasi; Abd Majid, Mohamad Azlan; Onichandran, Subashini; Jaturas, Narong; Andiappan, Hemah; Salibay, Cristina C; Tabo, Hazel A L; Tabo, Norbel; Dungca, Julieta Z; Tangpong, Jitbanjong; Phiriyasamith, Sucheep; Yuttayong, Boonyaorn; Polseela, Raxsina; Do, Binh Nhu; Sawangjaroen, Nongyao; Tan, Tian-Chye; Lim, Yvonne A L; Nissapatorn, Veeranoot


    Access to clean and safe drinking water that is free from pathogenic protozoan parasites, especially Cryptosporidium parvum and Giardia lamblia that cause gastrointestinal illness in humans, is still an issue in Southeast Asia (SEA). This study is the first attempt to detect the aforementioned protozoan parasites in water samples from countries in SEA, using real-time polymerase chain reaction (qPCR) assays. A total of 221 water samples of 10 l each were collected between April and October 2013 from Malaysia (53), Thailand (120), the Philippines (33), and Vietnam (15). A physicochemical analysis was conducted. The water samples were processed in accordance with the US Environmental Protection Agency's methods 1622/1623.1, microscopically observed and subsequently screened using qPCR assays. Cryptosporidium oocysts were detected in treated water samples from the Philippines (1/10), with a concentration of 0.06 ± 0.19 oocyst/L, and untreated water samples from Thailand (25/93), Malaysia (17/44), and the Philippines (11/23), with concentrations ranging from 0.13 ± 0.18 to 0.57 ± 1.41 oocyst/L. Giardia cysts were found in treated water samples from the Philippines (1/10), with a concentration of 0.02 ± 0.06 cyst/L, and in untreated water samples from Thailand (20/93), Vietnam (5/10), Malaysia (22/44), and the Philippines (16/23), with concentrations ranging from 0.12 ± 0.3 to 8.90 ± 19.65 cyst/L. The pathogens C. parvum and G. lamblia were detected using using qPCR assays by targeting the 138-bp fragment and the small subunit gene, respectively. C. parvum was detected in untreated water samples from the Philippines (1/23) and Malaysia (2/44), whilst, G. lamblia detected was detected in treated water samples from the Philippines (1/10) and in untreated water samples from Thailand (21/93), Malaysia (12/44), and the Philippines (17/23). Nitrate concentration was found to have a high positive correlation with (oo)cyst (0.993). The presence of

  14. Economical Feasibility of Utilizing Photovoltaics for Water Pumping in Saudi Arabia

    Directory of Open Access Journals (Sweden)

    Ahmet Z. Sahin


    Full Text Available Energy and water are the two major need of the globe which need to be addressed for the sustenance of the human beings on this planet. All the nations, no matter most populous, developed and developing need to diversify the means and ways of producing energy and at the same time guarding the environment. This study aims at techno economical feasibility of producing energy using PV solar panels and utilizing it to pump-water at Dhahran, Riyadh, Jeddah, Guriat, and Nejran regions in Saudi Arabia. The solar radiation data from these stations was used to generate electricity using PV panels of 9.99 kW total capacity. Nejran region was found to be most economical in terms of minimal payback period and cost of energy and maximum internal rate of return whereas PV power production was concerned. Water-pumping capacity of the solar PV energy system was calculated at five locations based on the PV power production and Goulds model 45J series of pumps. Monthly total and annual total water pumping capacities were determined. Considering the capital cost of combined solar PV energy system and the pump unit a cost analysis of water pumping for a well of 50 m total dynamic head (TDH was carried out. The cost of water pumping was found to vary between 2 and 3 /m3.

  15. Determination of rare earth elements in natural water samples – A review of sample separation, preconcentration and direct methodologies

    Energy Technology Data Exchange (ETDEWEB)

    Fisher, Andrew, E-mail: [School of Geography, Earth and Environmental Sciences, Plymouth University, Drake Circus, Plymouth, Devon, PL4 8AA (United Kingdom); Kara, Derya [Department of Chemistry, Art and Science Faculty, Balikesir University, 10100, Balikesir (Turkey)


    This review discusses and compares the methods given for the determination of rare earth elements (REE) in natural water samples, including sea, river, lake, tap, ground and waste waters as well as Antarctic ice. Since REE are at very low concentrations in natural waters, numerous different preconcentration methods have been proposed to enable their measurement. These include liquid liquid extraction, dispersive liquid-liquid micro-extraction and solidified floating drop micro-extraction. In addition to liquid-liquid extraction methods, solid phase extraction using commercial resins, resins made in-house, silica-based exchange materials and other solid media is also discussed. These and other techniques such as precipitation/co-precipitation and flotation are compared in terms of speed, preconcentration factors achieved, precision, accuracy and limits of detection (LOD). Some papers have discussed the direct determination of REE in these sample types. Some have used specialised sample introduction systems such as ultrasonic nebulization whereas others have used a standard sample introduction system coupled with inductively coupled plasma mass spectrometry (ICP-MS) detection. These direct methods have also been discussed and compared. - Highlights: • The determination of rare earth elements in waters is reviewed. • Assorted preconcentration techniques are discussed and evaluated. • Detection techniques include atomic spectrometry, potentiometry and spectrophotometry. • Special nebulisers and electrothermal vaporization approaches are reviewed.

  16. Utilization of Capsules for Negative Staining of Viral Samples within Biocontainment. (United States)

    Blancett, Candace D; Monninger, Mitchell K; Nguessan, Chrystal A; Kuehl, Kathleen A; Rossi, Cynthia A; Olschner, Scott P; Williams, Priscilla L; Goodman, Steven L; Sun, Mei G


    Transmission electron microscopy (TEM) is used to observe the ultrastructure of viruses and other microbial pathogens with nanometer resolution. Most biological materials do not contain dense elements capable of scattering electrons to create an image; therefore, a negative stain, which places dense heavy metal salts around the sample, is required. In order to visualize viruses in suspension under the TEM they must be applied to small grids coated with a transparent surface only nanometers thick. Due to their small size and fragility, these grids are difficult to handle and easily moved by air currents. The thin surface is easily damaged, leaving the sample difficult or impossible to image. Infectious viruses must be handled in a biosafety cabinet (BSC) and some require a biocontainment laboratory environment. Staining viruses in biosafety levels (BSL)-3 and -4 is especially challenging because these environments are more turbulent and technicians are required to wear personal protective equipment (PPE), which decreases dexterity. In this study, we evaluated a new device to assist in negative staining viruses in biocontainment. The device is a capsule that works as a specialized pipette tip. Once grids are loaded into the capsule, the user simply aspirates reagents into the capsule to deliver the virus and stains to the encapsulated grid, thus eliminating user handling of grids. Although this technique was designed specifically for use in BSL-3 or -4 biocontainment, it can ease sample preparation in any lab environment by enabling easy negative staining of virus. This same method can also be applied to prepare negative stained TEM specimens of nanoparticles, macromolecules and similar specimens.

  17. Depression literacy: rates and relation to perceived need and mental health service utilization in a rural American sample. (United States)

    Deen, Tisha L; Bridges, Ana J


    Mental health literacy assists patients to recognize, manage and prevent emotional disorders such as depression. Depression literacy is a specific type that varies among populations; however, there is a paucity of research on the depression literacy of rural Americans. The purposes of this study were to evaluate the depression literacy of a rural American sample, and to examine the relationship of depression literacy with perceived need for and utilization of different types of services for those with emotional problems. Participants were recruited outside grocery stores in rural towns by consenting to be contacted and providing contact information. They were contacted via telephone to complete a survey of 15 min duration. Depression literacy was measured by assessing participants' ability to correctly label a vignette that depicted depressive symptoms. Demographic data, psychiatric symptoms, perceived need for seeking services (primary care, counselor and religious leader), and lifetime utilization of services (medical, specialty mental health and religious leader) for emotional problems were also assessed in the survey. High depression literacy (i.e., able to correctly label the vignette) was found in 53% of the sample. Men had lower depression literacy than women (35% vs 68%) and this effect remained after controlling for demographic and symptom variables. Multivariable regression analyses revealed that, after including demographic and symptoms variables in the regression equation, depression literacy did not significantly predict perceived need for a doctor, counselor, or religious leader, but depression literacy did significantly predicted utilization of a religious leader (but not a doctor or counselor). The rate of depression literacy in this sample was lower than the rates in other samples, especially among men. The disparity in depression literacy among men in this sample is consistent with the literature. Differences in utilization of a religious leader

  18. Assessing impacts of DNA extraction methods on next generation sequencing of water and wastewater samples. (United States)

    Walden, Connie; Carbonero, Franck; Zhang, Wen


    Next Generation Sequencing (NGS) is increasingly affordable and easier to perform. However, standard protocols prior to the sequencing step are only available for few selected sample types. Here we investigated the impact of DNA extraction methods on the consistency of NGS results. Four commercial DNA extraction kits (QIAamp DNA Mini Kit, QIAamp DNA Stool Mini Kit, MO BIO Power Water Kit, and MO BIO Power Soil DNA Isolation Kit) were used on sample sources including lake water and wastewater, and sample types including planktonic and biofilm bacteria communities. Sampling locations included a lake water reservoir, a trickling filter, and a moving bed biofilm reactor (MBBR). Unique genera such as Gemmatimonadetes, Elusimicrobia, and Latescibacteria were found in multiple samples. The Stool Mini Kit was least efficient in terms of diversity in sampling results with freshwater lake samples, and surprisingly the Power Water Kit was the least efficient across all sample types examined. Detailed NGS beta diversity comparisons indicated that the Mini Kit and PowerSoil Kit are best suited for studies that extract DNA from a variety of water and wastewater samples. We ultimately recommend application of Mini Kit or PowerSoil Kit as an improvement to NGS protocols for these sampling environments. These results are a step toward achieving accurate comparability of complex samples from water and wastewater environments by applying a single DNA extraction method, further streamlining future investigations. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. [Detection of Cryptospordium spp. in environmental water samples by FTA-PCR]. (United States)

    Zhang, Xiao-Ping; Zhu, Qian; He, Yan-Yan; Jiang, Li; Jiang, Shou-Fu


    To establish a FTA-polymeras chain reaction (FTA-PCR) method in detection of Cryptospordium spp. in different sources of water. The semi automated immunomagnetic separation (IMS) of Cryptospordium oocysts in environmental water samples was performed firstly, and then genomic DNA of Cryptospordium oocysts was extracted by FTA filters disk. Oligonucleotide primers were designed based on the DNA fragment of the 18 S rRNA gene from C. parvum. Plate DNA was amplified with primers in PCR. The control DNA samples from Toxoplasma gondii,Sarcocystis suihominis, Echinococcus granulosus, and Clonorchis sinensis were amplified simultaneously. All PCR products were detected by agar electrophoresis dyed with ethidium bromide. The 446 bp fragment of DNA was detected in all samples of C. parvum, C. andersoni, and C. baileyi, while it was not detected in control groups in laboratory. No positive samples were found from 10 samples collected from tape water in 5 districts of Shanghai City by FTA-PCR. Nine positive samples were detected totally from 70 different environmental water samples, there were 0 out of 15 samples from the source of tape water, 2 out of 25 from the Huangpu River, 5 out of 15 from rivers around the animal farmers, 1 out of 9 from output water of contaminating water treatment factory, 1 out of 6 from the out gate of living contaminating water. The 446 bp fragment was detected from all the amplified positive water samples. FTA-PCR is an efficient method for gene detection of Cryptospordium oocysts, which could be used in detection of environmental water samples. The contamination degree of Cryptospordium oocysts in the river water around animal farms is high.

  20. Isolation and Identification of Parasitic Protozoa in Sampled Water From the Southwest of Iran

    Directory of Open Access Journals (Sweden)



    Full Text Available Background In spite of promotion of people’s hygiene in the recent years, parasitic infection problems are present in many parts of the world especially in tropical and subtropical areas. Water is one of the major sources for acquiring parasitic infections, especially protozoan parasites. Objectives This study was conducted to evaluate the present parasitic agents in river, tap water and filtrated water in the western part of Ahvaz city. Materials and Methods Forty-four water samples were collected from different sources of the studied area. The samples were examined by routine parasitology methods using light microscopy. Results Twenty-eight out of 44 water samples were positive for parasitic contamination with cysts and oocysts of four parasitic protozoa including: 50% Entamoeba spp (22 out of 44 samples, 27.27% Cryptosporidium spp (12 out of 44 samples, 13.63% Blastocystis spp (6 out of 44 samples and 9.09% Giardia spp (4 out of 44 samples. Conclusions The parasite infection rate in water is high and deficits of water quality should be solved by water organization responders. It is strongly recommended to use home filtration systems for consumption of safe water.

  1. Automated syringe sampler. [remote sampling of air and water (United States)

    Purgold, G. C. (Inventor)


    A number of sampling services are disposed in a rack which slides into a housing. In response to a signal from an antenna, the circutry elements are activated which provide power individually, collectively, or selectively to a servomechanism thereby moving an actuator arm and the attached jawed bracket supporting an evaculated tube towards a stationary needle. One open end of the needle extends through the side wall of a conduit to the interior and the other open end is maintained within the protective sleeve, supported by a bifurcated bracket. A septum in punctured by the end of the needle within the sleeve and a sample of the fluid medium in the conduit flows through the needle and is transferred to a tube. The signal to the servo is then reversed and the actuator arm moves the tube back to its original position permitting the septum to expand and seal the hole made by the needle. The jawed bracket is attached by pivot to the actuator to facilitate tube replacement.

  2. Sampling and Chemical Analysis of Potable Water for ISS Expeditions 12 and 13 (United States)

    Straub, John E. II; Plumlee, Deborah K.; Schultz, John R.


    The crews of Expeditions 12 and 13 aboard the International Space Station (ISS) continued to rely on potable water from two different sources, regenerated humidity condensate and Russian ground-supplied water. The Space Shuttle launched twice during the 12- months spanning both expeditions and docked with the ISS for delivery of hardware and supplies. However, no Shuttle potable water was transferred to the station during either of these missions. The chemical quality of the ISS onboard potable water supplies was verified by performing ground analyses of archival water samples at the Johnson Space Center (JSC) Water and Food Analytical Laboratory (WAFAL). Since no Shuttle flights launched during Expedition 12 and there was restricted return volume on the Russian Soyuz vehicle, only one chemical archive potable water sample was collected with U.S. hardware and returned during Expedition 12. This sample was collected in March 2006 and returned on Soyuz 11. The number and sensitivity of the chemical analyses performed on this sample were limited due to low sample volume. Shuttle flights STS-121 (ULF1.1) and STS-115 (12A) docked with the ISS in July and September of 2006, respectively. These flights returned to Earth with eight chemical archive potable water samples that were collected with U.S. hardware during Expedition 13. The average collected volume increased for these samples, allowing full chemical characterization to be performed. This paper presents a discussion of the results from chemical analyses performed on Expeditions 12 and 13 archive potable water samples. In addition to the results from the U.S. samples analyzed, results from pre-flight samples of Russian potable water delivered to the ISS on Progress vehicles and in-flight samples collected with Russian hardware during Expeditions 12 and 13 and analyzed at JSC are also discussed.

  3. Development of Directly Suspended Droplet Micro Extraction Method for Extraction of Organochlorine Pesticides in Water Samples

    Directory of Open Access Journals (Sweden)

    Seyed Kamal Rajabi


    Full Text Available A simple and efficient directly suspended droplet micro extraction in conjunction with gas chromatography-electron capture detector (GC-ECD has been developed for extraction and determination of organochlorine pesticides (OCPs from water samples. In this technique a micro drop of 1-dodecanol is delivered to the surface of an aqueous sample while being agitated by a stirring bar in the bulk of solution. Factors relevant to the extraction efficiency were studied and optimized. The optimized extraction conditions were extraction solvent: 1-dodecanol; extraction temperature: 60◦C; NaCl concentration: 0.5M; solvent extraction volume: 10 µL; stirring rate: 800rpm and the extraction time: 20 min. The detection limits of the method were in the range of 0.066–1.85 ngL−1, relation standard deviation (n=5 range were 0.102 - 0.964. A good linearity (r 2 ≥0.995 and a relatively broad dynamic linear range (25–2600ng.L−1 were obtained and recoveries of method were in the range of 90.729% - 102.343%. Finally, the proposedmethod was successfully utilized for pre concentration and determination of OCPs in different real samples.We successfully developed a method based on the DSDME technique combined with capillary GC-ECD for the analysis of OCPs in the water samples and compared with the conventional sample preparation method such as LPME. Normal 0 false false false EN-US X-NONE AR-SA /* Style Definitions */ table.MsoNormalTable {mso-style-name:"Table Normal"; mso-tstyle-rowband-size:0; mso-tstyle-colband-size:0; mso-style-noshow:yes; mso-style-priority:99; mso-style-parent:""; mso-padding-alt:0cm 5.4pt 0cm 5.4pt; mso-para-margin-top:0cm; mso-para-margin-right:0cm; mso-para-margin-bottom:10.0pt; mso-para-margin-left:0cm; line-height:115%; mso-pagination:widow-orphan; font-size:11.0pt; font-family:"Calibri","sans-serif"; mso-ascii-font-family:Calibri; mso-ascii-theme-font:minor-latin; mso-hansi-font-family:Calibri; mso

  4. USDA Forest Service national protocols for sampling air pollution-sensitive waters (United States)

    T. J. Sullivan


    The first step in designing a surface water sampling program is identifying one or more problems or questions that require information on water quality. Common water quality problems include nutrient enrichment (from a variety of causes), effects of atmospheric deposition (acidification, eutrophication, toxicity), and effects of major disturbances such as fire or pest...

  5. Advanced reactor design study. Assessing nonbackfittable concepts for improving uranium utilization in light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Fleischman, R.M.; Goldsmith, S.; Newman, D.F.; Trapp, T.J.; Spinrad, B.I.


    The objective of the Advanced Reactor Design Study (ARDS) is to identify and evaluate nonbackfittable concepts for improving uranium utilization in light water reactors (LWRs). The results of this study provide a basis for selecting and demonstrating specific nonbackfittable concepts that have good potential for implementation. Lead responsibility for managing the study was assigned to the Pacific Northwest Laboratory (PNL). Nonbackfittable concepts for improving uranium utilization in LWRs on the once-through fuel cycle were selected separately for PWRs and BWRs due to basic differences in the way specific concepts apply to those plants. Nonbackfittable concepts are those that are too costly to incorporate in existing plants, and thus, could only be economically incorporated in new reactor designs or plants in very early stages of construction. Essential results of the Advanced Reactor Design Study are summarized.

  6. National Coral Reef Monitoring Program: Water Chemistry of the Coral Reefs in American Samoa from Water Samples collected since 2015 (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Water samples are collected and analyzed to assess spatial and temporal variation in the seawater carbonate systems of coral reef ecosystems in the Hawaiian and...

  7. Homelessness among a nationally representative sample of US veterans: prevalence, service utilization, and correlates. (United States)

    Tsai, Jack; Link, Bruce; Rosenheck, Robert A; Pietrzak, Robert H


    To examine the prevalence of lifetime homelessness among veterans and use of Veterans Affairs (VA) homeless services, as well as their association with sociodemographic and clinical characteristics. A nationally representative sample of 1533 US veterans was surveyed July-August 2015. Among all veterans, 8.5 % reported any lifetime homelessness in their adult life, but only 17.2 % of those reported using VA homeless services. Prevalence of homelessness and VA homeless service use did not significantly differ by gender. Being low income, aged 35-44, and having poor mental and physical health were each independently associated with lifetime homelessness. Veterans who were White or lived in rural areas were significantly less likely to have used VA homeless services. Homelessness remains a substantial problem across different generations of veterans. The low reported uptake of VA homeless services suggests there are barriers to care in this population, especially for veterans who live in rural areas. Governmental resources dedicated to veteran homelessness should be supported, and obtaining accurate prevalence estimates are important to tracking progress over time.

  8. Decision making for multiple utilization of water resources in New Zealand (United States)

    Memon, Pyar Ali


    The Clutha is the largest river in New Zealand. The last two decades have witnessed major conflicts centered on the utilization of the water resources of the upper Clutha river. These conflicts have by no means been finally resolved. The focus of this article is on institutional arrangements for water resource management on the Clutha, with particular reference to the decision-making processes that have culminated in the building of the high dam. It critically evaluates recent experiences and comments on future prospects for resolving resource use conflicts rationally through planning for multiple utilization in a climate of market led policies of the present government. The study demonstrates the inevitable conflicts that can arise within a public bureaucracy that combines dual responsibilities for policy making and operational functions. Hitherto, central government has been able to manipulate the water resource allocation process to its advantage because of a lack of clear separation between its two roles as a policy maker and developer. The conflicts that have manifested themselves during the last two decades over the Clutha should be seen as part of a wider public debate during the last two decades concerning resource utilization in New Zealand. The Clutha controversy was preceded by comparable concerns over the rising of the level of Lake Manapouri during the 1960s and has been followed by the debate over the “think big” resource development projects during the 1980s. The election of the fourth Labour government in 1983 has heralded a political and economic policy shift in New Zealand towards minimizing the role of public intervention in resource allocation and major structural reforms in the relative roles of central and regional government in resource management. The significance of these changes pose important implications for the future management of the Clutha.

  9. Review of R and D on Water Hyacinth Utilization in the Philippine Republic (United States)

    Otis, J. L.; Hillman, M. E. D.


    The operations of a Filipino inventor were observed with a view toward determining the technical-economic potential of his hyacinth utilization concepts if the highly fibrous portion of the plant were separated from the other components. Subjects of particular interest include: (1) water hyacinth harvesting techniques, volumes and costs; (2) hyacinth defibering processes; and (3) uses of hyacinth materials for production of animal feeds, paper fibers, particle boards, acoustic and insulation boards, various vitamins and minerals (especially Vitamin A), food products, pesticides, and medicinal and pharmaceutical products.

  10. BfR assesses research results of samples of mineral water with hormone-like effects


    German Federal Institute for Risk Assessment


    Media reports on research results by scientists at Frankfurt University concerning samples of mineral water with hormone-like effects have disconcerted consumers. In the study, such effects were determined in 12 out of 20 mineral waters tested. The scientists assume that this oestrogen-like effect originates from substances in plastic bottles that contain the mineral water. The position of the Federal Institute of Risk Assessment (BfR) is that mineral water essentially should have no hormone-...

  11. Lead (Pb) quantification in potable water samples: implications for regulatory compliance and assessment of human exposure. (United States)

    Triantafyllidou, Simoni; Nguyen, Caroline K; Zhang, Yan; Edwards, Marc A


    Assessing the health risk from lead (Pb) in potable water requires accurate quantification of the Pb concentration. Under worst-case scenarios of highly contaminated water samples, representative of public health concerns, up to 71-98 % of the total Pb was not quantified if water samples were not mixed thoroughly after standard preservation (i.e., addition of 0.15 % (v/v) HNO(3)). Thorough mixing after standard preservation improved recovery in all samples, but 35-81 % of the total Pb was still un-quantified in some samples. Transfer of samples from one bottle to another also created high errors (40-100 % of the total Pb was un-quantified in transferred samples). Although the United States Environmental Protection Agency's standard protocol avoids most of these errors, certain methods considered EPA-equivalent allow these errors for regulatory compliance sampling. Moreover, routine monitoring for assessment of human Pb exposure in the USA has no standardized protocols for water sample handling and pre-treatment. Overall, while there is no reason to believe that sample handling and pre-treatment dramatically skew regulatory compliance with the US Pb action level, slight variations from one approved protocol to another may cause Pb-in-water health risks to be significantly underestimated, especially for unusual situations of "worst case" individual exposure to highly contaminated water.

  12. Study benefit value of utilization water resources for energy and sustainable environment (United States)

    Juniah, Restu; Sastradinata, Marwan


    Referring to the concept of sustainable development, the environment is said to be sustainable if the fulfillment of three pillars of development that is economic, social and ecological or the environment itself. The environment can sustained in the principle of ecology or basic principles of environmental science, when the three environmental components, namely the natural environment, the artificial environment (the built environment) and the social environment can be aligned for sustainability. The natural environment in this study is the water resources, the artificial environment is micro hydroelectric power generation (MHPG), and the social environment is the community living around the MHPG. The existence of MHPG is intended for the sustainability of special electrical energy for areas not yet reached by electricity derived from the state electricity company (SEC). The utilization of MHPG Singalaga in South Ogan Komering Ulu (OKUS) district is not only intended for economic, ecological, and social sustainability in Southern OKU district especially those who live in Singalaga Village, Kisam Tinggi District. This paper discusses the economic, ecological and social benefits of water resources utilization in Southern OKU District for MHPG Singalaga. The direct economic benefits that arise for people living around MHPG Singalaga is the cost incurred by the community for the use of electricity is less than if the community uses electricity coming from outside the MHPG. The cost to society in the form of dues amounting to IDR 15,000 a month / household. Social benefits with the absorption of manpower to manage the MHPG is chairman, secretary and 3 members, while the ecological benefits of water resources and sustainable energy as well as the community while maintaining the natural vegetation that is located around the MHPG for the continuity of water resources.

  13. Determination of pyridine in soil and water samples of a polluted area

    NARCIS (Netherlands)

    Peters, R.J.B.; Renesse van Duivenbode, J.A.D. van


    A method for the analyses of pyridine in environmental samples is described. For soil samples a distillation procedure followed by an extraction, an acidic extraction or a Soxhlet extraction can be used. For water samples a distillation procedure followed by extraction can be employed. Deuterated

  14. Modeling Water Utility Investments and Improving Regulatory Policies using Economic Optimisation in England and Wales (United States)

    Padula, S.; Harou, J. J.


    Water utilities in England and Wales are regulated natural monopolies called 'water companies'. Water companies must obtain periodic regulatory approval for all investments (new supply infrastructure or demand management measures). Both water companies and their regulators use results from least economic cost capacity expansion optimisation models to develop or assess water supply investment plans. This presentation first describes the formulation of a flexible supply-demand planning capacity expansion model for water system planning. The model uses a mixed integer linear programming (MILP) formulation to choose the least-cost schedule of future supply schemes (reservoirs, desalination plants, etc.) and demand management (DM) measures (leakage reduction, water efficiency and metering options) and bulk transfers. Decisions include what schemes to implement, when to do so, how to size schemes and how much to use each scheme during each year of an n-year long planning horizon (typically 30 years). In addition to capital and operating (fixed and variable) costs, the estimated social and environmental costs of schemes are considered. Each proposed scheme is costed discretely at one or more capacities following regulatory guidelines. The model uses a node-link network structure: water demand nodes are connected to supply and demand management (DM) options (represented as nodes) or to other demand nodes (transfers). Yields from existing and proposed are estimated separately using detailed water resource system simulation models evaluated over the historical period. The model simultaneously considers multiple demand scenarios to ensure demands are met at required reliability levels; use levels of each scheme are evaluated for each demand scenario and weighted by scenario likelihood so that operating costs are accurately evaluated. Multiple interdependency relationships between schemes (pre-requisites, mutual exclusivity, start dates, etc.) can be accounted for by

  15. Surf Zone Hydrodynamics and its Utilization in Biotechnical Stabilization of Water Reservoir Banks

    Directory of Open Access Journals (Sweden)

    Petr Pelikán


    Full Text Available The water reservoir banks are eroded mainly by two factors. The first one is wave action (i.e. wave abrasion affecting the bank in direction from the reservoir. The second one is the influence of water flowing downward over the bank surface in direction from land into the reservoir (e.g. rainfall. The determination of regular altitudinal emplacement of proper designed particular biotechnical stabilization elements is the most important factor on which the right functionality of whole construction depends. Surf zone hydrodynamics solves the wave and water level changes inside the region extending from the wave breaking point to the limit of wave up-rush. The paper is focused on the utilization of piece of knowledge from a part of sea coast hydrodynamics and new approach in its application in the conditions of inland water bodies when designing the biotechnical stabilization elements along the shorelines. The “reinforced grass carpets” as a type of biotechnical method of bank stabilization are presented in the paper; whether the growth of grass root system is dependent on presence or absence of geomats in the soil structure and proceeding of their establishment on the shorelines.


    Directory of Open Access Journals (Sweden)

    Jan Šácha


    Full Text Available This paper presents an empirical method by Kang et al. recently proposed for correcting two-dimensional neutron radiography for water quantification in soil. The method was tested on data from neutron imaging of the water infiltration in a soil sample. The raw data were affected by neutron scattering and by beam hardening artefacts. Two strategies for identifying the correction parameters are proposed in this paper. The method has been further developed for the case of three-dimensional neutron tomography. In a related experiment, neutron imaging is used to record ponded-infiltration experiments in two artificial soil samples. Radiograms, i.e., two-dimensional projections of the sample, were acquired during infiltration. A calculation was made of the amount of water and its distribution within the radiograms, in the form of two-dimensional water thickness maps. Tomograms were reconstructed from the corrected and uncorrected water thickness maps to obtain the 3D spatial distribution of the water content within the sample. Without the correction, the beam hardening and the scattering effects overestimated the water content values close to the perimeter of the sample, and at the same time underestimated the values close to the centre of the sample. The total water content of the entire sample was the same in both cases. The empirical correction method presented in this study is a relatively accurate, rapid and simple way to obtain the quantitatively determined water content from two-dimensional and three-dimensional neutron images. However, an independent method for measuring the total water volume in the sample is needed in order to identify the correction parameters.

  17. First Total Reflection X-Ray Fluorescence round-robin test of water samples: Preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Borgese, Laura; Bilo, Fabjola [Chemistry for Technologies Laboratory, University of Brescia, Brescia (Italy); Tsuji, Kouichi [Graduate School of Engineering, Osaka City University, Osaka (Japan); Fernández-Ruiz, Ramón [Servicio Interdepartamental de Investigación (SIdI), Laboratorio de TXRF, Universidad Autónoma de Madrid, Madrid (Spain); Margui, Eva [Department of Chemistry, University of Girona, Girona (Spain); Streli, Christina [TU Wien, Atominstitut,Radiation Physics, Vienna (Austria); Pepponi, Giancarlo [Fondazione Bruno Kessler, Povo, Trento (Italy); Stosnach, Hagen [Bruker Nano GmbH, Berlin (Germany); Yamada, Takashi [Rigaku Corporation, Takatsuki, Osaka (Japan); Vandenabeele, Peter [Department of Archaeology, Ghent University, Ghent (Belgium); Maina, David M.; Gatari, Michael [Institute of Nuclear Science and Technology, University of Nairobi, Nairobi (Kenya); Shepherd, Keith D.; Towett, Erick K. [World Agroforestry Centre (ICRAF), Nairobi (Kenya); Bennun, Leonardo [Laboratorio de Física Aplicada, Departamento de Física, Universidad de Concepción (Chile); Custo, Graciela; Vasquez, Cristina [Gerencia Química, Laboratorio B025, Centro Atómico Constituyentes, San Martín (Argentina); Depero, Laura E., E-mail: [Chemistry for Technologies Laboratory, University of Brescia, Brescia (Italy)


    Total Reflection X-Ray Fluorescence (TXRF) is a mature technique to evaluate quantitatively the elemental composition of liquid samples deposited on clean and well polished reflectors. In this paper the results of the first worldwide TXRF round-robin test of water samples, involving 18 laboratories in 10 countries are presented and discussed. The test was performed within the framework of the VAMAS project, interlaboratory comparison of TXRF spectroscopy for environmental analysis, whose aim is to develop guidelines and a standard methodology for biological and environmental analysis by means of the TXRF analytical technique. - Highlights: • The discussion of the first worldwide TXRF round-robin test of water samples (18 laboratories of 10 countries) is reported. • Drinking, waste, and desalinated water samples were tested. • Data dispersion sources were identified: sample concentration, preparation, fitting procedure, and quantification. • The protocol for TXRF analysis of drinking water is proposed.

  18. Sampling strategy and potential utility of indels for DNA barcoding of closely related plant species: a case study in taxus. (United States)

    Liu, Jie; Provan, Jim; Gao, Lian-Ming; Li, De-Zhu


    Although DNA barcoding has become a useful tool for species identification and biodiversity surveys in plant sciences, there remains little consensus concerning appropriate sampling strategies and the treatment of indels. To address these two issues, we sampled 39 populations for nine Taxus species across their entire ranges, with two to three individuals per population randomly sampled. We sequenced one core DNA barcode (matK) and three supplementary regions (trnH-psbA, trnL-trnF and ITS) for all samples to test the effects of sampling design and the utility of indels. Our results suggested that increasing sampling within-population did not change the clustering of individuals, and that meant within-population P-distances were zero for most populations in all regions. Based on the markers tested here, comparison of methods either including or excluding indels indicated that discrimination and nodal support of monophyletic groups were significantly increased when indels were included. Thus we concluded that one individual per population was adequate to represent the within-population variation in these species for DNA barcoding, and that intra-specific sampling was best focused on representing the entire ranges of certain taxa. We also found that indels occurring in the chloroplast trnL-trnF and trnH-psbA regions were informative to differentiate among for closely related taxa barcoding, and we proposed that indel-coding methods should be considered for use in future for closed related plant species DNA barcoding projects on or below generic level.

  19. Determination of MS-222 in Water Samples by Solid-phase Extraction Coupled with Liquid Chromatography/Tandem Mass Spectrometry. (United States)

    Zhao, Dong-Hao; Wang, Qiang; Wang, Xu-Feng; Li, Zhi-Guang; Li, Yong-Xian; Huang, Ke; Li, Liu-Dong


    A practical solid-phase extraction (SPE) method coupled with liquid chromatography/tandem mass spectrometry (LC-MS/MS) has been developed for the determination of the fish anesthetic MS-222 in water. Water samples were concentrated and purified using three SPE cartridges of different specifications. Elution curves of MS-222 were constructed using various methanol-water solutions on the different cartridges, and SPE conditions were optimized in accordance with the elution curves. The mobile phase containing methanol and 0.1% formic acid solution with a linear gradient elution was utilized to separate MS-222 on a C18 column. Detection was carried out by a triple-quadrupole mass spectrometry with an electrospray ion source in positive mode. Recoveries of three MS-222 fortified levels of 0.05, 0.5 and 5 μg/L ranged of 82.6-101% with relative standard deviations (RSDs) below 9.36%. The limit of detection (LOD) and limit of quantification (LOQ) of MS-222 were 0.01 μg/L and 0.03 μg/L, respectively. This method was satisfactorily applied to the determination of MS-222 in actual water samples collected from aquatic product transportation vehicles or from the natural water catchments. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please email:

  20. Risk management for drinking water safety in low and middle income countries - cultural influences on water safety plan (WSP) implementation in urban water utilities. (United States)

    Omar, Yahya Y; Parker, Alison; Smith, Jennifer A; Pollard, Simon J T


    We investigated cultural influences on the implementation of water safety plans (WSPs) using case studies from WSP pilots in India, Uganda and Jamaica. A comprehensive thematic analysis of semi-structured interviews (n=150 utility customers, n=32 WSP 'implementers' and n=9 WSP 'promoters'), field observations and related documents revealed 12 cultural themes, offered as 'enabling', 'limiting', or 'neutral', that influence WSP implementation in urban water utilities to varying extents. Aspects such as a 'deliver first, safety later' mind set; supply system knowledge management and storage practices; and non-compliance are deemed influential. Emergent themes of cultural influence (ET1 to ET12) are discussed by reference to the risk management, development studies and institutional culture literatures; by reference to their positive, negative or neutral influence on WSP implementation. The results have implications for the utility endorsement of WSPs, for the impact of organisational cultures on WSP implementation; for the scale-up of pilot studies; and they support repeated calls from practitioner communities for cultural attentiveness during WSP design. Findings on organisational cultures mirror those from utilities in higher income nations implementing WSPs - leadership, advocacy among promoters and customers (not just implementers) and purposeful knowledge management are critical to WSP success. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Exploring the utility of Posidonia oceanica chlorophyll fluorescence as an indicator of water quality within the European Water Framework Directive. (United States)

    Gera, Alessandro; Alcoverro, Teresa; Mascaró, Oriol; Pérez, Marta; Romero, Javier


    The European Water Framework Directive commits partner countries to evolve uniform protocols for monitoring the environmental condition of natural water bodies, crucially integrating biological and ecological criteria from the associated ecosystems. This has encouraged considerable research on the development of bioindicator-based systems of water quality monitoring. A critical step towards this end is providing evidence that the proposed bioindicator system adequately reflects the human pressures to which a specific water body is submitted. Here we investigate the utility of pulse-amplitude-modulated (PAM) fluorometry, a fast, non-destructive and increasingly popular bioindicator-based method, in assessing water quality based on the widespread Mediterranean seagrass Posidonia oceanica, an important constituent of submersed benthic vegetation. Specifically, we evaluated the ability of PAM to discriminate between sites along a pre-established gradient of anthropogenic pressures and the consistency and reliability of PAM parameters across spatial scales. Our results show that the maximum quantum yield (Fv/Fm), representing the structural photosynthetic efficiency of the plant, responds significantly to the degree of site-level anthropogenic pressure. However, Fv/Fm values in our study increased with increasing pressure, in striking contrast with other studies that report declines in Fv/Fm values with increasing stress. A potential explanation for this discrepancy is that our study sites were influenced by multiple diffuse stressors (characteristic of most coastal waters) that could potentially interact with each other to influence Fv/Fm values in often unpredictable ways. The photosynthetic variables calculated from rapid light curves (ETR(max), maximum electron transport rate; α, initial slope of the curve; I (k), saturating irradiance), which represent an instant picture of the photosynthetic activity of the plant, were unable to clearly discriminate between sites

  2. Monitoring the aftermath of Flint drinking water contamination crisis: Another case of sampling bias? (United States)

    Goovaerts, Pierre


    The delay in reporting high levels of lead in Flint drinking water, following the city's switch to the Flint River as its water supply, was partially caused by the biased selection of sampling sites away from the lead pipe network. Since Flint returned to its pre-crisis source of drinking water, the State has been monitoring water lead levels (WLL) at selected "sentinel" sites. In a first phase that lasted two months, 739 residences were sampled, most of them bi-weekly, to determine the general health of the distribution system and to track temporal changes in lead levels. During the same period, water samples were also collected through a voluntary program whereby concerned citizens received free testing kits and conducted sampling on their own. State officials relied on the former data to demonstrate the steady improvement in water quality. A recent analysis of data collected by voluntary sampling revealed, however, an opposite trend with lead levels increasing over time. This paper looks at potential sampling bias to explain such differences. Although houses with higher WLL were more likely to be sampled repeatedly, voluntary sampling turned out to reproduce fairly well the main characteristics (i.e. presence of lead service lines (LSL), construction year) of Flint housing stock. State-controlled sampling was less representative; e.g., sentinel sites with LSL were mostly built between 1935 and 1950 in lower poverty areas, which might hamper our ability to disentangle the effects of LSL and premise plumbing (lead fixtures and pipes present within old houses) on WLL. Also, there was no sentinel site with LSL in two of the most impoverished wards, including where the percentage of children with elevated blood lead levels tripled following the switch in water supply. Correcting for sampling bias narrowed the gap between sampling programs, yet overall temporal trends are still opposite. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Utility of manual liquid-based cytology and conventional smears in the evaluation of various fine-needle aspiration samples

    Directory of Open Access Journals (Sweden)

    P Arul


    Full Text Available Background: Liquid-based cytology (LBC preparation is a way to improve and refine the fine-needle aspiration (FNA samples. There are a few studies comparing LBC with conventional smear (CS. Aim: The present study was undertaken to evaluate the utility of manual LBC (MLBC and CS preparations in various FNA samples. Materials and Methods: In this cross-sectional study, a total of 100 FNA samples from various anatomical sites were evaluated using MLBC and CS preparations. Cellularity, blood, informative background, monolayers, cell architecture, cytoplasmic, and nuclear preservation were compared with MLBC and CS preparations by Wilcoxon signed rank test. P < 0.05 is considered statistically significant. Results: MLBC preparations were superior to CS preparations in view of absence of blood and debris (P = 0.001, presence of monolayers (P < 0.001, and preservation of cytoplasmic (P = 0.001 and nuclear details (P = 0.001. However, no statistically significant differences were found between MLBC and CS preparations with regard to cellularity (P = 0.157, informative background (P = 0.083, and architecture (P = 0.739. Conclusion: MLBC preparations in FNAC are a safe, easy, and less time-consuming procedure, and it may have promising diagnostic value in the evaluation of FNA samples from various anatomical sites. However, the use of both MLBC and CS preparations is recommended to achieve optimal diagnostic yield.

  4. Design, analysis, and interpretation of field quality-control data for water-sampling projects (United States)

    Mueller, David K.; Schertz, Terry L.; Martin, Jeffrey D.; Sandstrom, Mark W.


    The process of obtaining and analyzing water samples from the environment includes a number of steps that can affect the reported result. The equipment used to collect and filter samples, the bottles used for specific subsamples, any added preservatives, sample storage in the field, and shipment to the laboratory have the potential to affect how accurately samples represent the environment from which they were collected. During the early 1990s, the U.S. Geological Survey implemented policies to include the routine collection of quality-control samples in order to evaluate these effects and to ensure that water-quality data were adequately representing environmental conditions. Since that time, the U.S. Geological Survey Office of Water Quality has provided training in how to design effective field quality-control sampling programs and how to evaluate the resultant quality-control data. This report documents that training material and provides a reference for methods used to analyze quality-control data.

  5. Concentrations of some heavy metals in underground water samples from a Nigerian crude oil producing community. (United States)

    Ejike, Chukwunonso E C C; Eferibe, Chinedu O; Okonkwo, Francis O


    Pollution due to oil exploration activities in the Niger Delta region of Nigeria and government under-investments in potable water infrastructure has led to the dependence of the population on personal boreholes. Yet, there are little quality or surveillance reports on such waters. The concentrations of heavy metals in underground water samples from an oil producing area, Umuebulu, in the Niger Delta were therefore investigated. Water samples were collected from three test points, each approximately 300 m from (1) wellhead area (WHA), (2) flare area (FA) and (3) effluent discharge area (EDA), and one control point located 10 km away from any oil-related activity. The concentrations of lead, arsenic and cadmium were determined in the samples using atomic absorption spectrophotometry. All three heavy metals were present in the test, and control water samples at concentrations significantly (P water samples showed that their consumption constituted significant health risks in the order EDA > FA > WHA > Control. Appropriate water treatment and surveillance is warranted and therefore recommended for underground water resources of the studied community.

  6. Identification and quantification of pesticide residues in water samples of Dhamrai Upazila, Bangladesh (United States)

    Hasanuzzaman, M.; Rahman, M. A.; Salam, M. A.


    Being agricultural country, different types of pesticides are widely used in Bangladesh to prevent the crop losses due to pest attack which are ultimately drain to the water bodies. The present study was conducted to identify and quantify the organochlorine (DDT, DDE and DDD), organophosphorus (malathion, diazinon and chloropyrifos) and carbamate (carbaryl) residues in water samples of different sources from Dhamrai upazila of Bangladesh using high performance liquid chromatography (HPLC) equipped with ultra violate (UV) detector. Thirty water samples from fish pond, cultivated land and tube-well were collected in winter season to analyze the pesticide residues. Among the organophosphorus pesticides, malathion was present in seven water samples ranging from 42.58 to 922.8 μg/L, whereas diazinon was detected in water sample-8 (WS-8) and the concentration was 31.5 μg/L. None of the tested water samples was found to be contaminated with chlorpyrifos, carbaryl or DDT and its metabolites (DDE and DDD). Except for a tube-well water sample, concentrations of the detected residues are above the acceptable limit for human body as assigned by different organizations. To avoid the possible health hazards, the indiscriminate application of pesticides should be restricted and various substitute products like bio-pesticide should be introduced in a broad scale as soon as possible.

  7. Improved Drinking Water Disinfection with UVC-LEDs for Escherichia Coli and Bacillus Subtilis Utilizing Quartz Tubes as Light Guide

    Directory of Open Access Journals (Sweden)

    Andrej Gross


    Full Text Available A new approach is investigated utilizing light guidance capabilities of optical pure quartz glass in order to maximize drinking water disinfection efficiency with UVC-light-emitting diodes (LEDs. Two experimental setups consisting of soda-lime AR® glass (VWR, Darmstadt, Germany or HSQ® 100 quartz glass (Heraeus, Wasserburg, Germany reactors were designed to compare disinfection rates with and without total reflection of UVC radiation along the reactor walls. Each reactor was filled with 9 mL bacteria samples containing either E. coli DSM (Deutsche Sammlung von Mikroorganismen 498 or B. subtilis DSM 402 strains (concentration 1–3 × 106 colony forming units (CFU/mL with and without additional mixing and irradiation periods of 10, 40, and 90 s. Disinfection rates were increased up to 0.95 log10 (E. coli and 0.75 log10 (B. subtilis by the light guide approach in stagnant samples. The same experiments with mixing of the samples resulted in an increased disinfection efficiency of 3.07 log10 (E. coli and 1.59 log10 (B. subtilis. Optical calculations determine that total reflection is achieved with the applied UVC-LED’s viewing angle of 15°. Furthermore measurements show that HSQ® 100 quartz has a transmittance of 92% at 280 nm UVC irradiation compared to the transmittance of soda-lime glass of 2% (1 mm wall thickness.

  8. Methods for collecting algal samples as part of the National Water-Quality Assessment Program (United States)

    Porter, Stephen D.; Cuffney, Thomas F.; Gurtz, Martin E.; Meador, Michael R.


    Benthic algae (periphyton) and phytoplankton communities are characterized in the U.S. Geological Survey's National Water-Quality Assessment Program as part of an integrated physical, chemical, and biological assessment of the Nation's water quality. This multidisciplinary approach provides multiple lines of evidence for evaluating water-quality status and trends, and for refining an understanding of the factors that affect water-quality conditions locally, regionally, and nationally. Water quality can be characterized by evaluating the results of qualitative and quantitative measurements of the algal community. Qualitative periphyton samples are collected to develop of list of taxa present in the sampling reach. Quantitative periphyton samples are collected to measure algal community structure within selected habitats. These samples of benthic algal communities are collected from natural substrates, using the sampling methods that are most appropriate for the habitat conditions. Phytoplankton samples may be collected in large nonwadeable streams and rivers to meet specific program objectives. Estimates of algal biomass (chlorophyll content and ash-free dry mass) also are optional measures that may be useful for interpreting water-quality conditions. A nationally consistent approach provides guidance on site, reach, and habitat selection, as well as information on methods and equipment for qualitative and quantitative sampling. Appropriate quality-assurance and quality-control guidelines are used to maximize the ability to analyze data locally, regionally, and nationally.

  9. Middlesex Sampling Plant environmental report for calendar year 1992, 239 Mountain Avenue, Middlesex, New Jersey. Formerly Utilized Sites Remedial Action Program (FUSRAP)

    Energy Technology Data Exchange (ETDEWEB)


    This report describes the environmental surveillance program at the Middlesex Sampling Plant (MSP) and provides the results for 1992. The site, in the Borough of Middlesex, New Jersey, is a fenced area and includes four buildings and two storage piles that contain 50,800 m{sup 3} of radioactive and mixed hazardous waste. More than 70 percent of the MSP site is paved with asphalt. The MSP facility was established in 1943 by the Manhattan Engineer District (MED) to sample, store, and/or ship uranium, thorium, and beryllium ores. In 1955 the Atomic Energy Commission (AEC), successor to MED, terminated the operation and later used the site for storage and limited sampling of thorium residues. In 1967 AEC activities ceased, onsite structures were decontaminated, and the site was certified for unrestricted use under criteria applicable at that time. In 1980 the US Department of Energy (DOE) initiated a multiphase remedial action project to clean up several vicinity properties onto which contamination from the plant had migrated. Material from these properties was consolidated into the storage piles onsite. Environmental surveillance of MSP began in 1980 when Congress added the site to DOE`s Formerly Utilized Sites Remedial Action Program. The environmental surveillance program at MSP includes sampling networks for radon and thoron in air; external gamma radiation exposure; and radium-226, radium-228, thorium-230, thorium-232, and total uranium in surface water, sediment, and groundwater. Additionally, chemical analyses are performed to detect metals and organic compounds in surface water and groundwater and metals in sediments. This program assists in fulfilling th DOE policy of measuring and monitoring effluents from DOE activities and calculating hypothetical doses.

  10. A new dissolved gas sampling method from primary water of the Paks Nuclear Power Plant, Hungary

    Energy Technology Data Exchange (ETDEWEB)

    Papp, L., E-mail: [Institute for Nuclear Research, Hungarian Academy of Sciences, Debrecen (Hungary); Isotoptech Co. Ltd., Debrecen (Hungary); Palcsu, L. [Institute for Nuclear Research, Hungarian Academy of Sciences, Debrecen (Hungary); Veres, M. [Isotoptech Co. Ltd., Debrecen (Hungary); Pintér, T. [Paks Nuclear Power Plant, Paks (Hungary)


    Highlights: • We constructed and applied a lightweight portable dissolved gas sampling device. • A membrane contactor has been used to sample the dissolved gases from the water. • Gas compound and gamma spectrometric measurements were done from the samples. - Abstract: This article describes a novel sampling method for dissolved gases from radioactive waters. The major aim was to build a portable, lightweight sampling device in which the gas sample container is not in contact with the water itself. Therefore, a membrane contactor was used to take representative dissolved gas samples from the water of spent fuel pools. Quadrupole mass spectrometric and gamma spectrometric measurements were made from the samples to determine the gas composition and to detect any radioactive gas of fission origin. The paper describes (i) the construction of the sampler in general, (ii) the operation of the sampling unit and (iii) the measurement results of the first samples and the interpretation of the data. Both small and large fluctuations were able to be detected when the freshly spent fuel rods were put into the spent fuel pool or when the head valves of the toques of the fuel rods were replaced. In the investigated period (2013–2014), the main gas composition did not show large fluctuations, it was close to the composition of dissolved air. However, the activity concentration of {sup 85}Kr varied in a broad range (0.001–100 kBq/l).

  11. Genotoxicity assessment of water sampled from R-11 reservoir by means of allium test

    Energy Technology Data Exchange (ETDEWEB)

    Bukatich, E.; Pryakhin, E. [Urals Research Center for Radiation Medicine (Russian Federation); Geraskin, S. [Russian Institute of Agricultural Radiology and Agroecology (Russian Federation)


    The Mayak PA was the first enterprise for the production of weapon-grade plutonium in Russia and it incorporates uranium-graphite reactors for plutonium production and radiochemical facilities for its separation. Radiochemical processing resulted in huge volumes of liquid radioactive wastes of different specific activities. To reduce the radionuclides release into the environment, a system of bypasses and ponds (the Techa Cascade Reservoirs system) to store low-activity liquid wastes has been constructed in the upper reaches of the Techa River. Currently, industrial reservoirs of Mayak PA contain over 350 million m{sup 3} of low-level radioactive liquid wastes with total activity over 7.4 x 10{sup 15} Bq. Reservoir R-11 is the final reservoir in the Techa Cascade Reservoirs system. The average specific activity of main radionuclides in the water of R-11 are: {sup 90}Sr - 1.4x10{sup 3} Bq/l; {sup 137}Cs - 3 Bq/l; {sup 3}H - 7x10{sup 2} Bq/l; α-emitting radionuclides - 2.6 x 10{sup -1} Bq/l. In our study the Allium-test was employed to estimate reservoir R-11 water genotoxic effects. In 2012, 3 water samples were collected in different parts of reservoir R-11. Water samples from the Shershnevskoye reservoir (artificial reservoir on the Miass River designed for Chelyabinsk city water supply) were used as natural control. Samples of distilled and bottled water were used as an additional laboratory control. The common onion, Allium cepa L. (Stuttgarter Riesen) was used. Healthy equal-sized bulbs were soaked for 24 hours at +4±2 deg. C to synchronize cell division. The bulbs were maintained in distilled water at +23 deg. C until roots have grown up to 2±1 mm length and then plunged into water samples. Control samples remained in distilled and bottled water as well as in water samples from the Shershnevskoye reservoir (natural control). Roots of the 18±3 mm length were randomly sampled and fixed in an alcohol/acetic acid mixture. For microscopic analysis, squashed

  12. Environmental contaminants in water, sediment and biological samples from Playa Lakes in southeastern New Mexico - 1992 (United States)

    US Fish and Wildlife Service, Department of the Interior — Sediment, water, bird tissue, and invertebrates were collected from 10 playa lakes in Southeastern New Mexico in 1991 and 1992. These samples were analyzed for a...

  13. Instrumental neutron activation analysis data for cloud-water particulate samples, Mount Bamboo, Taiwan (United States)

    Lin, Neng-Huei; Sheu, Guey-Rong; Wetherbee, Gregory A.; Debey, Timothy M.


    Cloud water was sampled on Mount Bamboo in northern Taiwan during March 22-24, 2002. Cloud-water samples were filtered using 0.45-micron filters to remove particulate material from the water samples. Filtered particulates were analyzed by instrumental neutron activation analysis (INAA) at the U.S. Geological Survey National Reactor Facility in Denver, Colorado, in February 2012. INAA elemental composition data for the particulate materials are presented. These data complement analyses of the aqueous portion of the cloud-water samples, which were performed earlier by the Department of Atmospheric Sciences, National Central University, Taiwan. The data are intended for evaluation of atmospheric transport processes and air-pollution sources in Southeast Asia.

  14. Guidelines for collection and field analysis of water-quality samples from streams in Texas (United States)

    Wells, F.C.; Gibbons, W.J.; Dorsey, M.E.


    This manual provides standardized guidelines and quality-control procedures for the collection and preservation of water-quality samples and defines procedures for making field analyses of unstable constituents or properties.


    Directory of Open Access Journals (Sweden)

    Arina Sauki


    Full Text Available The intent of this research is to utilize the waste produced by distillation process of Agarwood oil and convert it into a profitable oilwell cement additive. Common problem during oilwell cementing is free wáter separation. This problem could weaken cement at the top, gas migration problem and non uniform density of cement slurry that are even worst in cementing deviated well. Another concern on cementing design is the porosity of the hardened cement. If the cement is too porous, it can lead to gas migration and casing corrosion. All tests were conducted according to API Specification-10B. Free water test was determined at different concentrations of Agarwood Waste Additive (AWA, different inclination angles and different temperatures. Based on the findings, it was observed that zero free water was produced when 2% BWOC of AWA was used at all angles. The findings also revealed that AWA can maintain good thermal stability as it could maintain zero free water at increased temperature up to 60˚C.  The porosity of AWA cement was comparable with standard API neat cement as the porosity did not differ much at 2% BWOC of AWA. Therefore, it can be concluded that the AWA is suitable to  be used as an additive in oil well cement (OWC  with 2% BWOC is taken as the optimum concentration.

  16. Using multi-criteria decision analysis to assess the vulnerability of drinking water utilities. (United States)

    Joerin, Florent; Cool, Geneviève; Rodriguez, Manuel J; Gignac, Marc; Bouchard, Christian


    Outbreaks of microbiological waterborne disease have increased governmental concern regarding the importance of drinking water safety. Considering the multi-barrier approach to safe drinking water may improve management decisions to reduce contamination risks. However, the application of this approach must consider numerous and diverse kinds of information simultaneously. This makes it difficult for authorities to apply the approach to decision making. For this reason, multi-criteria decision analysis can be helpful in applying the multi-barrier approach to vulnerability assessment. The goal of this study is to propose an approach based on a multi-criteria analysis method in order to rank drinking water systems (DWUs) based on their vulnerability to microbiological contamination. This approach is illustrated with an application carried out on 28 DWUs supplied by groundwater in the Province of Québec, Canada. The multi-criteria analysis method chosen is measuring attractiveness by a categorical based evaluation technique methodology allowing the assessment of a microbiological vulnerability indicator (MVI) for each DWU. Results are presented on a scale ranking DWUs from less vulnerable to most vulnerable to contamination. MVI results are tested using a sensitivity analysis on barrier weights and they are also compared with historical data on contamination at the utilities. The investigation demonstrates that MVI provides a good representation of the vulnerability of DWUs to microbiological contamination.

  17. Exploring the Legionella pneumophila positivity rate in hotel water samples from Antalya, Turkey. (United States)

    Sepin Özen, Nevgün; Tuğlu Ataman, Şenay; Emek, Mestan


    The genus Legionella is a fastidious Gram-negative bacteria widely distributed in natural waters and man made water supply systems. Legionella pneumophila is the aetiological agent of approximately 90% of reported Legionellosis cases, and serogroup 1 is the most frequent cause of infections. Legionnaires' disease is often associated with travel and continues to be a public health concern at present. The correct water management quality practices and rapid methods for analyzing Legionella species in environmental water is a key point for the prevention of Legionnaires' disease outbreaks. This study aimed to evaluate the positivity rates and serotyping of Legionella species from water samples in the region of Antalya, Turkey, which is an important tourism center. During January-December 2010, a total of 1403 samples of water that were collected from various hotels (n = 56) located in Antalya were investigated for Legionella pneumophila. All samples were screened for L. pneumophila by culture method according to "ISO 11731-2" criteria. The culture positive Legionella strains were serologically identified by latex agglutination test. A total of 142 Legionella pneumophila isolates were recovered from 21 (37.5%) of 56 hotels. The total frequency of L. pneumophila isolation from water samples was found as 10.1%. Serological typing of 142 Legionella isolates by latex agglutination test revealed that strains belonging to L. pneumophila serogroups 2-14 predominated in the examined samples (85%), while strains of L. pneumophila serogroup 1 were less numerous (15%). According to our knowledge, our study with the greatest number of water samples from Turkey demonstrates that L. pneumophila serogroups 2-14 is the most common isolate. Rapid isolation of L. pneumophila from environmental water samples is essential for the investigation of travel related outbreaks and the possible resources. Further studies are needed to have epidemiological data and to determine the types of L

  18. Practical direct plaque assay for coliphages in 100-ml samples of drinking water.


    Grabow, W. O.; Coubrough, P


    A practical single-agar-layer plaque assay for the direct detection of coliphages in 100-ml samples of water was designed and evaluated. With this assay a 100-ml sample of water, an agar medium containing divalent cations, and the host Escherichia coli C (ATCC 13706) were mixed in a single container, and the mixture was plated on 10 14-cm-diameter petri dishes. It was more sensitive, reliable, and accurate than various other methods and proved rapid, simple, and economic.

  19. Fishing in the Water: Effect of Sampled Water Volume on Environmental DNA-Based Detection of Macroinvertebrates. (United States)

    Mächler, Elvira; Deiner, Kristy; Spahn, Fabienne; Altermatt, Florian


    Accurate detection of organisms is crucial for the effective management of threatened and invasive species because false detections directly affect the implementation of management actions. The use of environmental DNA (eDNA) as a species detection tool is in a rapid development stage; however, concerns about accurate detections using eDNA have been raised. We evaluated the effect of sampled water volume (0.25 to 2 L) on the detection rate for three macroinvertebrate species. Additionally, we tested (depending on the sampled water volume) what amount of total extracted DNA should be screened to reduce uncertainty in detections. We found that all three species were detected in all volumes of water. Surprisingly, however, only one species had a positive relationship between an increased sample volume and an increase in the detection rate. We conclude that the optimal sample volume might depend on the species-habitat combination and should be tested for the system where management actions are warranted. Nevertheless, we minimally recommend sampling water volumes of 1 L and screening at least 14 μL of extracted eDNA for each sample to reduce uncertainty in detections when studying macroinvertebrates in rivers and using our molecular workflow.

  20. Review of robust measurement of phosphorus in river water: sampling, storage, fractionation and sensitivity

    Directory of Open Access Journals (Sweden)

    H. P. Jarvie


    Full Text Available This paper reviews current knowledge on sampling, storage and analysis of phosphorus (P in river waters. Potential sensitivity of rivers with different physical, chemical and biological characteristics (trophic status, turbidity, flow regime, matrix chemistry is examined in terms of errors associated with sampling, sample preparation, storage, contamination, interference and analytical errors. Key issues identified include: The need to tailor analytical reagents and concentrations to take into account the characteristics of the sample matrix. The effects of matrix interference on the colorimetric analysis. The influence of variable rates of phospho-molybdenum blue colour formation. The differing responses of river waters to physical and chemical conditions of storage. The higher sensitivities of samples with low P concentrations to storage and analytical errors. Given high variability of river water characteristics in space and time, no single standardised methodology for sampling, storage and analysis of P in rivers can be offered. ‘Good Practice’ guidelines are suggested, which recommend that protocols for sampling, storage and analysis of river water for P is based on thorough site-specific method testing and assessment of P stability on storage. For wider sampling programmes at the regional/national scale where intensive site-specific method and stability testing are not feasible, ‘Precautionary Practice’ guidelines are suggested. The study highlights key areas requiring further investigation for improving methodological rigour. Keywords: phosphorus, orthophosphate, soluble reactive, particulate, colorimetry, stability, sensitivity, analytical error, storage, sampling, filtration, preservative, fractionation, digestion

  1. Soil and Water – What is Detectable through Microbiological Sample Preparation Techniques (United States)

    The concerns of a potential terrorist’s use of biological agents in soil and ground water are articulated by comparisons to major illnesses in this Country involving contaminated drinking water sources. Objectives are focused on the importance of sample preparation in the rapid, ...

  2. Evaluation of the Bacterial Status of Water Samples at Umudike Abia ...

    African Journals Online (AJOL)

    The bacteriological status of different water samples (borehole, sachet, bottled, stream and rain) from Umudike, Abia State, Nigeria and its environs was evaluated. The total viable count (TVC) for the borehole I (MOUAU) and borehole II (Umuwaya) were 14.7x102 and 15.7x102 cfu/ml respectively, while the sachet water ...

  3. Stable isotope ratio measurements on highly enriched water samples by means of laser spectrometry

    NARCIS (Netherlands)

    van Trigt, R; Kerstel, E.R.T.; Visser, GH; Meijer, H.A.J.


    We demonstrate the feasibility of using laser spectrometry (LS) to analyze isotopically highly enriched water samples (i.e., delta H-2 less than or equal to 15000 parts per thousand, delta O-18 less than or equal to 1200 parts per thousand), as often used in the biomedical doubly labeled water (DLW)

  4. Natural radioactivity in various water samples and radiation dose estimations in Bolu province, Turkey. (United States)

    Gorur, F Korkmaz; Camgoz, H


    The level of natural radioactivity for Bolu province of north-western Turkey was assessed in this study. There is no information about radioactivity measurement reported in water samples in the Bolu province so far. For this reason, gross α and β activities of 55 different water samples collected from tap, spring, mineral, river and lake waters in Bolu were determined. The mean activity concentrations were 68.11 mBq L(-1), 169.44 mBq L(-1) for gross α and β in tap water. For all samples the gross β activity is always higher than the gross α activity. All value of the gross α were lower than the limit value of 500 mBq L(-1) while two spring and one mineral water samples were found to have gross β activity concentrations of greater than 1000 mBq L(-1). The associated age-dependent dose from all water ingestion in Bolu was estimated. The total dose for adults had an average value exceeds the WHO recommended limit value. The risk levels from the direct ingestion of the natural radionuclides in tap and mineral water in Bolu were determinated. The mean (210)Po and (228)Ra risk the value of tap and mineral waters slightly exceeds what some consider on acceptable risk of 10(-4) or less. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. UMTRA project water sampling and analysis plan, Naturita, Colorado. Revision 1

    Energy Technology Data Exchange (ETDEWEB)



    Planned, routine ground water sampling activities for calendar year 1995 to 1997 at the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site near Naturita, Colorado, are described in this water sampling and analysis plan. The following plan identifies and justifies the sampling locations, analytical parameters, detection limits, sampling frequency, and specific rationale for each routine monitoring station at the site. The regulatory basis for routine ground water monitoring at UMTRA Project sites is derived from the US Environmental Protection Agency (EPA) regulations in 40 CFR Part 192. Sampling procedures are guided by the UMTRA Project standard operating procedures (SOP) (JEG, n.d.), the Technical Approach Document (TAD) (DOE, 1989), and the most effective technical approach for the site.

  6. Rapid screening of 90Sr activity in water and milk samples using Cherenkov radiation. (United States)

    Stamoulis, K C; Ioannides, K G; Karamanis, D T; Patiris, D C


    A method for screening 90Sr in milk samples is proposed. This method is based on a liquid scintillation technique taking advantage of Cherenkov radiation, which is produced in a liquid medium and then detected by the photomultipliers of a Liquid Scintillation Counter (LSC). Twenty millilitres of water and milk samples spiked with various concentrations of 90Sr/90Y in equilibrium were added in plastic vials and then were measured with an LSC (TriCarb 3170 TR/SL). The derived efficiencies were 49% for water samples and 14% for milk samples. The detection limit was 470 mBq L(-1)(90)Sr for water, without any pretreatment. Milk contains potassium, which also produces Cherenkov radiation due to the presence of 40K. For this reason, the interference of 40K in the measurements of 90Sr in milk samples was also investigated. The detection limit for milk was 1.7 Bq L(-1)90Sr.

  7. Geothermal water and gas: collected methods for sampling and analysis. Comment issue. [Compilation of methods

    Energy Technology Data Exchange (ETDEWEB)

    Douglas, J.G.; Serne, R.J.; Shannon, D.W.; Woodruff, E.M.


    A collection of methods for sampling and analysis of geothermal fluids and gases is presented. Compilations of analytic options for constituents in water and gases are given. Also, a survey of published methods of laboratory water analysis is included. It is stated that no recommendation of the applicability of the methods to geothermal brines should be assumed since the intent of the table is to encourage and solicit comments and discussion leading to recommended analytical procedures for geothermal waters and research. (WHK)

  8. Qualilty, isotopes, and radiochemistry of water sampled from the Upper Moenkopi Village water-supply wells, Coconino County, Arizona (United States)

    Carruth, Rob; Beisner, Kimberly; Smith, Greg


    The Hopi Tribe Water Resources Program has granted contracts for studies to evaluate water supply conditions for the Moenkopi villages in Coconino County, Arizona. The Moenkopi villages include Upper Moenkopi Village and the village of Lower Moencopi, both on the Hopi Indian Reservation south of the Navajo community of Tuba City. These investigations have determined that water supplies are limited and vulnerable to several potential sources of contamination, including the Tuba City Landfill and a former uranium processing facility known as the Rare Metals Mill. Studies are ongoing to determine if uranium and other metals in groundwater beneath the landfill are greater than regional groundwater concentrations. The source of water supply for the Upper Moenkopi Village is three public-supply wells. The wells are referred to as MSW-1, MSW-2, and MSW-3 and all three wells obtain water from the regionally extensive N aquifer. The N aquifer is the principal aquifer in this region of northern Arizona and consists of thick beds of sandstone between less permeable layers of siltstone and mudstone. The relatively fine-grained character of the N aquifer inhibits rapid movement of water and large yields to wells. In recent years, water levels have declined in the three public-supply wells, causing concern that the current water supply will not be able to accommodate peak demand and allow for residential and economic growth. Analyses of major ions, nutrients, selected trace metals, stable and radioactive isotopes, and radiochemistry were performed on the groundwater samples from the three public-supply wells to describe general water-quality conditions and groundwater ages in and immediately surrounding the Upper Moenkopi Village area. None of the water samples collected from the public-supply wells exceeded the U.S. Environmental Protection Agency primary drinking water standards. The ratios of the major dissolved ions from the samples collected from MSW-1 and MSW-2 indicate

  9. Technical Note : Evaluation of between-sample memory effects in the analysis of ?2H and ?18O of water samples measured by laser spectroscopes

    NARCIS (Netherlands)

    Penna, D.; Stenni, B.; Sanda, M.; Wrede, S.; Bogaard, T.A.; Michelini, M.; Fischer, B.M.C.; Gobbi, A.; Mantese, N.; Zuecco, G.; Borga, M.; Bonazza, M.; Sobotkova, M.; Cejkova, B.; Wassenaar, L.I.


    This study evaluated between-sample memory in isotopic measurements of ?2H and ?18O in water samples by laser spectroscopy. Ten isotopically depleted water samples spanning a broad range of oxygen and hydrogen isotopic compositions were measured by three generations of offaxis integrated cavity

  10. How or when samples are collected affects measured arsenic concentration in new drinking water wells. (United States)

    Erickson, Melinda L; Malenda, Helen F; Berquist, Emily C


    Naturally occurring arsenic can adversely affect water quality in geologically diverse aquifers throughout the world. Chronic exposure to arsenic via drinking water is a human health concern due to risks for certain cancers, skin abnormalities, peripheral neuropathy, and other negative health effects. Statewide in Minnesota, USA, 11% of samples from new drinking water wells have arsenic concentrations exceeding 10 μg/L; in certain counties more than 35% of tested samples exceed 10 μg/L arsenic. Since 2008 Minnesota well code has required testing water from new wells for arsenic. Sample collection protocols are not specified in the well code, so among 180 well drillers there is variability in sampling methods, including sample collection point and sample collection timing. This study examines the effect of arsenic sample collection protocols on the variability of measured arsenic concentrations in water from new domestic water supply wells. Study wells were drilled between 2014-16 in three regions of Minnesota that commonly have elevated arsenic concentrations in groundwater. Variability in measured arsenic concentration at a well was reduced when samples were 1) filtered, 2) collected from household plumbing instead of from the drill rig pump, or 3) collected several months after well construction (instead of within 4 weeks of well installation). Particulates and fine aquifer sediments entrained in groundwater samples, or other artifacts of drilling disturbance, can cause undesirable variability in measurements. Establishing regulatory protocols requiring sample filtration and/or collection from household plumbing could improve the reliability of information provided to well owners and to secondary data users. This article is protected by copyright. All rights reserved.

  11. Utilization of breast cancer screening methods in a developing nation: results from a nationally representative sample of Malaysian households. (United States)

    Dunn, Richard A; Tan, Andrew K G


    As is the case in many developing nations, previous studies of breast cancer screening behavior in Malaysia have used relatively small samples that are not nationally representative, thereby limiting the generalizability of results. Therefore, this study uses nationally representative data from the Malaysia Non-Communicable Disease Surveillance-1 to investigate the role of socio-economic status on breast cancer screening behavior in Malaysia, particularly differences in screening behaviour between ethnic groups. The decisions of 816 women above age 40 in Malaysia to screen for breast cancer using mammography, clinical breast exams (CBE), and breast self-exams (BSE) are modeled using logistic regression. Results indicate that after adjusting for differences in age, education, household income, marital status, and residential location, Malay women are less likely than Chinese and Indian women to utilize mammography, but more likely to perform BSE. Education level and urban residence are positively associated with utilization of each method, but these relationships vary across ethnicity. Higher education levels are strongly related to using each screening method among Chinese women, but have no statistically significant relationship to screening among Malays. © 2011 Wiley Periodicals, Inc.

  12. Validation of a web-based questionnaire for pregnant women to assess utilization of internet: survey among an Italian sample. (United States)

    Siliquini, R; Saulle, R; Rabacchi, G; Bert, F; Massimi, A; Bulzomì, V; Boccia, A; La Torre, G


    Objective of this pilot study was to evaluate the reliability and validity of the web-based questionnaire in pregnant women as a tool to examine prevalence, knowledge and attitudes about internet utilization for health-related purposes, in a sample of Italian pregnant women. The questionnaire was composed by 9 sections for a total of 73 items. Reliability analysis was tested and content validity was evaluated using Cronbach's alpha to check internal consistency. Statistical analysis was performed through SPSS 13.0. Questionnaire was administered to 56 pregnant women. The higher value of Cronbach's alpha resulted on 61 items: alpha = 0.786 (n. 73 items: alpha = 0.579). High rate of pregnant women generally utilized internet (87.5%) and the 92.1% confirmed to use internet with the focus to acquire information about pregnancy (p good reliability property in the pilot study. In terms of internal consistency and validity appeared to have a good performance. Given the high prevalence of pregnant women that use internet to search information about their pregnancy status, professional healthcare workers should give advice regarding official websites where they could retrieve safe information and learn knowledge based on scientific evidence.

  13. Utility of solid phase spectrophotometry for the modified determination of trace amounts of cadmium in food samples. (United States)

    Amin, Alaa S; Gouda, Ayman A


    A modified selective, highly sensitive and accurate procedure for the determination of trace amounts of cadmium which reacts with 1-(2-benzothiazolylazo)-2-hydroxy-3-naphthoic acid (BTAHNA) to give a deep violet complex with high molar absorptivity (7.05×10(6)Lmol(-1) cm(-1), 3.92×10(7)Lmol(-1)cm(-1), 1.78×10(8)Lmol(-1)cm(-1), and 4.10×10(8)Lmol(-1)cm(-1)), fixed on a Dowex 1-X8 type anion-exchange resin for 10mL, 100mL, 500mL, and 1000mL, respectively. Calibration is linear over the range 0.2-3.5μgL(-1) with RSD of ⩽1.14% (n=10). The detection and quantification limits were calculated. Increasing the sample volume can enhance the sensitivity. The method has been successfully applied for the determination of Cd(II) in food samples, water samples and some salts samples without interfering effect of various cations and anions. Copyright © 2011 Elsevier Ltd. All rights reserved.

  14. Utilization of group-based, community acupuncture clinics: a comparative study with a nationally representative sample of acupuncture users. (United States)

    Chao, Maria T; Tippens, Kimberly M; Connelly, Erin


    Acupuncture utilization in the United States has increased in recent years, but is less common among racial/ethnic minorities and those of low socioeconomic status. Group-based, community acupuncture is a delivery model gaining in popularity around the United States, due in part to low-cost treatments provided on a sliding-fee scale. Affordable, community-based acupuncture may increase access to health care at a time when increasing numbers of people are uninsured. To assess the population using local community acupuncture clinics, sociodemographic factors, health status, and utilization patterns compared to national acupuncture users were examined. Data were employed from (1) a cross-sectional survey of 478 clients of two community acupuncture clinics in Portland, Oregon and (2) a nationally representative sample of acupuncture users from the 2007 National Health Interview Survey. Portland community acupuncture clients were more homogeneous racially, had higher educational attainment, lower household income, and were more likely to receive 10 or more treatments in the past 12 months (odds ratio=5.39, 95% confidence interval=3.54, 8.22), compared to a nationally representative sample of U.S. acupuncture users. Self-reported health status and medical reasons for seeking acupuncture treatment were similar in both groups. Back pain (21%), joint pain (17%), and depression (13%) were the most common conditions for seeking treatment at community acupuncture clinics. Study findings suggest that local community acupuncture clinics reach individuals of a broad socioeconomic spectrum and may allow for increased frequency of treatment. Limited racial diversity among community acupuncture clients may reflect local demographics of Portland. In addition, exposure to and knowledge about acupuncture is likely to vary by race and ethnicity. Future studies should examine access, patient satisfaction, frequency of treatment, and clinical outcomes of group-based models of community

  15. Exploring prenatal outdoor air pollution, birth outcomes and neonatal health care utilization in a nationally representative sample (United States)

    Trasande, Leonardo; Wong, Kendrew; Roy, Angkana; Savitz, David A.; Thurston, George


    The impact of air pollution on fetal growth remains controversial, in part, because studies have been limited to sub-regions of the United States with limited variability. No study has examined air pollution impacts on neonatal health care utilization. We performed descriptive, univariate and multivariable analyses on administrative hospital record data from 222,359 births in the 2000, 2003 and 2006 Kids Inpatient Database linked to air pollution data drawn from the US Environmental Protection Agency’s Aerometric Information Retrieval System. In this study, air pollution exposure during the birth month was estimated based on birth hospital address. Although air pollutants were not individually associated with mean birth weight, a three-pollutant model controlling for hospital characteristics, demographics, and birth month identified 9.3% and 7.2% increases in odds of low birth weight and very low birth weight for each µg/m3 increase in PM2.5 (both Ppollutant multivariable model indicated a 0.05 days/p.p.m. NO2 decrease in length of the birth hospitalization (P=0.0061) and a 0.13 days increase/p.p.m. CO (P=0.0416). A $1166 increase in per child costs was estimated for the birth hospitalization per p.p.m. CO (P=0.0002) and $964 per unit increase in O3 (P=0.0448). A reduction from the 75th to the 25th percentile in the highest CO quartile for births predicts annual savings of $134.7 million in direct health care costs. In a national, predominantly urban, sample, air pollutant exposures during the month of birth are associated with increased low birth weight and neonatal health care utilization. Further study of this database, with enhanced control for confounding, improved exposure assessment, examination of exposures across multiple time windows in pregnancy, and in the entire national sample, is supported by these initial investigations. PMID:23340702

  16. Purging and other sampling variables affecting dissolved methane concentration in water supply wells. (United States)

    Molofsky, L J; Richardson, Stephen D; Gorody, Anthony W; Baldassare, Fred; Connor, John A; McHugh, Thomas E; Smith, Ann P; Wylie, Albert S; Wagner, Tom


    Determining whether changes in groundwater methane concentration are naturally occurring or related to oil and gas operations can be complicated by numerous sources of variability. This study of 10 residential water supply wells in Northeastern Pennsylvania evaluates how i) sampling from different points within the water well system, ii) purging different water volumes prior to sampling, and ii) natural variation over time, affects concentrations of naturally occurring dissolved methane and other water quality parameters. Among the population of wells, all had dissolved methane concentrations >1mg/L. Regardless of the volume of water purged or the timing between events, the maximum change in methane concentration (ratio of maximum to minimum concentration) among samples from a single well was 3.2, with eight out of ten wells exhibiting a maximum change less than a factor of two (i.e., <±100%). Among water wells where methane concentration changed by ±50% or more, there was a strong correlation with changes in the concentrations of sodium, chloride, and other salinity indicators such as specific conductivity and TDS. This suggests that significant variability in methane concentration is predominantly related to changes in the relative volumes of sodium-rich fluids feeding the wellbore at any given time. Among study well locations with bladder and diaphragm pressure tanks, there was no significant difference in dissolved methane concentrations between samples collected either upstream or downstream of a pressure tank. There appears to be little benefit to purging multiple casing volumes of water from a well prior to sampling because such volumes tend to be much larger than those representative of normal residential use. We recommend purging a volume sufficient to remove standing water in the pressure tank and lines above the pump intake. This article culminates with additional recommendations for improving sample collection methods and interpreting sampling data

  17. Heat Pump Water Heater Technology: Experiences of Residential Consumers and Utilities

    Energy Technology Data Exchange (ETDEWEB)

    Ashdown, BG


    benefits. Because it produces hot water by extracting heat from the air it tends to dehumidify and cool the room in which it is placed. Moreover, it tends to spread the water heating load across utility non-peak periods. Thus, electric utilities with peak load issues could justify internal programs to promote this technology to residential and commercial customers. For practical purposes, consumers are indifferent to the manner in which water is heated but are very interested in product attributes such as initial first cost, operating cost, performance, serviceability, product size, and installation costs. Thus, the principal drivers for penetrating markets are demonstrating reliability, leveraging the dehumidification attributes of the HPWH, and creating programs that embrace life-cycle cost principles. To supplement this, a product warranty with scrupulous quality control should be implemented; first-price reduction through engineering, perhaps by reducing level of energy efficiency, should be pursued; and niche markets should be courted. The first step toward market penetration is to address the HPWH's performance reliability. Next, the manufacturers could engage select utilities to aggressively market the HPWH. A good approach would be to target distinct segments of the market with the potential for the highest benefits from the technology. Communications media that address performance issues should be developed. When marketing to new home builders, the HPWH could be introduced as part of an energy-efficient package offered as a standard feature by builders of new homes within a community. Conducting focus groups across the United States to gather input on HPWH consumer values will feed useful data back to the manufacturers. ''Renaming'' and ''repackaging'' the HPWH to improve consumer perception, appliance aesthetics, and name recognition should be considered. Once an increased sales volume is achieved, the manufacturers

  18. Sampling

    CERN Document Server

    Thompson, Steven K


    Praise for the Second Edition "This book has never had a competitor. It is the only book that takes a broad approach to sampling . . . any good personal statistics library should include a copy of this book." —Technometrics "Well-written . . . an excellent book on an important subject. Highly recommended." —Choice "An ideal reference for scientific researchers and other professionals who use sampling." —Zentralblatt Math Features new developments in the field combined with all aspects of obtaining, interpreting, and using sample data Sampling provides an up-to-date treat

  19. Discrimination between live and dead cellsin bacterial communities from environmental water samples analyzed by 454 pyrosequencing

    NARCIS (Netherlands)

    Nocker, Andreas; Richter-Heitmann, Tim; Montijn, Roy C; Schuren, Frank H J; Kort, Remco

    SUMMARY: The preferential detection of cells with intact membranes by sample treatment with propidium monoazide (PMA) in combination with PCR amplification is gaining in popularity. This study evaluates the effect of PMA on 454 pyrosequencing profiles of environmental water samples from a canal in

  20. Use of passive sampling devices for monitoring and compliance checking of POP concentrations in water

    NARCIS (Netherlands)

    Lohmann, R.; Booij, K.; Smedes, F.; Vrana, B.


    The state of the art of passive water sampling of (nonpolar) organic contaminants is presented. Its suitability for regulatory monitoring is discussed, with an emphasis on the information yielded by passive sampling devices (PSDs), their relevance and associated uncertainties. Almost all persistent


    Conventional sampling and analytical protocols have poor sensitivity for fuel oxygenates that are alcohols, such as TBA. Because alcohols tend to stay with the water samples, they are not efficiently transferred to the gas chromatograph for separation and analysis. A common tec...

  2. Study of changes in bacterial and viral abundance in formaldehyde - Fixed water samples by epifluorescence microscopy

    Digital Repository Service at National Institute of Oceanography (India)

    Parvathi, A.; Radhakrishnan, S.; Sajila, M.P.; Jacob, B.

    of bacteria and viruses in water samples from Cochin Backwater was determined by SYBR Green I staining and epifluorescence microscopy. The counts were determined for 45 days in samples fixed with 1–6% formaldehyde. The results suggest rapid decline in counts...

  3. Set Up of an Automatic Water Quality Sampling System in Irrigation Agriculture

    Directory of Open Access Journals (Sweden)

    Emanuel Heinz


    Full Text Available We have developed a high-resolution automatic sampling system for continuous in situ measurements of stable water isotopic composition and nitrogen solutes along with hydrological information. The system facilitates concurrent monitoring of a large number of water and nutrient fluxes (ground, surface, irrigation and rain water in irrigated agriculture. For this purpose we couple an automatic sampling system with a Wavelength-Scanned Cavity Ring Down Spectrometry System (WS-CRDS for stable water isotope analysis (δ2H and δ18O, a reagentless hyperspectral UV photometer (ProPS for monitoring nitrate content and various water level sensors for hydrometric information. The automatic sampling system consists of different sampling stations equipped with pumps, a switch cabinet for valve and pump control and a computer operating the system. The complete system is operated via internet-based control software, allowing supervision from nearly anywhere. The system is currently set up at the International Rice Research Institute (Los Baños, The Philippines in a diversified rice growing system to continuously monitor water and nutrient fluxes. Here we present the system’s technical set-up and provide initial proof-of-concept with results for the isotopic composition of different water sources and nitrate values from the 2012 dry season.

  4. Effects of sterilization treatments on the analysis of TOC in water samples. (United States)

    Shi, Yiming; Xu, Lingfeng; Gong, Dongqin; Lu, Jun


    Decomposition experiments conducted with and without microbial processes are commonly used to study the effects of environmental microorganisms on the degradation of organic pollutants. However, the effects of biological pretreatment (sterilization) on organic matter often have a negative impact on such experiments. Based on the principle of water total organic carbon (TOC) analysis, the effects of physical sterilization treatments on determination of TOC and other water quality parameters were investigated. The results revealed that two conventional physical sterilization treatments, autoclaving and 60Co gamma-radiation sterilization, led to the direct decomposition of some organic pollutants, resulting in remarkable errors in the analysis of TOC in water samples. Furthermore, the extent of the errors varied with the intensity and the duration of sterilization treatments. Accordingly, a novel sterilization method for water samples, 0.45 microm micro-filtration coupled with ultraviolet radiation (MCUR), was developed in the present study. The results indicated that the MCUR method was capable of exerting a high bactericidal effect on the water sample while significantly decreasing the negative impact on the analysis of TOC and other water quality parameters. Before and after sterilization treatments, the relative errors of TOC determination could be controlled to lower than 3% for water samples with different categories and concentrations of organic pollutants by using MCUR.

  5. Characterisation, classification, and evaluation of some ground water samples in upper Egypt. (United States)

    Soltan, M E


    Study of the ground water quality at upper Egypt is an essential ingredient for a healthy population, irrigation, and industrial purposes at this developed region. Thus, the measurements of water quality parameters (pH, conductivity, HCO3-, Cl-, NO3-, PO4(3-), SO4(2-), Ca, Mg, TH, Co, Cr, Cu, Fe, K, Mn, Na, Ni, Pb, Zn, and DS) were carried out on ground water samples at different localities in Aswan governorate, Egypt. Differentation of ground water samples according to Cl-, SO4(2-), HCO3- + CO3(2-)' base exchange, and hydrochemical parameters were calculated. Evaluation of the samples for different uses (drinking and domestic uses, irrigation and industrial purposes) were obtained according to WHO standards, sodium adsorption ratio (SAR), and saturation index. Results of this study show that the most ground water samples characterize by good quality for different uses. Statistical analysis of data exhibits positive, good, and interesting correlation values lead to interpretation the results of analyses and suggestion the forms of ions in the water samples.

  6. [Detecting Thallium in Water Samples using Dispersive Liquid Phase Microextraction-Graphite Furnace Atomic Absorption Spectroscopy]. (United States)

    Zhu, Jing; Li, Yan; Zheng, Bo; Tang, Wei; Chen, Xiao; Zou, Xiao-li


    To develope a method of solvent demulsification dispersive liquid phase microextraction (SD-DLPME) based on ion association reaction coupled with graphite furnace atomic absorption spectroscopy (GFAAS) for detecting thallium in water samples. Methods Thallium ion in water samples was oxidized to Tl(III) with bromine water, which reacted with Cl- to form TlCl4-. The ionic associated compound with trioctylamine was obtained and extracted. DLPME was completed with ethanol as dispersive solvent. The separation of aqueous and organic phase was achieved by injecting into demulsification solvent without centrifugation. The extractant was collected and injected into GFAAS for analysis. With palladium colloid as matrix modifier, a two step drying and ashing temperature programming process was applied for high precision and sensitivity. The linear range was 0.05-2.0 microg/L, with a detection limit of 0.011 microg/L. The relative standard derivation (RSD) for detecting Tl in spiked water sample was 9.9%. The spiked recoveries of water samples ranged from 94.0% to 103.0%. The method is simple, sensitive and suitable for batch analysis of Tl in water samples.

  7. Regression modeling of particle size distributions in urban storm water: advancements through improved sample collection methods (United States)

    Fienen, Michael N.; Selbig, William R.


    A new sample collection system was developed to improve the representation of sediment entrained in urban storm water by integrating water quality samples from the entire water column. The depth-integrated sampler arm (DISA) was able to mitigate sediment stratification bias in storm water, thereby improving the characterization of suspended-sediment concentration and particle size distribution at three independent study locations. Use of the DISA decreased variability, which improved statistical regression to predict particle size distribution using surrogate environmental parameters, such as precipitation depth and intensity. The performance of this statistical modeling technique was compared to results using traditional fixed-point sampling methods and was found to perform better. When environmental parameters can be used to predict particle size distributions, environmental managers have more options when characterizing concentrations, loads, and particle size distributions in urban runoff.

  8. Analysis of bromate in drinking water using liquid chromatography-tandem mass spectrometry without sample pretreatment. (United States)

    Kosaka, Koji; Asami, Mari; Takei, Kanako; Akiba, Michihiro


    An analytical method for determining bromate in drinking water was developed using liquid chromatography-tandem mass spectrometry (LC-MS/MS). The (18)O-enriched bromate was used as an internal standard. The limit of quantification (LOQ) of bromate was 0.2 µg/L. The peak of bromate was separated from those of coexisting ions (i.e., chloride, nitrate and sulfate). The relative and absolute recoveries of bromate in two drinking water samples and in a synthesized ion solution (100 mg/L chloride, 10 mg N/L nitrate, and 100 mg/L sulfate) were 99-105 and 94-105%, respectively. Bromate concentrations in 11 drinking water samples determined by LC-MS/MS were water without sample pretreatment.

  9. Novel field sampling procedure for the determination of methiocarb residues in surface waters from rice fields. (United States)

    Primus, T M; Kohler, D J; Avery, M; Bolich, P; Way, M O; Johnston, J J


    Methiocarb was extracted from surface water samples collected at experimental rice field sites in Louisiana and Texas. The sampling system consisted of a single-stage 90-mm Empore extraction disk unit equipped with a battery-powered vacuum pump. After extraction, the C-18 extraction disks were stored in an inert atmosphere at -10 degrees C and shipped overnight to the laboratory. The disks were extracted with methanol and the extracts analyzed by reversed-phase high-performance liquid chromatography with a methanol/water mobile phase. Methiocarb was detected by ultraviolet absorption at 223 nm and quantified with the use of calibration standards. Recoveries from control surface water samples fortified at 5.0, 10, 50, and 100 ng/mL methiocarb averaged 92 +/- 7%. A method limit of detection for methiocarb in rice field surface water was estimated to be 0.23 ng/mL at 223 nm.

  10. Identification of Phyllosilicates in Mudstone Samples Using Water Releases Detected by the Sample Analysis at Mars (SAM) Instrument in Gale Crater, Mars (United States)

    Hogancamp, J. V. (Clark); Ming, D. W.; McAdam, A. C.; Archer, P. D.; Morris, R. V.; Bristow, T. F.; Rampe, E. B.; Mahaffy, P. R.; Gellert, R.


    The Sample Analysis at Mars (SAM) instrument on board the Curiosity Rover has detected high temperature water releases from mud-stones in the areas of Yellowknife Bay, Pahrump Hills, Naukluft Plateau, and Murray Buttes in Gale crater. Dehydroxylation of phyllosilicates may have caused the high temperature water releases observed in these samples. Because each type of phyllosilicate undergoes dehydroxylation at distinct temperatures, these water releases can be used to help constrain the type of phyllosilicate present in each sample.

  11. May 2013 Groundwater and Surface Water Sampling at the Rio Blanco, Colorado, Site (Data Validation Package)

    Energy Technology Data Exchange (ETDEWEB)

    Hutton, Rick [S.M. Stoller Corporation, Broomfield, CO (United States)


    Annual sampling was conducted at the Rio Blanco, Colorado, site for the Long-Term Hydrologic Monitoring Program May 14-16, 2013, to monitor groundwater and surface water for potential radionuclide contamination. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location CER #1 Black Sulphur. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry and for tritium using the conventional and enrichment methods.

  12. Difficulties in obtaining representative samples for compliance with the Ballast Water Management Convention

    Digital Repository Service at National Institute of Oceanography (India)

    Carney, K.J.; Basurko, O.C.; Pazouki, K.; Marsham, S.; Delany, J.E.; Desai, D.V.; Anil, A.C.; Mesbahi, E.

    ). This study has shown the effect that low sampling frequency has on the accuracy of data obtained from a 1 tonne storage tank. In reality ships can carry between 100 and 100,000 tonnes of ballast water and discharge at flow rates of 100 to over 3000 m3hr-1... and uncertainty in the accuracy of data obtained from collecting only three replicate samples at three sampling points on discharge of ballast water will, in reality, be much greater than that seen in this study. Previous studies have used different...

  13. Determination of radon and radium concentrations in drinking water samples around the city of Kutahya. (United States)

    Sahin, Latife; Cetinkaya, Hakan; Murat Saç, Müslim; Içhedef, Mutlu


    The concentration of radium and radon has been determined in drinking water samples collected from various locations of Kutahya city, Turkey. The water samples are taken from public water sources and tap water, with the collector chamber method used to measure the radon and radium concentration. The radon concentration ranges between 0.1 and 48.6±1.7 Bq l(-1), while the radium concentration varies from a minimum detectable activity of water, humidity, pressure, elevation and the coordinates of the sampling points have also been measured and recorded. The annual effective dose from radon and radium due to typical water usage has been calculated. The resulting contribution to the annual effective dose due to radon ingestion varies between 0.3 and 124.2 μSv y(-1); the contribution to the annual effective dose due to radium ingestion varies between 0 and 143.3 μSv y(-1); the dose contribution to the stomach due to radon ingestion varies between 0.03 and 14.9 μSv y(-1). The dose contribution due to radon inhalation ranges between 0.3 and 122.5 μSv y(-1), assuming a typical transfer of radon in water to the air. For the overwhelming majority of the Kutahya population, it is determined that the average radiation exposure from drinking water is less than 73.6 µSv y(-1).

  14. Concentration of polycyclic aromatic hydrocarbons in water samples from different stages of treatment

    Directory of Open Access Journals (Sweden)

    Pogorzelec Marta


    Full Text Available The aim of this study was to analyze the presence and concentration of selected polycyclic aromatic hydrocarbons in water samples from different stages of treatment and to verify the usefulness of semipermeable membrane devices for analysis of drinking water. For this purpose, study was conducted for a period of 5 months. Semipermeable membrane devices were deployed in a surface water treatment plant located in Lower Silesia (Poland. To determine the effect of water treatment on concentration of PAHs, three sampling places were chosen: raw water input, stream of water just before disinfection and treated water output. After each month of sampling SPMDs were changed for fresh ones and prepared for further analysis. Concentrations of fifteen polycyclic aromatic hydrocarbons were determined by high performance liquid chromatography (HPLC. Presented study indicates that the use of semipermeable membrane devices can be an effective tool for the analysis of aquatic environment, including monitoring of drinking water, where organic micropollutants are present at very low concentrations.

  15. Continuous sample drop flow-based microextraction method as a microextraction technique for determination of organic compounds in water sample. (United States)

    Moinfar, Soleyman; Khayatian, Gholamreza; Milani-Hosseini, Mohammad-Reza


    Continuous sample drop flow-based microextraction (CSDF-ME) is an improved version of continuous-flow microextraction (CFME) and a novel technique developed for extraction and preconcentration of benzene, toluene, ethyl benzene, m-xylene and o-xylene (BTEXs) from aqueous samples prior to gas chromatography-flame ionization detection (GC-FID). In this technique, a small amount (a few microliters) of organic solvent is transferred to the bottom of a conical bottom test tube and a few mL of aqueous solution is moved through the organic solvent at relatively slow flow rate. The aqueous solution transforms into fine droplets while passing through the organic solvent. After extraction, the enriched analyte in the extraction solvent is determined by GC-FID. The type of extraction solvent, its volume, needle diameter, and aqueous sample flow rate were investigated. The enrichment factor was 221-269 under optimum conditions and the recovery was 89-102%. The linear ranges and limits of detection for BTEXs were 2-500 and 1.4-3.1 µg L(-1), respectively. The relative standard deviations for 10 µg L(-1) of BTEXs in water were 1.8-6.2% (n=5). The advantages of CSDF-ME are its low cost, relatively short sample preparation time, low solvent consumption, high recovery, and high enrichment factor. Copyright © 2014 Elsevier B.V. All rights reserved.

  16. Impact of prevalent and incident vertebral fractures on utility: results from a patient-based and a population-based sample

    NARCIS (Netherlands)

    Schoor, van N.; Ewing, S.; O’Neill, T.; Lunt, M.; Smit, J.; Lips, P.


    Data are scarce on the impact of vertebral fractures (VFX) on utility. The objective of this study was to assess the impact of prevalent and incident VFX on utility in both a patient-based and population-based sample. Data from the Multiple Outcomes of Raloxifene Evaluation (MORE) study (n = 550

  17. Effects of soil water saturation on sampling equilibrium and kinetics of selected polycyclic aromatic hydrocarbons. (United States)

    Kim, Pil-Gon; Roh, Ji-Yeon; Hong, Yongseok; Kwon, Jung-Hwan


    Passive sampling can be applied for measuring the freely dissolved concentration of hydrophobic organic chemicals (HOCs) in soil pore water. When using passive samplers under field conditions, however, there are factors that might affect passive sampling equilibrium and kinetics, such as soil water saturation. To determine the effects of soil water saturation on passive sampling, the equilibrium and kinetics of passive sampling were evaluated by observing changes in the distribution coefficient between sampler and soil (Ksampler/soil) and the uptake rate constant (ku) at various soil water saturations. Polydimethylsiloxane (PDMS) passive samplers were deployed into artificial soils spiked with seven selected polycyclic aromatic hydrocarbons (PAHs). In dry soil (0% water saturation), both Ksampler/soil and ku values were much lower than those in wet soils likely due to the contribution of adsorption of PAHs onto soil mineral surfaces and the conformational changes in soil organic matter. For high molecular weight PAHs (chrysene, benzo[a]pyrene, and dibenzo[a,h]anthracene), both Ksampler/soil and ku values increased with increasing soil water saturation, whereas they decreased with increasing soil water saturation for low molecular weight PAHs (phenanthrene, anthracene, fluoranthene, and pyrene). Changes in the sorption capacity of soil organic matter with soil water content would be the main cause of the changes in passive sampling equilibrium. Henry's law constant could explain the different behaviors in uptake kinetics of the selected PAHs. The results of this study would be helpful when passive samplers are deployed under various soil water saturations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Phytotechnological purification of water and bio energy utilization of plant biomass (United States)

    Stom, D. I.; Gruznych, O. V.; Zhdanova, G. O.; Timofeeva, S. S.; Kashevsky, A. V.; Saksonov, M. N.; Balayan, A. E.


    The aim of the study was to explore the possibility of using the phytomass of aquatic plants as the substrate in the microbial fuel cells and selection of microorganisms suitable for the generation of electricity on this substrate. The conversion of chemical energy of phytomass of aquatic plants to the electrical energy was carried out in a microbial fuel cells by biochemical transformation. As biological agents in the generation of electricity in the microbial fuel cells was used commercial microbial drugs “Doctor Robic 109K” and “Vostok-EM-1”. The results of evaluation of the characteristics of electrogenic (amperage, voltage) and the dynamics of the growth of microorganisms in the microbial fuel cells presents in the experimental part. As a source of electrogenic microorganisms is possible to use drugs “Dr. Robic 109K” and “Vostok-EM-1” was established. The possibility of utilization of excess phytomass of aquatic plants, formed during the implementation of phytotechnological purification of water, in microbial fuel cells, was demonstrated. The principal possibility of creating hybrid phytotechnology (plant-microbe cells), allowing to obtain electricity as a product, which can be used to ensure the operation of the pump equipment and the creation of a full cycle of resource-saving technologies for water treatment, was reviewed.

  19. The natural and artificial radionuclides in drinking water samples and consequent population doses

    Directory of Open Access Journals (Sweden)

    Aydan Altıkulaç


    Full Text Available Concentration levels of 226Ra, 228Ra, 40K and 137Cs were determined in 52 drinking water samples collected from the different supplies in Samsun province to evaluate annual effective dose due to the ingestion of the drinking water samples. The activity concentrations of 226Ra, 228Ra and 40K natural radionuclides in the drinking water samples varied from <27 to 2431 mBq L−1, <36 to 270 mBq L−1 and <47 to 2880 mBq L−1 respectively. The activity concentrations of the artificial radionuclide 137Cs in the drinking water samples were lower than minimum detectable activity except in one drinking water sample (DW14 with an associated activity concentration of 2576 mBq L−1. Contributions of the consumed water samples to annual effective dose from 226Ra, 228Ra and 40K varied from 1.6 to 33.4 μSv y−1 with a mean of 6.1 μSv y−1, 2.2 to 46.8 μSv y−1 with a mean of 8.6 μSv y−1, 4.7 to 97.5 μSv y−1 with a mean of 17.9 μSv y−1 for infants, children and adults, respectively. The results showed that all values of the annual effective dose of ingestion of these water samples were below the individual dose criterion of 100 μSv y−1 reported by World Health Organization (WHO.

  20. Using chemometrics in assessing Langat River water quality and designing a cost-effective water sampling strategy

    Directory of Open Access Journals (Sweden)

    Rashid A. Khan


    Full Text Available Seasonally dependent water quality data of Langat River was investigated during the period of December 2001 – May 2002, when twenty-four monthly samples were collected from four different plots containing up to 17 stations. For each sample, sixteen physico-chemical parameters were measured in situ. Multivariate treatments using cluster analysis, principal component analysis and factorial design were employed, in which the data were characterised as a function of season and sampling site, thus enabling significant discriminating factors to be discovered. Cluster analysis study based on data which were characterised as a function of sampling sites showed that at a chord distance of 75.25 two clusters are formed. Cluster I consists of 6 samples while Cluster II consists of 18 samples. The sampling plots from which these samples were taken are readily identified and the two clusters are discussed in terms of data variability. In addition, varimax rotations of principal components, which result in varimax factors, were used in interpreting the sources of pollution within the area. The work demonstrates the importance of historical data, if they are available, in planning sampling strategies to achieve desired research objectives, as well as to highlight the possibility of determining the optimum number of sampling stations which in turn would reduce cost and time of sampling.

  1. Spatio-temporal representativeness of euphotic depth in situ sampling in transitional coastal waters (United States)

    Luhtala, Hanna; Tolvanen, Harri


    In dynamic coastal waters, the representativeness of spot sampling is limited to the measurement time and place due to local heterogeneity and irregular water property fluctuations. We assessed the representativeness of in situ sampling by analysing spot-sampled depth profiles of photosynthetically active radiation (PAR) in dynamic coastal archipelago waters in the south-western Finnish coast of the Baltic Sea. First, we assessed the role of spatio-temporality within the underwater light dynamics. As a part of this approach, an anomaly detection procedure was tested on a dataset including a large archipelago area and extensive temporal coverage throughout the ice-free season. The results suggest that euphotic depth variability should be treated as a spatio-temporal process rather than considering spatial and temporal dimensions separately. Second, we assessed the representativeness of spot sampling through statistical analysis of comparative data from spatially denser sampling on three test sites on two optically different occasions. The datasets revealed variability in different dimensions and scales. The suitability of a dataset to reveal wanted phenomena can usually be improved by careful planning and by clearly defining the data sampling objectives beforehand. Nonetheless, conducting a sufficient in situ sampling in dynamic coastal area is still challenging: detecting the general patterns at all the relevant dimensions is complicated by the randomness effect, which reduces the reliability of spot samples on a more detailed scale. Our results indicate that good representativeness of a euphotic depth sampling location is not a stable feature in a highly dynamic environment.

  2. Tradeoffs in Risk and Return of Financial Hedging Solutions to Mitigate Drought-Related Financial Risks for Water Utilities (United States)

    Baum, R.; Characklis, G. W.


    Financial hedging solutions have been examined as tools for effectively mitigating water scarcity related financial risks for water utilities, and have become more prevalent as conservation (resulting in reduced revenues) and water transfers (resulting in increased costs) play larger roles in drought management. Individualized financial contracts (i.e. designed for a single utility) provide evidence of the potential benefits of financial hedging. However, individualized contracts require substantial time and information to develop, limiting their widespread implementation. More generalized contracts have also shown promise, and would allow the benefits of risk pooling to be more effectively realized, resulting in less expensive contracts. Risk pooling reduces the probability of an insurer making payouts that deviate significantly from the mean, but given that the financial risks of drought are spatially correlated amongst utilities, these more extreme "fat tail" risks remain. Any group offering these hedging contracts, whether a third-party insurer or a "mutual" comprised of many utilities, will need to balance the costs (i.e. additional risk) and benefits (i.e. returns) of alternative approaches to managing the extreme risks (e.g. through insurance layers). The balance of these different approaches will vary depending on the risk pool being considered, including the number, size and exposure of the participating utilities. This work first establishes a baseline of the tradeoffs between risk and expected return in insuring against the financial risks of water scarcity without alternative hedging approaches for water utilities across all climate divisions of the United States. Then various scenarios are analyzed to provide insight into how to maximize returns for risk pooling portfolios at various risk levels through balancing different insurance layers and hedging approaches. This analysis will provide valuable information for designing optimal financial risk

  3. Uranium speciation in moorland river water samples: a comparison of experimental results and computer model predictions. (United States)

    Unsworth, Emily R; Jones, Phil; Cook, Jennifer M; Hill, Steve J


    An on-line method has been developed for separating inorganic and organic bound uranium species present in river water samples. The method utilised a small chelating resin (Hyphan) column incorporated into the sample introduction manifold of an ICP-MS instrument. The method was evaluated for samples from rivers on Dartmoor (Devon, UK), an area of granite overlain with peat bogs. The results indicate that organic-uranium species form a major proportion (80%) of the total dissolved uranium present. Further work with synthetic water samples indicated that the level of dissolved organic carbon played a greater role in determining the level of organic-uranium species than did sample pH. Computer models for the water samples were constructed using the WHAM program (incorporating uranium data from the Nuclear Energy Agency Thermochemical Database project) in order to predict the levels of organic-uranium species that would form. By varying the proportion of humic and fulvic acids used in the humic component, predictions within 10% of the experimental results were obtained. The program did exhibit a low bias at higher pH values (7.5) and low organic carbon concentrations (0.5 microg ml(-1)), but under the natural conditions prevalent in the Dartmoor water samples, the model predictions were successful.

  4. Energy recovery from waste glycerol by utilizing thermal water vapor plasma. (United States)

    Tamošiūnas, Andrius; Valatkevičius, Pranas; Gimžauskaitė, Dovilė; Jeguirim, Mejdi; Mėčius, Vladas; Aikas, Mindaugas


    Glycerol, considered as a waste feedstock resulting from biodiesel production, has received much attention in recent years due to its properties, which offer to recover energy. The aim of this study was to investigate the use of a thermal water vapor plasma for waste (crude) glycerol conversion to synthesis gas, or syngas (H2 + CO). In parallel of crude glycerol, a pure glycerol (99.5%) was used as a reference material in order to compare the concentrations of the formed product gas. A direct current (DC) arc plasma torch stabilized by a mixture of argon/water vapor was utilized for the effective glycerol conversion to hydrogen-rich synthesis gas. It was found that after waste glycerol treatment, the main reaction products were gases with corresponding concentrations of H2 50.7%, CO 23.53%, CO2 11.45%, and CH4 3.82%, and traces of C2H2 and C2H6, which concentrations were below 0.5%. The comparable concentrations of the formed gas products were obtained after pure glycerol conversion-H2 46.4%, CO 26.25%, CO2 11.3%, and CH4 4.7%. The use of thermal water vapor plasma producing synthesis gas is an effective method to recover energy from both crude and pure glycerol. The performance of the glycerol conversion system was defined in terms of the produced gas yield, the carbon conversion efficiency, the cold gas efficiency, and the specific energy requirements.

  5. Hydrogeologic framework and sampling design for an assessment of agricultural pesticides in ground water in Pennsylvania (United States)

    Lindsey, Bruce D.; Bickford, Tammy M.


    State agencies responsible for regulating pesticides are required by the U.S. Environmental Protection Agency to develop state management plans for specific pesticides. A key part of these management plans includes assessing the potential for contamination of ground water by pesticides throughout the state. As an example of how a statewide assessment could be implemented, a plan is presented for the Commonwealth of Pennsylvania to illustrate how a hydrogeologic framework can be used as a basis for sampling areas within a state with the highest likelihood of having elevated pesticide concentrations in ground water. The framework was created by subdividing the state into 20 areas on the basis of physiography and aquifer type. Each of these 20 hydrogeologic settings is relatively homogeneous with respect to aquifer susceptibility and pesticide use—factors that would be likely to affect pesticide concentrations in ground water. Existing data on atrazine occurrence in ground water was analyzed to determine (1) which areas of the state already have sufficient samples collected to make statistical comparisons among hydrogeologic settings, and (2) the effect of factors such as land use and aquifer characteristics on pesticide occurrence. The theoretical vulnerability and the results of the data analysis were used to rank each of the 20 hydrogeologic settings on the basis of vulnerability of ground water to contamination by pesticides. Example sampling plans are presented for nine of the hydrogeologic settings that lack sufficient data to assess vulnerability to contamination. Of the highest priority areas of the state, two out of four have been adequately sampled, one of the three areas of moderate to high priority has been adequately sampled, four of the nine areas of moderate to low priority have been adequately sampled, and none of the three low priority areas have been sampled.Sampling to date has shown that, even in the most vulnerable hydrogeologic settings

  6. Application of passive sampling for measuring dissolved concentrations of organic contaminants in the water column at three marine superfund sites. (United States)

    Burgess, Robert M; Lohmann, Rainer; Schubauer-Berigan, Joseph P; Reitsma, Pamela; Perron, Monique M; Lefkovitz, Lisa; Cantwell, Mark G


    Currently, there is an effort under way to encourage remedial project managers at contaminated sites to use passive sampling to collect freely dissolved concentrations (Cfree ) of hydrophobic organic contaminants to improve site assessments. The objective of the present study was to evaluate the use of passive sampling for measuring water column Cfree for several hydrophobic organic contaminants at 3 US Environmental Protection Agency Superfund sites. Sites investigated included New Bedford Harbor (New Bedford, MA, USA), Palos Verdes Shelf (Los Angeles, CA, USA), and Naval Station Newport (Newport, RI, USA); and the passive samplers evaluated were polyethylene, polydimethylsiloxane-coated solid-phase microextraction fibers, semipermeable membrane devices, and polyoxymethylene. In general, the different passive samplers demonstrated good agreement, with Cfree values varying by a factor of 2 to 3. Further, at New Bedford Harbor, where conventional water sample concentrations were also measured (i.e., grab samples), passive sampler-based Cfree values agreed within a factor of 2. These findings suggest that all of the samplers were experiencing and measuring similar Cfree during their respective deployments. Also, at New Bedford Harbor, a strong log-linear, correlative, and predictive relationship was found between polyethylene passive sampler accumulation and lipid-normalized blue mussel bioaccumulation of polychlorinated biphenyls (r(2)  = 0.92, p < 0.05). The present study demonstrates the utility of passive sampling for generating scientifically accurate water column Cfree values, which is critical for making informed environmental management decisions at contaminated sediment sites. Published 2015 SETAC. This article is a US Government work and is in the public domain in the USA.

  7. Characterization of Listeria monocytogenes isolated from Ganges water, human clinical and milk samples at Varanasi, India. (United States)

    Soni, Dharmendra K; Singh, Rakesh K; Singh, Durg V; Dubey, Suresh K


    Listeria monocytogenes isolated from Ganges water, human clinical and milk samples were characterized by antibiotic susceptibility, serotype identification, detection of virulence genes and ERIC- and REP-PCR fingerprint analyses. All isolates were uniformly resistant to ampicillin, except two isolates, and showed variable resistance to gentamicin, cotrimoxazole, ofloxacin, rifampicin and tetracycline. Of the 20 isolates found positive for pathogens, seven (four human and three water isolates) belong to serogroups 4b, 4d and 4e; six (one human and five water isolates) belong to serogroups 1/2c and 3c; four milk isolates belong to serogroups 1/2b and 3b; and three milk isolates belong to serogroups 1/2a and 3a. Two water isolates, all human isolates, except one (Pb1) lacking inlJ gene, and three milk isolates possess inlA, inlC, plcA, prfA, actA, hlyA and iap genes. The remaining water and milk isolates showed variable presence of inlJ, plcA, prfA, and iap genes. ERIC- and REP-PCR based analyses collectively indicated that isolates of human clinical samples belong to identical or similar clone and isolates of water and milk samples belong to different clones. Overall study demonstrates the prevalence of pathogenic L. monocytogenes species in the environmental and clinical samples. Most of the isolates were resistant to commonly used antibiotics. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Relationship of land use to water quality in the Chesapeake Bay region. [water sampling and photomapping river basins (United States)

    Correll, D. L.


    Both the proportions of the various land use categories present on each watershed and the specific management practices in use in each category affect the quality of runoff waters, and the water quality of the Bay. Several permanent and portable stations on various Maryland Rivers collect volume-integrated water samples. All samples are analyzed for a series of nutrient, particulate, bacterial, herbicide, and heavy metal parameters. Each basin is mapped with respect to land use by the analysis of low-elevation aerial photos. Analyses are verified and adjusted by ground truth surveys. Data are processed and stored in the Smithsonian Institution data bank. Land use categories being investigated include forests/old fields, pastureland, row crops, residential areas, upland swamps, and tidal marshes.

  9. An Optimized Method for Quantification of Pathogenic Leptospira in Environmental Water Samples. (United States)

    Riediger, Irina N; Hoffmaster, Alex R; Casanovas-Massana, Arnau; Biondo, Alexander W; Ko, Albert I; Stoddard, Robyn A


    Leptospirosis is a zoonotic disease usually acquired by contact with water contaminated with urine of infected animals. However, few molecular methods have been used to monitor or quantify pathogenic Leptospira in environmental water samples. Here we optimized a DNA extraction method for the quantification of leptospires using a previously described Taqman-based qPCR method targeting lipL32, a gene unique to and highly conserved in pathogenic Leptospira. QIAamp DNA mini, MO BIO PowerWater DNA and PowerSoil DNA Isolation kits were evaluated to extract DNA from sewage, pond, river and ultrapure water samples spiked with leptospires. Performance of each kit varied with sample type. Sample processing methods were further evaluated and optimized using the PowerSoil DNA kit due to its performance on turbid water samples and reproducibility. Centrifugation speeds, water volumes and use of Escherichia coli as a carrier were compared to improve DNA recovery. All matrices showed a strong linearity in a range of concentrations from 106 to 10° leptospires/mL and lower limits of detection ranging from Leptospira in environmental waters (river, pond and sewage) which consists of the concentration of 40 mL samples by centrifugation at 15,000×g for 20 minutes at 4°C, followed by DNA extraction with the PowerSoil DNA Isolation kit. Although the method described herein needs to be validated in environmental studies, it potentially provides the opportunity for effective, timely and sensitive assessment of environmental leptospiral burden.

  10. May 2012 Groundwater and Surface Water Sampling at the Rio Blanco, Colorado, Site (Data Validation Package)

    Energy Technology Data Exchange (ETDEWEB)

    Hutton, Rick [S.M. Stoller Corporation, Broomfield, CO (United States)


    Annual sampling was conducted at the Rio Blanco, Colorado, site for the Long-Term Hydrologic Monitoring Program May 9-10, 2012, to monitor groundwater and surface water for potential radionuclide contamination. Sampling and analyses were conducted as specified in Sampling and Analysis Plan for the U.S. Department of Energy Office of Legacy Management Sites (LMS/PRO/S04351, continually updated). A duplicate sample was collected from location Johnson Artesian WL. Samples were analyzed for gamma-emitting radionuclides by high-resolution gamma spectrometry and for tritium using the conventional and enrichment methods. Results of this monitoring at the Rio Blanco site demonstrate that groundwater and surface water outside the site boundaries have not been affected by project-related contaminants.

  11. Cyto- and genotoxic potential of water samples from polluted areas in Kosovo. (United States)

    Alija, Avdulla J; Bajraktari, Ismet D; Bresgen, Nikolaus; Bojaxhi, Ekramije; Krenn, Margit; Asllani, Fisnik; Eckl, Peter M


    Reports on the state of the environment in Kosovo have emphasized that river and ground water quality is affected by pollution from untreated urban water as well as the waste water from the industry. One of the main contributors to this pollution is located in Obiliq (coal power plants). Prishtina-the capital city of Kosovo-is heavily influenced too. Furthermore, the pollutants combined together with those from heavy traffic are dissolved in Prishtina runoff water, which is discharged into the creek entering the river Sitnica together with urban waste water. The available data show the complex pollution with excessive quantities of nitrites, suspended materials, organic compounds, detergents, heavy metals, polychlorinated biphenyls, etc. In this study, the cytotoxic and genotoxic potential of water samples taken at these sites was tested in primary rat hepatocytes. The results obtained indicate that water samples collected in Prishtina and Obiliq had a significant cytotoxic potential in primary rat hepatocyte cultures even when diluted to 1 %. The increased cytotoxicity, however, was not accompanied by an increased genotoxicity as measured by the percentage of micronucleated cells. Further investigations addressing the chemical composition of the samples and the identification of the toxicants responsible for the cytotoxic effects found will be carried out in a next step.

  12. Preconcentration and determination of heavy metals in water, sediment and biological samples

    Directory of Open Access Journals (Sweden)

    Shirkhanloo Hamid


    Full Text Available In this study, a simple, sensitive and accurate column preconcentration method was developed for the determination of Cd, Cu and Pb ions in river water, urine and sediment samples by flame atomic absorption spectrometry. The procedure is based on the retention of the analytes on a mixed cellulose ester membrane (MCEM column from buffered sample solutions and then their elution from the column with nitric acid. Several parameters, such as pH of the sample solution, volume of the sample and eluent and flow rates of the sample were evaluated. The effects of diverse ions on the preconcentration were also investigated. The recoveries were >95 %. The developed method was applied to the determination of trace metal ions in river water, urine and sediment samples, with satisfactory results. The 3δ detection limits for Cu, Pb and Cd were found to be 2, 3 and 0.2 μg dm−3, respectively. The presented procedure was successfully applied for determination of the copper, lead and cadmium contents in real samples, i.e., river water and biological samples.

  13. Active Sampling Device for Determining Pollutants in Surface and Pore Water - the In Situ Sampler for Biphasic Water Monitoring (United States)

    Supowit, Samuel D.; Roll, Isaac B.; Dang, Viet D.; Kroll, Kevin J.; Denslow, Nancy D.; Halden, Rolf U.


    We designed and evaluated an active sampling device, using as analytical targets a family of pesticides purported to contribute to honeybee colony collapse disorder. Simultaneous sampling of bulk water and pore water was accomplished using a low-flow, multi-channel pump to deliver water to an array of solid-phase extraction cartridges. Analytes were separated using either liquid or gas chromatography, and analysis was performed using tandem mass spectrometry (MS/MS). Achieved recoveries of fipronil and degradates in water spiked to nominal concentrations of 0.1, 1, and 10 ng/L ranged from 77 ± 12 to 110 ± 18%. Method detection limits (MDLs) were as low as 0.040-0.8 ng/L. Extraction and quantitation of total fiproles at a wastewater-receiving wetland yielded concentrations in surface water and pore water ranging from 9.9 ± 4.6 to 18.1 ± 4.6 ng/L and 9.1 ± 3.0 to 12.6 ± 2.1 ng/L, respectively. Detected concentrations were statistically indistinguishable from those determined by conventional, more laborious techniques (p > 0.2 for the three most abundant fiproles). Aside from offering time-averaged sampling capabilities for two phases simultaneously with picogram-per-liter MDLs, the novel methodology eliminates the need for water and sediment transport via in situ solid phase extraction.

  14. Effects of holding time and measurement error on culturing Legionella in environmental water samples. (United States)

    Flanders, W Dana; Kirkland, Kimberly H; Shelton, Brian G


    Outbreaks of Legionnaires' disease require environmental testing of water samples from potentially implicated building water systems to identify the source of exposure. A previous study reports a large impact on Legionella sample results due to shipping and delays in sample processing. Specifically, this same study, without accounting for measurement error, reports more than half of shipped samples tested had Legionella levels that arbitrarily changed up or down by one or more logs, and the authors attribute this result to shipping time. Accordingly, we conducted a study to determine the effects of sample holding/shipping time on Legionella sample results while taking into account measurement error, which has previously not been addressed. We analyzed 159 samples, each split into 16 aliquots, of which one-half (8) were processed promptly after collection. The remaining half (8) were processed the following day to assess impact of holding/shipping time. A total of 2544 samples were analyzed including replicates. After accounting for inherent measurement error, we found that the effect of holding time on observed Legionella counts was small and should have no practical impact on interpretation of results. Holding samples increased the root mean squared error by only about 3-8%. Notably, for only one of 159 samples, did the average of the 8 replicate counts change by 1 log. Thus, our findings do not support the hypothesis of frequent, significant (≥= 1 log10 unit) Legionella colony count changes due to holding. Copyright © 2014 The Authors. Published by Elsevier Ltd.. All rights reserved.

  15. Use of lectin-magnetic separation (LMS) for detecting Toxoplasma gondii oocysts in environmental water samples. (United States)

    Harito, Jemere Bekele; Campbell, Andrew T; Tysnes, Kristoffer R; Robertson, Lucy J


    Proof-of-principle of lectin-magnetic separation (LMS) for isolating Toxoplasma oocysts (pre-treated with 0.5% acidified pepsin (AP)) from water for subsequent detection by microscopy or molecular methods has been shown. However, application of this technique in the routine water-analysis laboratory requires that the method is tested, modified, and optimized. The current study describes attempts to apply the LMS technique on supernatants from water samples previously analyzed for contamination with Cryptosporidium and Giardia using standard methods, and the supernatant following immunomagnetic separation (IMS) retained. Experiments on AP-treatment of Toxoplasma oocysts in situ in such samples demonstrated that overnight incubation at 37 °C was adequate, but excess AP had to be removed before continuing to LMS; neutralization in sodium hydroxide and a single wash step was found to be suitable. Mucilaginous material in post-IMS samples that had been stored at room temperature without washing, which was found to be probably an exudate from bacterial and fungal overgrowth, hampered the isolation of T. gondii oocysts by LMS beads. For detection, microscopy was successful only for clean samples, as debris occluded viewing in dirtier samples. Although qPCR was successful, for some samples non-specific inhibition occurred, as demonstrated by inhibition of an internal amplification control in the qPCR reaction. For some, but not all, samples this could be addressed by dilution. Finally, the optimized methodology was used for a pilot project in which 23 post-IMS water sample concentrates were analyzed. Of these, only 20 provided interpretable results (without qPCR inhibition) of which one sample was positive, and confirmed by sequencing of PCR product, indicating that Toxoplasma oocysts occur in Norwegian drinking water samples. In conclusion, we suggest that post-IMS samples may be suitable for analysis for Toxoplasma oocysts using LMS, only if freshly processed or


    Directory of Open Access Journals (Sweden)



    Full Text Available SUMMARY Human Adenoviruses (HAdV are notably resistant in the environment. These agents may serve as effective indicators of fecal contamination, and may act as causative agents of a number of different diseases in human beings. Conventional polymerase chain reaction (PCR and, more recently, quantitative PCR (qPCR are widely used for detection of viral agents in environmental matrices. In the present study PCR and SYBR(rGreen qPCR assays were compared for detection of HAdV in water (55 and sediments (20 samples of spring and artesian wells, ponds and streams, collected from dairy farms. By the quantitative methodology HAdV were detected in 87.3% of the water samples and 80% of the sediments, while by the conventional PCR 47.3% and 35% were detected in water samples and sediments, respectively.

  17. Detection of Flavobacterium psychrophilum from fish tissue and water samples by PCR amplification

    DEFF Research Database (Denmark)

    Wiklund, T.; Madsen, Lone; Bruun, Morten Sichlau


    investigation, the possible detection of Fl. psychrophilum from fish tissue and water samples was examined using nested PCR with DNA probes against a sequence of the 16S rRNA genes. The DNA was extracted using Chelex(R) 100 chelating resin. The primers, which were tested against strains isolated from diseased......-assay detected Fl. psychrophilum in water samples taken from a rainbow trout farm, but Fl. psychrophilum could not be isolated using inoculation on selective agar. The method presented here has the potential to detect low levels of Fl. psychrophilum in fish tissue and in water samples, and the technique can...... fish, healthy fish, fish farm environments and reference strains, proved to be specific for Fl. psychrophilum. The obtained detection limit of Fl. psychrophilum seeded into rainbow trout brain tissue was 0.4 cfu in the PCR tube, corresponding to 17 cfu mg(-1) brain tissue. The PCR-assay proved...

  18. Exploring water cycle dynamics by sampling multiple stable water isotope pools in a developed landscape in Germany (United States)

    Orlowski, Natalie; Kraft, Philipp; Pferdmenges, Jakob; Breuer, Lutz


    A dual stable water isotope (δ2H and δ18O) study was conducted in the developed (managed) landscape of the Schwingbach catchment (Germany). The 2-year weekly to biweekly measurements of precipitation, stream, and groundwater isotopes revealed that surface and groundwater are isotopically disconnected from the annual precipitation cycle but showed bidirectional interactions between each other. Apparently, snowmelt played a fundamental role for groundwater recharge explaining the observed differences to precipitation δ values. A spatially distributed snapshot sampling of soil water isotopes at two soil depths at 52 sampling points across different land uses (arable land, forest, and grassland) revealed that topsoil isotopic signatures were similar to the precipitation input signal. Preferential water flow paths occurred under forested soils, explaining the isotopic similarities between top- and subsoil isotopic signatures. Due to human-impacted agricultural land use (tilling and compression) of arable and grassland soils, water delivery to the deeper soil layers was reduced, resulting in significant different isotopic signatures. However, the land use influence became less pronounced with depth and soil water approached groundwater δ values. Seasonally tracing stable water isotopes through soil profiles showed that the influence of new percolating soil water decreased with depth as no remarkable seasonality in soil isotopic signatures was obvious at depths > 0.9 m and constant values were observed through space and time. Since classic isotope evaluation methods such as transfer-function-based mean transit time calculations did not provide a good fit between the observed and calculated data, we established a hydrological model to estimate spatially distributed groundwater ages and flow directions within the Vollnkirchener Bach subcatchment. Our model revealed that complex age dynamics exist within the subcatchment and that much of the runoff must has been stored

  19. Set Up of an Automatic Water Quality Sampling System in Irrigation Agriculture (United States)

    Heinz, Emanuel; Kraft, Philipp; Buchen, Caroline; Frede, Hans-Georg; Aquino, Eugenio; Breuer, Lutz


    Climate change has already a large impact on the availability of water resources. Many regions in South-East Asia are assumed to receive less water in the future, dramatically impacting the production of the most important staple food: rice (Oryza sativa L.). Rice is the primary food source for nearly half of the World's population, and is the only cereal that can grow under wetland conditions. Especially anaerobic (flooded) rice fields require high amounts of water but also have higher yields than aerobic produced rice. In the past different methods were developed to reduce the water use in rice paddies, like alternative wetting and drying or the use of mixed cropping systems with aerobic (non-flooded) rice and alternative crops such as maize. A more detailed understanding of water and nutrient cycling in rice-based cropping systems is needed to reduce water use, and requires the investigation of hydrological and biochemical processes as well as transport dynamics at the field scale. New developments in analytical devices permit monitoring parameters at high temporal resolutions and at acceptable costs without much necessary maintenance or analysis over longer periods. Here we present a new type of automatic sampling set-up that facilitates in situ analysis of hydrometric information, stable water isotopes and nitrate concentrations in spatially differentiated agricultural fields. The system facilitates concurrent monitoring of a large number of water and nutrient fluxes (ground, surface, irrigation and rain water) in irrigated agriculture. For this purpose we couple an automatic sampling system with a Wavelength-Scanned Cavity Ring Down Spectrometry System (WS-CRDS) for stable water isotope analysis (δ2H and δ18O), a reagentless hyperspectral UV photometer for monitoring nitrate content and various water level sensors for hydrometric information. The whole system is maintained with special developed software for remote control of the system via internet. We

  20. Field portable mobile phone based fluorescence microscopy for detection of Giardia lamblia cysts in water samples (United States)

    Ceylan Koydemir, Hatice; Gorocs, Zoltan; McLeod, Euan; Tseng, Derek; Ozcan, Aydogan


    Giardia lamblia is a waterborne parasite that causes an intestinal infection, known as giardiasis, and it is found not only in countries with inadequate sanitation and unsafe water but also streams and lakes of developed countries. Simple, sensitive, and rapid detection of this pathogen is important for monitoring of drinking water. Here we present a cost-effective and field portable mobile-phone based fluorescence microscopy platform designed for automated detection of Giardia lamblia cysts in large volume water samples (i.e., 10 ml) to be used in low-resource field settings. This fluorescence microscope is integrated with a disposable water-sampling cassette, which is based on a flow-through porous polycarbonate membrane and provides a wide surface area for fluorescence imaging and enumeration of the captured Giardia cysts on the membrane. Water sample of interest, containing fluorescently labeled Giardia cysts, is introduced into the absorbent pads that are in contact with the membrane in the cassette by capillary action, which eliminates the need for electrically driven flow for sample processing. Our fluorescence microscope weighs ~170 grams in total and has all the components of a regular microscope, capable of detecting individual fluorescently labeled cysts under light-emitting-diode (LED) based excitation. Including all the sample preparation, labeling and imaging steps, the entire measurement takes less than one hour for a sample volume of 10 ml. This mobile phone based compact and cost-effective fluorescent imaging platform together with its machine learning based cyst counting interface is easy to use and can even work in resource limited and field settings for spatio-temporal monitoring of water quality.

  1. Preparation of viral samples within biocontainment for ultrastructural analysis: Utilization of an innovative processing capsule for negative staining. (United States)

    Monninger, Mitchell K; Nguessan, Chrystal A; Blancett, Candace D; Kuehl, Kathleen A; Rossi, Cynthia A; Olschner, Scott P; Williams, Priscilla L; Goodman, Steven L; Sun, Mei G


    Transmission electron microscopy can be used to observe the ultrastructure of viruses and other microbial pathogens with nanometer resolution. In a transmission electron microscope (TEM), the image is created by passing an electron beam through a specimen with contrast generated by electron scattering from dense elements in the specimen. Viruses do not normally contain dense elements, so a negative stain that places dense heavy metal salts around the sample is added to create a dark border. To prepare a virus sample for a negative stain transmission electron microscopy, a virus suspension is applied to a TEM grid specimen support, which is a 3mm diameter fragile specimen screen coated with a few nanometers of plastic film. Then, deionized (dI) water rinses and a negative stain solution are applied to the grid. All infectious viruses must be handled in a biosafety cabinet (BSC) and many require a biocontainment laboratory environment. Staining viruses in biosafety levels (BSL) 3 and 4 is especially challenging because the support grids are small, fragile, and easily moved by air currents. In this study we evaluated a new device for negative staining viruses called mPrep/g capsule. It is a capsule that holds up to two TEM grids during all processing steps and for storage after staining is complete. This study reports that the mPrep/g capsule method is valid and effective to negative stain virus specimens, especially in high containment laboratory environments. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.

  2. Sample preconcentration utilizing nanofractures generated by junction gap breakdown assisted by self-assembled monolayer of gold nanoparticles.

    Directory of Open Access Journals (Sweden)

    Chun-Ping Jen

    Full Text Available The preconcentration of proteins with low concentrations can be used to increase the sensitivity and accuracy of detection. A nonlinear electrokinetic flow is induced in a nanofluidic channel due to the overlap of electrical double layers, resulting in the fast accumulation of proteins, referred to as the exclusion-enrichment effect. The proposed chip for protein preconcentration was fabricated using simple standard soft lithography with a polydimethylsiloxane replica. This study extends our previous paper, in which gold nanoparticles were manually deposited onto the surface of a protein preconcentrator. In the present work, nanofractures were formed by utilizing the self-assembly of gold-nanoparticle-assisted electric breakdown. This reliable method for nanofracture formation, involving self-assembled monolayers of nanoparticles at the junction gap between microchannels, also decreases the required electric breakdown voltage. The experimental results reveal that a high concentration factor of 1.5×10(4 for a protein sample with an extremely low concentration of 1 nM was achieved in 30 min by using the proposed chip, which is faster than our previously proposed chip at the same conditions. Moreover, an immunoassay of bovine serum albumin (BSA and anti-BSA was carried out to demonstrate the applicability of the proposed chip.

  3. Tuberous Sclerosis Health Care Utilization Based on the National Inpatient Sample Database: A Review of 5655 Hospitalizations. (United States)

    Wilson, Taylor A; Rodgers, Shaun; Tanweer, Omar; Agarwal, Prateek; Lieber, Bryan A; Agarwal, Nitin; McDowell, Michael; Devinsky, Orrin; Weiner, Howard; Harter, David H


    Tuberous sclerosis complex (TSC) has an incidence of 1/6000 in the general population. Overall care may be complex and costly. We examine trends in health care utilization and outcomes of patients with TSC over the last decade. The National Inpatient Sample (NIS) database for inpatient hospitalizations was searched for admission of patients with TSC. During 2000-2010, the NIS recorded 5655 patients with TSC. Most patients were admitted to teaching hospitals (71.7%). Over time, the percentage of craniotomies performed per year remained stable (P = 0.351). Relevant diagnoses included neuro-oncologic disease (5.4%), hydrocephalus (6.5%), and epilepsy (41.2%). Hydrocephalus significantly increased length of stay and hospital charges. A higher percentage of patients who underwent craniotomy had hydrocephalus (29.8% vs. 5.3%; P epilepsy (61.4% vs. 40.1%; P length of stay, increased hospital cost, and increased in-hospital mortality, which can inform strategies to reduce costs and improve care of patients with TSC. Copyright © 2016 Elsevier Inc. All rights reserved.

  4. Utility of the MMPI-2 Restructured Form (MMPI-2-RF) in a sample of Lithuanian male offenders. (United States)

    Laurinaitytė, Ilona; Laurinavičius, Alfredas; Ustinavičiūtė, Laura; Wygant, Dustin B; Sellbom, Martin


    The aim of the current study was to examine the construct validity of the Multiphasic Personality Inventory-2 Restructured Form (Minnesota Multiphasic Personality Inventory [MMPI]-2-RF; Ben-Porath & Tellegen, 2008/2011) in a correctional setting. More specifically, we examined the associations between MMPI-2-RF scales with external variables relevant for sentence planning as well as the relationship with risk of reconviction assessed with the Offender Assessment System (OASys; Home Office, 2002). A random sample of 228 male offenders from Lithuanian custodial institutions was selected for the study. The results revealed that MMPI-2-RF scale scores differentiated offender groups classified on the basis of external variables, such as history of suicide attempts, violent offending, use of drugs, violence under the influence of alcohol, and early criminal onset, in a manner consistent with conceptual expectations. Moreover, Behavior/Externalizing Dysfunction (BXD), Antisocial Behavior (RC4), Juvenile Conduct Problems (JCP), Substance Abuse (SUB), and Disconstraint-Revised (DISC-r) scale scores evinced correlations with OASys scores that were moderate in magnitude. Results from regression analyses showed that MMPI-2-RF scale scores accounted for approximately 21% of variance of OASys risk of reconviction scores. Overall, the findings provide support for the utility of the MMPI-2-RF in Lithuanian correctional institutions. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  5. Automated measurement and quantification of heterotrophic bacteria in water samples based on the MPN method. (United States)

    Fuchsluger, C; Preims, M; Fritz, I


    Quantification of heterotrophic bacteria is a widely used measure for water analysis. Especially in terms of drinking water analysis, testing for microorganisms is strictly regulated by the European Drinking Water Directive, including quality criteria and detection limits. The quantification procedure presented in this study is based on the most probable number (MPN) method, which was adapted to comply with the need for a quick and easy screening tool for different kinds of water samples as well as varying microbial loads. Replacing tubes with 24-well titer plates for cultivation of bacteria drastically reduces the amount of culture media and also simplifies incubation. Automated photometric measurement of turbidity instead of visual evaluation of bacterial growth avoids misinterpretation by operators. Definition of a threshold ensures definite and user-independent determination of microbial growth. Calculation of the MPN itself is done using a program provided by the US Food and Drug Administration (FDA). For evaluation of the method, real water samples of different origins as well as pure cultures of bacteria were analyzed in parallel with the conventional plating methods. Thus, the procedure described requires less preparation time, reduces costs and ensures both stable and reliable results for water samples.

  6. Water intakes and dietary sources of a nationally representative sample of Irish adults. (United States)

    O'Connor, L; Walton, J; Flynn, A


    Despite evidence that even mild dehydration is associated with various morbidities, water intake estimates in free-living populations are lacking. The present study aimed to estimate water intakes and dietary sources in a nationally representative sample of the Irish adult population. A 4-day semi-weighed food record was used to collect dietary intake data from 1500 free-living adults aged 18-90 years in the Irish National Adult Nutrition Survey (NANS) (2008-2010) from which water intake was estimated. To enable fluid intake estimation, additional questions on how water and milk were consumed were incorporated. Total water intake was calculated as drinking water plus water from other beverages and food moisture. The mean (SD) daily total water intake for Irish adults was 2.31 (0.92) L day(-1) [males 2.52 (1.00) L day(-1) ; females 2.09 (0.79) L day(-1)]. Intakes were lowest in elderly adults, as well as in those with less education, a lower social class, less energy expenditure and a higher body mass index and body fat percentage. In total, 67% of water came from beverages and 33% came from food moisture. Alcoholic beverages and teas individually contributed to total water intake in amounts similar to the drinking water contribution. These data may be used as a foundation for further research in the area of the effect of under consumption of water on health outcomes to guide public health messages regarding adequate water intakes. © 2013 The British Dietetic Association Ltd.

  7. Evaluating options for balancing the water-electricity nexus in California: Part 2--greenhouse gas and renewable energy utilization impacts. (United States)

    Tarroja, Brian; AghaKouchak, Amir; Sobhani, Reza; Feldman, David; Jiang, Sunny; Samuelsen, Scott


    A study was conducted to compare the technical potential and effectiveness of different water supply options for securing water availability in a large-scale, interconnected water supply system under historical and climate-change augmented inflow and demand conditions. Part 2 of the study focused on determining the greenhouse gas and renewable energy utilization impacts of different pathways to stabilize major surface reservoir levels. Using a detailed electric grid model and taking into account impacts on the operation of the water supply infrastructure, the greenhouse gas emissions and effect on overall grid renewable penetration level was calculated for each water supply option portfolio that successfully secured water availability from Part 1. The effects on the energy signature of water supply infrastructure were found to be just as important as that of the fundamental processes for each option. Under historical (baseline) conditions, many option portfolios were capable of securing surface reservoir levels with a net neutral or negative effect on emissions and a benefit for renewable energy utilization. Under climate change augmented conditions, however, careful selection of the water supply option portfolio was required to prevent imposing major emissions increases for the system. Overall, this analysis provided quantitative insight into the tradeoffs associated with choosing different pathways for securing California's water supply. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Classification and authentication of unknown water samples using machine learning algorithms. (United States)

    Kundu, Palash K; Panchariya, P C; Kundu, Madhusree


    This paper proposes the development of water sample classification and authentication, in real life which is based on machine learning algorithms. The proposed techniques used experimental measurements from a pulse voltametry method which is based on an electronic tongue (E-tongue) instrumentation system with silver and platinum electrodes. E-tongue include arrays of solid state ion sensors, transducers even of different types, data collectors and data analysis tools, all oriented to the classification of liquid samples and authentication of unknown liquid samples. The time series signal and the corresponding raw data represent the measurement from a multi-sensor system. The E-tongue system, implemented in a laboratory environment for 6 numbers of different ISI (Bureau of Indian standard) certified water samples (Aquafina, Bisleri, Kingfisher, Oasis, Dolphin, and McDowell) was the data source for developing two types of machine learning algorithms like classification and regression. A water data set consisting of 6 numbers of sample classes containing 4402 numbers of features were considered. A PCA (principal component analysis) based classification and authentication tool was developed in this study as the machine learning component of the E-tongue system. A proposed partial least squares (PLS) based classifier, which was dedicated as well; to authenticate a specific category of water sample evolved out as an integral part of the E-tongue instrumentation system. The developed PCA and PLS based E-tongue system emancipated an overall encouraging authentication percentage accuracy with their excellent performances for the aforesaid categories of water samples. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  9. The Alaska Commercial Fisheries Water Quality Sampling Methods and Procedures Manual

    Energy Technology Data Exchange (ETDEWEB)

    Folley, G.; Pearson, L.; Crosby, C. [Alaska Dept. of Environmental Conservation, Soldotna, AK (United States); DeCola, E.; Robertson, T. [Nuka Research and Planning Group, Seldovia, AK (United States)


    A comprehensive water quality sampling program was conducted in response to the oil spill that occurred when the M/V Selendang Ayu ship ran aground near a major fishing port at Unalaska Island, Alaska in December 2004. In particular, the sampling program focused on the threat of spilled oil to the local commercial fisheries resources. Spill scientists were unable to confidently model the movement of oil away from the wreck because of limited oceanographic data. In order to determine which fish species were at risk of oil contamination, a real-time assessment of how and where the oil was moving was needed, because the wreck became a continual source of oil release for several weeks after the initial grounding. The newly developed methods and procedures used to detect whole oil during the sampling program will be presented in the Alaska Commercial Fisheries Water Quality Sampling Methods and Procedures Manual which is currently under development. The purpose of the manual is to provide instructions to spill managers while they try to determine where spilled oil has or has not been encountered. The manual will include a meaningful data set that can be analyzed in real time to assess oil movement and concentration. Sections on oil properties and processes will be included along with scientific water quality sampling methods for whole and dissolved phase oil to assess potential contamination of commercial fishery resources and gear in Alaska waters during an oil spill. The manual will present a general discussion of factors that should be considered when designing a sampling program after a spill. In order to implement Alaska's improved seafood safety measures, the spatial scope of spilled oil must be known. A water quality sampling program can provide state and federal fishery managers and food safety inspectors with important information as they identify at-risk fisheries. 11 refs., 7 figs.

  10. UMTRA project water sampling and analysis plan, Falls City, Texas. Revision 1

    Energy Technology Data Exchange (ETDEWEB)



    Planned, routine ground water sampling activities at the US Department of Energy (DOE) Uranium Mill Tailings Remedial Action (UMTRA) Project site near Falls City, Texas, are described in this water sampling and analysis plan (WSAP). The following plan identifies and justifies the sampling locations, analytical parameters, and sampling frequency for the routine monitoring stations at the site. The ground water data are used for site characterization and risk assessment. The regulatory basis for routine ground water monitoring at UMTRA Project sites is derived from the US Environmental Protection Agency (EPA) regulations in 40 CFR Part 192. Sampling procedures are guided by the UMTRA Project standard operating procedures (SOP) (JEG, n.d.), the Technical Approach Document (TAD) (DOE, 1989), and the most effective technical approach for the site. The Falls City site is in Karnes County, Texas, approximately 8 miles [13 kilometers southwest of the town of Falls City and 46 mi (74 km) southeast of San Antonio, Texas. Before surface remedial action, the tailings site consisted of two parcels. Parcel A consisted of the mill site, one mill building, five tailings piles, and one tailings pond south of Farm-to-Market (FM) Road 1344 and west of FM 791. A sixth tailings pile designated Parcel B was north of FM 791 and east of FM 1344.

  11. Capillary gas chromatography with atomic emission detection for determining chlorophenols in water and soil samples

    Energy Technology Data Exchange (ETDEWEB)

    Campillo, Natalia [Department of Analytical Chemistry, Faculty of Chemistry, University of Murcia, E-30071 Murcia (Spain); Aguinaga, Nerea [Department of Analytical Chemistry, Faculty of Chemistry, University of Murcia, E-30071 Murcia (Spain); Vinas, Pilar [Department of Analytical Chemistry, Faculty of Chemistry, University of Murcia, E-30071 Murcia (Spain); Lopez-Garcia, Ignacio [Department of Analytical Chemistry, Faculty of Chemistry, University of Murcia, E-30071 Murcia (Spain); Hernandez-Cordoba, Manuel [Department of Analytical Chemistry, Faculty of Chemistry, University of Murcia, E-30071 Murcia (Spain)]. E-mail:


    A purge-and-trap preconcentration system coupled to a GC equipped with a microwave-induced atomic emission detector was used to determine 2-chlorophenol (2-CP), 2,4-dichlorophenol (2,4-DCP) and 2,4,6-trichlorophenol (2,4,6-TCP) in water and soil samples. The analytes were previously leached from the solid matrices into a 5% (w/v) sodium carbonate solution using an ultrasonic probe. It was necessary to acetylate the compounds before purging them from the aqueous medium, which, at the same time, improved their chromatographic separation. After selecting the optimal experimental conditions, the performance of the system was evaluated. Each chromatographic run took 26 min, including the purge time. Detection limits for 5 ml water samples ranged from 23 to 150 ng l{sup -1}, which is lower than the limits reached using the methods proposed by the US Environmental Pollution Agency (EPA) for chlorophenols in water. For soil samples, detection limits were calculated for 7 g samples, the resulting values ranging between 80 and 540 pg g{sup -1} for 2,4,6-TCP and 2-CP, respectively. The accuracy of the method was checked by analysing a certified reference soil, as well as fortified water and soil samples.

  12. Collecting a better water-quality sample: Reducing vertical stratification bias in open and closed channels (United States)

    Selbig, William R.


    Collection of water-quality samples that accurately characterize average particle concentrations and distributions in channels can be complicated by large sources of variability. The U.S. Geological Survey (USGS) developed a fully automated Depth-Integrated Sample Arm (DISA) as a way to reduce bias and improve accuracy in water-quality concentration data. The DISA was designed to integrate with existing autosampler configurations commonly used for the collection of water-quality samples in vertical profile thereby providing a better representation of average suspended sediment and sediment-associated pollutant concentrations and distributions than traditional fixed-point samplers. In controlled laboratory experiments, known concentrations of suspended sediment ranging from 596 to 1,189 mg/L were injected into a 3 foot diameter closed channel (circular pipe) with regulated flows ranging from 1.4 to 27.8 ft3 /s. Median suspended sediment concentrations in water-quality samples collected using the DISA were within 7 percent of the known, injected value compared to 96 percent for traditional fixed-point samplers. Field evaluation of this technology in open channel fluvial systems showed median differences between paired DISA and fixed-point samples to be within 3 percent. The range of particle size measured in the open channel was generally that of clay and silt. Differences between the concentration and distribution measured between the two sampler configurations could potentially be much larger in open channels that transport larger particles, such as sand.

  13. Some Factors Influencing Effective Utilization of Drinking Water Facilities: Women, Income, and Health in Rural North Ghana (United States)

    Kendie, S. B.


    In the examination of the implementation of rural drinking water facilities, not enough attention has been paid to analyzing the socioeconomic and political relationships that affect the effective utilization of the facilities, particularly as these relate to women in rural society. This paper suggests that much of the difficulty in instituting the utilization of safe water supply sources has to do with the rather low economic status of women—the main water collectors. Poverty consigns women to long periods of work in activities or jobs that bring little reward. This makes it difficult to effectively digest the messages delivered by program staff and limits the extent of usage of the safe water facilities.

  14. Umbrella sampling of proton transfer in a creatine-water system (United States)

    Ivchenko, Olga; Bachert, Peter; Imhof, Petra


    Proton transfer reactions are among the most common processes in chemistry and biology. Proton transfer between creatine and surrounding solvent water is underlying the chemical exchange saturation transfer used as a contrast in magnetic resonance imaging. The free energy barrier, determined by first-principles umbrella sampling simulations (EaDFT 3 kcal/mol) is in the same order of magnitude as the experimentally obtained activation energy. The underlying mechanism is a first proton transfer from the guanidinium group to the water pool, followed by a second transition where a proton is "transferred back" from the nearest water molecule to the deprotonated nitrogen atom of creatine.

  15. Hydrogeology and Physical Characteristics of Water Samples at the Red River Aluminum Site, Stamps, Arkansas (United States)

    Czarnecki, J. B.; Stanton, G. P.; Freiwald, D. A.


    The Red River Aluminum site near Stamps, Arkansas, contains waste piles of salt cake and metal byproducts from the smelting of aluminum. The waste piles are subjected to about 50 inches of rainfall a year, resulting in the dissolution of the salts and metal. To assess the potential threat to underlying ground-water resources at the site, its hydrogeology was characterized by measuring water levels and field parameters of water quality in 23 wells and at 2 surface-water sites. Seventeen of these monitor wells were constructed at various depths for this study to allow for the separate characterization of the shallow and deep ground-water systems, the calculation of vertical gradients, and the collection of water samples at different depths within the flow system. Lithologic descriptions from drill-hole cuttings and geophysical logs indicate the presence of interbedded sands, gravels, silts, and clays to depths of 65 feet. The regionally important Sparta aquifer underlies the site. Water levels in shallow wells indicate radial flow away from the salt-cake pile located near the center of the site. Flow in the deep system is to the west and southwest toward Bodcau Creek. Water-level data from eight piezometer nests indicate a downward hydraulic gradient from the shallow to deep systems across the site. Values of specific conductance (an indicator of dissolved salts) ranged from 215 to 196,200 microsiemens per centimeter and indicate that saline waters are being transported horizontally and vertically downward away from the site.

  16. Metal quantification in water and sediment samples of billings reservoir by SR-TXRF

    Energy Technology Data Exchange (ETDEWEB)

    Sampaio, Sergio Arnaud; Moreira, Silvana [Universidade Estadual de Campinas (UNICAMP), Campinas, SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo]. E-mails:;; Vives, Ana Elisa Sirito de [Universidade Metodista de Piracicaba (UNIMEP), Santa Barbara D' Oeste, SP (Brazil). Faculdade de Engenharia Civil, Arquitetura e Urbanismo]. E-mail:


    Billings is the largest reservoir water of the metropolitan Sao Paulo area, with approximately 100km{sup 2} of water. Its basin hydrographic occupies more than 500km{sup 2} in six cities. It concentrates the largest industrial park of South America and only its margins are busy for almost a million inhabitants. The quality of its waters is, therefore, constant of concern of the whole society. In this work the Synchrotron Radiation Total Reflection X Ray Fluorescence (SR-TXRF) is applied for the identification and quantification of metals in waters and sediments of the Billings dam. A comparison of the levels of metals found with the maximum permissive limits established by the Brazilian legislation was made. The purpose of social context is to contribute for the preservation of the local springs and the rational use of its waters. For the field work they were chosen 19 collection points, included the margins and the central portion of the dam, in agreement with similar approaches the those adopted by the Company of Technology of Environmental Sanitation of Sao Paulo State (CETESB).The water and sediment samples, as well as the certified and standard samples, were analyzed at Brazilian Synchrotron Light Laboratory (LNLS), Campinas, SP, Brazil. Results indicate that the water and the sediments of the reservoir have concentrations above the legal limits. (author)

  17. Detection and Spatial Mapping of Mercury Contamination in Water Samples Using a Smart-Phone (United States)


    environmental and biological samples has become a high priority. Various neurological effects of mer- cury exposure have beenmainly attributed to the organic... Mercury Exposure with Single Human Hair Strand. Environ. Sci. Technol. 2005, 39, 4594–4598. 12. Hightower, J. M.; Moore, D. Mercury Levels in High-End... Mercury Contamination in Water Samples Using a Smart-Phone QingshanWei,†,‡,§ Richie Nagi, ),# Kayvon Sadeghi,†,‡,# Steve Feng,† Eddie Yan,† So Jung Ki

  18. Freeze-bond strength experiments,: radially confined compression tests on saline and fresh water samples.


    Bueide, Ida Mari


    This thesis presents and analyses the method and results from strength experiments on freeze- bonds conducted on radially confined cylindrical samples (tri-axial tests). In total sixty samples were tested successfully, divided on twenty configurations. The variables consisted of confinement, submersion time, initial temperature and salinity (8 configurations with fresh water ice and 12 with 2-3ppt saline ice). The test set-up was similar to that of Møllegaard [2012] and Shafrova and Høyland [...

  19. Utilization of red mud for the purification of waste waters from nuclear power plants

    Energy Technology Data Exchange (ETDEWEB)

    Luka, Mikelic; Visnja, Orescanin; Stipe, Lulic [Rudjer Boskovic Institute, Lab. for radioecology, Zagreb (Croatia)


    Sorption of the radionuclides and heavy metals from low level liquid radioactive waste on the coagulant produced from bauxite waste (red mud and waste base) was presented. Research was conducted on composite annual samples of waste water collected in the Waste Monitor Tank (W.M.T.) from Kro Nuclear Power Plant during each month. Activities of radionuclide in W.M.T. were measured before and after purification using high purity germanium detector. Also, elemental concentrations in W.M.T. before and after purification were measured by source excited energy dispersive X-ray fluorescence (E.D.X.R.F.). It has been showed that activated red mud is excellent purification agent for the removal of radionuclides present in low level liquid radioactive waste. Removal efficiency was 100% for the radionuclides {sup 58}Co and {sup 60}Co 100%, and over 60% for {sup 134}Cs and {sup 137}Cs. (authors)

  20. Physiological response of wild dugongs (Dugong dugon) to out-of-water sampling for health assessment (United States)

    Lanyon, Janet M.; Sneath, Helen L.; Long, Trevor; Bonde, Robert K.


    The dugong (Dugong dugon) is a vulnerable marine mammal with large populations living in urban Queensland waters. A mark-recapture program for wild dugongs has been ongoing in southern Queensland since 2001. This program has involved capture and in-water sampling of more than 700 dugongs where animals have been held at the water surface for 5 min to be gene-tagged, measured, and biopsied. In 2008, this program expanded to examine more comprehensively body condition, reproductive status, and the health of wild dugongs in Moreton Bay. Using Sea World's research vessel, captured dugongs were lifted onto a boat and sampled out-of-water to obtain accurate body weights and morphometrics, collect blood and urine samples for baseline health parameters and hormone profiles, and ultrasound females for pregnancy status. In all, 30 dugongs, including two pregnant females, were sampled over 10 d and restrained on deck for up to 55 min each while biological data were collected. Each of the dugongs had their basic temperature-heart rate-respiration (THR) monitored throughout their period of handling, following protocols developed for the West Indian manatee (Trichechus manatus). This paper reports on the physiological response of captured dugongs during this out-of-water operation as indicated by their vital signs and the suitability of the manatee monitoring protocols to this related sirenian species. A recommendation is made that the range of vital signs of these wild dugongs be used as benchmark criteria of normal parameters for other studies that intend to sample dugongs out-of-water.

  1. {sup 222}Rn determination in water and brine samples using liquid scintillation spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Thiago C.; Oliveira, Arno H., E-mail: [Universidade Federal de Minas Gerais (DEN/UFMG), Belo Horizonte (Brazil). Departamento de Engenharia Nuclear; Monteiro, Roberto P.G.; Moreira, Rubens M., E-mail: [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN-CNEN-MG), Belo Horizonte, MG (Brazil)


    Liquid scintillation spectrometry (LSC) is the most common technique used for {sup 222}Rn determination in environmental aqueous sample. In this study, the performance of water-miscible (Ultima Gold AB) and immiscible (Optiscint) liquid scintillation cocktails has been compared for different matrices. {sup 241}Am, {sup 90}Sr and {sup 226}Ra standard solutions were used for LSC calibration. {sup 214}Po region was defined as better for both cocktails. Counting efficiency of 76 % and optimum PSA level of 95 for Ultima Gold AB cocktail, and counting efficiency of 82 % and optimum PSA level of 85 for Optiscint cocktail were obtained. Both cocktails showed similar results when applied for {sup 222}Rn activity determination in water and brine samples. However the Optiscint is recommended due to its quenching resistance. Limit of detection of 0.08 and 0.06 Bq l{sup -1} were obtained for water samples using a sample:cocktail ratio of 10:12 mL for Ultima Gold AB and Optiscint cocktails, respectively. Limit of detection of 0.08 and 0.04 Bq l{sup -1} were obtained for brine samples using a sample:cocktail ratio of 8:12 mL for Ultima Gold AB and Optiscint cocktails, respectively. (author)

  2. Direct introduction of water sample in multisegmented flow-injection analysis for sulfide determination. (United States)

    Lima, Giovana F; Brondi, Ariadne M; Paiva, Ana L S F; Tarley, César R T; de Oliveira, André F; Wisniewski, Célio; Luccas, Pedro O


    The present paper describes an inline flow-injection analysis system for the determination of sulfide in water samples, exploiting the Fischer reaction. Water samples were collected and introduced into a reactor of the FIA system. The sulfide released, after sample acidification, was carried out with a nitrogen gas flow and mixed with N,N diethyl-p-phenylenediamine (DEPD) solution in the presence of Fe(III). The blue dye formed was measured in the wavelength range between 672-679 nm. An evaluation of the effects of chemical and flow factors was performed using the factorial design of two levels, while optimization was accomplished by a Doehlert matrix. The system presented two linear-response ranges: the first of 0.433 to 400 µg L(-1) and the second of 400 to 3500 µg L(-1). The detection and quantification limit were found to be 0.130 and 0.433 µg L(-1), respectively, while the sample throughput was 12 h(-1). The precision was evaluated as the relative standard deviation (n = 10); for 50 and 100 µg L(-1) sulfide it was found to be 1.9 and 2.3%, respectively. The method showed satisfactory selectivity regarding the main interference present in environmental samples. The accuracy of the method was successfully evaluated in environmental water samples after a comparison with a literature reference method.

  3. Trends in Adult Cancer-Related Emergency Department Utilization: An Analysis of Data From the Nationwide Emergency Department Sample. (United States)

    Rivera, Donna R; Gallicchio, Lisa; Brown, Jeremy; Liu, Benmei; Kyriacou, Demetrios N; Shelburne, Nonniekaye


    The emergency department (ED) is used to manage cancer-related complications among the 15.5 million people living with cancer in the United States. However, ED utilization patterns by the population of US adults with cancer have not been previously evaluated or described in published literature. To estimate the proportion of US ED visits made by adults with a cancer diagnosis, understand the clinical presentation of adult patients with cancer in the ED, and examine factors related to inpatient admission within this population. Nationally representative data comprised of 7 survey cycles (January 2006-December 2012) from the Nationwide Emergency Department Sample were analyzed. Identification of adult (age ≥18 years) cancer-related visits was based on Clinical Classifications Software diagnoses documented during the ED visit. Weighted frequencies and proportions of ED visits among adult patients with cancer by demographic, geographic, and clinical characteristics were calculated. Weighted multivariable logistic regression was used to examine the associations between inpatient admission and key demographic and clinical variables for adult cancer-related ED visits. Adult cancer-related ED utilization patterns; identification of primary reason for ED visit; patient-related factors associated with inpatient admission from the ED. Among an estimated 696 million weighted adult ED visits from January 2006 to December 2012, 29.5 million (4.2%) were made by a patient with a cancer diagnosis. The most common cancers associated with an ED visit were breast, prostate, and lung cancer, and most common primary reasons for visit were pneumonia (4.5%), nonspecific chest pain (3.7%), and urinary tract infection (3.2%). Adult cancer-related ED visits resulted in inpatient admissions more frequently (59.7%) than non-cancer-related visits (16.3%) (P cancer were the most common cancer diagnoses presenting to the ED. Pneumonia was the most common reason for adult cancer-related ED

  4. Direct utilization of waste water algal biomass for ethanol production by cellulolytic Clostridium phytofermentans DSM1183. (United States)

    Fathima, Anwar Aliya; Sanitha, Mary; Kumar, Thangarathinam; Iyappan, Sellamuthu; Ramya, Mohandass


    Direct bioconversion of waste water algal biomass into ethanol using Clostridium phytofermentans DSM1183 was demonstrated in this study. Fermentation of 2% (w/v) autoclaved algal biomass produced ethanol concentration of 0.52 g L(-1) (solvent yield of 0.19 g/g) where as fermentation of acid pretreated algal biomass (2%, w/v) produced ethanol concentration of 4.6 g L(-1) in GS2 media (solvent yield of 0.26 g/g). The control experiment with 2% (w/v) glucose in GS2 media produced ethanol concentration of 2.8 g L(-1) (solvent yield of 0.25 g/g). The microalgal strains from waste water algal biomass were identified as Chlamydomonas dorsoventralis, Graesiella emersonii, Coelastrum proboscideum, Scenedesmus obliquus, Micractinium sp., Desmodesmus sp., and Chlorella sp., based on ITS-2 molecular marker. The presence of glucose, galactose, xylose and rhamnose were detected by high performance liquid chromatography in the algal biomass. Scanning Electron Microscopy observations of fermentation samples showed characteristic morphological changes in algal cells and bioaccessibility of C. phytofermentans. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Extraction of triazole fungicides in environmental waters utilizing poly (ionic liquid)-functionalized magnetic adsorbent. (United States)

    Liu, Cheng; Liao, Yingmin; Huang, Xiaojia


    This work prepared a new poly (ionic liquid)-functionalized magnetic adsorbent (PFMA) for the extraction of triazole fungicides (TFs) in environmental waters prior to determination by high performance liquid chromatography/diode array detection (HPLC-DAD). A polymerizable ionic liquid, 1-methyl-3-allylimidazolium bis(trifluoromethylsulfonyl)imide was employed to copolymerize with divinylbenzene on the surface of modified magnetite to fabricate the PFMA. The morphology, spectroscopic and magnetic properties of the new adsorbent were investigated by different techniques. A series of key parameters that influence the extraction performance including the amount of PFMA, desorption solvent, adsorption and desorption time, sample pH value and ionic strength were optimized in detail. Under the optimum conditions, the prepared PFMA could extract targeted TFs effectively and quickly under the format of magnetic solid-phase extraction (MSPE). Satisfactory linearities were achieved in the range of 0.1-200.0μg/L for triadimenol and 0.05-200.0μg/L for other TFs with good coefficients of determination above 0.99 for all analytes. The limits of detection (S/N=3) and limits of quantification (S/N=10) for TFs were in the range of 0.0050-0.0078μg/L and 0.017-0.026μg/L, respectively. Environmental waters including lake, river and well waters were used to demonstrate the applicability of developed MSPE-HPLC-DAD method, and satisfactory recoveries and repeatability were obtained. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Preparation and utilization of molecularly imprinted polymer for chlorsulfuron extraction from water, soil, and wheat plant. (United States)

    Fu, Xu Wei; Wu, Yan Jiao; Qu, Jin Rong; Yang, Hong


    A molecularly imprinted polymer (MIP) was prepared using chlorsulfuron (CS), a herbicide as a template molecule, methacrylic acid as a functional monomer, ethylene glycol dimethacrylate (EDMA) as a cross-linker, methanol and toluene as a porogen, and 2,2-azobisisobutyronitrile as an initiator. The binding behaviors of the template chlorsulfuron and its analog on MIP were evaluated by equilibrium adsorption experiments, which showed that the MIP particles had specific affinity for the template CS. Solid-phase extraction (SPE) with the chlorsulfuron molecularly imprinted polymer as an adsorbent was investigated. The optimum loading, washing, and eluting conditions for chlorsulfuron molecularly imprinted polymer solid-phase extraction (CS-MISPE) were established. The optimized CS-MISPE procedure was developed to enrich and clean up the chlorsulfuron residue in water, soils, and wheat plants. Concentrations of chlorsulfuron in the samples were analyzed by HPLC-UVD. The average recoveries of CS spiked standard at 0.05~0.2 mg L(-1) in water were 90.2~93.3%, with the relative standard deviation (RSD) being 2.0~3.9% (n=3). The average recoveries of 1.0 mL CS spiked standard at 0.1~0.5 mg L(-1) in 10 g soil were 91.1~94.7%, with the RSD being 3.1~5.6% (n=3). The average recoveries of 1.0 mL CS spiked standard at 0.1~0.5 mg L(-1) in 5 g wheat plant were 82.3~94.3%, with the RSD being 2.9~6.8% (n=3). Overall, our study provides a sensitive and cost-effective method for accurate determination of CS residues in water, soils, and plants.

  7. Water Quality Sampling Locations Along the Shoreline of the Columbia River, Hanford Site, Washington

    Energy Technology Data Exchange (ETDEWEB)

    Peterson, Robert E.; Patton, Gregory W.


    As environmental monitoring evolved on the Hanford Site, several different conventions were used to name or describe location information for various sampling sites along the Hanford Reach of the Columbia River. These methods range from handwritten descriptions in field notebooks to the use of modern electronic surveying equipment, such as Global Positioning System receivers. These diverse methods resulted in inconsistent archiving of analytical results in various electronic databases and published reports because of multiple names being used for the same site and inaccurate position data. This document provides listings of sampling sites that are associated with groundwater and river water sampling. The report identifies names and locations for sites associated with sampling: (a) near-river groundwater using aquifer sampling tubes; (b) riverbank springs and springs areas; (c) pore water collected from riverbed sediment; and (d) Columbia River water. Included in the listings are historical names used for a particular site and the best available geographic coordinates for the site, as of 2009. In an effort to create more consistency in the descriptive names used for water quality sampling sites, a naming convention is proposed in this document. The convention assumes that a unique identifier is assigned to each site that is monitored and that this identifier serves electronic database management requirements. The descriptive name is assigned for the convenience of the subsequent data user. As the historical database is used more intensively, this document may be revised as a consequence of discovering potential errors and also because of a need to gain consensus on the proposed naming convention for some water quality monitoring sites.

  8. Determination of dimethyl phthalate in environment water samples by a highly sensitive indirect competitive ELISA. (United States)

    Zhang, Mingcui; Liu, Shaohui; Zhuang, Huisheng; Hu, Yurong


    Recent controversy over the discovery of clouding agents containing the banned chemical di(2-ethylhexyl) phthalate in beverages in 2011 in Taiwan has caused public concerns. For the detection of dimethyl phthalate (DMP) in environment water samples, an indirect competitive enzyme-linked immunosorbent assay (ic-ELISA) was developed in this paper. Dimethyl 4-aminophthalate (4-DMAP) was covalently attached to bovine serum albumin as immunogen by a diazotization method. The conjugation of DMAP and ovalbumin as coating antigen was obtained in the same way. Polyclonal antibody was obtained from New Zealand white rabbits. Under the optimized conditions, DMP was detected in the concentration range of 0.02-419 ng/mL with a detection limit of 0.01 ng/mL. The proposed method has been applied to the analysis of river water, lake water, and rain water samples. Satisfactory recoveries were obtained ranging from 90.6% to 105.5%. The cross-reactivities of the anti-DMP antibody to seven structurally related phthalate esters were below 10%. The data demonstrated that the ic-ELISA method described in our study is a simple, sensitive, and specific method and showed that this assay is a reliable tool to detect DMP in water samples.

  9. Use of a Filter Cartridge for Filtration of Water Samples and Extraction of Environmental DNA. (United States)

    Miya, Masaki; Minamoto, Toshifumi; Yamanaka, Hiroki; Oka, Shin-Ichiro; Sato, Keiichi; Yamamoto, Satoshi; Sado, Tetsuya; Doi, Hideyuki


    Recent studies demonstrated the use of environmental DNA (eDNA) from fishes to be appropriate as a non-invasive monitoring tool. Most of these studies employed disk fiber filters to collect eDNA from water samples, although a number of microbial studies in aquatic environments have employed filter cartridges, because the cartridge has the advantage of accommodating large water volumes and of overall ease of use. Here we provide a protocol for filtration of water samples using the filter cartridge and extraction of eDNA from the filter without having to cut open the housing. The main portions of this protocol consists of 1) filtration of water samples (water volumes ≤4 L or >4 L); (2) extraction of DNA on the filter using a roller shaker placed in a preheated incubator; and (3) purification of DNA using a commercial kit. With the use of this and previously-used protocols, we perform metabarcoding analysis of eDNA taken from a huge aquarium tank (7,500 m3) with known species composition, and show the number of detected species per library from the two protocols as the representative results. This protocol has been developed for metabarcoding eDNA from fishes, but is also applicable to eDNA from other organisms.

  10. Passive sampling of perfluorinated chemicals in water: In-situ calibration

    NARCIS (Netherlands)

    Kaserzon, S.L.; Hawker, D.W.; Booij, K.; O'Brien, D.S.; Kennedy, K.; Vermeirssen, E.L.M.; Mueller, J.F.


    Perfluorinated chemicals (PFCs) have been recognised as environmental pollutants that require monitoring. A modified polar organic chemical integrative sampler (POCIS) is able to quantify aqueous PFCs. However, with varying external water velocity, PFC sampling rates (R-s) may change, affecting

  11. Development of reagents for immunoassay of Phytophthora ramorum in nursery water samples (United States)

    Douglas G. Luster; Timothy Widmer; Michael McMahon; C. André Lévesque


    Current regulations under the August 6, 2014 USDA APHIS Official Regulatory Protocol (Confirmed Nursery Protocol: Version 8.2) for Nurseries Containing Plants Infected with Phytophthora ramorum mandates the sampling of water in affected nurseries to demonstrate they are free of P. ramorum. Currently, detection of

  12. Collecting Stream Samples for Water Quality. Module 16. Vocational Education Training in Environmental Health Sciences. (United States)

    Consumer Dynamics Inc., Rockville, MD.

    This module, one of 25 on vocational education training for careers in environmental health occupations, contains self-instructional materials on collecting stream samples for water quality. Following guidelines for students and instructors and an introduction that explains what the student will learn are three lessons: (1) using a job aid to…

  13. New technologies to detect and monitor Phytophthora ramorum in plant, soil, and water samples (United States)

    Paul Russell; Nathan McOwen; Robert Bohannon


    The focus of our research efforts has been to develop methods to quickly identify plants, soil, and water samples infested with Phytophthora spp., and to rapidly confirm the findings using novel isothermal DNA technologies suitable for field use. These efforts have led to the development of a rapid Immunostrip® that reliably detects...

  14. Sampling design for compliance monitoring of surface water quality: A case study in a Polder area

    NARCIS (Netherlands)

    Brus, D.J.; Knotters, M.


    International agreements such as the EU Water Framework Directive (WFD) ask for efficient sampling methods for monitoring natural resources. In this paper a general methodology for designing efficient, statistically sound monitoring schemes is described. An important decision is the choice between a

  15. Evaluation of HDPE water sample bottles and PVC sampler tubing used in herbicide dissipation studies. (United States)

    J. B. Fischer; J. L. Michael; H. L. Gibbs


    The recovery of six herbicides (triclopyr, triclopyr ester, sulfometuron methyl, metsulfuron methyl, imazapyr, and hexazinone) was evaluated in two stream water samples, one from Weogufka Creek in the Alabama Piedmont and one from a stagnant stream in the Escambia Experimental Forest near Florida. Simulated field study conditions were...


    Conventional sampling and analytical protocols have poor sensitivity for fuel oxygenates that are alcohols, such as tert-butyl alcohol (TBA). Because alcohols are miscible or highly soluble in water, alcohols are not efficiently transferred to the gas chromatograph for analysis....

  17. Measurement of the tritium concentration in the fractionated distillate from environmental water samples. (United States)

    Atkinson, Robert; Eddy, Teresa; Kuhne, Wendy; Jannik, Tim; Brandl, Alexander


    Standard procedures for the measurement of tritium in water samples often require distillation of an appropriate sample aliquot. This distillation process may result in a fractionation of tritiated water and regular light water due to the vapor pressure isotope effect, introducing either a bias or an additional contribution to the total tritium measurement uncertainty. The current study investigates the relative change in vapor pressure isotope effect in the course of the distillation process, distinguishing it from and extending previously published measurements. The separation factor as a quantitative measure of the vapor pressure isotope effect is found to assume values of 1.04 ± 0.036, 1.05 ± 0.026, and 1.07 ± 0.038, depending on the vigor of the boiling process during distillation of the sample. A lower heat setting in the experimental setup, and therefore a less vigorous boiling process, results in a larger value for the separation factor. For a tritium measurement in water samples where the first 5 mL are discarded, the tritium concentration could be underestimated by 4-7%. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Methodology for the Validation of Collection, Handling and Preservation of Water and Soil Samples. (United States)


    and interstitial water samples by volatilization, adsorption, hydrolysis, biodegradation and other mechanisms. The main objective of the literature...Organo- phosphorus Pesticide Residues in Crop Extracts. J.AOAC Vol. 52, 522-526 (1969). 11. D.E. Coffin and G. Savary. Procedure for Extraction and

  19. analysis of nitrates and nitrit es in subsoil and ground water samples ...

    African Journals Online (AJOL)


    ANALYSIS OF NITRATES AND NITRIT ES IN SUBSOIL AND GROUND WATER. SAMPLES IN SWAZILAND. A.O. Fadiran: W.F. Mdlulie and BK. Simelane. Department of Chemistry, University of Swaziland, P/Bag 4, Kwaluseni, Swaziland. (Received August 8, 2004; revised October 4, 2004). ABSTRACT. The concentrations ...

  20. Laboratory performance study for passive sampling of nonpolar chemicals in water

    NARCIS (Netherlands)

    Booij, K.; Smedes, F.; Crum, S.


    Two laboratory performance studies with 21 and 11 participants were carried out for passive sampling of nonpolar chemicals in water, using silicone samplers that were deployed for 7 wk and 13 wk at 2 river sites in the Netherlands. Target analytes were polychlorinated biphenyls, polycyclic aromatic

  1. Measurement of Drinking Water Contaminants by Solid Phase Microextraction (SPME) Initially Quantified in Source Water Samples by the USGS (United States)

    Stiles, Robert; Yang, Ill; Lippincott, Robert Lee; Murphy, Eileen; Buckley, Brian


    Two adsorbent solid phase microextraction (SPME) fibers, 70 μm Carbowax divinylbenzene (CW/DVB) and 65 μm polydimethylsiloxane divinylbenzene (PDMS/DVB), were selected for the analysis of several target analytes (phenols, phosphates, phthalates, polycyclic aromatic hydrocarbons (PAHs) and chlorinated pesticides) identified by the USGS in surface waters. Detection limits for standards ranged from 0.1 to 1 ng/mL for the CW/DVB fiber and 0.1 to 2 ng/mL for the PDMS/DVB fiber for twenty of the analytes. The remaining analytes were not extracted because their polarity precluded their partition to the solid phase of the SPME fiber. Groundwater and treated water samples collected from wells in Northern New Jersey were then sampled for the USGS analytes by the SPME method as well as a modified version of EPA 525.5 using C-18 bonded solid phase extraction (SPE) columns. Nine of the USGS analytes - bisphenol A, bis (2-ethylhexyl) phthalate, butylated hydroxytoluene, butlyated hydroxyanisole, diethyltoulamide, diethyl phthalate, bis (2-ethylhexyl) adipate, 1,4-dichlorobenzene and triphenyl phosphate - were detected in ground water samples using the CW/DVB fiber. PMID:18497153

  2. Determination of carbofuran in a river water sample using LC-MS/MS (United States)

    Yusiasih, R.; Nugraha, W. C.; Hudayya, A.


    A study on the presence of carbofuran was conducted in Cikapundung river from an agricultural zone of the Lembang, West-Java, Indonesia. The present study aimed to determine the trace carbofuran in river water using LC-MS/MS. Extraction and purification of carbofuran was carried out simultaneously by Solid Phase Extraction (SPE) system with C18 sorbent. The procedure was evaluated by carbofuran recovery determination. Recovery was studied by spike technique with the addition of 2 and 5 ng/g carbofuran in river water sample. The recovery were of 83.87 and 115.88 % with relative standard deviation (RSD) of 6.28 and 0.47 % respectively. Carbofuran contained in Cikapundung river water samples was of 0.2898 ng/g.

  3. Determination of bromate in water samples using post column derivatization method with triiodide. (United States)

    Michalski, Rajmund; Lyko, Aleksandra


    This paper describes the application of the method of post-column derivatization with triiodide and UV detection at 352 nm for the determination of bromate in drinking water, mineral water and swimming pool water samples. Optimized analytical conditions were further validated in terms of accuracy, precision, linearity, limit of detection and limit of quantification. The method detection limit was at the level of 0.4 μg/L, and the spiked recovery for bromate was in the range of 92% - 104%. The method did not need a special sample treatment and was successfully applied to the analysis of bromate at the required value that is below 2.5 μg/L.

  4. Letter Report: Stable Hydrogen and Oxygen Isotope Analysis of B-Complex Perched Water Samples

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Brady D. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Moran, James J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Nims, Megan K. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Saunders, Danielle L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)


    Fine-grained sediments associated with the Cold Creek Unit at Hanford have caused the formation of a perched water aquifer in the deep vadose zone at the B Complex area, which includes waste sites in the 200-DV-1 Operable Unit and the single-shell tank farms in Waste Management Area B-BX-BY. High levels of contaminants, such as uranium, technetium-99, and nitrate, make this aquifer a continuing source of contamination for the groundwater located a few meters below the perched zone. Analysis of deuterium (2H) and 18-oxygen (18O) of nine perched water samples from three different wells was performed. Samples represent time points from hydraulic tests performed on the perched aquifer using the three wells. The isotope analyses showed that the perched water had δ2H and δ18O ratios consistent with the regional meteoric water line, indicating that local precipitation events at the Hanford site likely account for recharge of the perched water aquifer. Data from the isotope analysis can be used along with pumping and recovery data to help understand the perched water dynamics related to aquifer size and hydraulic control of the aquifer in the future.

  5. An Energy Efficient Adaptive Sampling Algorithm in a Sensor Network for Automated Water Quality Monitoring. (United States)

    Shu, Tongxin; Xia, Min; Chen, Jiahong; Silva, Clarence de


    Power management is crucial in the monitoring of a remote environment, especially when long-term monitoring is needed. Renewable energy sources such as solar and wind may be harvested to sustain a monitoring system. However, without proper power management, equipment within the monitoring system may become nonfunctional and, as a consequence, the data or events captured during the monitoring process will become inaccurate as well. This paper develops and applies a novel adaptive sampling algorithm for power management in the automated monitoring of the quality of water in an extensive and remote aquatic environment. Based on the data collected on line using sensor nodes, a data-driven adaptive sampling algorithm (DDASA) is developed for improving the power efficiency while ensuring the accuracy of sampled data. The developed algorithm is evaluated using two distinct key parameters, which are dissolved oxygen (DO) and turbidity. It is found that by dynamically changing the sampling frequency, the battery lifetime can be effectively prolonged while maintaining a required level of sampling accuracy. According to the simulation results, compared to a fixed sampling rate, approximately 30.66% of the battery energy can be saved for three months of continuous water quality monitoring. Using the same dataset to compare with a traditional adaptive sampling algorithm (ASA), while achieving around the same Normalized Mean Error (NME), DDASA is superior in saving 5.31% more battery energy.

  6. High-resolution passive sampling of dissolved methane in the water column of lakes in Greenland (United States)

    Goldman, A. E.; Cadieux, S. B.; White, J. R.; Pratt, L. M.


    Arctic lakes are important participants in the global carbon cycle, releasing methane in a warming climate and contributing to a positive feedback to climate change. In order to yield detailed methane budgets and understand the implications of warming on methane dynamics, high-resolution profiles revealing methane behavior within the water column need to be obtained. Single day sampling using disruptive techniques has the potential to result in biases. In order to obtain high-resolution, undisturbed profiles of methane concentration and isotopic composition, this study evaluates a passive sampling method over a multi-day equilibration period. Selected for this study were two small lakes (Gatos Research Methane Carbon Isotope Analyzer. PDB sampling and pump sampling resulted in statistically similar concentrations (R2=0.89), ranging from 0.85 to 135 uM from PDB and 0.74 to 143 uM from pump sampling. In anoxic waters of the lake, where concentrations were high enough to yield robust isotopic results on the LGR MCIA, δ13C were also similar between the two methods, yielding -73‰ from PDB and -74‰ from pump sampling. Further investigation will produce results for a second lake and methane carbon and hydrogen isotopic composition for both lakes. Preliminary results for this passive sampling method are promising. We envision the use of this technique in future studies of dissolved methane and expect that it will provide a more finely resolved vertical profile, allowing for a more complete understanding of lacustrine methane dynamics.

  7. Summary of inorganic compositional data for groundwater, soil-water, and surface-water samples collected at the Headgate Draw subsurface drip irrigation site, Johnson County, Wyoming (United States)

    Geboy, Nicholas J.; Engle, Mark A.; Schroeder, Karl T.; Zupancic, John W.


    As part of a 5-year project on the impact of subsurface drip irrigation (SDI) application of coalbed-methane (CBM) produced waters, water samples were collected from the Headgate Draw SDI site in the Powder River Basin, Wyoming, USA. This research is part of a larger study to understand short- and long-term impacts on both soil and water quality from the beneficial use of CBM waters to grow forage crops through use of SDI. This document provides a summary of the context, sampling methodology, and quality assurance and quality control documentation of samples collected prior to and over the first year of SDI operation at the site (May 2008-October 2009). This report contains an associated database containing inorganic compositional data, water-quality criteria parameters, and calculated geochemical parameters for samples of groundwater, soil water, surface water, treated CBM waters, and as-received CBM waters collected at the Headgate Draw SDI site.

  8. Summary of Inorganic Compositional Data for Groundwater, Soil-Water, and Surface-Water Samples at the Headgate Draw Subsurface Drip Irrigation Site

    Energy Technology Data Exchange (ETDEWEB)

    Geboy, Nicholas J.; Engle, Mark A.; Schroeder, Karl T.; Zupanic, John W.


    As part of a 5-year project on the impact of subsurface drip irrigation (SDI) application of coalbed-methane (CBM) produced waters, water samples were collected from the Headgate Draw SDI site in the Powder River Basin, Wyoming, USA. This research is part of a larger study to understand short- and long-term impacts on both soil and water quality from the beneficial use of CBM waters to grow forage crops through use of SDI. This document provides a summary of the context, sampling methodology, and quality assurance and quality control documentation of samples collected prior to and over the first year of SDI operation at the site (May 2008-October 2009). This report contains an associated database containing inorganic compositional data, water-quality criteria parameters, and calculated geochemical parameters for samples of groundwater, soil water, surface water, treated CBM waters, and as-received CBM waters collected at the Headgate Draw SDI site.

  9. Appraising longitudinal trends in the strategic risks cited by risk managers in the international water utility sector, 2005-2015. (United States)

    Chalker, Rosemary T C; Pollard, Simon J T; Leinster, Paul; Jude, Simon


    We report dynamic changes in the priorities for strategic risks faced by international water utilities over a 10year period, as cited by managers responsible for managing them. A content analysis of interviews with three cohorts of risk managers in the water sector was undertaken. Interviews probed the focus risk managers' were giving to strategic risks within utilities, as well as specific questions on risk analysis tools (2005); risk management cultures (2011) and the integration of risk management with corporate decision-making (2015). The coding frequency of strategic (business, enterprise, corporate) risk terms from 18 structured interviews (2005) and 28 semi-structured interviews (12 in 2011; 16 in 2015) was used to appraise changes in the perceived importance of strategic risks within the sector. The aggregated coding frequency across the study period, and changes in the frequency of strategic risks cited at three interview periods identified infrastructure assets as the most significant risk over the period and suggests an emergence of extrinsic risk over time. Extended interviews with three utility risk managers (2016) from the UK, Canada and the US were then used to contextualise the findings. This research supports the ongoing focus on infrastructure resilience and the increasing prevalence of extrinsic risk within the water sector, as reported by the insurance sector and by water research organisations. The extended interviews provided insight into how strategic risks are now driving the implementation agenda within utilities, and into how utilities can secure tangible business value from proactive risk governance. Strategic external risks affecting the sector are on the rise, involve more players and are less controllable from within a utility's own organisational boundaries. Proportionate risk management processes and structures provide oversight and assurance, whilst allowing a focus on the tangible business value that comes from managing strategic

  10. Solid phase extraction and determination of carbamate pesticides in water samples by reverse-phase HPLC

    Energy Technology Data Exchange (ETDEWEB)

    Moreno-Tovar, J.; Santos-Delgado, M.J. [Departamento de Quimica Analitica, Facultad de ciencias Quimicas, Universidad Complutense de Madrid (Spain)


    Solid phase extraction. SPE. using C{sub 1}8 bonded silica cartridges for trace amounts determination of carbaryl, propoxur, thiram, propham and methiocarb in water samples was studied and the breakthrough volume of the cartridges was established. The high enrichment factor and large injection volume admissible in the isocratic reverse-phase HPLC system allows pesticides determination with UV detection at 22o nm even at a concentration lower than 0.05 mug/L. Purified tap natural and underground water samples were spiked with carbamate pesticides in the concentration range 0.16-16.0 mug/L. Large volumes of samples (up to 2L) were passed through available C{sub 1}8, cartridges and eluted with acetonitrile. The preconcentrated samples were analyzed by HPLC using a Spherisorb ODS column with a 42.58 acetonitrile-water mobile phase. From replicate samples, recovery for the pesticides ranged from 79.0 to 103.7% except for thiran which is not retained. Tehe relative standard deviation (n=4 at 0.16 to 1.61 mug/L concetration level) range from 1.1 to 6.8%. (Author) 14 refs.

  11. An overview of sample preparation and extraction of synthetic pyrethroids from water, sediment and soil. (United States)

    Albaseer, Saeed S; Rao, R Nageswara; Swamy, Y V; Mukkanti, K


    The latest developments in sample preparation and extraction of synthetic pyrethroids from environmental matrices viz., water, sediment and soil were reviewed. Though the synthetic pyrethroids were launched in 1970s, to the best of authors' knowledge there was no review on this subject until date. The present status and recent advances made during the last 10 years in sample preparation including conservation and extraction techniques used in determination of synthetic pyrethroids in water, sediment and soil were discussed. Pre- and post-extraction treatments, sample stability during extraction and its influence upon the whole process of analytical determination were covered. Relative merits and demerits including the green aspects of extraction were evaluated. The current trends and future prospects were also addressed. 2010 Elsevier B.V. All rights reserved.

  12. Complexing of copper in drinking water samples to enhance recovery of Aeromonas and other bacteria. (United States)

    Versteegh, J F; Havelaar, A H; Hoekstra, A C; Visser, A


    The presence of copper in drinking water samples at concentrations as low as 10 micrograms/l resulted in a rapid die-off of aeromonads. Coliform bacteria, heterotrophic plate count bacteria and faecal streptococci were also sensitive to copper but to a lesser degree than aeromonads. The effect was particularly noticeable in soft water (less than 3 meq/l Ca + Mg) and at pH-values below 8.0. The toxic effect of copper concentrations up to 500 micrograms/l could be neutralized for a period of up to 24 h by the addition to samples of 50 mg/l of disodium-ethylene-diamino-tetraacetate (Na2EDTA) and keeping the samples on melting ice.

  13. Well installation and ground-water sampling plan for 1100 Area environmental monitoring wells

    Energy Technology Data Exchange (ETDEWEB)

    Bryce, R.W.


    This report outlines a plan for the installation and sampling of five wells between inactive waste sites in the 1100 Area of the Hanford Site and Richland City water supply wells. No contamination has been detected in water pumped from the water supply wells to date. The five wells are being installed to provide for early detection of contaminants and to provide data that may be used to make decisions concerning the management of the North Richland Well Field. This plan describes the existing waste disposal facilities and water supply wells, hydrogeology of the area, well completion specifics, and the data to be gathered from the five new wells. 26 refs., 8 figs., 4 tabs.

  14. Prospects for wider energetic utilization of subgeothermal water resources: Eastern Serbia case study

    Directory of Open Access Journals (Sweden)

    Stevanović Zoran


    Full Text Available Extensive worldwide usage of fossil energy sources causes high pollution and contributes to global warming. Hence, achieving energy independence by stimulating efficient use of energy and environmentally friendly exploitation of renewable sources is a main orientation of European countries. Geothermal energy is generally treated as a renewable and inexhaustible energy source. Nonetheless, direct use of low enthalpy subgeothermal resources, i.e. groundwater of 30.C or lower, for heating is commonly viewed as economically unjustified. To enable its usage, large panel surfaces or a high-temperature heat pump with excellent efficiency is required. The development of a cascade type heat pump and its wide application would enable more efficient utilization of widely available and easy replenished groundwater sources with temperatures of 10-30.C. The hydrogeological conditions in eastern Serbia are particularly favourable for exploitation of subgeothermal resources due to rich aquifer systems and notable terrestrial heat flow formed into the main geo-structures of the region (Carpathian-Balkan arch and Dachian basin. More intensive exploitation of subgeothermal sources additionally justifies the existence of a number of urbanized small and medium-size cities with a heating infrastructure already developed and centralized. Sustainable use of groundwater resources should be followed by thermal reconstruction of the previously constructed buildings as well as new legislation which supports and encourages development of renewable energy sources. It is estimated that the total potential thermal power which can be generated from subgeothermal waters in the study area is around 33 MWt, which corresponds to some 16 % of the total heat requirements.

  15. Why Do Some Water Utilities Recycle More than Others? A Qualitative Comparative Analysis in New South Wales, Australia. (United States)

    Kunz, Nadja C; Fischer, Manuel; Ingold, Karin; Hering, Janet G


    Although the recycling of municipal wastewater can play an important role in water supply security and ecosystem protection, the percentage of wastewater recycled is generally low and strikingly variable. Previous research has employed detailed case studies to examine the factors that contribute to recycling success but usually lacks a comparative perspective across cases. In this study, 25 water utilities in New South Wales, Australia, were compared using fuzzy-set Qualitative Comparative Analysis (fsQCA). This research method applies binary logic and set theory to identify the minimal combinations of conditions that are necessary and/or sufficient for an outcome to occur within the set of cases analyzed. The influence of six factors (rainfall, population density, coastal or inland location, proximity to users; cost recovery and revenue for water supply services) was examined for two outcomes, agricultural use and "heavy" (i.e., commercial/municipal/industrial) use. Each outcome was explained by two different pathways, illustrating that different combinations of conditions are associated with the same outcome. Generally, while economic factors are crucial for heavy use, factors relating to water stress and geographical proximity matter most for agricultural reuse. These results suggest that policies to promote wastewater reuse may be most effective if they target uses that are most feasible for utilities and correspond to the local context. This work also makes a methodological contribution through illustrating the potential utility of fsQCA for understanding the complex drivers of performance in water recycling.

  16. [Monitoring microbiological safety of small systems of water distribution. Comparison of two sampling programs in a town in central Italy]. (United States)

    Papini, Paolo; Faustini, Annunziata; Manganello, Rosa; Borzacchi, Giancarlo; Spera, Domenico; Perucci, Carlo A


    To determine the frequency of sampling in small water distribution systems (distribution. We carried out two sampling programs to monitor the water distribution system in a town in Central Italy between July and September 1992; the Poisson distribution assumption implied 4 water samples, the assumption of negative binomial distribution implied 21 samples. Coliform organisms were used as indicators of water safety. The network consisted of two pipe rings and two wells fed by the same water source. The number of summer customers varied considerably from 3,000 to 20,000. The mean density was 2.33 coliforms/100 ml (sd= 5.29) for 21 samples and 3 coliforms/100 ml (sd= 6) for four samples. However the hypothesis of homogeneity was rejected (p-value network, determining the samples' size according to heterogeneity hypothesis strengthens the statement that water is drinkable compared with homogeneity assumption.

  17. Evaluation of the Validity of Groundwater Samples Obtained Using the Purge Water Management System at SRS

    Energy Technology Data Exchange (ETDEWEB)

    Beardsley, C.C.


    As part of the demonstration testing of the Purge Water Management System (PWMS) technology at the Savannah River Site (SRS), four wells were equipped with PWMS units in 1997 and a series of sampling events were conducted at each during 1997-1998. Three of the wells were located in A/M Area while the fourth was located at the Old Radioactive Waste Burial Ground in the General Separations Area.The PWMS is a ''closed-loop'', non-contact, system used to collect and return purge water to the originating aquifer after a sampling event without having significantly altered the water quality. One of the primary concerns as to its applicability at SRS, and elsewhere, is whether the PWMS might resample groundwater that is returned to the aquifer during the previous sampling event. The purpose of the present investigation was to compare groundwater chemical analysis data collected at the four test wells using the PWMS vs. historical data collected using the standard monitoring program methodology to determine if the PWMS provides representative monitoring samples.The analysis of the groundwater chemical concentrations indicates that the PWMS sampling methodology acquired representative groundwater samples at monitoring wells ABP-1A, ABP-4, ARP-3 and BGO-33C. Representative groundwater samples are achieved if the PWMS does not resample groundwater that has been purged and returned during a previous sampling event. Initial screening calculations, conducted prior to the selection of these four wells, indicated that groundwater velocities were high enough under the ambient hydraulic gradients to preclude resampling from occurring at the time intervals that were used at each well. Corroborating evidence included a tracer test that was conducted at BGO-33C, the high degree of similarity between analyte concentrations derived from the PWMS samples and those obtained from historical protocol sampling, as well as the fact that PWMS data extend all previously

  18. Recovery data for surface water, groundwater and lab reagent samples analyzed by the USGS National Water Quality Laboratory schedule 2437, water years 2013-15 (United States)

    Shoda, Megan E.; Nowell, Lisa H.; Bexfield, Laura M.; Sandstrom, Mark W.; Stone, Wesley W.


    Analytical recovery is the concentration of an analyte measured in a water-quality sample expressed as a percentage of the known concentration added to the sample (Mueller and others, 2015). Analytical recovery (hereafter referred to as “recovery”) can be used to understand method bias and variability and to assess the temporal changes in a method over time (Martin and others, 2009). This data set includes two tables: one table of field spike recovery data and one table of lab reagent spike recovery data. The table of field spike recovery data includes results from paired environmental and spike samples collected by the National Water Quality Program, National Water-Quality Assessment (NAWQA) Project in surface water and groundwater. These samples were collected as part of the NAWQA Project’s National Water Quality Network: Rivers and Streams assessment, Regional Stream Quality Assessment studies and in multiple groundwater networks following standard practices (Mueller and others, 1997).  This table includes environmental and spike water-quality sample data stored in the USGS National Water Information System (NWIS) database ( Concentrations of pesticides in spike samples, while stored in the NWIS database, are not publically available. The calculation of recovery based on these field sample data is outlined in Mueller and others (2015). Lab reagent spikes are pesticide-free reagent water spiked with a known concentration of pesticide. Lab reagent spikes are prepared in the lab and their recovery can be directly measured. The table of lab reagent spike data contains quality control sample information stored in the USGS National Water Quality Laboratory (NWQL) database. Both tables include fields for data-quality indicators that are described in the data processing steps of this metadata file. These tables were developed in order to support a USGS Scientific Investigations Report with the working title

  19. Pesticide-sampling equipment, sample-collection and processing procedures, and water-quality data at Chicod Creek, North Carolina, 1992 (United States)

    Manning, T.K.; Smith, K.E.; Wood, C.D.; Williams, J.B.


    Water-quality samples were collected from Chicod Creek in the Coastal Plain Province of North Carolina during the summer of 1992 as part of the U.S. Geological Survey's National Water-Quality Assessment Program. Chicod Creek is in the Albemarle-Pamlico drainage area, one of four study units designated to test equipment and procedures for collecting and processing samples for the solid-phase extraction of selected pesticides, The equipment and procedures were used to isolate 47 pesticides, including organonitrogen, carbamate, organochlorine, organophosphate, and other compounds, targeted to be analyzed by gas chromatography/mass spectrometry. Sample-collection and processing equipment equipment cleaning and set-up procedures, methods pertaining to collecting, splitting, and solid-phase extraction of samples, and water-quality data resulting from the field test are presented in this report Most problems encountered during this intensive sampling exercise were operational difficulties relating to equipment used to process samples.

  20. Analysis of microcystins in cyanobacteria blooms and surface water samples from Meiliang Bay, Taihu Lake, China. (United States)

    Shen, P P; Shi, Q; Hua, Z C; Kong, F X; Wang, Z G; Zhuang, S X; Chen, D C


    Taihu Lake is the third largest freshwater lake in China. In recent years, the water pollution of cyanobacteria blooms has become a severe problem in this area. Microcystins (MCs) are an important group of toxic compounds mainly produced by some cyanobacteria species and have both acute and chronic hepatotoxic effects on animals and humans. This paper presents the first data on the identification and detection of MCs in both natural occurring cyanobacteria blooms and surface water samples (0-0.5 m), collected from Meiliang Bay, Taihu Lake, China. A conventional method for extraction and isolation of MCs from cyanobacteria blooms was applied. High-performance liquid chromatography (HPLC) analysis showed that the main toxic component in the cyanobacteria materials was MC-LR. The monoclonal antibody (mAb) against MC-LR produced by hybridoma technique was employed for direct competitive ELISA to detect the concentrations of MCs in bloom and water samples collected in 2001. The results not only revealed the presence of MCs but also temporal variations of MCs levels of three sampling stations in Meiliang Bay in 1 year. It is obvious that the MC contents were relatively higher during warm months and related with the status of eutrophication. Our study indicates the threat associated with MCs in water body of Taihu Lake. To prevent the MCs potential hazard on public health in this area, some necessary measures of monitoring and control of growth of cyanobacteria are urgently needed.

  1. Estimating occupancy and abundance of stream amphibians using environmental DNA from filtered water samples (United States)

    Pilliod, David S.; Goldberg, Caren S.; Arkle, Robert S.; Waits, Lisette P.


    Environmental DNA (eDNA) methods for detecting aquatic species are advancing rapidly, but with little evaluation of field protocols or precision of resulting estimates. We compared sampling results from traditional field methods with eDNA methods for two amphibians in 13 streams in central Idaho, USA. We also evaluated three water collection protocols and the influence of sampling location, time of day, and distance from animals on eDNA concentration in the water. We found no difference in detection or amount of eDNA among water collection protocols. eDNA methods had slightly higher detection rates than traditional field methods, particularly when species occurred at low densities. eDNA concentration was positively related to field-measured density, biomass, and proportion of transects occupied. Precision of eDNA-based abundance estimates increased with the amount of eDNA in the water and the number of replicate subsamples collected. eDNA concentration did not vary significantly with sample location in the stream, time of day, or distance downstream from animals. Our results further advance the implementation of eDNA methods for monitoring aquatic vertebrates in stream habitats.

  2. Evaluation of wastewater contaminant transport in surface waters using verified Lagrangian sampling (United States)

    Antweiler, Ronald C.; Writer, Jeffrey H.; Murphy, Sheila F.


    Contaminants released from wastewater treatment plants can persist in surface waters for substantial distances. Much research has gone into evaluating the fate and transport of these contaminants, but this work has often assumed constant flow from wastewater treatment plants. However, effluent discharge commonly varies widely over a 24-hour period, and this variation controls contaminant loading and can profoundly influence interpretations of environmental data. We show that methodologies relying on the normalization of downstream data to conservative elements can give spurious results, and should not be used unless it can be verified that the same parcel of water was sampled. Lagrangian sampling, which in theory samples the same water parcel as it moves downstream (the Lagrangian parcel), links hydrologic and chemical transformation processes so that the in-stream fate of wastewater contaminants can be quantitatively evaluated. However, precise Lagrangian sampling is difficult, and small deviations – such as missing the Lagrangian parcel by less than 1 h – can cause large differences in measured concentrations of all dissolved compounds at downstream sites, leading to erroneous conclusions regarding in-stream processes controlling the fate and transport of wastewater contaminants. Therefore, we have developed a method termed “verified Lagrangian” sampling, which can be used to determine if the Lagrangian parcel was actually sampled, and if it was not, a means for correcting the data to reflect the concentrations which would have been obtained had the Lagrangian parcel been sampled. To apply the method, it is necessary to have concentration data for a number of conservative constituents from the upstream, effluent, and downstream sites, along with upstream and effluent concentrations that are constant over the short-term (typically 2–4 h). These corrections can subsequently be applied to all data, including non-conservative constituents. Finally, we

  3. Microwave-assisted headspace single-drop microextration of chlorobenzenes from water samples

    Energy Technology Data Exchange (ETDEWEB)

    Vidal, Lorena [Departamento de Quimica Analitica, Nutricion y Bromatologia, Universidad de Alicante, P.O. Box 99, E-03080 Alicante (Spain); Domini, Claudia E. [Departamento de Quimica Analitica, Nutricion y Bromatologia, Universidad de Alicante, P.O. Box 99, E-03080 Alicante (Spain); Grane, Nuria [Departamento de Quimica Analitica, Nutricion y Bromatologia, Universidad de Alicante, P.O. Box 99, E-03080 Alicante (Spain); Psillakis, Elefteria [Department of Environmental Engineering, Technical University of Crete, Polytechneioupolis, GR-73100 Chania, Crete (Greece); Canals, Antonio [Departamento de Quimica Analitica, Nutricion y Bromatologia, Universidad de Alicante, P.O. Box 99, E-03080 Alicante (Spain)]. E-mail:


    A one-step and in-situ sample preparation method used for quantifying chlorobenzene compounds in water samples has been developed, coupling microwave and headspace single-drop microextraction (MW-HS-SDME). The chlorobenzenes in water samples were extracted directly onto an ionic liquid single-drop in headspace mode under the aid of microwave radiation. For optimization, a Plackett-Burman screening design was initially used, followed by a mixed-level factorial design. The factors considered were: drop volume, aqueous sample volume, stirring speed, ionic strength, extraction time, ionic liquid type, microwave power and length of the Y-shaped glass-tube. The optimum experimental conditions found from this statistical evaluation were: a 5 {mu}L microdrop of 1-hexyl-3-methylimidazolium hexafluorophosphate exposed for 20 min to the headspace of a 30 mL aqueous sample, irradiated by microwaves at 200 W and placed in a 50 mL spherical flask connected to a 25 cm Y-shaped glass-tube. Under the optimised experimental conditions, the response of a high performance liquid chromatographic system was found to be linear over the range studied and with correlation coefficients ranging between 0.9995 and 0.9999. The method showed a good level of repeatability, with relative standard deviations varying between 2.3 and 8.3% (n = 5). Detection limits were found in the low {mu}g L{sup -1} range varying between 0.016 and 0.039 {mu}g L{sup -1}. Overall, the performance of the proposed method demonstrated the favourable effect of microwave sample irradiation upon HS-SDME. Finally, recovery studies from different types of environmental water samples revealed that matrix had little effect upon extraction.

  4. Picogram per liter detections of pyrethroids and organophosphates in surface waters using passive sampling. (United States)

    Moschet, Christoph; Vermeirssen, Etiënne L M; Seiz, Remo; Pfefferli, Hildegard; Hollender, Juliane


    Pyrethroids and organophosphates are among the most toxic insecticides for aquatic organisms, leading to annual-average environmental quality standards (AA-EQS) in the picogram per liter range in surface waters. For monitoring purposes, it is therefore crucial to develop very sensitive analytical methods. Until now, it is very difficult to reach detection limits at or below given AA-EQSs. Here, we present a passive sampling method using silicone rubber (SR) sheets for the sampling of ten pyrethroids and two organophosphates in surface waters. An analytical method was developed, optimized and validated for the extraction of the insecticides from the SR sheets by accelerated solvent extraction followed by clean-up on C18 and silica gel and detection with GC-MS/MS in positive ionization mode. Good precision (50%) was observed for all substances, accuracy was between 66% and 139%. Limits of detection between 6 and 200 pg/L were achieved for all substances in surface waters using average sampling rates for PCBs and PAHs. The lack of substance-specific sampling rates and missing performance reference compounds led to an uncertainty in the concentration estimation of factor three in both directions. In a large field study, comprising 40 environmental samples from nine Swiss rivers, eight out of 12 substances were detected (most frequently: chlorpyrifos, cypermethrin). Most of the estimated organophosphate concentrations were between 0.1 and 1 ng/L, most pyrethroid detections below 0.1 ng/L. Four substances (chlorpyrifos-methyl, cypermethrin, deltamethrin and lambda-cyhalothrin) showed exceedances of their respective AA-EQS in multiple samples, also when the uncertainties in the concentration estimation were considered. As pyrethroid and organophosphate detection by SR passive sampling is very practicable and allows sensitive analysis, it has the potential to become a new tool in the monitoring of non-polar pesticides. Copyright © 2014 Elsevier Ltd. All rights reserved.

  5. Post-Flight Microbial Analysis of Samples from the International Space Station Water Recovery System and Oxygen Generation System (United States)

    Birmele, Michele N.


    The Regenerative, Environmental Control and Life Support System (ECLSS) on the International Space Station (ISS) includes the the Water Recovery System (WRS) and the Oxygen Generation System (OGS). The WRS consists of a Urine Processor Assembly (UPA) and Water Processor Assembly (WPA). This report describes microbial characterization of wastewater and surface samples collected from the WRS and OGS subsystems, returned to KSC, JSC, and MSFC on consecutive shuttle flights (STS-129 and STS-130) in 2009-10. STS-129 returned two filters that contained fluid samples from the WPA Waste Tank Orbital Recovery Unit (ORU), one from the waste tank and the other from the ISS humidity condensate. Direct count by microscopic enumeration revealed 8.38 x 104 cells per mL in the humidity condensate sample, but none of those cells were recoverable on solid agar media. In contrast, 3.32 x lOs cells per mL were measured from a surface swab of the WRS waste tank, including viable bacteria and fungi recovered after S12 days of incubation on solid agar media. Based on rDNA sequencing and phenotypic characterization, a fungus recovered from the filter was determined to be Lecythophora mutabilis. The bacterial isolate was identified by rDNA sequence data to be Methylobacterium radiotolerans. Additional UPA subsystem samples were returned on STS-130 for analysis. Both liquid and solid samples were collected from the Russian urine container (EDV), Distillation Assembly (DA) and Recycle Filter Tank Assembly (RFTA) for post-flight analysis. The bacterium Pseudomonas aeruginosa and fungus Chaetomium brasiliense were isolated from the EDV samples. No viable bacteria or fungi were recovered from RFTA brine samples (N= 6), but multiple samples (N = 11) from the DA and RFTA were found to contain fungal and bacterial cells. Many recovered cells have been identified to genus by rDNA sequencing and carbon source utilization profiling (BiOLOG Gen III). The presence of viable bacteria and fungi from WRS

  6. Lead in drinking water: sampling in primary schools and preschools in south central Kansas. (United States)

    Massey, Anne R; Steele, Janet E


    Studies in Philadelphia, New York City, Houston, Washington, DC, and Greenville, North Carolina, have revealed high lead levels in drinking water. Unlike urban areas, lead levels in drinking water in suburban and rural areas have not been adequately studied. In the study described in this article, drinking water in primary schools and preschools in five suburban and rural south central Kansas towns was sampled to determine if any exceeded the U.S. Environmental Protection Agency (U.S. EPA) guidance level for schools and child care facilities of 20 parts per billion (ppb). The results showed a total of 32.1% of the samples had detectable lead levels and 3.6% exceeded the U.S. EPA guidance level for schools and child care providers of 20 ppb. These results indicate that about one-third of the drinking water consumed by children age six and under in the five suburban and rural south central Kansas towns studied has some lead contamination, exposing these children to both short-term and long-term health risks. The authors suggest a need for increased surveillance of children's drinking water in these facilities.

  7. Direct sampling of chemical weapons in water by photoionization mass spectrometry. (United States)

    Syage, Jack A; Cai, Sheng-Suan; Li, Jianwei; Evans, Matthew D


    The vulnerability of water supplies to toxic contamination calls for fast and effective means for screening water samples for multiple threats. We describe the use of photoionization (PI) mass spectrometry (MS) for high-speed, high-throughput screening and molecular identification of chemical weapons (CW) threats and other hazardous compounds. The screening technology can detect a wide range of compounds at subacute concentrations with no sample preparation and a sampling cycle time of approximately 45 s. The technology was tested with CW agents VX, GA, GB, GD, GF, HD, HN1, and HN3, in addition to riot agents and precursors. All are sensitively detected and give simple PI mass spectra dominated by the parent ion. The target application of the PI MS method is as a routine, real-time early warning system for CW agents and other hazardous compounds in air and in water. In this work, we also present comprehensive measurements for water analysis and report on the system detection limits, linearity, quantitation accuracy, and false positive (FP) and false negative rates for concentrations at subacute levels. The latter data are presented in the form of receiver operating characteristic curves of the form of detection probability P(D) versus FP probability P(FP). These measurements were made using the CW surrogate compounds, DMMP, DEMP, DEEP, and DIMP. Method detection limits (3sigma) obtained using a capillary injection method yielded 1, 6, 3, and 2 ng/mL, respectively. These results were obtained using 1-microL injections of water samples without any preparation, corresponding to mass detection limits of 1, 6, 3, and 2 pg, respectively. The linear range was about 3-4 decades and the dynamic range about 4-5 decades. The relative standard deviations were generally <10% at CW subacute concentrations levels.

  8. An ionic liquid as a solvent for headspace single drop microextraction of chlorobenzenes from water samples. (United States)

    Vidal, Lorena; Psillakis, Elefteria; Domini, Claudia E; Grané, Nuria; Marken, Frank; Canals, Antonio


    A headspace single-drop microextraction (HS-SDME) procedure using room temperature ionic liquid and coupled to high-performance liquid chromatography capable of quantifying trace amounts of chlorobenzenes in environmental water samples is proposed. A Plackett-Burman design for screening was carried out in order to determine the significant experimental conditions affecting the HS-SDME process (namely drop volume, aqueous sample volume, stirring speed, ionic strength, extraction time and temperature), and then a central composite design was used to optimize the significant conditions. The optimum experimental conditions found from this statistical evaluation were: a 5 microL microdrop of 1-butyl-3-methylimidazolium hexafluorophosphate, exposed for 37 min to the headspace of a 10 mL aqueous sample placed in a 15 mL vial, stirred at 1580 rpm at room temperature and containing 30% (w/v) NaCl. The calculated calibration curves gave a high level of linearity for all target analytes with correlation coefficients ranging between 0.9981 and 0.9997. The repeatability of the proposed method, expressed as relative standard deviation, varied between 1.6 and 5.1% (n=5). The limits of detection ranged between 0.102 and 0.203 microg L(-1). Matrix effects upon extraction were evaluated by analysing spiked tap and river water as well as effluent water samples originating from a municipal wastewater treatment plant.

  9. Polypyrrole/silica/magnetite nanoparticles as a sorbent for the extraction of sulfonamides from water samples. (United States)

    Sukchuay, Thanyaporn; Kanatharana, Proespichaya; Wannapob, Rodtichoti; Thavarungkul, Panote; Bunkoed, Opas


    A magnetic solid-phase extraction sorbent of polypyrrole/silica/magnetite nanoparticles was successfully synthesized and applied for the extraction and preconcentration of sulfonamides in water samples. The magnetite nanoparticles provided a simple and fast separation method for the analytes in water samples. The silica coating increased the surface area that helped to increase the polypyrrole layer. The polypyrrole-coated silica provided a high extraction efficiency due to the π-π and hydrophobic interactions between the polypyrrole and sulfonamides. Several parameters that affected the extraction efficiencies, i.e. the amount of sorbent, pH of the sample, extraction time, extraction temperature, ionic strength, and desorption conditions were investigated. Under the optimal conditions, the method was linear over the range of 0.30-200 μg/L for sulfadiazine and sulfamerazine, and 1.0-200 μg/L for sulfamethazine and sulfamonomethoxine. The limit of detection was 0.30 μg/L for sulfadiazine and sulfamerazine and 1.0 μg/L for sulfamethazine and sulfamonomethoxine. This simple and rapid method was successfully applied to efficiently extract sulfonamides from water samples. It showed a high extraction efficiency for all tested sulfonamides, and the recoveries were in the range of 86.7-99.7% with relative standard deviations of < 6%. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Utilization of the waste water of the steaming and boiling water on the tea processing; Cha seizo kotei ni okeru haishutsusui no yukoriyo

    Energy Technology Data Exchange (ETDEWEB)

    Tezuka, M.; Doi, S. [Shizuoka Industrial Research Institute of Shizuoka prefecture, Shizuoka (Japan); Kuramoto, M.


    To utilize the waste water of the steaming water on the green tea processing and the boiling water on the caffeine-less tea processing, the antibacterial and anti odor effects of the water condensate were investigated. The results were as follows; (1) The volume of the steaming water and the boiling water obtained on the tea processing was 0.02 t and 8.4t per a day. (2) The amount of catechism in the steaming water and boiling water was 193 ppm and 87 ppm. (3) To concentrate the steaming water, a rotary evaporating method was better than a hotplating and an ultrafiltrating methods. (4) The antibacterial effect of the boiling water condensate was indicated at a concentration of 1% catechism in a laboratory experiment. (5) In a fish processing industry, the antibacterial effect was not recognized at a concentration of 1% catechism flooded with the condensate on the floor. (6) The antiodor effect the condensate was not recognized at a concentration of 1% catechism above the floor in the fish processing industry. (7) The antiodor effect was expressed at a concentration of O.5% catechism sprayed with the condensate in a space of a pet food processing industry. 2 figs., 8 tabs.

  11. Modelling Water Supply-Billing and Collection Systems for Effective Utility Distribution

    Directory of Open Access Journals (Sweden)

    Olotu Yahaya


    Full Text Available Safe drinking water is a strong constraint to the attainment of Millennium Development Goals by 2020. The water supply coverage of 38.3% of the total population corresponds to 45 litres per person and an average supply period of 3.5 hours daily. This further explains the degree of water-stress in Ikare. Annual non-revenue of 18.3% represented $6.2 million USD which was lost to physical water loss, thus leading to gradual increase in operation ratio value of 1.05. Chlorination water treatment is cost effective for large water scheme than ultraviolent (UV with a price index of $ 0.01 per 1m 3 of water. The predicted cost for plant with 5 million m 3 capacity. Increasing water supply coverage requires the reduction of non-revenue water and creates effective tariff system.

  12. Development of Chengdu and sustainable utilization of the ancient Dujiangyan Water-Conservancy Project

    Directory of Open Access Journals (Sweden)

    X. Huang


    Full Text Available The Dujiangyan Water-Conservancy Project is a great water irrigation works in Chinese cultural history, which led the Min River water to the vast Chengdu Plain, and created fertile and pretty "land of abundance". Now Chengdu is facing increased water demand stress due mainly to rapid urbanization. This paper first analyses the available water resources of Chengdu based on historical hydrological data from 1964 to 2008. The results show that the average annual water resources were 8.9 billion m3 in 1986 and 7.9 billion m3 in 2008 under various environmental conditions. The future tendency of water demand in city development planning is predicted by the Policy Dialogue Model (PODIUM. Finally, the strategies for water resources exploitation accompanying the sustainable development pattern are studied. The result illustrates that rational and careful management are required to balance the gap between water supply and demand

  13. A headspace SPME-GC-ECD method suitable for determination of chlorophenols in water samples. (United States)

    de Morais, Paulo; Stoichev, Teodor; Basto, M Clara P; Carvalho, Pedro N; Vasconcelos, M Teresa S D


    A headspace solid phase microextraction coupled to gas chromatography with electron capture detector (HS-SPME-GC-ECD) method was optimized for the determination of seven chlorophenols (CPs) with different levels of chlorination. This is the first time that HS-SPME-GC-ECD with acetylation of the analytes is used for the simultaneous determination of CPs in water samples. The influence of fibre type, derivatization conditions, salt addition, temperature and time of extraction and temperature of desorption was checked. Possible sources of contamination and analyte losses were considered. The best results were obtained with the polydimethylsiloxane/divinylbenzene fibre, derivatization by acetylation using 100 μL of acetic anhydride and 0.1 g of anhydrous sodium carbonate per 10 mL of sample, salt addition of 100 g L(-1) sodium chloride, extraction at 70 °C for 60 min and desorption in the GC injector at 260 °C for 6 min. The limits of detection (LOD) for monochlorophenols were 12 and 122 ng L(-1) for 2-chlorophenol and 4-chlorophenol, respectively. For polychlorinated CPs, the LODs were lower than 6 ng L(-1), values similar to the existing methods that use SPME with derivatization for CPs determination in water samples. The method is suitable for the determination of CPs in most environmental aqueous samples. Repeatability and reproducibility were less than 16.8% and 11.7%, respectively. The optimized method was successfully applied for the analysis of waters with complex matrices such as river and estuarine water samples.

  14. ASPEN+ and economic modeling of equine waste utilization for localized hot water heating via fast pyrolysis (United States)

    ASPEN Plus based simulation models have been developed to design a pyrolysis process for the on-site production and utilization of pyrolysis oil from equine waste at the Equine Rehabilitation Center at Morrisville State College (MSC). The results indicate that utilization of all available Equine Reh...

  15. IFC to CityGML Transformation Framework for Geo-Analysis : A Water Utility Network Case

    NARCIS (Netherlands)

    Hijazi, I.; Ehlers, M.; Zlatanova, S.; Isikdag, U.


    The development of semantic 3D city models has allowed for new approaches to town planning and urban management (Benner et al. 2005) such as emergency and catastrophe planning, checking building developments, and utility networks. Utility networks inside buildings are composed of pipes and cables

  16. Measurements of dissolved organic nitrogen (DON) in water samples with nanofiltration pretreatment. (United States)

    Xu, Bin; Li, Da-Peng; Li, Wei; Xia, Sheng-Ji; Lin, Yi-Li; Hu, Chen-Yan; Zhang, Cao-Jie; Gao, Nai-Yun


    Dissolved organic nitrogen (DON) measurements for water samples with a high dissolved inorganic nitrogen (DIN, including nitrite, nitrate and ammonia) to total dissolved nitrogen (TDN) ratio using traditional methods are inaccurate due to the cumulative analytical errors of independently measured nitrogen species (TDN and DIN). In this study, we present a nanofiltration (NF) pretreatment to increase the accuracy and precision of DON measurements by selectively concentrating DON while passing through DIN species in water samples to reduce the DIN/TDN ratio. Three commercial NF membranes (NF90, NF270 and HL) were tested. The rejection efficiency of finished water from the Yangshupu drinking water treatment plant (YDWTP) is 12%, 31%, 8% of nitrate, 26%, 28%, 23% of ammonia, 77%, 78%, 82% of DOC (dissolved organic carbon), and 83%, 87% 88% of UV(254) for HL, NF90 and NF270, respectively. NF270 showed the best performance due to its high DIN permeability and DON retention (∼80%). NF270 can lower the DIN/TDN ratio from around 1 to less than 0.6 mg N/mg N, and satisfactory DOC recoveries as well as DON measurements in synthetic water samples were obtained using optimized operating parameters. Compared to the available dialysis pretreatment method, the NF pretreatment method shows a similar improved performance for DON measurement for aqueous samples and can save at least 20 h of operating time and a large volume of deionized water, which is beneficial for laboratories involved in DON analysis. DON concentration in the effluent of different treatment processes at the YDWTP and the SDWTP (Shijiuyang DWTP) in China were investigated with and without NF pretreatment; the results showed that DON with NF pretreatment and DOC both gradually decreased after each water treatment process at both treatment plants. The advanced water treatment line, including biological pretreatment, clarification, sand filtration, ozone-BAC processes at the SDWTP showed greater efficiency of DON

  17. Effects of Subsurface Sampling & Processing on Martian Simulant Containing Varying Quantities of Water (United States)

    Menard, J.; Sangillo, J.; Savain, A.; McNamara, K. M.


    The presence of water-ice in the Martian subsurface is a subject of much debate and excited speculation. Recent results from the gammaray spectrometer (GRS) on board NASA's Mars Odyssey spacecraft indicate the presence of large amounts of hydrogen in regions of predicted ice stability. The combination of chemistry, low gravitational field (3.71 m/s(exp 2)) and a surface pressure of about 6.36 mbar at the mean radius, place limits on the stability of H2O on the surface, however, results from the GRS indicate that the hydrogen rich phase may be present at a depth as shallow as one meter in some locations on Mars. The potential for water on Mars leads directly to the speculation that life may once have existed there, since liquid water is the unifying factor for environments known to support life on Earth. Lubricant-free drilling has been considered as a means of obtaining water-rich subsurface samples on Mars, and two recent white papers sponsored by the Mars Program have attempted to identify the problems associated with this goal. The two major issues identified were: the engineering challenges of drilling into a water-soil mixture where phase changes may occur; and the potential to compromise the integrity of in-situ scientific analysis due to contamination, volatilization, and mineralogical or chemical changes as a result of processing. This study is a first attempt to simulate lubricantfree drilling into JSC Mars-1 simulant containing up to 50% water by weight. The goal is to address the following: 1) Does sample processing cause reactions or changes in mineralogy which will compromise the interpretation of scientific measurements conducted on the surface? 2) Does the presence of water-ice in the sample complicate (1)? 3) Do lubricant-free drilling and processing leave trace contaminants which may compromise our understanding of sample composition? 4) How does the torque/power required for drilling change as a function of water content and does this lead to

  18. Procedures for Handling and Chemical Analysis of Sediment and Water Samples, (United States)


    Method 1: Potassium Chloride Extraction 3-154 Method 2: Distillation 3-155 Method 3: Distilled Water Extraction 3-157 Nitrogen (Nitrate) 3-159...185 Procedures for Water Samples 3-185 Method 1: Colorimotric, Semiautomated with Block Digestor 3-185 Method 2: Manual Colorimotrir, Titrimetrie 3-190...Phenfls 21.11 5.00 - 3(-.50 Total Phosphorus 9.00 6.00 - 12.50 Orthophosphorus 5.57 2.00 - 10.00 Potassium 8.77 2.00 - 20.00 (Continued) t Polychlorinated

  19. The representativeness of water samples from the outlet of flowing wells in an unconfined aquifer (United States)

    Jiang, Xiao-Wei; Zhang, Zhi-Yuan; Wan, Li; Wang, Xu-Sheng; Wang, Jun-Zhi


    The representativeness of a groundwater sample is often confused by the mixture of groundwater from different depths of a well, especially when length of well screen is long. In a basin where groundwater flow is driven by topography, a well without casing could become a flowing well in topographic lows as long as the well is drilled deep enough. In this case, a water sample could be easily collected at the outlet of the flowing well without pumping. A recent field study in the Ordos basin shows that groundwater samples from the outlets of flowing wells with different depths differs greatly in chemical components. For the flowing wells penetrates to the deep part of the basin with depths ranging between 700 m and 970 m, it was found out that the concentrations of most chemical components of waters sampled at the outlets increases significantly with well depth. However, the hydraulic mechanism of the well depth-dependent hydrochemistry of mixed water sample is not clear. In this study, a 3-D unit basin expanded from Tóth's classic 2-D unit basin model was adopted to study the origin of water from different depths and the representativeness of water sampled at the outlet of a flowing well. The flowing well was modeled by the revised multi-node well (MNW2) Package in MODFLOW by setting a limit head equaling to the land surface and specifying an artificially high discharge rate. By considering well loss, we found the zone with development of flowing wells is smaller than the zone with positive values of head exceeding land surface. As long as the water table is a subdued replica of the land surface, the deep part of the flowing well receives discharge from the aquifer, while part of groundwater in the shallow part of the flowing well returns to the aquifer. The boundary between groundwater inflow and outflow is found to be sensitive to the ratio of water table to land surface, the distance away from the valley and the depth of the flowing well. In the segment of

  20. An approach to link water resource management with landscape art to enhance its aesthetic appeal, ecological utility and social benefits (United States)

    Mukherjee, Anita; Sen, Somnath; Paul, Saikat Kumar


    Landscape art or land art is the discourse of scientific application of artistic skill to integrate man-made structures with the natural landscape for planning, design, management, preservation and rehabilitation of natural and built environment. It does beautification of the landscape enhancing its utility for habitats. Availability of water with acceptable quality is crucial for economic growth, social peace and equality and of course for environmental sustainability. Development of new and growth of existing urban and suburban units are obvious. It postulates the increase of population density and percent of the impervious area in an urban unit. The demand for water is increasing with progressive concentration of population, the volume and velocity of surface runoff increase and the travel time decreases. At the same time, an increase in the volume of gray water not only contaminate water bodies, it also reduces the quantity of available freshwater transforming a portion of blue and green water to gray one and would intensify the pressure on water resources of the area. Therefore, to meet the incremental pressure of demand for and pollution of water collection, treatment and reuse of wastewater, both sewage and storm water, are on the requirement to improve urban water security. People must be concerned not to stifle urban lives with concrete; rather must provide all basic amenities for achieving a higher standard of life than the previous one with the essence of natural green spaces. The objective of the study is to propose a conceptual design and planning guidelines for developing urban and suburban drainage network and reuse of surface runoff and sewage water utilizing less used natural water bodies, such as paleo-channels or lakes or moribund channels as retention or detention basin. In addition to wastewater management, the proposal serves to promote the aesthetics of environmental engagement, ecological utility and restoration of moribund channels

  1. Efficient sample preparation method based on solvent-assisted dispersive solid-phase extraction for the trace detection of butachlor in urine and waste water samples. (United States)

    Aladaghlo, Zolfaghar; Fakhari, Alireza; Behbahani, Mohammad


    In this work, an efficient sample preparation method termed solvent-assisted dispersive solid-phase extraction was applied. The used sample preparation method was based on the dispersion of the sorbent (benzophenone) into the aqueous sample to maximize the interaction surface. In this approach, the dispersion of the sorbent at a very low milligram level was achieved by inserting a solution of the sorbent and disperser solvent into the aqueous sample. The cloudy solution created from the dispersion of the sorbent in the bulk aqueous sample. After pre-concentration of the butachlor, the cloudy solution was centrifuged and butachlor in the sediment phase dissolved in ethanol and determined by gas chromatography with flame ionization detection. Under the optimized conditions (solution pH = 7.0, sorbent: benzophenone, 2%, disperser solvent: ethanol, 500 μL, centrifuged at 4000 rpm for 3 min), the method detection limit for butachlor was 2, 3 and 3 μg/L for distilled water, waste water, and urine sample, respectively. Furthermore, the preconcentration factor was 198.8, 175.0, and 174.2 in distilled water, waste water, and urine sample, respectively. Solvent-assisted dispersive solid-phase extraction was successfully used for the trace monitoring of butachlor in urine and waste water samples. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Process and utility water requirements for cellulosic ethanol production processes via fermentation pathway (United States)

    The increasing need of additional water resources for energy production is a growing concern for future economic development. In technology development for ethanol production from cellulosic feedstocks, a detailed assessment of the quantity and quality of water required, and the ...


    Energy Technology Data Exchange (ETDEWEB)

    Atkinson, R.


    Radiochemical analyses of surface water samples, in the framework of Environmental Monitoring, have associated uncertainties for the radioisotopic results reported. These uncertainty analyses pertain to the tritium results from surface water samples collected at five locations on the Savannah River near the U.S. Department of Energy's Savannah River Site (SRS). Uncertainties can result from the field-sampling routine, can be incurred during transport due to the physical properties of the sample, from equipment limitations, and from the measurement instrumentation used. The uncertainty reported by the SRS in their Annual Site Environmental Report currently considers only the counting uncertainty in the measurements, which is the standard reporting protocol for radioanalytical chemistry results. The focus of this work is to provide an overview of all uncertainty components associated with SRS tritium measurements, estimate the total uncertainty according to ISO 17025, and to propose additional experiments to verify some of the estimated uncertainties. The main uncertainty components discovered and investigated in this paper are tritium absorption or desorption in the sample container, HTO/H{sub 2}O isotopic effect during distillation, pipette volume, and tritium standard uncertainty. The goal is to quantify these uncertainties and to establish a combined uncertainty in order to increase the scientific depth of the SRS Annual Site Environmental Report.

  4. Determination of rhodamine B in soft drink, waste water and lipstick samples after solid phase extraction. (United States)

    Soylak, Mustafa; Unsal, Yunus Emre; Yilmaz, Erkan; Tuzen, Mustafa


    A new solid phase extraction method is described for sensitive and selective determination of trace levels of rhodamine B in soft drink, food and industrial waste water samples. The method is based on the adsorption of rhodamine B on the Sepabeads SP 70 resin and its elution with 5 mL of acetonitrile in a mini chromatographic column. Rhodamine B was determined by using UV visible spectrophotometry at 556 nm. The effects of different parameters such as pH, amount of rhodamine B, flow rates of sample and eluent solutions, resin amount, and sample volume were investigated. The influences of some alkali, alkali earth and transition metals on the recoveries of rhodamine B were investigated. The preconcentration factor was found 40. The detection limit based on three times the standard deviation of the reagent blank for rhodamine B was 3.14 μg L⁻¹. The relative standard deviations of the procedure were found as 5% in 1×10⁻⁵ mol L⁻¹ rhodamine B. The presented procedure was successfully applied to real samples including soft drink, food and industrial waste water and lipstick samples. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Application of enzyme multibiosensor for toxicity analysis of real water samples of different origin

    Directory of Open Access Journals (Sweden)

    Soldatkin A. P.


    Full Text Available Aim. The analysis of toxicity of different water samples with the multibiosensor developed earlier. Methods. The potentiometric multibiosensor with several immobilized enzymes as bioselective elements and the matrix of pH-sensitive field effect transistors as transducers of the biochemical signal into the electric one was applied for the analysis. Results. The bioselective elements of the multibiosensor were developed using acetylcholinesterase, butyryl- cholinesterase, urease, glucose oxidase, and three-enzyme system (invertase, mutarotase, glucose oxidase. The measurement of toxic compounds in water samples of different origin was performed using the constructed sensor. The results obtained were compared with those obtained by the conventional methods of toxic agent’s analysis (atomic absorption spectrometry, thin-film chroma- tography, and atomic absorbic analyser of mercury. Conclusion. A strong conformity between the results obtained with the multibiosensor and traditional methods has been shown.

  6. Validation of a non-invasive blood-sampling technique for doubly-labelled water experiments. (United States)

    Voigt, Christian C; Helversen, Otto Von; Michener, Robert H; Kunz, Thomas H


    Two techniques for bleeding small mammals have been used in doubly-labeled water (DLW) studies, including vena puncture and the use of starved nymphal stages of hematophagous reduviid bugs (Reduviidae, Hemiptera). In this study, we tested the validity of using reduviid bugs in doubly-labeled water experiments. We found that the isotope enrichment in initial blood samples collected with bugs was significantly lower compared to isotope enrichment in blood samples obtained using vena puncture. We therefore used the desiccation method for estimating total body water (TBW) in DLW experiments because TBW calculated using the isotope dilution method was overestimated when blood samples were collected using reduviid bugs. In our validation experiment with nectar-feeding bats (Glossophaga soricina), we compared estimates of daily energy expenditure (DEE) using DLW with those derived from the energy balance method. We considered Speakman's equation (controlling for 25% fractionated water loss) as the most appropriate for our study animal and calculated DEE accordingly. On average, DEE estimated with DLW was not significantly different from the mean value obtained with the energy balance method (mean deviation 1.2%). We conclude that although bug hemolymph or intestinal liquids most likely contaminate the samples, estimates of DEE are still valid because the DLW method does not depend on absolute isotope enrichments but on the rate of isotope decrease over time. However, dilution of blood with intestinal liquids or hemolymph from a bug may lead to larger variation in DEE estimates. We also tested how the relative error of DLW estimates changed with varying assumptions about fractionation. We used three additional equations for calculating DEE in DLW experiments. The basic equation for DLW experiments published by Lifson and McClintock (LM-6) assumes no fractionation, resulted in an overestimate of DEE by 10%. Nagy's equation (N-2) controls for changes in body mass but not for

  7. Iodide-assisted total lead measurement and determination of different lead fractions in drinking water samples. (United States)

    Zhang, Yuanyuan; Ng, Ding-Quan; Lin, Yi-Pin


    Lead and its compounds are toxic and can harm human health, especially the intelligence development in children. Accurate measurement of total lead present in drinking water is crucial in determining the extent of lead contamination and human exposure due to drinking water consumption. The USEPA method for total lead measurement (no. 200.8) is often used to analyze lead levels in drinking water. However, in the presence of high concentration of the tetravalent lead corrosion product PbO(2), the USEPA method was not able to fully recover particulate lead due to incomplete dissolution of PbO(2) particles during strong acid digestion. In this study, a new procedure that integrates membrane separation, iodometric PbO(2) measurement, strong acid digestion and ICP-MS measurement was proposed and evaluated for accurate total lead measurement and quantification of different lead fractions including soluble Pb(2+), particulate Pb(II) carbonate and PbO(2) in drinking water samples. The proposed procedure was evaluated using drinking water reconstituted with spiked Pb(2+), spiked particulate Pb(II) carbonate and in situ formed or spiked PbO(2). Recovery tests showed that the proposed procedure and the USEPA method can achieve 93-112% and 86-103% recoveries respectively for samples containing low PbO(2) concentrations (0.018-0.076 mg Pb per L). For samples containing higher concentrations of PbO(2) (0.089-1.316 mg Pb per L), the USEPA method failed to meet the recovery requirement for total lead (85-115%) while the proposed method can achieve satisfactory recoveries (91-111%) and differentiate the soluble Pb(2+), particulate Pb(II) carbonate and PbO(2).

  8. Pollution source control by water utilities – characterisation and implications for water management: research results from England and Wales

    NARCIS (Netherlands)

    Spiller, M.; McIntosh, B.S.; Seaton, R.A.F.; Jeffrey, P.


    The treatment of agriculturally polluted water to potable standards is costly for water companies. Changes in agricultural practice can reduce these costs while also meeting the objectives of European Union (EU) environmental legislation. In this paper, the uptake of source control interventions

  9. Microbial Safety of Low Water Activity Foods: Study of Simulated and Durban Household Samples


    Ijabadeniyi, O. A.; Pillay, Y.


    Sixty household low water activity foods were examined and a simulative study was conducted in a high sugar, low aw almond and macadamia butter to determine the survival of Bacillus cereus and Staphylococcus aureus ATCC 25923. Results obtained from 60 low aw samples collected at household level had some significant differences (P≤0,05) within food categories amongst the various tests. Spices had the highest number of aerobic bacteria, aerobic spore-formers, anaerobic spore-formers, and S. aur...

  10. Variation of surface water spectral response as a function of in situ sampling technique (United States)

    Davis, Bruce A.; Hodgson, Michael E.


    Tests were carried out to determine the spectral variation contributed by a particular sampling technique. A portable radiometer was used to measure the surface water spectral response. Variation due to the reflectance of objects near the radiometer (i.e., the boat side) during data acquisition was studied. Consideration was also given to the variation due to the temporal nature of the phenomena (i.e., wave activity).

  11. Molecular method for detection of total coliforms in drinking water samples. (United States)

    Maheux, Andrée F; Boudreau, Dominique K; Bisson, Marc-Antoine; Dion-Dupont, Vanessa; Bouchard, Sébastien; Nkuranga, Martine; Bergeron, Michel G; Rodriguez, Manuel J


    This work demonstrates the ability of a bacterial concentration and recovery procedure combined with three different PCR assays targeting the lacZ, wecG, and 16S rRNA genes, respectively, to detect the presence of total coliforms in 100-ml samples of potable water (presence/absence test). PCR assays were first compared to the culture-based Colilert and MI agar methods to determine their ability to detect 147 coliform strains representing 76 species of Enterobacteriaceae encountered in fecal and environmental settings. Results showed that 86 (58.5%) and 109 (74.1%) strains yielded a positive signal with Colilert and MI agar methods, respectively, whereas the lacZ, wecG, and 16S rRNA PCR assays detected 133 (90.5%), 111 (75.5%), and 146 (99.3%) of the 147 total coliform strains tested. These assays were then assessed by testing 122 well water samples collected in the Québec City region of Canada. Results showed that 97 (79.5%) of the samples tested by culture-based methods and 95 (77.9%), 82 (67.2%), and 98 (80.3%) of samples tested using PCR-based methods contained total coliforms, respectively. Consequently, despite the high genetic variability of the total coliform group, this study demonstrated that it is possible to use molecular assays to detect total coliforms in potable water: the 16S rRNA molecular assay was shown to be as efficient as recommended culture-based methods. This assay might be used in combination with an Escherichia coli molecular assay to assess drinking water quality. Copyright © 2014, American Society for Microbiology. All Rights Reserved.

  12. Quantification and Genotyping of Aichi Virus 1 in Water Samples in the Kathmandu Valley, Nepal. (United States)

    Haramoto, Eiji; Kitajima, Masaaki


    Aichi virus 1 genomes were detected by quantitative PCR in groundwater from shallow dug (10/22) and tube wells (1/15), river water (14/14), and sewage (1/1), with the maximum concentration of 4.0 × 10(9) copies/l. Nucleotide sequencing analysis demonstrated the prevalence of genotype B in the virus positive samples.

  13. UMTRA project water sampling and analysis plan, Old and New Rifle, Colorado

    Energy Technology Data Exchange (ETDEWEB)


    Surface remedial action at the Rifle, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project site began in the spring of 1992. Results of water sampling at the Old and New Rifle processing sites for recent years indicate that ground water contamination occurs in the shallow unconfined alluvial aquifer (the uppermost aquifer) and less extensively in the underlying Wasatch Formation. Uranium and sulfate continue to exceed background ground water concentrations and/or maximum concentration limits at and downgradient from the former processing sites. These constituents provide the best indication of changes in contaminant distribution. Contamination in the uppermost (alluvial) aquifer at New Rifle extends a minimum of approximately 5000 feet (ft) (1,524 meters [m]) downgradient. At Old Rifle, the extent of contamination in the alluvial aquifer is much less (a minimum of approximately 1,000 ft [305 m]), partially due to differences in hydrologic regime. For example, the Old Rifle site lies in a relatively narrow alluvial floodplain; the New Rifle site lies in a broad floodplain. Data gathering for the Rifle baseline risk assessment is under way. The purpose of this effort is to determine with greater precision the background ground water quality and extent of ground water contamination at the processing sites. Historical surface water quality indicates that the Colorado River has not been affected by uranium processing activities. No compliance monitoring of the Estes Gulch disposal cell has been proposed, because ground water in the underlying Wasatch Formation is limited use (Class 111) ground water and because the disposal cell is hydrogeologically isolated from the uppermost aquifer.

  14. Low-flow purging and sampling of ground water monitoring wells with dedicated systems

    Energy Technology Data Exchange (ETDEWEB)

    Puls, R.W.; Paul, C.J.


    A field study was conducted to assess purging requirement for dedicated sampling systems in conventional monitoring wells and for pumps encased in short screens and buried within a shallow sandy aquifer. Low-flow purging methods were used, and wells were purged until water quality indicator parameters (dissolved oxygen, specific conductance, turbidity) and contaminant concentrations (chromate, trichloroethylene, dichloroethylene) reached equilibrium. Eight wells, varying in depth from 4.6 to 15.2 m below ground surface, were studied. The data show that purge volumes were independent of well depth or casing volumes. Contaminant concentrations equilibrated with less than 7.5 L of purge volume in all wells. Initial contaminant concentration values were generally within 20 percent of final values. Water quality parameters equilibrated in less than 10 L in all wells and were conservative measures for indicating the presence of adjacent formation water. Water quality parameters equilibrated faster in dedicated sampling systems than in portable systems and initial turbidity levers were lower.

  15. Using SPE-LC-ESI-MS/MS Analysis to Assess Disperse Dyes in Environmental Water Samples. (United States)

    Zocolo, Guilherme Julião; Pilon dos Santos, Glauco; Vendemiatti, Josiane; Vacchi, Francine Inforçato; Umbuzeiro, Gisela de Aragão; Zanoni, Maria Valnice Boldrin


    We have optimized an SPE-LC-ESI-MS/MS method and used it to monitor disperse azo dyes in environmental aquatic samples. Calibration curves constructed for nine disperse dyes-Red 1, Violet 93, Blue 373, Orange 1, Orange 3, Orange 25, Yellow 3, Yellow 7 and Red 13-in aqueous solution presented good linearity between 2.0 and 100.0 ng mL(-1). The method provided limits of detection and quantification around 2.0 and 8.0 ng L(-1), respectively. For dyes at concentrations of 25.0 ng mL(-1), the intra- and interday analyses afforded relative standard deviation lower than 6 and 13%, respectively. The recovery values obtained for each target analyte in Milli-Q water, receiving waters and treated water samples spiked with the nine studied dyes at concentrations of 8.0, 25.0 and 50.0 ng L(-1) (n = 3) gave average recoveries greater than 70%, with RSD dyes Disperse Red 1, Disperse Blue 373 and Disperse Violet 93 at concentrations ranging from 84 to 3452 ng L(-1) in the treated effluent (TE), affluent and points collected upstream and downstream of the drinking water treatment plant of a textile dye industry in Brazil. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email:

  16. EPA Office of Water (OW): Fish Consumption Advisories and Fish Tissue Sampling Stations NHDPlus Indexed Datasets (United States)

    The Fish Consumption Advisories dataset contains information on Fish Advisory events that have been indexed to the EPA Office of Water NHDPlus v2.1 hydrology and stored in the Reach Addressing Database (RAD). NHDPlus is a database that interconnects and uniquely identifies the millions of stream segments or reaches that comprise the Nations' surface water drainage system. NHDPlus provides a national framework for assigning reach addresses to water quality related entities, such as fish advisories locations. Reach addresses establish the locations of these entities relative to one another within the NHD surface water drainage network in a manner similar to street addresses. The assignment of reach addresses is accomplished through a process known as reach indexing. Fish consumption advisories and fish tissue sampling stations are reported to EPA by the states. Sampling stations are the locations where a state has collected fish tissue data for use in advisory determinations. Fish consumption advisory locations are coded onto NHDPlus flowline features to create point and linear events. Fish consumption advisory locations are also coded onto NHDPlus waterbody features to create area events. In addition to NHDPlus-reach indexed data, there may also be custom events (point, line, or area) that are not associated with NHDPlus. Although these Fish consumption advisories are not represented in NHDPlus, the data created for them are in an EPA standard format that is co

  17. SPME GC/MS determination of organochlorine pesticides in water samples

    Directory of Open Access Journals (Sweden)

    Yerbolat Sailaukhanuly


    Full Text Available Headspace solid phase microextraction (HS-SPME in combination with gas chromatography and mass-spectrometry (GC/MS was studied for analysis of water samples. The organochlorine pesticides (OCPs, p,p'-DDT, p,p'-DDD, and p,p'-DDE were collected and analyzed by GC/MS. To select of effective fiber coatings four types of SPME fibers were examined and compared. The parameters effecting the efficiency of HS-SPME such as extraction and pre-incubation time and extraction temperature, effect of solvent nature, ionic strength were studied to obtain optimal parameters. The method was developed using spiked water samples in a concentration range  10 - 500 ng/L. The calibration curve was linear over the studied concentration range with r≥0.9925. The detection limits varied from 1.57 to 2.08 ng/L. An authentic water samples from contaminated lake with OCPs were analyzed by developed method.

  18. Passive sampling of perfluorinated chemicals in water: flow rate effects on chemical uptake. (United States)

    Kaserzon, Sarit L; Vermeirssen, Etiënne L M; Hawker, Darryl W; Kennedy, Karen; Bentley, Christie; Thompson, Jack; Booij, Kees; Mueller, Jochen F


    A recently developed modified polar organic chemical integrative sampler (POCIS) provides a means for monitoring perfluorinated chemicals (PFCs) in water. However, changes in external flow rates may alter POCIS sampling behaviour and consequently affect estimated water concentrations of analytes. In this work, uptake kinetics of selected PFCs, over 15 days, were investigated. A flow-through channel system was employed with spiked river water at flow rates between 0.02 and 0.34 m s(-1). PFC sampling rates (Rs) (0.09-0.29 L d(-1) depending on analyte and flow rate) increased from the lowest to highest flow rate employed for some PFCs (MW ≤ 464) but not for others (MW ≥ 500). Rs's for some of these smaller PFCs were increasingly less sensitive to flow rate as this increased within the range investigated. This device shows promise as a sampling tool to support monitoring efforts for PFCs in a range of flow rate conditions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Temperature dependence of the calibration factor of radon and radium determination in water samples by SSNTD

    CERN Document Server

    Hunyadi, I; Hakl, J; Baradacs, E; Dezso, Z


    The sensitivity of a sup 2 sup 2 sup 6 Ra determination method of water samples by SSNTD was measured as a function of storage temperature during exposure. The method is based on an etched track type radon monitor, which is closed into a gas permeable foil and is immersed in the water sample. The sample is sealed in a glass vessel and stored for an exposure time of 10-30 days. The sensitivity increased more than a factor of two when the storage temperature was raised from 2 deg. C to 30 deg. C. Temperature dependence of the partition coefficient of radon between water and air provides explanation for this dependence. For practical radio- analytical application the temperature dependence of the calibration factor is given by fitting the sensitivity data obtained by measuring sup 2 sup 2 sup 6 Ra standard solutions (in the activity concentration range of 0.1-48.5 kBq m sup - sup 3) at different storage temperatures.

  20. Determination of Organothiophosphate Insecticides in Environmental Water Samples by a Very Simple and Sensitive Spectrofluorimetric Method. (United States)

    Bavili Tabrizi, Ahad; Abdollahi, Ali


    A simple, rapid and sensitive spectrofluorimetric method was developed for the determination of di-syston, ethion and phorate in environmental water samples. The procedure is based on the oxidation of these pesticides with cerium (IV) to produce cerium (III), and its fluorescence was monitored at 368 ± 3 nm after excitation at 257 ± 3 nm. The variables effecting oxidation of each pesticide were studied and optimized. Under the experimental conditions used, the calibration graphs were linear over the range 0.2-15, 0.1-13, 0.1-13 ng mL(-1) for di-syston, ethion and phorate, respectively. The limit of detection and quantification were in the range 0.034-0.096 and 0.112-0.316 ng mL(-1), respectively. Intra- and inter-day assay precisions, expressed as the relative standard deviation (RSD), were lower than 5.2 % and 6.7 %, respectively. Good recoveries in the range 86 %-108 % were obtained for spiked water samples. The proposed method was applied to the determination of studied pesticides in environmental water samples.

  1. Rapid Column Extraction Method for Actinides and Sr-89/90 in Water Samples

    Energy Technology Data Exchange (ETDEWEB)



    The SRS Environmental Laboratory analyzes water samples for environmental monitoring, including river water and ground water samples. A new, faster actinide and strontium 89/90 separation method has been developed and implemented to improve productivity, reduce labor costs and add capacity to this laboratory. This method uses stacked TEVA Resin{reg_sign}, TRU Resin{reg_sign} and Sr-Resin{reg_sign} cartridges from Eichrom Technologies (Darien, IL, USA) that allows the rapid separation of plutonium (Pu), neptunium (Np), uranium (U), americium (Am), curium (Cm) and thorium (Th) using a single multi-stage column combined with alpha spectrometry. By using vacuum box cartridge technology with rapid flow rates, sample preparation time is minimized. The method can be used for routine analysis or as a rapid method for emergency preparedness. Thorium and curium are often analyzed separately due to the interference of the daughter of Th-229 tracer, actinium (Ac)-225, on curium isotopes when measured by alpha spectrometry. This new method also adds a separation step using DGA Resin{reg_sign}, (Diglycolamide Resin, Eichrom Technologies) to remove Ac-225 and allow the separation and analysis of thorium isotopes and curium isotopes at the same time.

  2. Analytical methods for the endocrine disruptor compounds determination in environmental water samples. (United States)

    Locatelli, Marcello; Sciascia, Francesco; Cifelli, Roberta; Malatesta, Luciano; Bruni, Pantaleone; Croce, Fausto


    The potential risk of exposure to different xenobiotics, which can modulate the endocrine system and represent a treat for the wellness of an increasing number of people, has recently drawn the attention of international environmental and health agencies. Several agents, characterized by structural diversity, may interfer with the normal endocrine functions that regulate cell growth, homeostasis and development. Substances such as pesticides, herbicides, plasticizers, metals, etc. having endocrine activity (EDCs) are used in agriculture and industry and are also used as drugs for humans and animals. A difficulty in the analytical determination of these substances is the complexity of the matrix in which they are present. In fact, the samples most frequently analyzed consist of groundwater and surface water, including influent and effluent of wastewater treatment plants and drinking water. In this review, several sample pretreatment protocols, assays and different instrumental techniques recently used in the EDCs determination have been considered. This review concludes with a paragraph in which the most recent hyphenated-instrument techniques are treated, highlighting their sensitivity and selectivity for the analyses of environmental water samples. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Use of passive sampling devices for monitoring and compliance checking of POP concentrations in water. (United States)

    Lohmann, Rainer; Booij, Kees; Smedes, Foppe; Vrana, Branislav


    The state of the art of passive water sampling of (nonpolar) organic contaminants is presented. Its suitability for regulatory monitoring is discussed, with an emphasis on the information yielded by passive sampling devices (PSDs), their relevance and associated uncertainties. Almost all persistent organic pollutants (POPs) targeted by the Stockholm Convention are nonpolar or weakly polar, hydrophobic substances, making them ideal targets for sampling in water using PSDs. Widely used nonpolar PSDs include semi-permeable membrane devices, low-density polyethylene and silicone rubber. The inter-laboratory variation of equilibrium partition constants between PSD and water is mostly 0.2-0.5 log units, depending on the exact matrix used. The sampling rate of PSDs is best determined by using performance reference compounds during field deployment. The major advantage of PSDs over alternative matrices applicable in trend monitoring (e.g. sediments or biota) is that the various sources of variance including analytical variance and natural environmental variance can be much better controlled, which in turn results in a reduction of the number of analysed samples required to obtain results with comparable statistical power. Compliance checking with regulatory limits and analysis of temporal and spatial contaminant trends are two possible fields of application. In contrast to the established use of nonpolar PSDs, polar samplers are insufficiently understood, but research is in progress to develop PSDs for the quantitative assessment of polar waterborne contaminants. In summary, PSD-based monitoring is a mature technique for the measurement of aqueous concentrations of apolar POPs, with a well-defined accuracy and precision.

  4. The impact of sampling, PCR, and sequencing replication on discerning changes in drinking water bacterial community over diurnal time-scales. (United States)

    Bautista-de Los Santos, Quyen Melina; Schroeder, Joanna L; Blakemore, Oliver; Moses, Jonathan; Haffey, Mark; Sloan, William; Pinto, Ameet J


    High-throughput and deep DNA sequencing, particularly amplicon sequencing, is being increasingly utilized to reveal spatial and temporal dynamics of bacterial communities in drinking water systems. Whilst the sampling and methodological biases associated with PCR and sequencing have been studied in other environments, they have not been quantified for drinking water. These biases are likely to have the greatest effect on the ability to characterize subtle spatio-temporal patterns influenced by process/environmental conditions. In such cases, intra-sample variability may swamp any underlying small, systematic variation. To evaluate this, we undertook a study with replication at multiple levels including sampling sites, sample collection, PCR amplification, and high throughput sequencing of 16S rRNA amplicons. The variability inherent to the PCR amplification and sequencing steps is significant enough to mask differences between bacterial communities from replicate samples. This was largely driven by greater variability in detection of rare bacteria (relative abundance samples. Despite this, we captured significant changes in bacterial community over diurnal time-scales and find that the extent and pattern of diurnal changes is specific to each sampling location. Further, we find diurnal changes in bacterial community arise due to differences in the presence/absence of the low abundance bacteria and changes in the relative abundance of dominant bacteria. Finally, we show that bacterial community composition is significantly different across sampling sites for time-periods during which there are typically rapid changes in water use. This suggests hydraulic changes (driven by changes in water demand) contribute to shaping the bacterial community in bulk drinking water over diurnal time-scales. Copyright © 2015 Elsevier Ltd. All rights reserved.

  5. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Corrie E. [Argonne National Lab. (ANL), Argonne, IL (United States); Harto, Christopher B. [Argonne National Lab. (ANL), Argonne, IL (United States); Schroeder, Jenna N. [Argonne National Lab. (ANL), Argonne, IL (United States); Martino, Louis E. [Argonne National Lab. (ANL), Argonne, IL (United States); Horner, Robert M. [Argonne National Lab. (ANL), Argonne, IL (United States)


    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges. This report is divided into nine chapters. Chapter 1 gives the background of the project and its purpose, which is to assess the water consumption of geothermal technologies and identify areas where water availability may present a challenge to utility-scale geothermal development. Water consumption refers to the water that is withdrawn from a resource such as a river, lake, or nongeothermal aquifer that is not returned to that resource. The geothermal electricity generation technologies evaluated in this study include conventional hydrothermal flash and binary systems, as well as EGSs that rely on engineering a productive reservoir where heat exists, but where water availability or permeability may be limited. Chapter 2

  6. Evidence of microplastics in samples of zooplankton from Portuguese coastal waters. (United States)

    Frias, J P G L; Otero, V; Sobral, P


    Records of high concentrations of plastic and microplastic marine debris floating in the ocean have led to investigate the presence of microplastics in samples of zooplankton from Portuguese coastal waters. Zooplankton samples collected at four offshore sites, in surveys conducted between 2002 and 2008, with three different sampling methods, were used in this preliminary study. A total of 152 samples were processed and microplastics were identified in 93 of them, corresponding to 61% of the total. Costa Vicentina, followed by Lisboa, were the regions with higher microplastic concentrations (0.036 and 0.033 no. m⁻³) and abundances (0.07 and 0.06 cm³ m⁻³), respectively. Microplastic: zooplankton ratios were also higher in these two regions, which is probably related to the proximity of densely populated areas and inputs from the Tejo and Sado river estuaries. Microplastics polymers were identified using Micro Fourier Transformed Infrared Spectroscopy (μ-FTIR), as polyethylene (PE), polypropylene (PP) and polyacrylates (PA). The present work is the first report on the composition of microplastic particles collected with plankton nets in Portuguese coastal waters. Plankton surveys from regular monitoring campaigns conducted worldwide may be used to monitor plastic particles in the oceans and constitute an important and low cost tool to address marine litter within the scope of the Marine Strategy Framework Directive (2008/56/EC). Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Water-quality sampling plan for evaluating the distribution of bigheaded carps in the Illinois Waterway (United States)

    Duncker, James J.; Terrio, Paul J.


    The two nonnative invasive bigheaded carp species (bighead carp Hypophthalmichthys nobilis and silver carp H. molitrix) that were accidentally released in the 1970s have spread widely into the rivers and waterways of the Mississippi River Basin. First detected in the lower reaches of the Illinois Waterway (IWW, the combined Illinois River-Des Plaines River-Chicago Area Waterway System) in the 1990s, bighead and silver carps moved quickly upstream, approaching the Chicago Area Waterway System. The potential of substantial negative ecological and economic impact to the Great Lakes from the presence of these species is a concern. However, since 2006, the population front of bigheaded carps has remained in the vicinity of Joliet, Illinois, near river mile 278. This reach of the IWW is characterized by stark changes in habitat, water quality, and food resources as the waterway transitions from a primarily agricultural landscape to a metropolitan and industrial canal system. This report describes a 2015 plan for sampling the IWW to establish water-quality conditions that might be contributing to the apparent stalling of the population front of bigheaded carps in this reach. A detailed description of the study plan, Lagrangian-style sampling approach, selected analytes, sampling methods and protocols are provided. Hydrographs from streamflow-gaging stations show IWW conditions during the 2015 sampling runs.

  8. Evaluation of Technical and Utility Programmatic Challenges With Residential Forced-Air Integrated Space/Water Heat Systems

    Energy Technology Data Exchange (ETDEWEB)

    Kingston, Tim [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Vadnal, Hillary [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Scott, Shawn [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States); Kalensky, Dave [Partnership for Advanced Residential Retrofit, Des Plaines, IL (United States)


    This multi-unit field demonstration of combined space and water heating (combi) systems was conducted to help document combi system installation and performance issues that needed to be addressed through research. The objective of the project was to put commercialized forced-air tankless combi units into the field through local contractors that were trained by manufacturers and GTI staff under the auspices of utility-implemented ETPs.

  9. A Roadmap for Recovery/Decontamination Plan for Critical Infrastructure after CBRN Event Involving Drinking Water Utilities: Scoping Study (United States)


    INFORMATIVE STATEMENTS CSSP -2012-CD-1020 A Roadmap for Recovery/Decontamination Plan for Critical Infrastructure after CBRN Event Involving...Drinking Water Utilities was supported by the Canadian Safety and Security Program ( CSSP ) which is led by Defence Research and Development Canada’s Centre...Section. CSSP is a federally-funded program to strengthen Canada’s ability to anticipate, prevent/mitigate, prepare for, respond to, and recover

  10. The measurement of tritium in water samples with electrolytic enrichment using liquid scintillation counter

    Directory of Open Access Journals (Sweden)

    Janković Marija M.


    Full Text Available Tritium (3H present in the environment decreased in the last decades and nowadays it has low activity concentrations. Measurement of low-level tritium activities in natural waters, e. g. in precipitation, groundwater, and river water requires special techniques for water pretreatment and detection of low-level radioactivity. In order to increase the tritium concentration to an easily measurable level, electrolytic enrichment must be applied. This paper presents the enrichment method performed by electrolysis in a battery of 18 cells, giving an enrichment factor of 5.84 (calculated from 59 electrolyses. The calculated mean values of the separation factor and enrichment parameter were 4.10 and 0.84, respectively. Results for tritium activity in precipitation and surface water collected in Belgrade during 2008 and 2009 are presented. The Radiation and Environmental Protection Department of the Vinča Institute of Nuclear Sciences, participated in the IAEA TRIC2008 international intercomparison exercise. The participation in the intercomparisons for any laboratory doing low-level 3H measurements in the waters is very important and useful. It is considered the best way to check the entire procedure and methods of the measurements and the reliability of the standard used. The analysis of the reported 3H activity results showed that all results for five intercomparison samples, for which electrolytic enrichment were applied prior to the 3H measurement, are acceptable.

  11. Effect of a condensation utilizer on the operation of steam and hot-water gas-fired boilers (United States)

    Ionkin, I. L.; Ragutkin, A. V.; Roslyakov, P. V.; Supranov, V. M.; Zaichenko, M. N.; Luning, B.


    Various designs for condensation utilizers of the low-grade heat of furnace gases that are constructed based on an open-type heat exchanger are considered. Computational investigations are carried out for the effect of the condensation utilizer with tempering and moistening of air on the operation of steam and hot-water boilers burning natural gas. The investigations are performed based on the predeveloped adequate calculating models of the steam and hot-water boilers in a Boiler Designer program complex. Investigation results for TGM-96B and PTVM-120 boilers are given. The enhancement of the operation efficiency of the condensation utilizer can be attained using a design with tempering and moistening of air supplied to combustion that results in an insignificant increase in the temperature of waste gases. This has no effect on the total operation efficiency of the boiler and the condenser unit, because additional losses with waste gases are compensated owing to the operation of the last. The tempering and moistening of air provide a substantial decrease in the temperature in the zone of active combustion and shortening the nitrogen oxide emission. The computational investigations show that the premoistening of air supplied to combustion makes the technical and economic efficiency of boilers operating with the Condensation Utilizer no worse.

  12. Trace Metals in Cloud Water Sampled at the Puy De Dôme Station

    Directory of Open Access Journals (Sweden)

    Angelica Bianco


    Full Text Available Concentrations of 33 metal elements were determined by ICP-MS (Inductively Coupled Plasma Mass Spectrometry analysis for 24 cloud water samples (corresponding to 10 cloud events collected at the puy de Dôme station. Clouds present contrasted chemical composition with mainly marine and continental characteristics; for some cloud events, a further anthropogenic source can be superimposed on the background level. In this context, measurements of trace metals may help to evaluate the impact of anthropogenic and natural sources on the cloud and to better discriminate the origin of the air masses. The metal concentrations in the samples are low (between 16.4 µg L−1 and 1.46 mg L−1. This could be explained by the remoteness of the puy de Dôme site from local sources. Trace metals are then used to confirm and refine a previous sample classification. A principal component analysis (PCA using the pH value and the concentrations of Cl−, NO3−, SO42−, Na+ and NH4+ is performed considering 24 cloud samples. This first analysis shows that 18 samples are of marine origin and 6 samples are classified as continental. The same statistical approach is used adding trace metal concentration. Zn and Mg elements are the most abundant trace metals for all clouds. A higher concentration of Cd is mainly associated to clouds from marine origins. Cu, As, Tl and Sb elements are rather found in the continental samples than in the marine ones. Mg, V, Mn and Rb elements mainly found in soil particles are also more concentrated in the samples from continental air mass. This new PCA including trace metal confirms the classification between marine and continental air masses but also indicates that one sample presenting low pH and high concentrations of SO42−, Fe, Pb and Cu could be rather attributed to a polluted event.

  13. Analytical procedures for determining Pb and Sr isotopic compositions in water samples by ID-TIMS

    Directory of Open Access Journals (Sweden)

    Veridiana Martins


    Full Text Available Few articles deal with lead and strontium isotopic analysis of water samples. The aim of this study was to define the chemical procedures for Pb and Sr isotopic analyses of groundwater samples from an urban sedimentary aquifer. Thirty lead and fourteen strontium isotopic analyses were performed to test different analytical procedures. Pb and Sr isotopic ratios as well as Sr concentration did not vary using different chemical procedures. However, the Pb concentrations were very dependent on the different procedures. Therefore, the choice of the best analytical procedure was based on the Pb results, which indicated a higher reproducibility from samples that had been filtered and acidified before the evaporation, had their residues totally dissolved, and were purified by ion chromatography using the Biorad® column. Our results showed no changes in Pb ratios with the storage time.

  14. Analysis and evaluation of compounds from Cichorium intybus aromatic water trade market samples

    Directory of Open Access Journals (Sweden)

    A. Hosseini*


    Full Text Available Background and objectives: Cichorium intybus products are one of the best sellers in market Because of their effect on treatment of infection, poisoning, diabetes and allergy. This is the first study about Cichorium intybus market samplephytochemical compounds and the aim of this study was to define a method to recognize the original products. Methods: The sample compounds were extracted by liquid-liquid method and evaluated by GC-MS and compared with the references like Adams 2007. The obtained phytochemical data were analyzed with SPSS and classified by dendrogram method and was compared with the data earned from the standard sample. Results: Forty one compounds were detected. Carvacrol was available in all samples from 1.14 to 39.34%. Also, thymol was present in most of samples from 1.24 to 69.32%. Moreover, we understood that some compounds like pulegone, carvone, carvacrol and piperitenone could be detected in all samples mostly with different percentages. Some linear hydrocarbon was detected in this method along with some other unexpected compounds like cinnamaldehyde. Conclusion: Existence of some impure compounds like: pulegone, carvone, piperitenone and cinnamaldehyde in trade samples showed cleaning of container might not have been proper. Carvacrol and thymol are common compounds to define acceptable standard for Cichorium intybus aromatic water.

  15. Biota monitoring and the Water Framework Directive-can normalization overcome shortcomings in sampling strategies? (United States)

    Fliedner, Annette; Rüdel, Heinz; Teubner, Diana; Buchmeier, Georgia; Lowis, Jaqueline; Heiss, Christiane; Wellmitz, Jörg; Koschorreck, Jan


    We compare the results of different monitoring programs regarding spatial and temporal trends of priority hazardous substances of the European Water Framework Directive (WFD). Fish monitoring data for hexachlorobenzene (HCB), mercury (Hg), and perfluorooctane sulfonic acid (PFOS) sampled in German freshwaters between the mid-1990s and 2014 were evaluated according to the recommendations of the 2014 adopted WFD guidance document on biota monitoring, i.e., normalization to 5 % lipid content (HCB) or 26 % dry mass (Hg, PFOS) and adjustment to trophic level (TL) 4. Data of the German Environmental Specimen Bank (ESB) (annual pooled samples of bream) were compared to monitoring data of the German federal states (FS), which refer to individual fish of different species. Significant decreasing trends (p < 0.01) were detected for Hg in bream (Abramis brama) sampled by both, the ESB and the FS between 1993 and 2013 but not for FS samples comprising different fish species. Data for HCB and PFOS were more heterogeneous due to a smaller database and gave no consistent results. Obviously, normalization could not compensate differences in sampling strategies. The results suggest that the data treatment procedure proposed in the guidance document has shortcomings and emphasize the importance of highly standardized sampling programs in trend monitoring or whenever results between sites have to be compared.

  16. Utilization of Double-Water-Chamber Seawall type for Wave Energy Extraction and Wave Dissipation


    Husain, Firman


    Variation type and model of wave energy converter have been applied in many countries around the world in order to harvest the ocean wave power. A number of other devices were developing and testing by researchers in the experimental scale. In the present paper investigates double-water-chamber seawall performance for wave energy converter. The main body of water chamber seawall is like OWC structure. Savonius water turbine and guide vanes used to extract a wave power instead of air turbine a...

  17. Tritium analysis in environmental samples around Nuclear Power Plants and nationwide surveillance of radionuclides in some environmental samples(meat and drinking water)

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yong Woo; Han, Man Jung; Cho, Seong Won; Cho, Hong Jun; Oh, Hyeon Kyun; Lee, Jeong Min; Chang, Jae Sook [KORTIC, Taejon (Korea, Republic of)


    12 kind of environmental samples such as soil, underground water, seawater, etc. around the Nuclear Power Plants(NPP) and surface seawater around the Korea peninsula were sampled, For the samples of rain, pine-needle, air, seawater, underground water, chinese cabbage, grain of rice and milk sampled around NPP, and surface seawater and rain sampled all around country, tritium concentration was measured, The tritium concentration in the tap water and the gamma activity in the domestic and imported beef that were sampled at ward in the large city in Korea(Seoul, Pusan, Taegu, Taejun, Inchun, Kwangju) were analyzed for the meat and drinking waters. As the results of analyzing, tritium concentration in rain and tap water were very low all around country, but a little higher around the NPP than general surrounding. At the Wolsung NPP, tritium concentration was descend according to distance from the stack. Tritium activity of surface seawater around the Korea peninsula was also, very low. The measured radioactive elements in the beef is the same as the radioactive elements on the earth surface.

  18. Gravity-directed separation of both immiscible and emulsified oil/water mixtures utilizing coconut shell layer. (United States)

    Li, Jian; Xu, Changcheng; Zhang, Yan; Tang, Xiaohua; Qi, Wei; Wang, Qiong


    Pressure-driven and lower flux of superwetting ultrafiltration membranes in various emulsions separation are long-standing issues and major barriers for their large-scale utilization. Even though currently reported membranes have achieved great success in emulsions separeation, they still suffer from low flux and complex fabrication process resulting from their smaller nanoscale pore size. Herein, utilizition of coconut shell as a novel biomaterial for developing into a layer through the simple smashing, cleaning and stacking procedures, which not only could avoid the complexity of film making process, but also could realize efficient gravity-directed separation of both immiscible oil/water mixtures and water-in-oil emulsions with high flux. Specifically, the layer acted as "water-removing" type filtrate material with excellent underwater superoleophobicity, exhibiting high efficiency for various immiscible oil/water mixtures separation and larger oil intrusion pressure. More importantly, the layer could also serve as adsorbent material with underoil superhydrophilicity, achieving gravity-directed kinds of water-in-oil emulsions separation with high separation efficiency (above 99.99%) and higher flux (above 1620L/m2h), even when their pore sizes are larger than that of emulsified droplets. We deeply believe that this study would open up a new strategy for both immiscible oil/water mixtures and water-in-oil emulsions separation. Copyright © 2017 Elsevier Inc. All rights reserved.

  19. Micro-TLC Approach for Fast Screening of Environmental Samples Derived from Surface and Sewage Waters. (United States)

    Zarzycki, Paweł K; Slączka, Magdalena M; Włodarczyk, Elżbieta; Baran, Michał J


    In this work we demonstrated analytical capability of micro-planar (micro-TLC) technique comprising one and two-dimensional (2D) separation modes to generate fingerprints of environmental samples originated from sewage and ecosystems waters. We showed that elaborated separation and detection protocols are complementary to previously invented HPLC method based on temperature-dependent inclusion chromatography and UV-DAD detection. Presented 1D and 2D micro-TLC chromatograms of SPE (solid-phase extraction) extracts were optimized for fast and low-cost screening of water samples collected from lakes and rivers located in the area of Middle Pomerania in northern part of Poland. Moreover, we studied highly organic compounds loaded in the treated and untreated sewage waters obtained from municipal wastewater treatment plant "Jamno" near Koszalin City (Poland). Analyzed environmental samples contained number of substances characterized by polarity range from estetrol to progesterone as well as chlorophyll-related dyes previously isolated and pre-purified by simple SPE protocol involving C18 cartridges. Optimization of micro-TLC separation and quantification protocols of such samples were discussed from the practical point of view using simple separation efficiency criteria including total peaks number, log(product Δ hR F ), signal intensity and peak asymmetry. Outcomes of the presented analytical approach, especially using detection involving direct fluorescence (UV366/Vis) and phosphomolybdic acid (PMA) visualization are compared with UV-DAD HPLC-generated data reported previously. Chemometric investigation based on principal components analysis revealed that SPE extracts separated by micro-TLC and detected under fluorescence and PMA visualization modes can be used for robust sample fingerprinting even after long-term storage of the extracts (up to 4 years) at subambient temperature (-20 °C). Such approach allows characterization of wide range of sample components

  20. An application of LSC method for the measurement of gross alpha and beta activities in spiked water and drinking water samples

    Directory of Open Access Journals (Sweden)

    Çakal Gaye Özgür


    Full Text Available In this study, after the pulse shape calibration of a liquid scintillation counting (LSC spectrometer (Quantulus 1220, the effi ciency was determined depending on sample quenching parameters. Then, gross alpha and beta activities in two spiked water samples obtained from International Atomic Energy Agency (IAEA were used for the validation of the ASTM D7283-06 method, which is a standard test method for alpha and beta activity in water by LSC. Later, the drinking water samples (35 tap water and 9 bottled water obtained from different districts of Ankara, Turkey, were measured. The maximum gross alpha activities are measured to be 0.08 Bq/L for tap waters and 0.13 Bq/L for bottled waters, whereas the maximum gross beta activities are found to be 0.18 Bq/L for tap waters and 0.16 Bq/L for bottled waters. These results indicate that these drinking water samples are below the required limits, which are 0.1 Bq/L for alpha emitting radionuclides and 1 Bq/L for beta emitting radionuclides. As a result, gross alpha and beta activities in drinking water of Ankara were determined accurately by this validated LSC method. It is also worth noting that LSC is a rapid and accurate method for the determination of gross alpha and beta activities without requiring a tedious sample preparation.

  1. Utility of DMSP-SSM/I for integrated water vapour over the Indian seas

    Indian Academy of Sciences (India)

    Recent algorithms for Special Sensor Microwave/Imager (DMSP-SSM/I) satellite data are used for estimating integrated water vapour over the Indian seas. ... On the basis of this algorithm, distribution of integrated water vapour is determined during the monsoon depression (22nd{27th July, 1992) that formed over the Bay of ...

  2. Integrating Process and Factor Understanding of Environmental Innovation by Water Utilities

    NARCIS (Netherlands)

    Spiller, Marc; McIntosh, Brian S.; Seaton, Roger A.F.; Jeffrey, Paul J.


    Innovations in technology and organisations are central to enabling the water sector to adapt to major environmental changes such as climate change, land degradation or drinking water pollution. While there are literatures on innovation as a process and on the factors that influence it, there is

  3. Utility of DMSP-SSM/I for integrated water vapour over the Indian seas

    Indian Academy of Sciences (India)

    R. Narasimhan (Krishtel eMaging Solutions)

    Recent algorithms for Special Sensor Microwave/Imager (DMSP-SSM/I) satellite data are used for estimating integrated water vapour over the Indian seas. Integrated water vapour obtained from these algorithms is compared with that derived from radiosonde observations at Minicoy and Port. Blair islands. Algorithm-3 of ...

  4. Detection of Escherichia coli in biofilms from pipe samples and coupons in drinking water distribution networks. (United States)

    Juhna, T; Birzniece, D; Larsson, S; Zulenkovs, D; Sharipo, A; Azevedo, N F; Ménard-Szczebara, F; Castagnet, S; Féliers, C; Keevil, C W


    Fluorescence in situ hybridization (FISH) was used for direct detection of Escherichia coli on pipe surfaces and coupons in drinking water distribution networks. Old cast iron main pipes were removed from water distribution networks in France, England, Portugal, and Latvia, and E. coli was analyzed in the biofilm. In addition, 44 flat coupons made of cast iron, polyvinyl chloride, or stainless steel were placed into and continuously exposed to water on 15 locations of 6 distribution networks in France and Latvia and examined after 1 to 6 months exposure to the drinking water. In order to increase the signal intensity, a peptide nucleic acid (PNA) 15-mer probe was used in the FISH screening for the presence or absence of E. coli on the surface of pipes and coupons, thus reducing occasional problems of autofluorescence and low fluorescence of the labeled bacteria. For comparison, cells were removed from the surfaces and examined with culture-based or enzymatic (detection of beta-d-glucuronidase) methods. An additional verification was made by using PCR. Culture method indicated presence of E. coli in one of five pipes, whereas all pipes were positive with the FISH methods. E. coli was detected in 56% of the coupons using PNA FISH, but no E. coli was detected using culture or enzymatic methods. PCR analyses confirmed the presence of E. coli in samples that were negative according to culture-based and enzymatic methods. The viability of E. coli cells in the samples was demonstrated by the cell elongation after resuscitation in low-nutrient medium supplemented with pipemidic acid, suggesting that the cells were present in an active but nonculturable state, unable to grow on agar media. E. coli contributed to ca. 0.001 to 0.1% of the total bacterial number in the samples. The presence and number of E. coli did not correlate with any of physical and/or chemical characteristic of the drinking water (e.g., temperature, chlorine, or biodegradable organic matter concentration

  5. Utilization of remote sensing data on meteorological and vegetation characteristics for modeling water and heat regimes of large agricultural region (United States)

    Muzylev, Eugene; Startseva, Zoya; Uspensky, Alexander; Volkova, Elena


    downloaded from LP DAAC web-site for the same vegetation seasons. The SEVIRI data have been used to retrieve P (every three hours and daily), Tls, E, Ta (at daylight and nighttime), LAI, and B (daily). All named technologies have been adapted to the territory of interest. To verify exactness of assessing AVHRR- and MODIS-based LST (Ts.eff, Ta and Tls) the error statistics of their derivation has been investigated for various samples using comparison with in-situ measurements during the all considered vegetation seasons. When developing the method to derive LST from the SEVIRI data its validation has been carried out through comparison of given Tls retrievals with independent collocated Tls estimates generated at LSA SAF (Lisbon, Portugal).The later check of SEVIRI-derived Tls and Ta estimates has been performed by their comparing with ground-based observation data. Correctness of LAI and B estimates has been confirmed when comparing time behavior of satellite- and ground-based LAI and B during each vegetation season. The all-important part of the study is to improve the developed Multi Threshold Method (MTM) intended for assessing daily and monthly rainfall from AVHRR and SEVIRI data, to check the correctness of carried out calculations for the considered territory and to develop procedures of utilizing obtained satellite-derived estimates of precipitation in the SVAT model. The MTM allows automatic pixel-by-pixel classifying AVHRR- and SEVIRI-measured data for the cloud detection, identification of its types, allocation of precipitation zones, and determination of instantaneous maximum intensities of precipitation in the pixel range around the clock throughout the year independently of land surface type. Measurement data from 5 AVHRR and 11 SEVIRI channels as well as their differences are used in the MTM as predictors. Calibration and verification of the MTM have been carried out using observation data on daily precipitation at agricultural meteorological stations of the

  6. Comparison of filters for concentrating microbial indicators and pathogens in lake-water samples (United States)

    Francy, Donna S.; Stelzer, Erin A.; Brady, Amie M.G.; Huitger, Carrie; Bushon, Rebecca N.; Ip, Hon S.; Ware, Michael W.; Villegas, Eric N.; Gallardo, Vincent; Lindquist, H.D. Alan


    Bacterial indicators are used to indicate increased health risk from pathogens and to make beach closure and advisory decisions; however, beaches are seldom monitored for the pathogens themselves. Studies of sources and types of pathogens at beaches are needed to improve estimates of swimming-associated health risks. It would be advantageous and cost-effective, especially for studies conducted on a regional scale, to use a method that can simultaneously filter and concentrate all classes of pathogens from the large volumes of water needed to detect pathogens. In seven recovery experiments, stock cultures of viruses and protozoa were seeded into 10-liter lake water samples, and concentrations of naturally occurring bacterial indicators were used to determine recoveries. For the five filtration methods tested, the highest median recoveries were as follows: glass wool for adenovirus (4.7%); NanoCeram for enterovirus (14.5%) and MS2 coliphage (84%); continuous-flow centrifugation (CFC) plus Virocap (CFC+ViroCap) for Escherichia coli (68.3%) and Cryptosporidium (54%); automatic ultrafiltration (UF) for norovirus GII (2.4%); and dead-end UF for Enterococcus faecalis (80.5%), avian influenza virus (0.02%), and Giardia (57%). In evaluating filter performance in terms of both recovery and variability, the automatic UF resulted in the highest recovery while maintaining low variability for all nine microorganisms. The automatic UF was used to demonstrate that filtration can be scaled up to field deployment and the collection of 200-liter lake water samples.

  7. Sampling frequency for water quality variables in streams: Systems analysis to quantify minimum monitoring rates. (United States)

    Chappell, Nick A; Jones, Timothy D; Tych, Wlodek


    Insufficient temporal monitoring of water quality in streams or engineered drains alters the apparent shape of storm chemographs, resulting in shifted model parameterisations and changed interpretations of solute sources that have produced episodes of poor water quality. This so-called 'aliasing' phenomenon is poorly recognised in water research. Using advances in in-situ sensor technology it is now possible to monitor sufficiently frequently to avoid the onset of aliasing. A systems modelling procedure is presented allowing objective identification of sampling rates needed to avoid aliasing within strongly rainfall-driven chemical dynamics. In this study aliasing of storm chemograph shapes was quantified by changes in the time constant parameter (TC) of transfer functions. As a proportion of the original TC, the onset of aliasing varied between watersheds, ranging from 3.9-7.7 to 54-79 %TC (or 110-160 to 300-600 min). However, a minimum monitoring rate could be identified for all datasets if the modelling results were presented in the form of a new statistic, ΔTC. For the eight H(+), DOC and NO3-N datasets examined from a range of watershed settings, an empirically-derived threshold of 1.3(ΔTC) could be used to quantify minimum monitoring rates within sampling protocols to avoid artefacts in subsequent data analysis. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Polymer monolith microextraction using poly(butyl methacrylate-co-1,6-hexanediol ethoxylate diacrylate) monolithic sorbent for determination of phenylurea herbicides in water samples. (United States)

    Lin, Shu-Ling; Wu, Yu-Ru; Fuh, Ming-Ren


    In this study, recently developed 1,6-hexanediol ethoxylate diacrylate (HEDA)-based polymeric monoliths were utilized as sorbents for efficient extraction of phenylurea herbicides (PUHs) from water samples. The HEDA-based monolithic sorbents were prepared in a fused silica capillary (0.7mm i.d., 4.5-cm long) for polymer monolith microextraction (PMME). The experimental parameters of PMME microextraction including sample loading speed, pH of sample solution, composition of elution solvent, and addition of salt were optimized to efficiently extract PUHs from environmental water samples. The extracted PUHs were determined using ultra-high performance liquid chromatography (UHPLC) with UV-photodiode array detection. The extraction recoveries for PUHs-spiked water samples were 91.1-108.1% with relative standard deviations lower than 5%. The linearity range was 0.025-25ngmL(-1) for each PUH and the detection limits of PUHs were estimated at 0.006-0.019ng mL(-1). In addition, good intra-day/inter-day precision (0.1-8.7%/0.2-8.9%) and accuracy (92.0-108.0%/96.5-105.2%) of the proposed method were obtained. The extraction capacity of the monolith-filled capillary was also determined to be approximately 1μg. Moreover, each monolith-filled capillary could be reused up to 8 times without carry-over. According to the European Union regulations, the allowed permissible limit of any single herbicide in drinking water is 0.1ng mL(-1). This permissible level fell in the linear range examined in this study. In addition, the proposed method provided detection limits lower than the allowed permissible level, which demonstrated the feasibility of utilizing the HEDA-based monolithic sorbent to perform PMME for determining contaminants, such as PUHs, in environmental application. Copyright © 2015 Elsevier B.V. All rights reserved.

  9. Clinical utility and validity of the Functional Disability Inventory (FDI) among a multicenter sample of youth with chronic pain (United States)

    Kashikar-Zuck, Susmita; Flowers, Stacy R.; Claar, Robyn Lewis; Guite, Jessica W.; Logan, Deirdre E.; Lynch-Jordan, Anne M; Palermo, Tonya M.; Wilson, Anna C.


    The Functional Disability Inventory (FDI) is a well-established and commonly used measure of physical functioning and disability in youth with chronic pain. Further validation of the measure has been called for, in particular, examination of the clinical utility and factor structure of the measure. To address this need, we utilized a large multicenter dataset of pediatric patients with chronic pain who had completed the FDI and other measures assessing pain and emotional functioning. Clinical reference points to allow for interpretation of raw scores were developed to enhance clinical utility of the measure and exploratory factor analysis was performed to examine its factor structure. Participants included 1300 youth ages 8 to 18 years (M=14.2 years; 76% female) with chronic pain. Examination of the distribution of FDI scores and validation with measures of depressive symptoms and pain intensity yielded three distinct categories of disability: No/Minimal Disability, Moderate Disability and Severe Disability. Factor analysis of FDI scores revealed a two-factor solution representing vigorous Physical Activities and non-physically strenuous Daily Activities. The three-level classification system and factor structure were further explored via comparison across the four most commonly encountered pain conditions in clinical settings (head, back, abdominal and widespread pain). Our findings provide important new information regarding the clinical utility and validity of the FDI. This will greatly enhance the interpretability of scores for research and clinical use in a wide range of pediatric pain conditions. In particular these findings will facilitate use of the FDI as an outcome measure in future clinical trials. PMID:21458162

  10. Comprehensive utilization of activated sludge for the preparation of hydrolytic enzymes, polyhydroxyalkanoates, and water-retaining organic fertilizer. (United States)

    Ni, He; Fan, Xiao-Min; Guo, Hao-Ning; Liang, Jian-Hua; Li, Qing-Rong; Yang, Liu; Li, Hui; Li, Hai-Hang


    The urban wastewater treatment industry produces a large amount of excess activated sludge which is mainly composed of microbial biomass and costly to be disposed. In this research, a comprehensive utilization of activated sludge was developed by sequentially extracting hydrolytic enzymes and polyhydroxyalkanoates (PHAs), and the residue was used to prepare water-retaining organic fertilizer. The sludge was extracted with fourfold H2O-containing 1% Triton X-100 with the yield of 66.7% protease activity. The enzyme solution was precipitated in 80% acetone and vacuum dried at 40°C at the dried enzyme yield of 2.4 g/kg wet sludge. The enzyme product contains collagenase, lipase, amylase, and cellulase activities, which are good compound enzymes to feed. The PHAs were extracted with 30% sodium hypoclorite:chloroform (1:3). The PHA solution was decolored and dried, and pure white PHAs were obtained at the yield of 70.1 g/kg wet sludge. The residue was used to prepare water-retaining organic fertilizer at the optimal condition. The fertilizer absorbs 131.3-fold distilled water and had good performance in water retention and can effectively slow down the loss of soil moisture when added into soil. This work provides a simple and practical approach for comprehensive utilizing activated sludge with significant economic benefits.

  11. 9 CFR 318.9 - Samples of products, water, dyes, chemicals, etc., to be taken for examination. (United States)


    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Samples of products, water, dyes, chemicals, etc., to be taken for examination. 318.9 Section 318.9 Animals and Animal Products FOOD SAFETY... ESTABLISHMENTS; REINSPECTION AND PREPARATION OF PRODUCTS General § 318.9 Samples of products, water, dyes...

  12. Calibration of Passive Samplers for the Monitoring of Pharmaceuticals in Water-Sampling Rate Variation. (United States)

    Męczykowska, Hanna; Kobylis, Paulina; Stepnowski, Piotr; Caban, Magda


    Passive sampling is one of the most efficient methods of monitoring pharmaceuticals in environmental water. The reliability of the process relies on a correctly performed calibration experiment and a well-defined sampling rate (Rs) for target analytes. Therefore, in this review the state-of-the-art methods of passive sampler calibration for the most popular pharmaceuticals: antibiotics, hormones, β-blockers and non-steroidal anti-inflammatory drugs (NSAIDs), along with the sampling rate variation, were presented. The advantages and difficulties in laboratory and field calibration were pointed out, according to the needs of control of the exact conditions. Sampling rate calculating equations and all the factors affecting the Rs value - temperature, flow, pH, salinity of the donor phase and biofouling - were discussed. Moreover, various calibration parameters gathered from the literature published in the last 16 years, including the device types, were tabled and compared. What is evident is that the sampling rate values for pharmaceuticals are impacted by several factors, whose influence is still unclear and unpredictable, while there is a big gap in experimental data. It appears that the calibration procedure needs to be improved, for example, there is a significant deficiency of PRCs (Performance Reference Compounds) for pharmaceuticals. One of the suggestions is to introduce correction factors for Rs values estimated in laboratory conditions.

  13. Molecular characterization of viable Legionella spp. in cooling tower water samples by combined use of ethidium monoazide and PCR. (United States)

    Inoue, Hiroaki; Fujimura, Reiko; Agata, Kunio; Ohta, Hiroyuki


    Viable Legionella spp. in environmental water samples were characterized phylogenetically by a clone library analysis combining the use of ethidium monoazide and quantitative PCR. To examine the diversity of Legionella spp., six cooling tower water samples and three bath water samples were collected and analyzed. A total of 617 clones were analyzed for their 16S rRNA gene sequences and classified into 99 operational taxonomic units (OTUs). The majority of OTUs were not clustered with currently described Legionella spp., suggesting the wide diversity of not-yet-cultured Legionella groups harbored in cooling tower water environments.

  14. Arsenic speciation in natural water samples by coprecipitation-hydride generation atomic absorption spectrometry combination. (United States)

    Tuzen, Mustafa; Citak, Demirhan; Mendil, Durali; Soylak, Mustafa


    A speciation procedure for As(III) and As(V) ions in environmental samples has been presented. As(V) was quantitatively recovered on aluminum hydroxide precipitate. After oxidation of As(III) by using dilute KMnO(4), the developed coprecipitation was applied to determination of total arsenic. Arsenic(III) was calculated as the difference between the total arsenic content and As(V) content. The determination of arsenic levels was performed by hydride generation atomic absorption spectrometry (HG-AAS). The analytical conditions for the quantitative recoveries of As(V) including pH, amount of aluminum as carrier element and sample volume, etc. on the presented coprecipitation system were investigated. The effects of some alkaline, earth alkaline, metal ions and also some anions were also examined. Preconcentration factor was calculated as 25. The detection limits (LOD) based on three times sigma of the blank (N: 21) for As(V) was 0.012 microg L(-1). The satisfactory results for the analysis of arsenic in NIST SRM 2711 Montana soil and LGC 6010 Hard drinking water certified reference materials for the validation of the method was obtained. The presented procedure was successfully applied to real samples including natural waters for arsenic speciation.

  15. HPLC determination of chlorine in air and water samples following precolumn derivatization to 4-bromoacetanilide

    Energy Technology Data Exchange (ETDEWEB)

    Jain, A. (Rani Durgavati Univ., Jabalpur (India). Dept. of Chemistry); Verma, K.K. (Rani Durgavati Univ., Jabalpur (India). Dept. of Chemistry)


    Chlorine has been determined in air and water samples by a rapid and sensitive method entailing precolumn derivatization to 4-bromoacetanilide. A mixed potassium bromide - acetanilide reagent was used as a trapping agent for chlorine in air, and for its derivatization. The 4-bromoacetanilide formed was determined by reversed-phase HPLC on an ODS column, using methanol-water, 65:35 (v/v) as mobile phase; detection was at 240 nm. A rectilinear calibration graph was obtained for the range 0.1-30 [mu]g mL[sup -1] chlorine; the limit of detection found to be 0.01 [mu]g mL[sup -1]. The precolumn derivative has been found to have a shelf-life of at least 21 days; this enables the use of the method for samples transported from the field to the analytical laboratory, or the testing of a variety of conditions for chlorine scrubbing studies without the need for immediate analysis of samples. Humic substances do not cause any interference with the proposed method and the presence of nitrite does not lead to artificially high results and consequent misleading conclusions of the presence of high levels of chlorine. (orig.)

  16. Improved water allocation utilizing probabilistic climate forecasts: Short-term water contracts in a risk management framework (United States)

    Sankarasubramanian, A.; Lall, Upmanu; Souza Filho, Francisco Assis; Sharma, Ashish


    Probabilistic, seasonal to interannual streamflow forecasts are becoming increasingly available as the ability to model climate teleconnections is improving. However, water managers and practitioners have been slow to adopt such products, citing concerns with forecast skill. Essentially, a management risk is perceived in "gambling" with operations using a probabilistic forecast, while a system failure upon following existing operating policies is "protected" by the official rules or guidebook. In the presence of a prescribed system of prior allocation of releases under different storage or water availability conditions, the manager has little incentive to change. Innovation in allocation and operation is hence key to improved risk management using such forecasts. A participatory water allocation process that can effectively use probabilistic forecasts as part of an adaptive management strategy is introduced here. Users can express their demand for water through statements that cover the quantity needed at a particular reliability, the temporal distribution of the "allocation," the associated willingness to pay, and compensation in the event of contract nonperformance. The water manager then assesses feasible allocations using the probabilistic forecast that try to meet these criteria across all users. An iterative process between users and water manager could be used to formalize a set of short-term contracts that represent the resulting prioritized water allocation strategy over the operating period for which the forecast was issued. These contracts can be used to allocate water each year/season beyond long-term contracts that may have precedence. Thus, integrated supply and demand management can be achieved. In this paper, a single period multiuser optimization model that can support such an allocation process is presented. The application of this conceptual model is explored using data for the Jaguaribe Metropolitan Hydro System in Ceara, Brazil. The performance

  17. Solid phase extraction for the speciation and preconcentration of inorganic selenium in water samples: a review. (United States)

    Herrero Latorre, C; Barciela García, J; García Martín, S; Peña Crecente, R M


    Selenium is an essential element for the normal cellular function of living organisms. However, selenium is toxic at concentrations of only three to five times higher than the essential concentration. The inorganic forms (mainly selenite and selenate) present in environmental water generally exhibit higher toxicity (up to 40 times) than organic forms. Therefore, the determination of low levels of different inorganic selenium species in water is an analytical challenge. Solid-phase extraction has been used as a separation and/or preconcentration technique prior to the determination of selenium species due to the need for accurate measurements for Se species in water at extremely low levels. The present paper provides a critical review of the published methods for inorganic selenium speciation in water samples using solid phase extraction as a preconcentration procedure. On the basis of more than 75 references, the different speciation strategies used for this task have been highlighted and classified. The solid-phase extraction sorbents and the performance and analytical characteristics of the developed methods for Se speciation are also discussed. Copyright © 2013 Elsevier B.V. All rights reserved.

  18. The prevalence of bacterial resistance in clinical, food, water and some environmental samples in Southwest Nigeria. (United States)

    Lateef, A; Oloke, J K; Gueguimkana, E B


    The resistance pattern and mechanisms of bacterial isolates obtained from clinical origin, soil, industrial effluent, orange juice products and drinking water were studied using commonly used antibiotics. The microbial load of the water samples, industrial effluent and orange juice products were 1.0 x 10(1)-2.25 x 10(6), 2.15 x 10(5), and 3.5 x 10(4)-2.15 x 10(5) cfu mL(-1), respectively. The faecal coliform test revealed that only two out of twenty orange juice products had MPN of 2 and 20, the MPN of water ranged from 1-> or = 1800, while the effluent had MPN of > or = 1800. The bacterial isolates that were isolated include E. coli, S. aureus, P. vulgaris, S. marcescens, S. pyogenes, B. cereus, B. subtilis, Micrococcus sp., Klebsiella sp., P. aeruginosa, and Enterobacter sp. Also, clinical and soil isolates of P. aeruginosa were used in the study. Among the eight antibiotics tested for resistance on five strains of each bacterium, seven different resistance patterns were observed among the bacterial isolates obtained from water, effluent and orange juice products. Among the clinical and soil isolates of P. aeruginosa, four multiple-drug resistance patterns were obtained. Thirty strains of E. coli and S. aureus were tested for beta-lactamase production and fourteen strains, seven each of E. coli and S. aureus that had high Minimum Inhibitory Concentration values (MIC) for both Amoxycillin and Cloxacillin were positive.

  19. Environmental diagnostic analysis of ground water bacteria and their involvement in utilization of aromatic compounds

    Energy Technology Data Exchange (ETDEWEB)

    Wear, Jr., John Edmund [Wake Forest Univ., Winston-Salem, NC (United States)


    The objective of this study was to examine the hypothesis that select functional groups of bacteria from pristine sites have an innate ability to degrade synthetic aromatics that often contaminate groundwater environments,due to exposure to naturally occurring recalcitrant aromatics in their environment. This study demonstrates that subsurface microbial communities are capable of utilizing lignin and humic acid breakdown products. Utilizers of these compounds were found to be present in most all the wells tested. Even the deepest aquifer tested had utilizers present for all six of the aromatics tested. Highest counts for the aromatics tested were observed with the naturally occurring breakdown products of either lignin or humic acid. Carboxylic acids were found to be an important sole carbon source for groundwater bacteria possibly explained by the fact that they are produced by the oxidative cleavage of aromatic ring structures. The carbohydrate sole carbon sources that demonstrated the greatest densities were ones commonly associated with humics. This study indicates that utilization of naturally occurring aromatic compounds in the subsurface is an important nutritional source for groundwater bacteria. In addition, it suggests that adaptation to naturally occurring recalcitrant substrates is the origin of degradative pathways for xenobiotic compounds with analogous structure. This work has important implications for in situ bioremediation as a method of environmental cleanup.

  20. Correlation of lithium levels between drinking water obtained from different sources and scalp hair samples of adult male subjects. (United States)

    Baloch, Shahnawaz; Kazi, Tasneem Gul; Afridi, Hassan Imran; Baig, Jameel Ahmed; Talpur, Farah Naz; Arain, Muhammad Balal


    There is some evidence that natural levels of lithium (Li) in drinking water may have a protective effect on neurological health. In present study, we evaluate the Li levels in drinking water of different origin and bottled mineral water. To evaluate the association between lithium levels in drinking water with human health, the scalp hair samples of male subjects (25-45 years) consumed drinking water obtained from ground water (GW), municipal treated water (MTW) and bottled mineral water (BMW) from rural and urban areas of Sindh, Pakistan were selected. The water samples were pre-concentrated five to tenfold at 60 °C using temperature-controlled electric hot plate. While scalp hair samples were oxidized by acid in a microwave oven, prior to determined by flame atomic absorption spectrometry. The Li content in different types of drinking water, GW, MTW and BMW was found in the range of 5.12-22.6, 4.2-16.7 and 0.0-16.3 µg/L, respectively. It was observed that Li concentration in the scalp hair samples of adult males consuming ground water was found to be higher, ranged as 292-393 μg/kg, than those who are drinking municipal treated and bottle mineral water (212-268 and 145-208 μg/kg), respectively.