WorldWideScience

Sample records for water river sediments

  1. Sediment transport following water transfer from Yangtze River to Taihu Basin

    Directory of Open Access Journals (Sweden)

    Zheng Gong

    2011-12-01

    Full Text Available To meet the increasing need of fresh water and to improve the water quality of Taihu Lake, water transfer from the Yangtze River was initiated in 2002. This study was performed to investigate the sediment distribution along the river course following water transfer. A rainfall-runoff model was first built to calculate the runoff of the Taihu Basin in 2003. Then, the flow patterns of river networks were simulated using a one-dimensional river network hydrodynamic model. Based on the boundary conditions of the flow in tributaries of the Wangyu River and the water level in Taihu Lake, a one-dimensional hydrodynamic and sediment transport numerical model of the Wangyu River was built to analyze the influences of the inflow rate of the water transfer and the suspended sediment concentration (SSC of inflow on the sediment transport. The results show that the water transfer inflow rate and SSC of inflow have significant effects on the sediment distribution. The higher the inflow rate or SSC of inflow is, the higher the SSC value is at certain cross-sections along the river course of water transfer. Higher inflow rate and SSC of inflow contribute to higher sediment deposition per kilometer and sediment thickness. It is also concluded that a sharp decrease of the inflow velocity at the entrance of the Wangyu River on the river course of water transfer induces intense sedimentation at the cross-section near the Changshu hydro-junction. With an increasing distance from the Changshu hydro-junction, the sediment deposition and sedimentation thickness decrease gradually along the river course.

  2. Uranium isotopes in waters and bottom sediments of rivers and lakes in Poland

    International Nuclear Information System (INIS)

    Pietrzak-Flis, Z.; Kaminska, I.; Chrzanowski, E.

    2004-01-01

    Activity concentrations of 238 U, 234 U and 235 U were determined in waters and bottom sediments in two main rivers in Poland (the Vistula and Odra rivers) with their tributaries, in four coastal rivers and six lakes. Concentration of 238 U and 233 U were compared with the concentrations of 226 Ra determined in another study. As compared with concentrations in coastal rivers and in lakes, enhanced concentrations of the radionuclides were observed in water and bottom sediments in the upper and middle courses of Vistula river, whereas in the Odra river the enhanced concentrations were present only in the bottom sediments. The enhanced concentrations in the Vistula river result from the discharge of coal mine waters from the Upper Silesian Coal Basin, and they indicate that the discharge was continued. The enhanced concentration in Odra river observed only in bottom sediments indicate that the discharge occurred in the past. The 234 U/ 238 U ratio for the bottom sediments was close to unity, indicating that these isotopes were close to equilibrium, whereas for water the average ratio was form 1.2 for lakes to 1.5 for the Vistula river, demonstrating the lack of equilibrium. (author)

  3. Levels of trace metals in water and sediment from Tyume River and ...

    African Journals Online (AJOL)

    Levels of trace metals (Cd, Pb, Co, Zn Cu and Ni) were determined in water and sediment ... mg/l) and Pb (0.021 ± 0.004 to 0.035 ± 0.001 mg/l) were found in the river water, ... Key words: trace metals, water, sediment, farmland, Tyume River

  4. Sediment-water distribution of perfluorooctane sulfonate (PFOS) in Yangtze River Estuary

    International Nuclear Information System (INIS)

    Pan Gang; You Chun

    2010-01-01

    Analysis of Perfluorooctane sulfonate (PFOS) distribution in water and sediment in Yangtze River Estuary showed that the estuary was a sink for PFOS. Salinity was an important parameter in controlling the sediment-water interactions and the fate or transport of PFOS in the aquatic environment. As the salinity (S per mille ) increased from 0.18 to 3.31, the distribution coefficient (K d ) between sediment and water linearly increased from 0.76 to 4.70 L g -1 . The study suggests that PFOS may be carried with the river water and transported for long distances before it reaches to the sea and largely scavenged to the sediment in the estuaries due to the dramatic change in salinity. - PFOS may be largely scavenged to the sediment in estuaries due to the dramatic change in salinity during its transport from lands to oceans.

  5. Metal concentrations of river water and sediments in West Java, Indonesia.

    Science.gov (United States)

    Yasuda, Masaomi; Yustiawati; Syawal, M Suhaemi; Sikder, Md Tajuddin; Hosokawa, Toshiyuki; Saito, Takeshi; Tanaka, Shunitz; Kurasaki, Masaaki

    2011-12-01

    To determine the water environment and pollutants in West Java, the contents of metals and general water quality of the Ciliwung River in the Jakarta area were measured. High Escherichia coli number (116-149/mL) was detected downstream in the Ciliwung River. In addition to evaluate mercury pollution caused by gold mining, mercury contents of water and sediment samples from the Cikaniki River, and from paddy samples were determined. The water was not badly polluted. However, toxic metals such as mercury were detected at levels close to the baseline environmental standard of Indonesia (0.83-1.07 μg/g of sediments in the Cikaniki River). From analyses of the paddy samples (0.08 μg/g), it is considered that there is a health risk caused by mercury.

  6. Ecotoxicological assessment of water and sediment of the Corumbataí River, SP, Brazil

    Directory of Open Access Journals (Sweden)

    GM. Jardim

    Full Text Available The Corumbataí River drains an economically important area which is mainly represented by the municipalities of Piracicaba and Rio Claro. In view of the impacts caused by the discharge of industrial waste and domestic sewage into the Piracicaba River, the Corumbataí has become increasingly significant as a source of water for the municipality of Piracicaba. However, chemical, physical, and microbiological analyses carried out prior to the present study had already indicated a decline in the quality of the Corumbataí waters. This study aimed to assess, through water and sediment samples, both acute and chronic toxicity to Daphnia magna and Daphnia similis, and to analyze acid-volatile sulfide (AVS and simultaneously extracted metal (SEM in the sediment. Resulting data were intended to be a contribution to future projects for the management and recuperation of this system. To that aim, water and sediment were collected at seven Corumbataí sampling stations in November 2003 and March 2004. Acute toxicity to D. similis was detected in water and sediment samples from the Piracicaba station, located at the mouth of the Corumbataí River. Chronic toxicity was identified in the water or sediment samples of all stations, with the exception of Analândia Montante (upstream, at the head of the river. This was found to affect survival, growth, and fecundity of the test-organisms. The AVS and SEM analyses showed the bioavailability of the metals, thus explaining toxicity found in bioassaying samples of water and sediment. The use of two test-organism species made it possible to obtain a better assessment of the condition of both water and sediment samples of the Corumbataí River.

  7. Transport of Water, Carbon, and Sediment Through the Yukon River Basin

    Science.gov (United States)

    Brabets, Timothy P.; Schuster, Paul F.

    2008-01-01

    INTRODUCTION In 2001, the U.S. Geological Survey (USGS) began a water-quality study of the Yukon River. The Yukon River Basin (YRB), which encompasses 330,000 square miles in northwestern Canada and central Alaska (fig. 1), is one of the largest and most diverse ecosystems in North America. The Yukon River is more than 1,800 miles long and is one of the last great uncontrolled rivers in the world, and is essential to the eastern Bering Sea and Chukchi Sea ecosystems, providing freshwater runoff, sediments, and nutrients (Brabets and others, 2000). Despite its remoteness, recent studies (Hinzman and others, 2005; Walvoord and Striegl, 2007) indicate the YRB is changing. These changes likely are in response to a warming trend in air temperature of 1.7i??C from 1951 to 2001 (Hartmann and Wendler, 2005). As a result of this warming trend, permafrost is thawing in the YRB, ice breakup occurs earlier on the main stem of the Yukon River and its tributaries, and timing of streamflow and movement of carbon and sediment through the basin is changing (Hinzman and others, 2005; Walvoord and Striegl, 2007). One of the most striking characteristics in the YRB is its seasonality. In the YRB, more than 75 percent of the annual streamflow runoff occurs during a five month period, May through September. This is important because streamflow determines when, where, and how much of a particular constituent will be transported. As an example, more than 95 percent of all sediment transported during an average year also occurs during this period (Brabets and others, 2000). During the other 7 months, streamflow, concentrations of sediment and other water-quality constituents are low and little or no sediment transport occurs in the Yukon River and its tributaries. Streamflow and water-quality data have been collected at more than 50 sites in the YRB (Dornblaser and Halm, 2006; Halm and Dornblaser, 2007). Five sites have been sampled more than 30 times and others have been sampled twice

  8. Effect of water flux and sediment discharge of the Yangtze River on PAHs sedimentation in the estuary.

    Science.gov (United States)

    Li, Rufeng; Feng, Chenghong; Wang, Dongxin; He, Maozhi; Hu, Lijuan; Shen, Zhenyao

    2016-12-01

    Historical distribution characteristics of polycyclic aromatic hydrocarbons (PAHs) and their carriers (i.e., organic matter and mineral particles) in the sediment cores of the Yangtze Estuary were investigated, with emphasis laid on the role of the Yangtze River. Grain size component of sediments (clay, silt, and sand) and organic carbon (black carbon and total organic carbon) in the sediment cores were markedly affected by water flux and sediment discharge of the Yangtze River. Qualitative and quantitative analysis results showed that sands and black carbon acted as the main carriers of PAHs. The sedimentation of two-ring to three-ring PAHs in the estuary had significant correlations with water flux and sediment discharge of the Yangtze River. The relative lower level of the four-ring and five-ring to six-ring PAHs concentrations appeared around the year 2003 and remained for the following several years. This time period accorded well with the water impoundment time of the Three Gorges Reservoir. The decreased level of two-ring to three-ring PAHs occurred in the year 1994, and the peak points around the year 2009 indicated that PAHs sedimentation in the estuary also had close relationship to severe drought and flood in the catchments. The findings presented in this paper could provide references for assessing the impacts of water flux and sediment discharge on the historical deposition of PAHs and their carriers in the Yangtze Estuary.

  9. Water and sediment temperatures at mussel beds in the upper Mississippi River basin

    Science.gov (United States)

    Newton, Teresa J.; Sauer, Jennifer; Karns, Byron

    2013-01-01

    Native freshwater mussels are in global decline and urgently need protection and conservation. Declines in the abundance and diversity of North American mussels have been attributed to human activities that cause pollution, waterquality degradation, and habitat destruction. Recent studies suggest that effects of climate change may also endanger native mussel assemblages, as many mussel species are living close to their upper thermal tolerances. Adult and juvenile mussels spend a large fraction of their lives burrowed into sediments of rivers and lakes. Our objective was to measure surface water and sediment temperatures at known mussel beds in the Upper Mississippi (UMR) and St. Croix (SCR) rivers to estimate the potential for sediments to serve as thermal refugia. Across four mussel beds in the UMR and SCR, surface waters were generally warmer than sediments in summer, and were cooler than sediments in winter. This suggests that sediments may act as a thermal buffer for mussels in these large rivers. Although the magnitude of this effect was usually cause mortality in laboratory studies. These data suggest that elevated water temperatures resulting from global warming, thermal discharges, water extraction, and/or droughts have the potential to adversely affect native mussel assemblages.

  10. Assessing natural and anthropogenic influences on water discharge and sediment load in the Yangtze River, China.

    Science.gov (United States)

    Zhao, Yifei; Zou, Xinqing; Liu, Qing; Yao, Yulong; Li, Yali; Wu, Xiaowei; Wang, Chenglong; Yu, Wenwen; Wang, Teng

    2017-12-31

    The water discharge and sediment load of rivers are changing substantially under the impacts of climate change and human activities, becoming a hot issue in hydro-environmental research. In this study, the water discharge and sediment load in the mainstream and seven tributaries of the Yangtze River were investigated by using long-term hydro-meteorological data from 1953 to 2013. The non-parametric Mann-Kendall test and double mass curve (DMC) were used to detect trends and abrupt change-points in water discharge and sediment load and to quantify the effects of climate change and human activities on water discharge and sediment load. The results are as follows: (1) the water discharge showed a non-significant decreasing trend at most stations except Hukou station. Among these, water discharge at Dongting Lake and the Min River basin shows a significant decreasing trend with average rates of -13.93×10 8 m 3 /year and -1.8×10 8 m 3 /year (PYangtze River. (2) No significant abrupt change-points were detected in the time series of water discharge for all hydrological stations. In contrast, significant abrupt change-points were detected in sediment load, most of these changes appeared in the late 1980s. (3) The water discharge was mainly influenced by precipitation in the Yangtze River basin, whereas sediment load was mainly affected by climate change and human activities; the relative contribution ratios of human activities were above 70% for the Yangtze River. (4) The decrease of sediment load has directly impacted the lower Yangtze River and the delta region. These results will provide a reference for better resource management in the Yangtze River Basin. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Levels of trace metals in water and sediment from Tyume River and ...

    African Journals Online (AJOL)

    Higher levels of Cd (0.038 ± 0.004 to 0.044 ± 0.003 mg/l) and Pb (0.021 ± 0.004 to 0.035 ± 0.001 mg/l) were found in the river water, which may be detrimental to the “health” of the aquatic ecosystem and the rural communities that utilise the river water for ... Key words: trace metals, water, sediment, farmland, Tyume River

  12. Trend analyses with river sediment rating curves

    Science.gov (United States)

    Warrick, Jonathan A.

    2015-01-01

    Sediment rating curves, which are fitted relationships between river discharge (Q) and suspended-sediment concentration (C), are commonly used to assess patterns and trends in river water quality. In many of these studies it is assumed that rating curves have a power-law form (i.e., C = aQb, where a and b are fitted parameters). Two fundamental questions about the utility of these techniques are assessed in this paper: (i) How well to the parameters, a and b, characterize trends in the data? (ii) Are trends in rating curves diagnostic of changes to river water or sediment discharge? As noted in previous research, the offset parameter, a, is not an independent variable for most rivers, but rather strongly dependent on b and Q. Here it is shown that a is a poor metric for trends in the vertical offset of a rating curve, and a new parameter, â, as determined by the discharge-normalized power function [C = â (Q/QGM)b], where QGM is the geometric mean of the Q values sampled, provides a better characterization of trends. However, these techniques must be applied carefully, because curvature in the relationship between log(Q) and log(C), which exists for many rivers, can produce false trends in â and b. Also, it is shown that trends in â and b are not uniquely diagnostic of river water or sediment supply conditions. For example, an increase in â can be caused by an increase in sediment supply, a decrease in water supply, or a combination of these conditions. Large changes in water and sediment supplies can occur without any change in the parameters, â and b. Thus, trend analyses using sediment rating curves must include additional assessments of the time-dependent rates and trends of river water, sediment concentrations, and sediment discharge.

  13. Ecotoxicological Assessment of Water and Sediment Pollution of the Iskar River bellow Samokov

    Directory of Open Access Journals (Sweden)

    Ivan Diadovski

    2005-04-01

    Full Text Available A system of integral ecological indices has been worked out to assess the level of pollution of water and sediments with hazardous substances. A model for the dynamics of the integral index for water and sediments pollution is proposed. This index was applied for ecotoxicological assessment of water and sediments pollution of the Iskar river bellow Samokov. A modification method on time series analysis is applied.

  14. Natural radioactivity in waters and sediments from a Spanish mining river

    International Nuclear Information System (INIS)

    Gonzalez-Labajo, J.; Bolivar, J.P.; Garcia-Tenorio, R.

    2000-01-01

    The distribution of several radionuclides from the U-series (U-isotopes, 230 Th, 226 Ra and 210 Po) and Th-series- ( 232T h and 228 Th) have been analyzed in the different phases (sediments, filtered waters and suspended matter) and at different sites of a mining river (Guadiamar river) located at SW of Spain. The variations observed between and within the different sites for the activity concentrations of several natural radionuclides (reflected also in the variations observed for several activity ratios) and their correlation with the heavy metal contamination in the sediments and with different physical- chemical parameters, have provided a very rich information about their behaviour in this aquatic system. Detectable enrichments in the U-isotopes concentrations in comparison with the concentrations of other natural radionuclides have been observed in sediments from a determined zone of the river (downstream the mines). This U in excess it is incorporated to the sediments by coprecipitation with the high amounts of heavy metals coming from the mines. This precipitation is produced due to the progressive neutralization of the waters (previously acidified due to the mining activities) in its running along the river. The results obtained in the analysis of the wastes produced in the mining activities induce us to reject the hypothesis that the origin of these U enrichments is related with their leaching from the minerals treated in the mines. The U in dissolution that is deposited in the commented zone of the riverbed has a natural origin. In this sense, it is well known the high solubility of this element, being their concentrations, even in not contaminated river waters, clearly higher than the concentrations of other natural radionuclides like Th- isotopes and 210 Po. The radiometric techniques used in this work were alpha-particle spectrometry for determination of U-isotopes, Th-isotopes and 210 Po, and gamma-ray spectrometry for 226 Ra measurements in

  15. Effect of water-sediment regulation and its impact on coastline and suspended sediment concentration in Yellow River Estuary

    Directory of Open Access Journals (Sweden)

    Hai-bo Yang

    2017-10-01

    Full Text Available Implementation of the water-sediment regulation (WSR scheme, mainly focused on solving the sedimentation problems of reservoirs and the lower reaches of the Yellow River, has inevitably influenced the sediment distribution and coastal morphology of the Yellow River Estuary. Using coastline delineation and suspended sediment concentration (SSC retrieval methods, this study investigated water and sediment changes, identified detailed inter-annual and intra-annual variations of the coastline and SSC in the normal period (NP: 1986–2001, before and after the flood season and WSR period (WSRP: 2002–2013, before and after WSR. The results indicate that (1 the sedimentation in the low reaches of the Yellow River turned into erosion from 2002 onward; (2 the inter-annual coastline changes could be divided into an accretion stage (1986–1996, a slow erosion stage (1996–2002, and a slow accretion stage (2002–2013; (3 an intra-annual coastline extension occurred in the river mouth in most years of the WSRP; and (4 the mean intra-annual accretion area was 0.789 km2 in the NP and 4.73 km2 in the WSRP, and the mean SSC increased from 238 mg/L to 293 mg/L in the NP and from 192 mg/L to 264 mg/L in the WSRP.

  16. Contribution of River Mouth Reach to Sediment Load of the Yangtze River

    Directory of Open Access Journals (Sweden)

    C. Wang

    2015-01-01

    Full Text Available This paper examined the sediment gain and loss in the river mouth reach of the Yangtze River by considering sediment load from the local tributaries, erosion/accretion of the river course, impacts of sand mining, and water extraction. A quantitative estimation of the contribution of the river mouth reach to the sediment load of the Yangtze River was conducted before and after impoundment of the Three Gorges Dam (TGD in 2003. The results showed that a net sediment load loss of 1.78 million ton/yr (Mt/yr occurred from 1965 to 2002 in the study area. The contribution of this reach to the sediment discharge into the sea is not as high as what was expected before the TGD. With impoundment of the TGD, channel deposition (29.90 Mt/yr and a net sediment loss of 30.89 Mt/yr occurred in the river mouth reach from 2003 to 2012. The river mouth reach has acted as a sink but not a source of sediment since impoundment of the TGD, which has exacerbated the decrease in sediment load. Technologies should be advanced to measure changes in river channel morphology, as well as in water and sediment discharges at the river mouth reach.

  17. Suspended sediment, turbidity, and stream water temperature in the Sauk River Basin, western Washington, water years 2012-16

    Science.gov (United States)

    Jaeger, Kristin L.; Curran, Christopher A.; Anderson, Scott W.; Morris, Scott T.; Moran, Patrick W.; Reams, Katherine A.

    2017-11-01

    The Sauk River is a federally designated Wild and Scenic River that drains a relatively undisturbed landscape along the western slope of the North Cascade Mountain Range, Washington, which includes the glaciated volcano, Glacier Peak. Naturally high sediment loads characteristic of basins draining volcanoes like Glacier Peak make the Sauk River a dominant contributor of sediment to the downstream main stem river, the Skagit River. Additionally, the Sauk River serves as important spawning and rearing habitat for several salmonid species in the greater Skagit River system. Because of the importance of sediment to morphology, flow-conveyance, and ecosystem condition, there is interest in understanding the magnitude and timing of suspended sediment and turbidity from the Sauk River system and its principal tributaries, the White Chuck and Suiattle Rivers, to the Skagit River.Suspended-sediment measurements, turbidity data, and water temperature data were collected at two U.S. Geological Survey streamgages in the upper and middle reaches of the Sauk River over a 4-year period extending from October 2011 to September 2015, and at a downstream location in the lower river for a 5-year period extending from October 2011 to September 2016. Over the collective 5-year study period, mean annual suspended-sediment loads at the three streamgages on the upper, middle, and lower Sauk River streamgages were 94,200 metric tons (t), 203,000 t, and 940,000 t streamgages, respectively. Fine (smaller than 0.0625 millimeter) total suspended-sediment load averaged 49 percent at the upper Sauk River streamgage, 42 percent at the middle Sauk River streamgage, and 34 percent at the lower Sauk River streamgage.

  18. MONITORING OF PHOSPHORUS CONTENT IN “WATER-PARTICULATE MATERIALS-BOTTOM SEDIMENTS SYSTEM” FOR RIVER PRUT

    Directory of Open Access Journals (Sweden)

    VASILE RUSU

    2011-03-01

    Full Text Available Monitoring of phosphorus content in “water-particulatematerials-bottom sediments system” for river Prut. Seasonal and spatialdynamics of phosphorus forms in water, particulate materials and bottomsediments of river Prut was elucidated. The scheme for determination ofphosphorus forms in water and particulate materials according to World HealthOrganization classification was evaluated. Additionally, this scheme was tested forestimation of phosphorus content in bottom sediments. The supplemented schemeallows the analysis of the phosphorus forms for the entirely system “water –particulate materials – bottom sediments”, extending possibilities for interpretationof phosphorus dynamics in natural waters.

  19. Water-quality conditions and suspended-sediment transport in the Wilson and Trask Rivers, northwestern Oregon, water years 2012–14

    Science.gov (United States)

    Sobieszczyk, Steven; Bragg, Heather M.; Uhrich, Mark A.

    2015-07-28

    In October 2011, the U.S. Geological Survey began investigating and monitoring water-quality conditions and suspended-sediment transport in the Wilson and Trask Rivers, northwestern Oregon. Water temperature, specific conductance, turbidity, and dissolved oxygen were measured every 15–30 minutes in both streams using real-time instream water-quality monitors. In conjunction with the monitoring effort, suspended-sediment samples were collected and analyzed to model the amount of suspended sediment being transported by each river. Over the course of the 3-year study, which ended in September 2014, nearly 600,000 tons (t) of suspended-sediment material entered Tillamook Bay from these two tributaries. 

  20. Contaminant characterization of sediment and pore-water in the Clinch River and Poplar Creek

    International Nuclear Information System (INIS)

    Levine, D.A.; Harris, R.A.; Campbell, K.R.; Hargrove, W.W.; Rash, C.D.

    1995-01-01

    Sediment and pore-water samples were collected from 80 locations in the Clinch River and Poplar Creek system to characterize concentrations and spatial distribution of contaminants for use in ecological risk assessment. Sediment cores were collected at each site and the top 15 cm was analyzed to represent the biologically active zone. Sediment for pore-water extraction was collected in large volumes using a Ponar grab sampler. Pore-water was extracted from this sediment using centrifugation, All samples were analyzed for metals (including methyl mercury), organics, and radiological constituents. Additionally, sediment was analyzed for physical properties: particle size distribution, density, and porosity. Sediment and pore-water were also analyzed for total organic carbon and nitrogen and ammonia levels. Sediment and pore-water were also analyzed for total organic carbon and nitrogen and ammonia levels. Sediment and pre-water results indicate that there are several areas where concentrations of a variety of contaminants are high enough to causes ecological effects. These locations in the river are immediately downstream from know sources of Contamination from on-site DOE facilities. East Fork Poplar Creek is a source of several metals, including mercury, cadmium, chromium, and copper. Mitchell Branch is a source of number of metals, uranium isotopes, technetium-99, and several PAHs. There are two clear sources of arsenic and selenium to the system, one in Poplar Creek and one in Melton Hill Reservoir, both related to past disposal of coal-ash. High concentrations in sediments did not always coincide with high concentrations in pore-water for the same sites and contaminants. This appears to be related to particle size of the sediment and total organic carbon

  1. Assessment of Cd, Cr and Pb Pollution in Sediment and Water of Gheshlagh River, Iran, in September 2013

    Directory of Open Access Journals (Sweden)

    Farshid Majnoni

    2015-03-01

    Full Text Available Background: This study aimed to evaluate the pollution levels of surface water with heavy metals including Pb, Cd and Cr in Gheshlagh River, western Iran. Methods: Water and sediment were sampled in five monitoring stations with three replicates in time along the river. The concentration of Cr, Pb and Cd in both water and sediment samples were measured with graphite furnace atomic absorption spectrometer (Australia, Varian 220. The Geoaccumulation Index and Pollution Load Index were employed to assess the pollution level of sediments with heavy metals. Results: The mean value of Cd, Cr, Pb in sediment samples were 0.69, 17.19 and 10.69 µgg-1 per dry weight, respectively. Water samples contained Cd, Cr and Pb concentration of 1.99, 1.45 and 12.92 µgL-1, respectively. The Geoaccumulation Index and Pollution Load Index indicates that the sediments were not polluted with Pb and Cr, and unpolluted to moderately contaminated with Cd in Gheshlagh River. Conclusion: This study concludes that the Gheshlagh River is threatened by heavy metals particularly Cd and Pb.

  2. Water and sediment transport modeling of a large temporary river basin in Greece.

    Science.gov (United States)

    Gamvroudis, C; Nikolaidis, N P; Tzoraki, O; Papadoulakis, V; Karalemas, N

    2015-03-01

    The objective of this research was to study the spatial distribution of runoff and sediment transport in a large Mediterranean watershed (Evrotas River Basin) consisting of temporary flow tributaries and high mountain areas and springs by focusing on the collection and use of a variety of data to constrain the model parameters and characterize hydrologic and geophysical processes at various scales. Both monthly and daily discharge data (2004-2011) and monthly sediment concentration data (2010-2011) from an extended monitoring network of 8 sites were used to calibrate and validate the Soil and Water Assessment Tool (SWAT) model. In addition flow desiccation maps showing wet and dry aquatic states obtained during a dry year were used to calibrate the simulation of low flows. Annual measurements of sediment accumulation in two reaches were used to further calibrate the sediment simulation. Model simulation of hydrology and sediment transport was in good agreement with field observations as indicated by a variety of statistical measures used to evaluate the goodness of fit. A water balance was constructed using a 12 year long (2000-2011) simulation. The average precipitation of the basin for this period was estimated to be 903 mm yr(-1). The actual evapotranspiration was 46.9% (424 mm yr(-1)), and the total water yield was 13.4% (121 mm yr(-1)). The remaining 33.4% (302 mm yr(-1)) was the amount of water that was lost through the deep groundwater of Taygetos and Parnonas Mountains to areas outside the watershed and for drinking water demands (6.3%). The results suggest that the catchment has on average significant water surplus to cover drinking water and irrigation demands. However, the situation is different during the dry years, where the majority of the reaches (85% of the river network are perennial and temporary) completely dry up as a result of the limited rainfall and the substantial water abstraction for irrigation purposes. There is a large variability in the

  3. Seasonal variation of sediment toxicity in the Rivers Dommel and Elbe

    International Nuclear Information System (INIS)

    Hsu, P.; Matthaei, A.; Heise, S.; Ahlf, W.

    2007-01-01

    Contaminated sediment in the river basin has become a source of pollution with increasing importance to the aquatic ecosystem downstream. To monitor the temporal changes of the sediment bound contaminants in the River Elbe and the River Dommel monthly toxicity tests were applied to layered sediment and river water samples over the course of 10 months. There is an indication that contaminated sediments upstream adversely affected sediments downstream, but this process did not cause a continuous increase of sediment toxicity. A clear decrease of toxic effects in water and upper layer sediment was observed at the River Elbe station in spring related to high water discharge and algal blooms. The less obvious variation of sediment toxicity in the River Dommel could be explained by stable hydrological conditions. Future monitoring programmes should promote a more frequent and intensive sampling regime during these particular events for ecotoxicological evaluation. - Significant impacts of hydrological and biological factors on the ecotoxicological quality in two European rivers (Elbe and Dommel)

  4. Changes in water and sediment exchange between the Changjiang River and Poyang Lake under natural and anthropogenic conditions, China.

    Science.gov (United States)

    Gao, Jian Hua; Jia, Jianjun; Kettner, Albert J; Xing, Fei; Wang, Ya Ping; Xu, Xia Nan; Yang, Yang; Zou, Xin Qing; Gao, Shu; Qi, Shuhua; Liao, Fuqiang

    2014-05-15

    To study the fluvial interaction between Changjiang River and Poyang Lake, we analyze the observed changes of riverine flux of the mid-upstream of Changjiang River catchment, the five river systems of Poyang Lake and Poyang Lake basin. Inter-annual and seasonal variations of the water discharge and sediment exchange processes between Changjiang River and Poyang Lake are systematically explored to determine the influence of climate change as well as human impact (especially the Three Gorges Dam (TGD)). Results indicate that climate variation for the Changjiang catchment and Poyang Lake watershed is the main factor determining the changes of water exchanges between Changjiang River and Poyang Lake. However, human activities (including the emplacement of the TGD) accelerated this rate of change. Relative to previous years (1956-1989), the water discharge outflow from Poyang Lake during the dry season towards the Changjiang catchment increased by 8.98 km(3)y(-1) during 2003-2010. Evidently, the water discharge flowing into Poyang Lake during late April-late May decreased. As a consequence, water storage of Poyang Lake significantly reduced during late April-late May, resulting in frequent spring droughts after 2003. The freshwater flux of Changjiang River towards Poyang Lake is less during the flood season as well, significantly lowering the magnitude and frequency of the backflow of the Changjiang River during 2003-2010. Human activities, especially the emplacement and operation of the TGD and sand mining at Poyang Lake impose a major impact on the variation of sediment exchange between Changjiang main river and Poyang Lake. On average, sediments from Changjiang River deposited in Poyang Lake before 2000. After 2000, Changjiang River no longer supplied sediment to Poyang Lake. As a consequence, the sediment load of Changjiang River entering the sea increasingly exists of sediments from Lake Poyang during 2003-2010. As a result, Poyang Lake converted from a

  5. Genetic relatedness of faecal coliforms and enterococci bacteria isolated from water and sediments of the Apies River, Gauteng, South Africa.

    Science.gov (United States)

    Ekwanzala, Mutshiene Deogratias; Abia, Akebe Luther King; Ubomba-Jaswa, Eunice; Keshri, Jitendra; Momba, Ndombo Benteke Maggy

    2017-12-01

    To date, the microbiological quality of river sediments and its impact on water resources are not included in the water quality monitoring assessment. Therefore, the aim of this study was to establish genetic relatedness between faecal coliforms and enterococci isolated from the river water and riverbed sediments of Apies River to better understand the genetic similarity of microorganisms between the sediment and water phases. Indicator bacteria were subjected to a molecular study, which consisted of PCR amplification and sequence analysis of the 16S rRNA and 23S rRNA gene using specific primers for faecal coliforms and enterococci, respectively. Results revealed that the Apies River had high faecal pollution levels with enterococci showing low to moderate correlation coefficient (r 2 values ranged from 0.2605 to 0.7499) compared to the faecal coliforms which showed zero to low correlation (r 2 values ranged from 0.0027 to 0.1407) indicating that enterococci may be better indicator than faecal coliforms for detecting faecal contamination in riverbed sediments. The phylogenetic tree of faecal coliforms revealed a 98% homology among their nucleotide sequences confirming the close genetic relatedness between river water and riverbed sediment isolates. The phylogenetic tree of the enterococci showed that Enterococcus faecalis and Enterococcus faecium are the predominant species found in both river water and riverbed sediments with bootstrap values of ≥99%. A high degree of genetic relatedness between sediment and water isolates indicated a possible common ancestry and transmission pathway. We recommend the microbial monitoring of riverbed sediments as it harbours more diverse microbial community and once resuspended may cause health and environmental problems.

  6. Development of river sediment monitoring in Croatia

    Science.gov (United States)

    Frančišković-Bilinski, Stanislav; Bilinski, Halka; Mlakar, Marina; Maldini, Krešimir

    2017-04-01

    Establishment of regular river sediment monitoring, in addition to water monitoring, is very important. Unlike water, which represents the current state of a particular watercourse, sediment represents a sort of record of the state of pollution in the long run. Sediment monitoring is crucial to gain a real insight into the status of pollution of particular watercourses and to determine trends over a longer period of time. First scientific investigations of river sediment geochemistry in Croatia started 1989 in the Krka River estuary [1], while first systematic research of a river basin in Croatia was performed 2005 in Kupa River drainage basin [2]. Up to now, several detailed studies of both toxic metals and organic pollutants have been conducted in this drainage basin and some other rivers, also Croatian scientists participated in river sediment research in other countries. In 2008 Croatian water authorities (Hrvatske Vode) started preliminary sediment monitoring program, what was successfully conducted. In the first year of preliminary program only 14 stations existed, while in 2014 number of stations increased to 21. Number of monitored watercourses and of analysed parameters also increased. Current plan is to establish permanent monitoring network of river sediments throughout the state. The goal is to set up about 80 stations, which will cover all most important and most contaminated watercourses in all parts of the country [3]. Until the end of the year 2016, regular monitoring was conducted at 31 stations throughout the country. Currently the second phase of sediment monitoring program is in progress. At the moment parameters being determined on particular stations are not uniform. From inorganic compounds it is aimed to determine Cd, Pb, Ni, Hg, Cu, Cr, Zn and As on all stations. The ratio of natural concentrations of those elements vs. anthropogenic influence is being evaluated on all stations. It was found that worse situation is with Ni, Hg and Cr, who

  7. Shift in the microbial community composition of surface water and sediment along an urban river.

    Science.gov (United States)

    Wang, Lan; Zhang, Jing; Li, Huilin; Yang, Hong; Peng, Chao; Peng, Zhengsong; Lu, Lu

    2018-06-15

    Urban rivers represent a unique ecosystem in which pollution occurs regularly, leading to significantly altered of chemical and biological characteristics of the surface water and sediments. However, the impact of urbanization on the diversity and structure of the river microbial community has not been well documented. As a major tributary of the Yangtze River, the Jialing River flows through many cities. Here, a comprehensive analysis of the spatial microbial distribution in the surface water and sediments in the Nanchong section of Jialing River and its two urban branches was conducted using 16S rRNA gene-based Illumina MiSeq sequencing. The results revealed distinct differences in surface water bacterial composition along the river with a differential distribution of Proteobacteria, Cyanobacteria, Actinobacteria, Bacteroidetes and Acidobacteria (P urban water. PICRUSt metabolic inference analysis revealed a growing number of genes associated with xenobiotic metabolism and nitrogen metabolism in the urban water, indicating that urban discharges might act as the dominant selective force to alter the microbial communities. Redundancy analysis suggested that the microbial community structure was influenced by several environmental factors. TP (P urban river. These results highlight that river microbial communities exhibit spatial variation in urban areas due to the joint influence of chemical variables associated with sewage discharging and construction of hydropower stations. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Concentration of arsenic in water, sediments and fish species from naturally contaminated rivers.

    Science.gov (United States)

    Rosso, Juan José; Schenone, Nahuel F; Pérez Carrera, Alejo; Fernández Cirelli, Alicia

    2013-04-01

    Arsenic (As) may occur in surface freshwater ecosystems as a consequence of both natural contamination and anthropogenic activities. In this paper, As concentrations in muscle samples of 10 fish species, sediments and surface water from three naturally contaminated rivers in a central region of Argentina are reported. The study area is one of the largest regions in the world with high As concentrations in groundwater. However, information of As in freshwater ecosystems and associated biota is scarce. An extensive spatial variability of As concentrations in water and sediments of sampled ecosystems was observed. Geochemical indices indicated that sediments ranged from mostly unpolluted to strongly polluted. The concentration of As in sediments averaged 6.58 μg/g ranging from 0.23 to 59.53 μg/g. Arsenic in sediments barely followed (r = 0.361; p = 0.118) the level of contamination of water. All rivers showed high concentrations of As in surface waters, ranging from 55 to 195 μg/L. The average concentration of As in fish was 1.76 μg/g. The level of contamination with As differed significantly between species. Moreover, the level of bioaccumulation of As in fish species related to the concentration of As in water and sediments also differed between species. Whilst some fish species seemed to be able to regulate the uptake of this metalloid, the concentration of As in the large catfish Rhamdia quelen mostly followed the concentration of As in abiotic compartments. The erratic pattern of As concentrations in fish and sediments regardless of the invariable high levels in surface waters suggests the existence of complex biogeochemical processes behind the distribution patterns of As in these naturally contaminated ecosystems.

  9. Temporal variations of water and sediment fluxes in the Cointzio river basin, central Mexico

    Science.gov (United States)

    Duvert, C.; Gratiot, N.; Navratil, O.; Esteves, M.; Prat, C.; Nord, G.

    2009-04-01

    The STREAMS program (Sediment TRansport and Erosion Across MountainS) was launched in 2006 to study suspended sediment dynamics in mountainous areas. Two watersheds were selected as part of the program: the Bléone river basin in the French Alps, and the Cointzio river basin (636 km2), located in the mountainous region of Michoacán, in central Mexico. The volcanic soils of the Cointzio catchment undergo important erosion processes, especially during flashflood events. Thus, a high-frequency monitoring of sediment transport is highly required. The poster presents the high-frequency database obtained from the 2008 hydrological season at the Santiago Undameo gauged station, located at the basin's outlet. Suspended Sediment Concentration (SSC) was estimated every 10 minutes by calibrating turbidity measurements with bottle sampling acquired on a double-daily basis. Water discharge time-series was approximated with continuous water-level measurements (5 minutes time-step), and a stage-discharge rating curve. Our investigation highlights the influence of sampling frequency on annual water and sediment fluxes estimate. A daily or even a weekly water-level measurement provides an unexpectedly reliable assessment of the seasonal water fluxes, with an under-estimation of about 5 % of the total flux. Concerning sediment fluxes, a high-frequency SSC survey appears to be necessary. Acquiring SSC data even twice a day leads to a significant (over 30 %) under-estimation of the seasonal sediment load. These distinct behaviors can be attributed to the fact that sediment transport almost exclusively occurs during brief night flood events, whereas exfiltration on the watershed always provides a base flow during the daily water-level measurements.

  10. Sorption of alkylphenols on Ebro River sediments: Comparing isotherms with field observations in river water and sediments

    International Nuclear Information System (INIS)

    Navarro, Alicia; Endo, Satoshi; Gocht, Tilman; Barth, Johannes A.C.; Lacorte, Silvia; Barcelo, Damia; Grathwohl, Peter

    2009-01-01

    This study reports sorption isotherms of the endocrine disruptors nonylphenol (NP) and octylphenol (OP) in three sediment samples from the Ebro River basin (NE Spain), with organic carbon fractions (f OC ) ranging from 0.0035 to 0.082 g OC g -1 . All isotherms were fitted to the Freundlich model with slightly nonlinear exponents ranging from 0.80 to 0.94. The solubility of the compounds as well as the organic carbon (OC) content had the strongest influences on the sorption behavior of these compounds. Comparison of the laboratory-spiked samples with the native contamination of NP of 45 water and concurrent sediment samples resulted in reasonable matches between both data sets, even though the lowest concentrations in the field were not completely reached in laboratory tests. This good agreement indicates that sorption laboratory data can be extrapolated to environmental levels and therefore the distribution of nonylphenol between sediments and water can be predicted with a precision of one order of magnitude. Furthermore, laboratory experiments with simultaneous loading of NP and OP revealed negligible competition for sorption sites at low concentrations. - Laboratory sorption of nonylphenol compared to field concentrations showed good agreements

  11. Sorption of alkylphenols on Ebro River sediments: Comparing isotherms with field observations in river water and sediments

    Energy Technology Data Exchange (ETDEWEB)

    Navarro, Alicia [Center of Applied Geoscience, University of Tuebingen, Sigwartstrasse 10, 72076 Tuebingen (Germany); Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona (Spain)], E-mail: anoqam@iiqab.csic.es; Endo, Satoshi; Gocht, Tilman [Center of Applied Geoscience, University of Tuebingen, Sigwartstrasse 10, 72076 Tuebingen (Germany); Barth, Johannes A.C. [Center of Applied Geoscience, University of Tuebingen, Sigwartstrasse 10, 72076 Tuebingen (Germany); Lehrstuhl fuer Angewandte Geologie, GeoZentrum Nordbayern, Universitaet Erlangen-Nuernberg, Schlossgarten 5, 91054 Erlangen (Germany); Lacorte, Silvia [Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona (Spain); Barcelo, Damia [Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona (Spain); Institut Catala de Recerca de l' Aigua (ICRA), Parc Cientific i Tecnologic de la Universitat de Girona, Pic de Peguera, 15, 17003 Girona (Spain); Grathwohl, Peter [Center of Applied Geoscience, University of Tuebingen, Sigwartstrasse 10, 72076 Tuebingen (Germany)

    2009-02-15

    This study reports sorption isotherms of the endocrine disruptors nonylphenol (NP) and octylphenol (OP) in three sediment samples from the Ebro River basin (NE Spain), with organic carbon fractions (f{sub OC}) ranging from 0.0035 to 0.082 g{sub OC} g{sup -1}. All isotherms were fitted to the Freundlich model with slightly nonlinear exponents ranging from 0.80 to 0.94. The solubility of the compounds as well as the organic carbon (OC) content had the strongest influences on the sorption behavior of these compounds. Comparison of the laboratory-spiked samples with the native contamination of NP of 45 water and concurrent sediment samples resulted in reasonable matches between both data sets, even though the lowest concentrations in the field were not completely reached in laboratory tests. This good agreement indicates that sorption laboratory data can be extrapolated to environmental levels and therefore the distribution of nonylphenol between sediments and water can be predicted with a precision of one order of magnitude. Furthermore, laboratory experiments with simultaneous loading of NP and OP revealed negligible competition for sorption sites at low concentrations. - Laboratory sorption of nonylphenol compared to field concentrations showed good agreements.

  12. The impact of river-lake flow and sediment exchange on sediment scouring and siltation in middle and lower Yangtze River

    Science.gov (United States)

    Liu, Y.; Wang, Z. L.; Zuo, L. Q.

    2017-12-01

    The operation of TGR (Three Gorges Reservoir) caused river erosion and water level decline at downstream, which affects the water and sediment exchange of river-lake (Yangtze River - Dongting lake & Poyang lake). However, the change of river-lake relationship plays a significant role in the flow and sediment process of Yangtze River. In this study, flow diversion ratios of the three outlets, Chenglingji station, Hukou station are used as indexes of river-lake exchange to study the response of river erosion to flow diversion ratios. The results show that:(1) the sediment erosion in each reach from Yichang to Datong has linear correlation with the flow diversion ratio of the three outlets; (2) the sediment erosion above Chenglingji has negative linear correlation with the flow diversion ratio of Chenglingji station. While the sediment erosion below Chenglingji station has non-linear correlation with the flow diversion ratio variation of Chenglingji station; (3) the reach above Hankou station will not be affected by the flow diversion ratio of Hukou station. On one hand, if the flow diversion ratio is less than 10%, the correlation between sediment erosion and flow diversion ratio of Hukou station will be positive in Hankou to Hukou reach, but will be negative in Hukou to Datong reach. On the other hand, if the flow diversion ratio is more than 10%, the correlation will reverse.

  13. Buffering of suspended sediment transport in lowland river during low water stages: quantification in river Seine using environmental radionuclides

    International Nuclear Information System (INIS)

    Bonte, P.; Le Cloarec, M.F.; Dumoulin, J.P.; Sogon, S.; Tessier, L.; Mouchel, J.M.; Thomas, A.J.

    2000-01-01

    This study was undertaken to test the application of environmental radioactive tracers for estimating sediment mass and sediment residence time in rivers. A continuous sampling of the Seine river suspended matter (SM) using sediment traps was made during two months, between Paris and the estuary, along a 120 km long river section. The hydrological regime corresponded to the low water stage, where the SM transport is reduced. The measured tracers in the SM include short-lived natural ( 7 Be, 234 Th xs ) and artificial ( 131 I) radionuclides, as well as the longer-lived natural 210 Pb xs and its descendant the 210 Po. 137 Cs was used to check grain-size effects. A simple steady state model allowed us to estimate the total sediment mass, i.e. the SM, plus the resuspendable matter (RM), and the sediment residence time. Despite their different half-lives (8 to 53 days) and their different geochemical properties, consistent results were obtained with 131 I, 7 Be and 234 Th xs . The best estimate of the sediment mass present in the river is (24-41)·10 3 tons; it is essentially composed of the RM which is 10-17 times more abundant than the SM. In these hydrological conditions, the sediment residence time is quite long (1.6-2.8 months). (author) [es

  14. The natural sediment regime in rivers: broadening the foundation for ecosystem management

    Science.gov (United States)

    Wohl, Ellen E.; Bledsoe, Brian P.; Jacobson, Robert B.; Poff, N. LeRoy; Rathburn, Sara L.; Walters, David M.; Wilcox, Andrew C.

    2015-01-01

    Water and sediment inputs are fundamental drivers of river ecosystems, but river management tends to emphasize flow regime at the expense of sediment regime. In an effort to frame a more inclusive paradigm for river management, we discuss sediment inputs, transport, and storage within river systems; interactions among water, sediment, and valley context; and the need to broaden the natural flow regime concept. Explicitly incorporating sediment is challenging, because sediment is supplied, transported, and stored by nonlinear and episodic processes operating at different temporal and spatial scales than water and because sediment regimes have been highly altered by humans. Nevertheless, managing for a desired balance between sediment supply and transport capacity is not only tractable, given current geomorphic process knowledge, but also essential because of the importance of sediment regimes to aquatic and riparian ecosystems, the physical template of which depends on sediment-driven river structure and function.

  15. Impacts of reforestation upon sediment load and water outflow in the Lower Yazoo River Watershed, Mississippi

    Science.gov (United States)

    Ying Ouyang; Theodor D. Leininger; Matt Moran

    2013-01-01

    Among the world’s largest coastal and river basins, the Lower Mississippi River Alluvial Valley (LMRAV)is one of the most disturbed by human activities. This study ascertained the impacts of reforestation on water outflow attenuation (i.e., water flow out of the watershed outlet) and sediment load reduction in the Lower Yazoo River Watershed (LYRW) within the LMRAV...

  16. Summary of Bed-Sediment Measurements Along the Platte River, Nebraska, 1931-2009

    Science.gov (United States)

    Kinzel, P.J.; Runge, J.T.

    2010-01-01

    Rivers are conduits for water and sediment supplied from upstream sources. The sizes of the sediments that a river bed consists of typically decrease in a downstream direction because of natural sorting. However, other factors can affect the caliber of bed sediment including changes in upstream water-resource development, land use, and climate that alter the watershed yield of water or sediment. Bed sediments provide both a geologic and stratigraphic record of past fluvial processes and quantification of current sediment transport relations. The objective of this fact sheet is to describe and compare longitudinal measurements of bed-sediment sizes made along the Platte River, Nebraska from 1931 to 2009. The Platte River begins at the junction of the North Platte and South Platte Rivers near North Platte, Nebr. and flows east for approximately 500 kilometers before joining the Missouri River at Plattsmouth, Nebr. The confluence of the Loup River with the Platte River serves to divide the middle (or central) Platte River (the Platte River upstream from the confluence with the Loup River) and lower Platte River (the Platte River downstream from the confluence with Loup River). The Platte River provides water for a variety of needs including: irrigation, infiltration to public water-supply wells, power generation, recreation, and wildlife habitat. The Platte River Basin includes habitat for four federally listed species including the whooping crane (Grus americana), interior least tern (Sterna antillarum), piping plover (Charadrius melodus), and pallid sturgeon (Scaphirhynchus albus). A habitat recovery program for the federally listed species in the Platte River was initiated in 2007. One strategy identified by the recovery program to manage and enhance habitat is the manipulation of streamflow. Understanding the longitudinal and temporal changes in the size gradation of the bed sediment will help to explain the effects of past flow regimes and anticipated

  17. [Pollution and Potential Ecology Risk Evaluation of Heavy Metals in River Water, Top Sediments on Bed and Soils Along Banks of Bortala River, Northwest China].

    Science.gov (United States)

    Zhang, Zhao-yong; Abuduwaili, Jilili; Jiang, Feng-qing

    2015-07-01

    This paper focuses on the sources, pollution status and potential ecology risks of heavy metals (Cr, Cu, Hg, As, Cd, Pb, and Zn) in the surface water, top sediment of river bed and soil along banks of Bortala River, which locates in the oasis region of Xinjiang, northwest China. Results showed that: (1) As a whole, contents of 7 tested heavy metals of Bortala River were low, while the maximum values of Hg, Cd, Pb, and Cr in the river water were significantly higher than those of Secondary Category of the Surface Water Quality Standards of People's Republic of China (GB 3838-2002) and Drinking Water Guideline from WHO. Analysis showed that the heavy metals contents of top sediment on river bed and soils along river banks were significantly higher than those of the river water. (Correlation analysis and enrichment factor (EF) calculation showed that in the river water, top sediment on river bed and soils along river banks, Hg, Cd, Pb, and Cr mainly originated from industrial emissions, urban and rural anthropogenic activities, transportation and agricultural production activities; While Cu, Zn, and As mainly originated from natural geological background and soil parent materials. (3) Pollution assessment showed that in three matrices, the single factor pollution index(Pi) and the integrated pollution index (Pz) of 7 heavy metals were all lower than 1, and they all belonged to safe and clean levels. (4) Potential ecology risk evaluation showed that as a whole the single factor potential ecological risk (Eir) and the integrated potential ecology risks (RI) of 7 heavy metals were relatively low, and would not cause threats to the health of water and soil environment of river basin, while the potential ecology risks of Cd, Hg, Pb, and Cr were significantly higher than those of other heavy metals.

  18. Concentrations and fluxes of dissolved uranium in the Yellow River estuary: seasonal variation and anthropogenic (Water-Sediment Regulation Scheme) impact.

    Science.gov (United States)

    Juanjuan, Sui; Zhigang, Yu; Bochao, Xu; Wenhua, Dong; Dong, Xia; Xueyan, Jiang

    2014-02-01

    The Water-Sediment Regulation Scheme (WSRS) of the Yellow River is a procedure implemented annually from June to July to expel sediments deposited in Xiaolangdi and other large middle-reach reservoirs and to scour the lower reaches of the river, by controlling water and sediment discharges. Dissolved uranium isotopes were measured in river waters collected monthly as well as daily during the 2010 WSRS (June 19-July 16) from Station Lijin (a hydrologic station nearest to the Yellow River estuary). The monthly samples showed dissolved uranium concentrations of 3.85-7.57 μg l(-1) and (234)U/(238)U activity ratios of 1.24-1.53. The concentrations were much higher than those reported for other global major rivers, and showed seasonal variability. Laboratory simulation experiments showed significant uranium release from bottom and suspended sediment. The uranium concentrations and activity ratios differed during the two stages of the WSRS, which may reflect desorption/dissolution of uranium from suspended river sediments of different origins. An annual flux of dissolved uranium of 1.04 × 10(8) g y(-1) was estimated based on the monthly average water discharge and dissolved uranium concentration in the lower reaches of the Yellow River. The amount of dissolved uranium (2.65 × 10(7) g) transported from the Yellow River to the sea during the WSRS constituted about 1/4 of the annual flux. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Effect of human activities on overall trend of sedimentation in the lower Yellow River, China.

    Science.gov (United States)

    Jiongxin, Xu

    2004-05-01

    The Yellow River has been intensively affected by human activities, particularly in the past 50 years, including soil-water conservation in the upper and middle drainage basin, flood protection in the lower reaches, and flow regulation and water diversion in the whole drainage basin. All these changes may impact sedimentation process of the lower Yellow River in different ways. Assessing these impacts comprehensively is important for more effective environmental management of the drainage basin. Based on the data of annual river flow, sediment load, and channel sedimentation in the lower Yellow River between 1950 and 1997, the purpose of this paper is to analyze the overall trend of channel sedimentation rate at a time scale of 50 years, and its formative cause. It was found in this study that erosion control measures and water diversion have counteractive impacts on sedimentation rate in the lower Yellow River. Although both annual river flow and sediment decreased, there was no change in channel sedimentation rate. A regression analysis indicated that the sedimentation in the lower Yellow River decreased with the sediment input to the lower Yellow River but increased with the river flow input. In the past 30-40 years, the basin-wide practice of erosion and sediment control measures resulted in a decline in sediment supply to the Yellow River; at the same time, the human development of water resources that required river flow regulation and water diversion caused great reduction in river flow. The former may reduce the sedimentation in the lower Yellow River, but the reduction of river flow increased the sedimentation. When their effects counterbalanced each other, the overall trend of channel sedimentation in the lower Yellow River remained unchanged. This fact may help us to better understand the positive and negative effects of human activities in the Yellow River basin and to pay more attention to the negative effect of the development of water resources. The

  20. Uranium concentrations in lake and stream waters and sediments from selected sites in the Susitna River Basin, Alaska

    International Nuclear Information System (INIS)

    Hill, D.E.

    1977-03-01

    During the summer of 1976, 141 water and 211 sediment samples were taken from 147 locations in the Susitna River basin in Alaska by the Geophysical Institute of the University of Alaska for the LASL. These samples were taken to provide preliminary information on the uranium concentrations in waters and sediments from the Susitna River basin and to test the analytical methods proposed for the NURE Hydrogeochemical and Stream Sediment Reconnaissance for uranium in Alaska. The uranium determinations resulting from the fluorometric analysis of the water samples and the delayed-neutron counting of the sediment samples are presented. The low levels of uranium in the water samples, many of which were below the detectable limit of the LASL fluorometric technique, indicate that a more sensitive analytical method is needed for the analysis of Alaskan water samples from this area. An overlay showing numbered sample locations and overlays graphically portraying the concentrations of uranium in the water and sediment samples, all at 1:250,000 scale for use with existing USGS topographic sheets, are also provided as plates

  1. Concentrations and fluxes of dissolved uranium in the Yellow River estuary: seasonal variation and anthropogenic (Water-Sediment Regulation Scheme) impact

    International Nuclear Information System (INIS)

    Juanjuan, Sui; Zhigang, Yu; Bochao, Xu; Wenhua, Dong; Dong, Xia; Xueyan, Jiang

    2014-01-01

    The Water-Sediment Regulation Scheme (WSRS) of the Yellow River is a procedure implemented annually from June to July to expel sediments deposited in Xiaolangdi and other large middle-reach reservoirs and to scour the lower reaches of the river, by controlling water and sediment discharges. Dissolved uranium isotopes were measured in river waters collected monthly as well as daily during the 2010 WSRS (June 19–July 16) from Station Lijin (a hydrologic station nearest to the Yellow River estuary). The monthly samples showed dissolved uranium concentrations of 3.85–7.57 μg l −1 and 234 U/ 238 U activity ratios of 1.24–1.53. The concentrations were much higher than those reported for other global major rivers, and showed seasonal variability. Laboratory simulation experiments showed significant uranium release from bottom and suspended sediment. The uranium concentrations and activity ratios differed during the two stages of the WSRS, which may reflect desorption/dissolution of uranium from suspended river sediments of different origins. An annual flux of dissolved uranium of 1.04 × 10 8 g y −1 was estimated based on the monthly average water discharge and dissolved uranium concentration in the lower reaches of the Yellow River. The amount of dissolved uranium (2.65 × 10 7 g) transported from the Yellow River to the sea during the WSRS constituted about 1/4 of the annual flux. -- Highlights: • Dissolved U in the Yellow River estuary has distinct seasonal variability. • Geochemistry of dissolved U influenced by the WSRS has been analyzed. • Uranium flux during the WSRS has been evaluated

  2. Sedimentation and chemical quality of surface water in the Heart River drainage basin, North Dakota

    Science.gov (United States)

    Maderak, Marion L.

    1966-01-01

    The Heart River drainage basin of southwestern North Dakota comprises an area of 3,365 square miles and lies within the Missouri Plateau of the Great Plains province. Streamflow of the Heart River and its tributaries during 1949-58 was directly proportional to .the drainage area. After the construction of Heart Butte Dam in 1949 and Dickinson Dam in 1950, the mean annual streamflow near Mandan was decreased an estimated 10 percent by irrigation, evaporation from the two reservoirs, and municipal use. Processes that contribute sediment to the Heart River are mass wasting, advancement of valley heads, and sheet, lateral stream, and gully erosion. In general, glacial deposits, terraces, and bars of Quaternary age are sources of sand and larger sediment, and the rocks of Tertiary age are sources of clay, silt. and sand. The average annual suspended-sediment discharges near Mandan were estimated to be 1,300,000 tons for 1945-49 and 710,000 tons for 1970-58. The percentage composition of ions in water of the Heart River, based on average concentrations in equivalents per million for selected ranges of streamflow, changes with flow and from station to station. During extremely low flows the water contains a large percentage of sodium and about equal percentages of bicarbonate and .sulfate, and during extremely high flows the water contains a large percentage of calcium plus magnesium and bicarbonate. The concentrations, in parts per million, of most of the ions vary inversely with flow. The water in the reservoirs--Edward Arthur Patterson Lake and Lake Tschida--during normal or above-normal runoff is of suitable quality for public use. Generally, because of medium or high salinity hazards, the successful long-term use of Heart River water for irrigation will depend on a moderate amount of leaching, adequate drainage, ,and the growing of crops that have moderate or good salt tolerance.

  3. Colonization of overlaying water by bacteria from dry river sediments.

    Science.gov (United States)

    Fazi, Stefano; Amalfitano, Stefano; Piccini, Claudia; Zoppini, Annamaria; Puddu, Alberto; Pernthaler, Jakob

    2008-10-01

    We studied the diversity, community composition and activity of the primary microbial colonizers of the water above freshly re-wetted sediments from a temporary river. Dried sediments, collected from Mulargia River (Sardinia, Italy), were covered with sterile freshwater in triplicate microcosms, and changes of the planktonic microbial assemblage were monitored over a 48 h period. During the first 9 h bacterial abundance was low (1.5 x 10(4) cells ml(-1)); it increased to 3.4 x 10(6) cells ml(-1) after 28 h and did not change thereafter. Approximately 20% of bacteria exhibited DNA de novo synthesis already after 9 h of incubation. Changes of the ratios of (3)H-leucine to (3)H-thymidine incorporation rates indicated a shift of growth patterns during the experiment. Extracellular enzyme activity showed a maximum at 48 h with aminopeptidase activity (430.8 +/- 22.6 nmol MCA l(-1) h(-1)) significantly higher than alkaline phosphatase (98.6 +/- 4.3 nmol MUF l(-1) h(-1)). The primary microbial colonizers of the overlaying water - as determined by 16S rRNA gene sequence analysis - were related to at least six different phylogenetic lineages of Bacilli and to Alphaproteobacteria (Brevundimonas spp. and Caulobacter spp.). Large bacterial cells affiliated to one clade of Bacillus sp. were rare in the dried sediments, but constituted the majority of the planktonic microbial assemblage and of cells with detectable DNA-synthesis until 28 h after re-wetting. Their community contribution decreased in parallel with a rise of flagellated and ciliated protists. Estimates based on cell production rates suggested that the rapidly enriched Bacillus sp. suffered disproportionally high loss rates from selective predation, thus favouring the establishment of a more heterogenic assemblage of microbes (consisting of Proteobacteria, Actinobacteria and Cytophaga-Flavobacteria). Our results suggest that the primary microbial colonizers of the water above dried sediments are passively released

  4. Sediment transport in two mediterranean regulated rivers.

    Science.gov (United States)

    Lobera, G; Batalla, R J; Vericat, D; López-Tarazón, J A; Tena, A

    2016-01-01

    Mediterranean climate is characterized by highly irregular rainfall patterns with marked differences between wet and dry seasons which lead to highly variable hydrological fluvial regimes. As a result, and in order to ensure water availability and reduce its temporal variability, a high number of large dams were built during the 20th century (more than 3500 located in Mediterranean rivers). Dams modify the flow regime but also interrupt the continuity of sediment transfer along the river network, thereby changing its functioning as an ecosystem. Within this context, the present paper aims to assess the suspended sediment loads and dynamics of two climatically contrasting Mediterranean regulated rivers (i.e. the Ésera and Siurana) during a 2-yr period. Key findings indicate that floods were responsible for 92% of the total suspended sediment load in the River Siurana, while this percentage falls to 70% for the Ésera, indicating the importance of baseflows on sediment transport in this river. This fact is related to the high sediment availability, with the Ésera acting as a non-supply-limited catchment due to the high productivity of the sources (i.e. badlands). In contrast, the Siurana can be considered a supply-limited system due to its low geomorphic activity and reduced sediment availability, with suspended sediment concentration remaining low even for high magnitude flood events. Reservoirs in both rivers reduce sediment load up to 90%, although total runoff is only reduced in the case of the River Ésera. A remarkable fact is the change of the hydrological character of the River Ésera downstream for the dam, shifting from a humid mountainous river regime to a quasi-invariable pattern, whereas the Siurana experiences the opposite effect, changing from a flashy Mediterranean river to a more constant flow regime below the dam. Copyright © 2015 Elsevier B.V. All rights reserved.

  5. Linking the historic 2011 Mississippi River flood to coastal wetland sedimentation

    Science.gov (United States)

    Falcini, Federico; Khan, Nicole S.; Macelloni, Leonardo; Horton, Benjamin P.; Lutken, Carol B.; McKee, Karen L.; Santoleri, Rosalia; Colella, Simone; Li, Chunyan; Volpe, Gianluca; D’Emidio, Marco; Salusti, Alessandro; Jerolmack, Douglas J.

    2012-01-01

    Wetlands in the Mississippi River deltaic plain are deteriorating in part because levees and control structures starve them of sediment. In Spring of 2011 a record-breaking flood brought discharge on the lower Mississippi River to dangerous levels, forcing managers to divert up to 3500 m3/s-1 of water to the Atchafalaya River Basin. Here we quantify differences between the Mississippi and Atchafalaya River inundation and sediment-plume patterns using field-calibrated satellite data, and assess the impact these outflows had on wetland sedimentation. We characterize hydrodynamics and suspended sediment patterns of the Mississippi River plume using in-situ data collected during the historic flood. We show that the focused, high-momentum jet from the leveed Mississippi delivered sediment far offshore. In contrast, the plume from the Atchafalaya was more diffuse; diverted water inundated a large area; and sediment was trapped within the coastal current. Maximum sedimentation (up to several centimetres) occurred in the Atchafalaya Basin despite the larger sediment load carried by the Mississippi. Minimum accumulation occurred along the shoreline between these river sources. Our findings provide a mechanistic link between river-mouth dynamics and wetland sedimentation patterns that is relevant for plans to restore deltaic wetlands using artificial diversions.

  6. A Regional Survey of River-plume Sedimentation on the Mississippi River Delta Front

    Science.gov (United States)

    Courtois, A. J.; Bentley, S. J.; Xu, K.; Georgiou, I. Y.; Maloney, J. M.; Miner, M. D.; Chaytor, J. D.; Smith, J.

    2017-12-01

    Many studies of the Mississippi River and Delta (MRD) have shown historic declines in sediment load reaching the main river distributaries over the last few decades. Recent studies also reported that 50% of the suspended load during floods is sequestered within the delta. While the impact of declining sediment load on wetland loss is well documented, submarine sedimentary processes on the delta front during this recent period of declining sediment load are understudied. To better understand modern sediment dispersal and deposition across the Mississippi River Delta Front, 31 multicores were collected in June 2017 from locations extending offshore from Southwest Pass, South Pass, and Pass a Loutre (the main river outlets) in water depths of 25-280 m. Core locations were selected based on multibeam bathymetry and morphology collected by the USGS in May 2017; the timing of collection coincided with the end of annual peak discharge on the Mississippi River. This multi-agency survey is the first to study delta-front sedimentary processes regionally with such a wide suite of tools. Target locations for coring included the dominant depositional environments: mudflow lobes, gullies, and undisturbed prodelta. Cores were subsampled at 2 cm intervals and analyzed for Beryllium-7 activity via gamma spectrometry; in such settings, Be-7 can be used as a tracer of sediment recently delivered from fluvial origin. Results indicate a general trend of declining Be-7 activity with increasing distance from source, and in deeper water. Inshore samples near Southwest Pass show the deepest penetration depth of Be-7 into the sediment (24-26 cm), which is a preliminary indicator of rapid seasonal sedimentation. Nearshore samples from South Pass exhibited similar Be-7 penetration depths, with results near Pass a Loutre to 14-16 cm depth. Be-7 remains detectable to 2 cm in water 206 m deep, approximately 20 km from South Pass. Sediment dispersal remains impressive offshore from all three

  7. Fractionation of rare earth elements in the Mississippi River estuary and river sediments

    Science.gov (United States)

    Adebayo, S. B.; Johannesson, K. H.

    2017-12-01

    This study presents the first set of data on the fractionation of rare earth elements (REE) in the mixing zone between the Mississippi River and the Gulf of Mexico, as well as the fractionation of REE in the operationally defined fractions of Mississippi River sediments. This subject is particularly important because the Mississippi river is one of the world's major rivers, and contributes a substantial amount of water and sediment to the ocean. Hence, it is a major source of trace elements to the oceans. The geochemistry of the REE in natural systems is principally important because of their unique chemical properties, which prompt their application as tracers of mass transportation in modern and paleo-ocean environments. Another important consideration is the growth in the demand and utilization of REE in the green energy and technology industries, which has the potential to bring about a change in the background levels of these trace elements in the environment. The results of this study show a heavy REE enrichment of both the Mississippi River water and the more saline waters of the mixing zone. Our data demonstrate that coagulation and removal of REE in the low salinity region of the estuary is more pronounced among the Light REE ( 35% for Nd) compared to the Heavy REE. Remarkably, our data also indicate that REE removal in the Mississippi River estuary is significantly less than that observed in other estuaries, including the Amazon River system. We propose that the high pH/alkalinity of the Mississippi River is responsible for the greater stability of REE in the Mississippi River estuary. The results of sequential extraction of river sediments reveal different Sm/Nd ratios for the various fractions, which we submit implies different 143Nd/144Nd ratios of the labile fractions of the sediments. The possible impact of such hypothesized different Nd isotope signatures of labile fractions of the river sediments on Gulf of Mexico seawater is under investigation.

  8. Microbial Remobilisation on Riverbed Sediment Disturbance in Experimental Flumes and a Human-Impacted River: Implication for Water Resource Management and Public Health in Developing Sub-Saharan African Countries.

    Science.gov (United States)

    Abia, Akebe Luther King; James, Chris; Ubomba-Jaswa, Eunice; Benteke Momba, Maggy Ndombo

    2017-03-15

    Resuspension of sediment-borne microorganisms (including pathogens) into the water column could increase the health risk for those using river water for different purposes. In the present work, we (1) investigated the effect of sediment disturbance on microbial resuspension from riverbed sediments in laboratory flow-chambers and in the Apies River, Gauteng, South Africa; and (2) estimated flow conditions for sediment-borne microorganism entrainment/resuspension in the river. For mechanical disturbance, the top 2 cm of the sediment in flow-chambers was manually stirred. Simulating sudden discharge into the river, water (3 L) was poured within 30 s into the chambers at a 45° angle to the chamber width. In the field, sediment was disturbed by raking the riverbed and by cows crossing in the river. Water samples before and after sediment disturbance were analysed for Escherichia coli. Sediment disturbance caused an increase in water E. coli counts by up to 7.9-35.8 times original values. Using Shields criterion, river-flow of 0.15-0.69 m³/s could cause bed particle entrainment; while ~1.57-7.23 m³/s would cause resuspension. Thus, sediment disturbance in the Apies River would resuspend E. coli (and pathogens), with possible negative health implications for communities using such water. Therefore, monitoring surface water bodies should include microbial sediment quality.

  9. Microbial Remobilisation on Riverbed Sediment Disturbance in Experimental Flumes and a Human-Impacted River: Implication for Water Resource Management and Public Health in Developing Sub-Saharan African Countries

    Science.gov (United States)

    Abia, Akebe Luther King; James, Chris; Ubomba-Jaswa, Eunice; Benteke Momba, Maggy Ndombo

    2017-01-01

    Resuspension of sediment-borne microorganisms (including pathogens) into the water column could increase the health risk for those using river water for different purposes. In the present work, we (1) investigated the effect of sediment disturbance on microbial resuspension from riverbed sediments in laboratory flow-chambers and in the Apies River, Gauteng, South Africa; and (2) estimated flow conditions for sediment-borne microorganism entrainment/resuspension in the river. For mechanical disturbance, the top 2 cm of the sediment in flow-chambers was manually stirred. Simulating sudden discharge into the river, water (3 L) was poured within 30 s into the chambers at a 45° angle to the chamber width. In the field, sediment was disturbed by raking the riverbed and by cows crossing in the river. Water samples before and after sediment disturbance were analysed for Escherichia coli. Sediment disturbance caused an increase in water E. coli counts by up to 7.9–35.8 times original values. Using Shields criterion, river-flow of 0.15–0.69 m3/s could cause bed particle entrainment; while ~1.57–7.23 m3/s would cause resuspension. Thus, sediment disturbance in the Apies River would resuspend E. coli (and pathogens), with possible negative health implications for communities using such water. Therefore, monitoring surface water bodies should include microbial sediment quality. PMID:28295001

  10. Microbial Remobilisation on Riverbed Sediment Disturbance in Experimental Flumes and a Human-Impacted River: Implication for Water Resource Management and Public Health in Developing Sub-Saharan African Countries

    Directory of Open Access Journals (Sweden)

    Akebe Luther King Abia

    2017-03-01

    Full Text Available Resuspension of sediment-borne microorganisms (including pathogens into the water column could increase the health risk for those using river water for different purposes. In the present work, we (1 investigated the effect of sediment disturbance on microbial resuspension from riverbed sediments in laboratory flow-chambers and in the Apies River, Gauteng, South Africa; and (2 estimated flow conditions for sediment-borne microorganism entrainment/resuspension in the river. For mechanical disturbance, the top 2 cm of the sediment in flow-chambers was manually stirred. Simulating sudden discharge into the river, water (3 L was poured within 30 s into the chambers at a 45° angle to the chamber width. In the field, sediment was disturbed by raking the riverbed and by cows crossing in the river. Water samples before and after sediment disturbance were analysed for Escherichia coli. Sediment disturbance caused an increase in water E. coli counts by up to 7.9–35.8 times original values. Using Shields criterion, river-flow of 0.15–0.69 m3/s could cause bed particle entrainment; while ~1.57–7.23 m3/s would cause resuspension. Thus, sediment disturbance in the Apies River would resuspend E. coli (and pathogens, with possible negative health implications for communities using such water. Therefore, monitoring surface water bodies should include microbial sediment quality.

  11. Assessment of Trace Metals Contamination of Surface Water and Sediment: A Case Study of Mvudi River, South Africa

    Directory of Open Access Journals (Sweden)

    Joshua N. Edokpayi

    2016-02-01

    Full Text Available Trace metals contamination of rivers and sediments remains a global threat to biodiversity and humans. This study was carried out to assess the variation pattern in trace metals contamination in Mvudi River water and sediments for the period of January–June 2014. Metal concentrations were analyzed using an inductively-coupled plasma optical emission spectrometer after nitric acid digestion. A compliance study for the water samples was performed using the guidelines of the Department of Water Affairs and Forestry (DWAF of South Africa and the World Health Organization (WHO. The National Oceanic and Atmospheric Administration (NOAA sediment quality guidelines for marine and estuarine sediments and the Canadian Council of Ministers of the Environment sediment guidelines (CCME for freshwater sediments were used to determine the possible toxic effects of the metals on aquatic organisms. pH (7.2–7.7 and conductivity (10.5–16.1 mS/m values complied with DWAF and WHO standards for domestic water use. Turbidity values in nephelometric turbidity units (NTU were in the range of 1.9–429 and exceeded the guideline values. The monthly average levels of trace metals in the water and sediments of Mvudi River were in the range of: Al (1.01–9.644 mg/L and 4296–5557 mg/kg, Cd (0.0003–0.002 mg/L and from below the detection limit to 2.19 mg/kg, Cr (0.015–0.357 mg/L and 44.23–149.52 mg/kg, Cu (0.024–0.185 mg/L and 13.22–1027 mg/kg, Fe (0.702–2.645 mg/L and 3840–6982 mg/kg, Mn (0.081–0.521 mg/L and 279–1638 mg/kg, Pb (0.002–0.042 mg/L and 1.775-4.157 mg/kg and Zn (0.031–0.261 mg/L and 14.481–39.88 mg/kg. The average concentrations of Al, Cr, Fe, Mn and Pb in the water samples exceeded the recommended guidelines of DWAF and WHO for domestic water use. High concentrations of Al and Fe were determined in the sediment samples. Generally, the concentrations of Cd, Cr and Cu in the sediments exceeded the corresponding effect range low

  12. Chemical concentrations in water and suspended sediment, Green River to Lower Duwamish Waterway near Seattle, Washington, 2016–17

    Science.gov (United States)

    Conn, Kathleen E.; Black, Robert W.; Peterson, Norman T.; Senter, Craig A.; Chapman, Elena A.

    2018-01-05

    From August 2016 to March 2017, the U.S. Geological Survey (USGS) collected representative samples of filtered and unfiltered water and suspended sediment (including the colloidal fraction) at USGS streamgage 12113390 (Duwamish River at Golf Course, at Tukwila, Washington) during 13 periods of differing flow conditions. Samples were analyzed by Washington-State-accredited laboratories for a large suite of compounds, including metals, dioxins/furans, semivolatile compounds including polycyclic aromatic hydrocarbons, butyltins, the 209 polychlorinated biphenyl (PCB) congeners, and total and dissolved organic carbon. Concurrent with the chemistry sampling, water-quality field parameters were measured, and representative water samples were collected and analyzed for river suspended-sediment concentration and particle-size distribution. The results provide new data that can be used to estimate sediment and chemical loads transported by the Green River to the Lower Duwamish Waterway.

  13. Quantitative microbial risk assessment (QMRA) shows increased public health risk associated with exposure to river water under conditions of riverbed sediment resuspension.

    Science.gov (United States)

    Abia, Akebe Luther King; Ubomba-Jaswa, Eunice; Genthe, Bettina; Momba, Maggy Ndombo Benteke

    2016-10-01

    Although higher microbial concentrations have been reported in sediments than in the overlying water column, most quantitative microbial risk assessment (QMRA) studies have not clearly indicated the contribution of sediment-borne pathogens to estimated risks. Thus, the present study aimed at determining the public health risk associated with exposure to pathogenic bacteria in polluted river water under undisturbed conditions and conditions of sediment resuspension in the Apies River, Gauteng, South Africa. Microbial pathogens were isolated and identified using culture and molecular methods. The beta-Poisson dose-response model was used to estimate the probability of infection (Pi) with the various pathogens, following accidental/intentional ingestion of 1mL or 100mL (or 50mL) of untreated river water. Mean wet season Escherichia coli counts ranged between 5.8E+01 and 8.8E+04MPN/100mL (water column) and between 2.40E+03 and 1.28E+05MPN/100mL (sediments). Mean dry season E. coli counts ranged between 5.11E+00 and 3.40E+03MPN/100mL (water column) and between 5.09E+00 and 6.30E+03MPN/100mL (sediments). Overall (water and sediments) Vibrio cholerae was the most detected pathogen (58.8%) followed by Salmonella spp. (23.9%) and Shigella (10.1%). Ingestion of 1mL of river water could lead to 0%-4% and 1%-74% Pi with E. coli during the dry and wet season, respectively. During the dry season, the Pi with V. cholerae, Salmonella spp. and Shigella spp. were 0%-1.39%, 0%-4.11% and 0%-0.16% respectively, depending on volume of water ingested. The risks of infections with all microorganisms increased during the wet season. A 2-log increase in water E. coli count following sediments disturbance led to approximately 10 times higher Pi with E. coli than when sediments were undisturbed. Therefore, the use of the untreated water from the Apies River for drinking, household purposes or recreational activities poses a potential health risk to the users of the river. Copyright © 2016

  14. Determination of Physicals, Chemical, Biologicals and Radioactivity Parameters of Sediments and Water Samples of Seropan River of First Period

    International Nuclear Information System (INIS)

    Tri Rusmanto; Agus Taftazani

    2007-01-01

    Seropan river water quality as residential water resources can be controlled by physical, chemical, and biological parameters. The water quality with the parameters of temperature, suspended solid (SS), gross β radioactivity, hardwater, COD, BOD, Escherichia Coli have been experimentally conducted. The sediment and water samples have been taken at February and August 2006. Measurement result of Seropan river water quality showed that the temperature was 28°C, maximum SS was 48 mg/L, maximum pH was 6.8 maximum hardwater was 257.49 mg/L, maximum COD was 8 mg/L, maximum BOD was 4.9 mg/L, maximum bacteria E. coli > 2400 mpn/100 mL, maximum water gross β was 0.9071 Bq/L. All the parameters were lower than maximum permissible for water condition that decided by Governor of Yogyakarta Special Province No/214/Kpts/1991 and Public Health Minister of Republic of Indonesia Number 907/Menkes/SK/VlI/2002. Sediment sample can not be evaluated because it was not included yet in the river water quality natural radionuclides gamma transmitter identified in river water samples were Tl-208 and K-40. More element detected in sediment samples, they were, Tl-208, Ac-228, Ra-226, Pb-212, Pb-214, Bi-214, Ac-228, Ac-228 and of K-40. (author)

  15. Screening of multiple hormonal activities in surface water and sediment from the Pearl River system, South China, using effect-directed in vitro bioassays.

    Science.gov (United States)

    Zhao, Jian-Liang; Ying, Guang-Guo; Yang, Bin; Liu, Shan; Zhou, Li-Jun; Chen, Zhi-Feng; Lai, Hua-Jie

    2011-10-01

    This paper reports screening of multiple hormonal activities (estrogenic and androgenic activities, antiestrogenic and antiandrogenic activities) for surface water and sediment from the Pearl River system (Liuxi, Zhujiang, and Shijing rivers) in South China, using in vitro recombinant yeast bioassays. The detection frequencies for estrogenic and antiandrogenic activities were both 100% in surface water and 81 and 93% in sediment, respectively. The levels of estrogenic activity were 0.23 to 324 ng 17β-estradiol equivalent concentration (EEQ)/L in surface water and 0 to 101 ng EEQ/g in sediment. Antiandrogenic activities were in the range of 20.4 to 935 × 10(3) ng flutamide equivalent concentration (FEQ)/L in surface water and 0 to 154 × 10(3) ng FEQ/g in sediment. Moreover, estrogenic activity and antiandrogenic activity in sediment showed good correlation (R(2) = 0.7187), suggesting that the agonists of estrogen receptor and the antagonists of androgen receptor co-occurred in sediment. The detection frequencies for androgenic and antiestrogenic activities were 41 and 29% in surface water and 61 and 4% in sediment, respectively. The levels of androgenic activities were 0 to 45.4 ng dihydrotestosterone equivalent concentration (DEQ)/L in surface water, and the potency was very weak in the only detected sediment site. The levels of antiestrogenic activity were 0 to 1,296 × 10(3) ng tamoxifen equivalent concentration (TEQ)/L in surface water and 0 to 89.5 × 10(3) ng TEQ/g in sediment. The Shijing River displayed higher levels of hormonal activities than the Zhujiang and Liuxi rivers, indicating that the Shijing River had been suffering from heavy contamination with endocrine-disrupting chemicals. The equivalent concentrations of hormonal activities in some sites were greater than the lowest-observed-effect concentrations reported in the literature, suggesting potential adverse effects on aquatic organisms. Copyright © 2011 SETAC.

  16. Decline of Yangtze River water and sediment discharge: Impact from natural and anthropogenic changes

    Science.gov (United States)

    Yang, S. L.; Xu, K. H.; Milliman, J. D.; Yang, H. F.; Wu, C. S.

    2015-01-01

    The increasing impact of both climatic change and human activities on global river systems necessitates an increasing need to identify and quantify the various drivers and their impacts on fluvial water and sediment discharge. Here we show that mean Yangtze River water discharge of the first decade after the closing of the Three Gorges Dam (TGD) (2003–2012) was 67 km3/yr (7%) lower than that of the previous 50 years (1950–2002), and 126 km3/yr less compared to the relatively wet period of pre-TGD decade (1993–2002). Most (60–70%) of the decline can be attributed to decreased precipitation, the remainder resulting from construction of reservoirs, improved water-soil conservation and increased water consumption. Mean sediment flux decreased by 71% between 1950–1968 and the post-TGD decade, about half of which occurred prior to the pre-TGD decade. Approximately 30% of the total decline and 65% of the decline since 2003 can be attributed to the TGD, 5% and 14% of these declines to precipitation change, and the remaining to other dams and soil conservation within the drainage basin. These findings highlight the degree to which changes in riverine water and sediment discharge can be related with multiple environmental and anthropogenic factors. PMID:26206169

  17. Quantification of sediment-water interactions in a polluted tropical river through biogeochemical modeling

    NARCIS (Netherlands)

    Trinh, A.D.; Meysman, F.; Rochelle-Newall, E.; Bonnet, M.P.

    2012-01-01

    Diagenetic modeling presents an interesting and robust way to understand sediment-water column processes. Here we present the application of such a model to the Day River in Northern Vietnam, a system that is subject to high levels of domestic wastewater inputs from the Hanoi metropolitan area.

  18. Chemical quality of surface waters and sedimentation in the Saline River basin, Kansas

    Science.gov (United States)

    Jordan, Paul Robert; Jones, B.F.; Petri, Lester R.

    1964-01-01

    This report gives the results of an investigation of the sediment and dissolved minerals that are transported by the Saline River and its tributaries. The Saline River basin is in western and central Kansas; it is long and narrow and covers 3,420 square miles of rolling plains, which is broken in some places by escarpments and small areas of badlands. In the western part the uppermost bedrock consists predominantly of calcareous elastic sedimentary rocks of continental origin of Pliocene age and in most places is covered by eolian deposits of Pleistocene and Recent age. In the central part the ex posed bedrock consists predominantly of calcareous marine sedimentary rocks of Late Cretaceous age. In the eastern part the exposed bedrock consists mainly of noncalcareous continental and littoral elastic sedimentary rocks of Early Cretaceous and Permian age. Fluvial deposits are in the valleys, and eolian materials are present over much of the uplands. Average precipitation increases rather uniformly from about 18 inches per year in the west to almost 28 inches per year in the east. Runoff is not affected by irrigation nor regulated by large structures, but it is closely related to precipitation. Average runoff increases from less than 0.2 inch per year in the west to more than 1.5 inches per year in the east. Aquifers of the flood-plain and terrace deposits and of the Cretaceous Dakota Sandstone are the major sources of ground-water accretion to the streams. In the upper reaches of the Saline River, the water is only slightly mineralized; during the period of record the specific conductance near Wakeeney never exceeded 750 micromhos per centimeter. In the lower reaches, however, the water is slightly mineralized during periods of high flow and is highly mineralized during periods of low flow; the specific conductance near Russell exceeded 1,500 micromhos per centimeter more than 80 percent of the time. Near Russell, near Wilson, and at Tescott the water is of the

  19. Ephemeral seafloor sedimentation during dam removal: Elwha River, Washington

    Science.gov (United States)

    Foley, Melissa M.; Warrick, Jonathan

    2017-01-01

    The removal of the Elwha and Glines Canyon dams from the Elwha River in Washington, USA, resulted in the erosion and transport of over 10 million m3 of sediment from the former reservoirs and into the river during the first two years of the dam removal process. Approximately 90% of this sediment was transported through the Elwha River and to the coast at the Strait of Juan de Fuca. To evaluate the benthic dynamics of increased sediment loading to the nearshore, we deployed a tripod system in ten meters of water to the east of the Elwha River mouth that included a profiling current meter and a camera system. With these data, we were able to document the frequency and duration of sedimentation and turbidity events, and correlate these events to physical oceanographic and river conditions. We found that seafloor sedimentation occurred regularly during the heaviest sediment loading from the river, but that this sedimentation was ephemeral and exhibited regular cycles of deposition and erosion caused by the strong tidal currents in the region. Understanding the frequency and duration of short-term sediment disturbance events is instrumental to interpreting the ecosystem-wide changes that are occurring in the nearshore habitats around the Elwha River delta.

  20. Ephemeral seafloor sedimentation during dam removal: Elwha River, Washington

    Science.gov (United States)

    Foley, Melissa M.; Warrick, Jonathan A.

    2017-11-01

    The removal of the Elwha and Glines Canyon dams from the Elwha River in Washington, USA, resulted in the erosion and transport of over 10 million m3 of sediment from the former reservoirs and into the river during the first two years of the dam removal process. Approximately 90% of this sediment was transported through the Elwha River and to the coast at the Strait of Juan de Fuca. To evaluate the benthic dynamics of increased sediment loading to the nearshore, we deployed a tripod system in ten meters of water to the east of the Elwha River mouth that included a profiling current meter and a camera system. With these data, we were able to document the frequency and duration of sedimentation and turbidity events, and correlate these events to physical oceanographic and river conditions. We found that seafloor sedimentation occurred regularly during the heaviest sediment loading from the river, but that this sedimentation was ephemeral and exhibited regular cycles of deposition and erosion caused by the strong tidal currents in the region. Understanding the frequency and duration of short-term sediment disturbance events is instrumental to interpreting the ecosystem-wide changes that are occurring in the nearshore habitats around the Elwha River delta.

  1. Sediment Quality and Comparison to Historical Water Quality, Little Arkansas River Basin, South-Central Kansas, 2007

    Science.gov (United States)

    Juracek, Kyle E.; Rasmussen, Patrick P.

    2008-01-01

    The spatial and temporal variability in streambed-sediment quality and its relation to historical water quality was assessed to provide guidance for the development of total maximum daily loads and the implementation of best-management practices in the Little Arkansas River Basin, south-central Kansas. Streambed-sediment samples were collected at 26 sites in 2007, sieved to isolate the less than 63-micron fraction (that is, the silt and clay), and analyzed for selected nutrients (total nitrogen and total phosphorus), organic and total carbon, 25 trace elements, and the radionuclides beryllium-7, cesium-137, lead-210, and radium-226. At eight sites, streambed-sediment samples also were collected and analyzed for bacteria. Particulate nitrogen, phosphorus, and organic carbon concentrations in the streambed sediment varied substantially spatially and temporally, and positive correlations among the three constituents were statistically significant. Along the main-stem Little Arkansas River, streambed-sediment concentrations of particulate nitrogen and phosphorus generally were larger at and downstream from Alta Mills, Kansas. The largest particulate nitrogen concentrations were measured in samples collected in the Emma Creek subbasin and may be related to livestock and poultry production. The largest particulate phosphorus concentrations in the basin were measured in samples collected along the main-stem Little Arkansas River downstream from Alta Mills, Kansas. Particulate nitrogen, phosphorus, and organic carbon content in the water and streambed-sediment samples typically decreased as streamflow increased. This inverse relation may be caused by an increased contribution of sediment from channel-bank sources during high flows and (or) increased particle sizes transported by the high flows. Trace element concentrations in the streambed sediment varied from site to site and typically were less than threshold-effects guidelines for possible adverse biological effects

  2. Suspended sediment propagation in a long river reach: spatial and temporal dynamics of the Suspended Sediment Concentration-Water Discharge diagram for several hydrological events in the Northern French Alps.

    Science.gov (United States)

    Antoine, Germain; Jodeau, Magali; Camenen, Benoit; Esteves, Michel

    2014-05-01

    The relative propagation of water and suspended sediment is a key parameter to understand the suspended sediment transfers at the catchment scale. Several studies have shown the interest of performing detailed investigations of both temporal suspended sediment concentration (SSC) and water discharge signals. Most of them used temporal data from one measurement site, and classified hydrological events by studying the SSC curve as a function of water discharge (SSC-WD diagrams). Theoretical interpretations of these curves have been used to estimate the different sources of suspended sediment supply from sub-catchments, to evaluate the effect of seasons on the dynamics of suspended sediment, or to highlight the effect of a critical change at the catchment scale. However, few studies have focused on the signal propagation along the river channel. In this study, we analyze sampled data from a very well instrumented river reach in the Northern French Alps: the Arc-Isère River system. This gravel-bed river system is characterized by large concentrations of fines sediments, coming from the highly erodible mountains around. To control the hydraulic, sedimentary and chemical parameters from the catchment head, several gauging stations have been established since 2006. The continuous data measured at 4 gauging stations along 120 km of river have been analyzed to estimate the spatial and temporal dynamics of both SSC and water discharge. More precisely, about 40 major hydrological events have been sampled statistically between 2006 and 2012 from the data set and are analyzed in details. The study shows that the mean value of the propagation velocity is equal to 2 m/s and 3 m/s respectively for the SSC signal and the water discharge. These different propagation velocities imply that the suspended sediment mass is not only transported by the advection of the water at the river scale. The dispersion, erosion or deposition processes, and also the suspended sediment and discharge

  3. Purus River suspended sediment variability and contributions to the Amazon River from satellite data (2000-2015)

    Science.gov (United States)

    Santos, Andre Luis Martinelli Real dos; Martinez, Jean Michel; Filizola, Naziano Pantoja; Armijos, Elisa; Alves, Luna Gripp Simões

    2018-01-01

    The Purus River is one of the major tributaries of Solimões River in Brazil, draining an area of 370,091 km2 and stretching over 2765 km. Unlike those of the other main tributaries of the Amazon River, the Purus River's sediment discharge is poorly characterized. In this study, as an alternative to the logistic difficulties and considering high monitoring costs, we report an experiment where field measurement data and 2700 satellite (MODIS) images are combined to retrieve both seasonal and interannual dynamics in terms of the Purus river sediment discharge near its confluence with the Solimões River. Field radiometric and hydrologic measurements were acquired during 18 sampling trips, including 115 surface water samples and 61 river discharge measurements. Remote sensing reflectance gave important results in the red and infrared levels. They were very well correlated with suspended sediment concentration. The values of R2 are greater than 0.8 (red band) and 0.9 (NIR band). A retrieval algorithm based on the reflectance in both the red and the infrared was calibrated using the water samples collected for the determination of the surface-suspended sediment concentration (SSS). The algorithm was used to calculate 16 years of SSS time series with MODIS images at the Purus River near its confluence with the Solimões River. Results from satellite data correlated with in situ SSS values validate the use of satellite data to be used as a tool to monitor SSS in the Purus River. We evidenced a very short and intense sediment discharge pulse with 55% of the annual sediment budget discharged during the months of January and February. Using river discharge records, we calculated the mean annual sediment discharge of the Purus River at about of 17 Mt·yr-1.

  4. Reactive transport modeling of nitrogen in Seine River sediments

    Science.gov (United States)

    Akbarzadeh, Z.; Laverman, A.; Raimonet, M.; Rezanezhad, F.; Van Cappellen, P.

    2016-02-01

    Biogeochemical processes in sediments have a major impact on the fate and transport of nitrogen (N) in river systems. Organic matter decomposition in bottom sediments releases inorganic N species back to the stream water, while denitrification, anammox and burial of organic matter remove bioavailable N from the aquatic environment. To simulate N cycling in river sediments, a multi-component reactive transport model has been developed in MATLAB®. The model includes 3 pools of particulate organic N, plus pore water nitrate, nitrite, nitrous oxide and ammonium. Special attention is given to the production and consumption of nitrite, a N species often neglected in early diagenetic models. Although nitrite is usually considered to be short-lived, elevated nitrite concentrations have been observed in freshwater streams, raising concerns about possible toxic effects. We applied the model to sediment data sets collected at two locations in the Seine River, one upstream, the other downstream, of the largest wastewater treatment plant (WWTP) of the Paris conurbation. The model is able to reproduce the key features of the observed pore water depth profiles of the different nitrogen species. The modeling results show that the presence of oxygen in the overlying water plays a major role in controlling the exchanges of nitrite between the sediments and the stream water. In August 2012, sediments upstream of the WWTP switch from being a sink to a source of nitrite as the overlying water becomes anoxic. Downstream sediments remain a nitrite sink in oxic and anoxic conditions. Anoxic bottom waters at the upstream location promote denitrification, which produces nitrite, while at the downstream site, anammox and DNRA are important removal processes of nitrite.

  5. The distribution and partitioning of common antibiotics in water and sediment of the Pearl River Estuary, South China.

    Science.gov (United States)

    Liang, Ximei; Chen, Baowei; Nie, Xiangping; Shi, Zhen; Huang, Xiaoping; Li, Xiangdong

    2013-09-01

    Antibiotics released into the aquatic environment play an important role in the spread of antibiotic resistance. In the Pearl River Estuary (PRE) and the coastal zone, the concentrations of antibiotics decreased from the Pearl River to the estuary, suggesting that antibiotics primarily originated from river tributaries and terrigenous sources. Within the PRE area, the concentrations of antibiotics in water were higher in the west coast than the east side, reflecting the high density of anthropogenic activities and hydraulic conditions along the west riverbank. Seasonal variations were also observed for most of detected antibiotics in water. The pseudo-partitioning coefficient of norfloxacin had a good correlation with the TOC content of sediments, as did erythromycin-H2O with the pH of water. The results suggest that environmental conditions can significantly affect the distribution of antibiotics between water and sediment. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Arsenic Transfer from As-Rich Sediments to River Water in the Presence of Biofilms

    Directory of Open Access Journals (Sweden)

    Diego Martiñá Prieto

    2016-01-01

    Full Text Available The influence of epipsammic biofilms on As release from river sediments was evaluated in a microcosm experiment where biofilms were grown on sediments containing 106 mg kg−1 As, collected in the Anllóns River, and compared with control systems without biofilms. The As transfer to the water column was low (<0.11% of total As in the sediment and was further reduced by 64% in the presence of biofilms. AsV was the predominant species in the overlying water in both systems. AsIII concentration was higher (up to 12% of total dissolved As in the control systems than in the systems with biofilms, where this species was almost absent. This fact is of toxicological relevance due to the usually higher mobility and toxicity of the reduced AsIII species. Control systems exhibited higher As mobility in water, in sulphate solution, and in weak acid medium and higher bioavailability in diffusive gradient in thin films (DGT devices. Arsenic retained by the biofilm was equally distributed between extracellular and intracellular compartments. Inside the cells, significant concentrations of AsIII, monomethylarsonic acid (MMAV, and dimethylarsinic acid (DMAV were detected, suggesting that active methylation (detoxification processes are occurring in the intracellular compartment.

  7. Occurrence and profiles of organic sun-blocking agents in surface waters and sediments in Japanese rivers and lakes

    International Nuclear Information System (INIS)

    Kameda, Yutaka; Kimura, Kumiko; Miyazaki, Motonobu

    2011-01-01

    Sun-blocking agents including eight UV filters (UVF) and 10 UV light stabilizers (UVLS) were measured in water and sediment collected from 22 rivers, four sewage treatment plant effluents (STPE) and three lakes in Japan. Total sun blocking agents levels ranged from N.D. to 4928 ng/L and from 2.0 to 3422 μg/kg dry wt in surface water and in sediment, respectively. Benzyl salicylate, benzophenone-3, 2-ethyl hexyl-4-methoxycinnamte (EHMC) and octyl salicylate were dominant in surface water receiving wastewater effluents and STPE, although UV-328, benzophenone and EHMC were dominant in other surface water except background sites. Three UVF and nine UVLS were observed from all sediment and their compositions showed similar patterns with UV-328 and UV-234 as the most prevalent compounds. Homosalate, octocrylene, UV-326, UV-327, UV-328 and UV-234 were significantly correlated with Galaxolide in sediments. Concentrations of UV-327 and UV-328 also had strong correlation between those of UV-326 in sediment. - Highlights: → Total sun-blocking agents levels ranged from N.D. to 4928 ng/L in surface water from 29 sampling sites. → The maximum concentration of total sun-blocking agents was 3422 μg/kg dry wt. in sediment. → Residential wastewaters and STPE were considered to be potential sources of UVLS in river and lakes. → Most of sun-blocking agents in sediment were significantly correlated with HHCB. → UV-326 had a strong linear correlation between UV-327 as well as UV-328 in all sediment. - Occurrence of eight UV filters and 10 UV light stabilizers in surface water and sediment were investigated and characterized their compositions in water and sediment.

  8. Heavy metal profile of water, sediment and freshwater cat fish, Chrysichthys nigrodigitatus (Siluriformes: Bagridae), of Cross River, Nigeria.

    Science.gov (United States)

    Ayotunde, Ezekiel Olatunji; Offem, Benedict Obeten; Ada, Fidelis Bekeh

    2012-09-01

    Cross River serves as a major source of drinking water, transportation, agricultural activities and fishing in Cross River State, Nigeria. Since there is no formal control of effluents discharged into the river, it is important to monitor the levels of metals contaminants in it, thus assessing its suitability for domestic and agricultural use. In order to determine this, three sampling stations designated as Ikom (Station I), Obubra Ogada (Station II) and Calabar (Station III) were randomly selected to study. For this, ten samples of the freshwater Silver Catfish (Chryshchythys nigrogitatus) (29.4-39.5cm SL, 310-510g), sediment and water were collected from each sampling Station from June 2009-June 2010. The heavy metals profiles ofZn, Cu, Fe, Co, Pb, Cd and Cr, in water, sediments and fish muscle were analyzed by atomic absorption spectrophotometry (AAS). In fish, the heavy metals concentration was found to be Cu>Fe>Zn>Cu>Pb>Cd>Co; the highest mean concentration of Copper (0.297 +/- 0.022 microg/g), Cadmium (0.011 +/- 0.007 microg/g), Iron (0.371 +/- 0.489 microg/g), Lead (0.008 +/- 0.008 microg/g), were determined for the fish. In water, the order was found to be Fe>Pb>Zn>Cu>Cr>Cd>Co; the highest mean concentration of Iron (0.009 +/- 0.00) microg/g), Copper (0.015 +/- 0.01 microg/g), Lead (0.0002 +/- 0.00 microg/g) Cadmium (0.0006 +/- 0.001 microg/g), Zinc (0.0036 +/- 0.003 microg/g), were observed in the surface water, respectively. The highest mean concentration of Copper (0.037 +/- 0.03 microg/g), Iron (0.053 +/- 0.04 microg/g), Lead (0.0002 +/- 0.00 microg/g), Cobalt (0.0002 +/- 0.00 microg/g), Cadmium (0.0006 +/- 0.001 microg/g) and Zinc (.009 +/- 0.0015 microg/g) was observed in the bottom water. In sediments, the concentration order found was Zn>Fe>Cu>Pb>Co>Cd; the highest mean concentration of 0.057 +/- 0.04 microg/g, 0.043 +/- 0.03 microg/g, 0.0006 +/- 0.00 microg/g, 0.0002 +/- 0.00 microg/g, 0.0009 +/- 0.00 microg/g, 0.099 +/- 0.00404 microg/g in Iron

  9. Variations in selected water quality variables and metal concentrations in the sediment of the lower Olifants and Selati rivers, South Africa

    Directory of Open Access Journals (Sweden)

    T. Seymore

    1994-08-01

    Full Text Available A survey of the water and sediment quality of the lower Olifants River and lower Selati River was carried out. Metal concentrations (Cr, Cu, Fe, Mn, Ni, Pb, Sr and Zn in the water and sediment, as well as the physical and chemical characteristics of the water were determined over a two-year period (April 1990 - February 1992. The water quality of the lower Selati River, which flows through the Phalaborwa area, was found to be influenced by the mining and industrial activities in the area. It was also the case with the lower Olifants River after the Selati-Olifants confluence, although the concentrations of most variables did decrease from the western side of the Kruger National Park to the eastern side due to dilution of the water by tributaries of the Olifants River. Variables of special concern were sodium, fluoride. chloride, sulphate, potassium, the total dissolved salts and the metal concentrations (except strontium. The water quality of the Selati River in the study area is a great cause of concern and a further degradation thereof cannot be afforded.

  10. Distribution and ecological risk assessment of cadmium in water and sediment in Longjiang River, China: Implication on water quality management after pollution accident.

    Science.gov (United States)

    Zhao, Xue-Min; Yao, Ling-Ai; Ma, Qian-Li; Zhou, Guang-Jie; Wang, Li; Fang, Qiao-Li; Xu, Zhen-Cheng

    2018-03-01

    In early January 2012, the Longjiang River was subjected to a serious cadmium (Cd) pollution accident, which led to negatively environmental and social impacts. A series of measures of emergency treatment were subsequently taken to reduce water Cd level. However, little information was available about the change of Cd level in environmental matrices and long-term effect of this pollution accident to aquatic ecosystem. Thus, this study investigated the distribution of Cd in water and sediment of this river for two years since pollution accident, as well as assessed its ecological risk to aquatic ecosystem of Longjiang River. The results showed that it was efficient for taking emergency treatment measures to decrease water Cd concentration to below the threshold value of national drinking water quality standard of China. There was high risk (HQ > 1) to aquatic ecosystem in some of reaches between February and July 2012, but low or no risk (HQ polluted reaches increased after pollution accident and emergency treatments in 2012, but decreased in 2013. During flood period, the sediment containing high concentration of Cd in Longjiang River was migrated to downstream Liujiang River. Cd content in sediment was reduced to background level after two years of the pollution accident occurrence. The study provides basic information about Cd levels in different media after pollution accident, which is helpful in evaluating the effectiveness of emergency treatments and the variation of ecological risk, as well as in conducting water management and conservation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Delivery and fate of fluvial water and sediment to the sea: a marine geologist's view of European rivers

    Directory of Open Access Journals (Sweden)

    John D. Milliman

    2001-12-01

    Full Text Available Despite their relatively small drainage areas, European rivers reflect a wide variety of hydrologic regimes, although with very few exceptions they have been strongly affected by human activity. Scandinavian rivers (particularly those draining Iceland and western Norway can have high runoff, and, except for those draining Iceland, all have very low suspended and dissolved sediment loads. Northern and western European rivers have somewhat lower runoff, among the lowest suspended sediment yields in the world, and anthropogenically enhanced dissolved solid loads. Annual discharge of many of these rivers appears to vary inversely with the North Atlantic Oscillation index. Rivers discharging from the southern Alps into the Mediterranean Sea have relatively high runoff, high suspended sediment yields (reflecting younger, more easily erodable rocks as well as generally smaller drainage basins, and high dissolved yields, although presumably with somewhat less human influence. European rivers and their estuaries tend to reflect the terrestrial environments of their drainage basins (i.e. climate, landscape geomorphology, geology, but they also display strong anthropogenic signatures. Sediment erosion increased dramatically in the last several millenia in response to deforestation, farming and mining. In the past 50 years, however, increased soil conservation and local reversion of agricultural land to forest, as well as river diversion and dam construction, have decreased the suspended sediment loads of many European rivers. Improved mining and manufacturing techniques, as well as more effective use of fertilizers and improved waste treatment, almost surely will result in lower dissolved solids and nutrient fluxes to the coastal environments, which presently are the highest in the world. The long-range effects of changed land use on estuarine and coastal environments remain to be seen, although decreased sediment loads in the past 20-40 years have already

  12. Water and sediment dynamics in the context of climate change and variability (Cañete river, Peru).

    Science.gov (United States)

    Rosas, Miluska; Vanacker, Veerle; Huggel, Christian; Gutierrez, Ronald R.

    2017-04-01

    Water erosion is one of the main environmental problems in Peru. The elevated rates of soil erosion are related to the rough topography of the Andes, shallow soils, highly erosive climate and the inappropriate land use management. Agricultural activities are directly affected by the elevated soil erosion rates, either through reduced crop production and/or damage to irrigation infrastructure. Similarly, the development of water infrastructure and hydropower facilities can be negatively affected by high sedimentation rates. However, critical information about sediment production, transport and deposition is still mostly lacking. This paper focuses on sediment dynamics in the context of land use and climate change in the Peruvian Andes. Within the Peruvian Coastal Range, the catchment of the Cañete River is studied as it plays an important role in the social and economic development of the region, and due to its provision of water and energy to rural and urban areas. The lower part of the basin is an arid desert, the middle sub-humid part sustains subsistence agriculture, and the upper part of the basin is a treeless high-elevation puna landscape. Snow cover and glaciers are present at its headwaters located above 5000 m asl. The retreat of glaciers due to climate change is expected to have an impact on water availability, and the production and mobilization of sediment within the river channels. Likewise, climate variability and land cover changes might trigger an important increase of erosion and sediment transport rates. The methodology applied to face this issue is principally based on the analysis of sediment samples recollected in the basin in the period 1998 to 2001, and the application of a water and sediment routing model. The paper presents new data on the sensitivity of water infrastructure and hydropower facilities to climate-induced changes in sediment mobilization.

  13. Spatial Variability of Metals in Surface Water and Sediment in the Langat River and Geochemical Factors That Influence Their Water-Sediment Interactions

    Directory of Open Access Journals (Sweden)

    Wan Ying Lim

    2012-01-01

    Full Text Available This paper determines the controlling factors that influence the metals’ behavior water-sediment interaction facies and distribution of elemental content (75As, 111Cd, 59Co, 52Cr, 60Ni, and 208Pb in water and sediment samples in order to assess the metal pollution status in the Langat River. A total of 90 water and sediment samples were collected simultaneously in triplicate at 30 sampling stations. Selected metals were analyzed using ICP-MS, and the metals’ concentration varied among stations. Metal concentrations of water ranged between 0.08–24.71 μg/L for As, <0.01–0.53 μg/L for Cd, 0.06–6.22 μg/L for Co, 0.32–4.67 μg/L for Cr, 0.80–24.72 μg/L for Ni, and <0.005–6.99 μg/L for Pb. Meanwhile, for sediment, it ranged between 4.47–30.04 mg/kg for As, 0.02–0.18 mg/kg for Cd, 0.87–4.66 mg/kg for Co, 4.31–29.04 mg/kg for Cr, 2.33–8.25 mg/kg for Ni and 5.57–55.71 mg/kg for Pb. The average concentration of studied metals in the water was lower than the Malaysian National Standard for Drinking Water Quality proposed by the Ministry of Health. The average concentration for As in sediment was exceeding ISQG standards as proposed by the Canadian Sediment Quality Guidelines. Statistical analyses revealed that certain metals (As, Co, Ni, and Pb were generally influenced by pH and conductivity. These results are important when making crucial decisions in determining potential hazardous levels of these metals toward humans.

  14. Impact of dechlorination processes on the sediment-water exchange of PCDD/F in Passaic river cores

    Energy Technology Data Exchange (ETDEWEB)

    Adriaens, P.; Khijniak, A. [Civil and Environmental Engineering, Univ. of Michigan, Ann Arbor (United States); Jones, K.; Green, N. [Environmental Science, Lancaster Univ. (United Kingdom); Gruden, C. [Univ. of Toledo, OH (United States)

    2004-09-15

    The potential for natural dechlorination processes in sediments to impact the biogeochemical cycling of dioxins and furans has been proposed as a possible mechanism to explain the prevalence of lesser halogenated dioxins and furans at the air-water interface. The hypothesis was supported by multiple lines of evidence, but has not been directly demonstrated. Field evidence indicated dynamic air-water exchange of PCDD/Fs in the Raritan Bay/Hudson River Estuary, whereby lesser chlorinated (predominantly diCDD/F) were present in the particle and apparent dissolved phase. Fugacity calculations indicated that the water column served as the source of these homologue groups. Laboratory evidence from Passaic River sediment cores and microbiallymediated dechlorination demonstrated that historic dioxins can undergo extensive dechlorination reactions, culminating in the formation of mono-and diCDD homologues. Similar pathways have been observed with PCDF, resulting in the accumulation of triCDF. The current paper reports on an investigation addressing the hypothesis of whether the lesser chlorinated PCDD/F observed at the air-water interface could be the result of selective dissolution of these congeners or homologues from sediments as they are produced during microbial dechlorination.

  15. Impacts of the dam-orientated water-sediment regulation scheme on the lower reaches and delta of the Yellow River (Huanghe): A review

    Science.gov (United States)

    Wang, Houjie; Wu, Xiao; Bi, Naishuang; Li, Song; Yuan, Ping; Wang, Aimei; Syvitski, James P. M.; Saito, Yoshiki; Yang, Zuosheng; Liu, Sumei; Nittrouer, Jeffrey

    2017-10-01

    The water-sediment regulation scheme (WSRS), beginning in 2002, is an unprecedented engineering effort to manage the Yellow River with the aims to mitigate the siltation both in the lower river channel and within the Xiaolangdi Reservoir utilizing the dam-regulated flood water. Ten years after its initial implementation, multi-disciplinary indicators allow us to offer a comprehensive review of this human intervention on a river-coastal system. The WSRS generally achieved its objective, including bed erosion in the lower reaches with increasing capacity for flood discharge and the mitigation of reservoir siltation. However, the WSRS presented unexpected disturbances on the delta and coastal system. Increasing grain size of suspended sediment and decreasing suspended sediment concentration at the river mouth resulted in a regime shift of sediment transport patterns that enhanced the disequilibrium of the delta. The WSRS induced an impulse delivery of nutrients and pollutants within a short period ( 20 days), which together with the altered hydrological cycle, impacted the estuarine and coastal ecosystem. We expect that the sediment yield from the loess region in the future will decrease due to soil-conservation practices, and the lower channel erosion will also decrease as the riverbed armors with coarser sediment. These, in combination with uncertain water discharge concomitant with climate change, increasing water demands and delta subsidence, will put the delta and coastal ocean at high environmental risks. In the context of global change, this work depicts a scenario of human impacts in the river basin that were transferred along the hydrological pathway to the coastal system and remotely transformed the different components of coastal environment. The synthesis review of the WSRS indicates that an integrated management of the river-coast continuum is crucially important for the sustainability of the entire river-delta system. The lessons learned from the WSRS in

  16. Antibiotics in surface water and sediments from Hanjiang River, Central China: Occurrence, behavior and risk assessment.

    Science.gov (United States)

    Hu, Ying; Yan, Xue; Shen, Yun; Di, Mingxiao; Wang, Jun

    2018-08-15

    Thirteen antibiotics including sulfonamides (SAs), tetracyclines (TETs) and fluoroquinolones (FQs) were measured in Hanjiang River (HR) during two periods. The total concentrations of 13 antibiotics in surface water and sediments ranged from 3.1 to 109 ng/l and from 10 to 45 ng/g dry weight, respectively. SAs were dominant in water while the concentrations of TETs were the highest in sediments in two seasons. For their spatial distribution, total concentrations of 13 antibiotics in both matrices were significantly higher in the lower section of HR (p  5.15) due to wastewater release, agricultural activities and water transfer project. Obvious seasonal variations of sulfadiazine, sulfameter, trimethoprim and oxytetracycline in water were observed (p  4.62). Phase partition of antibiotics between water and sediments suggested a greater affinity of TETs and FQs to sediments. In addition, significantly positive relationships were found between SAs (sulfameter, sulfamethoxazole and trimethoprim) and sediment TOC (p Risk assessment indicated that the hazard quotients of antibiotics were higher in the sediment than those in the water. Moreover, antibiotic mixtures posed higher ecological risks to aquatic organisms. Copyright © 2018 Elsevier Inc. All rights reserved.

  17. Chemical variability of water and sediment over time and along a mountain river subjected to natural and human impact

    Directory of Open Access Journals (Sweden)

    Szarek-Gwiazda Ewa

    2018-01-01

    Full Text Available We studied the variability of physico-chemical parameters in water, and heavy metal contents in water and sediment over time and along the Carpathian Biała Tarnowska River (southern Poland and related them to catchment geology, human impact and the effect of barriers as a side aspect. The river water was well oxygenated, had pH 7.7–9.5 and was characterised by low and average flow. Temperature, pH and dissolved oxygen did not change significantly, while the contents of major ions, NO3−, NH4+, Mn and Fe increased gradually along the river. The major ion contents were negatively, and nitrate, Mn, and Fe positively, correlated with the flow. We recognise correlations between nitrate, Fe and Mn to be good indicators of soil erosion processes in the catchment. River sediment was unpolluted by most of the studied metals (slightly polluted by Ni and Cd. The differences in the values of some parameters (pH and NH4+, PO43−, HCO3−, Mn, Cd and Pb concentrations in the water, and heavy metals in the sediment upstream and downstream of some of the barriers were determined. Spatiotemporal changes in the values of studied parameters and the results of statistical calculation indicate the impact of human activity in the catchment basin (land use, wastewater on the water chemistry.

  18. Transport and deposition of asbestos-rich sediment in the Sumas River, Whatcom County, Washington

    Science.gov (United States)

    Curran, Christopher A.; Anderson, Scott W.; Barbash, Jack E.; Magirl, Christopher S.; Cox, Stephen E.; Norton, Katherine K.; Gendaszek, Andrew S.; Spanjer, Andrew R.; Foreman, James R.

    2016-02-08

    Heavy sediment loads in the Sumas River of Whatcom County, Washington, increase seasonal turbidity and cause locally acute sedimentation. Most sediment in the Sumas River is derived from a deep-seated landslide of serpentinite that is located on Sumas Mountain and drained by Swift Creek, a tributary to the Sumas River. This mafic sediment contains high amounts of naturally occurring asbestiform chrysotile. A known human-health hazard, asbestiform chrysotile comprises 0.25–37 percent, by mass, of the total suspended sediment sampled from the Sumas River as part of this study, which included part of water year 2011 and all of water years 2012 and 2013. The suspended-sediment load in the Sumas River at South Pass Road, 0.6 kilometers (km) downstream of the confluence with Swift Creek, was 22,000 tonnes (t) in water year 2012 and 49,000 t in water year 2013. The suspended‑sediment load at Telegraph Road, 18.8 km downstream of the Swift Creek confluence, was 22,000 t in water year 2012 and 27,000 t in water year 2013. Although hydrologic conditions during the study were wetter than normal overall, the 2-year flood peak was only modestly exceeded in water years 2011 and 2013; runoff‑driven geomorphic disturbance to the watershed, which might have involved mass wasting from the landslide, seemed unexceptional. In water year 2012, flood peaks were modest, and the annual streamflow was normal. The fact that suspended-sediment loads in water year 2012 were equivalent at sites 0.6 and 18.8 km downstream of the sediment source indicates that the conservation of suspended‑sediment load can occur under normal hydrologic conditions. The substantial decrease in suspended-sediment load in the downstream direction in water year 2013 was attributed to either sedimentation in the intervening river reach, transfer to bedload as an alternate mode of sediment transport, or both.The sediment in the Sumas River is distinct from sediment in most other river systems because of the

  19. Dispersal of suspended sediments in the turbid and highly stratified Red River plume

    Science.gov (United States)

    van Maren, D. S.; Hoekstra, P.

    2005-03-01

    The Red River, annually transporting 100 million tons of sediment, flows into a shallow shelf sea where it rapidly deposits most of its sediment on a prograding delta front. Oceanographic cruises were carried out in February-March and July-August 2000 to determine the vertical structure of the Ba Lat river plume and sediment transport patterns on the delta front. The surface waters in the coastal zone were strongly stratified with a low density and high sediment concentration during the larger part of the wet season, caused by low mixing rates of river plumes with ambient water. The river plume is advected to the south by a well-developed coastal current which originates from the river plumes that enter the Gulf of Tonkin North of the Ba Lat and are deflected southward by the Coriolis force. Sediment predominantly leaves the surface plume by settling from suspension and less by mixing of fresh and marine water. A one-dimensional model for plume deposition valid for fair weather conditions indicates that most sediment is deposited within 10 km and southward of the river mouth. Of prime importance for this depositional pattern is the phase relation between river outflow and tidal currents, in combination with the southward surface flow; alongshore advection is very low during outflow of the turbid river plume. The agreement of modeled plume sedimentation patterns with long-term bathymetric changes strongly suggests that fair weather depositional processes determine delta front development. This may be related to the fact that reworking of sediment mainly occurs several months after the peak deposition period; in the meantime sediment compaction and consolidation have increased the shear strength of deposited sediments.

  20. How have the river discharges and sediment loads changed in the Changjiang River basin downstream of the Three Gorges Dam?

    Science.gov (United States)

    Guo, Leicheng; Su, Ni; Zhu, Chunyan; He, Qing

    2018-05-01

    Streamflow and sediment loads undergo remarkable changes in worldwide rivers in response to climatic changes and human interferences. Understanding their variability and the causes is of vital importance regarding river management. With respect to the Changjiang River (CJR), one of the largest river systems on earth, we provide a comprehensive overview of its hydrological regime changes by analyzing long time series of river discharges and sediment loads data at multiple gauge stations in the basin downstream of Three Gorges Dam (TGD). We find profound river discharge reduction during flood peaks and in the wet-to-dry transition period, and slightly increased discharges in the dry season. Sediment loads have reduced progressively since 1980s owing to sediment yield reduction and dams in the upper basin, with notably accelerated reduction since the start of TGD operation in 2003. Channel degradation occurs in downstream river, leading to considerable river stage drop. Lowered river stages have caused a 'draining effect' on lakes by fostering lake outflows following TGD impoundments. The altered river-lake interplay hastens low water occurrence inside the lakes which can worsen the drought given shrinking lake sizes in long-term. Moreover, lake sedimentation has decreased since 2002 with less sediment trapped in and more sediment flushed out of the lakes. These hydrological changes have broad impacts on river flood and drought occurrences, water security, fluvial ecosystem, and delta safety.

  1. The impact of major earthquakes and subsequent sewage discharges on the microbial quality of water and sediments in an urban river.

    Science.gov (United States)

    Devane, Megan L; Moriarty, Elaine M; Wood, David; Webster-Brown, Jenny; Gilpin, Brent J

    2014-07-01

    A series of large earthquakes struck the city of Christchurch, New Zealand in 2010-2011. Major damage sustained by the sewerage infrastructure required direct discharge of up to 38,000 m(3)/day of raw sewage into the Avon River of Christchurch for approximately six months. This allowed evaluation of the relationship between concentrations of indicator microorganisms (Escherichia coli, Clostridium perfringens and F-RNA phage) and pathogens (Campylobacter, Giardia and Cryptosporidium) in recreational water and sediment both during and post-cessation of sewage discharges. Giardia was the pathogen found most frequently in river water and sediment, although Campylobacter was found at higher levels in water samples. E. coli levels in water above 550 CFU/100 mL were associated with increased likelihood of detection of Campylobacter, Giardia and Cryptosporidium, supporting the use of E. coli as a reliable indicator for public health risk. The strength of the correlation of microbial indicators with pathogen detection in water decreased in the following order: E. coli>F-RNA phage>C. perfringens. All the microorganisms assayed in this study could be recovered from sediments. C. perfringens was observed to accumulate in sediments, which may have confounded its usefulness as an indicator of fresh sewage discharge. F-RNA phage, however, did not appear to accumulate in sediment and in conjunction with E. coli, may have potential as an indicator of recent human sewage discharge in freshwater. There is evidence to support the low-level persistence of Cryptosporidium and Giardia, but not Campylobacter, in river sediments after cessation of sewage discharges. In the event of disturbances of the sediment, it is highly probable that there could be re-mobilisation of microorganisms beyond the sediment-water exchange processes occurring under base flow conditions. Re-suspension events do, therefore, increase the potential risk to human health for those who participate in recreational

  2. Summary of sediment data from the Yampa river and upper Green river basins, Colorado and Utah, 1993-2002

    Science.gov (United States)

    Elliott, John G.; Anders, Steven P.

    2004-01-01

    The water resources of the Upper Colorado River Basin have been extensively developed for water supply, irrigation, and power generation through water storage in upstream reservoirs during spring runoff and subsequent releases during the remainder of the year. The net effect of water-resource development has been to substantially modify the predevelopment annual hydrograph as well as the timing and amount of sediment delivery from the upper Green River and the Yampa River Basins tributaries to the main-stem reaches where endangered native fish populations have been observed. The U.S. Geological Survey, in cooperation with the Colorado Division of Wildlife and the U.S. Fish and Wildlife Service, began a study to identify sediment source reaches in the Green River main stem and the lower Yampa and Little Snake Rivers and to identify sediment-transport relations that would be useful in assessing the potential effects of hydrograph modification by reservoir operation on sedimentation at identified razorback spawning bars in the Green River. The need for additional data collection is evaluated at each sampling site. Sediment loads were calculated at five key areas within the watershed by using instantaneous measurements of streamflow, suspended-sediment concentration, and bedload. Sediment loads were computed at each site for two modes of transport (suspended load and bedload), as well as for the total-sediment load (suspended load plus bedload) where both modes were sampled. Sediment loads also were calculated for sediment particle-size range (silt-and-clay, and sand-and-gravel sizes) if laboratory size analysis had been performed on the sample, and by hydrograph season. Sediment-transport curves were developed for each type of sediment load by a least-squares regression of logarithmic-transformed data. Transport equations for suspended load and total load had coefficients of determination of at least 0.72 at all of the sampling sites except Little Snake River near

  3. Long-Term Impact of Sediment Deposition and Erosion on Water Surface Profiles in the Ner River

    Directory of Open Access Journals (Sweden)

    Tomasz Dysarz

    2017-02-01

    Full Text Available The purpose of the paper is to test forecasting of the sediment transport process, taking into account two main uncertainties involved in sediment transport modeling. These are: the lack of knowledge regarding future flows, and the uncertainty with respect to which sediment transport formula should be chosen for simulations. The river reach chosen for study is the outlet part of the Ner River, located in the central part of Poland. The main characteristic of the river is the presence of an intensive morphodynamic process, increasing flooding frequency. The approach proposed here is based on simulations with a sediment-routing model and assessment of the hydraulic condition changes on the basis of hydrodynamic calculations for the chosen characteristic flows. The data used include Digital Terrain Models (DTMs, cross-section measurements, and hydrological observations from the Dabie gauge station. The sediment and hydrodynamic calculations are performed using program HEC-RAS 5.0. Twenty inflow scenarios are of a 10-year duration and are composed on the basis of historical data. Meyer-Peter and Müller and Engelund-Hansen formulae are applied for the calculation of sediment transport intensity. The methodology presented here seems to be a good tool for the prediction of long-term impacts on water surface profiles caused by sediment deposition and erosion.

  4. 2010 Hudson River Shallow Water Sediment Cores

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Hudson River Shallow Water Mapping project characterizes the bottom of the Hudson River Estuary in shallow water (<3 m). The characterization includes...

  5. Metal concentrations in surface water and sediments from Pardo River, Brazil: human health risks.

    Science.gov (United States)

    Alves, Renato I S; Sampaio, Carolina F; Nadal, Martí; Schuhmacher, Marta; Domingo, José L; Segura-Muñoz, Susana I

    2014-08-01

    Pardo River (Brazil) is suffering from an important anthropogenic impact due to the pressure of highly populated areas and the influence of sugarcane cultivation. The objective of the present study was to determine the levels of 13 trace elements (As, Be, Cd, Cr, Cu, Pb, Mn, Hg, Ni, Tl, Sn, V and Zn) in samples of surface water and sediments from the Pardo River. Furthermore, the human health risks associated with exposure to those metals through oral intake and dermal absorption were also evaluated. Spatial and seasonal trends of the data were closely analyzed from a probabilistic approach. Manganese showed the highest mean concentrations in both water and sediments, remarking the incidence of the agricultural activity and the geological characteristics within the basin. Thallium and arsenic were identified as two priority pollutants, being the most important contributors to the Hazard Index (HI). Since non-carcinogenic risks due to thallium exposure slightly exceeded international guidelines (HI>1), a special effort should be made on this trace element. However, the current concentrations of arsenic, a carcinogenic element, were in accordance to acceptable lifetime risks. Nowadays, there is a clear increasing growth in human population and economic activities in the Pardo River, whose waters have become a serious strategic alternative for the potential supply of drinking water. Therefore, environmental monitoring studies are required not only to assure that the current state of pollution of Pardo River does not mean a risk for the riverside population, but also to assess the potential trends in the environmental levels of those elements. Copyright © 2014 Elsevier Inc. All rights reserved.

  6. Effects of mining activities on heavy metal concentrations in water, sediment, and macroinvertebrates in different reaches of the Pilcomayo River, South America.

    Science.gov (United States)

    Smolders, A J P; Lock, R A C; Van der Velde, G; Medina Hoyos, R I; Roelofs, J G M

    2003-04-01

    From 1997 until 1999 the extent and the ecological effects of zinc, copper, lead, and cadmium pollution were studied in different reaches of the South American Pilcomayo River. A comparison of metal concentrations in water, sediment, and chironomid larvae, as well as the diversity of macroinvertebrate species, was made between sites near the origin of the Pilcomayo River, with hardly any mining activities, sites in the Potosí region, with intensive mining, and sites located 500 km or further downstream of Potosí, in the Chaco plain. Samples were also collected in an unpolluted river (Cachi Mayu River) and in the Tarapaya River, which is strongly contaminated by mine tailings (1000 tons a day). The upper parts of the Pilcomayo River are strongly affected by the release of mine tailings from the Potosí mines where mean concentrations of lead, cadmium, copper, and zinc in water, filtered water, sediment, and chironomid larvae were up to a thousand times higher than the local background levels. The diversity of the benthic macroinvertebrate community was strongly reduced in the contaminated parts; 97% of the benthic macroinvertebrates consisted of chironomid larvae. The degree of contamination in the lower reaches of the river, however, was fairly low because of sedimentation processes and the strong dilution of mine tailings with enormous amounts of clean sediment from erosion processes. Analysis of sediment cores from the Ibibobo floodplain, however, reveal an increase of the heavy metal concentrations in the lower reaches since the introduction of the contaminating flotation process in the mine industry in 1985.

  7. Evolution of Metallic Trace Elements in Contaminated River Sediments: Geochemical Variation Along River Linear and Vertical Profile

    Science.gov (United States)

    Kanbar, Hussein; Montarges-Pelletier, Emmanuelle; Mansuy-Huault, Laurence; Losson, Benoit; Manceau, Luc; Bauer, Allan; Bihannic, Isabelle; Gley, Renaud; El Samrani, Antoine; Kobaissi, Ahmad; Kazpard, Veronique; Villieras, Frédéric

    2015-04-01

    Metal pollution in riverine systems poses a serious threat that jeopardizes water and sediment quality, and hence river dwelling biota. Since those metallic pollutants can be transported for long distances via river flow, river management has become a great necessity, especially in times where industrial activities and global climate change are causing metal release and spreading (by flooding events). These changes are able to modify river hydrodynamics, and as a consequence natural physico-chemical status of different aquatic system compartments, which in turn alter metal mobility, availability and speciation. Vertical profiles of sediments hold the archive of what has been deposited for several tenths of years, thus they are used as a tool to study what had been deposited in rivers beds. The studied area lies in the Orne river, northeastern France. This river had been strongly modified physically and affected by steelmaking industrial activities that had boosted in the middle of the last century. This study focuses on several sites along the linear of the Orne river, as well as vertical profiles of sediments. Sediment cores were collected at sites where sedimentation is favoured, and in particular upstream two dams, built in the second half of the XXth century for industrial purposes. Sediment cores were sliced into 2-5cm layers, according to suitability, and analysed for physical and physico-chemical properties, elemental content and mineralogy. Data of the vertical profile in a sediment core is important to show the evolution of sediments as a function of depth, and hence age, in terms of nature, size and constituents. The physical properties include particle size distribution (PSD) and water content. In addition, the physico-chemical properties, such as pH and oxido-reduction potential (ORP) of interstitial water from undisturbed cores were also detected. Total elemental content of sediment and available ones of extracted interstitial waters was detected using

  8. Baseline trace metals in water and sediment of the Baleh River-a tropical river in Sarawak, Malaysia.

    Science.gov (United States)

    Sim, Siong Fong; Chai, Hui Ping; Nyanti, Lee; Ling, Teck Yee; Grinang, Jongkar

    2016-09-01

    Quantitative indices are classically employed to evaluate the contamination status of metals with reference to the baseline concentrations. The baselines vary considerably across different geographical zones. It is imperative to determine the local geochemical baseline to evaluate the contamination status. No study has been done to establish the background concentrations in tropical rivers of this region. This paper reports the background concentrations of metals in water and sediment of the Baleh River, Sarawak, derived based on the statistical methods where the areas possibly disturbed are distinguished from the undisturbed area. The baseline levels of six elements in water determined were Al (0.34 mg/L), Fe (0.51 mg/L), Mn (0.12 mg/L), Cu (0.01 mg/L), Pb (0.03 mg/L), and Zn (0.05 mg/L). Arsenic and selenium were below the detection limit. For sediment, the background values were established according to statistical methods including (mean + 2σ), iterative 2σ, cumulative distribution frequency, interquartile, and calculation distribution function. The background values derived using the iterative 2σ algorithm and calculated distribution function were relatively lower. The baseline levels calculated were within the range reported in the literatures mainly from tropical and sub-tropical regions. The upper limits proposed for nine elements in sediment were Al (100,879 mg/kg), Cr (75.45 mg/kg), Cu (34.59 mg/kg), Fe (37,823 mg/kg), Mn (793 mg/kg), Ni (22.88 mg/kg), Pb (27.26 mg/kg), Zn (70.64 mg/kg), and Hg (0.33 mg/kg). Quantitative indices calculated suggest low risk of contamination at the Baleh River.

  9. The fate of arsenic in a river acidified by volcanic activity and an acid thermal water and sedimentation mechanism.

    Science.gov (United States)

    Ogawa, Yasumasa; Yamada, Ryoichi; Shinoda, Kozo; Inoue, Chihiro; Tsuchiya, Noriyoshi

    2014-01-01

    The Shozu-gawa river, located in the Aomori Prefecture, northern Japan, is affected by volcanic activities and acid thermal waters. The river is unique because both solid arsenic (As; as orpiment, As2S3) and dissolved As are supplied to the river from the uppermost caldera lake (Usori-ko Lake) and thermal ponds. The watershed is an excellent site for investigating the fate of different As species in a fluvial system. Upstream sediments near the caldera lake and geothermal ponds are highly contaminated by orpiment. This solid phase is transported as far as the mouth of the river. On the other hand, dissolved As is removed from the river system by hydrous ferric oxides (HFOs); however, HFO formation and removal of dissolved As do not occur in the uppermost area of the watershed, resulting in further downstream transport of dissolved As. Consequently, upstream river sediments are enriched in orpiment, whereas As(v), which is associated with HFOs in river sediments, increases downstream. Furthermore, orpiment particles are larger, and possibly heavier, than those of HFO with sorbed As. Fractionation between different chemical states of As during transport in the Shozu-gawa river is facilitated not only by chemical processes (i.e., sorption of dissolved As by HFOs), but also by physical factors (i.e., gravity). In contrast to acid mine drainage (AMD), in some areas of the Shozu-gawa river, both solid forms of As (as sulfide minerals) and dissolved As are introduced into the aquatic system. Considering that the stabilities of sulfide minerals are rather different from those of oxides and hydroxides, river sediments contacted with thermal waters possibly act as sources of As under both aerobic and anaerobic conditions.

  10. Effects of farmhouse hotel and paper mill effluents on bacterial community structures in sediment and surface water of Nanxi River, China.

    Science.gov (United States)

    Lu, Xiao-Ming; Lu, Peng-Zhen

    2014-11-01

    The pyrosequencing technique was used to evaluate bacterial community structures in sediment and surface water samples taken from Nanxi River receiving effluents from a paper mill and a farmhouse hotel, respectively. For each sample, 4,610 effective bacterial sequences were selected and used to do the analysis of diversity and abundance, respectively. Bacterial phylotype richness in the sediment sample without effluent input was higher than the other samples, and the surface water sample with addition of effluent from the paper mill contained the least richness. Effluents from both the paper mill and farmhouse hotel have a potential to reduce the bacterial diversity and abundance in the sediment and surface water, especially it is more significant in the sediment. The effect of the paper mill effluent on the sediment and surface water bacterial communities was more serious than that of the farmhouse hotel effluent. Characterization of microbial community structures in the sediment and surface water from two tributaries of the downstream river indicated that various effluents from the paper mill and farmhouse hotel have the similar potential to decrease the natural variability in riverine microbial ecosystems.

  11. Bronx River bed sediments phosphorus pool and phosphorus compound identification

    Science.gov (United States)

    Wang, J.; Pant, H. K.

    2008-12-01

    Phosphorus (P) transport in the Bronx River degraded water quality, decreased oxygen levels, and resulted in bioaccumulation in sediment potentially resulting in eutrophication, algal blooms and oxygen depletion under certain temperature and pH conditions. The anthropogenic P sources are storm water runoff, raw sewage discharge, fertilizer application in lawn, golf course and New York Botanical Garden; manure from the Bronx zoo; combined sewoverflows (CSO's) from parkway and Hunts Point sewage plant; pollutants from East River. This research was conducted in the urban river system in New York City area, in order to control P source, figure out P transport temporal and spatial variations and the impact on water quality; aimed to regulate P application, sharing data with Bronx River Alliance, EPA, DEP and DEC. The sediment characteristics influence the distribution and bioavailbility of P in the Bronx River. The P sequential extraction gave the quantitative analysis of the P pool, quantifying the inorganic and organic P from the sediments. There were different P pool patterns at the 15 sites, and the substantial amount of inorganic P pool indicated that a large amount P is bioavailable. The 31P- NMR (Nuclear Magnetic Resonance Spectroscopy) technology had been used to identify P species in the 15 sites of the Bronx River, which gave a qualitative analysis on phosphorus transport in the river. The P compounds in the Bronx River bed sediments are mostly glycerophophate (GlyP), nucleoside monophosphates (NMP), polynucleotides (PolyN), and few sites showed the small amount of glucose-6-phosphate (G6P), glycerophosphoethanoamine (GPEA), phosphoenopyruvates (PEP), and inosine monophosphate (IMP). The land use spatial and temporal variations influence local water P levels, P distributions, and P compositions.

  12. Assessment of heavy metal contamination in water and sediments of Trepça and Sitnica rivers, Kosovo, using pollution indicators and multivariate cluster analysis.

    Science.gov (United States)

    Ferati, Flora; Kerolli-Mustafa, Mihone; Kraja-Ylli, Arjana

    2015-06-01

    The concentrations of As, Cd, Cr, Co, Cu, Ni, Pb, and Zn in water and sediment samples from Trepça and Sitnica rivers were determined to assess the level of contamination. Six water and sediment samples were collected during the period from April to July 2014. Most of the water samples was found within the European and Kosovo permissible limits. The highest concentration of As, Cd, Pb, and Zn originates primarily from anthropogenic sources such discharge of industrial water from mining flotation and from the mine waste eroded from the river banks. Sediment contamination assessment was carried out using the pollution indicators such as contamination factor (CF), degree of contamination (Cd), modified degree of contamination (mCd), pollution load index (PLI), and geo-accumulation index (Igeo). The CF values for the investigated metals indicated a high contaminated nature of sediments, while the Cd values indicated a very high contamination degree of sediments. The mCd values indicate a high degree of contamination of Sitnica river sediment to ultrahigh degree of contamination of Trepça river sediment. The PLI values ranged from 1.89 to 14.1 which indicate that the heavy metal concentration levels in all investigated sites exceeded the background values and sediment quality guidelines. The average values of Igeo revealed the following ranking of intensity of heavy metal contamination of the Trepça and Sitnica river sediments: Cd > As > Pb > Zn > Cu > Co > Cr > Ni. Cluster analysis suggests that As, Cd, Cr, Co, Cu, Ni, Pb, and Zn are derived from anthropogenic sources, particularly discharges from mining flotation and erosion form waste from a zinc mine plant. In order to protect the sediments from further contamination, the designing of a monitoring network and reducing the anthropogenic discharges are suggested.

  13. Conceptual model of sedimentation in the Sacramento-San Joaquin River Delta

    Science.gov (United States)

    Schoellhamer, David H.; Wright, Scott A.; Drexler, Judith Z.

    2012-01-01

    Sedimentation in the Sacramento–San Joaquin River Delta builds the Delta landscape, creates benthic and pelagic habitat, and transports sediment-associated contaminants. Here we present a conceptual model of sedimentation that includes submodels for river supply from the watershed to the Delta, regional transport within the Delta and seaward exchange, and local sedimentation in open water and marsh habitats. The model demonstrates feedback loops that affect the Delta ecosystem. Submerged and emergent marsh vegetation act as ecosystem engineers that can create a positive feedback loop by decreasing suspended sediment, increasing water column light, which in turn enables more vegetation. Sea-level rise in open water is partially countered by a negative feedback loop that increases deposition if there is a net decrease in hydrodynamic energy. Manipulation of regional sediment transport is probably the most feasible method to control suspended sediment and thus turbidity. The conceptual model is used to identify information gaps that need to be filled to develop an accurate sediment transport model.

  14. Suspended sediment measurements in the Llobregat River Mouth

    International Nuclear Information System (INIS)

    Sotillo Membibre, M.

    2011-01-01

    Sediment concentrations were measured at the Llobregat river mouth near Barcelona, using an ADCP. the ADCP backscatter intensity was corrected fro sound loss in the water column and was calibrated to sediment concentrations on the basis of water samples, that were taken in the water column. This holds for cases where particles are small compared to the acoustic were length so that the Rayleigh scattering law applies, which is true the ADCP. (Author)

  15. ECOLOGICAL AND TOXICOLOGICAL ASSESSMENT OF POLLUTION LAVELS OF WATER AND SEDIMENTS OF NIVKA RIVER NEAR THE AIRPORT «KYIV»

    Directory of Open Access Journals (Sweden)

    I. Konovets

    2013-06-01

    Full Text Available The results of hydrochemical analyses and biotesting of surface water and sediments of Nivka river near the airport «Kiev» are presented. Exceeding of maximum permissible values for a number of indexes (COD, BOD5, ammonia and nitrates and considerable contamination of surface water and sediments by oil products and some of heavy metals is demonstrated.

  16. Field screening of water quality, bottom sediment, and biota associated with irrigation drainage in and near Walker River Indian Reservation, Nevada 1994-95

    Science.gov (United States)

    Thodal, Carl E.; Tuttle, Peter L.

    1996-01-01

    A study was begun in 1994 to determine whether the quality of irrigation drainage from the Walker River Indian Reservation, Nevada, has caused or has potential to cause harmful effects on human health or on fish and wildlife, or may adversely affect the suitability of the Walker River for other beneficial uses. Samples of water, bottom sediment, and biota were collected during June-August 1994 (during a drought year) from sites upstream from and on the Walker River Indian Reservation for analyses of trace elements. Other analyses included physical characteristics, major dissolved constituents, selected species of water-soluble nitrogen and phosphorus, and selected pesticides in bottom sediment. Water samples were collected again from four sites on the Reservation in August 1995 (during a wetterthan- average year) to provide data for comparing extreme climatic conditions. Water samples collected from the Walker River Indian Reservation in 1994 equaled or exceeded the Nevada water-quality standard or level of concern for at least one of the following: water temperature, pH, dissolved solids, unionized ammonia, phosphate, arsenic, boron, chromium, lead, and molybdenum; in 1995, only a single sample from one site exceeded a Nevada water-quality standard for molybdenum. Levels of concern for trace elements in bottom sediment collected in 1994 were equaled or exceeded for arsenic, iron, manganese, and zinc. Concentrations of organochiorine pesticide residues in bottom sediment were below analytical reporting limits. Levels of concern for trace-elements in samples of biota were equaled or exceeded for arsenic, boron, copper, and mercury. Results of toxicity testing indicate that only water samples from Walker Lake caused a toxic response in test bacteria. Arsenic and boron concentrations in water, bottom sediment, and biological tissue exceeded levels of concern throughout the Walker River Basin, but most commonly in the lower Walker River Basin. Mercury also was elevated

  17. Sedimentation Impacts Modeling for the Lower Elwha River

    Science.gov (United States)

    Beggs, M.; Kosaka, M.; Sigel, A.; Vandermause, R.; Lauer, J. W.

    2012-12-01

    The removal of Glines Canyon and Elwha Dams from the Elwha River, northwest Washington, is intended to restore natural geomorphic and ecological processes to the Elwha River basin. Prior to the start of dam removal, over 16 million cubic meters of sediment had accumulated in the reservoirs above the two dams. As dam removal progresses, a portion of this sediment will erode and then be deposited on the downstream river bed and floodplain. To address uncertainty in downstream response to the project, the United States Bureau of Reclamation is implementing an adaptive management plan that relies upon continuous monitoring of water levels at a set of stream gages along the river. To interpret the monitoring data and allow for rapid assessment of the rate of downstream sedimentation, we developed rating curves at several locations along the lower Elwha River. The curves consider a range of possible sedimentation scenarios, each involving different sedimentation levels and/or locations. One scenario considers sedimentation primarily in the river channel, another considers sedimentation primarily on the floodplain, and a third considers both possibilities in tandem. We modeled these scenarios using two separate approaches. First, we modified the cross sections in an existing U.S. Army Corps of Engineers HEC-RAS model to represent possible changes associated with geomorphic adjustment to the dam removals. In-channel sedimentation was assumed to occur as a constant fraction of the bankfull depth at any given section, thereby focusing geomorphic change in relatively deep pool areas. In the HEC-RAS model, off-channel sedimentation was assumed uniform. The HEC-RAS model showed that both low-flow and flood hydraulics are much more sensitive to plausible levels of in-channel sedimentation than to plausible levels of overbank sedimentation. The wide floodplain, complex secondary channels, and geomorphic evolution since the original cross sections were surveyed raise some

  18. Heavy metal profile of water, sediment and freshwater cat fish, Chrysichthys nigrodigitatus (Siluriformes: Bagridae, of Cross River, Nigeria

    Directory of Open Access Journals (Sweden)

    Ezekiel Olatunji Ayotunde

    2012-09-01

    Full Text Available Cross River serves as a major source of drinking water, transportation, agricultural activities and fishing in Cross River State, Nigeria. Since there is no formal control of effluents discharged into the river, it is important to monitor the levels of metals contaminants in it, thus assessing its suitability for domestic and agricultural use. In order to determine this, three sampling stations designated as Ikom (Station I, Obubra Ogada (Station II and Calabar (Station III were randomly selected to study. For this, ten samples of the freshwater Silver Catfish (Chryshchythys nigrogitatus (29.4-39.5cm SL, 310-510g, sediment and water were collected from each sampling Station from June 2009-June 2010. The heavy metals profiles of Zn, Cu, Fe, Co, Pb, Cd and Cr, in water, sediments and fish muscle were analyzed by atomic absorption spectrophotometry (AAS. In fish, the heavy metals concentration was found to be Cu>Fe>Zn>Cu>Pb>Cd>Co; the highest mean concentration of Copper (0.297±0.022 μg/g, Cadmium (0.011±0.007μg/g, Iron (0.371±0.489μg/g, Lead (0.008±0.008μg/g, were determined for the fish. In water, the order was found to be Fe>Pb>Zn>Cu>Cr>Cd>Co; the highest mean concentration of Iron (0.009±0.00μg/g, Copper (0.015±0.01 μg/g, Lead (0.0002±0.00μg/g Cadmium (0.0006±0.001μg/g, Zinc (0.0036±0.003μg/g, were observed in the surface water, respectively. The highest mean concentration of Copper (0.037±0.03μg/g, Iron (0.053±0.04μg/g, Lead (0.0002±0.00μg/g, Cobalt (0.0002±0.00μg/g, Cadmium (0.0006±0.001μg/g and Zinc (.009±0.0015μg/g was observed in the bottom water. In sediments, the concentration order found was Zn>Fe>Cu>Pb>Co>Cd; the highest mean concentration of 0.057±0.04μg/g, 0.043±0.03μg/g, 0.0006±0.00μg/g, 0.0002±0.00μg/g, 0.0009±0.00μg/g, 0.099±0.00404μg/g in Iron, Copper, Lead, Cobalt, Cadmium and Zinc were observed in the sediment, respectively; Chromium was not detected in the sediment for the whole

  19. Bi-objective analysis of water-sediment regulation for channel scouring and delta maintenance: A study of the lower Yellow River

    Science.gov (United States)

    Kong, D.; Miao, C.; Duan, Q.

    2016-12-01

    Long-term hydrological data and remotely-sensed satellite images were used to analyze the effects of the water-sediment regulation scheme (WSRS) implemented in the lower Yellow River (LYR), China, between 1983 and 2013. The WSRS aimed to control channel scouring in the LYR and maintain the Yellow River Delta (YRD). Channel erosion in the LYR has primarily depended on the incoming sediment concentration at Xiaolangdi, where the concentration must be lower than approximately 9.17 × 10-3 t m-3 to avoid rising of the riverbed. In 1996, an artificial diversion altered the evolution of the YRD. To maintain delta equilibrium, an average sediment load of about 441 × 106 t year-1 was required before 1996, after which this value decreased to 167 × 106 t year-1. We provide a preliminary estimate of the incoming water and sediment conditions required at the Xiaolangdi station to guarantee both LYR channel scouring and maintenance of the YRD. Our results show that it is feasible to transport sediment originally deposited in the LYR to the river mouth to maintain the delta, which is of great significance for the future management and environmental protection of the LYR.

  20. Efficiency of fluorescence in situ hybridization for bacterial cell identification in temporary river sediments with contrasting water content.

    Science.gov (United States)

    Fazi, Stefano; Amalfitano, Stefano; Pizzetti, Ilaria; Pernthaler, Jakob

    2007-09-01

    We studied the efficiency of two hybridization techniques for the analysis of benthic bacterial community composition under varying sediment water content. Microcosms were set up with sediments from four European temporary rivers. Wet sediments were dried, and dry sediments were artificially rewetted. The percentage of bacterial cells detected by fluorescence in situ hybridization with fluorescently monolabeled probes (FISH) significantly increased from dry to wet sediments, showing a positive correlation with the community activity measured via incorporation of (3)H leucine. FISH and signal amplification by catalyzed reporter deposition (CARD-FISH) could significantly better detect cells with low activity in dried sediments. Through the application of an optimized cell permeabilization protocol, the percentage of hybridized cells by CARD-FISH showed comparable values in dry and wet conditions. This approach was unrelated to (3)H leucine incorporation rates. Moreover, the optimized protocol allowed a significantly better visualization of Gram-positive Actinobacteria in the studied samples. CARD-FISH is, therefore, proposed as an effective technique to compare bacterial communities residing in sediments with contrasting water content, irrespective of differences in the activity state of target cells. Considering the increasing frequencies of flood and drought cycles in European temporary rivers, our approach may help to better understand the dynamics of microbial communities in such systems.

  1. High prevalence of multiple-antibiotic-resistant (MAR) Escherichia coli in river bed sediments of the Apies River, South Africa.

    Science.gov (United States)

    Abia, Akebe Luther King; Ubomba-Jaswa, Eunice; Momba, Maggy Ndombo Benteke

    2015-10-01

    This study aimed at investigating the presence of antibiotic-resistant Escherichia coli in river bed sediments of the Apies River, Gauteng, South Africa, in order to better inform health management decisions designed to protect users of the river. Overall, 180 water and sediment samples were collected at 10 sites along the Apies River from January to February 2014. E. coli was enumerated using the Colilert® 18/Quanti-Tray® 2000 (IDEXX). Isolates were purified by streaking on eosin methylene blue agar followed by the indole test. Pure E. coli isolates were tested for resistance to nine antibiotics by the Kirby-Bauer disc diffusion method. Over 98% of the isolates were resistant to at least one of the antibiotics tested. The highest resistance was observed against nitrofurantoin (sediments) and ampicillin (water). Over 80% of all resistant isolates showed multiple antibiotic resistance (resistance to ≥3 antibiotics). The abundance of E. coli in the sediments not only adds to the evidence that sediments are a reservoir for bacteria and possibly other pathogens including antibiotic-resistant bacteria but also suggests that antibiotic-resistant genes could be transferred to pathogens due to the high prevalence of multiple-antibiotic-resistant (MAR) strains of E. coli observed in the sediment. Using untreated water from the Apies River following resuspension for drinking and other household purposes could pose serious health risks for users. Our results suggest that river bed sediments could serve as reservoirs for MAR bacteria including pathogens under different climatic conditions and their analysis could provide information of public health concerns.

  2. Studies of Columbia River water quality

    International Nuclear Information System (INIS)

    Onishi, Y.; Johanson, P.A.; Baca, R.G.; Hilty, E.L.

    1976-01-01

    The program to study the water quality of the Columbia River consists of two separate segments: sediment and radionuclide transport and temperature analysis. Quasi-two dimensional (longitudinal and vertical directions) mathematical simulation models were developed for determining radionuclide inventories, their variations with time, and movements of sediments and individual radionuclides in the freshwater region of the Columbia River below Priest Rapids Dam. These codes are presently being applied to the river reach between Priest Rapids and McNary Dams for the initial sensitivity analysis. In addition, true two-dimensional (longitudinal and lateral directions) models were formulated and are presently being programmed to provide more detailed information on sediment and radionuclide behavior in the river. For the temperature analysis program, river water temperature data supplied by the U. S. Geological Survey for six ERDA-sponsored temperature recording stations have been analyzed and cataloged on storage devices associated with ERDA's CDC 6600 located at Richland, Washington

  3. A comparative study of the flux and fate of the Mississippi and Yangtze river sediments

    Directory of Open Access Journals (Sweden)

    K. Xu

    2015-03-01

    Full Text Available Large rivers play a key role in delivering water and sediment into the global oceans. Large-river deltas and associated coastlines are important interfaces for material fluxes that have a global impact on marine processes. In this study, we compare water and sediment discharge from Mississippi and Yangtze rivers by assessing: (1 temporal variation under varying climatic and anthropogenic impacts, (2 delta response of the declining sediment discharge, and (3 deltaic lobe switching and Holocene sediment dispersal patterns on the adjacent continental shelves. Dam constructions have decreased both rivers’ sediment discharge significantly, leading to shoreline retreat along the coast. The sediment dispersal of the river-dominated Mississippi Delta is localized but for the tide-dominated Yangtze Delta is more diffuse and influenced by longshore currents. Sediment declines and relative sea level rises have led to coastal erosion, endangering the coasts of both rivers.

  4. The Effects of Sediments Burdened by Sewerage Water Originating in Car Batteries Production in the Klenice River (CZ

    Directory of Open Access Journals (Sweden)

    Petra Beránková

    2009-01-01

    Full Text Available The aim of this work was to perform tests of genotoxicity and toxicity on samples of riverine sediments from a location subject to motor industry load (car battery production. Together with sediment samples we also collected benthos, biofilm and juvenile fish. Concentration of lead was established in all the samples since the sewage waters discharged from the car battery production plant are heavily polluted with lead. Genotoxicity was tested with two tests of genotoxicity: the SOS chromotest and the Escherichia coli WP2 test. The toxicity of sediments was tested with a test of toxicity performed on a water crustacean Daphnia magna. A profound toxic influence upon benthic organisms was found; a consequence of the river pollution with waste water and flush water from the car battery production plant. This toxic effect was also proven by an aqueous leach from the test performed with Daphnia magna. Both tests of genotoxicity proved a significant genotoxic potential of the sediment samples linked with the growth of the concentration of lead in the sediments (up to 647 mg kg-1. The content of lead also increased in the biofilm (up to 3.37 mg kg-1 of dry mass as well as in the fish bodies (up to 804.5 mg kg-1 of dry mass. This thesis is the first study of the load imposed on this river as a consequence of the waste water and flush water discharge from the motor industry production plant (car battery production.

  5. RIVER-RAD, Radionuclide Transport in Surface Waters

    International Nuclear Information System (INIS)

    1996-01-01

    1 - Description of program or function: RIVER-RAD assesses the potential fate of radionuclides released to rivers. The model is simplified in nature and is intended to provide guidance in determining the potential importance of the surface water pathway, relevant transport mechanisms, and key radionuclides in estimating radiological dose to man. 2 - Method of solution: A compartmental linear transfer model is used in RIVER-RAD. The river system model in the code is divided into reaches (compartments) of equal size, each with a sediment compartment below it. The movement of radionuclides is represented by a series of transfers between the reaches, and between the water and sediment compartments of each reach. Within each reach (for both the water and sediment compartments), the radionuclides are assumed to be uniformly mixed. Upward volatilization is allowed from the water compartment, and the transfer of radionuclides between the reaches is determined by the flow rate of the river. Settling and resuspension velocities determine the transfer of absorbed radionuclides between the water and sediment compartments. Radioactive decay and decay-product buildup are incorporated into all transport calculations for all radionuclide chains specified by the user. Each nuclide may have unique input and removal rates. Volatilization and radiological decay are considered as linear rate constants in the model. 3 - Restrictions on the complexity of the problem: None noted

  6. Screening of the persistent organic pollutants in sediments of almendares river

    International Nuclear Information System (INIS)

    Castanno, Zoila; Depauw, E.; Focant, J.; Micaela, S.; Rodriguez, A.; Heydrich, Mayra

    2006-01-01

    The Almendares river the most important river of the city, show a critic situation due to the contamination of water and sediments with non treated or inefficient treatment of the domestic and industrial residues (Y. Nunnez). Previous studies performed in Cuba investigated the contamination of this river (R. Marsan), those studies describe the determination of heavy metals in water as well as in sediments and also have been tested the nutrient content (A. Rodriguez et all), physic-chemicals properties and microbiological analysis. However, there is not available information about levels of concentration and spatial distribution of polychlorinated dibenzo-p-dioxins (PCDDs), polychlorinated dibenzofuran (PCDFs), and polychlorinated biphenyls (PCB). Taking into consideration these antecedents, the purpose of this work was the application of analytical methods for the detection of these organic compounds in the sediment of Almendares river

  7. [Sediment-water flux and processes of nutrients and gaseous nitrogen release in a China River Reservoir].

    Science.gov (United States)

    Chen, Zhu-hong; Chen, Neng-wang; Wu, Yin-qi; Mo, Qiong-li; Zhou, Xing-peng; Lu, Ting; Tian, Yun

    2014-09-01

    The key processes and fluxes of nutrients (N and P) and gaseous N (N2 and N2O) across the sediment-water interface in a river reservoir (Xipi) of the Jiulong River watershed in southeast China were studied. Intact core sediment incubation of nutrients exchange, in-situ observation and lab incubation of excess dissolved N2 and N2O (products of nitrification, denitrification and Anammox), and determination of physiochemical and microbe parameters were carried out in 2013 for three representative sites along the lacustrine zone of the reservoir. Results showed that ammonium and phosphate were generally released from sediment to overlying water [with averaged fluxes of N (479.8 ± 675.4) mg. (m2. d)-1 and P (4. 56 ± 0.54) mg. (m2 d) -1] , while nitrate and nitrite diffused into the sediment. Flood events in the wet season could introduce a large amount of particulate organic matter that would be trapped by the dam reservoir, resulting in the high release fluxes of ammonium and phosphate observed in the following low-flow season. No clear spatial variation of sediment nutrient release was found in the lacustrine zone of the reservoir. Gaseous N release was dominated by excess dissolved N2 (98% of total), and the N2 flux from sediment was (15.8 ± 12. 5) mg (m2. d) -1. There was a longitudinal and vertical variation of excess dissolved N2, reflecting the combined results of denitrification and Anammox occurring in anoxic sediment and fluvial transport. Nitrification mainly occurred in the lower lacustrine zone, and the enrichment of N2O was likely regulated by the ratio of ammonium to DIN in water.

  8. Vertical distribution of radioactive particles in Ottawa River sediment near the Chalk River Laboratories

    International Nuclear Information System (INIS)

    Lee, D.R.; Hartwig, D.S.

    2011-01-01

    Previously, we described an area of above-background levels of radioactivity in the bed of the Ottawa River near the Chalk River Laboratories. The area was about 200 m wide by 400 m long and in water 8 to 30 m deep. The source of the radioactivity was associated with the location of cooling-water discharge. Particles of radioactive material were later recovered from the upper 10-15 cm of sediment and were determined to be sand-sized grains of nuclear fuel and corrosion products. This report provides an examination of the vertical distribution of radioactive particles in the riverbed. Twenty-three dredge samples (representing 1.2 m 2 of riverbed) were collected near the Process Outfall. Each dredge sample was dissected in horizontal intervals 1-cm-thick. Each interval provided a 524 cm 3 sample of sediment that was carefully examined for particulate radioactivity. Approximately 80% of the radioactivity appeared to be associated with discrete particles. Although the natural sediment in the general area is cohesive, silty clay and contains less than 10% sand, the sediment near the Outfall was found to be rich in natural sand, presumably from sources such as winter sanding of roads at the laboratories. The radioactive particles were almost entirely contained in the top-most 10 cm of the river bed. The majority of the particles were found several centimetres beneath the sediment surface and the numbers of particles and the radioactivity of the particles peaked 3 to 7 cm below the sediment surface. Based on the sediment profile, there appeared to have been a marked decrease in the deposition of particulate radioactivity in recent decades. The vertical distribution of radioactive particles indicated that sedimentation is resulting in burial and that the deposition of most of the particulate radioactivity coincided with the operation of Chalk River's NRX reactor from 1947 to 1992. (author)

  9. Climate Change on Discharge and Sedimentation of River Awara, Nigeria

    Directory of Open Access Journals (Sweden)

    Philipa O. Idogho

    2014-07-01

    Full Text Available The dynamics of variation in effect of climate change on discharges and sedimentation mechanism of River Awara is investigated using 14-year data of rainfall (mm, discharges (m 3 /s, temperature ( 0 c and sediment load (t. Surface runoff (mm was computed using Water Balance Equation and some other empirical iteration based on the observed rainfall and temperature over a period of time. Analysis of Paired Sample reveals the relationship between tested hydrological variables: Rainfall-Runoff; Runoff-Sediment load; and DischargeSediment load are significant at 0.95 level of confidence interval. Logarithm calibration curve further illustrates that Rainfall-Runoff and Runoff-Sediment have coefficient values (R 2 of 0.996 and 0.822 respectively. Analytical iteration shows that the intensity and duration of precipitation determine the magnitude of river, generation of surface runoff and sedimentation rate. Increase in rainfall depth by 100 mm within the 14-year has resulted to serious erodobility and erositivity around River Awara. Cumulative average sediment load ratio of 0.46 has significantly reduced the reservoir capacity of the river by 10%. 78% of total annual surface runoff is lost to ocean; since reservoir capacity has been silted up which in turns reduces the volume of water that could be held for storage, treatment and distribution for its intended purposes. Comparative physics-based output indicates that temperature increase of 0.7 0 c between 1997 and 2004, due to internal processes of the Earth and some human activities. It is however projected that temperature will rise by 0.9 0 c by the end of 2015. Projected rise in temperature will adversely affect hydrological cycle and complicate already scarce-water resources due to intensive evapotranspiration, infiltration and reduction in stream flow. Holistic integration using bottom-up mechanism needs to be applied to address this constraint. Dredging of river Awara is very important to enhance

  10. Water quality assessment in the "German River of the years 2014/2015": how a case study on the impact of a storm water sedimentation basin displayed impairment of fish health in the Argen River (Southern Germany).

    Science.gov (United States)

    Thellmann, Paul; Kuch, Bertram; Wurm, Karl; Köhler, Heinz-R; Triebskorn, Rita

    2017-01-01

    The present work investigates the impact of discharges from a storm water sedimentation basin (SSB) receiving runoff from a connected motorway in southern Germany. The study lasted for almost two years and was aimed at assessing the impact of the SSB on the fauna of the Argen River, which is a tributary of Lake Constance. Two sampling sites were examined up- and downstream of the SSB effluent. A combination of different diagnostic methods (fish embryo test with the zebrafish, histopathology, micronucleus test) was applied to investigate health impairment and genotoxic effects in indigenous fish as well as embryotoxic potentials in surface water and sediment samples of the Argen River, respectively, in samples of the SSB effluent. In addition, sediment samples from the Argen River and tissues of indigenous fish were used for chemical analyses of 33 frequently occurring pollutants by means of gas chromatography. Furthermore, the integrity of the macrozoobenthos community and the fish population were examined at both investigated sampling sites. The chemical analyses revealed a toxic burden with trace substances (originating from traffic and waste water) in fish and sediments from both sampling sites. Fish embryo tests with native sediment and surface water samples resulted in various embryotoxic effects in exposed zebrafish embryos (Fig. 1). In addition, the health condition of the investigated fish species (e.g., severe alterations in the liver and kidney) provided clear evidence of water contamination at both Argen River sites (Fig. 2). At distinct points in time, some parameters (fish development, kidney and liver histopathology) indicated stronger effects at the sampling site downstream of the SSB effluent than at the upstream site. Our results clearly showed that the SSB cannot be assigned as the main source of pollutants that are released into the investigated Argen River section. Moreover, we showed that there is moderate background pollution with substances

  11. Effective Discharge and Annual Sediment Yield on Brazos River

    Science.gov (United States)

    Rouhnia, M.; Salehi, M.; Keyvani, A.; Ma, F.; Strom, K. B.; Raphelt, N.

    2012-12-01

    Geometry of an alluvial river alters dynamically over the time due to the sediment mobilization on the banks and bottom of the river channel in various flow rates. Many researchers tried to define a single representative discharge for these morphological processes such as "bank-full discharge", "effective discharge" and "channel forming discharge". Effective discharge is the flow rate in which, the most sediment load is being carried by water, in a long term period. This project is aimed to develop effective discharge estimates for six gaging stations along the Brazos River from Waco, TX to Rosharon, TX. The project was performed with cooperation of the In-stream Flow Team of the Texas Water Development Board (TWDB). Project objectives are listed as: 1) developing "Flow Duration Curves" for six stations based on mean-daily discharge by downloading the required, additional data from U.S Geological Survey website, 2) developing "Rating Curves" for six gaging stations after sampling and field measurements in three different flow conditions, 3) developing a smooth shaped "Sediment Yield Histogram" with a well distinguished peak as effective discharge. The effective discharge was calculated using two methods of manually and automatic bin selection. The automatic method is based on kernel density approximation. Cross-sectional geometry measurements, particle size distributions and water field samples were processed in the laboratory to obtain the suspended sediment concentration associated with flow rate. Rating curves showed acceptable trends, as the greater flow rate we experienced, the more sediment were carried by water.

  12. Sedimentation and Its Impacts/Effects on River System and Reservoir Water Quality: case Study of Mazowe Catchment, Zimbabwe

    Science.gov (United States)

    Tundu, Colleta; Tumbare, Michael James; Kileshye Onema, Jean-Marie

    2018-04-01

    Sediment delivery into water sources and bodies results in the reduction of water quantity and quality, increasing costs of water purification whilst reducing the available water for various other uses. The paper gives an analysis of sedimentation in one of Zimbabwe's seven rivers, the Mazowe Catchment, and its impact on water quality. The Revised Universal Soil Loss Equation (RUSLE) model was used to compute soil lost from the catchment as a result of soil erosion. The model was used in conjunction with GIS remotely sensed data and limited ground observations. The estimated annual soil loss in the catchment indicates soil loss ranging from 0 to 65 t ha yr-1. Bathymetric survey at Chimhanda Dam showed that the capacity of the dam had reduced by 39 % as a result of sedimentation and the annual sediment deposition into Chimhanda Dam was estimated to be 330 t with a specific yield of 226 t km-2 yr-1. Relationship between selected water quality parameters, TSS, DO, NO3, pH, TDS, turbidity and sediment yield for selected water sampling points and Chimhanda Dam was analyzed. It was established that there is a strong positive relationship between the sediment yield and the water quality parameters. Sediment yield showed high positive correlation with turbidity (0.63) and TDS (0.64). Water quality data from Chimhanda treatment plant water works revealed that the quality of water is deteriorating as a result of increase in sediment accumulation in the dam. The study concluded that sedimentation can affect the water quality of water sources.

  13. Variation in flow and suspended sediment transport in a montane river affected by hydropeaking and instream mining

    Science.gov (United States)

    Béjar, M.; Vericat, D.; Batalla, R. J.; Gibbins, C. N.

    2018-06-01

    The temporal and spatial variability of water and sediment loads of rivers is controlled by a suite of factors whose individual effects are often difficult to disentangle. While land use changes and localised human activities such as instream mining and hydropeaking alter water and sediment transfer, tributaries naturally contribute to discharge and sediment load of mainstem rivers, and so may help compensate upstream anthropogenic factors. The work presented here aimed to assess water and the sediment transfer in a river reach affected by gravel extraction and hydropeaking, set against a backdrop of changes to the supply of water and sediment from tributaries. Discharge and suspended sediment transport were monitored during two average hydrological years at three cross-sections along a 10-km reach of the upper River Cinca, in the Southern Pyrenees. Water and sediment loads differed substantially between the reaches. The upper reach showed a largely torrential discharge regime, controlled mainly by floods, and had high but variable water and sediment loads. The middle reach was influenced markedly by hydropeaking and tributary inflows, which increased its annual water yield four-fold. Suspended sediment load in this reach increased by only 25% compared to upstream, indicating that dilution predominated. In the lowermost section, while discharge remained largely unaltered, sediment load increased appreciably as a result of changes to sediment availability from instream mining and inputs from tributaries. At the reach scale, snowmelt and summer and autumn thunderstorms were responsible for most of the water yield, while flood flows determined the magnitude and transport of the sediment load. The study highlights that a combination of natural and human factors control the spatial and temporal transfer of water and sediment in river channels and that, depending on their geographic location and effect-size, can result in marked variability even over short downstream

  14. Pesticides in Water and Suspended Sediment of the Alamo and New Rivers, Imperial Valley/Salton Sea Basin, California, 2006-2007

    Science.gov (United States)

    Orlando, James L.; Smalling, Kelly L.; Kuivila, Kathryn

    2008-01-01

    Water and suspended-sediment samples were collected at eight sites on the Alamo and New Rivers in the Imperial Valley/Salton Sea Basin of California and analyzed for both current-use and organochlorine pesticides by the U.S. Geological Survey. Samples were collected in the fall of 2006 and spring of 2007, corresponding to the seasons of greatest pesticide use in the basin. Large-volume water samples (up to 650 liters) were collected at each site and processed using a flow-through centrifuge to isolate suspended sediments. One-liter water samples were collected from the effluent of the centrifuge for the analysis of dissolved pesticides. Additional samples were collected for analysis of dissolved organic carbon and for suspended-sediment concentrations. Water samples were analyzed for a suite of 61 current-use and organochlorine pesticides using gas chromatography/mass spectrometry. A total of 25 pesticides were detected in the water samples, with seven pesticides detected in more than half of the samples. Dissolved concentrations of pesticides observed in this study ranged from below their respective method detection limits to 8,940 nanograms per liter (EPTC). The most frequently detected compounds in the water samples were chlorpyrifos, DCPA, EPTC, and trifluralin, which were observed in more than 75 percent of the samples. The maximum concentrations of most pesticides were detected in samples from the Alamo River. Maximum dissolved concentrations of carbofuran, chlorpyrifos, diazinon, and malathion exceeded aquatic life benchmarks established by the U.S. Environmental Protection Agency for these pesticides. Suspended sediments were analyzed for 87 current-use and organochlorine pesticides using microwave-assisted extraction, gel permeation chromatography for sulfur removal, and either carbon/alumina stacked solid-phase extraction cartridges or deactivated Florisil for removal of matrix interferences. Twenty current-use pesticides were detected in the suspended-sediment

  15. Cyclic Sediment Trading Between Channel and River Bed Sediments

    Science.gov (United States)

    Haddadchi, A.

    2015-12-01

    Much of the previous work on sediment tracing has focused on determining either the initial sources of the sediment (soils derive from a particular rock type) or the erosion processes generating the sediment. However, alluvial stores can be both a source and sink for sediment transported by streams. Here geochemical and fallout radionuclide tracing of river-bed and alluvial sediments are used to determine the role of secondary sources, sediment stores, as potential sources of sediment leaving Emu Creek catchment, southeastern Queensland, Australia. Activity concentrations of 137Cs on the river sediments are consistent with channel erosion being the dominant source at all sites sampled along the river. To characterise the deposition and remobilisation cycles in the catchment, a novel geochemical tracing approach was used. Successive pockets of alluvium were treated as discrete sink terms within geochemical mixing models and their source contributions compared with those of river bed sediments collected adjacent to each alluvial pocket. Three different size fractions were examined; silts and clays (banks indicates a high degree of 'trading' between the fluvial space and the alluvial space. Hence, management works aimed at primarily reducing the supply of sediments to the outlet of Emu Creek should focus on rehabilitation of channel banks in the lower catchment.

  16. Lower Charles River Bathymetry: 108 Years of Fresh Water

    Science.gov (United States)

    Yoder, M.; Sacarny, M.

    2017-12-01

    The Lower Charles River is a heavily utilized urban river that runs between Cambridge and Boston in Massachusetts. The recreational usage of the river is dependent on adequate water depths, but there have been no definitive prior studies on the sedimentation rate of the Lower Charles River. The river transitioned from tidal to a freshwater basin in 1908 due to the construction of the (old) Charles River Dam. Water surface height on the Lower Charles River is maintained within ±1 foot through controlled discharge at the new Charles River Dam. The current study area for historical comparisons is from the old Charles River Dam to the Boston University Bridge. This study conducted a bathymetric survey of the Lower Charles River, digitized three prior surveys in the study area, calculated volumes and depth distributions for each survey, and estimated sedimentation rates from fits to the volumes over time. The oldest chart digitized was produced in 1902 during dam construction deliberations. The average sedimentation rate is estimated as 5-10 mm/year, which implies 1.8-3.5 feet sedimentation since 1908. Sedimentation rates and distributions are necessary to develop comprehensive management plans for the river and there is evidence to suggest that sedimentation rates in the shallow upstream areas are higher than the inferred rates in the study area.

  17. Assessment of chemical and biological significance of arsenical species in the Maurice River drainage basin (N. J. ). Part I. Distribution in water and river and lake sediments

    Energy Technology Data Exchange (ETDEWEB)

    Faust, S.D.; Winka, A.J.; Belton, T.

    1987-01-01

    Levels of arsenic were determined in the bottom sediments and waters of the Maurice River, Blackwater Branch, and Union Lake, (N.J.) that were contaminated by a local chemical industry. This was the only known source of the arsenic. Levels of total arsenic in the sediments and waters were determined quarterly over the course of one year. Sediments were extracted for water soluble and total extractable arsenic fractions and partitioned into four species: monomethylarsonic acid (MMAA), dimethylarsinic acid (DMAA), arsenite (As(III)), and arsenate (As(V)). In Union Lake at a shallow sandy sediment site, As (V) predominates. In organic sediments, As (III) or (V) predominate depending upon the dissolved oxygen content of the overlying waters. The oxidations state of the arsenic was affected also by the seasonal lake cycles of stratifying or mixing.

  18. Sources, distribution, and mobility of plutonium and radiocesium in soils, sediments and water of the Hudson River Estuary and watershed

    International Nuclear Information System (INIS)

    Linsalata, P.

    1984-01-01

    Results of 239 240 Pu, 238 Pu and 137 Cs measurements are reported for soil cores sampled within the watershed, for many sediment cores and surface dredge samples taken along the length of the Hudson River Estuary and for water samples collected on a continuous basis in both fresh and estuarine reaches. Accumulations of 239 240 Pu and 137 Cs measured within sediment cores taken from discrete regions of the river-estuary were summed to arrive at total sediment inventories of 1.6 +/- 0.7 Ci and 53 +/- 20 Ci, respectively. The variability observed in the sediment accumulation of radionuclides is discussed in terms of the physical and chemical characteristics of the river-estuary. Plutonium-239,240 and 137 Cs were similary distributed in sediments and water sampled from fresh water reaches of the Hudson with activity ratios (i.e., 239 240 Pu/ 1 2number 7 Cs) ranging from 0.01 to 0.03. Distribution coefficients, which were determined both in vitro and in situ were similar for both nuclides (i.e., from 1 x 10 5 to 3 x 10 5 L.kg -1 ) in fresh water, but diverged significantly (as a result of increased 137 Cs solubility) in brackish waters that exhibited chlorinities in excess of 1-2 g Cl - .L -1 . The concentrations of 239 240 Pu and 137 Cs observed in fresh water samples were primarily functions of the suspended load. Approximately 60-70% of the annual downstream transport of 239 240 Pu and 137 Cs calculated during 1980 and 1981 (i.e., 4 +/- 0.5 mCi and 515 +/- 84 mCi, respectively) was associated with suspended particulates greater than or equal to 0.45 μm. An empirical model was developed to determine the rates of vertical migration of these nuclides in soils of the watershed

  19. Surface Water Geochemistry, Sediment, and Field Parameters During Snowmelt and Monsoons in the New Mexico Reach of the Animas and San Juan Rivers, 2016

    Science.gov (United States)

    Blake, J.; Brown, J. E.; Mast, A.

    2017-12-01

    Following the release of three million gallons of metals laden surface water from the Gold King Mine in August 2015, surface-water samples were collected in the New Mexico reach of the Animas and San Juan Rivers during 2016 snowmelt and in the Animas River during three 2016 monsoonal storms. These samples were evaluated for dissolved (turbidity and specific conductance can provide insight to changes in concentrations of the river on a finer time scale. Regression models developed for selected sites on the Animas and San Juan Rivers show that flow, turbidity and specific conductance may be useful in understanding the relationship between total metal concentrations and real-time parameters. Surrogates for suspended sediment such as hydroacoustic may also be useful, and potentially the best option in this system, for monitoring the concentration of metals in surface water. Further evaluation of the chemistry of the watershed soils and bedrock, the streambed sediments, and suspended sediments will improve understanding of the geochemical processes in the Animas and San Juan Rivers.

  20. 2013 Flood Waters "Flush" Pharmaceuticals and other Contaminants of Emerging Concern into the Water and Sediment of the South Platte River, Colorado

    Science.gov (United States)

    Battaglin, W. A.; Bradley, P. M.; Paschke, S.; Plumlee, G. S.; Kimbrough, R.

    2016-12-01

    In September 2013, heavy rainfall caused severe flooding in Rocky Mountain National Park (ROMO) and environs extending downstream into the main stem of the South Platte River. In ROMO, flooding damaged infrastructure and local roads. In the tributary canyons, flooding damaged homes, septic systems, and roads. On the plains, flooding damaged several wastewater treatment plants. The occurrence and fate of pharmaceuticals and other contaminants of emerging concern (CECs) in streams during flood conditions is poorly understood. We assessed the occurrence and fate of CECs in this flood by collecting water samples (post-peak flow) from 4 headwaters sites in ROMO, 7 sites on tributaries to the South Platte River, and 6 sites on the main stem of the South Platte; and by collecting flood sediment samples (post-flood depositional) from 14 sites on tributaries and 10 sites on the main stem. Water samples were analysed for 110 pharmaceuticals and 69 wastewater indicators. Sediment samples were analysed for 57 wastewater indicators. Concentrations and numbers of CECs detected in water increased markedly as floodwaters moved downstream and some were not diluted despite the large flow increases in downstream reaches of the affected rivers. For example, in the Cache la Poudre River in ROMO, no pharmaceuticals and 1 wastewater indicator compound (camphor) were detected. At Greeley, the Cache la Poudre was transporting 19 pharmaceuticals [total concentration of 0.69 parts-per-billion (ppb)] and 22 wastewater indicators (total concentration of 2.81 ppb). In the South Platte downstream from Greeley, 24 pharmaceuticals (total concentration of 1.47 ppb) and 24 wastewater indicators (total concentration of 2.35 ppb) were detected. Some CECs such as the combustion products pyrene, fluoranthene, and benzo(a)pyrene were detected only at sub-ppb concentrations in water, but were detected at concentrations in the hundreds of ppb in flood sediment samples.

  1. The internal strength of rivers: autogenic processes in control of the sediment load (Tana River, Kenya)

    Science.gov (United States)

    Geeraert, Naomi; Ochieng Omengo, Fred; Tamooh, Fredrick; Paron, Paolo; Bouillon, Steven; Govers, Gerard

    2014-05-01

    mobilised within the river during a given event travels slower than the water. The highly dynamic behaviour of the river is further demonstrated by the rapid changes in river cross-section at Garissa and meander migration rates of several m y-1. In order to estimate a time frame for which changes in sediment inputs will be reflected in the sediment concentration at Garissa a single box model was developed. Results indicate that the effects of sediment blockage by the dams will only be visible after several hundreds to perhaps thousands of years. This clearly shows that autogenic processes are dominant in the lower Tana River and that, therefore, changes in sediment delivery cannot be detected in the sediment discharge record. More generally, understanding and interpreting the dynamics of such river systems requires that autogenic processes are correctly accounted for.

  2. Occurrence of diarrhoeagenic Escherichia coli virulence genes in water and bed sediments of a river used by communities in Gauteng, South Africa.

    Science.gov (United States)

    Abia, Akebe Luther King; Ubomba-Jaswa, Eunice; Momba, Maggy Ndombo Benteke

    2016-08-01

    In most developing countries, especially in Southern Africa, little is known about the presence of diarrhoeagenic Escherichia coli (DEC) pathotypes in riverbed sediments. The present study sought to investigate the presence of DEC virulence genes in riverbed sediments of the Apies River, a river used by many communities in Gauteng, South Africa. Water and sediment samples were collected from the river between July and August 2013 (dry season) and also between January and February 2014 (wet season) following standard procedures. Isolation of E. coli was done using the Colilert®-18 Quanti-Tray® 2000 system. DNA was extracted from E. coli isolates using the InstaGene™ matrix from Bio-Rad and used as template DNA for real-time PCR. Water pH, temperature, dissolved oxygen, electrical conductivity and turbidity were measured in situ. Over 59 % of 180 samples analysed were positive for at least one of the seven DEC virulence genes investigated. The eaeA gene was the most isolated gene (29.44 %) while the ipaH gene the least isolated (8.33 %). The ipaH gene (p = 0.012) and the ST gene (stIa, p = 0.0001, and stIb, p = 0.019) were positively correlated with temperature. The detection of diarrhoeagenic E. coli virulence genes in the sediments of the Apies River shows that the sediments of this river might not only be a reservoir of faecal indicator bacteria like E. coli but also pathogenic strains of this bacterium. These organisms could represent a public health risk for poor communities relying on this water source for various purposes such as drinking and recreational use. There is therefore an urgent need to monitor these DEC pathotypes especially in areas without adequate water supplies.

  3. Benthic iron and phosphorus release from river dominated shelf sediments under varying bottom water O2 concentrations.

    Science.gov (United States)

    Ghaisas, N. A.; Maiti, K.; White, J. R.

    2017-12-01

    Phosphorus (P) cycling in coastal ocean is predominantly controlled by river discharge and biogeochemistry of the sediments. In coastal Louisiana, sediment biogeochemistry is strongly influenced by seasonally fluctuating bottom water O2, which, in turn transitions the shelf sediments from being a sink to source of P. Sediment P-fluxes were 9.73 ± 0.76 mg / m2 /d and 0.67±0.16 mg/m2/d under anaerobic and aerobic conditions respectively, indicating a 14 times higher P-efflux from oxygen deprived sediments. A high sedimentary oxygen consumption rate of 889 ± 33.6 mg/m2/d was due to organic matter re-mineralization and resulted in progressively decreasing the water column dissolved O2 , coincident with a P-flux of 7.2 ± 5.5 mg/m2/d from the sediment. Corresponding water column flux of Fe total was 19.7 ± 7.80 mg/m2/d and the sediment-TP decreased from 545 mg/Kg to 513 mg/Kg. A simultaneous increase in pore water Fe and P concentrations in tandem with a 34.6% loss in sedimentary Fe-bound P underscores the importance of O2 on coupled Fe- P biogeochemistry. This study suggests that from a 14,025 sq. km hypoxia area, Louisiana shelf sediments can supply 1.33x105 kg P/day into the water column compared to 0.094 x 105 kg P/day during the fully aerobic water column conditions.

  4. Monitoring the impact of urban effluents on mineral contents of water and sediments of four sites of the river Ravi, Lahore.

    Science.gov (United States)

    Shakir, Hafiz Abdullah; Qazi, Javed Iqbal; Chaudhry, Abdul Shakoor

    2013-12-01

    We assessed the impact of urban effluents on the concentrations of selected minerals (Cd, Cr, Cu, Fe, Pb, Zn, Mn, Ni, and Hg) in river Ravi before and after its passage through Lahore city. Water and sediment samples were collected from three lowly to highly polluted downstream sites (Shahdera (B), Sunder (C), and Balloki (D)) alongside the least polluted upstream site (Siphon (A)) during high and low river flow seasons. All the mineral concentrations increased up to site C but stabilized at site D, showing some recovery as compared to the third sampling site. The trend of mean mineral concentration was significantly higher during the low than the high flow season at all the sites. The mean Hg concentrations approached 0.14 and 0.12 mg/l at site A which increased (%) up to 107 and 25% at site B, 1,700 and 1,317% at site C, and 1,185 and 1,177% at site D during low and high river flows, respectively. All mineral concentrations were much higher in the sediment than the water samples. Mean Cd (917%), Cr (461%), Cu (300%), Fe (254%), Pb (179%), Zn (170%), Mn (723%), Ni (853%), and Hg (1,699%) concentrations were higher in riverbed sediments sampled from site C in comparison with the sample collected at site A during low flow season. The domestic and industrial discharges from Lahore city have created undesirable water qualities during the low river flow season. As majority of the mineral levels in the river Ravi were higher than the permissible and safe levels, this is of immediate concern for riverine fish consumers and the users of water for recreation and even irrigation. The use of these waters may pose health risks, and therefore, urgent intervention strategies are needed to minimize river water pollution and its impact on fish-consuming communities of this study area and beyond.

  5. Pollutants' Release, Redistribution and Remediation of Black Smelly River Sediment Based on Re-Suspension and Deep Aeration of Sediment.

    Science.gov (United States)

    Zhu, Lin; Li, Xun; Zhang, Chen; Duan, Zengqiang

    2017-04-01

    Heavily polluted sediment is becoming an important part of water pollution, and this situation is particularly acute in developing countries. Sediment has gradually changed from being the pollution adsorbent to the release source and has influenced the water environment and public health. In this study, we evaluated the pollutant distribution in sediment in a heavily polluted river and agitated the sediment in a heavily polluted river to re-suspend it and re-release pollutants. We found that the levels of chemical oxygen demand (COD), NH₄⁺-N, total nitrogen (TN), and total phosphorus (TP) in overlying water were significantly increased 60 min after agitation. The distribution of the pollutants in the sediment present high concentrations of pollutants congregated on top of the sediment after re-settling, and their distribution decreased with depth. Before agitation, the pollutants were randomly distributed throughout the sediment. Secondly, deep sediment aeration equipment (a micro-porous air diffuser) was installed during the process of sedimentation to study the remediation of the sediment by continuous aeration. The results revealed that deep sediment aeration after re-suspension significantly promoted the degradation of the pollutants both in overlying water and sediment, which also reduced the thickness of the sediment from 0.9 m to 0.6 m. Therefore, sediment aeration after suspension was efficient, and is a promising method for sediment remediation applications.

  6. Channel Morphology and Bed Sediment Characteristics Before and After Habitat Enhancement Activities in the Uridil Property, Platte River, Nebraska, Water Years 2005-2008

    Science.gov (United States)

    Kinzel, Paul J.

    2009-01-01

    Fluvial geomorphic data were collected by the United States Geological Survey from July 2005 to June 2008 (a time period within water years 2005 to 2008) to monitor the effects of habitat enhancement activities conducted in the Platte River Whooping Crane Maintenance Trust's Uridil Property, located along the Platte River, Nebraska. The activities involved the removal of vegetation and sand from the tops of high permanent islands and the placement of the sand into the active river channel. This strategy was intended to enhance habitat for migratory water birds by lowering the elevations of the high islands, thereby eliminating a visual obstruction for roosting birds. It was also thought that the bare sand on the lowered island surfaces could serve as potential habitat for nesting water birds. Lastly, the project supplied a local source of sediment to the river to test the hypothesis that this material could contribute to the formation of lower sandbars and potential nesting sites downstream. Topographic surveys on the islands and along river transects were used to quantify the volume of removed sand and track the storage and movement of the introduced sand downstream. Sediment samples were also collected to map the spatial distribution of river bed sediment sizes before and after the management activities. While the project lowered the elevation of high islands, observations of the sand addition indicated the relatively fine-grained sand that was placed in the active river channel was rapidly transported by the flowing water. Topographic measurements made 3 months after the sand addition along transects in the area of sediment addition showed net aggradation over measurements made in 2005. In the year following the sand addition, 2007, elevated river flows from local rain events generally were accompanied by net degradation along transects within the area of sediment addition. In the spring of 2008, a large magnitude flow event of approximately 360 cubic meters per

  7. Napa River Sediment TMDL Implementation and Habitat Enhancement Project

    Science.gov (United States)

    Information about the SFBWQP Napa River Sediment TMDL Implementation and Habitat Enhancement Project, part of an EPA competitive grant program to improve SF Bay water quality focused on restoring impaired waters and enhancing aquatic resources.

  8. Anoxia stimulates microbially catalyzed metal release from Animas River sediments.

    Science.gov (United States)

    Saup, Casey M; Williams, Kenneth H; Rodríguez-Freire, Lucía; Cerrato, José M; Johnston, Michael D; Wilkins, Michael J

    2017-04-19

    The Gold King Mine spill in August 2015 released 11 million liters of metal-rich mine waste to the Animas River watershed, an area that has been previously exposed to historical mining activity spanning more than a century. Although adsorption onto fluvial sediments was responsible for rapid immobilization of a significant fraction of the spill-associated metals, patterns of longer-term mobility are poorly constrained. Metals associated with river sediments collected downstream of the Gold King Mine in August 2015 exhibited distinct presence and abundance patterns linked to location and mineralogy. Simulating riverbed burial and development of anoxic conditions, sediment microcosm experiments amended with Animas River dissolved organic carbon revealed the release of specific metal pools coupled to microbial Fe- and SO 4 2- -reduction. Results suggest that future sedimentation and burial of riverbed materials may drive longer-term changes in patterns of metal remobilization linked to anaerobic microbial metabolism, potentially driving decreases in downstream water quality. Such patterns emphasize the need for long-term water monitoring efforts in metal-impacted watersheds.

  9. Anoxia stimulates microbially catalyzed metal release from Animas River sediments

    International Nuclear Information System (INIS)

    Saup, Casey M.; Williams, Kenneth H.; Rodríguez-Freire, Lucía; Cerrato, José M.; Johnston, Michael D.; Wilkins, Michael J.

    2017-01-01

    The Gold King Mine spill in August 2015 released 11 million liters of metal-rich mine waste to the Animas River watershed, an area that has been previously exposed to historical mining activity spanning more than a century. Although adsorption onto fluvial sediments was responsible for rapid immobilization of a significant fraction of the spill-associated metals, patterns of longer-term mobility are poorly constrained. Metals associated with river sediments collected downstream of the Gold King Mine in August 2015 exhibited distinct presence and abundance patterns linked to location and mineralogy. Simulating riverbed burial and development of anoxic conditions, sediment microcosm experiments amended with Animas River dissolved organic carbon revealed the release of specific metal pools coupled to microbial Fe- and SO 4 2- reduction. Results suggest that future sedimentation and burial of riverbed materials may drive longer-term changes in patterns of metal remobilization linked to anaerobic microbial metabolism, potentially driving decreases in downstream water quality. Such patterns emphasize the need for long-term water monitoring efforts in metal-impacted watersheds.

  10. Faecal contamination of water and sediment in the rivers of the Scheldt drainage network.

    Science.gov (United States)

    Ouattara, Nouho Koffi; Passerat, Julien; Servais, Pierre

    2011-12-01

    The Scheldt watershed is characterized by a high population density, intense industrial activities and intensive agriculture and breeding. A monthly monitoring (n = 16) of the abundance of two faecal indicator bacteria (FIB), Escherichia coli and intestinal enterococci (IE), showed that microbiological water quality of the main rivers of the Scheldt drainage network was poor (median values ranging between 1.4 × 10(3) and 4.0 × 10(5) E. coli (100 mL)( -1) and between 3.4 × 10(2) and 7.6 × 10(4) IE (100 mL)( -1)). The Zenne River downstream from Brussels was particularly contaminated. Glucuronidase activity was measured in parallel and was demonstrated to be a valid surrogate for a rapid evaluation of E. coli concentration in the river waters. FIB were also investigated in the river sediments; their abundance was sometimes high (average values ranging between 2.1 × 10(2) and 3.3 × 10(5) E. coli g( -1) and between 1.0 × 10(2) and 1.7 × 10(5) IE g( -1)) but was not sufficient to contribute significantly to the river water contamination during resuspension events, except for the Scheldt and the Nethe Rivers. FIB were also quantified in representative point sources (wastewater treatment plants) and non-point sources (runoff water and soil leaching on different types of land use) of faecal contamination. The comparison of the respective contribution of point and non-point sources at the scale of the Scheldt watershed showed that point sources were largely predominant.

  11. Effect of ship locking on sediment oxygen uptake in impounded rivers

    DEFF Research Database (Denmark)

    Lorke, A.; McGinnis, D. F.; Maeck, A.

    2012-01-01

    In the majority of large river systems, flow is regulated and/or otherwise affected by operational and management activities, such as ship locking. The effect of lock operation on sediment-water oxygen fluxes was studied within a 12.9 km long impoundment at the Saar River (Germany) using eddy....... Additional means by which the oxygen budget of the impoundment is affected by lock-induced flow variations are discussed. Citation: Lorke, A., D. F. McGinnis, A. Maeck, and H. Fischer (2012), Effect of ship locking on sediment oxygen uptake in impounded rivers, Water Resour. Res., 48, W12514, doi: 10....... These wave-induced flow variations cause variations in sediment-water oxygen fluxes. While the mean flux during time periods without lock operation was 0.5 +/- 0.1 g m(-2) d(-1), it increased by about a factor of 2 to 1.0 +/- 0.5 g m(-2) d(-1) within time periods with ship locking. Following the daily...

  12. Determination of heavy toxic metals in the environment indicator specimens (water, river sediment and kangkung plant) of Muria terrestrial

    International Nuclear Information System (INIS)

    J Djati Pramana; Sukirno; Bambang Irianto

    2004-01-01

    Analysis and evaluation contain of heavy toxic metals in the water kangkung plant (Ipomea reptans poir) and river sediment of five rivers sampling location at peninsula Muria region by NAA Instrumental method has been done. The method of sampling. preparation although analysis method according to standard procedure of environmental specimens analysis. Accordingly the quality standard of water group C although group D. the sample from fifth river location sampling was under allowed maximum Cd concentration. Correlation between variable location and kind of indicators to heavy metal concentration was shown by coefficient of Pearson correlation. Interpretation by statistic correlation was obtained. Correlation between kind indicators was indicated that river water has significant correlation with the kangkung plant about Cd concentration. (author)

  13. Runoff and sediment variation in the areas with high and coarse sediment yield of the middle Yellow River

    Science.gov (United States)

    Zhang, Pan; Yao, Wenyi; Xiao, Peiqing; Sun, Weiying

    2018-02-01

    Massive water and soil conservation works (WSCW) have been conducted in the areas with high and coarse sediment yield of the middle Yellow River since 1982. With the impending effects of climate change, it is necessary to reconsider the effects of WSCW on runoff and sediment variation at decadal and regional scales. Using long-term official and synthesized data, the WSCW impacts on reducing water and soil loss were studied in Sanchuanhe River watershed. Results showed that the sediment and runoff generated from this area showed a decreasing trend in the past 50 years. A great progress has been achieved in erosion control since the 1970s. After the 4 soil and water conservation harnessing stages during the period from 1970 to 2006, the sediment and runoff yield showed decreases with the extension of harnessing. The results revealed that human activities exerted the largest effects on the sediment reduction and explained 66.6% of the variation in the specific sediment yield. The contribution of rainfall variation to runoff reduction was as large as human activities. A great benefit have been obtained in water and soil loss control in this area.

  14. Investigation of Sediment Pathways and Concealed Sedimentological Features in Hidden River Cave, Kentucky

    Science.gov (United States)

    Feist, S.; Maclachlan, J. C.; Reinhardt, E. G.; McNeill-Jewer, C.; Eyles, C.

    2016-12-01

    Hidden River Cave is part of a cave system hydrogeologically related to Mammoth Cave in Kentucky and is a multi-level active cave system with 25km of mapped passages. Upper levels experience flow during flood events and lower levels have continuously flowing water. Improper industrial and domestic waste disposal and poor understanding of local hydrogeology lead to contamination of Hidden River Cave in the early 1940s. Previously used for hydroelectric power generation and as a source of potable water the cave was closed to the public for almost 50 years. A new sewage treatment plant and remediation efforts since 1989 have improved the cave system's health. This project focuses on sedimentological studies in the Hidden River Cave system. Water and sediment transport in the cave are being investigated using sediment cores, surface sediment samples and water level data. An Itrax core scanner is used to analyze sediment cores for elemental concentrations, magnetic susceptibility, radiography, and high resolution photography. Horizons of metal concentrations in the core allow correlation of sedimentation events in the cave system. Thecamoebian (testate amoebae) microfossils identified in surface samples allow for further constraint of sediment sources, sedimentation rates, and paleoclimatic analysis. Dive recorders monitor water levels, providing data to further understand the movement of sediment through the cave system. A general time constraint on the sediment's age is based on the presence of microplastic in the surface samples and sediment cores, and data from radiocarbon and lead-210 dating. The integration of various sedimentological data allows for better understanding of sedimentation processes and their record of paleoenvironmental change in the cave system. Sediment studies and methodologies from this project can be applied to other karst systems, and have important applications for communities living on karst landscapes and their water management policies.

  15. Report on water quality, sediment and water chemistry data for water and sediment samples collected from source areas to Melton Hill and Watts Bar reservoirs

    International Nuclear Information System (INIS)

    Tomaszewski, T.M.; Bruggink, D.J.; Nunn, D.L.

    1995-01-01

    Contamination of surface water and sediments in the Clinch River and Watts Bar Reservoir (CR/WBR) system as a result of past and present activities by the US Department of Energy (DOE) on the Oak Ridge Reservation (ORR) and also activities by non-ORR facilities are being studied by the Clinch River Environmental Restoration Program (CR-ERP). Previous studies have documented the presence of heavy metals, organics, and radionuclides in the sediments of reservoirs in the vicinity. In support of the CR-ERP, during the summer of 1991, TVA collected and evaluated water and sediment samples from swimming areas and municipal water intakes on Watts Bar Reservoir, Melton Hill Reservoir and Norris Reservoir, which was considered a source of less-contaminated reference or background data. Despite the numerous studies, until the current work documented by this report, relatively few sediment or water samples had been collected by the CR-ERP in the immediate vicinity of contaminant point sources. This work focused on water and sediment samples taken from points immediately downstream from suspected effluent point sources both on and off the ORR. In August and September, 1994, TVA sampled surface water and sediment at twelve locations in melton Hill and Watts Bar Reservoirs

  16. Occurrence of organotin compounds in river sediments under the dynamic water level conditions in the Three Gorges Reservoir Area, China.

    Science.gov (United States)

    Gao, Jun-Min; Zhang, Ke; Chen, You-Peng; Guo, Jin-Song; Wei, Yun-Mei; Jiang, Wen-Chao; Zhou, Bin; Qiu, Hui

    2015-06-01

    The Three Gorges Project is the largest hydro project in the world, and the water level of the Three Gorges Reservoir (TGR) is dynamic and adjustable with the aim of flood control and electrical power generation. It is necessary to investigate the pollutants and their underlying contamination processes under dynamic water levels to determine their environmental behaviors in the Three Gorges Reservoir Area (TGRA). Here, we report the assessment of organotin compounds (OTs) pollution in the river sediments of the TGRA. Surface sediment samples were collected in the TGRA at low and high water levels. Tributyltin (TBT), triphenyltin (TPhT), and their degradation products in sediments were quantified by gas chromatography-mass spectrometry. Butyltins (BTs) and phenyltins (PhTs) were detected in sediments, and BTs predominated over PhTs in the whole study area under dynamic water level conditions. The concentrations of OTs in sediments varied markedly among locations, and significant concentrations were found in river areas with high levels of boat traffic and wastewater discharge. Sediments at all stations except Cuntan were lightly contaminated with TBT, and total organic carbon (TOC) was a significant factor affecting the fate of TBT in the TGRA. The butyltin and phenyltin degradation indices showed no recent inputs of TBT or TPhT into this region, with the exception of fresh TPhT input at Xiakou Town. Shipping activity, wastewater discharge, and agriculture are the most likely sources of OTs in the TGRA.

  17. Remote Sensing Analysis of Temperature and Suspended Sediment Concentration in Ayeyarwady River in Myanmar

    Science.gov (United States)

    Thanda Ko, Nyein; Rutten, Martine

    2017-04-01

    Detailed spatial coverage of water quality parameters are crucial to better manage rivers. However, collection of water quality parameters is both time consuming and costly for large rivers. This study demonstrates that Operational Land Image (OLI) Sensor on board of Landsat 8 can be successfully applied for the detection of spatial patterns of water temperature as well as suspended sediment concentration (SSC) using the Ayeyarwady river, Myanmar as a case study. Water temperature estimation was obtained from the brightness thermal Band 10 by using the Split-Window algorithm. The study finds that there is a close agreement between the remote sensing temperature and in-situ temperature with relative error in the range from 4.5% to 8.2%. The sediment load of Ayeyarwady river is ranked as the third-largest sediment load among the world's rivers but there is very little known about this important parameter, due to a lack of adequate gauge data. The single band reflectance of Landsat image (Band 5) seems a good indicator for the estimation of SSC with relative error in the range of less than 10% but the developed empirical formula by the power relation with the only seven ground reference points is uncertain to apply for the entire river basin. It is to note that an important constraint for the sediment analysis is the availability of spatial and temporal ground reference data. Future studies should also focus on the improvement of ground reference data points to become more reliable, because most of the river in Asia, especially in Myanmar, don't have readily available continuous ground sediment data points due to lack of measurement gauge stations through the river.

  18. Radioactivity and natural radionuclides distribution in river water, coastal water, sediment and Eichornia Crassipes (Mart) solms and their accumulation factor at Surabaya area

    International Nuclear Information System (INIS)

    Agus Taftazani; Sumining; Muzakky

    2002-01-01

    Distributions of radioactivity and natural radionuclides in water, sediment and eichornia crassipes (mart) solms from Surabaya River and coastal area have been evaluated. Five sampling locations were selected to represent fresh water and coastal water environment. The samples consist of water (fresh & coastal), bottom surface sediment and eichornia crassipes (mart) solms. The result showed that the gross-β activity from water environment were lower than the threshold value of Environmental Minister Act. Kep.02/MENKLH/I/1988 (1000 mBq/L) and indicated that β-radio ecological quality of water were still good. But the activity of the gross-α of water environment were higher than the threshold value of Environmental Minister Act. Kep.02/MENKLH/I/1988 (100 mBq/L). The eichornia crassipes (mart) solms (gross) activity were higher than water and sediment activities and indicated that transfer of radio nuclides from water to sediment and organism can be detected in water environment. Two natural radionuclide can be identified by γ-Spectrometric technique, they were K"4"0 and Tl"2"0"8. Generally the distribution factors F_D were smaller than bioaccumulation factor F_B. (author)

  19. Seasonal Variations and Yearly Trend Evaluations of Sedimentation Loads: A Case Study at Chalok River, Terengganu, Malaysia

    Directory of Open Access Journals (Sweden)

    Aida Soraya Shamsuddin

    2014-01-01

    Full Text Available The aims of this study were to determine the relationship between seasonal variations (wet and dry periods on sedimentation loads and to identify the yearly trend of sedimentation loads at Chalok River, Terengganu, Malaysia from 2003 to 2008. It was found that wet and dry periods influenced the transportation of suspended sediment into the river significantly. The highest suspended sediment loads at Chalok River occurred during the wet period when the intensity of rainfall is high. Besides, the rainfall, water level, stream flow and suspended sediment loads also were analysed using Spearman correlation to identify their relationships. The results showed significant positive relationship between suspended sediment loads with rainfall (r = 0.664, p< 0.05, water level (r = 0.923, p< 0.05 and stream flow (r = 0.919, p< 0.05. Multiple linear regressions revealed 63% of high suspended sediment loads at Chalok River can be explained by rainfall, water level and stream flow. The trends of rainfall, water level, stream flow and suspended sediment loads were analysed by using Mann-Kendall trend test where the results showed that there is a significant increasing trend for suspended sediment loads but no significant increase trend for rainfall, water level and stream flow over the studied periods. It is evident that the evaluations conducted in this study are useful in providing better understanding and reliable conclusion on the basis of seasonal variations and other environmental variables that affect the sedimentations loads in the river. Such effort provides holistic information for effective and wise management policy of river basin management in the future.

  20. Temporal–spatial variation and partitioning prediction of antibiotics in surface water and sediments from the intertidal zones of the Yellow River Delta, China

    International Nuclear Information System (INIS)

    Zhao, Shengnan; Liu, Xinhui; Cheng, Dengmiao; Liu, Guannan; Liang, Baocui; Cui, Baoshan; Bai, Junhong

    2016-01-01

    As special zones, the intertidal zones of the Yellow River Delta (YRD) are highly variable along with time and space. Fluvial–marine and land–ocean interactions which frequently occur in these areas have a great impact on the fate of pollutants. Antibiotics, which contribute to antibiotic-resistant genes (ARGs), are widely detected in wastewater, natural water, soil, sediments, and even drinking water. Therefore, it is meaningful to investigate the occurrence and fate of antibiotics in these special zones. In this study, eight antibiotics belonging to tetracyclines (TCs), fluoroquinolones (FQs), and macrolides (MLs) were detected in the surface water and sediments from the intertidal zones of YRD during two seasons. Two models were established to predict the partitioning coefficients of norfloxacin (NOR) and erythromycin (ETM) using physicochemical properties of sediments, respectively. The total concentrations of these antibiotics were 82.94–230.96 ng·L"− "1 and 40.97–207.44 ng·g"− "1, respectively, in the surface water and sediments. Seasonal variation was mainly influenced by the frequency of antibiotics use and environment factors. The regions with river supply exhibited the highest concentrations of antibiotics in surface water and sediments. Meanwhile, particle-size fractions, cation exchange capability (CEC), and metal ions content played dominant roles in the partitioning behaviors of NOR and ETM between the surface water and sediments. Both models established in this study featured accuracy and feasibility, which provided the methods for predicting the partitioning coefficients of emerging contaminants similar in structures to NOR and ETM in the intertidal zones. - Highlights: • The intertidal zones of YRD were polluted by antibiotics to some extent. • The river supply was a major pathway for the antibiotic pollution of the intertidal zones of YRD. • The partitioning coefficients of NOR and ETM can be predicted using the physicochemical

  1. A geomorphological assessments of the distribution of sediment sinks along the lower Amazon River

    Science.gov (United States)

    Park, E.; Latrubesse, E. M.

    2017-12-01

    Floodplain sediment storage budget is examined along the 1,000 km reach of the lower Amazon River based on extensive sets of remote sensing data and field measurements. Incorporating the washload discharges at gauge stations at the main channel and major tributaries, we analyzed the roles of vast floodplain on the Amazon River seasonal variability in sediment discharges. Annual washload accumulation rate on floodplain along the reach in between Manacapuru and Obidos of is estimated to be 79 Mt over inter-annual average. Period that the net loss over to the floodplain of washload coincide with discharge rising phase of the Amazon River at Obidos, when the river water level rises to make hydrologic connections to floodplain. Only during the early falling phase (July-August), 3.6 Mt of washload net gain occurred in a year, which was less than 5% of the annual net loss to the floodplain. To assess the spatial distribution of sediment sinks along the lower Amazon, we incorporated various hydro-geomorphic factors regarding floodplain geomorphic styles and morphometric parameters, such floodplain width, levee heights, water-saturated area, suspended sediment distribution over floodplain and distribution of impeded floodplain. Impeded floodplain that contains numerous large rounded lakes is the definition of active sediment sinks along the lower Amazon, which seasonally stores most of the water and traps sediment from the river. The results of these hydro-geomorphic factors collectively indicate that the extent and magnitudes of sediment sinks becomes larger downstream (from Manacapuru to Monte Alegre), which is proportionally related to the development of the water-saturated floodplain. This indicates the nonlinear geomorphic evolution of the Amazon floodplain through its longitudinal profile since the late Holocene that downstream reaches are still to be infilled with sediments (incomplete floodplain) thus acting as sediment sinks.

  2. Heavy metals pollution status in surface sediments (rivers and artifical lakes, Serbia)

    Science.gov (United States)

    Sakan, Sanja; Đorđević, Dragana

    2017-04-01

    Potentially hazardous trace elements, often in literature referred as "heavy metals", are deemed serious pollutants due to their toxicity, persistence and non-degradability in the environment. These elements play an important role in extent of water pollution and threaten the health of populations and ecosystems. As the sink of heavy metals, sediment beds adsorb metals in quantities that are many times higher than those found in the water column in the long-term polluted water environment. It is believed that most of the metal content, as much as 90% in aquatic sediments is bound to sediments. Metal contamination in these sediments could be directly affect the river water quality, resulting in potential consequences to the sensitive lowest levels of the food chain and ultimately to human health. The objective of this research was the evaluation of heavy metal contamination level in sediments of the most important rivers and artificial lakes in Serbia. The heavy metal enrichment in studied sediments was conducted by using: determination of total metal content, sequential extraction procedure for the fractionation of studied elements, quantification of the metal enrichment degree in the sediments by calculating geo-accumulation indices, determination of actual and potential element availability and application of BRAI index for the assessment of heavy metal bioavailability. The sediments were found to be contaminated by heavy metals to various extents, mostly with Cd, Cu, and Zn. The significant variation in heavy metal distribution among samples collected in this large region, encompassing all Serbian watersheds, suggests the selective contamination of sediments by heavy metals. Elevated concentrations of elements in most cases were detected in samples of river sediments, since artificial lake reservoirs are usually built in rural areas, where the less anthropogenic pollution. Rivers often flow through the towns and these water basins less or more loaded

  3. Experimental investigation on water quality standard of Yangtze River water source heat pump.

    Science.gov (United States)

    Qin, Zenghu; Tong, Mingwei; Kun, Lin

    2012-01-01

    Due to the surface water in the upper reaches of Yangtze River in China containing large amounts of silt and algae, high content of microorganisms and suspended solids, the water in Yangtze River cannot be used for cooling a heat pump directly. In this paper, the possibility of using Yangtze River, which goes through Chongqing, a city in southwest China, as a heat source-sink was investigated. Water temperature and quality of the Yangtze River in the Chongqing area were analyzed and the performance of water source heat pump units in different sediment concentrations, turbidity and algae material conditions were tested experimentally, and the water quality standards, in particular surface water conditions, in the Yangtze River region that adapt to energy-efficient heat pumps were also proposed. The experimental results show that the coefficient of performance heat pump falls by 3.73% to the greatest extent, and the fouling resistance of cooling water in the heat exchanger increases up to 25.6% in different water conditions. When the sediment concentration and the turbidity in the river water are no more than 100 g/m3 and 50 NTU respectively, the performance of the heat pump is better, which can be used as a suitable river water quality standard for river water source heat pumps.

  4. Groundwater control on the suspended sediment load in the Na Borges River, Mallorca, Spain

    Science.gov (United States)

    Estrany, Joan; Garcia, Celso; Batalla, Ramon J.

    2009-05-01

    Groundwater dominance has important effects on the hydrological and geomorphological characteristics of river systems. Low suspended sediment concentrations and high water clarity are expected because significant inputs of sediment-free spring water dilute the suspended sediment generated by storms. However, in many Mediterranean rivers, groundwater dominance is characterised by seasonal alternations of influent and effluent discharge involving significant variability on the sediment transport regimes. Such areas are often subject to soil and water conservation practices over the centuries that have reduced the sediment contribution from agricultural fields and favour subsurface flow to rivers. Moreover, urbanisation during the twentieth century has changed the catchment hydrology and altered basic river processes due to its 'flashy' regime. In this context, we monitored suspended sediment fluxes during a two-year period in the Na Borges River, a lowland agricultural catchment (319 km 2) on the island of Mallorca (Balearic Islands). The suspended sediment concentration (SSC) was lower when the base flow index (i.e., relative proportion of baseflow compared to stormflow, BFI) was higher. Therefore, strong seasonal contrasts explain the high SSC coefficient of variation, which is clearly related to dilution effects associated with different groundwater and surface water seasonal interactions. A lack of correlation in the Q-SSC rating curves shows that factors other than discharge control sediment transport. As a result, at the event scale, multiple regressions illustrate that groundwater and surface water interactions are involved in the sedimentary response of flood events. In the winter, the stability of baseflow driven by groundwater contributions and agricultural and urban spills causes hydraulic variables (i.e., maximum discharge) to exert the most important control on events, whereas in the summer, it is necessary to accumulate important volumes of rainfall

  5. Understanding the controls on sediment-P interactions and dynamics along a non-tidal river system in a rural–urban catchment: The River Nene

    International Nuclear Information System (INIS)

    Tye, A.M.; Rawlins, B.G.; Rushton, J.C.; Price, R.

    2016-01-01

    The release of Phosphorus (P) from river sediments has been identified as a contributing factor to waters failing the criteria for ‘Good Ecological Status’ under the EU Water Framework Directive (WFD). To identify the contribution of sediment-P to river systems, an understanding of the factors that influence its distribution within the entire non-tidal system is required. Thus the aims of this work were to examine the (i) total (P_T_o_t_a_l) and labile (P_L_a_b_i_l_e) concentrations in sediment, (ii) the sequestration processes and (iii) the interactions between sediment P and the river water in the six non-tidal water bodies of the River Nene, U.K. Collection of sediments followed a long period of flooding and high stream flow. In each water body, five cores were extracted and homogenised for analysis with an additional core being taken and sampled by depth increments. Comparing the distribution of sediment particle size and P_T_o_t_a_l data with soil catchment geochemical survey data, large increases in P_T_o_t_a_l were identified in sediments from water body 4–6, where median concentrations of P_T_o_t_a_l in the sediment (3603 mg kg"−"1) were up to double those of the catchment soils. A large proportion of this increase may be related to in-stream sorption of P, particularly from sewage treatment facilities where the catchment becomes more urbanised after water body 3. A linear correlation (r = 0.8) between soluble reactive phosphate (SRP) and Boron in the sampled river waters was found suggesting increased STW input in water bodies 4–6. P_L_a_b_i_l_e concentrations in homogenised cores were up to 100 mg kg"−"1 PO_4–P (generally < 2% of P_T_o_t_a_l) and showed a general increase with distance from the headwaters. A general increase in Equilibrium Phosphate Concentrations (EPC_0) from an average of 0.9–∼1.7 μm L"−"1 was found between water bodies 1–3 and 4–6. Fixation within oxalate extractable phases (Al, Fe and Mn) accounted

  6. Simulation of Flow, Sediment Transport, and Sediment Mobility of the Lower Coeur d'Alene River, Idaho

    Science.gov (United States)

    Berenbrock, Charles; Tranmer, Andrew W.

    2008-01-01

    A one-dimensional sediment-transport model and a multi-dimensional hydraulic and bed shear stress model were developed to investigate the hydraulic, sediment transport, and sediment mobility characteristics of the lower Coeur d?Alene River in northern Idaho. This report documents the development and calibration of those models, as well as the results of model simulations. The one-dimensional sediment-transport model (HEC-6) was developed, calibrated, and used to simulate flow hydraulics and erosion, deposition, and transport of sediment in the lower Coeur d?Alene River. The HEC-6 modeled reach, comprised of 234 cross sections, extends from Enaville, Idaho, on the North Fork of the Coeur d?Alene River and near Pinehurst, Idaho, on the South Fork of the river to near Harrison, Idaho, on the main stem of the river. Bed-sediment samples collected by previous investigators and samples collected for this study in 2005 were used in the model. Sediment discharge curves from a previous study were updated using suspended-sediment samples collected at three sites since April 2000. The HEC-6 was calibrated using river discharge and water-surface elevations measured at five U.S. Geological Survey gaging stations. The calibrated HEC-6 model allowed simulation of management alternatives to assess erosion and deposition from proposed dredging of contaminated streambed sediments in the Dudley reach. Four management alternatives were simulated with HEC-6. Before the start of simulation for these alternatives, seven cross sections in the reach near Dudley, Idaho, were deepened 20 feet?removing about 296,000 cubic yards of sediments?to simulate dredging. Management alternative 1 simulated stage-discharge conditions from 2000, and alternative 2 simulated conditions from 1997. Results from alternatives 1 and 2 indicated that about 6,500 and 12,300 cubic yards, respectively, were deposited in the dredged reach. These figures represent 2 and 4 percent, respectively, of the total volume of

  7. An Analytic Equation Partitioning Climate Variation and Human Impacts on River Sediment Load

    Science.gov (United States)

    Zhang, J.; Gao, G.; Fu, B.

    2017-12-01

    Spatial or temporal patterns and process-based equations could co-exist in hydrologic model. Yet, existing approaches quantifying the impacts of those variables on river sediment load (RSL) changes are found to be severely limited, and new ways to evaluate the contribution of these variables are thus needed. Actually, the Newtonian modeling is hardly achievable for this process due to the limitation of both observations and knowledge of mechanisms, whereas laws based on the Darwinian approach could provide one component of a developed hydrologic model. Since that streamflow is the carrier of suspended sediment, sediment load changes are documented in changes of streamflow and suspended sediment concentration (SSC) - water discharge relationships. Consequently, an analytic equation for river sediment load changes are proposed to explicitly quantify the relative contributions of climate variation and direct human impacts on river sediment load changes. Initially, the sediment rating curve, which is of great significance in RSL changes analysis, was decomposed as probability distribution of streamflow and the corresponding SSC - water discharge relationships at equally spaced discharge classes. Furthermore, a proposed segmentation algorithm based on the fractal theory was used to decompose RSL changes attributed to these two portions. Additionally, the water balance framework was utilized and the corresponding elastic parameters were calculated. Finally, changes in climate variables (i.e. precipitation and potential evapotranspiration) and direct human impacts on river sediment load could be figured out. By data simulation, the efficiency of the segmentation algorithm was verified. The analytic equation provides a superior Darwinian approach partitioning climate and human impacts on RSL changes, as only data series of precipitation, potential evapotranspiration and SSC - water discharge are demanded.

  8. Human impacts on sediment in the Yangtze River: A review and new perspectives

    Science.gov (United States)

    Yang, H. F.; Yang, S. L.; Xu, K. H.; Milliman, J. D.; Wang, H.; Yang, Z.; Chen, Z.; Zhang, C. Y.

    2018-03-01

    Changes in riverine suspended and riverbed sediments have environmental, ecological and social implications. Here, we provide a holistic review of water and sediment transport and examine the human impacts on the flux, concentration and size of sediment in the Yangtze River in recent decades. We find that most of the fluvial sediment has been trapped in reservoirs, except for the finest portion. Furthermore, soil-conservation since the 1990s has reduced sediment yield. From 1956-1968 (pre-dam period) to 2013-2015 (post-dams and soil-conservation), the sediment discharge from the sub-basins decreased by 91%; in the main river, the sediment flux decreased by 99% at Xiangjiaba (upper reach), 97% at Yichang (transition between upper and middle reaches), 83% at Hankou (middle reach), and 77% at Datong (tidal limit). Because the water discharge was minimally impacted, the suspended sediment concentration decreased to the same extent as the sediment flux. Active erosion of the riverbed and coarsening of surficial sediments were observed in the middle and lower reaches. Fining of suspended sediments was identified along the river, which was counteracted by downstream erosion. Along the 700-km-long Three Gorges Reservoir, which retained 80% of the sediment from upstream, the riverbed gravel or rock was buried by mud because of sedimentation after impoundment. Along with these temporal variations, the striking spatial patterns of riverine suspended and riverbed sediments that were previously exhibited in this large basin were destroyed or reversed. Therefore, we conclude that the human impacts on sediment in the Yangtze River are strong and systematic.

  9. Screening of perfluorinated compounds in water, sediment and biota of the Llobregat River basin (NE Spain)

    Science.gov (United States)

    Campo, Julian; Perez, Francisca; Pico, Yolanda; Farre, Marinella; Barcelo, Damia; Andreu, Vicente

    2014-05-01

    PFCs present significant thermal and chemical stability being persistent in the environment, where they can bio-accumulate and adversely affect humans and wildlife (Llorca et al., 2012). Human exposure to PFCs is of concern since PFCs tend to be associated with fatty acid binding proteins in the liver or albumin proteins in blood, and have been detected in human serum, urine, saliva, seminal plasma and breast milk (Sundstrom et al., 2011). This study is aimed at the screening of 21 perfluorinated compounds (PFCs) in environmental samples by high-performance liquid chromatography tandem mass spectrometry (LC-MS/MS). The main objective is to identify target compounds at low levels in water, sediments and biota of the Llobregat River (2010), second longest river in Catalonia and one of Barcelona's major drinking water resources. PFCs were extracted from water samples by Solid Phase Extraction (SPE); from sediment by ultrasonication with acidified methanol followed by an off-line SPE procedure (Picó et al., 2012), and from biota (fish) with alkaline digestion, clean-up by TurboFlow™ on line technology coupled to LC-MS/MS (Llorca et al., 2012). The limits of detection (LODs) and limits of quantification (LOQs) of the method were calculated by analysis of spiked river water, sediment, and biota with minimum concentrations of each individual compound at a signal-to-noise ratio of 3 and 10, respectively. The LODs and LOQs of the method in river water ranged between 0.004 and 0.8 ng L-1 and between 0.01 and 2 ng L-1, respectively. In sediment LODs were 0.013-2.667 ng g-1 dry weight (dw) and LOQs were 0.04-8 ng g-1 dw, meanwhile in biota these were 0.006-0.7 pg μL-1 and 0.02-2.26 pg μL-1, respectively. Recoveries ranged between 65% and 102% for all target compounds. The method was applied to study the spatial distribution of these compounds in the Llobregat River basin. For this, a total of 40 samples were analysed (14 water, 14 sediments, 12 fishes). Of the 21 target

  10. Petroleum hydrocarbons in a water-sediment system from Yellow River estuary and adjacent coastal area, China: Distribution pattern, risk assessment and sources.

    Science.gov (United States)

    Wang, Min; Wang, Chuanyuan; Li, Yuanwei

    2017-09-15

    Aliphatic hydrocarbons (AHs), biomarker and polycyclic aromatic hydrocarbons (PAHs) concentrations of surface water and sediment samples collected from Yellow River Estuary and adjacent coastal area in China were measured to determine their spatial distributions, analyze their sources and evaluate the ecological risk of PAHs in the water-sediment system. The spatial distributions of n-alkane in sediments are mainly controlled by the mixing inputs of terrigenous and marine components. In comparison with AHs, the total concentrations of Σ16PAHs in surface sediments from a transect of the offshore area were noticeably higher than that of the riverine and estuary areas. Additionally, the AHs and total PAHs concentrations all indicated an overall pattern of a seaward decrease. The PAHs concentrations during the dry season (mainly in the form of dissolved phase) were higher than that of PAHs (mainly dissolved phase and particulate phase form) in the flooding season. In comparison with global concentration levels of PAHs, the level of PAHs in suspended particulate matter and sediments from the Yellow River Estuary was lower than those from other countries, while the concentration of PAHs in the dissolved phase were in the middle range. Petroleum contamination, mainly from oil exploration and discharge of pollutants from rivers, was the main source of n-alkanes. The PAHs in the river were mostly of petrogenic origin, while those in the estuarial and marine areas originated mainly from pyrogenic sources. The results of the toxicology assessment suggested that the PAHs in sediments from Yellow River Estuary and adjacent coastal area exhibited a low potential eco-toxicological contamination level. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Analysis of water, sediment and fish to detect contaminations with polychlorinated biphenyls (PVB) in the profile of the river Inde

    International Nuclear Information System (INIS)

    Schwiening, S.; Schmidt, B.; Schuphan, I.

    1993-01-01

    Water, sediment and fish samples of the river Inde in the course from source to mouth were analysed for their contents of polychlorinated biphenyls (6 indicator-congeners). Analysis of the water samples showed no contents of PCB (detection limit: 10 ng/l). The resulting PCB concentration profile of the sediment showed at the upper part of the Inde uniform PCB values of 18 μg/kg dry weight sediment. In the middle part, after the tributary of an industrial influenced brook, the Vicht, the contents of PCB increased precipitously to about 110 μg/kg dry weight. In the further course - downstream near the mouth into the river Rur - the PCB contents in the sediment decreased steplike along a distance of about 20 km resulting in a level of 34 μg/kg dry weight. From the analysed fishes the brook trout (Salmo trutta forma fario) also showed PCB contents dependent on the position in the river where they were cought. In relation to muscle lipid content the averange values at the upper part of the river amounted to 6 mg/kg, in the middle part to ca 38 mg/kg and downstream to ca 8 mg/kg extractable lipid basis. Because of absence at some sampling points for the roach (Rutilus rutilus) and gudgeon (Gobio gobio) an analogues correlation could not be found. This fishes showed concentrations of PCB ranging from 3 to 5 mg/kg extractable lipid basis. (orig.) [de

  12. Distribution and abundance of archaeal and bacterial ammonia oxidizers in the sediments of the Dongjiang River, a drinking water supply for Hong Kong.

    Science.gov (United States)

    Sun, Wei; Xia, Chunyu; Xu, Meiying; Guo, Jun; Wang, Aijie; Sun, Guoping

    2013-01-01

    Ammonia-oxidizing archaea (AOA) and bacteria (AOB) play important roles in nitrification. However, limited information about the characteristics of AOA and AOB in the river ecosystem is available. The distribution and abundance of AOA and AOB in the sediments of the Dongjiang River, a drinking water source for Hong Kong, were investigated by clone library analysis and quantitative real-time PCR. Phylogenetic analysis showed that Group 1.1b- and Group 1.1b-associated sequences of AOA predominated in sediments with comparatively high carbon and nitrogen contents (e.g. total carbon (TC) >13 g kg(-1) sediment, NH4(+)-N >144 mg kg(-1) sediment), while Group 1.1a- and Group 1.1a-associated sequences were dominant in sediments with opposite conditions (e.g. TC <4 g kg(-1) sediment, NH4(+)-N <93 mg kg(-1) sediment). Although Nitrosomonas- and Nitrosospira-related sequences of AOB were detected in the sediments, nearly 70% of the sequences fell into the Nitrosomonas-like B cluster, suggesting similar sediment AOB communities along the river. Higher abundance of AOB than AOA was observed in almost all of the sediments in the Dongjiang River, while significant correlations were only detected between the distribution of AOA and the sediment pH and TC, which suggested that AOA responded more sensitively than AOB to variations of environmental factors. These results extend our knowledge about the environmental responses of ammonia oxidizers in the river ecosystem.

  13. Sediment discharge of the rivers of Catalonia, NE Spain, and the influence of human impacts

    Science.gov (United States)

    Liquete, Camino; Canals, Miquel; Ludwig, Wolfgang; Arnau, Pedro

    2009-03-01

    SummaryThe environmental and anthropogenic factors controlling sediment delivery to the sea are numerous, intricate and usually difficult to quantify. Mediterranean watersheds are historically amongst the most heavily impacted by human activities in the world. This study analyzes some of these factors for nine river systems from Catalonia, NE Spain, that open into the Northwestern Mediterranean Sea, and discusses the results obtained from sediment yield models and sediment concentration data series. General models indicate that the natural suspended sediment yield by individual Catalan rivers ranged within a fork from 94 to 621 t km -2 yr -1. Such a sediment yield would be noticeably reduced (moving the fork to 7-148 t km -2 yr -1) because of lithological factors and direct anthropogenic and, possibly, climatic impacts. Damming, water extraction and urbanization appear as the most important direct anthropogenic impacts in Catalonia. Water discharge and sediment concentration measurements by basin authorities provide much lower sediment yield estimations, from 0.4 to 19.8 t km -2 yr -1, which is probably due to the lack of measured sediment loads during flood events, as it is the case in many other Mediterranean rivers. The Catalan watersheds have some of the smallest runoff values amongst Mediterranean rivers. Of the nine river systems studied, water discharge tends to decrease in two and to increase in one. The other six river systems do not show any clear tendency. Related to climatic parameters, temperature raised in all the watersheds between 1961 and 1990, while precipitation did not show significant trends.

  14. Sediment accumulation rate and radiological characterisation of the sediment of Palmones River estuary (southern of Spain)

    International Nuclear Information System (INIS)

    Rubio, L.; Linares-Rueda, A.; Duenas, C.; Fernandez, M.C.; Clavero, V.; Niell, F.X.; Fernandez, J.A.

    2003-01-01

    Chemical analyses and radioecological methods were combined in order to estimate the sediment accumulation rate in the upper 20 cm depth of the Palmones River estuary. Organic matter, total carbon, C:N and 137 Cs vertical profiles showed changes at 13 cm depth. These changes could be associated with the decrease in river input since 1987 when a dam situated in the upper part of the estuary started to store water. Using 1987 as reference to date the sediment, accumulation rate was 1.2 cm yr -1 . As alternative method, two layer model of 210 Pb xs vertical distribution showed a sedimentation rate of 0.7 cm yr -1 with a surface mixing layer of 7 cm thickness. The high ammonium, potassium and sodium content in pore water and the strong correlation between 137 Cs activities and organic matter in dry sediment suggests that 137 Cs (the only anthropogenic product detected) is mainly accumulated in the estuary associated with the particulate organic material from the catchment area

  15. Regime Shift Identification of Runoff and Sediment Loads in the Yellow River Basin, China

    Directory of Open Access Journals (Sweden)

    Fei Wang

    2014-10-01

    Full Text Available Runoff and sediment loads have exhibited significant changes over the past six decades in the Yellow River Basin, China. The current study evaluates the changing trends and regime shifts in runoff and sediment loads at both the annual and monthly time scales. The associated spatial and temporal variations are analyzed by a sequential t-test analysis of the regime shifts (STARS approach and the “breaks for additive seasonal and trend” (BFAST model using hydrological data at eight stations from the 1950s to 2011. Both runoff and sediment loads exhibit significant declines (p < 0.05, except in the upper reaches of the river near the Tangnaihai station. The regime shifts detected by the STARS approach are not completely consistent with the results from the BFAST method. In most cases, the regime shifts occurred in 1969 and 1986, due to the construction of large reservoirs. Climate change and other human activities, such as large-scale soil and water conservation measures, can result in abrupt changes in hydrological series at some stations. The trapping effects of reservoirs not only cause regime shifts of runoff and sediment loads, but also adjust their inter-annual and seasonal distributions. Various soil and water conservation measures are responsible for the significant reduction in runoff and sediment loads in the mid-lower reaches of the Yellow River Basin. In addition, water withdrawals from both river runoff and ground water play a critical role in the changing trends in runoff and indirectly alter the sediment loads. The findings provide a good reference for the effective promotion of climate change adaptation, water resources planning and river basin management.

  16. From agricultural intensification to conservation: sediment transport in the Raccoon River, Iowa, 1916-2009.

    Science.gov (United States)

    Jones, Christopher S; Schilling, Keith E

    2011-01-01

    Fluvial sediment is a ubiquitous pollutant that negatively affects surface water quality and municipal water supply treatment. As part of its routine water supply monitoring, the Des Moines Water Works (DMWW) has been measuring turbidity daily in the Raccoon River since 1916. For this study, we calibrated daily turbidity readings to modern total suspended solid (TSS) concentrations to develop an estimation of daily sediment concentrations in the river from 1916 to 2009. Our objectives were to evaluate long-term TSS patterns and trends, and relate these to changes in climate, land use, and agricultural practices that occurred during the 93-yr monitoring period. Results showed that while TSS concentrations and estimated sediment loads varied greatly from year to year, TSS concentrations were much greater in the early 20th century despite drier conditions and less discharge, and declined throughout the century. Against a backdrop of increasing discharge in the Raccoon River and widespread agricultural adaptations by farmers, sediment loads increased and peaked in the early 1970s, and then have slowly declined or remained steady throughout the 1980s to present. With annual sediment load concentrated during extreme events in the spring and early summer, continued sediment reductions in the Raccoon River watershed should be focused on conservation practices to reduce rainfall impacts and sediment mobilization. Overall, results from this study suggest that efforts to reduce sediment load from the watershed appear to be working. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  17. Drivers of abundance and community composition of benthic macroinvertebrates in Ottawa River sediment near Chalk River Laboratories

    Energy Technology Data Exchange (ETDEWEB)

    Bond, M.J.; Rowan, D.; Silke, R.; Carr, J., E-mail: bondm@aecl.ca [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2013-12-15

    The Ottawa River has received effluent from Chalk River Laboratories (CRL) for more than 60 years. Some radionuclides and contaminants released in effluents are bound rapidly to particles and deposited in bottom sediments where they may be biologically available to benthic invertebrates and other aquatic biota. As part of a larger ecological assessment, we assess the potential impact of contaminated sediments in the vicinity of CRL on local benthic community structure. Using bivariate and multivariate approaches, we demonstrate that CRL operations have had little impact on the local benthic community. Despite elevated anthropogenic radionuclide activity concentrations in sediment near CRL's process outfall, the benthic community is no less abundant or diverse than what is observed upstream at background levels. The Ottawa River benthic invertebrate community is structured predominantly by natural physical and biological conditions in the sediment, specifically sediment water content and organic content. These natural habitat conditions have a stronger influence on macroinvertebrate communities than sediment contamination. (author)

  18. Impacts of Declining Mississippi River Sediment Load on Subaqueous Delta Front Sedimentation and Geomorphology

    Science.gov (United States)

    Maloney, J. M.; Bentley, S. J.; Xu, K.; Georgiou, I. Y.; Miner, M. D.

    2016-02-01

    The Mississippi River delta system is undergoing unprecedented changes due to the effects of climate change and anthropogenic alterations to the river and its delta. Since the 1950s, the suspended sediment load of the Mississippi River has decreased by approximately 50% due to the construction of >50,000 dams in the Mississippi basin. The impact of this decreased sediment load has been observed in subaerial environments, but the impact on sedimentation and geomorphology of the subaqueous delta front has yet to be examined. To identify historic trends in sedimentation patterns, we compiled bathymetric datasets, including historical charts, industry and academic surveys, and NOAA data, collected between 1764 and 2009. Sedimentation rates are variable across the delta front, but are highest near the mouth of Southwest Pass, which carries the largest percentage of Mississippi River flow and sediment into the Gulf of Mexico. The progradation rate of Southwest Pass (measured at the 10 m depth contour) has slowed from 67 m/yr between 1764 and 1940 to 26 m/yr between 1940 and 1979, with evidence of further deceleration from 1979-2009. Decreased rates of progradation are also observed at South Pass and Pass A Loutre, with the 10 m contour retreating at rates >20 m/yr at both passes. Advancement of the delta front also decelerated in deeper water (15-90 m) offshore from Southwest Pass. In this area, from 1940-1979, depth contours advanced seaward 30 m/yr, but rates declined from 1979-2005. Furthermore, over the same area, the sediment accumulation rate decreased by 81% for the same period. The Mississippi River delta front appears to be entering a phase of decline, which will likely be accelerated by future upstream management practices. This decline has implications for offshore ecosystems, biogeochemical cycling, pollutant dispersal, mudflow hazard, and the continued use of the delta as an economic and population center.

  19. Total Suspended Load and Sediment Yield of Kayan River, Bulungan District, East Kalimantan

    Directory of Open Access Journals (Sweden)

    Suprapto Dibyosaputro

    2016-12-01

    Full Text Available This research was carried out the the drainage system of Kayan river, Bulungan District, East Kalimantan. The purpose of the research were to study the physical conditions of the Kayan catchment area, calculate the suspended sediment load, and to define the total sediment yield of Kayan River. Observation method were used in this research both of direct field observation as well as laboratory observation. Data acquired in this study were include of climatic data, geology, geomorphology, soil and land cover data. Besides also rain-fall data, temperature, river discharge and suspended sediment load. The total sediment yield were calculated by mean of mathematical and statistical analysis especially of linier regression analysis. The result of the research show that total the sediment yield of Kayan River with drainage area of 6,329.452 km² is about 236,921.25 m³/km²/year. The interesting result of the statistical analysis was that the existing negative correlation between river discharge and suspended sediment load. It is the effect of the location of discharge and suspended measurement. This condition caused by sea tide effect on river discharge at the apex delta. During high tide water river trend rising up on discharge but not on suspended sediment load. Instead, also existing setting down processes takes places of the suspended sediment load into the river bottom upper stream and the apex.

  20. Selenium in Reservoir Sediment from the Republican River Basin

    Science.gov (United States)

    Juracek, Kyle E.; Ziegler, Andrew C.

    1998-01-01

    Reservoir sediment quality is an important environmental concern because sediment may act as both a sink and a source of water-quality constituents to the overlying water column and biota. Once in the food chain, sediment-derived constituents may pose an even greater concern due to bioaccumulation. An analysis of reservoir bottom sediment can provide historical information on sediment deposition as well as magnitudes and trends in constituents that may be related to changes in human activity in the basin. The assessment described in this fact sheet was initiated in 1997 by the U.S. Geological Survey (USGS), in cooperation with the Bureau of Reclamation (BOR), U.S. Department of the Interior, to determine if irrigation activities have affected selenium concentrations in reservoir sediment of the Republican River Basin of Colorado, Kansas, and Nebraska.

  1. Dating of artificial radioactivity in sediments of the river Yenisei

    International Nuclear Information System (INIS)

    Klemt, E.; Parliachenka, A.; Spasova, Y.; Zibold, G.; Rollin, S.; Burger, M.

    2004-01-01

    For many years the Mining and Chemical Combine was producing weapon-grade plutonium in three nuclear plants on the banks of the river Yenisei south of the city Krasnoyarsk, Siberia. Artificial radionuclides were found in sediments of the river in close distance to the plants as well as over the whole length of the river up to the icy Kara-Sea. In order to reconstruct the discharge into the river and to understand migration processes dating of the activity in undisturbed sediment cores had to be done. Due to vertical advection of water through the sediments the age of sediment layers and the age of the activity therein have to be distinguished. The following methods of dating have been analyzed: The Pb-210 gamma-spectrometric method which showed to be not applicable, the Eu-152/Eu-154 ratio, the Po-210 alpha-spectrometric method, and modelling of the vertical distribution of activity in the sediment. Furthermore, ICP-MS analyses of Np, Am and Pu isotopes have been used to perform dating analyses. The results of the different methods are compared in order to ensure a proper understanding of the history of the activity and of the processes within the sediment. (author)

  2. Entrapped Sediments as a Source of Phosphorus in Epilithic Cyanobacterial Proliferations in Low Nutrient Rivers

    Science.gov (United States)

    Wood, Susanna A.; Depree, Craig; Brown, Logan; McAllister, Tara; Hawes, Ian

    2015-01-01

    Proliferations of the benthic mat-forming cyanobacteria Phormidium have been reported in rivers worldwide. Phormidium commonly produces natural toxins which pose a health risk to animal and humans. Recent field studies in New Zealand identified that sites with Phormidium proliferations consistently have low concentrations of water column dissolved reactive phosphorus (DRP). Unlike other river periphyton, Phormidium mats are thick and cohesive, with water and fine sediment trapped in a mucilaginous matrix. We hypothesized that daytime photosynthetic activity would elevate pH inside the mats, and/or night time respiration would reduce dissolved oxygen. Either condition could be sufficient to facilitate desorption of phosphates from sediment incorporated within mats, thus allowing Phormidium to utilize it for growth. Using microelectrodes, optodes and pulse amplitude modulation fluorometry we demonstrated that photosynthetic activity results in elevated pH (>9) during daytime, and that night-time respiration causes oxygen depletion (river water and this, together with elevated concentrations of elements, including iron, suggest phosphorus release from entrapped sediment. Sequential extraction of phosphorus from trapped sediment was used to investigate the role of sediment at sites on the Mangatainoka River (New Zealand) with and without Phormidium proliferations. Deposition of fine sediment (sediment can provide a source of phosphorus to support Phormidium growth and proliferation. PMID:26479491

  3. Use of sediment rating curves and optical backscatter data to characterize sediment transport in the Upper Yuba River watershed, California, 2001-03

    Science.gov (United States)

    Curtis, Jennifer A.; Flint, Lorraine E.; Alpers, Charles N.; Wright, Scott A.; Snyder, Noah P.

    2006-01-01

    Sediment transport in the upper Yuba River watershed, California, was evaluated from October 2001 through September 2003. This report presents results of a three-year study by the U.S. Geological Survey, in cooperation with the California Ecosystem Restoration Program of the California Bay-Delta Authority and the California Resources Agency. Streamflow and suspended-sediment concentration (SSC) samples were collected at four gaging stations; however, this report focuses on sediment transport at the Middle Yuba River (11410000) and the South Yuba River (11417500) gaging stations. Seasonal suspended-sediment rating curves were developed using a group-average method and non-linear least-squares regression. Bed-load transport relations were used to develop bed-load rating curves, and bed-load measurements were collected to assess the accuracy of these curves. Annual suspended-sediment loads estimated using seasonal SSC rating curves were compared with previously published annual loads estimated using the Graphical Constituent Loading Analysis System (GCLAS). The percent difference ranged from -85 percent to +54 percent and averaged -7.5 percent. During water year 2003 optical backscatter sensors (OBS) were installed to assess event-based suspended-sediment transport. Event-based suspended-sediment loads calculated using seasonal SSC rating curves were compared with loads calculated using calibrated OBS output. The percent difference ranged from +50 percent to -369 percent and averaged -79 percent. The estimated average annual sediment yield at the Middle Yuba River (11410000) gage (5 tons/mi2) was significantly lower than that estimated at the South Yuba River (11417500) gage (14 tons/mi2). In both rivers, bed load represented 1 percent or less of the total annual load throughout the project period. Suspended sediment at the Middle Yuba River (11410000) and South Yuba River (11417500) gages was typically greater than 85 percent silt and clay during water year 2003, and

  4. The Synergic Characteristics of Surface Water Pollution and Sediment Pollution with Heavy Metals in the Haihe River Basin, Northern China

    Directory of Open Access Journals (Sweden)

    Peiru Kong

    2018-01-01

    Full Text Available Aquatic environmental deterioration is becoming a serious problem due to rapid urbanization and economic development, particularly in developing countries. As two important components of the aquatic environment, water quality and sediment pollution are widely considered to be concerns; however, they are considered separately in most cases. The relationship between water quality and sediment pollution with heavy metals has been little addressed. In this study, the Haihe River Basin (HRB, one of the most polluted areas in China, was used as a case study, and the eutrophication index (EI and the potential ecological risk index (RI were employed to evaluate water quality and sediment pollution of heavy metals, respectively. The results showed that generally in the HRB, the water quality was poor, while the risk of heavy metal pollution was relatively low. Surface water quality was mainly influenced by sewage discharges from human daily life, and heavy metal pollution was affected by industry structure, in that the areas with resource/energy consumption industries and high-pollution industries often have high risks of heavy metal pollution Synergic pollution from water eutrophication and sediment pollution with heavy metals was found, especially in the central areas of the HRB, and it was largely dependent on the type of human activities. In the places with intensive human activities, such as secondary industry, eutrophication occurred simultaneously with heavy metal pollution, other than in less human-affected areas. These findings are useful for planning aquatic environment protections and river ecosystem management.

  5. Influence of a thin veneer of low-hydraulic-conductivity sediment on modelled exchange between river water and groundwater in response to induced infiltration

    Science.gov (United States)

    Rosenberry, Donald O.; Healy, Richard W.

    2012-01-01

    A thin layer of fine-grained sediment commonly is deposited at the sediment–water interface of streams and rivers during low-flow conditions, and may hinder exchange at the sediment–water interface similar to that observed at many riverbank-filtration (RBF) sites. Results from a numerical groundwater-flow model indicate that a low-permeability veneer reduces the contribution of river water to a pumping well in a riparian aquifer to various degrees, depending on simulated hydraulic gradients, hydrogeological properties, and pumping conditions. Seepage of river water is reduced by 5–10% when a 2-cm thick, low-permeability veneer is present on the bed surface. Increasing thickness of the low-permeability layer to 0·1 m has little effect on distribution of seepage or percentage contribution from the river to the pumping well. A three-orders-of-magnitude reduction in hydraulic conductivity of the veneer is required to reduce seepage from the river to the extent typically associated with clogging at RBF sites. This degree of reduction is much larger than field-measured values that were on the order of a factor of 20–25. Over 90% of seepage occurs within 12 m of the shoreline closest to the pumping well for most simulations. Virtually no seepage occurs through the thalweg near the shoreline opposite the pumping well, although no low-permeability sediment was simulated for the thalweg. These results are relevant to natural settings that favour formation of a substantial, low-permeability sediment veneer, as well as central-pivot irrigation systems, and municipal water supplies where river seepage is induced via pumping wells

  6. Radioactivity and Natural Radio nuclides Distribution in River Water, Coastal Water, Sediment and Eichornia Crassipes (Mart) Sloms and Their Accumulation Factor at Surabaya Area

    International Nuclear Information System (INIS)

    Agus Taftazani; Sumining; Muzakky

    2002-01-01

    Distribution of radioactivity and natural radionuclide in water, sediment and eichornia crassipes (mart) sloms from Surabaya river and coastal area have been evaluated. Five sampling locations were selected to represent fresh water and coastal water environment. The samples consist of water (fresh and coastal), bottom surface sediment and eichornia crassipes (mart) sloms The result showed that the gross-β activity from water environment were lower than the threshold value of Environmental Minister Act. Kep.02/MENKLH/I/1988 (1000 mBq/L) and indicated that β-radioecological quality of water were still good. But the activity of the gross-α of water environment were higher than the threshold value of Environmental Minister Act. Kep.02/MENKLH/I/1988 (100 mBq/L). The eichornia crassipes (mart) sloms (gross) activity were higher than water and sediment activities and indicated that transfer of radionuclides from water to sediment and organism can be detected in water environment. Two natural radionuclides can be identified by γ-Spectrometric technique, they were K-40 and TI-208. Generally the distribution factor F D were smaller than bioaccumulation factor F B . (author)

  7. Human influence on the sedimentation in the delta of the river Kyroenjoki, western Finland

    International Nuclear Information System (INIS)

    Heikkilae, R.

    1999-01-01

    Human activities in the drainage basin of the river Kyroenjoki, Western Finland, have greatly influenced the hydrology and sediment load of the river. The main factors have been agriculture, forestry, peat mining and watercourse works. Also sewage from towns and small-scale industry has increased the nutrient transport to the delta of the river. The aim of this study was to assess factors influencing the sedimentary conditions, sediment accumulation rates and sediment quality in the delta of the river. The sediment studies were carried out in 1983-1988 in the delta. The drainage basin of the river Kyroenjoki covers 5030 km 2 in the middle boreal vegetation zone. The river channel has been cleared many times since the 1600s to prevent floods and to allow agriculture on the adjoining land. Extensive cultivation of the paludified Litorina clay plains along the river has also continued for centuries. Forestry drainage of mires covered almost all the mires of the basin in 1960s and 1970s. Since 1963, four reservoirs and four hydroelectric power stations with daily regulation of water have been built. The estuary of the river was echo sounded, and on the basis of the results the delta was delimited, and areas of accumulation and erosion were separated. Samples of the sediment surface from 65 sites and long cores from 8 sites in the delta of the river Kyroenjoki were analysed for water content, organic content, C, N, P, Ca, Fe, Mn, Pb, Cu, Zn, Cd and Hg. The sediment from Nabbviken Bay in the delta was dated on the basis of annual laminae. The chemical analyses showed that the organic matter and heavy metal content have increased during recent decades. The heavy metal content was clearly lower than in areas polluted by industrial works. The phosphorus content of the sediment was very high. The sedimentation rate in the delta increased from the 1930s to the 1950s, due to increased land reclamation for agriculture and forestry drainage, and then decreased in the beginning

  8. Radiometric analyses of floodplain sediments at the Savannah River Plant

    International Nuclear Information System (INIS)

    Lower, M.W.

    1987-09-01

    A Comprehensive Cooling Water Study to assess the effects of reactor cooling water discharges and related reactor area liquid releases to onsite streams and the nearby Savannah River has been completed at the US Department of Energy's Savannah River Plant (SRP). Extensive radiometric analyses of man-made and naturally occurring gamma-emitting radionuclides were measured in floodplain sediment cores extracted from onsite surface streams at SRP and from the Savannah River. Gamma spectrometric analyses indicate that reactor operations contribute to floodplain radioactivity levels slightly higher than levels associated with global fallout. In locations historically unaffected by radioactive releases from SRP operations, Cs-137 concentrations were found at background and fallout levels of about 1 pCi/g. In onsite streams that provided a receptor for liquid radioactive releases from production reactor areas, volume-weighted Cs-137 concentrations ranged by core from background levels to 55 pCi/g. Savannah River sediments contained background and atmospheric fallout levels of Cs-137 only. 2 refs., 5 figs

  9. Determination of some metals and nutrients in water, sediment and soil of River Nsaki in the Densu Basin at Pokuase, Ghana

    International Nuclear Information System (INIS)

    Arthur, J.K.

    2010-01-01

    Using the Atomic Absorption Spectrometer and UV/Visible Spectrophotometer, elemental (Fe, Cd, Cr and Pb) and nutrient (SO 4 2- , NO 3 - , PO 4 3 ) analyses were respectively carried out on water, sediment and soil samples collected from River Nsaki which is the main source of drinking water for the people of Pokuase and communities along the river in the Densu basin in Ghana. Samples were collected during the dry season at sites A (upstream), B (midstream; Pokuase town) and C (downstream). Physico-chemical parameters of water being pH, Total Dissolved Solutes (TDS), Electrical Conductivity (EC), Alkalinity (ALK) and Salinity (SAL) were investigated. pH ranged from 7.01 to 7.12, which is within the natural background level of 6.5 to 8.5. The TDS and EC values ranged respectively from 122.78 to 125.46 mg/L and 258 to 342.0 μS/cm, which are below the WHO recommended value of 1000 mg/L and 700 μS/cm respectively. SAL and ALK values ranged from 0.08 to 0.14ppt and 67.4 to 80.8mg/l respectively. Maximum concentrations of metals were recorded in water as Cd in site A, Fe, Pb and Cr in site B. in sediment, it was Fe in site A, Cd, Cr and Pb in site C and and in soil as Cd in site A, Fe, Cr and Pb in site C. Maximum concentrations of nutrients were recorded in water as PO 4 3- , in site C, SO 4 2- and NO 3 - in site A. In sediments it was NO 3 - in site A, SO 4 2- and PO 4 3- at site B and in soil as NO 3 - in site A, SO 4 2- and PO 4 3- in site B. Pollution Load Index (PLI) values of the metals in the river sediment column ranged from 0.02 to 0.17, indicatiog no pollution status ( 4 in sites A and C are significantly higher in soil than that in sediment in the respective sites. With the exception of Cr, all the analytes (metals and nutrients ) in water exceeded the GWCL and WHO standards. Thus the river is polluted and requires intervention. (au)

  10. Influence of land use configurations on river sediment pollution.

    Science.gov (United States)

    Liu, An; Duodu, Godfred O; Goonetilleke, Ashantha; Ayoko, Godwin A

    2017-10-01

    Land use is an influential factor in river sediment pollution. However, land use type alone is found to be inadequate to explain pollutant contributions to the aquatic environment since configurations within the same land use type such as land cover and development layout could also exert an important influence. Consequently, this paper discusses a research study, which consisted of an in-depth investigation into the relationship between land use type and river sediment pollution by introducing robust parameters that represent configurations within the primary land use types. Urban water pollutants, namely, nutrients, total carbon, polycyclic aromatic hydrocarbons and metals were investigated in the study. The outcomes show that higher patch density and more diverse land use development forms contribute relatively greater pollutant loads to receiving waters and consequently leading to higher sediment pollution. The study outcomes are expected to contribute essential knowledge for creating robust management strategies to minimise waterway pollution and thereby protect the health of aquatic ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Source identification and ecological impact evaluation of PAHs in urban river sediments: A case study in Taiwan.

    Science.gov (United States)

    Tu, Y T; Ou, J H; Tsang, D C W; Dong, C D; Chen, C W; Kao, C M

    2018-03-01

    The Love River and Ho-Jin River, two major urban rivers in Kaohsiung City, Taiwan, are moderately to heavily polluted because different types of improperly treated wastewaters are discharged into the rivers. In this study, sediment and river water samples were collected from two rivers to investigate the river water quality and accumulation of polycyclic aromatic hydrocarbons (PAHs) in sediments. The spatial distribution, composition, and source appointment of PAHs of the sediments were examined. The impacts of PAHs on ecological system were assessed using toxic equivalence quotient (TEQ) of potentially carcinogenic PAHs (TEQ carc ) and sediment quality guidelines. The average PAHs concentrations ranged from 2161 ng/g in Love River sediment to 160 ng/g in Ho-Jin River sediment. This could be due to the fact that Love River Basin had much higher population density and pyrolytic activities. High-ring PAHs (4-6 rings) contributed to 59-90% of the total PAHs concentrations. Benzo(a)pyrene (BaP) had the highest toxic equivalence quotient (up to 188 ng TEQ/g). Moreover, the downstream sediments contained higher TEQ of total TPHs than midstream and upstream sediment samples. The PAHs were adsorbed onto the fine particles with high organic content. Results from diagnostic ratio analyses indicate that the PAHs in two urban river sediments might originate from oil/coal combustion, traffic-related emissions, and waste combustion (pyrogenic activities). Future pollution prevention and management should target the various industries, incinerators, and transportation emission in this region to reduce the PAHs pollution. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Effects of the Upper Taum Sauk Reservoir Embankment Breach on the Surface-Water Quality and Sediments of the East Fork Black River and the Black River, Southeastern Missouri - 2006-07

    Science.gov (United States)

    Barr, Miya N.

    2009-01-01

    On December 14, 2005, a 680-foot wide section of the upper reservoir embankment of the Taum Sauk pump-storage hydroelectric powerplant located in Reynolds County, Missouri, suddenly failed. This catastrophic event sent approximately 1.5 billion gallons of water into the Johnson's Shut-Ins State Park and into the East Fork Black River, and deposited enormous quantities of rock, soil, and vegetation in the flooded areas. Water-quality data were collected within and below the impacted area to study and document the changes to the riverene system. Data collection included routine, event-based, and continuous surface-water quality monitoring as well as suspended- and streambed-sediment sampling. Surface water-quality samples were collected and analyzed for a suite of physical and chemical constituents including: turbidity; nutrients; major ions such as calcium, magnesium, and potassium; total suspended solids; total dissolved solids; trace metals such as aluminum, iron, and lead; and suspended-sediment concentrations. Suspended-sediment concentrations were used to calculate daily sediment discharge. A peculiar blue-green coloration on the water surface of the East Fork Black River and Black River was evident downstream from the lower reservoir during the first year of the study. It is possible that this phenomenon was the result of 'rock flour' occurring when the upper reservoir embankment was breached, scouring the mountainside and producing extremely fine sediment particles, or from the alum-based flocculent used to reduce turbidity in the lower reservoir. It also was determined that no long-term effects of the reservoir embankment breach are expected as the turbidity and concentrations of trace metals such as total recoverable aluminum, dissolved aluminum, dissolved iron, and suspended-sediment concentration graphically decreased over time. Larger concentrations of these constituents during the beginning of the study also could be a direct result of the alum

  13. Geochemical fingerprints and controls in the sediments of an urban river: River Manzanares, Madrid (Spain)

    International Nuclear Information System (INIS)

    Miguel, Eduardo de; Charlesworth, Susanne; Ordonez, Almudena; Seijas, Eduardo

    2005-01-01

    The geochemical fingerprint of sediment retrieved from the banks of the River Manzanares as it passes through the City of Madrid is presented here. The river collects the effluent water from several Waste Water Treatment (WWT) plants in and around the city, such that, at low flows, up to 60% of the flow has been treated. A total of 18 bank-sediment cores were collected along the course of the river, down to its confluence with the Jarama river, to the south-east of Madrid. Trace and major elements in each sample were extracted following a double protocol: (a) 'Total' digestion with HNO 3 , HClO 4 and HF; (b) 'Weak' digestion with sodium acetate buffered to pH=5 with acetic acid, under constant stirring. The digests thus obtained were subsequently analysed by ICP-AES, except for Hg which was extracted with aqua regia and sodium chloride-hydroxylamine sulfate, and analysed by Cold Vapour-AAS. X-ray diffraction was additionally employed to determine the mineralogical composition of the samples. Uni- and multivariate analyses of the chemical data reveal the influence of Madrid on the geochemistry of Manzanares' sediments, clearly manifested by a marked increase in the concentration of typically 'urban' elements Ag, Cr, Cu, Pb and Zn, downstream of the intersection of the river with the city's perimeter. The highest concentrations of these elements appear to be associated with illegal or accidental dumping of waste materials, and with the uncontrolled incorporation of untreated urban runoff to the river. The natural matrix of the sediment is characterised by fairly constant concentrations of Ce, La and Y, whereas changes in the lithology intersected by the river cause corresponding variations in Ca-Mg and Al-Na contents. In the final stretch of the river, the presence of carbonate materials seems to exert a strong geochemical control on the amount of Zn and, to a lesser extent, Cu immobilised in the sediments. This fact suggests that a variable but significant

  14. Mercury transport between sediments and the overlying water of the St. Lawrence River area of concern near Cornwall, Ontario

    Energy Technology Data Exchange (ETDEWEB)

    Delongchamp, Tania M., E-mail: tdelongchamp@intrinsikscience.co [Department of Biology, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada); Ridal, Jeffrey J. [St. Lawrence River Institute of Environmental Sciences, 2 Belmont Street, Cornwall, Ontario, K6H 4Z1 (Canada); Lean, David R.S. [Department of Biology, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada); Poissant, Laurier [Meteorological Service of Canada, Atmospheric Toxic Processes Section, Environment Canada, 105 McGill 7th floor (Youville), Montreal, Quebec H2Y 2E7 (Canada); Blais, Jules M., E-mail: jules.blais@uottawa.c [Department of Biology, University of Ottawa, 150 Louis Pasteur, Ottawa, Ontario K1N 6N5 (Canada)

    2010-05-15

    Contaminated sediments in the St. Lawrence River remain a difficult problem despite decreases in emissions. Here, sediment and pore water phases were analyzed for total mercury (THg) and methyl mercury (MeHg) and diffusion from the sediment to the overlying water was 17.5 +- 10.6 SE ng cm{sup -2} yr{sup -1} for THg and 3.8 +- 1.7 SE ng cm{sup -2} yr{sup -1} for MeHg. These fluxes were very small when compared to the particle-bound mercury flux accumulating in the sediment (183 +- 30 SE ng cm{sup -2} yr{sup -1}). Studies have reported that fish from the westernmost site have higher Hg concentrations than fish collected from the other two sites of the Cornwall Area of Concern, which could not be explained by differences in the Hg flux or THg concentrations in sediments, but the highest concentrations of sediment MeHg, and the greatest proportions of MeHg to THg in both sediment and pore water were observed where fish had highest MeHg concentrations. - Sediments in the St. Lawrence area of concern near Cornwall are a net sink for mercury.

  15. Heavy metals in surface sediments of the Jialu River, China: Their relations to environmental factors

    Energy Technology Data Exchange (ETDEWEB)

    Fu, Jie [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093 (China); Environmental Engineering Program, Department of Civil Engineering, Auburn University, Auburn, AL 36849 (United States); Zhao, Changpo [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093 (China); Luo, Yupeng [Department of Mathematics and Statistics, Auburn University, Auburn, AL 36849 (United States); Liu, Chunsheng, E-mail: liuchunshengidid@126.com [College of Fisheries, Huazhong Agricultural University, Wuhan 430070 (China); Kyzas, George Z. [Laboratory of General and Inorganic Chemical Technology, Department of Chemistry, Aristotle University of Thessaloniki, Thessaloniki 54124 (Greece); Luo, Yin [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093 (China); Zhao, Dongye [Environmental Engineering Program, Department of Civil Engineering, Auburn University, Auburn, AL 36849 (United States); An, Shuqing [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093 (China); Zhu, Hailiang, E-mail: zhuhl@nju.edu.cn [State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210093 (China)

    2014-04-01

    Highlights: • Zhengzhou City had major effect on the pollution of the Jialu River. • TN, OP, TP and COD{sub Mn} in water drove heavy metals to deposit in sediments. • B-IBI was sensitive to the adverse effect of heavy metals in sediments. - Abstract: This work investigated heavy metal pollution in surface sediments of the Jialu River, China. Sediment samples were collected at 19 sites along the river in connection with field surveys and the total concentrations were determined using atomic fluorescence spectrometer and inductively coupled plasma optical emission spectrometer. Sediment samples with higher metal concentrations were collected from the upper reach of the river, while sediments in the middle and lower reaches had relatively lower metal concentrations. Multivariate techniques including Pearson correlation, hierarchical cluster and principal components analysis were used to evaluate the metal sources. The ecological risk associated with the heavy metals in sediments was rated as moderate based on the assessments using methods of consensus-based Sediment Quality Guidelines, Potential Ecological Risk Index and Geo-accumulation Index. The relations between heavy metals and various environmental factors (i.e., chemical properties of sediments, water quality indices and aquatic organism indices) were also studied. Nitrate nitrogen, total nitrogen, and total polycyclic aromatic hydrocarbons concentrations in sediments showed a co-release behavior with heavy metals. Ammonia nitrogen, total nitrogen, orthophosphate, total phosphate and permanganate index in water were found to be related to metal sedimentation. Heavy metals in sediments posed a potential impact on the benthos community.

  16. Heavy metals in surface sediments of the Jialu River, China: Their relations to environmental factors

    International Nuclear Information System (INIS)

    Fu, Jie; Zhao, Changpo; Luo, Yupeng; Liu, Chunsheng; Kyzas, George Z.; Luo, Yin; Zhao, Dongye; An, Shuqing; Zhu, Hailiang

    2014-01-01

    Highlights: • Zhengzhou City had major effect on the pollution of the Jialu River. • TN, OP, TP and COD Mn in water drove heavy metals to deposit in sediments. • B-IBI was sensitive to the adverse effect of heavy metals in sediments. - Abstract: This work investigated heavy metal pollution in surface sediments of the Jialu River, China. Sediment samples were collected at 19 sites along the river in connection with field surveys and the total concentrations were determined using atomic fluorescence spectrometer and inductively coupled plasma optical emission spectrometer. Sediment samples with higher metal concentrations were collected from the upper reach of the river, while sediments in the middle and lower reaches had relatively lower metal concentrations. Multivariate techniques including Pearson correlation, hierarchical cluster and principal components analysis were used to evaluate the metal sources. The ecological risk associated with the heavy metals in sediments was rated as moderate based on the assessments using methods of consensus-based Sediment Quality Guidelines, Potential Ecological Risk Index and Geo-accumulation Index. The relations between heavy metals and various environmental factors (i.e., chemical properties of sediments, water quality indices and aquatic organism indices) were also studied. Nitrate nitrogen, total nitrogen, and total polycyclic aromatic hydrocarbons concentrations in sediments showed a co-release behavior with heavy metals. Ammonia nitrogen, total nitrogen, orthophosphate, total phosphate and permanganate index in water were found to be related to metal sedimentation. Heavy metals in sediments posed a potential impact on the benthos community

  17. The Adsorption Langmuir Model of Transfer Metal Ti, V and Mn on System Water-Sediment in Along Side Code River, Yogyakarta

    International Nuclear Information System (INIS)

    Rini Jati Wardani; Muzakky; Agus Taftazani

    2007-01-01

    The adsorption langmuir model of transfer metal Ti, V and Mn on system water-sediment in along side Code river, Yogyakarta has been studied. For that purpose, the study is to make prediction about adsorption langmuir model of identified metal Ti, V and Mn from upstream until downstream samples water and sediment in along side Code river. The factor influenced of langmuir adsorption on transfer metal Ti, V and Mn in system water-sediment is Total Suspended Solid (TSS). The analysis showed that between TSS with metal concentration in sediment have linear correlation. The result of calculation from curve of langmuir isotherm, showed for Ti has R 2 = 0.8006 with capacities of adsorption = 0.5 mol/l and energy of adsorption = 13.286 J/mol, V has R 2 = 0.9883 with capacities of adsorption = 0.0137 mol/l and energy of adsorption = 16.64 J/mol, Mn has R 2 = 0.9624 with capacities of adsorption 0.152 mol/l and energy of adsorption = 10.51 J/mol. The conclusion from this topic about adsorption langmuir for metal Ti, V and Mn according to energy of langmuir adsorption by chemisorption process above 10 J/mo. (author)

  18. Temporal and spatial distributions of sediment total organic carbon in an estuary river.

    Science.gov (United States)

    Ouyang, Y; Zhang, J E; Ou, L-T

    2006-01-01

    Understanding temporal and spatial distributions of naturally occurring total organic carbon (TOC) in sediments is critical because TOC is an important feature of surface water quality. This study investigated temporal and spatial distributions of sediment TOC and its relationships to sediment contaminants in the Cedar and Ortega Rivers, Florida, USA, using three-dimensional kriging analysis and field measurement. Analysis of field data showed that large temporal changes in sediment TOC concentrations occurred in the rivers, which reflected changes in the characteristics and magnitude of inputs into the rivers during approximately the last 100 yr. The average concentration of TOC in sediments from the Cedar and Ortega Rivers was 12.7% with a maximum of 22.6% and a minimum of 2.3%. In general, more TOC accumulated at the upper 1.0 m of the sediment in the southern part of the Ortega River although the TOC sedimentation varied with locations and depths. In contrast, high concentrations of sediment contaminants, that is, total polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs), were found in sediments from the Cedar River. There was no correlation between TOC and PAHs or PCBs in these river sediments. This finding is in contradiction to some other studies which reported that the sorption of hydrocarbons is highly related to the organic matter content of sediments. This discrepancy occurred because of the differences in TOC and hydrocarbon source input locations. It was found that more TOC loaded into the southern part of the Ortega River, while almost all of the hydrocarbons entered into the Cedar River. This study suggested that the locations of their input sources as well as the land use patterns should also be considered when relating hydrocarbons to sediment TOC.

  19. A Study of Sedimentation at the River Estuary on the Change of Reservoir Storage

    Directory of Open Access Journals (Sweden)

    Iskahar

    2018-01-01

    Full Text Available Estuary of the river that leads to the reservoir has characteristics include: relatively flat, there is a change in the increase of wet cross-sectional area and backwater. The backwater will cause the flow velocity to be reduced, so that the grains of sediment with a certain diameter carried by the flow will settle in the estuary of the river. The purpose of this research is to know the distribution and sedimentation pattern at the river estuary that leads to the reservoir with the change of water level in the reservoir storage, so the solution can be found to remove / reduce sediment before entering the reservoir. The method used is the experimental, by making the physical model of the river estuary leading to the reservoir. This study expects a solution to reduce sedimentation, so that sedimentation can be removed / minimized before entering the reservoir. This research tries to apply bypass channel to reduce the sedimentation at the river estuary. Bypass channels can be applied to overcome sedimentation at the river estuary, but in order for the sediment to be removed optimally, it is necessary to modify the mouth of bypass channel and channel angle.

  20. Association of plutonium with sediments from the Ob and Yenisey Rivers and Estuaries

    International Nuclear Information System (INIS)

    Skipperud, Lindis; Brown, Justin; Fifield, L. Keith; Oughton, Deborah H.; Salbu, Brit

    2009-01-01

    The present study applied sequential extraction techniques to investigate the binding and mobility of plutonium (Pu) in sediments from the rivers and estuaries of the Ob and Yenisey. As a study site, the Ob and Yenisey are particularly interesting as both rivers have weapons-grade Pu sources in their catchment areas, including the Russian Pu production and reprocessing plants at Mayak, Tomsk-7 and Krashnoyarsk, and the Semipalantinsk nuclear weapons testing site in Kazakhstan. Plutonium activity and 240 Pu/ 239 Pu ratios were determined using accelerator mass spectrometry (AMS). Sequential extractions showed that between 47 and 80% of the Pu in Yenisey River sediments and 35-53% of the Pu in soils around the Techa River are mobilized with weak oxidising agents, which can indicate that Pu is bound to organic material. In contrast, Pu in Ob and Yenisey Estuarine sediments was more strongly bound, with 60-100% being found in the HNO 3 -extractable fraction. This change in speciation could reflect either that Pu bound to organic material in the Techa and Yenisey River sediments becomes more fixed to the sediments with time, or that organic-bound Pu is mobilized and released to the water when the sediments encounter the more saline water of the Ob and Yenisey estuaries. In general, 240 Pu/ 239 Pu ratios were relatively consistent between different extraction fractions, although, in whole sediments, an increase in ratio was observed with distance from the source. This reflects the increased influence of weapon fallout from catchment runoff within the river systems, as compared to the weapons-grade sources close to the production and reprocessing plants. Knowledge of Pu speciation in the Ob and Yenisey Rivers, and the processes controlling its behaviour in estuarine systems, can improve predictions of its transfer and subsequent environmental impact to Arctic Seas

  1. Temporal–spatial variation and partitioning prediction of antibiotics in surface water and sediments from the intertidal zones of the Yellow River Delta, China

    Energy Technology Data Exchange (ETDEWEB)

    Zhao, Shengnan [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China); Liu, Xinhui, E-mail: xhliu@bnu.edu.cn [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China); Cheng, Dengmiao [Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Key Laboratory of Plant Nutrition and Fertilizer, Ministry of Agriculture, Beijing 100081 (China); Liu, Guannan [MLR Key Laboratory of Metallogeny and Mineral Assessment, Institute of Mineral Resources, CAGS, Beijing 100037 (China); Liang, Baocui; Cui, Baoshan; Bai, Junhong [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China)

    2016-11-01

    As special zones, the intertidal zones of the Yellow River Delta (YRD) are highly variable along with time and space. Fluvial–marine and land–ocean interactions which frequently occur in these areas have a great impact on the fate of pollutants. Antibiotics, which contribute to antibiotic-resistant genes (ARGs), are widely detected in wastewater, natural water, soil, sediments, and even drinking water. Therefore, it is meaningful to investigate the occurrence and fate of antibiotics in these special zones. In this study, eight antibiotics belonging to tetracyclines (TCs), fluoroquinolones (FQs), and macrolides (MLs) were detected in the surface water and sediments from the intertidal zones of YRD during two seasons. Two models were established to predict the partitioning coefficients of norfloxacin (NOR) and erythromycin (ETM) using physicochemical properties of sediments, respectively. The total concentrations of these antibiotics were 82.94–230.96 ng·L{sup −} {sup 1} and 40.97–207.44 ng·g{sup −} {sup 1}, respectively, in the surface water and sediments. Seasonal variation was mainly influenced by the frequency of antibiotics use and environment factors. The regions with river supply exhibited the highest concentrations of antibiotics in surface water and sediments. Meanwhile, particle-size fractions, cation exchange capability (CEC), and metal ions content played dominant roles in the partitioning behaviors of NOR and ETM between the surface water and sediments. Both models established in this study featured accuracy and feasibility, which provided the methods for predicting the partitioning coefficients of emerging contaminants similar in structures to NOR and ETM in the intertidal zones. - Highlights: • The intertidal zones of YRD were polluted by antibiotics to some extent. • The river supply was a major pathway for the antibiotic pollution of the intertidal zones of YRD. • The partitioning coefficients of NOR and ETM can be predicted using

  2. Contaminant levels and toxicity of sediments and water of Baltimore Harbor and Back River, Maryland

    International Nuclear Information System (INIS)

    Logan, D.T.; Jacobs, F.; Mehrotra, N.

    1995-01-01

    The Patapsco and Back River Watershed drains the Baltimore metropolitan area, Maryland's most heavily industrialized and urbanized region. Due to the intensive development and industrialization of the Baltimore metropolitan area over the past 250 years, high levels of contaminants have been discharged into Baltimore Harbor on the Patapsco River and into the Back River. Pollutants historically discharged include heavy metals, petroleum hydrocarbons, pesticides, cyanide, sewage, other organic chemicals, and nutrients. Sources have included industrial and municipal discharges, sewerage overflows, urban runoff, and leaks and spills from vessels and on-land facilities. The Maryland Department of the Environment undertook this study of ambient conditions as part of a developing strategy to assess and improve conditions in the Chesapeake Bay and its tributaries. Past studies were compiled, evaluated, and synthesized to identify the areas of degraded conditions and contaminants of possible concern. Sediment contaminant levels were assessed using historical sediment chemistry data, Effects Range Low and Median concentrations (ER-L and ER-M) as toxicological benchmarks, and a sum of toxicity units approach for multiple contaminants. Data on toxicity testing and biological monitoring was compared to sediment and water quality data. Fish tissue data were used to examine bioaccumulated chemicals. A computerized Geographical Information System (GIS) was used to manipulate and display complex geographical data. The final identification of areas and chemicals of potential concern relied on a syntheses of these results as well as information on present and past contaminant loadings

  3. [Spatiotemporal variation characteristics of heavy metals pollution in the water, soil and sediments environment of the Lean River-Poyang Lake Wetland].

    Science.gov (United States)

    Jian, Min-Fei; Li, Ling-Yu; Xu, Peng-Fei; Chen, Pu-Qing; Xiong, Jian-Qiu; Zhou, Xue-Ling

    2014-05-01

    Overlying water, sediments, surface soils in the typical wetland areas of Lean River and Poyang Lake which were rich in non-ferrous metal mineral resources on both sides of the river, were chosen for monitoring heavy metals including copper, lead and cadmium of base flow in average season, flood season, and dry season in 2012. Statistical analysis methods were coupled to characterize the spatiotemporal variation of heavy metals pollution and identify the main sources. The results indicated that the concentrations of copper were the highest in all samples of each sampling sites in the Lean River-Poyang Lake wetland. And the content values of copper, lead and cadmium in different samples of different sampling sites also showed that the content values of copper were higher than those of lead, and the content values of lead were also higher than those of cadmium. The results also showed that the heavy metals pollution of copper, lead and cadmium in flood season was the heaviest whereas the heavy metals pollution in dry season was comparatively light. The results of the contents of the three kinds of heavy metals elements in different sampling sites of the watersheds of lean River showed that the contents of copper in the samples from the upstream sampling sites of Lean River were higher than those of other samples from other sites. And the contents of lead in the samples from the downstream sampling sites of Lean River were higher than those of other samples from other sampling sites. The contents of cadmium in the samples from the midstream sampling sites of Lean River were higher than those of other samples from other sites. The first principal component representing copper pollution explained 36. 99% of the total variance of water quality. The second principal component concerning representing lead pollution explained 30. 12% of the total variance. The correlation analysis results showed that there were significant positive correlations among the contents of copper

  4. Large shift in source of fine sediment in the upper Mississippi River

    Science.gov (United States)

    Belmont, P.; Gran, K.B.; Schottler, S.P.; Wilcock, P.R.; Day, S.S.; Jennings, C.; Lauer, J.W.; Viparelli, E.; Willenbring, J.K.; Engstrom, D.R.; Parker, G.

    2011-01-01

    Although sediment is a natural constituent of rivers, excess loading to rivers and streams is a leading cause of impairment and biodiversity loss. Remedial actions require identification of the sources and mechanisms of sediment supply. This task is complicated by the scale and complexity of large watersheds as well as changes in climate and land use that alter the drivers of sediment supply. Previous studies in Lake Pepin, a natural lake on the Mississippi River, indicate that sediment supply to the lake has increased 10-fold over the past 150 years. Herein we combine geochemical fingerprinting and a suite of geomorphic change detection techniques with a sediment mass balance for a tributary watershed to demonstrate that, although the sediment loading remains very large, the dominant source of sediment has shifted from agricultural soil erosion to accelerated erosion of stream banks and bluffs, driven by increased river discharge. Such hydrologic amplification of natural erosion processes calls for a new approach to watershed sediment modeling that explicitly accounts for channel and floodplain dynamics that amplify or dampen landscape processes. Further, this finding illustrates a new challenge in remediating nonpoint sediment pollution and indicates that management efforts must expand from soil erosion to factors contributing to increased water runoff. ?? 2011 American Chemical Society.

  5. Sediment pollution of the Elbe River side structures - current research

    Science.gov (United States)

    Chalupova, Dagmar; Janský, Bohumír

    2016-04-01

    The contribution brings the summarized results of a long-term research on sediment pollution of side structures of the Elbe River over the last 14 years. The investigation has been focused on old anthropogenic pollution of sediment cores taken from fluvial lakes and floodplain, as the sampling of deeper sediments outside the riverbed is not a part of systematic monitoring of sediment pollution of the Elbe. The Elbe River floodplain has been influenced by human activities since the Middle Ages, but the main anthropogenic pollution have been produced in the 20th century. The studied localities were chosen with the respect to the distance from the source of industrial pollution, the intensity of hydrological communication with the river and the surrounding landuse to determine the extend and the level of anthropogenic contamination in the Elbe River floodplain ecosystem. Apart from bathymetric measurements, observation of the hydrological regime in several fluvial lakes or water quality sampling at some localities, the research was focused above all on determination of metal concentrations (Ag, Cd, Cr, Cu, Fe, Hg, Mn, Pb, Zn) in all taken sediment cores, specific organic compounds (PCBs, DDT, HCH, HCB, PAHs etc.), total organic carbon at some localities and grain structure analyses. The data were also compared with the results of systematic sediment monitoring from the nearest riverbed sampling stations on the Elbe River. The highest concentrations of metals and specific organic compounds were determined in the sediments taken from fluvial lakes and floodplain (Zimní přístav PARAMO, Rosice fuvial Lake, Libiš pool etc.) situated in the vicinity of the main Elbe River polluters - Synthesia chemical plant and PARAMO refinery in Pardubice or Spolana chemical plant near Neratovice. However, there was also determined a significant role of the hydrological communication with the river proved with lower sediment pollution in separated localities. The realization of the

  6. Pollution status and mercury sedimentation in small river near amalgamation and cyanidation units of Talawaan-Tatelu gold mining, North Sulawesi

    Directory of Open Access Journals (Sweden)

    T M Palapa

    2015-04-01

    Full Text Available Information Journal Help User Username Password Remember me Notifications View Subscribe / Unsubscribe Search Keyword : The activities of traditional gold mining in the region of Talawaan-Tatelu, North Minahasa regency, North Sulawesi, have been ongoing since 1998. Processing the gold in the mine consists of three stages i.e., the excavation, milling and amalgamation, and the use of cyanide tanks. Waste from the processing units which contains high mercury, generally flows directly into small rivers nearby. This study aimed to determine the pollution status and mercury sedimentation in a small river near the amalgamation and cyanidation processing units in Talawaan-Tatelu gold mining. Water and sediment samples were taken from seven stations along a small river, as many as four temporal replications (weekly. Mercury determination in water and sediments was done by using Cold Vapor Atomic Fluorescence Spectrometry. Pollution status was determined through the calculation of Hg ratio in water samples and in water quality criterion (4th class, as noted in The Indonesian Government Regulation No. 82 of 2001 on Water Quality and Water Pollution Control, while the mercury sedimentation was calculated from the ratio of mercury in water and sediment. The results showed that there are differences in the status of pollution and mercury sedimentation of seven sampling stations. Amalgamation and cyanidation processing units provide significant impact on the status of pollution (although it is categorized in contamination and mercury sedimentation along small river in the gold mining area of Talawaan-Tatelu. The downstream of this small river, Talawaan River, is the main river of the Talawaan watershed. Things that should be a concern are Talawaan rural communities living near Talawaan River who often use the water for daily needs such as bathing and washing. Risk to public health around the river can arise when the status of pollution and mercury

  7. Spatio-temporal monitoring of suspended sediments in the Solimões River (2000-2014)

    Science.gov (United States)

    Espinoza-Villar, Raul; Martinez, Jean-Michel; Armijos, Elisa; Espinoza, Jhan-Carlo; Filizola, Naziano; Dos Santos, Andre; Willems, Bram; Fraizy, Pascal; Santini, William; Vauchel, Philippe

    2018-01-01

    The Amazon River sediment discharge has been estimated at between 600 and 1200 Mt/year, of which more than 50% comes from the Solimões River. Because of the area's inaccessibility, few studies have examined the sediment discharge spatial and temporal pattern in the upper Solimões region. In this study, we use MODIS satellite images to retrieve and understand the spatial and temporal behaviour of suspended sediments in the Solimões River from Peru to Brazil. Six virtual suspended sediment gauging stations were created along the Solimões River on a 2050-km-long transect. At each station, field-derived river discharge estimates were available and field-sampling trips were conducted for validation of remote-sensing estimates during different periods of the annual hydrological cycle between 2007 and 2014. At two stations, 10-day surface suspended sediment data were available from the SO-HYBAM monitoring program (881 field SSS samples). MODIS-derived sediment discharge closely matched the field observations, showing a relative RMSE value of 27.3% (0.48 Mtday) overall. Satellite-retrieved annual sediment discharge at the Tamshiyacu (Peru) and Manacapuru (Brazil) stations is estimated at 521 and 825 Mt/year, respectively. While upstream the river presents one main sediment discharge peak during the hydrological cycle, a secondary sediment discharge peak is detected downstream during the declining water levels, which is induced by sediment resuspension from the floodplain, causing a 72% increase on average from June to September.

  8. [Characteristic of ammonia nitrogen adsorption on karst underground river sediments].

    Science.gov (United States)

    Guo, Fang; Chen, Kun-Kun; Jiang, Guang-Hui

    2011-02-01

    Karst aquifers are one of the most important aquifers in Southwestern China. One of the characteristics of karst aquifers is the enhanced permeability permits high flow velocities are capable of transporting suspended and bedload sediments. Mobile sediment in karst may act as a vector for the transport of contaminates. 14 sediment samples were collected from two underground rivers in two typical karst areas in Liuzhou city, Guangxi Autonomous Region, China. According to simulated experiment methods, characteristic of adsorption of ammonia nitrogen on sediment was studied. The results of ammonia nitrogen adsorption dynamics on sediments showed that the maximum adsorption velocity was less than 2 h. The adsorption balance quantity in 5 h accounted for 71% - 98% of the maximum adsorption quantity. The maximum adsorption quantity of ammonia nitrogen was 385.5 mg/kg, which was sediment from a cave in the middle areas of Guancun underground river system. The study of isotherm adsorption indicated adsorption quantity of NH4+ increase followed by incremental balance concentration of NH4+ in the aquatic phase. Adsorption quantity of ammonia nitrogen in sediments has a relative linear relationship with adsorption balance concentrations. Adsorption-desorption balance concentrations were all low, indicating sediments from underground rivers have great adsorption potential. Under the condition of low and high concentrations of ammonia nitrogen in overlying water, Langmuir and Tempkin couldn't simulate or simulate results couldn't reach remarkable level, whilst Linear and Freundlich models could simulate well. Research on different type sediments, sampling times and depths from two underground rivers shows characteristic of ammonia nitrogen adsorption on karst underground river sediments doesn't have good correspondence with the type of sediments. One of the reasons is there is no big difference between sediments in the development of climate, geology, hydrological conditions

  9. Enantioselective analysis of ibuprofen and its biotransformation products in water/sediment systems,

    DEFF Research Database (Denmark)

    Sundström, Maria; Escola, Monica; Radke, Michael

    2015-01-01

    of the sediments in the aquatic systems has neither been taken in account previously. In this study, four water-sediment systems were chosen according to anthropogenic exposure and sediment conditions. A low anthropogenic impact lake (Largen), a river receiving wastewater (Fyrisån) and two sediments (anoxic......As ibuprofen degrades enantioselectively in activated sludge, the same process is assumed to occur in surface lake-water and in river-water based biofilms. Yet, the effects of the wastewater inflow, containing non-racemic ibuprofen, into natural systems have never been studied. The role......-7 days in Tvären and B1 respectively. Largen sediments, not impacted by wastewater, degraded ibuprofen faster than Fyrisån sediments did. Yet, these two sediments sediments showed no significant difference with respect to the degradation rates of the ibuprofen enantiomers. A connection between wastewater...

  10. Effects of river morphology, hydraulic gradients, and sediment deposition on water exchange and oxygen dynamics in salmonid redds.

    Science.gov (United States)

    Schindler Wildhaber, Y; Michel, C; Epting, J; Wildhaber, R A; Huber, E; Huggenberger, P; Burkhardt-Holm, P; Alewell, C

    2014-02-01

    Fine sediment decreasing gravel permeability and oxygen supply to incubating salmonid embryos, is often considered the main contributing factor for the observed decline of salmonid populations. However, oxygen supply to salmonid embryos also depends on hydraulic conditions driving water flow through the redd. A more generalized perspective is needed to better understand the constraints on successful salmonid incubation in the many heavily modified fluvial ecosystems of the Northern Hemisphere. The effects of hydraulic gradients, riverbed and redd morphology as well as fine sediment deposition on dissolved oxygen (DO) and water exchange was studied in 18 artificial redds at three sites along a modified river. Fifty percent of the redds in the two downstream sites were lost during high flow events, while redd loss at the upstream site was substantially lower (8%). This pattern was likely related to increasing flood heights from up- to downstream. Specific water infiltration rates (q) and DO were highly dynamic and driven on multiple temporal and spatial scales. Temporally, the high permeability of the redd gravel and the typical pit-tail structure of the new built redds, leading to high DO, disappeared within a month, when fine sediment had infiltrated and the redd structure was leveled. On the scale of hours to days, DO concentrations and q increased during high flows, but decreased during the falling limb of the water level, most likely related to exfiltration of oxygen depleted groundwater or hyporheic water. DO concentrations also decreased under prolonged base flow conditions, when increased infiltration of silt and clay particles clogged the riverbed and reduced q. Spatially, artificial log steps affected fine sediment infiltration, q and interstitial DO in the redds. The results demonstrate that multiple factors have to be considered for successful river management in salmonid streams, including riverbed structure and local and regional hydrogeological

  11. Metagenomic analysis of the bacterial communities and their functional profiles in water and sediments of the Apies River, South Africa, as a function of land use.

    Science.gov (United States)

    Abia, Akebe Luther King; Alisoltani, Arghavan; Keshri, Jitendra; Ubomba-Jaswa, Eunice

    2018-03-01

    Water quality is an important public health issue given that the presence of pathogenic organisms in such waters can adversely affect human and animal health. Despite the numerous studies conducted to assess the quality of environmental waters in many countries, limited efforts have been put on investigating the microbial quality of the sediments in developing countries and how this relates to different land uses. The present study evaluated the bacterial diversity in water and sediments in a highly used South African river to find out how the different land uses influenced the bacterial diversity, and to verify the human diseases functional classes of the bacterial populations. Samples were collected on river stretches influenced by an informal, a peri-urban and a rural settlement. Genomic DNA was extracted from water and sediment samples and sequenced on an Illumina® MiSeq platform targeting the 16S rRNA gene variable region V3-V4 from the genomic DNA. Metagenomic data analysis revealed that there was a great diversity in the microbial populations associated with the different land uses, with the informal settlement having the most considerable influence on the bacterial diversity in the water and sediments of the Apies River. The Proteobacteria (69.8%), Cyanobacteria (4.3%), Bacteroidetes (2.7%), and Actinobacteria (2.7%) were the most abundant phyla; the Alphaproteobacteria, Betaproteobacteria and Anaerolineae were the most recorded classes. Also, the sediments had a greater diversity and abundance in bacterial population than the water column. The functional profiles of the bacterial populations revealed an association with many human diseases including cancer pathways. Further studies that would isolate these potentially pathogenic organisms in the aquatic environment are therefore needed as this would help in protecting the lives of communities using such rivers, especially against emerging bacterial pathogens. Copyright © 2017 Elsevier B.V. All rights

  12. Spatial and temporal variability of sediment deposition on artificial-lawn traps in a floodplain of the River Elbe

    Energy Technology Data Exchange (ETDEWEB)

    Baborowski, M. [Department of River Ecology, Helmholtz Centre for Environmental Research - UFZ, Brueckstrasse 3a, 39114 Magdeburg (Germany)]. E-mail: martina.baborowski@ufz.de; Buettner, O. [Department of Lake Research, Helmholtz Centre for Environmental Research - UFZ, Brueckstrasse 3a, 39114 Magdeburg (Germany); Morgenstern, P. [Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, 04318 Leipzig (Germany); Krueger, F. [ELANA Boden Wasser Monitoring, Dorfstrasse 55, 39615 Falkenberg (Germany); Lobe, I. [Department of River Ecology, Helmholtz Centre for Environmental Research - UFZ, Brueckstrasse 3a, 39114 Magdeburg (Germany); Rupp, H. [Department of Soil Physics, Helmholtz Centre for Environmental Research - UFZ, Dorfstrasse 55, 39615 Falkenberg (Germany); Tuempling, W. v. [Department of River Ecology, Helmholtz Centre for Environmental Research - UFZ, Brueckstrasse 3a, 39114 Magdeburg (Germany)

    2007-08-15

    Artificial-lawn mats were used as sediment traps in floodplains to measure sediment input and composition during flood events. To estimate the natural variability, 10 traps were installed during two flood waves at three different morphological units in a meander loop of the River Elbe. The geochemical composition of deposited and suspended matter was compared. The sediment input showed weak correlations with concentration and composition of river water. It also correlated poorly with flood duration and level as well as distance of trap position from the main river. This is due to the high variability of the inundation, different morphological conditions and the variability of sources. The composition of the deposits and the suspended matter in the river water was comparable. Hence, for the investigated river reach, the expected pollution of the floodplain sediments can be derived from the pollution of the suspended matter in the river during the flood wave. - The deposition of polluted sediments on floodplains is characterised by a high local variability.

  13. Spatial and temporal variability of sediment deposition on artificial-lawn traps in a floodplain of the River Elbe

    International Nuclear Information System (INIS)

    Baborowski, M.; Buettner, O.; Morgenstern, P.; Krueger, F.; Lobe, I.; Rupp, H.; Tuempling, W. v.

    2007-01-01

    Artificial-lawn mats were used as sediment traps in floodplains to measure sediment input and composition during flood events. To estimate the natural variability, 10 traps were installed during two flood waves at three different morphological units in a meander loop of the River Elbe. The geochemical composition of deposited and suspended matter was compared. The sediment input showed weak correlations with concentration and composition of river water. It also correlated poorly with flood duration and level as well as distance of trap position from the main river. This is due to the high variability of the inundation, different morphological conditions and the variability of sources. The composition of the deposits and the suspended matter in the river water was comparable. Hence, for the investigated river reach, the expected pollution of the floodplain sediments can be derived from the pollution of the suspended matter in the river during the flood wave. - The deposition of polluted sediments on floodplains is characterised by a high local variability

  14. Flux of nitrogen, phosphorus, and suspended sediment from the Susquehanna River Basin to the Chesapeake Bay during Tropical Storm Lee, September 2011, as an indicator of the effects of reservoir sedimentation on water quality

    Science.gov (United States)

    Hirsch, Robert M.

    2012-01-01

    Concentrations of nitrogen, phosphorus, and suspended sediment are measured at the U.S. Geological Survey streamgage at Conowingo Dam at the downstream end of the Susquehanna River Basin in Maryland, where the river flows into the Chesapeake Bay. During the period September 7-15, 2011, in the aftermath of Tropical Storm Lee, concentrations of these three constituents were among the highest ever measured at this site. These measurements indicate that sediment-storage processes behind the three dams on the lower Susquehanna River are evolving. In particular, they indicate that scouring of sediment (and the nitrogen and phosphorus attached to that sediment) may be increasing with time. Trends in flow-normalized fluxes at the Susquehanna River at Conowingo, Maryland, streamgage during 1996-2011 indicate a 3.2-percent decrease in total nitrogen, but a 55-percent increase in total phosphorus and a 97-percent increase in suspended sediment. These large increases in the flux of phosphorus and sediment from the Susquehanna River to the Chesapeake Bay have occurred despite reductions in the fluxes of these constituents from the Susquehanna River watershed upstream from the reservoirs. Although the Tropical Storm Lee flood event contributed about 1.8 percent of the total streamflow from the Susquehanna River to the Chesapeake Bay over the past decade (water years 2002-11), it contributed about 5 percent of the nitrogen, 22 percent of the phosphorus, and 39 percent of the suspended sediment during the same period. These results highlight the importance of brief high-flow events in releasing nitrogen, phosphorus, and sediment derived from the Susquehanna River watershed and stored in the Conowingo Reservoir to the Chesapeake Bay.

  15. Model testing of radioactive contamination by {sup 90}Sr, {sup 137}Cs and {sup 239,240}Pu of water and bottom sediments in the Techa River (Southern Urals, Russia)

    Energy Technology Data Exchange (ETDEWEB)

    Kryshev, I.I. [Scientific and Production Association ' Typhoon' , 82 Lenin Ave., Obninsk, Kaluga Region, 249038 (Russian Federation)], E-mail: ecomod@obninsk.com; Boyer, P.; Monte, L.; Brittain, J.E.; Dzyuba, N.N.; Krylov, A.L.; Kryshev, A.I.; Nosov, A.V.; Sanina, K.D.; Zheleznyak, M.I. [Scientific and Production Association ' Typhoon' , 82 Lenin Ave., Obninsk, Kaluga Region, 249038 (Russian Federation)

    2009-03-15

    This paper presents results of testing models for the radioactive contamination of river water and bottom sediments by {sup 90}Sr, {sup 137}Cs and {sup 239,240}Pu. The scenario for the model testing was based on data from the Techa River (Southern Urals, Russia), which was contaminated as a result of discharges of liquid radioactive waste into the river. The endpoints of the scenario were model predictions of the activity concentrations of {sup 90}Sr, {sup 137}Cs and {sup 239,240}Pu in water and bottom sediments along the Techa River in 1996. Calculations for the Techa scenario were performed by six participant teams from France (model CASTEAUR), Italy (model MARTE), Russia (models TRANSFER-2, CASSANDRA, GIDRO-W) and Ukraine (model RIVTOX), all using different models. As a whole, the radionuclide predictions for {sup 90}Sr in water for all considered models, {sup 137}Cs for MARTE and TRANSFER-2, and {sup 239,240}Pu for TRANSFER-2 and CASSANDRA can be considered sufficiently reliable, whereas the prediction for sediments should be considered cautiously. At the same time the CASTEAUR and RIVTOX models estimate the activity concentrations of {sup 137}Cs and {sup 239,240}Pu in water more reliably than in bottom sediments. The models MARTE ({sup 239,240}Pu) and CASSANDRA ({sup 137}Cs) evaluated the activity concentrations of radionuclides in sediments with about the same agreement with observations as for water. For {sup 90}Sr and {sup 137}Cs the agreement between empirical data and model predictions was good, but not for all the observations of {sup 239,240}Pu in the river water-bottom sediment system. The modelling of {sup 239,240}Pu distribution proved difficult because, in contrast to {sup 137}Cs and {sup 90}Sr, most of models have not been previously tested or validated for plutonium.

  16. Ecotoxicological assessment of sediments from Tiete river between Salesopolis and Suzano, SP (Brazil)

    International Nuclear Information System (INIS)

    Alegre, Gabriel Fonseca

    2009-01-01

    Once introduced into the aquatic environment, many substances can bind or be adsorbed by organic particles in suspension. Depending on the river morphology and hydrological conditions, these particles in suspension containing the contaminants can be deposited along its course, becoming part of the bottom sediments, making them actual sinks and often a source of contamination for the water column and benthic organisms. In the assessment of water, sediment has been one of the most important indicators of the contamination levels in aquatic ecosystems, representing the deposition of contaminants in the environment that occurred over the years and even decades. The Tiete River cross the Sao Paulo state, however, in the metropolitan region of Sao Paulo, the river shows the most severe degradation. In the region of Salesopolis, the waters of the Tiete River are used for public supply, but across the city of Mogi das Cruzes the water quality decreases significantly. Considering the importance of the Tiete river and the sediment for the aquatic biota, this study aimed to evaluate the toxicity of the sediment at five points along the Tiete river, between the cities of Salesopolis and Suzano, Sao Paulo. Four sampling were carried out: two in the summer (rainy season) and two in winter (dry season). The whole sediment was assessed by acute and chronic toxicity tests with Hyalella azteca and Ceriodaphnia dubia, respectively, the elutriate was assessed by chronic toxicity test using C. dubia, while the porewater was evaluated by acute toxicity test with Vibrio fischeri. Samples of river water were also evaluated for chronic toxicity tests with C. dubia. The quantification of metals and hydrocarbons in sediment samples was also carried out in order to correlate the biological effects with the chemical contamination. The obtained results with the whole sediment test indicate Mogi das Cruzes and Suzano cities as the most toxic sites and also as the sites with the highest

  17. River-plume sedimentation and 210Pb/7Be seabed delivery on the Mississippi River delta front

    Science.gov (United States)

    Keller, Gregory; Bentley, Samuel J.; Georgiou, Ioannis Y.; Maloney, Jillian; Miner, Michael D.; Xu, Kehui

    2017-06-01

    To constrain the timing and processes of sediment delivery and submarine mass-wasting events spanning the last few decades on the Mississippi River delta front, multi-cores and gravity cores (0.5 and water depth in 2014. The cores were analyzed for radionuclide activity (7Be, 210Pb, 137Cs), grain size, bulk density, and fabric (X-radiography). Core sediments are faintly bedded, sparsely bioturbated, and composed mostly of clay and fine silt. Short-term sedimentation rates (from 7Be) are 0.25-1.5 mm/day during river flooding, while longer-term accumulation rates (from 210Pb) are 1.3-7.9 cm/year. In most cores, 210Pb activity displays undulatory profiles with overall declining activity versus depth. Undulations are not associated with grain size variations, and are interpreted to represent variations in oceanic 210Pb scavenging by river-plume sediments. The 210Pb profile of one gravity core from a mudflow gully displays uniform basal excess activity over a zone of low and uniform bulk density, interpreted to be a mass-failure event that occurred 9-18 years before core collection. Spatial trends in sediment deposition (from 7Be) and accumulation (from 210Pb) indicate that proximity to the river mouth has stronger influence than local facies (mudflow gully, depositional lobe, prodelta) over the timeframe and seabed depth represented by the cores (sediment deposition from river plumes coupled with infrequent tropical cyclone activity near the delta in the last 7 years (2006-2013), and by the location of most sediment failure surfaces (from mass flows indicated by parallel geophysical studies) deeper than the core-sampling depths of the present study.

  18. Sediment transport in the lower Snake and Clearwater River Basins, Idaho and Washington, 2008–11

    Science.gov (United States)

    Clark, Gregory M.; Fosness, Ryan L.; Wood, Molly S.

    2013-01-01

    /L), and the Middle Fork Clearwater River at Kooskia, Idaho (15 mg/L). The largest measured concentrations of suspended sediment (3,300 and 1,400 mg/L) during a rain-on-snow event in January 2011 were from samples collected at the Potlatch River near Spalding, Idaho, and the Palouse River at Hooper, Washington, respectively. Generally, samples collected from agricultural watersheds had a high percentage of silt and clay-sized suspended sediment, whereas samples collected from forested watersheds had a high percentage of sand. During water years 2009–11, Lower Granite Reservoir received about 10 million tons of suspended sediment from the combined loads of the Snake and Clearwater Rivers. The Snake River accounted for about 2.97 million tons per year (about 89 percent) of the total suspended sediment, 1.48 million tons per year (about 90 percent) of the suspended sand, and about 1.52 million tons per year (87 percent) of the suspended silt and clay. Of the suspended sediment transported to Lower Granite Reservoir, the Salmon River accounted for about 51 percent of the total suspended sediment, about 56 percent of the suspended sand, and about 44 percent of the suspended silt and clay. About 6.2 million tons (62 percent) of the sediment contributed to Lower Granite Reservoir during 2009–11 entered during water year 2011, which was characterized by an above average winter snowpack and sustained spring runoff. A comparison of historical data collected from the Snake River near Anatone with data collected during this study indicates that concentrations of total suspended sediment and suspended sand in the Snake River were significantly smaller during water years 1972–79 than during 2008–11. Most of the increased sediment content in the Snake River is attributable to an increase of sand-size material. During 1972–79, sand accounted for an average of 28 percent of the suspended-sediment load; during 2008–11, sand accounted for an average of 48 percent. Historical data

  19. Humin to Human: Organic carbon, sediment, and water fluxes along river corridors in a changing world

    Energy Technology Data Exchange (ETDEWEB)

    Sutfin, Nicholas Alan [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-11-20

    This is a presentation with slides on What does it mean to be human? ...humin?; River flow and Hydrographs; Snake River altered hydrograph (Marston et al., 2005); Carbon dynamics are important in rivers; Rivers and streams as carbon sink; Reservoirs for organic carbon; Study sites in Colorado; River morphology; Soil sample collection; Surveys at RMNP; Soil organic carbon content at RMNP; Abandoned channels and Cutoffs; East River channel migration and erosion; Linking hydrology to floodplain sediment flux; Impact of Extreme Floods on Floodplain Sediment; Channel Geometry: RMNP; Beavers dams and multithread channels; Geomorphology and carbon in N. St. Vrain Creek; Geomorphology and carbon along the East River; Geomorphology and carbon in N. St. Vrain Creek; San Marcos River, etc.

  20. Evaluating Regime Change of Sediment Transport in the Jingjiang River Reach, Yangtze River, China

    Directory of Open Access Journals (Sweden)

    Li He

    2018-03-01

    Full Text Available The sediment regime in the Jingjiang river reach of the middle Yangtze River has been significantly changed from quasi-equilibrium to unsaturated since the impoundment of the Three Gorges Dam (TGD. Vertical profiles of suspended sediment concentration (SSC and sediment flux can be adopted to evaluate the sediment regime at the local and reach scale, respectively. However, the connection between the vertical concentration profiles and the hydrologic conditions of the sub-saturated channel has rarely been examined based on field data. Thus, vertical concentration data at three hydrological stations in the reach (Zhicheng, Shashi, and Jianli are collected. Analyses show that the near-bed concentration (within 10% of water depth from the riverbed may reach up to 15 times that of the vertical average concentration. By comparing the fractions of the suspended sediment and bed material before and after TGD operation, the geomorphic condition under which the distinct large near-bed concentrations occur have been examined. Based on daily discharge-sediment hydrographs, the reach scale sediment regime and availability of sediment sources are analyzed. In total, remarkable large near-bed concentrations may respond to the combination of wide grading suspended particles and bed material. Finally, several future challenges caused by the anomalous vertical concentration profiles in the unsaturated reach are discussed. This indicates that more detailed measurements or new measuring technologies may help us to provide accurate measurements, while a fractional dispersion equation may help us in describing. The present study aims to gain new insights into regime change of sediment suspension in the river reaches downstream of a very large reservoir.

  1. Process-based distributed modeling approach for analysis of sediment dynamics in a river basin

    Directory of Open Access Journals (Sweden)

    M. A. Kabir

    2011-04-01

    Full Text Available Modeling of sediment dynamics for developing best management practices of reducing soil erosion and of sediment control has become essential for sustainable management of watersheds. Precise estimation of sediment dynamics is very important since soils are a major component of enormous environmental processes and sediment transport controls lake and river pollution extensively. Different hydrological processes govern sediment dynamics in a river basin, which are highly variable in spatial and temporal scales. This paper presents a process-based distributed modeling approach for analysis of sediment dynamics at river basin scale by integrating sediment processes (soil erosion, sediment transport and deposition with an existing process-based distributed hydrological model. In this modeling approach, the watershed is divided into an array of homogeneous grids to capture the catchment spatial heterogeneity. Hillslope and river sediment dynamic processes have been modeled separately and linked to each other consistently. Water flow and sediment transport at different land grids and river nodes are modeled using one dimensional kinematic wave approximation of Saint-Venant equations. The mechanics of sediment dynamics are integrated into the model using representative physical equations after a comprehensive review. The model has been tested on river basins in two different hydro climatic areas, the Abukuma River Basin, Japan and Latrobe River Basin, Australia. Sediment transport and deposition are modeled using Govers transport capacity equation. All spatial datasets, such as, Digital Elevation Model (DEM, land use and soil classification data, etc., have been prepared using raster "Geographic Information System (GIS" tools. The results of relevant statistical checks (Nash-Sutcliffe efficiency and R–squared value indicate that the model simulates basin hydrology and its associated sediment dynamics reasonably well. This paper presents the

  2. Concentrations and transport of suspended sediment, nutrients, and pesticides in the lower Mississippi-Atchafalaya River subbasin during the 2011 Mississippi River flood, April through July

    Science.gov (United States)

    Welch, Heather L.; Coupe, Richard H.; Aulenbach, Brent T.

    2014-01-01

    High streamflow associated with the April–July 2011 Mississippi River flood forced the simultaneous opening of the three major flood-control structures in the lower Mississippi-Atchafalaya River subbasin for the first time in history in order to manage the amount of water moving through the system. The U.S. Geological Survey (USGS) collected samples for analysis of field properties, suspended-sediment concentration, particle-size, total nitrogen, nitrate plus nitrite, total phosphorus, orthophosphate, and up to 136 pesticides at 11 water-quality stations and 2 flood-control structures in the lower Mississippi-Atchafalaya River subbasin from just above the confluence of the upper Mississippi and Ohio Rivers downstream from April through July 2011. Monthly fluxes of suspended sediment, suspended sand, total nitrogen, nitrate plus nitrite, total phosphorus, orthophosphate, atrazine, simazine, metolachlor, and acetochlor were estimated at 9 stations and 2 flood-control structures during the flood period. Although concentrations during the 2011 flood were within the range of what has been observed historically, concentrations decreased during peak streamflow on the lower Mississippi River. Prior to the 2011 flood, high concentrations of suspended sediment and nitrate were observed in March 2011 at stations downstream of the confluence of the upper Mississippi and Ohio Rivers, which probably resulted in a loss of available material for movement during the flood. In addition, the major contributor of streamflow to the lower Mississippi-Atchafalaya River subbasin during April and May was the Ohio River, whose water contained lower concentrations of suspended sediment, pesticides, and nutrients than water from the upper Mississippi River. Estimated fluxes for the 4-month flood period were still quite high and contributed approximately 50 percent of the estimated annual suspended sediment, nitrate, and total phosphorus fluxes in 2011; the largest fluxes were estimated at

  3. Effects of mine drainage on the River Hayle, Cornwall. Factors affecting concentrations of copper, zinc, and iron in water, sediments and dominant invertebrate fauna

    Energy Technology Data Exchange (ETDEWEB)

    Brown, B.E.

    1977-02-15

    Concentrations of copper, zinc and iron were measured in waters, sediments and invertebrates collected from the River Hayle. In river water at least 70% of copper and iron was associated with the ''particulate'' fraction whereas 80% of zinc was in the ''soluble'' form. Although total concentrations of zinc in water exceeded those of copper approximately ten fold, copper predominated over zinc in the sediments by a factor of approximately three. Iron was the most abundant metal recorded in both water and sediments. Seasonal differences in ''total'' metal content of waters suggested that concentrations of copper, zinc and iron increased during periods of high flow and decreased during lower flows. Copper concentrations in the sediment, unlike zinc and iron, showed markedly higher values during the summer sampling period when flows were minimal. In the ''free-living'' Trichoptera larvae, concentrations of copper and zinc in the tissue appeared to follow copper and zinc levels in the water. Similar relationships in Odonata and Plecoptera larvae were not obtained. Factors affecting animal/metal relationships are discussed with particular reference to adaptation shown by organisms exposed to high concentrations of heavy metals in their environment.

  4. Studies on kinetics of water quality factors to establish water transparency model in Neijiang River, China.

    Science.gov (United States)

    Li, Ronghui; Pan, Wei; Guo, Jinchuan; Pang, Yong; Wu, Jianqiang; Li, Yiping; Pan, Baozhu; Ji, Yong; Ding, Ling

    2014-05-01

    The basis for submerged plant restoration in surface water is to research the complicated dynamic mechanism of water transparency. In this paper, through the impact factor analysis of water transparency, the suspended sediment, dissolved organic matter, algae were determined as three main impactfactors for water transparency of Neijiang River in Eastern China. And the multiple regression equation of water transparency and sediment concentration, permanganate index, chlorophyll-a concentration was developed. Considering the complicated transport and transformation of suspended sediment, dissolved organic matter and algae, numerical model of them were developed respectively for simulating the dynamic process. Water transparency numerical model was finally developed by coupling the sediment, water quality, and algae model. These results showed that suspended sediment was a key factor influencing water transparency of Neijiang River, the influence of water quality indicated by chemical oxygen demand and algal concentration indicated by chlorophyll a were indeterminate when their concentrations were lower, the influence was more obvious when high concentrations are available, such three factors showed direct influence on water transparency.

  5. Predicting improved optical water quality in rivers resulting from soil conservation actions on land.

    Science.gov (United States)

    Dymond, J R; Davies-Colley, R J; Hughes, A O; Matthaei, C D

    2017-12-15

    Deforestation in New Zealand has led to increased soil erosion and sediment loads in rivers. Increased suspended fine sediment in water reduces visual clarity for humans and aquatic animals and reduces penetration of photosynthetically available radiation to aquatic plants. To mitigate fine-sediment impacts in rivers, catchment-wide approaches to reducing soil erosion are required. Targeting soil conservation for reducing sediment loads in rivers is possible through existing models; however, relationships between sediment loads and sediment-related attributes of water that affect both ecology and human uses of water are poorly understood. We present methods for relating sediment loads to sediment concentration, visual clarity, and euphotic depth. The methods require upwards of twenty concurrent samples of sediment concentration, visual clarity, and euphotic depth at a river site where discharge is measured continuously. The sediment-related attributes are related to sediment concentration through regressions. When sediment loads are reduced by soil conservation action, percentiles of sediment concentration are necessarily reduced, and the corresponding percentiles of visual clarity and euphotic depth are increased. The approach is demonstrated on the Wairua River in the Northland region of New Zealand. For this river we show that visual clarity would increase relatively by approximately 1.4 times the relative reduction of sediment load. Median visual clarity would increase from 0.75m to 1.25m (making the river more often suitable for swimming) after a sediment load reduction of 50% associated with widespread soil conservation on pastoral land. Likewise euphotic depth would increase relatively by approximately 0.7 times the relative reduction of sediment load, and the median euphotic depth would increase from 1.5m to 2.0m with a 50% sediment load reduction. Copyright © 2017 Elsevier B.V. All rights reserved.

  6. Temporal variation of streamflow, sediment load and their relationship in the Yellow River basin, China.

    Directory of Open Access Journals (Sweden)

    Guangju Zhao

    Full Text Available Variation of streamflow and sediment load in the Yellow River basin has received considerable attention due to its drastic reduction during the past several decades. This paper presents a detailed investigation on the changes of streamflow and sediment load from 1952 to 2011 using monthly observations at four gauging stations along the Yellow River. The results show significant decreasing trends for both streamflow and sediment load at all four gauging stations over the past 60 years. The wavelet transform demonstrated discontinuous periodicities from 1969 to 1973 and after 1986 due to the construction of large reservoirs and implementation of numerous soil and water conservations practices. The sediment rating curves with the power-law function was applied to investigate the relationship between discharge and sediment load. The results indicate distinct variations of the relationship between streamflow and sediment and implied significant hydro-morphological changes within different periods. The reducing sediment supply from the source region and the increased erosive power of the river are detected at Lanzhou station, while the decrease of the transport capacity at Toudaoguai is caused by severe siltation. Significant changes in the relationship between streamflow and sediment load are found at Huayuankou and Gaocun stations, which are largely induced by evident sediment income and trapping effects of large reservoirs. It is estimated that numerous reservoirs have strongly altered the regime and magnitude of streamflow and trapped large amount of sediment, leading to severe siltation and evident reduction of their total volumes. A decrease in precipitation, incoming water from the upper reaches, soil and water conservation measures as well as water consumption contribute most to the significant reduction of streamflow. The decrease of sediment load mainly resulted from various soil and water conservation measures and trapping in reservoirs

  7. Shoreline dynamics of the active Yellow River delta since the implementation of Water-Sediment Regulation Scheme: A remote-sensing and statistics-based approach

    Science.gov (United States)

    Fan, Yaoshen; Chen, Shenliang; Zhao, Bo; Pan, Shunqi; Jiang, Chao; Ji, Hongyu

    2018-01-01

    The Active Yellow River (Huanghe) Delta (AYRD) is a complex landform in which rapid deposition takes place due to its geologic formation and evolution. Continuous monitoring of shoreline dynamics at high-temporal frequency is crucial for understanding the processes and the driving factors behind this rapidly changing coast. Great efforts have been devoted to map the changing shoreline of the Yellow River delta and explain such changes through remote sensing data. However, the temporal frequency of shoreline in the obtained datasets are generally not fine enough to reflect the detailed or subtly variable processes of shoreline retreat and advance. To overcome these limitations, we continuously monitored the dynamics of this shoreline using time series of Landsat data based on tidal-level calibration model and orthogonal-transect method. The Abrupt Change Value (ACV) results indicated that the retreat-advance patterns had a significant impact regardless of season or year. The Water-Sediment Regulation Scheme (WSRS) plays a dominant role in delivering river sediment discharge to the sea and has an impact on the annual average maximum ACV, especially at the mouth of the river. The positive relationship among the average ACV, runoff and sediment load are relatively obvious; however, we found that the Relative Exposure Index (REI) that measures wave energy was able to explain only approximately 20% of the variation in the data. Based on the abrupt change at the shoreline of the AYRD, river flow and time, we developed a binary regression model to calculate the critical sediment load and water discharge for maintaining the equilibrium of the active delta from 2002 to 2015. These values were approximately 0.48 × 108 t/yr and 144.37 × 108 m3/yr. If the current water and sediment proportions released from the Xiaolangdi Reservoir during the WSRS remain stable, the erosion-accretion patterns of the active delta will shift from rapid accretion to a dynamic balance.

  8. Spatial and temporal distribution of microplastics in water and sediments of a freshwater system (Antuã River, Portugal).

    Science.gov (United States)

    Rodrigues, M O; Abrantes, N; Gonçalves, F J M; Nogueira, H; Marques, J C; Gonçalves, A M M

    2018-08-15

    Microplastics (particles with a sizemicroplastics in freshwater systems is less understood than in marine environment. Hence, the present study aims to provide new insights into microplastics abundances and distribution in Antuã River (Portugal) by applying the isolation method of wet peroxide oxidation with addition of zinc chloride to water and sediment samples collected in March and October 2016, in three sampling sites. The abundance of microplastics in water ranged from 5 to 8.3mgm -3 or 58-193itemsm -3 in March and from 5.8-51.7mgm -3 or 71-1265itemsm -3 in October. In sediments, the abundance ranged from 13.5-52.7mgkg -1 or 100-629itemskg -1 in March and from 2.6-71.4mgkg -1 or 18-514itemskg -1 in October. The water and sediment samples with the greatest abundances were from São João da Madeira and Aguincheira, respectively. Spatio-temporal distribution showed different pattern according to methodological approaches, seasonal and hydrodynamic conditions and the proximity to urban/industry areas. Analysis of plastics by Fourier transform infrared spectroscopy underline polyethylene and polypropylene as the most common polymer types identified in this work. The low medium high oxidation ratio was 56:22:22 (%) in March and 61:31:8 (%) in October. Foams and fibers were the most abundant type in São João da Madeira, while fibers and fragments were the most abundant in Aguincheira and Estarreja in water and sediment samples, respectively. This study emphasizes the importance of rivers as carriage systems of microplastics. Further studies should be performed to identify point sources in order to mitigate the microplastics contamination in aquatic systems. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. The Serchio River catchment, northern Tuscany: Geochemistry of stream waters and sediments, and isotopic composition of dissolved sulfate

    International Nuclear Information System (INIS)

    Cortecci, Gianni; Dinelli, Enrico; Boschetti, Tiziano; Arbizzani, Paola; Pompilio, Loredana; Mussi, Mario

    2008-01-01

    The Serchio River and its tributaries in northern Tuscany were investigated for the chemical and isotopic compositions of waters and bed sediments. Bedrocks are mostly limestone/dolomite and siliciclastics, thermal spring systems are present in the catchment, and the main industrial activity is represented by paper-mills. Main results obtained are: (1) major ions in solution appear to be basically controlled by precipitation and lithology, as well as subordinately by direct inputs of thermal springs, (2) human influence on metals in the waters along the main Serchio and Lima rivers is indicated at a number of sites by increases in concentration compared to the chemical composition of upstream tributaries, (3) S and O isotope compositions delineate two main sources for aqueous SO 4 2- , that is dissolution of Triassic evaporite (directly or via thermal springs) and oxidation of sulfide dispersed in siliciclastic rocks. Anthropogenic contributions are probable, but they cannot be quantitatively assessed. Only SO 4 2- in the notoriously polluted Ozzeri tributary is suspected to be largely anthropogenic, and (4) the chemical composition of bed sediments is mainly influenced by lithology, apart from a number of technogenic elements in the upper part of the Serchio River and in some tributaries. Contamination possibly occurs at other sites, but geochemical indications are weak

  10. Geochemical distribution and fate of arsenic in water and sediments of rivers from the Hokusetsu area, Japan

    Directory of Open Access Journals (Sweden)

    Emilie Even

    2017-02-01

    New hydrological insights for the region: The geochemical mapping showed that As in river water exceeded the maximum limit concentration of 10 ppb in several places. The highest As levels (waters and sediments correlated well with the surface geologies, concentrating in a halo around granitic intrusion and nearby faults. The isotopic analysis of sulfur revealed the occurrence of two kinds of sulfide mineralizations responsible for As contamination: one from Late Paleozoic submarine volcanism in sedimentary rocks, and one from Late Cretaceous igneous activities in contact-metamorphosed rocks disseminated with sulfides. The transport of As along river courses occurred mainly as a dissolved species rather than absorbed on Fe/Mn/Al particles, signifying the least role of iron oxy-hydroxides in As adsorption.

  11. Assessment of the Efficiency of Sediment Deposition Reduction in the Zengwen River Watershed in Taiwan

    Science.gov (United States)

    Wu, M.; Tan, H. N.; Lo, W. C.; Tsai, C. T.

    2015-12-01

    The river upstream of watersheds in Taiwan is very steep, where soil and rock are often unstable so that the river watershed typically has the attribute of high sand yield and turbid runoff due to the excessive erosion in the heavy rainfall seasons. If flood water overflows the river bank, it would lead to a disaster in low-altitude plains. When flood retards or recesses, fine sediment would deposit. Over recent decades, many landslides arise in the Zengwen river watershed due to climate changes, earthquakes, and typhoons. The rocks and sands triggered by these landslides would move to the river channel through surface runoff, which may induce sediment disasters and also render an impact on the stability and sediment transport of the river channel. The risk of the sediment disaster could be reduced by implementing dredging works. However, because of the nature of the channel, the dredged river sections may have sediment depositions back; thus, causing an impact on flood safety. Therefore, it is necessary to evaluate the effectiveness of dredged works from the perspectives of hydraulic, sediment transport, and flood protection to achieve the objective of both disaster prevention and river bed stability. We applied the physiographic soil erosion-deposition (PSED) model to simulate the sediment yield, the runoff, and sediment transport rate of the Zengwen river watershed corresponding to one-day rainstorms of the return periods of 25, 50, and 100 year. The potential of sediment deposition and erosion in the river sections of the Zengwen river could be simulated by utilizing the alluvial river-movable bed two dimensional (ARMB-2D) model. The results reveal that the tendency for the potential of river sediment deposition and erosion obtained from these two models is agreeable. Furthermore, in order to evaluate the efficiency of sediment deposition reduction, two quantized values, the rate of sediment deposition reduction and the ratio of sediment deposition reduction

  12. Morphodynamics and Sediment Transport on the Huanghe (Yellow River) Delta: Work in Progress

    Science.gov (United States)

    Kineke, G. C.; Calson, B.; Chadwick, A. J.; Chen, L.; Hobbs, B. F.; Kumpf, L. L.; Lamb, M. P.; Ma, H.; Moodie, A. J.; Mullane, M.; Naito, K.; Nittrouer, J. A.; Parker, G.

    2017-12-01

    Deltas are perhaps the most dynamic of coastal landforms with competing processes that deliver and disperse sediment. As part of the NSF Coastal SEES program, an interdisciplinary team of scientists from the US and China are investigating processes that link river and coastal sediment transport responsible for morphodynamic change of the Huanghe delta- an excellent study site due to its high sediment load and long history of natural and engineered avulsions, that is, abrupt shifts in the river course. A fundamental component of the study is a better understanding of sediment transport physics in a river system that transports mostly silt. Through theory and data analysis, we find that fine-grained rivers fail to develop full scale dunes, which results in faster water flow and substantially larger sediment fluxes as compared to sandy rivers (e.g. the Mississippi River). We also have developed new models for sediment-size dependent entrainment that are needed to make longer term predictions of river sedimentation patterns. On the delta front, we are monitoring the high sediment flux to the coast, which results in steep foresets and ideal conditions for off-shore sediment delivery via gravity flows. These constraints on sediment transport are being used to develop new theory for where and when rivers avulse - including the effects of variable flood discharge, sediment supply, and sea level rise -and how deltas ultimately grow through repeated cycles of lobe development. Flume experiments and field observations are being used to test these models, both in the main channel of the Huanghe and in channels abandoned after historic avulsions. Abandoned channels and floodplains are now dominated by coastal sediment transport through a combination of wave resuspension and tidal transport, settling lag and reverse estuarine circulation. Finally, the field and laboratory tested numerical models are being used as inputs to define a cost curve for efficient avulsion management of

  13. Anthropogenic impact on biogenic substance distribution and bacterial community in sediment along the Yarlung Tsangpo River on Tibet Plateau, China

    Science.gov (United States)

    Wang, C.; Peifang, W.; Wang, X.; Hou, J.; Miao, L.

    2017-12-01

    Lotic river system plays an important part in water-vapor transfer and biogenic substances migration and transformation. Anthropogenic activities, including wastewater discharging and river damming, have altered river ecosystem and continuum. However, as the longest alpine river in China and suffered from increasing anthropogenic activities, the Yarlung Tsangpo River has been rarely studied. Recently, more attention has also been paid to the bacteria in river sediment as they make vital contributions to the biogeochemical nutrient cycling. Here, the distribution of biogenic substances, including nitrogen, phosphorus, silicon and carbon, was explored in both water and sediment of the Yarlung Tsangpo River. By using the next generation 16S rRNA sequencing, the bacterial diversity and structure in river sediment were presented. The results indicated that the nutrient concentrations increased in densely populated sites, revealing that biogenic substance distribution corresponded with the intensity of anthropogenic activity along the river. Nitrogen, phosphorus, silicon and carbon in water and sediment were all retained by the Zangmu Dam which is the only dam in the mainstream of the river. Moreover, the river damming decreased the biomass and diversity of bacteria in sediment, but no significant alteration of community structure was observed upstream and downstream of the dam. The most dominant bacteria all along the river was Proteobacteria. Meanwhile, Verrucomicrobia and Firmicutes also dominated the community composition in upstream and downstream of the river, respectively. In addition, total organic carbon (TOC) was proved to be the most important environmental factor shaping the bacterial community in river sediment. Our study offered the preliminary insights into the biogenic substance distribution and bacterial community in sediment along an alpine river which was affected by anthropogenic activities. In the future, more studies are needed to reveal the

  14. Sediment budget as affected by construction of a sequence of dams in the lower Red River, Viet Nam

    Science.gov (United States)

    Lu, Xi Xi; Oeurng, Chantha; Le, Thi Phuong Quynh; Thuy, Duong Thi

    2015-11-01

    Dam construction is one of the main factors resulting in riverine sediment changes, which in turn cause river degradation or aggradation downstream. The main objective of this work is to examine the sediment budget affected by a sequence of dams constructed upstream in the lower reach of the Red River. The study is based on the longer-term annual data (1960-2010) with a complementary daily water and sediment data set (2008-2010). The results showed that the stretch of the river changed from sediment surplus (suggesting possible deposition processes) into sediment deficit (possible erosion processes) after the first dam (Thac Ba Dam) was constructed in 1972 and changed back to deposition after the second dam (Hoa Binh Dam) was constructed in 1985. The annual sediment deposition varied between 1.9 Mt/y and 46.7 Mt/y with an annual mean value of 22.9 Mt/y (1985-2010). The sediment deposition at the lower reach of the Red River would accelerate river aggradation which would change river channel capacity in the downstream of the Red River. The depositional processes could be sustained or changed back to erosional processes after more dams (the amount of sediment deposit was much less after the latest two dams Tuyen Quang Dam in 2009 and Sonla Dam in 2010) are constructed, depending on the water and sediment dynamics. This study revealed that the erosional and depositional processes could be shifted for the same stretch of river as affected by a sequence of dams and provides useful insights in river management in order to reduce flood frequency along the lower reach of the Red River.

  15. A Hydrograph-Based Sediment Availability Assessment: Implications for Mississippi River Sediment Diversion

    Directory of Open Access Journals (Sweden)

    Timothy Rosen

    2014-03-01

    Full Text Available The Mississippi River Delta Plain has undergone substantial land loss caused by subsidence, relative sea-level rise, and loss of connectivity to the Mississippi River. Many restoration projects rely on diversions from the Mississippi River, but uncertainty exists about the timing and the amount of actually available sediment. This study examined long-term (1980–2010 suspended sediment yield as affected by different hydrologic regimes to determine actual suspended sediment availability and how this may affect diversion management. A stage hydrograph-based approach was employed to quantify total suspended sediment load (SSL of the lower Mississippi River at Tarbert Landing during three river flow conditions: Peak Flow Stage (stage = 16.8 m, discharge >32,000 m3 s−1, High Flow Stage (stage = 14.6 m, discharge = 25,000–32,000 m3 s−1, and Intermediate Flow Stage (Stage = 12.1 m, discharge = 18,000–25,000 m3 s−1. Suspended sediment concentration (SSC and SSL were maximized during High Flow and Intermediate Flow Stages, accounting for approximately 50% of the total annual sediment yield, even though duration of the stages accounted for only one-third of a year. Peak Flow Stage had the highest discharge, but significantly lower SSC (p < 0.05, indicating that diversion of the river at this stage would be less effective for sediment capture. The lower Mississippi River showed significantly higher SSC (p < 0.0001 and SSL (p < 0.0001 during the rising than the receding limb. When the flood pulse was rising, Intermediate Flow and High Flow Stages showed greater SSC and SSL than Peak Flow Stage. Together, Intermediate Flow and High Flow Stages on the rising limb annually discharged 28 megatonnes over approximately 42 days, identifying this to be the best period for sediment capture and diversion.

  16. Heavy metals in surface sediments of the Jialu River, China: their relations to environmental factors.

    Science.gov (United States)

    Fu, Jie; Zhao, Changpo; Luo, Yupeng; Liu, Chunsheng; Kyzas, George Z; Luo, Yin; Zhao, Dongye; An, Shuqing; Zhu, Hailiang

    2014-04-15

    This work investigated heavy metal pollution in surface sediments of the Jialu River, China. Sediment samples were collected at 19 sites along the river in connection with field surveys and the total concentrations were determined using atomic fluorescence spectrometer and inductively coupled plasma optical emission spectrometer. Sediment samples with higher metal concentrations were collected from the upper reach of the river, while sediments in the middle and lower reaches had relatively lower metal concentrations. Multivariate techniques including Pearson correlation, hierarchical cluster and principal components analysis were used to evaluate the metal sources. The ecological risk associated with the heavy metals in sediments was rated as moderate based on the assessments using methods of consensus-based Sediment Quality Guidelines, Potential Ecological Risk Index and Geo-accumulation Index. The relations between heavy metals and various environmental factors (i.e., chemical properties of sediments, water quality indices and aquatic organism indices) were also studied. Nitrate nitrogen, total nitrogen, and total polycyclic aromatic hydrocarbons concentrations in sediments showed a co-release behavior with heavy metals. Ammonia nitrogen, total nitrogen, orthophosphate, total phosphate and permanganate index in water were found to be related to metal sedimentation. Heavy metals in sediments posed a potential impact on the benthos community. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Environmental contamination of Gorganrood Water and Sediment in district of Gonbad-Kavoos City

    Directory of Open Access Journals (Sweden)

    Giti Forghani

    2014-11-01

    Full Text Available Introduction Rivers are the key resources for drinking and agricultural purposes and their quality assessment is very important. The chemical quality of surface waters is influenced by natural processes and anthropogenic activities (e.g. discharge of urban, agricultural and industrial wastewaters. Pollutants discharging into a river from both natural and anthropogenic sources are distributed between sediment and water. Thus, in evaluating the pollution condition of a water body, both sediment and water should be considered. Sediments are generally regarded as an important component of the total river systems, since they provide a bank of environmental information for both natural and anthropogenic pollution. Of the various pollutants, potentially toxic elements (PTEs are of environmental concern, because they are the most toxic, persistent and abundant pollutants that cab accumulate in aquatic habitats and their concentration increases through biomagnification. Regarding the importance of rivers in supply of water, the assessment of hydrochemical properties and PTEs concentration in water and sediment is very important. Gorganrood is an important river in Golestan province (NE of Iran, which plays an important role in providing water supply. This river recharges from Aladagh Mountains and discharges into Caspian Sea. The Gorganrood River is about 350 Km long and its drainage area is about 1025 Km2. This river trends E-W across the study area and is supplied by many tributaries. The average water discharge of Gorganrood in autumn and spring is 4.6 and 12.3 m3/sec, respectively. This river flows through the recent alluviums (silt, sand and clay. During the last years, various domestic, agricultural and industrial wastewaters in Gonbad-e-Kavoos district discharge into the Gorganrood. The wastewaters are constant polluting source for rivers. This study aimed to assess the quality of Gorganrood River water as well as the pollution of bed sediments at

  18. Impacts of lake water environmental condition on bioavailable-phosphorus of surface sediments in Lixia River basin, China

    Directory of Open Access Journals (Sweden)

    Y. Zhang

    2015-05-01

    Full Text Available Bioavailable-phosphorus (BAP fractions of the lake surface sediments (the upper 0−5cm depth and environmental indicators of the related lake water column were investigated in five lakes in Lixia River basin during three seasons in order to evaluate the impacts of environmental indicators of the water column on the BAP fractions of surface sediments. The concentration of BAP varied significantly in different seasons. Factor analysis was used to identify the factors which influence sedimentary BAP significantly in the different seasons. The results showed that AAP and Olsen-P were significantly affected by the chemical oxygen demand through the bacterial activity in summer. The high intensity of bacterial activity and density of algae, and low concentrations of NO3-N and dissolved oxygen under high temperature enhanced the BAP released from anaerobic sediment and significantly contributed to the eutrophication of the lake, especially in summer. In addition, macrophyte roots were beneficial to absorption of AAP and Olsen-P.

  19. Partitioning behaviour of perfluorinated alkyl contaminants between water, sediment and fish in the Orge River (nearby Paris, France)

    International Nuclear Information System (INIS)

    Labadie, Pierre; Chevreuil, Marc

    2011-01-01

    This paper reports on the partitioning behaviour of 15 perfluorinated compounds (PFCs), including C 4 -C 10 sulfonates and C 5 -C 14 carboxylic acids, between water, sediment and fish (European chub, Leuciscus cephalus) in the Orge River (nearby Paris). Total PFC levels were 73.0 ± 3.0 ng L -1 in water and 8.4 ± 0.5 ng g -1 in sediment. They were in the range 43.1-4997.2 ng g -1 in fish, in which PFC tissue distribution followed the order plasma > liver > gills > gonads > muscle. Sediment-water distribution coefficients (log K d ) and bioaccumulation factors (log BAF) were in the range 0.8-4.3 and 0.9-6.7, respectively. Both distribution coefficients positively correlated with perfluoroalkyl chain length. Field-based biota-sediment accumulation factors (BSAFs) are also reported, for the first time for PFCs other than perfluorooctane sulfonate. log BSAF ranged between -1.3 and 1.5 and was negatively correlated with the perfluoroalkyl chain length in the case of carboxylic acids. - Research highlights: → PFC tissue distribution in European chub followed the order plasma > liver > gills > gonads > muscle. → K d and BAF correlated with PFC alkyl chain length. → BSAF negatively correlated with the perfluoroalkyl chain length in the case of carboxylic acids. → BSAF did not correlate with alkyl chain length of sulfonates. - Sediment-water, biota-water and biota-sediment partitioning coefficients were determined for perfluorinated acids and sulfonates and were generally correlated with alkyl chain length.

  20. Concentration Factors of Norm in Sediment of Cisadane River

    International Nuclear Information System (INIS)

    Agus Gindo S; Lubis, Erwansyah

    2008-01-01

    The Concentration factor (Cf) in sediment of Cisadane river was investigated. The surface water and sediment was sampling at Gunung Sindur area (down stream) until Teluk Naga area (up stream). The results indicated that Cf values of gross-α, gross-β, gross-th, gross-U, 40 K, 226 Ra and 228 Th were 830 ± 87, 1800 ± 290, 2150 ± 50, 1415 ± 41, 37 ± 1, 22 ± 5 and 115 ± 56 respectively. With these Cf values, the radiological impact from liquid effluent release to Cisadane river that contains NORM from industrial activities for agriculture and fishery pathways are able to predicted. This investigation still has to be continued for other radionuclides. (author)

  1. Mercury in water and bottom sediments from a mexican reservoir

    International Nuclear Information System (INIS)

    Avila Perez, P.; Zarazua Ortega, G.; Barcelo Quintal, D.; Rosas, P.; Diazdelgado, C.

    2001-01-01

    The Lerma-Santiago river's source is located in the State of Mexico. Its drainage basin occupies an area of 129,632 km2. The river receives urban wastewater discharges from 29 municipalities, as well as industrial water discharges, both treated and untreated, mainly from the industrial zones of Toluca, Lerma, Ocoyoacac, Santiago Tianguistengo, Pasteje and Atlacomulco. It is estimated that during a year, the stream receives 536 x 106 m3 of waste waters, which carries 350,946 ton of organic load; 33% of these waste waters come from urban discharges, and 67% originate from industrial discharges. The Jose Antonio Alzate Reservoir fed by the Lerma river is the first significant water reservoir downstream of the main industrial areas in the State of Mexico and both are considered the most contaminated water bodies in the State of Mexico. Mercury concentrations in water and bottom sediments in the Jose Antonio Alzate Reservoir were determined in 6 different sampling zones over a 1-year period. Mercury was measured by instrumental neutron activation analysis (INAA) and irradiated with a thermal neutron flux of 9 x 1012 n. cm-2 s-1 for a period of 26 hours. High variations of mercury concentrations in water in both, soluble and suspended forms, were observed to depend on the sampling season. During the rainy season, rain events contribute with a substantial water volume to modify physicochemical parameters like pH, which dilute chemical species in the Alzate Reservoir. There are evidence that in the Jose Antonio Alzate reservoir, sedimentation and adsorption act as a natural cleaning process, decreasing the dissolved concentrations and increasing the metallic content of the sediments. A negative gradient was identified for mercury concentrations, from the Lerma river inlet to Alzate Reservoir dam, which demonstrates the considerable influence of the Lerma river inlet. This gradient also proves the existence of a metal recycling process between water and sediment, while the

  2. Effects of herbicides on coral and seasonal distribution in water and sediments collected from rivers and coral reefs of the Ryukyu Archipelago, Japan

    Science.gov (United States)

    Kaneshiro, A.; Fujimura, H.; Oomori, T.; Gima, S.; Suzuki, Y.; Casareto, B. E.; Higuchi, T.; Sagawa, T.

    2011-12-01

    Introduction Coral reefs are subjected to artificial chemicals such as herbicide and pesticides. Diuron [N'-(3, 4-dichlorophenyl)-N, N-dimethylurea] is one of the active constituent contained in a herbicide. Although acute effects of diuron on coral are reported by several researchers, longer-period toxicity with lower level concentration and synergistic effect between the herbicide and soil sedimentation from river water have not been studied. We investigated the concentration level, distribution, seasonal variation and accumulation of several herbicides and pesticides in coral reef and river in Ishigaki Island and Okinawa Island, and estimated the rates of carbon production of calcification and photosynthesis to access the effects of herbicides on coral. Materials and Methods Water and sediment samples were collected from Todoroki river and Shiraho coral reef in Ishigaki Island and several rivers from Okinawa Island in August 2010 to August 2011. Diuron and other active constituents were extracted using a solid-phase column and measured with a liquid chromatography-tandem mass spectrometry (LC-MS/MS). Corals for the experiment were collected from Okinawa Island and incubated in glass bottles. Seawater adjusted several concentrations of herbicide was continuously supplied to the bottles. Coral calcification and photosynthesis were estimated based on the change in total alkalinity and pH during a few hours when we temporary cease the water flow. Results and Discussion Higher diuron of 563 ng/L in water and 26 μg/kg in sediment was detected at the headwater of the Todoroki river in Ishigaki. in June. Sugarcane plantation is prevailing in Todoroki river area and rainwater can tend to gather topographically to upstream of the river. The higher concentration at the headwater decreased to 23 ng/L toward the river mouth. On the whole, the concentrations were higher during summer and lower in the other seasons in Ishigaki. On the other hand, seasonal variation was not

  3. Quantifying the anthropogenic and climatic contributions to changes in water discharge and sediment load into the sea: A case study of the Yangtze River, China.

    Science.gov (United States)

    Zhao, Yifei; Zou, Xinqing; Gao, Jianhua; Xu, Xinwanghao; Wang, Chenglong; Tang, Dehao; Wang, Teng; Wu, Xiaowei

    2015-12-01

    Based on data from the Datong hydrological station and 147 meteorological stations, the influences of climate change and human activities on temporal changes in water discharge and sediment load were examined in the Yangtze River basin from 1953 to 2010. The Mann-Kendall test, abrupt change test (Mann-Kendall and cumulative anomaly test), and Morlet wavelet method were employed to analyze the water discharge and sediment load data measured at the Datong hydrological station. The results indicated that the annual mean precipitation and water discharge exhibited decreasing trends of -0.0064 mm/10 yr and -1.41×10(8) m3/yr, respectively, and that the water sediment load showed a significant decreasing trend of -46.5×10(6) t/yr. Meanwhile, an abrupt change in the water discharge occurred in 2003. The sediment load also exhibited an abrupt change in 1985. From 1970 to 2010, the climate change and human activities contributed 72% and 28%, respectively, to the water discharge reduction. The human-induced decrease in the sediment load was 914.03×10(6) t/yr during the 1970s and 3301.79×10(6) t/yr during the 2000s. The contribution from human activities also increased from 71% to 92%, especially in the 1990s, when the value increased to 92%. Climate change and human activities contributed 14% and 86%, respectively, to the sediment load reduction. Inter-annual variations in water discharge and sediment load were affected by climate oscillations and human activities. The effect of human activities on the sediment load was considerably greater than those on water discharge in the Yangtze River basin. Copyright © 2015 Elsevier B.V. All rights reserved.

  4. Survey of the mutagenicity of surface water, sediments, and drinking water from the Penobscot Indian Nation.

    Science.gov (United States)

    Warren, Sarah H; Claxton, Larry D; Diliberto, Janet; Hughes, Thomas J; Swank, Adam; Kusnierz, Daniel H; Marshall, Valerie; DeMarini, David M

    2015-02-01

    U.S. Environmental Protection Agency (US EPA) Regional Applied Research Effort (RARE) projects address the effects of environmental pollutants in a particular region on the health of the population in that region. This report is part of a RARE project that addresses this for the Penobscot Indian Nation (PIN), Penobscot Island, Maine, U.S., where the Penobscot River has had fish advisories for many years due to high levels of mercury. We used the Salmonella mutagenicity assay with strains TA100, TA98, YG1041, and YG1042 with and without metabolic activation to assess the mutagenic potencies of organic extracts of the Penobscot River water and sediment, as well as drinking-water samples, all collected by the PIN Department of Natural Resources. The source water for the PIN drinking water is gravel-packed groundwater wells adjacent to the Penobscot River. Most samples of all extracts were either not mutagenic or had low to moderate mutagenic potencies. The average mutagenic potencies (revertants/L-equivalent) were 337 for the drinking-water extracts and 177 for the river-water extracts; the average mutagenic potency for the river-sediment extracts was 244 revertants(g-equivalent)(-1). This part of the RARE project showed that extracts of the Penobscot River water and sediments and Penobscot drinking water have little to no mutagenic activity that might be due to the classes of compounds that the Salmonella mutagenicity assay detects, such as polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs (nitroarenes), and aromatic amines. This study is the first to examine the mutagenicity of environmental samples from a tribal nation in the U.S. Published by Elsevier Ltd.

  5. Sediment distribution and composition on the shallow water ...

    African Journals Online (AJOL)

    Sediments of the shallow water carbonate basin in Zanzibar channel were investigated for composition and grain size distribution. The surface sediment composition was dominated by carbonate sands (with CaCO3 > 30%), except in the area adjacent to mainland coastline and a thin lobe which projects from Ruvu River to ...

  6. Impact of seasonal variation on Escherichia coli concentrations in the riverbed sediments in the Apies River, South Africa.

    Science.gov (United States)

    Abia, Akebe Luther King; Ubomba-Jaswa, Eunice; Momba, Maggy Ndombo Benteke

    2015-12-15

    Many South Africans living in resource-poor settings with little or no access to pipe-borne water still rely on rivers as alternative water sources for drinking and other purposes. The poor microbial quality of such water bodies calls for appropriate monitoring. However, routine monitoring only takes into consideration the microbial quality of the water column, and does not include monitoring of the riverbed sediments for microbial pollution. This study sought to investigate the microbial quality of riverbed sediments in the Apies River, Gauteng Province, South Africa, using Escherichia coli as a faecal indicator organism and to investigate the impact of seasonal variation on its abundance. Weekly samples were collected at 10 sampling sites on the Apies River between May and August 2013 (dry season) and between January and February 2014 (wet season). E. coli was enumerated using the Colilert®-18 Quanti-Tray® 2000 system. All sites tested positive for E. coli. Wastewater treatment work effluents had the highest negative impact on the river water quality. Seasonal variations had an impact on the concentration of E. coli both in water and sediments with concentrations increasing during the wet season. A strong positive correlation was observed between temperature and the E. coli concentrations. We therefore conclude that the sediments of the Apies River are heavily polluted with faecal indicator bacteria and could also harbour other microorganisms including pathogens. The release of such pathogens into the water column as a result of the resuspension of sediments due to extreme events like floods or human activities could increase the health risk of the populations using the untreated river water for recreation and other household purposes. There is therefore an urgent need to reconsider and review the current South African guidelines for water quality monitoring to include sediments, so as to protect human health and other aquatic lives. Copyright © 2015 Elsevier

  7. Response of PAH-degrading genes to PAH bioavailability in the overlying water, suspended sediment, and deposited sediment of the Yangtze River.

    Science.gov (United States)

    Xia, Xinghui; Xia, Na; Lai, Yunjia; Dong, Jianwei; Zhao, Pujun; Zhu, Baotong; Li, Zhihuang; Ye, Wan; Yuan, Yue; Huang, Junxiong

    2015-06-01

    The degrading genes of hydrophobic organic compounds (HOCs) serve as indicators of in situ HOC degradation potential, and the existing forms and bioavailability of HOCs might influence the distribution of HOC-degrading genes in natural waters. However, little research has been conducted to study the relationship between them. In the present study, nahAc and nidA genes, which act as biomarkers for naphthalene- and pyrene-degrading bacteria, were selected as model genotypes to investigate the response of polycyclic aromatic hydrocarbon (PAH)-degrading genes to PAH bioavailability in the overlying water, suspended sediment (SPS), and deposited sediment of the Yangtze River. The freely dissolved concentration, typically used to reflect HOC bioavailability, and total dissolved, as well as sorbed concentrations of PAHs were determined. Phylogenetic analysis showed that all the PAH-ring hydroxylating dioxygenase gene sequences of Gram-negative bacteria (PAH-RHD[GN]) were closely related to nahAc, nagAc, nidA, and uncultured PAH-RHD genes. The PAH-RHD[GN] gene diversity as well as nahAc and nidA gene copy numbers decreased in the following order: deposited sediment>SPS>overlying water. The nahAc and nidA gene abundance was not significantly correlated with environmental parameters but was significantly correlated with the bioavailable existing forms of naphthalene and pyrene in the three phases. The nahAc gene copy numbers in the overlying water and deposited sediment were positively correlated with freely dissolved naphthalene concentrations in the overlying and pore water phases, respectively, and so were nidA gene copy numbers. This study suggests that the distribution and abundance of HOC-degrading bacterial population depend on the HOC bioavailability in aquatic environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Wood and Sediment Dynamics in River Corridors

    Science.gov (United States)

    Wohl, E.; Scott, D.

    2015-12-01

    Large wood along rivers influences entrainment, transport, and storage of mineral sediment and particulate organic matter. We review how wood alters sediment dynamics and explore patterns among volumes of instream wood, sediment storage, and residual pools for dispersed pieces of wood, logjams, and beaver dams. We hypothesized that: volume of sediment per unit area of channel stored in association with wood is inversely proportional to drainage area; the form of sediment storage changes downstream; sediment storage correlates most strongly with wood load; and volume of sediment stored behind beaver dams correlates with pond area. Lack of data from larger drainage areas limits tests of these hypotheses, but analyses suggest a negative correlation between sediment volume and drainage area and a positive correlation between wood and sediment volume. The form of sediment storage in relation to wood changes downstream, with wedges of sediment upstream from jammed steps most prevalent in small, steep channels and more dispersed sediment storage in lower gradient channels. Use of a published relation between sediment volume, channel width, and gradient predicted about half of the variation in sediment stored upstream from jammed steps. Sediment volume correlates well with beaver pond area. Historically more abundant instream wood and beaver populations likely equated to greater sediment storage within river corridors. This review of the existing literature on wood and sediment dynamics highlights the lack of studies on larger rivers.

  9. Legacy Sediments in U.S. River Environments: Atrazine and Aggradation to Zinc and Zoobenthos

    Science.gov (United States)

    Wohl, E.

    2014-12-01

    Legacy sediments are those that are altered by human activities. Alterations include (i) human-caused aggradation (and subsequent erosion), such as sediment accumulating upstream from relict or contemporary dams, (ii) human-caused lack of continuing deposition that results in changing moisture and nutrient levels within existing sediments, such as on floodplains that no longer receive lateral or vertical accretion deposits because of levees, bank stabilization, and other channel engineering, and (iii) human-generated contaminants such as PCBs and pesticides that adsorb to fine sediment. Existing estimates of human alterations of river systems suggest that legacy sediments are ubiquitous. Only an estimated 2% of river miles in the United States are not affected by flow regulation that alters sediment transport, for example, and less than half of major river basins around the world are minimally altered by flow regulation. Combined with extensive but poorly documented reduction in floodplain sedimentation, as well as sediment contamination by diverse synthetic compounds, excess nutrients, and heavy metals, these national and global estimates suggest that legacy sediments now likely constitute a very abundant type of fluvial sediment. Because legacy sediments can alter river form and function for decades to centuries after the cessation of the human activity that created the legacy sediments, river management and restoration must be informed by accurate knowledge of the distribution and characteristics of legacy sediments. Geomorphologists can contribute understanding of sediment dynamics, including: the magnitude, frequency, and duration of flows that mobilize sediments with adsorbed contaminants; sites where erosion and deposition are most likely to occur under specified flow and sediment supply; residence time of sediments; and the influence of surface and subsurface water fluxes on sediment stability and geochemistry.

  10. Three-dimensional simulation of flow, salinity, sediment, and radionuclide movements in the Hudson River estuary

    International Nuclear Information System (INIS)

    Onishi, Y.; Trent, D.S.

    1985-04-01

    The three-dimensional, finite difference model, FLESCOT simulates time-varying movements of flow, turbulent kinetic energy, salinity, water temperature, sediment, and contaminants in estuarine, coastal, and ocean waters. The model was applied to a 106-km (66-mi) reach of the Hudson River estuary in New York between Chelsea and the mouth of the river. It predicted the time-varying, three-dimensional distributions of tidal flow, salinity, three separate groups of sediments (i.e., sand, silt, and clay), and a radionuclide ( 137 Cs) in both dissolved and particulate (those sorbed by sediments) forms for over 40 days. The model also calculated riverbed elevation changes caused by sediment deposition and bed erosion, bed sediment size distribution and armoring, and distributions of the particulate 137 Cs sorbed by sand, silt, and clay in the bed

  11. Mineral compositions and sources of the riverbed sediment in the desert channel of Yellow River.

    Science.gov (United States)

    Jia, Xiaopeng; Wang, Haibing

    2011-02-01

    The Yellow River flows through an extensive, aeolian desert area and extends from Xiaheyan, Ningxia Province, to Toudaoguai, Inner Mongolia Province, with a total length of 1,000 km. Due to the construction and operation of large reservoirs in the upstream of the Yellow River, most water and sediment from upstream were stored in these reservoirs, which leads to the declining flow in the desert channel that has no capability to scour large amount of input of desert sands from the desert regions. By analyzing and comparing the spatial distribution of weight percent of mineral compositions between sediment sources and riverbed sediment of the main tributaries and the desert channel of the Yellow River, we concluded that the coarse sediment deposited in the desert channel of the Yellow River were mostly controlled by the local sediment sources. The analyzed results of the Quartz-Feldspar-Mica (QFM) triangular diagram and the R-factor models of the coarse sediment in the Gansu reach and the desert channel of the Yellow River further confirm that the Ningxia Hedong desert and the Inner Mongolian Wulanbuhe and Kubuqi deserts are the main provenances of the coarse sediment in the desert channel of the Yellow River. Due to the higher fluidity of the fine sediment, they are mainly contributed by the local sediment sources and the tributaries that originated from the loess area of the upper reach of the Yellow River.

  12. FORTRAN computer programs to process Savannah River Laboratory hydrogeochemical and stream-sediment reconnaissance data

    International Nuclear Information System (INIS)

    Zinkl, R.J.; Shettel, D.L. Jr.; D'Andrea, R.F. Jr.

    1980-03-01

    FORTRAN computer programs have been written to read, edit, and reformat the hydrogeochemical and stream-sediment reconnaissance data produced by Savannah River Laboratory for the National Uranium Resource Evaluation program. The data are presorted by Savannah River Laboratory into stream sediment, ground water, and stream water for each 1 0 x 2 0 quadrangle. Extraneous information is eliminated, and missing analyses are assigned a specific value (-99999.0). Negative analyses are below the detection limit; the absolute value of a negative analysis is assumed to be the detection limit

  13. Shallow stratigraphy of the Skagit River Delta, Washington, derived from sediment cores

    Science.gov (United States)

    Grossman, Eric E.; George, Douglas A.; Lam, Angela

    2011-01-01

    Sedimentologic analyses of 21 sediment cores, ranging from 0.4 to 9.6 m in length, reveal that the shallow geologic framework of the Skagit River Delta, western Washington, United States, has changed significantly since 1850. The cores collected from elevations of 3.94 to -2.41 m (relative to mean lower low water) along four cross-shore transects between the emergent marsh and delta front show relatively similar environmental changes across an area spanning ~75 km2. Offshore of the present North Fork Skagit River and South Fork Skagit River mouths where river discharge is focused by diked channels through the delta, the entire 5–7-km-wide tidal flats are covered with 1–2 m of cross-bedded medium-to-coarse sands. The bottoms of cores, collected in these areas are composed of mud. A sharp transition from mud to a cross-bedded sand unit indicates that the tidal flats changed abruptly from a calm environment to an energetic one. This is in stark contrast to the Martha's Bay tidal flats north of the Skagit Bay jetty that was completed in the 1940s to protect the newly constructed Swinomish Channel from flooding and sedimentation. North of the jetty, mud ranging from 1 to 2 m thick drapes a previously silt- and sand-rich tidal flat. The silty sand is a sediment facies that would be expected there where North Fork Skagit River sedimentation occurred prior to jetty emplacement. This report describes the compositional and textural properties of the sediment cores by using geophysical, photographic, x-radiography, and standard sediment grain-size and carbon-analytical methods. The findings help to characterize benthic habitat structure and sediment transport processes and the environmental changes that have occurred across the nearshore of the Skagit River Delta. The findings will be useful for quantifying changes to nearshore marine resources, including impacts resulting from diking, river-delta channelization, shoreline development, and natural variations in fluvial-sediment

  14. A review of sediment quantity issues: examples from the River Ebro and adjacent basins (Northeastern Spain).

    Science.gov (United States)

    Batalla, Ramon J; Vericat, Damià

    2011-04-01

    Sediment flows naturally through the drainage network, from source areas to deposition zones. Sedimentary disequilibrium in rivers and coastlines is related to the imbalance within the fluvial system caused mostly by dams, instream mining, and changes in land use. This phenomenon is also responsible for ecological perturbations in rivers and streams. A broad need exists to establish comprehensive management strategies (soft measures) that would go beyond site-specific engineering practices (technical measures) typically taken to solve particular problems. Long-term programs are also required to monitor sediment transport in river basins, in order to assess the magnitude and variability of sediment transfer and potential deficits. This paper shows examples of rivers with important sediment disequilibrium in the Ebro and adjacent basins. These basins, like most in the Iberian Peninsula, experience sediment discontinuity in the catchment-river-coast system. Reservoir siltation is the main quantitative issue. Land use change and especially gravel mining downstream from dams accentuate the process. We also present and discuss recent developments on water and sediment management undertaken to improve the morphosedimentary dynamics of rivers. Copyright © 2010 SETAC.

  15. Sediment quality and ecorisk assessment factors for a major river system

    International Nuclear Information System (INIS)

    Johnson, V.G.; Wagner, J.J.; Cutshall, N.H.

    1993-08-01

    Sediment-related water quality and risk assessment parameters for the Columbia River were developed using heavy metal loading and concentration data from Lake Roosevelt (river km 1120) to the mouth and adjacent coastal zone. Correlation of Pb, Zn, Hg, and Cd concentrations in downstream sediments with refinery operations in British Columbia suggest that solutes with K d 's > 10 5 reach about 1 to 5 μg/g per metric ton/year of input. A low-suspended load (upriver avg. <10 mg/L) and high particle-surface reactivity account for the high clay-fraction contaminant concentrations. In addition, a sediment exposure path was demonstrated based on analysis of post-shutdown biodynamics of a heavy metal radiotracer. The slow decline in sediment was attributed to resuspension, bioturbation, and anthropogenic disturbances. The above findings suggest that conservative sediment quality criteria should be used to restrict additional contaminant loading in the upper drainage basin. The issuance of an advisory for Lake Roosevelt, due in part to Hg accumulation in large sport fish, suggests more restrictive controls are needed. A monitoring strategy for assessing human exposure potential and the ecological health of the river is proposed

  16. Potential risks of metal toxicity in contaminated sediments of Deule river in Northern France

    International Nuclear Information System (INIS)

    Lourino-Cabana, Beatriz; Lesven, Ludovic; Charriau, Adeline; Billon, Gabriel; Ouddane, Baghdad; Boughriet, Abdel

    2011-01-01

    Research highlights: → A historical environmental pollution is evidenced with reference to background levels. → Sedimentary trace metals partitioning is examined under undisturbed conditions. → Anoxia and diagenetic processes induce geochemical and mineralogical variabilities. → Do metals present in particles and pore waters exhibit a potential toxicity risk? → Behaviour of binding fractions contributes to trace metals scavenging. - Abstract: The aim of this paper was to evaluate the potential sediment cumulative damage and toxicity due to metal contamination in a polluted zone of Deule river (in northern France) from nearby two smelters. Metal-enrichment factors and geoaccumulation indices measured with sediment depth revealed that - compared to background levels either in local reference soils or in world rivers sediments/suspended particulate matter - Cd contributed to the highest pollution levels, followed by Zn, Pb and to a much lesser extent Cu and Ni. A comparison of the vertical distribution of AVS (acid volatile sulfides), SEM (simultaneously extracted metals), TMC (total metal concentrations), TOC (total organic carbon) and interstitial water-metal concentrations in the sediment allowed us to highlight the extent of toxicity caused by Cd, Pb, Zn, Ni and Cu and to raise the possibility of their association with certain geochemical phases. To assess the actual environmental impacts of these metals in Deule river, numerical sediment quality guidelines were further used in the present work. Sedimentary Pb, Zn, and Cd contents largely exceeded PEC (probable effect concentration) values reported as consensus-based sediment quality guidelines for freshwater ecosystems. As for risks of toxicity from pore waters, metal concentrations reached their maxima at the surficial layers of the sediment (1-3 cm) and IWCTU (Interstitial Water Criteria Toxicity Unit) observed for Pb and to a lesser extent Cd, violated the corresponding water quality data recommended

  17. Chemometric investigations on the differentiated evaluation of element trace analysis in river waters

    International Nuclear Information System (INIS)

    Einax, J.; Geiss, S.

    1994-01-01

    The combination of sequential leaching methods for a first assessment of the kind of species in river sediments with multivariate-statistical methods (like factor analysis) for identifying anthropogenic and/or geogenic loading is useful for the differentiated characterization of the pollution state of a river. Electrochemical investigations, planned on the basis of statistical design and following empirical modelling, enables quantitative conclusions on the binding forms of heavy metals in river waters. Deposition-remobilisation effects of heavy metals in the complex system river water-river sediment can be described by PLS modelling. (orig.)

  18. Preliminary Experimental Results on the Technique of Artificial River Replenishment to Mitigate Sediment Loss Downstream Dams

    Science.gov (United States)

    Franca, M. J.; Battisacco, E.; Schleiss, A. J.

    2014-12-01

    The transport of sediments by water throughout the river basins, from the steep slopes of the upstream regions to the sea level, is recognizable important to keep the natural conditions of rivers with a role on their ecology processes. Over the last decades, a reduction on the supply of sand and gravel has been observed downstream dams existing in several alpine rivers. Many studies highlight that the presence of a dam strongly modifies the river behavior in the downstream reach, in terms of morphology and hydrodynamics, with consequences on local ecology. Sediment deficit, bed armoring, river incision and bank instability are the main effects which affect negatively the aquatic habitats and the water quality. One of the proposed techniques to solve the problem of sediment deficit downstream dams, already adopted in few Japanese and German rivers although on an unsatisfactory fashion, is the artificial replenishment of these. Generally, it was verified that the erosion of the replenishments was not satisfactory and the transport rate was not enough to move the sediments to sufficient downstream distances. In order to improve and to provide an engineering answer to make this technique more applicable, a series of laboratory tests are ran as preparatory study to understand the hydrodynamics of the river flow when the replenishment technique is applied. Erodible volumes, with different lengths and submergence conditions, reproducing sediment replenishments volumes, are positioned along a channel bank. Different geometrical combinations of erodible sediment volumes are tested as well on the experimental flume. The first results of the experimental research, concerning erosion time evolution, the influence of discharge and the distance travelled by the eroded sediments, will be presented and discussed.

  19. Rapid channel incision of the lower Pearl River (China since the 1990s as a consequence of sediment depletion

    Directory of Open Access Journals (Sweden)

    X. X. Lu

    2007-12-01

    Full Text Available This paper reported a dramatic channel incision (>10 m in the deepest cut during the past 10 y or so in the lower Pearl River, the second largest river in terms of water discharge in China. The channel incision had caused changes both in the channel geometry as well as in the river hydraulics. Also, the water exchange between the two major tributaries of the Pearl River, the Xijiang and Beijiang, had been significantly changed due to the channel incision. The rapid channel incision was principally the result of extensive sand mining in the lower Pearl River and the delta region due to the booming economy in the Pearl Delta region. Slight increase of water discharge and significant decrease of sediment load since the early 1990s in both the Xijiang and Beijiang also likely contributed to the observed dramatic river bed downcutting to some extent. This has important implications for river management, as the large Chinese rivers have seen a dramatic depletion of sediment fluxes due to the combined effects of declining rainfall, dam constructions, water diversion, reforestation and afforestation, and sediment mining over the recent decades.

  20. Changing trends of rainfall and sediment fluxes in the Kinta River catchment, Malaysia

    Directory of Open Access Journals (Sweden)

    W. R. Ismail

    2015-03-01

    Full Text Available The Kinta River, draining an area of 2566 km2, originates in the Korbu Mountain in Perak, Malaysia, and flows through heterogeneous, mixed land uses ranging from extensive forests to mining, rubber and oil palm plantations, and urban development. A land use change analysis of the Kinta River catchment was carried out together with assessment of the long-term trend in rainfall and sediment fluxes. The Mann-Kendall test was used to examine and assess the long-term trends in rainfall and its relationship with the sediment discharge trend. The land use analysis shows that forests, water bodies and mining land declined whilst built and agricultural land use increased significantly. This has influenced the sediment flux of the catchment. However, most of the rainfall stations and river gauging stations are experiencing an increasing trends, except at Kinta river at Tg. Rambutan. Sediment flux shows a net erosion for the period from 1961 to 1969. The total annual sediment discharge in the Kinta River catchment was low with an average rate of 1,757 t/km2/year. From 1970 to 1985, the annual sediment yield rose to an average rate of 4062 t/km2/year. Afterwards, from 1986 to 1993, the total annual sediment discharge decreased to an average rate of 1,306 t/km2/year and increased back during the period 1994 to 2000 to 2109 t/km2/year. From 2001 to 2006 the average sediment flux rate declined to 865 t/km2/year. The decline was almost 80% from the 1970s. High sediment flux in the early 1970s is partly associated with reduced tin mining activities in the area. This decreasing trend in sediment delivery leaving the Kinta River catchment is expected to continue dropping in the future.

  1. Changing trends of rainfall and sediment fluxes in the Kinta River catchment, Malaysia

    Science.gov (United States)

    Ismail, W. R.; Hashim, M.

    2015-03-01

    The Kinta River, draining an area of 2566 km2, originates in the Korbu Mountain in Perak, Malaysia, and flows through heterogeneous, mixed land uses ranging from extensive forests to mining, rubber and oil palm plantations, and urban development. A land use change analysis of the Kinta River catchment was carried out together with assessment of the long-term trend in rainfall and sediment fluxes. The Mann-Kendall test was used to examine and assess the long-term trends in rainfall and its relationship with the sediment discharge trend. The land use analysis shows that forests, water bodies and mining land declined whilst built and agricultural land use increased significantly. This has influenced the sediment flux of the catchment. However, most of the rainfall stations and river gauging stations are experiencing an increasing trends, except at Kinta river at Tg. Rambutan. Sediment flux shows a net erosion for the period from 1961 to 1969. The total annual sediment discharge in the Kinta River catchment was low with an average rate of 1,757 t/km2/year. From 1970 to 1985, the annual sediment yield rose to an average rate of 4062 t/km2/year. Afterwards, from 1986 to 1993, the total annual sediment discharge decreased to an average rate of 1,306 t/km2/year and increased back during the period 1994 to 2000 to 2109 t/km2/year. From 2001 to 2006 the average sediment flux rate declined to 865 t/km2/year. The decline was almost 80% from the 1970s. High sediment flux in the early 1970s is partly associated with reduced tin mining activities in the area. This decreasing trend in sediment delivery leaving the Kinta River catchment is expected to continue dropping in the future.

  2. Water-level fluctuations influence sediment porewater ...

    Science.gov (United States)

    Reservoirs typically have elevated fish mercury (Hg) levels compared to natural lakes and rivers. A unique feature of reservoirs is water-level management which can result in sediment exposure to the air. The objective of this study is to identify how reservoir water-level fluctuations impact Hg cycling, particularly the formation of the more toxic and bioaccumulative methylmercury (MeHg). Total-Hg (THg), MeHg, stable isotope methylation rates and several ancillary parameters were measured in reservoir sediments (including some in porewater and overlying water) that are seasonally and permanently inundated. The results showed that sediment and porewater MeHg concentrations were over 3-times higher in areas experiencing water-level fluctuations compared to permanently inundated sediments. Analysis of the data suggest that the enhanced breakdown of organic matter in sediments experiencing water-level fluctuations has a two-fold effect on stimulating Hg methylation: 1) it increases the partitioning of inorganic Hg from the solid phase into the porewater phase (lower log Kd values) where it is more bioavailable for methylation; and 2) it increases dissolved organic carbon (DOC) in the porewater which can stimulate the microbial community that can methylate Hg. Sulfate concentrations and cycling were enhanced in the seasonally inundated sediments and may have also contributed to increased MeHg production. Overall, our results suggest that reservoir management a

  3. Medical and Other Radioisotopes as Tracers in the Wastewater-River-Sediment Chain

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, H. W.; Ulbrich, S.; Pittauerova, D.; Hettwig, B. [Institute of Environmental Physics, University of Bremen, Bremen (Germany)

    2013-07-15

    Medical, natural and other artificial radioisotopes have been followed on their pathway to river sediment employing gamma spectroscopy. Sampling points were situated at a local wastewater treatment plant (inflow, outflow and sludge) and along 70 km of a tidal river (bank sediment). Isotope entry points are assumed to be wastewater for medical isotopes like I-131 and Tc-99m, rain for natural Be-7, and soil erosion for fission generated Cs-137. Medical isotope data reflect the short term dynamics of medical usage, wastewater transport and treatment, and the river system. Be-7 data are influenced by the amount of rainfall on a short time scale, and by the size of the river catchment area and dilution due to tidal effects in the long term. Cs-137 values appear rather constant, behaving similarly to primordial K-40. In conclusion, the investigated radioisotopes offer a variety of possibilities to assess water and sediment dynamics. (author)

  4. INAA and chemical analysis of water and sediments sampled in 1996 from the Romanian sector of the Danube river

    International Nuclear Information System (INIS)

    Pantelica, A.; Georgescu, I.I.; Oprica, M.H.I.; Borcia, C.

    1999-01-01

    Water and sediment samples collected during spring 1996 from 20 sampling sites of the Romanian sector of the Danube river and the Black Sea coast were analyzed by instrumental neutron activation analysis (INAA) and by chemical methods to determine major, minor and trace element contents. The concentrations of 43 elements (Ag, Al, As, Au, Ba, Br, Ca, Ce, Cl, Co, Cr, Cu, Cs, Eu, Fe, Ga, Hf, Hg, K, La, Lu, Mg, Mn, Mo, Na, Nd, Ni, Rb, Sb, Sc, Se, Sm, Sr, Ta, Tb, Ti, Th, U, V, W, Yb, Zr, Zn) were investigated by INAA at WWR-S reactor in Bucharest. Chemical methods were used to determine the content of P 2 O 5 and SiO 2 in sediments. For INAA, the water residues and sediment samples were irradiated at the WWR-S reactor in Bucharest at a neutron fluence rate of 2.3·10 12 cm -2 s -1 . As standards, reference materials IAEA-Soil 7 and WTM (sludge from city water treatment, from the Institute of Radioecology and Applied Nuclear Techniques Kosice, Slovakia) as well as chemical compounds of Al, Ca, Mg, V were used. Mono-standard method was applied in the case of Ti and Sr (Cl and Zn as standards, respectively). By chemical methods, the amount of SiO 2 was determined in sediment samples after the treatment with concentrated HCl and residuum dis-aggregation by fusion (melting with a mixture of Na 2 CO 3 and K 2 CO 3 ). Phosphorus was determined by spectrophotometry with ammonium molybdate and by reduction with ascorbic acid. It can be seen that, both for water and sediment samples, the highest contents of Al, Co, Cs, Fe, Rb, and Sb were found at the sites located upstream the Portile de Fier dam: at Turnu Severin (for water) and Orsova (for sediments). Ag, Au, Ni, Yb, Zr were determined only in some of the water samples at the following concentration levels: ng L -1 (Au, Lu), tens of ng L -1 (Ag, Tb, Yb), hundreds of ng L -1 (Ag), μg L -1 (Ni, Zr), tens of μg L -1 (Ni, Ti). From a comparison with results of our previous studies for the Danube bottom sediments, no significant

  5. [Fractions and adsorption characteristics of phosphorus on sediments and soils in water level fluctuating zone of the Pengxi River, a tributary of the Three Gorges Reservoir].

    Science.gov (United States)

    Sun, Wen-Bin; Du, Bin; Zhao, Xiu-Lan; He, Bing-Hui

    2013-03-01

    The sediment, one of the key factors leading to the eutrophication of water bodies, is an important ecological component of natural water body. In order to investigate the morphological characteristics and moving-transiting rule of phosphorus in the sediments of the Pengxi River, a tributary of the Three Gorges Reservoir, the distributions of different phosphorus forms on the three cross-section in the sediments and three soil types of riparian zone were investigated using the sequential extraction method. The characteristics of phosphorus adsorption on the sediments were also investigated by batch experiments. The equilibrium phosphorus concentrations at zero adsorption (EPC0) on those sediments were estimated using the Henry linear models. The results show that the total phosphorus (TP) contents of these sediments and soils of riparian zone were 0.80-1.45 g x kg(-1) and 0.65-1.16 g x kg(-1), respectively. Phosphorus in sediments and soils were divided into inorganic phosphorus (IP) and organic phosphorus (Or-P), and the inorganic phosphorus was the dominant component of TP. Of the inorganic phosphorus fractions, the percentages of phosphorus bounded to calcium (Ca-P) and occluded phosphorus (O-P) from sediments were higher than 80%, implying that the contents of phosphorus were mainly influenced by their bedrocks and the sedimentary environmental conditions, not by the activities of human beings. The fractions of Ca-P and O-P were the dominant components of inorganic phosphorus in alluvial soil and purple soil, while the fraction of O-P was the highest in the paddy soil. The EPC0 values of the sediments from the sections of Huangshi, Shuangjiang and Gaoyang were 0.08, 0.13 and 0.11 mg x L(-1) respectively, but the EPC0 values of the alluvial soil, purple soil and paddy soil located in riparian zone were 0.08, 0.09 and 0.04 mg x L(-1), respectively. Correlation analysis shows that the values of EPC0 positively related to the contents of total phosphorus and clay

  6. Model based estimation of sediment erosion in groyne fields along the River Elbe

    International Nuclear Information System (INIS)

    Prohaska, Sandra; Jancke, Thomas; Westrich, Bernhard

    2008-01-01

    River water quality is still a vital environmental issue, even though ongoing emissions of contaminants are being reduced in several European rivers. The mobility of historically contaminated deposits is key issue in sediment management strategy and remediation planning. Resuspension of contaminated sediments impacts the water quality and thus, it is important for river engineering and ecological rehabilitation. The erodibility of the sediments and associated contaminants is difficult to predict due to complex time depended physical, chemical, and biological processes, as well as due to the lack of information. Therefore, in engineering practice the values for erosion parameters are usually assumed to be constant despite their high spatial and temporal variability, which leads to a large uncertainty of the erosion parameters. The goal of presented study is to compare the deterministic approach assuming constant critical erosion shear stress and an innovative approach which takes the critical erosion shear stress as a random variable. Furthermore, quantification of the effective value of the critical erosion shear stress, its applicability in numerical models, and erosion probability will be estimated. The results presented here are based on field measurements and numerical modelling of the River Elbe groyne fields.

  7. Groundwater and Human Controls on the Suspended Sediment Load of Na Borges River, Mallorca (Spain)

    Science.gov (United States)

    Estrany, J.; Garcia, C.

    2009-04-01

    Groundwater dominance has important effects on the hydrological and geomorphological characteristics of river systems. Low suspended sediment concentrations and high water clarity are expected because significant inputs of sediment-free spring water dilute the suspended sediment generated by storms. However, in many Mediterranean temporary rivers, groundwater dominance is characterised by seasonal alternations of influent and effluent discharge involving significant variability on the sediment transport regimes. Such areas are often subject to soil and water conservation practices over the centuries that have reduced the sediment contribution from agricultural fields and favour subsurface flow to rivers. Moreover, urbanisation during the twentieth century has changed the catchment hydrology and altered basic river processes due to its ‘flashy' regime. In this context, we monitored suspended sediment fluxes by means of three nested sub-catchments during a two-year period in the Na Borges River, a lowland agricultural catchment (319 km2) on the island of Mallorca (Balearic Islands) managed and therefore modified since Roman Age by agricultural soil and water conservation practices and recently by urbanisation. The suspended sediment concentration (SSC) was lower when the base flow index (i.e., relative proportion of baseflow compared to stormflow, BFI) was higher. Considering the high variability of the Mediterranean climate, a significant scatter of daily average SSC between sites and seasonally was observed, ranging between 22 to 54 mg l-1 for the total study period. The maximum instantaneous peak surpassed 6,000 mg l-1, recorded at downstream site based on the sediment supplied when there was no baseflow and the rainfall intensity was remarkable. At the other sites, peak concentrations did not exceed 2,000 mg l-1 because groundwater plays a more significant role. Furthermore, strong seasonal contrasts explain the high SSC coefficient of variation, which is

  8. Loads of suspended sediment and nutrients from local nonpoint sources to the tidal Potomac River and Estuary, Maryland and Virginia, 1979-81 water years

    Science.gov (United States)

    Hickman, R. Edward

    1987-01-01

    Loads of suspended sediment, phosphorus, nitrogen, biochemical oxygen demand, and dissolved silica discharged to the tidal Potomac River and Estuary during the !979-81 water years from three local nonpoint sources have been calculated. The loads in rain falling directly upon the tidal water surface and from overflows of the combined sewer system of the District of Columbia were determined from available information. Loads of materials in the streamflow from local watersheds draining directly to the tidal Potomac River and Estuary downstream from Chain Bridge in Washington, D.C., were calculated from samples of streamflow leaving five monitored watersheds. Average annual yields of substances leaving three urban watersheds (Rock Creek and the Northwest and Northeast Branches of the Anacostia River) and the rural Saint Clements Creek watershed were calculated either by developing relationships between concentration and streamflow or by using the mean of measured concentrations. Yields calculated for the 1979-81 water years are up to 2.3 times period-of-record yields because of greater than average streamflow and stormflow during this 3-year period. Period-of-record yields of suspended sediment from the three urban watersheds and the Saint Clements Creek watershed do not agree with yields reported by other studies. The yields from the urban watersheds are 17 to 51 percent of yields calculated using sediment-concentration data collected during the 1960-62 water years. Previous studies suggest that this decrease is at least partly due to the imposition of effective sediment controls at construction sites and to the construction of two multipurpose reservoirs. The yield calculated for the rural Saint Clements Creek watershed is at least twice the yields calculated for other rural watersheds, a result that may be due to most of the samples of this stream being taken during the summer of the 1981 water year, a very dry period. Loads discharged from all local tributary

  9. An Apparatus for Bed Material Sediment Extraction From Coarse River Beds in Large Alluvial Rivers

    Science.gov (United States)

    Singer, M. B.; Adam, H.; Cooper, J.; Cepello, S.

    2005-12-01

    Grain size distributions of bed material sediment in large alluvial rivers are required in applications ranging from habitat mapping, calibration of sediment transport models, high resolution sediment routing, and testing of existing theories of longitudinal and cross steam sediment sorting. However, characterizing bed material sediment from coarse river beds is hampered by difficulties in sediment extraction, a challenge that is generally circumvented via pebble counts on point bars, even though it is unclear whether the bulk grain size distribution of bed sediments is well represented by pebble counts on bars. We have developed and tested a boat-based sampling apparatus and methodology for extracting bulk sediment from a wide range of riverbed materials. It involves the use of a 0.4 x 0.4 x 0.2 meter stainless steel toothed sampler, called the Cooper Scooper, which is deployed from and dragged downstream by the weight of a jet boat. The design is based on that of a river anchor such that a rotating center bar connected to a rope line in the boat aligns the sampler in the downstream direction, the teeth penetrate the bed surface, and the sampler digs into the bed. The sampler is fitted with lead weights to keep it from tipping over. The force of the sampler `biting' into the bed can be felt on the rope line held by a person in the boat at which point they let out slack. The boat then motors to the spot above the embedded sampler, which is hoisted to the water surface via a system of pulleys. The Cooper Scooper is then clipped into a winch and boom assembly by which it is brought aboard. This apparatus improves upon commonly used clamshell dredge samplers, which are unable to penetrate coarse or mixed bed surfaces. The Cooper Scooper, by contrast, extracts statistically representative bed material sediment samples of up to 30 kilograms. Not surprisingly, the sampler does not perform well in very coarse or armored beds (e.g. where surface material size is on the

  10. Bioassessment metrics and deposited sediments in tributaries of the Chattooga river watershed

    Science.gov (United States)

    Erica Chiao; J. Bruce Wallace

    2003-01-01

    Excessive sedimentation places waters of the Chattooga River network at risk of biological impairment. Monitoring efforts could be improved by including metrics that are responsive to changes in levels of fine sediments. We sampled three habitats (riffle, depositional, bedrock outcrop) for benthic macroinvertebrates at four sites in three low-order, tributary reaches...

  11. Temporal variability in the suspended sediment load and streamflow of the Doce River

    Science.gov (United States)

    Oliveira, Kyssyanne Samihra Santos; Quaresma, Valéria da Silva

    2017-10-01

    Long-term records of streamflow and suspended sediment load provide a better understanding of the evolution of a river mouth, and its adjacent waters and a support for mitigation programs associated with extreme events and engineering projects. The aim of this study is to investigate the temporal variability in the suspended sediment load and streamflow of the Doce River to the Atlantic Ocean, between 1990 and 2013. Streamflow and suspended sediment load were analyzed at the daily, seasonal, and interannual scales. The results showed that at the daily scale, Doce River flood events are due to high intensity and short duration rainfalls, which means that there is a flashy response to rainfall. At the monthly and season scales, approximately 94% of the suspended sediment supply occurs during the wet season. Extreme hydrological events are important for the interannual scale for Doce River sediment supply to the Atlantic Ocean. The results suggest that a summation of anthropogenic interferences (deforestation, urbanization and soil degradation) led to an increase of extreme hydrological events. The findings of this study shows the importance of understanding the typical behavior of the Doce River, allowing the detection of extreme hydrological conditions, its causes and possible environmental and social consequences.

  12. Occurrence of perfluorinated compounds in the aquatic environment as found in science park effluent, river water, rainwater, sediments, and biotissues.

    Science.gov (United States)

    Lin, Angela Yu-Chen; Panchangam, Sri Chandana; Tsai, Yu-Ting; Yu, Tsung-Hsien

    2014-05-01

    The current article maps perfluoroalkyl acids (PFAAs) contamination in the largest Science Park of Taiwan. The occurrence of ten target PFAAs in the effluent of an industrial wastewater treatment plant (IWWTP), its receiving rivers, rainwater, sediment, and the muscles and livers of fish was investigated. All target PFAAs were found in effluent of IWWTP, in which perfluorooctane sulfonate (PFOS) (6,930 ng/L), perfluorohexyl sulfonate (PFHxS) (2,662 ng/L) and perfluorooctanoic acid (PFOA) (3,298 ng/L) were the major constituents. Concentrations of PFBS and PFOS in the IWWTP downstream areas have exceeded safe concentration levels of avian and aquatic life, indicating a potential risk to wildlife in those areas. In sediment samples, predominant contaminants were PFOS (1.5-78 ng/g), PFOA (0.5-5.6 ng/g), and perfluorododecanoic acid (PFDoA) (nd-5.4 ng/g). In biological tissue samples, concentrations as high as 28,933 ng/g of PFOS were detected in tilapia and catfish liver samples. A positive correlation for log (C sediment/C water) and log (C tissue/C water) was found. The concentration and proportion (percentage of all PFAAs) of PFOS found in biotissue samples from the Keya River (which receives industrial wastewater) were found to be much greater (200 times) than those of samples from the Keelung River (which receives mainly domestic wastewater). These findings suggest that the receiving aquatic environments and, in turn, the human food chain can be significantly influenced by industrial discharges.

  13. Contrasts in Sediment Delivery and Dispersal from River Mouth to Accumulation Zones in High Sediment Load Systems: Fly River, Papua New Guinea and Waipaoa River, New Zealand

    Science.gov (United States)

    Ogston, A. S.; Walsh, J. P.; Hale, R. P.

    2011-12-01

    The relationships between sediment-transport processes, short-term sedimentary deposition, subsequent burial, and long-term accumulation are critical to understanding the morphological development of the continental margin. This study focuses on processes involved in formation and evolution of the clinoform in the Gulf of Papua, Papua New Guinea in which much of the riverine sediment accumulates, and comparison to those processes active off the Waipaoa River, New Zealand that form mid-shelf deposits and export sediment to the slope. In tidally dominated deltas, sediment discharged from the river sources must transit through an estuarine region located within the distributary channels, where particle pathways can undergo significant transformations. Within the distributaries of the Fly River tidally dominated delta, near-bed fluid-mud concentrations were observed at the estuarine turbidity maximum and sediment delivery to the nearshore was controlled by the morphology and gradient of the distributary. El Niño results in anonymously low flow and sediment discharge conditions, which limits transport of sediment from the distributaries to the nearshore zone of temporary storage. Because the sediment stored nearshore feeds the prograding clinoform, this perturbation propagates throughout the dispersal system. In wave-dominated regions, transport mechanisms actively move sediment away from the river source, separating the site of deposition and accumulation from the river mouth. River-flood and storm-wave events each create discrete deposits on the Waipaoa River shelf and data has been collected to determine their form, distribution, and relationship to factors such as flood magnitude or wave energy. In this case, transport pathways appear to be influenced by structurally controlled shelf bathymetry. In both cases, the combined fluvial and marine processes can initiate and maintain gravity-driven density flows, and although their triggers and controls differ vastly

  14. Historical water-quality data from the Harlem River, New York

    Science.gov (United States)

    Fisher, Shawn C.

    2016-04-22

    Data specific to the Harlem River, New York, have been summarized and are presented in this report. The data illustrate improvements in the quality of water for the past 65 years and emphasize the importance of a continuous water-quality record for establishing trends in environmental conditions. Although there is a paucity of sediment-quality data, the New York City Department of Environmental Protection (NYCDEP) Bureau of Wastewater Treatment has maintained a water-quality monitoring network in the Harlem River (and throughout the harbor of New York City) to which 61 combined sewer outfalls discharge effluent. In cooperation with the NYCDEP, the U.S. Geological Survey evaluated water-quality data collected by the NYCDEP dating back to 1945, which indicate trends in water quality and reveal improvement following the 1972 passage of the Clean Water Act. These improvements are indicated by the steady increase in median dissolved oxygen concentrations and an overall decrease in fecal indicator bacteria concentrations starting in the late 1970s. Further, the magnitude of the highest fecal indicator bacteria concentrations (that is, the 90th percentile) in samples collected from the Harlem River have decreased significantly over the past four decades. Other parameters of water quality used to gauge the health of a water body include total suspended solids and nutrient (inorganic forms of nitrogen and phosphorus) concentrations—mean concentrations for these indicators have also decreased in the past decades. The limited sediment data available for one sample in the Harlem River indicate concentrations of copper, zinc, and lead are above sediment-quality thresholds set by the New York State Department of Environmental Conservation. However, more data are needed to better understand the changes in both sediment and water quality in the Harlem River, both as the tide cycles and during precipitation events. As a partner in the Urban Waters Federal Partnership, the U

  15. Sediment Transport Over Run-of-River Dams

    Science.gov (United States)

    O'Brien, M.; Magilligan, F. J.; Renshaw, C. E.

    2016-12-01

    Dams have numerous documented effects that can degrade river habitat downstream. One significant effect of large dams is their ability to trap sediment delivered from upstream. This trapping can alter sediment transport and grain size downstream - effects that often motivate dam removal decisions. However, recent indirect observations and modeling studies indicate that small, run-of-river (ROR) dams, which do not impede discharge, may actually leak sediment downstream. However, there are no direct measurements of sediment flux over ROR dams. This study investigates flow and sediment transport over four to six different New England ROR dams over a summer-fall field season. Sediment flux was measured using turbidity meters and tracer (RFID) cobbles. Sediment transport was also monitored through an undammed control site and through a river where two ROR dams were recently removed. These data were used to predict the conditions that contribute to sediment transport and trapping. Year 1 data show that tracer rocks of up to 61 mm were transported over a 3 m ROR dam in peak flows of 84% of bankfull stage. These tracer rocks were transported over and 10 m beyond the dam and continue to move downstream. During the same event, comparable suspended sediment fluxes of up to 81 g/s were recorded both upstream and downstream of the dam at near-synchronous timestamps. These results demonstrate the potential for sediment transport through dammed rivers, even in discharge events that do not exceed bankfull. This research elucidates the effects of ROR dams and the controls on sediment transport and trapping, contributions that may aid in dam management decisions.

  16. Presence of PAHs in water and sediments of the Colombian Cauca River during heavy rain episodes, and implications for risk assessment.

    Science.gov (United States)

    Sarria-Villa, Rodrigo; Ocampo-Duque, William; Páez, Martha; Schuhmacher, Marta

    2016-01-01

    In Colombia little attention has been paid to river pollution with Polycyclic Aromatic Hydrocarbons (PAHs). Low environmental control and legislation in such emerging region could significantly contribute to high PAHs releases. In this study, we report the presence of PAHs in water and sediments of the Cauca River (Colombia). Three sampling campaigns were carried out between May 2010 and June 2011, and the samples were collected at eight relevant sites. The sampling time included measuring before, during, and after a season of heavy rains, which were influenced by the global coupled ocean-atmospheric phenomenon, which affected tropical countries with huge flooding, commonly called "La Niña", and/or "El Niño" Southern Oscillation (ENSO). The highest mean ∑PAH concentrations were 4476.5 ng/l and 1582.7 ng/g in water and sediments, respectively. The PAHs most detected were Benzo[b]fluoranthene, Benzo[k]fluoranthene, and Pyrene in sediments; and Fluorene, Acenaphtylene, and Anthracene in water. After the season of rains statistically significant higher PAH concentrations were detected. The results of the study were compared to other rivers worldwide at both environmental compartments, and did not show concentrations of special concern. In some sites, concentrations detected of PAHs were higher than screening benchmarks for ecological protection. Estimation of human health risks was carried out, and the results suggested some likely carcinogenic effects due to PAHs especially in children exposed during current recreational swimming and adults working in low technology sand extraction. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Reservoir-flooded river mouth areas as sediment traps revealing erosion from peat mining areas - Jukajoki case study in eastern Finland

    Science.gov (United States)

    Tahvanainen, Teemu; Meriläinen, Henna-Kaisa; Haraguchi, Akira; Simola, Heikki

    2016-04-01

    Many types of soil-disturbing land use have caused excess sedimentation in Finnish lakes. Identification and quantification of catchment sources of sediment material is crucial in cases where demands for remediation measures are considered. We studied recent (50 yr) sediments of four small rivers, all draining to a reservoir impounded in 1971. Catchments of two of the rivers had had peat mining activities from early 1980s until recently, exposing large areas of peat surfaces to erosion. The water level of the reservoir had risen to the river mouth areas of all rivers, while in each case, the river mouth areas still form riverine narrows separable from the main reservoir, hence collecting sedimentation from their own catchments. The original soils under the reservoir water level could readily be observed in core samples, providing a dated horizon under recent sediments. In addition, we used 137Cs-stratigraphies for dating of samples from original river bed locations. As expected, recent sediments of rivers with peat mining influence differed from others e.g. by high organic content and C:N ratios. Stable isotopes 13C and 15N both correlated with C:N (r = 0.799 and r = -0.717, respectively) and they also differentiated the peat-mining influenced samples from other river sediments. Principal components of the physical-chemical variables revealed clearer distinction than any variables separately. Light-microscopy revealed abundance of leafs of Sphagnum mosses in peat-mining influenced river sediments that were nearly absent from other rivers. Spores of Sphagnum were, however, abundant in all river sediments indicating their predominantly airborne origin. We find that combination of several physical-chemical characters rather than any single variable and microscopy of plant remains can result in reliable recognition of peatland-origin of sediment material when non-impacted sites are available for comparison. Dating of disturbed recent sediments is challenging. River

  18. Uranium concentrations in stream waters and sediments from selected sites in the eastern Seward Peninsula, Koyukuk, and Charley River areas, and across South-Central Alaska

    International Nuclear Information System (INIS)

    Sharp, R.R. Jr.; Hill, D.E.

    1978-04-01

    During the summer of 1975, a 6-week reconnaissance was conducted in widespread areas of Alaska as part of the National Uranium Resource Evaluation (NURE) program; Water, stream sediment, and bedrock samples were taken from the eastern Seward Peninsula, from north of Koyukuk River, from the Charley River area, and from across south central Alaska. This report contains the LASL uranium determinations resulting from fluorometric analysis of the water samples and delayed-neutron counting of the stream sediment samples. Results of total uranium for 611 water and 641 sediment samples, from 691 stream locations, are presented. Overlays showing the numbered sample locations and graphically portraying the concentrations of uranium in water and stream sediment samples, at 1:250,000 scale for use with existing National Topographic Map Series (NTMS) sheets and published geologic maps, are provided as plates. The main purposes of this work are to make the uranium data available to the public in the standard computer format used in the NURE Hydrogeochemical and Stream Sediment Reconnaissance (i.e., with a DOE sample number giving the latitude and longitude of each sample location) and to provide uranium concentration overlays at the standard scale of 1:250,000 adopted by the DOE for the NURE program. It also allows a plausible explanation of differences between the uranium values for sediment as determined by acid dissolution/extraction/fluorometry and by delayed-neutron counting that were noted in the earlier report

  19. Applicability of API ZYM to capture seasonal and spatial variabilities in lake and river sediments.

    Science.gov (United States)

    Patel, Drashti; Gismondi, Renee; Alsaffar, Ali; Tiquia-Arashiro, Sonia M

    2018-05-02

    Waters draining into a lake carry with them much of the suspended sediment that is transported by rivers and streams from the local drainage basin. The organic matter processing in the sediments is executed by heterotrophic microbial communities, whose activities may vary spatially and temporally. Thus, to capture and evaluate some of these variabilities in the sediments, we sampled six sites: three from the St. Clair River and three from Lake St. Clair in spring, summer, fall, and winter of 2016. At all sites and dates, we investigated the spatial and temporal variations in 19 extracellular enzyme activities using API ZYM. Our results indicated that a broad range of enzymes were found to be active in the sediments. Phosphatases, lipases, and esterases were synthesized most intensively by the sediment microbial communities. No consistent difference was found between the lake and sediment samples. Differences were more obvious between sites and seasons. Sites with the highest metabolic (enzyme) diversity reflected the capacity of the sediment microbial communities to breakdown a broader range of substrates and may be linked to differences in river and lake water quality. The seasonal variability of the enzymes activities was governed by the variations of environmental factors caused by anthropogenic and terrestrial inputs, and provides information for a better understanding of the dynamics of sediment organic matter of the river and lake ecosystems. The experimental results suggest that API ZYM is a simple and rapid enzyme assay procedure to evaluate natural processes in ecosystems and their changes.

  20. Fluvial sediment transport in a glacier-fed high-mountain river (Riffler Bach, Austrian Alps)

    Science.gov (United States)

    Morche, David; Weber, Martin; Faust, Matthias; Schuchardt, Anne; Baewert, Henning

    2017-04-01

    High-alpine environments are strongly affected by glacier retreat since the Little Ice Age (LIA). Due to ongoing climate change the hydrology of proglacial rivers is also influenced. It is expected that the growing proportions of snow melt and rainfall events will change runoff characteristics of proglacial rivers. Additionally, the importance of paraglacial sediment sources in recently deglaciating glacier forefields is increasing, while the role of glacial erosion is declining. Thus complex environmental conditions leading to a complex pattern of fluvial sediment transport in partly glaciated catchments of the European Alps. Under the umbrella of the joint PROSA-project the fluvial sediment transport of the river Riffler Bach (Kaunertal, Tyrol, Austria) was studied in 3 consecutive ablation seasons in order to quantify sediment yields. In June 2012 a probe for water level and an automatic water sampler (AWS) were installed at the outlet of the catchment (20km2). In order to calculate annual stage-discharge-relations by the rating-curve approach, discharge (Q) was repeatedly measured with current meters and by salt dilution. Concurrent to the discharge measurements bed load was collected using a portable Helley-Smith sampler. Bed load samples were weighted and sieved in the laboratory to gain annual bed load rating curves and grain size distributions. In total 564 (2012: 154, 2013: 209, 2014: 201) water samples were collected and subsequently filtered to quantify suspended sediment concentrations (SSC). Q-SSC-relations were calculated for single flood events due to the high variability of suspended sediment transport. The results show a high inter- and intra-annual variability of solid fluvial sediment transport, which can be explained by the characteristics of suspended sediment transport. Only 13 of 22 event-based Q-SSC-relations show causal dependency. In 2012, during a period with multiple pluvial-induced peak discharges most sediment was transported. On the

  1. Heavy metal enrichment and ecological risk assessment of surface sediments in Khorramabad River, West Iran.

    Science.gov (United States)

    Rastmanesh, F; Safaie, S; Zarasvandi, A R; Edraki, M

    2018-04-11

    The ecological health of rivers has often been threatened in urbanized catchments due to the expansion of industrial activities and the population growth. Khorramabad River which flows through Khorramabad city, west of Iran, is an example of such settings. The river water is used for agricultural purposes downstream. In this study, the effect of Khorramabad city on heavy metal and metalloid (Cu, Pb, Zn, Ni, Cr, and As) loads in Khorramabad River sediments was investigated. To evaluate sediment pollution and potential adverse biological effects, surface sediment samples were collected at selected locations along the river and were characterized for their geochemical properties. Contamination factor (CF), pollution load index (PLI), and ecological risk assessment (RI) were calculated. Also, sediment quality guidelines (SQGs) were used to screen contaminants of concern in the study area. The results showed that sediments were moderately polluted, with stations located in more densely populated areas showing higher pollution indicators. Copper, Zn, and Pb sources could be attributed to urban wastewater, whereas Ni, Cr, and As had both natural and anthropogenic sources. Moreover, ecological risk assessments showed that sediments could be classified in the category of low risk. The results of the present study showed the effect of anthropogenic activities on heavy metal loads of the river sediments and these findings can be used to mitigate potential impacts on the environment and human health.

  2. Quantitative microbial risk assessment (QMRA) shows increased public health risk associated with exposure to river water under conditions of riverbed sediment resuspension

    CSIR Research Space (South Africa)

    Abia

    2016-10-01

    Full Text Available of The Total Environment, 556-557, pp 1143-1151 Quantitative microbial risk assessment (QMRA) shows increased public health risk associated with exposure to river water under conditions of riverbed sediment resuspension Akebe Luther King Abia a...

  3. Nitrogen cycling processes and microbial community composition in bed sediments in the Yukon River at Pilot Station

    Science.gov (United States)

    Repert, Deborah A.; Underwood, Jennifer C.; Smith, Richard L.; Song, Bongkeun

    2014-01-01

    Information on the contribution of nitrogen (N)-cycling processes in bed sediments to river nutrient fluxes in large northern latitude river systems is limited. This study examined the relationship between N-cycling processes in bed sediments and N speciation and loading in the Yukon River near its mouth at the Bering Sea. We conducted laboratory bioassays to measure N-cycling processes in sediment samples collected over distinct water cycle seasons. In conjunction, the microbial community composition in the bed sediments using genes involved in N-cycling (narG, napA, nosZ, and amoA) and 16S rRNA gene pyrosequences was examined. Temporal variation was observed in net N mineralization, nitrate uptake, and denitrification rate potentials and correlated strongly with sediment carbon (C) and extractable N content and microbial community composition rather than with river water nutrient concentrations. The C content of the bed sediment was notably impacted by the spring flood, ranging from 1.1% in the midst of an ice-jam to 0.1% immediately after ice-out, suggesting a buildup of organic material (OM) prior to scouring of the bed sediments during ice break up. The dominant members of the microbial community that explained differences in N-processing rates belonged to the genera Crenothrix,Flavobacterium, and the family of Comamonadaceae. Our results suggest that biogeochemical processing rates in the bed sediments appear to be more coupled to hydrology, nutrient availability in the sediments, and microbial community composition rather than river nutrient concentrations at Pilot Station.

  4. The dominant erosion processes supplying fine sediment to three major rivers in tropical Australia, the Daly (NT), Mitchell (Qld) and Flinders (Qld) Rivers

    Science.gov (United States)

    Caitcheon, Gary G.; Olley, Jon M.; Pantus, Francis; Hancock, Gary; Leslie, Christopher

    2012-05-01

    The tropics of northern Australia have received relatively little attention with regard to the impact of soil erosion on the many large river systems that are an important part of Australia's water resource, especially given the high potential for erosion when long dry seasons are followed by intense wet season rain. Here we use 137Cs concentrations to determine the erosion processes supplying sediment to two major northern Australian Rivers; the Daly River (Northern Territory), and the Mitchell River (Queensland). We also present data from five sediment samples collected from a 100 km reach of the Cloncurry River, a major tributary of the Flinders River (Queensland). Concentrations of 137Cs in the surface soil and subsurface (channel banks and gully) samples were used to derive 'best fit' probability density functions describing their distributions. These modelled distributions are then used to estimate the relative contribution of these two components to the river sediments. Our results are consistent with channel and gully erosion being the dominant source of sediment, with more than 90% of sediment transported along the main stem of these rivers originating from subsoil. We summarize the findings of similar studies on tropical Australian rivers and conclude that the primary source of sediment delivered to these systems is gully and channel bank erosion. Previously, as a result of catchment scale modelling, sheet-wash and rill erosion was considered to be the major sediment source in these rivers. Identifying the relative importance of sediment sources, as shown in this paper, will provide valuable information for land management planning in the region. This study also reinforces the importance of testing model predictions before they are used to target investment in remedial action.

  5. Mobilisation, alteration, and redistribution of monosulfidic sediments in inland river systems.

    Science.gov (United States)

    Cheetham, M D; Wong, V N L; Bush, R T; Sullivan, L A; Ward, N J; Zawadzki, A

    2012-12-15

    The accumulation of monosulfidic sediments in inland waterways is emerging as a major environmental issue. Mobilisation and suspension of monosulfidic sediments can result in deoxygenation, acidification of the water column and mobilisation of trace metals. The controls on monosulfidic sediment mobilisation and the critical thresholds for its scour and entrainment have not been established. This study examines the effect of a minor flood event (average return interval of 5 years) on sulfidic sediment scour in the Wakool River in southern NSW, Australia. Five profiles were sampled within a small (~300 m) reach before and after a minor flood event to determine the degree of sediment scour and transport. The results indicate substantial scour of both monosulfidic sediments and underlying bed sediments (approximately 2100 m(3)). Changes in the sediment geochemistry suggest large concentrations of monosulfidic sediments had been suspended in the water column, partially-oxidised and redeposited. This is supported by (210)Pb results from one of the profiles. These results suggest that these monosulfidic sediments can move as bed load during minor flood events. Copyright © 2012 Elsevier Ltd. All rights reserved.

  6. The future of the reservoirs in the Siret River Basin considering the sediment transport of rivers (ROMANIA

    Directory of Open Access Journals (Sweden)

    Petru OLARIU

    2015-02-01

    Full Text Available The Siret River Basin is characterized by an important use of hydro potential, resulted in the number of reservoirs constructed and operational. The cascade power stage of the reservoirs on Bistrita and Siret rivers indicate the anthropic interventions with different purposes (hydro energy, water supply, irrigation etc. in the Siret River Basin. In terms of the capacity in the Siret River Basin there is a dominance of the small capacity reservoirs, which is given by the less than 20 mil m³ volumes. Only two lakes have capacities over 200 mil m³: Izvoru Muntelui on Bistrita River and Siriu on Buzau River. Based on the monitoring of the alluvial flow at the hydrometric stations, from the Siret River Basin, there have been analysed the sediment yield formation and the solid transit dimensions in order to obtain typical values for the geographical areas of this territory. The silting of these reservoirs was monitored by successive topobatimetric measurements performed by the Bureau of Prognosis, Hydrology and Hydrogeology and a compartment within Hidroelectrica S.A. Piatra Neamt Subsidiary. The quantities of the deposited sediments are very impressive. The annual rates range betwee3 000 – 2 000 000 t/year, depending on the size of the hydrographical basin, the capacity of the reservoirs, the liquid flow and many other factors which may influence the upstream transport of sediments. These rates of sedimentation lead to a high degree of silting in the reservoirs. Many of them are silted over 50% of the initial capacity and the others even more. The effects of the silting have an important impact when analysing the effective exploitation of the reservoirs. 

  7. Application of 2-D sediment model to fluctuating backwater area of Yangtze River

    Directory of Open Access Journals (Sweden)

    Yong Fan

    2009-09-01

    Full Text Available Based on the characteristics of backflow, a two-dimensional mathematical model of sediment movement was established. The complexity of the watercourse boundary at the confluence of the main stream and the tributary was dealt with using a boundary-fitting orthogonal coordinate system. The basic equation of the two-dimensional total sediment load model, the numerical calculation format, and key problems associated with using the orthogonal curvilinear coordinate system were discussed. Water and sediment flow in the Chongqing reach of the Yangtze River were simulated. The calculated water level, flow velocity distribution, amount of silting and scouring, and alluvial distribution are found to be in agreement with the measured data, which indicates that the numerical model and calculation method are reasonable. The model can be used for calculation of flow in a relatively complicated river network.

  8. The muddy bottom sediments of the old river beds of the lower Vistula

    Directory of Open Access Journals (Sweden)

    Mimier Daria

    2016-03-01

    Full Text Available The main objective of this study was to characterize the muddy bottom sediments of three hydrologically different old river beds of the lower Vistula, located in the vicinity of Toruń: Port Drzewny, Martwa Wisła and Przybysz. Samples were taken at monthly intervals from April to November 2015 from two (Martwa Wisła and Przybysz or three sampling sites (Port Drzewny located in the central parts of the reservoirs. The bottom sediments of these water bodies were characterized by a low water content and organic matter content expressed as a percentage of dry weight, high organic matter content expressed in units of weight, as well as a high sediment oxygen demand. The most distinct reservoir was Martwa Wisła, most likely due to the lack of a connection with the River Vistula.

  9. The influence of the macro-sediment from the mountainous area to the river morphology in Taiwan

    Science.gov (United States)

    Chen, S. C.; Wu, C.; Shih, P.

    2012-12-01

    Chen, Su-Chin scchen@nchu.edu.tw Wu, Chun-Hung* chwu@mail.nchu.edu.tw Dept. Soil & Water Conservation, National Chung Hsing University, Taichung, Taiwan. The Chenyulan River was varied changed with the marco-sediment yielded source area, Shenmu watershed, with 10 debris flow events in the last decade, in Central Taiwan. Multi-term DEMs, the measurement data of the river topographic profile and aerial photos are adopted to analyze the decade influences of the marco-sediment to the river morphology in Chenyulan River. The changes of river morphology by observing the river pattern, calculating the multi-term braided index, and estimating the distribution of sediment deposition and main channel in the river. The response for the macro-sediment from the mountainous areas into the river in the primary stage is the increase in river width, the depth of sediment deposition and volume of sediment transport. The distribution of sediment deposition from upstream landslide and river bank erosion along the river dominates the change of river morphology in the primary stage. The river morphology achieves stable gradually as the river discharge gradually decreases in the later stage. Both of the braided index and the volume of sediment transport decrease, and the river flow maintains in a main channel instead of the braided pattern in this stage. The decade sediment deposition depth is estimated as > 0.5 m, especially > 3.5 m in the sections closed to the sediment-yield source areas, the mean river width increases 15%, and the sediment with a total volume of 8×107 tons has been transported in last decade in Chenyulan River. The river morphology in Chenyulan River maintains a short-term stable, i.e. 2 or 3 years, and changes again because of the flooding events with a large amount of sediment caused by frequently heavy rainfall events in Taiwan. Furthermore, the response of river morphology in Chenyulan River due to the heavy rainfall with a total precipitation of around 860 mm

  10. Assessing riparian zone impacts on water and sediment movement: A new approach

    NARCIS (Netherlands)

    Keesstra, S.D.; Kondrlova, E.; Czaika, A.; Seeger, K.M.; Maroulis, J.

    2012-01-01

    The state of river channels and their riparian zones in terms of geomorphology and vegetation has a significant effect on water and sediment transport in headwater catchments. High roughness in natural rivers due to vegetation and geomorphological attributes generate drag on flowing water. This drag

  11. River suspended sediment estimation by climatic variables implication: Comparative study among soft computing techniques

    Science.gov (United States)

    Kisi, Ozgur; Shiri, Jalal

    2012-06-01

    Estimating sediment volume carried by a river is an important issue in water resources engineering. This paper compares the accuracy of three different soft computing methods, Artificial Neural Networks (ANNs), Adaptive Neuro-Fuzzy Inference System (ANFIS), and Gene Expression Programming (GEP), in estimating daily suspended sediment concentration on rivers by using hydro-meteorological data. The daily rainfall, streamflow and suspended sediment concentration data from Eel River near Dos Rios, at California, USA are used as a case study. The comparison results indicate that the GEP model performs better than the other models in daily suspended sediment concentration estimation for the particular data sets used in this study. Levenberg-Marquardt, conjugate gradient and gradient descent training algorithms were used for the ANN models. Out of three algorithms, the Conjugate gradient algorithm was found to be better than the others.

  12. Bed Degradation and Sediment Export from the Missouri River after Dam Construction and River Training: Significance to Lower Mississippi River Sediment Loads

    Science.gov (United States)

    Blum, M. D.; Viparelli, E.; Sulaiman, Z. A.; Pettit, B. S.

    2016-12-01

    More than 40,000 dams have been constructed in the Mississippi River drainage basin, which has had a dramatic impact on suspended sediment load for the Mississippi delta. The most significant dams were constructed in the 1950s on the Missouri River in South Dakota, after which total suspended loads for the lower Mississippi River, some 2500 km downstream, were cut in half: gauging station data from the Missouri-Mississippi system show significant load reductions immediately after dam closure, followed by a continued downward trend since that time. The delta region is experiencing tremendous land loss in response to acceleration of global sea-level rise, and load reductions of this magnitude may place severe limits on mitigation efforts. Here we examine sediment export from the Missouri system due to bed scour. The US Army Corps of Engineers has compiled changes in river stage at constant discharge for 8 stations between the lowermost dam at Yankton, South Dakota and the Missouri-Mississippi confluence at St. Louis (a distance of 1250 river km), for the period 1930-2010, which we have updated to 2015. These data show two general reaches of significant bed degradation. The first extends from the last major dam at Yankton, South Dakota downstream 300 km to Omaha, Nebraska, where degradation in response to the dam exceeds 3 m. The second reach, with >2.5 m of degradation, occurs in and around Kansas City, Missouri, and has been attributed to river training activities. The reach between Omaha and Kansas City, as well as the lower Missouri below Kansas City, show River due to bed scour following dam construction and river training. This number equates to 20-25 million tons per year, which is sufficient to account for 30% of the total Missouri River load, and 15% of the total post-dam annual sediment load for the lower Mississippi River. For perspective, the quantity of sediment exported from the Missouri River due to bed scour is greater than the total load for all

  13. The Effects of Urbanization and Flood Control on Sediment Discharge of a Southern California River, Evidence of a Dilution Effect

    Science.gov (United States)

    Warrick, J. A.; Orzech, K. M.; Rubin, D. M.

    2004-12-01

    The southern California landscape has undergone dramatic urbanization and population growth during the past 60 years and currently supports almost 20 million inhabitants. During this time, rivers of the region have been altered with damming, channel straightening and hardening, and water transfer engineering. These changes have drastically altered water and sediment discharge from most of the region's drainage basins. Here we focus on changes in sediment discharge from the largest watershed of southern California, the Santa Ana River. Order-of-magnitude drops in the suspended sediment rating curves (the relationship between suspended sediment concentration and instantaneous river discharge) are observed between 1967 and 2001, long after the construction of a major flood control dam in 1941. These sediment concentration decreases do not, however, represent alteration of the total sediment flux from the basin (a common interpretation of sediment rating curves), but rather a dilution of suspended sediment by increases (approx. 4x) in stormwater discharge associated with urbanization. Increases in peak and total stormwater discharge are consistent with runoff patterns from urbanizing landscapes, supporting our hypothesis that the diluting water originated from stormwater runoff generated in urban areas both up- and downstream of dams. Our dilution hypothesis is further supported with water and sediment budgets, dilution calculations, and suspended and bed grain size information.

  14. Signal crayfish as zoogeomorphic agents: diel patterns of fine sediment suspension in a crayfish-affected river and the implications for fine sediment fluxes and dynamics

    Science.gov (United States)

    Rice, Stephen; Johnson, Matthew; Reeds, Jake; Longstaff, Holly; Extence, Chris

    2013-04-01

    The signal crayfish (Pacifasticus leniusculus) is a formidable invasive species that has had a deleterious impact on native freshwater fauna across Europe. We contend that the impact of this animal extends beyond ecology into geomorphology and hypothesise that crayfish are significant agents of fine sediment recruitment and mobilisation, with potentially profound impacts on water quality, substrate quality and fine sediment fluxes. Building on pioneering work by colleagues at Queen Mary University, London this poster considers the role of crayfish in fine sediment suspension in a lowland, gravel-bed river. The hypothesis that nocturnal increases in crayfish activity are associated with a greater frequency of sediment suspension events and increases in ambient turbidity, is tested. Strong diel fluctuations in water turbidity were recorded at several sites on the Brampton Arm of the River Nene in England, a river heavily populated by signal crayfish, during August and September 2012. With the exception of three summer flood events, stage measurements during the same period were essentially flat, ruling out a hydraulic cause for overnight rises in turbidity. Water samples collected at midnight and at midday at one site confirm this diel pattern for suspended sediment concentration. Higher mean turbidity values overnight are associated with an increase in the magnitude and frequency of isolated turbidity spikes or events and this is consistent with crayfish nocturnalism. In particular, we suspect that turbidity events are caused by the construction and maintenenance of burrows and by interactions between crayfish and the river bed while foraging, fighting and avoiding each other. Tying the diel SSC signal directly to crayfish activity proved difficult, but several lines of argument presented here suggest that crayfish are the most likely cause of the diel pattern. These results provide substantial support for the idea that signal crayfish are important zoogeomorphic

  15. Sorption and desorption of Sr-90 and Cs-137 by sediments of the Sozh-river valley and border water collections

    International Nuclear Information System (INIS)

    Onoshko, M.P.

    2001-01-01

    From the last literature analysis it follows, that to studying of sorption and desorption soil, some rocks and minerals properties concerning radioisotopes the steadfast attention of researchers is paid nowadays. The materials of heavy particles sorption kinetics, the action of adsorption molecules and ions from solutions on leaching products are examined. Sr-90, Cs-137, Pu-239,240 diffusion is estimated. It is found out, that sorbed and desorbed amount of radioisotopes is proportionally to their concentration in soil, and sorption (S) and distributions (Cd) factors do not depend on soil contamination density, and are determined by its physical and chemical properties, parity of firm and liquid phases. It is judged, that increase of soil absorbing properties by the increase of sorbent entering are unpromising, as sorption soil capacity is filled by Cs-137 only in thousand shares of per cent from the sorbent amount, which can be absorbed by soil. With the reference to the conditions of Belarus, experiments and natural supervision on Sr-90 and Cs-137 sorption by Fe, Mn, Si, Al, Ti hydroxides were executed. At experimental researches of electrolyte influence on radioisotope sorption by peat soils Cd amount lines were established. Sediments under certain conditions, due to desorption, become a source of the secondary contamination of natural waters up to ecologically dangerous concentration. Radioisotopes desorption ambiguity is connected to many parallel proceeding processes: exchange sorption on organic and mineral components, co-sedimentation with one-and-a-half Fe, Al and Mn hydroxides and also depends on solutions structure, cationic exchange rocks and soil capacities, concentration of competing ions. At low radioisotopes contents desorption is insignificant, at high - their extraction does not depend on reagent concentration. We carried out the experiment on studying Cs-137 and Sr-90 sorption-desorption from sediments Sozh-river valley and border water

  16. Quality monitoring and assessment of mercury contamination in water and sediments of the Botafogo river, PE, Brazil

    Directory of Open Access Journals (Sweden)

    Joelma Moraes Ferreira

    2009-08-01

    Full Text Available Since the mid 80's, the riverside population of Rio Botafogo, in the Santa Cruz channel, Itamaracá has undergone critical environmental situations due to poorly planned growth and inadequate soil occupation, and as a consequence, a loss in environmental quality resulted. In 1963, an industry for production of chlorine and caustic soda produced by electrolytic cell of mercury was installed in the Botafogo river. By mid-1987, a discharge of inorganic mercury between 22 and 35 tones of mercury in this river was estimated. In addition to this industry, others of different types were installed in recent years along the sides of this river. Based on previous studies, we conducted a new assessment of contaminated sites, comparing the changes over the years concerning the quality of water and sediment of the Botafogo river, in which the locations of collection, the need to increase the network of environmental monitoring were investigated. The parameters defined for analysis of water were: pH, dissolved oxygen (OD, biochemical oxygen demand (BOD, ammonia and phosphorus concentration, color, turbidity and mercury content. It was monitored the concentration of mercury in the sediments. The values of pH, turbidity, DO, BOD and ammonia usually showed values within the limits established by CONAMA Resolution No 357. Color parameters have remained consistently high, probably caused by continuous withdrawal of sand before the points of collection. The content of phosphorus was high, until the beginning of 2005, and remained within standards required by legislation until the end of this research. In the studied area, it has been installed, since 1963, an industry for chlorine and caustic soda production, which uses in its manufacturing process electrolytic cell of mercury. In this experiment, the impact of mercury has been observed.

  17. 210Pb and compositional data of sediments from Rondonian lakes, Madeira River basin, Brazil

    International Nuclear Information System (INIS)

    Bonotto, Daniel Marcos; Vergotti, Marcelo

    2015-01-01

    Gold exploration has been intensive in Brazilian Amazon over the last 40 years, where the use of mercury as an amalgam has caused abnormal Hg concentrations in water bodies. Special attention has been directed to Madeira River due to fact it is a major tributary of Amazon River and that since 1986, gold exploration has been officially permitted along a 350 km sector of the river. The 210 Pb method has been used to date sediments taken from nine lakes situated in Madeira River basin, Rondônia State, and to verify where anthropogenic Hg might exist due to gold exploitation in Madeira River. Activity profiles of excess 210 Pb determined in the sediment cores provided a means to evaluate the sedimentation rates using a Constant Flux: Constant Sedimentation (CF:CS) and Constant Rate of Supply (CRS) of unsupported/excess 210 Pb models. A significant relationship was found between the CF:CS sedimentation rates and the mean values of the CRS sedimentation rates (Pearson correlation coefficient r=0.59). Chemical data were also determined in the sediments for identifying possible relationships with Hg occurring in the area. Significant values were found in statistical correlation tests realized among the Hg, major oxides and Total Organic Carbon (TOC) content in the sediments. The TOC increased in the sediment cores accompanied by a loss on ignition (LOI) increment, whereas silica decreased following a specific surface area raising associated to the TOC increase. The CRS model always provided ages within the permitted range of the 210 Pb-method in the studied lakes, whereas the CF:CS model predicted two values above 140 years. - Highlights: • Gold mining activities. • Madeira River basin at Amazon area. • Pb-210 chronological method. • Models for evaluating sedimentation rates

  18. Risk analysis on heavy metal contamination in sediments of rivers flowing into Nansi Lake.

    Science.gov (United States)

    Cao, Qingqing; Song, Ying; Zhang, Yiran; Wang, Renqing; Liu, Jian

    2017-12-01

    In order to understand the risk of heavy metals in sediments of the rivers flowing into Nansi Lake, 36 surface sediments were sampled from six rivers and seven heavy metals (Cr, Cu, Ni, Zn, As, Pb, and Cd) were determined. Potential ecological risk index (RI) of the six rivers showed significant differences: Xinxue River, Jiehe River, and Guangfu River were at medium potential risk, whereas the risk of Chengguo River was the lowest. Jiehe River, Xuesha River, and Jiangji River were meeting the medium potential risk at river mouths. Geo-accumulation index (I geo ) of the seven heavy metals revealed that the contamination of Cu and Cd was more serious than most other metals in the studied areas, whereas Cr in most sites of our study was not polluted. Moreover, correlation cluster analysis demonstrated that the contamination of Cu, Ni, and Zn in six rivers was mainly caused by local emissions, whereas that of As, Pb, and Cd might come from the external inputs in different forms. Consequently, the contamination of Cu and Cd and the potential risk in Xinxue River, Jiehe River, and Guangfu River as well as the local emissions should be given more attention to safeguard the water quality of Nansi Lake and the East Route Project of South to North Water Transfer.

  19. Ascribing soil erosion of hillslope components to river sediment yield.

    Science.gov (United States)

    Nosrati, Kazem

    2017-06-01

    In recent decades, soil erosion has increased in catchments of Iran. It is, therefore, necessary to understand soil erosion processes and sources in order to mitigate this problem. Geomorphic landforms play an important role in influencing water erosion. Therefore, ascribing hillslope components soil erosion to river sediment yield could be useful for soil and sediment management in order to decrease the off-site effects related to downstream sedimentation areas. The main objectives of this study were to apply radionuclide tracers and soil organic carbon to determine relative contributions of hillslope component sediment sources in two land use types (forest and crop field) by using a Bayesian-mixing model, as well as to estimate the uncertainty in sediment fingerprinting in a mountainous catchment of western Iran. In this analysis, 137 Cs, 40 K, 238 U, 226 Ra, 232 Th and soil organic carbon tracers were measured in 32 different sampling sites from four hillslope component sediment sources (summit, shoulder, backslope, and toeslope) in forested and crop fields along with six bed sediment samples at the downstream reach of the catchment. To quantify the sediment source proportions, the Bayesian mixing model was based on (1) primary sediment sources and (2) combined primary and secondary sediment sources. The results of both approaches indicated that erosion from crop field shoulder dominated the sources of river sediments. The estimated contribution of crop field shoulder for all river samples was 63.7% (32.4-79.8%) for primary sediment sources approach, and 67% (15.3%-81.7%) for the combined primary and secondary sources approach. The Bayesian mixing model, based on an optimum set of tracers, estimated that the highest contribution of soil erosion in crop field land use and shoulder-component landforms constituted the most important land-use factor. This technique could, therefore, be a useful tool for soil and sediment control management strategies. Copyright

  20. Characterization of hydrodynamic and sediment conditions in the lower Yampa River at Deerlodge Park, east entrance to Dinosaur National Monument, northwest Colorado, 2011

    Science.gov (United States)

    Williams, Cory A.

    2013-01-01

    The Yampa River in northwestern Colorado is the largest, relatively unregulated river system in the upper Colorado River Basin. Water from the Yampa River Basin continues to be sought for a number of municipal, industrial, and energy uses. It is anticipated that future water development within the Yampa River Basin above the amount of water development identified under the Upper Colorado River Endangered Fish Recovery Implementation Program and the Programmatic Biological Opinion may require additional analysis in order to understand the effects on habitat and river function. Water development in the Yampa River Basin could alter the streamflow regime and, consequently, could lead to changes in the transport and storage of sediment in the Yampa River at Deerlodge Park. These changes could affect the physical form of the reach and may impact aquatic and riparian habitat in and downstream from Deerlodge Park. The U.S. Geological Survey, in cooperation with the Colorado Water Conservation Board, began a study in 2011 to characterize the current hydrodynamic and sediment-transport conditions for a 2-kilometer reach of the Yampa River in Deerlodge Park. Characterization of channel conditions in the Deerlodge Park reach was completed through topographic surveying, grain-size analysis of streambed sediment, and characterization of streamflow properties. This characterization provides (1) a basis for comparisons of current stream functions (channel geometry, sediment transport, and stream hydraulics) to future conditions and (2) a dataset that can be used to assess channel response to streamflow alteration scenarios indicated from computer modeling of streamflow and sediment-transport conditions.

  1. Compositional Characteristics of Dissolved Organic Matter released from the sediment of Han river in Korea.

    Science.gov (United States)

    Oh, H.; Choi, J. H.

    2017-12-01

    The dissolved organic matter (DOM) has variable characteristics depending on the sources. The DOM of a river is affected by rain water, windborne material, surface and groundwater flow, and sediments. In particular, sediments are sources and sinks of nutrients and pollutants in aquatic ecosystems by supplying large amounts of organic matter. The DOM which absorbs ultraviolet and visible light is called colored dissolved organic matter (CDOM). CDOM is responsible for the optical properties of natural waters in several biogeochemical and photochemical processes and absorbs UV-A (315-400 nm) and UV-B (280-315), which are harmful to aquatic ecosystems (Helms et al., 2008). In this study, we investigated the quantity and quality of DOM and CDOM released from the sediments of Han river which was impacted by anthropogenic activities and hydrologic alternation of 4 Major River Restoration Project. The target area of this study is Gangchenbo (GC), Yeojubo (YJ), and Ipobo(IP) of the Han River, Korea. Sediments and water samples were taken on July and August of 2016 and were incubated at 20° up to 7 days. Absorbance was measured with UV-visible spectrophotometer (Libra S32 PC, Biochrom). Fluorescence intensity determined with Fluorescence EEMs (F-7000, Hitachi). Absorbance and fluorescence intensity were used to calculate Specific Ultraviolet Absorbance (SUVA254), Humification index (HIX), Biological index (BIX), Spectral slope (SR) and component analysis. The DOC concentration increased after 3 days of incubation. According to the SUVA254 analysis, the microbial activity is highest in the initial overlying water of IP. HIX have range of 1.35-4.08, and decrease poly aromatic structures of organic matter during incubation. From the results of the BIX, autochthonous organic matter was released from the sediments. In all sites, Humic-like DOM, Microbial humic-like DOM and Protein-like DOM increased significantly between Day 0 and 3(except Humic-like, Microbial humic-like DOM in

  2. Beryllium-7 in Rainfall, River Sediment and Sewage Sludge - Beryllium-7 in rainwater, river sediment and sewage sludge

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Helmut W.; Igbinosa, Aimuamwosa; Souti, Maria Evangelia [University of Bremen, Institute of Environmental Physics, Otto-Hahn-Allee 1, D-28359 Bremen (Germany)

    2014-07-01

    Introduction: The cosmogenic radioisotope {sup 7}Be is one of the major contributors to natural airborne radioactivity, with fairly constant concentrations of some mBq/m{sup 3} near the Earth's surface. The isotope is assumed to be bound to aerosols. It is deposited onto the Earth's surface mainly by wet deposition. In environmental surveillance it is detected regularly in air by aerosol sampling, and in topsoil and on plant leaves after rainfall. In previous studies of this laboratory it had also been detected regularly in freshwater sediments and in wastewater treatment primary sludge. River sediment samples from an estuary showed concentrations influenced by dilution with sea water. Thus it appeared interesting to investigate the usefulness of {sup 7}Be as tracer for rainfall contribution in environmental samples. Experimental: In order to investigate possible correlations and interrelations between {sup 7}Be activity in rainfall, sediment and primary sludge, a measurement campaign was planned and conducted covering a time span of 6 months. {sup 7}Be concentrations were determined in weekly samples of rainwater and primary sludge and in monthly samples of river sediment by high resolution gamma spectroscopy. Besides, rainfall amount and intensity were recorded and weekly primary sludge production volume data were obtained from the treatment plant operators. From these numbers, total atmospheric deposition per surface area could be calculated. Results and discussion: The data show a clear correlation between weekly rainfall amount and {sup 7}Be surface deposition. This is more than plausible as wet deposition is known to be the most effective deposition process. Although washout effectivity is assumed to decrease with rainfall intensity, no correlation could be seen in the data, probably due to averaging within the weekly sampling intervals. The time series of {sup 7}Be deposition with rain and its concentration in primary sludge exhibit very similar

  3. Characterization of sediments in the Clinch River, Tennessee, using remote sensing and multi-dimensional GIS techniques

    International Nuclear Information System (INIS)

    Levine, D.A.; Hargrove, W.W.; Hoffman, F.

    1995-01-01

    Remotely-sensed hydro-acoustic data were used as input to spatial extrapolation tools in a GIS to develop two- and three-dimensional models of sediment densities in the Clinch River arm of Watts Bar Reservoir, Tennessee. This work delineated sediment deposition zones to streamline sediment sampling and to provide a tool for estimating sediment volumes and extrapolating contaminant concentrations throughout the system. The Clinch River arm of Watts Bar Reservoir has been accumulating sediment-bound contaminants from three Department of Energy (DOE) facilities on the Oak Ridge Reservation, Tennessee. Public concern regarding human and ecological health resulted in Watts Bar Reservoir being placed on the National Priorities List for SUPERFUND. As a result, DOE initiated and is funding the Clinch River Environmental Restoration Program (CR-ERP) to perform a remedial investigation to determine the nature and extent of sediment contamination in the Watts Bar Reservoir and the Clinch River and to quantify any human or ecological health risks. The first step in characterizing Clinch River sediments was to determine the locations of deposition zones. It was also important to know the sediment type distribution within deposition zones because most sediment-bound contaminants are preferentially associated to fine particles. A dual-frequency hydro-acoustic survey was performed to determine: (1) depth to the sediment water interface, (2) depth of the sediment layer, and (3) sediment characteristics (density) with depth (approximately 0.5-foot intervals). An array of geophysical instruments was used to meet the objectives of this investigation

  4. Dating sediment cores from Hudson River marshes

    International Nuclear Information System (INIS)

    Robideau, R.; Bopp, R.F.

    1993-01-01

    There are several methods for determining sediment accumulation rates in the Hudson River estuary. One involves the analysis of the concentration of certain radionuclides in sediment core sections. Radionuclides occur in the Hudson River as a result of: natural sources, fallout from nuclear weapons testing and low level aqueous releases from the Indian Point Nuclear Power Facility. The following radionuclides have been studied in the authors work: Cesium-137, which is derived from global fallout that started in the 1950's and has peaked in 1963. Beryllium-7, a natural radionuclide with a 53 day half-life and found associated with very recently deposited sediments. Another useful natural radionuclide is Lead-210 derived from the decay of Radon-222 in the atmosphere. Lead-210 has a half-life of 22 years and can be used to date sediments up to about 100 years old. In the Hudson River, Cobalt-60 is a marker for Indian Point Nuclear Reactor discharges. The author's research involved taking sediment core samples from four sites in the Hudson River Estuarine Research Reserve areas. These core samples were sectioned, dried, ground and analyzed for the presence of radionuclides by the method of gamma-ray spectroscopy. The strength of each current pulse is proportional to the energy level of the gamma ray absorbed. Since different radionuclides produce gamma rays of different energies, several radionuclides can be analyzed simultaneously in each of the samples. The data obtained from this research will be compared to earlier work to obtain a complete chronology of sediment deposition in these Reserve areas of the river. Core samples may then by analyzed for the presence of PCB's, heavy metals and other pollutants such as pesticides to construct a pollution history of the river

  5. Evaluation of Metal Elements and Pesticide Content of Water and Sediment Samples of Bribin Underground River at Gunung Kidul (Part I)

    International Nuclear Information System (INIS)

    Agus-Taftazani; Tri-Rusmanto

    2005-01-01

    Determination of Ca, Mg, Mn, Fe, Hg, Cd, Co elements, compound of Carbophuran and DDT content in sediment and water of Bribin Underground River at Gunung Kidul has been carried out. Sampling has been done in March and September 2004 as grab sample. Determination of heavy metal used Neutron Activation Analysis method (NAA), determination of DDT compound used gas chromatography (GC) method and of carbophuran compound used high performance liquid chromatography (HPLC). Analysis result showed that 5 heavy metals i.e.: Ca, Mg, Mn, Fe and Hg, and also carbophuran have been detected in water sample. In sediment sample have been detected heavy metals of Ca, Mg, Mn, Fe, Hg, Cd, Cr, Co and corbophuran compound. DDT compound has not been detected in sediment as well as water samples. The concentrations of pesticide and elements of the water samples in wet season were less than that of dry season, and reverse with that of sediment samples. The influence of sampling locations was not significance. Result of water analysis will be compared to standard quality of Water of B group stated by Governor of Yogjakarta Special Province (SK Gubernur DIY / 1991) and Health Ministry of Republic of Indonesia (MENKES RI Number 907/2002). (author)

  6. Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China

    Energy Technology Data Exchange (ETDEWEB)

    Lijun, Zhou [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Ying Guangguo, E-mail: guang-guo.ying@gig.ac.cn [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Jianliang, Zhao [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Jifeng, Yang [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China); Chemistry and Chemical Engineering Department, Hunan University of Arts and Science, Changde 415000 (China); Li, Wang; Bin, Yang; Shan, Liu [State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640 (China)

    2011-07-15

    The occurrence of four classes of 17 commonly used antibiotics (including fluoroquinolones, tetracycline, sulfonamides, and macrolides) was investigated in the sediments of the Yellow River, Hai River and Liao River in northern China by using rapid resolution liquid chromatography-tandem mass spectrometry. Higher concentrations were detected for most antibiotics in the sediments of the Hai River than in the sediments of the other rivers. Norfloxacin, ofloxacin, ciprofloxacin and oxytetracycline in the three rivers were most frequently detected with concentrations up to 5770, 1290, 653 and 652 ng/g, respectively. High frequencies and concentrations of the detected antibiotics were often found in the downstream of large cities and areas influenced by feedlot and fish ponds. Good fitted linear regression equations between antibiotic concentration and sediment physicochemical properties (TOC, texture and pH) were also found, indicating that sediment properties are important factors influencing the distribution of antibiotics in the sediment of rivers. - Highlights: > Presence of four classes of commonly used antibiotics in the river sediments. > Higher concentrations in the Hai River than in the Liao River and Yellow River. > Norfloxacin, ofloxacin, ciprofloxacin and oxytetracycline most frequently detected. > High antibiotic concentrations often found in the downstream of large cities. > River sediments are an important reservoir of antibiotics. - Higher concentrations of selected antibiotics were determined in the sediments of the Hai River than in the Liao River and Yellow River.

  7. Magnetic properties of Surabaya river sediments, East Java, Indonesia

    Science.gov (United States)

    Mariyanto, Bijaksana, Satria

    2017-07-01

    Surabaya river is one of urban rivers in East Java Province, Indonesia that is a part of Brantas river that flows in four urban and industrial cities of Mojokerto, Gresik, Sidoarjo, and Surabaya. The urban populations and industries along the river pose serious threat to the river mainly for their anthropogenic pollutants. This study aims to characterize the magnetic properties of sediments in various locations along Surabaya river and correlate these magnetic properties to the level of pollution along the river. Samples are taken and measured through a series of magnetic measurements. The mass-specific magnetic susceptibility of sediments ranges from 259.4 to 1134.8 × 10-8 m3kg-1. The magnetic minerals are predominantly PSD to MD magnetite with the grain size range from 6 to 14 μm. The mass-specific magnetic susceptibility tends to decreases downstream as accumulation of magnetic minerals in sediments is affected not only by the amount of household and industrial wastes but also by sediment dredging, construction of embankments, and extensive erosion arround the river. Sediments located in the industrial zone on the upstream area tend to have higher mass-specific magnetic susceptibility than in the non-industrial zones on the downstream area.

  8. Determining Sediment Sources in the Anacostia River Watershed

    Science.gov (United States)

    Devereux, O. H.; Needelman, B. A.; Prestegaard, K. L.; Gellis, A. C.; Ritchie, J. C.

    2005-12-01

    Suspended sediment is a water-quality problem in the Chesapeake Bay. This project is designed to identify sediment sources in an urban watershed, the Northeast Branch of the Anacostia River (in Washington, D.C. and Maryland - drainage area = 188.5 km2), which delivers sediment directly to the Bay. This watershed spans two physiographic regions - the Piedmont and Coastal Plain. Bank sediment and suspended-sediment deposits were characterized using the following techniques: radionuclide (Cs-137) analysis by gamma ray spectrometry, trace-element analysis by ICP-MS, clay mineralogy by XRD, and particle-size analysis by use of a laser particle-size analyzer. Sampling of bank and suspended sediment was designed to: a) characterize tributary inputs from both Piedmont and Coastal Plain sources, and b) differentiate tributary inputs from bank erosion along the main stem of the Northeast Branch. Thirteen sample sites were chosen that represent tributary source areas of each physiographic region and the main stem where mixing occurs. Surface samples of the banks were compared to overbank deposits from a ten year storm (a proxy for the suspended sediments). Fingerprint components are selected from these data. Cesium-137 concentrations were analyzed for bank and overbank deposits for each physiographic region. No clear differences were seen between the two physiographic regions. Significant differences were observed between upland tributaries and the main stem of the Anacostia River. The average activity of Cs-137 for the tributaries was 5.4 bq/kg and the average for the main stem was 1.1 bq/kg. This suggests that there is significant erosion and storage of sediment in the tributaries. The low activity from Cs-137 in the main stem suggests a lack of storage of sediment along the main stem of the river. For the trace-element data, we focused on elements that showed significant variation among the sites. For the bank sediment, these elements include: Sr, V, Y, Ce, and Nd. For the

  9. Multiple-source tracking: Investigating sources of pathogens, nutrients, and sediment in the Upper Little River Basin, Kentucky, water years 2013–14

    Science.gov (United States)

    Crain, Angela S.; Cherry, Mac A.; Williamson, Tanja N.; Bunch, Aubrey R.

    2017-09-20

    The South Fork Little River (SFLR) and the North Fork Little River (NFLR) are two major headwater tributaries that flow into the Little River just south of Hopkinsville, Kentucky. Both tributaries are included in those water bodies in Kentucky and across the Nation that have been reported with declining water quality. Each tributary has been listed by the Kentucky Energy and Environment Cabinet—Kentucky Division of Water in the 303(d) List of Waters for Kentucky Report to Congress as impaired by nutrients, pathogens, and sediment for contact recreation from point and nonpoint sources since 2002. In 2009, the Kentucky Energy and Environment Cabinet—Kentucky Division of Water developed a pathogen total maximum daily load (TMDL) for the Little River Basin including the SFLR and NFLR Basins. Future nutrient and suspended-sediment TMDLs are planned once nutrient criteria and suspended-sediment protocols have been developed for Kentucky. In this study, different approaches were used to identify potential sources of fecal-indicator bacteria (FIB), nitrate, and suspended sediment; to inform the TMDL process; and to aid in the implementation of effective watershed-management activities. The main focus of source identification was in the SFLR Basin.To begin understanding the potential sources of fecal contamination, samples were collected at 19 sites for densities of FIB (E. coli) in water and fluvial sediment and at 11 sites for Bacteroidales genetic markers (General AllBac, human HF183, ruminant BoBac, canid BacCan, and waterfowl GFD) during the recreational season (May through October) in 2013 and 2014. Results indicated 34 percent of all E. coli water samples (n=227 samples) did not meet the U.S. Environmental Protection Agency 2012 recommended national criteria for primary recreational waters. No criterion currently exists for E. coli in fluvial sediment. By use of the Spearman’s rank correlation test, densities of FIB in fluvial sediments were observed to have a

  10. Elemental analysis of river sediments by PIXE and PIGE

    International Nuclear Information System (INIS)

    Kennedy, V.J.; Augusthy, A.; Varier, K.M.; Magudapathy, P.; Panchapakesan, S.; Nair, K.G.M.; Vijayan, V.

    1999-01-01

    The Chaliyar river, located in Kerala, India has shown preoccupying pollution levels, that constitute a threat to public health and the ecological system. PIXE and PIGE techniques have been employed to measure the elemental concentrations in the river sediment samples. Thick targets were prepared out of the sediment samples collected from various sites along the course of the river. The measurements were carried out using 3 MeV proton beam obtained from 3 MV Tandem pelletron accelerator at Institute of Physics, Bhubaneswar. The elemental concentrations, especially that of heavy metals, at different sites are discussed in detail. Our results show that sediments from a site where the industrial activities are high are significantly high in concentrations of heavy metals (Cr, Ni, Cu, Zn, Hg and Pb) than those collected from non-industrial sites. The measured values are compared with the average composition of unpolluted river sediments and other national and international river sediments. (author)

  11. Assessment of heavy metal pollution from a Fe-smelting plant in urban river sediments using environmental magnetic and geochemical methods

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Chunxia, E-mail: cxzhang@mail.iggcas.ac.cn [State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, No. 19 Bei Tucheng Xilu, Chaoyang Dist., Beijing 100029 (China); Qiao Qingqing [State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, No. 19 Bei Tucheng Xilu, Chaoyang Dist., Beijing 100029 (China); Piper, John D.A. [Geomagnetism Laboratory, Department of Earth and Ocean Science, University of Liverpool, Liverpool L69 7ZE (United Kingdom); Huang, Baochun [State Key Laboratory of Lithospheric Evolution, Institute of Geology and Geophysics, Chinese Academy of Sciences, No. 19 Bei Tucheng Xilu, Chaoyang Dist., Beijing 100029 (China)

    2011-10-15

    Environmental magnetic proxies provide a rapid means of assessing the degree of industrial heavy metal pollution in soils and sediments. To test the efficiency of magnetic methods for detecting contaminates from a Fe-smelting plant in Loudi City, Hunan Province (China) we investigated river sediments from Lianshui River. Both magnetic and non-magnetic (microscopic, chemical and statistical) methods were used to characterize these sediments. Anthropogenic heavy metals coexist with coarse-grained magnetic spherules. It can be demonstrated that the Pollution Load Index of industrial heavy metals (Fe, V, Cr, Mo, Zn, Pb, Cd, Cu) and the logarithm of saturation isothermal remanent magnetization, a proxy for magnetic concentration, are significantly correlated. The distribution heavy metal pollution in the Lianshui River is controlled by surface water transport and deposition. Our findings demonstrate that magnetic methods have a useful and practical application for detecting and mapping pollution in and around modern industrial cities. - Highlights: > Assessment of heavy metal (HM) pollution in river sediment using magnetic and chemical methods. > HMs from an Fe-smelting plant coexist with coarse-grained magnetic spherules. > A linear correlation between the Pollution Load Index (PLI) of industrial HMs and a magnetic concentration parameter is demonstrated. > The distribution of HM pollution in river sediments is controlled by surface water flow and deposition. - Heavy metal (HM) contamination of river sediments from industrial input by surface water transport and deposition can be detected by using magnetic methods providing a convenient assessment of HM pollution in industrialized cities.

  12. Diffusive flux of PAHs across sediment-water and water-air interfaces at urban superfund sites.

    Science.gov (United States)

    Minick, D James; Anderson, Kim A

    2017-09-01

    Superfund sites may be a source of polycyclic aromatic hydrocarbons (PAHs) to the surrounding environment. These sites can also act as PAH sinks from present-day anthropogenic activities, especially in urban locations. Understanding PAH transport across environmental compartments helps to define the relative contributions of these sources and is therefore important for informing remedial and management decisions. In the present study, paired passive samplers were co-deployed at sediment-water and water-air interfaces within the Portland Harbor Superfund Site and the McCormick and Baxter Superfund Site. These sites, located along the Willamette River (Portland, OR, USA), have PAH contamination from both legacy and modern sources. Diffusive flux calculations indicate that the Willamette River acts predominantly as a sink for low molecular weight PAHs from both the sediment and the air. The sediment was also predominantly a source of 4- and 5-ring PAHs to the river, and the river was a source of these same PAHs to the air, indicating that legacy pollution may be contributing to PAH exposure for residents of the Portland urban center. At the remediated McCormick and Baxter Superfund Site, flux measurements highlight locations within the sand and rock sediment cap where contaminant breakthrough is occurring. Environ Toxicol Chem 2017;36:2281-2289. © 2017 SETAC. © 2017 SETAC.

  13. Content, distribution and fate of 33 elements in sediments of rivers receiving wastewater in Hanoi, Vietnam

    International Nuclear Information System (INIS)

    Marcussen, Helle; Dalsgaard, Anders; Holm, Peter E.

    2008-01-01

    Untreated industrial and domestic wastewater from Hanoi city is discharged into rivers that supply water for various agricultural and aquacultural food production systems. The aim of this study was to assess the content, distribution and fate of 33 elements in the sediment and pore water of the main wastewater receiving rivers. The sediment was polluted with potentially toxic elements (PTEs) with maximum concentrations of 73 As, 427 Cd, 281 Cr, 240 Cu, 218 Ni, 363 Pb, 12.5 Sb and 1240 Zn mg kg -1 d.w. Observed distribution coefficients (log 10 K d,obs ) were calculated as the ratio between sediment (mg kg -1 d.w.) and pore water (mg L -1 ) concentrations. Maxima log 10 K d,obs were >4.26 Cd, >6.60 Cu, 4.78 Ni, 7.01 Pb and 6.62 Zn. The high values show a strong PTE retention and indicate the importance of both sorption and precipitation as retention mechanisms. Sulphide precipitation was a likely mechanism due to highly reduced conditions. - Sorption and precipitation processes are important in retention of potentially toxic elements in Hanoi river sediment and prevent elements entering food production systems

  14. Use of surrogate technologies to estimate suspended sediment in the Clearwater River, Idaho, and Snake River, Washington, 2008-10

    Science.gov (United States)

    Wood, Molly S.; Teasdale, Gregg N.

    2013-01-01

    Elevated levels of fluvial sediment can reduce the biological productivity of aquatic systems, impair freshwater quality, decrease reservoir storage capacity, and decrease the capacity of hydraulic structures. The need to measure fluvial sediment has led to the development of sediment surrogate technologies, particularly in locations where streamflow alone is not a good estimator of sediment load because of regulated flow, load hysteresis, episodic sediment sources, and non-equilibrium sediment transport. An effective surrogate technology is low maintenance and sturdy over a range of hydrologic conditions, and measured variables can be modeled to estimate suspended-sediment concentration (SSC), load, and duration of elevated levels on a real-time basis. Among the most promising techniques is the measurement of acoustic backscatter strength using acoustic Doppler velocity meters (ADVMs) deployed in rivers. The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, Walla Walla District, evaluated the use of acoustic backscatter, turbidity, laser diffraction, and streamflow as surrogates for estimating real-time SSC and loads in the Clearwater and Snake Rivers, which adjoin in Lewiston, Idaho, and flow into Lower Granite Reservoir. The study was conducted from May 2008 to September 2010 and is part of the U.S. Army Corps of Engineers Lower Snake River Programmatic Sediment Management Plan to identify and manage sediment sources in basins draining into lower Snake River reservoirs. Commercially available acoustic instruments have shown great promise in sediment surrogate studies because they require little maintenance and measure profiles of the surrogate parameter across a sampling volume rather than at a single point. The strength of acoustic backscatter theoretically increases as more particles are suspended in the water to reflect the acoustic pulse emitted by the ADVM. ADVMs of different frequencies (0.5, 1.5, and 3 Megahertz) were tested to

  15. Climatic and geologic controls on suspended sediment flux in the Sutlej River Valley, western Himalaya

    Directory of Open Access Journals (Sweden)

    H. Wulf

    2012-07-01

    Full Text Available The sediment flux through Himalayan rivers directly impacts water quality and is important for sustaining agriculture as well as maintaining drinking-water and hydropower generation. Despite the recent increase in demand for these resources, little is known about the triggers and sources of extreme sediment flux events, which lower water quality and account for extensive hydropower reservoir filling and turbine abrasion. Here, we present a comprehensive analysis of the spatiotemporal trends in suspended sediment flux based on daily data during the past decade (2001–2009 from four sites along the Sutlej River and from four of its main tributaries. In conjunction with satellite data depicting rainfall and snow cover, air temperature and earthquake records, and field observations, we infer climatic and geologic controls of peak suspended sediment concentration (SSC events. Our study identifies three key findings: First, peak SSC events (≥ 99th SSC percentile coincide frequently (57–80% with heavy rainstorms and account for about 30% of the suspended sediment flux in the semi-arid to arid interior of the orogen. Second, we observe an increase of suspended sediment flux from the Tibetan Plateau to the Himalayan Front at mean annual timescales. This sediment-flux gradient suggests that averaged, modern erosion in the western Himalaya is most pronounced at frontal regions, which are characterized by high monsoonal rainfall and thick soil cover. Third, in seven of eight catchments, we find an anticlockwise hysteresis loop of annual sediment flux variations with respect to river discharge, which appears to be related to enhanced glacial sediment evacuation during late summer. Our analysis emphasizes the importance of unconsolidated sediments in the high-elevation sector that can easily be mobilized by hydrometeorological events and higher glacial-meltwater contributions. In future climate change scenarios, including continuous glacial retreat and

  16. USING ARTIFICIAL NEURAL NETWORKS (ANNs FOR SEDIMENT LOAD FORECASTING OF TALKHEROOD RIVER MOUTH

    Directory of Open Access Journals (Sweden)

    Vahid Nourani

    2009-01-01

    Full Text Available Without a doubt the carried sediment load by a river is the most important factor in creating and formation of the related Delta in the river mouth. Therefore, accurate forecasting of the river sediment load can play a significant role for study on the river Delta. However considering the complexity and non-linearity of the phenomenon, the classic experimental or physical-based approaches usually could not handle the problem so well. In this paper, Artificial Neural Network (ANN as a non-linear black box interpolator tool is used for modeling suspended sediment load which discharges to the Talkherood river mouth, located in northern west Iran. For this purpose, observed time series of water discharge at current and previous time steps are used as the model input neurons and the model output neuron will be the forecasted sediment load at the current time step. In this way, various schemes of the ANN approach are examined in order to achieve the best network as well as the best architecture of the model. The obtained results are also compared with the results of two other classic methods (i.e., linear regression and rating curve methods in order to approve the efficiency and ability of the proposed method.

  17. Formation of fine sediment deposit from a flash flood river in the Mediterranean Sea

    Science.gov (United States)

    Grifoll, Manel; Gracia, Vicenç; Aretxabaleta, Alfredo L.; Guillén, Jorge; Espino, Manuel; Warner, John C.

    2014-01-01

    We identify the mechanisms controlling fine deposits on the inner-shelf in front of the Besòs River, in the northwestern Mediterranean Sea. This river is characterized by a flash flood regime discharging large amounts of water (more than 20 times the mean water discharge) and sediment in very short periods lasting from hours to few days. Numerical model output was compared with bottom sediment observations and used to characterize the multiple spatial and temporal scales involved in offshore sediment deposit formation. A high-resolution (50 m grid size) coupled hydrodynamic-wave-sediment transport model was applied to the initial stages of the sediment dispersal after a storm-related flood event. After the flood, sediment accumulation was predominantly confined to an area near the coastline as a result of preferential deposition during the final stage of the storm. Subsequent reworking occurred due to wave-induced bottom shear stress that resuspended fine materials, with seaward flow exporting them toward the midshelf. Wave characteristics, sediment availability, and shelf circulation determined the transport after the reworking and the final sediment deposition location. One year simulations of the regional area revealed a prevalent southwestward average flow with increased intensity downstream. The circulation pattern was consistent with the observed fine deposit depocenter being shifted southward from the river mouth. At the southern edge, bathymetry controlled the fine deposition by inducing near-bottom flow convergence enhancing bottom shear stress. According to the short-term and long-term analyses, a seasonal pattern in the fine deposit formation is expected.

  18. Multi-timescale sediment responses across a human impacted river-estuary system

    Science.gov (United States)

    Chen, Yining; Chen, Nengwang; Li, Yan; Hong, Huasheng

    2018-05-01

    Hydrological processes regulating sediment transport from land to sea have been widely studied. However, anthropogenic factors controlling the river flow-sediment regime and subsequent response of the estuary are still poorly understood. Here we conducted a multi-timescale analysis on flow and sediment discharges during the period 1967-2014 for the two tributaries of the Jiulong River in Southeast China. The long-term flow-sediment relationship remained linear in the North River throughout the period, while the linearity showed a remarkable change after 1995 in the West River, largely due to construction of dams and reservoirs in the upland watershed. Over short timescales, rainstorm events caused the changes of suspended sediment concentration (SSC) in the rivers. Regression analysis using synchronous SSC data in a wet season (2009) revealed a delayed response (average 5 days) of the estuary to river input, and a box-model analysis established a quantitative relationship to further describe the response of the estuary to the river sediment input over multiple timescales. The short-term response is determined by both the vertical SSC-salinity changes and the sediment trapping rate in the estuary. However, over the long term, the reduction of riverine sediment yield increased marine sediments trapped into the estuary. The results of this study indicate that human activities (e.g., dams) have substantially altered sediment delivery patterns and river-estuary interactions at multiple timescales.

  19. Radiological assessment of coastal marine sediment and water samples, Karachi coast, Pakistan

    International Nuclear Information System (INIS)

    Qureshi, R.M.; Mashiatullah, A.; Akram, M.; Sajjad, M.I.; Shafiq, M.; Javed, T.; Aslam, M.

    1999-04-01

    Concentrations of selective natural radionuclides (/sup 226/Ra, /sup 228/Ra, /sup 40/K) in shallow marine coastal sediments and sea water off Karachi coast, Pakistan, were measured with a hyper pure germanium (HPGe) gamma spectrometer. Sediment and water samples were collected from polluted Layari and Malire River downstream (pre-out fall), Gizri Creek, Layari River out fall in Karachi harbor, Karachi Harbor/ Manora Channel Mains, as well as from open sea (South-East Coast and North-West Coast) within the 10m depth contour. No artificial radionuclides (e.g. /sup 60/Co, /sup 137/Cs and /sup 134/Cs were detected in both water and sediment samples at any of these locations. The activity of /sup 226/Ra in coastal river sediments is found below its limit of detection (<18.35 Bqkg/sup -1/). Activity of /sup 228/Ra in sediments off Karachi Coast ranges between 11.80 +- 3.60 to 37.27+- 4.31 Bqkg/sup -1/. The highest activity was found south of Nuclear Power Station (KANUPP) and the lowest activity was found in the vicinity of Oyster Rocks (open sea). The /sup 226/Ra activity ranges from 19.40+- 5.88 to 67.14 +- 10.02 Bqkg/sup -1/. The activity of /sup 228/Ra in sediments of Manora Channel, South-east Coast of Karachi and the North west coast of Karachi are also in agreement with the IAEA marine sediment standard namely: IAEA-135 (/sup 228/Ra = 36.7 +- 3 Bqkg/sup -1/). The activity of /sup 226/Ra for the South East Coast of Karachi and the North west coast of Karachi are also in agreement with the IAEA marine sediment standard namely: IAEA 135(/sup 226/Ra=23.9 +- 1.1 Bqkg/sup -1/) and Pacific Ocean sediment standard namely: IAEA-368 (/sup 226/Ra=21.4+- 1.1 Bqkg/sup -1/). The /sup 40/K activity in sea sediments varies from 197.7+- 44.24 to 941.90 +- 39.00 Bqkg-1). The highest activity is observed in the vicinity of Oyster Rocks (open sea) along the Clifton coast (South-East Cost of Karachi) and the lowest activity is found south of Nuclear Power Station (KANUPP) along the

  20. Presence of selected chemicals of emerging concern in water and bottom sediment from the St. Louis River, St. Louis Bay, and Superior Bay, Minnesota and Wisconsin, 2010

    Science.gov (United States)

    Christensen, Victoria G.; Lee, Kathy E.; Kieta, Kristen A.; Elliott, Sarah M.

    2012-01-01

    The St. Louis Bay of Lake Superior receives substantial urban runoff, wastewater treatment plant effluent, and industrial effluent. In 1987, the International Joint Commission designated the St. Louis Bay portion of the lower St. Louis River as one of the Great Lakes Areas of Concern. Concerns exist about the potential effects of chemicals of emerging concern on aquatic biota because many of these chemicals, including endocrine active chemicals, have been shown to affect the endocrine systems of fish. To determine the occurrence of chemicals of emerging concern in the St. Louis River, the St. Louis Bay, and Superior Bay, the U.S. Geological Survey in cooperation with the Minnesota Pollution Control Agency and the Wisconsin Department of Natural Resources collected water and bottom-sediment samples from 40 sites from August through October 2010. The objectives of this study were to (1) identify the extent to which chemicals of emerging concern, including pharmaceuticals, hormones, and other organic chemicals, occur in the St. Louis River, St. Louis Bay, and Superior Bay, and (2) identify the extent to which the chemicals may have accumulated in bottom sediment of the study area. Samples were analyzed for selected wastewater indicators, hormones, sterols, bisphenol A, and human-health pharmaceuticals. During this study, 33 of 89 chemicals of emerging concern were detected among all water samples collected and 56 of 104 chemicals of emerging concern were detected in bottom-sediment samples. The chemical N,N-diethyl-meta-toluamide (DEET) was the most commonly detected chemical in water samples and 2,6-dimethylnaphthalene was the most commonly detected chemical in bottom-sediment samples. In general, chemicals of emerging concern were detected at a higher frequency in bottom-sediment samples than in water samples. Estrone (a steroid hormone) and hexahydrohexamethyl cyclopentabensopyran (a synthetic fragrance) were the most commonly detected endocrine active chemicals in

  1. (210)Pb and composition data of near-surface sediments and interstitial waters evidencing anthropogenic inputs in Amazon River mouth, Macapá, Brazil.

    Science.gov (United States)

    Nery, José Reinaldo Cardoso; Bonotto, Daniel Marcos

    2011-04-01

    Activity profiles of excess (210)Pb determined in three sediment cores from Amazon River mouth, Macapá city, Brazil, provided the evaluation of sedimentation rates, contributing to a better knowledge of the hydrological conditions in the site that is the capital of Amapá State and is drained by the waters of the huge Amazon River. Chemical data were also determined in the sediments, allowing identify signatures coupled to anthropogenic inputs held in the past in Amapá State. Significant direct relationships between LOI (loss on ignition) and organic matter were found for all sediments profiles. Silica was found to be inversely related to organic matter in the three profiles; its decrease accompanied an increase on the specific surface of the sediments. This relationship was confirmed by a great number of inverse significant correlations among silica and oxides Na(2)O, K(2)O, CaO, MgO, Al(2)O(3), P(2)O(5), Fe(2)O(3) and MnO. It was possible to identify the role of organic matter on adsorption of several oxides in the core sediments profiles. Apparent sediment mass accumulation rates corresponding to values between 450 and 2510 mg cm(-2)yr(-1) were obtained, and are compatible with the results of others studies. The (210)Pb activities in one sampling point suggested the occurrence of anthropogenic inputs related to the initial period of the mining activities conducted in Serra do Navio, Amapá State, for the commercialization of Mn ores. This was reinforced by the abrupt fluctuations in chemical data obtained for the sediments and composition of the interstitial waters occurring there. The Atlantic hurricane activity also appeared to affect the sedimentation rates in the area, as two different values were recorded in each profile. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. A preliminary assessment of heavy metals in sediments from the Cipero and South Oropouche Rivers in Trinidad, West Indies.

    Science.gov (United States)

    Mohammed, Faisal K; Sieuraj, Jason; Seepersaud, Mohindra

    2017-08-01

    The increasing urbanization and industrial processes in Trinidad within recent years could pose a possible contamination threat to the aquatic environment. The southwestern part of the island houses numerous industrial activities, and the recent sightings of schools of dead fish and other marine organisms in that locality is cause for concern prompting research into this occurrence. Sediment and surface water samples from the Cipero and South Oropouche Rivers in South Trinidad were analyzed for their heavy metal content (Cd, Cr, Cu, Mn, Ni, Pb, and Zn). Another watercourse, the Moruga River, was selected as a control, based on its location away from significant anthropogenic sources, and the levels of heavy metals obtained for this location were considered as background concentrations for both surface waters and sediments. Cadmium, Ni, and Pb were not detected in surface water samples of both rivers. The corresponding order of metals in the Cipero River was Mn > Cr > Zn > Cu, while for the South Oropouche River, the order was Mn > Cr > Cu > Zn. The individual concentrations of metals in sediments found in the Cipero and South Oropouche Rivers varied according to the following orders: Mn > Zn > Cu > Pb > Ni > Cr > Cd and Mn > Zn > Pb > Cu > Ni > Cr > Cd, respectively. Assessments of the pollution status in sediments revealed that the Cipero River was considered polluted with a moderate degree of ecological pollution while the South Oropouche River was also deemed polluted; however, the degree of ecological pollution associated with that river was low. Principal component analysis (PCA) and cluster analysis (CA) confirmed that both anthropogenic and natural sources contributed to heavy metal contamination in sediments of both rivers.

  3. Suspended-sediment loads in the lower Stillaguamish River, Snohomish County, Washington, 2014–15

    Science.gov (United States)

    Anderson, Scott A.; Curran, Christopher A.; Grossman, Eric E.

    2017-08-03

    Continuous records of discharge and turbidity at a U.S. Geological Survey (USGS) streamgage in the lower Stillaguamish River were paired with discrete measurements of suspended-sediment concentration (SSC) in order to estimate suspended-sediment loads over the water years 2014 and 2015. First, relations between turbidity and SSC were developed and used to translate the continuous turbidity record into a continuous estimate of SSC. Those concentrations were then used to predict suspended-sediment loads based on the current discharge record, reported at daily intervals. Alternative methods were used to in-fill a small number of days with either missing periods of turbidity or discharge records. Uncertainties in our predictions at daily and annual time scales were estimated based on the parameter uncertainties in our turbidity-SSC regressions. Daily loads ranged from as high as 121,000 tons during a large autumn storm to as low as –56 tons, when tidal return flow moved more sediment upstream than river discharge did downstream. Annual suspended-sediment loads for both water years were close to 1.4 ± 0.2 million tons.

  4. Influence of Wastewater Discharge on the Metabolic Potential of the Microbial Community in River Sediments.

    Science.gov (United States)

    Li, Dong; Sharp, Jonathan O; Drewes, Jörg E

    2016-01-01

    To reveal the variation of microbial community functions during water filtration process in river sediments, which has been utilized widely in natural water treatment systems, this study investigates the influence of municipal wastewater discharge to streams on the phylotype and metabolic potential of the microbiome in upstream and particularly various depths of downstream river sediments. Cluster analyses based on both microbial phylogenetic and functional data collectively revealed that shallow upstream sediments grouped with those from deeper subsurface downstream regions. These sediment samples were distinct from those found in shallow downstream sediments. Functional genes associated with carbohydrate, xenobiotic, and certain amino acid metabolisms were overrepresented in upstream and deep downstream samples. In contrast, the more immediate contact with wastewater discharge in shallow downstream samples resulted in an increase in the relative abundance of genes associated with nitrogen, sulfur, purine and pyrimidine metabolisms, as well as restriction-modification systems. More diverse bacterial phyla were associated with upstream and deep downstream sediments, mainly including Actinobacteria, Planctomycetes, and Firmicutes. In contrast, in shallow downstream sediments, genera affiliated with Betaproteobacteria and Gammaproteobacteria were enriched with putative functions that included ammonia and sulfur oxidation, polyphosphate accumulation, and methylotrophic bacteria. Collectively, these results highlight the enhanced capabilities of microbial communities residing in deeper stream sediments for the transformation of water contaminants and thus provide a foundation for better design of natural water treatment systems to further improve the removal of contaminants.

  5. Influence of Wastewater Discharge on the Metabolic Potential of the Microbial Community in River Sediments

    KAUST Repository

    Li, Dong

    2015-09-24

    To reveal the variation of microbial community functions during water filtration process in river sediments, which has been utilized widely in natural water treatment systems, this study investigates the influence of municipal wastewater discharge to streams on the phylotype and metabolic potential of the microbiome in upstream and particularly various depths of downstream river sediments. Cluster analyses based on both microbial phylogenetic and functional data collectively revealed that shallow upstream sediments grouped with those from deeper subsurface downstream regions. These sediment samples were distinct from those found in shallow downstream sediments. Functional genes associated with carbohydrate, xenobiotic, and certain amino acid metabolisms were overrepresented in upstream and deep downstream samples. In contrast, the more immediate contact with wastewater discharge in shallow downstream samples resulted in an increase in the relative abundance of genes associated with nitrogen, sulfur, purine and pyrimidine metabolisms, as well as restriction–modification systems. More diverse bacterial phyla were associated with upstream and deep downstream sediments, mainly including Actinobacteria, Planctomycetes, and Firmicutes. In contrast, in shallow downstream sediments, genera affiliated with Betaproteobacteria and Gammaproteobacteria were enriched with putative functions that included ammonia and sulfur oxidation, polyphosphate accumulation, and methylotrophic bacteria. Collectively, these results highlight the enhanced capabilities of microbial communities residing in deeper stream sediments for the transformation of water contaminants and thus provide a foundation for better design of natural water treatment systems to further improve the removal of contaminants. © 2015, Springer Science+Business Media New York.

  6. Ecological risk of heavy metals in sediments of the luan river source water

    Science.gov (United States)

    Liu, J.; Li, Y.; Zhang, B.; Cao, J.; Cao, Z.; Domagalski, Joseph L.

    2009-01-01

    Distribution and characteristics of heavy metals enrichment in sediment were surveyed including the bio-available form analyzed for assessment of the Luan River source water quality. The approaches of sediment quality guidelines (SQG), risk assessment code and Hakanson potential ecological risk index were used for the ecological risk assessment. According to SQG, The results show that in animal bodies, Hg at the sampling site of Wuliehexia was 1.39 mg/kg, Cr at Sandaohezi was 152.37 mg/kg and Cu at Hanjiaying was 178.61 mg/kg exceeding the severe effect screening level. There were 90% of sampling sites of Cr and Pb and 50% sites of Cu exceeded the lowest effect screening level. At Boluonuo and Wuliehexia, the exchangeable and carbonate fractions for above 50% of sites were at high risk levels and that for above 30% of sites at Xiahenan and Wulieheshang were also at high risk levels. Other sites were at medium risk level. Compared to soil background values of China, Hg and Cd showed very strong ecological risk, and the seven heavy metals of Hg, Cd, Cu, As, Pb, Cr, Zn at ecological risk levels were in the descending order. The results could give insight into risk assessment of environmental pollution and decision-making for water source security. ?? 2009 Springer Science+Business Media, LLC.

  7. Trends in the occurrence of human and veterinary antibiotics in the sediments of the Yellow River, Hai River and Liao River in northern China

    International Nuclear Information System (INIS)

    Zhou Lijun; Ying Guangguo; Zhao Jianliang; Yang Jifeng; Wang Li; Yang Bin; Liu Shan

    2011-01-01

    The occurrence of four classes of 17 commonly used antibiotics (including fluoroquinolones, tetracycline, sulfonamides, and macrolides) was investigated in the sediments of the Yellow River, Hai River and Liao River in northern China by using rapid resolution liquid chromatography-tandem mass spectrometry. Higher concentrations were detected for most antibiotics in the sediments of the Hai River than in the sediments of the other rivers. Norfloxacin, ofloxacin, ciprofloxacin and oxytetracycline in the three rivers were most frequently detected with concentrations up to 5770, 1290, 653 and 652 ng/g, respectively. High frequencies and concentrations of the detected antibiotics were often found in the downstream of large cities and areas influenced by feedlot and fish ponds. Good fitted linear regression equations between antibiotic concentration and sediment physicochemical properties (TOC, texture and pH) were also found, indicating that sediment properties are important factors influencing the distribution of antibiotics in the sediment of rivers. - Highlights: → Presence of four classes of commonly used antibiotics in the river sediments. → Higher concentrations in the Hai River than in the Liao River and Yellow River. → Norfloxacin, ofloxacin, ciprofloxacin and oxytetracycline most frequently detected. → High antibiotic concentrations often found in the downstream of large cities. → River sediments are an important reservoir of antibiotics. - Higher concentrations of selected antibiotics were determined in the sediments of the Hai River than in the Liao River and Yellow River.

  8. A data reconnaissance on the effect of suspended-sediment concentrations on dissolved-solids concentrations in rivers and tributaries in the Upper Colorado River Basin

    Science.gov (United States)

    Tillman, Fred D.; Anning, David W.

    2014-01-01

    The Colorado River is one of the most important sources of water in the western United States, supplying water to over 35 million people in the U.S. and 3 million people in Mexico. High dissolved-solids loading to the River and tributaries are derived primarily from geologic material deposited in inland seas in the mid-to-late Cretaceous Period, but this loading may be increased by human activities. High dissolved solids in the River causes substantial damages to users, primarily in reduced agricultural crop yields and corrosion. The Colorado River Basin Salinity Control Program was created to manage dissolved-solids loading to the River and has focused primarily on reducing irrigation-related loading from agricultural areas. This work presents a reconnaissance of existing data from sites in the Upper Colorado River Basin (UCRB) in order to highlight areas where suspended-sediment control measures may be useful in reducing dissolved-solids concentrations. Multiple linear regression was used on data from 164 sites in the UCRB to develop dissolved-solids models that include combinations of explanatory variables of suspended sediment, flow, and time. Results from the partial t-test, overall likelihood ratio, and partial likelihood ratio on the models were used to group the sites into categories of strong, moderate, weak, and no-evidence of a relation between suspended-sediment and dissolved-solids concentrations. Results show 68 sites have strong or moderate evidence of a relation, with drainage areas for many of these sites composed of a large percentage of clastic sedimentary rocks. These results could assist water managers in the region in directing field-scale evaluation of suspended-sediment control measures to reduce UCRB dissolved-solids loading.

  9. The significance of sediment contamination in the Elbe River floodplain (Czech Republic)

    Science.gov (United States)

    Chalupová, Dagmar; Janský, Bohumír; Langhammer, Jakub; Šobr, Miroslav; Jiři, Medek; Král, Stanislav; Jiřinec, Petr; Kaiglova, Jana; Černý, Michal; Žáček, Miroslav; Leontovyčova, Drahomíra; Halířová, Jarmila

    2015-04-01

    The abstract brings the information about the research that was focused on anthropogenic pollution of river and lake sediments in the middle course of the Elbe River (Czech Republic). The main aim was to identify and to evaluate the significance of old polluted sediments in the river and its side structures (old meanders, cut lakes, oxbow lakes) between Hradec Králové and Mělník (confluence with the Moldau River) and to assess the risk coming from the remobilization of the contaminated matter. The Elbe River floodplain has been highly inhabited since the Middle Ages, and, especially in the 20th century, major industrial plants were founded here. Since that time, the anthropogenic load of the river and it`s floodplain has grown. Although the contaminants bound to the sediment particles are usually stable, the main risk is coming from the fact that under changes in hydrological regime and water quality (floods, changes in pH, redox-potential, presence of complex substances etc.), the pollution can be released and remobilized again. The most endangered areas are: the surroundings of Pardubice (chemical factory Synthesia, Inc.; refinery PARAMO), and Neratovice (chemical factory Spolana, Inc.). The chemical factories situated close to these towns represented the most problematic polluters of the Elbe River especially during 2nd half of 20th century. In the research, the main attention was aimed at subaquatic sediments of selected cut lakes situated in the vicinity of the above mentioned sources of pollution. To describe the outreach of contamination, several further fluvial lakes were taken into account too. Sediment sampling was carried out from boats on lakes and with the help of drilling rig in the floodplain. Gained sediment cores were divided into several parts which were analysed separately. Chemical analyses included substances identified by ICPER (International Commission for the Protection of the Elbe River) as well as chemicals considered as significant in

  10. Identifying and Mitigating Potential Nutrient and Sediment Hot Spots under a Future Scenario in the Missouri River Basin

    Energy Technology Data Exchange (ETDEWEB)

    Wu, May [Argonne National Lab. (ANL), Argonne, IL (United States); Zhang, Zhonglong [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-09-01

    Using the Soil and Water Assessment Tool (SWAT) for large-scale watershed modeling could be useful for evaluating the quality of the water in regions that are dominated by nonpoint sources in order to identify potential “hot spots” for which mitigating strategies could be further developed. An analysis of water quality under future scenarios in which changes in land use would be made to accommodate increased biofuel production was developed for the Missouri River Basin (MoRB) based on a SWAT model application. The analysis covered major agricultural crops and biofuel feedstock in the MoRB, including pasture land, hay, corn, soybeans, wheat, and switchgrass. The analysis examined, at multiple temporal and spatial scales, how nitrate, organic nitrogen, and total nitrogen; phosphorus, organic phosphorus, inorganic phosphorus, and total phosphorus; suspended sediments; and water flow (water yield) would respond to the shifts in land use that would occur under proposed future scenarios. The analysis was conducted at three geospatial scales: (1) large tributary basin scale (two: Upper MoRB and Lower MoRB); (2) regional watershed scale (seven: Upper Missouri River, Middle Missouri River, Middle Lower Missouri River, Lower Missouri River, Yellowstone River, Platte River, and Kansas River); and (3) eight-digit hydrologic unit (HUC-8) subbasin scale (307 subbasins). Results showed that subbasin-level variations were substantial. Nitrogen loadings decreased across the entire Upper MoRB, and they increased in several subbasins in the Lower MoRB. Most nitrate reductions occurred in lateral flow. Also at the subbasin level, phosphorus in organic, sediment, and soluble forms was reduced by 35%, 45%, and 65%, respectively. Suspended sediments increased in 68% of the subbasins. The water yield decreased in 62% of the subbasins. In the Kansas River watershed, the water quality improved significantly with regard to every nitrogen and phosphorus compound. The improvement was

  11. Analysis of the presence of perfluoroalkyl substances in water, sediment and biota of the Jucar River (E Spain). Sources, partitioning and relationships with water physical characteristics

    International Nuclear Information System (INIS)

    Campo, Julian; Lorenzo, María; Pérez, Francisca; Picó, Yolanda; Farré, Marinella

    2016-01-01

    The presence, sources and partitioning of 21 perfluoroalkyl substances (PFASs: C4–C14, C16, C18 carboxylate, C4, C6–C10 sulfonates and C8 sulfonamide) were assessed in water, sediment, and biota of the Jucar River basin (E Spain). Considering the three matrices, perfluoropentanoate (PFPeA) and perfluorooctane sulfonate (PFOS) were the most frequent compounds, being remarkable the high occurrence of short-chain PFASs (C≤8), which are intended to replace the long-chain ones in several industrial and commercial applications. In general, all samples were contaminated with at least one PFAS, with the exception of three fish samples. Mean concentrations detected in sediments (0.22–11.5 ng g −1 ) and biota (0.63–274 µg kg −1 ) samples were higher than those measured in water (0.04–83.1 ng L −1 ), which might suggest (bio) accumulation. The occurrence of PFAS is related to urban and industrial discharges (Cuenca city in the upper part of basin, and car's factory, and effluents of the sewage treatment plant (STP) of Alzira, in the lower part). Increasing pollution gradients were found. On the other hand, higher contamination levels were observed after regulation dams of the catchment pointing out their importance in the re-distribution of these contaminants. None of the hazard quotients (HQ) calculated indicate potential risk for the different tropic levels considered (algae, Daphnia sp. and fish). PFAS concentrations found in this study can be considered in acceptable levels if compared to existing Regulatory Legislation and, consequently, they do not pose an immediate human health risk. - Highlights: • Distribution of 21 PFASs in water, sediment, biota of Jucar River is established. • PFPeA and PFOS are the predominant but high PFDA levels are related to industry. • PFASs in water and sediment related to the increase in NaCl, conductivity and TDS. • PFAS concentration in sediment/biota suggests (bio)accumulation. • None of the calculated

  12. Impact of Watershed Development on Sediment Transport and Seasonal Flooding in the Main Stream of the Mekong River

    Science.gov (United States)

    Kameyama, S.; Nohara, S.; Sato, T.; Fujii, Y.; Kudo, K.

    2009-12-01

    The Mekong River watershed is undergoing rapid economic progress and population growth, raising conflicts between watershed development and environmental conservation. A typical conflict is between the benefits of dam construction versus the benefits of watershed ecological services. In developed countries, this conflict is changing to a coordinated search for outcomes that are mutually acceptable to all stakeholders. In the Mekong River, however, government policy gives priority to watershed development for ensuring steady energy supplies. Since the 1990s, a series of dams called “the Mekong Cascade” have been under construction. Dam construction has multiple economic values as electric power supply, irrigation water, flood control, etc. On the other hand, the artificial flow discharge controls of dam moderate seasonal hydrologic patterns of the Asian monsoon region. Dam operations can change the sediment transport regime and river structure. Furthermore, their impacts on watershed ecosystems and traditional economic activities of fisheries and agriculture in downstream areas may be severe. We focus on dam impacts on spatio-temporal patterns of sediment transport and seasonal flood in riparian areas downstream from Mekong River dams. Our study river section is located on 100 km down stream from the Golden Triangle region of Myanmar, Laos, and Thailand. We selected a 10-km section in this main channel to simulate seasonal flooding. We modeled the river hydrology in the years 1991 and 2002, before and after the Manwan dam construction (1986-1993). For this simulation, we adapted three models (distributed runoff model, 1-D hydrological model, and 2-D flood simulation with sediment movement algorithm.) Input data on river structure, water velocity, and flow volume were acquired from field survey data in November 2007 and 2008. In the step of parameter decision, we adopted the shuffled complex evolution method. To validate hydrologic parameters, we used annual

  13. Biomass production in the Lower Mississippi River Basin: Mitigating associated nutrient and sediment discharge to the Gulf of Mexico.

    Science.gov (United States)

    Ha, Miae; Zhang, Zhonglong; Wu, May

    2018-04-24

    A watershed model was developed using the Soil and Water Assessment Tool (SWAT) that simulates nitrogen, phosphorus, and sediment loadings in the Lower Mississippi River Basin (LMRB). The LMRB SWAT model was calibrated and validated using 21 years of observed flow, sediment, and water-quality data. The baseline model results indicate that agricultural lands within the Lower Mississippi River Basin (LMRB) are the dominant sources of nitrogen and phosphorus discharging into the Gulf of Mexico. The model was further used to evaluate the impact of biomass production, in the presence of riparian buffers in the LMRB, on suspended-sediment and nutrient loading discharge from the Mississippi River into the Gulf of Mexico. The interplay among land use, riparian buffers, crop type, land slope, water quality, and hydrology were anlyzed at various scales. Implementing a riparian buffer in the dominant agricultural region within the LMRB could reduce suspended sediment, nitrogen, and phosphorus loadings at the regional scale by up to 65%, 38%, and 39%, respectively. Implementation of this land management practice can reduce the suspended-sediment content and improve the water quality of the discharge from the LMRB into the Gulf of Mexico and support the potential production of bioenergy and bio-products within the Mississippi River Basin. Copyright © 2017 Elsevier B.V. All rights reserved.

  14. Experiments on sediment pulses in mountain rivers

    Science.gov (United States)

    Y. Cui; T. E. Lisle; J. E. Pizzuto; G. Parker

    1998-01-01

    Pulses of sediment can be introduced into mountain rivers from such mechanisms as debris flows, landslides and fans at tributary confluences. These processes can be natural or associated with the activities of humans, as in the case of a pulse created by sediment derived from timber harvest or the removal of a dam. How does the river digest these pulses?

  15. A survey of benthic sediment contaminants in reaches of the Columbia River Estuary based on channel sedimentation characteristics.

    Science.gov (United States)

    Counihan, Timothy D; Waite, Ian R; Nilsen, Elena B; Hardiman, Jill M; Elias, Edwin; Gelfenbaum, Guy; Zaugg, Steven D

    2014-06-15

    While previous studies have documented contaminants in fish, sediments, water, and wildlife, few specifics are known about the spatial distribution of contaminants in the Columbia River Estuary (CRE). Our study goal was to characterize sediment contaminant detections and concentrations in reaches of the CRE that were concurrently being sampled to assess contaminants in water, invertebrates, fish, and osprey (Pandion haliaetus) eggs. Our objectives were to develop a survey design based on sedimentation characteristics and then assess whether sediment grain size, total organic carbon (TOC), and contaminant concentrations and detections varied between areas with different sedimentation characteristics. We used a sediment transport model to predict sedimentation characteristics of three 16km river reaches in the CRE. We then compartmentalized the modeled change in bed mass after a two week simulation to define sampling strata with depositional, stable, or erosional conditions. We collected and analyzed bottom sediments to assess whether substrate composition, organic matter composition, and contaminant concentrations and detections varied among strata within and between the reaches. We observed differences in grain size fractions between strata within and between reaches. We found that the fine sediment fraction was positively correlated with TOC. Contaminant concentrations were statistically different between depositional vs. erosional strata for the industrial compounds, personal care products and polycyclic aromatic hydrocarbons class (Indus-PCP-PAH). We also observed significant differences between strata in the number of detections of Indus-PCP-PAH (depositional vs. erosional; stable vs. erosional) and for the flame retardants, polychlorinated biphenyls, and pesticides class (depositional vs. erosional, depositional vs. stable). When we estimated mean contaminant concentrations by reach, we observed higher contaminant concentrations in the furthest downstream

  16. A survey of benthic sediment contaminants in reaches of the Columbia River Estuary based on channel sedimentation characteristics

    Science.gov (United States)

    Counihan, Timothy D.; Waite, Ian R.; Nilsen, Elena B.; Hardiman, Jill M.; Elias, Edwin; Gelfenbaum, Guy; Zaugg, Steven D.

    2014-01-01

    While previous studies have documented contaminants in fish, sediments, water, and wildlife, few specifics are known about the spatial distribution of contaminants in the Columbia River Estuary (CRE). Our study goal was to characterize sediment contaminant detections and concentrations in reaches of the CRE that were concurrently being sampled to assess contaminants in water, invertebrates, fish, and osprey (Pandion haliaetus) eggs. Our objectives were to develop a survey design based on sedimentation characteristics and then assess whether sediment grain size, total organic carbon (TOC), and contaminant concentrations and detections varied between areas with different sedimentation characteristics. We used a sediment transport model to predict sedimentation characteristics of three 16 km river reaches in the CRE. We then compartmentalized the modeled change in bed mass after a two week simulation to define sampling strata with depositional, stable, or erosional conditions. We collected and analyzed bottom sediments to assess whether substrate composition, organic matter composition, and contaminant concentrations and detections varied among strata within and between the reaches. We observed differences in grain size fractions between strata within and between reaches. We found that the fine sediment fraction was positively correlated with TOC. Contaminant concentrations were statistically different between depositional vs. erosional strata for the industrial compounds, personal care products and polycyclic aromatic hydrocarbons class (Indus–PCP–PAH). We also observed significant differences between strata in the number of detections of Indus–PCP–PAH (depositional vs. erosional; stable vs. erosional) and for the flame retardants, polychlorinated biphenyls, and pesticides class (depositional vs. erosional, depositional vs. stable). When we estimated mean contaminant concentrations by reach, we observed higher contaminant concentrations in the furthest

  17. Leachability of 226Ra and 210Pb from botton sediments by river waters from the Pocos de Caldas region and by saline solutions

    International Nuclear Information System (INIS)

    Oliveira, A.E. de; Franca, E.P.

    1983-01-01

    River bottom sediment samples collected in eight points of Rio das Antas and Rio Verde basins were contamined with 226 Ra or 210 Pb in the laboratory, and leached by distilled and river water or solutions of inorganic salts which should be presented in the final tailing pond effluent (Na 2 SO 4 , MgSO 4 , CaSO 4 , BaCl 2 and NaF). (E.G.) [pt

  18. Sediment-water distribution of contaminants of emerging concern in a mixed use watershed

    Science.gov (United States)

    This study evaluated the occurrence and distribution of 15 contaminants of emerging concern (CEC) in stream water and sediments in the Zumbro River watershed in Minnesota and compared these with sub-watershed land uses. Sixty pairs of sediment and water samples were collected across all seasons from...

  19. Multielemental characterization of sediments from rivers and reservoirs of a sediment quality monitoring network of Sao Paulo state, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Walace A.A.; Quinaglia, Gilson A., E-mail: wasoares@sp.gov.br, E-mail: gquinaglia@sp.gov.br [Companhia Ambiental do Estado de Sao Paulo (CETESB), SP (Brazil). Setor de Analises Toxicologicas; Favaro, Deborah I.T., E-mail: defavaro@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (LAN/CRPq/IPEN/CNEN-SP), Sao Paulo, SP (Brazil). Lab. de Analise por Ativacao Neutronica

    2013-07-01

    The Environment Company of the State of Sao Paulo (CETESB) by means of its quality monitoring network does, systematically, the assessment of water and sediment quality in rivers and reservoirs in the Sao Paulo state. The quality evaluation is done by means 50 parameters in water and 63 for sediment that are considered the more representative for CETESB monitoring. In 2011 the network monitoring analyzed 420 points being 24 in sediments. In the present study the multielemental characterization (total concentration) of 13 sediment samples from 24 rivers and reservoirs belonging to the CETESB monitoring network were analyzed by instrumental neutron activation analysis (INAA). The analytical validation according to precision and accuracy was checked through certified reference materials analyzes BEN (Basalt-IWG-GIT), SL-1 (Lake Sediment - IAEA) and Soil-5 (IAEA), that presents certified concentration values for all elements analyzed. The results obtained for multielemental characterization were compared to NASC values (North American Shale Composite) and the enrichment factor (EF) by using Sc as a normalizer element was calculated. The results showed higher enrichment values for As, Br, Cr, Hf, Ta, Th , U and Zn and rare earth elements (REE) Ce, Eu, La, Nd, Sm, Tb and Yb in many of the tested sediment samples indicating that there may be an anthropogenic contribution for these elements. The multielemental results were also compared to the granulometric composition of the sediment samples. Factorial and Cluster Analysis were applied and indicated that the elements distribution is controlled, mainly by the granulometric fractions of the sediments. (author)

  20. Multielemental characterization of sediments from rivers and reservoirs of a sediment quality monitoring network of Sao Paulo state, Brazil

    International Nuclear Information System (INIS)

    Soares, Walace A.A.; Quinaglia, Gilson A.; Favaro, Deborah I.T.

    2013-01-01

    The Environment Company of the State of Sao Paulo (CETESB) by means of its quality monitoring network does, systematically, the assessment of water and sediment quality in rivers and reservoirs in the Sao Paulo state. The quality evaluation is done by means 50 parameters in water and 63 for sediment that are considered the more representative for CETESB monitoring. In 2011 the network monitoring analyzed 420 points being 24 in sediments. In the present study the multielemental characterization (total concentration) of 13 sediment samples from 24 rivers and reservoirs belonging to the CETESB monitoring network were analyzed by instrumental neutron activation analysis (INAA). The analytical validation according to precision and accuracy was checked through certified reference materials analyzes BEN (Basalt-IWG-GIT), SL-1 (Lake Sediment - IAEA) and Soil-5 (IAEA), that presents certified concentration values for all elements analyzed. The results obtained for multielemental characterization were compared to NASC values (North American Shale Composite) and the enrichment factor (EF) by using Sc as a normalizer element was calculated. The results showed higher enrichment values for As, Br, Cr, Hf, Ta, Th , U and Zn and rare earth elements (REE) Ce, Eu, La, Nd, Sm, Tb and Yb in many of the tested sediment samples indicating that there may be an anthropogenic contribution for these elements. The multielemental results were also compared to the granulometric composition of the sediment samples. Factorial and Cluster Analysis were applied and indicated that the elements distribution is controlled, mainly by the granulometric fractions of the sediments. (author)

  1. Analysis of bio-obtainable endocrine disrupting metals in river water and sediment, sewage influent/effluent, sludge, leachate, and concentrated leachate, in the irish midlands shannon catchment.

    LENUS (Irish Health Repository)

    Reid, Antoinette M

    2009-01-01

    The application of an acid digestion and subsequent solid-phase extraction (SPE) procedure were implemented as preliminary treatments prior to quantifying the levels of potentially endocrine disrupting metals (EDMs) in a variety of solid and liquid matrices. These included (solid) river sediment, leachate sediment and sewage sludge and also (liquid) river water, landfill leachate, concentrated leachate, sewage influent, and sewage effluent, sampled in the Irish Midlands. The total concentrations of cobalt (Co), cadmium (Cd), copper (Cu), chromium (Cr), nickel (Ni), lead (Pb), zinc (Zn), and manganese (Mn), after extraction and preconcentration, were determined by atomic absorption spectroscopy (AAS). Mercury (Hg) in sediment and sludge was determined using cold-vapour atomic fluorescence spectroscopy (AFS). For sewage sludge maximum values (mg\\/kg(dw)) of 4700 Ni, 1642 Mn, 100.0 Cd, 3400 Zn, 36.70 Co, 750.0 Pb, 485.8 Cr, and 1003 Cu were determined whilst in leachate sediment, maximum values (mg\\/kg(dw)) of 32.10 Ni, 815.0 Mn, 32.78 Cd, 230.3 Zn, 26.73 Co, 3525 Pb, 124.9 Cr, and 50.13 Cu were found. Over several months, the data showed elevated levels in sewage influents, effluents, and sludges compared to a battery of adjacent river water samples and corresponding sediments. There was a definite trend for target values for sediments to be exceeded, while intervention values were only exceeded for cadmium. Overall the pattern in terms of concentration was sewage > leachate > river matrices. A nonparametric assessment of the effect of sewage treatment method on median metal levels in sludge revealed statistically significant differences at the 95% level of confidence for Co, Cr, and Hg and at the 90% level of confidence for Cd.

  2. Distribution of heavy metals in riverine soils and sediments of the Turia River basin.

    Science.gov (United States)

    Andreu, Vicente; Gimeno-García, Eugenia; Pascual, Juan Antonio

    2014-05-01

    Water is a scarce and contested good, and a primary need for the population all over. Rivers are one of the mainsources of freshwater to people but, in the same way, receive both point source and difuse pollution, usually frorm wastewaters and agriculture. However, they are not independent bodies but they influence different associated ecosystems that compound the catchment. Soils of the river banks often acts as the last phase of the diffuse contamination pathways, favouring the contaminants input to the river waters. In this sense, the fluvial sedimentary phase usually acts as a sink of pollutants. Sediments can work as resevoirs that accumulate contaminants fixing them or allowing their decomposition or metabolization. However, environmental or human induced, such as variations in water pH, increases in the turbulence or intensity of the water flow, etc.could favour their release to the environment. In this work, the incidence and distribution of seven heavy metals was monitored in riverine soils and sediments of the Turia River. Along the river course, 22 zones were selected for sampling according different lithologies, land uses, size of populations and the proximity to waste waters treatment plants (WWTPs), from the headwaters to the mouth. The selected metals (Cd, Co, Cr, Cu, Pb, Ni and Zn) were analysed to determine its total and extractable contents in the sediments. Total content of metals was extracted by microwave acid digestion and the extractable fraction by treatment with EDTA. Atomic Absorption Spectrometry, using graphite furnace when necessary, was used for the determination of all metals. Highest values for sediments were mainly observed in zones 10 and 22, close to urban areas, reaching values of 172.86 mg/kg for Pb, or 58.34 mg/kg for Cr. However, zone 2 near in the headwaters of the Alfambra River and supposedly of reference for the River authorities shows the highest values of zinc with 96.96 mg/kg. Regarding the available

  3. Source discrimination of heavy metals in sediment and water of To Lich River in Hanoi City using multivariate statistical approaches.

    Science.gov (United States)

    Thuong, Nguyen Thi; Yoneda, Minoru; Ikegami, Maiko; Takakura, Masato

    2013-10-01

    The concentrations of Mn, Fe, Ni, Cr, Cu, Pb, Zn, As, and Cd were determined to evaluate the level of contamination of To Lich River in Hanoi City. All metal concentrations in 0-10-cm water samples, except Mn, were lower than the maximum permitted concentration for irrigation water standard. Meanwhile, concentrations of As, Cd, and Zn in 0-30-cm sediments were likely to have adverse effects on agriculture and aquatic life. Sediment pollution assessment was undertaken using enrichment factor and geoaccumulation index (I geo). The I geo results indicated that the sediment was not polluted with Cr, Mn, Fe, and Ni, and the pollution level increased in the order of Cu < Pb < Zn < As < Cd. Meanwhile, significant enrichment was shown for Cd, As, Zn, and Pb. Cluster and principal component analyses suggest that As and Mn in sediment were derived from both lithogenic and anthropogenic sources, while Cu, Pb, Zn, Cr, Cd, and Ni originated from anthropogenic sources such as vehicular fumes for Pb and metallic discharge from industrial sources and fertilizer application for other metals.

  4. Application of dimensionless sediment rating curves to predict suspended-sediment concentrations, bedload, and annual sediment loads for rivers in Minnesota

    Science.gov (United States)

    Ellison, Christopher A.; Groten, Joel T.; Lorenz, David L.; Koller, Karl S.

    2016-10-27

    Consistent and reliable sediment data are needed by Federal, State, and local government agencies responsible for monitoring water quality, planning river restoration, quantifying sediment budgets, and evaluating the effectiveness of sediment reduction strategies. Heightened concerns about excessive sediment in rivers and the challenge to reduce costs and eliminate data gaps has guided Federal and State interests in pursuing alternative methods for measuring suspended and bedload sediment. Simple and dependable data collection and estimation techniques are needed to generate hydraulic and water-quality information for areas where data are unavailable or difficult to collect.The U.S. Geological Survey, in cooperation with the Minnesota Pollution Control Agency and the Minnesota Department of Natural Resources, completed a study to evaluate the use of dimensionless sediment rating curves (DSRCs) to accurately predict suspended-sediment concentrations (SSCs), bedload, and annual sediment loads for selected rivers and streams in Minnesota based on data collected during 2007 through 2013. This study included the application of DSRC models developed for a small group of streams located in the San Juan River Basin near Pagosa Springs in southwestern Colorado to rivers in Minnesota. Regionally based DSRC models for Minnesota also were developed and compared to DSRC models from Pagosa Springs, Colorado, to evaluate which model provided more accurate predictions of SSCs and bedload in Minnesota.Multiple measures of goodness-of-fit were developed to assess the effectiveness of DSRC models in predicting SSC and bedload for rivers in Minnesota. More than 600 dimensionless ratio values of SSC, bedload, and streamflow were evaluated and delineated according to Pfankuch stream stability categories of “good/fair” and “poor” to develop four Minnesota-based DSRC models. The basis for Pagosa Springs and Minnesota DSRC model effectiveness was founded on measures of goodness

  5. ANALYSIS OF EROSION AND SEDIMENTATION PATTERNS USING SOFTWARE OF MIKE 21 HDFM-MT IN THE KAPUAS MURUNG RIVER MOUTH CENTRAL KALIMANTAN PROVINCE

    Directory of Open Access Journals (Sweden)

    Franto Novico

    2017-07-01

    Full Text Available The public transportation system along the Kapuas River, Central Kalimantan are highly depend on water transportation. Natural condition gives high distribution to the smoothness of the vessel traffic along the Kapuas Murung River. The local government has planned to build specific port for stock pile at the Batanjung which would face with natural phenomena of sedimentation and erosion at a river mouth. Erosion and sedimentation could be predicted not only by field observing but it is also needed hypotheses using software analysis. Hydrodynamics and transport sediment models by Mike 21 HDFM-MT software will be applied to describe the position of sedimentations and erosions at a river mouth. Model is assumed by two different river conditions, wet and dry seasons. Based on two types of conditions the model would also describe the river flow and sediment transport at spring and neap periods. Tidal fluctuations and a river current as field observation data would be verified with the result of model simulations. Based on field observation and simulation results could be known the verification of tidal has an 89.74% correlation while the river current correlation has 43.6%. Moreover, based on the simulation the sediment patterns in flood period have a larger area than ebb period. Furthermore, the erosion patterns dominantly occur during wet and dry season within ebb period. Water depths and sediment patterns should be considered by the vessels that will use the navigation channel at a river mouth.

  6. Trace element fluxes in sediments of an environmentally impacted river from a coastal zone of Brazil.

    Science.gov (United States)

    da Silva, Yuri Jacques Agra Bezerra; Cantalice, José Ramon Barros; Singh, Vijay P; do Nascimento, Clístenes Williams Araújo; Piscoya, Victor Casimiro; Guerra, Sérgio M S

    2015-10-01

    Data regarding trace element concentrations and fluxes in suspended sediments and bedload are scarce. To fill this gap and meet the international need to include polluted rivers in future world estimation of trace element fluxes, this study aimed to determine the trace element fluxes in suspended sediment and bedload of an environmentally impacted river in Brazil. Water, suspended sediment, and bedload from both the upstream and the downstream cross sections were collected. To collect both the suspended sediment and water samples, we used the US DH-48. Bedload measurements were carried out using the US BLH 84 sampler. Concentrations of Cd, Cr, Cu, Fe, Mn, Ni, Pb, and Zn were determined by inductively coupled plasma (ICP-OES). As and Hg were determined by an atomic absorption spectrophotometer (AA-FIAS). The suspended sediments contributed more than 99 % of the trace element flux. By far Pb and to a less extent Zn at the downstream site represents major concerns. The yields of Pb and Zn in suspended sediments were 4.20 and 2.93 kg km(2) year(-1), respectively. These yields were higher than the values reported for Pb and Zn for Tuul River (highly impacted by mining activities), 1.60 and 1.30 kg km(2) year(-1), respectively, as well as the Pb yield (suspended + dissolved) to the sea of some Mediterranean rivers equal to 3.4 kg km(2) year(-1). Therefore, the highest flux and yield of Pb and Zn in Ipojuca River highlighted the importance to include medium and small rivers-often overlooked in global and regional studies-in the future estimation of world trace element fluxes in order to protect estuaries and coastal zones.

  7. Assessment of heavy metal pollution from a Fe-smelting plant in urban river sediments using environmental magnetic and geochemical methods

    International Nuclear Information System (INIS)

    Zhang Chunxia; Qiao Qingqing; Piper, John D.A.; Huang, Baochun

    2011-01-01

    Environmental magnetic proxies provide a rapid means of assessing the degree of industrial heavy metal pollution in soils and sediments. To test the efficiency of magnetic methods for detecting contaminates from a Fe-smelting plant in Loudi City, Hunan Province (China) we investigated river sediments from Lianshui River. Both magnetic and non-magnetic (microscopic, chemical and statistical) methods were used to characterize these sediments. Anthropogenic heavy metals coexist with coarse-grained magnetic spherules. It can be demonstrated that the Pollution Load Index of industrial heavy metals (Fe, V, Cr, Mo, Zn, Pb, Cd, Cu) and the logarithm of saturation isothermal remanent magnetization, a proxy for magnetic concentration, are significantly correlated. The distribution heavy metal pollution in the Lianshui River is controlled by surface water transport and deposition. Our findings demonstrate that magnetic methods have a useful and practical application for detecting and mapping pollution in and around modern industrial cities. - Highlights: → Assessment of heavy metal (HM) pollution in river sediment using magnetic and chemical methods. → HMs from an Fe-smelting plant coexist with coarse-grained magnetic spherules. → A linear correlation between the Pollution Load Index (PLI) of industrial HMs and a magnetic concentration parameter is demonstrated. → The distribution of HM pollution in river sediments is controlled by surface water flow and deposition. - Heavy metal (HM) contamination of river sediments from industrial input by surface water transport and deposition can be detected by using magnetic methods providing a convenient assessment of HM pollution in industrialized cities.

  8. Large-scale dam removal on the Elwha River, Washington, USA: source-to-sink sediment budget and synthesis

    Science.gov (United States)

    Warrick, Jonathan A.; Bountry, Jennifer A.; East, Amy E.; Magirl, Christopher S.; Randle, Timothy J.; Gelfenbaum, Guy R.; Ritchie, Andrew C.; Pess, George R.; Leung, Vivian; Duda, Jeff J.

    2015-01-01

    Understanding landscape responses to sediment supply changes constitutes a fundamental part of many problems in geomorphology, but opportunities to study such processes at field scales are rare. The phased removal of two large dams on the Elwha River, Washington, exposed 21 ± 3 million m3, or ~ 30 million tonnes (t), of sediment that had been deposited in the two former reservoirs, allowing a comprehensive investigation of watershed and coastal responses to a substantial increase in sediment supply. Here we provide a source-to-sink sediment budget of this sediment release during the first two years of the project (September 2011–September 2013) and synthesize the geomorphic changes that occurred to downstream fluvial and coastal landforms. Owing to the phased removal of each dam, the release of sediment to the river was a function of the amount of dam structure removed, the progradation of reservoir delta sediments, exposure of more cohesive lakebed sediment, and the hydrologic conditions of the river. The greatest downstream geomorphic effects were observed after water bodies of both reservoirs were fully drained and fine (silt and clay) and coarse (sand and gravel) sediments were spilling past the former dam sites. After both dams were spilling fine and coarse sediments, river suspended-sediment concentrations were commonly several thousand mg/L with ~ 50% sand during moderate and high river flow. At the same time, a sand and gravel sediment wave dispersed down the river channel, filling channel pools and floodplain channels, aggrading much of the river channel by ~ 1 m, reducing river channel sediment grain sizes by ~ 16-fold, and depositing ~ 2.2 million m3 of sand and gravel on the seafloor offshore of the river mouth. The total sediment budget during the first two years revealed that the vast majority (~ 90%) of the sediment released from the former reservoirs to the river passed through the fluvial system and was discharged to the coastal

  9. Coral reefs chronically exposed to river sediment plumes in the southwestern Caribbean: Rosario Islands, Colombia.

    Science.gov (United States)

    Restrepo, Juan D; Park, Edward; Aquino, Samia; Latrubesse, Edgardo M

    2016-05-15

    Politicians do not acknowledge the devastating impacts riverine sediments can have on healthy coral reef ecosystems during environmental debates in Caribbean countries. Therefore, regional and/or local decision makers do not implement the necessary measures to reduce fluvial sediment fluxes on coral reefs. The Magdalena River, the main contributor of continental fluxes into the Caribbean Sea, delivers water and sediment fluxes into the Rosario Islands National Park, an important marine protected area in the southwestern Caribbean. Until now, there is no scientific consensus on the presence of sediment fluxes from the Magdalena River in the coral reefs of the Rosario Islands. Our hypothesis is that high sediment and freshwater inputs from the Magdalena have been present at higher acute levels during the last decade than previously thought, and that these runoff pulses are not flashy. We use in-situ calibrated MODIS satellite images to capture the spatiotemporal variability of the distribution of suspended sediment over the coral reefs. Furthermore, geochemical data are analyzed to detect associated sedimentation rates and pollutant dispersion into the coastal zone. Results confirm that turbidity levels have been much higher than previous values presented by national environmental authorities on coral reefs off Colombia over the last decade. During the 2003-2013-period most of the Total Suspended Sediments (TSS) values witnessed in the sampled regions were above 10mg/l, a threshold value of turbidity for healthy coral reef waters. TSS concentrations throughout the analyzed time were up to 62.3mg/l. Plume pulses were more pronounced during wet seasons of La Niña events in 2002-2003, 2007-2008, and 2009-2010. Reconstructed time series of MODIS TSS indicates that coral reef waters were exposed to river plumes between 19.6 and 47.8% of the entire period of analysis (2000-2013). Further analyses of time series of water discharge and sediment load into the coastal zone

  10. Biota-sediment accumulation factors for radionuclides and sediment associated biota of the Ottawa River

    Energy Technology Data Exchange (ETDEWEB)

    Rowan, D.; Silke, R.; Carr, J., E-mail: rowand@aecl.ca [Atomic Energy of Canada Limited, Chalk River, Ontario (Canada)

    2013-12-15

    As Ottawa River contamination is historical and resides in sediment, ecological risk and trophic transfer depend on linkages between sediment and biota. One of the ways in which this linkage is quantified is through the use of the biota sediment accumulation factor (BSAF). In this study, we present the first field estimates of BSAF for a number of radionuclides. The strongest and most consistent BSAFs were those for {sup 137}Cs in deposit feeding taxa, suggesting that sediment concentrations rather than dissolved concentrations drive uptake. For crayfish and unionid bivalves that do not feed on sediment, biota radionuclide concentrations were not related to sediment concentrations, but rather reflected concentrations in water. BSAFs would not be appropriate for these non-deposit feeding biota. BSAFs for {sup 137}Cs were not significantly different among deposit feeding taxa, suggesting similar processes for ingestion, assimilation and elimination. These data also show that the concentration factor approach used for guidance would have led to spurious results in this study for deposit feeding benthic invertebrates. Concentrations of {sup 137}Cs in Hexagenia downstream of the CRL process outfall range by about 2-orders of magnitude, in comparison to relatively uniform water concentrations. The concentration factor approach would have predicted a single value downstream of CRL, underestimating exposure to Hexagenia by almost 2-orders of magnitude at sites close to the CRL process outfall. (author)

  11. Water Quality and Heavy Metal Concentrations in Sediment of Sungai Kelantan, Kelantan, Malaysia: A Baseline Study

    International Nuclear Information System (INIS)

    Ahmad, A.K.; Mushrifah, I.; Mohamad Shuhaimi Othman

    2009-01-01

    A study on water quality and heavy metal concentration in sediment at selected sites of Sungai Kelantan was carried out. Ten water samples were collected along the river for physical and chemical analysis and twenty-six water and sediment samples were collected for heavy metal analysis. Water was sampled at three different dates throughout the study period whereas sediments were collected once. In addition to heavy metal analysis, sediment samples were also analysed for texture, ph and organic content. The physical and chemical water quality analyses were carried out according to the ALPHA procedures. Result of water quality analysis (physico-chemical) indicated that Sungai Kelantan is characterised by excellent water quality and comparable to pristine ecosystems such as the National Park and Kenyir Lake. This river was classified into class I - class III based on Malaysian interim water quality standard criteria (INWQS). Heavy metals Pb, Zn, Cu and Cd was detected at low concentration in sediment samples, except for Fe and Mn. The presence of Fe and Mn in sediment samples was though to be of natural origin from the soil. Anthropogenic metal concentrations in sediment were low indicating that Sungai Kelantan has not experienced extreme pollution. (author)

  12. Impacts of small scale flow regulation on sediment dynamics in an ecologically important upland river.

    Science.gov (United States)

    Quinlan, E; Gibbins, C N; Batalla, R J; Vericat, D

    2015-03-01

    Flow regulation is widely recognized as affecting fluvial processes and river ecosystems. Most impact assessments have focused on large dams and major water transfer schemes, so relatively little is known about the impacts of smaller dams, weirs and water diversions. This paper assesses sediment dynamics in an upland river (the Ehen, NW England) whose flows are regulated by a small weir and tributary diversion. The river is important ecologically due to the presence of the endangered freshwater pearl mussel Margaritifera margaritifera, a species known to be sensitive to sedimentary conditions. Fine sediment yield for the 300-m long study reach was estimated to be 0.057 t km(-2) year(-1), a very low value relative to other upland UK rivers. Mean in-channel storage of fine sediment was also low, estimated at an average of around 40 g m(-2). Although the study period was characterized by frequent high flow events, little movement of coarser bed material was observed. Data therefore indicate an extremely stable fluvial system within the study reach. The implication of this stability for pearl mussels is discussed.

  13. In Brief: Improving Mississippi River water quality

    Science.gov (United States)

    Showstack, Randy

    2007-10-01

    If water quality in the Mississippi River and the northern Gulf of Mexico is to improve, the U.S. Environmental Protection Agency (EPA) needs to take a stronger leadership role in implementing the federal Clean Water Act, according to a 16 October report from the U.S. National Research Council. The report notes that EPA has failed to use its authority to coordinate and oversee activities along the river. In addition, river states need to be more proactive and cooperative in efforts to monitor and improve water quality, and the river should be monitored and evaluated as a single system, the report indicates. Currently, the 10 states along the river conduct separate and widely varying water quality monitoring programs. ``The limited attention being given to monitoring and managing the Mississippi's water quality does not match the river's significant economic, ecological, and cultural importance,'' said committee chair David A. Dzombak, director of the Steinbrenner Institute for Environmental Education and Research at Carnegie Mellon University, Pittsburgh, Pa. The report notes that while measures taken under the Clean Water Act have successfully reduced much point source pollution, nutrient and sediment loads from nonpoint sources continue to be significant problems. For more information, visit the Web site: http://books.nap.edu/catalog.php?record_id=12051.

  14. Insecticide residue monitoring in sediments water fish and mangroves at the Cimanuk Delta

    International Nuclear Information System (INIS)

    Sumatra, Made

    1982-01-01

    The water and sediments from the upper stream of Cimanuk river carry insecticide residues especially during the rainy season. The insecticides are deposited in the estuary of Cimanuk river and along the coast of Cimanuk delta. The insecticide residues found at the delta were diazinon thiodan DDE o p-DDT and p p-DDT. Those insecticides are found in most of the water sediments and mangrove leaves samples and some of fishes samples. The samples were taken from the river the estuary the sea, the tambaks, the coast line, and from paddy field. No insecticide residue is found in the water samples taken in the dry season but they are found in the sediment samples taken in both the dry and rainy season. Generally the diazinon residues are higher at the surface than at 0.5m depth in compact sediment but they are higher at 0.5m depth than at the surface of the mud from the coast line. Diazinon and thiodan are found only in three fish samples out of twenty samples analyzed but thiodan is found in almost all of the sediment and mangrove leaves samples. DDT is found in almost all of the samples analyzed. (author)

  15. Discharge and sediment loads at the Kings River Experimental Forest in the Southern Sierra Nevada of California

    Science.gov (United States)

    S.M. Eagan; C.T. Hunsaker; C.R. Dolanc; M.E. Lynch; C.R. Johnson

    2007-01-01

    The Kings River Experimental Watershed (KREW) is now in its third year of data collection on eight small perennial watersheds. We are collecting meteorology, stream discharge, sediment load, water chemistry, shallow soil water chemistry, vegetation, macro-invertebrate, stream microclimate, and air quality data. This paper primarily examines discharge and sediment data...

  16. Sediment and nutrient trapping as a result of a temporary Mississippi River floodplain restoration: The Morganza Spillway during the 2011 Mississippi River Flood

    Science.gov (United States)

    Kroes, Daniel; Schenk, Edward R.; Noe, Gregory; Benthem, Adam J.

    2015-01-01

    The 2011 Mississippi River Flood resulted in the opening of the Morganza Spillway for the second time since its construction in 1954 releasing 7.6 km3 of water through agricultural and forested lands in the Morganza Floodway and into the Atchafalaya River Basin. This volume, released over 54 days, represented 5.5% of the Mississippi River (M.R.) discharge and 14% of the total discharge through the Atchafalaya River Basin (A.R.B.) during the Spillway operation and 1.1% of the M.R. and 3.3% of the A.R.B. 2011 water year discharge. During the release, 1.03 teragrams (Tg) of sediment was deposited on the Morganza Forebay and Floodway and 0.26 Tg was eroded from behind the Spillway structure. The majority of deposition (86 %) occurred in the Forebay (upstream of the structure) and within 4 km downstream of the Spillway structure with minor deposition on the rest of the Floodway. There was a net deposition of 26 × 10−4 Tg of N and 5.36 × 10−4 Tg of P, during the diversion, that was equivalent to 0.17% N and 0.33% P of the 2011 annual M.R. load. Median deposited sediment particle size at the start of the Forebay was 13 μm and decreased to 2 μm 15 km downstream of the Spillway structure. Minimal accretion was found greater than 4 km downstream of the structure suggesting the potential for greater sediment and nutrient trapping in the Floodway. However, because of the large areas involved, substantial sediment mass was deposited even at distances greater than 30 km. Sediment and nutrient deposition on the Morganza Floodway was limited because suspended sediment was quickly deposited along the flowpath and not refreshed by incremental water exchanges between the Atchafalaya River (A.R.) and the Floodway. Sediment and nutrient trapping could have been greater and more evenly distributed if additional locations of hydraulic input from and outputs to the A.R. (connectivity) were added.

  17. Evaluation of the effect of temperature, pH, and bioproduction on Hg concentration in sediments, water, molluscs and algae of the delta of the Ebro river.

    Science.gov (United States)

    Schuhmacher, M; Domingo, J L; Llobet, J M; Corbella, J

    1993-01-01

    The effects of temperature, pH, and bioproduction on mercury levels in sediments, water, molluscs and algae from the delta of the Ebro river (NE Spain) were determined in this study. Mercury concentrations were measured in a cold-vapor atomic absorption spectrophotometer. The ranges of mercury concentrations were the following: sediments, 0.014-0.185 microgram g-1; water, 0.001-0.018 microgram g-1; molluscs, 0.118-0.861 microgram g-1; and algae 0.008-0.026 microgram g-1. Although not statistically significant, a decrease in the pH of the water corresponded with a diminution in the content of mercury in sediments and molluscs, while the mercury levels in water and algae were lower in the areas with high levels of bioproduction. The concentrations of mercury in water significantly decreased with temperature. However, the differences with temperature of the mercury concentrations in sediments did not reach the level of significance. Consequently, water would not be an adequate indicator to determine the levels of mercury contamination, although both sediments and molluscs can be used for this purpose.

  18. Plutonium AMS measurements in Yangtze River estuary sediment

    International Nuclear Information System (INIS)

    Tims, S.G.; Pan, S.M.; Zhang, R.; Fifield, L.K.; Wang, Y.P.; Gao, J.H.

    2010-01-01

    The Yangtze River is the largest single source of sediment to the continental shelf of the East China Sea. The quantity of material exported by the river is expected to decrease substantially as a consequence of an extensive continuing program of dam construction within the river catchment. We report here AMS measurements of plutonium isotope concentrations and ratios for selected depth increments from a sediment core, collected from the sub-aqueous delta of the Yangtze River estuary. The Pu derives from atmospheric nuclear weapons testing in the 1950s and 1960s, and is potentially a useful tracer of sediment deposition times in the marine environment. The results show considerable structure in the depth-concentration profile, and offer an excellent opportunity to compare Pu with the more commonly used 137 Cs isotopic tracer. The AMS data show superior sensitivity and indicate that the 240 Pu/ 239 Pu ratio can provide a check on the deposition dates. The changes in the 240 Pu and 239 Pu concentrations and the 240 Pu/ 239 Pu ratios with sediment depth all indicate the possibility of using Pu as a geochronological tool for coastal sediment studies.

  19. (210)Pb and compositional data of sediments from Rondonian lakes, Madeira River basin, Brazil.

    Science.gov (United States)

    Bonotto, Daniel Marcos; Vergotti, Marcelo

    2015-05-01

    Gold exploration has been intensive in Brazilian Amazon over the last 40 years, where the use of mercury as an amalgam has caused abnormal Hg concentrations in water bodies. Special attention has been directed to Madeira River due to fact it is a major tributary of Amazon River and that since 1986, gold exploration has been officially permitted along a 350km sector of the river. The (21)(0)Pb method has been used to date sediments taken from nine lakes situated in Madeira River basin, Rondônia State, and to verify where anthropogenic Hg might exist due to gold exploitation in Madeira River. Activity profiles of excess (21)(0)Pb determined in the sediment cores provided a means to evaluate the sedimentation rates using a Constant Flux: Constant Sedimentation (CF:CS) and Constant Rate of Supply (CRS) of unsupported/excess (21)(0)Pb models. A significant relationship was found between the CF:CS sedimentation rates and the mean values of the CRS sedimentation rates (Pearson correlation coefficient r=0.59). Chemical data were also determined in the sediments for identifying possible relationships with Hg occurring in the area. Significant values were found in statistical correlation tests realized among the Hg, major oxides and Total Organic Carbon (TOC) content in the sediments. The TOC increased in the sediment cores accompanied by a loss on ignition (LOI) increment, whereas silica decreased following a specific surface area raising associated to the TOC increase. The CRS model always provided ages within the permitted range of the (21)(0)Pb-method in the studied lakes, whereas the CF:CS model predicted two values above 140 years. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Impacts of channel morphology on residues and ecological risks of polychlorinated biphenyls in water and sediment in Chahe River

    Directory of Open Access Journals (Sweden)

    Zhen-hua Zhao

    2016-10-01

    Full Text Available The impacts of channel morphology on the residues and ecological risks of 14 polychlorinated biphenyl (PCB congeners in water and sediment were investigated in summer (July and autumn (September in the Chahe River, in Nanjing, China. The residual concentrations of tri-chlorobiphenyls (tri-CBs, PCB 18 and tetra-CBs (PCB 52 in water were significantly higher than those of penta-CBs to deca-CBs, and the average residual concentration of ∑PCBs (sum of 14 PCB congeners in summer was about six times higher than in autumn. However, the residues in sediment did not change significantly. Redundancy analysis (RDA indicated that channel morphology and the corresponding environmental indices had significant impacts on PCB residues and their composition profiles in water and sediment. The overflow weir and lake-type watercourse may remarkably reduce the residual concentration and ecological risks of PCBs in water. The highest reduction percentages of the residual concentration and ecological risks of ∑PCBs induced by an overflow weir were 78% and 67%, respectively, and those induced by a lake-type watercourse were 36% and 70%, respectively. The watercourses with different channel morphologies were ranked by residual ∑PCBs concentrations in the following descending order: the natural ecological watercourse, vertical concrete watercourse, and vegetation-type riprap watercourse. However, they were ranked by residual ∑PCBs concentrations in sediment in the following descending order: the vertical concrete watercourse, vegetation-type riprap watercourse, and natural ecological watercourse.

  1. Multivariate analysis of heavy metal contamination using river sediment cores of Nankan River, northern Taiwan

    Science.gov (United States)

    Lee, An-Sheng; Lu, Wei-Li; Huang, Jyh-Jaan; Chang, Queenie; Wei, Kuo-Yen; Lin, Chin-Jung; Liou, Sofia Ya Hsuan

    2016-04-01

    Through the geology and climate characteristic in Taiwan, generally rivers carry a lot of suspended particles. After these particles settled, they become sediments which are good sorbent for heavy metals in river system. Consequently, sediments can be found recording contamination footprint at low flow energy region, such as estuary. Seven sediment cores were collected along Nankan River, northern Taiwan, which is seriously contaminated by factory, household and agriculture input. Physico-chemical properties of these cores were derived from Itrax-XRF Core Scanner and grain size analysis. In order to interpret these complex data matrices, the multivariate statistical techniques (cluster analysis, factor analysis and discriminant analysis) were introduced to this study. Through the statistical determination, the result indicates four types of sediment. One of them represents contamination event which shows high concentration of Cu, Zn, Pb, Ni and Fe, and low concentration of Si and Zr. Furthermore, three possible contamination sources of this type of sediment were revealed by Factor Analysis. The combination of sediment analysis and multivariate statistical techniques used provides new insights into the contamination depositional history of Nankan River and could be similarly applied to other river systems to determine the scale of anthropogenic contamination.

  2. Use of an ADCP to compute suspended-sediment discharge in the tidal Hudson River, New York

    Science.gov (United States)

    Wall, Gary R.; Nystrom, Elizabeth A.; Litten, Simon

    2006-01-01

    Acoustic Doppler current profilers (ADCPs) can provide data needed for computation of suspended-sediment discharge in complex river systems, such as tidal rivers, in which conventional methods of collecting time-series data on suspended-sediment concentration (SSC) and water discharge are not feasible. Although ADCPs are not designed to measure SSC, ADCP data can be used as a surrogate under certain environmental conditions. However, the software for such computation is limited, and considerable post-processing is needed to correct and normalize ADCP data for this use. This report documents the sampling design and computational procedure used to calibrate ADCP measures of echo intensity to SSC and water velocity to discharge in the computation of suspended-sediment discharge at the study site on the Hudson River near Poughkeepsie, New York. The methods and procedures described may prove useful to others doing similar work in different locations; however, they are specific to this study site and may have limited applicability elsewhere.

  3. Sediment transport and deposition in the lower Missouri River during the 2011 flood

    Science.gov (United States)

    Alexander, Jason S.; Jacobson, Robert B.; Rus, David L.

    2013-01-01

    Floodwater in the Missouri River in 2011 originated in upper-basin regions and tributaries, and then travelled through a series of large flood-control reservoirs, setting records for total runoff volume entering all six Missouri River main-stem reservoirs. The flooding lasted as long as 3 months. The U.S Geological Survey (USGS) examined sediment transport and deposition in the lower Missouri River in 2011 to investigate how the geography of floodwater sources, in particular the decanting effects of the Missouri River main-stem reservoir system, coupled with the longitudinal characteristics of civil infrastructure and valley-bottom topography, affected sediment transport and deposition in this large, regulated river system. During the flood conditions in 2011, the USGS, in cooperation with the U.S. Army Corps of Engineers, monitored suspended-sediment transport at six primary streamgages along the length of the lower Missouri River. Measured suspended-sediment concentration (SSC) in the lower Missouri River varied from approximately 150 milligrams per liter (mg/L) to 2,000 mg/L from January 1 to September 30, 2011. Median SSC increased in the downstream direction from 355 mg/L at Sioux City, Iowa, to 490 mg/L at Hermann, Missouri. The highest SSCs were measured downstream from Omaha, Nebraska, in late February when snowmelt runoff from tributaries, which were draining zones of high-sediment production, was entering the lower Missouri River, and releases of water at Gavins Point Dam were small. The combination of dilute releases of water at Gavins Point Dam and low streamflows in lower Missouri River tributaries caused sustained lowering of SSC at all streamgages from early July through late August. Suspended-sediment ranged from 5 percent washload (PW; percent silt and clay) to as much as 98 percent in the lower Missouri River from January 1 to September 30, 2011. Median PW increased in the downstream direction from 24 percent at Sioux City, Iowa, to 78 percent at

  4. The investigation of sediment processes in rivers by means of the Acoustic Doppler Profiler

    Directory of Open Access Journals (Sweden)

    M. Guerrero

    2014-09-01

    Full Text Available The measurement of sediment processes at the scale of a river cross-section is desirable for the evaluation of many issues related to river hydro-morphodynamics, such as the calibration and validation of numerical models for predicting the climate change impacts on water resources and efforts of maintenance of the navigation channel and other hydraulic works. Suspended- and bed-load have traditionally been measured by cumbersome techniques that are difficult to apply in large rivers. The acoustics for the investigation of small-scale sedimentological processes gained acceptance in the marine community because of its ability to simultaneously profile sediment concentration and size distribution, non-intrusively, and with high temporal and spatial resolution. The application of these methods in true riverine case studies presents additional difficulties, mainly related to water depths and stream currents that limit sound propagation into water and challenge the instruments deployment, especially during floods. This article introduces the motivations for using the ADCP for sediment processes investigation other than for flow discharge measurement, summarizes the developed methods and indicates future desirable improvements. In addition, an application on the Po River in Italy is presented, focusing on the calibration of the existing software by means of ADCP recordings. The calibrated model will assist in planning the dredging activities to maintain the navigation channel and the intake of a pump station for irrigation that is periodically obstructed with a sandbar.

  5. Sediment and toxic contaminant transport modeling in coastal waters

    International Nuclear Information System (INIS)

    Onishi, Yasuo; Mayer, D.W.; Argo, R.S.

    1982-01-01

    Models are presented to estimate the migration of toxic contaminants in coastal waters. Ocean current is simulated by the vertically-averaged, finite element, two-demensional model known as CAFE-I with the Galerkin weighted residual technique. The refraction of locally generated waves or swells is simulated by the wave refraction model, LO3D. Using computed current, depth, and wave characteristics, the finite element model, FETRA, simulated sediment and contaminant transport in coastal waters, estuaries and rivers. Prior to the application of these models to the Irish Sea and other coastal waters, the finite element model, FETRA, was tested to demonstrate its ability to simulate sediment and contaminant interaction, and the mechanism governing the transport, deposition, and resuspension of contaminated sediment. Several simple equations such as the unsteady, advection-diffusion equation, the equation for noncohesive-sediment load due to wind-induced waves in offshore and surf zones, and the equation for sediment-radionuclide transport simulation were solved during the preliminary testing of the model. (Kato, T.)

  6. Fractionation and ecological risk of metals in urban river sediments in Zhongshan City, Pearl River Delta.

    Science.gov (United States)

    Cai, Jiannan; Cao, Yingzi; Tan, Haijian; Wang, Yanman; Luo, Jiaqi

    2011-09-01

    Surface sediments collected from nine urban rivers located in Zhongshan City, Pearl River Delta, were analyzed for total concentration of metals with digestion and chemical fractionation adopting the modified European Community Bureau of Reference (BCR) sequential extraction procedure. The results showed that concentration and fractionation of metals varied significantly among the rivers. The total concentration of eight metals in most rivers did not exceed the China Environmental Quality Standard for Soil, Grade III. The potential ecological risk of metals to rivers were related to the land use patterns, in the order of manufacturing areas > residential areas > agriculture areas. The concentration of Pb in the reducible fraction was relatively high (60.0-84.3%). The dominant proportions of Cd, Zn and Cu were primary in the non-residual fraction (67.0%, 71.8% and 81.4% on average respectively), while the percentages of the residual fractions of Cr and Ni varied over a wide range (43-85% and 24-71% respectively). The approaches of the Håkanson ecological risk index and Secondary Phase Enrichment Factor were applied for ecological risk assessment and metal enrichment calculation. The results indicated Hg and Cd had posed high potential ecological risk to urban rivers in this region. Meanwhile, there was widespread pollution and high enrichment of Cu in river sediments in this region. Multiple regression analysis showed that five water quality parameters (pH, DO, COD(Mn), NH(4)(+)-N, TP) had little influence on the distribution of metal fractionation. This result revealed that the ecological risk of metals was not eliminated along with the improvement in water quality. Correlation studies showed that among the metals, Group A (Cd, As, Pb, Zn Hg, r = 0.730-0.924) and Group B (Cr, Cu, Ni, r = 0.815-0.948) were obtained, and the metal contaminations were from industrial activities rather than residential.

  7. REMOTE SENSING OF THE SEDIMENTATION PLUME OF THE RIVER SAN JUAN

    OpenAIRE

    Ballestero, Daniel

    2004-01-01

    The River San Juan (RSJ), in the border between Nicaragua and Costa Rica, is one the major rivers in Central America and drains the largest basin in the region (38570 km²) in terms of volume. Extending from Lago Cicibolca to the Caribbean Sea, the RSJ is an important source of freshwater, sediments, nutrients and pollutants to the continental shelf. Ecosystems degradation, contamination of water bodies and overexploitation of natural resources, particularly deforestation in the southern part ...

  8. Evaluation and assessment of baseline metal contamination in surface sediments from the Bernam River, Malaysia.

    Science.gov (United States)

    Kadhum, Safaa A; Ishak, Mohd Yusoff; Zulkifli, Syaizwan Zahmir

    2016-04-01

    The Bernam River is one of the most important rivers in Malaysia in that it provides water for industries and agriculture located along its banks. The present study was conducted to assess the level of contamination of heavy metals (Cd, Ni, Cr, Sn, and Fe) in surface sediments in the Bernam River. Nine surface sediment samples were collected from the lower, middle, and upper courses of the river. The results indicated that the concentrations of the metals decreased in the order of Sn > Cr > Ni > Fe > Cd (56.35, 14.90, 5.3, 4.6, and 0.62 μg/g(1) dry weight). Bernam River sediments have moderate to severe enrichment for Sn, moderate for Cd, and no enrichment for Cr, Ni, and Fe. The contamination factor (CF) results demonstrated that Cd and Sn are responsible for the high contamination. The pollution load index (PLI), for all the sampling sites, suggests that the sampling stations were generally unpolluted with the exception of the Bagan Tepi Sungai, Sabak Bernam, and Tanjom Malim stations. Multivariate techniques including Pearson's correlation and hierarchical cluster analysis were used to apportion the various sources of the metals. The results suggested that the sediment samples collected from the upper course of the river had lower metal concentrations, while sediments in the middle and lower courses of the river had higher metal concentrations. Therefore, our results can be useful as a baseline data for government bodies to adopt corrective measure on the issues related to heavy metal pollution in the Bernam River in the future.

  9. Organic Contaminants Associated With Suspended Sediment Collected During Five Cruises of the Mississippi River and Its Principal Tributaries, May 1988 to June 1990

    National Research Council Canada - National Science Library

    Rostad, Colleen E; Bishop, LaDonna M; Ellis, Geoffrey S; Leiker, Thomas J; Monsterleet, Stephanie G; Pereira, Wilfred E

    1993-01-01

    ... sediment smaller than 63 micrometers. Sample collection involved pumping discharge- weighted volumes of river water along a cross section of the river into a continuous-flow centrifuge to isolate the suspended sediment...

  10. Biological and chemical characterization of metal bioavailability in sediments from Lake Roosevelt, Columbia River, Washington, USA

    Science.gov (United States)

    Besser, J.M.; Brumbaugh, W.G.; Ivey, C.D.; Ingersoll, C.G.; Moran, P.W.

    2008-01-01

    We studied the bioavailability and toxicity of copper, zinc, arsenic, cadmium, and lead in sediments from Lake Roosevelt (LR), a reservoir on the Columbia River in Washington, USA that receives inputs of metals from an upstream smelter facility. We characterized chronic sediment toxicity, metal bioaccumulation, and metal concentrations in sediment and pore water from eight study sites: one site upstream in the Columbia River, six sites in the reservoir, and a reference site in an uncontaminated tributary. Total recoverable metal concentrations in LR sediments generally decreased from upstream to downstream in the study area, but sediments from two sites in the reservoir had metal concentrations much lower than adjacent reservoir sites and similar to the reference site, apparently due to erosion of uncontaminated bank soils. Concentrations of acid-volatile sulfide in LR sediments were too low to provide strong controls on metal bioavailability, and selective sediment extractions indicated that metals in most LR sediments were primarily associated with iron and manganese oxides. Oligochaetes (Lumbriculus variegatus) accumulated greatest concentrations of copper from the river sediment, and greatest concentrations of arsenic, cadmium, and lead from reservoir sediments. Chronic toxic effects on amphipods (Hyalella azteca; reduced survival) and midge larvae (Chironomus dilutus; reduced growth) in whole-sediment exposures were generally consistent with predictions of metal toxicity based on empirical and equilibrium partitioning-based sediment quality guidelines. Elevated metal concentrations in pore waters of some LR sediments suggested that metals released from iron and manganese oxides under anoxic conditions contributed to metal bioaccumulation and toxicity. Results of both chemical and biological assays indicate that metals in sediments from both riverine and reservoir habitats of Lake Roosevelt are available to benthic invertebrates. These findings will be used as

  11. In situ and laboratory bioassays with Chironomus riparius larvae to assess toxicity of metal contamination in rivers: the relative toxic effect of sediment versus water contamination.

    Science.gov (United States)

    Faria, Mafalda S; Lopes, Ricardo J; Nogueira, António J A; Soares, Amadeu M V M

    2007-09-01

    We used bioassays employing head capsule width and body length increase of Chironomus riparius larvae as end points to evaluate metal contamination in streams. Bioassays were performed in situ near an abandoned Portuguese goldmine in the spring of 2003 and 2004. Bioassays also were performed under laboratory conditions with water and sediment collected from each stream to verify if laboratory bioassays could detect in situ toxicity and to evaluate the relative contribution of sediment and water to overall toxicity. We used field sediments with control water and control sediments with field water to discriminate between metal contamination in water and sediment. Field water with dry and sieved, organic matter-free, and nontreated sediments was used to determine the toxicity of heavy metals that enter the organism through ingested material. In both in situ and laboratory bioassays, body length increase was significantly inhibited by metal contamination, whereas head capsule width was not affected. Body length increase was more affected by contaminated sediment compared to contaminated water. The lowest-effect level of heavy metals was observed in the dry and sieved sediment that prevented ingestion of sediment particles by larvae. These results suggest that body length increase of C. riparius larvae can be used to indicate the impact of metal contamination in rivers. Chironomus riparius larvae are more affected by heavy metals that enter the organism through ingested sediment than by heavy metals dissolved in the water column. Nevertheless, several factors, such as the particle size and organic matter of sediment, must be taken into account.

  12. Polybrominated diphenyl ethers in Mississippi River suspended sediment

    Energy Technology Data Exchange (ETDEWEB)

    Raff, J.; Hites, R. [Indiana Univ., Bloomington, IN (United States)

    2004-09-15

    The Mississippi River Basin drains water from 41% of the conterminous U.S. and is a valuable resource that supplies food, transportation, and irrigation to more than 95 million people of the region. Discharge and runoff from industry, agriculture, and population centers have increased the loads of anthropogenic organic compounds in the river. There has been growing concern over the rising levels of polybrominated diphenyl ethers (PBDEs) in air, sediment, biota, and humans, but there have been no studies to measure the concentrations of these chemicals in North America's largest river system. The goal of this study was to investigate the occurrence of PBDEs (15 congeners including BDE-209) and to identify possible sources within the Mississippi River Basin. We found PBDEs to be widespread throughout the region, rivaling PCBs in their extent and magnitude of contamination. We have also calculated the total amount of PBDEs released to the Gulf of Mexico in 2002.

  13. Sedimentation in Lake Onalaska, Navigation Pool 7, upper Mississippi River, since impoundment

    Science.gov (United States)

    Korschgen, C.E.; Jackson, G.A.; Muessig, L.F.; Southworth, D.C.

    1987-01-01

    Sediment accumulation was evaluated in Lake Onalaska, a 2800-ha backwater impoundment on the Upper Mississippi River. Computer programs were used to process fathometric charts and generate an extensive data set on water depth for the lake. Comparison of 1983 survey data with pre-impoundment (before 1937) data showed that Lake Onalaska had lost less than 10 percent of its original mean depth in the 46 years since impoundment. Previous estimates of sedimentation rates based on Cesium-137 sediment core analysis appear to have been too high. (DBO)

  14. A method for developing a large-scale sediment yield index for European river basins

    Energy Technology Data Exchange (ETDEWEB)

    Delmas, Magalie; Cerdan, Olivier; Garcin, Manuel [BRGM ARN/ESL, Orleans (France); Mouchel, Jean-Marie [UMR Sisyphe, Univ. P and M Curie, Paris (France)

    2009-12-15

    Background, aim, and scope: Sediment fluxes within continental areas play a major role in biogeochemical cycles and are often the cause of soil surface degradation as well as water and ecosystem pollution. In a situation where a high proportion of the land surface is experiencing significant global land use and climate changes, it appears important to establish sediment budgets considering the major processes forcing sediment redistribution within drainage areas. In this context, the aim of this study is to test a methodology to estimate a sediment yield index at a large spatial resolution for European river basins. Data and methods: Four indicators representing processes respectively considered as sources (mass movement and hillslope erosion), sinks (deposits), and transfers of sediments (drainage density) are defined using distributed data. Using these indicators we propose a basic conceptual approach to test the possibility of explaining sediment yield observed at the outlet of 29 selected European river basins. We propose an index which adds the two sources and transfers, and subsequently subtracts the sink term. This index is then compared to observed sediment yield data. Results: With this approach, variability between river basins is observed and the evolution of each indicator analyzed. A linear regression shows a correlation coefficient of 0.83 linking observed specific sediment yield (SSY) with the SSY index. Discussion: To improve this approach at this large river basin scale, basin classification is further refined using the relation between the observed SSY and the index obtained from the four indicators. It allows a refinement of the results. Conclusions: This study presents a conceptual approach offering the advantages of using spatially distributed data combined with major sediment redistribution processes to estimate the sediment yield observed at the outlet of river basins. Recommendations and perspectives: Inclusion of better information on

  15. Mathematical simulation of sediment and contaminant transport in surface waters. Annual report, October 1977--September 1978

    International Nuclear Information System (INIS)

    Onishi, Y.; Arnold, E.M.; Serne, R.J.; Cowan, C.E.; Thompson, F.L.; Mayer, D.W.

    1979-01-01

    Various pathways exist for exposure of humans and biota to radioactive materials released from nuclear facilities. Hydrologic transport (liquid pathway) is one element in the evaluation of the total radiation dose to man. Mathematical models supported by well-planned field data collection programs can be useful tools in assessing the hydrologic transport and ultimate fate of radionuclides. Radionuclides with high distribution coefficients or radionuclides in surface waters with high suspended sediment concentrations are, to a great extent, adsorbed by river and marine sediments. Thus, otherwise dilute contaminants are concentrated. Contaminated sediments may be deposited on the river and ocean beds creating a significant pathway to man. Contaminated bed sediment in turn may become a long-term source of pollution through desorption and resuspension. In order to assess migration and accumulation of radionuclides in surface waters, mathematical models must correctly simulate essential mechanisms of radionuclide transport. The objectives of this study were: (1) to conduct a critical review of (a) radionuclide transport models as well as sediment transport and representative water quality models in rivers, estuaries, oceans, lakes, and reservoirs, and (b) adsorption and desorption mechanisms of radionuclides with sediments in surface waters; (2) to synthesize a mathematical model capable of predicting short- and long-term transport and accumulation of radionuclides in marine environments

  16. Sediment impact assessment of check-dam removal strategies on a mountain river in Taiwan

    Science.gov (United States)

    Kuo, W.; Wang, H.; Stark, C. P.

    2011-12-01

    Dam removal is important for reconnecting river habitats and restoring the free flow of water and sediment, so managing accumulated sediments is crucial in dam removal planning as the cost and potential impacts of dam removal can vary substantially depending on local conditions. A key uncertainty in dam removal is the fate of reservoir sediment stored upstream of the dam. Release of impounded sediment could raise downstream bed elevations leading to flooding, increase lateral channel mobility leading to bank erosion, and potentially bury downstream ecologically sensitive habitats if the sediment is fine. The ability to predict the sediment impacts of dam removal in highly sediment-filled systems is thus increasingly important as the number of such dam-removal cases is growing. Due to the safety concerns and the need for habitat restoration for the Formosan landlocked salmon, the Shei-Pa National Park in Taiwan removed the 15m high Chijiawan "No. 1 Check Dam" in late May 2011. During the planning process prior to removal, we conducted field surveys, numerical simulations, and flume experiments to determine sediment impacts and to suggest appropriate dam removal strategies. We collected river-bed topography and sediment bulk samples in 2010 to establish the channel geometry and grain-size distribution for modeling input. The scaled flume experiment was designed to provide insights on how and if the position of a notch location and size would affect the rate and amount of reservoir erosion under particular discharges. Observations indicated that choices of notch location can force the river to migrate differently. For long-term prediction, we used the quasi-two-dimensional numerical model NETSTARS (Network of Stream Tube model for Alluvial River Simulation) to simulate the channel responses. These simulations indicated that high suspended sediment concentrations would be the most likely major concern in the first year, while concerns for downstream sediment deposition

  17. Geochemical Dataset of the Rhone River Delta (Lake Geneva) Sediments - Disentangling Human Impacts from Climate Change

    Science.gov (United States)

    Silva, T. A.; Girardclos, S.; Loizeau, J. L.

    2016-12-01

    Lake sediment records are often the most complete continental archives. In the last 200 years, in addition to climatic variability, humans have strongly impacted lake watersheds around the world. During the 20th century the Rhone River and its watershed upstream Lake Geneva (Switzerland/France) have been subject to river channelization, dam construction, water flow regulation, water and sediment abstraction as well as various land use changes. Under the scope of the SEDFATE project (Swiss National Science Foundation nº147689) we address human and climatic impact on the sediment transfer from the Rhone River watershed to Lake Geneva. Nineteen short sediment cores were collected in the Rhone River delta area in May 2014. Cores have been scanned with MSCL and XRF, sub-sampled every 1cm and 8 cores were dated by radiometric methods (137Cs and 210Pb). Photographs taken right after core opening were used for lithological description and in addition to MSCL data were used to correlate cores. Core dating shows that mass accumulation rates decreased in the 1964-1986 interval and then increased again in the interval between 1986-2014. XRF elements and ratios, known to indicate detrital sources (Al, Al/Si, Fe, K, Mn, Rb, Si, Ti, Ti/Ca), show that clastic input diminished from 1964 to 1986 and re-increased to the present. Other elemental (Zr/Rb, Zr/K, Si/Ti) and geophysical data (magnetic susceptibility) combined with lithology identify density flow deposits vs hemipelagic sedimentation. Changes in frequency of these event deposits indicate changes in the sedimentation patterns in the Rhone River sublacustrine delta during the last century. From these results we hypothesize that a significant sediment amount was abstracted from the system after the major dam constructions in the 1950's and that, since the 1990's, a contrary signal is due to increased sediment loads that follows glacial melting due to global warming.

  18. Geochemical loading of suspended sediment carried by large monsoonal rivers in Burma

    Science.gov (United States)

    Robinson, R. A.; Tipper, E.; Bird, M. I.; Oo, N.

    2013-12-01

    The Irrawaddy and Salween rivers of Burma drain the most rapidly exhuming region in the Himalayas, the eastern syntaxis zone. These monsoonal rivers have catchment areas of 0.413 x 106 km2 and 0.272 x 106 km2, respectively, and approximately 95% of the Irrawaddy catchment lies within Burma, while the catchment of the Salween flows through China, Thailand and Burma. They are long rivers (~2000 and ~2800 km) which have steep and narrow bedrock gorges along much of their length, and different amounts of floodplain in their lower reaches. These rivers have been less studied than other large Asian systems because of political instability in Burma and restricted access. Based on available historical data, and field work in 2005-2008, Robinson et al. (2007) estimated that the Irrawaddy is likely to be the 3rd largest river globally in terms of sediment load and when the Irrawaddy and Salween estimated fluxes are combined, they together contribute 4.6 Mt/yr of particulate organic carbon (POC) and an additional 1.1Mt/yr of dissolved organic carbon (DOC) to the ocean. When estimated yields of total organic carbon are calculated, the Irrawaddy-Salween system ranks alongside the Amazon as one of the largest yields of organic carbon, and is higher than the yield for the Ganges-Brahmaptura (Bird et al., 2008). Here we present preliminary geochemical data for water and sediment from the Irrawaddy and Salween rivers, and demonstrate the variability in elemental concentrations of water between the rivers and the summer and winter monsoon seasons, and differences in suspended sediment geochemistry as a function of water depth. The variability and magnitude of weathering products carried by such significant systems need to be quantified in order to understand their contribution to global element cycling (Tipper et al., 2006) and sedimentary depocentres. Our data highlight that further study of the geochemistry of such large rivers will significantly improve our understanding of the

  19. The Missing Link: the Role of Floodplain Tie Channels in Connecting Off River Water Bodies to Lowland Rivers

    Science.gov (United States)

    Rowland, J. C.; Dietrich, W. E.; Day, G.

    2005-05-01

    Along lowland river systems across the globe the exchange of water, sediment, carbon, nutrients and biota between main stem rivers and off-river water bodies (ORWB) is facilitated by the presence of stable secondary channels referred to here as tie channels. Sixty five percent of the ORWB along the middle Fly River in Papua New Guinea connect to the river through such channels. A similar percentage of the 37 ORWB located between Baton Rouge and Memphis on the lower Mississippi River at one time were linked to the river by tie or batture (as they are locally known) channels. Levee construction and other alterations aimed at flood control or navigation on the Mississippi have left only a handful of lakes connected to the river, of these, most are heavily altered by dredging or other modifications. Tie channels were also once common along major tributaries to the Mississippi, such as the Red River. In the much less disturbed Alaskan environment, tie channels are still common, especially along Birch Creek and the Koyukuk and Black rivers. Our studies on the Mississippi River, in Alaska and in Papua New Guinea indicate that tie channels possess a common channel form that is stable and self-maintaining for hundreds to possibly a thousand years. Tie channels exhibit narrow width to depth ratios (~ 5.5) and consistently scale in cross-sectional dimensions to the size of the lake into which they flow. Variations in river and lake stage drive flow bi-directionally through tie channels. A local high or sill in the bed of tie channels controls the degree and duration of connection between the river and ORWB, with many lakes becoming isolated during periods of low stage. The life-span of a tie channel depends on the rate of sediment loading to the ORWB. Our research indicates that this rate directly corresponds to the sediment loading in the main stem river. Along the Fly River, for example, a 5 to 7 fold increase in the river sediment load has resulted increases of 6 to 17

  20. Performance testing of the sediment-contaminant transport model, SERATRA, at different rivers

    International Nuclear Information System (INIS)

    Onishi, Y.; Yabusaki, S.B.; Kincaid, C.T.

    1982-04-01

    Mathematical models of sediment-contaminant migration in surface water must account for transport, intermedia transfer, decay and degradation, and transformation processes. The unsteady, two dimensional, sediment-contaminant transport code, SERATRA (Onishi, Schreiber and Codell 1980) includes these mechanisms. To assess the accuracy of SERATRA to simulate the sediment-contaminant transport and fate processes, the code was tested against one-dimensional analytical solutions, checked for its mass balance, and applied to field sites. The field application cases ranged from relatively simple, steady conditions to unsteady, nonuniform conditions for large, intermediate, and small rivers. It was found that SERATRA is capable of simulating sediment-contaminant transport under a wide range of conditions

  1. Impact of climate change and anthropogenic activities on stream flow and sediment discharge in the Wei River basin, China

    Directory of Open Access Journals (Sweden)

    P. Gao

    2013-03-01

    Full Text Available Reduced stream flow and increased sediment discharge are a major concern in the Yellow River basin of China, which supplies water for agriculture, industry and the growing populations located along the river. Similar concerns exist in the Wei River basin, which is the largest tributary of the Yellow River basin and comprises the highly eroded Loess Plateau. Better understanding of the drivers of stream flow and sediment discharge dynamics in the Wei River basin is needed for development of effective management strategies for the region and entire Yellow River basin. In this regard we analysed long-term trends for water and sediment discharge during the flood season in the Wei River basin, China. Stream flow and sediment discharge data for 1932 to 2008 from existing hydrological stations located in two subcatchments and at two points in the Wei River were analysed. Precipitation and air temperature data were analysed from corresponding meteorological stations. We identified change-points or transition years for the trends by the Pettitt method and, using double mass curves, we diagnosed whether they were caused by precipitation changes, human intervention, or both. We found significant decreasing trends for stream flow and sediment discharge during the flood season in both subcatchments and in the Wei River itself. Change-point analyses further revealed that transition years existed and that rapid decline in stream flow began in 1968 (P P P P P < 0.05, respectively. The impact of precipitation or human activity on the reduction amount after the transition years was estimated by double mass curves of precipitation vs. stream flow (sediment. For reductions in stream flow and sediment discharge, the contribution rate of human activity was found to be 82.80 and 95.56%, respectively, and was significantly stronger than the contribution rate of precipitation. This evidence clearly suggests that, in the absence of significant decreases in precipitation

  2. Analysis of the presence of perfluoroalkyl substances in water, sediment and biota of the Jucar River (E Spain). Sources, partitioning and relationships with water physical characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Campo, Julian, E-mail: Julian.Campo@uv.es [Environmental Forensic and Landscape Chemistry Research Group. Desertification Research Centre - CIDE (Spanish Council for Scientific Research, University of Valencia, Generalitat Valenciana), Carretera Moncada - Náquera km 4.5 (Campus IVIA), Moncada, 46113 Valencia (Spain); Earth Surface Science, Institute for Biodiversity and Ecosystems Dynamics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam (Netherlands); Lorenzo, María [Food and Environmental Safety Research Group (SAMA–UV), Centro de Investigaciones sobre Desertificación (CIDE, UV–CSIC–GV) and Facultat de Farmàcia, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia (Spain); Pérez, Francisca [Department of Environmental Chemistry (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona (Spain); Picó, Yolanda [Food and Environmental Safety Research Group (SAMA–UV), Centro de Investigaciones sobre Desertificación (CIDE, UV–CSIC–GV) and Facultat de Farmàcia, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia (Spain); Farré, Marinella [Department of Environmental Chemistry (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona (Spain); and others

    2016-05-15

    The presence, sources and partitioning of 21 perfluoroalkyl substances (PFASs: C4–C14, C16, C18 carboxylate, C4, C6–C10 sulfonates and C8 sulfonamide) were assessed in water, sediment, and biota of the Jucar River basin (E Spain). Considering the three matrices, perfluoropentanoate (PFPeA) and perfluorooctane sulfonate (PFOS) were the most frequent compounds, being remarkable the high occurrence of short-chain PFASs (C≤8), which are intended to replace the long-chain ones in several industrial and commercial applications. In general, all samples were contaminated with at least one PFAS, with the exception of three fish samples. Mean concentrations detected in sediments (0.22–11.5 ng g{sup −1}) and biota (0.63–274 µg kg{sup −1}) samples were higher than those measured in water (0.04–83.1 ng L{sup −1}), which might suggest (bio) accumulation. The occurrence of PFAS is related to urban and industrial discharges (Cuenca city in the upper part of basin, and car's factory, and effluents of the sewage treatment plant (STP) of Alzira, in the lower part). Increasing pollution gradients were found. On the other hand, higher contamination levels were observed after regulation dams of the catchment pointing out their importance in the re-distribution of these contaminants. None of the hazard quotients (HQ) calculated indicate potential risk for the different tropic levels considered (algae, Daphnia sp. and fish). PFAS concentrations found in this study can be considered in acceptable levels if compared to existing Regulatory Legislation and, consequently, they do not pose an immediate human health risk. - Highlights: • Distribution of 21 PFASs in water, sediment, biota of Jucar River is established. • PFPeA and PFOS are the predominant but high PFDA levels are related to industry. • PFASs in water and sediment related to the increase in NaCl, conductivity and TDS. • PFAS concentration in sediment/biota suggests (bio)accumulation. • None of the

  3. Responses of benthic bacteria to experimental drying in sediments from Mediterranean temporary rivers.

    Science.gov (United States)

    Amalfitano, Stefano; Fazi, Stefano; Zoppini, Annamaria; Barra Caracciolo, Anna; Grenni, Paola; Puddu, Alberto

    2008-02-01

    In the semiarid Mediterranean regions, water scarcity represents a common physiological stress for microbial communities residing in river sediments. However, the effect of drying has not yet adequately been evaluated when analyzing riverine microbiological processes. The bacterial community structure (abundance, biomass, composition) and functioning (carbon production, live cell percentage) were assessed during experimental desiccation in microcosms with sediments from different Mediterranean temporary rivers (Tagliamento, Krathis, Mulargia, Pardiela). Our results showed that the overall responses to drying of the bacterial community were independent from sediment origin and strictly related to water content. During desiccation, a prompt decline (up to 100%) of the initial bacterial carbon production was followed by a slower decrease in abundance and biomass, with an overall reduction of 74% and 78%, respectively. By the end of the experiment, live cells were still abundant but depressed in their main metabolic functions, thus resulting in a drastic increase in the community turnover time. Only 14% of the initial live cell biomass was available in dry sediments to immediately start the reactivation of the aquatic microbial food web after the arrival of new water. Community composition analysis showed a relative increase in alpha- and beta-Proteobacteria, when passing from wet to dry conditions. Our results suggest that the occurrence of drought events could affect carbon cycling through the freshwater microbial compartment, by temporarily limiting microbial mineralization and altering bacterial community structure.

  4. Sediment size of surface floodplain sediments along a large lowland river

    Science.gov (United States)

    Swanson, K. M.; Day, G.; Dietrich, W. E.

    2007-12-01

    Data on size distribution of surface sediment across a floodplain should place important constraints of modeling of floodplain deposition. Diffusive or advective models would predict that, generally, grain size should decrease away from channel banks. Variations in grain size downstream along floodplains may depend on downstream fining of river bed material, exchange rate with river banks and net deposition onto the floodplain. Here we report detailed grain size analyses taken from 17 floodplain transects along 450 km (along channel distance) reach of the middle Fly River, Papua New Guinea. Field studies have documented a systematic change in floodplain characteristics downstream from forested, more topographically elevated and topography bounded by an actively shifting mainstem channel to a downstream swamp grass, low elevation topography along which the river meanders are currently stagnant. Frequency and duration of flooding increase downstream. Flooding occurs both by overbank flows and by injections of floodwaters up tributary and tie channels connected to the mainstem. Previous studies show that about 40% of the total discharge of water passes across the floodplain, and, correspondingly, about 40% of the total load is deposited on the plain - decreasing exponentially from channel bank. We find that floodplain sediment is most sandy at the channel bank. Grain size rapidly declines away from the bank, but surprisingly two trends were also observed. A relatively short distance from the bank the surface material is finest, but with further distance from the bank (out to greater than 1 km from the 250 m wide channel) clay content decreases and silt content increases. The changes are small but repeated at most of the transects. The second trend is that bank material fines downstream, corresponding to a downstream finding bed material, but once away from the bank, there is a weak tendency for a given distance away from the bank the floodplain surface deposits to

  5. Penelitian Pendahuluan Angkutan Sedimen Melayang Sub-Das Citarik Hulu = (Suspended Sediment Transport in the Upper Citarik Sub-River Basin: A Preliminary Study

    Directory of Open Access Journals (Sweden)

    Soewarno .

    2014-10-01

    Full Text Available Apart from its function as a soil cover, forest also plays a positive role in preserving water and sediment in a river basin. Rain water which is abundant in the rainy season is caught and stored underground, so that the erosion and flood hazard can be eliminated. In the dry season groundwater becomes reservation to minimize and even eliminate the risk of water shortage. This preliminary study is to monitor suspended sediment transport with respect to the forest area of upper Citarum River Basin at upper Citarih Sub - River Basin. On the basis of the preliminary study results, it can be said that for a river basin where percentage of the forest area is smaller (i the suspended sediment concentration is higher and (ii the total sediment per area unit is greater. These indications were found during the study period, from September 1987 to February 1988. The preliminary study was conducted in a sub-river basin where the soil type is a mixture of andosol and brown regosol, and the terrain is undulating, hilly to mountainous with slope more than 15 percent.

  6. Comparison of estimated and measured sediment yield in the Gualala River

    Science.gov (United States)

    Matthew O’Connor; Jack Lewis; Robert Pennington

    2012-01-01

    This study compares quantitative erosion rate estimates developed at different spatial and temporal scales. It is motivated by the need to assess potential water quality impacts of a proposed vineyard development project in the Gualala River watershed. Previous erosion rate estimates were developed using sediment source assessment techniques by the North Coast Regional...

  7. Comparability of river suspended-sediment sampling and laboratory analysis methods

    Science.gov (United States)

    Groten, Joel T.; Johnson, Gregory D.

    2018-03-06

    Accurate measurements of suspended sediment, a leading water-quality impairment in many Minnesota rivers, are important for managing and protecting water resources; however, water-quality standards for suspended sediment in Minnesota are based on grab field sampling and total suspended solids (TSS) laboratory analysis methods that have underrepresented concentrations of suspended sediment in rivers compared to U.S. Geological Survey equal-width-increment or equal-discharge-increment (EWDI) field sampling and suspended sediment concentration (SSC) laboratory analysis methods. Because of this underrepresentation, the U.S. Geological Survey, in collaboration with the Minnesota Pollution Control Agency, collected concurrent grab and EWDI samples at eight sites to compare results obtained using different combinations of field sampling and laboratory analysis methods.Study results determined that grab field sampling and TSS laboratory analysis results were biased substantially low compared to EWDI sampling and SSC laboratory analysis results, respectively. Differences in both field sampling and laboratory analysis methods caused grab and TSS methods to be biased substantially low. The difference in laboratory analysis methods was slightly greater than field sampling methods.Sand-sized particles had a strong effect on the comparability of the field sampling and laboratory analysis methods. These results indicated that grab field sampling and TSS laboratory analysis methods fail to capture most of the sand being transported by the stream. The results indicate there is less of a difference among samples collected with grab field sampling and analyzed for TSS and concentration of fines in SSC. Even though differences are present, the presence of strong correlations between SSC and TSS concentrations provides the opportunity to develop site specific relations to address transport processes not captured by grab field sampling and TSS laboratory analysis methods.

  8. Desorption of Ba and 226Ra from river-borne sediments in the Hudson estuary

    International Nuclear Information System (INIS)

    Li, Y.-H.

    1979-01-01

    The pronounced desorption of Ba and 226 Ra from river-borne sediments in the Hudson estuary can be explained quantitatively by the drastic decrease in the distribution coefficients of both elements from a fresh to a salty water medium. The desorption in estuaries can augment, at least, the total global river fluxes of dissolved Ba and 226 Ra by one and nine times, respectively. The desorption flux of 226 Ra from estuaries accounts for 17-43% of the total 226 Ra flux from coastal sediments. Two mass balance models depicting mixing and adsorption-desorption processes in estuaries are discussed. (Auth.)

  9. Water Discharge and Sediment Load Changes in China: Change Patterns, Causes, and Implications

    Directory of Open Access Journals (Sweden)

    Chong Jiang

    2015-10-01

    Full Text Available In this research, monthly hydrological and daily meteorological data were collected across China for the period 1956–2012. Modified Mann–Kendall tests, double mass curve analysis, and correlation statistics were performed to identify the long-term trends and interrelation of the hydrometeorological variables and to examine the influencing factors of streamflow and sediment. The results are as follows: (1 In the last 60 years, the streamflow in northern China has shown different decreasing trends. For the southern rivers, the streamflow presented severe fluctuations, but the declining trend was insignificant. For the streamflow in western China, an increasing trend was shown. (2 In the northern rivers, the streamflow was jointly controlled by the East Asian monsoon and westerlies. In the southern rivers, the runoff was mainly influenced by the Tibet–Qinghai monsoon, the South Asian monsoon, and westerlies. (3 Sediment loads in the LCRB (Lancang River Basin and YZRB (Yarlung Zangbo River Basin did not present significant change trends, although other rivers showed different degrees of gradual reduction, particularly in the 2000s. (4 Underlying surface and precipitation changes jointly influenced the streamflow in eastern rivers. The water consumption for industrial and residential purposes, soil and water conservation engineering, hydraulic engineering, and underlying surface changes induced by other factors were the main causes of streamflow and sediment reduction.

  10. Evaluation of trace elements distribution in water, sediment, soil and cassava plant in Muria peninsula environment by NAA method

    International Nuclear Information System (INIS)

    Muryono, H.; Sumining; Agus Taftazani; Kris Tri Basuki; Sukarman, A.

    1999-01-01

    The evaluation of trace elements distribution in water, sediment, soil and cassava plant in Muria peninsula by NAA method were done. The nuclear power plant (NPP) and the coal power plant (CPP) will be built in Muria peninsula, so, the Muria peninsula is an important site for samples collection and monitoring of environment. River-water, sediment, dryland-soil and cassava plant were choosen as specimens samples from Muria peninsula environment. The analysis result of trace elements were used as a contributed data for environment monitoring before and after NPP was built. The trace elements in specimens of river-water, sediment, dryland-soil and cassava plant samples were analyzed by INAA method. It was found that the trace elements distribution were not evenly distributed. Percentage of trace elements distribution in river-water, sediment, dryland-soil and cassava leaves were 0.00026-0.037% in water samples, 0.49-62.7% in sediment samples, 36.29-99.35% in soil samples and 0.21-99.35% in cassava leaves. (author)

  11. Evaluation of trace elements distribution in water, sediment, soil and cassava plant in Muria peninsula environment by NAA method

    Energy Technology Data Exchange (ETDEWEB)

    Muryono, H.; Sumining; Agus Taftazani; Kris Tri Basuki; Sukarman, A. [Yogyakarta Nuclear Research Center, Yogyakarta (Indonesia)

    1999-10-01

    The evaluation of trace elements distribution in water, sediment, soil and cassava plant in Muria peninsula by NAA method were done. The nuclear power plant (NPP) and the coal power plant (CPP) will be built in Muria peninsula, so, the Muria peninsula is an important site for samples collection and monitoring of environment. River-water, sediment, dryland-soil and cassava plant were choosen as specimens samples from Muria peninsula environment. The analysis result of trace elements were used as a contributed data for environment monitoring before and after NPP was built. The trace elements in specimens of river-water, sediment, dryland-soil and cassava plant samples were analyzed by INAA method. It was found that the trace elements distribution were not evenly distributed. Percentage of trace elements distribution in river-water, sediment, dryland-soil and cassava leaves were 0.00026-0.037% in water samples, 0.49-62.7% in sediment samples, 36.29-99.35% in soil samples and 0.21-99.35% in cassava leaves. (author)

  12. Stepwise morphological evolution of the active Yellow River (Huanghe) delta lobe (1976-2013): Dominant roles of riverine discharge and sediment grain size

    Science.gov (United States)

    Wu, Xiao; Bi, Naishuang; Xu, Jingping; Nittrouer, Jeffrey A.; Yang, Zuosheng; Saito, Yoshiki; Wang, Houjie

    2017-09-01

    The presently active Yellow River (Huanghe) delta lobe has been formed since 1976 when the river was artificially diverted. The process and driving forces of morphological evolution of the present delta lobe still remain unclear. Here we examined the stepwise morphological evolution of the active Yellow River delta lobe including both the subaerial and the subaqueous components, and illustrated the critical roles of riverine discharge and sediment grain size in dominating the deltaic evolution. The critical sediment loads for maintaining the delta stability were also calculated from water discharge and sediment load measured at station Lijin, the last gauging station approximately 100 km upstream from the river mouth. The results indicated that the development of active delta lobe including both subaerial and subaqueous components has experienced four sequential stages. During the first stage (1976-1981) after the channel migration, the unchannelized river flow enhanced deposition within the channel and floodplain between Lijin station and the river mouth. Therefore, the critical sediment supply calculated by the river inputs obtained from station Lijin was the highest. However, the actual sediment load at this stage (0.84 Gt/yr) was more than twice of the critical sediment load ( 0.35 Gt/yr) for sustaining the active subaerial area, which favored a rapid seaward progradation of the Yellow River subaerial delta. During the second stage (1981-1996), the engineering-facilitated channelized river flow and the increase in median grain size of suspended sediment delivered to the sea resulted in the critical sediment load for keeping the delta stability deceasing to 0.29 Gt/yr. The active delta lobe still gradually prograded seaward at an accretion rate of 11.9 km2/yr at this stage as the annual sediment load at Lijin station was 0.55 Gt/yr. From 1996 to 2002, the critical sediment load further decreased to 0.15 Gt/yr with the sediment grain size increased to 22.5

  13. Bank Erosion, Mass Wasting, Water Clarity, Bathymetry and a Sediment Budget Along the Dam-Regulated Lower Roanoke River, North Carolina

    Science.gov (United States)

    Schenk, Edward R.; Hupp, Cliff R.; Richter, Jean M.; Kroes, Daniel E.

    2010-01-01

    Dam construction and its impact on downstream fluvial processes may substantially alter ambient bank stability, floodplain inundation patterns, and channel morphology. Most of the world's largest rivers have been dammed, which has prompted management efforts to mitigate dam effects. Three high dams (completed between 1953 and 1963) occur along the Piedmont portion of the Roanoke River, North Carolina; just downstream, the lower part of the river flows across largely unconsolidated Coastal Plain deposits. To document bank erosion rates along the lower Roanoke River, more than 700 bank erosion pins were installed along 124 bank transects. Additionally, discrete measurements of channel bathymetry, water clarity, and presence or absence of mass wasting were documented along the entire 153-kilometer-long study reach. Amounts of bank erosion in combination with prior estimates of floodplain deposition were used to develop a bank erosion and floodplain deposition sediment budget for the lower river. Present bank erosion rates are relatively high [mean 42 milimeters per year (mm/yr)] and are greatest along the middle reaches (mean 60 mm/yr) and on lower parts of the bank on all reaches. Erosion rates were likely higher along upstream reaches than present erosion rates such that erosion rate maxima have migrated downstream. Mass wasting and water clarity also peak along the middle reaches.

  14. Comparison of streamflow and water-quality data collection techniques for the Saginaw River, Michigan

    Science.gov (United States)

    Hoard, C.J.; Holtschlag, D.J.; Duris, J.W.; James, D.A.; Obenauer, D.J.

    2012-01-01

    In 2009, the Michigan Department of Environmental Quality and the U.S. Geological Survey developed a plan to compare the effect of various streamgaging and water-quality collection techniques on streamflow and stream water-quality data for the Saginaw River, Michigan. The Saginaw River is the primary contributor of surface runoff to Saginaw Bay, Lake Huron, draining approximately 70 percent of the Saginaw Bay watershed. The U.S. Environmental Protection Agency has listed the Saginaw Bay system as an "Area of Concern" due to many factors, including excessive sediment and nutrient concentrations in the water. Current efforts to estimate loading of sediment and nutrients to Saginaw Bay utilize water-quality samples collected using a surface-grab technique and flow data that are uncertain during specific conditions. Comparisons of current flow and water-quality sampling techniques to alternative techniques were assessed between April 2009 and September 2009 at two locations in the Saginaw River. Streamflow estimated using acoustic Doppler current profiling technology was compared to a traditional stage-discharge technique. Complex conditions resulting from the influence of Saginaw Bay on the Saginaw River were able to be captured using the acoustic technology, while the traditional stage-discharge technique failed to quantify these effects. Water-quality samples were collected at two locations and on eight different dates, utilizing both surface-grab and depth-integrating multiple-vertical techniques. Sixteen paired samples were collected and analyzed for suspended sediment, turbidity, total phosphorus, total nitrogen, orthophosphate, nitrite, nitrate, and ammonia. Results indicate that concentrations of constituents associated with suspended material, such as suspended sediment, turbidity, and total phosphorus, are underestimated when samples are collected using the surface-grab technique. The median magnitude of the relative percent difference in concentration based

  15. Estimation of erosion and sedimentation yield in the Ucayali river basin, a Peruvian tributary of the Amazon River, using ground and satellite methods

    Science.gov (United States)

    Santini, William; Martinez, Jean-Michel; Guyot, Jean-Loup; Espinoza, Raul; Vauchel, Philippe; Lavado, Waldo

    2014-05-01

    Since 2003, the works of HYBAM observatory (www.ore-hybam.org) has allowed to quantify with accuracy, precision and over a long period Amazon's main rivers discharges and sediments loads. In Peru, a network of 8 stations is regularly gauged and managed in association with the national meteorological and Hydrological service (SENAMHI), the UNALM (National Agrological University of La Molina) and the National Water Agency (ANA). Nevertheless, some current processes of erosion and sedimentation in the foreland basins are still little known, both in volumes and in localization. The sedimentary contributions of Andean tributaries could be there considerable, masking a very strong sedimentation in subsidence zones localized between the control points of the HYBAM's network. The development of spatial techniques such as the Altimetry and reflectance measurement allows us today to complete the ground's network: HYBAM's works have allowed establishing a relation between surface concentration and reflectance in Amazonian rivers (Martinez et al., 2009, Espinoza et al., 2012) and reconstituting water levels series (Calmant et al., 2006, 2008). If the difficulty of calibration of these techniques increases towards the upstream, their use can allow a first characterization of the tributaries contributions and sedimentation zones. At world level, erosion and sedimentation yields in the upper Ucayali are exceptional, favored by a marked seasonality in this region (Espinoza et al., 2009, Lavado, 2010, Pépin et al., 2010) and the presence of cells of extreme precipitation ("Hotspots") (Johnson et al., 1976, Espinoza et al, 2009a). The upper Ucayali drainage basin is a Piggyback where the River run with a low slope, parallel to the Andean range, deposing by gravity hundred millions a year of sands, silts and clays. In this work, we thus propose an estimation of sedimentation and erosion yield in the Ucayali river basin using ground and satellite methods.

  16. Fractions and Distribution of Phosphorus in Sediments of the Yarlung Zangbo River Basin

    Science.gov (United States)

    Huang, W.; An, R.; Huang, Y.; Pu, X.; Li, R.; Li, J.

    2017-12-01

    The Yarlung Zangbo River is one of the highest rivers in the world. The ecological environment of the river basin has its specificity. It locates in the remote area of China, and the ecological environment is very fragile. The fundamental data of phosphorus content in sediments of the Yarlung Zangbo River Basin are very scarce. In order to clarify the distribution law of phosphorus in the sediments of this area and provide the fundamental data for the study of phosphorus transport in the Yarlung Zangbo River, the authors collected the sediment samples from the mainstream and its tributaries in the research area. Their particle size distributions, specific surface areas, contents of total phosphorus, organic phosphorus and different forms of inorganic phosphorus were analyzed. Then, the fractions and spatial distribution of these forms phosphorus were studied. The results showed that the fractions and distribution characteristics of phosphorus in each form are significant different in the sediments of the Yarlung Zangbo River. The phosphorus contents in the soil erosion deposits and river bed sediment samples are also different. The phosphorus content in sediment is significantly correlated with the sediment characteristics. Keywords: the Yarlung Zangbo River; sediments; fractions of phosphorus; distribution characteristics

  17. Concentrations of metals in river sediment and wetland vegetations ...

    African Journals Online (AJOL)

    Levels of metals were determined in river sediment, rice and sugarcane juice from Lake Victoria basin where small-scale gold processing activities are carried out to assess levels of contamination. Concentrations of metals in river sediments were generally high in areas that were closest to gold ore processing sites.

  18. Pollution by metals and toxicity assessment using Caenorhabditis elegans in sediments from the Magdalena River, Colombia

    International Nuclear Information System (INIS)

    Tejeda-Benitez, Lesly; Flegal, Russell; Odigie, Kingsley; Olivero-Verbel, Jesus

    2016-01-01

    The Magdalena River is the most important river in Colombia, supplying over 70% of the population of fish and drinking water, and it also is the main river transportation way of the country. It receives effluents from multiple sources along its course such as contaminant agricultural and industrial discharges. To evaluate the toxicity profile of Magdalena River sediments through endpoints such as survival, locomotion, and growth, wild type strains of Caenorhabditis elegans were exposed to aqueous extracts of the sediments. To identify changes in gene expression, GFP transgenic strains were used as reporter genes. Physiological and biochemical data were correlated with metal concentration in the sediments, identifying patterns of toxicity along the course of the river. Levels of some metals such as Cd, Cu, and Ni were above TEC and PEC limits. Effects in survival, growth, and locomotion were observed in most of the samples, and changes in gene expression were evident in the genes mtl-2, sod-4, and gst-1 using fluorescence expression. Cadmium and lead were the metals which were primarily associated with sediment toxicity, and the sampling sites with the highest increased expression of stress response genes were Barrancabermeja and Girardot. However, the diverse nature of toxic profiles observed in C. elegans in the study area showed the pervasiveness of different types of discharges throughout the river system. - Highlights: • The Magdalena River has high levels of some metals such as Cd, Cu, and Ni. • Most sediment extracts affected lethality, growth, and locomotion of C. elegans. • Sediment extracts induced expression changes in mtl-2, sod-4, and gst-1. • Sediment toxicity was primarily associated with Cd and Pb. • Highest toxicity was observed for samples collected in mining and industrial areas. - In Magdalena River sediments, Cd and Pb were associated with toxicity in Caenorhabditis elegans and expression of stress response genes were related to

  19. Interpreting the suspended sediment dynamics in a mesoscale river basin of Central Mexico using a nested watershed approach

    Science.gov (United States)

    Duvert, C.; Némery, J.; Gratiot, N.; Prat, C.; Collet, L.; Esteves, M.

    2009-12-01

    The Cointzio river basin is located within the Mexican Transvolcanic Belt, in the Michoacán state. Land-use changes undergone over last decades lead to significant erosion processes, though affecting limited areas of the basin. Apart from generating a minor depletion of arable land by incising small headwater areas, this important sediment delivery contributed to siltation in the reservoir of Cointzio, situated right downstream of the basin. During 2009 rainy season, a detailed monitoring of water and sediment fluxes was undertaken in three headwater catchments located within the Cointzio basin (Huertitas, Potrerillos and La Cortina, respectively 2.5, 9.3 and 12.0 km2), as well as at the outlet of the main river basin (station of Santiago Undameo, 627 km2). Preliminary tests realized in 2008 underlined the necessity of carrying out a high-frequency monitoring strategy to assess the sediment dynamics in the basins of this region. In each site, water discharge time-series were obtained from continuous water-level measurements (5-min time-step), and stage-discharge rating curves. At the river basin outlet, Suspended Sediment Concentration (SSC) was estimated every 10 minutes through turbidity measurements calibrated with data from automatic sampling. In the three sub-catchments, SSC time-series were calculated using stage-triggered automatic water samplers. The three upland areas monitored in our study present distinct landforms, morphology and soil types. La Cortina is underlain by andisols, rich in organic matter and with an excellent microstructure under wet conditions. Huertitas and Potrerillos both present a severely gullied landscape, bare and highly susceptible to water erosion in degraded areas. As a result, suspended sediment yields in 2009 were expectedly much higher in these two sub-catchments (≈320 t.km-2 in Huertitas and ≈270 t.km-2 in Potrerillos) than in La Cortina (≈40 t.km-2). The total suspended sediment export was approximately of 30 t.km-2

  20. Geomorphic analysis of the river response to sedimentation downstream of Mount Rainier, Washington

    Science.gov (United States)

    Czuba, Jonathan A.; Magirl, Christopher S.; Czuba, Christiana R.; Curran, Christopher A.; Johnson, Kenneth H.; Olsen, Theresa D.; Kimball, Halley K.; Gish, Casey C.

    2012-01-01

    A study of the geomorphology of rivers draining Mount Rainier, Washington, was completed to identify sources of sediment to the river network; to identify important processes in the sediment delivery system; to assess current sediment loads in rivers draining Mount Rainier; to evaluate if there were trends in streamflow or sediment load since the early 20th century; and to assess how rates of sedimentation might continue into the future using published climate-change scenarios. Rivers draining Mount Rainier carry heavy sediment loads sourced primarily from the volcano that cause acute aggradation in deposition reaches as far away as the Puget Lowland. Calculated yields ranged from 2,000 tonnes per square kilometer per year [(tonnes/km2)/yr] on the upper Nisqually River to 350 (tonnes/km2)/yr on the lower Puyallup River, notably larger than sediment yields of 50–200 (tonnes/km2)/yr typical for other Cascade Range rivers. These rivers can be assumed to be in a general state of sediment surplus. As a result, future aggradation rates will be largely influenced by the underlying hydrology carrying sediment downstream. The active-channel width of rivers directly draining Mount Rainier in 2009, used as a proxy for sediment released from Mount Rainier, changed little between 1965 and 1994 reflecting a climatic period that was relatively quiet hydrogeomorphically. From 1994 to 2009, a marked increase in geomorphic disturbance caused the active channels in many river reaches to widen. Comparing active-channel widths of glacier-draining rivers in 2009 to the distance of glacier retreat between 1913 and 1994 showed no correlation, suggesting that geomorphic disturbance in river reaches directly downstream of glaciers is not strongly governed by the degree of glacial retreat. In contrast, there was a correlation between active-channel width and the percentage of superglacier debris mantling the glacier, as measured in 1971. A conceptual model of sediment delivery processes

  1. Chlor-alkali industrial contamination and riverine transport of mercury: Distribution and partitioning of mercury between water, suspended matter, and bottom sediment of the Thur River, France

    International Nuclear Information System (INIS)

    Hissler, Christophe; Probst, Jean-Luc

    2006-01-01

    Total dissolved and total particulate Hg mass balances were estimated during one hydrological period (July 2001-June 2002) in the Thur River basin, which is heavily polluted by chlor-alkali industrial activity. The seasonal variations of the Hg dynamics in the aquatic environment were assessed using total Hg concentrations in bottom sediment and suspended matter, and total and reactive dissolved Hg concentrations in the water. The impact of the chlor-alkali plant (CAP) remains the largest concern for Hg contamination of this river system. Upstream from the CAP, the Hg partitioning between dissolved and particulate phases was principally controlled by the dissolved fraction due to snow melting during spring high flow, while during low flow, Hg was primarily adsorbed onto particulates. Downstream from the CAP, the Hg partitioning is controlled by the concentration of dissolved organic and inorganic ligands and by the total suspended sediment (TSS) concentrations. Nevertheless, the particulate fluxes were five times higher than the dissolved ones. Most of the total annual flux of Hg supplied by the CAP to the river is transported to the outlet of the catchment (total Hg flux: 70 μg m -2 a -1 ). Downstream from the CAP, the bottom sediment, mainly composed of coarse sediment (>63 μm) and depleted in organic matter, has a weak capacity to trap Hg in the river channel and the stock of Hg is low (4 mg m -2 ) showing that the residence time of Hg in this river is short

  2. Feasibility of estimate sediment yield in the non-sediment monitoring station area - A case study of Alishan River watershed,Taiwan

    Science.gov (United States)

    Chang, ChiaChi; Chan, HsunChuan; Jia, YaFei; Zhang, YaoXin

    2017-04-01

    Due to the steep topography, frail geology and concentrated rainfall in wet season, slope disaster occurred frequently in Taiwan. In addition, heavy rainfall induced landslides in upper watersheds. The sediment yield on the slopeland affects the sediment transport in the river. Sediment deposits on the river bed reduce the river cross section and change the flow direction. Furthermore, it generates risks to residents' lives and property in the downstream. The Taiwanese government has been devoting increasing efforts on the sedimentary management issues and on reduction in disaster occurrence. However, due to the limited information on the environmental conditions in the upper stream, it is difficult to set up the sedimentary monitoring equipment. This study used the upper stream of the Qingshuei River, the Alishan River, as a study area. In August 2009, Typhoon Morakot caused the sedimentation of midstream and downstream river courses in the Alishan River. Because there is no any sediment monitoring stations within the Alishan River watershed, the sediment yield values are hard to determine. The objective of this study is to establish a method to analyze the event-landslide sediment transport in the river on the upper watershed. This study numerically investigated the sediment transport in the Alishan River by using the KINEROS 2 model developed by the United States Department of Agriculture and the CCHE1D model developed by the National Center for Computational Hydroscience and Engineering. The simulated results represent the morphology changes in the Alishan River during the typhoon events. The results consist of a critical strategy reference for the sedimentary management for the Alishan River watershed.

  3. Natural radioactivity of sediments from Wei River of Shannxi province

    International Nuclear Information System (INIS)

    Wang Fengling; Lu Xinwei

    2008-01-01

    The natural radioactivity level in sediments from Wei River of Shannxi has been surveyed with a NaI(Tl) γ-spectrometer and its radiation hazards to the people has been assessed. The results indicate the natural radioactivity level in sediments from Wei River of Shaanxi is normal and the sediments can be safely used as building materials. (authors)

  4. Modeling of soil erosion and sediment transport in the East River Basin in southern China

    Science.gov (United States)

    Wu, Yping; Chen, Ji

    2012-01-01

    Soil erosion is a major global environmental problem that has caused many issues involving land degradation, sedimentation of waterways, ecological degradation, and nonpoint source pollution. Therefore, it is significant to understand the processes of soil erosion and sediment transport along rivers, and this can help identify the erosion prone areas and find potential measures to alleviate the environmental effects. In this study, we investigated soil erosion and identified the most seriously eroded areas in the East River Basin in southern China using a physically-based model, Soil and Water Assessment Tool (SWAT). We also introduced a classical sediment transport method (Zhang) into SWAT and compared it with the built-in Bagnold method in simulating sediment transport process along the river. The derived spatial soil erosion map and land use based erosion levels can explicitly illustrate the identification and prioritization of the critical soil erosion areas in this basin. Our results also indicate that erosion is quite sensitive to soil properties and slope. Comparison of Bagnold and Zhang methods shows that the latter can give an overall better performance especially in tracking the peak and low sediment concentrations along the river. We also found that the East River is mainly characterized by sediment deposition in most of the segments and at most times of a year. Overall, the results presented in this paper can provide decision support for watershed managers about where the best management practices (conservation measures) can be implemented effectively and at low cost. The methods we used in this study can also be of interest in sediment modeling for other basins worldwide.

  5. Modeling of soil erosion and sediment transport in the East River Basin in southern China.

    Science.gov (United States)

    Wu, Yiping; Chen, Ji

    2012-12-15

    Soil erosion is a major global environmental problem that has caused many issues involving land degradation, sedimentation of waterways, ecological degradation, and nonpoint source pollution. Therefore, it is significant to understand the processes of soil erosion and sediment transport along rivers, and this can help identify the erosion prone areas and find potential measures to alleviate the environmental effects. In this study, we investigated soil erosion and identified the most seriously eroded areas in the East River Basin in southern China using a physically-based model, Soil and Water Assessment Tool (SWAT). We also introduced a classical sediment transport method (Zhang) into SWAT and compared it with the built-in Bagnold method in simulating sediment transport process along the river. The derived spatial soil erosion map and land use based erosion levels can explicitly illustrate the identification and prioritization of the critical soil erosion areas in this basin. Our results also indicate that erosion is quite sensitive to soil properties and slope. Comparison of Bagnold and Zhang methods shows that the latter can give an overall better performance especially in tracking the peak and low sediment concentrations along the river. We also found that the East River is mainly characterized by sediment deposition in most of the segments and at most times of a year. Overall, the results presented in this paper can provide decision support for watershed managers about where the best management practices (conservation measures) can be implemented effectively and at low cost. The methods we used in this study can also be of interest in sediment modeling for other basins worldwide. Published by Elsevier B.V.

  6. What are the contemporary sources of sediment in the Mississippi River?

    Science.gov (United States)

    Hassan, M. A.; Roberge, L.; Church, M.; More, M.; Donner, S. D.; Leach, J.; Ali, K. F.

    2017-09-01

    Within the last two centuries, the Mississippi River basin has been transformed by changes in land use practices, dam construction, and training of the rivers for navigation. Here we analyze the contemporary patterns of fluvial sediment yield in the Mississippi River basin using all available data in order to assess the influence of regional land condition on the variation of sediment yield within the basin. We develop regional-scale relations between specific sediment yield (yield per unit area) and drainage area to reveal contemporary regional sediment yield patterns and source areas of riverine sediments. Extensive upland erosion before the development of soil conservation practices exported large amounts of sediment to the valleys and floodplains. We show that sediment today is sourced primarily along the river valleys from arable land, and from stream bank and channel erosion, with sediment yields from areas dominated by arable land 2 orders of magnitude greater than that of grassland dominated areas. Comparison with the "T factor," a commonly quoted measure of agricultural soil resilience suggests that the latter may not reflect contemporary soil loss from the landscape.

  7. Sediment fluxes from California Coastal Rivers: the influences of climate, geology, and topography

    Science.gov (United States)

    Andrews, E.D.; Antweiler, Ronald C.

    2012-01-01

    The influences of geologic and climatic factors on erosion and sedimentation processes in rivers draining the western flank of the California Coast Range are assessed. Annual suspended, bedload, and total sediment fluxes were determined for 16 river basins that have hydrologic records covering all or most of the period from 1950 to 2006 and have been relatively unaffected by flow storage, regulation, and depletion, which alter the downstream movement of water and sediment. The occurrence of relatively large annual sediment fluxes are strongly influenced by the El Nino–Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO). The frequency of relatively large annual sediment fluxes decreases from north to south during La Nina phases and increases from north to south during El Nino phases. The influence of ENSO is modulated over a period of decades by the PDO, such that relatively large annual sediment fluxes are more frequent during a La Nina phase in conjunction with a cool PDO and during an El Nino phase in conjunction with a warm PDO. Values of mean annual sediment flux, , were regressed against basin and climatic characteristics. Basin area, bedrock erodibility, basin relief, and precipitation explain 87% of the variation in from the 16 river basins. Bedrock erodibility is the most significant characteristic influencing . Basin relief is a superior predictor of compared with basin slope. is nearly proportional to basin area and increases with increasing precipitation. For a given percentage change, basin relief has a 2.3-fold greater effect on than a similar change in precipitation. The estimated natural from all California coastal rivers for the period 1950–2006 would have been approximately 85 million tons without flow storage, regulation, and depletion; the actual has been approximately 50 million tons, because of the effects of flow storage, regulation, and depletion.

  8. Calibration and application of an automated seepage meter for monitoring water flow across the sediment-water interface.

    Science.gov (United States)

    Zhu, Tengyi; Fu, Dafang; Jenkinson, Byron; Jafvert, Chad T

    2015-04-01

    The advective flow of sediment pore water is an important parameter for understanding natural geochemical processes within lake, river, wetland, and marine sediments and also for properly designing permeable remedial sediment caps placed over contaminated sediments. Automated heat pulse seepage meters can be used to measure the vertical component of sediment pore water flow (i.e., vertical Darcy velocity); however, little information on meter calibration as a function of ambient water temperature exists in the literature. As a result, a method with associated equations for calibrating a heat pulse seepage meter as a function of ambient water temperature is fully described in this paper. Results of meter calibration over the temperature range 7.5 to 21.2 °C indicate that errors in accuracy are significant if proper temperature-dependence calibration is not performed. The proposed calibration method allows for temperature corrections to be made automatically in the field at any ambient water temperature. The significance of these corrections is discussed.

  9. A drifter for measuring water turbidity in rivers and coastal oceans.

    Science.gov (United States)

    Marchant, Ross; Reading, Dean; Ridd, James; Campbell, Sean; Ridd, Peter

    2015-02-15

    A disposable instrument for measuring water turbidity in rivers and coastal oceans is described. It transmits turbidity measurements and position data via a satellite uplink to a processing server. The primary purpose of the instrument is to help document changes in sediment runoff from river catchments in North Queensland, Australia. The 'river drifter' is released into a flooded river and drifts downstream to the ocean, measuring turbidity at regular intervals. Deployment in the Herbert River showed a downstream increase in turbidity, and thus suspended sediment concentration, while for the Johnstone River there was a rapid reduction in turbidity where the river entered the sea. Potential stranding along river banks is a limitation of the instrument. However, it has proved possible for drifters to routinely collect data along 80 km of the Herbert River. One drifter deployed in the Fly River, Papua New Guinea, travelled almost 200 km before stranding. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Punctuated Sediment Discharge during Early Pliocene Birth of the Colorado River: Evidence from Regional Stratigraphy, Sedimentology, and Paleontology

    Science.gov (United States)

    Dorsey, Rebecca J.; O'Connell, Brennan; McDougall, Kristin; Homan, Mindy B.

    2018-01-01

    The Colorado River in the southwestern U.S. provides an excellent natural laboratory for studying the origins of a continent-scale river system, because deposits that formed prior to and during river initiation are well exposed in the lower river valley and nearby basinal sink. This paper presents a synthesis of regional stratigraphy, sedimentology, and micropaleontology from the southern Bouse Formation and similar-age deposits in the western Salton Trough, which we use to interpret processes that controlled the birth and early evolution of the Colorado River. The southern Bouse Formation is divided into three laterally persistent members: basal carbonate, siliciclastic, and upper bioclastic members. Basal carbonate accumulated in a tide-dominated marine embayment during a rise of relative sea level between 6.3 and 5.4 Ma, prior to arrival of the Colorado River. The transition to green claystone records initial rapid influx of river water and its distal clay wash load into the subtidal marine embayment at 5.4-5.3 Ma. This was followed by rapid southward progradation of the Colorado River delta, establishment of the earliest through-flowing river, and deposition of river-derived turbidites in the western Salton Trough (Wind Caves paleocanyon) between 5.3 and 5.1 Ma. Early delta progradation was followed by regional shut-down of river sand output between 5.1 and 4.8 Ma that resulted in deposition of marine clay in the Salton Trough, retreat of the delta, and re-flooding of the lower river valley by shallow marine water that deposited the Bouse upper bioclastic member. Resumption of sediment discharge at 4.8 Ma drove massive progradation of fluvial-deltaic deposits back down the river valley into the northern Gulf and Salton Trough. These results provide evidence for a discontinuous, start-stop-start history of sand output during initiation of the Colorado River that is not predicted by existing models for this system. The underlying controls on punctuated sediment

  11. Sediment mobility and bed armoring in the St Clair River: insights from hydrodynamic modeling

    Science.gov (United States)

    Liu, Xiaofeng; Parker, Gary; Czuba, Jonathan A.; Oberg, Kevin; Mier, Jose M.; Best, James L.; Parsons, Daniel R.; Ashmore, Peter; Krishnappan, Bommanna G.; Garcia, Marcelo H.

    2012-01-01

    The lake levels in Lake Michigan-Huron have recently fallen to near historical lows, as has the elevation difference between Lake Michigan-Huron compared to Lake Erie. This decline in lake levels has the potential to cause detrimental impacts on the lake ecosystems, together with social and economic impacts on communities in the entire Great Lakes region. Results from past work suggest that morphological changes in the St Clair River, which is the only natural outlet for Lake Michigan-Huron, could be an appreciable factor in the recent trends of lake level decline. A key research question is whether bed erosion within the river has caused an increase in water conveyance, therefore, contributed to the falling lake level. In this paper, a numerical modeling approach with field data is used to investigate the possibility of sediment movement in the St Clair River and assess the likelihood of morphological change under the current flow regime. A two-dimensional numerical model was used to study flow structure, bed shear stress, and sediment mobility/armoring over a range of flow discharges. Boundary conditions for the numerical model were provided by detailed field measurements that included high-resolution bathymetry and three-dimensional flow velocities. The results indicate that, without considering other effects, under the current range of flow conditions, the shear stresses produced by the river flow are too low to transport most of the coarse bed sediment within the reach and are too low to cause substantial bed erosion or bed scour. However, the detailed maps of the bed show mobile bedforms in the upper St Clair River that are indicative of sediment transport. Relatively high shear stresses near a constriction at the upstream end of the river and at channel bends could cause local scour and deposition. Ship-induced propeller wake erosion also is a likely cause of sediment movement in the entire reach. Other factors that may promote sediment movement, such as ice

  12. Microelement Exploration Water Flow of Rimnik River

    OpenAIRE

    , N. Bajraktari; , B. Baraj; , T. Arbneshi; , S. Jusufi

    2016-01-01

    Compared to the increasing need on qualitative water use, many water şows are subject to a rising pollution by urban and industrial untreated water discharge, and in some cases by incidental run-offs. Besides them, there is also a great impact made by disseminated agricultural pollution and air and soil rinsing after atmospheric rainfalls. The main purpose of this paper is the micro-element exploration in water and sediments, along the water şow of Rimnik River. Some of the heavy metals: Pb, ...

  13. Sedimentation problems in a lateral dock on the Paraná River

    Science.gov (United States)

    Latessa, Gaston; Sabarots Gerbec, Martin; Arecco, Pablo

    2017-04-01

    The Paraná River is one of the largest water courses in the world and along its reach in the Argentine territory, it receives a large load of sediments from the Pilcomayo and Bermejo Rivers, through the Paraguay River, in the upper basin at the North of Argentina and South of Bolivia. The suspended sediment load is estimated in 100 Million ton/year. This unique characteristic drives the Paraná River morphology downstream, as well as the Paraná delta morphodynamics. On top of its natural behaviour, the Paraná-Paraguay river system is an important inland waterway transport corridor, with a significant amount of sea going vessels and inland barges navigating throughout stretches of more than 3000 Km. Consequently, there are numerous port complexes and terminals along the river banks. The typical wet infrastructure of these terminals is usually composed by jetties and quay walls, and occasionally with side or lateral docks. Whereas, the case included within this study presents all these components. This study presents a hydrodynamic and sedimentology 3D model to predict the velocity fields and the associated shear stresses that will drive morphological processes in the lateral dock. The terminal layout, side dock configuration, and sedimentation issues will be analyzed from multidisciplinary point of view, under different hydrological events and considering the correlated sediment loads. Recent bathymetry studies had been carried out and this set of data will be implemented to build the domain geometry. The flow series is as well extended with the up to date gauged flows and levels, to carry out statistical analysis and identify the design flows for different probabilities. The main objective of this analysis will be to understand and identify the scour and deposition processes and the possible problems to the structures safety and the operation of the docks, and introduce variations to the baseline design, if necessary. Results will be contrasted and validated

  14. The Forgotten Legacy: Sediment From Historical Gold Mining Greatly Exceeds all Other Anthropogenic Sources in SE Australian Rivers

    Science.gov (United States)

    Rutherfurd, I.; Davies, P.; Macklin, M. G.; Grove, J. R.

    2016-12-01

    Coarse and fine sediment has been a major pollutant of Australian rivers and receiving waters since European settlement in 1788. Anthropogenic sediment budget models demonstrate that catchment and channel erosion has increased background sediment delivery by 10 to 20 times across SE Australia, but these estimates ignore the contribution of historical gold mining. Detailed historical records allow us to reconstruct the delivery of coarse and fine sediment (including contaminated sediment) to the fluvial system. Between 1851 and 1900 alluvial gold mining in the state of Victoria liberated between 1.2 billion and 1.4 billion m3 of coarse and fine sediment into streams. Catchment scale modelling demonstrates that this volume is at least twice the volume of all anthropogenic (post-European) erosion from hillslopes, river banks, and gullies. We map the deposition and remobilization of these contaminated legacy mining sediments down selected valleys, and find that many contemporary floodplains are blanketed with mining sediments (although mercury contamination is present but low), and discrete sediment-slugs can be recognized migrating down river beds. Overall, the impact of gold mining is one of the strongest indicators of the Anthropocene in the Australian landscape, and the level of impact on rivers is substantially greater than recognized in the past. Perhaps of most interest is the rapid recovery of many river systems from the substantial impacts of gold mining. The result is that these major changes to the landscape are largely forgotten.

  15. Determination of the sanitary protective zones around Stip underground water wells from the Bregalnica river alluvion by its comparison to the Zagreb underground water wells from the Sava river alluvion

    OpenAIRE

    Mircovski, Vojo

    2006-01-01

    Based on existing geological - hydrogeological data hydrogeological characteristics and hydrogeological parameters of the alluvial sediments of Stip sources of ground water from the river Bregalnica were determined. According to the granulometric analysis and data obtained pumping test of wells were determined and filtration features of water bearing alluvial sediments built of sand and gravel and their overlay sediments consisting of sands and dusty clay sands. In determination of the ...

  16. Distribution of branched GDGTs in surface sediments from the Colville River, Alaska: Implications for the MBT'/CBT paleothermometer in Arctic marine sediments

    Science.gov (United States)

    Hanna, Andrea J. M.; Shanahan, Timothy M.; Allison, Mead A.

    2016-07-01

    Significant climate fluctuations in the Arctic over the recent past, and additional predicted future temperature changes, highlight the need for high-resolution Arctic paleoclimate records. Arctic coastal environments supplied with terrigenous sediment from Arctic rivers have the potential to provide annual to subdecadal resolution records of climate variability over the last few millennia. A potential tool for paleotemperature reconstructions in these marine sediments is the revised methylation index of branched tetraethers (MBT')/cyclization ratio of branched tetraethers (CBT) proxy based on branched glycerol dialkyl glycerol tetraethers (brGDGTs). In this study, we examine the source of brGDGTs in the Colville River, Alaska, and the adjacent Simpson Lagoon and reconstruct temperatures from Simpson Lagoon sediments to evaluate the applicability of this proxy in Arctic estuarine environments. The Colville catchment soils, fluvial sediments, and estuarine sediments contain statistically similar brGDGT distributions, indicating that the brGDGTs throughout the system are soil derived with little alteration from in situ brGDGT production in the river or coastal waters. Temperatures reconstructed from the MBT'/CBT indices for surface samples show good agreement with regional summer (June through September) temperatures, suggesting a seasonal bias in Arctic temperature reconstructions from the Colville system. In addition, we reconstruct paleotemperatures from an estuarine sediment core that spans the last 75 years, revealing an overall warming trend in the twentieth century that is consistent with trends observed in regional instrumental records. These results support the application of this brGDGT-based paleotemperature proxy for subdecadal-scale summer temperature reconstructions in Arctic estuaries containing organic material derived from sediment-laden, episodic rivers.

  17. Energy Harvesting From River Sediment Using a Microbial Fuel Cell: Preliminary Results

    Directory of Open Access Journals (Sweden)

    Philippe Namour

    2014-05-01

    Full Text Available We have built a sedimentary fuel cell or Sediment Microbial Fuel Cell (SMFC. The device works on the principle of microbial fuel cells by exploiting directly the energy contained in sedimentary organic matter. It converts in electricity the sediment potential, thanks to microorganisms able to waste electrons from their metabolism directly to a solid anode instead of their natural electron acceptors, such as oxygen or nitrate. The sediment microbial fuel cell was made of a non-corrodible anode (graphite buried in anoxic sediments layer and connected via an electrical circuit to a cathode installed in surface water. We present the first results of laboratory sedimentary fuel cell and a prototype installed in the river.

  18. Sediment oxygen demand in the lower Willamette River, Oregon, 1994

    Science.gov (United States)

    Caldwell, James M.; Doyle, Micelis C.

    1995-01-01

    An investigation of sediment oxygen demand (SOD) at the interface of the stream and stream bed was performed in the lower Willamette River (river mile 51 to river mile 3) during August, 1994, as part of a cooperative project with the Oregon Department of Environmental Quality. The primary goals of the investigation were to measure the spatial variability of SOD in the lower Willamette River and to relate SOD to bottom-sediment characteristics.

  19. Climate and land-use changes affecting river sediment and brown trout in alpine countries--a review.

    Science.gov (United States)

    Scheurer, Karin; Alewell, Christine; Bänninger, Dominik; Burkhardt-Holm, Patricia

    2009-03-01

    Catch decline of freshwater fish has been recorded in several countries. Among the possible causes, habitat change is discussed. This article focuses on potentially increased levels of fine sediments going to rivers and their effects on gravel-spawning brown trout. Indications of increased erosion rates are evident from land-use change in agriculture, changes in forest management practices, and from climate change. The latter induces an increase in air and river water temperatures, reduction in permafrost, changes in snow dynamics and an increase in heavy rain events. As a result, an increase in river sediment is likely. Suspended sediment may affect fish health and behaviour directly. Furthermore, sediment loads may clog gravel beds impeding fish such as brown trout from spawning and reducing recruitment rates. To assess the potential impact on fine sediments, knowledge of brown trout reproductive needs and the effects of sediment on brown trout health were evaluated. We critically reviewed the literature and included results from ongoing studies to answer the following questions, focusing on recent decades and rivers in alpine countries. Have climate change and land-use change increased erosion and sediment loads in rivers? Do we have indications of an increase in riverbed clogging? Are there indications of direct or indirect effects on brown trout from increased suspended sediment concentrations in rivers or from an increase in riverbed clogging? Rising air temperatures have led to more intensive precipitation in winter months, earlier snow melt in spring, and rising snow lines and hence to increased erosion. Intensification of land use has supported erosion in lowland and pre-alpine areas in the second half of the twentieth century. In the Alps, however, reforestation of abandoned land at high altitudes might reduce the erosion risk while intensification on the lower, more easily accessible slopes increases erosion risk. Data from laboratory experiments show

  20. Design of a sediment-monitoring gaging network on ephemeral tributaries of the Colorado River in Glen, Marble, and Grand Canyons, Arizona

    Science.gov (United States)

    Griffiths, Ronald E.; Topping, David J.; Anderson, Robert S.; Hancock, Gregory S.; Melis, Theodore S.

    2014-01-01

    stations beginning in 2000 on the larger of the previously ungaged tributaries of the Colorado River downstream from Glen Canyon Dam. The sediment-monitoring gaging stations consist of a downward-looking stage sensor and passive suspended-sediment samplers. Two stations are equipped with automatic pump samplers to collect suspended-sediment samples during flood events. Directly measuring discharge and collecting suspended-sediment samples in these remote ephemeral streams during significant sediment-transporting events is nearly impossible; most significant run-off events are short-duration events (lasting minutes to hours) associated with summer thunderstorms. As the remote locations and short duration of these floods make it prohibitively expensive, if not impossible, to directly measure the discharge of water or collect traditional depth-integrated suspended-sediment samples, a method of calculating sediment loads was developed that includes documentation of stream stages by field instrumentation, modeling of discharges associated with these stages, and automatic suspended-sediment measurements. The approach developed is as follows (1) survey and model flood high-water marks using a two-dimensional hydrodynamic model, (2) create a stage-discharge relation for each site by combining the modeled flood flows with the measured stage record, (3) calculate the discharge record for each site using the stage-discharge relation and the measured stage record, and (4) calculate the instantaneous and cumulative sediment loads using the discharge record and suspended-sediment concentrations measured from samples collected with passive US U-59 samplers and ISCOTM pump samplers. This paper presents the design of the gaging network and briefly describes the methods used to calculate discharge and sediment loads. The design and methods herein can easily be used at other remote locations where discharge and sediment loads are required.

  1. Determination and Distribution of Polycyclic Aromatic Hydrocarbons in Rivers, Sediments and Wastewater Effluents in Vhembe District, South Africa

    Directory of Open Access Journals (Sweden)

    Joshua N. Edokpayi

    2016-03-01

    Full Text Available Polycyclic aromatic hydrocarbons are very toxic and persistent environmental contaminants. This study was undertaken to assess the concentrations and possible sources of 16 PAHs (Polycyclic aromatic hydrocarbons classified by the United State Environmental Protection Agency as priority pollutants in water and sediments of the Mvudi and Nzhelele Rivers. Effluents from Thohoyandou wastewater treatment plant and Siloam waste stabilization ponds were also investigated. Diagnostic ratios were used to evaluate the possible sources of PAHs. PAHs in the water samples were extracted using 1:1 dichloromethane and n-hexane mixtures, while those in the sediment samples were extracted with 1:1 acetone and dichloromethane using an ultrasonication method. The extracts were purified using an SPE technique and reconstituted in n-hexane before analyses with a gas chromatograph time of flight—mass spectrometer. The results obtained indicate the prevalence of high molecular weight PAHs in all the samples. PAHs concentrations in water and sediment samples from all the sampling sites were in the range of 13.174–26.382 mg/L and 27.10–55.93 mg/kg, respectively. Combustion of biomass was identified as the major possible source of PAHs. Effluents from wastewater treatment facilities were also considered as major anthropogenic contributions to the levels of PAHs found in both river water and sediments. Mvudi and Nzhelele Rivers show moderate to high contamination level of PAHs.

  2. Residual fluxes of water, salt and suspended sediment in the Beypore Estuary

    Digital Repository Service at National Institute of Oceanography (India)

    AnilKumar, N.; Revichandran, C.; Sankaranarayanan, V.N.; Josanto, V.

    The monthly trends of the residual fluxes of salt and water and the transportation of suspended sediments in the Beypore estuarine system, Kerala, India were examined. At the river mouth the water flux was directed seaward during the postmonsoon...

  3. Concentrations and annual fluxes of sediment-associated chemical constituents from conterminous US coastal rivers using bed sediment data

    Science.gov (United States)

    Horowitz, Arthur J.; Stephens, Verlin C.; Elrick, Kent A.; Smith, James J.

    2012-01-01

    Coastal rivers represent a significant pathway for the delivery of natural and anthropogenic sediment-associated chemical constituents to the Atlantic, Pacific and Gulf of Mexico coasts of the conterminous USA. This study entails an accounting segment using published average annual suspended sediment fluxes with published sediment-associated chemical constituent concentrations for (1) baseline, (2) land-use distributions, (3) population density, and (4) worldwide means to estimate concentrations/annual fluxes for trace/major elements and total phosphorus, total organic and inorganic carbon, total nitrogen, and sulphur, for 131 coastal river basins. In addition, it entails a sampling and subsequent chemical analysis segment that provides a level of ‘ground truth’ for the calculated values, as well as generating baselines for sediment-associated concentrations/fluxes against which future changes can be evaluated. Currently, between 260 and 270 Mt of suspended sediment are discharged annually from the conterminous USA; about 69% is discharged from Gulf rivers (n = 36), about 24% from Pacific rivers (n = 42), and about 7% from Atlantic rivers (n = 54). Elevated sediment-associated chemical concentrations relative to baseline levels occur in the reverse order of sediment discharges:Atlantic rivers (49%)>Pacific rivers (40%)>Gulf rivers (23%). Elevated trace element concentrations (e.g. Cu, Hg, Pb, Zn) frequently occur in association with present/former industrial areas and/or urban centres, particularly along the northeast Atlantic coast. Elevated carbon and nutrient concentrations occur along both the Atlantic and Gulf coasts but are dominated by rivers in the urban northeast and by southeastern and Gulf coast (Florida) ‘blackwater’ streams. Elevated Ca, Mg, K, and Na distributions tend to reflect local petrology, whereas elevated Ti, S, Fe, and Al concentrations are ubiquitous, possibly because they have substantial natural as well as anthropogenic sources

  4. Impact of beaver ponds on river discharge and sediment deposition along the Chevral River, Ardennes, Belgium

    Science.gov (United States)

    Nyssen, Jan; Frankl, Amaury; Pontzeele, Jolien; De Visscher, Maarten; Billi, Paolo

    2013-04-01

    With the recovery of the European beaver (Castor fiber) and their capacity to engineer fluvial landscapes, questions arise as to how they influence river discharge and sediment transport. The Chevral river (Ardennes, Belgium) contains two beaver dam sequences which appeared in 2004 and count now about 30 dams. Flow discharges and sediment fluxes were measured at the in- and outflow of each dam sequence. Volumes of sediment deposited behind the dams were measured. Between 2004 and 2011, peak flows were topped off, and the magnitude of extreme events decreased. 1710 m³ of sediment were deposited behind the beaver dams, with an average sediment thickness of 25 cm. The thickness of the sediment layer is related to the area of the beaver ponds. Along the stream, beaver pond sediment thickness displayed a sinusoidal deposition pattern, in which ponds with thick sediment layers were preceded by a series of ponds with thinner sediment layers. A downstream textural coarsening in the dam sequences was also observed, probably due to dam failures subsequent to surges. Differences in sediment flux between the in- and outflow at the beaver pond sequence were related to the river hydrograph, with deposition taking place during the rising limbs and slight erosion during the falling limbs. The seven-year-old sequences have filtered 190 tons of sediment out of the Chevral river, which is of the same order of magnitude as the 374 tons measured in pond deposits, with the difference between the values corresponding to beaver excavations (60 tons), inflow from small tributaries, and runoff from the valley flanks. Hydrogeomorphic effects of C. fiber and C. canadensis activity are similar in magnitude. The detailed analysis of changes to hydrology in beaver pond sequences confirms the potential of beavers to contribute to river and wetland restoration and catchment management.

  5. Transboundary water issues: The Ganga-Brahmaputra-Meghna River Basin

    International Nuclear Information System (INIS)

    Roy, Debasri; Goswami, A.B.; Bose, Balaram

    2004-01-01

    Sharing of water of transboundary rivers among riparian nations has become a cause of major concern in different parts of the globe for quite sometime. The issue in the recent decades has been transformed into a source of international tensions and disputes resulting in strained relationships between riparian nations. Conflicts over sharing of water of the international rivers, like the Tigris, Euphrates and Jordan in the Middle East, the Nile in Northern Africa, the Mekong in South-East Asia, the Ganga-Brahmaputra-Meghna in the Indian subcontinent are widely known. The present paper discusses the water sharing -issue in the Ganga- Brahmaputra-Meghna basin located in the Indian sub continent covering five sovereign countries (namely India, Nepal, China, Bhutan and Bangladesh). Rapidly growing population, expanding agricultural and industrial activities besides the impacts of climate change have resulted in stressed condition in the arena of fresh water availability in the basin. Again occurrence of arsenic in sub-surface water in the lower reaches of the basin in India and Bangladesh has also added a new dimension to the problem. All the rivers of the GBM system exhibit wide variations between peak and lean flows as major part of the basin belongs to the monsoon region, where 80%-90 % of annual rainfall is concentrated in 4-5 months of South -West monsoon in the subcontinent. Over and above, the rivers in GBM system carry huge loads of sediments along with the floodwater and receive huge quantum of different kinds of wastes contaminating the water of the rivers. Again high rate of sedimentation of the major rivers and their tributaries have been affecting not only the carrying capacity of the rivers but also drastically reduced their retention capacity. Almost every year during monsoon about 27% and nearly 60% of the GBM basin lying in India and Bangladesh respectively experience flood. The year round navigation in many rivers has also been affected. All these have

  6. Modeling biogeochemical processes in sediments from the Rhône River prodelta area (NW Mediterranean Sea

    Directory of Open Access Journals (Sweden)

    L. Pastor

    2011-05-01

    Full Text Available In situ oxygen microprofiles, sediment organic carbon content, and pore-water concentrations of nitrate, ammonium, iron, manganese, and sulfides obtained in sediments from the Rhône River prodelta and its adjacent continental shelf were used to constrain a numerical diagenetic model. Results showed that (1 the organic matter from the Rhône River is composed of a fraction of fresh material associated to high first-order degradation rate constants (11–33 yr−1; (2 the burial efficiency (burial/input ratio in the Rhône prodelta (within 3 km of the river outlet can be up to 80 %, and decreases to ~20 % on the adjacent continental shelf 10–15 km further offshore; (3 there is a large contribution of anoxic processes to total mineralization in sediments near the river mouth, certainly due to large inputs of fresh organic material combined with high sedimentation rates; (4 diagenetic by-products originally produced during anoxic organic matter mineralization are almost entirely precipitated (>97 % and buried in the sediment, which leads to (5 a low contribution of the re-oxidation of reduced products to total oxygen consumption. Consequently, total carbon mineralization rates as based on oxygen consumption rates and using Redfield stoichiometry can be largely underestimated in such River-dominated Ocean Margins (RiOMar environments.

  7. Two-dimensional numerical modelling of sediment and chemical constituent transport within the lower reaches of the Athabasca River.

    Science.gov (United States)

    Kashyap, Shalini; Dibike, Yonas; Shakibaeinia, Ahmad; Prowse, Terry; Droppo, Ian

    2017-01-01

    Flows and transport of sediment and associated chemical constituents within the lower reaches of the Athabasca River between Fort McMurray and Embarrass Airport are investigated using a two-dimensional (2D) numerical model called Environmental Fluid Dynamics Code (EFDC). The river reach is characterized by complex geometry, including vegetated islands, alternating sand bars and an unpredictable thalweg. The models were setup and validated using available observed data in the region before using them to estimate the levels of cohesive sediment and a select set of chemical constituents, consisting of polycyclic aromatic hydrocarbons (PAHs) and metals, within the river system. Different flow scenarios were considered, and the results show that a large proportion of the cohesive sediment that gets deposited within the study domain originates from the main stem upstream inflow boundary, although Ells River may also contribute substantially during peak flow events. The floodplain, back channels and islands in the river system are found to be the major areas of concern for deposition of sediment and associated chemical constituents. Adsorbed chemical constituents also tend to be greater in the main channel water column, which has higher levels of total suspended sediments, compared to in the flood plain. Moreover, the levels of chemical constituents leaving the river system are found to depend very much on the corresponding river bed concentration levels, resulting in higher outflows with increases in their concentration in the bed sediment.

  8. Study of environmental radioactivity in three important Italian rivers using sediment mineral organic detritus indicator

    International Nuclear Information System (INIS)

    Fontana, C.; Aebischer, M.L.; Musumeci, R.G.; Sogni, R.; Borio, R.; Bucci, S.; Giannardi, C.; Magnoni, M.; Margini, G.

    1997-01-01

    When studying radionuclides introduced into the environment because of accidental spillage of radioactive substances from the atmosphere into running water and rivers, as in the accident at Chernobyl, a series of measurements and a knowledge of appropriate indicators are needed in order to best use the information. Radionuclides enter the water in the following way: they fall directly onto the surface of the water and then spread and sink, forming sediment on the river bed. S.M.O.D., sediments mineral organic detritus, is an important matrix for research on contaminants present in running water.This has been demonstrated in Italy where repeated research was done in various portions of the Po River. The studies have shown that S.M.O.D. is a good indicator for many radionuclides, both of fission as in Cs-137, Cs-134, Sb-125, Ru-106, and activation as in Mn-54 and Co-60. S.M.O.D. reveals the spatial radio contamination both of a diffuse source present in the river as in the case of fall-out from the nuclear power plant at Chernobyl or of a specific source as in spillage from a nuclear power plant or from hospital or industrial waste.It has been shown that S.M.O.D. is also an efficient indicator for other kinds of containments like heavy metals and pesticides. The work carried out on three major rivers: the Po, the Arno and the Tiber. (authors)

  9. Development and implications of a sediment budget for the upper Elk River watershed, Humboldt County

    Science.gov (United States)

    Lee H. MacDonald; Michael W. Miles; Shane Beach; Nicolas M. Harrison; Matthew R. House; Patrick Belmont; Ken L. Ferrier

    2017-01-01

    A number of watersheds on the North Coast of California have been designated as sediment impaired under the Clean Water Act, including the 112 km2 upper Elk River watershed that flows into Humboldt Bay just south of Eureka. The objectives of this paper are to: 1) briefly explain the geomorphic context and anthropogenic uses of the Elk River...

  10. On the hydrology and fluvial sediment transport of the proglacial river Riffler Bach (Weißseeferner, Ötztal Alps, Tyrol)

    Science.gov (United States)

    Morche, David; Baewert, Henning; Weber, Martin; Schmidt, Karl-Heinz

    2013-04-01

    The hydrology of proglacial rivers is strongly affected by glacier melting. With ongoing glacier retreat the proportion of glacier meltwater in proglacial rivers is declining over longer time periods. Snow melt or rain fall events will play a more important role as water source. Due to glacial erosion the glacier system is also an important player in the orchestra of sediment sources/processes contributing to proglacial sediment budgets. The consequence of increasing deglaciation is a growing importance of other sediment sources/processes, mainly known as paraglacial, for sediment budgets in glacier forefields. The sediment export out of proglacial areas is mainly done by solid river load. Knowledge on the quantity of the exported sediments is important for reservoir management and torrent control. In order to measure fluvial sediment transport in the catchment area of the Gepatsch reservoir in the Ötztal Alps (Tyrol/Austria) we have installed a gauging station at the proglacial river Riffler Bach in June 2012. The catchment area of this station is about 20 km² with an altitudinal range from 1929 m to 3518 m. The higher altitudes in the southern part of the area are covered by the glacier Weißseeferner. Our station is equipped with an automatic water sampler (AWS 2002) and probes for water level, turbidity and electrical conductivity. All parameters are recorded in 5-15 minute intervals during the ablation period. Discharge is measured with current meters during wadable stages and salt dilution during higher floods. Bed load is measured concurrent to discharge measurements using a Helley-Smith sampler. In 2012, 189 water samples were taken and will be analyzed for suspended sediment concentration and ion content. Additionally, the grain size distribution will be determined using a Malvern laser diffractometer. Rating-curves will be used to calculate discharge from stage recordings. Solid load of the Riffler Bach will be quantified using the discharge data and

  11. Effects of Sediment Chemical Properties on Phosphorus Release Rates in the Sediment-Water Interface of the Steppe Wetlands.

    Science.gov (United States)

    He, Jing; Su, Derong; Lv, Shihai; Diao, Zhaoyan; Xie, Jingjie; Luo, Yan

    2017-11-22

    Rising temperature causes a process of phosphorus release, which can be characterized well using phosphorus release rates (V P ). The objective of the present study was to investigate the major factors affecting sediment phosphorus release rates through a wetland habitat simulation experiment. The results showed that the V P of different wetland sediments were different and changed with the order of W-R (river wetland) > W-L (lake wetland) > W-M (grassy marsh wetland) > W-A (reservoir wetland). The main driving factors which influenced sediment phosphorus flux velocity in the sediment-water interface were sediment B-SO₄ 2- , B-MBN and A-MBP content. Path analysis and determination coefficient analysis indicated the standard multiple regression equation for sediment phosphorus release rates in the sediment-water interface, and each main factor was Y = -0.105 + 0.096X₁ + 0.275X₂ - 0.010X₃ ( r = 0.416, p phosphorus release rates; X₁ is sediment B-SO₄ 2- content; X₂ is sediment B-MBN; and X₃ is sediment A-MBP content. Sediment B-SO₄ 2- , B-MBN and A-MBP content and the interaction between them were the main factors affecting sediment phosphorus release rates in the sediment-water interface. Therefore, these results suggest that soil chemical properties and microbial activities likely play an important role in phosphorus release rates in the sediment-water interface. We hope to provide effective scientific management and control methods for relevant environmental protection departments.

  12. Suspended sediment load in the tidal zone of an Indonesian river

    Directory of Open Access Journals (Sweden)

    F. A. Buschman

    2012-11-01

    Full Text Available Forest clearing for reasons of timber production, open pit mining and the establishment of oil palm plantations generally results in excessively high sediment loads in tropical rivers. The increasing sediment loads pose a threat to coastal marine ecosystems, such as coral reefs. This study presents observations of suspended sediment loads in the Berau River (Kalimantan, Indonesia, which debouches into a coastal ocean that is a preeminent center of coral diversity. The Berau River is relatively small and drains a mountainous, still relatively pristine basin that receives abundant rainfall. In the tidal zone of the Berau River, flow velocity was measured over a large part of the river width using a horizontal acoustic Doppler current profiler (HADCP. Surrogate measurements of suspended sediment concentration were taken with an optical backscatter sensor (OBS. Averaged over the 6.5 weeks covered by the benchmark survey period, the suspended sediment load was estimated at 2 Mt yr−1. Based on rainfall-runoff modeling though, the river discharge peak during the survey was supposed to be moderate and the yearly averaged suspended sediment load is most likely somewhat higher than 2 Mt yr−1. The consequences of ongoing clearing of rainforest were explored using a plot-scale erosion model. When rainforest, which still covered 50–60% of the basin in 2007, is converted to production land, soil loss is expected to increase with a factor between 10 and 100. If this soil loss is transported seaward as suspended sediment, the increase in suspended sediment load in the Berau River would impose a severe stress on this global hotspot of coral reef diversity.

  13. The geochemistry of coprostanol in waters and surface sediments from Narragansett Bay

    Science.gov (United States)

    LeBlanc, Lawrence A.; Latimer, James S.; Ellis, John T.; Quinn, James G.

    1992-05-01

    A geochemical study of coprostanol (5β-Cholestan-3β-ol) was undertaken, to examine the transport and fate of a compound of moderate polarity and reactivity in the marine environment, and also because of the interest in coprostanol for use as a sewage tracer. During 1985-86, 20 sites in Narragansett Bay, including the major point sources and rivers discharging into the bay estuary, were sampled at four different times. In addition, surface sediments from 26 stations in the bay were collected. The large number and diversity of samples allowed for an assessment of major inputs of sewage into the bay as well as the recent fate of sewage-derived particles in surface sediments. Results from the study revealed that 50% of the total particulate coprostanol entering the bay was discharged into the Providence River, primarily due to inputs from the wastewater treatment facility (WWTF) at Fields Point, as well as input from the Pawtuxet and Blackstone Rivers. In the lower bay, the Newport WWTF was the largest single source of coprostanol (37% of the total particulate coprostanol) to the bay. Effluent concentrations of coprostanol from secondary WWTFs were consistently lower than those of primary treatment facilities, demonstrating the usefulness of corporstanol as an indicator of treatment plant efficiency. The distribution of coprostanol in waters and surface sediments showed a gradient of decreasing concentration downbay. When coprostanol concentrations in surface sediments were normalized to organic carbon (OC) concentrations, elevated levels were seen only in the Providence River, with a more or less even distribution throughout the rest of the bay. Results also suggest that coprostanol degrades more rapidly in the water column compared to the petroleum hydrocarbons (PHCs), polychlorinated biphenyls (PCBs) and polycyclic aromatic hydrocarbons (PAHs), however, it is relatively stable once it is buried in the sediments. Coprostanol concentrations in waters (0·02-0·22

  14. Characteristics of water, sediment, and benthic communities of the Wolf River, Menominee Indian Reservation, Wisconsin, water years 1986-98

    Science.gov (United States)

    Garn, Herbert S.; Scudder, Barbara C.; Richards, Kevin D.; Sullivan, Daniel J.

    2001-01-01

    Analyses and interpretation of water quality, sediment, and biological data from water years 1986 through 1998 indicated that land use and other human activities have had only minimal effects on water quality in the Wolf River upstream from and within the Menominee Indian Reservation in northeastern Wisconsin. Relatively high concentrations of calcium and magnesium (natural hardness), iron, manganese, and aluminum were measured in Wolf River water samples during water years 1986?98 from the three sampled sites and attributed to presence of highly mineralized geologic materials in the basin. Average calcium and magnesium concentrations varied from 22?26 milligrams per liter (mg/L) and 11?13 mg/L, respectively. Average iron concentrations ranged from 290?380 micrograms per liter (?g/L); average manganese concentrations ranged from 53?56 mg/L. Average aluminum concentrations ranged from 63?67 ?g/L. Mercury was present in water samples but concentrations were not at levels of concern. Levels of Kjeldahl nitrogen, ammonia, nitrite plus nitrate, total phosphorus, and orthophosphorus in water samples were often low or below detection limits (0.01? 0.10 mg/L). Trace amounts of atrazine (maximum concentration of 0.031 ?g/L), deethylatrazine (maximum 0.032 ?g/L), and alachlor (maximum of 0.002 ?g/L) were detected. Low concentrations of most trace elements were found in streambed sediment. Tissues of fish and aquatic invertebrates collected once each year from 1995 through 1998 at the Langlade and Keshena sites, near the northern and southern boundaries of the Reservation, respectively, were low in concentrations of most trace elements. Arsenic and silver in fish livers from both sites were less than or equal to 2 ?g/g arsenic and less than 1 ?g/g silver for dry weight analysis, and concentrations of antimony, beryllium, cadmium, cobalt, lead, nickel, and uranium were all below detection limits (less than 1 ?g/g dry weight). Concentrations of most other trace elements in fish

  15. Trends in suspended-sediment loads and concentrations in the Mississippi River Basin, 1950–2009

    Science.gov (United States)

    Heimann, David C.; Sprague, Lori A.; Blevins, Dale W.

    2011-01-01

    Trends in loads and concentrations of suspended sediment and suspended sand generally were downward for stations within the Mississippi River Basin during the 60-, 34-, and 12-year periods analyzed. Sediment transport in the lower Mississippi River has historically been, and continues to be, most closely correlative to sediment contributions from the Missouri River, which generally carried the largest annual suspended-sediment load of the major Mississippi River subbasins. The closure of Fort Randall Dam in the upper Missouri River in 1952 was the single largest event in the recorded historical decline of suspended-sediment loads in the Mississippi River Basin. Impoundments on tributaries and sediment reductions as a result of implementation of agricultural conservation practices throughout the basin likely account for much of the remaining Mississippi River sediment transport decline. Scour of the main-stem channel downstream from the upper Missouri River impoundments is likely the largest source of suspended sand in the lower Missouri River. The Ohio River was second to the Missouri River in terms of sediment contributions, followed by the upper Mississippi and Arkansas Rivers. Declines in sediment loads and concentrations continued through the most recent analysis period (1998–2009) at available Mississippi River Basin stations. Analyses of flow-adjusted concentrations of suspended sediment indicate the recent downward temporal changes generally can be explained by corresponding decreases in streamflows.

  16. Source identification of fine-grained suspended sediment in the Kharaa River basin, northern Mongolia

    Energy Technology Data Exchange (ETDEWEB)

    Theuring, Philipp [Department of Aquatic Ecosystem Analysis and Management — ASAM, Helmholtz Centre for Environmental Research — UFZ, Brückstrasse 3a, D-39114 Magdeburg (Germany); Collins, Adrian L. [Sustainable Soils and Grassland Systems Department, Rothamsted Research, North Wyke, Okehampton, Devon EX20 2SB (United Kingdom); Rode, Michael [Department of Aquatic Ecosystem Analysis and Management — ASAM, Helmholtz Centre for Environmental Research — UFZ, Brückstrasse 3a, D-39114 Magdeburg (Germany)

    2015-09-01

    Fine sediment inputs into river systems can be a major source of nutrients and heavy metals and have a strong impact on water quality and ecosystem functions of rivers and lakes, including those in semiarid regions. However, little is known to date about the spatial distribution of sediment sources in most large scale river basins in Central Asia. Accordingly, a sediment source fingerprinting technique was used to assess the spatial sources of fine-grained (< 10 μm) sediment in the 15 000 km{sup 2} Kharaa River basin in northern Mongolia. Variation in geochemical composition (e.g. in Ti, Sn, Mo, Mn, As, Sr, B, U, Ca and Sb) was used for sediment source discrimination with geochemical composite fingerprints based on Genetic Algorithm (GA)-driven Discriminant Function Analysis, the Kruskal–Wallis H-test and Principal Component Analysis. All composite fingerprints yielded a satisfactory GOF (> 0.97) and were subsequently used for numerical mass balance modelling with uncertainty analysis. The contributions of the individual sub-catchment spatial sediment sources varied from 6.4% (the headwater sub-catchment of Sugnugur Gol) to 36.2% (the Kharaa II sub-catchment in the middle reaches of the study basin), generally showing higher contributions from the sub-catchments in the middle, rather than the upstream, portions of the study area. The importance of river bank erosion is shown to increase from upstream to midstream tributaries. The source tracing procedure provides results in reasonable accordance with previous findings in the study region and demonstrates the applicability and associated uncertainties of the approach for fine-grained sediment source investigation in large scale semi-arid catchments. - Highlights: • Applied statistical approach for selecting composite fingerprints in Mongolia. • Geochemical fingerprinting for the definition of source areas in semiarid catchment. • Test of applicability of sediment sourcing in large scale semi-arid catchments

  17. Application of hierarchical Bayesian unmixing models in river sediment source apportionment

    Science.gov (United States)

    Blake, Will; Smith, Hugh; Navas, Ana; Bodé, Samuel; Goddard, Rupert; Zou Kuzyk, Zou; Lennard, Amy; Lobb, David; Owens, Phil; Palazon, Leticia; Petticrew, Ellen; Gaspar, Leticia; Stock, Brian; Boeckx, Pacsal; Semmens, Brice

    2016-04-01

    Fingerprinting and unmixing concepts are used widely across environmental disciplines for forensic evaluation of pollutant sources. In aquatic and marine systems, this includes tracking the source of organic and inorganic pollutants in water and linking problem sediment to soil erosion and land use sources. It is, however, the particular complexity of ecological systems that has driven creation of the most sophisticated mixing models, primarily to (i) evaluate diet composition in complex ecological food webs, (ii) inform population structure and (iii) explore animal movement. In the context of the new hierarchical Bayesian unmixing model, MIXSIAR, developed to characterise intra-population niche variation in ecological systems, we evaluate the linkage between ecological 'prey' and 'consumer' concepts and river basin sediment 'source' and sediment 'mixtures' to exemplify the value of ecological modelling tools to river basin science. Recent studies have outlined advantages presented by Bayesian unmixing approaches in handling complex source and mixture datasets while dealing appropriately with uncertainty in parameter probability distributions. MixSIAR is unique in that it allows individual fixed and random effects associated with mixture hierarchy, i.e. factors that might exert an influence on model outcome for mixture groups, to be explored within the source-receptor framework. This offers new and powerful ways of interpreting river basin apportionment data. In this contribution, key components of the model are evaluated in the context of common experimental designs for sediment fingerprinting studies namely simple, nested and distributed catchment sampling programmes. Illustrative examples using geochemical and compound specific stable isotope datasets are presented and used to discuss best practice with specific attention to (1) the tracer selection process, (2) incorporation of fixed effects relating to sample timeframe and sediment type in the modelling

  18. Role of river flow and sediment mobilization in riparian alder establishment along a bedrock-gravel river, South Fork Eel River, California

    Science.gov (United States)

    Jablkowski, P.; Johnson, E. A.; Martin, Y. E.

    2017-10-01

    Climatic, hydraulics, hydrologic, and fluvial geomorphic processes are the main drivers of riparian white alder (Alnus rhombifolia Nutt.) distribution in northern California. The Mediterranean climate and canyon bound, bedrock-gravel morphology of the South Fork Eel have a distinct effect on these processes. White alder seeds are preferentially deposited on river bars where river hydraulics create eddies coinciding with the downstream part of riffles and the upstream part of pools. Seeds are generally deposited below bankfull elevations by the descending hydrograph during the spring season in this Mediterranean climate. For successful germination and establishment, the seeds must be deposited at a location such that they are not remobilized by late spring flows. The summer establishment period is defined from the date of seed deposition and germination to the fall/winter date of river sediment mobilization. Seedling root growth rate decreases exponentially with decreasing water potential. However, seedlings are shown not to be generally limited by water availability at the elevations they are most commonly deposited. The establishment of white alder seedlings following the first summer will therefore depend on their ability to resist fall/winter high flows. The method proposed here compares the predicted rooting depth to predicted sediment scour rates. The length of the establishment period rather than water availability determines final seedling rooting depth. Over the past 40 years, very few years had establishment periods that were long enough or had fast enough alder growth rates to survive winter floods that often scour deeper than the total root length. The low survival of seedlings in the first autumn season following germination is believed to be a principal reason for the missing age classes often found in alder distributions along rivers.

  19. Sedimentation under variable shear stress at lower reach of the Rupnarayan River, West Bengal, India

    Directory of Open Access Journals (Sweden)

    Swapan Kumar Maity

    2017-04-01

    Full Text Available The lower reach of the Rupnarayan River has been deteriorated and incapacitated due to continuous sedimentation (26.57 million m3 shoaling in last 25 years. Attempts have been made to explain the causes and mechanisms of sedimentation in connection to the seasonal fluctuation of shear stress. River depth and water velocity was measured by echo-sounder and current meter respectively. Textural analysis of grains was done by sieving technique. Available and critical shear stress (N/m2 have been calculated following Du Boys (1879, Shield (1936 and Van Ledden (2003 formula. The lack of available energy to transport a particular grain size during low tide (in dry season is the main reason behind the rapid sedimentation in this area. Most of the places (>75% having negative deviation of shear stress (available shear stress lesser than critical shear stress, during low tide are characterized by deposition of sediments. The presence of mud (silt and clay above the critical limit (15% in some of the sediment samples generates the cohesive property, restricts sediments entrainment and invites sedimentation.

  20. Natural radioactivity in stream sediments of Oltet River, Romania

    Science.gov (United States)

    Ion, Adriana

    2017-04-01

    The concentration of naturally occurring radionuclides (U-238, Th-232 and K-40) in stream sediments of the Oltet River was measured in order to establish the primary sources of radionuclides, the transport pathways and the geochemical factors favouring their mobilisation and concentration in the existing geological context. The Oltet River has a length of 185 Km and crosses the southern central part of the country, being the right tributary of the Olt River. The range in elevation of the watercourse varies between 1963 m in the springs area (Parîng Mountains) and 200 m at the confluence with the Olt River, whereas the relief of the Oltet Basin has a varied character, manifested by the presence of diverse forms of relief, starting with major mountainous heights and ending with low-lying plains regions. In cross section from North to South, the Olteț River cuts metamorphic rocks (schist, gneisses, quartzite, marble, mica-schist's), magmatic rocks (granite and granitoid massifs - intruded by veins of microgranite, aplite, pegmatite and lamprophyre) and limestone, followed by deposits composed of clays, marls, sands and gravels, that are characterized by the presence of lignite seams. 44 stream sediment samples were collected in summer of 2016 from sampling points distributed along the river with an equidistance of about 4 - 5 km. The activity concentrations of the U-238, Th-232 and K-40 were measured by gamma ray spectrometry using HPGe detector (ORTEC) with 26% relative efficiency in multilayer shielding. The reference materials used were IAEA - RGK-1 and IAEA - 314. Analysis was performed on the features, the mechanical degradation of the rocks overcomes their chemical decomposition. In the middle part of the river as result of almost abrupt passage between mountain and hilly terrains increases and concentration of radionuclides; effect of large quantities of clastic material deposited by torrents. The mechanical migration of resistant uranium, thorium and

  1. Geochemical characterisation of Elbe river high flood sediments

    Energy Technology Data Exchange (ETDEWEB)

    Krueger, F. [UFZ - Umweltforschungszentrum Leipzig-Halle GmbH, Falkenberg (Germany). Sektion Boden-/Gewaesserforschung]|[UFZ - Umweltforschungszentrum Leipzig-Halle GmbH, Magdeburg (Germany). Sektion Gewaesserforschung; Rupp, H.; Meissner, R. [UFZ - Umweltforschungszentrum Leipzig-Halle GmbH, Falkenberg (Germany). Sektion Boden-/Gewaesserforschung; Lohse, M.; Buettner, O.; Friese, K. [UFZ - Umweltforschungszentrum Leipzig-Halle GmbH, Magdeburg (Germany). Sektion Gewaesserforschung; Miehlich, G. [Hamburg Univ. (Germany). Inst. fuer Bodenkunde

    2001-07-01

    Quality aims for land usage in flood plains have to be worked out in the Russian-German research project 'Effects of floods on the pollution of agricultural used flood plain soils of the Oka River and the Elbe River'. It is financed by the Germany Ministry of Education and Research (FKZ 02 WT 9617/0). Beside the characterisation of the present pollution of soils for the middle Elbe, it is necessary to prognosticate the current pollutant input. At the examination site nearby Wittenberge, Elbe River kilometers 435 and 440, natural deposited flood sediments were sampled by artificial lawn mats. By the geochemical characterisation it is possible to record the metal input into the flood plain and to win knowledge about the sedimentation process. The results of sediment investigation of the high flood in spring 1997 are presented. (orig.)

  2. Understanding transport pathways in a river system - Monitoring sediments contaminated by an incident

    Science.gov (United States)

    Dietrich, S.; Kleisinger, C.; Hillebrand, G.; Claus, E.; Schwartz, R.; Carls, I.; Winterscheid, A.; Schubert, B.

    2016-12-01

    Experiments to trace transport of sediments and suspended particulate matter on a river scale are an expensive and difficult venture, since it causes a lot of official requirements. In spring 2015, polychlorinated biphenyls (PCB) were released during restoration works at a bridge in the upper part of the Elbe River, near the Czech-German border. In this study, the particle-bound PCB-transport is applied as a tracer for monitoring transport pathways of suspended solids (SS) along a whole river stretch over 700 km length. The incident was monitored by concentration measurements of seven indicator PCB congeners along the inland part of the Elbe River as well as in the Elbe estuary. Data from 15 monitoring stations (settling tanks) as well as from two longitudinal campaigns (grab samples) along the river in July and August 2015 are considered. The total PCB load is calculated for all stations on the basis of monthly contaminant concentrations and daily suspended sediment concentrations. Monte-Carlo simulations assess the uncertainties of the calculated load. 1D water levels and GIS analysis were used to locate temporal storage areas for the SS. It is shown that the ratio of high versus low chlorinated PCB congeners is a suitable tracer to distinguish the PCB load of the incident from the long-term background signal. Furthermore, the reduction of total PCB load within the upper Elbe indicates that roughly 24% of the SS were transported with the water by wash load. Approximately 600 km downstream of the incident site, the PCB-marked wash load was first identified in July 2015. PCB load transported intermittently in suspension was detected roughly 400 km downstream of the incident site by August 2015. In the Elbe Estuary, PCB-marked SS were only found upstream of the steep slope of water depth (approx. 4 to 15 m) within Hamburg harbor that acts as a major sediment sink. Here, SS from the inland Elbe are mixed with lowly contaminated marine material, which may mask the

  3. Pu and 137Cs in the Yangtze River estuary sediments: distribution and source identification.

    Science.gov (United States)

    Liu, Zhiyong; Zheng, Jian; Pan, Shaoming; Dong, Wei; Yamada, Masatoshi; Aono, Tatsuo; Guo, Qiuju

    2011-03-01

    Pu isotopes and (137)Cs were analyzed using sector field ICP-MS and γ spectrometry, respectively, in surface sediment and core sediment samples from the Yangtze River estuary. (239+240)Pu activity and (240)Pu/(239)Pu atom ratios (>0.18) shows a generally increasing trend from land to sea and from north to south in the estuary. This spatial distribution pattern indicates that the Pacific Proving Grounds (PPG) source Pu transported by ocean currents was intensively scavenged into the suspended sediment under favorable conditions, and mixed with riverine sediment as the water circulated in the estuary. This process is the main control for the distribution of Pu in the estuary. Moreover, Pu is also an important indicator for monitoring the changes of environmental radioactivity in the estuary as the river basin is currently the site of extensive human activities and the sea level is rising because of global climate changes. For core sediment samples the maximum peak of (239+240)Pu activity was observed at a depth of 172 cm. The sedimentation rate was estimated on the basis of the Pu maximum deposition peak in 1963-1964 to be 4.1 cm/a. The contributions of the PPG close-in fallout Pu (44%) and the riverine Pu (45%) in Yangtze River estuary sediments are equally important for the total Pu deposition in the estuary, which challenges the current hypothesis that the riverine Pu input was the major source of Pu budget in this area.

  4. Coastal change from a massive sediment input: Dam removal, Elwha River, Washington, USA

    Science.gov (United States)

    Warrick, Jonathan A.; Gelfenbaum, Guy R.; Stevens, Andrew; Miller, Ian M.; Kaminsky, George M.; Foley, Melissa M.

    2015-01-01

    The removal of two large dams on the Elwha River, Washington, provides an ideal opportunity to study coastal morphodynamics during increased sediment supply. The dam removal project exposed ~21 million cubic meters (~30 million tonnes) of sediment in the former reservoirs, and this sediment was allowed to erode by natural river processes. Elevated rates of sand and gravel sediment transport in the river occurred during dam removal. Most of the sediment was transported to the coast, and this renewed sediment supply resulted in hundreds of meters of seaward expansion of the river delta since 2011. Our most recent survey in January 2015 revealed that a cumulative ~3.5 million m3 of sediment deposition occurred at the delta since the beginning of the dam removal project, and that aggradation had exceeded 8 m near the river mouth. Some of the newly deposited sediment has been shaped by waves and currents into a series of subaerial berms that appear to move shoreward with time.

  5. Environmental and ecological water requirement of river system: a case study of Haihe-Luanhe river system

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    In order to reduce the environmental and ecological problems induced by water resources development and utilization, this paper proposes a concept of environmental and ecological water requirement. It is defined as the minimum water amount to be consumed by the natural water bodies to conserve its environmental and ecological functions. Based on the definition, the methods on calculating the amount of environmental and ecological water requirement are determined. In the case study on Haihe-Luanhe river system, the water requirement is divided into three parts, i.e., the basic in-stream flow, water requirement for sediment transfer and water consumption by evaporation of the lakes or everglades. The results of the calculation show that the environmental and ecological water requirement in the river system is about 124×108 m3, including 57×108 m3 for basic in-stream flow, 63×108m3 for sediment transfer and 4×l08m3 for net evaporation loss of lakes. The total amount of environmental and ecological water requirement accounts for 54% of the amount of runoff (228×108 m3). However, it should be realized that the amount of environmental and ecological water requirement must be more than that we have calculated. According to this result, we consider that the rational utilization rate of the runoff in the river systems must not be more than 40%. Since the current utilization rate of the river system, which is over 80%, has been far beyond the limitation, the problems of environment and ecology are quite serious. It is imperative to control and adjust water development and utilization to eliminate the existing problems and to avoid the potential ecological or environmental crisis.

  6. ASSESSMENT OF HEAVY METALS CONTENTS IN BOTTOM SEDIMENTS OF BUG RIVER

    Directory of Open Access Journals (Sweden)

    Elżbieta Skorbiłowicz

    2014-07-01

    Full Text Available The development of industry, agriculture, and transport contributes to an increased environmental pollution by heavy metals. The aim of the study was preliminary assessment of the contents of selected metals (lead, cobalt, copper, chromium, cadmium and nickel in the sediments of Bug river. The study comprised part of the river flowing through Poland. It was found that the Bug river sediments are not contaminated in respect to the content of tested metals. Based on the analysis of the study results, these metals can be lined up in the following order: Cr > Pb > Cu > Ni > Co > Cd. Statistical analysis showed that copper and chromium occur in Bug river sediments in forms bindings with organic matter in majority of cases. The granulometric analysis of sediments from Bug river revealed the largest percentage of two fractions: 1.0–0.2 mm with average of 47.7 ± 19.77% and 0.2–0.1 mm with average of 20.6 ± 7.7%. These are the dominant fractions with the accumulation of metals in river sediments, which has been confirmed by statistical analysis.

  7. Using high-resolution suspended-sediment measurements to infer changes in the topographic distribution and grain size of bed sediment in the Colorado River downstream from Glen Canyon Dam

    Science.gov (United States)

    Topping, D. J.; Rubin, D. M.; Melis, T. S.; Wright, S. A.

    2004-12-01

    Eddy sandbars and other sandy deposits in and along the Colorado River in Grand Canyon National Park (GCNP) were an integral part of the pre-dam riverscape, and are still important for habitat, protection of archeological sites, and recreation. Recent work has shown that eddy bars are dynamic landforms and represent the bulk of the ecosystem's sand reserves. These deposits began eroding following the 1963 closure of Glen Canyon Dam that reduced the supply of sand at the upstream boundary of GCNP by about 94% and are still eroding today. Sand transport in the post-dam river is limited by episodic resupply from tributaries, and is equally regulated by the discharge of water and short-term changes in the grain size of sand available for transport (Rubin and Topping, WRR, 2001). During tributary floods, sand on the bed of the Colorado River fines; this causes the suspended sand to fine and the suspended-sand concentration to increase even when the discharge of water remains constant. Subsequently, the bed is winnowed of finer sand, the suspended sand coarsens, and the suspended-sand concentration decreases independently of discharge. This prohibits the computation of sand-transport rates in the Colorado River using stable relations between water discharge and sand transport (i.e., sediment rating curves) and requires a more continuous method for measuring sand transport. To monitor suspended sediment at higher (i.e., 15-minute) resolutions, we began testing a laser-acoustic system at four locations along the Colorado River in Grand Canyon in August 2002. Because they are much easier to acquire, the high-resolution suspended-sediment datasets collected using the laser-acoustic systems greatly outnumber (by >5 orders of magnitude) direct grain-size measurements of the upstream bed sediment. Furthermore, suspension processes effectively provide an average "sample" of the bed sediment on the perimeter of the upstream channel and the underwater portions of the banks and

  8. Radioactivity measurement in soils, sediments and water from Salihli Basin, western Turkey

    International Nuclear Information System (INIS)

    Bakac, M.; Kumru, M.N.

    2001-01-01

    Full text: Salihli Basin (about 3500 km 2 ), which is located latitude 38 deg 25' - 38 deg 35' North and longitude 27 deg 58' - 28 deg 25' East, is found on the river of Gediz the second longest river in Aegean Sea. The Gediz river originates in the vicinity of Murat Mountain and flows into the Aegean Sea in western Turkey. Gediz river carries industry effluents and mine discharges frequently inundates its flood plains. Salihli Basin is also one of the flood plain basins which has these properties The bedrock structure of the basin is composed mainly of metamorphic and volcanic rocks of the Palaeozoic, Mesozoic and Neogene ages. Uranium deposits in the Koprubasi area (Salihli Basin) of western Turkey occur in fluvial sedimentary rocks, which Lire underlaid by high-grade metamorphic rocks of the Menderes Massif. In the present study, soil, sediment and water samples were collected from the basin, its environment and riverbank. Sediment and soil samples were analysed for uranium, thorium and potassium by gamma-spectroscopy method; for radium by collector chamber method. Water samples were analysed for radium by collector chamber method. Moreover, groundwaters and streams' soils, sediments and waters within the basin were analysed for above natural radioactive elements. The objective of this, study is to determine the level of natural radioactivity in Salihli Basin. Uranium, thorium, potassium und radium concentrations and their frequency distributions were plotted graphically

  9. A Coupled Model of the 1D River Network and 3D Estuary Based on Hydrodynamics and Suspended Sediment Simulation

    Directory of Open Access Journals (Sweden)

    Wei Zhang

    2014-01-01

    Full Text Available River networks and estuaries are very common in coastal areas. Runoff from the upper stream interacts with tidal current from open sea in these two systems, leading to a complex hydrodynamics process. Therefore, it is necessary to consider the two systems as a whole to study the flow and suspended sediment transport. Firstly, a 1D model is established in the Pearl River network and a 3D model is applied in its estuary. As sufficient mass exchanges between the river network and its estuary, a strict mathematical relationship of water level at the interfaces can be adopted to couple the 1D model with the 3D model. By doing so, the coupled model does not need to have common nested grids. The river network exchanges the suspended sediment with its estuary by adding the continuity conditions at the interfaces. The coupled model is, respectively, calibrated in the dry season and the wet season. The results demonstrate that the coupled model works excellently in simulating water level and discharge. Although there are more errors in simulating suspended sediment concentration due to some reasons, the coupled model is still good enough to evaluate the suspended sediment transport in river network and estuary systems.

  10. Relations of water-quality constituent concentrations to surrogate measurements in the lower Platte River corridor, Nebraska, 2007 through 2011

    Science.gov (United States)

    Schaepe, Nathaniel J.; Soenksen, Philip J.; Rus, David L.

    2014-01-01

    The lower Platte River, Nebraska, provides drinking water, irrigation water, and in-stream flows for recreation, wildlife habitat, and vital habitats for several threatened and endangered species. The U.S. Geological Survey (USGS), in cooperation with the Lower Platte River Corridor Alliance (LPRCA) developed site-specific regression models for water-quality constituents at four sites (Shell Creek near Columbus, Nebraska [USGS site 06795500]; Elkhorn River at Waterloo, Nebr. [USGS site 06800500]; Salt Creek near Ashland, Nebr. [USGS site 06805000]; and Platte River at Louisville, Nebr. [USGS site 06805500]) in the lower Platte River corridor. The models were developed by relating continuously monitored water-quality properties (surrogate measurements) to discrete water-quality samples. These models enable existing web-based software to provide near-real-time estimates of stream-specific constituent concentrations to support natural resources management decisions. Since 2007, USGS, in cooperation with the LPRCA, has continuously monitored four water-quality properties seasonally within the lower Platte River corridor: specific conductance, water temperature, dissolved oxygen, and turbidity. During 2007 through 2011, the USGS and the Nebraska Department of Environmental Quality collected and analyzed discrete water-quality samples for nutrients, major ions, pesticides, suspended sediment, and bacteria. These datasets were used to develop the regression models. This report documents the collection of these various water-quality datasets and the development of the site-specific regression models. Regression models were developed for all four monitored sites. Constituent models for Shell Creek included nitrate plus nitrite, total phosphorus, orthophosphate, atrazine, acetochlor, suspended sediment, and Escherichia coli (E. coli) bacteria. Regression models that were developed for the Elkhorn River included nitrate plus nitrite, total Kjeldahl nitrogen, total phosphorus

  11. Annual suspended-sediment loads in the Colorado River near Cisco, Utah, 1930-82

    Science.gov (United States)

    Thompson, K.R.

    1985-01-01

    The Colorado River upstream of gaging station 09180500 near Cisco, Utah, drains about 24,100 square miles in Utah and Colorado. Altitudes in the basin range from 12,480 feet near the headwaters to 4,090 feet at station 09180500. The average annual precipitation for 1894-1982 near the station was 7.94 inches. The average annual precipitation near the headwaters often exceeds 50 inches. Rocks ranging in age from Precambrian to Holocene are exposed in the drainage basin upstream from station 09180500. Shale, limestone, siltstone, mudstone, and sandstone probably are the most easily eroded rocks in the basin, and they contribute large quantities of sediment to the Colorado River. During 1930-82, the U.S. Geological Survey collected records of fluvial sediment at station 09180500. Based on these records, the mean annual suspended-sediment load was 11,390,000 tone, ranging from 2,038,000 tons in water year 1981 to 35,700,000 tons in water year 1938. The minimum daily load of 14 tons was on August 22, 1960, and the maximum daily load of 2,790,000 tons was on October 14, 1941. (USGS)

  12. Nematode communities in contaminated river sediments

    International Nuclear Information System (INIS)

    Heininger, Peter; Hoess, Sebastian; Claus, Evelyn; Pelzer, Juergen; Traunspurger, Walter

    2007-01-01

    Nematode communities of eight sites from three river catchments were investigated in terms of the genera composition, feeding types, and life-history strategists. The sampling sites showed a gradient of anthropogenic contamination with heavy metals and organic pollutants being important factors in differentiating the sites. Nematode community structure was related to sediment pollution and the hydro-morphological structure of the sampling sites. Heavily contaminated sites were characterized by communities with high relative abundances of omnivorous and predacious nematodes (Tobrilus, c-p 3; Mononchus, c-p 4), while sites with low to medium contamination were dominated by bacterivorous nematodes (Monhystera, Daptonema; c-p 2) or suction feeders (Dorylaimus, c-p 4). The relatively high Maturity Index values in the heavily polluted sites were surprising. Nematodes turned out to be a suitable organism group for monitoring sediment quality, with generic composition being the most accurate indicator for assessing differences in nematode community structure. - Nematode community structure of river sediments is related to pollution and site structure

  13. Nematode communities in contaminated river sediments

    Energy Technology Data Exchange (ETDEWEB)

    Heininger, Peter [Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068 Koblenz (Germany); Hoess, Sebastian [Ecossa - Ecological Sediment and Soil Assessment, Thierschstr. 43, 80538 Munich (Germany); Claus, Evelyn [Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068 Koblenz (Germany); Pelzer, Juergen [Federal Institute of Hydrology (BfG), Am Mainzer Tor 1, 56068 Koblenz (Germany); Traunspurger, Walter [University of Bielefeld, Department of Animal Ecology, Morgenbreede 45, 33615 Bielefeld (Germany)]. E-mail: traunspurger@uni-bielefeld.de

    2007-03-15

    Nematode communities of eight sites from three river catchments were investigated in terms of the genera composition, feeding types, and life-history strategists. The sampling sites showed a gradient of anthropogenic contamination with heavy metals and organic pollutants being important factors in differentiating the sites. Nematode community structure was related to sediment pollution and the hydro-morphological structure of the sampling sites. Heavily contaminated sites were characterized by communities with high relative abundances of omnivorous and predacious nematodes (Tobrilus, c-p 3; Mononchus, c-p 4), while sites with low to medium contamination were dominated by bacterivorous nematodes (Monhystera, Daptonema; c-p 2) or suction feeders (Dorylaimus, c-p 4). The relatively high Maturity Index values in the heavily polluted sites were surprising. Nematodes turned out to be a suitable organism group for monitoring sediment quality, with generic composition being the most accurate indicator for assessing differences in nematode community structure. - Nematode community structure of river sediments is related to pollution and site structure.

  14. Simulation of relationship between river discharge and sediment yield in the semi-arid river watersheds

    Science.gov (United States)

    Khaleghi, Mohammad Reza; Varvani, Javad

    2018-02-01

    Complex and variable nature of the river sediment yield caused many problems in estimating the long-term sediment yield and problems input into the reservoirs. Sediment Rating Curves (SRCs) are generally used to estimate the suspended sediment load of the rivers and drainage watersheds. Since the regression equations of the SRCs are obtained by logarithmic retransformation and have a little independent variable in this equation, they also overestimate or underestimate the true sediment load of the rivers. To evaluate the bias correction factors in Kalshor and Kashafroud watersheds, seven hydrometric stations of this region with suitable upstream watershed and spatial distribution were selected. Investigation of the accuracy index (ratio of estimated sediment yield to observed sediment yield) and the precision index of different bias correction factors of FAO, Quasi-Maximum Likelihood Estimator (QMLE), Smearing, and Minimum-Variance Unbiased Estimator (MVUE) with LSD test showed that FAO coefficient increases the estimated error in all of the stations. Application of MVUE in linear and mean load rating curves has not statistically meaningful effects. QMLE and smearing factors increased the estimated error in mean load rating curve, but that does not have any effect on linear rating curve estimation.

  15. Determination of elements in cisadane river sediments by neutron activation analysis

    International Nuclear Information System (INIS)

    Kamarz, H.

    1997-01-01

    Determination of elements in Cisadane river sediments by neutron activation analysis has been conducted. Samples of sediments were obtained from some location along Cisadane river, i.e. Leuranji, Karanggan, Cibigo, Cisauk, Warung Mangga Pintu Air and Estuary Teluk Naga. the elements analysed were Al, Mn, Mg, V, K, Na, Fe, Cr, Co, U and Zn, and the results were compared to the SRM of sediment sample from IAEA. Generally, the results showed that the mean concentration of elements were found in Cibogo, Cisauk, Pintu Air and Muara Teluk Naga which were higher than others. Concentration factor of elements in sediments were in between of 0,02 - 3,45, this factor indicated that Cisadane river sediments have not been contaminated. CRM sediments 2704 from IAEA used as NAA Quality Control (author)

  16. Nitrogen and Organics Removal during Riverbank Filtration along a Reclaimed Water Restored River in Beijing, China

    Directory of Open Access Journals (Sweden)

    Weiyan Pan

    2018-04-01

    Full Text Available Reclaimed water has been widely used to restore rivers and lakes in water scarce areas as well as in Beijing municipality, China. However, refilling the rivers with reclaimed water may result in groundwater pollution. A three-year field monitoring program was conducted to assess the effect of a riverbank filtration (RBF system on the removal of nitrogen and organics from the Qingyang River of Beijing, which is replenished with reclaimed water. Water samples from the river, sediment, and groundwater were collected for NO3-N, NH4-N, and chemical oxygen demand (COD was measured. The results indicate that about 85% of NO3-N was removed from the riverbed sediments. Approximate 92% of NH4-N was removed during the infiltration of water from river to aquifer. On average, 54% of COD was removed by RBF. The attenuation of NO3-N through RBF to the groundwater varied among seasons and was strongly related to water temperature. On the other hand, no obvious temporal variability was identified in the removal of COD. These results suggest that the RBF system is an effective barrier against NO3-N, NH4-N and COD in the Qingyang River, as well as those rivers with similar geological and climatic conditions refilled with reclaimed water.

  17. Design and maintenance of a network for collecting high-resolution suspended-sediment data at remote locations on rivers, with examples from the Colorado River

    Science.gov (United States)

    Griffiths, Ronald E.; Topping, David J.; Andrews, Timothy; Bennett, Glenn E.; Sabol, Thomas A.; Melis, Theodore S.

    2012-01-01

    Management of sand and finer sediment in fluvial settings has become increasingly important for reasons ranging from endangered-species habitat to transport of sediment-associated contaminants. In all rivers, some fraction of the suspended load is transported as washload, and some as suspended bed material. Typically, the washload is composed of silt-and-clay-size sediment, and the suspended bed material is composed of sand-size sediment. In most rivers, as a result of changes in the upstream supply of silt and clay, large, systematic changes in the concentration of the washload occur over time, independent of changes in water discharge. Recent work has shown that large, systematic, discharge-independent changes in the concentration of the suspended bed material are also present in many rivers. In bedrock canyon rivers, such as the Colorado River in Grand Canyon National Park, changes in the upstream tributary supply of sand may cause large changes in the grain-size distribution of the bed sand, resulting in changes in both the concentration and grain-size distribution of the sand in suspension. Large discharge-independent changes in suspended-sand concentration coupled to discharge-independent changes in the grain-size distribution of the suspended sand are not unique to bedrock canyon rivers, but also occur in large alluvial rivers, such as the Mississippi River. These systematic changes in either suspended-silt-and-clay concentration or suspended-sand concentration may not be detectable by using conventional equal-discharge- or equal-width-increment measurements, which may be too infrequently collected relative to the time scale over which these changes in the sediment load are occurring. Furthermore, because large discharge-independent changes in both suspended-silt-and-clay and suspended-sand concentration are possible in many rivers, methods using water discharge as a proxy for suspended-sediment concentration (such as sediment rating curves) may not produce

  18. Observations of Lower Mississippi River Estuarine Dynamics: Effects of the Salt Wedge on Sediment Deposition

    Science.gov (United States)

    Ramirez, M. T.; Allison, M. A.

    2017-12-01

    The lowermost Mississippi River is subject to salt-wedge estuarine conditions during seasonally low flow, when seaward flow is unable to overcome density stratification. Previous studies in the Mississippi River salt wedge have shown the deposition of a fine sediment layer accumulating several mm/day beneath the reach where the salt wedge is present. Field studies were conducted during low flow in 2012-2015 utilizing ADCP, CTD, LISST, and physical samples to observe the physics of the salt wedge reach and to calculate rates and character of sediment trapping beneath the salt wedge. The field observations were summarized using a two-layer box-model representation of the reach to calculate water and sediment budgets entering, exiting, and stored within the reach. The salt wedge reach was found to be net depositional at rates up to 1.8 mm/day. The mechanism for transferring sediment mass from the downstream-flowing fluvial layer to the upstream-flowing marine layer appears to be flocculation, evidenced in LISST data by a spike in sediment particle diameters at the halocline. Applying reach-averaged rates of sediment trapping to a time-integrated model of salt-wedge position, we calculated annual totals ranging from 0.025 to 2.2 million tons of sediment deposited beneath the salt wedge, depending on salt-wedge persistence and upstream extent. Most years this seasonal deposit is remobilized during spring flood following the low-flow estuarine season, which may affect the timing of sediment delivery to the Gulf of Mexico, as well as particulate organic carbon, whose transport trajectory mirrors that of mineral sediment. These results are also relevant to ongoing dredging efforts necessary to maintain the economically-important navigation pathway through the lower Mississippi River, as well as planned efforts to use Mississippi River sedimentary resources to build land in the degrading Louisiana deltaic coast.

  19. Cambrian rivers and floodplains: the significance of microbial cementation, groundwater and aeolian sediment transport

    Science.gov (United States)

    Reesink, A. J. H.; Best, J.; Freiburg, J. T.; Nathan, W.

    2016-12-01

    Rivers that existed before land plants colonized the Earth are commonly considered to be unaffected by microbial activity on their floodplains, because the limited cementation produced by microbial activity is insufficient to stabilize the river banks. Although this assumption is likely correct, such emphasis on channel dynamics ignores the potential role of floodplain dynamics as an integral component of the river system. Detailed analysis of cores from the Cambrian Mount Simon Sandstone, Illinois, suggests that a significant proportion of the terrestrial sequence is composed of flat-bedded `crinkly' structures that provide evidence of cementation by soil crusts and microbial biofilms, and that promoted the adhesion of sediment to sticky surfaces. Wind ripples and local desert pavements were abundant. These findings highlight that sediment deposition on Cambrian floodplains was often dominated by wind in locations where the ground water table reached the surface, and was thus likely independent of sediment transport within the river channel. Erosion by wind would thus have been hindered by surface cementation and the formation of desert pavements. Such ground water control on deposition, and resistance to erosion by floodplain surface hardening, appear to have been the primary controls on Cambrian floodplain topography. Because floodplain topography poses a key control on channel and floodplain flow, these processes may have affected patterns of erosion and deposition, as well as reach-scale dynamics such as channel avulsions. The autonomous operation of wind-and-groundwater controlled floodplains makes pre-vegetated river systems more sensitive to climatic conditions such as precipitation and evaporation, and strikingly different from those that occurred after the development of land plants.

  20. Heavy Metallic Element Distribution in Cisadane River Estuary's Water and Sediment

    OpenAIRE

    M. Taufik Kaisupy; Abdul Rozak; Endang Rochyatun

    2006-01-01

    Observation of heavy metallic elements in Cisadane River Estuary has been done in July and November 2005. The results show that heavy metallic elements content in seawater is lower and still below the treshold value stated by government for fisheries. There was an indication of heavy metallic elements on sediment. Distribution of Pb on July and of Cu on November 2005 were found higher near the coast and decrease towards the sea, and commonly were found in front of estuary such as Cisadane, Mu...

  1. Analysis of Sedimentation Rates in the Densu River Channel: The ...

    African Journals Online (AJOL)

    Sediment is important in determining the morphology of river systems. The Densu basin has come under intense anthropogenic activities such as farming, sand winning, bushfires, among others, which are impacting on the fluvial processes, forms and channel morphology of the river. The study investigated sedimentation of ...

  2. Identifying resuspended sediment in an estuary using the 228Th/232Th activity ratio: the fate of lagoon sediment in the Bega River estuary, Australia

    International Nuclear Information System (INIS)

    Hancock, G.J.

    2000-01-01

    Thorium-series nuclides ( 228 Th and 232 Th) have been used to identify resuspended sediment in the Bega River estuary, south-eastern Australia. A non-conservative increase in concentration of suspended sediment of water in the vicinity of mid-estuary back-flow lagoons was associated with a decrease in the 228 Th/ 232 Th activity ratio (AR) of the suspended sediment. The lagoon sediment is characterized by a low estuarine 228 Th/ 232 Th signature, distinguishing it from freshwater suspended sediment recently delivered to the estuary, and identifying it as the likely source of the additional suspended sediment. Sediment-core 210 TPb profiles show that the lagoons are accumulating sediment, presumably during high river-flow events. However this study indicates that during intervening periods of low flow, 40% of sediment deposited in the lagoons is subsequently resuspended and exported to the lower estuary, and possibly to the ocean. The utility of the 228 Th/ 232 Th AR to quantify sediment resuspension in estuaries is likely to be estuary-dependent, and is controlled by the extent of scavenging of dissolved 228 Th by suspended particles. Copyright (2000) CSIRO Publishing

  3. River Sediment Monitoring Using Remote Sensing and GIS (case Study Karaj Watershed)

    Science.gov (United States)

    Shafaie, M.; Ghodosi, H.; Mostofi, K. H.

    2015-12-01

    Whereas the tank volume and dehydrating digits from kinds of tanks are depended on repository sludge, so calculating the sediments is so important in tank planning and hydraulic structures. We are worry a lot about soil erosion in the basin area leading to deposit in rivers and lakes. It holds two reasons: firstly, because the surface soil of drainage would lose its fertility and secondly, the capacity of the tank decreases also it causes the decrease of water quality in downstream. Several studies have shown that we can estimate the rate of suspension sediments through remote sensing techniques. Whereas using remote sensing methods in contrast to the traditional and current techniques is faster and more accurate then they can be used as the effective techniques. The intent of this study has already been to estimate the rate of sediments in Karaj watershed through remote sensing and satellite images then comparing the gained results to the sediments data to use them in gauge-hydraulic station. We mean to recognize the remote sensing methods in calculating sediment and use them to determine the rate of river sediments so that identifying their accuracies. According to the results gained of the shown relations at this article, the amount of annual suspended sedimentary in KARAJ watershed have been 320490 Tones and in hydrologic method is about 350764 Tones .

  4. RIVER SEDIMENT MONITORING USING REMOTE SENSING AND GIS (CASE STUDY KARAJ WATERSHED

    Directory of Open Access Journals (Sweden)

    M. Shafaie

    2015-12-01

    Full Text Available Whereas the tank volume and dehydrating digits from kinds of tanks are depended on repository sludge, so calculating the sediments is so important in tank planning and hydraulic structures. We are worry a lot about soil erosion in the basin area leading to deposit in rivers and lakes. It holds two reasons: firstly, because the surface soil of drainage would lose its fertility and secondly, the capacity of the tank decreases also it causes the decrease of water quality in downstream. Several studies have shown that we can estimate the rate of suspension sediments through remote sensing techniques. Whereas using remote sensing methods in contrast to the traditional and current techniques is faster and more accurate then they can be used as the effective techniques. The intent of this study has already been to estimate the rate of sediments in Karaj watershed through remote sensing and satellite images then comparing the gained results to the sediments data to use them in gauge-hydraulic station. We mean to recognize the remote sensing methods in calculating sediment and use them to determine the rate of river sediments so that identifying their accuracies. According to the results gained of the shown relations at this article, the amount of annual suspended sedimentary in KARAJ watershed have been 320490 Tones and in hydrologic method is about 350764 Tones .

  5. Preconcentration and determination of heavy metals in water, sediment and biological samples

    Directory of Open Access Journals (Sweden)

    Shirkhanloo Hamid

    2011-01-01

    Full Text Available In this study, a simple, sensitive and accurate column preconcentration method was developed for the determination of Cd, Cu and Pb ions in river water, urine and sediment samples by flame atomic absorption spectrometry. The procedure is based on the retention of the analytes on a mixed cellulose ester membrane (MCEM column from buffered sample solutions and then their elution from the column with nitric acid. Several parameters, such as pH of the sample solution, volume of the sample and eluent and flow rates of the sample were evaluated. The effects of diverse ions on the preconcentration were also investigated. The recoveries were >95 %. The developed method was applied to the determination of trace metal ions in river water, urine and sediment samples, with satisfactory results. The 3δ detection limits for Cu, Pb and Cd were found to be 2, 3 and 0.2 μg dm−3, respectively. The presented procedure was successfully applied for determination of the copper, lead and cadmium contents in real samples, i.e., river water and biological samples.

  6. Natural equilibria and anthropic effects on sediment transport in big river systems: The Nile case

    Science.gov (United States)

    Garzanti, Eduardo; Andò, Sergio; Padoan, Marta; Vezzoli, Giovanni; Villa, Igor

    2014-05-01

    The Nile River flows for ~ 6700 km, from Burundi and Rwanda highlands south of the Equator to the Mediterranean Sea at northern subtropical latitudes. It is thus the longest natural laboratory on Earth, a unique setting in which we are carrying out a continuing research project to investigate changes in sediment composition associated with a variety of chemical and physical processes, including weathering in equatorial climate and hydraulic sorting during transport and deposition. Petrographic, mineralogical, chemical, and isotopic fingerprints of sand and mud have been monitored along all Nile branches, from the Kagera and White Nile draining Archean, Paleoproterozoic and Mesoproterozoic basements uplifted along the western branch of the East African rift, to the Blue Nile and Atbara Rivers sourced in Ethiopian volcanic highlands made of Oligocene basalt. Downstream of the Atbara confluence, the Nile receives no significant tributary water and hardly any rainfall across the Sahara. After construction of the Aswan High Dam in 1964, the Nile ceased to be an active conveyor-belt in Egypt, where the mighty river has been tamed to a water canal; transported sediments are thus chiefly reworked from older bed and levee deposits, with minor contributions from widyan sourced in the Red Sea Hills and wind-blown desert sand and dust. Extensive dam construction has determined a dramatic sediment deficit at the mouth, where deltaic cusps are undergoing ravaging erosion. Nile delta sediments are thus recycled under the effect of dominant waves from the northwest, the longest Mediterranean fetch direction. Nile sands, progressively enriched in more stable minerals such as quartz and amphiboles relative to volcanic rock fragments and pyroxene, thus undergo multistep transport by E- and NE-directed longshore currents all along the coast of Egypt and Palestine, and are carried as far as Akko Bay in northern Israel. Nile mud reaches the Iskenderun Gulf in southern Turkey. A full

  7. Water quality and treatment of river bank filtrate

    Directory of Open Access Journals (Sweden)

    W. W. J. M. de Vet

    2010-06-01

    Full Text Available In drinking water production, river bank filtration has the advantages of dampening peak concentrations of many dissolved components, substantially removing many micropollutants and removing, virtually completely, the pathogens and suspended solids. The production aquifer is not only fed by the river bank infiltrate but also by water percolating through covering layers. In the polder areas, these top layers consist of peat and deposits from river sediments and sea intrusions.

    This paper discusses the origin and fate of macro components in river bank filtrate, based on extensive full-scale measurements in well fields and treatment systems of the Drinking Water Company Oasen in the Netherlands. First, it clarifies and illustrates redox reactions and the mixing of river bank filtrate and PW as the dominant processes determining the raw water quality for drinking water production. Next, full-scale results are elaborated on to evaluate trickling filtration as an efficient and proven one-step process to remove methane, iron, ammonium and manganese. The interaction of methane and manganese removal with nitrification in these systems is further analyzed. Methane is mostly stripped during trickling filtration and its removal hardly interferes with nitrification. Under specific conditions, microbial manganese removal may play a dominant role.

  8. Interplay between spatially explicit sediment sourcing, hierarchical river-network structure, and in-channel bed material sediment transport and storage dynamics

    Science.gov (United States)

    Czuba, Jonathan A.; Foufoula-Georgiou, Efi; Gran, Karen B.; Belmont, Patrick; Wilcock, Peter R.

    2017-05-01

    Understanding how sediment moves along source to sink pathways through watersheds—from hillslopes to channels and in and out of floodplains—is a fundamental problem in geomorphology. We contribute to advancing this understanding by modeling the transport and in-channel storage dynamics of bed material sediment on a river network over a 600 year time period. Specifically, we present spatiotemporal changes in bed sediment thickness along an entire river network to elucidate how river networks organize and process sediment supply. We apply our model to sand transport in the agricultural Greater Blue Earth River Basin in Minnesota. By casting the arrival of sediment to links of the network as a Poisson process, we derive analytically (under supply-limited conditions) the time-averaged probability distribution function of bed sediment thickness for each link of the river network for any spatial distribution of inputs. Under transport-limited conditions, the analytical assumptions of the Poisson arrival process are violated (due to in-channel storage dynamics) where we find large fluctuations and periodicity in the time series of bed sediment thickness. The time series of bed sediment thickness is the result of dynamics on a network in propagating, altering, and amalgamating sediment inputs in sometimes unexpected ways. One key insight gleaned from the model is that there can be a small fraction of reaches with relatively low-transport capacity within a nonequilibrium river network acting as "bottlenecks" that control sediment to downstream reaches, whereby fluctuations in bed elevation can dissociate from signals in sediment supply.

  9. Enzyme activity and kinetics in substrate-amended river sediments

    Energy Technology Data Exchange (ETDEWEB)

    Duddridge, J E; Wainwright, M

    1982-01-01

    In determining the effects of heavy metals in microbial activity and litter degradation in river sediments, one approach is to determine the effects of these pollutants on sediment enzyme activity and synthesis. Methods to assay amylase, cellulase and urease activity in diverse river sediments are reported. Enzyme activity was low in non-amended sediments, but increased markedly when the appropriate substrate was added, paralleling both athropogenic and natural amendment. Linear relationships between enzyme activity, length of incubation, sample size and substrate concentration were established. Sediment enzyme activity generally obeyed Michaelis-Menton kinetics, but of the three enzymes, urease gave least significant correlation coefficients when the data for substrate concentration versus activity was applied to the Eadie-Hofstee transformation of the Michaelis-Menten equation. K/sub m/ and V/sub max/ for amylase, cellulase and urease in sediments are reported. (JMT)

  10. Surficial sediments of the wave-dominated Orange River Delta and ...

    African Journals Online (AJOL)

    The textural and compositional characteristics of the surficial shelf sediments north and south of the Orange River Delta are reviewed and compared. Sediments are fractionated and dispersed both north- and southwards of the Orange River mouth by wave action, longshore drift and subsurface currents. The mean grain ...

  11. Water quality, sediment, and soil characteristics near Fargo-Moorhead urban areas as affected by major flooding of the Red River of the north

    Science.gov (United States)

    A.C. Guy; T.M. DeSutter; F.X.M. Casey; R. Kolka; H. Hakk

    2012-01-01

    Spring flooding of the Red River of the North (RR) is common, but little information exits on how these flood events affect water and overbank sediment quality within an urban area. With the threat of the spring 2009 flood in the RR predicted to be the largest in recorded history and the concerns about the flooding of farmsteads, outbuildings, garages, and basements,...

  12. Reconstructing Sediment Supply, Transport and Deposition Behind the Elwha River Dams

    Science.gov (United States)

    Beveridge, C.

    2017-12-01

    The Elwha River watershed in Olympic National Park of Washington State, USA is predominantly a steep, mountainous landscape where dominant geomorphic processes include landslides, debris flows and gullying. The river is characterized by substantial variability of channel morphology and fluvial processes, and alternates between narrow bedrock canyons and wider alluvial reaches for much of its length. Literature suggests that the Elwha watershed is topographically and tectonically in steady state. The removal of the two massive hydropower dams along the river in 2013 marked the largest dam removal in history. Over the century long lifespan of the dams, approximately 21 million cubic meters of sediment was impounded behind them. Long term erosion rates documented in this region and reservoir sedimentation data give unprecedented opportunities to test watershed sediment yield models and examine dominant processes that control sediment yield over human time scales. In this study, we aim to reconstruct sediment supply, transport and deposition behind the Glines Canyon Dam (most upstream dam) over its lifespan using a watershed modeling approach. We developed alternative models of varying complexity for sediment production and transport at the network scale driven by hydrologic forcing. We simulate sediment supply and transport in tributaries upstream of the dam. The modeled sediment supply and transport dynamics are based on calibrated formulae (e.g., bedload transport is simulated using Wilcock-Crowe 2003 with modification based on observed bedload transport in the Elwha River). Observational data that aid in our approach include DEM, channel morphology, meteorology, and streamflow and sediment (bedload and suspended load) discharge. We aim to demonstrate how the observed sediment yield behind the dams was influenced by upstream transport supply and capacity limitations, thereby demonstrating the scale effects of flow and sediment transport processes in the Elwha River

  13. Sediment loads and transport at constructed chutes along the Missouri River - Upper Hamburg Chute near Nebraska City, Nebraska, and Kansas Chute near Peru, Nebraska

    Science.gov (United States)

    Densmore, Brenda K.; Rus, David L.; Moser, Matthew T.; Hall, Brent M.; Andersen, Michael J.

    2016-02-04

    The U.S. Geological Survey, in cooperation with the U.S. Army Corps of Engineers, monitored suspended sediment within constructed Missouri River chutes during March through October 2012. Chutes were constructed at selected river bends by the U.S. Army Corps of Engineers to help mitigate aquatic habitat lost through the creation and maintenance of the navigation channel on the Missouri River. The restoration and development of chutes is one method for creating shallow-water habitat within the Missouri River to meet requirements established by the amended 2000 Biological Opinion. Understanding geomorphic channel-evolution processes and sediment transport is important for the design of chutes, monitoring and maintenance of existing chutes, and characterizing the habitat that the chutes provide. This report describes the methods used to monitor suspended sediment at two Missouri River chutes and presents the results of the data analysis to help understand the suspended-sediment characteristics of each chute and the effect the chutes have on the Missouri River. Upper Hamburg chute, near Nebraska City, Nebraska, and Kansas chute, near Peru, Nebraska, were selected for monitoring. At each study site, monthly discrete samples were collected from April through October in the Missouri River main-channel transects upstream from the chute inlet, downstream from the chute outlet, at the outlet (downstream transect) of both chutes, and at the inlet (upstream transect) of Kansas chute. In addition, grab samples from all chute sampling locations were collected using autosamplers. Suspended-sediment concentration (SSC) and grain-size metrics were determined for all samples (discrete and grab). Continuous water-quality monitors recorded turbidity and water temperature at 15-minute intervals at the three chute sampling locations. Two acoustic Doppler velocimeters, one within each chute, measured water depth and current velocities continuously. The depth and velocity data were used to

  14. U- and Th-series nuclides in settling particles: implications to sediment transport through surface waters and interior ocean

    International Nuclear Information System (INIS)

    Sarin, M.M.

    2012-01-01

    The Bay of Bengal is a unique ocean basin receiving large quantities of fresh water and sediment supply from several rivers draining the Indian subcontinent. The annual flux of suspended sediments discharged into the Bay of Bengal is one billion tons, about one-tenth of the global sediment discharge into the ocean. The water and sediment discharge to the Bay, show significant seasonal variation, with maximum transport coinciding with the SW-monsoon (July-September). Earlier studies on the distribution of clay minerals in sediments have led to the suggestion that the sediments of the western Bengal Fan are mainly derived from the Peninsular rivers, whereas rest of the Fan sediments is influenced by the Himalayan rivers. Settling fluxes of particulate matter through the water column of the Bay of Bengal show seasonal trends resulting from monsoon enhanced sediment supply via rivers and biological processes in the water column. It is, thus, important to understand the influence of the seasonally varying particle fluxes on the solute-particle interactions and chemical scavenging processes in the surface and deep waters of the Bay of Bengal. In this context, measurements of U- and Th-series nuclides in the settling particles are most relevant. The radionuclide fluxes ( 230 Th, 228 Th and 210 Pb) in the settling particles provide insight into the role of their removal by vertical particle flux and/or lateral transport (removal at the ocean boundaries). A study carried out in the Northern Bay of Bengal documents that the authigenic flux of 230 Th, as measured in sediment trap samples from deep waters, is balanced by its production in the overhead water column. The sediment mass flux, Al and 228 Th fluxes are similar in the settling particles through shallow and deep waters, suggesting predominant removal by vertical particle flux in the North Bay of Bengal. In the Central Bay, particulate mass, Al and 228 Th fluxes are higher in the trap material from deep waters relative

  15. Heavy metal profile of water, sediment and freshwater cat fish, Chrysichthys nigrodigitatus (Siluriformes: Bagridae, of Cross River, Nigeria

    Directory of Open Access Journals (Sweden)

    Ezekiel Olatunji Ayotunde

    2012-09-01

    Full Text Available Cross River serves as a major source of drinking water, transportation, agricultural activities and fishing in Cross River State, Nigeria. Since there is no formal control of effluents discharged into the river, it is important to monitor the levels of metals contaminants in it, thus assessing its suitability for domestic and agricultural use. In order to determine this, three sampling stations designated as Ikom (Station I, Obubra Ogada (Station II and Calabar (Station III were randomly selected to study. For this, ten samples of the freshwater Silver Catfish (Chryshchythys nigrogitatus (29.4-39.5cm SL, 310-510g, sediment and water were collected from each sampling Station from June 2009-June 2010. The heavy metals profiles of Zn, Cu, Fe, Co, Pb, Cd and Cr, in water, sediments and fish muscle were analyzed by atomic absorption spectrophotometry (AAS. In fish, the heavy metals concentration was found to be Cu>Fe>Zn>Cu>Pb>Cd>Co; the highest mean concentration of Copper (0.297±0.022 μg/g, Cadmium (0.011±0.007μg/g, Iron (0.371±0.489μg/g, Lead (0.008±0.008μg/g, were determined for the fish. In water, the order was found to be Fe>Pb>Zn>Cu>Cr>Cd>Co; the highest mean concentration of Iron (0.009±0.00μg/g, Copper (0.015±0.01 μg/g, Lead (0.0002±0.00μg/g Cadmium (0.0006±0.001μg/g, Zinc (0.0036±0.003μg/g, were observed in the surface water, respectively. The highest mean concentration of Copper (0.037±0.03μg/g, Iron (0.053±0.04μg/g, Lead (0.0002±0.00μg/g, Cobalt (0.0002±0.00μg/g, Cadmium (0.0006±0.001μg/g and Zinc (.009±0.0015μg/g was observed in the bottom water. In sediments, the concentration order found was Zn>Fe>Cu>Pb>Co>Cd; the highest mean concentration of 0.057±0.04μg/g, 0.043±0.03μg/g, 0.0006±0.00μg/g, 0.0002±0.00μg/g, 0.0009±0.00μg/g, 0.099±0.00404μg/g in Iron, Copper, Lead, Cobalt, Cadmium and Zinc were observed in the sediment, respectively; Chromium was not detected in the sediment for the whole

  16. HEAVY METAL CONTENT OF FLOOD SEDIMENTS AND PLANTS NEAR THE RIVER TISZA

    Directory of Open Access Journals (Sweden)

    SZILÁRD SZABÓ

    2008-12-01

    Full Text Available The River Tisza is Hungary’s especially important river. It is significant not only because of the source of energy and the value insured by water (hydraulical power, shipping route, stock of fish,aquatic environment etc. but the active floodplain between levees as well. Ploughlands, orchards, pastures, forests and oxbow lakes can be found here. They play a significant role in the life of the people living near the river and depend considerably on the quality of the sediments settled by the river. Several sources of pollution can be found in the catchment area of the River Tisza and some of them significantly contribute to the pollution of the river and its active floodplain. In this paper we study the concentration of zinc, copper, nickel and cobalt in sediments settled in the active floodplain and the ratio of these metals taken up by plants. Furthermore, our aim was to study the vertical distribution of these elements by the examination of soil profiles. The metal content of the studiedarea does not exceed the critical contamination level, except in the case of nickel, and the ratio of metals taken up by plants does not endanger the living organisms. The vertical distribution of metals in the soil is heterogeneous, depending on the ratio of pollution coming from abroad and the quality of flood.

  17. Analysis of Fluvial Bed Sediments Along the Apalachicola River, Florida through Field Reconnaissance Studies

    Science.gov (United States)

    Passeri, D.; Hagen, S. C.; Daranpob, A.; Smar, D. E.

    2011-12-01

    River competence is an important parameter in understanding sediment transport in fluvial systems. Competence is defined as the measure of a stream's ability to transport a certain maximum grain size of sediment. Studies have shown that bed sediment particle size in rivers and streams tends to vary spatially along the direction of stream flow. Over a river section several reaches long, variability of sediment particle sizes can be seen, often becoming finer downstream. This phenomenon is attributed to mechanisms such as local control of stream gradient, coarse tributary sediment supply or particle breakdown. Average particle size may also be smaller in tributary sections of rivers due to river morphology. The relationship between river mean velocity and particle size that can be transported has also been explored. The Hjulstrom curve classifies this relationship by relating particle size to velocity, dividing the regions of sedimentation, transportation, and erosion. The curve can also be used to find values such as the critical erosion velocity (the velocity required to transport particles of various sizes in suspension) and settling velocity (the velocity at which particles of a given size become too heavy to be transported and fall out of suspension, consequently causing deposition). The purpose of this research is to explore the principles of river competence through field reconnaissance collection and laboratory analysis of fluvial sediment core samples along the Apalachicola River, FL and its distributaries. Sediment core samples were collected in the wetlands and estuarine regions of the Apalachicola River. Sieve and hydrometer analyses were performed to determine the spatial distribution of particle sizes along the river. An existing high resolution hydrodynamic model of the study domain was used to simulate tides and generate river velocities. The Hjulstrom curve and the generated river velocities were used to define whether sediment was being transported

  18. Spatial and temporal distributions of polycyclic aromatic hydrocarbons in sediments from the Songhua River, China

    Science.gov (United States)

    Dong, D.; Guo, Z.; Liu, X.; Hua, X.; Liang, D.

    2013-12-01

    Polycyclic aromatic hydrocarbons (PAHs), a class of typical persistent organic pollutants, widely exist in the environment and are potentially harmful to human health. They can enter the waters through atmospheric deposition, soil leaching, shipping, sewage discharges and surface runoff. In recent years, many studies on the distributions of PAHs in major rivers, lakes and bays around the world have been carried out. In this study, 9 surface sediments (0-10cm) were sampled from the Songhua River in Jilin and Heilongjiang provinces. The contents of 16 PAHs in the US Environmental Protection Agency list of priority pollutants were determined and their spatial distributions were discussed. Sediment cores (50cm length) in three oxbow lakes in this area were also collected and cut into 2 cm thickness sub-samples. PAHs concentrations in these samples were determined and the cores were dated using a 210Pb geochronology technique. Finally, the sedimentary history of PAHs in the Songhua River since the 1920s was revealed. Results indicated that total concentration of the 16 PAHs analyzed in the surface sediments was 187-2079 ng/g (dry weight), and the mean was 1029 ng/g. Sediments collected from near urban areas (Jilin and Harbin City) contained higher PAHs content. Compared with the domestic and international rivers, the PAHs content in this river sediments is at a medium level. The PAHs profiles showed that 2-3 ring PAHs, especially naphthalene, were dominant in all of the samples. Sedimentary flux can reflect the accumulating history of pollutants better. The PAHs fluxes were low and varied little from the 1920s to 1970s, but higher PAH fluxes were found since the 1980s in each core (Fig. 1). The PAHs sedimentary flux near Harbin City (Shuangcheng) was found changed remarkably. We inferred that the PAHs might be influenced by hydrological conditions, population mobility and economic activity in this area. PAHs sedimentary record in the Songhua River revealed that the

  19. What Role do Hurricanes Play in Sediment Delivery to Subsiding River Deltas?

    Science.gov (United States)

    Smith, J. E., IV

    2016-02-01

    James E. Smith IV1, Samuel J. Bentley, Sr.1, Gregg A. Snedden2, Crawford White1 Department of Geology and Geophysics and Coastal Studies Institute, Louisiana State University, Baton Rouge, LA 70803 USA United States Geological Survey, National Wetlands Research Center, Baton Rouge LA 70803 USA The Mississippi River Delta has undergone tremendous land loss over the past century due to natural and anthropogenic influences, a fate shared by many river deltas globally. A globally unprecedented effort to restore and sustain the remaining subaerial portions of the delta is now underway, an endeavor that is expected to cost $50-100B over the next 50 yr. Success of this effort requires a thorough understanding of natural and anthropogenic controls on sediment supply, accumulation, and delta geomorphology. In the Mississippi River Delta, hurricanes have been paradoxically identified as both agents of widespread land loss, and positive influences for marsh vertical sediment accretion. We present the first multi-decadal chronostratigraphic assessment of sediment supply for a major coastal basin of the Mississippi River Delta that assesses both fluvial and hurricane-induced contributions to sediment accumulation in deltaic wetlands. Twenty seven cores have been analyzed for radioisotope geochronology and organic content to establish the chronology of mineral sediment supply to the wetlands over the past 70 years. Our findings indicate that over multidecadal timescales, hurricane-induced sediment delivery may be an important contributor for deltaic wetland vertical accretion, but the contribution from hurricanes to long-term sediment accumulation is substantially less than sediment delivery supplied by existing and planned river-sediment diversions at present-day river-sediment loads.

  20. What role do hurricanes play in sediment delivery to subsiding river deltas?

    Science.gov (United States)

    Smith, James E.; Bentley, Samuel J.; Snedden, Gregg; White, Crawford

    2015-01-01

    The Mississippi River Delta (MRD) has undergone tremendous land loss over the past century due to natural and anthropogenic influences, a fate shared by many river deltas globally. A globally unprecedented effort to restore and sustain the remaining subaerial portions of the delta is now underway, an endeavor that is expected to cost $50–100B over the next 50 yr. Success of this effort requires a thorough understanding of natural and anthropogenic controls on sediment supply and delta geomorphology. In the MRD, hurricanes have been paradoxically identified as both substantial agents of widespread land loss, and vertical marsh sediment accretion. We present the first multi-decadal chronostratigraphic assessment of sediment supply for a major coastal basin of the MRD that assesses both fluvial and hurricane-induced contributions to sediment accumulation in deltaic wetlands. Our findings indicate that over multidecadal timescales, hurricane-induced sediment delivery may be an important contributor for deltaic wetland vertical accretion, but the contribution from hurricanes to long-term sediment accumulation is substantially less than sediment delivery supplied by existing and planned river-sediment diversions at present-day river-sediment loads.

  1. What Role do Hurricanes Play in Sediment Delivery to Subsiding River Deltas?

    Science.gov (United States)

    Smith, James E; Bentley, Samuel J; Snedden, Gregg A; White, Crawford

    2015-12-02

    The Mississippi River Delta (MRD) has undergone tremendous land loss over the past century due to natural and anthropogenic influences, a fate shared by many river deltas globally. A globally unprecedented effort to restore and sustain the remaining subaerial portions of the delta is now underway, an endeavor that is expected to cost $50-100B over the next 50 yr. Success of this effort requires a thorough understanding of natural and anthropogenic controls on sediment supply and delta geomorphology. In the MRD, hurricanes have been paradoxically identified as both substantial agents of widespread land loss, and vertical marsh sediment accretion. We present the first multi-decadal chronostratigraphic assessment of sediment supply for a major coastal basin of the MRD that assesses both fluvial and hurricane-induced contributions to sediment accumulation in deltaic wetlands. Our findings indicate that over multidecadal timescales, hurricane-induced sediment delivery may be an important contributor for deltaic wetland vertical accretion, but the contribution from hurricanes to long-term sediment accumulation is substantially less than sediment delivery supplied by existing and planned river-sediment diversions at present-day river-sediment loads.

  2. Toxicity assessment of sediments from three European river basins using a sediment contact test battery

    NARCIS (Netherlands)

    Tuikka, A.I.; Schmitt, C.; Hoess, S.; Bandow, N; von der Ohe, P.; de Zwart, D.; de Deckere, E.; Streck, G.; Mothes, S.; van Hattum, A.G.M.; Kocan, A.; Brix, R.; Brack, W.; Barcelo, D.; Sormunen, A.; Kukkonen, J.V.K.

    2011-01-01

    The toxicity of four polluted sediments and their corresponding reference sediments from three European river basins were investigated using a battery of six sediment contact tests representing three different trophic levels. The tests included were chronic tests with the oligochaete Lumbriculus

  3. [Distribution and origin of polycyclic aromatic hydrocarbons in sediments of the reaches of Huaihe River (Huainan to Bengbu)].

    Science.gov (United States)

    Peng, Huan; Yang, Yi; Liu, Min; Li, Yong; Zhang, Qian-dong; Yang, Gang

    2010-05-01

    Using GC-MS 18 PAHs have been quantified in sediments from water source areas, tributaries and sewage outfalls at the reaches of Huaihe River (Huainan to Bengbu). The results show that the concentrations of total PAHs ranged from 308.12-1090.37 ng/g in sediments from water source areas and tributaries, and 1308.36-8793.16 ng/g in sediments from sewage outfalls. 3-4 rings were the dominant compounds compared to the 5-6 ring PAHs. Black carbon showed better correlation to PAHs than that of TOC. The composition characterization, principal component analysis and particular ratios of PAHs demonstrated that incomplete combustion of fossil fuels was the main source of PAHs in sediments at reaches of Huaihe River (Huainan to Bengbu), as well as a few anthropogenic releases of oil products. Ecological risk assessment indicated that, most of PAHs compounds in sediments have exceeded ER-L and ISQV-L values, among which part PAHs compounds at Yaojiawan even exceeded ER-H and ISQV-H values, showing the significant potential risk of PAHs to the ecosystem in the study area.

  4. Source and Ecological Risk Characteristics of PAHs in Sediments from Qinhuai River and Xuanwu Lake, Nanjing, China

    Directory of Open Access Journals (Sweden)

    Zhenhua Zhao

    2017-01-01

    Full Text Available In order to investigate the residual characteristics, sources, and ecological risk of PAHs in sediment from urban rivers, the sediments of 15 typical sites from Qinhuai River and Xuanwu Lake, which are typical urban rivers and lake, were collected from October 2015 to July 2016; the sources of PAHs in sediment were also identified by several methods. Results showed that ∑PAHs concentration in sediment ranged from 796.2 ng/g to 10,470 ng/g with an average of 2,713.8 ng/g. High molecular weight PAHs with 4-5 rings were most prominent in the sediment during all four seasons. Source characterization studies based on the analysis of diagnostic ratio (triangular plot method, cluster analysis, and positive factor matrix analysis suggested that the PAHs of Qinhuai River Basin were mainly from pyrogenic origin (biomass and coal combustion and vehicular emission, and the petroleum source also cannot be ignored (specially in summer. Most individual PAHs occasionally affect the aquatic organisms. The highest benzo[a]pyrene-equivalent doses (BaPeq dose appear at the sites of sewage discharge and heavy traffic. So, the PAHs pollution sources of urban water body have obvious seasonal-dependent and human activities-dependent characteristics.

  5. Distribution, partitioning and sources of polycyclic aromatic hydrocarbons in Daliao River water system in dry season, China

    International Nuclear Information System (INIS)

    Guo Wei; He Mengchang; Yang Zhifeng; Lin Chunye; Quan Xiangchun; Men Bing

    2009-01-01

    Eighteen polycyclic aromatic hydrocarbons (PAHs) were analyzed in 29 surface water, 29 suspended particulate matter (SPM), 28 sediment, and 10 pore water samples from Daliao River water system in dry season. The total PAH concentration ranged from 570.2 to 2318.6 ng L -1 in surface water, from 151.0 to 28483.8 ng L -1 in SPM, from 102.9 to 3419.2 ng g -1 in sediment and from 6.3 to 46.4 μg l -1 in pore water. The concentration of dissolved PAHs was higher than that of particulate PAHs at many sites, but the opposite results were generally observed at the sites of wastewater discharge. The soluble level of PAHs was much higher in the pore water than in the water column. Generally, the water column of the polluted branch streams contained higher content of PAHs than their mainstream. The environmental behaviors and fates of PAHs were examined according to some physicochemical parameters such as pH, organic carbon, SPM content, water content and grain size in sediments. Results showed that organic carbon was the primary factor controlling the distribution of the PAHs in the Daliao River water system. Partitioning of PAHs between sediment solid phase and pore water phase was studied, and the relationship between log K oc and log K ow of PAHs on some sediments and the predicted values was compared. PAHs other than naphthalene and acenaphthylene would be accumulated largely in the sediment of the Dalaio River water system. The sources of PAHs were evaluated employing ratios of specific PAHs compounds and different wastewater discharge sources, indicating that combustion was the main source of PAHs input.

  6. Polycyclic aromatic hydrocarbons in suspended particulate matter and sediments from the Pearl River Estuary and adjacent coastal areas, China

    International Nuclear Information System (INIS)

    Luo Xiaojun; Chen Shejun; Mai Bixian; Yang Qingshu; Sheng Guoying; Fu Jiamo

    2006-01-01

    The spatial distribution, composition, and sources of polycyclic aromatic hydrocarbons (PAHs) in sediments and suspended particulate matter (SPM) from the Pearl River Estuary and adjacent coastal areas were examined. Total PAH concentrations varied from 189 to 637 ng/g in sediments and 422 to 1850 ng/g in SPM. PAHs were dominated by 5,6-ring compounds in sediments and by 2,3-ring compounds in SPM samples. Assessment of PAH sources suggested that biomass and coal combustion is the major PAH source to the outer part of the estuary sediments and that petroleum combustion is the major PAH source to the inner part of estuary sediments. As for SPM samples, PAH isomer pair ratios indicated multiple (petroleum, petroleum combustion, and biomass and coal combustion) PAH sources, and significant temporal variations could exist for the sources of water column PAHs in the study area. The distribution of perylene in SPM samples indicated that the river was the dominant source of perylene in SPM and that perylene could be taken as an index to assess the contribution of river inflow to the total PAHs in SPM samples. The high concentration of perylene in the sediment was indicative of an in situ biogenic origin. - PAH were determined in suspended particulate matter and sediments from Pearl River Estuary

  7. The effect of the 2011 flood on agricultural chemical and sediment movement in the lower Mississippi River Basin

    Science.gov (United States)

    Welch, H.; Coupe, R.; Aulenbach, B.

    2012-04-01

    Extreme hydrologic events, such as floods, can overwhelm a surface water system's ability to process chemicals and can move large amounts of material downstream to larger surface water bodies. The Mississippi River is the 3rd largest River in the world behind the Amazon in South America and the Congo in Africa. The Mississippi-Atchafalaya River basin grows much of the country's corn, soybean, rice, cotton, pigs, and chickens. This is large-scale modern day agriculture with large inputs of nutrients to increase yields and large applied amounts of crop protection chemicals, such as pesticides. The basin drains approximately 41% of the conterminous United States and is the largest contributor of nutrients to the Gulf of Mexico each spring. The amount of water and nutrients discharged from the Mississippi River has been related to the size of the low dissolved oxygen area that forms off of the coast of Louisiana and Texas each summer. From March through April 2011, the upper Mississippi River basin received more than five times more precipitation than normal, which combined with snow melt from the Missouri River basin, created a historic flood event that lasted from April through July. The U.S. Geological Survey, as part of the National Stream Quality Accounting Network (NASQAN), collected samples from six sites located in the lower Mississippi-Atchafalaya River basin, as well as, samples from the three flow-diversion structures or floodways: the Birds Point-New Madrid in Missouri and the Morganza and Bonnet Carré in Louisiana, from April through July. Samples were analyzed for nutrients, pesticides, suspended sediments, and particle size; results were used to determine the water quality of the river during the 2011 flood. Monthly loads for nitrate, phosphorus, pesticides (atrazine, glyphosate, fluometuron, and metolachlor), and sediment were calculated to quantify the movement of agricultural chemicals and sediment into the Gulf of Mexico. Nutrient loads were

  8. Factors influencing the dissolved iron input by river water to the open ocean

    Science.gov (United States)

    Krachler, R.; Jirsa, F.; Ayromlou, S.

    2005-05-01

    The influence of natural metal chelators on the bio-available iron input to the ocean by river water was studied. Ferrous and ferric ions present as suspended colloidal particles maintaining the semblance of a dissolved load are coagulated and settled as their freshwater carrier is mixed with seawater at the continental boundary. However, we might argue that different iron-binding colloids become sequentially destabilized in meeting progressively increasing salinities. By use of a 59Fe tracer method, the partitioning of the iron load from the suspended and dissolved mobile fraction to storage in the sediments was measured with high accuracy in mixtures of natural river water with artificial sea water. The results show a characteristic sequence of sedimentation. Various colloids of different stability are removed from a water of increasing salinity, such as it is the case in the transition from a river water to the open sea. However, the iron transport capacities of the investigated river waters differed greatly. A mountainous river in the Austrian Alps would add only about 5% of its dissolved Fe load, that is about 2.0 µg L-1 Fe, to coastal waters. A small tributary draining a sphagnum peat-bog, which acts as a source of refractory low-molecular-weight fulvic acids to the river water, would add approximately 20% of its original Fe load, that is up to 480 µg L-1 Fe to the ocean's bio-available iron pool. This points to a natural mechanism of ocean iron fertilization by terrigenous fulvic-iron complexes originating from weathering processes occurring in the soils upstream.

  9. Distribution of the rare earth elements in the surface sediments from the lower Wuding River of China

    International Nuclear Information System (INIS)

    Longjiang, M.; Duowen, M.; Ke, H.; Jinghong, Y.

    2010-01-01

    The abundance and distribution of rare earth elements (REE) and their signatures in the Wuding River of China were studied from samples of surface sediments and related to the geological formation in its watershed. The total REE (ΣREE) average concentrations of the Wuding River sediments (144.56 μg g -1 ), is lower than that in the Yangtze River sediments (167.10 μg g -1 ), getting closer to the values of the Yellow River sediments (137.76 μg g -1 ), being equivalent to the values of the UCC (the upper continental crust) (146.37 μg g-1). The chondrite-normalized REEs indicated LREE enrichment and flat HREE depletion and also showed a slightly negative Eu-anomaly. A similar chondrite-normalized REE distribution pattern between the Wuding River sediments and Yellow River sediments demonstrated the Wuding River sediments are the important material sources of the Yellow River sediments. UCC-normalized REE patterns between the Wuding River sediments and the Yellow River sediments were almost equivalent and close to the UCC. These implied the Wuding River sediments and the Yellow River sediments are subjected mostly to physical weathering due to higher erosion rates. Consequently, they can be used to trace the UCC compositions. (author)

  10. Modern Sedimentation off the Kaoping River, SW Taiwan: A Comparison with Eel River's S2S System

    Science.gov (United States)

    Huh, C.; Lin, H.; Lin, S.

    2006-12-01

    The Kaoping (KP) River in SW Taiwan has a watershed area of 3257 km2 and an annual sediment discharge of 49 MT. Although the sediment yield of the KP River basin (1.5×104 ton km-2 yr^{- 1}) is the 4th highest among Taiwan's catchment basins, it is nearly one order of magnitude higher than that of the Eel River's basin (~1.8×103 ton km-2 yr-1; the highest in the U.S.). The KP canyon extends almost immediately seaward from the river's mouth and terminates in the northwestern corner of the South China Sea. The head of the canyon is characterized by high and steep walls exceeding 600 m. The KP river's source-to-sink system offers a dramatic case of mountainous rivers at active margins for S2S study. Here we report some results about modern sedimentation in KP river's dispersal system. Seventy-six sediment cores collected from an area of ~3000 km2 were analyzed for fallout nuclides 7Be, 137Cs and 210Pb by gamma spectrometry. From profiles of excess 210Pb and 137Cs sediment accumulation rates in the coring sites were estimated, which vary from 0.06 to 1.6 cm/yr, with the highest rates (>1 cm/yr) distributed in the upper slope (exported out of the study area via the KP canyon to the deep sea by gravity-driven turbidity or hyperpycnal flows.

  11. Determining the sources of suspended sediment in a Mediterranean groundwater-dominated river: the Na Borges basin (Mallorca, Spain).

    Science.gov (United States)

    Estrany, Joan; Martinez-Carreras, Nuria

    2013-04-01

    Tracers have been acknowledged as a useful tool to identify sediment sources, based upon a variety of techniques and chemical and physical sediment properties. Sediment fingerprinting supports the notion that changes in sedimentation rates are not just related to increased/reduced erosion and transport in the same areas, but also to the establishment of different pathways increasing sediment connectivity. The Na Borges is a Mediterranean lowland agricultural river basin (319 km2) where traditional soil and water conservation practices have been applied over millennia to provide effective protection of cultivated land. During the twentieth century, industrialisation and pressure from tourism activities have increased urbanised surfaces, which have impacts on the processes that control streamflow. Within this context, source material sampling was focused in Na Borges on obtaining representative samples from potential sediment sources (comprised topsoil; i.e., 0-2 cm) susceptible to mobilisation by water and subsequent routing to the river channel network, while those representing channel bank sources were collected from actively eroding channel margins and ditches. Samples of road dust and of solids from sewage treatment plants were also collected. During two hydrological years (2004-2006), representative suspended sediment samples for use in source fingerprinting studies were collected at four flow gauging stations and at eight secondary sampling points using time-integrating sampling samplers. Likewise, representative bed-channel sediment samples were obtained using the resuspension approach at eight sampling points in the main stem of the Na Borges River. These deposits represent the fine sediment temporarily stored in the bed-channel and were also used for tracing source contributions. A total of 102 individual time-integrated sediment samples, 40 bulk samples and 48 bed-sediment samples were collected. Upon return to the laboratory, source material samples were

  12. Source apportionment and pollution evaluation of heavy metals in water and sediments of Buriganga River, Bangladesh, using multivariate analysis and pollution evaluation indices.

    Science.gov (United States)

    Bhuiyan, Mohammad Amir Hossain; Dampare, Samuel B; Islam, M A; Suzuki, Shigeyuki

    2015-01-01

    Concentrations of heavy metals in water and sediment samples of Buriganga River in the capital city Dhaka, Bangladesh, were studied to understand the level of heavy metals and their source apportionment. The results showed that the mean concentrations of heavy metals both in water and sediment samples were very high and, in most cases, exceeded the permissible limits recommended by the Bangladesh government and other international organizations. Significantly higher concentrations of Pb, Cr, Mn, Co, Ni, Cu, Zn, As, and Cd were found in sediment samples. However, average concentrations of metals both in water and sediment samples were above the effect range median. The heavy metal pollution index (HPI) and degree of contamination (Cd) yielded different results in water samples despite significant correlations between them. The heavy metal evaluation index (HEI) showed strong correlations with HPI and Cd and provided better assessment of pollution levels. The enrichment factor (EF) and geoaccumulation index (Igeo) showed the elevated value of Cr, Pb, and Cd in access of background values. The measured elements were subjected to positive matrix factorization (PMF) and examining correlations in order to explain the content, behavior, and source apportionment of metals. PMF resulted in a successful partitioning of variances into sources related to background geochemistry and contaminant influences. However, the PMF approach successfully demarcated the major sources of metals from tannery, paint, municipal sewage, textiles, and agricultural activities.

  13. Distribution of Linear Alkylbenzenes (LABs in Sediments of Sarawak and Sembulan Rivers, Malaysia

    Directory of Open Access Journals (Sweden)

    Sami Muhsen Magam

    2012-01-01

    Full Text Available The current study is one of the first studies evaluating the levels of linear alkylbenzenes (LABs in surface sediments of Sarawak and Sembulan rivers which are located in the east coast of Malaysia. The LABs, which are molecular tracers of sewage contamination, were measured in 15 surface sediment samples collected from these rivers. The samples were extracted, fractioned and analyzed by gas chromatography mass spectrometry (GC-MS. The findings revealed that the concentrations of ∑LABs ranged from 156.47 to 7386.19 ng/g dry weight (dw in the sediments of Sarawak River and from 643.18 to 5567.12 ng/g dw in the sediments of Sembulan River. The highest LABs levels were detected in the sediments collected from the sampling location SS9 in Sembulan River whereas the lowest levels were observed in the SS1 sampling location in Sarawak River. The I/E ratios (ratio of internal to external isomers of LABs for Sarawak River sediments ranged from 0.52 to 0.98 while for Sembulan River they fell within the range 0.87-1.79. The I/E ratio at the sampling station SS4 was much lower than the I/E ratios at the other stations, thus indicating that the wastewater discharged into Sarawak River from the areas surrounding station SS4 was poorly treated.

  14. A retrospective analysis of trace metals, C, N and diatom remnants in sediments from the Mississippi River delta shelf

    International Nuclear Information System (INIS)

    Turner, R. Eugene; Milan, C.S.; Rabalais, N.N.

    2004-01-01

    The development of oil and gas recovery offshore of the Mississippi River delta began in shallow water in the 1950s, expanded into deeper waters, and peaked in the 1990s. This area of the outer continental shelf (OCS) is the historical and present location of >90% of all US OCS oil and gas production and reserves. The juxtaposition of its 4000 producing platforms, recovering $10 billion yr -1 of oil, gas and produced water in the same area where about 28% of the US fisheries catch (by weight) is made and near 40% of the US coastal wetlands, makes this an area worth monitoring for regional pollutant loading. This loading may come from several sources, including sources related to OCS development, but also from the Mississippi River watershed. In this context, any contaminant loading on this shelf may be neither detectable nor significant against a background of climatic or biological variability. We examined the sedimentary record for indicators of industrial byproducts from OCS oil and gas development and of industrial products entering via the Mississippi River, primarily using vanadium (V) and barium (Ba) concentrations normalized for aluminum (Al). Barium is primarily used in drilling muds in the form of barite, whereas V is an important strengthening component of metal alloys, including steel. The fluctuations in the accumulation of Ba, but not V, were coincidental with the presumed use of barite. The fluctuations in V concentration in the sediments were coincidental with the national consumption of V. Copper (Cu), cadmium (Cd) and zinc (Zn) concentrations in sediments fluctuate coincidentally with V, not Ba, thus indicating that the dominant source of these trace metals in offshore sediments were derived from riverine sources, and were not primarily from in situ industrial processes releasing them on the shelf. This is not to suggest that local site-specific contamination is not a significant management or health concern. The low oxygen (hypoxia; ≤2 mg l -1

  15. Transfer of nuclides from the water phase to the sediments during normal and extraordinary hydrological cycles

    International Nuclear Information System (INIS)

    1985-07-01

    Atucha I and Atucha II nuclear power plants are located on the right margin of the Parana de las Palmas river. This river belongs to the Cuenca del Plata, whose 1982-1983 hydrologic cycle registered the greatest freshets of the century. Works and studies previously fixed had to be altered and investigations were adapted to the possibilities and the particular hydric conditions verified. Considerations on the transfer of nuclides between water and sediments are presented. The floods reduce the water-sediments contact time on the bed of the river. In outer areas, the waters labelled by the nuclear power plant effluent discharge favor the infiltration in alluvial soils, as well as the exchange with the sediments. The investigations carried out for the phase near to the discharge of liquid effluents (related to the critical group) made possible to prove the characteristics of the path of the liquid wastes released, the distribution coefficient and the fixation or penetrability of some nuclides in soils of the floody valley. In this manner, a balance of radioactive nuclides incorporated to soils and sediments from the neighbourhood of Atucha and the water-course of Parana de las Palmas river is obtained. The presence of 60 Co and 137 Cs in the floody soils on the right margin of this river was detected and measured during the greatest flood of the century. On the other hand, 144 Ce, 51 Cr, 106 Ru and 90 Sr have not been detected. The detection of artificial radioisotopes turns out to be impossible in normal hydrological years, even in the sorroundings of the nuclear power plant or the critical group (from the point of view of the surface waters, The Fishing Club, 3 km down stream). (M.E.L.) [es

  16. Contamination profiles of perfluoroalkyl substances in five typical rivers of the Pearl River Delta region, South China.

    Science.gov (United States)

    Pan, Chang-Gui; Ying, Guang-Guo; Liu, You-Sheng; Zhang, Qian-Qian; Chen, Zhi-Feng; Peng, Feng-Jiao; Huang, Guo-Yong

    2014-11-01

    A survey on contamination profiles of eighteen perfluoroalkyl substances (PFASs) was performed via high performance liquid chromatography-tandem mass spectrometry for surface water and sediments from five typical rivers of the Pearl River Delta region, South China in summer and winter in 2012. The total concentrations of the PFASs in the water phase of the five rivers ranged from 0.14 to 346.72 ng L(-1). The PFAS concentrations in the water phase were correlated positively to some selected water quality parameters such as chemical oxygen demand (COD) (0.7913) and conductivity (0.5642). The monitoring results for the water samples showed significant seasonal variations, while those for the sediment samples showed no obvious seasonal variations. Among the selected 18 PFASs, perfluorooctane sulfonic acid (PFOS) was the dominant PFAS compound both in water and sediment for two seasons with its maximum concentration of 320.5 ng L(-1) in water and 11.4 ng g(-1) dry weight (dw) in sediment, followed by perfluorooctanoic acid (PFOA) with its maximum concentration of 26.48 ng L(-1) in water and 0.99 ng g(-1) dw in sediment. PFOS and PFOA were found at relatively higher concentrations in the Shima River and Danshui River than in the other three rivers (Xizhijiang River, Dongjiang River and Shahe River). The principal component analysis for the PFASs concentrations in water and sediment separated the sampling sites into two groups: rural and agricultural area, and urban and industrial area, suggesting the PFASs in the riverine environment were mainly originated from industrial and urban activities in the region. Copyright © 2014 Elsevier Ltd. All rights reserved.

  17. Predicting the distribution of bed material accumulation using river network sediment budgets

    Science.gov (United States)

    Wilkinson, Scott N.; Prosser, Ian P.; Hughes, Andrew O.

    2006-10-01

    Assessing the spatial distribution of bed material accumulation in river networks is important for determining the impacts of erosion on downstream channel form and habitat and for planning erosion and sediment management. A model that constructs spatially distributed budgets of bed material sediment is developed to predict the locations of accumulation following land use change. For each link in the river network, GIS algorithms are used to predict bed material supply from gullies, river banks, and upstream tributaries and to compare total supply with transport capacity. The model is tested in the 29,000 km2 Murrumbidgee River catchment in southeast Australia. It correctly predicts the presence or absence of accumulation in 71% of river links, which is significantly better performance than previous models, which do not account for spatial variability in sediment supply and transport capacity. Representing transient sediment storage is important for predicting smaller accumulations. Bed material accumulation is predicted in 25% of the river network, indicating its importance as an environmental problem in Australia.

  18. Environmental monitoring of Columbia River sediments: Grain-size distribution and contaminant association

    Energy Technology Data Exchange (ETDEWEB)

    Blanton, M.L.; Gardiner, W.W.; Dirkes, R.L.

    1995-04-01

    Based on the results of this study and literature review, the following conclusions can be made: Sediment grain size and TOC (total organic carbon) influence contaminant fate and transport (in general, sediments with higher TOC content and finer grain-size distribution can have higher contaminant burdens than sediments from a given river section that have less TOC and greater amounts of coarse-grained sediments). Physiochemical sediment characteristics are highly variable among monitoring sites along the Columbia River. Sediment grain characterization and TOC analysis should be included in interpretations of sediment-monitoring data.

  19. Environmental monitoring of Columbia River sediments: Grain-size distribution and contaminant association

    International Nuclear Information System (INIS)

    Blanton, M.L.; Gardiner, W.W.; Dirkes, R.L.

    1995-04-01

    Based on the results of this study and literature review, the following conclusions can be made: Sediment grain size and TOC (total organic carbon) influence contaminant fate and transport (in general, sediments with higher TOC content and finer grain-size distribution can have higher contaminant burdens than sediments from a given river section that have less TOC and greater amounts of coarse-grained sediments). Physiochemical sediment characteristics are highly variable among monitoring sites along the Columbia River. Sediment grain characterization and TOC analysis should be included in interpretations of sediment-monitoring data

  20. Water and suspended sediment dynamics in the Sungai Selangor estuary

    International Nuclear Information System (INIS)

    Abdul Kadir Ishak; Kamarudin Samuding; Nazrul Hizam Yusoff

    2000-01-01

    Observations of salinity, temperature, suspended sediment concentration (SSC) and tidal current velocity were made in the lower and along the longitudinal axis sungai Selangor estuary over near-spring cycles. The variations of these parameters at the measurement stations and along the channel are presented to illustrate the water and sediment dynamics in the estuary. The results shows that the Sungai Selangor estuary changes from a partially-mixed type during neaps to a well-mixed one during springs. promoted by stronger tidal energy during the higher tidal ranges. The strong neap density stratification is also promoted by the high river discharges during the measurement period maximum concentration of suspended sediment 2000 mg,'/) occurs during maximum current velocities both during flood and ebb. The maximum salinity was achieved during high water slack but the salt water was totally flushed out of estuary during low water springs. The longitudinal axis measurement indicates that a partially-developed zone of turbidity maximum with a sediment concentration over 1000 mg/l was observed at the limit of salt water intrusion in salinity range less than 1 ppt. Tidal pumping as oppose to the estuarine circulation is the more dominant factor in the maximum formation as the salt water is totally excluded at low water. (author)

  1. Sediment transport and capacity change in three reservoirs, Lower Susquehanna River Basin, Pennsylvania and Maryland, 1900-2012

    Science.gov (United States)

    Langland, Michael J.

    2015-01-01

    The U.S. Geological Survey (USGS) has conducted numerous sediment transport studies in the Susquehanna River and in particular in three reservoirs in the Lower Susquehanna River Basin to determine sediment transport rates over the past century and to document changes in storage capacity. The Susquehanna River is the largest tributary to Chesapeake Bay and transports about one-half of the total freshwater input and substantial amounts of sediment and nutrients to the bay. The transported loads are affected by deposition in reservoirs (Lake Clarke, Lake Aldred, and Conowingo Reservoir) behind three hydropower dams. The geometry and texture of the deposited sediments in each reservoir upstream from the three dams has been a subject of research in recent decades. Particle size deposition and sediment scouring processes are part of the reservoir dynamics. A Total Maximum Daily Load (TMDL) for nitrogen, phosphorus, and sediment was established for Chesapeake Bay to attain water-quality standards. Six states and the District of Columbia agreed to reduce loads to the bay and to meet load allocation goals for the TMDL. The USGS has been estimating annual sediment loads at the Susquehanna River at Marietta, Pennsylvania (above Lake Clarke), and Susquehanna River at Conowingo, Maryland (below Conowingo Reservoir), since the mid-1980s to predict the mass balance of sediment transport through the reservoir system. Using streamflow and sediment data from the Susquehanna River at Harrisburg, Pennsylvania (upstream from the reservoirs), from 1900 to 1981, sediment loads were greatest in the early to mid-1900s when land disturbance activities from coal production and agriculture were at their peak. Sediment loads declined in the 1950s with the introduction of agricultural soil conservation practices. Loads were dominated by climatic factors in the 1960s (drought) and 1970s (very wet) and have been declining since the 1980s through 2012. The USGS developed a regression equation to

  2. Water Quality in Surface Water: A Preliminary Assessment of Heavy Metal Contamination of the Mashavera River, Georgia

    Science.gov (United States)

    Urushadze, Teo

    2018-01-01

    Water quality contamination by heavy metal pollution has severe effects on public health. In the Mashavera River Basin, an important agricultural area for the national food system in Georgia (e.g., vegetable, dairy and wine production), water contamination has multiple influences on the regional and country-wide health. With new industrial activities in the region, sediment extraction, and discharge of untreated wastewater into the river, its tributaries and irrigation canals, a comprehensive study of water quality was greatly needed. This study examined sediment and water samples from 17 sampling sites in the Mashavera River Basin during the high and low precipitation seasons. The results were characterized utilizing the Geo-accumulation Index (Igeo), Enrichment Factor (EF), Pollution Load index (PLI), Contamination Factor (CF) and Metal Index (MI). According to the CFs, Cu > Cd > Zn > Pb > Fe > Mn > Ni > Cr > Hg is the descending order for the content of all observed heavy metals in sediments collected in both seasons. Fe and As were additionally examined in water samples. Overall, As, Cd and Pb, all highly toxic elements, were found in high concentrations in downstream sample sites. According to these results, comprehensive monitoring with narrow intervals between sampling dates, more sample sites along all waterways, and proximate observation of multiple trace metal elements are highly recommended. Moreover, as the part of the water quality governance system, an immediate and sustainable collective action by all stakeholders to control the pollution level is highly recommended, as this issue is linked to the security of the national food system and poses a local public health risk. PMID:29597320

  3. Background Radioactivity in River and Reservoir Sediments near Los Alamos, New Mexico

    Energy Technology Data Exchange (ETDEWEB)

    S.G.McLin; D.W. Lyons

    2002-05-05

    As part of its continuing Environmental Surveillance Program, regional river and lake-bottom sediments have been collected annually by Los Alamos National Laboratory (the Laboratory) since 1974 and 1979, respectively. These background samples are collected from three drainage basins at ten different river stations and five reservoirs located throughout northern New Mexico and southern Colorado. Radiochemical analyses for these sediments include tritium, strontium-90, cesium-137, total uranium, plutonium-238, plutonium-239,-240, americium-241, gross alpha, gross beta, and gross gamma radioactivity. Detection-limit radioactivity originates as worldwide fallout from aboveground nuclear weapons testing and satellite reentry into Earth's atmosphere. Spatial and temporal variations in individual analyte levels originate from atmospheric point-source introductions and natural rate differences in airborne deposition and soil erosion. Background radioactivity values on sediments reflect this variability, and grouped river and reservoir sediment samples show a range of statistical distributions that appear to be analyte dependent. Traditionally, both river and reservoir analyte data were blended together to establish background levels. In this report, however, we group background sediment data according to two criteria. These include sediment source (either river or reservoir sediments) and station location relative to the Laboratory (either upstream or downstream). These grouped data are statistically evaluated through 1997, and background radioactivity values are established for individual analytes in upstream river and reservoir sediments. This information may be used to establish the existence and areal extent of trace-level environmental contamination resulting from historical Laboratory research activities since the early 1940s.

  4. Strontium and neodymium isotopic compositions in sediments from Godavari, Krishna and Pennar rivers

    International Nuclear Information System (INIS)

    Masood Ahmad, S.; Padmakumari, V.M.; Anil Babu, G.

    2009-01-01

    We report here strontium (Sr) and neodymium (Nd) isotopic compositions in bed sediments from the Godavari, Krishna and Pennar rivers, draining into the Bay of Bengal. The isotopic compositions of these sediments range from 0.7190 to 0.7610 for 87 Sr/ 86 Sr and -12.04 to -23.68 for ε Nd . This wide range in Sr and Nd isotopes is derived from variable proportions of sediments from different rock types in their drainage basins. All the three rivers have their characteristic isotopic signatures. The results display highest 87 Sr/ 86 Sr (0.7610) and most negative ε Nd values (-23.68) for the sediments of Pennar river. This is attributed to the chemical weathering of gneisses and granites in its drainage basin. The 87 Sr/ 86 Sr and ε Nd values for the Godavari river sediments range from 0.7196 to 0.7210 and -15.31 to -18.22 respectively. 87 Sr/ 86 Sr and ε Nd values in Krishna river sediments lie from 0.7217 to 0.7301 and -12.04 to -12.78 respectively. Our results show that the sedimentary load from the Godavari and Krishna rivers is primarily derived from the older rocks in their drainage basins. It is possible that the sediments transported through peninsular Indian rivers predominantly control Sr and Nd isotope sedimentary budget in the western Bay of Bengal. (author)

  5. Effects of Sediment Chemical Properties on Phosphorus Release Rates in the Sediment-Water Interface of the Steppe Wetlands

    Directory of Open Access Journals (Sweden)

    Jing He

    2017-11-01

    Full Text Available Rising temperature causes a process of phosphorus release, which can be characterized well using phosphorus release rates (VP. The objective of the present study was to investigate the major factors affecting sediment phosphorus release rates through a wetland habitat simulation experiment. The results showed that the VP of different wetland sediments were different and changed with the order of W–R (river wetland > W–L (lake wetland > W–M (grassy marsh wetland > W–A (reservoir wetland. The main driving factors which influenced sediment phosphorus flux velocity in the sediment–water interface were sediment B-SO42−, B-MBN and A-MBP content. Path analysis and determination coefficient analysis indicated the standard multiple regression equation for sediment phosphorus release rates in the sediment–water interface, and each main factor was Y = −0.105 + 0.096X1 + 0.275X2 − 0.010X3 (r = 0.416, p < 0.01, n = 144, where Y is sediment phosphorus release rates; X1 is sediment B-SO42− content; X2 is sediment B-MBN; and X3 is sediment A-MBP content. Sediment B-SO42−, B-MBN and A-MBP content and the interaction between them were the main factors affecting sediment phosphorus release rates in the sediment–water interface. Therefore, these results suggest that soil chemical properties and microbial activities likely play an important role in phosphorus release rates in the sediment–water interface. We hope to provide effective scientific management and control methods for relevant environmental protection departments.

  6. Tributyltin distribution and producing androgenic activity in water, sediment, and fish muscle.

    Science.gov (United States)

    Shue, Meei-Fang; Chen, Ting-Chien; Bellotindos, Luzvisminda M; Lu, Ming-Chun

    2014-01-01

    This study investigated the concentrations of Tributyltin (TBT) in water, sediment, and fish muscle samples taken from Kaohsiung Harbor and Kaoping River estuary, Taiwan. TBT concentrations in water and sediment samples ranged from less than 18.5 to 34.1 ng Sn L(-1) and from 2.44 to 29.7 ng Sn g(-1) weight per weight (w/w), respectively. Concentrations in the TBT-contaminated fish muscle samples ranged from 10.8 to 79.6 ng Sn g(-1) w/w. The TBT concentrations in fish muscle were higher than those in water and sediment samples. The fish muscle/water TBT bioconcentration factor (BCF) ranged from 590 to 3363 L kg(-1). Additionally, the water samples were assessed for androgenic activity with an MCF7-AR1 human breast cancer cell line. The androgenic activity ranged from 0.94 to 3.1 ng-dihydrotestosterone per litre water (ng-DHT L(-1)). Higher concentrations of TBT in water and sediment samples occurred in the dry season, but the androgenic activity had higher values in the rainy season.

  7. Multi isotopic characterization (Li-Cu-Zn-Pb) of waste waters pollution in a small watershed (Loire River basin, France)

    Science.gov (United States)

    Millot, R.; Desaulty, A. M.; Perret, S.; Bourrain, X.

    2016-12-01

    The goal of this study is to use multi-isotopic signature to track the pollution in surface waters, and to understand the complex processes causing the metals mobilization and transport in the environment. In the present study, we investigate waste water releases from a hospital water treatment plant and its potential impact in a small river basin near Orléans in France (Egoutier watershed: 15 km²and 5 km long). We decided to monitor this small watershed which is poorly urbanized in the Loire river basin. Its spring is located in a pristine area (forested area), while it is only impacted some kilometers further by the releases rich in metals coming from a hospital water treatment plant. A sampling of these liquid effluents as well as dissolved load and sediment from upstream to downstream was realized and their concentrations and isotopic data were determined. Isotopic ratios were measured using a MC-ICP-MS at BRGM, after a specific protocol of purification for each isotopic systematics. Lithium isotopic compositions are rather homogeneous in river waters along the main course of the stream. The waste water signal is very different from the natural background with significant heavy lithium contribution (high δ7Li). Lead isotopic compositions are rather homogenous in river waters and sediments with values close to geologic background. For Zn, the sediments with high concentrations and depleted isotopic compositions (low δ66Zn), typical of an anthropic pollution, are strongly impacted. The analyses of Cu isotopes in sediments show the impact of waster waters, but also isotopic fractionations due to redox processes in the watershed. To better understand these processes controlling the release of metals in water, sequential extractions on sediments are in progress under laboratory conditions and will provide important constraints for metal distribution in this river basin.

  8. Fine-grained suspended sediment source identification for the Kharaa River basin, northern Mongolia

    Science.gov (United States)

    Rode, Michael; Theuring, Philipp; Collins, Adrian L.

    2015-04-01

    Fine sediment inputs into river systems can be a major source of nutrients and heavy metals and have a strong impact on the water quality and ecosystem functions of rivers and lakes, including those in semiarid regions. However, little is known to date about the spatial distribution of sediment sources in most large scale river basins in Central Asia. Accordingly, a sediment source fingerprinting technique was used to assess the spatial sources of fine-grained (source discrimination with geochemical composite fingerprints based on a new Genetic Algorithm (GA)-driven Discriminant Function Analysis, the Kruskal-Wallis H-test and Principal Component Analysis. The composite fingerprints were subsequently used for numerical mass balance modelling with uncertainty analysis. The contributions of the individual sub-catchment spatial sediment sources varied from 6.4% (the headwater sub-catchment of Sugnugur Gol) to 36.2% (the Kharaa II sub-catchment in the middle reaches of the study basin) with the pattern generally showing higher contributions from the sub-catchments in the middle, rather than the upstream, portions of the study area. The importance of riverbank erosion was shown to increase from upstream to midstream tributaries. The source tracing procedure provides results in reasonable accordance with previous findings in the study region and demonstrates the general applicability and associated uncertainties of an approach for fine-grained sediment source investigation in large scale semi-arid catchments. The combined application of source fingerprinting and catchment modelling approaches can be used to assess whether tracing estimates are credible and in combination such approaches provide a basis for making sediment source apportionment more compelling to catchment stakeholders and managers.

  9. Variability and Trend Detection in the Sediment Load of the Upper Indus River

    Directory of Open Access Journals (Sweden)

    Sardar Ateeq-Ur-Rehman

    2017-12-01

    Full Text Available Water reservoirs planned or constructed to meet the burgeoning energy and irrigation demands in Pakistan face a significant loss of storage capacity due to heavy sediment load from the upper Indus basin (UIB. Given their importance and the huge investment, assessments of current UIB sediment load and possible future changes are crucial for informed decisions on planning of optimal dams’ operation and ensuring their prolonged lifespan. In this regard, the daily suspended sediment loads (SSLs and their changes are analyzed for the meltwater-dominated zone up to the Partab Bridge and the whole UIB up to Besham Qila, which is additionally influenced by monsoonal rainfall. The gaps between intermittent suspended sediment concentration (SSC samples are filled by wavelet neural networks (WA-ANNs using discharges for each site. The temporal dynamics of SSLs and discharges are analyzed using a suite of three non-parametric trend tests while the slope is identified using Sen’s slope estimator. We found disproportional spatio-temporal trends between SSLs and discharges caused primarily by intra-annual shifts in flows, which can lead to increased trap efficiency in planned reservoirs, especially upstream of Besham Qila. Moreover, a discernible increase in SSLs recorded at Partab Bridge during summer is being deposited downstream in the river channel. This is due to a decrease in river transport capacity in the monsoonal zone. These findings will not only help to identify these morphological problems, but also accurately anticipate the spatio-temporal changes in the sediment budget of the upper Indus River. Our results will help improve reservoir operational rules and sediment management strategies for existing and 30,000-MW planned dams in the UIB.

  10. Identification and effects of anthropogenic emissions of U and Th on the composition of sediments in a river/estuarine system in Southern Spain

    International Nuclear Information System (INIS)

    Martinez-Aguirre, A.; Garcia-Leon, M.

    1994-01-01

    A study of the distribution of natural radionuclides in different fractions of river bottom sediments has been carried out. The study has shown that the majority of the total U in the sediment is located in the non-residual fraction of the sediment, while Th is more suitable to be present in the residual fraction of the sediments. Also, it has been found that coprecipitation with amorphous ferromanganese oxyhydroxides is the main process of incorporation of U- and Th-isotopes from the water column to suspended matter or bottom sediments. The distribution of the radionuclides and the analysis of some relevant activity ratios in different fractions of sediments has made an unequivocal connection between the enhanced U content in river sediments and the waste discharged into the Odiel and Tinto rivers by the operation in the vicinity of phosphate fertilizer industries. (Author)

  11. Radioecological studies of 137Cs in limnological ecosystems. 137Cs concentrations in water, sediment and biota at the lower region of the famous river in Saitama Prefecture

    International Nuclear Information System (INIS)

    Miyake, Sadaaki; Motegi, Misako; Oosawa, Takashi; Nakazawa, Kiyoaki; Ogata, Hiromitsu; Izumo, Yoshiro; Nakamura, Fumio.

    1996-01-01

    The concentrations of 137 Cs in water, sediment and biota at the lower region of the famous river in Saitama prefecture were determined in order to elucidate the radioecology of 137 Cs in limnological ecosystems. 137 Cs concentration in water was 0.10 mBq/l. 137 Cs concentrations in sediment, shellfish, Sinotaia quadratus historica (mean for 2 detectable samples), and fish, Carassius auratus cuvieri (mean for 2 detectable samples), were about 6200, 840 and 320 times higher than the concentration of the water, respectively. But 137 Cs radioactivity in the crustacea, Procambarus clarki, was significantly not detected. So, 137 Cs transfer mechanism in the limnological ecosystems was indicated in part. (author)

  12. Sediment Transport Dynamic in a Meandering Fluvial System: Case Study of Chini River

    Science.gov (United States)

    Nazir, M. H. M.; Awang, S.; Shaaban, A. J.; Yahaya, N. K. E. M.; Jusoh, A. M.; Arumugam, M. A. R. M. A.; Ghani, A. A.

    2016-07-01

    Sedimentation in river reduces the flood carrying capacity which lead to the increasing of inundation area in the river basin. Basic sediment transport can predict the fluvial processes in natural rivers and stream through modeling approaches. However, the sediment transport dynamic in a small meandering and low-lying fluvial system is considered scarce in Malaysia. The aim of this study was to analyze the current riverbed erosion and sedimentation scenarios along the Chini River, Pekan, Pahang. The present study revealed that silt and clay has potentially been eroded several parts of the river. Sinuosity index (1.98) indicates that Chini River is very unstable and continuous erosion process in waterways has increase the riverbank instability due to the meandering factors. The riverbed erosional and depositional process in the Chini River is a sluggish process since the lake reduces the flow velocity and causes the deposited particles into the silt and clay soil at the bed of the lake. Besides, the bed layer of the lake comprised of cohesive silt and clayey composition that tend to attach the larger grain size of sediment. The present study estimated the total sediment accumulated along the Chini River is 1.72 ton. The HEC-RAS was employed in the simulations and in general the model performed well, once all parameters were set within their effective ranges.

  13. Toxicity of sediments and pore water from Brunswick Estuary, Georgia

    Science.gov (United States)

    Winger, Parley V.; Lasier, Peter J.; Geitner, Harvey

    1993-01-01

    A chlor-alkali plant in Brunswick, Georgia, USA, discharged >2 kg mercury/d into a tributary of the Turtle River-Brunswick Estuary from 1966 to 1971. Mercury concentrations in sediments collected in 1989 along the tributary near the chlor-alkali plant ranged from 1 to 27 μg/g (dry weight), with the highest concentrations found in surface (0–8 cm) sediments of subtidal zones in the vicinity of the discharge site. Toxicity screening in 1990 using Microtox® bioassays on pore water extracted on site from sediments collected at six stations distributed along the tributary indicated that pore water was highly toxic near the plant discharge. Ten-day toxicity tests on pore water from subsequent sediment samples collected near the plant discharge confirmed high toxicity to Hyalella azteca, and feeding activity was significantly reduced in whole-sediment tests. In addition to mercury in the sediments, other metals (chromium, lead, and zinc) exceeded 50 μg/g, and polychlorobiphenyl (PCB) concentrations ranged from 67 to 95 μg/g. On a molar basis, acid-volatile sulfide concentrations (20–45 μmol/g) in the sediments exceeded the metal concentrations. Because acid-volatile sulfides bind with cationic metals and form metal sulfides, which are generally not bioavailable, toxicities shown by these sediments were attributed to the high concentrations of PCBs and possibly methylmercury.

  14. Dramatic decreases in runoff and sediment load in the Huangfuchuan Basin of the Middle Yellow River, China: historical records and future projections

    Science.gov (United States)

    LI, E.; Li, D.; Wang, Y.; Fu, X.

    2017-12-01

    The Yellow River is well known for its high sediment load and serious water shortage. The long-term averaged sediment load is about 1.6´103 million tons per year, resulting in aggrading and perched lower reaches. In recent years, however, dramatic decreases in runoff and sediment load have been observed. The annual sediment load has been less than 150 million tons in the last ten years. Extrapolation of this trend into the future would motivate substantial change in the management strategies of the Lower Yellow River. To understand the possible trend and its coevolving drivers, we performed a case study of the Huangfuchuang River, which is a tributary to the Middle Yellow River, with a drainage area of 3246 km2 and an annual precipitation of 365 mm. Statistical analysis of historical data from 1960s to 2015 showed a significantly decreasing trend in runoff and sediment load since 1984. As potential drivers, the precipitation does not show an obvious change in annual amount, while the vegetation cover and the number of check dams have been increased gradually as a result of the national Grain for Green project. A simulation with the Soil and Water Assessment Tool (SWAT) reproduced the historical evolution processes, and showed that human activities dominated the reduction in runoff and sediment load, with a contribution of around 80%. We then projected the runoff and sediment load for the next 50 years (2016-2066), considering typical scenarios of climate change and accounting for vegetation cover development subject to climate conditions and storage capacity loss of check dams due to sediment deposition. The differences between the projected trend and the historical record were analyzed, so as to highlight the coevolving processes of climate, vegetation, and check dam retention on a time scale of decades. Keywords: Huangfuchuan River Basin, sediment load, vegetation cover, check dams, annual precipitation, SWAT.

  15. Microbial responses to polycyclic aromatic hydrocarbon contamination in temporary river sediments: Experimental insights.

    Science.gov (United States)

    Zoppini, Annamaria; Ademollo, Nicoletta; Amalfitano, Stefano; Capri, Silvio; Casella, Patrizia; Fazi, Stefano; Marxsen, Juergen; Patrolecco, Luisa

    2016-01-15

    Temporary rivers are characterized by dry-wet phases and represent an important water resource in semi-arid regions worldwide. The fate and effect of contaminants have not been firmly established in temporary rivers such as in other aquatic environments. In this study, we assessed the effects of sediment amendment with Polycyclic Aromatic Hydrocarbons (PAHs) on benthic microbial communities. Experimental microcosms containing natural (Control) and amended sediments (2 and 20 mg PAHs kg(-1) were incubated for 28 days. The PAH concentrations in sediments were monitored weekly together with microbial community structural (biomass and phylogenetic composition by TGGE and CARD-FISH) and functional parameters (ATP concentration, community respiration rate, bacterial carbon production rate, extracellular enzyme activities). The concentration of the PAH isomers did not change significantly with the exception of phenanthrene. No changes were observed in the TGGE profiles, whereas the occurrence of Alpha- and Beta-Proteobacteria was significantly affected by the treatments. In the amended sediments, the rates of carbon production were stimulated together with aminopeptidase enzyme activity. The community respiration rates showed values significantly lower than the Control after 1 day from the amendment then recovering the Control values during the incubation. A negative trend between the respiration rates and ATP concentration was observed only in the amended sediments. This result indicates a potential toxic effect on the oxidative phosphorylation processes. The impoverishment of the energetic resources that follows the PAH impact may act as a domino on the flux of energy from prokaryotes to the upper level of the trophic chain, with the potential to alter the temporary river functioning.

  16. Satellite Derived Water Quality Observations Are Related to River Discharge and Nitrogen Loads in Pensacola Bay, Florida

    Directory of Open Access Journals (Sweden)

    John C. Lehrter

    2017-09-01

    Full Text Available Relationships between satellite-derived water quality variables and river discharges, concentrations and loads of nutrients, organic carbon, and sediments were investigated over a 9-year period (2003–2011 in Pensacola Bay, Florida, USA. These analyses were conducted to better understand which river forcing factors were the primary drivers of estuarine variability in several water quality variables. Remote sensing reflectance time-series data were retrieved from the MEdium Resolution Imaging Spectrometer (MERIS and used to calculate monthly and annual estuarine time-series of chlorophyll a (Chla, colored dissolved organic matter (CDOM, and total suspended sediments (TSS. Monthly MERIS Chla varied from 2.0 mg m−3 in the lower region of the bay to 17.2 mg m−3 in the upper bay. MERIS CDOM and TSS exhibited similar patterns with ranges of 0.51–2.67 (m−1 and 0.11–8.9 (g m−3. Variations in the MERIS-derived monthly and annual Chla, CDOM, and TSS time-series were significantly related to monthly and annual river discharge and loads of nitrogen, organic carbon, and suspended sediments from the Escambia and Yellow rivers. Multiple regression models based on river loads (independent variables and MERIS Chla, CDOM, or TSS (dependent variables explained significant fractions of the variability (up to 62% at monthly and annual scales. The most significant independent variables in the regressions were river nitrogen loads, which were associated with increased MERIS Chla, CDOM, and TSS concentrations, and river suspended sediment loads, which were associated with decreased concentrations. In contrast, MERIS water quality variations were not significantly related to river total phosphorus loads. The spatially synoptic, nine-year satellite record expanded upon the spatial extent of past field studies to reveal previously unseen system-wide responses to river discharge and loading variation. The results indicated that variations in Pensacola Bay Chla

  17. Occurrence, ecological risk assessment, and spatio-temporal variation of polychlorinated biphenyls (PCBs) in water and sediments along River Ravi and its northern tributaries, Pakistan.

    Science.gov (United States)

    Baqar, Mujtaba; Sadef, Yumna; Ahmad, Sajid Rashid; Mahmood, Adeel; Qadir, Abdul; Aslam, Iqra; Li, Jun; Zhang, Gan

    2017-12-01

    Ecological risk assessment, spatio-temporal variation, and source apportionment of polychlorinated biphenyls (PCBs) were studied in surface sediments and water from River Ravi and its three northern tributaries (Nullah Deg, Nullah Basantar, and Nullah Bein) in Pakistan. In total, 35 PCB congeners were analyzed along 27 sampling stations in pre-monsoon and post-monsoon seasons. The ∑ 35 PCB concentration ranged from 1.06 to 95.76 ng/g (dw) in sediments and 1.94 to 11.66 ng/L in water samples, with hexa-CBs and tetra-CBs as most dominant homologs in sediments and water matrixes, respectively. The ∑ 8 DL-PCB levels were 0.33-22.13 ng/g (dw) and 0.16-1.95 ng/L in sediments and water samples, respectively. The WHO-toxic equivalent values were ranged from 1.18 × 10 -6 to 0.012 ng/L and 1.8 × 10 -6 to 0.031 ng/g in water and sediments matrixes, respectively. The ecological risk assessment indicates considerable potential ecological risk during pre-monsoon season ([Formula: see text] = 95.17) and moderate potential ecological risk during post-monsoon season ([Formula: see text] = 49.11). The industrial and urban releases were recognized as key ongoing sources for high PCB levels in environment. Therefore, we recommend more freshwater ecological studies to be conducted in the study area and firm regulatory initiatives are required to be taken in debt to the Stockholm Convention, 2001 to cop up with PCB contamination on emergency basis.

  18. Bioavailability, ecotoxicity, and geological characteristics of trace lead in sediments from two sites on Negro River, Uruguay, South America.

    Science.gov (United States)

    Míguez, Diana M; Huertas, Raquel; Carrara, María V; Carnikián, Agustín; Bouvier, María E; Martínez, María J; Keel, Karen; Pioda, Carolina; Darré, Elena; Pérez, Ramiro; Viera, Santiago; Massa, Enrique

    2012-04-01

    Bioassays of two sites along the Rio Negro in Uruguay indicate ecotoxicity, which could be attributable to trace concentrations of lead in river sediments. Monthly samples at two sites at Baygorria and Bonete locations were analyzed for both particle size and lead. Lead was determined by atomic spectrometry in river water and sediment and particle size by sieving and sedimentation. Data showed that Baygorria's sediments have greater percentage of clay than Bonete's (20.4 and 5.8%, respectively). Lead was measurable in Baygorria's sediments, meanwhile in Bonete's, it was always below the detection limit. In water samples, lead was below detection limit at both sites. Bioassays using sub-lethal growth and survival test with Hyalella curvispina amphipod, screening with bioluminescent bacteria Photobacterium leiognathi, and acute toxicity bioassay with Pimephales promelas fish indicated toxicity at Baygorria, with much less effect at Bonete. Even though no lethal effects could be demonstrated, higher sub-lethal toxicity was found in samples from Baygorria site, showing a possible concentration of the contaminant in the clay fraction.

  19. Sediment deposition and sources into a Mississippi River floodplain lake; Catahoula Lake, Louisiana

    Science.gov (United States)

    Latuso, Karen D.; Keim, Richard F.; King, Sammy L.; Weindorf, David C.; DeLaune, Ronald D.

    2017-01-01

    Floodplain lakes are important wetlands on many lowland floodplains of the world but depressional floodplain lakes are rare in the Mississippi River Alluvial Valley. One of the largest is Catahoula Lake, which has existed with seasonally fluctuating water levels for several thousand years but is now in an increasingly hydrologically altered floodplain. Woody vegetation has been encroaching into the lake bed and the rate of this expansion has increased since major human hydrologic modifications, such as channelization, levee construction, and dredging for improvement of navigation, but it remains unknown what role those modifications may have played in altering lake sedimentation processes. Profiles of thirteen 137Cs sediment cores indicate sedimentation has been about 0.26 cm y− 1 over the past 60 years and has been near this rate since land use changes began about 200 years ago (210Pb, and 14C in Tedford, 2009). Carbon sequestration was low (10.4 g m− 2 y− 1), likely because annual drying promotes mineralization and export. Elemental composition (high Zr and Ti and low Ca and K) and low pH of recent (sediments suggest Gulf Coastal Plain origin, but below the recent sediment deposits, 51% of sediment profiles showed influence of Mississippi River alluvium, rich in base cations such as K+, Ca2 +, and Mg2 +. The recent shift to dominance of Coastal Plain sediments on the lake-bed surface suggests hydrologic modification has disconnected the lake from sediment-bearing flows from the Mississippi River. Compared to its condition prior to hydrologic alterations that intensified in the 1930s, Catahoula Lake is about 15 cm shallower and surficial sediments are more acidic. Although these results are not sufficient to attribute ecological changes directly to sedimentological changes, it is likely the altered sedimentary and hydrologic environment is contributing to the increased dominance of woody vegetation.

  20. Punctuated sediment discharge during early Pliocene birth of the Colorado River: Evidence from regional stratigraphy, sedimentology, and paleontology

    Science.gov (United States)

    Dorsey, Rebecca J.; O’Connell, Brennan; McDougall-Reid, Kristin; Homan, Mindy B.

    2018-01-01

    The Colorado River in the southwestern U.S. provides an excellent natural laboratory for studying the origins of a continent-scale river system, because deposits that formed prior to and during river initiation are well exposed in the lower river valley and nearby basinal sink. This paper presents a synthesis of regional stratigraphy, sedimentology, and micropaleontology from the southern Bouse Formation and similar-age deposits in the western Salton Trough, which we use to interpret processes that controlled the birth and early evolution of the Colorado River. The southern Bouse Formation is divided into three laterally persistent members: basal carbonate, siliciclastic, and upper bioclastic members. Basal carbonate accumulated in a tide-dominated marine embayment during a rise of relative sea level between ~ 6.3 and 5.4 Ma, prior to arrival of the Colorado River. The transition to green claystone records initial rapid influx of river water and its distal clay wash load into the subtidal marine embayment at ~ 5.4–5.3 Ma. This was followed by rapid southward progradation of the Colorado River delta, establishment of the earliest through-flowing river, and deposition of river-derived turbidites in the western Salton Trough (Wind Caves paleocanyon) between ~ 5.3 and 5.1 Ma. Early delta progradation was followed by regional shut-down of river sand output between ~ 5.1 and 4.8 Ma that resulted in deposition of marine clay in the Salton Trough, retreat of the delta, and re-flooding of the lower river valley by shallow marine water that deposited the Bouse upper bioclastic member. Resumption of sediment discharge at ~ 4.8 Ma drove massive progradation of fluvial-deltaic deposits back down the river valley into the northern Gulf and Salton Trough.These results provide evidence for a discontinuous, start-stop-start history of sand output during initiation of the Colorado River that is not predicted by existing models for this system. The underlying controls on