WorldWideScience

Sample records for water resources assessment

  1. Water resources assessment and prediction in China

    Directory of Open Access Journals (Sweden)

    W. Guangsheng

    2016-10-01

    Full Text Available Water resources assessment in China, can be classified into three groups: (i comprehensive water resources assessment, (ii annual water resources assessment, and (iii industrial project water resources assessment. Comprehensive water resources assessment is the conventional assessment where the frequency distribution of water resources in basins or provincial regions are analyzed. For the annual water resources assessment, water resources of the last year in basins or provincial regions are usually assessed. For the industrial project water resources assessment, the water resources situation before the construction of industrial project has to be assessed. To address the climate and environmental changes, hydrological and statistical models are widely applied for studies on assessing water resources changes. For the water resources prediction in China usually the monthly runoff prediction is used. In most low flow seasons, the flow recession curve is commonly used as prediction method. In the humid regions, the rainfall-runoff ensemble prediction (ESP has been widely applied for the monthly runoff prediction. The conditional probability method for the monthly runoff prediction was also applied to assess next month runoff probability under a fixed initial condition.

  2. Assessing water resource use in livestock production

    NARCIS (Netherlands)

    Ran, Y.; Lannerstad, M.; Herrero, M.; Middelaar, Van C.E.; Boer, De I.J.M.

    2016-01-01

    This paper reviews existing methods for assessing livestock water resource use, recognizing that water plays a vital role in global food supply and that livestock production systems consumes a large amount of the available water resources. A number of methods have contributed to the development

  3. Water Resources Assessment and Management in Drylands

    Directory of Open Access Journals (Sweden)

    Magaly Koch

    2016-06-01

    Full Text Available Drylands regions of the world face difficult issues in maintaining water resources to meet current demands which will intensify in the future with population increases, infrastructure development, increased agricultural water demands, and climate change impacts on the hydrologic system. New water resources evaluation and management methods will be needed to assure that water resources in drylands are optimally managed in a sustainable manner. Development of water management and conservation methods is a multi-disciplinary endeavor. Scientists and engineers must collaborate and cooperate with water managers, planners, and politicians to successfully adopt new strategies to manage water not only for humans, but to maintain all aspects of the environment. This particularly applies to drylands regions where resources are already limited and conflicts over water are occurring. Every aspect of the hydrologic cycle needs to be assessed to be able to quantify the available water resources, to monitor natural and anthropogenic changes, and to develop flexible policies and management strategies that can change as conditions dictate. Optimal, sustainable water management is achieved by cooperation and not conflict, thereby necessitating the need for high quality scientific research and input into the process.

  4. Ecological Risk Assessment in Water Resource Management ...

    African Journals Online (AJOL)

    The US EPA published guidelines for the application of ecological risk assessment (ERA) in the USA in 1998 (US EPA 1998). The process diagram derived by Murray and Claassen (1999) in an evaluation of the US EPA framework is discussed in the context of the South African National Water Act. The evaluation discusses ...

  5. Assessing Water and Carbon Footprints for Sustainable Water Resource Management

    Science.gov (United States)

    The key points of this presentation are: (1) Water footprint and carbon footprint as two sustainability attributes in adaptations to climate and socioeconomic changes, (2) Necessary to evaluate carbon and water footprints relative to constraints in resource capacity, (3) Critical...

  6. Overview of water resource assessment in South Africa: Current ...

    African Journals Online (AJOL)

    Overview of water resource assessment in South Africa: Current state and future challenges. ... These studies illustrate how the exponential growth in computer power and the concomitant development of highly sophisticated tools have changed the manner in which our water resources have been appraised, allowing us to ...

  7. Sustainability assessment of regional water resources under the DPSIR framework

    Science.gov (United States)

    Sun, Shikun; Wang, Yubao; Liu, Jing; Cai, Huanjie; Wu, Pute; Geng, Qingling; Xu, Lijun

    2016-01-01

    Fresh water is a scarce and critical resource in both natural and socioeconomic systems. Increasing populations combined with an increasing demand for water resources have led to water shortages worldwide. Current water management strategies may not be sustainable, and comprehensive action should be taken to minimize the water budget deficit. Sustainable water resources management is essential because it ensures the integration of social, economic, and environmental issues into all stages of water resources management. This paper establishes the indicators to evaluate the sustainability of water utilization based on the Drive-Pressure-Status-Impact-Response (DPSIR) model. Based on the analytic hierarchy process (AHP) method, a comprehensive assessment of changes to the sustainability of the water resource system in the city of Bayannur was conducted using these indicators. The results indicate that there is an increase in the driving force of local water consumption due to changes in society, economic development, and the consumption structure of residents. The pressure on the water system increased, whereas the status of the water resources continued to decrease over the study period due to the increasing drive indicators. The local government adopted a series of response measures to relieve the decreasing water resources and alleviate the negative effects of the increasing driver in demand. The response measures improved the efficiency of water usage to a large extent, but the large-scale expansion in demands brought a rebounding effect, known as ;Jevons paradox; At the same time, the increasing emissions of industrial and agriculture pollutants brought huge pressures to the regional water resources environment, which caused a decrease in the sustainability of regional water resources. Changing medium and short-term factors, such as regional economic pattern, technological levels, and water utilization practices, can contribute to the sustainable utilization of

  8. Environmental Impact Assessment in Sustainable Water Resources ...

    African Journals Online (AJOL)

    During project study and design, major environmental impacts of water ... should be identified and made available for decision makers and the public. ... remotely sensed data can be analysed in GIS environment to generate data and map the ...

  9. Assessment of the sustainability of a water resource system expansion

    DEFF Research Database (Denmark)

    Kjeldsen, Thomas Rødding; Rosbjerg, Dan

    2001-01-01

    A sustainability assessment method involving risk criteria related to reliability, resilience and vulnerability, has been applied to quantify the relative sustainability of possible expansions of a water resources system in the KwaZulu-Natal province South Africa. A river basin model has been setup....... Based on initial experience the method was modified leading to more credible results. A problem with assessing sustainability using risk criteria is a favouring of supply-oriented solutions, in particular when aspects not directly related to demand and availability of water are excluded....... for the water resources system, comprising all important water users within the catchment. Measures to meet the growing water demand in the catchment are discussed. Six scenarios including both supply and demand oriented solutions are identified, modelled and compared in tenus of the sustainability criteria...

  10. Overview of water resource assessment in South Africa: Current ...

    African Journals Online (AJOL)

    Overview of water resource assessment in South Africa: Current state and future challenges. ... a helpful Frequently Asked Questions about PDFs. Alternatively, you can download the PDF file directly to your computer, from where it can be opened using a PDF reader. To download the PDF, click the Download link above.

  11. Water Resources Vulnerability Assessment Accounting for Human Influence

    Science.gov (United States)

    Mehran, A.; AghaKouchak, A.

    2014-12-01

    Reservoirs are one of the main infrastructures that provide resilience against extremes (e.g., floods and droughts) and they play a key role in water resources management. Based on International Commission of Large Dams (ICOLD 2003) records, the total volume of reservoirs is over 6200 km3, which is twice larger than the global annual water use estimated as 3000 km3. Just a simple comparison of the two numbers indicates the importance of reservoirs and their role in providing resilience for water security. On the other hand, man-made reservoirs change the water distribution throughout the year. Most climate change impact studies ignore the role of reservoirs in water availability studies. However, water availability cannot be properly assessed without a thorough assessment of reservoir conditions. By combining classical methods for climate variability assessment (top-down approach) and influence assessment (bottom-up approach), this study offers a hybrid framework that integrates different drivers of water storage vulnerability. Final index is termed as the Multivariate Standardized Reliability and Resilience Index (MSRRI). This index investigates the adaptive capacity of the reservoir and exposure of the system to variable conditions. MSRRI has been investigated over several major reservoirs in Australia and California, United States. This presentation reviews recent findings and discusses reservoir conditions in Australia and California using MSRRI under different climatic change scenarios.

  12. Framework for Assessing Water Resource Sustainability in River Basins

    Science.gov (United States)

    Borden, J.; Goodwin, P.; Swanson, D.

    2013-12-01

    As the anthropogenic footprint increases on Earth, the wise use, maintenance, and protection of freshwater resources will be a key element in the sustainability of development. Borne from efforts to promote sustainable development of water resources is Integrated Water Resource Management (IWRM), which promotes efficiency of water resources, equity in water allocation across different social and economic groups, and environmental sustainability. Methodologies supporting IWRM implementation have largely focused on the overall process, but have had limited attention on the evaluation methods for ecologic, economic, and social conditions (the sustainability criterion). Thus, assessment frameworks are needed to support the analysis of water resources and evaluation of sustainable solutions in the IWRM process. To address this need, the River Basin Analysis Framework (RBAF) provides a structure for understanding water related issues and testing the sustainability of proposed solutions in river basins. The RBAF merges three approaches: the UN GEO 4 DPSIR approach, the Millennium Ecosystem Assessment approach, and the principles of sustainable development. Merging these approaches enables users to understand the spatiotemporal interactions between the hydrologic and ecologic systems, evaluate the impacts of disturbances (drivers, pressures) on the ecosystem goods and services (EGS) and constituents of human well-being (HWB), and identify and employ analytical methods and indicators in the assessments. The RBAF is comprised of a conceptual component (RBAF-C) and an analytical component (RBAF-A). For each disturbance type, the RBAF-C shows the potential directional change in the hydrologic cycle (peak flows, seasonality, etc.), EGS (drinking water supply, water purification, recreational opportunities, etc.), and HWB (safety, health, access to a basic materials), thus allowing users insight into potential impacts as well as providing technical guidance on the methods and

  13. Assessing Water and Carbon Footprints for Green Water Resource Management

    Science.gov (United States)

    This slide presentation will focus on the following points: (1) Water footprint and carbon footprint are two criteria evaluating the greenness in urban development, (2) Two cases are examined and presented: water footprints in energy productions and carbon footprints in water ...

  14. World water resources and water use: Modern assessment and outlook for the 21st century

    International Nuclear Information System (INIS)

    Shiklomanov, I.A.

    1999-01-01

    A quantitative assessment of the world water resources, water use, and water availability has been made during 1991-1996. The assessment has been made in retrospective for the period 1921-1985, for 1995, and for the future (2000, 2010 and 2025)

  15. Water Resources

    International Nuclear Information System (INIS)

    Abira, M.A.

    1997-01-01

    Water is essential for life and ecological sustenance; its availability is essential component of national welfare and productivity.The country's socio-economic activities are largely dependent on the natural endowment of water resources. Kenya's water resources comprises of surface waters (rivers, lakes and wetlands) and ground water. Surface water forms 86% of total water resources while the rest is ground water Geological, topographical and climatic factors influence the natural availability and distribution of water with the rainfall distribution having the major influence. Water resources in Kenya are continuously under threat of depletion and quality degradation owing to rising population, industrialization, changing land use and settlement activities as well as natural changes. However, the anticipated climate change is likely to exacerbate the situation resulting in increased conflict over water use rights in particular, and, natural resource utilisation in general. The impacts of climate change on the water resources would lead to other impacts on environmental and socio-economic systems

  16. Environmental qualitative assessment of water resources in Tehran

    Directory of Open Access Journals (Sweden)

    T. Jafarynasab

    2017-01-01

    Full Text Available Increasing water demand and reducing its contaminations are the main concerns and challenges for water resource managers and planner due to its limited sources and high value. This study aims to assess and understand the factors which threaten the quality of groundwater resources and to achieve this, samples were taken from 14 active wells in District 3 of the Municipality of Tehran. After categorizing the parameters to distinct measurable groups containing anions (SO4, Cl, NO2, NO3, HCO3, CO3, cations (Mg, Na, k heavy metals (Ag, Pb, Cd physical parameters (temperature, color and odor chemical parameters (Total Dissolved Solid , Electrical conductivity, Total Suspended Solids and pH, the data  were analyzed  using SPSS (version 16 software. The results revealed that excessive amount of nitrate anion in Paidari and Naji station is related to the slope and sandy texture of the wells and also the surrounding area’s soil. Increased cation concentration was visible in Resalat well, which indicated the use of excessive amount of fertilizers containing sodium and also the clay soil texture. Cadmium was the only heavy metal with the concentrations of more than the standard amount. Domestic sewage and surface runoff and also regional geological structure, the lack of appropriate distance between water wells with sewage wells were among other reasons, causing underground water pollution.

  17. Assessing the effects of adaptation measures on optimal water resources allocation under varied water availability conditions

    Science.gov (United States)

    Liu, Dedi; Guo, Shenglian; Shao, Quanxi; Liu, Pan; Xiong, Lihua; Wang, Le; Hong, Xingjun; Xu, Yao; Wang, Zhaoli

    2018-01-01

    Human activities and climate change have altered the spatial and temporal distribution of water availability which is a principal prerequisite for allocation of different water resources. In order to quantify the impacts of climate change and human activities on water availability and optimal allocation of water resources, hydrological models and optimal water resource allocation models should be integrated. Given that increasing human water demand and varying water availability conditions necessitate adaptation measures, we propose a framework to assess the effects of these measures on optimal allocation of water resources. The proposed model and framework were applied to a case study of the middle and lower reaches of the Hanjiang River Basin in China. Two representative concentration pathway (RCP) scenarios (RCP2.6 and RCP4.5) were employed to project future climate, and the Variable Infiltration Capacity (VIC) hydrological model was used to simulate the variability of flows under historical (1956-2011) and future (2012-2099) conditions. The water availability determined by simulating flow with the VIC hydrological model was used to establish the optimal water resources allocation model. The allocation results were derived under an extremely dry year (with an annual average water flow frequency of 95%), a very dry year (with an annual average water flow frequency of 90%), a dry year (with an annual average water flow frequency of 75%), and a normal year (with an annual average water flow frequency of 50%) during historical and future periods. The results show that the total available water resources in the study area and the inflow of the Danjiangkou Reservoir will increase in the future. However, the uneven distribution of water availability will cause water shortage problems, especially in the boundary areas. The effects of adaptation measures, including water saving, and dynamic control of flood limiting water levels (FLWLs) for reservoir operation, were

  18. Isotope methods in water resources assessment and environmental management

    International Nuclear Information System (INIS)

    Araguas-Araguas, L.

    1996-01-01

    Availability of water and protection of water resources have become top environmental issues in many countries. Governments are forced to issue strict guidelines to protect the environment and create agencies to pursue these aspects as well as enforce such regulations. The supply of good-quality water from rivers and lakes is becoming a costly and complex problem for many institutes responsible for water supply. Because of the high pollution levels in surface waters, ground water is the main source of drinking water in many countries. It is estimated that 1.5 billion people world-wide depend on it for drinking water. Since ground water cannot be directly measured, and despite its importance for drinking purposes there is not enough public concern about its protection. In other cases, it is found that the exploited ground water is not a renewable resource. In many countries in arid and semi-arid regions, fossil ground water is being tapped for extensive agricultural development, but such extraction depletes the reserves, in the same way as an oil reservoir. The availability of correct information, before decisions are taken will lead to improved management of water resources, distributing the available resources for different uses according to their quality, and ultimately, to manage the resource. Nuclear science has developed a series of methodologies based on the use of naturally-occurring isotopes and artificial tracers to study the processes involved in the occurrence and circulation of water. The discipline called 'Isotope Hydrology' provides a deep insight into many parts of the water cycle; from the evaporation over the ocean or the continents, to the formation of surface runoff and ground water and in the discharge of aquifer systems into the ocean. Isotope hydrology, as a scientific and applied discipline in earth sciences, was created during the late 1950s and early 1960s, beyond the classical hydrological science. In these early stages, new methodologies

  19. Resources and needs: assessment of the world water situation

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    The global water situation is assessed. Movement and distribution of water in the hydrologic cycle is described. Methods of appraising surface water, precipitation, evapotranspiration, groundwater, and water quality are reviewed. The reliability of such appraisals depends greatly on the adequacy of national water observation networks. Global water supplies and quality of lakes, reservoirs, and groundwater are estimated. The effects of runoff, climate, and human activities on supplies are briefly discussed. The use and demand of water for domestic, industrial, agricultural, hydroelectric, transportation, and recreational needs are assessed. Methods of projecting water demand and quality are reviewed. Demand and supply relationships for various regions of the world are presented. Socioeconomic, financial, technical, administrative, legal, and environmental considerations of these relationships are examined. By using available technology and institutional devices, the world water situation can be improved. (1 diagram, 3 graphs, 8 tables)

  20. Application of Isotope Techniques in the Assessment of Groundwater Resource in Water Resources Region 10, Philippines

    International Nuclear Information System (INIS)

    Racadio, Charles Darwin T.; Mendoza, Norman DS.; Castañeda, Soledad S.; Abaño, Susan P.; Rongavilla, Luis S.; Castro, Joey

    2015-01-01

    Groundwater has been the primary source of drinking water of about 50% of the people in the Philippines and the numbers continue to rise. However, data and information on groundwater resources are generally spasmodic or sparse in the country. A specific remedy to address this gap is the use of isotope hydrological techniques. A pilot project utilizing this technique was done in Water Resources Region X with the aim of demonstrating the effectiveness and efficiency of these approach in groundwater resources assessment. When optimized, the technique will be replicated in other areas of the country. Groundwater samples from springs deep wells hand pumps and dug wells and river water were collected within the study area from September 2012 to June 2014. Monthly integrated precipitation samples were also collected at different points within the study area from October 2012 to March 2015. Samples were analyzed for stable isotope (δ”2H and δ”1”8O) using Laser Water Isotope Analyzer and tritium for groundwater dating. Results showed that aquifers in the study area are recharged by infiltrated rain during the heavy rainfall moths (May to November for Cagayan-Tagaloan Basin, and December to April for Agusan Basin). Water in Agusan Basin is isotopically enriched compared with the water in Cagayan-Tagaloan Basin. There appears to be interaction between shallow unconfined aquifer and deep semi-confined aquifer in Cagayan de Oro City. Shallow aquifers appear to be recharged by local precipitation. Groundwater in the study area is of Ca-Mg-HCO 3 type, which is characteristic of dynamic water with short residence time. Tritium-helium aging puts the water at ages between 18 to 72 years. Recharged rates of 422 to 625 mm/year were calculated for Cagayan de Oro City.(author)

  1. An integrated model for the assessment of global water resources – Part 2: Applications and assessments

    Directory of Open Access Journals (Sweden)

    N. Hanasaki

    2008-07-01

    Full Text Available To assess global water resources from the perspective of subannual variation in water availability and water use, an integrated water resources model was developed. In a companion report, we presented the global meteorological forcing input used to drive the model and six modules, namely, the land surface hydrology module, the river routing module, the crop growth module, the reservoir operation module, the environmental flow requirement module, and the anthropogenic withdrawal module. Here, we present the results of the model application and global water resources assessments. First, the timing and volume of simulated agriculture water use were examined because agricultural use composes approximately 85% of total consumptive water withdrawal in the world. The estimated crop calendar showed good agreement with earlier reports for wheat, maize, and rice in major countries of production. In major countries, the error in the planting date was ±1 mo, but there were some exceptional cases. The estimated irrigation water withdrawal also showed fair agreement with country statistics, but tended to be underestimated in countries in the Asian monsoon region. The results indicate the validity of the model and the input meteorological forcing because site-specific parameter tuning was not used in the series of simulations. Finally, global water resources were assessed on a subannual basis using a newly devised index. This index located water-stressed regions that were undetected in earlier studies. These regions, which are indicated by a gap in the subannual distribution of water availability and water use, include the Sahel, the Asian monsoon region, and southern Africa. The simulation results show that the reservoir operations of major reservoirs (>1 km3 and the allocation of environmental flow requirements can alter the population under high water stress by approximately −11% to +5% globally. The integrated model is applicable to

  2. Water resources

    International Nuclear Information System (INIS)

    2002-01-01

    The report entitled Climate Change Impacts and Adaptation : A Canadian Perspective, presents a summary of research regarding the impacts of climate change on key sectors over the past five years as it relates to Canada. This chapter on water resources describes how climate change will affect the supply of water in Canada. Water is one of Canada's greatest resources, which contributes about $7.5 to 23 billion per year to the Canadian economy. The decisions taken to adapt to climate change within the water resources sector will have profound implications in many other areas such as agriculture, human health, transportation and industry. The water related problems include water quality issues that relate to water shortages from droughts, or excesses from floods. The Intergovernmental Panel on Climate Change forecasts an increase in global average surface air temperatures of 1.4 to 5.8 degrees C by 2100. Such a change would impact the hydrological cycle, affecting runoff, evaporation patterns, and the amount of water stored in glaciers, lakes, wetlands and groundwater. The uncertainty as to the magnitude of these changes is due to the difficulty that climate models have in projecting future changes in regional precipitation patterns and extreme events. This chapter presents potential impacts of climate change on water resources in the Yukon, British Columbia, the Prairies, the Great Lakes basin, the Atlantic provinces, and the Arctic and Subarctic. The associated concerns for each region were highlighted. Adaptation research has focused on the impacts of supply and demand, and on options to adapt to these impacts. 60 refs., 2 tabs., 1 fig

  3. Integrated assessment, water resources, and science-policy communication

    International Nuclear Information System (INIS)

    Davies, E.G.R.; Akhtar, M.K.; McBean, G.A.; Simonovic, S.P.

    2009-01-01

    Traditional climate change modeling neglects the role of feedbacks between different components of society-biosphere-climate system. Yet, such interconnections are critical. This paper describes an alternative, Integrated Assessment (IA) model that focuses on feedbacks not only within individual elements of the society-biosphere-climate system, but also on their interconnections. The model replicates the relevant dynamics of nine components of the society-biosphere- climate system at the sectoral, or single-component, level: climate, carbon cycle, hydrological cycle, water demand, water quality, population, land use, energy and economy. The paper discusses the role of the model in science-policy dialogue. (author)

  4. Water resources vulnerability assessment in the Adriatic Sea region: the case of Corfu Island.

    Science.gov (United States)

    Kanakoudis, Vasilis; Tsitsifli, Stavroula; Papadopoulou, Anastasia; Cencur Curk, Barbara; Karleusa, Barbara

    2017-09-01

    Cross-border water resources management and protection is a complicated task to achieve, lacking a common methodological framework. Especially in the Adriatic region, water used for drinking water supply purposes pass from many different countries, turning its management into a hard task to achieve. During the DRINKADRIA project, a common methodological framework has been developed, for efficient and effective cross-border water supply and resources management, taking into consideration different resources types (surface and groundwater) emphasizing in drinking water supply intake. The common methodology for water resources management is based on four pillars: climate characteristics and climate change, water resources availability, quality, and security. The present paper assesses both present and future vulnerability of water resources in the Adriatic region, with special focus on Corfu Island, Greece. The results showed that climate change is expected to impact negatively on water resources availability while at the same time, water demand is expected to increase. Water quality problems will be intensified especially due to land use changes and salt water intrusion. The analysis identified areas where water resources are more vulnerable, allowing decision makers develop management strategies.

  5. Assessing water resources vulnerability and resilience of southern Taiwan to climate change

    Directory of Open Access Journals (Sweden)

    Ming-Hsu Li

    2017-01-01

    Full Text Available Water resources management has become more challenging in Taiwan due to rapid socio-economic development and the complications of climate change. This study developed a systematic procedure for assessing water resources vulnerability and resilience with an integrated tool, TaiWAP, including climate change scenarios, a weather generator, a hydrological model, and system dynamic models. Five assessment indicators, including two for vulnerability, two for resilience, and one for availability were used to quantify changes in water resources and improvements after implementing adaption measures. Each indicator was presented with 3 grades, namely low, medium, and high. Water resources vulnerability and resilience for Tainan City in southern Taiwan were evaluated. Insufficient water supply facilities capacity is the major weakness causing low resilience. Water resources allocation flexibility is limited by substantial agricultural water demands. A total of 9 adaption measures and combinations of measures were assessed. Desalination plant implementation can steadily supply public water to lessen system failure duration. Although agricultural water conservation and fallow land can greatly reduce water demand, fallow compensation is a potential cost. When food security is considered, reducing irrigation leakage will be a better adaption measure to both water and agriculture stakeholders. Both agriculture water conservation and cropping systems adjustment have cross-spatial flexibilities. The combination of desalination, reservoirs and public water conservation provide the most beneficial effects in reducing climate change impact.

  6. Hydrologic modeling for water resource assessment in a developing country: the Rwanda case study

    Science.gov (United States)

    Steve McNulty; Erika Cohen Mack; Ge Sun; Peter Caldwell

    2016-01-01

    Accurate water resources assessment using hydrologic models can be a challenge anywhere, but particularly for developing countries with limited financial and technical resources. Developing countries could most benefit from the water resource planning capabilities that hydrologic models can provide, but these countries are least likely to have the data needed to run ...

  7. Assessment of water resources for nuclear energy centers

    Energy Technology Data Exchange (ETDEWEB)

    Samuels, G.

    1976-09-01

    Maps of the conterminous United States showing the rivers with sufficient flow to be of interest as potential sites for nuclear energy centers are presented. These maps show the rivers with (1) mean annual flows greater than 3000 cfs, with the flow rates identified for ranges of 3000 to 6000, 6000 to 12,000, 12,000 to 24,000, and greater than 24,000 cfs; (2) monthly, 20-year low flows greater than 1500 cfs, with the flow rates identified for ranges of 1500 to 3000, 3000 to 6000, 6000 to 12,000, and greater than 12,000 cfs; and (3) annual, 20-year low flows greater than 1500 cfs, with the flow rates identified for ranges of 1500 to 3000, 3000 to 6000, 6000 to 12,000, and greater than 12,000 cfs. Criteria relating river flow rates required for various size generating stations both for sites located on reservoirs and for sites without local storage of cooling water are discussed. These criteria are used in conjunction with plant water consumption rates (based on both instantaneous peak and annual average usage rates) to estimate the installed generating capacity that may be located at one site or within a river basin. Projections of future power capacity requirements, future demand for water (both withdrawals and consumption), and regions of expected water shortages are also presented. Regional maps of water availability, based on annual, 20-year low flows, are also shown. The feasibility of locating large energy centers in these regions is discussed.

  8. Assessment of water resources for nuclear energy centers

    International Nuclear Information System (INIS)

    Samuels, G.

    1976-09-01

    Maps of the conterminous United States showing the rivers with sufficient flow to be of interest as potential sites for nuclear energy centers are presented. These maps show the rivers with (1) mean annual flows greater than 3000 cfs, with the flow rates identified for ranges of 3000 to 6000, 6000 to 12,000, 12,000 to 24,000, and greater than 24,000 cfs; (2) monthly, 20-year low flows greater than 1500 cfs, with the flow rates identified for ranges of 1500 to 3000, 3000 to 6000, 6000 to 12,000, and greater than 12,000 cfs; and (3) annual, 20-year low flows greater than 1500 cfs, with the flow rates identified for ranges of 1500 to 3000, 3000 to 6000, 6000 to 12,000, and greater than 12,000 cfs. Criteria relating river flow rates required for various size generating stations both for sites located on reservoirs and for sites without local storage of cooling water are discussed. These criteria are used in conjunction with plant water consumption rates (based on both instantaneous peak and annual average usage rates) to estimate the installed generating capacity that may be located at one site or within a river basin. Projections of future power capacity requirements, future demand for water (both withdrawals and consumption), and regions of expected water shortages are also presented. Regional maps of water availability, based on annual, 20-year low flows, are also shown. The feasibility of locating large energy centers in these regions is discussed

  9. Selection of spatial scale for assessing impacts of groundwater-based water supply on freshwater resources

    DEFF Research Database (Denmark)

    Hybel, Anne-Marie; Godskesen, Berit; Rygaard, Martin

    2015-01-01

    used in this study: the Withdrawal-To-Availability ratio (WTA) and the Water Stress Index (WSI). Results were calculated for three groundwater based Danish urban water supplies (Esbjerg, Aarhus, and Copenhagen). The assessment was carried out at three spatial levels: (1) the groundwater body level, (2......) the river basin level, and (3) the regional level. The assessments showed that Copenhagen's water supply had the highest impact on the freshwater resource per cubic meter of water abstracted, with a WSI of 1.75 at Level 1. The WSI values were 1.64 for Aarhus's and 0.81 for Esbjerg's water supply. Spatial......Indicators of the impact on freshwater resources are becoming increasingly important in the evaluation of urban water systems. To reveal the importance of spatial resolution, we investigated how the choice of catchment scale influenced the freshwater impact assessment. Two different indicators were...

  10. Downscaling climate model output for water resources impacts assessment (Invited)

    Science.gov (United States)

    Maurer, E. P.; Pierce, D. W.; Cayan, D. R.

    2013-12-01

    Water agencies in the U.S. and around the globe are beginning to wrap climate change projections into their planning procedures, recognizing that ongoing human-induced changes to hydrology can affect water management in significant ways. Future hydrology changes are derived using global climate model (GCM) projections, though their output is at a spatial scale that is too coarse to meet the needs of those concerned with local and regional impacts. Those investigating local impacts have employed a range of techniques for downscaling, the process of translating GCM output to a more locally-relevant spatial scale. Recent projects have produced libraries of publicly-available downscaled climate projections, enabling managers, researchers and others to focus on impacts studies, drawing from a shared pool of fine-scale climate data. Besides the obvious advantage to data users, who no longer need to develop expertise in downscaling prior to examining impacts, the use of the downscaled data by hundreds of people has allowed a crowdsourcing approach to examining the data. The wide variety of applications employed by different users has revealed characteristics not discovered during the initial data set production. This has led to a deeper look at the downscaling methods, including the assumptions and effect of bias correction of GCM output. Here new findings are presented related to the assumption of stationarity in the relationships between large- and fine-scale climate, as well as the impact of quantile mapping bias correction on precipitation trends. The validity of these assumptions can influence the interpretations of impacts studies using data derived using these standard statistical methods and help point the way to improved methods.

  11. An integrated model for assessing both crop productivity and agricultural water resources at a large scale

    Science.gov (United States)

    Okada, M.; Sakurai, G.; Iizumi, T.; Yokozawa, M.

    2012-12-01

    Agricultural production utilizes regional resources (e.g. river water and ground water) as well as local resources (e.g. temperature, rainfall, solar energy). Future climate changes and increasing demand due to population increases and economic developments would intensively affect the availability of water resources for agricultural production. While many studies assessed the impacts of climate change on agriculture, there are few studies that dynamically account for changes in water resources and crop production. This study proposes an integrated model for assessing both crop productivity and agricultural water resources at a large scale. Also, the irrigation management to subseasonal variability in weather and crop response varies for each region and each crop. To deal with such variations, we used the Markov Chain Monte Carlo technique to quantify regional-specific parameters associated with crop growth and irrigation water estimations. We coupled a large-scale crop model (Sakurai et al. 2012), with a global water resources model, H08 (Hanasaki et al. 2008). The integrated model was consisting of five sub-models for the following processes: land surface, crop growth, river routing, reservoir operation, and anthropogenic water withdrawal. The land surface sub-model was based on a watershed hydrology model, SWAT (Neitsch et al. 2009). Surface and subsurface runoffs simulated by the land surface sub-model were input to the river routing sub-model of the H08 model. A part of regional water resources available for agriculture, simulated by the H08 model, was input as irrigation water to the land surface sub-model. The timing and amount of irrigation water was simulated at a daily step. The integrated model reproduced the observed streamflow in an individual watershed. Additionally, the model accurately reproduced the trends and interannual variations of crop yields. To demonstrate the usefulness of the integrated model, we compared two types of impact assessment of

  12. A Diagnostic Assessment of Evolutionary Multiobjective Optimization for Water Resources Systems

    Science.gov (United States)

    Reed, P.; Hadka, D.; Herman, J.; Kasprzyk, J.; Kollat, J.

    2012-04-01

    This study contributes a rigorous diagnostic assessment of state-of-the-art multiobjective evolutionary algorithms (MOEAs) and highlights key advances that the water resources field can exploit to better discover the critical tradeoffs constraining our systems. This study provides the most comprehensive diagnostic assessment of MOEAs for water resources to date, exploiting more than 100,000 MOEA runs and trillions of design evaluations. The diagnostic assessment measures the effectiveness, efficiency, reliability, and controllability of ten benchmark MOEAs for a representative suite of water resources applications addressing rainfall-runoff calibration, long-term groundwater monitoring (LTM), and risk-based water supply portfolio planning. The suite of problems encompasses a range of challenging problem properties including (1) many-objective formulations with 4 or more objectives, (2) multi-modality (or false optima), (3) nonlinearity, (4) discreteness, (5) severe constraints, (6) stochastic objectives, and (7) non-separability (also called epistasis). The applications are representative of the dominant problem classes that have shaped the history of MOEAs in water resources and that will be dominant foci in the future. Recommendations are provided for which modern MOEAs should serve as tools and benchmarks in the future water resources literature.

  13. Assessment of Land and Water Resource Implications of the UK 2050 Carbon Plan

    Science.gov (United States)

    Konadu, D. D.; Sobral Mourao, Z.; Skelton, S.; Lupton, R.

    2015-12-01

    The UK Carbon Plan presents four low-carbon energy system pathways that achieves 80% GHG emission targets by 2050, stipulated in the UK Climate Change Act (2008). However, some of the energy technologies prescribed under these pathways are land and water intensive; but would the increase demand for land and water under these pathways lead to increased competition and stress on agricultural land, and water resources in the UK? To answer the above question, this study uses an integrated modelling approach, ForeseerTM, which characterises the interdependencies and evaluates the land and water requirement for the pathways, based on scenarios of power plant location, and the energy crop yield projections. The outcome is compared with sustainable limits of resource appropriation to assess potential stresses and competition for water and land by other sectors of the economy. The results show the Carbon Plan pathways have low overall impacts on UK water resources, but agricultural land use and food production could be significantly impacted. The impact on agricultural land use is shown to be mainly driven by projections for transport decarbonisation via indigenously sourced biofuels. On the other hand, the impact on water resources is mainly associated with increased inland thermal electricity generation capacity, which would compete with other industrial and public water demands. The results highlight the need for a critical appraisal of UK's long term low-carbon energy system planning, in particular bioenergy sourcing strategy, and the siting of thermal power generation in order to avert potential resource stress and competition.

  14. Integrated water assessment and modelling: A bibliometric analysis of trends in the water resource sector

    Science.gov (United States)

    Zare, Fateme; Elsawah, Sondoss; Iwanaga, Takuya; Jakeman, Anthony J.; Pierce, Suzanne A.

    2017-09-01

    There are substantial challenges facing humanity in the water and related sectors and purposeful integration of the disciplines, connected sectors and interest groups is now perceived as essential to address them. This article describes and uses bibliometric analysis techniques to provide quantitative insights into the general landscape of Integrated Water Resource Assessment and Modelling (IWAM) research over the last 45 years. Keywords, terms in titles, abstracts and the full texts are used to distinguish the 13,239 IWAM articles in journals and other non-grey literature. We identify the major journals publishing IWAM research, influential authors through citation counts, as well as the distribution and strength of source countries. Fruitfully, we find that the growth in numbers of such publications has continued to accelerate, and attention to both the biophysical and socioeconomic aspects has also been growing. On the other hand, our analysis strongly indicates that the former continue to dominate, partly by embracing integration with other biophysical sectors related to water - environment, groundwater, ecology, climate change and agriculture. In the social sciences the integration is occurring predominantly through economics, with the others, including law, policy and stakeholder participation, much diminished in comparison. We find there has been increasing attention to management and decision support systems, but a much weaker focus on uncertainty, a pervasive concern whose criticalities must be identified and managed for improving decision making. It would seem that interdisciplinary science still has a long way to go before crucial integration with the non-economic social sciences and uncertainty considerations are achieved more routinely.

  15. Selection of spatial scale for assessing impacts of groundwater-based water supply on freshwater resources.

    Science.gov (United States)

    Hybel, A-M; Godskesen, B; Rygaard, M

    2015-09-01

    Indicators of the impact on freshwater resources are becoming increasingly important in the evaluation of urban water systems. To reveal the importance of spatial resolution, we investigated how the choice of catchment scale influenced the freshwater impact assessment. Two different indicators were used in this study: the Withdrawal-To-Availability ratio (WTA) and the Water Stress Index (WSI). Results were calculated for three groundwater based Danish urban water supplies (Esbjerg, Aarhus, and Copenhagen). The assessment was carried out at three spatial levels: (1) the groundwater body level, (2) the river basin level, and (3) the regional level. The assessments showed that Copenhagen's water supply had the highest impact on the freshwater resource per cubic meter of water abstracted, with a WSI of 1.75 at Level 1. The WSI values were 1.64 for Aarhus's and 0.81 for Esbjerg's water supply. Spatial resolution was identified as a major factor determining the outcome of the impact assessment. For the three case studies, WTA and WSI were 27%-583% higher at Level 1 than impacts calculated for the regional scale. The results highlight that freshwater impact assessments based on regional data, rather than sub-river basin data, may dramatically underestimate the actual impact on the water resource. Furthermore, this study discusses the strengths and shortcomings of the applied indicator approaches. A sensitivity analysis demonstrates that although WSI has the highest environmental relevance, it also has the highest uncertainty, as it requires estimations of non-measurable environmental water requirements. Hence, the development of a methodology to obtain more site-specific and relevant estimations of environmental water requirements should be prioritized. Finally, the demarcation of the groundwater resource in aquifers remains a challenge for establishing a consistent method for benchmarking freshwater impacts caused by groundwater abstraction. Copyright © 2015 Elsevier

  16. Assessing climate change impacts on fresh water resources of the Athabasca River Basin, Canada.

    Science.gov (United States)

    Shrestha, Narayan Kumar; Du, Xinzhong; Wang, Junye

    2017-12-01

    Proper management of blue and green water resources is important for the sustainability of ecosystems and for the socio-economic development of river basins such as the Athabasca River Basin (ARB) in Canada. For this reason, quantifying climate change impacts on these water resources at a finer temporal and spatial scale is often necessary. In this study, we used a Soil and Water Assessment Tool (SWAT) to assess climate change impacts on fresh water resources, focusing explicitly on the impacts to both blue and green water. We used future climate data generated by the Canadian Center for Climate Modelling and Analysis Regional Climate Model (CanRCM4) with a spatial resolution of 0.22°×0.22° (~25km) for two emission scenarios (RCP 4.5 and 8.5). Results projected the climate of the ARB to be wetter by 21-34% and warmer by 2-5.4°C on an annual time scale. Consequently, the annual average blue and green water flow was projected to increase by 16-54% and 11-34%, respectively, depending on the region, future period, and emission scenario. Furthermore, the annual average green water storage at the boreal region was expected to increase by 30%, while the storage was projected to remain fairly stable or decrease in other regions, especially during the summer season. On average, the fresh water resources in the ARB are likely to increase in the future. However, evidence of temporal and spatial heterogeneity could pose many future challenges to water resource planners and managers. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  17. Water resources (Chapter 12)

    Science.gov (United States)

    Thomas C. Brown; Romano Foti; Jorge Ramirez

    2012-01-01

    In this chapter, we focus on the vulnerability of U.S. freshwater supplies considering all lands, not just forest and rangelands. We do not assess the condition of those lands or report on how much of our water supply originates on lands of different land covers or ownerships, because earlier Resources Planning Act (RPA) Assessment work addressed these topics....

  18. Rivers rapid assessment protocols and insertion of society in monitoring of water resources

    Directory of Open Access Journals (Sweden)

    Guilherme Malafaia

    2008-12-01

    Full Text Available The degradation of water resources has been detected and changes both institutional and in the legislation have been demanded. The careless use of rivers has ecological changes as direct consequence, causing serious modifications in the landscape and fluvial regime, besides altering the availability of habitats and the trophic composition of the aquatic environment. Pressed by this scenario, scientists have been developing assessment methods that are efficient both for the evaluation itself and for supporting decision taking in the environmental management processes. In this perspective, the objective of this study is to present the Rapid River Assessment Protocols (RAPs and to emphasize how these protocols can promote the community participation in water resources monitoring. The RAPs can used to evaluate in an integrated form the characteristics of a river section according to the conservation or degradation condition of the fluvial environment and it is characterized by its economic viability and easy applicability. In regions with poor financial resources and serious problems of water quality, the RAPs can be used in environmental management programs. By using these protocols, the integration of the community in water resources monitoring generates data which represent the quality of fluvial ecosystems throughout time, without requesting high costs or specialized professionals. The RAPs in a simplified but not simplistic tool, which can be used in activities that aim at promoting a quick and reliable assessment of the “health” of a river.

  19. Assessing The Ecosystem Service Freshwater Production From An Integrated Water Resources Management Perspective. Case Study: The Tormes Water Resources System (Spain)

    Science.gov (United States)

    Momblanch, Andrea; Paredes-Arquiola, Javier; Andreu, Joaquín; Solera, Abel

    2014-05-01

    The Ecosystem Services are defined as the conditions and processes through which natural ecosystems, and the species that make them up, sustain and fulfil human life. A strongly related concept is the Integrated Water Resources Management. It is a process which promotes the coordinated development and management of water, land and related resources in order to maximise the resultant economic and social welfare in an equitable manner without compromising the sustainability of vital ecosystems. From these definitions, it is clear that in order to cover so many water management and ecosystems related aspects the use of integrative models is increasingly necessary. In this study, we propose to link a hydrologic model and a water allocation model in order to assess the Freshwater Production as an Ecosystem Service in anthropised river basins. First, the hydrological model allows determining the volume of water generated by each sub-catchment; that is, the biophysical quantification of the service. This result shows the relevance of each sub-catchment as a source of freshwater and how this could change if the land uses are modified. On the other hand, the water management model allocates the available water resources among the different water uses. Then, it is possible to provide an economic value to the water resources through the use of demand curves, or other economic concepts. With this second model, we are able to obtain the economical quantification of the Ecosystem Service. Besides, the influence of water management and infrastructures on the service provision can be analysed. The methodology is applied to the Tormes Water Resources System, in Spain. The software used are EVALHID and SIMGES, for hydrological and management aspects, respectively. Both models are included in the Decision Support System Shell AQUATOOL for water resources planning and management. A scenario approach is presented to illustrate the potential of the methodology, including the current

  20. Adapting ecological risk valuation for natural resource damage assessment in water pollution.

    Science.gov (United States)

    Chen, Shuzhen; Wu, Desheng

    2018-07-01

    Ecological risk assessment can address requirements of natural resource damage assessment by quantifying the magnitude of possible damages to the ecosystem. This paper investigates an approach to assess water damages from pollution incident on the basis of concentrations of contaminants. The baseline of water pollution is determined with not-to-exceed concentration of contaminants required by water quality standards. The values of damage cost to water quality are estimated through sewage treatment cost. To get a reliable estimate of treatment cost, DEA is employed to classify samples of sewage plants based on their efficiency of sewage treatment. And exponential fitting is adopted to determine the relation between treatment cost and the decrease of COCs. The range of damage costs is determined through the fitting curves respectively based on efficient and inefficient samples. Copyright © 2018 Elsevier Inc. All rights reserved.

  1. Method selection for sustainability assessments: The case of recovery of resources from waste water.

    Science.gov (United States)

    Zijp, M C; Waaijers-van der Loop, S L; Heijungs, R; Broeren, M L M; Peeters, R; Van Nieuwenhuijzen, A; Shen, L; Heugens, E H W; Posthuma, L

    2017-07-15

    Sustainability assessments provide scientific support in decision procedures towards sustainable solutions. However, in order to contribute in identifying and choosing sustainable solutions, the sustainability assessment has to fit the decision context. Two complicating factors exist. First, different stakeholders tend to have different views on what a sustainability assessment should encompass. Second, a plethora of sustainability assessment methods exist, due to the multi-dimensional characteristic of the concept. Different methods provide other representations of sustainability. Based on a literature review, we present a protocol to facilitate method selection together with stakeholders. The protocol guides the exploration of i) the decision context, ii) the different views of stakeholders and iii) the selection of pertinent assessment methods. In addition, we present an online tool for method selection. This tool identifies assessment methods that meet the specifications obtained with the protocol, and currently contains characteristics of 30 sustainability assessment methods. The utility of the protocol and the tool are tested in a case study on the recovery of resources from domestic waste water. In several iterations, a combination of methods was selected, followed by execution of the selected sustainability assessment methods. The assessment results can be used in the first phase of the decision procedure that leads to a strategic choice for sustainable resource recovery from waste water in the Netherlands. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Assessing climate change impacts on water resources in remote mountain regions

    Science.gov (United States)

    Buytaert, Wouter; De Bièvre, Bert

    2013-04-01

    From a water resources perspective, remote mountain regions are often considered as a basket case. They are often regions where poverty is often interlocked with multiple threats to water supply, data scarcity, and high uncertainties. In these environments, it is paramount to generate locally relevant knowledge about water resources and how they impact local livelihoods. This is often problematic. Existing environmental data collection tends to be geographically biased towards more densely populated regions, and prioritized towards strategic economic activities. Data may also be locked behind institutional and technological barriers. These issues create a "knowledge trap" for data-poor regions, which is especially acute in remote and hard-to-reach mountain regions. We present lessons learned from a decade of water resources research in remote mountain regions of the Andes, Africa and South Asia. We review the entire tool chain of assessing climate change impacts on water resources, including the interrogation and downscaling of global circulation models, translating climate variables in water availability and access, and assessing local vulnerability. In global circulation models, mountain regions often stand out as regions of high uncertainties and lack of agreement of future trends. This is partly a technical artifact because of the different resolution and representation of mountain topography, but it also highlights fundamental uncertainties in climate impacts on mountain climate. This problem also affects downscaling efforts, because regional climate models should be run in very high spatial resolution to resolve local gradients, which is computationally very expensive. At the same time statistical downscaling methods may fail to find significant relations between local climate properties and synoptic processes. Further uncertainties are introduced when downscaled climate variables such as precipitation and temperature are to be translated in hydrologically

  3. Assessment and management of water resources in Egypt to face drought and water scarcity

    Science.gov (United States)

    Wolters, Wouter; El Guindy, Samia; Salah El Deen, Magdy; Roest, Koen; Smit, Robert; Froebrich, Jochen

    2013-04-01

    , innovations on resource efficiency enabling use of rest and by-products of one agricultural activity as an input for another one will be profitable for the food producers and will also be better for the environment. The creative design process to reach the required technological and policy innovations contributes to the developed adaptation strategy to face drought and water scarcity. Results will incorporate some previously un-thought of options. The issues of water scarcity and drought have consequences and implications that can no longer be adequately addressed by any one of the Ministries alone. Many other government departments and agencies must be involved and decisions will have to be made at the highest political level. All policies in Egypt must be conscious of the limitations in water availability, and water policies need to address technological developments as well as the full range of other issues, including: macro-economic factors, economic issues that influence farm-level decisions, development of human capital, governance, and financial risk management.

  4. Hydrography - Water Resources

    Data.gov (United States)

    NSGIC Education | GIS Inventory — A Water Resource is a DEP primary facility type related to the Water Use Planning Program. The sub-facility types related to Water Resources that are included are:...

  5. Assessing trends in fishery resources and lake-water aluminum from paleolimnological analyses of siliceous algae

    International Nuclear Information System (INIS)

    Kingston, J.C.; Birks, H.J.B.; Uutala, A.J.; Cummings, B.F.; Smol, J.P.

    1992-01-01

    Lake water aluminum concentrations have a significant influence on the composition of microfossil assemblages of diatoms and chrysophytes deposited in lake sediments. With the paleolimnological approach of multilake datasets in the Adirondack region of New York, USA, the authors use canonical correspondence analysis to describe past trends in lake water Al. Four lakes, previously investigated regarding acidification and fishery trends, are used to demonstrate that paleolimnological assessment can also provide direction, timing, and magnitude of trends for both toxic metals and fish resources. Additionally, the authors use weighted average regression and calibration to obtain quantitative reconstructions of past lake water Al concentrations. Such reconstructions provide further insight into fishery resource damage and can be compared with modelling results. According to paleolimnological reconstructions, some of the naturally most acidic lakes in the Adirondack region had preindustrial lake water concentrations of inorganic monomeric Al near 4/micromol times L. Although these high concentrations are surprising from a geochemical point of view, they may partially explain the preindustrial absence of fish, as has been independently determined by paleolimnological analysis of phantom midges (Chaoborus). Fishery resource deterioration in acidified Adirondack lakes was coincident with major increases in lake water Al concentrations

  6. A Framework for Assessing the Impacts of Mining Development on Regional Water Resources in Colombia

    Directory of Open Access Journals (Sweden)

    Neil McIntyre

    2018-03-01

    Full Text Available Developing its large-scale mining industry is an economic priority for Colombia. However, national capacity to assess and manage the water resource impacts of mining is currently limited. This includes lack of baseline data, lack of suitable hydrological models and lack of frameworks for evaluating risks. Furthermore, public opposition to large scale mining is high and is a barrier to many proposed new mining projects mainly because of concerns about impacts on water resources. There are also concerns about impacts on the uplands that are important water sources, particularly the páramo ecosystem. This paper argues the case for a new framework for Strategic Assessment of Regional Water Impacts of Mining, aiming to support land use planning decisions by government for selected mining and prospective mining regions. The proposed framework is modelled on the Australian Government’s Bioregional Assessments program, converted into seven stages plus supporting activities that meet the Colombian development context. The seven stages are: (1 Contextual information; (2 Scenario definition; (3 Risk scoping; (4 Model development; (5 Risk analysis; (6 Database development; and (7 Dissemination by government to stakeholders including the general public. It is emphasised that the process and results should be transparent, the data and models publicly accessible, and dissemination aimed at all levels of expertise.

  7. Save Our Water Resources.

    Science.gov (United States)

    Bromley, Albert W.

    The purpose of this booklet, developed as part of Project SOAR (Save Our American Resources), is to give Scout leaders some facts about the world's resources, the sources of water pollution, and how people can help in obtaining solutions. Among the topics discussed are the world's water resources, the water cycle, water quality, sources of water…

  8. [Assessment of resource situation of Collichthys lucidus in coastal waters of the Yangtze estuary].

    Science.gov (United States)

    Hu, Yan; Zhang, Tao; Yang, Gang; Zhao, Feng; Hou, Jun-li; Zhang, Long-zhen; Zhuang, Ping

    2015-09-01

    In order to assess the resource status of Collichthys lucidus in coastal waters of Yangtze estuary, the growth and population parameters were studied by the length frequency distribution method based on the bottom trawl investigation data from 2012 to 2013. Von Bertalanffy growth parameters were calculated by using the ELEFAN module in FiSAT II software while the natural mortality rate (M) was estimated via Pauly's empirical equation. Besides, the Beverton-Holt dynamic model was developed to predict the variation trend of C. lucidus resource in coastal waters of Yangtze estuary. The results showed that in 2012-2013, a total of 4201 samples of C. lucidus with body lengths ranging from 18 to 155 mm were collected from the coastal waters of Yangtze estuary. The growth parameter (K) and limit length (L.) were 1.1 and 162.75 mm while the total mortality rate (Z), the natural mortality rate (M) and the fishing mortality rate (F) were 4.040, 1.683 and 2.357, respectively. Moreover, the current exploitation (E) of C. lucidus in coastal waters of Yangtze estuary was 0.583 per year, which was larger than Fopt (0.5). Corresponding to the average stock of 576.02 t, the resource amount of C. lucidus reached up to 1.33 x 10(8) individuals. These indicated that C. lucidus has been overfished in Yangtze estuary area.

  9. A Hydro-Economic Approach to Representing Water Resources Impacts in Integrated Assessment Models

    Energy Technology Data Exchange (ETDEWEB)

    Kirshen, Paul H.; Strzepek, Kenneth, M.

    2004-01-14

    Grant Number DE-FG02-98ER62665 Office of Energy Research of the U.S. Department of Energy Abstract Many Integrated Assessment Models (IAM) divide the world into a small number of highly aggregated regions. Non-OECD countries are aggregated geographically into continental and multiple-continental regions or economically by development level. Current research suggests that these large scale aggregations cannot accurately represent potential water resources-related climate change impacts. In addition, IAMs do not explicitly model the flow regulation impacts of reservoir and ground water systems, the economics of water supply, or the demand for water in economic activities. Using the International Model for Policy Analysis of Agricultural Commodities and Trade (IMPACT) model of the International Food Policy Research Institute (IFPRI) as a case study, this research implemented a set of methodologies to provide accurate representation of water resource climate change impacts in Integrated Assessment Models. There were also detailed examinations of key issues related to aggregated modeling including: modeling water consumption versus water withdrawals; ground and surface water interactions; development of reservoir cost curves; modeling of surface areas of aggregated reservoirs for estimating evaporation losses; and evaluating the importance of spatial scale in river basin modeling. The major findings include: - Continental or national or even large scale river basin aggregation of water supplies and demands do not accurately capture the impacts of climate change in the water and agricultural sector in IAMs. - Fortunately, there now exist gridden approaches (0.5 X 0.5 degrees) to model streamflows in a global analysis. The gridded approach to hydrologic modeling allows flexibility in aligning basin boundaries with national boundaries. This combined with GIS tools, high speed computers, and the growing availability of socio-economic gridded data bases allows assignment of

  10. Assessing risks for integrated water resource management: coping with uncertainty and the human factor

    Directory of Open Access Journals (Sweden)

    M. J. Polo

    2014-09-01

    Full Text Available Risk assessment for water resource planning must deal with the uncertainty associated with excess/scarcity situations and their costs. The projected actions for increasing water security usually involve an indirect "call-effect": the territory occupation/water use is increased following the achieved protection. In this work, flood and water demand in a mountainous semi-arid watershed in southern Spain are assessed by means of the stochastic simulation of extremes, when this human factor is/is not considered. The results show how not including this call-effect induced an underestimation of flood risk after protecting the floodplain of between 35 and 78 % in a 35-year planning horizon. Similarly, the pursued water availability of a new reservoir resulted in a 10-year scarcity risk increase up to 38 % when the trend of expanding the irrigated area was included in the simulations. These results highlight the need for including this interaction in the decision-making assessment.

  11. Assessing the Impact of Land Use and Land Cover Change on Global Water Resources

    Science.gov (United States)

    Batra, N.; Yang, Y. E.; Choi, H. I.; Islam, A.; Charlotte, D. F.; Cai, X.; Kumar, P.

    2007-12-01

    Land use and land cover changes (LULCC) significantly modify the hydrological regime of the watersheds, affecting water resources and environment from regional to global scale. This study seeks to advance and integrate water and energy cycle observation, scientific understanding, and human impacts to assess future water availability. To achieve the research objective, we integrate and interpret past and current space based and in situ observations into a global hydrologic model (GHM). GHM is developed with enhanced spatial and temporal resolution, physical complexity, hydrologic theory and processes to quantify the impact of LULCC on physical variables: surface runoff, subsurface flow, groundwater, infiltration, ET, soil moisture, etc. Coupled with the common land model (CLM), a 3-dimensional volume averaged soil-moisture transport (VAST) model is expanded to incorporate the lateral flow and subgrid heterogeneity. The model consists of 11 soil-hydrology layers to predict lateral as well as vertical moisture flux transport based on Richard's equations. The primary surface boundary conditions (SBCs) include surface elevation and its derivatives, land cover category, sand and clay fraction profiles, bedrock depth and fractional vegetation cover. A consistent global GIS-based dataset is constructed for the SBCs of the model from existing observational datasets comprising of various resolutions, map projections and data formats. Global ECMWF data at 6-hour time steps for the period 1971 through 2000 is processed to get the forcing data which includes incoming longwave and shortwave radiation, precipitation, air temperature, pressure, wind components, boundary layer height and specific humidity. Land use land cover data, generated using IPCC scenarios for every 10 years from 2000 to 2100 is used for future assessment on water resources. Alterations due to LULCC on surface water balance components: ET, groundwater recharge and runoff are then addressed in the study. Land

  12. Ohio Water Resources Council

    Science.gov (United States)

    Ohio.gov State Agencies | Online Services Twitter YouTube EPA IMAGE Ohio Water Resources Committee Ohio enjoys abundant water resources. Few states enjoy as many streams, rivers, lakes and wetlands as Ohio. Numerous agencies and organizations are involved in protecting Ohio's valuable water resources

  13. Drought assessment in the Dongliao River basin: traditional approaches vs. generalized drought assessment index based on water resources systems

    Science.gov (United States)

    Weng, B. S.; Yan, D. H.; Wang, H.; Liu, J. H.; Yang, Z. Y.; Qin, T. L.; Yin, J.

    2015-08-01

    Drought is firstly a resource issue, and with its development it evolves into a disaster issue. Drought events usually occur in a determinate but a random manner. Drought has become one of the major factors to affect sustainable socioeconomic development. In this paper, we propose the generalized drought assessment index (GDAI) based on water resources systems for assessing drought events. The GDAI considers water supply and water demand using a distributed hydrological model. We demonstrate the use of the proposed index in the Dongliao River basin in northeastern China. The results simulated by the GDAI are compared to observed drought disaster records in the Dongliao River basin. In addition, the temporal distribution of drought events and the spatial distribution of drought frequency from the GDAI are compared with the traditional approaches in general (i.e., standard precipitation index, Palmer drought severity index and rate of water deficit index). Then, generalized drought times, generalized drought duration, and generalized drought severity were calculated by theory of runs. Application of said runs at various drought levels (i.e., mild drought, moderate drought, severe drought, and extreme drought) during the period 1960-2010 shows that the centers of gravity of them all distribute in the middle reaches of Dongliao River basin, and change with time. The proposed methodology may help water managers in water-stressed regions to quantify the impact of drought, and consequently, to make decisions for coping with drought.

  14. Data compilation and assessment for water resources in Pennsylvania state forest and park lands

    Science.gov (United States)

    Galeone, Daniel G.

    2011-01-01

    the Susquehanna River Basin Commission. The water-quality data, which were primarily collected after 1970, were summarized by categorizing the analytical data for each site into major groups (for example, trace metals, pesticides, major ions, etc.) for each type (streams, lakes, ground-water wells, and springs) of data compiled. The number of samples and number of detections for each analyte within each group also were summarized. A total of 410 stream sites and 205 ground-water wells in state lands had water-quality data from the available data sets, and these sites were well-distributed across the state. A total of 107 lakes and 47 springs in state lands had water-quality data from the available data sets, but these data types were not well-distributed across the state; the majority of water-quality data for lakes was in the western or eastern sections of the state and water-quality data for springs was primarily located in the central part of the Lower Susquehanna River Valley. The most common types of water-quality data collected were major ions, trace elements, and nutrients. Physical parameters, such as water temperature, stream discharge, or water level, typically were collected for most water-quality samples. Given the large database available from PaDEP for benthic macroinvertebrates, along with some data from other agencies, there is very good distribution of benthic-macroinvertebrate data for state lands. Benthic macroinvertebrate samples were collected at 1,077 locations in state lands from 1973 to 2006. Most (980 samples) of the benthic-macroinvertebrate samples were collected by PaDEP as part of the state assessment of stream conditions required by the Clean Water Act. Data compiled in this report can be used for various water-resource issues, such as basin-wide water-budget analysis, studies of ecological or instream flow, or water-quality assessments. The determination of an annual water budget in selected basins is best supported by the availab

  15. Vulnerability Assessment of Environmental and Climate Change Impacts on Water Resources in Al Jabal Al Akhdar, Sultanate of Oman

    Directory of Open Access Journals (Sweden)

    Mohammed Saif Al-Kalbani

    2014-10-01

    Full Text Available Climate change and its consequences present one of the most important threats to water resources systems which are vulnerable to such changes due to their limited adaptive capacity. Water resources in arid mountain regions, such as Al Jabal Al Akhdar; northern Sultanate of Oman, are vulnerable to the potential adverse impacts of environmental and climate change. Besides climatic change, current demographic trends, economic development and related land use changes are exerting pressures and have direct impacts on increasing demands for water resources and their vulnerability. In this study, vulnerability assessment was carried out using guidelines prepared by United Nations Environment Programme (UNEP and Peking University to evaluate four components of the water resource system: water resources stress, water development pressure, ecological health, and management capacity. The calculated vulnerability index (VI was high, indicating that the water resources are experiencing levels of stress. Ecosystem deterioration was the dominant parameter and management capacity was the dominant category driving the vulnerability on water resources. The vulnerability assessment will support policy and decision makers in evaluating options to modify existing policies. It will also help in developing long-term strategic plans for climate change mitigation and adaptation measures and implement effective policies for sustainable water resources management, and therefore the sustenance of human wellbeing in the region.

  16. Assessing Climate Change Impacts on Water Resources in the Songhua River Basin

    Directory of Open Access Journals (Sweden)

    Fengping Li

    2016-09-01

    Full Text Available The Songhua River Basin (SRB in Northeast China is one of the areas most sensitive to global climate change because of its high-latitude location. In this study, we conducted a modeling assessment on the potential change of water resources in this region for the coming three decades using the Soil and Water Assessment Tool (SWAT. First, we calibrated and validated the model with historical streamflow records in this basin. Then, we applied the calibrated model for the period from 2020 to 2049 with the projected and downscaled climatic data under two emission scenarios (RCP 4.5 and RCP 8.5. The study results show: (1 The SWAT model performed very well for both the calibration and validation periods in the SRB; (2 The projected temperatures showed a steady, significant increase across the SRB under both scenarios, especially in two sub-basins, the Nenjiang River Basin (NRB and the Lower SRB (LSRB. With regard to precipitation, both scenarios showed a decreasing trend in the NRB and LSRB but an increasing trend in the Upper Songhua River Basin (USRB; and (3, generally, the hydrologic modeling suggested a decreasing trend of streamflow for 2020–2049. Compared to baseline conditions (1980–2009, the streamflow in the NRB and LSRB would decrease by 20.3%–37.8%, while streamflow in the USRB would experience an increase of 9.68%–17.7%. These findings provide relevant insights into future surface water resources, and such information can be helpful for resource managers and policymakers to develop effective eco-environment management plans and strategies in the face of climate change.

  17. From Premise to Practice: a Critical Assessment of Integrated Water Resources Management and Adaptive Management Approaches in the Water Sector

    OpenAIRE

    Wietske Medema; Brian S. McIntosh; Paul J. Jeffrey

    2008-01-01

    The complexity of natural resource use processes and dynamics is now well accepted and described in theories ranging across the sciences from ecology to economics. Based upon these theories, management frameworks have been developed within the research community to cope with complexity and improve natural resource management outcomes. Two notable frameworks, Integrated Water Resource Management (IWRM) and Adaptive Management (AM) have been developed within the domain of water resource managem...

  18. Bioregional Assessments: Determining the Impacts of Coal Resource Development on Water Resources in Australia through Groundwater, Surface Water and Ecological Modelling

    Science.gov (United States)

    Peeters, L. J.; Post, D. A.; Crosbie, R.; Holland, K.

    2017-12-01

    While extraction of methane from shale gas deposits has been the principal source of the recent expansion of the industry in the United States, in Australia extraction of methane from coal bed methane deposits (termed `coal seam gas' in Australia) has been the focus to date. The two sources of methane share many of the same characteristics including the potential requirement for hydraulic fracturing. However, as coal seam gas deposits generally occur at shallower depths than shale gas, the potential impacts of extraction on surface and groundwater resources may be of even greater concern. The Australian Federal Government commissioned a multi-disciplinary programme of bioregional assessments to improve understanding of the potential impacts of coal seam gas and large coal mining activities on water resources and water-dependent assets across six bioregions Australia. A bioregional assessment is a transparent scientific analysis of the ecology, hydrology, geology and hydrogeology of a bioregion with explicit assessment of the potential direct, indirect and cumulative impacts of coal seam gas and large coal mining development on water resources. The first step in the analysis is to establish the most likely scenario for coal development in each region and establish a causal pathway linking coal development to impacts to the social, economic and ecological functioning of water resources. This forms the basis for a sequence of probabilistic geological, hydrogeological, hydrological and ecological models to quantify the probability of potential impacts. This suite of models is developed independent of the proponents and regulators of coal resource developments and so can provide unbiased information to all stakeholders. To demonstrate transparency of the modelling, all inputs, outputs and executables will be available from http://www.bioregionalassessments.gov.au. The analysis delineated a zone of potential hydrological change for each region, outside of which impacts

  19. Water Quality Assessment of Groundwater Resources in Qaleeh Shahin Plain Based on Cd and HEI

    Directory of Open Access Journals (Sweden)

    Yari A.R.

    2016-09-01

    Full Text Available Abstract Aims: The chemical elements in water resources, especially groundwater, can affect the water consumption purposes. The aim of this study was to evaluate the status of the overall pollution level of ground water of Qaleeh Shahin plain with respect to heavy metals by Cd and HEI methods. Instrument & Methods: This cross-sectional semi-experimental study was conducted in Sarpol-e Zahab township in Kermanshah Province, west of Iran. For this purpose, 20 groundwater wells were chosen randomly. The samples were filtered (0.45μm, stored in polyethylene bottles and were acidified at a pH lower than 2 by adding concentrated HNO3 in order to avoid metal adsorption onto the inner bottle walls. Element concentrations were determined using ICP-OES. The correlation between the metals in the different seasons, between the indices values and concentration of metals and between different indices values was assessed by Pearson’s correlation coefficient. Findings: There were no significant correlations between the concentrations of the elements in 2 seasons except between As and Cd in winter (r=0.544; p<0.05. Only the concentration of Pb had significant correlations with Cd (r=0.937; p=0.0001 and HEI (r=0.997; p=0.0001 values in winter and with Cd (r=0.997; p=0.0001 and HEI (r=0.810; p=0.0001 values in summer, which indicated Pb as the main contributory pollutant. The correlation between Cd and HEI was significant in winter (r=0.943; p=0.0001 and was significant in summer (r=0.818; p=0.0001. Conclusion: The water resources of Qaleeh Shahin plain, Kermanshah Province, Iran, are not polluted by heavy metals and are suitable for drinking.

  20. Assessment of climate change impact on water resources in the Pungwe river basin

    Energy Technology Data Exchange (ETDEWEB)

    Andersson, Lotta; Samuelsson, Patrick; Kjellstroem, Erik (Swedish Meteorological and Hydrological Inst., Norrkoeping (Sweden)), e-mail: lotta.andersson@smhi.se

    2011-01-15

    The Rossby Centre Regional Climate Model (RCA3) and the hydrological model HBV were linked to assess climate change impacts on water resources in the Pungwe basin until 2050. RCA3 was capable of simulating the most important aspects of the climate for a control period at the regional scale. At the subbasin scale, additional scaling was needed. Three climate change experiments using ECHAM4-A2, B2 and CCSM3-B2 as input to RCA3 were carried out. According to the simulations annual rainfall in 2050 would be reduced by approximately 10% with increasing interannual variability of rainfall and dry season river flow and later onset of the rainy season. The ECHAM4-A2 driven experiment did also indicate a slight increase of high flows. If the results indeed reflect the future, they will worsen the already critical situation for water resources, regarding both floods and droughts. Uncertainties, however in the downscaled scenarios make it difficult to prioritize adaptation options. This calls for inclusion of more climate change experiments, in an ensemble of climate scenarios possibly by using a combination of dynamical and statistical downscaling of general circulation models, as well as extending the simulations to 2100 to further ensure robustness of the signal

  1. Groundwater assessment in water resources management at Nuclear and Energy Research Institute, Brazil

    Energy Technology Data Exchange (ETDEWEB)

    Soares, Sabrina M.V.; Marques, Joyce R.; Monteiro, Lucilena R.; Stellato, Thamiris B.; Silva, Tatiane B.S.C.; Faustino, Mainara G.; Silva, Douglas B. da; Cotrim, Marycel E.B.; Pires, Maria Aparecida F., E-mail: sabrinamoura@usp.br, E-mail: joyce.marques@usp.br, E-mail: luciremo@uol.com.br, E-mail: thamistellato@gmail.com, E-mail: tatianebscs@live.com, E-mail: mainarag@usp.br, E-mail: douglas.sbatista@yahoo.com.br, E-mail: mecotrim@ipen.br, E-mail: mapires@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    To comply with the guidelines for environmental control and legal requirements, the Nuclear and Energy Research Institute (IPEN/ CNEN - Brazil/ SP) performs the Environmental Monitoring Program for Chemical Stable Compounds (PMA-Q) since 2007, in attendance to the Term for the Adjustment of Conduct (TAC) signed between IPEN and the Brazilian Institute of Environment and Renewable Natural Resources (IBAMA). The PMA-Q program includes the assessment of the IPEN's wastewater released in water body, and the groundwater assessment, which is carried out in nine monitoring wells. In groundwater is analyzed, by ion chromatography, species regulated by CONAMA 396/08 [01] fluoride, chloride, nitrite-N, nitrate-N, sulfate, sodium, potassium, ammonium, magnesium and calcium, besides other parameters. Furthermore, based on legal requirements, each year the program is reviewed and improvement actions are planned and implemented. Therefore, the integrated monitoring of groundwater should provide information on the quality and dynamics of the aquifer compared to seasonal variations and anthropogenic effects. Thus, this study intends to evaluate the chemical features of the institute groundwater, evaluating the database of the monitoring program from 2011 to 2014, for the ions chloride, nitrate-N, sulfate, sodium, potassium, magnesium, calcium and bicarbonate, using these information diagrams will be developed for the characterization of the wells. This assessment will be essential to support the control actions of environmental pollution and the management of water resources. Making possible the establishment of groundwater Quality Reference Figures (QRF), according to the CONAMA 396/08 [01] rating, in order to demonstrate that the activities developed at IPEN are not affecting on the aquifer features. (author)

  2. Assessing water resources in Azerbaijan using a local distributed model forced and constrained with global data

    Science.gov (United States)

    Bouaziz, Laurène; Hegnauer, Mark; Schellekens, Jaap; Sperna Weiland, Frederiek; ten Velden, Corine

    2017-04-01

    In many countries, data is scarce, incomplete and often not easily shared. In these cases, global satellite and reanalysis data provide an alternative to assess water resources. To assess water resources in Azerbaijan, a completely distributed and physically based hydrological wflow-sbm model was set-up for the entire Kura basin. We used SRTM elevation data, a locally available river map and one from OpenStreetMap to derive the drainage direction network at the model resolution of approximately 1x1 km. OpenStreetMap data was also used to derive the fraction of paved area per cell to account for the reduced infiltration capacity (c.f. Schellekens et al. 2014). We used the results of a global study to derive root zone capacity based on climate data (Wang-Erlandsson et al., 2016). To account for the variation in vegetation cover over the year, monthly averages of Leaf Area Index, based on MODIS data, were used. For the soil-related parameters, we used global estimates as provided by Dai et al. (2013). This enabled the rapid derivation of a first estimate of parameter values for our hydrological model. Digitized local meteorological observations were scarce and available only for limited time period. Therefore several sources of global meteorological data were evaluated: (1) EU-WATCH global precipitation, temperature and derived potential evaporation for the period 1958-2001 (Harding et al., 2011), (2) WFDEI precipitation, temperature and derived potential evaporation for the period 1979-2014 (by Weedon et al., 2014), (3) MSWEP precipitation (Beck et al., 2016) and (4) local precipitation data from more than 200 stations in the Kura basin were available from the NOAA website for a period up to 1991. The latter, together with data archives from Azerbaijan, were used as a benchmark to evaluate the global precipitation datasets for the overlapping period 1958-1991. By comparing the datasets, we found that monthly mean precipitation of EU-WATCH and WFDEI coincided well

  3. NASA Water Resources Program

    Science.gov (United States)

    Toll, David L.

    2011-01-01

    With increasing population pressure and water usage coupled with climate variability and change, water issues are being reported by numerous groups as the most critical environmental problems facing us in the 21st century. Competitive uses and the prevalence of river basins and aquifers that extend across boundaries engender political tensions between communities, stakeholders and countries. In addition to the numerous water availability issues, water quality related problems are seriously affecting human health and our environment. The potential crises and conflicts especially arise when water is competed among multiple uses. For example, urban areas, environmental and recreational uses, agriculture, and energy production compete for scarce resources, not only in the Western U.S. but throughout much of the U.S. and also in numerous parts of the world. Mitigating these conflicts and meeting water demands and needs requires using existing water resources more efficiently. The NASA Water Resources Program Element works to use NASA products and technology to address these critical water issues. The primary goal of the Water Resources is to facilitate application of NASA Earth science products as a routine use in integrated water resources management for the sustainable use of water. This also includes the extreme events of drought and floods and the adaptation to the impacts from climate change. NASA satellite and Earth system observations of water and related data provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years about the Earth's land surface conditions such as precipitation, snow, soil moisture, water levels, land cover type, vegetation type, and health. NASA Water Resources Program works closely to use NASA and Earth science data with other U.S. government agencies, universities, and non-profit and private sector organizations both domestically and internationally. The NASA Water Resources Program organizes its

  4. Assessment of the Sustainability of Water Resources Management : A Critical Review of the City Blueprint Approach

    NARCIS (Netherlands)

    Koop, Steven H A; van Leeuwen, Cornelis J.

    2015-01-01

    Climate change, urbanization and water pollution cause adverse effects and rehabilitation costs that may exceed the carrying capacity of cities. Currently, there is no internationally standardized indicator framework for urban Integrated Water Resources Management (IWRM). The City Blueprint® is a

  5. Water resources assessment in a poorly gauged mountainous catchment using a geographical information system and remote sensing

    Science.gov (United States)

    Shrestha, Roshan; Takara, Kaoru; Tachikawa, Yasuto; Jha, Raghu N.

    2004-11-01

    Water resources assessment, which is an essential task in making development plans managing water resources, is considerably difficult to do in a data-poor region. In this study, we attempted to conduct a quantitative water resources assessment in a poorly gauged mountainous catchment, i.e. the River Indrawati catchment (1233 km2) in Nepal. This catchment is facing problems such as dry-season water scarcity and water use conflicts. However, the region lacks the basic data that this study needs. The data needed are supplemented from field surveys and global data (e.g. GTOPO30 DEM data, LandsatTM data and MODIS NDVI data). The global data have significantly helped us to draw out the information needed for a number of water-use scenarios. These data helped us determine that the available water quantity is enough at present to address the dry-season problems. The situation is not much worse for the immediate future; however, the threat of drought is noticed in a future scenario in which resources are consumed extensively. The study uses a geographical information system and remotely sensed data analysis tools extensively. Utilization of modern tools and global data is found effective for investigating practical problems and for detecting important features of water resources, even though the catchment is poorly gauged.

  6. ASSESSMENT OF WATER BALANCE OF A WATERSHED USING SWAT MODEL FOR WATER RESOURCES MANAGEMENT

    OpenAIRE

    Sandra George; Sathian, K.K.

    2016-01-01

    An attempt has been made in this study to assess the hydrological behavior of the Kurumali sub basin of Karuvannur river basin using SWAT model and other geospatial technologies. All the thematic maps and attribute information of the watershed have been collected from various Government agencies. SWAT model has been set up for the Kurumali sub basin by inputting the digital thematic maps, physical properties of soil and climatic parameters. Total area of the watershed corresponding to the out...

  7. Modelling the Loktak Lake Basin to Assess Human Impact on Water Resources

    Science.gov (United States)

    Eliza, K.

    2015-12-01

    Loktak Lake is an internationally important, Ramsar designated, fresh water wetland system in the state of Manipur, India. The lake was also listed under Montreux Record on account of the ecological modifications that the lake system has witnessed over time. A characteristic feature of this lake is the extensive occurrence of coalesced, naturally or otherwise, vegetative masses floating over it. A contiguous 40 km2 area of Phumdis, as these vegetative masses are locally referred to, also constitutes the only natural home of the endemic and endangered species of Manipur's brow-antlered deer popularly known as Sangai. Appropriately notified as Keibul Lamjao National Park by Government of India, this natural feature is known to be the world's largest floating park. Water quality and sediment deposition on account of soil erosion in its catchments are some of the emerging concerns along with a reported enhanced frequency and duration of flooding of the shore areas, reduced fish catch within a visibly deteriorated overall natural ecosystem. Disturbances of watershed processes, command area management practices, ineffective as indeed largely absent, waste management practices and management interventions linked to the Loktak Hydroelectric Project are often cited as the principal triggers that are seen to be responsible for the damage. An effective management protocol for the Lake requires a rigorous understanding of its hydrobiology and eco-hydrodynamics. The present study is carried out to establish such a characterization of the various rivers systems draining directly into the Lake using MIKE SHE, MIKE 11 HD and MIKE 11 ECO Lab modelling platforms. Water quality modelling was limited to dissolved oxygen (DO), biological oxygen demand (BOD) and water temperature. Model calibration was done using the available measured water quality data. The derived results were then investigated for causal correlation with anthropogenic influences to assess human impact on water

  8. Northern Cheyenne Reservation Coal Bed Natural Resource Assessment and Analysis of Produced Water Disposal Options

    Energy Technology Data Exchange (ETDEWEB)

    Shaochang Wo; David A. Lopez; Jason Whiteman Sr.; Bruce A. Reynolds

    2004-07-01

    Coalbed methane (CBM) development in the Powder River Basin (PRB) is currently one of the most active gas plays in the United States. Monthly production in 2002 reached about 26 BCF in the Wyoming portion of the basin. Coalbed methane reserves for the Wyoming portion of the basin are approximately 25 trillion cubic feet (TCF). Although coal beds in the Powder River Basin extend well into Montana, including the area of the Northern Cheyenne Indian Reservation, the only CBM development in Montana is the CX Field, operated by the Fidelity Exploration, near the Wyoming border. The Northern Cheyenne Reservation is located on the northwest flank of the PRB in Montana with a total land of 445,000 acres. The Reservation consists of five districts, Lame Deer, Busby, Ashland, Birney, and Muddy Cluster and has a population of 4,470 according to the 2000 Census. The CBM resource represents a significant potential asset to the Northern Cheyenne Indian Tribe. Methane gas in coal beds is trapped by hydrodynamic pressure. Because the production of CBM involves the dewatering of coalbed to allow the release of methane gas from the coal matrix, the relatively large volume of the co-produced water and its potential environmental impacts are the primary concerns for the Tribe. Presented in this report is a study conducted by the Idaho National Engineering and Environmental Laboratory (INEEL) and the Montana Bureau of Mines and Geology (MBMG) in partnership with the Northern Cheyenne Tribe to assess the Tribe’s CBM resources and evaluate applicable water handling options. The project was supported by the U.S. Department of Energy (DOE) through the Native American Initiative of the National Petroleum Technology Office, under contract DEAC07- 99ID13727. Matching funds were granted by the MBMG in supporting the work of geologic study and mapping conducted at MBMG.

  9. Water intensity assessment of shale gas resources in the Wattenberg field in northeastern Colorado.

    Science.gov (United States)

    Goodwin, Stephen; Carlson, Ken; Knox, Ken; Douglas, Caleb; Rein, Luke

    2014-05-20

    Efficient use of water, particularly in the western U.S., is an increasingly important aspect of many activities including agriculture, urban, and industry. As the population increases and agriculture and energy needs continue to rise, the pressure on water and other natural resources is expected to intensify. Recent advances in technology have stimulated growth in oil and gas development, as well as increasing the industry's need for water resources. This study provides an analysis of how efficiently water resources are used for unconventional shale development in Northeastern Colorado. The study is focused on the Wattenberg Field in the Denver-Julesberg Basin. The 2000 square mile field located in a semiarid climate with competing agriculture, municipal, and industrial water demands was one of the first fields where widespread use of hydraulic fracturing was implemented. The consumptive water intensity is measured using a ratio of the net water consumption and the net energy recovery and is used to measure how efficiently water is used for energy extraction. The water and energy use as well as energy recovery data were collected from 200 Noble Energy Inc. wells to estimate the consumptive water intensity. The consumptive water intensity of unconventional shale in the Wattenberg is compared with the consumptive water intensity for extraction of other fuels for other energy sources including coal, natural gas, oil, nuclear, and renewables. 1.4 to 7.5 million gallons is required to drill and hydraulically fracture horizontal wells before energy is extracted in the Wattenberg Field. However, when the large short-term total freshwater-water use is normalized to the amount of energy produced over the lifespan of a well, the consumptive water intensity is estimated to be between 1.8 and 2.7 gal/MMBtu and is similar to surface coal mining.

  10. A Global Rapid Integrated Monitoring System for Water Cycle and Water Resource Assessment (Global-RIMS)

    Science.gov (United States)

    Roads, John; Voeroesmarty, Charles

    2005-01-01

    The main focus of our work was to solidify underlying data sets, the data processing tools and the modeling environment needed to perform a series of long-term global and regional hydrological simulations leading eventually to routine hydrometeorological predictions. A water and energy budget synthesis was developed for the Mississippi River Basin (Roads et al. 2003), in order to understand better what kinds of errors exist in current hydrometeorological data sets. This study is now being extended globally with a larger number of observations and model based data sets under the new NASA NEWS program. A global comparison of a number of precipitation data sets was subsequently carried out (Fekete et al. 2004) in which it was further shown that reanalysis precipitation has substantial problems, which subsequently led us to the development of a precipitation assimilation effort (Nunes and Roads 2005). We believe that with current levels of model skill in predicting precipitation that precipitation assimilation is necessary to get the appropriate land surface forcing.

  11. A Risk Assessment Model for Water Resources: releases of dangerous and hazardous substances.

    Science.gov (United States)

    Rebelo, Anabela; Ferra, Isabel; Gonçalves, Isolina; Marques, Albertina M

    2014-07-01

    Many dangerous and hazardous substances are used, transported and handled daily in diverse situations, from domestic use to industrial processing, and during those operations, spills or other anomalous situations may occur that can lead to contaminant releases followed by contamination of surface water or groundwater through direct or indirect pathways. When dealing with this problem, rapid, technically sound decisions are desirable, and the use of complex methods may not be able to deliver information quickly. This work describes a simple conceptual model established on multi-criteria based analysis involving a strategic appraisal for contamination risk assessment to support local authorities on rapid technical decisions. The model involves a screening for environmental risk sources, focussing on persistent, bioaccumulative and toxic (PBT) substances that may be discharged into water resources. It is a simple tool that can be used to follow-up actual accident scenarios in real time and to support daily activities, such as site-inspections. Copyright © 2014 Elsevier Ltd. All rights reserved.

  12. PROFILE: Integrating Stressor and Response Monitoring into a Resource-Based Water-Quality Assessment Framework.

    Science.gov (United States)

    ROUX; KEMPSTER; KLEYNHANS; VAN; DU

    1999-01-01

    / South African water law as well as the country's water resource management policies are currently under review. The Water Law Principles, which were established as part of this review process, indicate a commitment to sustainable development of water resources and the protection of an ecological "reserve." Such policy goals highlight the limitations of traditional and current water-quality management strategies, which rely on stressor monitoring and associated regulation of pollution. The concept of an assimilative capacity is central to the implementation of the current water-quality management approach. Weaknesses inherent in basing water management on the concept of assimilative capacity are discussed. Response monitoring is proposed as a way of addressing some of the weaknesses. Following a global trend, the new policy goals emphasize the need to protect rather than to use the ability of ecosystems to recover from disturbances. This necessitates the adoption of response measurements to quantify ecological condition and monitor ecological change. Response monitoring focuses on properties that are essential to the sustainability of the ecosystem. These monitoring tools can be used to establish natural ranges of ecological change within ecosystems, as well as to quantify conceptually acceptable and unacceptable ranges of change. Through a framework of biological criteria and biological impairment standards, the results of response monitoring can become an integral part of future water resource management strategies in South Africa. KEY WORDS: Stressor monitoring; Response monitoring; Assimilative capacity; Ecosystem stability; Resilience; Biocriteria

  13. Water Resources Research Center

    Science.gov (United States)

    Untitled Document  Search Welcome to the University of Hawai'i at Manoa Water Resources Research Center At WRRC we concentrate on addressing the unique water and wastewater management problems and issues elsewhere by researching water-related issues distinctive to these areas. We are Hawaii's link in a network

  14. The Assessment of Sustainability Indexes and Climate Change Impacts on Integrated Water Resource Management

    Directory of Open Access Journals (Sweden)

    Joel Hernández-Bedolla

    2017-03-01

    Full Text Available Integrated water resource management (IWRM is facing great challenges due to growing uncertainties caused by climate change (CC, rapid socio-economic and technological changes, and population growth. In the present study, we have developed different indices to assess the availability of water using an IWRM approach. These indices evaluate supply to demands, surface availability, groundwater availability, reservoirs, and environmental flow. Moreover, reliability, resilience, and vulnerability were determined. Sustainability index (SI and sustainability index by groups (SG were determined based on the five indices (all indices vary from 0 to 1. The impacts of climate change affect surface and groundwater availability, as do the agricultural, urban, and industrial requirements on the different supplies. We used the generalized AQUATOOL Decision Support System Shell (DSSS to evaluate the IWRM in the Rio Grande Basin (Morelia, México. Various emission scenarios from representative concentration pathways (RCPs were applied to the basin for the years 2015–2039 and 2075–2099. The results indicate increases in agricultural and urban demand, and decreases in surface runoff, as well as groundwater recharge. The proposed indices are useful for different approaches (decision-makers, water policy, and drought risks, among others. CC significantly affects the different proposed indices and indicates a decrease of the SI, SG1, and SG2 (i.e., less availability. For example, we found that SG2 decreased from 0.812 to 0.195 under the RCP 8.5 2075–2099 scenario, and SG2 equal to 0.252 and 0.326 for the RCP 6.0 2075–2099 and RCP 4.5 2070–2099 scenarios, respectively (values close to 0 indicate worst drought conditions.

  15. Solar Resource Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Renne, D.; George, R.; Wilcox, S.; Stoffel, T.; Myers, D.; Heimiller, D.

    2008-02-01

    This report covers the solar resource assessment aspects of the Renewable Systems Interconnection study. The status of solar resource assessment in the United States is described, and summaries of the availability of modeled data sets are provided.

  16. Assessing climate change and socio-economic uncertainties in long term management of water resources

    Science.gov (United States)

    Jahanshahi, Golnaz; Dawson, Richard; Walsh, Claire; Birkinshaw, Stephen; Glenis, Vassilis

    2015-04-01

    Long term management of water resources is challenging for decision makers given the range of uncertainties that exist. Such uncertainties are a function of long term drivers of change, such as climate, environmental loadings, demography, land use and other socio economic drivers. Impacts of climate change on frequency of extreme events such as drought make it a serious threat to water resources and water security. The release of probabilistic climate information, such as the UKCP09 scenarios, provides improved understanding of some uncertainties in climate models. This has motivated a more rigorous approach to dealing with other uncertainties in order to understand the sensitivity of investment decisions to future uncertainty and identify adaptation options that are as far as possible robust. We have developed and coupled a system of models that includes a weather generator, simulations of catchment hydrology, demand for water and the water resource system. This integrated model has been applied in the Thames catchment which supplies the city of London, UK. This region is one of the driest in the UK and hence sensitive to water availability. In addition, it is one of the fastest growing parts of the UK and plays an important economic role. Key uncertainties in long term water resources in the Thames catchment, many of which result from earth system processes, are identified and quantified. The implications of these uncertainties are explored using a combination of uncertainty analysis and sensitivity testing. The analysis shows considerable uncertainty in future rainfall, river flow and consequently water resource. For example, results indicate that by the 2050s, low flow (Q95) in the Thames catchment will range from -44 to +9% compared with the control scenario (1970s). Consequently, by the 2050s the average number of drought days are expected to increase 4-6 times relative to the 1970s. Uncertainties associated with urban growth increase these risks further

  17. Rangeland and water resources

    African Journals Online (AJOL)

    Session B3 Management for sustainable use — Rangeland and water resources. ... The theme of optimsing integrated catchment management will be treated ... land system, catchment, basin), with a focus on law, policy and implementation.

  18. Modern water resources engineering

    CERN Document Server

    Yang, Chih

    2014-01-01

    The Handbook of Environmental Engineering series is an incredible collection of methodologies that study the effects of pollution and waste in their three basic forms: gas, solid, and liquid. This exciting new addition to the series, Volume 15: Modern Water Resources Engineering , has been designed to serve as a water resources engineering reference book as well as a supplemental textbook. We hope and expect it will prove of equal high value to advanced undergraduate and graduate students, to designers of water resources systems, and to scientists and researchers. A critical volume in the Handbook of Environmental Engineering series, chapters employ methods of practical design and calculation illustrated by numerical examples, include pertinent cost data whenever possible, and explore in great detail the fundamental principles of the field. Volume 15: Modern Water Resources Engineering, provides information on some of the most innovative and ground-breaking advances in the field today from a panel of esteemed...

  19. Regional water resources assessments using an uncertain modelling approach: The example of Swaziland

    Directory of Open Access Journals (Sweden)

    C. Ndzabandzaba

    2017-04-01

    New hydrological insights for this region: The analysis of hydrological indices highlights the regional variations in hydrological processes and sub-basin response. The adopted modelling approach provides further insight into all of the uncertainties associated with quantifying the available water resources of Swaziland. The study has provided more insight into the spatial variability of the hydrological response and existing development impacts than was previously available. These new insights should provide an improved basis for future water management in Swaziland.

  20. Water - an inexhaustible resource?

    Science.gov (United States)

    Le Divenah, C.; Esperou, E.

    2012-04-01

    We have chosen to present the topic "Water", by illustrating problems that will give better opportunities for interdisciplinary work between Natural Science (Physics, Chemistry, Biology and Geology) teachers at first, but also English teachers and maybe others. Water is considered in general, in all its shapes and states. The question is not only about drinking water, but we would like to demonstrate that water can both be a fragile and short-lived resource in some ways, and an unlimited energy resource in others. Water exists on Earth in three states. It participates in a large number of chemical and physical processes (dissolution, dilution, biogeochemical cycles, repartition of heat in the oceans and the atmosphere, etc.), helping to maintain the homeostasis of the entire planet. It is linked to living beings, for which water is the major compound. The living beings essentially organized themselves into or around water, and this fact is also valid for human kind (energy, drinking, trade…). Water can also be a destroying agent for living beings (tsunamis, mud flows, collapse of electrical dams, pollution...) and for the solid earth (erosion, dissolution, fusion). I) Water, an essential resource for the human kind After having highlighted the disparities and geopolitical problems, the pupils will study the chemistry of water with its components and their origins (isotopes, water trip). Then the ways to make it drinkable will be presented (filtration, decantation, iceberg carrying…) II) From the origin of water... We could manage an activity where different groups put several hypotheses to the test, with the goal to understand the origin(s?) of water on Earth. Example: Isotopic signature of water showing its extraterrestrial origin.. Once done, we'll try to determine the origin of drinking water, as a fossil resource. Another use of isotopes will allow them to evaluate the drinking water age, to realize how precious it can be. III) Water as a sustainable energy

  1. Assessment of impacts of proposed coal-resource and related economic development on water resources, Yampa River basin, Colorado and Wyoming; a summary

    Science.gov (United States)

    Steele, Timothy Doak; Hillier, Donald E.

    1981-01-01

    Expanded mining and use of coal resources in the Rocky Mountain region of the western United States will have substantial impacts on water resources, environmental amenities, and social and economic conditions. The U.S. Geological Survey has completed a 3-year assessment of the Yampa River basin, Colorado and Wyoming, where increased coal-resource development has begun to affect the environment and quality of life. Economic projections of the overall effects of coal-resource development were used to estimate water use and the types and amounts of waste residuals that need to be assimilated into the environment. Based in part upon these projections, several physical-based models and other semiquantitative assessment methods were used to determine possible effects upon the basin's water resources. Depending on the magnitude of mining and use of coal resources in the basin, an estimated 0.7 to 2.7 million tons (0.6 to 2.4 million metric tons) of waste residuals may be discharged annually into the environment by coal-resource development and associated economic activities. If the assumed development of coal resources in the basin occurs, annual consumptive use of water, which was approximately 142,000 acre-feet (175 million cubic meters) during 1975, may almost double by 1990. In a related analysis of alternative cooling systems for coal-conversion facilities, four to five times as much water may be used consumptively in a wet-tower, cooling-pond recycling system as in once-through cooling. An equivalent amount of coal transported by slurry pipeline would require about one-third the water used consumptively by once-through cooling for in-basin conversion. Current conditions and a variety of possible changes in the water resources of the basin resulting from coal-resource development were assessed. Basin population may increase by as much as threefold between 1975 and 1990. Volumes of wastes requiring treatment will increase accordingly. Potential problems associated

  2. Technical Note: Seasonality in alpine water resources management - a regional assessment

    Science.gov (United States)

    Vanham, D.; Fleischhacker, E.; Rauch, W.

    2008-01-01

    Alpine regions are particularly affected by seasonal variations in water demand and water availability. Especially the winter period is critical from an operational point of view, as being characterised by high water demands due to tourism and low water availability due to the temporal storage of precipitation as snow and ice. The clear definition of summer and winter periods is thus an essential prerequisite for water resource management in alpine regions. This paper presents a GIS-based multi criteria method to determine the winter season. A snow cover duration dataset serves as basis for this analysis. Different water demand stakeholders, the alpine hydrology and the present day water supply infrastructure are taken into account. Technical snow-making and (winter) tourism were identified as the two major seasonal water demand stakeholders in the study area, which is the Kitzbueheler region in the Austrian Alps. Based upon different geographical datasets winter was defined as the period from December to March, and summer as the period from April to November. By determining potential regional water balance deficits or surpluses in the present day situation and in future, important management decisions such as water storage and allocation can be made and transposed to the local level.

  3. Lunar Water Resource Demonstration

    Science.gov (United States)

    Muscatello, Anthony C.

    2008-01-01

    In cooperation with the Canadian Space Agency, the Northern Centre for Advanced Technology, Inc., the Carnegie-Mellon University, JPL, and NEPTEC, NASA has undertaken the In-Situ Resource Utilization (ISRU) project called RESOLVE. This project is a ground demonstration of a system that would be sent to explore permanently shadowed polar lunar craters, drill into the regolith, determine what volatiles are present, and quantify them in addition to recovering oxygen by hydrogen reduction. The Lunar Prospector has determined these craters contain enhanced hydrogen concentrations averaging about 0.1%. If the hydrogen is in the form of water, the water concentration would be around 1%, which would translate into billions of tons of water on the Moon, a tremendous resource. The Lunar Water Resource Demonstration (LWRD) is a part of RESOLVE designed to capture lunar water and hydrogen and quantify them as a backup to gas chromatography analysis. This presentation will briefly review the design of LWRD and some of the results of testing the subsystem. RESOLVE is to be integrated with the Scarab rover from CMIJ and the whole system demonstrated on Mauna Kea on Hawaii in November 2008. The implications of lunar water for Mars exploration are two-fold: 1) RESOLVE and LWRD could be used in a similar fashion on Mars to locate and quantify water resources, and 2) electrolysis of lunar water could provide large amounts of liquid oxygen in LEO, leading to lower costs for travel to Mars, in addition to being very useful at lunar outposts.

  4. A seamless global hydrological monitoring and forecasting system for water resources assessment and hydrological hazard early warning

    Science.gov (United States)

    Sheffield, Justin; He, Xiaogang; Wood, Eric; Pan, Ming; Wanders, Niko; Zhan, Wang; Peng, Liqing

    2017-04-01

    Sustainable management of water resources and mitigation of the impacts of hydrological hazards are becoming ever more important at large scales because of inter-basin, inter-country and inter-continental connections in water dependent sectors. These include water resources management, food production, and energy production, whose needs must be weighed against the water needs of ecosystems and preservation of water resources for future generations. The strains on these connections are likely to increase with climate change and increasing demand from burgeoning populations and rapid development, with potential for conflict over water. At the same time, network connections may provide opportunities to alleviate pressures on water availability through more efficient use of resources such as trade in water dependent goods. A key constraint on understanding, monitoring and identifying solutions to increasing competition for water resources and hazard risk is the availability of hydrological data for monitoring and forecasting water resources and hazards. We present a global online system that provides continuous and consistent water products across time scales, from the historic instrumental period, to real-time monitoring, short-term and seasonal forecasts, and climate change projections. The system is intended to provide data and tools for analysis of historic hydrological variability and trends, water resources assessment, monitoring of evolving hazards and forecasts for early warning, and climate change scale projections of changes in water availability and extreme events. The system is particular useful for scientists and stakeholders interested in regions with less available in-situ data, and where forecasts have the potential to help decision making. The system is built on a database of high-resolution climate data from 1950 to present that merges available observational records with bias-corrected reanalysis and satellite data, which then drives a coupled land

  5. Assessing the Total Economic Value of Improving Water Quality to Inform Water Resources Management: Evidence and Challenges from Southeast Asia

    Science.gov (United States)

    Jalilov, S.; Fukushi, K.

    2016-12-01

    Population growth, high rates of economic development and rapid urbanization in the developing countries of Southeast Asia (SEA) have resulted in degradation and depletion of natural resources, including water resources and related ecosystem services. Many urban rivers in the region are highly polluted with domestic, industrial and agricultural wastes. Policymakers are often aware of the direct value of water resources for domestic and industrial consumption, but they often underestimate the indirect value of these functions, since they are not exchanged in the market and do not appear in national income accounts. Underestimation of pollution and over-exploitation of water resources result in a loss of these benefits and have adverse impacts on nearby residents, threatening the long-term sustainable development of natural resources in the region. Behind these constraints lies a lack of knowledge (ignorance) from governments that a clean water environment could bring significant economic benefits. This study has been initiated to tackle this issue and to foster a more rational approach for sustainable urban development in Metro Manila in the Philippines. We applied a Contingent Valuation Method (CVM) based on Computer-Assisted Personal Interviewing (CAPI) technique. Results show that users are willing to pay up to PHP 102.42 (2.18) monthly to improve quality of urban waterbodies whereas nonusers are willing to pay up to PHP 366.53 (7.80) as one-time payment towards water quality improvement. The estimated monetary value of water quality improvements would be a useful variable in cost-benefit analyses of various water quality-related policies, in both public and private sectors in Metro Manila. This survey design could serve as a useful template for similar water quality studies in other SEA countries.

  6. The water footprint of cotton consumption: An assessment of the impact of worldwide consumption of cotton products on the water resources in the cotton producing countries

    NARCIS (Netherlands)

    Chapagain, Ashok; Hoekstra, Arjen Ysbert; Savenije, H.H.G.; Gautam, R.

    2006-01-01

    The consumption of a cotton product is connected to a chain of impacts on the water resources in the countries where cotton is grown and processed. The aim of this paper is to assess the ‘water footprint’ of worldwide cotton consumption, identifying both the location and the character of the

  7. The arctic water resource vulnerability index: An integrated assessment tool for community resilience and vulnerability with respect to freshwater

    Science.gov (United States)

    Alessa, L.; Kliskey, A.; Lammers, R.; Arp, C.; White, D.; Hinzman, L.; Busey, R.

    2008-01-01

    People in the Arctic face uncertainty in their daily lives as they contend with environmental changes at a range of scales from local to global. Freshwater is a critical resource to people, and although water resource indicators have been developed that operate from regional to global scales and for midlatitude to equatorial environments, no appropriate index exists for assessing the vulnerability of Arctic communities to changing water resources at the local scale. The Arctic Water Resource Vulnerability Index (AWRVI) is proposed as a tool that Arctic communities can use to assess their relative vulnerability-resilience to changes in their water resources from a variety of biophysical and socioeconomic processes. The AWRVI is based on a social-ecological systems perspective that includes physical and social indicators of change and is demonstrated in three case study communities/watersheds in Alaska. These results highlight the value of communities engaging in the process of using the AWRVI and the diagnostic capability of examining the suite of constituent physical and social scores rather than the total AWRVI score alone. ?? 2008 Springer Science+Business Media, LLC.

  8. Assessing the impact of global changes on the surface water resources of Southwestern Nigeria

    CSIR Research Space (South Africa)

    Ayeni, AO

    2014-12-01

    Full Text Available Understanding the relative impact of land use, land cover and climate change (LULCC) on basin runoff is necessary in assessing basin water stress. This assessment requires long-term observed rainfall time series and land-use/land-cover (LULC...

  9. Use of GRACE Terrestrial Water Storage Retrievals to Evaluate Model Estimates by the Australian Water Resources Assessment System

    Science.gov (United States)

    van Dijk, A. I. J. M.; Renzullo, L. J.; Rodell, M.

    2011-01-01

    Terrestrial water storage (TWS) estimates retrievals from the Gravity Recovery and Climate Experiment (GRACE) satellite mission were compared to TWS modeled by the Australian Water Resources Assessment (AWRA) system. The aim was to test whether differences could be attributed and used to identify model deficiencies. Data for 2003 2010 were decomposed into the seasonal cycle, linear trends and the remaining de-trended anomalies before comparing. AWRA tended to have smaller seasonal amplitude than GRACE. GRACE showed a strong (greater than 15 millimeter per year) drying trend in northwest Australia that was associated with a preceding period of unusually wet conditions, whereas weaker drying trends in the southern Murray Basin and southwest Western Australia were associated with relatively dry conditions. AWRA estimated trends were less negative for these regions, while a more positive trend was estimated for areas affected by cyclone Charlotte in 2009. For 2003-2009, a decrease of 7-8 millimeter per year (50-60 cubic kilometers per year) was estimated from GRACE, enough to explain 6-7% of the contemporary rate of global sea level rise. This trend was not reproduced by the model. Agreement between model and data suggested that the GRACE retrieval error estimates are biased high. A scaling coefficient applied to GRACE TWS to reduce the effect of signal leakage appeared to degrade quantitative agreement for some regions. Model aspects identified for improvement included a need for better estimation of rainfall in northwest Australia, and more sophisticated treatment of diffuse groundwater discharge processes and surface-groundwater connectivity for some regions.

  10. High water-stressed population estimated by world water resources assessment including human activities under SRES scenarios

    Science.gov (United States)

    Kiguchi, M.; Shen, Y.; Kanae, S.; Oki, T.

    2009-04-01

    In an argument of the reduction and the adaptation for the climate change, the evaluation of the influence by the climate change is important. When we argue in adaptation plan from a damage scale and balance with the cost, it is particularly important. Parry et al (2001) evaluated the risks in shortage of water, malaria, food, the risk of the coast flood by temperature function and clarified the level of critical climate change. According to their evaluation, the population to be affected by the shortage of water suddenly increases in the range where temperature increases from 1.5 to 2.0 degree in 2080s. They showed how much we need to reduce emissions in order to draw-down significantly the number at risk. This evaluation of critical climate change threats and targets of water shortage did not include the water withdrawal divided by water availability. Shen et al (2008a) estimated the water withdrawal of projection of future world water resources according to socio-economic driving factors predicted for scenarios A1b, A2, B1, and B2 of the Special Report on Emission Scenarios (SRES). However, these results were in function of not temperature but time. The assessment of the highly water-stressed population considered the socioeconomic development is necessary for a function of the temperature. Because of it is easy to understand to need to reduce emission. We present a multi-GCM analysis of the global and regional populations lived in highly water-stressed basin for a function of the temperature using the socioeconomic data and the outputs of GCMs. In scenario A2, the population increases gradually with warming. On the other hand, the future projection population in scenario A1b and B1 increase gradually until the temperature anomaly exceeds around from +1 to +1.5 degree. After that the population is almost constant. From Shen et al (2008b), we evaluated the HWSP and its ratio in the world with temperature function for scenarios A1B, A2, and B1 by the index of W

  11. Climate Change Impacts for the Conterminous USA. An Integrated Assessment. Part 4. Water Resources

    International Nuclear Information System (INIS)

    Thomson, A.M.; Rosenberg, N.J.; Izaurralde, R.C.; Brown, R.A.; Srinivasan, R.

    2005-01-01

    Global climate change will impact the hydrologic cycle by increasing the capacity of the atmosphere to hold moisture. Anticipated impacts are generally increased evaporation at low latitudes and increased precipitation at middle and high latitudes. General Circulation Models (GCMs) used to simulate climate disagree on whether the U.S. as a whole and its constituent regions will receive more or less precipitation as global warming occurs. The impacts on specific regions will depend on changes in weather patterns and are certain to be complex. Here we apply the suite of 12 potential climate change scenarios, previously described in Part 1, to the Hydrologic Unit Model of the United States (HUMUS) to simulate water supply in the conterminous United States in reference to a baseline scenario. We examine the sufficiency of this water supply to meet changing demands of irrigated agriculture. The changes in water supply driven by changes in climate will likely be most consequential in the semi-arid western parts of the country where water yield is currently scarce and the resource is intensively managed. Changes of greater than ±50% with respect to present day water yield are projected in parts of the Midwest and Southwest U.S. Interannual variability in the water supply is likely to increase where conditions become drier and to decrease under wetter conditions

  12. From Premise to Practice: a Critical Assessment of Integrated Water Resources Management and Adaptive Management Approaches in the Water Sector

    Directory of Open Access Journals (Sweden)

    Wietske Medema

    2008-12-01

    Full Text Available The complexity of natural resource use processes and dynamics is now well accepted and described in theories ranging across the sciences from ecology to economics. Based upon these theories, management frameworks have been developed within the research community to cope with complexity and improve natural resource management outcomes. Two notable frameworks, Integrated Water Resource Management (IWRM and Adaptive Management (AM have been developed within the domain of water resource management over the past thirty or so years. Such frameworks provide testable statements about how best to organise knowledge production and use to facilitate the realisation of desirable outcomes including sustainable resource use. However evidence for the success of IWRM and AM is mixed and they have come under criticism recently as failing to provide promised benefits. This paper critically reviews the claims made for IWRM and AM against evidence from their implementation and explores whether or not criticisms are rooted in problems encountered during the translation from research to practice. To achieve this we review the main issues that challenge the implementation of both frameworks. More specifically, we analyse the various definitions and descriptions of IWRM and AM. Our findings suggest that similar issues have affected the lack of success that practitioners have experienced throughout the implementation process for both frameworks. These findings are discussed in the context of the broader societal challenge of effective translation of research into practice, science into policy and ambition into achievement.

  13. Applying the WEAP Model to Water Resource

    DEFF Research Database (Denmark)

    Gao, Jingjing; Christensen, Per; Li, Wei

    efficiency, treatment and reuse of water. The WEAP model was applied to the Ordos catchment where it was used for the first time in China. The changes in water resource utilization in Ordos basin were assessed with the model. It was found that the WEAP model is a useful tool for water resource assessment......Water resources assessment is a tool to provide decision makers with an appropriate basis to make informed judgments regarding the objectives and targets to be addressed during the Strategic Environmental Assessment (SEA) process. The study shows how water resources assessment can be applied in SEA...... in assessing the effects on water resources using a case study on a Coal Industry Development Plan in an arid region in North Western China. In the case the WEAP model (Water Evaluation And Planning System) were used to simulate various scenarios using a diversity of technological instruments like irrigation...

  14. Water resources management plan

    Directory of Open Access Journals (Sweden)

    Glauco Maia

    2011-12-01

    Full Text Available Water resources manageWith the mission of providing reliable data for water supply activities in medium and large firefighting operations, the Firefighting Water Supply Tactical Group (GTSAI represents an important sector of the Rio de Janeiro State Fire Departmentment plan strategic support. Acting proactively, the Tactical Group prepared a Water Resources Management Plan, aiming to set up water resources for each jurisdiction of firefighters in the City of Rio de Janeiro, in order to assist the Fire Department in its missions. This goal was reached, and in association with LAGEOP (Geoprocessing Laboratory, UFRJ, the Tactical Group started using GIS techniques. The plan provides for the register of existing operational structures within each group (troops, vehicles and special equipment, along with knowledge about the nature and operating conditions of fire hydrants, as well as a detailed survey of areas considered to be "critical". The survey helps to support actions related to environmental disasters involved in the aforementioned critical areas (hospital, churches, schools, and chemical industries, among others. The Caju neighborhood, in Rio de Janeiro, was defined as initial application area, and was the first jurisdiction to have the system implemented, followed by Copacabana, Leblon, Lagoa, and Catete districts.

  15. Cyanobacteria Assessment Network (CyAN) - 2017 NASA Water Resources PI Presentation

    Science.gov (United States)

    Presentation on the Cyanobacteria Assessment Network (CYAN) and how is supports the environmental management and public use of the U.S. lakes and estuaries by providing a capability of detecting and quantifying algal blooms and related water quality using satellite data records.

  16. Review - Water resources development

    Energy Technology Data Exchange (ETDEWEB)

    Todd, David K [Civil Engineering, University of California, Berkeley (United States)

    1970-05-15

    For the past 15 years the possibilities of employing nuclear explosives to develop and manage water resources for the benefit of man have been studied, Experimental and theoretical studies of many types have been undertaken. Numerous applications have been considered including site studies for particular projects. Attention has been given to the economics of specific applications, to hazards and safety problems, to legal limitations, to geologic and hydrologic considerations, and to effects on water quality. The net result of this effort has been the development of a large body of knowledge ready to be drawn upon wherever and whenever needed. Nuclear explosives are important tools for water resources development; they must be carefully selected so as to serve their intended purpose at minimum cost with few side effects. (author)

  17. Review - Water resources development

    International Nuclear Information System (INIS)

    Todd, David K.

    1970-01-01

    For the past 15 years the possibilities of employing nuclear explosives to develop and manage water resources for the benefit of man have been studied, Experimental and theoretical studies of many types have been undertaken. Numerous applications have been considered including site studies for particular projects. Attention has been given to the economics of specific applications, to hazards and safety problems, to legal limitations, to geologic and hydrologic considerations, and to effects on water quality. The net result of this effort has been the development of a large body of knowledge ready to be drawn upon wherever and whenever needed. Nuclear explosives are important tools for water resources development; they must be carefully selected so as to serve their intended purpose at minimum cost with few side effects. (author)

  18. Assessment of the Impacts of Hydraulic Fracturing at Bakken on Regional Water Resources

    Science.gov (United States)

    Lin, Z.; Lin, T.; Lim, S.; Borders, M.

    2015-12-01

    Unconventional oil production at the Bakken Shale of western North Dakota increased more than ten-fold from 2008 to 2014. Although unconventional oil production uses less water than conventional oil production per unit of energy, the cumulative water needs for unconventional oil production due to multiple drilling and fracturing operations may be locally or temporally significant. We collected and analyzed the data for a total of 8453 horizontal wells developed at Bakken in western North Dakota during 2007-2014. The hydraulic fracturing activities mainly occurred in a core area of four counties, including Dunn, McKenzie, Mountrail, and Williams. The annual total water used for hydraulic fracking in western North Dakota increased from 302 ac-ft in 2007 to 21,605 ac-ft in 2014, by more than 70 times in 8 years. The four-county core area accounted for about 90% of total hydraulic fracturing water use in western North Dakota. Compared to the total water uses of all types, hydraulic fracturing water use in the four-county core area accounted for 0.7% in 2007 and 43.1% in 2014. Statewide, this percentage increased from 0.1% to 6.1% in the same time period. As horizontal drilling and hydraulic fracturing technologies matured for unconventional oil development at Bakken, the total depth and the total length of laterals per well seemed to reach an optimal value in the last four years (2011-2014). However, the number of fracturing stages and the volume of fracking water used per completion are still on the rise. The average water use per well increased from about 1.7 ac-ft in 2007 to 11.4 ac-ft in 2014. Correspondingly, the water intensity (volume of fracking water used per foot of laterals) increased from 67 gallon/ft in 2007 to about 372 gallon/ft 2014. The results helped us better understand the environmental impacts of hydraulic fracturing at Bakken and better manage the water resources in the region.

  19. QMRAcatch: Microbial Quality Simulation of Water Resources including Infection Risk Assessment.

    Science.gov (United States)

    Schijven, Jack; Derx, Julia; de Roda Husman, Ana Maria; Blaschke, Alfred Paul; Farnleitner, Andreas H

    2015-09-01

    Given the complex hydrologic dynamics of water catchments and conflicts between nature protection and public water supply, models may help to understand catchment dynamics and evaluate contamination scenarios and may support best environmental practices and water safety management. A catchment model can be an educative tool for investigating water quality and for communication between parties with different interests in the catchment. This article introduces an interactive computational tool, QMRAcatch, that was developed to simulate concentrations in water resources of , a human-associated microbial source tracking (MST) marker, enterovirus, norovirus, , and as target microorganisms and viruses (TMVs). The model domain encompasses a main river with wastewater discharges and a floodplain with a floodplain river. Diffuse agricultural sources of TMVs that discharge into the main river are not included in this stage of development. The floodplain river is fed by the main river and may flood the plain. Discharged TMVs in the river are subject to dilution and temperature-dependent degradation. River travel times are calculated using the Manning-Gauckler-Strickler formula. Fecal deposits from wildlife, birds, and visitors in the floodplain are resuspended in flood water, runoff to the floodplain river, or infiltrate groundwater. Fecal indicator and MST marker data facilitate calibration. Infection risks from exposure to the pathogenic TMVs by swimming or drinking water consumption are calculated, and the required pathogen removal by treatment to meet a health-based quality target can be determined. Applicability of QMRAcatch is demonstrated by calibrating the tool for a study site at the River Danube near Vienna, Austria, using field TMV data, including a sensitivity analysis and evaluation of the model outcomes. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  20. Towards the assessment of climate change and human activities impacts on the water resources of the Ebro catchment (Spain)

    Science.gov (United States)

    Milano, M.; Ruelland, D.; Dezetter, A.; Ardoin-Bardin, S.; Thivet, G.; Servat, E.

    2012-04-01

    module has also been implemented in the model. The ability of water resources to satisfy the water demands is assessed by computing a water allocation index which depends on site priorities and supply preferences. This modelling framework was applied to eight sub-catchments, each one representative of typical climatic or water use conditions within the basin, over the 1971-1990 period. The results show the interest of integrated modelling to address water resources vulnerability. The hydrological response to climatic and anthropogenic variations witnesses the influence of both these pressures on water resources availability. Moreover, the water allocation index makes it possible to highlight the growing competition among users, especially during the summer season. The developed methodology hence provides us a more complete analysis to support decision-making compared to uncoupled analysis. This study is a first step towards evaluating future water resources availability and ability to satisfy water demands under climatic and anthropogenic pressures scenarios.

  1. Impacts of Past Land Use Changes on Water Resources: An Analog for Assessing Effects of Proposed Bioenergy Crops

    Science.gov (United States)

    Scanlon, B. R.; Schilling, K.; Young, M.; Duncan, I. J.; Gerbens-Leenes, P.

    2011-12-01

    Interest is increasing in renewable energy sources, including bioenergy. However, potential impacts of bioenergy crops on water resources need to be better understood before large scale expansion occurs. This study evaluates the potential for using past land use change impacts on water resources as an analog for assessing future bioenergy crop effects. Impacts were assessed for two cases and methods: (1) changes from perennial to annual crops in the Midwest U.S. using stream hydrograph separation; and (2) changes from perennial grasses and shrubs to annual crops in the Southwest U.S. using unsaturated zone and groundwater data. Results from the Midwest show that expanding the soybean production area by 80,000 km2 increased stream flow by 32%, based on data from Keokuk station in the Upper Mississippi River Basin. Using these relationships, further expansion of annual corn production for biofuels by 10 - 50% would increase streamflow by up to 40%, with related increases in nitrate, phosphate, and sediment pollutant transport to the Gulf of Mexico. The changes in water partitioning are attributed to reducing evapotranspiration, increasing recharge and baseflow discharge to streams. Similar results were found in the southwestern US, where changes from native perennial grasses and shrubs to annual crops increased recharge from ~0.0 to 24 mm/yr, raising water tables by up to 7 m in some regions and flushing accumulated salts into underlying aquifers in the southern High Plains. The changes in water partitioning are related to changes in rooting depth from deep rooted native vegetation to shallow rooted crops and growing season length. Further expansion of annual bioenergy crops, such as changes from Conservation Reserve Program to corn in the Midwest, will continue the trajectory of reducing ET, thereby increasing recharge and baseflow to streams and nutrient export. We hypothesize that changing bioenergy crops from annual crops to perennial grasses, such as switchgrass

  2. Advances in water resources engineering

    CERN Document Server

    Wang, Lawrence

    2015-01-01

    The Handbook of Environmental Engineering is a collection of methodologies that study the effects of pollution and waste in their three basic forms: gas, solid, and liquid. A sister volume to Volume 15: Modern Water Resources Engineering, this volume focuses on the theory and analysis of various water resources systems including watershed sediment dynamics and modeling, integrated simulation of interactive surface water and groundwater systems, river channel stabilization with submerged vanes, non-equilibrium sediment transport, reservoir sedimentation, and fluvial processes, minimum energy dissipation rate theory and applications, hydraulic modeling development and application, geophysical methods for assessment of earthen dams, soil erosion on upland areas by rainfall and overland flow, geofluvial modeling methodologies and applications, and an environmental water engineering glossary. This critical volume will serve as a valuable reference work for advanced undergraduate and graduate students, designers of...

  3. Water Resource Sustainability Conference 2015

    Science.gov (United States)

    Water Resource Sustainability Issues on Tropical Islands December 1 - 3, 2015 | Hilton Hawaiian Village | Honolulu, Hawaii Presented By Water Resources Research Center (WRRC), Hawaii and American Samoa Water and Environmental Research Institute (WERI), Guam Puerto Rico Water Resources and Environmental Research Institute

  4. Assessing the Impact of Population Growth, Climate Change, and Land Use Change on Water Resources in India

    Science.gov (United States)

    Singh, N.; Cherkauer, K. A.

    2014-12-01

    India is poised to become the most populous country in the world by 2019 and reach a population of over 2 billion by 2050 based on current growth rates. It is also a region which will be under severe socio-economic and environmental stress if mitigation efforts are not adapted. In the past 10 years the population of India has grown by an average rate of 17 million people per year. In addition to unprecedented population growth, rapid urbanization and industrialization are straining the overburdened environmental system. This rapid growth in population, urbanization and industrialized will result in increased demand for food, requiring expansion of agricultural resources. Since total agricultural land in India has been relatively constant over the past 10 years the demand for additional food has to be partly met by enhanced production on existing land. Arable land in India has declined by around 3% according to FAOSTAT while the total agricultural area under irrigation has increased by about 9% thus further straining its water resources. In addition projections for future climate indicate that India is one of the regions where water resources are expected to be negatively impacted. Total agriculture water withdrawal in India increased by approximately 18 % from 2000-2010 while the total per capita water withdrawal increased by over 9% from 2000-2010. Total freshwater withdrawal as percentage of renewable water resources was around 40% in 2010. In addition, recent mandates of biofuel policies in India are also expected to impact its water resources. The combined impact of these various factors on future water availability in India could be one of the most severe globally due its unprecedented increase in population, food production and industrialization. In this study we assess the impact of land use and climate change on water resources over southern India in the face of a growing population and interest in development of national biofuel supplies. We use

  5. Water resources for Africa

    International Nuclear Information System (INIS)

    2003-01-01

    Water scarcity is a matter of urgent, national, regional and international concern. For those people, usually women, who are responsible for the daily task of obtaining sufficient water for household use, water shortages are a perpetual worry. It is a situation which affects many individual families and communities throughout the arid and semi-arid regions of Africa. The isotope studies conducted thus far have proved that the majority of regional groundwater systems in northern Africa and the Sahel zone are paleowaters, replenished thousands of years ago, without the possibility of significant replenishment under present climatic conditions. Therefore, removal from such underground reservoirs will eventually deplete the resource. Mapping these paleowaters, and estimating their reservoir sizes, is a priority. (IAEA)

  6. The Volta Basin Water Allocation System: assessing the impact of small-scale reservoir development on the water resources of the Volta basin, West Africa

    Directory of Open Access Journals (Sweden)

    R. Kasei

    2009-08-01

    Full Text Available In the Volta Basin, infrastructure watershed development with respect to the impact of climate conditions is hotly debated due to the lack of adequate tools to model the consequences of such development. There is an ongoing debate on the impact of further development of small and medium scale reservoirs on the water level of Lake Volta, which is essential for hydropower generation at the Akosombo power plant. The GLOWA Volta Project (GVP has developed a Volta Basin Water Allocation System (VB-WAS, a decision support tool that allows assessing the impact of infrastructure development in the basin on the availability of current and future water resources, given the current or future climate conditions. The simulated historic and future discharge time series of the joint climate-hydrological modeling approach (MM5/WaSiM-ETH serve as input data for a river basin management model (MIKE BASIN. MIKE BASIN uses a network approach, and allows fast simulations of water allocation and of the consequences of different development scenarios on the available water resources. The impact of the expansion of small and medium scale reservoirs on the stored volume of Lake Volta has been quantified and assessed in comparison with the impact of climate variability on the water resources of the basin.

  7. Spatio-temporal estimation of consumptive water use for assessment of irrigation system performance and management of water resources in irrigated Indus Basin, Pakistan

    Science.gov (United States)

    Usman, M.; Liedl, R.; Awan, U. K.

    2015-06-01

    Reallocation of water resources in any irrigation scheme is only possible by detailed assessment of current irrigation performance. The performance of the Lower Chenab Canal (LCC) irrigation system in Pakistan was evaluated at large spatial and temporal scales. Evaporative Fraction (EF) representing the key element to assess the three very important performance indicators of equity, adequacy and reliability, was determined by the Surface Energy Balance Algorithm (SEBAL) using Moderate Resolution Imaging Spectroradiometer (MODIS) images. Spatially based estimations were performed at irrigation subdivisions, lower and upper LCC and, whole LCC scales, while temporal scales covered months, seasons and years for the study period from 2005 to 2012. Differences in consumptive water use between upper and lower LCC were estimated for different crops and possible water saving options were explored. The assessment of equitable water distribution indicates smaller coefficients of variation and hence less inequity within each subdivision except Sagar (0.08) and Bhagat (0.10). Both adequacy and reliability of water resources are found lower during kharif as compared to rabi with variation from head to tail reaches. Reliability is quite low from July to September and in February/March. This is mainly attributed to seasonal rainfalls. Average consumptive water use estimations indicate almost doubled water use (546 mm) in kharif as compared to (274 mm) in rabi with significant variability for different cropping years. Crop specific consumptive water use reveals rice and sugarcane as major water consumers with average values of 593 mm and 580 mm, respectively, for upper and lower LCC, followed by cotton and kharif fodder. The water uses for cotton are 555 mm and 528 mm. For kharif fodder, corresponding values are 525 mm and 494 mm for both regions. Based on the differences in consumptive water use, different land use land cover change scenarios were evaluated with regard to savings

  8. Assessing and evaluating recreational uses of water resources: implications for an integrated management framework.

    Science.gov (United States)

    Christina Kakoyannis; George H. Stankey

    2002-01-01

    To resolve conflicts over water, we need an understanding of human uses and values for water. In this study, we explore how water-based recreation affects and is affected by the water regime and water management and how key social trends might influence future water-based recreation. We found that although water is a critical component of many recreational experiences...

  9. Vulnerability assessment of urban ecosystems driven by water resources, human health and atmospheric environment

    Science.gov (United States)

    Shen, Jing; Lu, Hongwei; Zhang, Yang; Song, Xinshuang; He, Li

    2016-05-01

    As ecosystem management is a hotspot and urgent topic with increasing population growth and resource depletion. This paper develops an urban ecosystem vulnerability assessment method representing a new vulnerability paradigm for decision makers and environmental managers, as it's an early warning system to identify and prioritize the undesirable environmental changes in terms of natural, human, economic and social elements. The whole idea is to decompose a complex problem into sub-problem, and analyze each sub-problem, and then aggregate all sub-problems to solve this problem. This method integrates spatial context of Geographic Information System (GIS) tool, multi-criteria decision analysis (MCDA) method, ordered weighted averaging (OWA) operators, and socio-economic elements. Decision makers can find out relevant urban ecosystem vulnerability assessment results with different vulnerable attitude. To test the potential of the vulnerability methodology, it has been applied to a case study area in Beijing, China, where it proved to be reliable and consistent with the Beijing City Master Plan. The results of urban ecosystem vulnerability assessment can support decision makers in evaluating the necessary of taking specific measures to preserve the quality of human health and environmental stressors for a city or multiple cities, with identifying the implications and consequences of their decisions.

  10. Assessment of the effects rejections of feed fish on water resources.: (Ouedoumerrbia, Morocco)

    Science.gov (United States)

    Ouaissa, Khadija; Kritihi, Assia; Oumessoud, Youness; Maychal, Abdelaziz; Hasnaoui, Mustapha

    2018-05-01

    In order to compare the effects of three types of extruded food (A, B and C) on the growth of rainbow trout, an experimental test was conducted on June 15, 2015 at a rainbow trout farming station near river of Oumerrrabi .Morocco. The comparison of three foods of different composition and energy is performed in isoenergetic conditions. Six basins were used for this comparative test. These basins are fed with fresh water according to the open circuit with a renewal of twice an hour. The initial feeding conditions were the same for the three food types and the initial density of 1, 58 kg/m3 (kg by volume) and an initial flow rate of 1, 04 m3/h. Fish are fed by ratios two to three times a day depending on the magnification stage. The sampling frequency is fortnightly, where we measure the zootechnical performance of fish and collect water samples for physicochemical analyses in order to assess the quality of the water leaving in the basins before their discharge into the river of Oum Er-Rbia. The comparative trial of three fish foods (A, B, and C) revealed that diet B is the better formulation reflected by the zootechnical performances and low phosphate release than diet A and C.

  11. Water resources planning under climate change: Assessing the robustness of real options for the Blue Nile

    Science.gov (United States)

    Jeuland, Marc; Whittington, Dale

    2014-03-01

    This article presents a methodology for planning new water resources infrastructure investments and operating strategies in a world of climate change uncertainty. It combines a real options (e.g., options to defer, expand, contract, abandon, switch use, or otherwise alter a capital investment) approach with principles drawn from robust decision-making (RDM). RDM comprises a class of methods that are used to identify investment strategies that perform relatively well, compared to the alternatives, across a wide range of plausible future scenarios. Our proposed framework relies on a simulation model that includes linkages between climate change and system hydrology, combined with sensitivity analyses that explore how economic outcomes of investments in new dams vary with forecasts of changing runoff and other uncertainties. To demonstrate the framework, we consider the case of new multipurpose dams along the Blue Nile in Ethiopia. We model flexibility in design and operating decisions—the selection, sizing, and sequencing of new dams, and reservoir operating rules. Results show that there is no single investment plan that performs best across a range of plausible future runoff conditions. The decision-analytic framework is then used to identify dam configurations that are both robust to poor outcomes and sufficiently flexible to capture high upside benefits if favorable future climate and hydrological conditions should arise. The approach could be extended to explore design and operating features of development and adaptation projects other than dams.

  12. Assessment of Sulphate and Iron Contamination and Seasonal Variations in the Water Resources of a Damodar Valley Coalfield, India: A Case Study.

    Science.gov (United States)

    Tiwari, Ashwani Kumar; De Maio, Marina

    2018-02-01

    The aim of the present study was to assess the sulphate [Formula: see text] and iron (Fe) contamination and seasonal variations in the water resources (groundwater, surface water, and mine water) of the West Bokaro coalfield region, India. One hundred and twenty-four water resources samples were collected from the coalfield during the post- and pre-monsoon seasons. The concentrations of [Formula: see text] were determined using ion chromatography and Fe concentrations were analyzed using inductively coupled plasma mass spectrometry. A statistical analysis was used to easily understand the seasonal variations of the elements in the water resources of the area. The concentrations of [Formula: see text] and Fe in the water resources were higher in the pre-monsoon season than in the post-monsoon season, irrespective of location. The water resources of the coalfield were contaminated with high concentrations of [Formula: see text] and Fe, and would require suitable treatment before drinking, domestic and industrial uses.

  13. Risk assessment and adaptive runoff utilization in water resource system considering the complex relationship among water supply, electricity generation and environment

    Science.gov (United States)

    Zhou, J.; Zeng, X.; Mo, L.; Chen, L.; Jiang, Z.; Feng, Z.; Yuan, L.; He, Z.

    2017-12-01

    Generally, the adaptive utilization and regulation of runoff in the source region of China's southwest rivers is classified as a typical multi-objective collaborative optimization problem. There are grim competitions and incidence relation in the subsystems of water supply, electricity generation and environment, which leads to a series of complex problems represented by hydrological process variation, blocked electricity output and water environment risk. Mathematically, the difficulties of multi-objective collaborative optimization focus on the description of reciprocal relationships and the establishment of evolving model of adaptive systems. Thus, based on the theory of complex systems science, this project tries to carry out the research from the following aspects: the changing trend of coupled water resource, the covariant factor and driving mechanism, the dynamic evolution law of mutual feedback dynamic process in the supply-generation-environment coupled system, the environmental response and influence mechanism of coupled mutual feedback water resource system, the relationship between leading risk factor and multiple risk based on evolutionary stability and dynamic balance, the transfer mechanism of multiple risk response with the variation of the leading risk factor, the multidimensional coupled feedback system of multiple risk assessment index system and optimized decision theory. Based on the above-mentioned research results, the dynamic method balancing the efficiency of multiple objectives in the coupled feedback system and optimized regulation model of water resources is proposed, and the adaptive scheduling mode considering the internal characteristics and external response of coupled mutual feedback system of water resource is established. In this way, the project can make a contribution to the optimal scheduling theory and methodology of water resource management under uncertainty in the source region of Southwest River.

  14. Life Cycle Water Consumption and Water Resource Assessment for Utility-Scale Geothermal Systems: An In-Depth Analysis of Historical and Forthcoming EGS Projects

    Energy Technology Data Exchange (ETDEWEB)

    Clark, Corrie E. [Argonne National Lab. (ANL), Argonne, IL (United States); Harto, Christopher B. [Argonne National Lab. (ANL), Argonne, IL (United States); Schroeder, Jenna N. [Argonne National Lab. (ANL), Argonne, IL (United States); Martino, Louis E. [Argonne National Lab. (ANL), Argonne, IL (United States); Horner, Robert M. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-08-01

    This report is the third in a series of reports sponsored by the U.S. Department of Energy Geothermal Technologies Program in which a range of water-related issues surrounding geothermal power production are evaluated. The first report made an initial attempt at quantifying the life cycle fresh water requirements of geothermal power-generating systems and explored operational and environmental concerns related to the geochemical composition of geothermal fluids. The initial analysis of life cycle fresh water consumption of geothermal power-generating systems identified that operational water requirements consumed the vast majority of water across the life cycle. However, it relied upon limited operational water consumption data and did not account for belowground operational losses for enhanced geothermal systems (EGSs). A second report presented an initial assessment of fresh water demand for future growth in utility-scale geothermal power generation. The current analysis builds upon this work to improve life cycle fresh water consumption estimates and incorporates regional water availability into the resource assessment to improve the identification of areas where future growth in geothermal electricity generation may encounter water challenges. This report is divided into nine chapters. Chapter 1 gives the background of the project and its purpose, which is to assess the water consumption of geothermal technologies and identify areas where water availability may present a challenge to utility-scale geothermal development. Water consumption refers to the water that is withdrawn from a resource such as a river, lake, or nongeothermal aquifer that is not returned to that resource. The geothermal electricity generation technologies evaluated in this study include conventional hydrothermal flash and binary systems, as well as EGSs that rely on engineering a productive reservoir where heat exists, but where water availability or permeability may be limited. Chapter 2

  15. Community Water Governance on Mount Kenya: An Assessment Based on Ostrom’s Design Principles of Natural Resource Management

    Directory of Open Access Journals (Sweden)

    Jampel Dell’Angelo

    2016-02-01

    Full Text Available Kenyan river basin governance underwent a pioneering reform in the Water Act of 2002, which established new community water-management institutions. This article focuses on community water projects in the Likii Water Resource Users Association in the Upper Ewaso Ng’iro River basin on Mount Kenya, and the extent to which their features are consistent with Ostrom’s design principles of natural resource management. Although the projects have developed solid institutional structures, pressures such as hydroclimatic change, population growth, and water inequality challenge their ability to manage their water resources. Institutional homogeneity across the different water projects and congruence with the design principles is not necessarily a positive factor. Strong differences in household water flows within and among the projects point to the disconnection between apparently successful institutions and their objectives, such as fair and equitable water allocation.

  16. A basin-scale approach for assessing water resources in a semiarid environment: San Diego region, California and Mexico

    Directory of Open Access Journals (Sweden)

    L. E. Flint

    2012-10-01

    the coastal plain aquifer to the Pacific Ocean, is calculated to be approximately 50 million cubic meters per year.

    The area-scale assessment of water resources highlights several hydrologic features of the San Diego region. Groundwater recharge is episodic; the Basin Characterization Model output shows that 90 percent of simulated recharge occurred during 3 percent of the 1982–2009 period. The groundwater aquifer may also be quite permeable. A reconnaissance-level groundwater flow model for the San Diego River basin was used to check the water budget estimates, and the basic interaction of the surface-water and groundwater system, and the flow values, were found to be reasonable. Horizontal hydraulic conductivity values of the volcanic and metavolcanic bedrock in San Diego region range from 1 to 10 m per day. Overall, results establish an initial hydrologic assessment formulated on the basis of sparse hydrologic data. The described flow variability, extrapolation, and unique characteristics represent a realistic view of current (2012 hydrologic understanding for the San Diego region.

  17. NATURAL RESOURCES ASSESSMENT

    International Nuclear Information System (INIS)

    D.F. Fenster

    2000-01-01

    The purpose of this report is to summarize the scientific work that was performed to evaluate and assess the occurrence and economic potential of natural resources within the geologic setting of the Yucca Mountain area. The extent of the regional areas of investigation for each commodity differs and those areas are described in more detail in the major subsections of this report. Natural resource assessments have focused on an area defined as the ''conceptual controlled area'' because of the requirements contained in the U.S. Nuclear Regulatory Commission Regulation, 10 CFR Part 60, to define long-term boundaries for potential radionuclide releases. New requirements (proposed 10 CFR Part 63 [Dyer 1999]) have obviated the need for defining such an area. However, for the purposes of this report, the area being discussed, in most cases, is the previously defined ''conceptual controlled area'', now renamed the ''natural resources site study area'' for this report (shown on Figure 1). Resource potential can be difficult to assess because it is dependent upon many factors, including economics (demand, supply, cost), the potential discovery of new uses for resources, or the potential discovery of synthetics to replace natural resource use. The evaluations summarized are based on present-day use and economic potential of the resources. The objective of this report is to summarize the existing reports and information for the Yucca Mountain area on: (1) Metallic mineral and mined energy resources (such as gold, silver, etc., including uranium); (2) Industrial rocks and minerals (such as sand, gravel, building stone, etc.); (3) Hydrocarbons (including oil, natural gas, tar sands, oil shales, and coal); and (4) Geothermal resources. Groundwater is present at the Yucca Mountain site at depths ranging from 500 to 750 m (about 1,600 to 2,500 ft) below the ground surface. Groundwater resources are not discussed in this report, but are planned to be included in the hydrology

  18. NATURAL RESOURCES ASSESSMENT

    Energy Technology Data Exchange (ETDEWEB)

    D.F. Fenster

    2000-12-11

    The purpose of this report is to summarize the scientific work that was performed to evaluate and assess the occurrence and economic potential of natural resources within the geologic setting of the Yucca Mountain area. The extent of the regional areas of investigation for each commodity differs and those areas are described in more detail in the major subsections of this report. Natural resource assessments have focused on an area defined as the ''conceptual controlled area'' because of the requirements contained in the U.S. Nuclear Regulatory Commission Regulation, 10 CFR Part 60, to define long-term boundaries for potential radionuclide releases. New requirements (proposed 10 CFR Part 63 [Dyer 1999]) have obviated the need for defining such an area. However, for the purposes of this report, the area being discussed, in most cases, is the previously defined ''conceptual controlled area'', now renamed the ''natural resources site study area'' for this report (shown on Figure 1). Resource potential can be difficult to assess because it is dependent upon many factors, including economics (demand, supply, cost), the potential discovery of new uses for resources, or the potential discovery of synthetics to replace natural resource use. The evaluations summarized are based on present-day use and economic potential of the resources. The objective of this report is to summarize the existing reports and information for the Yucca Mountain area on: (1) Metallic mineral and mined energy resources (such as gold, silver, etc., including uranium); (2) Industrial rocks and minerals (such as sand, gravel, building stone, etc.); (3) Hydrocarbons (including oil, natural gas, tar sands, oil shales, and coal); and (4) Geothermal resources. Groundwater is present at the Yucca Mountain site at depths ranging from 500 to 750 m (about 1,600 to 2,500 ft) below the ground surface. Groundwater resources are not discussed in this

  19. Assessment of Water Resource Sustainability in Energy Production for Hydraulic Fracturing in the Eagle Ford Shale Play, Texas

    Science.gov (United States)

    Obkirchner, G.; Knappett, P.; Burnett, D.; Bhatia, M.; Mohtar, R.

    2017-12-01

    The Eagle Ford shale is one of the largest producers of shale oil globally. It is located in a semi-arid region of South Central Texas where hydraulic fracturing for oil and gas production accounts for 16% of total water consumption in Region L Groundwater Management Area (GMA). Because water is largely supplied through groundwater sources, it is critical to understand, monitor, and predict future groundwater budgets to keep up with growing demands from the municipal and energy sectors to improve its management and sustainability. Within the Texas A&M University Water-Energy-Food (WEF) Nexus Initiative and research group, tools have been developed that quantify the interrelations between water, energy, and transportation within Region L and calculate the environmental needs/outcomes to reach optimum levels of oil and gas production. These tools will be combined with a groundwater budget model to fully integrate groundwater limitations and enhance the resiliency of energy production. With about half of oil and gas production wells located in high to extremely high water stress areas, monitoring and modeling must be drastically improved to predict the impacts of various spatial distributions of pumping rates on future aquifer conditions. These changing conditions will impact the cost of water production in an aquifer. Combining the WEF Nexus tools with hydrologic models creates a multi-disciplinary sustainability assessment model that calculates social and economic constraints from an area's limited water resources. This model will allow industry, governments and scientists to plan through evaluating the impacts of any number of growth, conservation and reuse scenarios across different water usage sectors on groundwater supplies.

  20. Preliminary assessment of the water resources of the Tulalip Indian Reservation, Washington

    Science.gov (United States)

    Drost, B.W.

    1977-01-01

    In 1974 about 30 percent of the nearly 600 acre-feet of water used on the Tulalip Indian Reservation, Washington, was obtained from a surface-water reservoir, while nearly 70 percent was obtained from ground-water sources. Domestic use accounted for about 93 percent of total water use. Nutrient (phosphorus) concentrations measured in most surface-water samples were less than the maximum limit recommended by the U.S. Environmental Protection Agency. The recommended maximum limit for total coliform bacteria was never exceeded. Ground water is withdrawn from aquifers in unconsolidated deposits. Shallow aquifers, which provide about 45 percent of the total ground-water supply, are tapped by about 250 wells and yield 5 to 20 gpm to 30- and 42-inch diameter dug wells. Deeper aquifers yield about 55 percent of the ground-water supply to about 125 wells that are mostly between 100 and 150 feet deep. Yields are generally at least 20 gpm to 6- and 8-inch wells, and several wells have yields exceeding 300 gpm. Water in the shallow aquifers generally had an excessive concentration of dissolved iron, often exceeding the recommended maximum limit of 0.30 mg/liter, and total coliform bacteria in water from six wells exceeded 1 colony per 100 milliliters of water. Some wells in the deeper aquifers yield water with dissolved iron and (or) manganese concentrations exceeding the recommended maximum limit of 0.30 and 0.05 mg/liter, respectively. Although many deep coastal wells bottom far below sea level, only two wells indicated local saltwater intrusion. An aquifer underlying the central plateau and an artesian aquifer in the northeastern part of the reservation appear to offer the best potential for development of additional ground-water supplies. (Woodard-USGS)

  1. Information technology resources assessment

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, D.F. [ed.

    1992-01-01

    This year`s Information Technology Resources Assessment (ITRA) is something of a departure from traditional practice. Past assessments have concentrated on developments in fundamental technology, particularly with respect to hardware. They form an impressive chronicle of decreasing cycle times, increasing densities, decreasing costs (or, equivalently, increasing capacity and capability per dollar spent), and new system architectures, with a leavening of operating systems and languages. Past assessments have aimed -- and succeeded -- at putting information technology squarely in the spotlight; by contrast, in the first part of this assessment, we would like to move it to the background, and encourage the reader to reflect less on the continuing technological miracles of miniaturization in space and time and more on the second- and third-order implications of some possible workplace applications of these miracles. This Information Technology Resources Assessment is intended to provide a sense of technological direction for planners in projecting the hardware, software, and human resources necessary to support the diverse IT requirements of the various components of the DOE community. It is also intended to provide a sense of our new understanding of the place of IT in our organizations.

  2. Information technology resources assessment

    Energy Technology Data Exchange (ETDEWEB)

    Stevens, D.F. (ed.)

    1992-01-01

    This year's Information Technology Resources Assessment (ITRA) is something of a departure from traditional practice. Past assessments have concentrated on developments in fundamental technology, particularly with respect to hardware. They form an impressive chronicle of decreasing cycle times, increasing densities, decreasing costs (or, equivalently, increasing capacity and capability per dollar spent), and new system architectures, with a leavening of operating systems and languages. Past assessments have aimed -- and succeeded -- at putting information technology squarely in the spotlight; by contrast, in the first part of this assessment, we would like to move it to the background, and encourage the reader to reflect less on the continuing technological miracles of miniaturization in space and time and more on the second- and third-order implications of some possible workplace applications of these miracles. This Information Technology Resources Assessment is intended to provide a sense of technological direction for planners in projecting the hardware, software, and human resources necessary to support the diverse IT requirements of the various components of the DOE community. It is also intended to provide a sense of our new understanding of the place of IT in our organizations.

  3. Uranium resource assessments

    International Nuclear Information System (INIS)

    1981-01-01

    The objective of this investigation is to examine what is generally known about uranium resources, what is subject to conjecture, how well do the explorers themselves understand the occurrence of uranium, and who are the various participants in the exploration process. From this we hope to reach a better understanding of the quality of uranium resource estimates as well as the nature of the exploration process. The underlying questions will remain unanswered. But given an inability to estimate precisely our uranium resources, how much do we really need to know. To answer this latter question, the various Department of Energy needs for uranium resource estimates are examined. This allows consideration of whether or not given the absence of more complete long-term supply data and the associated problems of uranium deliverability for the electric utility industry, we are now threatened with nuclear power plants eventually standing idle due to an unanticipated lack of fuel for their reactors. Obviously this is of some consequence to the government and energy consuming public. The report is organized into four parts. Section I evaluates the uranium resource data base and the various methodologies of resource assessment. Part II describes the manner in which a private company goes about exploring for uranium and the nature of its internal need for resource information. Part III examines the structure of the industry for the purpose of determining the character of the industry with respect to resource development. Part IV arrives at conclusions about the emerging pattern of industrial behavior with respect to uranium supply and the implications this has for coping with national energy issues

  4. Fourth Tennessee water resources symposium

    International Nuclear Information System (INIS)

    Sale, M.J.; Presley, P.M.

    1991-01-01

    The annual Tennessee Water Resources Symposium was initiated in 1988 as a means to bring together people with common interests in the state's important water-related resources at a technical, professional level. Initially the symposium was sponsored by the American Institute of Hydrology and called the Hydrology Symposium, but the Tennessee Section of the American Water Resources Association (AWRA) has taken on the primary coordination role for the symposium over the last two years and the symposium name was changed in 1990 to water resources to emphasize a more inter-disciplinary theme. This year's symposium carries on the successful tradition of the last three years. Our goal is to promote communication and cooperation among Tennessee's water resources professionals: scientists, engineers, and researchers from federal, state, academic, and private institutions and organizations who have interests and responsibilities for the state's water resources. For these conference proceedings, individual papers are processed separately for the Energy Data Base

  5. Water resources in the Everglades

    Science.gov (United States)

    Schneider, William J.

    1966-01-01

    Aerial photography is playing an important role in the evaluation of the water resources of the almost-inaccessible 1,400 square miles of Everglades in southern Florida. Color, infrared, and panchromatic photographs show salient features that permit evaluation of the overall water resources picture. The fresh water-salt water interface, drainage patterns, ecologic changes resulting from flood and drought, quantities of flow, and other hydrologic features are easily observed or measured from the photographs. Such data permit areal extension of very limited point observations of water resources data, and will assist in providing the necessary guidelines for decisions in water management in the Everglades.

  6. The Impact of Traditional and Alternative Energy Production on Water Resources: Assessment and Adaptation Studies

    Science.gov (United States)

    Water, fuel and energy issues are intricately related and cannot be addressed in isolation. With increasing population, increasing energy demand, continued migration towards and population growth within water stressed regions of the U.S., and with the continuing impacts of climat...

  7. Natural resource damage assessment

    International Nuclear Information System (INIS)

    Seddelmeyer, J.

    1991-01-01

    The assessment and collection of natural resource damages from petroleum and chemical companies unfortunate enough to have injured publicly owned natural resources is perhaps the most rapidly expanding area of environmental liability. The idea of recovering for injury to publicly owned natural resources is an extension of traditional common law tort concepts under which a person who negligently injures another or his property is called upon to compensate the injured party. Normally, once liability has been established, it is a fairly straightforward matter to calculate the various elements of loss, such as the cost to repair or replace damaged property, or medical expenses, and lost income. More difficult questions, such as the amount to be awarded for pain and suffering or emotional distress, are left to the jury, although courts limit the circumstances in which the jury is permitted to award such damages

  8. Information Technology Resources Assessment

    Energy Technology Data Exchange (ETDEWEB)

    1993-04-01

    The Information Technology Resources Assessment (ITRA) is being published as a companion document to the Department of Energy (DOE) FY 1994--FY 1998 Information Resources Management Long-Range Plan. This document represents a collaborative effort between the Office of Information Resources Management and the Office of Energy Research that was undertaken to achieve, in part, the Technology Strategic Objective of IRM Vision 21. An integral part of this objective, technology forecasting provides an understanding of the information technology horizon and presents a perspective and focus on technologies of particular interest to DOE program activities. Specifically, this document provides site planners with an overview of the status and use of new information technology for their planning consideration.

  9. Optimal Allocation of Water Resources Based on Water Supply Security

    Directory of Open Access Journals (Sweden)

    Jianhua Wang

    2016-06-01

    Full Text Available Under the combined impacts of climate change and human activities, a series of water issues, such as water shortages, have arisen all over the world. According to current studies in Science and Nature, water security has become a frontier critical topic. Water supply security (WSS, which is the state of water resources and their capacity and their capacity to meet the demand of water users by water supply systems, is an important part of water security. Currently, WSS is affected by the amount of water resources, water supply projects, water quality and water management. Water shortages have also led to water supply insecurity. WSS is now evaluated based on the balance of the supply and demand under a single water resources condition without considering the dynamics of the varying conditions of water resources each year. This paper developed an optimal allocation model for water resources that can realize the optimal allocation of regional water resources and comprehensively evaluate WSS. The objective of this model is to minimize the duration of water shortages in the long term, as characterized by the Water Supply Security Index (WSSI, which is the assessment value of WSS, a larger WSSI value indicates better results. In addition, the simulation results of the model can determine the change process and dynamic evolution of the WSS. Quanzhou, a city in China with serious water shortage problems, was selected as a case study. The allocation results of the current year and target year of planning demonstrated that the level of regional comprehensive WSS was significantly influenced by the capacity of water supply projects and the conditions of the natural water resources. The varying conditions of the water resources allocation results in the same year demonstrated that the allocation results and WSSI were significantly affected by reductions in precipitation, decreases in the water yield coefficient, and changes in the underlying surface.

  10. Assessing water resources adaptive capacity to climate change impacts in the Pacific Northwest Region of North America

    Directory of Open Access Journals (Sweden)

    A. F. Hamlet

    2011-05-01

    Full Text Available Climate change impacts in Pacific Northwest Region of North America (PNW are projected to include increasing temperatures and changes in the seasonality of precipitation (increasing precipitation in winter, decreasing precipitation in summer. Changes in precipitation are also spatially varying, with the northwestern parts of the region generally experiencing greater increases in cool season precipitation than the southeastern parts. These changes in climate are projected to cause loss of snowpack and associated streamflow timing shifts which will increase cool season (October–March flows and decrease warm season (April–September flows and water availability. Hydrologic extremes such as the 100 yr flood and extreme low flows are also expected to change, although these impacts are not spatially homogeneous and vary with mid-winter temperatures and other factors. These changes have important implications for natural ecosystems affected by water, and for human systems.

    The PNW is endowed with extensive water resources infrastructure and well-established and well-funded management agencies responsible for ensuring that water resources objectives (such as water supply, water quality, flood control, hydropower production, environmental services, etc. are met. Likewise, access to observed hydrological, meteorological, and climatic data and forecasts is in general exceptionally good in the United States and Canada, and is often supported by federally funded programs that ensure that these resources are freely available to water resources practitioners, policy makers, and the general public.

    Access to these extensive resources support the argument that at a technical level the PNW has high capacity to deal with the potential impacts of natural climate variability on water resources. To the extent that climate change will manifest itself as moderate changes in variability or extremes, we argue that existing water resources

  11. Assessing water resources adaptive capacity to climate change impacts in the Pacific Northwest Region of North America

    Science.gov (United States)

    Hamlet, A. F.

    2011-05-01

    Climate change impacts in Pacific Northwest Region of North America (PNW) are projected to include increasing temperatures and changes in the seasonality of precipitation (increasing precipitation in winter, decreasing precipitation in summer). Changes in precipitation are also spatially varying, with the northwestern parts of the region generally experiencing greater increases in cool season precipitation than the southeastern parts. These changes in climate are projected to cause loss of snowpack and associated streamflow timing shifts which will increase cool season (October-March) flows and decrease warm season (April-September) flows and water availability. Hydrologic extremes such as the 100 yr flood and extreme low flows are also expected to change, although these impacts are not spatially homogeneous and vary with mid-winter temperatures and other factors. These changes have important implications for natural ecosystems affected by water, and for human systems. The PNW is endowed with extensive water resources infrastructure and well-established and well-funded management agencies responsible for ensuring that water resources objectives (such as water supply, water quality, flood control, hydropower production, environmental services, etc.) are met. Likewise, access to observed hydrological, meteorological, and climatic data and forecasts is in general exceptionally good in the United States and Canada, and is often supported by federally funded programs that ensure that these resources are freely available to water resources practitioners, policy makers, and the general public. Access to these extensive resources support the argument that at a technical level the PNW has high capacity to deal with the potential impacts of natural climate variability on water resources. To the extent that climate change will manifest itself as moderate changes in variability or extremes, we argue that existing water resources infrastructure and institutional arrangements

  12. Focus on CSIR research in water resources: CSIR’S environmental human health risk assessment

    CSIR Research Space (South Africa)

    Genthe, Bettina

    2007-08-01

    Full Text Available Environmental health risk assessment deals with risks associated with manmade and natural environmental hazards. Environmental health risk assessment provides a means of estimating the probability of adverse health effects associated with hazards...

  13. Engineering assessment and feasibility study of Chattanooga Shale as a future source of uranium. [Preliminary mining; data on soils, meteorology, water resources, and biological resources

    Energy Technology Data Exchange (ETDEWEB)

    1978-06-01

    This volume contains five appendixes: Chattanooga Shale preliminary mining study, soils data, meteorologic data, water resources data, and biological resource data. The area around DeKalb County in Tennessee is the most likely site for commercial development for recovery of uranium. (DLC)

  14. Information technology resources assessment

    Energy Technology Data Exchange (ETDEWEB)

    Loken, S.C. [ed.

    1993-01-01

    The emphasis in Information Technology (IT) development has shifted from technology management to information management, and the tools of information management are increasingly at the disposal of end-users, people who deal with information. Moreover, the interactive capabilities of technologies such as hypertext, scientific visualization, virtual reality, video conferencing, and even database management systems have placed in the hands of users a significant amount of discretion over how these resources will be used. The emergence of high-performance networks, as well as network operating systems, improved interoperability, and platform independence of applications will eliminate technical barriers to the use of data, increase the power and range of resources that can be used cooperatively, and open up a wealth of possibilities for new applications. The very scope of these prospects for the immediate future is a problem for the IT planner or administrator. Technology procurement and implementation, integration of new technologies into the existing infrastructure, cost recovery and usage of networks and networked resources, training issues, and security concerns such as data protection and access to experiments are just some of the issues that need to be considered in the emerging IT environment. As managers we must use technology to improve competitiveness. When procuring new systems, we must take advantage of scalable resources. New resources such as distributed file systems can improve access to and efficiency of existing operating systems. In addition, we must assess opportunities to improve information worker productivity and information management through tedmologies such as distributed computational visualization and teleseminar applications.

  15. Water Energy Resources of the United States with Emphasis on Low Head/Low Power Resources: Appendix A - Assessment Results by Hydrologic Region

    Energy Technology Data Exchange (ETDEWEB)

    Hall, Douglas [Idaho National Lab. (INL), Idaho Falls, ID (United States). Idaho National Engineering and Environmental Lab. (INEEL)

    2004-04-01

    Analytical assessments of the water energy resources in the 20 hydrologic regions of the United States were performed using state-of-the-art digital elevation models and geographic information system tools. The principal focus of the study was on low head (less than 30 ft)/low power (less than 1 MW) resources in each region. The assessments were made by estimating the power potential of all the stream segments in a region, which averaged 2 miles in length. These calculations were performed using hydrography and hydraulic heads that were obtained from the U.S. Geological Survey’s Elevation Derivatives for National Applications dataset and stream flow predictions from a regression equation or equations developed specifically for the region. Stream segments excluded from development and developed hydropower were accounted for to produce an estimate of total available power potential. The total available power potential was subdivided into high power (1 MW or more), high head (30 ft or more)/low power, and low head/low power total potentials. The low head/low power potential was further divided to obtain the fractions of this potential corresponding to the operating envelopes of three classes of hydropower technologies: conventional turbines, unconventional systems, and microhydro (less than 100 kW). Summing information for all the regions provided total power potential in various power classes for the entire United States. Distribution maps show the location and concentrations of the various classes of low power potential. No aspect of the feasibility of developing these potential resources was evaluated. Results for each of the 20 hydrologic regions are presented in Appendix A

  16. Conflicts Over Water as a Resource

    National Research Council Canada - National Science Library

    Cooksey, James

    2008-01-01

    .... A specific element that operational planners must consider when assessing political and military objectives of belligerents, and how those objectives may shape military operations, is water as a natural resource...

  17. Assessing the impact of global changes on the surface water resources of Southwestern Nigeria

    CSIR Research Space (South Africa)

    Ayeni, AO

    2015-12-01

    Full Text Available final publication of the Version of Record (VoR). During production and pre-press, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal relate to this version also. PLEASE SCROLL DOWN FOR ARTICLE... water stress as the fraction of the total annual runoff available for human use . This would imply that in the future, the productive time of women and children living around Asa basin will be jeopardized in the search for domestic water while farming...

  18. Impact of invading alien plants on surface water resources in South Africa: a preliminary assessment

    CSIR Research Space (South Africa)

    Le Maitre, David C

    2000-07-01

    Full Text Available areas (the equivalent area with a canopy cover of 100%). Each of the invading species was classified as a tall shrub, medium tree or tall tree - based on growth form and likely water use - and its biomass was estimated from a function based on vegetation...

  19. Towards the review of the European Union Water Framework Directive: Recommendations for more efficient assessment and management of chemical contamination in European surface water resources.

    Science.gov (United States)

    Brack, Werner; Dulio, Valeria; Ågerstrand, Marlene; Allan, Ian; Altenburger, Rolf; Brinkmann, Markus; Bunke, Dirk; Burgess, Robert M; Cousins, Ian; Escher, Beate I; Hernández, Félix J; Hewitt, L Mark; Hilscherová, Klára; Hollender, Juliane; Hollert, Henner; Kase, Robert; Klauer, Bernd; Lindim, Claudia; Herráez, David López; Miège, Cécil; Munthe, John; O'Toole, Simon; Posthuma, Leo; Rüdel, Heinz; Schäfer, Ralf B; Sengl, Manfred; Smedes, Foppe; van de Meent, Dik; van den Brink, Paul J; van Gils, Jos; van Wezel, Annemarie P; Vethaak, A Dick; Vermeirssen, Etienne; von der Ohe, Peter C; Vrana, Branislav

    2017-01-15

    Water is a vital resource for natural ecosystems and human life, and assuring a high quality of water and protecting it from chemical contamination is a major societal goal in the European Union. The Water Framework Directive (WFD) and its daughter directives are the major body of legislation for the protection and sustainable use of European freshwater resources. The practical implementation of the WFD with regard to chemical pollution has faced some challenges. In support of the upcoming WFD review in 2019 the research project SOLUTIONS and the European monitoring network NORMAN has analyzed these challenges, evaluated the state-of-the-art of the science and suggested possible solutions. We give 10 recommendations to improve monitoring and to strengthen comprehensive prioritization, to foster consistent assessment and to support solution-oriented management of surface waters. The integration of effect-based tools, the application of passive sampling for bioaccumulative chemicals and an integrated strategy for prioritization of contaminants, accounting for knowledge gaps, are seen as important approaches to advance monitoring. Including all relevant chemical contaminants in more holistic "chemical status" assessment, using effect-based trigger values to address priority mixtures of chemicals, to better consider historical burdens accumulated in sediments and to use models to fill data gaps are recommended for a consistent assessment of contamination. Solution-oriented management should apply a tiered approach in investigative monitoring to identify toxicity drivers, strengthen consistent legislative frameworks and apply solutions-oriented approaches that explore risk reduction scenarios before and along with risk assessment. Copyright © 2016. Published by Elsevier B.V.

  20. Water resources management in the urban agglomeration of the Lake Biwa region, Japan: An ecosystem services-based sustainability assessment.

    Science.gov (United States)

    Chen, Xiaochen; Chen, Yuqing; Shimizu, Toshiyuki; Niu, Jia; Nakagami, Ken'ichi; Qian, Xuepeng; Jia, Baoju; Nakajima, Jun; Han, Ji; Li, Jianhua

    2017-05-15

    An innovative ecosystem services-based sustainability assessment was conducted in the important urban agglomeration of the Lake Biwa region, Japan, covering the time period from 1950 to 2014. A 22-indicator system was established that was based on the major ecosystem services of Lake Biwa and its water courses, i.e., provisioning services regarding aquatic products and water; regulating services regarding floods and water quality; cultural services regarding recreation and tourism, scientific research, and environmental education; and supporting services regarding biodiversity. First, changes in the eight ecosystem services were discussed together with the considerable experience and difficult lessons that can be drawn from the development trajectory. Next, with the indicators rearranged according to sustainability principles, the regional sustainability over the past six-plus decades was assessed. In general, this urban agglomeration has been progressing in terms of its sustainability, although economic and social development was achieved at the cost of environmental degradation in the past, and the current economic downturn is hurting the balanced development and integrated benefits. The results lead directly to recommendations for regional development, especially in terms of economic rejuvenation, from the perspective of improving management of Lake Biwa's water resources. Moreover, the relevant knowledge is educational and inspirational for other places in the world that are facing similar development issues. For example, the effective and even pioneering countermeasures that have been taken against environmental degradation, as well as the participation and collaboration of multiple stakeholders, could be useful as a model. Moreover, the study invites increased understanding of ecosystem vulnerability to anthropogenic devastation and emphasizes the priority of precautionary measures over countermeasures in the context of holistic urban planning and sustainable

  1. Effect assessment of Future Climate Change on Water Resource and Snow Quality in cold snowy regions in Japan

    Science.gov (United States)

    Taniguchi, Y.; Nakatsugawa, M.; Kudo, K.

    2017-12-01

    It is predicted that the effects of global warming on everyday life will be clearly seen in cold, snowy regions such as Hokkaido. In relation to climate change, there is the concern that the warmer climate will affect not only water resources, but also local economies, in snowy areas, when air temperature increases and snowfall decreases become more marked in the future. Communities whose economies are greatly dependent on snow as a tourism resource, such as for winter sports and snow events, will lose large numbers of visitors because of the shortened winter season. This study was done as a basic study to provide basic ideas for planning adaptation strategies against climate change based on the local characteristics of a cold, snowy region. By taking dam catchment basins in Hokkaido as the subject areas and by using the climate change prediction data that correspond to IPCCAR5, the local-level influence of future climate change on snowfall and snow quality in relation to water resources and winter sports was quantitatively assessed. The water budget was examined for a dam catchment basin in Hokkaido under the present climate (September 1984 to August 2004) and under the future climate (September 2080 to August 2100) by using rainfall, snowfall and evapotranspiration estimated by the LoHAS heat and water balance analysis model.The examination found that, under the future climate, the net annual precipitation will decrease by up to 200 mm because of decreases in precipitation and in runoff height that will result from increased evapotranspiration. The predicted decrease in annual hydro potential of snowfall was considered to greatly affect the dam reservoir operation during the snowmelt season. The snow quality analysis by SNOWPACK revealed that the future snow would become granular earlier than it does at present. Most skiers' snow preferences, from best to worst, are light dry snow (i.e., fresh snow), lightly compacted snow, compacted snow and, finally, granular

  2. Business water footprint accounting. A tool to assess how production of goods and services impacts on fresh water resources worldwide

    NARCIS (Netherlands)

    Gerbens-Leenes, Winnie; Hoekstra, Arjen Ysbert

    2008-01-01

    This report aims to identify the current state of business water accounting and to design an accounting method for the business water footprint (BWF). It answers the following questions: (i) What are the main developments in sustainable business performance so far? (ii) What is the current state of

  3. Water Conservation Resource List.

    Science.gov (United States)

    NJEA Review, 1981

    1981-01-01

    Alarmed by the growing water shortage, the New Jersey State Office of Dissemination has prepared this annotated list of free or inexpensive instructional materials for teaching about water conservation, K-l2. A tipsheet for home water conservation is appended. (Editor/SJL)

  4. Assessing future risks to agricultural productivity, water resources and food security: How can remote sensing help?

    Science.gov (United States)

    Thenkabail, Prasad S.; Knox, Jerry W.; Ozdogan, Mutlu; Gumma, Murali Krishna; Congalton, Russell G.; Wu, Zhuoting; Milesi, Cristina; Finkral, Alex; Marshall, Mike; Mariotto, Isabella; You, Songcai; Giri, Chandra; Nagler, Pamela

    2012-01-01

    Although global food production has been rising, the world sti ll faces a major food security challenge. Over one billion people are currently undernourished (Wheeler and Kay, 2010). By the 2050s, the human population is projected to grow to 9.1 billion. Over three-quarters of these people will be living in developing countries, in regions that already lack the capacity to feed their populations . Under current agricultural practices, the increased demand for food would require in excess of one billion hectares of new cropland, nearly equivalent to the land area of the United States, and would lead to significant increases in greenhouse gases (Tillman et al., 2011). Since climate is the primary determinant of agricultural productivity, changes to it will influence not only crop yields, but also hydrologic balances and supplies of inputs to managed farming systems, and may lead to a shift in the geographic location of some crops . Therefore, not only must crop productivity (yield per unit of land; kg/m2) increase, but water productivity (yield per unit of water or "crop per drop"; kg/m3) must increase as well in order to feed a burgeoning population against a backdrop

  5. Sustainable resource use in the global water-food-energy nexus : Advances in process-based integrated assessment modelling

    NARCIS (Netherlands)

    Bijl, D.L.

    2018-01-01

    Most of humanity's basic needs are related to the commodities water, food and energy. Driven by economic development and population growth, the use of water, food and energy has continued to increase rapidly during the past 40 years. However, the increasing extraction of natural resources has

  6. - Oklahoma Water Resources Center

    Science.gov (United States)

    Development Ag Business Community & Rural Development Crops Family & Consumer Sciences Gardening Family & Consumer Sciences Food & Ag Products Center Horticulture & Landscape Architecture & Landscape Architecture Natural Resource Ecology & Management Plant & Soil Sciences

  7. Water Resource Assessment, Gaps, and Constraints of Vegetable Production in Robit and Dangishta Watersheds, Upper Blue Nile Basin, Ethiopia

    Science.gov (United States)

    Worqlul, A. W.; Dile, Y.; Jeong, J.; Schmitter, P.; Bizimana, J. C.; Gerik, T.; Srinivasan, R.; Richardson, J. W.; Clarke, N.

    2017-12-01

    Rainfed agriculture supports the majority of the poor in sub-Saharan Africa. However, rainfall variability, land degradation and low soil fertility lessen their effectiveness for feeding the growing population. This study aims to estimate the water resources potential to sustain small-scale irrigation (SSI) in Ethiopia into the dry season to expand the food supply by growing vegetable and to understand the gaps and constraints of irrigated vegetable production. The case studies were located in Robit and Dangishta watersheds of the Ethiopian highlands near Lake Tana, where detailed field-level data were collected. The study focused on data from 18 households who have been cultivating tomato and onion during the dry season using irrigation in each watershed. The two components of the Integrated Decision Support System (IDSS) - the Soil and Water Assessment Tool (SWAT) and Agricultural Policy Environmental eXtender (APEX) - were used to assess impacts of SSI at multiple scales. Results suggest that there is a substantial amount of surface runoff and shallow groundwater recharge at watershed scale. The field-scale analysis within the Robit watershed indicated that optimal tomato yield could be obtained with 450 mm of irrigation and 200 to 250 kg/ha of urea with 50 kg/ha of diammonium phosphate (DAP). In Dangishta, optimum onion yield can be obtained by applying 550 mm irrigation and 120 to 180 kg/ha of urea with 50 kg/ha of DAP. Studying field scale water balance, the average shallow groundwater recharge (after accounting other groundwater users such as household and livestock uses) was not sufficient to meet tomato and onion water demand. The field-scale analysis also indicated that soil evaporation attributed a significant proportion of evapotranspiration (i.e. 60% of the evapotranspiration for onion and 40% for tomato). Use of mulching or other soil and water conservation interventions could increase water for cropping by reducing soil evaporation thereby enhancing

  8. California's Central Valley Groundwater Study: A Powerful New Tool to Assess Water Resources in California's Central Valley

    Science.gov (United States)

    Faunt, Claudia C.; Hanson, Randall T.; Belitz, Kenneth; Rogers, Laurel

    2009-01-01

    Competition for water resources is growing throughout California, particularly in the Central Valley. Since 1980, the Central Valley's population has nearly doubled to 3.8 million people. It is expected to increase to 6 million by 2020. Statewide population growth, anticipated reductions in Colorado River water deliveries, drought, and the ecological crisis in the Sacramento-San Joaquin Delta have created an intense demand for water. Tools and information can be used to help manage the Central Valley aquifer system, an important State and national resource.

  9. Energy and water resources

    International Nuclear Information System (INIS)

    1981-12-01

    This book presents data and other information for those who desire an understanding of the relationship between water and energy development. The book is not a tract for a grand plan. It does not present solutions. Many of the issues, especially regarding conflict over water allocations and use, are controlled and reconciled at the state level. This report draws together some of the physical and institutional data useful for identifying and understanding water issues which rise in regard to the various aspects of energy development. Three basic water-energy areas are considered in this report: water quality, water supply, and their institutional framework. Water consumption by energy was three percent of the nation's total consumption in 1975, not a large proportion. It is projected to increase to six percent by 2000. Water consumption rates by the energy technologies addressed in this document are tabulated. Water pollutant loadings expected from these technologies are summarized. Finally, a summary of water-related legislation which have particular ramifications in regard to the production of energy is presented

  10. Assessment of water quality

    International Nuclear Information System (INIS)

    Qureshi, I.H.

    2002-01-01

    Water is the most essential component of all living things and it supports the life process. Without water, it would not have been possible to sustain life on this planet. The total quantity of water on earth is estimated to be 1.4 trillion cubic meter. Of this, less than 1 % water, present in rivers and ground resources is available to meet our requirement. These resources are being contaminated with toxic substances due to ever increasing environmental pollution. To reduce this contamination, many countries have established standards for the discharge of municipal and industrial waste into water streams. We use water for various purposes and for each purpose we require water of appropriate quality. The quality of water is assessed by evaluating the physical chemical, biological and radiological characteristics of water. Water for drinking and food preparation must be free from turbidity, colour, odour and objectionable tastes, as well as from disease causing organisms and inorganic and organic substances, which may produce adverse physiological effects, Such water is referred to as potable water and is produced by treatment of raw water, involving various unit operations. The effectiveness of the treatment processes is checked by assessing the various parameters of water quality, which involves sampling and analysis of water and comparison with the National Quality Standards or WHO standards. Water which conforms to these standards is considered safe and palatable for human consumption. Periodic assessment of water is necessary, to ensure the quality of water supplied to the public. This requires proper sampling at specified locations and analysis of water, employing reliable analytical techniques. (author)

  11. A Probabilistic Assessment of Threats to Surface Water Resources in Watersheds of the Lower Colorado River Basin

    Science.gov (United States)

    Murphy, K. W.; Ellis, A. W.

    2012-12-01

    The Salt and Verde River watersheds in the Lower Colorado River Basin are a very important surface water resource in the Southwest United States. Their runoff is captured by a downstream reservoir system serving approximately 40% of the water demand and providing hydroelectric power to the Phoenix, Arizona area. Concerns have been expressed over the risks associated with their highly variable climate dependencies under the realization that the short, historical stream flow record was but one of many possible temporal and volumetric outcome sequences. A characterization of the possible range of flow deficits arising from natural variability beyond those evident in the instrumental record can facilitate sustainability planning as well as adaptation to future climate change scenarios. Methods were developed for this study to generate very long seasonal time series of net reservoir inflows by Monte Carlo simulations of the Salt and Verde watersheds which can be analyzed for detailed probabilistic insights. Other efforts to generate stochastic flow representations for impact assessments have been limited by normality distribution assumptions, inability to represent the covariance of flow contributions from multiple watersheds, complexities of different seasonal origins of precipitation and runoff dependencies, and constraints from spectral properties of the observational record. These difficulties were overcome in this study through stationarity assessments and development of joint probability distributions with highly skewed discrete density functions characteristic of the different watershed-season behaviors derived from a 123 year record. As well, methods of introducing season-to-season correlations owing to antecedent precipitation runoff efficiency enhancements have been incorporated. Representative 10,000 year time series have been stochastically generated which reflect a full range of temporal variability in flow volume distributions. Extreme value statistical

  12. Petroleum resources assessment 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    This report consists of two articles. (1) Petroleum resources assessment of the Okinawa Trough: The hydrocarbon potential has been evaluated for the Tertiary strata in the northwestern margin of the Okinawa Trough on the basis of the pale-ontological, petrological, geochemical data from two wells (Nikkan 8-9 and JDZ 7-3), and geophysical data. (2) Petroliferous basin analysis in Jinju area (2): Petroleum geological studies such as stratigraphy, sedimentology, petrology and organic geochemistry were carried out in the Gyeongsang Supergroup, Junju area. Based on lithofacies and rock color, the sequence can be divided into seven formations which can be organized into two groups (Sindong Group: Nagdong, Hasandong and Jinju formations in ascending order; Hayang Group: Chilgog, Silla Conglomerate, Haman and Jindong formations). (author). 57 refs.

  13. Water : a commodity or resource?

    International Nuclear Information System (INIS)

    Pomeroy, G.

    2003-01-01

    Over the past several years, natural gas demand has increased significantly, as it is seen as an environmentally friendly, convenient and cost effective fuel. As a result, Alberta should experience the development of a sustainable resource in the form of natural gas from coal, provided adequate management of associated water is in place. The environmental impact and volume of water produced with natural gas from coal can be significant. Water is scarce and demand is growing. Gas producers are faced with the challenge of high water production and disposal costs, and often choose the deep disposal option as the most economical solution. However, environmentalists and agriculture groups who view water as a valuable resource, warrant the costs associated with the treatment of produced water. The author proposed a conceptual solution to this dilemma concerning produced water. It was suggested that producers of water should be connected with consumers, while allowing free market supply and demand dynamics to price out the inefficient use of the resource. The author also discussed the related regulatory, environmental, technological, economic, and commercial issues. It was concluded that water is both a resource and a commodity. Alberta should implement measures to promote water conservation, pollute less, and manage supply and demand. figs

  14. Water resources planning and modelling tools for the assessment of land use change in the Luvuvhu Catchment, South Africa

    Science.gov (United States)

    Jewitt, G. P. W.; Garratt, J. A.; Calder, I. R.; Fuller, L.

    In arid and semi-arid areas, total evaporation is a major component of the hydrological cycle and seasonal water shortages and drought are common. In these areas, the role of land use and land use change is particularly important and it is imperative that land and water resources are well managed. To aid efficient water management, it is useful to demonstrate how changing land use affects water resources. A convenient framework to consider this is through the use of the ‘blue-water’ and ‘green-water’ classification of Falkenmark, where green-water represents water use by land and blue-water represents runoff. In this study the hydrological response of nine land-use scenarios were simulated for the upper reaches of the Mutale River, an important tributary of the Luvuvhu River in S. Africa. The ACRU and HYLUC land use sensitive hydrological models, were used to investigate the change in blue and green water under the various land-use scenarios. The GIS software ArcGIS(8.3) was used to analyse available spatial data to generate inputs required by the hydrological models. The scenarios investigated included the current land use in the catchment, an increase or decrease in forest cover, and an increase or decrease in the area irrigated. Both models predict that increasing either forestry or irrigation significantly reduces the proportion of blue water in the catchment. The predictions from the models were combined with maps of catchment land use, to illustrate the changes in distribution of green and blue water in a user-friendly manner. The use of GIS in this way is designed to enable policy-makers and managers to quickly assimilate the water resource implication of the land use change.

  15. Assessment of water resource potential for common use of cow and goat by GIS (Case study: Boroujerd Rangeland, Sarab Sefid, Iran)

    International Nuclear Information System (INIS)

    Ariapour, A; Karami, K; Sadr, A

    2014-01-01

    One of the most important factors to sustainability utilization of natural potential by rangeland grazing suitability is water resources suitability. This study is a model for quantitative, qualitative and spatial distance assessment of water resource's propriety for goat and cow grazing based on geographic information systems (GIS) in Boroujerd Sarab Sefid rangeland, Lorestan province, Iran 2013. In this research from combining three factors such as quantity, quality and water resource's distances; the final model of degree of propriety of water resources for goat and cow grazing is characterized. Results showed that slope factor was the reason of limitation, and it is considered as a limiting factor in propriety of water resources, so in terms of access to water resources for goat grazing, 4856.4 ha (100%) located in S1 classes and for cow grazing, 4023.14 ha (68.6%) located in S1(suitability) classes, 1,187 ha (20.24%) in S2 classes and 654.8 ha (11.16%) located in S3 classes, respectively for both. So according to the results the rangelands in this region are most suitable for goat because of terrain and weather but this, in combination with, cow hasbandry will allow diversity of economic production and stability of incomes

  16. Towards the review of the European Union Water Framework Directive: Recommendations for more efficient assessment and management of chemical contamination in European surface water resources

    Science.gov (United States)

    Water is a vital resource for natural ecosystems and human life, and assuring a high quality of water and protectingit from chemical contamination is a major societal goal in the European Union. The Water Framework Directive(WFD) and its daughter directives are the major body of ...

  17. Towards the review of the European Union Water Framework Directive: Recommendations for more efficient assessment and management of chemical contamination in European surface water resources

    NARCIS (Netherlands)

    Brack, W.; Dulio, V.; Agerstrand, M.; Allan, I.; Altenburger, R.; Brinkmann, M.; Bunke, D.; Burgess, R.M.; Cousins, I.; Escher, B.I.; Hernandez, F.J.; Hewitt, L.M.; Hilscherova, K.; Hollender, J.; Hollert, H.; Kase, R.; Klauer, B.; Lindim, C.; Herraez, D.L.; Miege, C.; Munthe, J.; O'Toole, S.; Posthuma, L.; Rudel, H.; Schafer, R.B.; Sengl, M.; Smedes, F.; van de Meent, D.; van den Brink, P.J.; van Gils, J.; van Wezel, A.P.; Vethaak, A.D.; Vermeirssen, E.; von der Ohe, P.C.; Vrana, B.

    2017-01-01

    Water is a vital resource for natural ecosystems and human life, and assuring a high quality of water and protecting it from chemical contamination is a major societal goal in the European Union. The Water Framework Directive (WFD) and its daughter directives are the major body of legislation for

  18. Drilling Addendum to Resource Assessment of Low- and Moderate-Temperature Geothermal Waters in Calistoga, Napa County, California

    Energy Technology Data Exchange (ETDEWEB)

    Taylor, Gary C.; Bacon, C. Forrest; Chapman, Rodger H.; Chase, Gordon W.; Majmundar, Hasmukhrai H.

    1981-05-01

    This addendum report presents the results of the California Division of Mines and Geology (CDMG) drilling program at Calistoga, California, which was the final geothermal-resource assessment investigation performed under terms of the second year contract (1979-80) between the U.S. Department of Energy (DOE) and the CDMG under the State Coupled Program. This report is intended to supplement information presented in CDMG's technical report for the project year, ''Resource Assessment of Low- and Moderate-Temperature Geothermal Waters in Calistoga, Napa County, California''. During the investigative phase of the CDMG's Geothermal Project, over 200 well-driller's reports were obtained from the Department of Water Resources (DWR). It was hoped that the interpretation and correlation of these logs would reveal the subsurface geology of the Upper Napa Valley and also provide a check for the various geophysical surveys that were performed in the course of the study. However, these DWR driller logs proved to be inadequate due to the brief, non-technical, and erroneous descriptions contained on the logs. As a result of the lack of useable drill-hole data, and because information was desired from,deeper horizons, it became evident that drilling some exploratory holes would be necessary in order to obtain physical evidence of the stratigraphy and aquifers in the immediate Calistoga area. Pursuant to this objective, a total of twelve sites were selected--four under jurisdiction of Napa County and eight under jurisdiction of the City of Calistoga. A moratorium is currently in existence within Napa County on most geothermal drilling, and environmental and time constraints precluded CDMG from obtaining the necessary site permits within the county. However, a variance was applied for and obtained from the City of Calistoga to allow CDMG to drill within the city limits. With this areal constraint and also funding limits in mind, six drilling sites

  19. Advances in water resources management

    CERN Document Server

    Yang, Chih; Wang, Mu-Hao

    2016-01-01

    This volume provides in-depth coverage of such topics as multi-reservoir system operation theory and practice, management of aquifer systems connected to streams using semi-analytical models, one-dimensional model of water quality and aquatic ecosystem-ecotoxicology in river systems, environmental and health impacts of hydraulic fracturing and shale gas, bioaugmentation for water resources protection, wastewater renovation by flotation for water pollution control, determination of receiving water’s reaeration coefficient in the presence of salinity for water quality management, sensitivity analysis for stream water quality management, river ice process, and computer-aided mathematical modeling of water properties. This critical volume will serve as a valuable reference work for advanced undergraduate and graduate students, designers of water resources systems, and scientists and researchers. The goals of the Handbook of Environmental Engineering series are: (1) to cover entire environmental fields, includin...

  20. California Water Resources Development.

    Science.gov (United States)

    1977-01-01

    of disposing of waterborne wastes, includ- trol, navigation, salinity control, water supply, tidelands ing reclamation and reuse where appropriate...studies for Wilson and Wildwood Creeks streams in the South Coastal Basins have been com- Keys Canyon pleted: Moose Canyon Agua Hedionda Creek Otay...resulted from the De- cember 1966 flood. channel and conduit sections pass the reduced flows through Palm Springs and part of the Agua Caliente As a

  1. An ensemble approach to assess hydrological models' contribution to uncertainties in the analysis of climate change impact on water resources

    Science.gov (United States)

    Velázquez, J. A.; Schmid, J.; Ricard, S.; Muerth, M. J.; Gauvin St-Denis, B.; Minville, M.; Chaumont, D.; Caya, D.; Ludwig, R.; Turcotte, R.

    2012-06-01

    Over the recent years, several research efforts investigated the impact of climate change on water resources for different regions of the world. The projection of future river flows is affected by different sources of uncertainty in the hydro-climatic modelling chain. One of the aims of the QBic3 project (Québec-Bavarian International Collaboration on Climate Change) is to assess the contribution to uncertainty of hydrological models by using an ensemble of hydrological models presenting a diversity of structural complexity (i.e. lumped, semi distributed and distributed models). The study investigates two humid, mid-latitude catchments with natural flow conditions; one located in Southern Québec (Canada) and one in Southern Bavaria (Germany). Daily flow is simulated with four different hydrological models, forced by outputs from regional climate models driven by a given number of GCMs' members over a reference (1971-2000) and a future (2041-2070) periods. The results show that the choice of the hydrological model does strongly affect the climate change response of selected hydrological indicators, especially those related to low flows. Indicators related to high flows seem less sensitive on the choice of the hydrological model. Therefore, the computationally less demanding models (usually simple, lumped and conceptual) give a significant level of trust for high and overall mean flows.

  2. Assessing water resources under climate change in high-altitude catchments: a methodology and an application in the Italian Alps

    Science.gov (United States)

    Aili, T.; Soncini, A.; Bianchi, A.; Diolaiuti, G.; D'Agata, C.; Bocchiola, D.

    2018-01-01

    Assessment of the future water resources in the Italian Alps under climate change is required, but the hydrological cycle of the high-altitude catchments therein is poorly studied and little understood. Hydrological monitoring and modeling in the Alps is difficult, given the lack of first hand, site specific data. Here, we present a method to model the hydrological cycle of poorly monitored high-altitude catchments in the Alps, and to project forward water resources availability under climate change. Our method builds on extensive experience recently and includes (i) gathering data of climate, of cryospheric variables, and of hydrological fluxes sparsely available; (ii) robust physically based glacio-hydrological modeling; and (iii) using glacio-hydrological projections from GCM models. We apply the method in the Mallero River, in the central (Retiche) Alps of Italy. The Mallero river covers 321 km2, with altitude between 310 and 4015 m a.s.l., and it has 27 km2 of ice cover. The glaciers included in the catchment underwent large mass loss recently, thus Mallero is largely paradigmatic of the present situation of Alpine rivers. We set up a spatially explicit glacio-hydrological model, describing the cryospheric evolution and the hydrology of the area during a control run CR, from 1981 to 2007. We then gather climate projections until 2100 from three Global Climate Models of the IPCC AR5 under RCP2.6, RCP4.5, and RCP8.5. We project forward flow statistics, flow components (rainfall, snow melt, ice melt), ice cover, and volume for two reference decades, namely 2045-2054 and 2090-2099. We foresee reduction of the ice bodies from - 62 to - 98% in volume (year 2100 vs year 1981), and subsequent large reduction of ice melt contribution to stream flows (from - 61 to - 88%, 2100 vs CR). Snow melt, now covering 47% of the stream flows yearly, would also be largely reduced (from - 19 to - 56%, 2100 vs CR). The stream flows will decrease on average at 2100 (from + 1 to - 25

  3. Petroleum resources assessment (I)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    This report consists of 2 subjects. 1) Petroleum resources assessment on the western part of the Kunsan Basin: Palynomorphs including spores, pollen and organic-walled microfossils and calcareous microfossils such as ostracods, charophytes and gastropods were studied for the biostratigraphic work of Kachi-1 and IIH-1Xa wells. Based on available well data, the rifting probably began in the Cretaceous time had continued until Paleocene. It is considered that compressional force immediately after rifting event deformed sedimentary sections. During the period of Paleocene to middle Miocene, the sediments were deposited in stable environment without particular tectonic event. 2) Petroliferous basin analysis in Taegu area (II): The Nakdong and Jinju formations contain abundant black shales, and thermal maturity of the organic matter reached at the final stage of dry gas generation. These formations also contain thick sandstones which can act as a petroleum reservoir. However, reservoir quality of the sandstones is poor (porosity: < 5%; permeability: < 0.001 md). In these sandstones, secondary pores such as dissolution pores and micropores can act as a tight gas reservoir. (author). 56 refs., 24 tabs., 68 figs.

  4. Cybernetics in water resources management

    International Nuclear Information System (INIS)

    Alam, N.

    2005-01-01

    The term Water Resources is used to refer to the management and use of water primarily for the benefit of people. Hence, successful management of water resources requires a solid understanding of Hydrology. Cybernetics in Water Resources Management is an endeavor to analyze and enhance the beneficial exploitation of diverse scientific approaches and communication methods; to control the complexity of water management; and to highlight the importance of making right decisions at the right time, avoiding the devastating effects of drought and floods. Recent developments in computer technology and advancement of mathematics have created a new field of system analysis i.e. Mathematical Modeling. Based on mathematical models, several computer based Water Resources System (WRS) Models were developed across the world, to solve the water resources management problems, but these were not adaptable and were limited to computation by a well defined algorithm, with information input at various stages and the management tasks were also formalized in that well structured algorithm. The recent advancements in information technology has revolutionized every field of the contemporary world and thus, the WRS has also to be diversified by broadening the knowledge base of the system. The updation of this knowledge should be a continuous process acquired through the latest techniques of networking from all its concerned sources together with the expertise of the specialists and the analysis of the practical experiences. The system should then be made capable of making inferences and shall have the tendency to apply the rules based on the latest information and inferences in a given stage of problem solving. Rigid programs cannot adapt to changing conditions and new knowledge. Thus, there is a need for an evolutionary development based on mutual independence of computational procedure and knowledge with capability to adapt itself to the increasing complexity of problem. The subject

  5. Parameter and input data uncertainty estimation for the assessment of water resources in two sub-basins of the Limpopo River Basin

    CSIR Research Space (South Africa)

    Oosthuizen, Nadia

    2017-07-01

    Full Text Available frica Parameter and input data uncertainty estimation for the assessment of water resources in two sub-basins of the Limpopo River Basin Nadia Oosthuizen1,2, Denis A. Hughes2, Evison Kapangaziwiri1, Jean-Marc Mwenge Kahinda1, and Vuyelwa Mvandaba1,2 1...

  6. Radon estimation in water resources of Mandi - Dharamshala region of Himachal Pradesh, India for health risk assessments

    Science.gov (United States)

    Kumar, Gulshan; Kumari, Punam; Kumar, Mukesh; Kumar, Arvind; Prasher, Sangeeta; Dhar, Sunil

    2017-07-01

    The present study deals with the radon estimation in 40 water samples collected from different natural resources and radium content in the soils of Mandi-Dharamshala Region. Radon concentration is determined by using RAD-7 detector and radium contents of the soil in vicinity of water resources is as well measured by using LR-115 type - II detector, which is further correlated with radon concentration in water samples. The potential health risks related with 222Rn have also been estimated. The results show that the radon concentrations within the range of 1.51 to 22.7Bq/l with an average value of 5.93 Bq/l for all type of water samples taken from study area. The radon concentration in water samples is found lower than 100Bq/l, the exposure limit of radon in water recommended by the World Health Organization. The calculated average effective dose of radon received by the people of study area is 0.022 mSv/y with maximum of 0.083 mSv/y and minimum 0.0056 mSv/y. The total effective dose in all sites of the studied area is found to be within the safe limit (0.1 mSv/year) recommended by World Health Organization. The average value of radium content in the soil of study area is 6.326 Bq/kg.

  7. Petroleum resources assessment (I)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-01

    On the basis of diverse microfossils such as foraminifers, ostracods, micromulluscs, fossil spores and pollen and calcareous nannofossils derived from 14 drill holes, the sediments are divided into two part, the upper marine part and the lower nonmarine one. Marine part is subdivided into 4 foraminiferal zones and 3 nannofossil zones of Plio-Pleistocene age. In the lower part ranging from Oligocene to Late Miocene 4 palynomoph assemblages are established, which reflect climatic changes fluctuating between subtropical and cool temperate. Some fine sediments occurring in the South Sea continental shelf are rich in organic matter to be hydrocarbon source rock. The organic matter is mainly compared to type 3. However, lower part of the Geobuk-1 and Okdom-1 shows more oil prone geochemical characteristics than other wells. The kerosene is mixture type 1 and type 3 organic matter. The main oil generation zone located between 2,500 m and 3,000 m and gas generation zone from 3,500 m to 4,000 m approximately. Hydrocarbon accumulation could be expected in the trap formed in the period earlier than 10 Ma. as the hydrocarbon started to be expelled at 10 Ma. according to the modeling. Approximately 13,000 Line-km of multichannel seismic data integrated with 14 wells and gravity and magnetic data were analyzed to investigate the structural and stratigraphic evolution of southern part of offshore Korea. The northeast-southwest trending Taiwan-Sinzi Uplift Belt separates the area into two regions with different tectonic features, northwestern and southwestern regions. The potential hydrocarbon traps associated with anticline, tilted fault block, fault, unconformity, and rollover structure exist. This project is consisted of two main subjects. 1) Petroleum resources assessment on the continental shelf basin of the south sea. 2) Petroliferous basin analysis in Taegu area (1). (author). refs., tabs., figs.

  8. Petroleum resources assessment (I)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-01

    This report consists of 2 subjects. 1) Petroleum resources assessment of the Kunsan Basin : Kunsan Basin is mainly filled with Cretaceous and Tertiary clastic sediments, and divided into Southwest Sub-basin, Central Sub-basin and Northeast Sub-basin by uplifts and faults developed in the basin. Microfossils were studied for the biostratigraphic works of drill wells in the Kunsan Basin. The microfossils include organic-walled microfossils such as spores, pollen and nonmarine dinoflagellates and calcareous microfossils such as ostracods, charophytes and gastropods. The fossil assemblages of the Kunsan Basin reveal nonmarine environments ranging from alluvial fan to shallow lacustrine and climatic variation between subtropical and cool temperate temperature in the arid/humid alternating conditions. According to the paleontological data, the Kunsan Basin was initiated in the Early Cretaceous and expanded during Paleogene followed by regional erosion at the closing time of Paleogene on which Neogene sediments have been accumulated. The Paleogene strata show laterally irregular thickness in each Epoch due to migrating depocenter. 2) Petroliferous basin analysis in Hapcheon area (I) : The Cretaceous Gyeongsang Supergroup consists of more than 9 Km sequences of sedimentary and volcanic rocks in Hapcheon-Changyong-Euiryong-Haman area and occupies the middle part of the Milyang subbasin. The Supergroup can be divided into three group; Sindong, Hayang and Yuchon groups in ascending order. Based on rock color, the Sindong Group can be subdivided into Nakdong, Hasandong and Jinju Formations. The Hayang Group can be subdivided into Chilgok, Silla Conglomerate, Haman and Jindong Formations. The Chilgok Formation includes basaltic lava and tuffs in the upper part. The Haman Formation has Kusandong tuff (keybed) in the uppermost part in the Changyong area, whereas the tuff is intercalated below the vocaniclastics in the Haman area. (author). 60 refs., 22 tabs., 61 figs.

  9. Assessment of the impact of climate change on spatiotemporal variability of blue and green water resources under CMIP3 and CMIP5 models in a highly mountainous watershed

    Science.gov (United States)

    Fazeli Farsani, Iman; Farzaneh, M. R.; Besalatpour, A. A.; Salehi, M. H.; Faramarzi, M.

    2018-04-01

    The variability and uncertainty of water resources associated with climate change are critical issues in arid and semi-arid regions. In this study, we used the soil and water assessment tool (SWAT) to evaluate the impact of climate change on the spatial and temporal variability of water resources in the Bazoft watershed, Iran. The analysis was based on changes of blue water flow, green water flow, and green water storage for a future period (2010-2099) compared to a historical period (1992-2008). The r-factor, p-factor, R 2, and Nash-Sutcliff coefficients for discharge were 1.02, 0.89, 0.80, and 0.80 for the calibration period and 1.03, 0.76, 0.57, and 0.59 for the validation period, respectively. General circulation models (GCMs) under 18 emission scenarios from the IPCC's Fourth (AR4) and Fifth (AR5) Assessment Reports were fed into the SWAT model. At the sub-basin level, blue water tended to decrease, while green water flow tended to increase in the future scenario, and green water storage was predicted to continue its historical trend into the future. At the monthly time scale, the 95% prediction uncertainty bands (95PPUs) of blue and green water flows varied widely in the watershed. A large number (18) of climate change scenarios fell within the estimated uncertainty band of the historical period. The large differences among scenarios indicated high levels of uncertainty in the watershed. Our results reveal that the spatial patterns of water resource components and their uncertainties in the context of climate change are notably different between IPCC AR4 and AR5 in the Bazoft watershed. This study provides a strong basis for water supply-demand analyses, and the general analytical framework can be applied to other study areas with similar challenges.

  10. Assessing anthropogenic impacts on limited water resources under semi-arid conditions: three-dimensional transient regional modelling in Jordan

    Science.gov (United States)

    Rödiger, Tino; Magri, Fabien; Geyer, Stefan; Morandage, Shehan Tharaka; Ali Subah, H. E.; Alraggad, Marwan; Siebert, Christian

    2017-11-01

    Both increasing aridity and population growth strongly stress freshwater resources in semi-arid areas such as Jordan. The country's second largest governorate, Irbid, with over 1 million inhabitants, is already suffering from an annual water deficit of 25 million cubic meters (MCM). The population is expected to double within the next 20 years. Even without the large number of refugees from Syria, the deficit will likely increase to more then 50 MCM per year by 2035 The Governorate's exclusive resource is groundwater, abstracted by the extensive Al Arab and Kufr Asad well fields. This study presents the first three-dimensional transient regional groundwater flow model of the entire Wadi al Arab to answer important questions regarding the dynamic quality and availability of water within the catchment. Emphasis is given to the calculation and validation of the dynamic groundwater recharge, derived from a multi-proxy approach, including (1) a hydrological model covering a 30-years dataset, (2) groundwater level measurements and (3) information about springs. The model enables evaluation of the impact of abstraction on the flow regime and the groundwater budget of the resource. Sensitivity analyses of controlling parameters indicate that intense abstraction in the southern part of the Wadi al Arab system can result in critical water-level drops of 10 m at a distance of 16 km from the production wells. Moreover, modelling results suggest that observed head fluctuations are strongly controlled by anthropogenic abstraction rather than variable recharge rates due to climate changes.

  11. Climate change and water resources

    International Nuclear Information System (INIS)

    Younos, Tamim; Grady, Caitlin A.

    2013-01-01

    This volume presents nine chapters prepared by international authors and highlighting various aspects of climate change and water resources. Climate change models and scenarios, particularly those related to precipitation projection, are discussed and uncertainties and data deficiencies that affect the reliability of predictions are identified. The potential impacts of climate change on water resources (including quality) and on crop production are analyzed and adaptation strategies for crop production are offered. Furthermore, case studies of climate change mitigation strategies, such as the reduction of water use and conservation measures in urban environments, are included. This book will serve as a valuable reference work for researchers and students in water and environmental sciences, as well as for governmental agencies and policy makers.

  12. Climate change and water resources

    Energy Technology Data Exchange (ETDEWEB)

    Younos, Tamim [The Cabell Brand Center for Global Poverty and Resource Sustainability Studies, Salem, VA (United States); Grady, Caitlin A. (ed.) [Purdue Univ., West Lafayette, IN (United States). Ecological Sciences and Engineering Program

    2013-07-01

    This volume presents nine chapters prepared by international authors and highlighting various aspects of climate change and water resources. Climate change models and scenarios, particularly those related to precipitation projection, are discussed and uncertainties and data deficiencies that affect the reliability of predictions are identified. The potential impacts of climate change on water resources (including quality) and on crop production are analyzed and adaptation strategies for crop production are offered. Furthermore, case studies of climate change mitigation strategies, such as the reduction of water use and conservation measures in urban environments, are included. This book will serve as a valuable reference work for researchers and students in water and environmental sciences, as well as for governmental agencies and policy makers.

  13. Nuclear contamination of water resources

    International Nuclear Information System (INIS)

    1990-01-01

    In the wake of the Chernobyl accident, the vulnerability of the water cycle to radionuclide contamination has been an issue of great concern. The impact of the event throughout Europe has been highly variable and wide-ranging, and has demonstrated the need to evaluate the potential risk to drinking water supplies, soilwater and the food chain. This book provides information on radiological standards as they exist at present, on the methods of monitoring, and on concepts in design to minimize risk and to highlight the possible consequences of a nuclear event. With contributions from engineers and scientists from eight countries, this book is a unique source of information about present radiological standards and monitoring requirements. It also includes comprehensive coverage of the effects on water resources of, and deals with the development of management strategies designed to cope with, a nuclear event. There are 19 papers all indexed separately. These are divided into sections -introduction, present radiological standards relating to drinking water, radiological monitoring requirements, the consequences of a nuclear event on water resources and water resource management strategy. The discussion at the end of each section is recorded. (author)

  14. A System Method for the Assessment of Integrated Water Resources Management (IWRM) in Mountain Watershed Areas: The Case of the "Giffre" Watershed (France)

    Science.gov (United States)

    Charnay, Bérengère

    2011-07-01

    In the last fifty years, many mountain watersheds in temperate countries have known a progressive change from self-standing agro-silvo-pastoral systems to leisure dominated areas characterized by a concentration of tourist accommodations, leading to a drinking water peak during the winter tourist season, when the water level is lowest in rivers and sources. The concentration of water uses increases the pressure on "aquatic habitats" and competition between uses themselves. Consequently, a new concept was developed following the international conferences in Dublin (International Conference on Water and the Environment - ICWE) and Rio de Janeiro (UN Conference on Environment and Development), both in 1992, and was broadly acknowledged through international and European policies. It is the concept of Integrated Water Resource Management ( IWRM). It meets the requirements of different uses of water and aquatic zones whilst preserving the natural functions of such areas and ensuring a satisfactory economic and social development. This paper seeks to evaluate a local water resources management system in order to implement it using IWRM in mountain watersheds. The assessment method is based on the systemic approach to take into account all components influencing a water resources management system at the watershed scale. A geographic information system was built to look into interactions between water resources, land uses, and water uses. This paper deals specifically with a spatial comparison between hydrologically sensitive areas and land uses. The method is applied to a French Alps watershed: the Giffre watershed (a tributary of the Arve in Haute-Savoie). The results emphasize both the needs and the gaps in implementing IWRM in vulnerable mountain regions.

  15. Water Resources Research supports water economics submissions

    Science.gov (United States)

    Griffin, Ronald C.

    2012-09-01

    AGU's international interdisciplinary journal Water Resources Research (WRR) publishes original contributions in hydrology; the physical, chemical, and biological sciences; and the social and policy sciences, including economics, systems analysis, sociology, and law. With the rising relevance of water economics and related social sciences, the editors of WRR continue to encourage submissions on economics and policy. WRR was originally founded in the mid 1960s by Walter Langbein and economist Allen Kneese. Several former WRR editors have been economists—including David Brookshire, Ron Cummings, and Chuck Howe—and many landmark articles in water economics have been published in WRR.

  16. Nuclear contamination of water resources

    International Nuclear Information System (INIS)

    1990-01-01

    The impact of the Chernobyl accident throughout Europe has been highly variable and wide-ranging, and has demonstrated the need to evaluate potential risk to drinking water supplies, soil water and the food chain. This book provides information on radiological standards as they exist at present, methods of monitoring, and concepts in design to minimize risk and to highlight possible consequences of a nuclear event. With contributions from engineers and scientists from eight countries, this book includes comprehensive coverage of the effects on water resources of, and deals with the development of management strategies designed to cope with, a nuclear event. (author)

  17. Sustainable development of water resources, water supply and environmental sanitation.

    CSIR Research Space (South Africa)

    Austin, LM

    2006-01-01

    Full Text Available and be capable of destroying or isolating pathogens. A need exists for documentary evidence to support various claims about different storage periods for ensuring pathogen die-off and safe handling of biosolids (Peasy 2000). Handling of faecal material... in Water and Environmental Health, Task no. 324. [Online] http://www/lboro.ac.uk/well/resources/well-studies/full-reports-pdf/task0324.pdf WHO (2001). Water quality, guidelines, standards and health: Assessment of risk and risk management for water...

  18. California Institute for Water Resources - California Institute for Water

    Science.gov (United States)

    Resources Skip to Content Menu California Institute for Water Resources Share Print Site Map Resources Publications Keep in Touch QUICK LINKS Our Blog: The Confluence Drought & Water Information University of California California Institute for Water Resources California Institute for Water Resources

  19. Vulnerability assessment of water resources - Translating a theoretical concept to an operational framework using systems thinking approach in a changing climate: Case study in Ogallala Aquifer

    Science.gov (United States)

    Anandhi, Aavudai; Kannan, Narayanan

    2018-02-01

    Water is an essential natural resource. Among many stressors, altered climate is exerting pressure on water resource systems, increasing its demand and creating a need for vulnerability assessments. The overall objective of this study was to develop a novel tool that can translate a theoretical concept (vulnerability of water resources (VWR)) to an operational framework mainly under altered temperature and precipitation, as well as for population change (smaller extent). The developed tool had three stages and utilized a novel systems thinking approach. Stage-1: Translating theoretical concept to characteristics identified from studies; Stage-2: Operationalizing characteristics to methodology in VWR; Stage-3: Utilizing the methodology for development of a conceptual modeling tool for VWR: WR-VISTA (Water Resource Vulnerability assessment conceptual model using Indicators selected by System's Thinking Approach). The specific novelties were: 1) The important characteristics in VWR were identified in Stage-1 (target system, system components, scale, level of detail, data source, frameworks, and indicator); 2) WR-VISTA combined two vulnerability assessments frameworks: the European's Driver-Pressure-State-Impact-Response framework (DPSIR) and the Intergovernmental Panel on Climate Change's framework (IPCC's); and 3) used systems thinking approaches in VWR for indicator selection. The developed application was demonstrated in Kansas (overlying the High Plains region/Ogallala Aquifer, considered the "breadbasket of the world"), using 26 indicators with intermediate level of detail. Our results indicate that the western part of the state is vulnerable from agricultural water use and the eastern part from urban water use. The developed tool can be easily replicated to other regions within and outside the US.

  20. Smart Markets for Water Resources

    Science.gov (United States)

    Raffensperger, John

    2017-04-01

    Commercial water users often want to trade water, but their trades can hurt other users and the environment. So government has to check every transaction. This checking process is slow and expensive. That's why "free market" water trading doesn't work, especially with trading between a single buyer and a single seller. This talk will describe a water trading mechanism designed to solve these problems. The trading mechanism is called a "smart market". A smart market allows simultaneous many-to-many trades. It can reduce the transaction costs of water trading, while improving environmental outcomes. The smart market depends on a combination of recent technologies: hydrology simulation, computer power, and the Internet. Our smart market design uses standard hydrological models, user bids from a web page, and computer optimization to maximize the economic value of water while meeting all environmental constraints. Before the smart market can be implemented, however, users and the water agency must meet six critical prerequisites. These prerequisites may be viewed as simply good water management that should be done anyway. I will describe these prerequisites, and I will briefly discuss common arguments against water markets. This talk will be an abstract of a forthcoming book, "Smart Markets for Water Resources: A Manual for Implementation," by John F. Raffensperger and Mark W. Milke, from Springer Publishing.

  1. Mongolia wind resource assessment project

    International Nuclear Information System (INIS)

    Elliott, D.; Chadraa, B.; Natsagdorj, L.

    1998-01-01

    The development of detailed, regional wind-resource distributions and other pertinent wind resource characteristics (e.g., assessment maps and reliable estimates of seasonal, diurnal, and directional) is an important step in planning and accelerating the deployment of wind energy systems. This paper summarizes the approach and methods being used to conduct a wind energy resource assessment of Mongolia. The primary goals of this project are to develop a comprehensive wind energy resource atlas of Mongolia and to establish a wind measurement program in specific regions of Mongolia to identify prospective sites for wind energy projects and to help validate some of the wind resource estimates. The Mongolian wind resource atlas will include detailed, computerized wind power maps and other valuable wind resource characteristic information for the different regions of Mongolia

  2. The crysophere as a resource and hazard - Integrated framework for the assessment of future water resource vulnerability and glacial hazard risk assessment in the Kullu district, Himachal Pradesh, India.

    Science.gov (United States)

    Allen, Simon; Awasthi, Kirtiman; Ballesteros, Juan Antonio; Frey, Holger; Huggel, Christian; Kahn, Mustafa; Linsbauer, Andreas; Rohrer, Mario; Ruiz-Villanueva, Virginia; Salzmann, Nadine; Schauwecker, Simone; Stoffel, Markus

    2014-05-01

    High mountain environments are particularly susceptible to changes in atmospheric temperature and precipitation patterns, owing to the sensitivity of cryospheric components to melting conditions, and the importance of rainfall and river runoff for sustaining crops and livelihoods. The Himalayan state of Himachal Pradesh (population ca. 6 mil.) is the initial focus of a joint program between the governments of India and Switzerland aiming to build scientific capacity to understand the threat, and plan for adaptation to climate change in the Himalaya. Here we focus on the cryosphere, and provide an overview of the integrated framework we will follow to assess future water resource vulnerability from changes in runoff, and assess future disaster risk from mass movement and flood hazards. At this early stage of our project, we aim to identify key methodological steps, data requirements, and related challenges. The initial implementation of our framework will be centered on the Kullu district. Core and integrative components of both the traditional climate vulnerability framework (eg., IPCC AR4), and the vulnerability and risk concepts of the disaster risk management community (eg., IPCC SREX 2012) include the assessment of sensitivity, exposure, and adaptive capacity. Sensitivity to water vulnerability in the Kullu district requires the quantification of current and future water resource usage at the block or community level, using metrics such as total irrigated land area, total electricity usage, population density and birth rates. Within the disaster risk framework, sensitivity to mass movement and flood hazards will be determined based on factors such as population density and demographics (notably age and gender), strength of building materials etc. Projected temperature and precipitation data from regional climate model output will be used to model changes in melt water runoff and streamflow, determining the exposure of communities and natural systems to future

  3. A risk-based framework to assess long-term effects of policy and water supply changes on water resources systems

    Science.gov (United States)

    Hassanzadeh, Elmira; Elshorbagy, Amin; Wheater, Howard; Gober, Patricia

    2015-04-01

    Climate uncertainty can affect water resources availability and management decisions. Sustainable water resources management therefore requires evaluation of policy and management decisions under a wide range of possible future water supply conditions. This study proposes a risk-based framework to integrate water supply uncertainty into a forward-looking decision making context. To apply this framework, a stochastic reconstruction scheme is used to generate a large ensemble of flow series. For the Rocky Mountain basins considered here, two key characteristics of the annual hydrograph are its annual flow volume and the timing of the seasonal flood peak. These are perturbed to represent natural randomness and potential changes due to future climate. 30-year series of perturbed flows are used as input to the SWAMP model - an integrated water resources model that simulates regional water supply-demand system and estimates economic productivity of water and other sustainability indicators, including system vulnerability and resilience. The simulation results are used to construct 2D-maps of net revenue of a particular water sector; e.g., hydropower, or for all sectors combined. Each map cell represents a risk scenario of net revenue based on a particular annual flow volume, timing of the peak flow, and 200 stochastic realizations of flow series. This framework is demonstrated for a water resources system in the Saskatchewan River Basin (SaskRB) in Saskatchewan, Canada. Critical historical drought sequences, derived from tree-ring reconstructions of several hundred years of annual river flows, are used to evaluate the system's performance (net revenue risk) under extremely low flow conditions and also to locate them on the previously produced 2D risk maps. This simulation and analysis framework is repeated under various reservoir operation strategies (e.g., maximizing flood protection or maximizing water supply security); development proposals, such as irrigation

  4. Remote sensing and water resources

    CERN Document Server

    Champollion, N; Benveniste, J; Chen, J

    2016-01-01

    This book is a collection of overview articles showing how space-based observations, combined with hydrological modeling, have considerably improved our knowledge of the continental water cycle and its sensitivity to climate change. Two main issues are highlighted: (1) the use in combination of space observations for monitoring water storage changes in river basins worldwide, and (2) the use of space data in hydrological modeling either through data assimilation or as external constraints. The water resources aspect is also addressed, as well as the impacts of direct anthropogenic forcing on land hydrology (e.g. ground water depletion, dam building on rivers, crop irrigation, changes in land use and agricultural practices, etc.). Remote sensing observations offer important new information on this important topic as well, which is highly useful for achieving water management objectives. Over the past 15 years, remote sensing techniques have increasingly demonstrated their capability to monitor components of th...

  5. Parameter and input data uncertainty estimation for the assessment of water resources in two sub-basins of the Limpopo River Basin

    Directory of Open Access Journals (Sweden)

    N. Oosthuizen

    2018-05-01

    Full Text Available The demand for water resources is rapidly growing, placing more strain on access to water and its management. In order to appropriately manage water resources, there is a need to accurately quantify available water resources. Unfortunately, the data required for such assessment are frequently far from sufficient in terms of availability and quality, especially in southern Africa. In this study, the uncertainty related to the estimation of water resources of two sub-basins of the Limpopo River Basin – the Mogalakwena in South Africa and the Shashe shared between Botswana and Zimbabwe – is assessed. Input data (and model parameters are significant sources of uncertainty that should be quantified. In southern Africa water use data are among the most unreliable sources of model input data because available databases generally consist of only licensed information and actual use is generally unknown. The study assesses how these uncertainties impact the estimation of surface water resources of the sub-basins. Data on farm reservoirs and irrigated areas from various sources were collected and used to run the model. Many farm dams and large irrigation areas are located in the upper parts of the Mogalakwena sub-basin. Results indicate that water use uncertainty is small. Nevertheless, the medium to low flows are clearly impacted. The simulated mean monthly flows at the outlet of the Mogalakwena sub-basin were between 22.62 and 24.68 Mm3 per month when incorporating only the uncertainty related to the main physical runoff generating parameters. The range of total predictive uncertainty of the model increased to between 22.15 and 24.99 Mm3 when water use data such as small farm and large reservoirs and irrigation were included. For the Shashe sub-basin incorporating only uncertainty related to the main runoff parameters resulted in mean monthly flows between 11.66 and 14.54 Mm3. The range of predictive uncertainty changed to between 11.66 and 17

  6. Lignocellulosic feedstock resource assessment

    Energy Technology Data Exchange (ETDEWEB)

    Rooney, T.

    1998-09-01

    This report provides overall state and national information on the quantity, availability, and costs of current and potential feedstocks for ethanol production in the United States. It characterizes end uses and physical characteristics of feedstocks, and presents relevant information that affects the economic and technical feasibility of ethanol production from these feedstocks. The data can help researchers focus ethanol conversion research efforts on feedstocks that are compatible with the resource base.

  7. Spatial and temporal distribution of Cryptosporidium and Giardia in a drinking water resource: Implications for monitoring and risk assessment

    Energy Technology Data Exchange (ETDEWEB)

    Burnet, Jean-Baptiste, E-mail: jeanbaptiste.burnet@gmail.com [Centre de Recherche Public - Gabriel Lippmann, Department of Environment and Agro-biotechnologies (EVA), 41, rue du Brill, L-4422 Belvaux (Luxembourg); Université de Liège (ULg), Department of Environmental Sciences and Management, 165 avenue de Longwy, B-6700 Arlon (Belgium); Penny, Christian, E-mail: penny@lippmann.lu [Centre de Recherche Public - Gabriel Lippmann, Department of Environment and Agro-biotechnologies (EVA), 41, rue du Brill, L-4422 Belvaux (Luxembourg); Ogorzaly, Leslie, E-mail: ogorzaly@lippmann.lu [Centre de Recherche Public - Gabriel Lippmann, Department of Environment and Agro-biotechnologies (EVA), 41, rue du Brill, L-4422 Belvaux (Luxembourg); Cauchie, Henry-Michel, E-mail: cauchie@lippmann.lu [Centre de Recherche Public - Gabriel Lippmann, Department of Environment and Agro-biotechnologies (EVA), 41, rue du Brill, L-4422 Belvaux (Luxembourg)

    2014-02-01

    Because of their significant public health impact, waterborne Cryptosporidium and Giardia have been monitored in surface water in order to assess microbial quality of water bodies used for drinking water production and/or for recreational purposes. In this context, sampling strategy is of key importance and should be representative enough to appropriately assess the related microbial risk. This, however, requires sound knowledge on the behaviour of both pathogens in water. In the present study, the spatial and temporal distribution of Cryptosporidium and Giardia was explored in the rural Upper-Sûre watershed used for drinking water production in Luxembourg. By subdividing it into three compartments including (i) sub-catchments, (ii) the Sûre River fed by the sub-catchments and (iii) the Upper-Sûre reservoir fed by the Sûre River, parasite distribution was assessed using sampling designs adapted to the hydro-dynamic characteristics of the respective compartments. Results highlighted the high spatial and temporal variability in parasite distribution at watershed scale, as well as the prevalence of Giardia over Cryptosporidium. Besides land use features and catchment characteristics, hydro-climatology appeared to be a major driver of parasite behaviour in the watershed. It introduced a seasonal trend in their occurrence, highest densities being detected during the wet season. Peaks of contamination triggered out by rainfall-induced runoff were further observed in the three compartments. In the Sûre River, Cryptosporidium and Giardia fluxes peaked at 10{sup 9} and 10{sup 10} (oo)cysts.d{sup −1}, respectively, and were discharged into the drinking water reservoir, where they underwent a 2 to 3 log{sub 10} removal rate. Despite this, parasite fluxes entering the drinking water treatment plant were still high (10{sup 6} to 10{sup 7} (oo)cysts.d{sup −1}) and stressed on the need for improved watershed management upstream the water treatment barrier. The catchment

  8. Spatial and temporal distribution of Cryptosporidium and Giardia in a drinking water resource: Implications for monitoring and risk assessment

    International Nuclear Information System (INIS)

    Burnet, Jean-Baptiste; Penny, Christian; Ogorzaly, Leslie; Cauchie, Henry-Michel

    2014-01-01

    Because of their significant public health impact, waterborne Cryptosporidium and Giardia have been monitored in surface water in order to assess microbial quality of water bodies used for drinking water production and/or for recreational purposes. In this context, sampling strategy is of key importance and should be representative enough to appropriately assess the related microbial risk. This, however, requires sound knowledge on the behaviour of both pathogens in water. In the present study, the spatial and temporal distribution of Cryptosporidium and Giardia was explored in the rural Upper-Sûre watershed used for drinking water production in Luxembourg. By subdividing it into three compartments including (i) sub-catchments, (ii) the Sûre River fed by the sub-catchments and (iii) the Upper-Sûre reservoir fed by the Sûre River, parasite distribution was assessed using sampling designs adapted to the hydro-dynamic characteristics of the respective compartments. Results highlighted the high spatial and temporal variability in parasite distribution at watershed scale, as well as the prevalence of Giardia over Cryptosporidium. Besides land use features and catchment characteristics, hydro-climatology appeared to be a major driver of parasite behaviour in the watershed. It introduced a seasonal trend in their occurrence, highest densities being detected during the wet season. Peaks of contamination triggered out by rainfall-induced runoff were further observed in the three compartments. In the Sûre River, Cryptosporidium and Giardia fluxes peaked at 10 9 and 10 10 (oo)cysts.d −1 , respectively, and were discharged into the drinking water reservoir, where they underwent a 2 to 3 log 10 removal rate. Despite this, parasite fluxes entering the drinking water treatment plant were still high (10 6 to 10 7 (oo)cysts.d −1 ) and stressed on the need for improved watershed management upstream the water treatment barrier. The catchment-wide analysis described here

  9. Water Resources Availability in Kabul, Afghanistan

    Science.gov (United States)

    Akbari, A. M.; Chornack, M. P.; Coplen, T. B.; Emerson, D. G.; Litke, D. W.; Mack, T. J.; Plummer, N.; Verdin, J. P.; Verstraeten, I. M.

    2008-12-01

    The availability of water resources is vital to the rebuilding of Kabul, Afghanistan. In recent years, droughts and increased water use for drinking water and agriculture have resulted in widespread drying of wells. Increasing numbers of returning refugees, rapid population growth, and potential climate change have led to heightened concerns for future water availability. The U.S. Geological Survey, with support from the U.S. Agency for International Development, began collaboration with the Afghanistan Geological Survey and Ministry of Energy and Water on water-resource investigations in the Kabul Basin in 2004. This has led to the compilation of historic and recent water- resources data, creation of monitoring networks, analyses of geologic, geophysical, and remotely sensed data. The study presented herein provides an assessment of ground-water availability through the use of multidisciplinary hydrogeologic data analysis. Data elements include population density, climate, snowpack, geology, mineralogy, surface water, ground water, water quality, isotopic information, and water use. Data were integrated through the use of conceptual ground-water-flow model analysis and provide information necessary to make improved water-resource planning and management decisions in the Kabul Basin. Ground water is currently obtained from a shallow, less than 100-m thick, highly productive aquifer. CFC, tritium, and stable hydrogen and oxygen isotopic analyses indicate that most water in the shallow aquifer appears to be recharged post 1970 by snowmelt-supplied river leakage and secondarily by late winter precipitation. Analyses indicate that increasing withdrawals are likely to result in declining water levels and may cause more than 50 percent of shallow supply wells to become dry or inoperative particularly in urbanized areas. The water quality in the shallow aquifer is deteriorated in urban areas by poor sanitation and water availability concerns may be compounded by poor well

  10. Spatial and temporal distribution of Cryptosporidium and Giardia in a drinking water resource: implications for monitoring and risk assessment.

    Science.gov (United States)

    Burnet, Jean-Baptiste; Penny, Christian; Ogorzaly, Leslie; Cauchie, Henry-Michel

    2014-02-15

    Because of their significant public health impact, waterborne Cryptosporidium and Giardia have been monitored in surface water in order to assess microbial quality of water bodies used for drinking water production and/or for recreational purposes. In this context, sampling strategy is of key importance and should be representative enough to appropriately assess the related microbial risk. This, however, requires sound knowledge on the behaviour of both pathogens in water. In the present study, the spatial and temporal distribution of Cryptosporidium and Giardia was explored in the rural Upper-Sûre watershed used for drinking water production in Luxembourg. By subdividing it into three compartments including (i) sub-catchments, (ii) the Sûre River fed by the sub-catchments and (iii) the Upper-Sûre reservoir fed by the Sûre River, parasite distribution was assessed using sampling designs adapted to the hydro-dynamic characteristics of the respective compartments. Results highlighted the high spatial and temporal variability in parasite distribution at watershed scale, as well as the prevalence of Giardia over Cryptosporidium. Besides land use features and catchment characteristics, hydro-climatology appeared to be a major driver of parasite behaviour in the watershed. It introduced a seasonal trend in their occurrence, highest densities being detected during the wet season. Peaks of contamination triggered out by rainfall-induced runoff were further observed in the three compartments. In the Sûre River, Cryptosporidium and Giardia fluxes peaked at 10(9) and 10(10) (oo)cysts.d(-1), respectively, and were discharged into the drinking water reservoir, where they underwent a 2 to 3 log10 removal rate. Despite this, parasite fluxes entering the drinking water treatment plant were still high (10(6) to 10(7) (oo)cysts.d(-1)) and stressed on the need for improved watershed management upstream the water treatment barrier. The catchment-wide analysis described here

  11. Water resources data, Kentucky. Water year 1991

    Energy Technology Data Exchange (ETDEWEB)

    McClain, D.L.; Byrd, F.D.; Brown, A.C.

    1991-12-31

    Water resources data for the 1991 water year for Kentucky consist of records of stage, discharge, and water quality of streams and lakes; and water-levels of wells. This report includes daily discharge records for 115 stream-gaging stations. It also includes water-quality data for 38 stations sampled at regular intervals. Also published are 13 daily temperature and 8 specific conductance records, and 85 miscellaneous temperature and specific conductance determinations for the gaging stations. Suspended-sediment data for 12 stations (of which 5 are daily) are also published. Ground-water levels are published for 23 recording and 117 partial sites. Precipitation data at a regular interval is published for 1 site. Additional water data were collected at various sites not involved in the systematic data-collection program and are published as miscellaneous measurement and analyses. These data represent that part of the National Water Data System operated by the US Geological Survey and cooperation State and Federal agencies in Kentucky.

  12. Assessment of Sustainable Use of Coastal Resources of Regional Waters Conservation Area Biak Numfor Regency, Papua Province, Indonesia

    Directory of Open Access Journals (Sweden)

    Sutaman Sutaman

    2017-06-01

    Full Text Available Efforts to exploit fish resources optimally, continuous and sustainable is an urgent demand for the greatest prosperity of the people, especially to improve the welfare of fishermen and fish farmers. The level of sustainable use of coastal resources in water conservation is very important, so that the utilization does not exceed the carrying capacity of the environment. The purpose of this study was to determine the level of sustainable use of coastal resources Biak Numfor, associated with the utilization of fisheries, aquaculture and tourism. The study was conducted in June to December 2015 and October to November 2016. The primary data obtained by interview and direct discussion through Focus Group Disscution (FGD with fishermen community, tourist and tourist entrepreneurs as well as related officials in the Office of Fisheries and Marine Affairs, and Tourism Office of Biak Numfor Regency. Methods of data analysis approach sustainability analysis conducted by the method of MDS (Multi-Dimensional Scaling with the help of software Rapfish. Based on the survey results revealed that the value of fisheries ordinated to achieve 57.66%, 44.80% aquaculture, and tourism 46.25%. With these achievements ordinated value, it can be concluded that the use of sustainable capture fisheries are still classified by the lever sustainability attributes include; the type of fishing gear, vessel types used and the catch per unit effort (CPUE. Meanwhile the relatively less sustainable aquaculture with the sustainability lever attributes include; cultivation technology, the number of business units with different types and species of fish. For tourism utilization is still considered less sustainable with levers sustainability attributes include the number of tourists, the type and number of amenities and facilities and infrastructure   Keywords: Sustainability, utilization, waters conservation area (KKPD, MDS-Rapfish

  13. Assessings impact of drought on water resources management in the Middle East using the GRACE data and hydrological modeling

    Science.gov (United States)

    Rateb, A., II; Kuo, C. Y.; Imani, M.; Kao, H. C.; Shum, C. K.; Ching, K. E.; Tseng, K. H.; Lan, W. H.; Tseng, T. P.

    2017-12-01

    The Middle East (ME) region experiences severe freshwater shortages in 90% of the region due primarily to its semi-arid landscape and climate setting, the growth of its population which outpaces world's average population rate by 3.7%, and rapid economic development. The prolonged and intense drought which started in 2007 resulted in the significant decline of surface water availability in the Tigris-Euphrates basin, and exacerbated the anthropogenic groundwater extraction rate, which declined the productivity of agriculture, and displaced hundreds of thousands of people. Therefore, evaluating the impact of the drought on the total water storage (TWS) and groundwater storage (GWS) decline is critical to quantify water availability, towards more effective water resources management in the region. In this study, we use the monthly Gravity Recovery and Climate Experiment (GRACE) twin-satellite mission gravity solutions, covering April 2002 through December 2015, and hydrological models (GLDAS, CLM4.5, and WGHM2.2b) to monitor the TWS and GWS before and after the onset of the pronged drought which started in 2007. We built an effective Slepian basis concentrated over the Arabian Peninsula (AP) and six regions, including Iran, Iraq, North AP, South AP, Syria-Jordan, and Eastern Turkey, to characterize the impact of the drought at the country scale. The results show that the drought has resulted in further reducing the TWS and GWS depletion rate by more than 50%. The ME region experienced a small negative trend between 2002 and 2007, and then the trend dropped dramatically after 2007. The worst affected regions are northern Iraq, northwestern Iran, and North AP. We compared the estimates with agriculture irrigation maps and characterized the depletion rates have been primarily caused by agriculture irrigation, which is directly linked to the pronged drought. Droughts are arguably longer in duration, more frequency and more intense in an increasingly warmer climate. The

  14. Wind conditions and resource assessment

    DEFF Research Database (Denmark)

    Lundtang Petersen, Erik; Troen, Ib

    2012-01-01

    The development of wind power as a competitive energy source requires resource assessment of increasing accuracy and detail (including not only the long-term ‘raw’ wind resource, but also turbulence, shear, and extremes), and in areas of increasing complexity. This in turn requires the use of the...

  15. Fort Carson Wind Resource Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Robichaud, R.

    2012-10-01

    This report focuses on the wind resource assessment, the estimated energy production of wind turbines, and economic potential of a wind turbine project on a ridge in the southeastern portion of the Fort Carson Army base.

  16. Assessment of Climate Change Impacts on Water Resources in Three Representative Ukrainian Catchments Using Eco-Hydrological Modelling

    Directory of Open Access Journals (Sweden)

    Iulii Didovets

    2017-03-01

    Full Text Available The information about climate change impact on river discharge is vitally important for planning adaptation measures. The future changes can affect different water-related sectors. The main goal of this study was to investigate the potential water resource changes in Ukraine, focusing on three mesoscale river catchments (Teteriv, Upper Western Bug, and Samara characteristic for different geographical zones. The catchment scale watershed model—Soil and Water Integrated Model (SWIM—was setup, calibrated, and validated for the three catchments under consideration. A set of seven GCM-RCM (General Circulation Model-Regional Climate Model coupled climate scenarios corresponding to RCPs (Representative Concentration Pathways 4.5 and 8.5 were used to drive the hydrological catchment model. The climate projections, used in the study, were considered as three combinations of low, intermediate, and high end scenarios. Our results indicate the shifts in the seasonal distribution of runoff in all three catchments. The spring high flow occurs earlier as a result of temperature increases and earlier snowmelt. The fairly robust trend is an increase in river discharge in the winter season, and most of the scenarios show a potential decrease in river discharge in the spring.

  17. Natural resource damage assessments: The second generation

    International Nuclear Information System (INIS)

    Luthi, R.; Burlington, L.; Reinharz, E.; Shutler, S.

    1993-01-01

    The Damage Assessment Regulations Team (DART), Office of General Counsel, National Oceanic and Atmospheric Administration (NOAA), has focused on developing natural resource damage assessment regulations for oil pollution in navigable waters. These procedures may lower the transaction costs of assessments, encourage joint cooperative assessments, simplify most assessments and provide technical guidance for conducting assessments. DART is developing regulations for the assessment of damages due to injuries related to oil spills under the Oil pollution Act of 1990. These regulations will involve coordination, restoration and economic valuation. NOAA encourages federal, state, tribal and foreign trustees, to develop prespill plans. Coordination with response agencies assures protection of important natural resources. The regulations provide an open record, which becomes the basis for judicial review. Various methods being developed to assess damages for injuries to natural resources include: compensation formulas for spills under 50,000 gallons of oil, the Type A model, expedited damage assessment (EDA) procedures, and comprehensive damage assessment (CDA) procedures which can be used for spills of various sizes. These procedures provide trustees with a choice for assessing natural resource damages to each oil spill. NOAA is emphasizing the importance of restoration. Restoration plans will define project goals and objectives, establish procedures and methods for site restoration, and define the approach based on sound science. Finally, numerous economic methods are identified to calculate the lost or diminished use as passive use of the affected resources

  18. Higher Resolution for Water Resources Studies

    Science.gov (United States)

    Dumenil-Gates, L.

    2009-12-01

    The Earth system science community is providing an increasing range of science results for the benefit of achieving the Millennium Development Goals. In addressing questions such as reducing poverty and hunger, achieving sustainable global development, or by defining adaptation strategies for climate change, one of the key issues will be the quantitative description and understanding of the global water cycle, which will allow useful projections of available future water resources for several decades ahead. The quantities of global water cycle elements that we observe today - and deal with in hydrologic and atmospheric modeling - are already very different from the natural flows as human influence on the water cycle by storage, consumption and edifice has been going on for millennia, and climate change is expected to add more uncertainty. In this case Tony Blair’s comment that perhaps the most worrying problem is climate change does not cover the full story. We shall also have to quantify how the human demand for water resources and alterations of the various elements of the water cycle may proceed in the future: will there be enough of the precious water resource to sustain current and future demands by the various sectors involved? The topics that stakeholders and decision makers concerned with managing water resources are interested in cover a variety of human uses such as agriculture, energy production, ecological flow requirements to sustain biodiversity and ecosystem services, or human cultural aspects, recreation and human well-being - all typically most relevant at the regional or local scales, this being quite different from the relatively large-scale that the IPCC assessment addresses. Halfway through the Millennium process, the knowledge base of the global water cycle is still limited. The sustainability of regional water resources is best assessed through a research program that combines high-resolution climate and hydrologic models for expected

  19. Water Intensity of Electricity from Geothermal Resources

    Science.gov (United States)

    Mishra, G. S.; Glassley, W. E.

    2010-12-01

    BACKGROUND Electricity from geothermal resources could play a significant role in the United States over the next few decades; a 2006 study by MIT expects a capacity of 100GWe by 2050 as feasible; approximately 10% of total electricity generating capacity up from less than 1% today. However, there is limited research on the water requirements and impacts of generating electricity from geothermal resources - conventional as well as enhanced. To the best of our knowledge, there is no baseline exists for water requirements of geothermal electricity. Water is primarily required for cooling and dissipation of waste heat in the power plants, and to account for fluid losses during heat mining of enhanced geothermal resources. MODEL DESCRIPTION We have developed a model to assess and characterize water requirements of electricity from hydrothermal resources and enhanced geothermal resources (EGS). Our model also considers a host of factors that influence cooling water requirements ; these include the temperature and chemical composition of geothermal resource; installed power generation technology - flash, organic rankine cycle and the various configurations of these technologies; cooling technologies including air cooled condensers, wet recirculating cooling, and hybrid cooling; and finally water treatment and recycling installations. We expect to identify critical factors and technologies. Requirements for freshwater, degraded water and geothermal fluid are separately estimated. METHODOLOGY We have adopted a lifecycle analysis perspective that estimates water consumption at the goethermal field and power plant, and accounts for transmission and distribution losses before reaching the end user. Our model depends upon an extensive literature review to determine various relationships necessary to determine water usage - for example relationship between thermal efficiency and temperature of a binary power plant, or differences in efficiency between various ORC configurations

  20. Petroleum resources assessment 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-12-01

    The Geobit, a seismic data processing software, is the token of the achievement for the development of technology in the oil exploration over the Korean continental shelf. This report consists of six articles: (1) Experimental processing of a model data set using Geobit seismic software, (2) Management of seismic data on network, (3) Seismic data processing for domestic seismic survey over the continental shelf of Korea using the Geobit, (4) A study on the intrusion model by physical modeling, (5) Research on application and development of Geobit seismic software, (6) Assessment of Geobit system and suggestions for further development. (author)

  1. Mexico Wind Resource Assessment Project

    Energy Technology Data Exchange (ETDEWEB)

    Schwartz, M.N.; Elliott, D.L.

    1995-05-01

    A preliminary wind energy resource assessment of Mexico that produced wind resource maps for both utility-scale and rural applications was undertaken as part of the Mexico-U.S. Renewable Energy Cooperation Program. This activity has provided valuable information needed to facilitate the commercialization of small wind turbines and windfarms in Mexico and to lay the groundwork for subsequent wind resource activities. A surface meteorological data set of hourly data in digital form was utilized to prepare a more detailed and accurate wind resource assessment of Mexico than otherwise would have been possible. Software was developed to perform the first ever detailed analysis of the wind characteristics data for over 150 stations in Mexico. The hourly data set was augmented with information from weather balloons (upper-air data), ship wind data from coastal areas, and summarized wind data from sources in Mexico. The various data were carefully evaluated for their usefulness in preparing the wind resource assessment. The preliminary assessment has identified many areas of good-to-excellent wind resource potential and shows that the wind resource in Mexico is considerably greater than shown in previous surveys.

  2. NE-RESM: An Integrated Water Resource Assessment and Solutions Platform for the U.S. Northeast

    Science.gov (United States)

    Vorosmarty, C. J.; Miara, A.; Rosenzweig, B.; Duchin, F.; Dileki, N.; Stewart, R.; Wollheim, W. M.; Melillo, J. M.; Kicklighter, D. W.; Fekete, B. M.; Yang, P.; Gonzalez, J.

    2013-12-01

    Recent analysis of inland water systems using high-resolution maps depicting a wide array of stressors unveils a pattern of threat to the world's fresh water resource base upon which much of the human water supply and aquatic biodiversity depend. A characteristic pattern of management is evident in the contemporary setting, through which impairment accumulates as a function of wealth, but is then remedied by costly, after-the-fact technological investments. The Northeast region of the United States serves as an ideal example of major changes that have taken place with respect to the global hydrologic cycle. Over the course of this century, the region will be significantly impacted by both climate change and strategic management decisions focused often on near-term solutions but with potential century-scale legacy effects. We report on development of a Regional Earth System Model for the Northeast (NE-RESM), an NSF-funded project that assembles an interdisciplinary research team from academia and government with expertise in physics, biogeochemistry, engineering, energy, economics, and policy. Major components of this work include: (i) downscaled atmospheric model outputs to drive terrestrial-aquatic ecosystem models, (ii) geospatial modeling of anthropogenic greenhouse gas emissions and biotic source/sinks, (iii) a meso-economic input-output model to evaluate the impacts of ecosystem services constraints on the economy, (iv) a linked ecosystem services accounting tool, and (v) policymaker engagement. This paper will report on one set of experiments focusing on the nexus of energy, water and the economy and how it is impacted by climate constraints and environmental regulations (i.e., Clean Water Act). We identify climate and regulatory-based limits on regional power output. At the same time, we can demonstrate opportunities to better manage the nearly 400 power plants comprising the region's thermoelectric sector. These opportunities arise from analysis of power

  3. Fort Stewart integrated resource assessment. Volume 3: Resource assessment

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, G.P.; Keller, J.M.; Stucky, D.J.; Wahlstrom, R.R.; Larson, L.L.

    1993-10-01

    The US Army Forces Command (FORSCOM) has tasked the US Department of Energy (DOE) Federal Energy Management Program (FEMP), supported by the Pacific Northwest Laboratory, to identify, evaluate, and assist in acquiring all cost-effective energy projects at Fort Stewart. This is part of a model program that PNL is designing to support energy-use decisions in the federal sector. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at the FORSCOM Fort Stewart facility located approximately 25 miles southwest of Savannah, Georgia. It is a companion report to Volume 1, Executive Summary, and Volume 2, Baseline Detail. The results of the analyses of EROs are presented in 11 common energy end-use categories (e.g., boilers and furnaces, service hot water, and building lighting). A narrative description of each ERO is provided, along with a table detailing information on the installed cost, energy and dollar savings; impacts on operations and maintenance (O&M); and, when applicable, a discussion of energy supply and demand, energy security, and environmental issues. A description of the evaluation methodologies and technical and cost assumptions is also provided for each ERO. Summary tables present the cost-effectiveness of energy end-use equipment before and after the implementation of each ERO. The tables also present the results of the life-cycle cost (LCC) analysis indicating the net present value (NPV) and savings to investment ratio (SIR) of each ERO.

  4. Assessment of water resources in lead-zinc mined areas in Cherokee County, Kansas, and adjacent areas

    Science.gov (United States)

    Spruill, Timothy B.

    1987-01-01

    A study was conducted to evaluate water-resources problems related to abandoned lead and zinc mines in Cherokee County, Kansas, and adjacent areas in Missouri and Oklahoma. Past mining activities have caused changes in the hydrogeology of the area. Lead and zinc mining has caused discontinuities and perforations in the confining shale west of the Pennsylvanian-Mississippian geologic contact (referred to as the western area), which have created artificial ground-water recharge and discharge areas. Recharge to the shallow aquifer (rocks of Mississippian age) through collapses, shafts, and drill holes in the shale has caused the formation of a ground-water 'mound' in the vicinity of the Picher Field in Kansas and Oklahoma. Discharge of mine-contaminated ground water to Tar Creek occurs in Oklahoma from drill holes and shafts where the potentiometric surface of the shallow aquifer is above the land surface. Mining of ore in the shallow aquifer has resulted in extensive fracturing and removal of material, which has created highly transmissive zones and voids and increased ground-water storage properties of the aquifer. In the area east of the Pennsylvanian-Mississippian geologic contact (referred to as the eastern area), fractured rock and tailings on the land surface increased the amount of water available for infiltration to the shallow aquifer; in the western area, tailings on the impermeable shale created artificial, perched aquifer systems that slowly drain to surface streams. Pumping of the deep aquifer (rocks of Cambrian and Ordovician age) by towns and industries, which developed as a result of the mining industry, has resulted in a potential for downward movement of water from the shallow aquifer. The potential is greatest in Ottawa County, Oklahoma. Because of the large volume of water that may be transported from the shallow to the deep aquifer, open drill holes or casings present the greatest contamination hazard to water supplies in the deep aquifer. Mining

  5. Is current irrigation sustainable in the United States? An integrated assessment of climate change impact on water resources and irrigated crop yields

    Science.gov (United States)

    Blanc, Elodie; Caron, Justin; Fant, Charles; Monier, Erwan

    2017-08-01

    While climate change impacts on crop yields has been extensively studied, estimating the impact of water shortages on irrigated crop yields is challenging because the water resources management system is complex. To investigate this issue, we integrate a crop yield reduction module and a water resources model into the MIT Integrated Global System Modeling framework, an integrated assessment model linking a global economic model to an Earth system model. We assess the effects of climate and socioeconomic changes on water availability for irrigation in the U.S. as well as subsequent impacts on crop yields by 2050, while accounting for climate change projection uncertainty. We find that climate and socioeconomic changes will increase water shortages and strongly reduce irrigated yields for specific crops (i.e., cotton and forage), or in specific regions (i.e., the Southwest) where irrigation is not sustainable. Crop modeling studies that do not represent changes in irrigation availability can thus be misleading. Yet, since the most water-stressed basins represent a relatively small share of U.S. irrigated areas, the overall reduction in U.S. crop yields is small. The response of crop yields to climate change and water stress also suggests that some level of adaptation will be feasible, like relocating croplands to regions with sustainable irrigation or switching to less irrigation intensive crops. Finally, additional simulations show that greenhouse gas (GHG) mitigation can alleviate the effect of water stress on irrigated crop yields, enough to offset the reduced CO2 fertilization effect compared to an unconstrained GHG emission scenario.

  6. Front Range Infrastructure Resources Project: water-resources activities

    Science.gov (United States)

    Robson, Stanley G.; Heiny, Janet S.

    1998-01-01

    Infrastructure, such as roads, buildings, airports, and dams, is built and maintained by use of large quantities of natural resources such as aggregate (sand and gravel), energy, and water. As urban area expand, local sources of these resource are becoming inaccessible (gravel cannot be mined from under a subdivision, for example), or the cost of recovery of the resource becomes prohibitive (oil and gas drilling in urban areas is costly), or the resources may become unfit for some use (pollution of ground water may preclude its use as a water supply). Governmental land-use decision and environmental mandates can further preclude development of natural resources. If infrastructure resources are to remain economically available. current resource information must be available for use in well-reasoned decisions bout future land use. Ground water is an infrastructure resource that is present in shallow aquifers and deeper bedrock aquifers that underlie much of the 2,450-square-mile demonstration area of the Colorado Front Range Infrastructure Resources Project. In 1996, mapping of the area's ground-water resources was undertaken as a U.S. Geological Survey project in cooperation with the Colorado Department of Natural Resources, Division of Water Resources, and the Colorado Water Conservation Board.

  7. Water resources and water pollution studies

    International Nuclear Information System (INIS)

    Airey, P.

    2001-01-01

    Nuclear techniques are widely used in the investigation of the dynamics of the water cycle. This paper focusses on their contributions to the development of strategies for the sustainability of environmental resources. Emphasis has been placed on the role of environmental isotopes and radiotracers in evaluating models of complex environmental systems. Specific reference is made to 1) the construction of a marine radioactivity database for Asia and the Pacific, 2) the sustainability of groundwater in regions challenged by climate change, and 3) the applications of radiotracers to off-shore transport of sediments and contaminants

  8. Water Resources Management in Tanzania: Identifying Research ...

    African Journals Online (AJOL)

    by human-induced activities. Over the past ... Review of water resources management in Tanzania; Global literature review on water resources ..... requirements for biodiversity and human health. .... Global warming is altering regional climates.

  9. Isotope techniques in water resources development 1991

    International Nuclear Information System (INIS)

    1992-01-01

    Water resources are scarce in many parts of the world. Often, the only water resource is groundwater. Overuse usually invites a rapid decline in groundwater resources which are recharged insufficiently, or not at all, by prevailing climatic conditions. These and other problems currently encountered in hydrology and associated environmental fields have prompted an increasing demand for the utilization of isotope methods. Such methods have been recognized as being indispensable for solving problems such as the identification of pollution sources, characterization of palaeowater resources, evaluation of recharge and evaporative discharge under arid and semi-arid conditions, reconstruction of past climates, study of the interrelationships between surface and groundwater, dating of groundwater and validation of contaminant transport models. Moreover, in combination with other hydrogeological and geochemical methods, isotope techniques can provide useful hydrological information, such as data on the origin, replenishment and dynamics of groundwater. It was against this background that the International Atomic Energy Agency, in co-operation with the United Nations Educational, Scientific and Cultural Organization and the International Association of Hydrological Sciences, organized this symposium on the Use of Isotope Techniques in Water Resources Development, which took place in Vienna from 11 to 15 March 1991. The main themes of the symposium were the use of isotope techniques in solving practical problems of water resources assessment and development, particularly with respect to groundwater protection, and in studying environmental problems related to water, including palaeohydrological and palaeoclimatological problems. A substantial part of the oral presentations was concerned with the present state and trends in groundwater dating, and with some methodological aspects. These proceedings contain the papers of 37 oral and the extended synopses of 47 poster

  10. Forest Ecosystem services: Water resources

    Science.gov (United States)

    Thomas P. Holmes; James Vose; Travis Warziniack; Bill Holman

    2017-01-01

    Since the publication of the Millennium Ecosystem Assessment (MEA 2005), awareness has steadily grown regarding the importance of maintaining natural capital. Forest vegetation is a valuable source of natural capital, and the regulation of water quantity and quality is among the most important forest ecosystem services in many regions around the world. Changes in...

  11. Impact of Climate Change on Water Resources in Taiwan

    OpenAIRE

    An-Yuan Tsai Wen-Cheng Huang

    2011-01-01

    This paper establishes a comprehensive assessment model to measure the regional impact of climate change on Taiwan¡¦s water resources. Working from future rainfall data simulated by Japan¡¦s high-resolution GCM model JMA/MRI TL959L60 in a SRES-A1B scenario, we first apply climate change to an assessment model of renewable water resources to estimate the volume of renewable water resources on a regional basis. We then conduct a water resources system simulation based on estimates of future wat...

  12. Assessment of rural energy resources

    International Nuclear Information System (INIS)

    Rijal, K.; Bansal, N.K.; Grover, P.D.

    1990-01-01

    This article presents the methodological guidelines used to assess rural energy resources with an example of its application in three villages each from different physiographic zones of Nepal. Existing energy demand patterns of villages are compared with estimated resource availability, and rural energy planning issues are discussed. Economics and financial supply price of primary energy resources are compared, which provides insight into defective energy planning and policy formulation and implication in the context of rural areas of Nepal. Though aware of the formidable consequences, the rural populace continues to exhaust the forest as they are unable to find financially cheaper alternatives. Appropriate policy measures need to be devised by the government to promote the use of economically cost-effective renewable energy resources so as to change the present energy usage pattern to diminish the environmental impact caused by over exploitation of forest resources beyond their regenerative capacity

  13. Sustainable Development of Africa's Water Resources

    OpenAIRE

    Narenda P. Sharma

    1996-01-01

    This study, African water resources: challenges and opportunities for sustainable management propose a long-term strategy for water resource management, emphasizing the socially sustainable development imperatives for Sub-Saharan Africa (SSA). The message of this strategy is one of optimism - the groundwork already exists for the sustainable management of Africa's water resources. The stra...

  14. An Assessment of Regional Water Resources and Agricultural Sustainability in the Mississippi River Alluvial Aquifer System of Mississippi and Arkansas Under Current and Future Climate

    Science.gov (United States)

    Rigby, J.; Reba, M.

    2011-12-01

    The Lower Mississippi River Alluvial Plain is a highly productive agricultural region for rice, soy beans, and cotton that depends heavily on irrigation. Development of the Mississippi River Alluvial Aquifer (MRAA), one of the more prolific agricultural aquifers in the country, has traditionally been the primary source for irrigation in the region yielding over 1,100 Mgal/day to irrigation wells. Increasingly, the realities of changing climate and rapidly declining water tables have highlighted the necessity for new water management practices. Tail-water recovery and reuse is a rapidly expanding practice due in part to the efforts and cost-sharing of the NRCS, but regional studies of the potential for such practices to alleviate groundwater mining under current and future climate are lacking. While regional studies of aquifer geology have long been available, including assessments of regional groundwater flow, much about the aquifer is still not well understood including controls on recharge rates, a crucial component of water management design. We review the trends in regional availability of surface and groundwater resources, their current status, and the effects of recent changes in management practices on groundwater decline in Mississippi and Arkansas. Global and regional climate projections are used to assess scenarios of sustainable aquifer use under current land use and management along with the potential for more widely practiced surface water capture and reuse to alleviate groundwater decline. Finally, we highlight crucial knowledge gaps and challenges associated with the development of water management practices for sustainable agricultural use in the region.

  15. Multi–Model Ensemble Approaches to Assessment of Effects of Local Climate Change on Water Resources of the Hotan River Basin in Xinjiang, China

    Directory of Open Access Journals (Sweden)

    Min Luo

    2017-08-01

    Full Text Available The effects of global climate change threaten the availability of water resources worldwide and modify their tempo-spatial pattern. Properly quantifying the possible effects of climate change on water resources under different hydrological models is a great challenge in ungauged alpine regions. By using remote sensing data to support established models, this study aimed to reveal the effects of climate change using two models of hydrological processes including total water resources, peak flows, evapotranspiration, snowmelt and snow accumulation in the ungauged Hotan River Basin under future representative concentration pathway (RCP scenarios. The results revealed that stream flow was much more sensitive to temperature variation than precipitation change and increased by 0.9–10.0% according to MIKE SHE or 6.5–10.5% according to SWAT. Increased evapotranspiration was similar for both models with a range of 7.6–31.3%. The snow-covered area shrank from 32.5% to 11.9% between the elevations of 4200–6400 m, respectively, and snow accumulation increased when the elevation exceeded 6400 m above sea level (asl. The results also suggested that the fully distributed and semi-distributed structures of these two models strongly influenced the responses to climate change. The study proposes a practical approach to assess the climate change effect in ungauged regions.

  16. Climate proofing water and sanitation services and applying integrated water resource management in slums

    OpenAIRE

    Heath, Thomas

    2011-01-01

    This thesis assesses how climate change impacts water resources and communities and reviews how the resource can be managed in an integrated manner for small water and sanitation providers. This thesis was based upon a 10 month Knowledge Transfer Partnership (KTP) between Cranfield University and Water and Sanitation for the Urban Poor (WSUP). The aim of the project was to assess the opportunities and vulnerabilities presented by climate change and how Integrated Water Resource ...

  17. Trading off natural resources and rural livelihoods. A framework for sustainability assessment of small-scale food production in water-limited regions

    Science.gov (United States)

    Recanati, Francesca; Castelletti, Andrea; Dotelli, Giovanni; Melià, Paco

    2017-12-01

    Enhancing local production is key to promoting food security, especially in rural households of low-income countries, but may conflict with limited natural resources and ecosystems preservation. We propose a framework integrating the water-food nexus and a sustainable livelihoods perspective to assess small-scale food production in water-poor regions. We demonstrate it by assessing alternative production scenarios in the Gaza Strip at different spatial scales. At the scale of a single farm, there is a clear conflict among objectives: while cash crops ensure good incomes but contribute scarcely to domestic protein supply, crops performing well from the nutritional and environmental viewpoint are among the worst from the economic one. At the regional scale, domestic production might cover an important fraction of nutritional needs while contributing to household income, but water scarcity impairs the satisfaction of food demand by domestic production alone. Pursuing food security under multiple constraints thus requires a holistic perspective: we discuss how a multidimensional approach can promote the engagement of different stakeholders and allow the exploration of trade-offs between food security, sustainable exploitation of natural resources and economic viability.

  18. An Update of the Analytical Groundwater Modeling to Assess Water Resource Impacts at the Afton Solar Energy Zone

    Energy Technology Data Exchange (ETDEWEB)

    Quinn, John J. [Argonne National Lab. (ANL), Argonne, IL (United States); Greer, Christopher B. [Argonne National Lab. (ANL), Argonne, IL (United States); Carr, Adrianne E. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2014-10-01

    The purpose of this study is to update a one-dimensional analytical groundwater flow model to examine the influence of potential groundwater withdrawal in support of utility-scale solar energy development at the Afton Solar Energy Zone (SEZ) as a part of the Bureau of Land Management’s (BLM’s) Solar Energy Program. This report describes the modeling for assessing the drawdown associated with SEZ groundwater pumping rates for a 20-year duration considering three categories of water demand (high, medium, and low) based on technology-specific considerations. The 2012 modeling effort published in the Final Programmatic Environmental Impact Statement for Solar Energy Development in Six Southwestern States (Solar PEIS; BLM and DOE 2012) has been refined based on additional information described below in an expanded hydrogeologic discussion.

  19. Application of a contaminant mass balance method at an old landfill to assess the impact on water resources

    DEFF Research Database (Denmark)

    Thomsen, Nanna Isbak; Milosevic, Nemanja; Bjerg, Poul Løgstrup

    2012-01-01

    linking soil and groundwater contamination to surface water pollution are required. This paper presents a method which provides an estimate of the contaminant mass discharge, using a combination of a historical investigation and contaminant mass balance approach. The method works at the screening level...... and could be part of a risk assessment. The study site was Risby Landfill, an old unlined landfill located in a clay till setting on central Zealand, Denmark. The contaminant mass discharge was determined for three common leachate indicators: chloride, dissolved organic carbon and ammonium. For instance......, the mass discharge of chloride from the landfill was 9.4ton/year and the mass discharge of chloride to the deep limestone aquifer was 1.4ton/year. This resulted in elevated concentrations of leachate indicators (chloride, dissolved organic carbon and ammonium) in the groundwater. The mass discharge...

  20. USGS assessment of undiscovered oil and gas resources in Paleogene strata of the U.S. Gulf of Mexico coastal plain and state waters

    Science.gov (United States)

    Warwick, Peter D.; Coleman, James; Hackley, Paul C.; Hayba, Daniel O.; Karlsen, Alexander W.; Rowan, Elisabeth L.; Swanson, Sharon M.; Kennan, Lorcan; Pindell, James; Rosen, Norman C.

    2007-01-01

    This report presents a review of the U.S. Geological Survey (USGS) 2007 assessment of the undiscovered oil and gas resources in Paleogene strata underlying the U.S. Gulf of Mexico Coastal Plain and state waters. Geochemical, geologic, geophysical, thermal maturation, burial history, and paleontologic studies have been combined with regional cross sections and data from previous USGS petroleum assessments have helped to define the major petroleum systems and assessment units. Accumulations of both conventional oil and gas and continuous coal-bed gas within these petroleum systems have been digitally mapped and evaluated, and undiscovered resources have been assessed following USGS methodology.The primary source intervals for oil and gas in Paleogene (and Cenozoic) reservoirs are coal and shale rich in organic matter within the Wilcox Group (Paleocene-Eocene) and Sparta Formation of the Claiborne Group (Eocene); in addition, Cretaceous and Jurassic source rocks probably have contributed substantial petroleum to Paleogene (and Cenozoic) reservoirs.For the purposes of the assessment, Paleogene strata have divided into the following four stratigraphic study intervals: (1) Wilcox Group (including the Midway Group and the basal Carrizo Sand of the Claiborne Group; Paleocene-Eocene); (2) Claiborne Group (Eocene); (3) Jackson and Vicksburg Groups (Eocene-Oligocene); and (4) the Frio-Anahuac Formations (Oligocene). Recent discoveries of coal-bed gas in Paleocene strata confirm a new petroleum system that was not recognized in previous USGS assessments. In total, 26 conventional Paleogene assessment units are defined. In addition, four Cretaceous-Paleogene continuous (coal-bed gas) assessment units are included in this report. Initial results of the assessment will be released as USGS Fact Sheets (not available at the time of this writing).Comprehensive reports for each assessment unit are planned to be released via the internet and distributed on CD-ROMs within the next year.

  1. Assessment of earthen levee stability for management and response: A NASA-DHS-California Dept. Water Resources collaboration

    Science.gov (United States)

    An, K.; Jones, C. E.; Bekaert, D. P.; Dudas, J.

    2016-12-01

    Radar remote sensing of the Sacramento-San Joaquin Delta, the largest estuary in the western U.S. (over 2500 km2), and its levee system provides an opportunity for NASA Applied Science to aid the CA Department of Water Resources (CA-DWR) in monitoring and emergency response. The delta contains over 1,500 km of earthen levees, supports about 2.5 million acres of agricultural land, and serves as a main water supply for 23 million California residents. Many of the reclaimed islands are 10-25 feet below sea level, sit atop compressible peat and organic clay soils, and are surrounded by levees only 1 foot above the once in a century flood elevation threshold. Land subsidence in the delta can be attributed to a variety of factors, including: aerobic oxidation of soils, soil compaction from drainage, wind erosion, anaerobic decomposition, dissolved carbon fluxes, floods, seismic events, and even rodent burrowing. Interferometric Synthetic Aperture Radar (InSAR) is an established technique to measure surface displacements and has been used to map large-scale subsidence. The demonstration of earthen levee monitoring is a recent development that has been greatly furthered by the emergence of new instruments such as NASA's Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR). UAVSAR is an L-band airborne sensor with high signal-to-noise ratio, repeat flight track accuracy, and has a high spatial resolution (7 x 7 m) that is necessary for detailed levee monitoring. The adaptability of radar instruments in their ability to see through smoke, haze, and clouds during the day or night, is especially relevant during disaster events, when cloud cover or lack of solar illumination inhibits traditional visual surveys of damage. We demonstrate the advantages of combining InSAR with geographic information systems (GIS) datasets in locating subsidence features along critical levee infrastructure in the Delta for 2009-2016. The ability to efficiently locate potential areas of

  2. Adaptation of a pattern-scaling approach for assessment of local (village/valley) scale water resources and related vulnerabilities in the Upper Indus Basin

    Science.gov (United States)

    Forsythe, Nathan; Kilsby, Chris G.; Fowler, Hayley J.; Archer, David R.

    2010-05-01

    The water resources of the Upper Indus Basin (UIB) are of the utmost importance to the economic wellbeing of Pakistan. The irrigated agriculture made possible by Indus river runoff underpins the food security for Pakistan's nearly 200 million people. Contributions from hydropower account for more than one fifth of peak installed electrical generating capacity in a country where widespread, prolonged load-shedding handicaps business activity and industrial development. Pakistan's further socio-economic development thus depends largely on optimisation of its precious water resources. Confident, accurate seasonal predictions of water resource availability coupled with sound understanding of interannual variability are urgent insights needed by development planners and infrastructure managers at all levels. This study focuses on the challenge of providing meaningful quantitative information at the village/valley scale in the upper reaches of the UIB. Proceeding by progressive reductions in scale, the typology of the observed UIB hydrological regimes -- glacial, nival and pluvial -- are examined with special emphasis on interannual variability for individual seasons. Variations in discharge (runoff) are compared to observations of climate parameters (temperature, precipitation) and available spatial data (elevation, snow cover and snow-water-equivalent). The first scale presented is composed of the large-scale, long-record gauged UIB tributary basins. The Pakistan Water and Power Development Authority (WAPDA) has maintained these stations for several decades in order to monitor seasonal flows and accumulate data for design of further infrastructure. Data from basins defined by five gauging stations on the Indus, Hunza, Gilgit and Astore rivers are examined. The second scale presented is a set of smaller gauged headwater catchments with short records. These gauges were installed by WAPDA and its partners amongst the international development agencies to assess potential

  3. Climate disturbance and water resources

    International Nuclear Information System (INIS)

    Nguyen, Tien-Duc

    2012-01-01

    The worldwide multiplication of extreme climatic events (heat waves, dryness, floods, storms..) and their impact on the precious water resources raises the question of climate change: is it a reality, are the consequences already visible, should we urgently take care of it, and if so who actually takes care of it and how? This books makes a comprehensive overview of our knowledge about these questions, in a relevant and pedagogical way. Solutions to contain the climate boom risk exist and are based on the shared solidarity and responsibility. They require a strong involvement of the entire international community and their implementation has to run counter to the traditional opposition between developed and developing countries. However, the present day economic crisis is often used as a pretext for not doing anything. (J.S.)

  4. Preliminary research on quantitative methods of water resources carrying capacity based on water resources balance sheet

    Science.gov (United States)

    Wang, Yanqiu; Huang, Xiaorong; Gao, Linyun; Guo, Biying; Ma, Kai

    2018-06-01

    Water resources are not only basic natural resources, but also strategic economic resources and ecological control factors. Water resources carrying capacity constrains the sustainable development of regional economy and society. Studies of water resources carrying capacity can provide helpful information about how the socioeconomic system is both supported and restrained by the water resources system. Based on the research of different scholars, major problems in the study of water resources carrying capacity were summarized as follows: the definition of water resources carrying capacity is not yet unified; the methods of carrying capacity quantification based on the definition of inconsistency are poor in operability; the current quantitative research methods of water resources carrying capacity did not fully reflect the principles of sustainable development; it is difficult to quantify the relationship among the water resources, economic society and ecological environment. Therefore, it is necessary to develop a better quantitative evaluation method to determine the regional water resources carrying capacity. This paper proposes a new approach to quantifying water resources carrying capacity (that is, through the compilation of the water resources balance sheet) to get a grasp of the regional water resources depletion and water environmental degradation (as well as regional water resources stock assets and liabilities), figure out the squeeze of socioeconomic activities on the environment, and discuss the quantitative calculation methods and technical route of water resources carrying capacity which are able to embody the substance of sustainable development.

  5. Contamination of water resources by pathogenic bacteria

    Science.gov (United States)

    2014-01-01

    Water-borne pathogen contamination in water resources and related diseases are a major water quality concern throughout the world. Increasing interest in controlling water-borne pathogens in water resources evidenced by a large number of recent publications clearly attests to the need for studies that synthesize knowledge from multiple fields covering comparative aspects of pathogen contamination, and unify them in a single place in order to present and address the problem as a whole. Providing a broader perceptive of pathogen contamination in freshwater (rivers, lakes, reservoirs, groundwater) and saline water (estuaries and coastal waters) resources, this review paper attempts to develop the first comprehensive single source of existing information on pathogen contamination in multiple types of water resources. In addition, a comprehensive discussion describes the challenges associated with using indicator organisms. Potential impacts of water resources development on pathogen contamination as well as challenges that lie ahead for addressing pathogen contamination are also discussed. PMID:25006540

  6. Preliminary assessment of the health and environmental effects of coal utilization in the midwest. Volume I. Energy scenarios, technology characterizations, air and water resource impacts, and health effects

    Energy Technology Data Exchange (ETDEWEB)

    None

    1977-01-01

    An initial evaluation of the major health and environmental issues associated with increased coal use in the six midwestern states of Illinois, Indiana, Michigan, Minnesota, Ohio, and Wisconsin is presented. Using an integrated assessment approach, the evaluation proceeds from a base-line scenario of energy demand and facility siting for the period 1975 to 2020. Emphasis is placed on impacts from coal extraction, land reclamation, coal combustion for electrical generation, and coal gasification. The range of potential impacts and constraints is illustrated by a second scenario that represents an expected upper limit for coal utilization in Illinois. Included are: (1) a characterization of the energy demand and siting scenarios, coal related technologies, and coal resources, and (2) the related impacts on air quality, water availability, water quality, and human health.

  7. Economic Requirements of Water Resources Management

    Directory of Open Access Journals (Sweden)

    Nasser Khiabani

    2017-03-01

    Full Text Available Indicators of water resources status and water consumption in Iran reveal an imbalance between supply and demand. This is compounded by the current unrealistic water price that signals the inefficiency of the water market in Iran. In economics parlance, the most important factors responsible for the low efficiency of water market are inaccurate valuation and failure to define the ownership rights of water. Low prices, low sensitivity of water demand to prices, and the lack of proper inputs as substitutes for water resources have collectively contributed to excessive pressures on the available water resources for domestic, industrial, and agricultural uses. A brief glance reveals that water resources in Iran are merely priced based on cost accounting. This is while study has shown that developed countries adopt approaches to water pricing that not only consider the final cost of water but also take into account such other parameters that are affected by intrinsic value of water including its bequest and existence values. The present paper draws upon the concepts of value, expenses, and pricing of water in an attempt to explore the marketing and pricing of water resources as the two major tools economists employ in the management of these resources. It is the objective of the study to arrive at an accurate definition of ownership rights of water resources to improve upon the present water marketing. In doing so, the more important components of modern pricing strategies adopted by developed nations will also be investigated. Results indicate that the present cost accounting method used in pricing water in Iran will in the long-run lead to the wastage of water resources and that it should, therefore, be given up in favor modern and more realistic policies to avoid such waste of resources.

  8. Techniques for assessing water resource potentials in the developing countries: with emphasis on streamflow, erosion and sediment transport, water movement in unsaturated soils, ground water, and remote sensing in hydrologic applications

    Science.gov (United States)

    Taylor, George C.

    1971-01-01

    Hydrologic instrumentation and methodology for assessing water-resource potentials have originated largely in the developed countries of the temperature zone. The developing countries lie largely in the tropic zone, which contains the full gamut of the earth's climatic environments, including most of those of the temperate zone. For this reason, most hydrologic techniques have world-wide applicability. Techniques for assessing water-resource potentials for the high priority goals of economic growth are well established in the developing countries--but much more are well established in the developing countries--but much more so in some than in other. Conventional techniques for measurement and evaluation of basic hydrologic parameters are now well-understood in the developing countries and are generally adequate for their current needs and those of the immediate future. Institutional and economic constraints, however, inhibit growth of sustained programs of hydrologic data collection and application of the data to problems in engineering technology. Computer-based technology, including processing of hydrologic data and mathematical modelling of hydrologic parameters i also well-begun in many developing countries and has much wider potential application. In some developing counties, however, there is a tendency to look on the computer as a panacea for deficiencies in basic hydrologic data collection programs. This fallacy must be discouraged, as the computer is a tool and not a "magic box." There is no real substitute for sound programs of basic data collection. Nuclear and isotopic techniques are being used increasingly in the developed countries in the measurement and evaluation of virtually all hydrologic parameter in which conventional techniques have been used traditionally. Even in the developed countries, however, many hydrologists are not using nuclear techniques, simply because they lack knowledge of the principles involved and of the potential benefits

  9. NWS Water Resource Services Branch Division

    Science.gov (United States)

    the NWS homepage NWS Water Resources Program OS Home News Organization Search Search Home About Us Water Resources Policy Flood Loss Data AHPS Program Office (OHD) AHPS Software Development Hydrology Lab AHPS Toolbox Flood Safety Service Hydrology Program Turn Around Don't Drown! High Water Mark Signs

  10. Armenia : Towards Integrated Water Resources Management

    OpenAIRE

    World Bank

    2001-01-01

    The objective of this paper is to examine the challenges in the water sector faced by Armenia today, and outline options for management and allocation of its water resources in the future, considering the need for a stable, transparent apublic sector management framework and sustainable resource use for long-term private investment and job creation, and for appropriate balances among water...

  11. Isotope Hydrology: Understanding and Managing Water Resources

    International Nuclear Information System (INIS)

    Madsen, Michael

    2013-01-01

    Development is intricately linked to water whether concerning issues of health, food and agriculture, sanitation, the environment, industry, or energy. The IAEA, through its Water Resources Programme provides its Member States with science-based information and technical skills to improve understanding and management of their water resources

  12. Water Resources Research Institute | Mississippi State University

    Science.gov (United States)

    Welcome The Mississippi Water Resources Research Institute provides a statewide center of expertise in water and associated land-use and serves as a repository of knowledge for use in education private interests in the conservation, development, and use of water resources; to provide training

  13. Water Resources: Management and Strategies in Nigeria ...

    African Journals Online (AJOL)

    Water Resources: Management and Strategies in Nigeria. ... the rational use of water resources poses a great problem and challenge to the nation. ... Suggestions were made on ways of planning sustainable water supply systems for Nigeria ... South Africa (96); South Sudan (1); Sudan (3); Swaziland (3); Tanzania (19) ...

  14. Assessing Resource Assessment for MRE (Invited)

    Science.gov (United States)

    Hanson, H. P.; Bozec, A.; Duerr, A. S.; Rauchenstein, L. T.

    2010-12-01

    The Southeast National Marine Renewable Energy Center at Florida Atlantic University is concerned with marine renewable energy (MRE) recovery from the Florida Current using marine hydrokinetic technology and, in the future, from the thermocline in the Florida Straits via ocean thermal energy conversion. Although neither concept is new, technology improvements and the evolution of policy now warrant optimism for the future of these potentially rich resources. In moving toward commercial-scale deployments of energy-generating systems, an important first step is accurate and unembellished assessment of the resource itself. In short, we must ask: how much energy might be available? The answer to this deceptively simple question depends, of course, on the technology itself - system efficiencies, for example - but it also depends on a variety of other limiting factors such as deployment strategies, environmental considerations, and the overall economics of MRE in the context of competing energy resources. While it is universally agreed that MRE development must occur within a framework of environmental stewardship, it is nonetheless inevitable that there will be trade-offs between absolute environmental protection and realizing the benefits of MRE implementation. As with solar-energy and wind-power technologies, MRE technologies interact with the environment in which they are deployed. Ecological, societal, and even physical resource concerns all require investigation and, in some cases, mitigation. Moreover, the converse - how will the environment affect the equipment? - presents technical challenges that have confounded the seagoing community forever. Biofouling, for example, will affect system efficiency and create significant maintenance and operations issues. Because this will also affect the economics of MRE, nonlinear interactions among the limiting factors complicate the overall issue of resource assessment significantly. While MRE technology development is

  15. Integrated Water Resources Management: A Global Review

    Science.gov (United States)

    Srinivasan, V.; Cohen, M.; Akudago, J.; Keith, D.; Palaniappan, M.

    2011-12-01

    The diversity of water resources endowments and the societal arrangements to use, manage, and govern water makes defining a single paradigm or lens through which to define, prioritize and evaluate interventions in the water sector particularly challenging. Integrated Water Resources Management (IWRM) emerged as the dominant intervention paradigm for water sector interventions in the early 1990s. Since then, while many successful implementations of IWRM have been demonstrated at the local, basin, national and trans-national scales, IWRM has also been severely criticized by the global water community as "having a dubious record that has never been comprehensively analyzed", "curiously ambiguous", and "ineffective at best and counterproductive at worst". Does IWRM hold together as a coherent paradigm or is it a convenient buzzword to describe a diverse collection of water sector interventions? We analyzed 184 case study summaries of IWRM interventions on the Global Water Partnership (GWP) website. The case studies were assessed to find the nature, scale, objectives and outcomes of IWRM. The analysis does not suggest any coherence in IWRM as a paradigm - but does indicate distinct regional trends in IWRM. First, IWRM was done at very different scales in different regions. In Africa two-thirds of the IWRM interventions involved creating national or transnational organizations. In contrast, in Asia and South America, almost two-thirds were watershed, basin, or local body initiatives. Second, IWRM interventions involved very different types of activities in different regions. In Africa and Europe, IWRM entailed creation of policy documents, basin plans and institution building. In contrast, in Asia and Latin America the interventions were much more likely to entail new technology, infrastructure or watershed measures. In Australia, economic measures, new laws and enforcement mechanisms were more commonly used than anywhere else.

  16. Current Assessment and Future Outlook for Water Resources Considering Climate Change and a Population Burst: A Case Study of Ciliwung River, Jakarta City, Indonesia

    Directory of Open Access Journals (Sweden)

    Pankaj Kumar

    2017-06-01

    Full Text Available Modeling insecurity under future climate change and socio-economic development is indispensable for adaptive planning and sustainable management of water resources. This case study strives to assess the water quality and quantity status for both the present and the near future in the Ciliwung River basin inside the Jakarta Province under different scenarios using population growth with planned additional wastewater management infrastructure by 2030 as mentioned in the local master plan, and comparing the above conditions with the addition of the effects of climate change. Biochemical oxygen demand (BOD, chemical oxygen demand (COD and nitrate (NO3, the three important indicators of aquatic ecosystem health, were simulated to assess river pollution. Simulation results suggest that water quality in year 2030 will further deteriorate compared to the base year 2000 due to population growth and climate change, even considering the planned wastewater management infrastructure. The magnitude of impact from population growth is far greater than that from climate change. Simulated values of NO3, BOD and COD ranged from 6.07 to 13.34 mg/L, 7.65 to 11.41 mg/L, and 20.16 to 51.01 mg/L, respectively. Almost all of the water quality parameters exceeded the safe limit suitable for a healthy aquatic system, especially for the year 2030. The situation of water quality is worse for the downstream sampling location because of the cumulative effect of transport of untreated pollutants coming from upstream, as well as local dumping. This result will be useful for local policy makers and stakeholders involved in the water sector to formulate strategic and adaptive policies and plan for the future. One of the potential policy interventions is to implement a national integrated sewerage and septage management program on a priority basis, considering various factors like population density and growth, and global changes for both short- and long-term measures.

  17. Radon 222 in drinking water resources of Iran: A systematic review, meta-analysis and probabilistic risk assessment (Monte Carlo simulation).

    Science.gov (United States)

    Keramati, Hassan; Ghorbani, Raheb; Fakhri, Yadolah; Mousavi Khaneghah, Amin; Conti, Gea Oliveri; Ferrante, Margherita; Ghaderpoori, Mansour; Taghavi, Mahmoud; Baninameh, Zahra; Bay, Abotaleb; Golaki, Mohammad; Moradi, Bigard

    2018-03-30

    The current study was performed to review the conducted studies regarding the concentration of radon 222 in the tap drinking water; furthermore, by estimation of ingestion and inhalation effective dose, the health risk assessment in the adults and children using MCS technique was assessed. All related studies published among January 1990 to October 2016; were screened in the available databases such as Web of Science, PubMed, Science Direct, Scopus, SID, and Irandoc. The total effective dose was estimated by calculating E ing (Effective dose of ingestion) and E inh (Effective dose of inhalation) by Monte Carlo simulation (MCS) method. The range of ND ─ 40.9 Bq/L for radon 222 in water resources was proposed after evaluation of data collected from 13 studies with 1079 samples. The overall concentration of radon 222 in drinking water in Iran was 3.98: 95%CI (3.79 ─ 4.17 Bq/L). Also, the effective ingestion dose of radon 222 in adults age groups was 1.35 times higher than children. The rank order of drinking water resources based on the concentration of radon 222 was Spring > Spring and Well > Well > Spring and Qanat > Tap water. The overall concentration of radon 222 in drinking water in Iran was lower than WHO and EPA standard limits. Also, the rank order regarding area studied based on the concentration of radon 222 was Gillan > Mashhad > Mazandaran > Kerman > Yazd > Tehran > Kermanshah > Golestan > Hormozgan. The effective ingestion dose of radon 222 to consumers in the Gillan, Mashhad, Mazandaran, and Kerman were higher than WHO guidance (0.1 mSv/y). Also except consumers in the Hormozgan, inhalation effective dose radon 222, in the other investigated areas were higher than WHO guidance (0.1 mSv/y). Therefore, it is recommended to conduct the required programs regarding control and elimination of radon 222 concentration in Iranian drinking water supply. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Water resource management: an Indian perspective.

    Science.gov (United States)

    Khadse, G K; Labhasetwar, P K; Wate, S R

    2012-10-01

    Water is precious natural resource for sustaining life and environment. Effective and sustainable management of water resources is vital for ensuring sustainable development. In view of the vital importance of water for human and animal life, for maintaining ecological balance and for economic and developmental activities of all kinds, and considering its increasing scarcity, the planning and management of water resource and its optimal, economical and equitable use has become a matter of the utmost urgency. Management of water resources in India is of paramount importance to sustain one billion plus population. Water management is a composite area with linkage to various sectors of Indian economy including the agricultural, industrial, domestic and household, power, environment, fisheries and transportation sector. The water resources management practices should be based on increasing the water supply and managing the water demand under the stressed water availability conditions. For maintaining the quality of freshwater, water quality management strategies are required to be evolved and implemented. Decision support systems are required to be developed for planning and management of the water resources project. There is interplay of various factors that govern access and utilization of water resources and in light of the increasing demand for water it becomes important to look for holistic and people-centered approaches for water management. Clearly, drinking water is too fundamental and serious an issue to be left to one institution alone. It needs the combined initiative and action of all, if at all we are serious in socioeconomic development. Safe drinking water can be assured, provided we set our mind to address it. The present article deals with the review of various options for sustainable water resource management in India.

  19. Senegal - Irrigation and Water Resource Management

    Data.gov (United States)

    Millennium Challenge Corporation — IMPAQ: This evaluation report presents findings from the baseline data collected for the Irrigation and Water Resources Management (IWRM) project, which serves as...

  20. Evaluating participation in water resource management: A review

    Science.gov (United States)

    Carr, G.; BlöSchl, G.; Loucks, D. P.

    2012-11-01

    Key documents such as the European Water Framework Directive and the U.S. Clean Water Act state that public and stakeholder participation in water resource management is required. Participation aims to enhance resource management and involve individuals and groups in a democratic way. Evaluation of participatory programs and projects is necessary to assess whether these objectives are being achieved and to identify how participatory programs and projects can be improved. The different methods of evaluation can be classified into three groups: (i) process evaluation assesses the quality of participation process, for example, whether it is legitimate and promotes equal power between participants, (ii) intermediary outcome evaluation assesses the achievement of mainly nontangible outcomes, such as trust and communication, as well as short- to medium-term tangible outcomes, such as agreements and institutional change, and (iii) resource management outcome evaluation assesses the achievement of changes in resource management, such as water quality improvements. Process evaluation forms a major component of the literature but can rarely indicate whether a participation program improves water resource management. Resource management outcome evaluation is challenging because resource changes often emerge beyond the typical period covered by the evaluation and because changes cannot always be clearly related to participation activities. Intermediary outcome evaluation has been given less attention than process evaluation but can identify some real achievements and side benefits that emerge through participation. This review suggests that intermediary outcome evaluation should play a more important role in evaluating participation in water resource management.

  1. Water management - management actions applied to water resources system

    International Nuclear Information System (INIS)

    Petkovski, Ljupcho; Tanchev, Ljubomir

    2001-01-01

    In this paper are presented a general description of water resource systems, a systematisation of the management tasks and the approaches for solution, including a review of methods used for solution of water management tasks and the fundamental postulates in the management. The management of water resources is a synonym for the management actions applied to water resource systems. It is a general term that unites planning and exploitation of the systems. The modern planning assumes separating the water racecourse part from the hydro technical part of the project. The water resource study is concerned with the solution for the resource problem. This means the parameters of the system are determined in parallel with the definition of the water utilisation regime. The hydro-technical part of the project is the design of structures necessary for the water resource solution. (Original)

  2. MULTIPLE-PURPOSE DEVELOPMENT OF WATER RESOURCES

    African Journals Online (AJOL)

    practices of cost allocations to various functions of .... approach of water resources development the most attractive and benefitial .... project plus a share of the "joint cost" which are the ... Pricing and Repayments American Water Re- sources ...

  3. Synthetic Scenarios from CMIP5 Model Simulations for Climate Change Impact Assessments in Managed Ecosystems and Water Resources: Case Study in South Asian Countries

    Science.gov (United States)

    Anandhi, A.; Omani, N.; Chaubey, I.; Horton, R.; Bader, D.; Nanjundiah, R. S.

    2017-01-01

    localized intense rainfall events) observed in the region can be a key factor for managed ecosystems and water management and could also lead to more incidence of severe urban flooding. The results could be used to assess both mitigation and adaptation alternatives to reduce vulnerabilities in managed ecosystems (agricultural and urban) and water resources.

  4. Water Resources Status and Availability Assessment in Current and Future Climate Change Scenarios for Beas River Basin of North Western Himalaya

    Science.gov (United States)

    Aggarwal, S. P.; Thakur, P. K.; Garg, V.; Nikam, B. R.; Chouksey, A.; Dhote, P.; Bhattacharya, T.

    2016-10-01

    The water resources status and availability of any river basin is of primary importance for overall and sustainable development of any river basin. This study has been done in Beas river basin which is located in North Western Himalaya for assessing the status of water resources in present and future climate change scenarios. In this study hydrological modelling approach has been used for quantifying the water balance components of Beas river basin upto Pandoh. The variable infiltration capacity (VIC) model has been used in energy balance mode for Beas river basin at 1km grid scale. The VIC model has been run with snow elevation zones files to simulate the snow module of VIC. The model was run with National Centre for Environmental Prediction (NCEP) forcing data (Tmax, Tmin, Rainfall and wind speed at 0.5degree resolution) from 1 Jan. 1999 to 31 Dec 2006 for calibration purpose. The additional component of glacier melt was added into overall river runoff using semi-empirical approach utilizing air temperature and glacier type and extent data. The ground water component is computed from overall recharge of ground water by water balance approach. The overall water balance approach is validated with river discharge data provided by Bhakra Beas Management Board (BBMB) from 1994-2014. VIC routing module was used to assess pixel wise flow availability at daily, monthly and annual time scales. The mean monthly flow at Pandoh during study period varied from 19 - 1581 m3/s from VIC and 50 to 1556 m3/sec from observation data, with minimum water flow occurring in month of January and maximum flow in month of August with annual R2 of 0.68. The future climate change data is taken from CORDEX database. The climate model of NOAA-GFDL-ESM2M for IPCC RCP scenario 4.5 and 8.5 were used for South Asia at 0.44 deg. grid from year 2006 to 2100. The climate forcing data for VIC model was prepared using daily maximum and minimum near surface air temperature, daily precipitation and

  5. WATER RESOURCES STATUS AND AVAILABILITY ASSESSMENT IN CURRENT AND FUTURE CLIMATE CHANGE SCENARIOS FOR BEAS RIVER BASIN OF NORTH WESTERN HIMALAYA

    Directory of Open Access Journals (Sweden)

    S. P. Aggarwal

    2016-10-01

    Full Text Available The water resources status and availability of any river basin is of primary importance for overall and sustainable development of any river basin. This study has been done in Beas river basin which is located in North Western Himalaya for assessing the status of water resources in present and future climate change scenarios. In this study hydrological modelling approach has been used for quantifying the water balance components of Beas river basin upto Pandoh. The variable infiltration capacity (VIC model has been used in energy balance mode for Beas river basin at 1km grid scale. The VIC model has been run with snow elevation zones files to simulate the snow module of VIC. The model was run with National Centre for Environmental Prediction (NCEP forcing data (Tmax, Tmin, Rainfall and wind speed at 0.5degree resolution from 1 Jan. 1999 to 31 Dec 2006 for calibration purpose. The additional component of glacier melt was added into overall river runoff using semi-empirical approach utilizing air temperature and glacier type and extent data. The ground water component is computed from overall recharge of ground water by water balance approach. The overall water balance approach is validated with river discharge data provided by Bhakra Beas Management Board (BBMB from 1994-2014. VIC routing module was used to assess pixel wise flow availability at daily, monthly and annual time scales. The mean monthly flow at Pandoh during study period varied from 19 - 1581 m3/s from VIC and 50 to 1556 m3/sec from observation data, with minimum water flow occurring in month of January and maximum flow in month of August with annual R2 of 0.68. The future climate change data is taken from CORDEX database. The climate model of NOAA-GFDL-ESM2M for IPCC RCP scenario 4.5 and 8.5 were used for South Asia at 0.44 deg. grid from year 2006 to 2100. The climate forcing data for VIC model was prepared using daily maximum and minimum near surface air temperature, daily

  6. Hydroeconomic modeling to support integrated water resources management in China

    DEFF Research Database (Denmark)

    Davidsen, Claus

    resources. In this context, the PhD study focused on development of approaches to inform integrated water resources management to cope with multiple and coupled challenges faced in China. The proposed method is to formulate river water management as a joint hydroeconomic optimization problem that minimizes...... the system and allowed overdraft in dry years in return for increased recharge in wet years. Further, cost-effective recovery of an overdrafted groundwater aquifer was demonstrated. The third implementation assessed interactions of water resources and water quality management. Biochemical oxygen demand (BOD...... problem with a single surface water reservoir state variable. A comparison of different management scenarios was used to evaluate how the South-to-North Water Transfer Project will impact optimal water resources management. Scenarios with unregulated groundwater pumping at realistic pumping costs verified...

  7. Impact of Climate Change on Water Resources in Taiwan

    Directory of Open Access Journals (Sweden)

    An-Yuan Tsai Wen-Cheng Huang

    2011-01-01

    Full Text Available This paper establishes a comprehensive assessment model to measure the regional impact of climate change on Taiwan¡¦s water resources. Working from future rainfall data simulated by Japan¡¦s high-resolution GCM model JMA/MRI TL959L60 in a SRES-A1B scenario, we first apply climate change to an assessment model of renewable water resources to estimate the volume of renewable water resources on a regional basis. We then conduct a water resources system simulation based on estimates of future water needs, regional reservoir effective capacity and renewable water resource volume. This paper uses three water resource assessment indicators: the annual water utilization ratio indicator, the water shortage indicator and the extreme event occurrence indicator. Through fuzzy comprehensive assessment, we divide the evaluation set into five levels: very good (L1, good (L2, fair (L3, poor (L4 and very poor (L5. Results indicate that, given the effects of future climate change (2080 - 2099 and the increase in water demand, future water resources conditions in northern and eastern Taiwan will not be significantly different from historical levels (1979 - 1998 and will maintain a ¡§good¡¨ level (L2, while the conditions in southern Taiwan will visibly deteriorate from its historical ¡§fair¡¨ level (L3 to ¡§poor¡¨ (L4; and the future conditions for central Taiwan will be ¡§poor¡¨ (L4. The initiation of adaptation options for water management in southern and central Taiwan would be needed by increasing reservoir capacity and reducing overall water use.

  8. WATER CHEMISTRY ASSESSMENT METHODS

    Science.gov (United States)

    This section summarizes and evaluates the surfce water column chemistry assessment methods for USEPA/EMAP-SW, USGS-NAQA, USEPA-RBP, Oho EPA, and MDNR-MBSS. The basic objective of surface water column chemistry assessment is to characterize surface water quality by measuring a sui...

  9. Water resources management in Tanzania: identifying research ...

    African Journals Online (AJOL)

    This paper aims at identifying research gaps and needs and recommendations for a research agenda on water resources management in Tanzania. We reviewed published literature on water resources management in Tanzania in order to highlight what is currently known, and to identify knowledge gaps, and suggest ...

  10. GEO/SQL in water resource manegement

    Directory of Open Access Journals (Sweden)

    Andrej Vidmar

    1992-12-01

    Full Text Available The development of water resource management concepts shouis the problem of collecting, combining, and using alphanumerical and graphical spatial data. The solution of this problem lies in the use of geographic information systems - GIS. This paper describes the usefulness of GIS programming tool Geo/SQL in water resources management.

  11. Assessing Climate Change Impacts on Water Resources and Colorado Agriculture Using an Equilibrium Displacement Mathematical Programming Model

    OpenAIRE

    Fathelrahman, Eihab; Davies, Amalia; Davies, Stephen; Pritchett, James

    2014-01-01

    This research models selected impacts of climate change on Colorado agriculture several decades in the future, using an Economic Displacement Mathematical Programming model. The agricultural economy in Colorado is dominated by livestock, which accounts for 67% of total receipts. Crops, including feed grains and forages, account for the remainder. Most agriculture is based on irrigated production, which depends on both groundwater, especially from the Ogallala aquifer, and surface water that c...

  12. Teale Department of Water Resources

    Data.gov (United States)

    California Natural Resource Agency — California Spatial Information System (CaSIL) is a project designed to improve access to geo-spatial and geo-spatial related data information throughout the state of...

  13. Assessment of the Vulnerability of Water Resources to Seasonal Fires Across the Northern Sub-Saharan African Region

    Science.gov (United States)

    Ichoku, Charles M.

    2010-01-01

    The northern sub-Saharan African (NSSA) region, extending from the southern fringes of the Sahara to the Equator, and stretching west to east from the Atlantic to the Indian ocean coasts, plays a prominent role in the distribution of Saharan dust and other airborne matter around the region and to other parts of the world, the genesis of global atmospheric circulation, and the birth of such major (and often catastrophic) events as hurricanes. Therefore, this NSSA region represents a critical variable in the global climate change equation. Recent satellite-based studies have revealed that the NSSA region has one of the highest biomass-burning rates per unit land area among all regions of the world. Because of the high concentration and frequency of fires in this region, with the associated abundance of heat release and gaseous and particulate smoke emissions, biomass-burning activity is believed to be a major driver of the regional carbon, energy, and water cycles. We acknowledge that the rainy season in the NSSA region is from April to September while biomass burning occurs mainly during the dry season (October to March). Nevertheless, these two phenomena are indirectly coupled to each other through a chain of complex processes and conditions, including land-cover and surface-albedo changes, the carbon cycle, evapotranspiration, drought, desertification, surface water runoff, ground water recharge, and variability in atmospheric composition, heating rates, and circulation. In this presentation, we will examine the theoretical linkages between these processes, discuss the preliminary results based on satellite data analysis, and provide an overview of plans for more integrated research to be conducted over the next few years.

  14. Thermal infrared remote sensing in assessing groundwater and surface-water resources related to Hannukainen mining development site, northern Finland

    Science.gov (United States)

    Rautio, Anne B.; Korkka-Niemi, Kirsti I.; Salonen, Veli-Pekka

    2018-02-01

    Mining development sites occasionally host complicated aquifer systems with notable connections to natural surface water (SW) bodies. A low-altitude thermal infrared (TIR) imaging survey was conducted to identify hydraulic connections between aquifers and rivers and to map spatial surface temperature patterns along the subarctic rivers in the proximity of the Hannukainen mining development area, northern Finland. In addition to TIR data, stable isotopic compositions ( δ 18O, δD) and dissolved silica concentrations were used as tracers to verify the observed groundwater (GW) discharge into the river system. Based on the TIR survey, notable GW discharge into the main river channel and its tributaries (61 km altogether) was observed and over 500 GW discharge sites were located. On the basis of the survey, the longitudinal temperature patterns of the studied rivers were found to be highly variable. Hydrological and hydrogeological information is crucial in planning and siting essential mining operations, such as tailing areas, in order to prevent any undesirable environmental impacts. The observed notable GW discharge was taken into consideration in the planning of the Hannukainen mining development area. The results of this study support the use of TIR imagery in GW-SW interaction and environmental studies in extensive and remote areas with special concerns for water-related issues but lacking the baseline research.

  15. Water footprint as a tool for integrated water resources management

    Science.gov (United States)

    Aldaya, Maite; Hoekstra, Arjen

    2010-05-01

    In a context where water resources are unevenly distributed and, in some regions precipitation and drought conditions are increasing, enhanced water management is a major challenge to final consumers, businesses, water resource users, water managers and policymakers in general. By linking a large range of sectors and issues, virtual water trade and water footprint analyses provide an appropriate framework to find potential solutions and contribute to a better management of water resources. The water footprint is an indicator of freshwater use that looks not only at direct water use of a consumer or producer, but also at the indirect water use. The water footprint of a product is the volume of freshwater used to produce the product, measured over the full supply chain. It is a multi-dimensional indicator, showing water consumption volumes by source and polluted volumes by type of pollution; all components of a total water footprint are specified geographically and temporally. The water footprint breaks down into three components: the blue (volume of freshwater evaporated from surface or groundwater systems), green (water volume evaporated from rainwater stored in the soil as soil moisture) and grey water footprint (the volume of polluted water associated with the production of goods and services). Closely linked to the concept of water footprint is that of virtual water trade, which represents the amount of water embedded in traded products. Many nations save domestic water resources by importing water-intensive products and exporting commodities that are less water intensive. National water saving through the import of a product can imply saving water at a global level if the flow is from sites with high to sites with low water productivity. Virtual water trade between nations and even continents could thus be used as an instrument to improve global water use efficiency and to achieve water security in water-poor regions of the world. The virtual water trade

  16. One-way coupling of an integrated assessment model and a water resources model: evaluation and implications of future changes over the US Midwest

    Science.gov (United States)

    Voisin, N.; Liu, L.; Hejazi, M.; Tesfa, T.; Li, H.; Huang, M.; Liu, Y.; Leung, L. R.

    2013-11-01

    An integrated model is being developed to advance our understanding of the interactions between human activities, terrestrial system and water cycle, and to evaluate how system interactions will be affected by a changing climate at the regional scale. As a first step towards that goal, a global integrated assessment model, which includes a water-demand model driven by socioeconomics at regional and global scales, is coupled in a one-way fashion with a land surface hydrology-routing-water resources management model. To reconcile the scale differences between the models, a spatial and temporal disaggregation approach is developed to downscale the annual regional water demand simulations into a daily time step and subbasin representation. The model demonstrates reasonable ability to represent the historical flow regulation and water supply over the US Midwest (Missouri, Upper Mississippi, and Ohio river basins). Implications for future flow regulation, water supply, and supply deficit are investigated using climate change projections with the B1 and A2 emission scenarios, which affect both natural flow and water demand. Although natural flow is projected to increase under climate change in both the B1 and A2 scenarios, there is larger uncertainty in the changes of the regulated flow. Over the Ohio and Upper Mississippi river basins, changes in flow regulation are driven by the change in natural flow due to the limited storage capacity. However, both changes in flow and demand have effects on the Missouri River Basin summer regulated flow. Changes in demand are driven by socioeconomic factors, energy and food demands, global markets and prices with rainfed crop demand handled directly by the land surface modeling component. Even though most of the changes in supply deficit (unmet demand) and the actual supply (met demand) are driven primarily by the change in natural flow over the entire region, the integrated framework shows that supply deficit over the Missouri River

  17. Fuzzy pricing for urban water resources: model construction and application.

    Science.gov (United States)

    Zhao, Ranhang; Chen, Shouyu

    2008-08-01

    A rational water price system plays a crucial role in the optimal allocation of water resources. In this paper, a fuzzy pricing model for urban water resources is presented, which consists of a multi-criteria fuzzy evaluation model and a water resources price (WRP) computation model. Various factors affecting WRP are comprehensively evaluated with multiple levels and objectives in the multi-criteria fuzzy evaluation model, while the price vectors of water resources are constructed in the WRP computation model according to the definition of the bearing water price index, and then WRP is calculated. With the incorporation of an operator's knowledge, it considers iterative weights and subjective preference of operators for weight-assessment. The weights determined are more rational and the evaluation results are more realistic. Particularly, dual water supply is considered in the study. Different prices being fixed for water resources with different qualities conforms to the law of water resources value (WRV) itself. A high-quality groundwater price computation model is also proposed to provide optimal water allocation and to meet higher living standards. The developed model is applied in Jinan for evaluating its validity. The method presented in this paper offers some new directions in the research of WRP.

  18. Department of Water Resources a

    African Journals Online (AJOL)

    USER

    2016-07-14

    Jul 14, 2016 ... The study involves evaluation of basin area, slopes, shape of the basin as morphological ... properties of water on earth and their ... reservoirs and increased use of ground ... Figure 1: Map of Nigeria and Oyun River Basin.

  19. Water resources of Sedgwick County, Kansas

    Science.gov (United States)

    Bevans, H.E.

    1989-01-01

    Hydrologic data from streams, impoundments, and wells are interpreted to: (1) document water resources characteristics; (2) describe causes and extent of changes in water resources characteristics; and (3) evaluate water resources as sources of supply. During 1985, about 134,200 acre-ft of water (84% groundwater) were used for public (42%), irrigation, (40%), industrial (14%), and domestic (4%) supplies. Streamflow and groundwater levels are related directly to precipitation, and major rivers are sustained by groundwater inflow. Significant groundwater level declines have occurred only in the Wichita well field. The Arkansas and Ninnescah Rivers have sodium chloride type water; the Little Arkansas River, calcium bicarbonate type water. Water quality characteristics of water in small streams and wells depend primarily on local geology. The Wellington Formation commonly yields calcium sulfate type water; Ninnescah Shale and unconsolidated deposits generally yield calcium bicarbonate type water. Sodium chloride and calcium sulfate type water in the area often have dissolved-solids concentrations exceeding 1,000 mg/L. Water contamination by treated sewage effluent was detected inparts of the Arkansas River, Little Arkansas River, and Cowskin Creek. Nitrite plus nitrate as nitrogen contamination was detected in 11 of 101 wells; oilfield brine was detected in the Wichita-Valley Center Floodway, Prairie Creek, Whitewater Creek, and 16 of 101 wells; and agricultural pesticides were detected in 8 of 14 impoundments and 5 of 19 wells. Generally, the water is acceptable for most uses. (USGS)

  20. Water Resources Management in Tanzania: Identifying Research ...

    African Journals Online (AJOL)

    many factors affecting water resources decision making, it is ubiquitous in that it permeates the planning, policy-making .... estimated that in many farming systems, more than 70% of the rain ..... Using correlation techniques, the relationship ...

  1. Water advisory demand evaluation and resource toolkit

    OpenAIRE

    Paluszczyszyn, D.; Illya, S.; Goodyer, E.; Kubrycht, T.; Ambler, M.

    2016-01-01

    Cities are living organisms, 24h / 7day, with demands on resources and outputs. Water is a key resource whose management has not kept pace with modern urban life. Demand for clean water and loads on waste water no longer fit diurnal patterns; and they are impacted by events that are outside the normal range of parameters that are taken account of in water management. This feasibility study will determine how the application of computational intelligence can be used to analyse a mix of dat...

  2. Assessing Water Security in the Amu Darya River Basin, Afghanistan

    National Research Council Canada - National Science Library

    DiPasquale, Joseph A

    2006-01-01

    ...; and water development projects. The thesis evaluated the quantitative techniques employed for their utility in planning, executing, and assessing military operations in relation to water resources. Afghanistan...

  3. Assessment and forecast on ecological footprint of water resources in Guizhou Province%贵州省水资源生态足迹评价与预测

    Institute of Scientific and Technical Information of China (English)

    官冬杰; 苏印; 苏维词; 邱瑞希

    2015-01-01

    水资源是人类生产生活最关键的资源,对国民经济和社会发展有着不可替代的作用,是实现社会经济可持续发展的社会基础。依据水资源生态足迹的原理和模型,对贵州省2001—2012年水资源生态足迹、生态承载力进行分析。在此基础上,采用指数平滑法对贵州省2013—2016年水资源生态足迹与生态承载力进行预测。结果表明:在2001—2012年间贵州省人均水资源生态足迹总体上呈上升趋势;贵州省历年人均水资源生态承载力均大于生态足迹,存在一定的生态盈余,水资源可持续开发利用情况较好;2013—2016年贵州省人均生态足迹呈上升趋势,2013年人均生态承载力略微下降,水资源仍处于生态盈余状态,但生态盈余量有所减少。水资源生态足迹的变化与社会经济发展密切相关,应该充分考虑贵州省水资源的时空分布情况,调整产业结构,合理调度、利用水资源,促进贵州省整个社会经济的持续发展。%Water resources are essential for production and life of human beings,as well as national economy and social development.So,water resources are the basis to realize the sustainable development of social economy.According to the basic principle and calculation model of water resources ecological footprint,the water resources ecological footprint and ecological carrying capacity in the period of 2001—2012 in Guizhou Province are analyzed.Then,the water resources ecological footprint and ecological carrying capacity in 2013—2016 is predicted by a method of quadratic exponential smoothing.The results show that the water resources ecological footprint per capita increase in the period of 2001—2012,and the ecological carrying capacity of water resources in Guizhou Province is more than the ecological footprint.As a net consequence, the ecological surplus exists.That is to say that the sustainable utilization of water

  4. Socio–economic benefits and pollution levels of water resources ...

    African Journals Online (AJOL)

    Communities are dependent on wetlands resources for income generation. However, anthropogenic activities that result into pollution of water are one of the major public health problems. Assessment of socio–economic activities and pollution levels of domestic water sources in Gulu Municipality, Pece wetland was done.

  5. Water Availability and Management of Water Resources

    Science.gov (United States)

    One of the most pressing national and global issues is the availability of freshwater due to global climate change, energy scarcity issues and the increase in world population and accompanying economic growth. Estimates of water supplies and flows through the world's hydrologic c...

  6. Methods for regional assessment of geothermal resources

    Science.gov (United States)

    Muffler, P.; Cataldi, R.

    1978-01-01

    A consistent, agreed-upon terminology is prerequisite for geothermal resource assessment. Accordingly, we propose a logical, sequential subdivision of the "geothermal resource base", accepting its definition as all the thermal energy in the earth's crust under a given area, measured from mean annual temperature. That part of the resource base which is shallow enough to be tapped by production drilling is termed the "accessible resource base", and it in turn is divided into "useful" and "residual" components. The useful component (i.e. the thermal energy that could reasonably be extracted at costs competitive with other forms of energy at some specified future time) is termed the "geothermal resource". This in turn is divided into "economic" and "subeconomic" components, based on conditions existing at the time of assessment. In the format of a McKelvey diagram, this logic defines the vertical axis (degree of economic feasibility). The horizontal axis (degree of geologic assurance) contains "identified" and "undiscovered" components. "Reserve" is then designated as the identified economic resource. All categories should be expressed in units of thermal energy, with resource and reserve figures calculated at wellhead, prior to the inevitable large losses inherent in any practical thermal use or in conversion to electricity. Methods for assessing geothermal resources can be grouped into 4 classes: (a) surface thermal flux, (b) volume, (c) planar fracture and (d) magmatic heat budget. The volume method appears to be most useful because (1) it is applicable to virtually any geologic environment, (2) the required parameters can in Sprinciple be measured or estimated, (3) the inevitable errors are in part compensated and (4) the major uncertainties (recoverability and resupply) are amenable to resolution in the foreseeable future. The major weakness in all the methods rests in the estimation of how much of the accessible resource base can be extracted at some time in the

  7. Assessment of resource availability and sustainability for ...

    African Journals Online (AJOL)

    The availability of resources and their suitability for subsistence and small-scale commercial fishers in South Africa were assessed and appropriate options for the management of resources recommended. Assessment of current resource utilization and recommendations for future subsistence and/or small-scale commercial ...

  8. Assessment of the contamination of drinking water supply wells by pesticides from surface water resources using a finite element reactive transport model and global sensitivity analysis techniques

    DEFF Research Database (Denmark)

    Malaguerra, Flavio; Albrechtsen, Hans-Jørgen; Binning, Philip John

    2013-01-01

    A reactive transport model is employed to evaluate the potential for contamination of drinking water wells by surface water pollution. The model considers various geologic settings, includes sorption and degradation processes and is tested by comparison with data from a tracer experiment where...... fluorescein dye injected in a river is monitored at nearby drinking water wells. Three compounds were considered: an older pesticide MCPP (Mecoprop) which is mobile and relatively persistent, glyphosate (Roundup), a newer biodegradable and strongly sorbing pesticide, and its degradation product AMPA. Global...... sensitivity analysis using the Morris method is employed to identify the dominant model parameters. Results show that the characteristics of clay aquitards (degree of fracturing and thickness), pollutant properties and well depths are crucial factors when evaluating the risk of drinking water well...

  9. Sustainable use of water resources

    DEFF Research Database (Denmark)

    Battilani, A; Jensen, Christian Richardt; Liu, Fulai

    2013-01-01

    and acidity were observed. PRD reduced irrigation water volume (-9.0% of RDI) while a higher dry matter accumulation in the fruits was recorded both in 2007 and 2008. The income for each cubic meter of irrigation water was 10.6 € in RDI and 14.8 € in PRD, respectively. The gross margin obtained with each kg......A field experiment was carried out in Northern Italy, within the frame of the EU project SAFIR, to test the feasibility of partial root-zone drying (PRD) management on processing tomato and to compare PRD irrigation strategy with regulated deficit irrigation (RDI) management. In 2007......, there was no difference between RDI and PRD for the total and marketable yield. In 2008, PRD increased the marketable yield by 14.8% while the total yield was similar to RDI. Water Use Efficiency (WUE) was higher with PRD (+14%) compared to RDI. PRD didn’t improve fruit quality, although in 2007 a better °Brix, colour...

  10. Impacts of Climate Change and of Anthropisation on Water Resources: from the Risk Assessment to Adaptation, the Case of the Seine Basin (including Paris, France)

    Science.gov (United States)

    Habets, F.; Viennot, P.; Thierion, C.; Vergnes, J. P.; Ait Kaci, A.; Caballero, Y.

    2015-12-01

    The Seine river, located in the temperate climate of northern France and flowing over a large sedimentary basins that hosts multilayer aquifers, is characterized by small temporal variations of its discharge. However, the presence of a megacity (Paris) and a wide area of intensive agriculture combined with climate change puts pressure on the water resources both in terms of quality and quantity. Previous research projects have estimated the impact of climate change on the water resource of the Seine basin, with the uncertainties associated to climate projections, hydrological models or downscaling methods. The water resource was projected to decrease by -14 % ± 10 % in 2050 and -28 +/-16% in 2100. This led to new studies that focus on the combined impact of climate change and adaptations. The tested adaptations are: a reduction of the groundwater abstractions, evolution of land use, development of small dams to « harvest water » or artificial recharge of aquifers. The communication of the results of these projects to stakeholders have led to the development on new indicators that better express the risk on the water resource management, especially for the groundwater. For instance maps of the evolution of piezometric head are difficult to interpret. To better express the risk evolution, a new indicator was defined: the evolution of the groundwater crisis duration, ie, the period when the charge of the aquifer is below the crisis piezometric level defined by the stakeholders. Such crisis piezometric levels are used to help defining the period when the groundwater abstraction should be reduced. Such maps are more efficient to communicate with water resources managers. This communication will focus on the results from the MEDDE Explore 2070 and ANR Oracle projects.

  11. Global water resources: vulnerability from climate change and population growth.

    Science.gov (United States)

    Vörösmarty, C J; Green, P; Salisbury, J; Lammers, R B

    2000-07-14

    The future adequacy of freshwater resources is difficult to assess, owing to a complex and rapidly changing geography of water supply and use. Numerical experiments combining climate model outputs, water budgets, and socioeconomic information along digitized river networks demonstrate that (i) a large proportion of the world's population is currently experiencing water stress and (ii) rising water demands greatly outweigh greenhouse warming in defining the state of global water systems to 2025. Consideration of direct human impacts on global water supply remains a poorly articulated but potentially important facet of the larger global change question.

  12. MULTIPLE-PURPOSE DEVELOPMENT OF WATER RESOURCES

    African Journals Online (AJOL)

    practices of cost allocations to various functions of the multiple-purpose development and calls for giving ... An appraisal of water resource must consider surface as well as ground water supplies in terms of location, .... as such a very satisfactory method of cost allocation that would be equally applicable to all projects and.

  13. Water resources in the next millennium

    Science.gov (United States)

    Wood, Warren

    As pressures from an exponentially increasing population and economic expectations rise against a finite water resource, how do we address management? This was the main focus of the Dubai International Conference on Water Resources and Integrated Management in the Third Millennium in Dubai, United Arab Emirates, 2-6 February 2002. The invited forum attracted an eclectic mix of international thinkers from five continents. Presentations and discussions on hydrology policy/property rights, and management strategies focused mainly on problems of water supply, irrigation, and/or ecosystems.

  14. Evaluating the impact of hydrological uncertainty in assessing the impact of climate change on water resources of the Ebro River Basin (Spain)

    Science.gov (United States)

    Zambrano-Bigiarini, Mauricio; Bellin, Alberto; Majone, Bruno; Bovolo, C. Isabella; Blenkinsop, Stephen; Fowler, Hayley J.

    2010-05-01

    Quantification of the impacts of climate change on water resources depends on the emission scenario, climate model, downscaling technique and impact model used to drive the impact study. Uncertainties in projections of climate models and those involved in the quantification of its hydrological response limit the understanding of future impacts and complicate the assessment of mitigation policies. This work analyses the effects of climate change on water resources of the Ebro River Basin (NE Spain), considering the combined effect of uncertainty characterizing both the driving Regional Climate Model (RCM) and hydrological parameterization. In addition, we considered the relative importance of these two contributions. Hydrological simulations in a few test catchments within the basin were performed by using the SWAT model, a widely used hydrological model often applied to large-scale watersheds. After a preliminary sensitivity analysis with Latin Hypercube One-factor-At-a-Time (LH-OAT), the Generalized Likelihood Uncertainty Estimation (GLUE) methodology was used for selecting hydrological parameter sets that best reproduced the observed streamflow during the control period from 1961 to 1991, in terms of percentage of measured data bracketed by the 95% prediction uncertainty (95PPU), and the ratio between the average thickness of the 95PPU band and the standard deviation of the measured data. Following validation, the same parameter sets were used to simulate the effects of climate change on future streamflows. A simple bias-correction methodology was used for downscaling daily time series of precipitation and mean temperature from an ensemble of 6 RCM time-slice experiments. These were obtained from the PRUDENCE project for a control period (1961-1990) and for a future time period (2071-2100) using the medium-high SRES A2 emissions scenario. The bias-corrected future RCM scenarios were then used to drive the hydrological simulations during the future period

  15. Research on Water Resources Design Carrying Capacity

    Directory of Open Access Journals (Sweden)

    Guanghua Qin

    2016-04-01

    Full Text Available Water resources carrying capacity (WRCC is a recently proposed management concept, which aims to support sustainable socio-economic development in a region or basin. However, the calculation of future WRCC is not well considered in most studies, because water resources and the socio-economic development mode for one area or city in the future are quite uncertain. This paper focused on the limits of traditional methods of WRCC and proposed a new concept, water resources design carrying capacity (WRDCC, which incorporated the concept of design. In WRDCC, the population size that the local water resources can support is calculated based on the balance of water supply and water consumption, under the design water supply and design socio-economic development mode. The WRDCC of Chengdu city in China is calculated. Results show that the WRDCC (population size of Chengdu city in development modeI (II, III will be 997 ×104 (770 × 104, 504 × 104 in 2020, and 934 × 104 (759 × 104, 462 × 104 in 2030. Comparing the actual population to the carrying population (WRDCC in 2020 and 2030, a bigger gap will appear, which means there will be more and more pressure on the society-economic sustainable development.

  16. Focus on CSIR research in water resources: ECO2 – sharing benefits from water resources

    CSIR Research Space (South Africa)

    Claassen, Marius

    2007-08-01

    Full Text Available benefits from water resources Socio-economic development de- pends on the reliable supply of water for industrial, mining, agricultural, potable and recreational purposes. These activities also generate waste products that are often discharged...

  17. Water, Society and the future of water resources research (Invited)

    Science.gov (United States)

    Brown, C. M.

    2013-12-01

    The subject of water and society is broad, but at heart is the study of water as a resource, essential to human activities, a vital input to food and energy production, the sustaining medium for ecosystems and yet also a destructive hazard. Society demands, withdraws, competes, uses and wastes the resource in dynamic counterpart. The science of water management emerges from this interface, a field at the nexus of engineering and geoscience, with substantial influence from economics and other social sciences. Within this purview are some of the most pressing environmental questions of our time, such as adaptation to climate change, direct and indirect connections between water and energy policy, the continuing dependence of agriculture on depletion of the world's aquifers, the conservation or preservation of ecosystems within increasingly human-influenced river systems, and food security and poverty reduction for the earth's poorest inhabitants. This presentation will present and support the hypothesis that water resources research is a scientific enterprise separate from, yet closely interrelated to, hydrologic science. We will explore the scientific basis of water resources research, review pressing research questions and opportunities, and propose an action plan for the advancement of the science of water management. Finally, the presentation will propose a Chapman Conference on Water and Society: The Future of Water Resources Research in the spring of 2015.

  18. Isotope techniques in water resources development and management. Proceedings

    International Nuclear Information System (INIS)

    1999-01-01

    The 10th International Symposium on Isotope Techniques in Water Resources Development and Management was organized by the International Atomic Energy Agency in co-operation with UNESCO, WMO and International Association of Hydrological Sciences and was held at IAEA Headquarters, Vienna, during 10-14 May 1999. The symposium provided an international forum for assessing the status and recent advances in isotope applications to water resources and an exchange of information on the following main themes: processes at the interface between the atmosphere and hydrosphere; investigations in surface waters and groundwaters: their origin, dynamics, interrelations; problems and techniques for investigating sedimentation; water resources issues: pollution, source and transport of contaminants, salinization, water-rock interaction and processes in geothermal systems; isotope data interpretation and evaluation methodologies: modelling approaches. The proceedings contain the 46 papers presented and extended synopses of poster presentations; each of them was indexed individually

  19. Hydrological Monitoring and Environmental Modeling to Assess the Quality and Sustainability of the Water Resources in an Uranium Mine Area, Caetité - Brazil

    Science.gov (United States)

    Franklin, M. R.; van Slobbe, E.; Fernandes, N. F.; Palma, J.; van Dalen, D.; Santos, A. C.; Melo, V.; Reis, R. G.; Carmo, R.; Fernandes, H. M.

    2009-12-01

    Uranium mining and processing constitute the front-end of the nuclear fuel-cycle and respond for most of its radiological impacts. For many years it has been accepted that the key driving force associated with these radiological impacts was related with radon exhalation from mill tailings. However, evidences coming from other mining sites showed that impacts in superficial and ground waters could also play a significant role. In Brazil, the newest uranium production unit presents a unique opportunity to integrate all the above concepts in a logical framework that will lead to sound and environmental balanced operations. The production center (Caetité plant) consists of open pit mine and sulfuric acid Heap Leach operations and is located at a semi-arid region in northeastern Brazil. Because groundwater is the sole perennial source of water for human consumption and industrial use, this resource has to be managed wisely and efficiently. Therefore, this paper intends to summarize the components of an ongoing project of groundwater management in uranium mining areas. The results will guide the adequate management of groundwater use and provide the basis for the appropriate impact assessment of the potential releases of pollutants. The methodology starts with the mathematical simulation of the long-term behavior of the hydrogeological system based on an experimental basin approach. The occurrence and pattern of groundwater flow in the Caetité experimental basin (CEB) are mainly conditioned by the degree of faulting/fracturing of rocks (predominantly gneisses and granites). Two faulting systems are observed in the area, the principal one, parallel to the foliation (with NW direction) and the secondary one with NE direction. The main water reservoirs in the CEB are related to the intrusion of a diabase dike, which increased the density of fractures in the rocks. This dike serves as natural barrier to the water flow and constrains the potential contamination of

  20. Water resources of the Apostle Islands National Lakeshore, northern Wisconsin

    Science.gov (United States)

    Rose, W.J.

    1988-01-01

    The Apostle Islands National Lakeshore consists of 21 islands, part of the Bayfield Peninsula, and the adjacent waters of Lake Superior. Selected water resources of the Apostle Islands National Lakeshore were assessed to aid the National Park Service in developing and managing the Lakeshore and to provide a data base against which future changes can be compared. This summary of water-resources data, collected by the U.S. Geological Survey during 1979-84, provides a qualitative description of selected hydrologic components of the Lakeshore.

  1. Assessing the impacts of climate change on natural resource systems

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, K.D.; Rosenberg, N.J. [eds.

    1994-11-30

    This volume is a collection of papers addressing the theme of potential impacts of climatic change. Papers are entitled Integrated Assessments of the Impacts of Climatic Change on Natural Resources: An Introductory Editorial; Framework for Integrated Assessments of Global Warming Impacts; Modeling Land Use and Cover as Part of Global Environmental Change; Assessing Impacts of Climatic Change on Forests: The State of Biological Modeling; Integrating Climatic Change and Forests: Economic and Ecological Assessments; Environmental Change in Grasslands: Assessment using Models; Assessing the Socio-economic Impacts of Climatic Change on Grazinglands; Modeling the Effects of Climatic Change on Water Resources- A Review; Assessing the Socioeconomic Consequences of Climate Change on Water Resources; and Conclusions, Remaining Issues, and Next Steps.

  2. Water Market-scale Agricultural Planning: Promoting Competing Water Resource Use Efficiency Through Agro-Economics

    Science.gov (United States)

    Delorit, J. D.; Block, P. J.

    2017-12-01

    Where strong water rights law and corresponding markets exist as a coupled econo-legal mechanism, water rights holders are permitted to trade allocations to promote economic water resource use efficiency. In locations where hydrologic uncertainty drives the assignment of annual per-water right allocation values by water resource managers, collaborative water resource decision making by water rights holders, specifically those involved in agricultural production, can result in both resource and economic Pareto efficiency. Such is the case in semi-arid North Chile, where interactions between representative farmer groups, treated as competitive bilateral monopolies, and modeled at water market-scale, can provide both price and water right allocation distribution signals for unregulated, temporary water right leasing markets. For the range of feasible per-water right allocation values, a coupled agricultural-economic model is developed to describe the equilibrium distribution of water, the corresponding market price of water rights and the net surplus generated by collaboration between competing agricultural uses. Further, this research describes a per-water right inflection point for allocations where economic efficiency is not possible, and where price negotiation among competing agricultural uses is required. An investigation of the effects of water right supply and demand inequality at the market-scale is completed to characterize optimal market performance under existing water rights law. The broader insights of this research suggest that water rights holders engaged in agriculture can achieve economic benefits from forming crop-type cooperatives and by accurately assessing the economic value of allocation.

  3. Resource assessment/commercialization planning meeting

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-24

    The U.S. Department of Energy, Division of Geothermal Energy and Division of Geothermal Resource Management, sponsored a Resource Assessment/Commercialization Planning meeting in Salt Lake City on January 21-24, 1980. The meeting included presentations by state planning and resource teams from all DOE regions. An estimated 130 people representing federal, state and local agencies, industry and private developers attended.

  4. NASA's Applied Sciences for Water Resources

    Science.gov (United States)

    Doorn, Bradley; Toll, David; Engman, Ted

    2011-01-01

    The Earth Systems Division within NASA has the primary responsibility for the Earth Science Applied Science Program and the objective to accelerate the use of NASA science results in applications to help solve problems important to society and the economy. The primary goal of the Earth Science Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, assimilation of new observations, and development and deployment of enabling technologies, systems, and capabilities. This paper discusses one of the major problems facing water resources managers, that of having timely and accurate data to drive their decision support tools. It then describes how NASA?s science and space based satellites may be used to overcome this problem. Opportunities for the water resources community to participate in NASA?s Water Resources Applications Program are described.

  5. Assessment of wave energy resources in Hawaii

    International Nuclear Information System (INIS)

    Stopa, Justin E.; Cheung, Kwok Fai; Chen, Yi-Leng

    2011-01-01

    Hawaii is subject to direct approach of swells from distant storms as well as seas generated by trade winds passing through the islands. The archipelago creates a localized weather system that modifies the wave energy resources from the far field. We implement a nested computational grid along the major Hawaiian Islands in the global WaveWatch3 (WW3) model and utilize the Weather Research and Forecast (WRF) model to provide high-resolution mesoscale wind forcing over the Hawaii region. Two hindcast case studies representative of the year-round conditions provide a quantitative assessment of the regional wind and wave patterns as well as the wave energy resources along the Hawaiian Island chain. These events of approximately two weeks each have a range of wind speeds, ground swells, and wind waves for validation of the model system with satellite and buoy measurements. The results demonstrate the wave energy potential in Hawaii waters. While the episodic swell events have enormous power reaching 60 kW/m, the wind waves, augmented by the local weather, provide a consistent energy resource of 15-25 kW/m throughout the year. (author)

  6. Drinking water quality assessment.

    Science.gov (United States)

    Aryal, J; Gautam, B; Sapkota, N

    2012-09-01

    Drinking water quality is the great public health concern because it is a major risk factor for high incidence of diarrheal diseases in Nepal. In the recent years, the prevalence rate of diarrhoea has been found the highest in Myagdi district. This study was carried out to assess the quality of drinking water from different natural sources, reservoirs and collection taps at Arthunge VDC of Myagdi district. A cross-sectional study was carried out using random sampling method in Arthunge VDC of Myagdi district from January to June,2010. 84 water samples representing natural sources, reservoirs and collection taps from the study area were collected. The physico-chemical and microbiological analysis was performed following standards technique set by APHA 1998 and statistical analysis was carried out using SPSS 11.5. The result was also compared with national and WHO guidelines. Out of 84 water samples (from natural source, reservoirs and tap water) analyzed, drinking water quality parameters (except arsenic and total coliform) of all water samples was found to be within the WHO standards and national standards.15.48% of water samples showed pH (13) higher than the WHO permissible guideline values. Similarly, 85.71% of water samples showed higher Arsenic value (72) than WHO value. Further, the statistical analysis showed no significant difference (Pwater for collection taps water samples of winter (January, 2010) and summer (June, 2010). The microbiological examination of water samples revealed the presence of total coliform in 86.90% of water samples. The results obtained from physico-chemical analysis of water samples were within national standard and WHO standards except arsenic. The study also found the coliform contamination to be the key problem with drinking water.

  7. USGS assessment of undiscovered oil and gas resources for the Oligocene Frio and Anahuac formations, U.S. Gulf of Mexico coastal plain and state waters: Review of assessment units

    Science.gov (United States)

    Swanson, Sharon M.; Karlsen, Alexander W.; Warwick, Peter D.; Kennan, Lorcan; Pindell, James; Rosen, Norman C.

    2007-01-01

    The Oligocene Frio and Anahuac formations were examined by the U.S. Geological Survey (USGS) as part of an assessment of technically recoverable undiscovered conventional and unconventional hydrocarbon resources in Paleogene and Neogene strata underlying the U.S. Gulf of Mexico Coastal Plain and state waters. Work included the identification of structural, stratigraphic, and tectonic relations between petroleum source rocks and migration pathways to Frio and Anahuac reservoirs; preliminary evaluation of the potential for shallow (less than 3,000 ft) biogenic gas accumulations; and evaluation of the potential for deep, undiscovered gas and oil accumulations in slope and basin floor areas. All assessments were conducted using USGS methodology (http://energy.cr.usgs.gov/oilgas/noga/methodology.html). Final products from the USGS assessment of the Paleogene and Neogene were reported in USGS fact sheets (Dubiel et al., 2007; Warwick et al., 2007).Five assessment units for the Frio Formation were defined, and three of these were based on the character of the reservoirs in relation to growth faults and other related factors: (1) the Frio stable shelf oil and gas assessment unit, which contains thin (average thickness of 34 ft) and shallow reservoirs (average depth of 4,834 ft); (2) the Frio expanded fault zone oil and gas assessment unit, which contains thick (average thickness of 56 ft) and deep reservoirs (average depth of 9,050 ft) in over-pressured intervals; and (3) the Frio slope and basin floor gas assessment unit, which has potential for deep gas (greater than 15,000 ft) and extends from the downdip boundary of the expanded fault zone to the offshore State/Federal water boundary. The fourth Frio assessment unit is the Hackberry oil and gas assessment unit. The Hackberry embayment of southeast Texas and southwest Louisiana consists of a slope facies in the middle part of the Frio Formation. The fifth unit, the Frio basin margin assessment unit, extends from the

  8. The second generation of natural resource damage assessments: Lessons learned?

    International Nuclear Information System (INIS)

    Luthi, R.B.; Burlington, L.B.; Reinharz, E.; Shutler, S.K.

    1993-01-01

    The Damage Assessment Regulations Team (DART), under the Office of General Counsel of the National Oceanic and Atmospheric Administration (NOAA), has centered its efforts on developing natural resource damage assessment regulations for oil pollution in navigable waters. These procedures will likely lower the costs associated with damage assessments, encourage joint cooperative assessments and simplify most assessments. The DART team of NOAA is developing new regulations for the assessment of damages due to injuries related to oil spills under the Oil Pollution Act of 1990. These regulations will involve coordination, restoration, and economic valuation. Various methods are currently being developed to assess damages for injuries to natural resources. The proposed means include: compensation tables for spills under 50,000 gallons, Type A model, expedited damage assessment (EDA) procedures, and comprehensive procedures. They are being developed to provide trustees with a choice for assessing natural resource damages for each oil spill

  9. Water Quality Assessment and Management

    Science.gov (United States)

    Overview of Clean Water Act (CWA) restoration framework including; water quality standards, monitoring/assessment, reporting water quality status, TMDL development, TMDL implementation (point & nonpoint source control)

  10. Technologies for water resources management: an integrated approach to manage global and regional water resources

    Energy Technology Data Exchange (ETDEWEB)

    Tao, W. C., LLNL

    1998-03-23

    regional water resources; As an evaluation tool for selecting appropriate remediation technologies for reclaiming water; and As an assessment tool for determining the effectiveness of implementing the remediation technologies. We have included a discussion on the appropriate strategy for LLNL to integrate its technical tools into the global business, geopolitical, and academic communities, whereby LLNL can form partnerships with technology proponents in the commercial, industrial, and public sectors.

  11. Urban Waste Grease Resource Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Wiltsee, G.

    1999-03-17

    This study collected and analyzed data on urban waste grease resources in 30 randomly selected metropolitan areas in the United States. Two major categories (yellow grease feedstock collected from restaurants by rendering companies; and grease trap wastes from restaurants, which can either be pumped into tank trucks for disposal or flow through municipal sewage systems into wastewater treatment plants) were considered in this study.

  12. Urban Wood Waste Resource Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Wiltsee, G.

    1998-11-20

    This study collected and analyzed data on urban wood waste resources in 30 randomly selected metropolitan areas in the United States. Three major categories wood wastes disposed with, or recovered from, the municipal solid waste stream; industrial wood wastes such as wood scraps and sawdust from pallet recycling, woodworking shops, and lumberyards; and wood in construction/demolition and land clearing debris.

  13. Game Theory in water resources management

    Science.gov (United States)

    Katsanevaki, Styliani Maria; Varouchakis, Emmanouil; Karatzas, George

    2015-04-01

    Rural water management is a basic requirement for the development of the primary sector and involves the exploitation of surface/ground-water resources. Rational management requires the study of parameters that determine their exploitation mainly environmental, economic and social. These parameters reflect the influence of irrigation on the aquifer behaviour and on the level-streamflow of nearby rivers as well as on the profit from the farming activity for the farmers' welfare. The question of rural water management belongs to the socio-political problems, since the factors involved are closely related to user behaviour and state position. By applying Game Theory one seeks to simulate the behaviour of the system 'surface/ground-water resources to water-users' with a model based on a well-known game, "The Prisoner's Dilemma" for economic development of the farmers without overexploitation of the water resources. This is a game of two players that have been extensively studied in Game Theory, economy and politics because it can describe real-world cases. The present proposal aims to investigate the rural water management issue that is referred to two competitive small partnerships organised to manage their agricultural production and to achieve a better profit. For the farmers' activities water is required and ground-water is generally preferable because consists a more stable recourse than river-water which in most of the cases in Greece are of intermittent flow. If the two farmer groups cooperate and exploit the agreed water quantities they will gain equal profits and benefit from the sustainable availability of the water recourses (p). If both groups overexploitate the resource to maximize profit, then in the medium-term they will incur a loss (g), due to the water resources reduction and the increase of the pumping costs. If one overexploit the resource while the other use the necessary required, then the first will gain great benefit (P), and the second will

  14. Assessment of water resources and the potential effects from oil and gas development in the Bureau of Land Management Tri-County planning area, Sierra, Doña Ana, and Otero Counties, New Mexico

    Science.gov (United States)

    Blake, Johanna M.; Miltenberger, Keely; Stewart, Anne M.; Ritchie, Andre; Montoya, Jennifer; Durr, Corey; McHugh, Amy; Charles, Emmanuel

    2018-02-07

    The U.S. Geological Survey (USGS), in cooperation with the Bureau of Land Management, conducted a study to assess the water resources and potential effects on the water resources from oil and gas development in the Tri-County planning area, Sierra, Doña Ana, and Otero Counties, New Mexico. Publicly available data were used to assess these resources and effects and to identify data gaps in the Tri-County planning area.The Tri-County planning area includes approximately 9.3 million acres and is within the eastern extent of the Basin and Range Province, which consists of mountain ranges and low elevation basins. Three specific areas of interest within the Tri-County planning area are the Jornada del Muerto, Tularosa Basin, and Otero Mesa, which is adjacent to the Salt Basin. Surface-water resources are limited in the Tri-County planning area, with the Rio Grande as the main perennial river flowing from north to south through Sierra and Doña Ana Counties. The Tularosa Creek is an important surface-water resource in the Tularosa Basin. The Sacramento River, which flows southeast out of the Sacramento Mountains, is an important source of recharge to aquifers in the Salt Basin. Groundwater resources vary in aquifer type, depth to water, and water quality. For example, the Jornada del Muerto, Tularosa Basin, and Salt Basin each have shallow and deep aquifer systems, and water can range from freshwater, with less than 1,000 milligrams per liter (mg/L) of total dissolved solids, to brine, with greater than 35,000 mg/L of total dissolved solids. Water quality in the Tri-County planning area is affected by the dissolution of salt deposits and evaporation which are common in arid regions such as southern New Mexico. The potential for oil and gas development exists in several areas within the Tri-County area. As many as 81 new conventional wells and 25 coalbed natural gas wells could be developed by 2035. Conventional oil and gas well construction in the Tri-County planning

  15. NASA'S Water Resources Element Within the Applied Sciences Program

    Science.gov (United States)

    Toll, David; Doorn, Bradley; Engman, Edwin

    2010-01-01

    The NASA Applied Sciences Program works within NASA Earth sciences to leverage investment of satellite and information systems to increase the benefits to society through the widest practical use of NASA research results. Such observations provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years about the Earth's land surface conditions such as land cover type, vegetation type and health, precipitation, snow, soil moisture, and water levels and radiation. Observations of this type combined with models and analysis enable satellite-based assessment of numerous water resources management activities. The primary goal of the Earth Science Applied Science Program is to improve future and current operational systems by infusing them with scientific knowledge of the Earth system gained through space-based observation, model results, and development and deployment of enabling technologies, systems, and capabilities. Water resources is one of eight elements in the Applied Sciences Program and it addresses concerns and decision making related to water quantity and water quality. With increasing population pressure and water usage coupled with climate variability and change, water issues are being reported by numerous groups as the most critical environmental problems facing us in the 21st century. Competitive uses and the prevalence of river basins and aquifers that extend across boundaries engender political tensions between communities, stakeholders and countries. Mitigating these conflicts and meeting water demands requires using existing resources more efficiently. The potential crises and conflicts arise when water is competed among multiple uses. For example, urban areas, environmental and recreational uses, agriculture, and energy production compete for scarce resources, not only in the Western U.S. but throughout much of the U.S. but also in many parts of the world. In addition to water availability issues, water quality related

  16. Adjusting water resources management to climate change

    Energy Technology Data Exchange (ETDEWEB)

    Riebsame, W E

    1988-01-01

    The nature of climate impacts and adjustment in water supply and flood management is discussed, and a case study of water manager response to climate fluctuation in California's Sacramento Basin is presented. The case illuminates the effect on climate impact and response of traditional management approaches, the dynamic qualities of maturing water systems, socially imposed constraints, and climate extremes. A dual pattern of crisis-response and gradual adjustment emerges, and specific mechanisms for effecting adjustment of water management systems are identified. The case study, and broader trends in US water development, suggest that oversized structural capacity, the traditional adjustment to climate variability in water resources, may prove less feasible in the future as projects become smaller and new facilities are delayed by economic and environmental concerns.

  17. INEEL Source Water Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Sehlke, Gerald

    2003-03-01

    The Idaho National Engineering and Environmental Laboratory (INEEL) covers approximately 890 mi2 and includes 12 public water systems that must be evaluated for Source water protection purposes under the Safe Drinking Water Act. Because of its size and location, six watersheds and five aquifers could potentially affect the INEEL’s drinking water sources. Based on a preliminary evaluation of the available information, it was determined that the Big Lost River, Birch Creek, and Little Lost River Watersheds and the eastern Snake River Plain Aquifer needed to be assessed. These watersheds were delineated using the United States Geologic Survey’s Hydrological Unit scheme. Well capture zones were originally estimated using the RESSQC module of the Environmental Protection Agency’s Well Head Protection Area model, and the initial modeling assumptions and results were checked by running several scenarios using Modflow modeling. After a technical review, the resulting capture zones were expanded to account for the uncertainties associated with changing groundwater flow directions, a thick vadose zone, and other data uncertainties. Finally, all well capture zones at a given facility were merged to a single wellhead protection area at each facility. A contaminant source inventory was conducted, and the results were integrated with the well capture zones, watershed and aquifer information, and facility information using geographic information system technology to complete the INEEL’s Source Water Assessment. Of the INEEL’s 12 public water systems, three systems rated as low susceptibility (EBR-I, Main Gate, and Gun Range), and the remainder rated as moderate susceptibility. No INEEL public water system rated as high susceptibility. We are using this information to develop a source water management plan from which we will subsequently implement an INEEL-wide source water management program. The results are a very robust set of wellhead protection areas that will

  18. Climate change and water resources in Britain

    International Nuclear Information System (INIS)

    Arnell, N.W.

    1998-01-01

    This paper explores the potential implications of climate change for the use and management of water resources in Britain. It is based on a review of simulations of changes in river flows, groundwater recharge and river water quality. These simulations imply, under feasible climate change scenarios, that annual, winter and summer runoff will decrease in southern Britain, groundwater recharge will be reduced and that water quality - as characterised by nitrate concentrations and dissolved oxygen contents - will deteriorate. In northern Britain, river flows are likely to increase throughout the year, particularly in winter. Climate change may lead to increased demands for water, over and above that increase which is forecast for non-climatic reasons, primarily due to increased use for garden watering. These increased pressures on the water resource base will impact not only upon the reliability of water supplies, but also upon navigation, aquatic ecosystems, recreation and power generation, and will have implications for water management. Flood risk is likely to increase, implying a reduction in standards of flood protection. The paper discusses adaptation options. 39 refs., 5 figs

  19. Early successional forest habitats and water resources

    Science.gov (United States)

    James Vose; Chelcy Ford

    2011-01-01

    Tree harvests that create early successional habitats have direct and indirect impacts on water resources in forests of the Central Hardwood Region. Streamflow increases substantially immediately after timber harvest, but increases decline as leaf area recovers and biomass aggrades. Post-harvest increases in stormflow of 10–20%, generally do not contribute to...

  20. Appropriate administrative structures in harnessing water resources ...

    African Journals Online (AJOL)

    Appropriate administrative structures in harnessing water resources for sustainable growth in Nigeria. Lekan Oyebande. Abstract. No Abstract. Journal of Mining and Geology Vol. 42(1) 2006: 21-30. Full Text: EMAIL FULL TEXT EMAIL FULL TEXT · DOWNLOAD FULL TEXT DOWNLOAD FULL TEXT.

  1. Lake Victoria water resources management challenges and ...

    African Journals Online (AJOL)

    ... governing management measures capable of meeting the needs of riparian states and ensuring sustainability within the basin is highlighted. Keywords: biodiversity loss; East Africa; eutrophication; heavy metal pollution; international treaties; Nile Basin; shared water resources. African Journal of Aquatic Science 2008, ...

  2. Department of Water Resources and Environm

    African Journals Online (AJOL)

    USER

    2015-05-01

    May 1, 2015 ... tolerable gauge network density of 1 gauge per 3000km. 2 ... for Nigeria. In the Sahelian region of West. Africa ... number of functional stations in the area is far less than this ..... Water Resources Development, 9(4):. 411 – 424.

  3. Installed water resource modelling systems for catchment ...

    African Journals Online (AJOL)

    Following international trends there are a growing number of modelling systems being installed for integrated water resource management, in Southern Africa. Such systems are likely to be installed for operational use in ongoing learning, research, strategic planning and consensus-building amongst stakeholders in the ...

  4. 18 CFR 701.76 - The Water Resources Council Staff.

    Science.gov (United States)

    2010-04-01

    ... Council Staff. 701.76 Section 701.76 Conservation of Power and Water Resources WATER RESOURCES COUNCIL COUNCIL ORGANIZATION Headquarters Organization § 701.76 The Water Resources Council Staff. The Water Resources Council Staff (hereinafter the Staff) serves the Council and the Chairman in the performance of...

  5. Water resources of the Chad Basin Region

    Directory of Open Access Journals (Sweden)

    Franklyn R. Kaloko

    2013-07-01

    Full Text Available River basin development is seen as a very effective means of improving agricultural productivity. In the Chad Basin area of the Sahelian Zone of the West African Sub-Region, the water resources have been harnessed to ensure viable agricultural programmes for Nigeria. However,the resultant successes have met by many problems that range from physical to socio-economic and of which water losses have been the most threatening. The study has called for the use of Hexa.deconal (C1-OH film on the water surface of the Chad as a means of reducing evaporation.

  6. Entropy, recycling and macroeconomics of water resources

    Science.gov (United States)

    Karakatsanis, Georgios; Mamassis, Nikos; Koutsoyiannis, Demetris

    2014-05-01

    We propose a macroeconomic model for water quantity and quality supply multipliers derived by water recycling (Karakatsanis et al. 2013). Macroeconomic models that incorporate natural resource conservation have become increasingly important (European Commission et al. 2012). In addition, as an estimated 80% of globally used freshwater is not reused (United Nations 2012), under increasing population trends, water recycling becomes a solution of high priority. Recycling of water resources creates two major conservation effects: (1) conservation of water in reservoirs and aquifers and (2) conservation of ecosystem carrying capacity due to wastewater flux reduction. Statistical distribution properties of the recycling efficiencies -on both water quantity and quality- for each sector are of vital economic importance. Uncertainty and complexity of water reuse in sectors are statistically quantified by entropy. High entropy of recycling efficiency values signifies greater efficiency dispersion; which -in turn- may indicate the need for additional infrastructure for the statistical distribution's both shifting and concentration towards higher efficiencies that lead to higher supply multipliers. Keywords: Entropy, water recycling, water supply multipliers, conservation, recycling efficiencies, macroeconomics References 1. European Commission (EC), Food and Agriculture Organization (FAO), International Monetary Fund (IMF), Organization of Economic Cooperation and Development (OECD), United Nations (UN) and World Bank (2012), System of Environmental and Economic Accounting (SEEA) Central Framework (White cover publication), United Nations Statistics Division 2. Karakatsanis, G., N. Mamassis, D. Koutsoyiannis and A. Efstratiades (2013), Entropy and reliability of water use via a statistical approach of scarcity, 5th EGU Leonardo Conference - Hydrofractals 2013 - STAHY '13, Kos Island, Greece, European Geosciences Union, International Association of Hydrological Sciences

  7. Resource reliability, accessibility and governance: pillars for managing water resources to achieve water security in Nepal

    Science.gov (United States)

    Biggs, E. M.; Duncan, J.; Atkinson, P.; Dash, J.

    2013-12-01

    As one of the world's most water-abundant countries, Nepal has plenty of water yet resources are both spatially and temporally unevenly distributed. With a population heavily engaged in subsistence farming, whereby livelihoods are entirely dependent on rain-fed agriculture, changes in freshwater resources can substantially impact upon survival. The two main sources of water in Nepal come from monsoon precipitation and glacial runoff. The former is essential for sustaining livelihoods where communities have little or no access to perennial water resources. Much of Nepal's population live in the southern Mid-Hills and Terai regions where dependency on the monsoon system is high and climate-environment interactions are intricate. Any fluctuations in precipitation can severely affect essential potable resources and food security. As the population continues to expand in Nepal, and pressures build on access to adequate and clean water resources, there is a need for institutions to cooperate and increase the effectiveness of water management policies. This research presents a framework detailing three fundamental pillars for managing water resources to achieve sustainable water security in Nepal. These are (i) resource reliability; (ii) adequate accessibility; and (iii) effective governance. Evidence is presented which indicates that water resources are adequate in Nepal to sustain the population. In addition, aspects of climate change are having less impact than previously perceived e.g. results from trend analysis of precipitation time-series indicate a decrease in monsoon extremes and interannual variation over the last half-century. However, accessibility to clean water resources and the potential for water storage is limiting the use of these resources. This issue is particularly prevalent given the heterogeneity in spatial and temporal distributions of water. Water governance is also ineffective due to government instability and a lack of continuity in policy

  8. Recovery of uranium resources from sea water

    International Nuclear Information System (INIS)

    Kurushima, Morihiro

    1980-01-01

    After the oil crisis in 1973, the development of atomic energy has become important as substitute energy, and the stable acquisition of uranium resources is indispensable, in order to promote smoothly the use of atomic energy. The Ministry of International Trade and Industry has engaged actively in the project ''The survey on the technical development of the system for recovering uranium and others from sea water'' since 1974. 80% of the uranium resources in the world is distributed in USA, Canada, South Africa, Australia and Niger, and in near future, the price of uranium ores may be raised. Japan must promote powerfully the development of foreign uranium resources, but also it is very important to get domestic uranium by efficiently recovering the uranium dissolved in sea water, the amount of which was estimated at 4 billion tons, and its practical use is expected in 1990s. The uranium concentration in sea water is about 3 g in 1000 t sea water. The processes of separation and recovery are as follows: (1) adsorption of uranium to titanic acid powder adsorbent by bringing sea water in contact with it, (2) dissolving the collected uranium with ammonium carbonate, the desorption agent, (3) concentration of uranium solution by ion exchange method or ion flotation method to 2800 ppm. The outline of the model plant is explained. (Kako, I.)

  9. Global climate change and California's water resources

    International Nuclear Information System (INIS)

    Vaux, H.J. Jr.

    1991-01-01

    This chapter records the deliberations of a group of California water experts about answers to these and other questions related to the impact of global warming on California's water resources. For the most part, those participating in the deliberations believe that the current state of scientific knowledge about global warming and its impacts on water resources is insufficient to permit hard distinctions to be made between short- and long-term changes. consequently, the ideas discussed here are based on a number of assumptions about specific climatic manifestations of global warming in California, as described earlier in this volume. Ultimately, however, effective public responses to forestall the potentially costly impacts of global climate change will probably depend upon the credible validation of the prospects of global climate warming. This chapter contains several sections. First, the likely effects of global warming on California's water resources and water-supply systems are identified and analyzed. Second, possible responses to mitigate these effects are enumerated and discussed. Third, the major policy issues are identified. A final section lists recommendations for action and major needs for information

  10. Water resources activities in Kentucky, 1986

    Science.gov (United States)

    Faust, R. J.

    1986-01-01

    The U.S. Geological Survey, Water Resources Division, conducts three major types of activities in Kentucky in order to provide hydrologic information and understanding needed for the best management of Kentucky 's and the Nation 's water resources. These activities are: (1) Data collection and dissemination; (2) Water-resources appraisals (interpretive studies); and (3) Research. Activities described in some detail following: (1) collection of surface - and groundwater data; (2) operation of stations to collect data on water quality, atmospheric deposition, and sedimentation; (3) flood investigations; (4) water use; (5) small area flood hydrology; (6) feasibility of disposal of radioactive disposal in deep crystalline rocks; (7) development of a groundwater model for the Louisville area; (8) travel times for streams in the Kentucky River Basin; (9) the impact of sinkholes and streams on groundwater flow in a carbonate aquifer system; (10) sedimentation and erosion rates at the Maxey Flats Radioactive Waste Burial site; and (11) evaluation of techniques for evaluating the cumulative impacts of mining as applied to coal fields in Kentucky. (Lantz-PTT)

  11. Preliminary hydrogeologic assessment and study plan for a regional ground-water resource investigation of the Blue Ridge and Piedmont provinces of North Carolina

    Science.gov (United States)

    Daniel, Charles C.; Dahlen, Paul R.

    2002-01-01

    Prolonged drought, allocation of surface-water flow, and increased demands on ground-water supplies resulting from population growth are focuses for the need to evaluate ground-water resources in the Blue Ridge and Piedmont Provinces of North Carolina. Urbanization and certain aspects of agricultural production also have caused increased concerns about protecting the quality of ground water in this region.More than 75 percent of the State's population resides in the Blue Ridge and Piedmont Provinces in an area that covers 30,544 square miles and 65 counties. Between 1940 and 2000, the population in the Piedmont and Blue Ridge Provinces increased from 2.66 to 6.11 million; most of this increase occurred in the Piedmont. Of the total population, an estimated 1.97 million people, or 32.3 percent (based on the 1990 census), relied on ground water for a variety of uses, including commercial, industrial, and most importantly, potable supplies.Ground water in the Blue Ridge and Piedmont traditionally has not been considered as a source for large supplies, primarily because of readily available and seemingly limitless surface-water supplies, and the perception that ground water in the Blue Ridge and Piedmont Provinces occurs in a complex, generally heterogeneous geologic environment. Some reluctance to use ground water for large supplies derives from the reputation of aquifers in these provinces for producing low yields to wells, and the few high-yield wells that are drilled seem to be scattered in areas distant from where they are needed. Because the aquifers in these provinces are shallow, they also are susceptible to contamination by activities on the land surface.In response to these issues, the North Carolina Legislature supported the creation of a Resource Evaluation Program to ensure the long-term availability, sustainability, and quality of ground water in the State. As part of the Resource Evaluation Program, the North Carolina Division of Water Quality

  12. Climate change and integrated water resources management

    International Nuclear Information System (INIS)

    Bhuiyan, Nurul Amin

    2007-01-01

    Full text: Full text: In the Bangladesh Poverty Reduction Strategy (PRSP), Millennium Development Goals and other donor driven initiatives, two vital areas linked with poverty and ecosystem survival seem to be either missing or are being neglected: (a) transboundary water use and (b) coastal area poverty and critical ecosystems vulnerable due to climate change. Since the World Summit on Sustainable Development (WSSD) goals and PRSP are integrated, it is necessary that the countrys WSSD goals and PRSP should also be in harmony. All should give the recognition of Ganges Brahmaputra and Meghna as international basins and the approach should be taken for regional sustainable and integrated water resource management involving all co-riparian countries. The principle of low flow in the international rivers during all seasons should be ensured. All stakeholders should have a say and work towards regional cooperation in the water sector as a top priority. The energy sector should be integrated with water. The Indian River Linking project involving international rivers should be seriously discussed at all levels including the parliament so that voice of Bangladesh is concerted and information shared by all concerned. One of the most critical challenges Bangladesh faces is the management of water resources during periods of water excesses and acute scarcity. It is particularly difficult when only 7% of the catchments areas of the very international rivers, the Ganges, the Brahmaputra and the Meghna are in Bangladesh while 97% is outside Bangladesh where unfortunately, Bangladesh has no control on upstream diversion and water use. The UN Conference on Environment and Development in its Agenda 21 emphasizes the importance of Integrated Water Resource Management (IWRM). The core point of IWRM is that is development of all aspects of entire basin in a basin wide approach, that all relevant agencies of the government and water users must be involved in the planning process and

  13. A review on water pricing problem for sustainable water resource

    Science.gov (United States)

    Hek, Tan Kim; Ramli, Mohammad Fadzli; Iryanto

    2017-05-01

    A report that presented at the World Forum II at The Hague in March 2000, said that it would be water crisis around the world and some countries will be lack of water in 2025, as a result of global studies. Inefficient using of water and considering water as free goods which means it can be used as much as we want without any lost. Thus, it causes wasteful consumption and low public awareness in using water without effort to preserve and conserve the water resources. In addition, the excessive exploitation of ground water for industrial facilities also leads to declining of available freshwater. Therefore, this paper reviews some problems arise all over the world regarding to improper and improving management, policies and methods to determine the optimum model of freshwater price in order to avoid its wasteful thus ensuring its sustainability. In this paper, we also proposed a preliminary model of water pricing represents a case of Medan, North Sumatera, Indonesia.

  14. Focus on CSIR research in water resources: improved methods for aquifer vulnerability assessments and protocols (AVAP) for producing vulnerability maps, taking into account information on soils

    CSIR Research Space (South Africa)

    Colvin, C

    2007-08-01

    Full Text Available for Aquifer Vulnerability Assessments and Protocols (AVAP) for producing vulnerability maps, taking into account information on soils Groundwater resources are increas- ingly threatened by pollution. The AVAP project was initiated to develop improved... characteristics. Both intrinsic and specific vulnerability are taken into account. The approach used to determine the vulnerability of the in- termediate zone involved the descrip- tion and quantification of the factors that influence vulnerability (unsatu...

  15. Sustainable water resources management in Pakistan

    International Nuclear Information System (INIS)

    Malik, A.H.

    2005-01-01

    Total river discharge in Pakistan in summer season vary from 3 thousand to 34 thousand cusses (100 thousand Cusses to 1,200 thousand Cusses) and can cause tremendous loss to human lives, crops and property, this causes the loss of most of the flood water in the lower Indus plains to the sea. Due to limited capacity of storage at Tarbela and Mangla Dams on river Indus and Jhelum, with virtually no control on Chenab, Ravi and Sutlej, devastating problems are faced between July and October in the event of excessive rainfall in the catchments. Due to enormous amounts of sediments brought in by the feeding rivers, the three major reservoirs -Tarbela, Mangla and Chashma will lose their storage capacity, by 25 % by the end of the year 2010, which will further aggravate the water-availability situation in Pakistan. The quality of water is also deteriorating due to urbanization and industrialization and agricultural developments. On the Environmental Front the main problems are water-logging and salinity, salt-imbalance, and increasing pollution of water-bodies. World's largest and most integrated system of irrigation was installed almost a hundred years ago and now its efficiency has been reduced to such an extent that more than 50 per cent of the irrigation-water is lost in transit and during application. On the other side, there are still not fully exploited water resources for example groundwater, the alluvial plains of Pakistan are blessed with extensive unconfined aquifer, with a potential of over 50 MAF, which is being exploited to an extent of about 38 MAF by over 562,000 private and 10,000 public tube-wells. In case of Balochistan, out of a total available potential of about 0.9 MAF of groundwater, over 0.5 MAF are already being utilized, but there by leaving a balance of about 0.4 MAF that can still be utilized. Future water resources management strategies should includes starting a mass-awareness campaign on a marshal scale in rural and urban areas to apply water

  16. The effects of ex-situ oil shale mining on groundwater resources in Siwaqa area, southern Jordan, using DRASTIC index and hydrochemical water assessment

    Directory of Open Access Journals (Sweden)

    Alsharifa Hind Mohammad

    2016-01-01

    Full Text Available Energy resources in addition to water resources are the most limited resources in Jordan, being one of the fourth poorest countries in water resources, and limitation of surface water resources put huge pressure on groundwater which is the main resource there. High expenses and the increasing prices of oil over all worlds increase the feasibility to mining the oil shale that exists in southern Jordan area, Siwaqa. This study took place to clarify the possible effects of mining and energy production activities on the water resources in that area. Groundwater vulnerability mapping was done for many areas all over the country, including this part. The initiative of this work is to determine the vulnerability under the conditions of removing the bedrock of the oil shale which is described as a con ning layer. Results that are obtained by this work conclude that the oil shale area becomes highly vulnerable to the human activities because of the existing geological structures while it is small and medium vulnerable in the elds in which there are no geological structures. In addition to the structural features and adding the possibility of the oil shale mining from the outcropped areas which will decrease the depth to water table and hence will affect the vulnerability values.  Efectos en las fuentes de agua subterránea de la minería ex situ de esquistos bituminosos, en el área de Siwaqa, al sur de Jordania, a través del índice DRASTIC y la evaluación hidroquímica del agua  Resumen Las fuentes de energía y agua son las más limitadas en Jordania, uno de los cuatro países más pobres en recursos hídricos; además, las limitadas fuentes super ciales hacen de las aguas subterráneas las más importantes. Las ganancias y el precio del petróleo, por su parte, incrementan la viabilidad de la minería de esquistos bituminosos en el sur de Jordania, en la región de Siwaqa. Este estudio se realiza con el  n de establecer los

  17. A Model Assessment of mid-Century Pressures on Water resources in West Africa Arising from Population Growth and Climate Change

    Science.gov (United States)

    Wisser, D.; Ibrahim, M.; Ibrahim, B.; Barry, B.; Proussevitch, A. A.

    2013-12-01

    West Africa is among the most vulnerable regions to climate change. The economy of most countries depends on rainfed agriculture in one rainy season and any change in precipitation will affect the agricultural output and the economies as a whole. At the same time, it is one of the regions where climate model shows the highest uncertainties in future trends of precipitation. We used WBMplus, a macroscale hydrological model to simultaneously calculate water demand and availability for a set of land use, and socio-economic scenarios around the 2050's (2051-2060) for river basins in the ten countries participating in the West African Science Service Center on Climate Change and Adapted Land Use (WASCAL) project. The model is driven with bias corrected climate model data from 5 GCM models (and 4 RCP's ) and simulates components of the hydrological cycle by taking into reservoir operations, and water demand for irrigated areas, livestock, as well as domestic water demand on a daily time step at a spatial resolution of 1 min (~2 km). Results suggest that water availability is under pressure from projected shifts towards less precipitation early in the rainy season (May-June) despite a small (~5%) increase in the ensemble mean annual precipitation. Water demand is projected to more than double for livestock and domestic, as a result of population growth (at a rate of ~3% per year). Demand for irrigation will rise sharply if irrigation is expanded from the current area (representing less than 3% of all croplands in the region), closer to its potential which is multiple times higher than the existing area. Despite adequate water supply for most regions on an annual basis, the shifts in water availability and increased variability in combination with increased demand could exert significant pressures on water resources locally during low flow periods. Ensemble results show small changes in annual water availability in the region but significant shifts in the temporal

  18. Managing new resources in Arctic marine waters

    DEFF Research Database (Denmark)

    Kourantidou, Melina; Fernandez, Linda; Kaiser, Brooks

    and management of the resource which poses challenges due its nature as a ‘sedentary species’ colonizing the Barents Sea continental shelf shared by Norway and Russia and approaching the fishery protection zone around Svalbard. Conversely, little research has looked into the implications of the invasion partly...... fishery straddling Arctic waters which lends towards different productivity under different management and we delineate acceptable risk levels in order build up a bioeconomic framework that pinpoints the underlying trade-offs. We also address the difficulties of managing the resource under uncertainty...

  19. Maintaining the Uranium Resources Assessment Data System and assessing the 1990 US uranium potential resources

    International Nuclear Information System (INIS)

    McCammon, R.B.; Finch, W.I.; Grundy, W.D.; Pierson, C.T.

    1991-01-01

    The Energy Information Administration's (EIA) Uranium Resource Assessment Data System contains information on potential resources (undiscovered) of uranium in the United States. The purpose of this report is: (1) to describe the work carried out to maintain and update the Uranium Resource Assessment Data (URAD) System, (2) to assess the 1990 US uranium potential resources in various cost categories, and (3) to identify problems and to recommend changes that are needed to improve the URAD System. 13 refs., 5 figs., 4 tabs

  20. The Water Resources Board: England and Wales’ Venture into National Water Resources Planning, 1964-1973

    Directory of Open Access Journals (Sweden)

    Christine S. McCulloch

    2009-10-01

    Full Text Available An era of technocratic national planning of water resources is examined against the views of a leading liberal economist and critics, both contemporary and retrospective. Post Second World War Labour Governments in Britain failed to nationalise either land or water. As late as 1965, the idea of public ownership of all water supplies appeared in the Labour Party manifesto and a short-lived Ministry of Land and Natural Resources, 1964-1966, had amongst its duties the development of plans for reorganising the water supply industry under full public ownership. However, instead of pursuing such a politically dangerous takeover of the industry, in July 1964, a Water Resources Board (WRB, a special interest group dominated by engineers, was set up to advise on the development of water resources. In its first Annual Report (1965 WRB claimed its role as "the master planner of the water resources of England and Wales". The WRB had a great deal of influence and justified its national planning role by promoting large-scale supply schemes such as interbasin transfers of water, large reservoirs and regulated rivers. Feasibility studies were even carried out for building innovative, large storage reservoirs in tidal estuaries. Less progress was made on demand reduction. Yet the seeds of WRB’s demise were contained in its restricted terms of reference. The lack of any remit over water quality was a fatal handicap. Quantity and quality needed to be considered together. Privatisation of the water industry in 1989 led to a shift from national strategic planning by engineers to attempts to strengthen economic instruments to fit supply more closely to demand. Engineers have now been usurped as leaders in water resources management by economists and accountants. Yet climate change may demand a return to national strategic planning of engineered water supply, with greater democratic input.

  1. Geothermal resource assessment in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youngmin; Kim, Hyoung Chan [Korea Institute of Geoscience and Mineral Resources (Korea); Park, Sungho; Kim, Jongchan; Koo, Min-Ho [Kongju National University (Korea)

    2010-10-15

    To estimate available geothermal energy and to construct temperature at depth maps in Korea, various geothermal data have been used. Those include 1560 thermal property data such as thermal conductivity, specific heat and density, 353 heat flow data, 54 surface temperature data, and 180 heat production data. In Korea, subsurface temperature ranges from 23.9 C to 47.9 C at a depth of 1 km, from 34.2 C to 79.7 C at 2 km, from 44.2 C to 110.9 C at 3 km, from 53.8 C to 141.5 C at 4 km, and from 63.1 C to 171.6 C at 5 km. The total available subsurface geothermal energy in Korea is 4.25 x 10{sup 21} J from surface to a depth of 1 km, 1.67 x 10{sup 22} J to 2 km, 3.72 x 10{sup 22} J to 3 km, 6.52 x 10{sup 22} J to 4 km, and 1.01 x 10{sup 23} J to 5 km. In particular, the southeastern part of Korea shows high temperatures at depths and so does high geothermal energy. If only 2% of geothermal resource from surface to a depth of 5 km is developed in Korea, energy from geothermal resources would be equivalent to about 200 times annual consumption of primary energy ({proportional_to}2.33 x 10{sup 8} TOE) in Korea in 2006. (author)

  2. Using NASA Products of the Water Cycle for Improved Water Resources Management

    Science.gov (United States)

    Toll, D. L.; Doorn, B.; Engman, E. T.; Lawford, R. G.

    2010-12-01

    NASA Water Resources works within the Earth sciences and GEO community to leverage investments of space-based observation and modeling results including components of the hydrologic cycle into water resources management decision support tools for the goal towards the sustainable use of water. These Earth science hydrologic related observations and modeling products provide a huge volume of valuable data in both near-real-time and extended back nearly 50 years. Observations of this type enable assessment of numerous water resources management issues including water scarcity, extreme events of drought and floods, and water quality. Examples of water cycle estimates make towards the contributions to the water management community include snow cover and snowpack, soil moisture, evapotranspiration, precipitation, streamflow and ground water. The availability of water is also contingent on the quality of water and hence water quality is an important part of NASA Water Resources. Water quality activities include both nonpoint source (agriculture land use, ecosystem disturbances, impervious surfaces, etc.) and direct remote sensing ( i.e., turbidity, algae, aquatic vegetation, temperature, etc.). . The NASA Water Resources Program organizes its projects under five functional themes: 1) stream-flow and flood forecasting; 2) water consumptive use and irrigation (includes evapotranspiration); 3) drought; 4) water quality; and 5) climate impacts on water resources. Currently NASA Water Resources is supporting 21 funded projects with 11 additional projects being concluded. To maximize the use of NASA water cycle measurements end to projects are supported with strong links with decision support systems. The NASA Water Resources Program works closely with other government agencies NOAA, USDA-FAS, USGS, AFWA, USAID, universities, and non-profit, international, and private sector organizations. International water cycle applications include: 1) Famine Early Warning System Network

  3. Global mineral resource assessment: porphyry copper assessment of Mexico: Chapter A in Global mineral resource assessment

    Science.gov (United States)

    Hammarstrom, Jane M.; Robinson, Gilpin R.; Ludington, Steve; Gray, Floyd; Drenth, Benjamin J.; Cendejas-Cruz, Francisco; Espinosa, Enrique; Pérez-Segura, Efrén; Valencia-Moreno, Martín; Rodríguez-Castañeda, José Luis; Vásquez-Mendoza, Rigobert; Zürcher, Lukas

    2010-01-01

    Mineral resource assessments provide a synthesis of available information about distributions of mineral deposits in the Earth’s crust. A probabilistic mineral resource assessment of undiscovered resources in porphyry copper deposits in Mexico was done as part of a global mineral resource assessment. The purpose of the study was to (1) delineate permissive areas (tracts) for undiscovered porphyry copper deposits within 1 km of the surface at a scale of 1:1,000,000; (2) provide a database of known porphyry copper deposits and significant prospects; (3) estimate numbers of undiscovered deposits within those permissive tracts; and (4) provide probabilistic estimates of amounts of copper (Cu), molybdenum (Mo), gold (Au), and silver (Ag) that could be contained in undiscovered deposits for each permissive tract. The assessment was conducted using a three-part form of mineral resource assessment based on mineral deposit models (Singer, 1993). Delineation of permissive tracts primarily was based on distributions of mapped igneous rocks related to magmatic arcs that formed in tectonic settings associated with subduction boundary zones. Using a GIS, map units were selected from digital geologic maps based on lithology and age to delineate twelve permissive tracts associated with Jurassic, Laramide (~90 to 34 Ma), and younger Tertiary magmatic arcs. Stream-sediment geochemistry, mapped alteration, regional aeromagnetic data, and exploration history were considered in conjunction with descriptive deposit models and grade and tonnage models to guide estimates.

  4. Integration of inorganic and isotopic geochemistry with endocrine disruption activity assays to assess risks to water resources near unconventional oil and gas development in Garfield County, CO.

    Science.gov (United States)

    Harkness, J.; Kassotis, C.; Cornelius, J.; Nagel, S.; Vengosh, A.

    2016-12-01

    The rise of hydraulic fracturing in the United States has sparked a debate about the impact of oil and gas development on the quality of water resources. Wastewater associated with hydraulic fracturing includes injection fluid that is a mixture of sand, freshwater and synthetic organic chemicals, flowback water that is a mixture of injection fluid and formation brine, and produced water that is primarily brine. The fluids range in salinity and chemical composition that can have different environmental impacts. We analyzed the inorganic and isotope geochemistry of 58 surface and groundwater samples near and away from unconventional oil and gas operations (UOG), along with hormonal profiles via bioassays. Cl (0.12 to 198 mg/L), Na (1.2 to 518 mg/L) and Sr (1.4 to 2410 ug/L) were higher in both groundwater and surface water near UOG wells. Four surface waters and one groundwater had Br/Cl indicative of brine contamination (>1.5x10-3). Three of the SW samples also had 87Sr/86Sr ratios similar to values found in produced or flowback water (0.7118 and 0.7158, respectively) from the Williams-Fork formation and elevated compared to background ratios (0.71062 to 0.7115). Increased progestogenic activity was observed in groundwater near UOG operations and inncreased estrogenic, androgenic, progestogenic, anti-androgenic, anti-progestogenic, and anti-glucocorticoid activities in surface water near UOG operations. The association of increased EDCs with inorganic and isotopic indicators of UOG wastewater provides evidence for possible environmental and health impacts from drilling activity.

  5. Condition, use, and management of water resources among ...

    African Journals Online (AJOL)

    The study found that water supply in Harshin district is 100% surface water ... Besides, 76% of the respondents were not satisfied with the quality of drinking water. ... Key words: Water resources, pastoralists, rainwater, water-harvesting, gender ...

  6. Southern Forest Resource Assessment - Summary Report

    Science.gov (United States)

    David N. Wear; John G. Greis

    2002-01-01

    The Southern Forest Resource Assessment was initiated in 1999 as a result of concerns raised by natural resource managers, the science community, and the public regarding the status and likely future of forests in the South. These included changes to the region’s forests brought about by rapid urbanization, increasing timber demand, increasing numbers of...

  7. CONSTRUCTED WETLAND TECHNOLOGY TO PREVENT WATER RESOURCES POLLUTION

    Directory of Open Access Journals (Sweden)

    Zeki Gökalp

    2016-07-01

    Full Text Available Discharge of untreated waste waters into surface waters creates significant pollution in these resources. Wastewaters are most of the time discharged into seas, rivers and other water bodies without any treatments due to high treatment costs both in Turkey and throughout the world. Constructed wetlands, also called as natural treatment systems, are used as an alternative treatment system to conventional high-cost treatment systems because of their low construction, operation and maintenance costs, energy demands, easy operation and low sludge generation. Today, constructed wetland systems are largely used to treat domestic wastewaters, agricultural wastewaters, industrial wastewater and runoff waters and ultimately to prevent water pollution and to improve water quality of receiving water bodies. In present study, currently implemented practices in design, construction, operation and maintenance of constructed wetlands were assessed and potential mistakes made in different phases these systems were pointed out and possible solutions were proposed to overcome these problems.

  8. GIS Technology: Resource and Habitability Assessment Tool

    Data.gov (United States)

    National Aeronautics and Space Administration — We are applying Geographic Information Systems (GIS) to new orbital data sets for lunar resource assessment and the identification of past habitable environments on...

  9. The effects of climate change on agriculture, land resources, water resources, and biodiversity in the United States

    Science.gov (United States)

    2008-06-01

    This report provides an assessment of the effects of climate change on U.S. agriculture, land resources, water resources, and biodiversity. It is one of a series of 21 Synthesis and Assessment Products (SAP) that are being produced under the auspices...

  10. An imminent human resource crisis in ground water hydrology?

    Science.gov (United States)

    Stephens, Daniel B

    2009-01-01

    Anecdotal evidence, mostly from the United States, suggests that it has become increasingly difficult to find well-trained, entry-level ground water hydrologists to fill open positions in consulting firms and regulatory agencies. The future prospects for filling positions that require training in ground water hydrology are assessed by considering three factors: the market, the numbers of qualified students entering colleges and universities, and the aging of the existing workforce. The environmental and water resources consulting industry has seen continuous albeit variable growth, and demand for environmental scientists and hydrologists is expected to increase significantly. Conversely, students' interest and their enrollment in hydrology and water resources programs have waned in recent years, and the interests of students within these departments have shifted away from ground water hydrology in some schools. This decrease in the numbers of U.S. students graduating in hydrology or emphasizing ground water hydrology is coinciding with the aging of and pending retirement of ground water scientists and engineers in the baby boomer generation. We need to both trigger the imagination of students at the elementary school level so that they later want to apply science and math and communicate the career opportunities in ground water hydrology to those high school and college graduates who have acquired the appropriate technical background. Because the success of a consulting firm, research organization, or regulatory agency is derived from the skills and judgment of the employees, human resources will be an increasingly more critical strategic issue for many years.

  11. Water Resources Development in Minnesota 1991

    Science.gov (United States)

    1991-01-01

    Mississippi River Comprehensive Elk River, Mississippi River ..................... 43 Master Plan .............................. 20 Epr Roau, Mississippi...Mississippi River has in- water resource projects, and receiving more than 600 million creased steadily since the advent of the 9-foot channel in 1935 ...and increased from about Minneapolis, Completed Project - 11 0,(XX) tons in 1935 to a peak of 3,177,355 tons in 1975. Traffic Commercial Navigation

  12. The Connotation and Extension of Agricultural Water Resources Security

    Institute of Scientific and Technical Information of China (English)

    LIU Bu-chun; MEI Xu-rong; LI Yu-zhong; YANG You-lu

    2007-01-01

    The objective of this study is to define agricultural water resources security and its connotation and extension. The definitions of water security, water resources security, and water environment security were summarized, and their relationship was differentiated and analyzed. Based on these, the elements of the conception of agricultural water resources security were hashed and the conception was defined. Agricultural water resources security is the provision of water resource that ensures protection of agriculture against threat, hazards, destruction, and loss. Moreover, the connotation and extension of agricultural water resources security were ascertained. In detail, the connotation of the definition has natural attributes, socioeconomic attributes, and cultural attributes. The extensions of agricultural water resources security include both broad and narrow ones, as well as, food security, agroenvironmental security, agroeconomic security, rural society security, etc. The definition will serve as the frame of reference for developing the researches, limiting the frame of the theory, and founding a appraising system for agricultural water resources security.

  13. Assessment of Peruvian biofuel resources and alternatives

    Energy Technology Data Exchange (ETDEWEB)

    Harper, J.P.; Smith, W.; Mariani, E.

    1979-08-01

    Comprehensive assessment of the biofuel potential of Peru is based on: determination of current biofuel utilization practices, evauation of Peruvian biomass productivity, identification of Peruvian agricultural and forestry resources, assessment of resource development and management concerns, identification of market considerations, description of biofuel technological options, and identification of regional biofuel technology applications. Discussion of current biofuel utilization centers on a qualitative description of the main conversion approaches currently being practiced in Peru. Biomass productivity evaluations consider the terrain and soil, and climatic conditions found in Peru. The potential energy from Peruvian agricultural and forestry resources is described quantitatively. Potental regional production of agricultural residues and forest resources that could supply energy are identified. Assessment of resource development and management concerns focuses on harvesting, reforestation, training, and environmental consequences of utilization of forest resources. Market factors assessed include: importation, internal market development, external market development, energy policy and pricing, and transportation. Nine biofuel technology options for Peru are identified: (1) small-to-medium-scale gasification, (2) a wood waste inventory, (3) stationary and mobile charcoal production systems, (4) wood distillation, (5) forest resource development and management, (6) electrical cogeneration, (7) anaerobic digestion technology, (8) development of ethanol production capabilities, and (9) agricultural strategies for fuel production. Applications of these biofuel options are identified for each of the three major regions - nine applications for the Costa Region, eight for the Sierra Region, and ten for the Selva Region.

  14. On the influence of cell size in physically-based distributed hydrological modelling to assess extreme values in water resource planning

    Directory of Open Access Journals (Sweden)

    M. Egüen

    2012-05-01

    Full Text Available This paper studies the influence of changing spatial resolution on the implementation of distributed hydrological modelling for water resource planning in Mediterranean areas. Different cell sizes were used to investigate variations in the basin hydrologic response given by the model WiMMed, developed in Andalusia (Spain, in a selected watershed. The model was calibrated on a monthly basis from the available daily flow data at the reservoir that closes the watershed, for three different cell sizes, 30, 100, and 500 m, and the effects of this change on the hydrological response of the basin were analysed by means of the comparison of the hydrological variables at different time scales for a 3-yr-period, and the effective values for the calibration parameters obtained for each spatial resolution. The variation in the distribution of the input parameters due to using different spatial resolutions resulted in a change in the obtained hydrological networks and significant differences in other hydrological variables, both in mean basin-scale and values distributed in the cell level. Differences in the magnitude of annual and global runoff, together with other hydrological components of the water balance, became apparent. This study demonstrated the importance of choosing the appropriate spatial scale in the implementation of a distributed hydrological model to reach a balance between the quality of results and the computational cost; thus, 30 and 100-m could be chosen for water resource management, without significant decrease in the accuracy of the simulation, but the 500-m cell size resulted in significant overestimation of runoff and consequently, could involve uncertain decisions based on the expected availability of rainfall excess for storage in the reservoirs. Particular values of the effective calibration parameters are also provided for this hydrological model and the study area.

  15. Assessment of surface water resources availability using catchment modelling and the results of tracer studies in the mesoscale Migina Catchment, Rwanda

    Science.gov (United States)

    Munyaneza, O.; Mukubwa, A.; Maskey, S.; Uhlenbrook, S.; Wenninger, J.

    2014-12-01

    In the present study, we developed a catchment hydrological model which can be used to inform water resources planning and decision making for better management of the Migina Catchment (257.4 km2). The semi-distributed hydrological model HEC-HMS (Hydrologic Engineering Center - the Hydrologic Modelling System) (version 3.5) was used with its soil moisture accounting, unit hydrograph, liner reservoir (for baseflow) and Muskingum-Cunge (river routing) methods. We used rainfall data from 12 stations and streamflow data from 5 stations, which were collected as part of this study over a period of 2 years (May 2009 and June 2011). The catchment was divided into five sub-catchments. The model parameters were calibrated separately for each sub-catchment using the observed streamflow data. Calibration results obtained were found acceptable at four stations with a Nash-Sutcliffe model efficiency index (NS) of 0.65 on daily runoff at the catchment outlet. Due to the lack of sufficient and reliable data for longer periods, a model validation was not undertaken. However, we used results from tracer-based hydrograph separation from a previous study to compare our model results in terms of the runoff components. The model performed reasonably well in simulating the total flow volume, peak flow and timing as well as the portion of direct runoff and baseflow. We observed considerable disparities in the parameters (e.g. groundwater storage) and runoff components across the five sub-catchments, which provided insights into the different hydrological processes on a sub-catchment scale. We conclude that such disparities justify the need to consider catchment subdivisions if such parameters and components of the water cycle are to form the base for decision making in water resources planning in the catchment.

  16. Remote Assessment of Lunar Resource Potential

    Science.gov (United States)

    Taylor, G. Jeffrey

    1992-01-01

    Assessing the resource potential of the lunar surface requires a well-planned program to determine the chemical and mineralogical composition of the Moon's surface at a range of scales. The exploration program must include remote sensing measurements (from both Earth's surface and lunar orbit), robotic in situ analysis of specific places, and eventually, human field work by trained geologists. Remote sensing data is discussed. Resource assessment requires some idea of what resources will be needed. Studies thus far have concentrated on oxygen and hydrogen production for propellant and life support, He-3 for export as fuel for nuclear fusion reactors, and use of bulk regolith for shielding and construction materials. The measurement requirements for assessing these resources are given and discussed briefly.

  17. Conservation of Water and Related Land Resources

    Science.gov (United States)

    Caldwell, Lynton K.

    1984-04-01

    The author was quite clear about the purpose of this book and clearly achieved his intent. In his preface, the author states, “The purpose of this book is to acquaint the reader with a broad understanding of the topics relevant to the management of the nation's water and related land resources.” The book is a product of the author's 20 years of work as a teacher, consultant, researcher, and student of watershed management and hydrology and has served as a text for a course entitled Soil and Water Conservation, which the author has taught at the State University of New York, College of Environmental Science and Forestry at Syracuse, New York. But it was also written with the intent to be of use “to informal students of water and land related resources on the national level as well.” The objectives of Black's course at Syracuse and its larger purpose define the scope of the book which, again in the author's words, have been “(1) to acquaint students with principles of soil and water conservation; (2) to stimulate an appreciation for an integrated, comprehensive approach to land management; (3) to illustrate the influence of institutional, economic, and cultural forces on the practice of soil and water conservation; and (4) to provide information, methods, and techniques by which soil and water conservation measures are applied to land, as well as the basis for predicting and evaluating results.” The book is written in straightforward nontechnical language and provides the reader with a set of references, a table of cases, a list of abbreviations, and an adequate index. It impresses this reviewer as a very well edited piece of work.

  18. Estimating the Ground Water Resources of Atoll Islands

    Directory of Open Access Journals (Sweden)

    Arne E. Olsen

    2010-01-01

    Full Text Available Ground water resources of atolls, already minimal due to the small surface area and low elevation of the islands, are also subject to recurring, and sometimes devastating, droughts. As ground water resources become the sole fresh water source when rain catchment supplies are exhausted, it is critical to assess current groundwater resources and predict their depletion during drought conditions. Several published models, both analytical and empirical, are available to estimate the steady-state freshwater lens thickness of small oceanic islands. None fully incorporates unique shallow geologic characteristics of atoll islands, and none incorporates time-dependent processes. In this paper, we provide a review of these models, and then present a simple algebraic model, derived from results of a comprehensive numerical modeling study of steady-state atoll island aquifer dynamics, to predict the ground water response to changes in recharge on atoll islands. The model provides an estimate thickness of the freshwater lens as a function of annual rainfall rate, island width, Thurber Discontinuity depth, upper aquifer hydraulic conductivity, presence or absence of a confining reef flat plate, and in the case of drought, time. Results compare favorably with published atoll island lens thickness observations. The algebraic model is incorporated into a spreadsheet interface for use by island water resources managers.

  19. Integrated water resources management using engineering measures

    Science.gov (United States)

    Huang, Y.

    2015-04-01

    The management process of Integrated Water Resources Management (IWRM) consists of aspects of policies/strategies, measures (engineering measures and non-engineering measures) and organizational management structures, etc., among which engineering measures such as reservoirs, dikes, canals, etc., play the backbone that enables IWRM through redistribution and reallocation of water in time and space. Engineering measures are usually adopted for different objectives of water utilization and water disaster prevention, such as flood control and drought relief. The paper discusses the planning and implementation of engineering measures in IWRM of the Changjiang River, China. Planning and implementation practices of engineering measures for flood control and water utilization, etc., are presented. Operation practices of the Three Gorges Reservoir, particularly the development and application of regulation rules for flood management, power generation, water supply, ecosystem needs and sediment issues (e.g. erosion and siltation), are also presented. The experience obtained in the implementation of engineering measures in Changjiang River show that engineering measures are vital for IWRM. However, efforts should be made to deal with changes of the river system affected by the operation of engineering measures, in addition to escalatory development of new demands associated with socio-economic development.

  20. Integrated water resources management using engineering measures

    Directory of Open Access Journals (Sweden)

    Y. Huang

    2015-04-01

    Full Text Available The management process of Integrated Water Resources Management (IWRM consists of aspects of policies/strategies, measures (engineering measures and non-engineering measures and organizational management structures, etc., among which engineering measures such as reservoirs, dikes, canals, etc., play the backbone that enables IWRM through redistribution and reallocation of water in time and space. Engineering measures are usually adopted for different objectives of water utilization and water disaster prevention, such as flood control and drought relief. The paper discusses the planning and implementation of engineering measures in IWRM of the Changjiang River, China. Planning and implementation practices of engineering measures for flood control and water utilization, etc., are presented. Operation practices of the Three Gorges Reservoir, particularly the development and application of regulation rules for flood management, power generation, water supply, ecosystem needs and sediment issues (e.g. erosion and siltation, are also presented. The experience obtained in the implementation of engineering measures in Changjiang River show that engineering measures are vital for IWRM. However, efforts should be made to deal with changes of the river system affected by the operation of engineering measures, in addition to escalatory development of new demands associated with socio-economic development.

  1. Offshore Wind Energy Resource Assessment for Alaska

    Energy Technology Data Exchange (ETDEWEB)

    Doubrawa Moreira, Paula [National Renewable Energy Lab. (NREL), Golden, CO (United States); Scott, George N. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Musial, Walter D. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Kilcher, Levi F. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Draxl, Caroline [National Renewable Energy Lab. (NREL), Golden, CO (United States); Lantz, Eric J. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2018-01-02

    This report quantifies Alaska's offshore wind resource capacity while focusing on its unique nature. It is a supplement to the existing U.S. Offshore Wind Resource Assessment, which evaluated the offshore wind resource for all other U.S. states. Together, these reports provide the foundation for the nation's offshore wind value proposition. Both studies were developed by the National Renewable Energy Laboratory. The analysis presented herein represents the first quantitative evidence of the offshore wind energy potential of Alaska. The technical offshore wind resource area in Alaska is larger than the technical offshore resource area of all other coastal U.S. states combined. Despite the abundant wind resource available, significant challenges inhibit large-scale offshore wind deployment in Alaska, such as the remoteness of the resource, its distance from load centers, and the wealth of land available for onshore wind development. Throughout this report, the energy landscape of Alaska is reviewed and a resource assessment analysis is performed in terms of gross and technical offshore capacity and energy potential.

  2. Regional scenario building as a tool to support vulnerability assessment of food & water security and livelihood conditions under varying natural resources managements

    Science.gov (United States)

    Reinhardt, Julia; Liersch, Stefan; Dickens, Chris; Kabaseke, Clovis; Mulugeta Lemenih, Kassaye; Sghaier, Mongi; Hattermann, Fred

    2013-04-01

    Participatory regional scenario building was carried out with stakeholders and local researchers in four meso-scale case studies (CS) in Africa. In all CS the improvement of food and / or water security and livelihood conditions was identified as the focal issue. A major concern was to analyze the impacts of different plausible future developments on these issues. The process of scenario development is of special importance as it helps to identify main drivers, critical uncertainties and patterns of change. Opportunities and constraints of actors and actions become clearer and reveal adaptation capacities. Effective strategies must be furthermore reasonable and accepted by local stakeholders to be implemented. Hence, developing scenarios and generating strategies need the integration of local knowledge. The testing of strategies shows how they play out in different scenarios and how robust they are. Reasons and patterns of social and natural vulnerability can so be shown. The scenario building exercise applied in this study is inspired by the approach from Peter Schwartz. It aims at determining critical uncertainties and to identify the most important driving forces for a specific focal issue which are likely to shape future developments of a region. The most important and uncertain drivers were analyzed and systematized with ranking exercises during meetings with local researchers and stakeholders. Cause-effect relationships were drawn in the form of concept maps either during the meetings or by researchers based on available information. Past observations and the scenario building outcomes were used to conduct a trend analysis. Cross-comparisons were made to find similarities and differences between CS in terms of main driving forces, patterns of change, opportunities and constraints. Driving forces and trends which aroused consistently over scenarios and CS were identified. First results indicate that livelihood conditions of people rely often directly on the

  3. Assessing the feasibility of integrating ecosystem-based with engineered water resource governance and management for water security in semi-arid landscapes: A case study in the Banas catchment, Rajasthan, India.

    Science.gov (United States)

    Everard, Mark; Sharma, Om Prakash; Vishwakarma, Vinod Kumar; Khandal, Dharmendra; Sahu, Yogesh K; Bhatnagar, Rahul; Singh, Jitendra K; Kumar, Ritesh; Nawab, Asghar; Kumar, Amit; Kumar, Vivek; Kashyap, Anil; Pandey, Deep Narayan; Pinder, Adrian C

    2018-01-15

    Much of the developing world and areas of the developed world suffer water vulnerability. Engineering solutions enable technically efficient extraction and diversion of water towards areas of demand but, without rebalancing resource regeneration, can generate multiple adverse ecological and human consequences. The Banas River, Rajasthan (India), has been extensively developed for water diversion, particularly from the Bisalpur Dam from which water is appropriated by powerful urban constituencies dispossessing local people. Coincidentally, abandonment of traditional management, including groundwater recharge practices, is leading to increasingly receding and contaminated groundwater. This creates linked vulnerabilities for rural communities, irrigation schemes, urban users, dependent ecosystems and the multiple ecosystem services that they provide, compounded by climate change and population growth. This paper addresses vulnerabilities created by fragmented policy measures between rural development, urban and irrigation water supply and downstream consequences for people and wildlife. Perpetuating narrowly technocentric approaches to resource exploitation is likely only to compound emerging problems. Alternatively, restoration or innovation of groundwater recharge practices, particularly in the upper catchment, can represent a proven, ecosystem-based approach to resource regeneration with linked beneficial socio-ecological benefits. Hybridising an ecosystem-based approach with engineered methods can simultaneously increase the security of rural livelihoods, piped urban and irrigation supplies, and the vitality of river ecosystems and their services to beneficiaries. A renewed policy focus on local-scale water recharge practices balancing water extraction technologies is consistent with emerging Rajasthani policies, particularly Jal Swavlamban Abhiyan ('water self-reliance mission'). Policy reform emphasising recharge can contribute to water security and yield socio

  4. Water resources of the Pittsburgh area, Pennsylvania

    Science.gov (United States)

    Noecker, Max; Greenman, D.W.; Beamer, N.H.

    1954-01-01

    The per capita use of water in the Pittsburgh area in 1951 was 2, 000 gallons per day fgpd) or twice the per capita use in Pennsylvania as a whole. An average of about 3, 040 million gallons of water was withdrawn from the streams and from the ground each day. Of this amount, nearly 190 million gallons per day (mgd), or 6 percent, was for domestic public water supply. Industry, including public utilities generating steam for electric energy, used approximately 2, 900 mgd, of which about 42 mgd was purchased from public supply sources. In spite of this tremendous demand for water, a sufficient quantity was available to satisfy the needs of the area without serious difficulty. Acid mine drainage presents the greatest single pollution problem in the Pittsburgh area at the present time (1953) because no practical means has been found for its control. The waters of several of the rivers are strongly acid for this reason. Of the three major rivers in the area, Monongahela River waters have the greatest acid concentration and Allegheny River waters the least. Untreated domestic and industrial wastes are additional sources of stream pollution in the area. Much of the water is hard and corrosive, and occasionally has objectionable color, odor, and taste. The treatment used by public water-supply systems using river water is adequate at all times for removal of water-borne causes of disease. Attention is being concentrated on improving the quality of present supplies rather than developing new supplies from upstream tributaries. Present supplies are being improved by providing treatment facilities for disposal of wastes,, by reduction of acid mine drainage discharged into the streams, and by providing storage to augment low flows. The underground water resources are vitally important to the area. The use of ground water in the Pittsburgh area has doubled in the past two decades and in 1951 more ground water was used in Allegheny County than in any other county in

  5. Working group report on water resources

    International Nuclear Information System (INIS)

    Baulder, J.

    1991-01-01

    The results and conclusions of a working group held to discuss climate change implications for water resources are presented. The existing water resources and climatological databases necessary to develop models and functional relationships lack integration and coordination. The density and spatial distribution of the existing sampling networks for obtaining necessary climatological data is inadequate, especially in areas of complex terrain, notably higher elevations in the Rocky Mountains. Little information and knowledge is available on potential socio-economic responses that can be anticipated from either increases in climate variability or major change. Recommended research initiatives include the following. Basic functional relationships between climatic events, climatic variability and change, and both surface and groundwater hydrologic processes need to be investigated and improved. Basin-scale and regional-scale climatic models need to be developed, tested, and interfaced with existing global climate models. Public sector attitudes to water management issues and opportunities need to be investigated, and integrated scientific, socio-economic, multidisciplinary, regional databases on climatic change and variability and associated processes need to be developed

  6. Selected techniques in water resources investigations, 1965

    Science.gov (United States)

    Mesnier, Glennon N.; Chase, Edith B.

    1966-01-01

    Increasing world activity in water-resources development has created an interest in techniques for conducting investigations in the field. In the United States, the Geological Survey has the responsibility for extensive and intensive hydrologic studies, and the Survey places considerable emphasis on discovering better ways to carry out its responsibility. For many years, the dominant interest in field techniques has been "in house," but the emerging world interest has led to a need for published accounts of this progress. In 1963 the Geological Survey published "Selected Techniques in Water Resources Investigations" (Water-Supply Paper 1669-Z) as part of the series "Contributions to the Hydrology of the United States."The report was so favorably received that successive volumes are planned, of which this is the first. The present report contains 25 papers that represent new ideas being tested or applied in the hydrologic field program of the Geological Survey. These ideas range from a proposed system for monitoring fluvial sediment to how to construct stream-gaging wells from steel oil drums. The original papers have been revised and edited by the compilers, but the ideas presented are those of the authors. The general description of the bubble gage on page 2 has been given by the compilers as supplementary information.

  7. Comprehensive benefit analysis of regional water resources based on multi-objective evaluation

    Science.gov (United States)

    Chi, Yixia; Xue, Lianqing; Zhang, Hui

    2018-01-01

    The purpose of the water resources comprehensive benefits analysis is to maximize the comprehensive benefits on the aspects of social, economic and ecological environment. Aiming at the defects of the traditional analytic hierarchy process in the evaluation of water resources, it proposed a comprehensive benefit evaluation of social, economic and environmental benefits index from the perspective of water resources comprehensive benefit in the social system, economic system and environmental system; determined the index weight by the improved fuzzy analytic hierarchy process (AHP), calculated the relative index of water resources comprehensive benefit and analyzed the comprehensive benefit of water resources in Xiangshui County by the multi-objective evaluation model. Based on the water resources data in Xiangshui County, 20 main comprehensive benefit assessment factors of 5 districts belonged to Xiangshui County were evaluated. The results showed that the comprehensive benefit of Xiangshui County was 0.7317, meanwhile the social economy has a further development space in the current situation of water resources.

  8. Conceptual model of water resources in the Kabul Basin, Afghanistan

    Science.gov (United States)

    Mack, Thomas J.; Akbari, M. Amin; Ashoor, M. Hanif; Chornack, Michael P.; Coplen, Tyler B.; Emerson, Douglas G.; Hubbard, Bernard E.; Litke, David W.; Michel, Robert L.; Plummer, Niel; Rezai, M. Taher; Senay, Gabriel B.; Verdin, James P.; Verstraeten, Ingrid M.

    2010-01-01

    The United States (U.S.) Geological Survey has been working with the Afghanistan Geological Survey and the Afghanistan Ministry of Energy and Water on water-resources investigations in the Kabul Basin under an agreement supported by the United States Agency for International Development. This collaborative investigation compiled, to the extent possible in a war-stricken country, a varied hydrogeologic data set and developed limited data-collection networks to assist with the management of water resources in the Kabul Basin. This report presents the results of a multidisciplinary water-resources assessment conducted between 2005 and 2007 to address questions of future water availability for a growing population and of the potential effects of climate change. Most hydrologic and climatic data-collection activities in Afghanistan were interrupted in the early 1980s as a consequence of war and civil strife and did not resume until 2003 or later. Because of the gap of more than 20 years in the record of hydrologic and climatic observations, this investigation has made considerable use of remotely sensed data and, where available, historical records to investigate the water resources of the Kabul Basin. Specifically, this investigation integrated recently acquired remotely sensed data and satellite imagery, including glacier and climatic data; recent climate-change analyses; recent geologic investigations; analysis of streamflow data; groundwater-level analysis; surface-water- and groundwater-quality data, including data on chemical and isotopic environmental tracers; and estimates of public-supply and agricultural water uses. The data and analyses were integrated by using a simplified groundwater-flow model to test the conceptual model of the hydrologic system and to assess current (2007) and future (2057) water availability. Recharge in the basin is spatially and temporally variable and generally occurs near streams and irrigated areas in the late winter and early

  9. Water Resources Management for Shale Energy Development

    Science.gov (United States)

    Yoxtheimer, D.

    2015-12-01

    The increase in the exploration and extraction of hydrocarbons, especially natural gas, from shale formations has been facilitated by advents in horizontal drilling and hydraulic fracturing technologies. Shale energy resources are very promising as an abundant energy source, though environmental challenges exist with their development, including potential adverse impacts to water quality. The well drilling and construction process itself has the potential to impact groundwater quality, however if proper protocols are followed and well integrity is established then impacts such as methane migration or drilling fluids releases can be minimized. Once a shale well has been drilled and hydraulically fractured, approximately 10-50% of the volume of injected fluids (flowback fluids) may flow out of the well initially with continued generation of fluids (produced fluids) throughout the well's productive life. Produced fluid TDS concentrations often exceed 200,000 mg/L, with elevated levels of strontium (Sr), bromide (Br), sodium (Na), calcium (Ca), barium (Ba), chloride (Cl), radionuclides originating from the shale formation as well as fracturing additives. Storing, managing and properly disposisng of these fluids is critical to ensure water resources are not impacted by unintended releases. The most recent data in Pennsylvania suggests an estimated 85% of the produced fluids were being recycled for hydraulic fracturing operations, while many other states reuse less than 50% of these fluids and rely moreso on underground injection wells for disposal. Over the last few years there has been a shift to reuse more produced fluids during well fracturing operations in shale plays around the U.S., which has a combination of economic, regulatory, environmental, and technological drivers. The reuse of water is cost-competitive with sourcing of fresh water and disposal of flowback, especially when considering the costs of advanced treatment to or disposal well injection and lessens

  10. Managing Climate Risk to Agriculture and Water Resources in South ...

    International Development Research Centre (IDRC) Digital Library (Canada)

    Managing Climate Risk to Agriculture and Water Resources in South Africa ... to better integrate information on climate change and climate variability into water resources policy, planning and management. ... University of the Free State.

  11. promoting integrated water resources management in south west

    African Journals Online (AJOL)

    eobe

    1, 2 SOUTH WEST REGIONAL CENTRE FOR NATIONAL WATER RESOURCES CAPACITY BUILDING NETWORK,. FEDERAL UNIVERSITY OF ... that an integrated approach to water resource development and management offers the best ...

  12. Transboundary Water Resources in Southern Africa: Conflict or cooperation?

    CSIR Research Space (South Africa)

    Patrick, MJ

    2006-01-01

    Full Text Available Literature suggests a linkage between internationally shared water resources and conflict potential. Anthony R. Turton, Marian J. Patrick and Frederic Julien examine transboundary water resource management in southern Africa, showing that empirical...

  13. The perceptions of research values and priorities in water resource ...

    African Journals Online (AJOL)

    2011-06-29

    Jun 29, 2011 ... clear strengths in water resource management in southern Africa were identified, we found that ... and cross-sector collaboration in integrated water resource .... the 2 views that topped the list were the 'implementation and.

  14. Water resource management model for a river basin

    OpenAIRE

    Jelisejevienė, Emilija

    2005-01-01

    The objective is to develop river basin management model that ensures integrated analysis of existing water resource problems and promotes implementation of sustainable development principles in water resources management.

  15. Environmental sustainability control by water resources carrying capacity concept: application significance in Indonesia

    Science.gov (United States)

    Djuwansyah, M. R.

    2018-02-01

    This paper reviews the use of Water Resources carrying capacity concept to control environmental sustainability with the particular note for the case in Indonesia. Carrying capacity is a capability measure of an environment or an area to support human and the other lives as well as their activities in a sustainable manner. Recurrently water-related hazards and environmental problems indicate that the environments are exploited over its carrying capacity. Environmental carrying capacity (ECC) assessment includes Land and Water Carrying Capacity analysis of an area, suggested to always refer to the dimension of the related watershed as an incorporated hydrologic unit on the basis of resources availability estimation. Many countries use this measure to forecast the future sustainability of regional development based on water availability. Direct water Resource Carrying Capacity (WRCC) assessment involves population number determination together with their activities could be supported by available water, whereas indirect WRCC assessment comprises the analysis of supply-demand balance status of water. Water resource limits primarily environmental carrying capacity rather than the land resource since land capability constraints are easier. WRCC is a crucial factor known to control land and water resource utilization, particularly in a growing densely populated area. Even though capability of water resources is relatively perpetual, the utilization pattern of these resources may change by socio-economic and cultural technology level of the users, because of which WRCC should be evaluated periodically to maintain usage sustainability of water resource and environment.

  16. Discussion on water resources value accounting and its application

    Science.gov (United States)

    Guo, Biying; Huang, Xiaorong; Ma, Kai; Gao, Linyun; Wang, Yanqiu

    2018-06-01

    The exploration of the compilation of natural resources balance sheet has been proposed since 2013. Several elements of water resources balance sheet have been discussed positively in China, including basic concept, framework and accounting methods, which focused on calculating the amount of water resources with statistical methods but lacked the analysis of the interrelationship between physical volume and magnitude of value. Based on the study of physical accounting of water resources balance sheet, the connotation of water resources value is analyzed in combination with research on the value of water resources in the world. What's more, the theoretical framework, form of measurement and research methods of water resources value accounting are further explored. Taking Chengdu, China as an example, the index system of water resources balance sheet in Chengdu which includes both physical and valuable volume is established to account the depletion of water resources, environmental damage and ecological water occupation caused by economic and social water use. Moreover, the water resources balance sheet in this region which reflects the negative impact of the economy on the environment is established. It provides a reference for advancing water resources management, improving government and social investment, realizing scientific and rational allocation of water resources.

  17. Resources sustainable management of ground water

    International Nuclear Information System (INIS)

    2001-01-01

    Evaluation executive interinstitutional of the state of knowledge of the Raigon aquifer in the mark of the Project RLA/8/031 (sustainable Administration of Resources of groundwaters), elaborate of an I diagnose and definition of the necessities with a view to the formulation of the plan of activities of the project to develop. In the development of this work shop they were the following topics: Geology and hidrogeology, numeric modelation of the Aquifer and letter of vulnerability of the Aquifer Raigon. soils, quality and water demand, juridical and institutionals aspects

  18. New Editors Appointed for Water Resources Research

    Science.gov (United States)

    2009-03-01

    Praveen Kumar (University of Illinois at Urbana-Champaign), the newly appointed editor in chief of Water Resources Research (WRR), heads the new team of editors for the journal. The other editors are Tom Torgersen (University of Connecticut, Groton), who continues his editorship; Tissa Illangasekare (Colorado School of Mines, Golden); Graham Sander (Loughborough University, Loughborough, UK); and John Selker (Oregon State University, Corvallis). Hoshin Gupta (University of Arizona, Tucson) will join WRR at the end of 2009. The new editors will begin receiving submissions immediately. The incoming editorial board thanks outgoing editors Marc Parlange, Brian Berkowitz, Amilcare Porporato, and Scott Tyler, all of whom will assist during the transition.

  19. Assessment of the trade-offs and synergies between low-carbon power sector transition and land and water resources of the United Kingdom using the "ForeseerTM" approach

    Science.gov (United States)

    Konadu, D. D.; Sobral Mourao, Z.

    2016-12-01

    Transitioning to a low-carbon power system has been identified as one of the main strategies for achieving GHG emissions reduction targets stipulated in the UK Climate Change Act (2008). However, projected mix of technologies aimed at achieving the targeted level of decarbonisation have implications for sustainable level natural resource exploitation at different spatial and temporal scales. Critical among these are the impact on land use (food production) and water resources, which are usually not adequately analysed and accounted for in developing these long-term energy system transition strategies and scenarios. Given the importance of the UK power sector to meeting economy-wide emissions targets, the overall environmental consequence of the prescribed scenarios could significantly affect meeting long-term legislated GHG emission reduction targets. It is therefore imperative that synergies and trade-offs between the power systems and these resources are comprehensively analysed. The current study employs an integrated energy and resource use accounting methodology, called ForeseerTM, to assess the land and water requirement for the deployment of the power sector technologies of the UK Committee on Climate Change (CCC) Carbon Budget scenarios. This is analysed under different scenarios of energy crop yield and electricity infrastructure location. The outputs are then compared with sustainable limits of resource exploitation to establish the environmental tractability of the scenarios. The results show that even if stringent environmental and land use restrictions are applied, all the projected bioenergy and ground-mounted solar PV can be deployed within the UK with no significant impacts on land use and food production. However, inland water resources would be significantly affected if high Carbon Capture and Storage deployment, and without new nuclear capacity. Overall, the output highlights that contrary to the notion of the inevitability of CCS deployment in

  20. Water resources of the Flint area, Michigan

    Science.gov (United States)

    Wiitala, Sulo Werner; Vanlier, K.E.; Krieger, Robert A.

    1964-01-01

    This report describes the water resources of Genesee County, Mich., whose principal city is Flint. The sources of water available to the county are the Flint and Shiawassee Rivers and their tributaries, inland lakes, ground water, and Lake Huron. The withdrawal use of water in the county in 1958 amounted to about 45 mgd. Of this amount, 36 mgd was withdrawn from the Flint River by the Flint public water-supply system. The rest was supplied by wells. At present (1959) the Shiawassee River and its tributaries and the inland lakes are not used for water supply. Flint River water is used for domestic, industrial, and waste-dilution requirements in Flint. About 60 percent of the water supplied by the Flint public water system is used by Flint industry. At least 30 mgd of river water is needed for waste dilution in the Flint River during warm weather.Water from Holloway Reservoir, which has a storage capacity of 5,760 million gallons, is used to supplement low flows in the Flint River to meet water-supply and waste-dilution requirements. About 650 million gallons in Kearsley Reservoir, on a Flint River tributary, is held in reserve for emergency use. Based on records for the lowest flows during the period 1930-52, the Flint River system, with the two reservoirs in operation, is capable of supplying about 60 mgd at Flint, less evaporation and seepage losses. The 1958 water demands exceeded this amount. Development of additional storage in the Flint River basin is unlikely because of lack of suitable storage sites. Plans are underway to supply Flint and most of Genesee County with water from Lake Huron.The principal tributaries of the Flint River in and near Flint could furnish small supplies of water. Butternut Creek, with the largest flow of those studied, has an estimated firm yield of 0.054 mgd per sq mi for 95 percent of the time. The Shiawassee River at Byron is capable of supplying at least 29 mgd for 95 percent of the time.Floods are a serious problem in Flint

  1. Assessment of surface water resources availability using catchment modeling and the results of tracer studies in the meso-scale Migina Catchment, Rwanda

    Science.gov (United States)

    Munyaneza, O.; Mukubwa, A.; Maskey, S.; Wenninger, J.; Uhlenbrook, S.

    2013-12-01

    In the last couple of years, different hydrological research projects were undertaken in the Migina catchment (243.2 km2), a tributary of the Kagera river in Southern Rwanda. These projects were aimed to understand hydrological processes of the catchment using analytical and experimental approaches and to build a pilot case whose experience can be extended to other catchments in Rwanda. In the present study, we developed a hydrological model of the catchment, which can be used to inform water resources planning and decision making. The semi-distributed hydrological model HEC-HMS (version 3.5) was used with its soil moisture accounting, unit hydrograph, liner reservoir (for base flow) and Muskingum-Cunge (river routing) methods. We used rainfall data from 12 stations and streamflow data from 5 stations, which were collected as part of this study over a period of two years (May 2009 and June 2011). The catchment was divided into five sub-catchments each represented by one of the five observed streamflow gauges. The model parameters were calibrated separately for each sub-catchment using the observed streamflow data. Calibration results obtained were found acceptable at four stations with a Nash-Sutcliffe Model Efficiency of 0.65 on daily runoff at the catchment outlet. Due to the lack of sufficient and reliable data for longer periods, a model validation (split sample test) was not undertaken. However, we used results from tracer based hydrograph separation from a previous study to compare our model results in terms of the runoff components. It was shown that the model performed well in simulating the total flow volume, peak flow and timing as well as the portion of direct runoff and base flow. We observed considerable disparities in the parameters (e.g. groundwater storage) and runoff components across the five sub-catchments, that provided insights into the different hydrological processes at sub-catchment scale. We conclude that such disparities justify the need

  2. Water-resources activities, North Dakota District, Fiscal Year 1992

    Science.gov (United States)

    Martin, Cathy R.

    1993-01-01

    The mission of the U.S. Geological Survey, Water Resources Division, is to provide the hydrologic information and understanding needed for the optimum utilization and management of the Nation's water resources for the overall benefit of the people of the United States. This report describes water-resources activities of the Water Resources Division in North Dakota in fiscal year 1992. Information on each project includes objectives, approach, progress, plans for fiscal year 1993, and completed and planned report products.

  3. Resources for National Water Savings for Outdoor Water Use

    Energy Technology Data Exchange (ETDEWEB)

    Melody, Moya [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Stratton, Hannah [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Williams, Alison [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Dunham, Camilla [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2014-05-01

    In support of efforts by the U.S. Environmental Agency's (EPA's) WaterSense program to develop a spreadsheet model for calculating the national water and financial savings attributable to WaterSense certification and labeling of weather-based irrigation controllers, Lawrence Berkeley National Laboratory reviewed reports, technical data, and other information related to outdoor water use and irrigation controllers. In this document we categorize and describe the reviewed references, highlighting pertinent data. We relied on these references when developing model parameters and calculating controller savings. We grouped resources into three major categories: landscapes (section 1); irrigation devices (section 2); and analytical and modeling efforts (section 3). Each category is subdivided further as described in its section. References are listed in order of date of publication, most recent first.

  4. Passive Solar Driven Water Treatment of Contaminated Water Resources

    OpenAIRE

    Ahmed, Mubasher

    2016-01-01

    Master's thesis in Environmental technology Freshwater, being vital for mankind survival, has become a very serious concern for the public especially living in countries with limited water, energy and economic resources. Freshwater generation is an energy-intensive task particularly when fossil based fuels are required as energy source. However, environmental concerns and high energy costs have called for the alternative and renewable sources of energy like wind, hy...

  5. Nuclear explosives in water-resource management

    Energy Technology Data Exchange (ETDEWEB)

    Piper, Arthur M [United States Department of the Interior, Geological Survey (United States)

    1970-05-15

    Nuclear explosives afford diverse tools for managing our water resources. These include principally: the rubble column of a fully contained underground detonation, the similar rubble column of a retarc, the crater by subsidence, the throwout crater of maximum volume (the latter either singly or in-line), and the ejecta of a valley-slope crater. By these tools, one can create space in which to store water, either underground or on the land surface - in the latter instance, to a considerable degree independently of the topography. Underground, one can accelerate movement of water by breaching a confining bed, a partition of a compartmented aquifer, or some other obstruction in the natural 'plumbing system'. Finally, on the land surface, one can modify the natural pattern of water flow, by canals excavated with in-line detonation. In all these applications, the potential advantage of a nuclear explosive rests chiefly in undertakings of large scale, under a consequent small cost per unit of mechanical work accomplished.

  6. Water resources of King County, Washington

    Science.gov (United States)

    Richardson, Donald; Bingham, J.W.; Madison, R.J.; Williams, R.

    1968-01-01

    Although the total supply of water in King County is large, water problems are inevitable because of the large and rapidly expanding population. The county contains a third of the 3 million people in Washington, most of the population being concentrated in the Seattle metropolitan area. King County includes parts of two major physiographic features: the western area is part of the Puget Sound Lowland, and the eastern area is part of the Cascade Range. In these two areas, the terrain, weather, and natural resources (including water) contrast markedly. Average annual precipitation in the county is about 80 inches, ranging from about 30 inches near Puget Sound to more than 150 inches in parts of the Cascades. Annual evapotranspiration is estimated to range from 15 to 24 inches. Average annual runoff ranges from about 15 inches in the lowlands to more than 100 inches in the mountains. Most of the streamflow is in the major basins of the county--the Green-Duwamish, Lake Washington, and Snoqualmie basins. The largest of these is the Snoqualmie River basin (693 square miles), where average annual runoff during the period 1931-60 was about 79 inches. During the same period, annual runoff in the Lake Washington basin ( 607 square miles) averaged about 32 inches, and in the Green-Duwamish River basin (483 square miles), about 46 inches. Seasonal runoff is generally characterized by several high-flow periods in the winter, medium flows in the spring, and sustained low flows in the summer and fall. When floods occur in the county they come almost exclusively between October and March. The threat of flood damage is greatest on the flood plaits of the larger rivers, but in the Green-Duwamish Valley the threat was greatly reduced with the completion of Howard A. Hanson Dam in 1962. In the Snoqualmie River basin, where no such dam exists, the potential damage from a major flood increases each year as additional land is developed in the Snoqualmie Valley. 0nly moderate amounts of

  7. Applications of NST in water resources management

    International Nuclear Information System (INIS)

    Nahrul Khair Alang Md Rashid

    2006-01-01

    At first instance, Nuclear Science and Technology (NST) appears to have no relation to water resource management. Its dark side, the sole purpose of which is weaponry, has for a long time overshadowed its bright side, which has plenty of peaceful applications in the main socio-economic development sectors: power generation, agriculture, health and medicine, industry, manufacturing and environment. Historically, the medical sector is one of the early beneficiaries of the applications of NST. The same is true for Malaysia when the first x-ray machine was installed in 1897 at Taiping Hospital, Perak. In the environment sector, the use of little or no chemical in nuclear processes contributes to a cleaner environment. Nuclear power plants for example do not emit polluting gases and do not harm to the ozone layer. At the end of 2004, there are more than 440 nuclear power reactors operating in more than 30 countries fulfilling 17% of the world electricity demand, and it is growing. While nuclear power is yet to arrive in Malaysia the uses of NST in other areas are increasing. The application of radiotracer techniques in water resource management, in the environment, as well as in industry is an example. (Author)

  8. The use of an integrated variable fuzzy sets in water resources management

    Science.gov (United States)

    Qiu, Qingtai; Liu, Jia; Li, Chuanzhe; Yu, Xinzhe; Wang, Yang

    2018-06-01

    Based on the evaluation of the present situation of water resources and the development of water conservancy projects and social economy, optimal allocation of regional water resources presents an increasing need in the water resources management. Meanwhile it is also the most effective way to promote the harmonic relationship between human and water. In view of the own limitations of the traditional evaluations of which always choose a single index model using in optimal allocation of regional water resources, on the basis of the theory of variable fuzzy sets (VFS) and system dynamics (SD), an integrated variable fuzzy sets model (IVFS) is proposed to address dynamically complex problems in regional water resources management in this paper. The model is applied to evaluate the level of the optimal allocation of regional water resources of Zoucheng in China. Results show that the level of allocation schemes of water resources ranging from 2.5 to 3.5, generally showing a trend of lower level. To achieve optimal regional management of water resources, this model conveys a certain degree of accessing water resources management, which prominently improve the authentic assessment of water resources management by using the eigenvector of level H.

  9. Effects of virtual water flow on regional water resources stress: A case study of grain in China.

    Science.gov (United States)

    Sun, Shikun; Wang, Yubao; Engel, Bernie A; Wu, Pute

    2016-04-15

    Scarcity of water resources is one of the major challenges in the world, particularly for the main water consumer, agriculture. Virtual water flow (VWF) promotes water redistribution geographically and provides a new solution for resolving regional water shortage and improving water use efficiency in the world. Virtual water transfer among regions will have a significant influence on the water systems in both grain export and import regions. In order to assess the impacts of VWF related grain transfer on regional water resources conditions, the study takes mainland China as study area for a comprehensive evaluation of virtual water flow on regional water resources stress. Results show that Northeast China and Huang-Huai-Hai region are the major grain production regions as well as the major virtual water export regions. National water savings related to grain VWF was about 58Gm(3), with 48Gm(3) blue water and 10Gm(3) green water. VWF changes the original water distribution and has a significant effect on water resources in both virtual water import and export regions. Grain VWF significantly increased water stress in grain export regions and alleviated water stress in grain import regions. Water stress index (WSI) of Heilongjiang and Inner Mongolia has been increased by 138% and 129% due to grain export. Stress from water shortages is generally severe in export regions, and issues with the sustainability of grain production and VWF pattern are worthy of further exploration. Copyright © 2016 Elsevier B.V. All rights reserved.

  10. Resource Assessment for Afghanistan and Alleviation of Terrorism

    Science.gov (United States)

    Shroder, J. F.

    2002-05-01

    Mineral and water resources in Afghanistan may be the best means by which redevelopment of the country can be used to alleviate future terrorism. Remote-sensing analysis of snow, ice, resources, and topography in Afghanistan, and development of digital elevation models with ASTER imagery and previously classified, large scale topographic maps from the Department of Defense enable better assessment and forecasting resources in the country. Adequate resource assessment and planning is viewed as critical to alleviation of one cause of the problems associated with the fertilization of terrorism in Afghanistan. Long-term diminution of meltwater resources in Afghanistan is exemplified by the disastrous and famine-inducing droughts of the present time and three decades prior, as well as by the early Landsat assessment of glacier resources sponsored by USGS and now brought up-to-date with current imagery. Extensive cold-war projects undertaken by both the USSR and USA generated plentiful essential mineral, hydrocarbon, hydrogeological, and hydrological data, including an extensive stream gauging and vital irrigation network now adversly affected or destroyed entirely by decades of war. Analysis, measurement, prediction, rehabilitation, and reconstruction of critical resource projects are regarded as most critical elements in the war on terrorism in this portion of the world. The GLIMS (Global Land Ice Measurements from Space) Project, initially sponsored by USGS, has established our group as the Regional Center for Afghanistan and Pakistan, in which the above concepts serve as guiding research precepts.

  11. Wind Resource Assessment of Gujarat (India)

    Energy Technology Data Exchange (ETDEWEB)

    Draxl, C.; Purkayastha, A.; Parker, Z.

    2014-07-01

    India is one of the largest wind energy markets in the world. In 1986 Gujarat was the first Indian state to install a wind power project. In February 2013, the installed wind capacity in Gujarat was 3,093 MW. Due to the uncertainty around existing wind energy assessments in India, this analysis uses the Weather Research and Forecasting (WRF) model to simulate the wind at current hub heights for one year to provide more precise estimates of wind resources in Gujarat. The WRF model allows for accurate simulations of winds near the surface and at heights important for wind energy purposes. While previous resource assessments published wind power density, we focus on average wind speeds, which can be converted to wind power densities by the user with methods of their choice. The wind resource estimates in this study show regions with average annual wind speeds of more than 8 m/s.

  12. Vanishing Ponds and Regional Water Resources in Taoyuan, Taiwan

    Directory of Open Access Journals (Sweden)

    Yuei-An Liou

    2015-01-01

    Full Text Available Taiwan has a Subtropic to Tropical climate, but its precipitation varies widely in response to seasonal effects and weather events such as Typhoon and Meiyu systems. Precipitation must be held back in reservoirs to provide and regulate sufficient water supply. Balancing the irregular precipitation and increasing water demands generates tremendous pressure on water resources management for the water stored in the Shihmen Reservoir, which is the major unitary water supply system in the Greater Taoyuan Area. Such pressure will be significantly enlarged due to the huge 17 billion USD Taoyuan Aerotropolis Project. In earlier days many small artificial ponds (a common terminology in this article, including irrigation ponds, fishery ponds and others, were built to cope with water shortages in Taoyuan County. These small storage ponds provided a solution that resolved seasonal precipitation shortages. Unfortunately, these ponds have been vanishing one after another one due to regional industrialization and urbanization in recent decades and less than 40% of them still remain today. There is great urgency and importance to investigating the link between vanishing ponds and water resources management. Remote sensing technology was used in this study to monitor the environmental consequences in the Taoyuan area by conducting multi-temporal analysis on the changes in water bodies, i.e., ponds. SPOT satellite images taken in 1993, 2003, and 2010 were utilized to analyze and assess the importance of small-scale ponds as water conservation facilities. It was found that, during the seventeen years from 1993 - 2010, the number of irrigation ponds decreased by 35.94%. These ponds can reduce the burden on the major reservoir and increase the water recycling rate if they are properly conserved. They can also improve rainfall interception and surface detention capabilities, and provide another planning advantage for regional water management.

  13. Understanding human impacts to tropical coastal ecosystems through integrated hillslope erosion measurements, optical coastal waters characterization, watershed modeling, marine ecosystem assessments, and natural resource valuations in two constrasting watersheds in Puerto Rico.

    Science.gov (United States)

    Ortiz-Zayas, J.; Melendez, J.; Barreto, M.; Santiago, L.; Torres-Perez, J. L.; Ramos-Scharron, C. E.; Figueroa, Y.; Setegn, S. G.; Guild, L. S.; Armstrong, R.

    2017-12-01

    Coastal ecosystems are an asset to many tropical island economies. In Puerto Rico, however, many invaluable coastal ecosystems are at risk due to multiple social and natural environmental stressors. To quantify the role of anthropogenic versus natural stressors, an integrated multidisciplinary approach was applied in two contrasting watersheds in Puerto Rico. The Rio Loco (RL) watershed in Southeastern Puerto Rico is hydrologically modified with interbasin water transfers, hydroelectric generation, and with water extraction for irrigation and water supply. Intensive agricultural production dominates both the lower and upper portions of the basin. In contrast, the Rio Grande de Manatí (RGM) shows a natural flow regime with minor flow regulation and limited agriculture. The Surface Water Assessment Tool (SWAT) was applied to each watershed to assess the effects of land use changes on water and sediment fluxes to coastal areas. From 1977 to 2016, forest areas increased in both watersheds due to the abandonment of farms in the mountains. However, in upper and lower RL, agricultural lands have remained active. Coffee plantations in the upper watershed contribute with high sediment loads, particularly in unpaved service roads. We hypothesize that water fluxes will be higher in the larger RGM than in RL. However, suspended sediment fluxes will be higher in the agriculturally active RL basin. A willingness-to-pay approach was applied to assess how residents from each watershed value water and coastal ecosystems revealing a general higher natural resources valuation in the RGM than in RL. Coastal ecosystems at each site revealed structural differences in benthic coral communities due to local currents influenced largely by coastal morphology. The optical properties of coastal waters are also being determined and linked to fluvial sediment fluxes. Stakeholder meetings are being held in each watershed to promote transfer of scientific insights into a sustainable coastal and

  14. Research advances on thereasonable water resources allocation in irrigation district

    DEFF Research Database (Denmark)

    Xuebin, Qi; Zhongdong, Huang; Dongmei, Qiao

    2015-01-01

    The rational allocation of water resources for irrigation is important to improve the efficiency in utilization of water resources and ensuring food security, but also effective control measures need to be in place for the sustainable utilization of water resources in an irrigation area. The prog......The rational allocation of water resources for irrigation is important to improve the efficiency in utilization of water resources and ensuring food security, but also effective control measures need to be in place for the sustainable utilization of water resources in an irrigation area...... mechanism of water resources is not perfect, the model for optimal water resources allocation is not practical, and the basic conditions for optimal allocation of water resources is relatively weak. In order to solve those problems in water resources allocation practice, six important as?pects must...... in irrigation districts, studying the water resources control technology in irrigation districts by hydrology ecological system, studying the technologies of real?time risk dispatching and intelligent management in irrigation districts, and finally studying the technology of cou?pling optimal allocation...

  15. Water Resources by 2100 in Mountains with Declining Glaciers

    Science.gov (United States)

    Beniston, M.

    2015-12-01

    Future shifts in temperature and precipitation patterns, and changes in the behavior of snow and ice - and possibly the quasi-disappearance of glaciers - in many mountain regions will change the quantity, seasonality, and possibly also the quality of water originating in mountains and uplands. As a result, changing water availability will affect both upland and populated lowland areas. Economic sectors such as agriculture, tourism or hydropower may enter into rivalries if water is no longer available in sufficient quantities or at the right time of the year. The challenge is thus to estimate as accurately as possible future changes in order to prepare the way for appropriate adaptation strategies and improved water governance. The European ACQWA project, coordinated by the author, aimed to assess the vulnerability of water resources in mountain regions such as the European Alps, the Central Chilean Andes, and the mountains of Central Asia (Kyrgyzstan) where declining snow and ice are likely to strongly affect hydrological regimes in a warmer climate. Based on RCM (Regional Climate Model) simulations, a suite of cryosphere, biosphere and economic models were then used to quantify the environmental, economic and social impacts of changing water resources in order to assess how robust current water governance strategies are and what adaptations may be needed to alleviate the most negative impacts of climate change on water resources and water use. Hydrological systems will respond in quantity and seasonality to changing precipitation patterns and to the timing of snow-melt in the studied mountain regions, with a greater risk of flooding during the spring and droughts in summer and fall. The direct and indirect impacts of a warming climate will affect key economic sectors such as tourism, hydropower, agriculture and the insurance industry that will be confronted to more frequent natural disasters. The results from the ACQWA project suggest that there is a need for a

  16. Benefits of greenhouse gas mitigation on the supply, management, and use of water resources in the United States

    OpenAIRE

    Strzepek, Kenneth; Neumann, J.; SMith, J.; Martinich, J.; Boehlert, B.; Hejazi, M.; Henderson, J.; Wobus, C.; Jones, R.; Calvin, K.; Johnson, D.; Monier, Erwan; Strzepek, J.; Yoon, J.-H.

    2013-01-01

    Climate change impacts on water resources in the United States are likely to be far-reaching and substantial because the water is integral to climate, and the water sector spans many parts of the economy. This paper estimates impacts and damages from five water resource-related models addressing runoff, drought risk, economics of water supply/demand, water stress, and flooding damages. The models differ in the water system assessed, spatial scale, and unit of assessment, but together provide ...

  17. Integrated Water Resources Simulation Model for Rural Community

    Science.gov (United States)

    Li, Y.-H.; Liao, W.-T.; Tung, C.-P.

    2012-04-01

    The purpose of this study is to develop several water resources simulation models for residence houses, constructed wetlands and farms and then integrate these models for a rural community. Domestic and irrigation water uses are the major water demand in rural community. To build up a model estimating domestic water demand for residence houses, the average water use per person per day should be accounted first, including water uses of kitchen, bathroom, toilet and laundry. On the other hand, rice is the major crop in the study region, and its productive efficiency sometimes depends on the quantity of irrigation water. The water demand can be estimated by crop water use, field leakage and water distribution loss. Irrigation water comes from rainfall, water supply system and reclaimed water which treated by constructed wetland. In recent years, constructed wetlands play an important role in water resources recycle. They can purify domestic wastewater for water recycling and reuse. After treating from constructed wetlands, the reclaimed water can be reused in washing toilets, watering gardens and irrigating farms. Constructed wetland is one of highly economic benefits for treating wastewater through imitating the processing mechanism of natural wetlands. In general, the treatment efficiency of constructed wetlands is determined by evapotranspiration, inflow, and water temperature. This study uses system dynamics modeling to develop models for different water resource components in a rural community. Furthermore, these models are integrated into a whole system. The model not only is utilized to simulate how water moves through different components, including residence houses, constructed wetlands and farms, but also evaluates the efficiency of water use. By analyzing the flow of water, the water resource simulation model can optimizes water resource distribution under different scenarios, and the result can provide suggestions for designing water resource system of a

  18. Geothermal resource assessment of Ouray, Colorado. Resource series 15

    Energy Technology Data Exchange (ETDEWEB)

    Zacharakis, T.G.; Ringrose, C.D.; Pearl, R.H.

    1981-01-01

    In 1979, a program was initiated to delineate the geological features controlling the occurrence of geothermal resources in Colorado. In the Ouray area, this effort consisted of geological mapping, soil mercury geochemical surveys and resistivity geophysical surveys. The soil mercury obtained inconclusive results, with the Box Canyon area indicating a few anomalous values, but these values are questionable and probably are due to the hot spring activity and mineralization within the Leadville limestone rock. One isolated locality indicating anomalous values was near the Radium Springs pool and ball park, but this appears to be related to warm waters leaking from a buried pipe or from the Uncompahgre River. The electrical resistivity survey however, indicated several areas of low resistivity zones namely above the Box Canyon area, the power station area and the Wiesbaden Motel area. From these low zones it is surmised that the springs are related to a complex fault system which serves as a conduit for the deep circulation of ground waters through the system.

  19. TIGER-NET – enabling an Earth Observation capacity for Integrated Water Resource Management in Africa

    DEFF Research Database (Denmark)

    Walli, A.; Tøttrup, C.; Naeimi, V.

    As part of the TIGER initiative [1] the TIGER-NET project aims to support the assessment and monitoring of water resources from watershed to transboundary basin level delivering indispensable information for Integrated Water Resource Management in Africa through: 1. Development of an open......-source Water Observation and Information Systems (WOIS) for monitoring, assessing and inventorying water resources in a cost-effective manner; 2. Capacity building and training of African water authorities and technical centers to fully exploit the increasing observation capacity offered by current...... and upcoming generations of satellites, including the Sentinel missions. Dedicated application case studies have been developed and demonstrated covering all EO products required by and developed with the participating African water authorities for their water resource management tasks, such as water reservoir...

  20. Water footprints as an indicator for the equitable utilization of shared water resources. (Case study: Egypt and Ethiopia shared water resources in Nile Basin)

    Science.gov (United States)

    Sallam, Osama M.

    2014-12-01

    The question of "equity." is a vague and relative term in any event, criteria for equity are particularly difficult to determine in water conflicts, where international water law is ambiguous and often contradictory, and no mechanism exists to enforce principles which are agreed-upon. The aim of this study is using the water footprints as a concept to be an indicator or a measuring tool for the Equitable Utilization of shared water resources. Herein Egypt and Ethiopia water resources conflicts in Nile River Basin were selected as a case study. To achieve this study; water footprints, international virtual water flows and water footprint of national consumption of Egypt and Ethiopia has been analyzed. In this study, some indictors of equitable utilization has been gained for example; Egypt water footprint per capita is 1385 CM/yr/cap while in Ethiopia is 1167 CM/yr/cap, Egypt water footprint related to the national consumption is 95.15 BCM/yr, while in Ethiopia is 77.63 BCM/yr, and the external water footprints of Egypt is 28.5%, while in Ethiopia is 2.3% of the national consumption water footprint. The most important conclusion of this study is; natural, social, environmental and economical aspects should be taken into account when considering the water footprints as an effective measurable tool to assess the equable utilization of shared water resources, moreover the water footprints should be calculated using a real data and there is a necessity to establishing a global water footprints benchmarks for commodities as a reference.

  1. Scenario Development for Water Resources Planning and Management

    Science.gov (United States)

    Stewart, S.; Mahmoud, M.; Liu, Y.; Hartman, H.; Wagener, T.; Gupta, H.

    2006-12-01

    The main objective of scenario development for water resources is to inform policy-makers about the implications of various policies to inform decision-making. Although there have been a number of studies conducted in the relatively-new and recent field of scenario analysis and development, very few of those have been explicitly applied to water resource issues. More evident is the absence of an established formal approach to develop and apply scenarios. Scenario development is a process that evaluates possible future states of the world by examining several feasible scenarios. A scenario is a projection of various physical and socioeconomic conditions that describe change from the current state to a future state. In this paper, a general framework for scenario development with special emphasis on applications to water resources is considered. The process comprises several progressive and reiterative phases: scenario definition, scenario construction, scenario analysis, scenario assessment, and risk management. Several characteristics of scenarios that are important in describing scenarios are also taken into account; these include scenario types, scenario themes, scenario likelihoods and scenario categories. A hindrance to the adoption of a unified framework for scenario development is inconsistency in the terminology used by scenario developers. To address this problem, we propose a consistent terminology of basic and frequent terms. Outreach for this formal approach is partially maintained through an interactive community website that seeks to educate potential scenario developers about the scenario development process, share and exchange information and resources on scenarios to foster a multidisciplinary community of scenario developers, and establish a unified framework for scenario development with regards to terminology and guidelines. The website provides information on scenario development, current scenario-related activities, key water resources scenario

  2. Developing a water market readiness assessment framework

    Science.gov (United States)

    Wheeler, Sarah Ann; Loch, Adam; Crase, Lin; Young, Mike; Grafton, R. Quentin

    2017-09-01

    Water markets are increasingly proposed as a demand-management strategy to deal with water scarcity. Water trading arrangements, on their own, are not about setting bio-physical limits to water-use. Nevertheless, water trading that mitigates scarcity constraints can assist regulators of water resources to keep water-use within limits at the lowest possible cost, and may reduce the cost of restoring water system health. While theoretically attractive, many practitioners have, at best, only a limited understanding of the practical usefulness of markets and how they might be most appropriately deployed. Using lessons learned from jurisdictions around the world where water markets have been implemented, this study attempts to fill the existing water market development gap and provide an initial framework (the water market readiness assessment (WMRA)) to describe the policy and administrative conditions/reforms necessary to enable governments/jurisdictions to develop water trading arrangements that are efficient, equitable and within sustainable limits. Our proposed framework consists of three key steps: 1) an assessment of hydrological and institutional needs; 2) a market evaluation, including assessment of development and implementation issues; and 3) the monitoring, continuous/review and assessment of future needs; with a variety of questions needing assessment at each stage. We apply the framework to three examples: regions in Australia, the United States and Spain. These applications indicate that WMRA can provide key information for water planners to consider on the usefulness of water trading processes to better manage water scarcity; but further practical applications and tests of the framework are required to fully evaluate its effectiveness.

  3. Assessment of Biomass Resources in Liberia

    Energy Technology Data Exchange (ETDEWEB)

    Milbrandt, A.

    2009-04-01

    Biomass resources meet about 99.5% of the Liberian population?s energy needs so they are vital to basic welfare and economic activity. Already, traditional biomass products like firewood and charcoal are the primary energy source used for domestic cooking and heating. However, other more efficient biomass technologies are available that could open opportunities for agriculture and rural development, and provide other socio-economic and environmental benefits.The main objective of this study is to estimate the biomass resources currently and potentially available in the country and evaluate their contribution for power generation and the production of transportation fuels. It intends to inform policy makers and industry developers of the biomass resource availability in Liberia, identify areas with high potential, and serve as a base for further, more detailed site-specific assessments.

  4. Noise affects resource assessment in an invertebrate.

    Science.gov (United States)

    Walsh, Erin P; Arnott, Gareth; Kunc, Hansjoerg P

    2017-04-01

    Anthropogenic noise is a global pollutant, affecting animals across taxa. However, how noise pollution affects resource acquisition is unknown. Hermit crabs ( Pagurus bernhardus ) engage in detailed assessment and decision-making when selecting a critical resource, their shell; this is crucial as individuals in poor shells suffer lower reproductive success and higher mortality. We experimentally exposed hermit crabs to anthropogenic noise during shell selection. When exposed to noise, crabs approached the shell faster, spent less time investigating it, and entered it faster. Our results demonstrate that changes in the acoustic environment affect the behaviour of hermit crabs by modifying the selection process of a vital resource. This is all the more remarkable given that the known cues used in shell selection involve chemical, visual and tactile sensory channels. Thus, our study provides rare evidence for a cross-modal impact of noise pollution. © 2017 The Author(s).

  5. Army Corps of Engineers: Water Resource Authorizations, Appropriations, and Activities

    Science.gov (United States)

    2017-02-27

    eight divisions that are further divided into 38 districts.2 This report provides an overview of the Corps water resource activities , including...rules associated with authorization and appropriation earmarks, individual Members often brought attention to similar activities for congressional...Army Corps of Engineers: Water Resource Authorizations, Appropriations, and Activities Nicole T. Carter Specialist in Natural Resources Policy

  6. Assessing the Performance of Natural Resource Systems

    Directory of Open Access Journals (Sweden)

    Bruce Campbell

    2002-01-01

    Full Text Available Assessing the performance of management is central to natural resource management, in terms of improving the efficiency of interventions in an adaptive-learning cycle. This is not simple, given that such systems generally have multiple scales of interaction and response; high frequency of nonlinearity, uncertainty, and time lags; multiple stakeholders with contrasting objectives; and a high degree of context specificity. The importance of bounding the problem and preparing a conceptual model of the system is highlighted. We suggest that the capital assets approach to livelihoods may be an appropriate organizing principle for the selection of indicators of system performance. In this approach, five capital assets are recognized: physical, financial, social, natural, and human. A number of principles can be derived for each capital asset; indicators for assessing system performance should cover all of the principles. To cater for multiple stakeholders, participatory selection of indicators is appropriate, although when cross-site comparability is required, some generic indicators are suitable. Because of the high degree of context specificity of natural resource management systems, a typology of landscapes or resource management domains may be useful to allow extrapolation to broader systems. The problems of nonlinearities, uncertainty, and time lags in natural resource management systems suggest that systems modeling is crucial for performance assessment, in terms of deriving "what would have happened anyway" scenarios for comparison to the measured trajectory of systems. Given that a number of indicators are necessary for assessing performance, the question becomes whether these can be combined to give an integrative assessment. We explore five possible approaches: (1 simple additive index, as used for the Human Development Index; (2 derived variables (e.g., principal components as the indices of performance; (3 two-dimensional plots of

  7. Isotopes in water resources management. V.2. Proceedings of a symposium

    International Nuclear Information System (INIS)

    1996-01-01

    At present, the thrusts of the IAEA involvement are towards improved management of water resources in regions suffering from water scarcity, assessment of human impact on water resources, e.g. water pollution, and exploration and management of geothermal resources. Lately, novel isotope based techniques have been evolving from specialized laboratories. These trends and challenges are reflected by the scientific contributions to the International Symposium on Isotopes in Water Resources Management, held from 20 to 24 March 1995 in Vienna. The main themes of the symposium were groundwater resources management, with about two thirds of the contributions addressing origin and recharge of groundwater, groundwater dynamics and pollution, modelling approaches, and geothermal and paleowater resources. The remaining third of the contributions were concerned with surface water sediments, unsaturated zones and methodological aspects. These proceedings contain the 43 papers presented and the extended synopses of over 100 poster presentations. Refs, figs, tabs

  8. Hydrology and water resources in Caspian Sea

    Science.gov (United States)

    Haddadi Moghaddam, Kourosh

    2016-10-01

    Precipitation is the main driver of the water balance variability of the water over space and time, and changes in precipitation have very important implications for hydrology and water resources. Variations in precipitation over daily, seasonal, annual, and decadal time scales influence hydrological variability over time in a catchment. Flood frequency is affected by changes in the year-to-year variability in precipitation and by changes in short-term rainfall properties. Desiccation of the Caspian Sea is one of the world's most serious ecosystem catastrophes. The Persian Sturgeon (Acipenser persicus) caught under 10 m depth using bottom trawl net by research vessel during winter 2012, summer and winter 2013 and spring 2014 in east, central and west of southern parts of Caspian Sea, then, their diets were investigated. During 136 trawling in the aimed seasons, Persian sturgeon with 1 to 2 years old and 179.67 × 0.2 g (body weight) and 29.97 ± 0.4 cm (Total length) captured. Examination of stomach contents in the sturgeon specimens revealed that the food spectrum was composed of bony fishes (Neogobius sp., Atherina sp. and Clupeonella delicatula), invertebrates belonging to the family Ampharetidae polychaeta worms including (Hypanai sp. and Nereis diversicolor), various crustaceans (Gammarus sp. and Paramysis sp.). Investigation on stomach contents of sturgeon Acipenser persicus caught under 10 m depth in 2012 to 2013 surveys showed that there is significant difference in the consumed food. The most food diversity have been observed in winter 2013, also Polychaeta is the primary consumed food and crustacean is the secondary one (P > 0.05), no new types of food (such as bony fishes or benthics) have been observed on food chain of Acipenser persicus and shows no significant difference (P > 0.05).

  9. A General Water Resources Regulation Software System in China

    Science.gov (United States)

    LEI, X.

    2017-12-01

    To avoid iterative development of core modules in water resource normal regulation and emergency regulation and improve the capability of maintenance and optimization upgrading of regulation models and business logics, a general water resources regulation software framework was developed based on the collection and analysis of common demands for water resources regulation and emergency management. It can provide a customizable, secondary developed and extensible software framework for the three-level platform "MWR-Basin-Province". Meanwhile, this general software system can realize business collaboration and information sharing of water resources regulation schemes among the three-level platforms, so as to improve the decision-making ability of national water resources regulation. There are four main modules involved in the general software system: 1) A complete set of general water resources regulation modules allows secondary developer to custom-develop water resources regulation decision-making systems; 2) A complete set of model base and model computing software released in the form of Cloud services; 3) A complete set of tools to build the concept map and model system of basin water resources regulation, as well as a model management system to calibrate and configure model parameters; 4) A database which satisfies business functions and functional requirements of general water resources regulation software can finally provide technical support for building basin or regional water resources regulation models.

  10. Water resource monitoring systems and the role of satellite observations

    Directory of Open Access Journals (Sweden)

    A. I. J. M. van Dijk

    2011-01-01

    Full Text Available Spatial water resource monitoring systems (SWRMS can provide valuable information in support of water management, but current operational systems are few and provide only a subset of the information required. Necessary innovations include the explicit description of water redistribution and water use from river and groundwater systems, achieving greater spatial detail (particularly in key features such as irrigated areas and wetlands, and improving accuracy as assessed against hydrometric observations, as well as assimilating those observations. The Australian water resources assessment (AWRA system aims to achieve this by coupling landscape models with models describing surface water and groundwater dynamics and water use. A review of operational and research applications demonstrates that satellite observations can improve accuracy and spatial detail in hydrological model estimation. All operational systems use dynamic forcing, land cover classifications and a priori parameterisation of vegetation dynamics that are partially or wholly derived from remote sensing. Satellite observations are used to varying degrees in model evaluation and data assimilation. The utility of satellite observations through data assimilation can vary as a function of dominant hydrological processes. Opportunities for improvement are identified, including the development of more accurate and higher spatial and temporal resolution precipitation products, and the use of a greater range of remote sensing products in a priori model parameter estimation, model evaluation and data assimilation. Operational challenges include the continuity of research satellite missions and data services, and the need to find computationally-efficient data assimilation techniques. The successful use of observations critically depends on the availability of detailed information on observational error and understanding of the relationship between remotely-sensed and model variables, as

  11. USGS Methodology for Assessing Continuous Petroleum Resources

    Science.gov (United States)

    Charpentier, Ronald R.; Cook, Troy A.

    2011-01-01

    The U.S. Geological Survey (USGS) has developed a new quantitative methodology for assessing resources in continuous (unconventional) petroleum deposits. Continuous petroleum resources include shale gas, coalbed gas, and other oil and gas deposits in low-permeability ("tight") reservoirs. The methodology is based on an approach combining geologic understanding with well productivities. The methodology is probabilistic, with both input and output variables as probability distributions, and uses Monte Carlo simulation to calculate the estimates. The new methodology is an improvement of previous USGS methodologies in that it better accommodates the uncertainties in undrilled or minimally drilled deposits that must be assessed using analogs. The publication is a collection of PowerPoint slides with accompanying comments.

  12. Multi-agent Water Resources Management

    Science.gov (United States)

    Castelletti, A.; Giuliani, M.

    2011-12-01

    Increasing environmental awareness and emerging trends such as water trading, energy market, deregulation and democratization of water-related services are challenging integrated water resources planning and management worldwide. The traditional approach to water management design based on sector-by-sector optimization has to be reshaped to account for multiple interrelated decision-makers and many stakeholders with increasing decision power. Centralized management, though interesting from a conceptual point of view, is unfeasible in most of the modern social and institutional contexts, and often economically inefficient. Coordinated management, where different actors interact within a full open trust exchange paradigm under some institutional supervision is a promising alternative to the ideal centralized solution and the actual uncoordinated practices. This is a significant issue in most of the Southern Alps regulated lakes, where upstream hydropower reservoirs maximize their benefit independently form downstream users; it becomes even more relevant in the case of transboundary systems, where water management upstream affects water availability downstream (e.g. the River Zambesi flowing through Zambia, Zimbabwe and Mozambique or the Red River flowing from South-Western China through Northern Vietnam. In this study we apply Multi-Agent Systems (MAS) theory to design an optimal management in a decentralized way, considering a set of multiple autonomous agents acting in the same environment and taking into account the pay-off of individual water users, which are inherently distributed along the river and need to coordinate to jointly reach their objectives. In this way each real-world actor, representing the decision-making entity (e.g. the operator of a reservoir or a diversion dam) can be represented one-to-one by a computer agent, defined as a computer system that is situated in some environment and that is capable of autonomous action in this environment in

  13. Investigation on Reservoir Operation of Agricultural Water Resources Management for Drought Mitigation

    Science.gov (United States)

    Cheng, C. L.

    2015-12-01

    Investigation on Reservoir Operation of Agricultural Water Resources Management for Drought Mitigation Chung-Lien Cheng, Wen-Ping Tsai, Fi-John Chang* Department of Bioenvironmental Systems Engineering, National Taiwan University, Da-An District, Taipei 10617, Taiwan, ROC.Corresponding author: Fi-John Chang (changfj@ntu.edu.tw) AbstractIn Taiwan, the population growth and economic development has led to considerable and increasing demands for natural water resources in the last decades. Under such condition, water shortage problems have frequently occurred in northern Taiwan in recent years such that water is usually transferred from irrigation sectors to public sectors during drought periods. Facing the uneven spatial and temporal distribution of water resources and the problems of increasing water shortages, it is a primary and critical issue to simultaneously satisfy multiple water uses through adequate reservoir operations for sustainable water resources management. Therefore, we intend to build an intelligent reservoir operation system for the assessment of agricultural water resources management strategy in response to food security during drought periods. This study first uses the grey system to forecast the agricultural water demand during February and April for assessing future agricultural water demands. In the second part, we build an intelligent water resources system by using the non-dominated sorting genetic algorithm-II (NSGA-II), an optimization tool, for searching the water allocation series based on different water demand scenarios created from the first part to optimize the water supply operation for different water sectors. The results can be a reference guide for adequate agricultural water resources management during drought periods. Keywords: Non-dominated sorting genetic algorithm-II (NSGA-II); Grey System; Optimization; Agricultural Water Resources Management.

  14. Water resources by orbital remote sensing: Examples of applications

    Science.gov (United States)

    Martini, P. R. (Principal Investigator)

    1984-01-01

    Selected applications of orbital remote sensing to water resources undertaken by INPE are described. General specifications of Earth application satellites and technical characteristics of LANDSAT 1, 2, 3, and 4 subsystems are described. Spatial, temporal and spectral image attributes of water as well as methods of image analysis for applications to water resources are discussed. Selected examples are referred to flood monitoring, analysis of water suspended sediments, spatial distribution of pollutants, inventory of surface water bodies and mapping of alluvial aquifers.

  15. Scenario-based Water Resources Management Using the Water Value Concept

    Science.gov (United States)

    Hassanzadeh, Elmira; Elshorbagy, Amin; Wheater, Howard

    2013-04-01

    The Saskatchewan River is the key water resource for the 3 prairie provinces of Alberta, Saskatchewan and Manitoba in Western Canada, and thus it is necessary to pursue long-term regional and watershed-based planning for the river basin. The water resources system is complex because it includes multiple components, representing various demand sectors, including the environment, which impose conflicting objectives, and multiple jurisdictions. The biophysical complexity is exacerbated by the socioeconomic dimensions associated for example with impacts of land and water management, value systems including environmental flows, and policy and governance dimensions.. We focus on the South Saskatchewan River Basin (SSRB) in Alberta and Saskatchewan, which is already fully allocated in southern Alberta and is subject to increasing demand due to rapid economic development and a growing population. Multiple sectors and water uses include agricultural, municipal, industrial, mining, hydropower, and environmental flow requirements. The significant spatial variability in the level of development and future needs for water places different values on water across the basin. Water resources planning and decision making must take these complexities into consideration, yet also deal with a new dimension—climate change and its possible future impacts on water resources systems. There is a pressing need to deal with water in terms of its value, rather than a mere commodity subject to traditional quantitative optimization. In this research, a value-based water resources system (VWRS) model is proposed to couple the hydrological and the societal aspects of water resources in one integrated modeling tool for the SSRB. The objective of this work is to develop the VWRS model as a negotiation, planning, and management tool that allows for the assessment of the availability, as well as the allocation scenarios, of water resources for competing users under varying conditions. The proposed

  16. Thailand Environment Monitor : Integrated Water Resources Management - A Way Forward

    OpenAIRE

    World Bank

    2011-01-01

    Water is everyone's business. Beside a necessity for living, water has implications on public health and, most importantly, can cause social conflicts. This is because water is limited, is difficult to control, and can easily be polluted. The Integrated Water Resource Management (IWRM) process is considered worldwide as a means to reduce social conflicts from competing water needs as well ...

  17. Integration of hydrogeology and soil science for sustainable water resources-focus on water quantity

    Science.gov (United States)

    Increased biofuel production has heightened awareness of the strong linkages between crop water use and depletion of water resources. Irrigated agriculture consumed 90% of global fresh water resources during the past century. Addressing crop water use and depletion of groundwater resources requires ...

  18. Total Water Management: The New Paradigm for Urban Water Resources Planning

    Science.gov (United States)

    There is a growing need for urban water managers to take a more holistic view of their water resource systems as population growth, urbanization, and current resource management practices put different stresses on local water resources and urban infrastructure. Total Water Manag...

  19. NANA Wind Resource Assessment Program Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Jay Hermanson

    2010-09-23

    NANA Regional Corporation (NRC) of northwest Alaska is located in an area with abundant wind energy resources. In 2007, NRC was awarded grant DE-FG36-07GO17076 by the US Department of Energy's Tribal Energy Program for funding a Wind Resource Assessment Project (WRAP) for the NANA region. The NANA region, including Kotzebue Electric Association (KEA) and Alaska Village Electric Cooperative (AVEC) have been national leaders at developing, designing, building, and operating wind-diesel hybrid systems in Kotzebue (starting in 1996) and Selawik (2002). Promising sites for the development of new wind energy projects in the region have been identified by the WRAP, including Buckland, Deering, and the Kivalina/Red Dog Mine Port Area. Ambler, Shungnak, Kobuk, Kiana, Noorvik & Noatak were determined to have poor wind resources at sites in or very near each community. However, all five of these communities may have better wind resources atop hills or at sites with slightly higher elevations several miles away.

  20. Risk-based water resources planning: Coupling water allocation and water quality management under extreme droughts

    Science.gov (United States)

    Mortazavi-Naeini, M.; Bussi, G.; Hall, J. W.; Whitehead, P. G.

    2016-12-01

    The main aim of water companies is to have a reliable and safe water supply system. To fulfil their duty the water companies have to consider both water quality and quantity issues and challenges. Climate change and population growth will have an impact on water resources both in terms of available water and river water quality. Traditionally, a distinct separation between water quality and abstraction has existed. However, water quality can be a bottleneck in a system since water treatment works can only treat water if it meets certain standards. For instance, high turbidity and large phytoplankton content can increase sharply the cost of treatment or even make river water unfit for human consumption purposes. It is vital for water companies to be able to characterise the quantity and quality of water under extreme weather events and to consider the occurrence of eventual periods when water abstraction has to cease due to water quality constraints. This will give them opportunity to decide on water resource planning and potential changes to reduce the system failure risk. We present a risk-based approach for incorporating extreme events, based on future climate change scenarios from a large ensemble of climate model realisations, into integrated water resources model through combined use of water allocation (WATHNET) and water quality (INCA) models. The annual frequency of imposed restrictions on demand is considered as measure of reliability. We tested our approach on Thames region, in the UK, with 100 extreme events. The results show increase in frequency of imposed restrictions when water quality constraints were considered. This indicates importance of considering water quality issues in drought management plans.

  1. Climate impact on BC Hydro's water resources

    International Nuclear Information System (INIS)

    Smith, D.; Rodenhuis, D.

    2008-01-01

    BC Hydro like many other hydro utilities has used the historical record of weather and runoff as the standard description the variability and uncertainty of the key weather drivers for its operation and planning studies. It has been conveniently assumed that this historical record is or has been statistically stationary and therefore is assumed to represent the future characteristics of climatic drivers on our system. This assumption is obviously no longer justifiable. To address the characterisation of future weather, BC Hydro has a multi-year a directed research program with the Pacific Climate Impacts Consortium to evaluate the impacts of climate change on the water resources that BC Hydro manages for hydropower generation and other uses. The objective of this program is to derive climate change adjusted meteorologic and hydrologic sequences suitable for use in system operations and planning studies. These climate-adjusted sequences then can be used to test system sensitivity to climate change scenarios relative to the baseline of the historical record. This paper describes BC Hydro's research program and the results achieved so far. (author)

  2. A vision for Water Resources Research

    Science.gov (United States)

    Clark, M. P.

    2017-12-01

    Water Resources Research (WRR) plays a leading role in advancing hydrologic science. As AGU's hydrology journal, WRR has nurtured and published major breakthroughs in hydrologic process understanding and prediction capabilities, accomplished through innovative measurement campaigns, novel data analysis techniques, and elegant computational methods. Developing synergies between process-oriented and applications-oriented science is becoming more important as large changes in coupled human-natural systems impose new stresses on hydrologic systems and create new needs for hydrologic process understanding and prediction. In this presentation I will summarize some major opportunities for WRR, such as the growth of interdisciplinary science and the need for greater international cooperation through sharing of data and model source codes. I will discuss these opportunities in the context of major external trends, especially (1) changes in the perceived value of science to address societal problems, (2) the explosive global growth in science over the past decade, and (3) the transition to a more diffuse publishing landscape. This presentation is intended to foster discussion on ways that WRR can enhance the quality and impact of hydrologic science.

  3. Assessment of evaporative water loss from Dutch cities

    NARCIS (Netherlands)

    Jacobs, C.M.J.; Elbers, J.A.; Brolsma, R.; Hartogensis, O.K.; Moors, E.J.; Rodríguez-CarreteroMárquez, M.T.; Hove, van B.

    2015-01-01

    Reliable estimates of evaporative water loss are required to assess the urban water budget in support of division of water resources among various needs, including heat mitigation measures in cities relying on evaporative cooling. We report on urban evaporative water loss from Arnhem and Rotterdam

  4. Performance Assessment of Water Sectors : Methods and considerations for application

    NARCIS (Netherlands)

    Wieriks, M.

    2011-01-01

    With the rise of principles for water management in the 1990’s such as concepts as Integrated Water Resources Management (IWRM) and Integrated River Basin Management (IRBM), many countries have come to review their water policy and sectors. But how does one start in the assessment of a water sector

  5. Ethiopia's national strategy for improving water resources management

    International Nuclear Information System (INIS)

    Amha, M.

    2001-01-01

    Full text: Ethiopia's current approach to assessing and managing water resources, including geothermal, assigns very high priority to the use of isotope hydrology. Incorporation of this technology into government planning began with a few activities, in local groundwater assessment and in geothermal studies, kicked off by a 1993 National Isotope Hydrology Training Workshop that the IAEA helped arrange. The first results of isotope studies were useful in characterizing the Aluto Geothermal Field, where a 7.2 MW(e) power plant was later built with support from the UNDP and the EEC. And the Government is now hoping to introduce isotope techniques to improve utilization of the field. Isotope hydrology has successfully aided attempts to better understand ground water occurrence, flow and quality problems in arid regions of Ethiopia. These efforts are continuing through studies in the Dire Dawa, Mekelle and Afar regions. Rising water levels in Lake Beseka are threatening to submerge vital rail and highway links. Isotope hydrology made a unique contribution to understanding the surface and subsurface factors responsible, leading to an engineering plan for mitigating the problem. The Government has allocated substantial funding and construction work has begun. A similar success story is emerging at Awassa Lake, where isotope hydrology is proving a very useful complement to conventional techniques. Another promising application of isotope hydrology is taking place as part of the Akaki Groundwater Study near Addis Ababa. Preliminary isotopic results indicate that earlier conclusions based on conventional techniques may have to be revised. If so, there will be significant implications for the exploitation and management strategy of the resource. Based on these encouraging results, the Government is proceeding with the preparation of a project document for the Ethiopian Groundwater Resource Assessment Programme. With the assistance of the IAEA, the U.S. Geological Survey

  6. Assessment of uranium resources and supply

    International Nuclear Information System (INIS)

    1991-04-01

    Uranium as nuclear fuel is an important energy resource, which generates about one-sixth of the world's total electricity generated in 1989. The current nuclear electricity generating capacity of 318 GW(e) is expected to grow by over 38% to 440 GW(e) in the year 2005. The world's uranium requirements are expected to increase similarly from about 52,000 t U in 1989 to over 70,000 t U in 2005. Beyond this time the uranium requirements are projected to reach over 80,000 t U in 2030. It was the objective of the Technical Committee Meeting on Assessment of Uranium Resources and Supply, organized by the IAEA and held in Vienna, between 29 August - 1 September 1989, to attract specialists in this field and to provide a forum for the presentation of reports on the methodologies and actual projects carried out in the different countries. Of special interest was the participation of specialists from some countries which did not or only occasionally co-operate with the IAEA in the projects related to the assessment of uranium resources and supply. A separate abstract was prepared for each of the 19 papers. Refs, figs and tabs

  7. Representing Water Scarcity in Future Agricultural Assessments

    Science.gov (United States)

    Winter, Jonathan M.; Lopez, Jose R.; Ruane, Alexander C.; Young, Charles A.; Scanlon, Bridget R.; Rosenzweig, Cynthia

    2017-01-01

    Globally, irrigated agriculture is both essential for food production and the largest user of water. A major challenge for hydrologic and agricultural research communities is assessing the sustainability of irrigated croplands under climate variability and change. Simulations of irrigated croplands generally lack key interactions between water supply, water distribution, and agricultural water demand. In this article, we explore the critical interface between water resources and agriculture by motivating, developing, and illustrating the application of an integrated modeling framework to advance simulations of irrigated croplands. We motivate the framework by examining historical dynamics of irrigation water withdrawals in the United States and quantitatively reviewing previous modeling studies of irrigated croplands with a focus on representations of water supply, agricultural water demand, and impacts on crop yields when water demand exceeds water supply. We then describe the integrated modeling framework for simulating irrigated croplands, which links trends and scenarios with water supply, water allocation, and agricultural water demand. Finally, we provide examples of efforts that leverage the framework to improve simulations of irrigated croplands as well as identify opportunities for interventions that increase agricultural productivity, resiliency, and sustainability.

  8. Geochemistry's vital contribution to solving water resource problems

    International Nuclear Information System (INIS)

    Edmunds, W.M.

    2009-01-01

    As part of the events celebrating 40 a of IAGC, it is fitting to trace the modern evolution and development of hydrogeochemistry. However, fascination with water quality can be traced back more than 2 ka. In the post-war years, hydrogeochemistry was influenced heavily by the advances in other disciplines including physical chemistry, metallurgy and oceanography. Hydrological applications of isotope science also developed rapidly at this time, and important advances in analytical chemistry allowed multi-element and trace element applications to be made. Experimental studies on equilibrium processes and reaction kinetics allowed bench-scale insight into water-rock interaction. Consolidation of knowledge on processes in groundwaters and the current awareness of hydrogeochemistry by water professionals owe much to the work of Robert Garrels, John Hem, and co-workers in the early 1960s. Studies of down-gradient evolution enabled a field-scale understanding of groundwater quality and geochemical processes as a function of residence time (dissolution and precipitation processes in carbonate and non-carbonate aquifers; redox processes; cation exchange and salinity origins). Emerging water resource and water quality issues in the 1960s and 70s permitted the application of hydrogeochemistry to contaminant and related problems and this trend continues. The impacts of diffuse pollution from intensive agriculture, waste disposal and point source pollution from urban and industrial sources relied on geochemistry to solve questions of origin and attenuation. In semi-arid regions facing water scarcity, geochemical approaches have been vital in the assessment of renewability and characterising palaeowaters. The protection and new incoming regulation of water resources will rely increasingly on a sound geochemical basis for management.

  9. U.S. Hydropower Resource Assessment - California

    Energy Technology Data Exchange (ETDEWEB)

    A. M. Conner; B. N. Rinehart; J. E. Francfort

    1998-10-01

    The U.S. Department of Energy is developing an estimate of the underdeveloped hydropower potential in the United States. For this purpose, the Idaho National Engineering and Environmental Laboratory developed a computer model called Hydropower Evaluation Software (HES). HES measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report describes the resource assessment results for the State of California.

  10. US hydropower resource assessment for New Jersey

    Energy Technology Data Exchange (ETDEWEB)

    Connor, A.M.; Francfort, J.E.

    1996-03-01

    The Department of Energy is developing an estimate of the undeveloped hydropower potential in this country. The Hydropower Evaluation Software is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the State of New Jersey.

  11. US hydropower resource assessment for Texas

    Energy Technology Data Exchange (ETDEWEB)

    Francfort, J.E.

    1993-12-01

    The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Texas.

  12. US hydropower resource assessment for Montana

    Energy Technology Data Exchange (ETDEWEB)

    Francfort, J.E.

    1993-12-01

    The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Montana.

  13. US hydropower resource assessment for Kansas

    Energy Technology Data Exchange (ETDEWEB)

    Francfort, J.E.

    1993-12-01

    The Department of Energy is developing an estimate of the hydropower development potential in this country. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The HES measures the potential hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a dBASE menu-driven software application that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the state of Kansas.

  14. US Hydropower Resource Assessment for Massachusetts

    Energy Technology Data Exchange (ETDEWEB)

    Francfort, J.E.; Rinehart, B.N.

    1995-07-01

    The Department of Energy is developing an estimate of the undeveloped hydropower potential in the United States. The Hydropower Evaluation Software (HES) is a computer model that was developed by the Idaho National Engineering Laboratory for this purpose. The software measures the undeveloped hydropower resources available in the United States, using uniform criteria for measurement. The software was developed and tested using hydropower information and data provided by the Southwestern Power Administration. It is a menu-driven software program that allows the personal computer user to assign environmental attributes to potential hydropower sites, calculate development suitability factors for each site based on the environmental attributes present, and generate reports based on these suitability factors. This report details the resource assessment results for the Commonwealth of Massachusetts.

  15. Invasive alien plants and water resources in South Africa: current understanding, predictive ability and research challenges

    CSIR Research Space (South Africa)

    Gorgens, AHM

    2004-01-01

    Full Text Available were made by combining the results of hydrological experiments, conducted to assess the effects of afforestation with alien trees on water resources, with an ecological understanding of the spread and establishment of invasive trees. The forecasts were...

  16. optimization of water resources allocation in semi-arid region

    African Journals Online (AJOL)

    Eng Obi Ibeje

    This study is aimed at achieving optimal water resources allocation .... (2005) points out, in his discussions of non- cooperative games model ... the linear and dynamic programming model which many ... e.g. Institute of Water and Hydropower.

  17. Masteŕ s Programme at Stockholm University: Hydrology, Hydrogeology and Water Resources

    Science.gov (United States)

    Jarsjö, J.; Destouni, G.; Lyon, S. W.; Seibert, J.

    2009-04-01

    dealing with hydrologic and hydrogeologic problems, and as a basis for sustainable governance and management of water resources. · Mathematical equations that are used in models for describing water flow and contaminant transport and their physico-chemical basis. · Handling of hydrologic data including methods for time series analyses and management of spatial data using geographic information systems (GIS) and geostatistics. · Integrated natural and social science studies of natural and anthropogenic flows of water, nutrients, pollutants and other biogeochemical substances that are important for environmental risk assessment, ecosystem development, and management of environmental resources.

  18. Isotopes in water resources management. V.1. Proceedings of a symposium

    International Nuclear Information System (INIS)

    1996-01-01

    In recent years isotope applications in hydrology and water resources assessment have reached a level of maturity. Adequate investigations have been carried out to provide sufficient examples for practical applications in combination with other hydrological methods. The IAEA contributed to this development through field projects implemented in Member States within the framework of the Agency's Technical Co-operation programme. At present, the thrusts of the IAEA involvement are towards improved management of water resources in regions suffering from water scarcity, assessment of human impact on water resources, e.g. water pollution, and exploration and management of geothermal resources. Lately, novel isotope based techniques have been evolving from specialized laboratories. While the techniques have emerged, efforts need to be concentrated on more practical work to accomplish a visible impact on water resources management. These trends and challenges are reflected by the scientific contributions to the International Symposium on Isotopes in Water Resources Management. The main themes of the symposium were groundwater resources management, with about two thirds of the contributions addressing origin and recharge of groundwater, groundwater dynamics and pollution, modelling approaches, and geothermal and palaeowater resources. The remaining third of the contributions were concerned with surface water and sediments, unsaturated zones and methodological aspects. These proceedings contain the 43 papers presented and the extended synopses of over 100 poster presentations. Refs, figs and tabs

  19. A review of seawater intrusion in the Nile Delta groundwater system – the basis for assessing impacts due to climate changes and water resources development

    NARCIS (Netherlands)

    Mabrouk, M.B.; Jonoski, A.; Solomatine, D.P.; Uhlenbrook, S.

    2013-01-01

    Serious environmental problems are emerging in the River Nile basin and its groundwater resources. Recent years have brought scientific evidence of climate change and development-induced environmental impacts globally as well as over Egypt. Some impacts are subtle, like decline of the Nile River

  20. The institutional regulation of the sustainability of water resources within mining contexts: accountability and plurality

    NARCIS (Netherlands)

    Sosa Landeo, M.; Zwarteveen, M.Z.

    2014-01-01

    This article reviews recent literature on water and mining and uses illustrations from a large gold mine, Yanacocha, operating in Peru, to assess the effectiveness of institutional mechanisms for safeguarding the sustainability of water resources (and water-based ecosystems) in mining regions. The

  1. Robins Air Force Base integrated resource assessment. Volume 3, Resource assessment

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, G.P.; Keller, J.M.; Stucky, D.J.; Wahlstrom, R.R.; Larson, L.L.

    1993-10-01

    The US Air Force Materiel Command (AFMC) has tasked the US Department of Energy (DOE) Federal Energy Management Program (FEMP), supported by the Pacific Northwest Laboratory (PNL), to identify, evaluate, and assist in acquiring all cost-effective energy projects at Robins Air Force Base (AFB). This is part of a model program that PNL is designing to support energy-use decisions in the federal sector. This report provides the results of the fossil fuel and electric energy resource opportunity (ERO) assessments performed by PNL at the AFMC Robins AFB facility located approximately 15 miles south of Macon, Georgia. It is a companion report to Volume 1, Executive Summary, and Volume 2, Baseline Detail. The results of the analyses of EROs are presented in 13 common energy end-use categories (e.g., boilers and furnaces, service hot water, and building lighting). A narrative-description of each ERO is provided, including information on the installed cost, energy and dollar savings; impacts on operation and maintenance (O&M); and, when applicable, a discussion of energy supply and demand, energy security, and environmental issues. A description of the evaluation methodologies and technical and cost assumptions is also provided for each ERO. Summary tables present the cost-effectiveness of energy end-use equipment before and after the implementation of each ERO and present the results of the life-cycle cost (LCC) analysis indicating the net present value (NPV) and savings to investment ratio (SIR) of each ERO.

  2. Radioactivity monitoring of the Turkish Black Sea coast as a part of the IAEA model project 'Marine environmental assessment of the Black Sea region' and nuclear techniques for the environmental management of water resources in Turkey

    International Nuclear Information System (INIS)

    Goktepe, B.G.; Koksal, G.; Gungor, N.; Gungor, E.; Kose, A.; Kucukcezzar, R.; Varinlioglu, A.; Erkol, A.Y.; Karakelle, B.; Osvath, I.; Fowler, S.

    2002-01-01

    A wide scope Regional Technical Co-operation Project RER/2/003 'Marine environmental assessment of the Black Sea region' is implemented by the International Atomic Energy Agency (IAEA) in the period 1995-2001. This project is initiated in response to the needs of participating Member-States - the six Black Sea coastal countries (Bulgaria, Romania, Ukraine, Russian Federation, Georgia and Turkey) to establish capabilities for reliably assessing radionuclides in the Black Sea environment and applying tracer technique to marine pollution studies. The project has various important aspects: Scientifically; one of the major environmental issue radioactivity pollution is addressed. Technically; laboratory capability for transuranic analysis is being developed. Economically; the reversing the ecological deterioration and developing sustainable uses of the Black Sea and its natural resources is one of the major interest. Politically; responsibility of pollution control and rehabilitation plans of six Black Sea countries are addressed thought various conventions and declarations. Socio-economically; fisheries and tourism sectors are expected to benefit. Highlights from the joint radioactivity monitoring program of the project among six Black Sea countries are outlined. Examples from Turkish monitoring work consists of the routine sampling of sea water, algae, mussels, fish samples and beach sand from the selected stations along the Black Sea coast are presented for illustration. Insights gained from the application of nuclear techniques for the 'Pollution Investigation of the Kucukcekmece Lake' and the 'Marine environmental assessment of the Black Sea region' Model Technical Co-operation Project carried out at the Cekmece Nuclear Research Center supporting by the IAEA are presented. Concluding remarks include the vital importance of protection of the water resources within Eurasian countries and the need for strong cooperation among nuclear research centers

  3. Final Report Low-temperature Resource Assessment Program

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, P.J. [Geo-Heat Center, Oregon Institute of Technology, Klamath Falls, OR (US); Ross, H. [Earth Sciences and Resources Institute, University of Utah

    1996-02-01

    The U.S. Department of Energy - Geothermal Division (DOE/GD) recently sponsored the Low-Temperature Resource Assessment project to update the inventory of the nation's low- and moderate-temperature geothermal resources and to encourage development of these resources. A database of 8,977 thermal wells and springs that are in the temperature range of 20 degrees Celsius to 150 degrees Celsius has been compiled for ten western states, an impressive increase of 82% compared to the previous assessments. The database includes location, descriptive data, physical parameters, water chemistry and references for sources of data. Computer-generated maps are also available for each state. State Teams have identified 48 high-priority areas for near-term comprehensive resource studies and development. Resources with temperatures greater than 50 degrees Celsius located within 8 km of a population center were identified for 271 collocated cities. Geothermal energy costevaluation software has been developed to quickly identify the cost of geothermally supplied heat to these areas in a fashion similar to that used for conventionally fueled heat sources.

  4. Using Water Footprints to Identify Alternatives for Conserving Local Water Resources in California

    Directory of Open Access Journals (Sweden)

    D. L. Marrin

    2016-11-01

    Full Text Available As a management tool for addressing water consumption issues, footprints have become increasingly utilized on scales ranging from global to personal. A question posed by this paper is whether water footprint data that are routinely compiled for particular regions may be used to assess the effectiveness of actions taken by local residents to conserve local water resources. The current California drought has affected an agriculturally productive region with large population centers that consume a portion of the locally produced food, and the state’s arid climate demands a large volume of blue water as irrigation from its dwindling surface and ground water resources. Although California exports most of its food products, enough is consumed within the state so that residents shifting their food choices and/or habits could save as much or more local blue water as their reduction of household or office water use. One of those shifts is reducing the intake of animal-based products that require the most water of any food group on both a gravimetric and caloric basis. Another shift is reducing food waste, which represents a shared responsibility among consumers and retailers, however, consumer preferences ultimately drive much of this waste.

  5. The Wealth of Water: The Value of an Essential Resource

    Science.gov (United States)

    Rathburn, Melanie K.; Baum, Karina J.

    2011-01-01

    Many students take water availability for granted and yet, by 2025, two-thirds of the world will not have access to clean drinking water. This case study is designed to encourage students to think about water as a limited natural resource and is used to highlight how the exploitation of water can have far-reaching social, political, and economic…

  6. Reservoirs operation and water resources utilization coordination in Hongshuihe basin

    Science.gov (United States)

    Li, Chonghao; Chi, Kaige; Pang, Bo; Tang, Hongbin

    2018-06-01

    In the recent decade, the demand for water resources has been increasing with the economic development. The reservoirs of cascade hydropower stations in Hongshuihe basin, which are constructed with a main purpose of power generation, are facing more integrated water resources utilization problem. The conflict between power generation of cascade reservoirs and flood control, shipping, environmental protection and water supply has become increasingly prominent. This paper introduces the general situation and integrated water demand of cascade reservoirs in Hongshuihe basin, and it analyses the impact of various types of integrated water demand on power generation and supply. It establishes mathematic models, constrained by various types of integrated water demand, to guide the operation and water resources utilization management of cascade reservoirs in Hongshuihe basin. Integrated water coordination mechanism of Hongshuihe basin is also introduced. It provides a technical and management guide and demonstration for cascade reservoirs operation and integrated water management at home and abroad.

  7. Analysis of Water Resources Supply and Demand and Security of Water Resources Development in Irrigation Regions of the Middle Reaches of the Heihe River Basin, Northwest China

    Institute of Scientific and Technical Information of China (English)

    JI Xi-bin; KANG Er-si; CHEN Ren-sheng; ZHAO Wen-zhi; XIAO Sheng-chun; JIN Bo-wen

    2006-01-01

    Based on the data for meteorology, hydrology, soil, planting, vegetation, and socio-economic development of the irrigation region in the middle reaches of the Heihe River basin, Northwest China, the model of balance of water supply and demand in the region was established, and the security of water resource was assessed, from which the results that the effects of unified management of water resources in the Heihe River basin between Gansu Province and Inner Mongolia on regional hydrology are significant with a decrease in water supply diverted from Heihe River and an increase in groundwater extracted. In addition, it was found that the groundwater level has been steadily decreasing due to over pumping and decrease in recharges. In present year (2003), the volume of potential groundwater in the irrigation districts is far small because of the groundwater overdraft; even in the particular regions, there is no availability of groundwater resources for use. By 2003, water supply is not sufficient to meet the water demand in the different irrigation districts, the sustainable development and utilization of water resources are not secured, and the water supply crisis occurs in Pingchuan irrigation district. Achieving water security for the sustainable development of society, agriculture, economy, industry, and livelihoods while maintaining or improving the abilities of the management and planning of water resources, determining of the reasonable percentage between water supply and groundwater utilization and water saving in agricultural irrigation are taken into account. If this does not occur, it is feared that the present performance of water development and planning may further aggravate the problem of scarcities of water resources and further damage the fragile ecological system.

  8. Emergence of Integrated Water Resources Management : Measuring implementation in Vietnam

    NARCIS (Netherlands)

    Akkerman, M.; Khanh, N.T.; Witter, M.; Rutten, M.M.

    2015-01-01

    Recently, the changes in laws and regulations, such as the revised Law on Water Resources in 2012, have sought to provide a legal framework for the internationally recognized practices of Integrated Water Resources Management (IWRM) in Vietnam. With IWRM being a novel approach for Vietnam, it would

  9. Dissolved nitrogen in drinking water resources of farming ...

    African Journals Online (AJOL)

    Dissolved nitrogen in drinking water resources of farming communities in Ghana. ... African Journal of Environmental Science and Technology ... Concentrations of these potentially toxic substances were below WHO acceptable limits for surface and groundwaters, indicating these water resources appear safe for drinking ...

  10. Groundwater resource-directed measures software | Dennis | Water ...

    African Journals Online (AJOL)

    Sustainability, equity and efficiency are identified as central guiding principles in the protection, use, development, conservation, management and control of water resources. These principles recognise the basic human needs of present and future generations, the need to protect water resources, the need to share some ...

  11. Marine Resource Survey in waters surrounding Guam and the Commonwealth of the Northern Mariana Islands (SE1002, EK60)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The goals of the cruise were to collect a variety of data to assess the status of marine resources in waters surrounding Guam and CNMI. Marine resource habitats were...

  12. A Physical Assessment of the Opportunities for Improved Management of the Water Resources of the Bi-National Rio Grande/Rio Bravo Basin

    Science.gov (United States)

    Aparicio, J.; McKinney, D.; Valdes, J.; Guitron, A.; Thomas, G.

    2007-05-01

    The hydro-physical opportunities for expanding the beneficial uses of the fixed water supply in the Rio Grande/Bravo Basin to better satisfy an array of water management goals are examined. These include making agriculture more resilient to periodic conditions of drought, improving the reliability of supplies to cities and towns, and restoring lost environmental functions in the river system. This is a comprehensive, outcome-neutral, model- based planning exercise performed by some 20 technical, primarily non-governmental institutions from both countries, aimed at proposing strategies that can reduce future conflicts over water throughout the entire basin. The second track consists in generating a set of future water management scenarios that respond to the needs and objectives of the basin stakeholders in each segment and each country. An array of scenarios for improved water management has been developed for the lower Rio Grande/Rio Bravo basin in Texas and the Mexican state of Tamaulipas. Another set under development will focus on the Rio Conchos and the El Paso/Juarez region. Eventually, scenarios will be generated such that will comprehend the entire basin on both sides of the border. These scenarios are the product of consultations with agricultural water districts, governmental organizations and environmental NGOs. They include strategies for reducing the physical losses of water in the system, conservation transfers, improvements in the operations of the Mexican and international reservoirs, improvements in environmental flow conditions, improvements in reliability of water supplies, and drought coping strategies.These scenarios will be evaluated for hydrologic feasibility by the basin-wide model and the gaming exercises. Modeling is necessary to understand how these options will affect the entire system and how they can be crafted to maximize the benefits and avoid unintended or uncompensated effects. The scenarios that have the potential to provide large

  13. Water resource management : a strategy for Nova Scotia

    International Nuclear Information System (INIS)

    Theakston, J.

    1998-01-01

    Since 1995, the Nova Scotia Department of the Environment has been the lead agency responsible for water resource management in the province. The agency's mandate has been to establish a water resource management strategy and to report periodically to the people of the province on the state of the environment, including air, water and waste resource management. One of the Department's goals is to ensure that surface and groundwater resources are being adequately protected. This paper summarizes issues related to dams and how they will be addressed. The Department allocates water through approvals and regulates use and alteration of watercourses. The construction of a dam and water withdrawal for municipal, industrial, hydroelectric or other purposes requires an approval. The major concerns with these activities are flows to sustain downstream habitat, competing demand for water, public safety, and water quality impacts. The main water management actions established under the water strategy involve: (1) geo-referencing water resource use and allocation, (2) protecting water quality, (3) integrating management of natural resources, and (4) promoting partnership in stewardship

  14. Wind power error estimation in resource assessments.

    Directory of Open Access Journals (Sweden)

    Osvaldo Rodríguez

    Full Text Available Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies.

  15. Wind power error estimation in resource assessments.

    Science.gov (United States)

    Rodríguez, Osvaldo; Del Río, Jesús A; Jaramillo, Oscar A; Martínez, Manuel

    2015-01-01

    Estimating the power output is one of the elements that determine the techno-economic feasibility of a renewable project. At present, there is a need to develop reliable methods that achieve this goal, thereby contributing to wind power penetration. In this study, we propose a method for wind power error estimation based on the wind speed measurement error, probability density function, and wind turbine power curves. This method uses the actual wind speed data without prior statistical treatment based on 28 wind turbine power curves, which were fitted by Lagrange's method, to calculate the estimate wind power output and the corresponding error propagation. We found that wind speed percentage errors of 10% were propagated into the power output estimates, thereby yielding an error of 5%. The proposed error propagation complements the traditional power resource assessments. The wind power estimation error also allows us to estimate intervals for the power production leveled cost or the investment time return. The implementation of this method increases the reliability of techno-economic resource assessment studies.

  16. Watered down : overcoming federal inaction on the impact of oil sands development to water resources

    International Nuclear Information System (INIS)

    Droitsch, D.

    2009-11-01

    The oil sands industry is having a negative impact on Canada's fresh water resources and aquatic ecosystems. Members of the Government of the Northwest Territories (NT) and experts from scientific, non-governmental, and First Nations groups have stated at federal hearings that the federal government must involve itself in the protection of Canada's water resources. This report discussed compelling testimony from recent federal hearings by the House of Commons Standing Committee on Environment and Sustainable Development.The federal government must establish enforceable standards for key toxic substances created by oil sands activity. A water-sharing agreement must be established between Alberta, NT, Saskatchewan, and First Nations governments. Other recommendations included the establishment of a peer-reviewed assessment of the health impacts of industrial oil sands development on First Nations communities; the establishment of cumulative effects assessment procedures; the identification and protection of listed species at risk; and the establishment of proactive measures designed to ensure that oil sands operators pay for the environmental damage caused to water resources. 94 refs., 4 figs.

  17. Ground-water resources of Kansas

    Science.gov (United States)

    Moore, R.C.; Lohman, S.W.; Frye, J.C.; Waite, H.A.; McLaughlin, Thad G.; Latta, Bruce

    1940-01-01

    Introduction: Water is a necessity of life. Accordingly, every person is deeply interested in the subject of water supply. He knows that he must have water to drink. He depends indirectly on water for all his food and clothing. He may want water in which to wash. Civilized man has learned also that water serves admirably for a large and ever enlarging list of uses that depend on its easy convertibility from a liquid to a solid or gaseous state and its adaptability as a chemical solvent, a medium for transfer of matter or energy, and a regulator of temperature. 

  18. Learning about water resource sharing through game play

    Science.gov (United States)

    Ewen, Tracy; Seibert, Jan

    2016-10-01

    Games are an optimal way to teach about water resource sharing, as they allow real-world scenarios to be enacted. Both students and professionals learning about water resource management can benefit from playing games, through the process of understanding both the complexity of sharing of resources between different groups and decision outcomes. Here we address how games can be used to teach about water resource sharing, through both playing and developing water games. An evaluation of using the web-based game Irrigania in the classroom setting, supported by feedback from several educators who have used Irrigania to teach about the sustainable use of water resources, and decision making, at university and high school levels, finds Irrigania to be an effective and easy tool to incorporate into a curriculum. The development of two water games in a course for masters students in geography is also presented as a way to teach and communicate about water resource sharing. Through game development, students learned soft skills, including critical thinking, problem solving, team work, and time management, and overall the process was found to be an effective way to learn about water resource decision outcomes. This paper concludes with a discussion of learning outcomes from both playing and developing water games.

  19. Learning about water resource sharing through game play

    Directory of Open Access Journals (Sweden)

    T. Ewen

    2016-10-01

    Full Text Available Games are an optimal way to teach about water resource sharing, as they allow real-world scenarios to be enacted. Both students and professionals learning about water resource management can benefit from playing games, through the process of understanding both the complexity of sharing of resources between different groups and decision outcomes. Here we address how games can be used to teach about water resource sharing, through both playing and developing water games. An evaluation of using the web-based game Irrigania in the classroom setting, supported by feedback from several educators who have used Irrigania to teach about the sustainable use of water resources, and decision making, at university and high school levels, finds Irrigania to be an effective and easy tool to incorporate into a curriculum. The development of two water games in a course for masters students in geography is also presented as a way to teach and communicate about water resource sharing. Through game development, students learned soft skills, including critical thinking, problem solving, team work, and time management, and overall the process was found to be an effective way to learn about water resource decision outcomes. This paper concludes with a discussion of learning outcomes from both playing and developing water games.

  20. Requirements for water assessment tools: An automotive industry perspective

    Directory of Open Access Journals (Sweden)

    Sherry A. Mueller

    2015-03-01

    Full Text Available Water availability is one of the greatest global sustainability challenges. Water is not available in adequate quantity and quality in many areas and water shortfalls are expected to increase. Businesses are facing water-related challenges due to inadequate water availability and poor resource management. Identifying and quantifying impacts is key to enabling companies to make effective management decisions. Several water assessment tools have been developed to help companies understand the complex nature of water challenges; however, there remain significant gaps in the datasets and inconsistencies in measurement and reporting of geographic water shortfalls. There is a need for more complete datasets containing information on water withdrawal and discharge, freshwater availability and depletion (spatially and temporally, water quality monitoring, reuse and recycling. We discuss four of the available water assessment tools (Global Water Tool, India Water Tool, Water Risk Filter and Aqueduct and highlight those elements most critical to water-related business decisions.

  1. Colorado's hydrothermal resource base: an assessment

    Energy Technology Data Exchange (ETDEWEB)

    Pearl, R.H.

    1981-01-01

    As part of its effort to more accurately describe the nations geothrmal resource potential, the US Department of Energy/Division of Geothermal Energy contracted with the Colorado Geological survey to appraise the hydrothermal (hot water) geothermal resources of Colorado. Part of this effort required that the amount of energy that could possibly be contained in the various hydrothermal systems in Colorado be estimated. The findings of that assessment are presented. To make these estimates the geothermometer reservoir temperatures estimated by Barrett and Pearl (1978) were used. In addition, the possible reservoir size and extent were estimated and used. This assessment shows that the total energy content of the thermal systems in Colorado could range from 4.872 x 10{sup 15} BTU's to 13.2386 x 10{sup 15} BTU's.

  2. Resource assessment of the Imperial Valley. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Biehler, S.; Lee, T.

    1977-01-01

    A resource assessment of the Imperial Valley has been made based on the use of the gravity anomalies as indicators of total excess mass. These data indicate a potential of producing electric power of 7 to 80 thousand megawatts for 30 years. Over half of the total potential is located in the Salton Sea Anomaly and approximately half of the potential of the Salton Sea field is water covered. An attempt has been made to assess not only the heat in storage in the fluid but also recoverable from the country rock by reinjection. Based on calculations, the natural recharge rate of heat in the Valley due to sea floor spreading is too small to give the resource an indefinite life-span since the economic rates of withdrawal appear to be at least an order of magnitude greater.

  3. Using FRAMES to Manage Environmental and Water Resources

    International Nuclear Information System (INIS)

    Whelan, Gene; Millard, W. David; Gelston, Gariann M.; Khangaonkar, Tarang P.; Pelton, Mitch A.; Strenge, Dennis L.; Yang, Zhaoqing; Lee, Cheegwan; Sivaraman, Chitra; Stephan, Alex J.; Hoopes, Bonnie L.; Castleton, Karl J.

    2007-01-01

    The Framework for Risk Analysis in Multimedia Environmental Systems (FRAMES) is decision-support middleware that provides users the ability to design software solutions for complex problems. It is a software platform that provides seamless and transparent communication between modeling components by using a multi-thematic approach to provide a flexible and holistic understanding of how environmental factors potentially affect humans and the environment. It incorporates disparate components (e.g., models, databases, and other frameworks) that integrate across scientific disciplines, allowing for tailored solutions to specific activities. This paper discusses one example application of FRAMES, where several commercial off-the-shelf (COTS) software products are seamlessly linked into a planning and decision-support tool that helps manage water-based emergency situations and sustainable response. Multiple COTS models, including three surface water models, and a number of databases are linked through FRAMES to assess the impact of three asymmetric and simultaneous events, two of which impact water resources. The asymmetric events include (1) an unconventional radioactive release into a large potable water body, (2) a conventional contaminant (oil) release into navigable waters, and (3) an instantaneous atmospheric radioactive release

  4. Integrating science, policy and stakeholder perspectives for water resource management

    Science.gov (United States)

    Barbour, Emily; Allan, Andrew; Whitehead, Paul; Salehin, Mashfiqus; Lazzar, Attila; Lim, Michelle; Munsur Rahman, Md.

    2015-04-01

    Successful management of water resources requires an integrated approach considering the complex relationships between different biophysical processes, governance frameworks and socio-economic factors. The Ecosystem Services for Poverty Alleviation (ESPA) Deltas project has developed a range of socio-economic scenarios using a participatory approach, and applied these across different biophysical models as well as an integrated environmental, socio-economic model of the Ganges-Brahmaputra-Meghna (GBM) Delta. This work demonstrates a novel approach through the consideration of multiple ecosystem services and related socio-economic factors in the development of scenarios; the application of these to multiple models at multiple scales; and the participatory approach to improve project outcomes and engage national level stakeholders and policy makers. Scenarios can assist in planning for an uncertain future through exploring plausible alternatives. To adequately assess the potential impacts of future changes and management strategies on water resources, the wider biophysical, socio-economic and governance context needs to be considered. A series of stakeholder workshops have been held in Bangladesh to identify issues of main concern relating to the GBM Delta; to iteratively develop scenario narratives for business as usual, less sustainable, and more sustainable development pathways; and to translate these qualitative scenarios into a quantitative form suitable for analysis. The combined impact of these scenarios and climate change on water quantity and quality within the GBM Basin are demonstrated. Results suggest that climate change is likely to impact on both peak and low flows to a greater extent than most socio-economic changes. However, the diversion of water from the Ganges and Brahmaputra has the potential to significantly impact on water availability in Bangladesh depending on the timing and quantity of diversions. Both climate change and socio

  5. Water Assessment as controlled informality

    NARCIS (Netherlands)

    Dijk, van J.; Vlist, van der M.J.; Tatenhove, van J.P.M.

    2011-01-01

    The expectations about the effectiveness of new developed policy instruments are usually very high. In the case of the introduction of Water Assessment in The Netherlands, the ambitious aim of the instrument was to connect the policy domains of spatial planning and water management. The instrument

  6. Framework for Shared Drinking Water Risk Assessment.

    Energy Technology Data Exchange (ETDEWEB)

    Lowry, Thomas Stephen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Tidwell, Vincent C. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Peplinski, William John [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Mitchell, Roger [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Binning, David [AEM Corp., Herndon, VA (United States); Meszaros, Jenny [AEM Corp., Herndon, VA (United States)

    2017-01-01

    Central to protecting our nation's critical infrastructure is the development of methodologies for prioritizing action and supporting resource allocation decisions associated with risk-reduction initiatives. Toward this need a web-based risk assessment framework that promotes the anonymous sharing of results among water utilities is demonstrated. Anonymous sharing of results offers a number of potential advantages such as assistance in recognizing and correcting bias, identification of 'unknown, unknowns', self-assessment and benchmarking for the local utility, treatment of shared assets and/or threats across multiple utilities, and prioritization of actions beyond the scale of a single utility. The constructed framework was demonstrated for three water utilities. Demonstration results were then compared to risk assessment results developed using a different risk assessment application by a different set of analysts.

  7. Sustainable Water and Agricultural Land Use in the Guanting Watershed under Limited Water Resources

    Science.gov (United States)

    Wechsung, F.; Möhring, J.; Otto, I. M.; Wang, X.; Guanting Project Team

    2012-04-01

    The Yongding River System is an important water source for the northeastern Chinese provinces Shanxi, Hebei, Beijing, and Tianjin. The Guanting Reservoir within this river system is one of the major water sources for Beijing, which is about 70 km away. Original planning assumed a discharge of 44 m3/s for the reservoir, but the current mean discharge rate is only about 5 m3/s; there is often hardly any discharge at all. Water scarcity is a major threat for the socio-economic development of the area. The situation is additionally aggravated by climate change impacts. Typical upstream-downstream conflicts with respect to water quantity and quality requests are mixed up with conflicts between different sectors, mainly mining, industry, and agriculture. These conflicts can be observed on different administrative levels, for example between the provinces, down to households. The German-Chinese research project "Sustainable water and agricultural land use in the Guanting Watershed under limited water resources" investigates problems and solutions related to water scarcity in the Guanting Catchment. The aim of the project is to create a vulnerability study in order to assess options for (and finally achieve) sustainable water and land use management in the Guanting region. This includes a comprehensive characterization of the current state by gap analysis and identification of pressures and impacts. The presentation gives an overview of recent project results regarding regionalization of global change scenarios and specification for water supply, evaluation of surface water quantity balances (supply-demand), evaluation of the surface water quality balances (emissions-impact thresholds), and exploration of integrative measurement planning. The first results show that climate in the area is becoming warmer and drier which leads to even more dramatically shrinking water resources. Water supply is expected to be reduced between one and two thirds. Water demand might be

  8. Water Stress Assessment in Jharkhand State Using Soil Data and ...

    African Journals Online (AJOL)

    Michael Horsfall

    2 Department of Remote Sensing, Birla Institute of Technology, Mesra, Ranchi. .... technology. Remote sensing and GIS have proved to be an effective tool in soil and water resource assessment (Rinos et.al.; .... ral_hazard/landslides/nhls0007.

  9. Development of a decision support tool for water and resource management using biotic, abiotic, and hydrological assessments of Topock Marsh, Arizona

    Science.gov (United States)

    Holmquist-Johnson, Christopher; Hanson, Leanne; Daniels, Joan; Talbert, Colin; Haegele, Jeanette

    2016-05-23

    Topock Marsh is a large wetland adjacent to the Colorado River and the main feature of Havasu National Wildlife Refuge (Havasu NWR) in southern Arizona. In 2010, the U.S. Fish and Wildlife Service (FWS) and Bureau of Reclamation began a project to improve water management capabilities at Topock Marsh and protect habitats and species. Initial construction required a drawdown, which caused below-average inflows and water depths in 2010–11. U.S. Geological Survey Fort Collins Science Center (FORT) scientists collected an assemblage of biotic, abiotic, and hydrologic data from Topock Marsh during the drawdown and immediately after, thus obtaining valuable information needed by FWS.Building upon that work, FORT developed a decision support system (DSS) to better understand ecosystem health and function of Topock Marsh under various hydrologic conditions. The DSS was developed using a spatially explicit geographic information system package of historical data, habitat indices, and analytical tools to synthesize outputs for hydrologic time periods. Deliverables include high-resolution orthorectified imagery of Topock Marsh; a DSS tool that can be used by Havasu NWR to compare habitat availability associated with three hydrologic scenarios (dry, average, wet years); and this final report which details study results. This project, therefore, has addressed critical FWS management questions by integrating ecologic and hydrologic information into a DSS framework. This DSS will assist refuge management to make better informed decisions about refuge operations and better understand the ecological results of those decisions by providing tools to identify the effects of water operations on species-specific habitat and ecological processes. While this approach was developed to help FWS use the best available science to determine more effective water management strategies at Havasu NWR, technologies used in this study could be applied elsewhere within the region.

  10. Porphyry copper assessment of northeast Asia: Far East Russia and northeasternmost China: Chapter W in Global mineral resource assessment

    Science.gov (United States)

    Mihalasky, Mark J.; Ludington, Stephen; Alexeiev, Dmitriy V.; Frost, Thomas P.; Light, Thomas D.; Briggs, Deborah A.; Hammarstrom, Jane M.; Wallis, John C.; Bookstrom, Arthur A.; Panteleyev, Andre

    2015-01-01

    The U.S. Geological Survey assesses resources (mineral, energy, water, environmental, and biologic) at regional, national, and global scales to provide science in support of land management and decision making. Mineral resource assessments provide a synthesis of available information about where mineral deposits are known and suspected to be in the Earth’s crust, which commodities may be present, and estimates of amounts of resources in undiscovered deposits.

  11. Simulation of blue and green water resources in the Wei River basin, China

    Directory of Open Access Journals (Sweden)

    Z. Xu

    2014-09-01

    Full Text Available The Wei River is the largest tributary of the Yellow River in China and it is suffering from water scarcity and water pollution. In order to quantify the amount of water resources in the study area, a hydrological modelling approach was applied by using SWAT (Soil and Water Assessment Tool, calibrated and validated with SUFI-2 (Sequential Uncertainty Fitting program based on river discharge in the Wei River basin (WRB. Sensitivity and uncertainty analyses were also performed to improve the model performance. Water resources components of blue water flow, green water flow and green water storage were estimated at the HRU (Hydrological Response Unit scales. Water resources in HRUs were also aggregated to sub-basins, river catchments, and then city/region scales for further analysis. The results showed that most parts of the WRB experienced a decrease in blue water resources between the 1960s and 2000s, with a minimum value in the 1990s. The decrease is particularly significant in the most southern part of the WRB (Guanzhong Plain, one of the most important grain production basements in China. Variations of green water flow and green water storage were relatively small on the spatial and temporal dimensions. This study provides strategic information for optimal utilization of water resources and planning of cultivating seasons in the Wei River basin.

  12. Assessing Water Risks in the Mining Industry using Life Cycle Assessment Based Approaches

    OpenAIRE

    STEPHEN ALAN NORTHEY

    2018-01-01

    Recent advances life cycle assessment methodology provide an opportunity to gain a more holistic understanding of how the mining industry interacts with water resources. A detailed review of assessment methodology and water management in the mining industry was undertaken to identify research needs. Global datasets of water use statistics for mining operations were also developed, and an exhaustive analysis of how global mineral resources and production are spatially distributed across local ...

  13. Coenoses risk assessment in industry (resource specificity

    Directory of Open Access Journals (Sweden)

    Tyaglov Sergey, G.

    2015-09-01

    Full Text Available The modernization of the economic infrastructure of modern Russia is now essential, taking a natural limiter necessary momentum, which is especially important in the current conditions of global trends and taking into account the efforts taken by the State, aimed at large-scale growth of production of Russian companies. This paper discusses the direction of overcoming the problem of lack of access to financial services to business entities, due to the lack of a universal tool to identify risks in the provision of credit resources to the understanding that, despite the differences in interpretation of Russian and foreign sources, is a complex of ontological perception of researchers, proposed expanded by generally accepted phenomenon of self-organization. It is proposed to assess the risks of the enterprises on the basis of the provisions of coenoses theory, which allows using a few key parameters to determine the degree of efficiency of use of available resources, to identify the stability of the enterprise as a system and predict its dynamic changes.

  14. Contents and assessment of basic tourism resources

    OpenAIRE

    Knezevic, Rade

    2008-01-01

    The article looks at the attractive factors of basic tourism resources and the structure of their attractions. The general term ‘resource’ refers to both natural and anthropogenic resources, while the content of this concept refers to elements used in creating a tourism product. Basic tourism resources are the most important factors of tourism processes, with a vital attribute of direct and indirect tourism resources being their substitutability. Natural (biotropic) resources are consid...

  15. Nebraska wind resource assessment first year results

    Energy Technology Data Exchange (ETDEWEB)

    Hurley, P.J.F.; Vilhauer, R. [RLA Consulting, Inc., Bothell, WA (United States); Stooksbury, D. [Univ. of Nebraska, Lincoln, NE (United States)

    1996-12-31

    This paper presents the preliminary results from a wind resource assessment program in Nebraska sponsored by the Nebraska Power Association. During the first year the measured annual wind speed at 40 meters ranged from 6.5 - 7.5 m/s (14.6 - 16.8 mph) at eight stations across the state. The site selection process is discussed as well as an overview of the site characteristics at the monitoring locations. Results from the first year monitoring period including data recovery rate, directionality, average wind speeds, wind shear, and turbulence intensity are presented. Results from the eight sites are qualitatively compared with other midwest and west coast locations. 5 figs., 2 tabs.

  16. STUDY OF POND WATER QUALITY BY THE ASSESSMENT OF PHYSICOCHEMICAL PARAMETERS AND WATER QUALITY INDEX

    OpenAIRE

    Vinod Jena; Satish Dixit; Ravi ShrivastavaSapana Gupta; Sapana Gupta

    2013-01-01

    Water quality index (WQI) is a dimensionless number that combines multiple water quality factors into a single number by normalizing values to subjective rating curves. Conventionally it has been used for evaluating the quality of water for water resources suchas rivers, streams and lakes, etc. The present work is aimed at assessing the Water Quality Index (W.Q.I) ofpond water and the impact of human activities on it. Physicochemical parameters were monitored for the calculation of W.Q.I for ...

  17. Wind energy resource assessment in Madrid region

    Energy Technology Data Exchange (ETDEWEB)

    Migoya, Emilio; Crespo, Antonio; Jimenez, Angel; Garcia, Javier; Manuel, Fernando [Laboratorio de Mecanica de Fluidos, Departamento de Ingenieria Energetica y Fluidomecanica, Escuela Tecnica Superior Ingenieros Industriales (ETSII), Universidad Politecnica de Madrid (UPM), C/Jose Gutierrez Abascal, 2-28006, Madrid (Spain)

    2007-07-15

    The Comunidad Autonoma de Madrid (Autonomous Community of Madrid, in the following Madrid Region), is a region located at the geographical centre of the Iberian Peninsula. Its area is 8.028 km{sup 2}, and its population about five million people. The Department of Economy and Technological Innovation of the Madrid Region, together with some organizations dealing on energy saving and other research institutions have elaborated an Energy Plan for the 2004-12 period. As a part of this work, the Fluid Mechanics Laboratory of the Superior Technical School of Industrial Engineers of the Polytechnic University of Madrid has carried out the assessment of the wind energy resources [Crespo A, Migoya E, Gomez Elvira R. La energia eolica en Madrid. Potencialidad y prospectiva. Plan energetico de la Comunidad de Madrid, 2004-2012. Madrid: Comunidad Autonoma de Madrid; 2004]; using for this task the WAsP program (Wind Atlas Analysis and Application Program), and the own codes, UPMORO (code to study orography effects) and UPMPARK (code to study wake effects in wind parks). Different kinds of data have been collected about climate, topography, roughness of the land, environmentally protected areas, town and village distribution, population density, main facilities and electric power supply. The Spanish National Meteorological Institute has nine wind measurement stations in the region, but only four of them have good and reliable temporary wind data, with time measurement periods that are long enough to provide representative correlations among stations. The Observed Wind Climates of the valid meteorological stations have been made. The Wind Atlas and the resource grid have been calculated, especially in the high wind resource areas, selecting appropriate measurements stations and using criteria based on proximity, similarity and ruggedness index. Some areas cannot be used as a wind energy resource mainly because they have environmental regulation or, in some cases, are very close

  18. Analyses on Water Vapor Resource in Chengdu City

    Science.gov (United States)

    Liu, B.; Xiao, T.; Wang, C.; Chen, D.

    2017-12-01

    Chengdu is located in the Sichuan basin, and it is the most famous inland city in China. With suitable temperatures and rainfall, Chengdu is the most livable cities in China. With the development of urban economy and society, the population has now risen to 16 million, and it will up to 22 million in 2030. This will cause the city water resources demand, and the carrying capacity of water resources become more and more serious. In order to improve the contradiction between urban waterlogging and water shortage, sponge city planning was proposed by Chengdu government, and this is of great practical significance for promoting the healthy development of the city. Base on the reanalysis data from NCEP during 2007-2016, the characters of Water Vapor Resources was analyzed, and the main contents of this research are summarized as follows: The water vapor resource in Chengdu plain is more than that in Southeast China and less in Northwest China. The annual average water vapor resource is approximately 160 mm -320 mm, and the water vapor resource in summer can reach 3 times in winter. But the annual average precipitation in Chengdu is about 800 mm -1200 mm and it is far greater than the water vapor resource, this is because of the transport of water vapor. Using the formula of water vapor flux, the water vapor in Chengdu is comes from the west and the south, and the value is around 50kg/(ms). Base on the calculation of boundary vapor budget, the water vapor transport under 500hPa accounted for 97% of the total. Consider the water vapor transport, transformation and urban humidification effect, the Water Vapor Resource in Chengdu is 2500mm, and it can be used by artificial precipitation enhancement. Therefore, coordinated development of weather modification and sponge city construction, the shortage of water resources in Chengdu plain can be solved. Key words: Chengdu; Sponge city; Water vapor resource; Precipitation; Artificial precipitation enhancement Acknowledgements

  19. GIS and Game Theory for Water Resource Management

    Science.gov (United States)

    Ganjali, N.; Guney, C.

    2017-11-01

    In this study, aspects of Game theory and its application on water resources management combined with GIS techniques are detailed. First, each term is explained and the advantages and limitations of its aspect is discussed. Then, the nature of combinations between each pair and literature on the previous studies are given. Several cases were investigated and results were magnified in order to conclude with the applicability and combination of GIS- Game Theory- Water Resources Management. It is concluded that the game theory is used relatively in limited studies of water management fields such as cost/benefit allocation among users, water allocation among trans-boundary users in water resources, water quality management, groundwater management, analysis of water policies, fair allocation of water resources development cost and some other narrow fields. Also, Decision-making in environmental projects requires consideration of trade-offs between socio-political, environmental, and economic impacts and is often complicated by various stakeholder views. Most of the literature on water allocation and conflict problems uses traditional optimization models to identify the most efficient scheme while the Game Theory, as an optimization method, combined GIS are beneficial platforms for agent based models to be used in solving Water Resources Management problems in the further studies.

  20. Challenges of communicating integrated water resource management in Zimbabwe

    NARCIS (Netherlands)

    Marimbe, S.; Manzungu, E.

    2003-01-01

    With the promulgation of the 1998 Water Act the Government of Zimbabwe took a decisive step to reform the country's water sector, to bring it in line with contemporary socio-political realities obtaining in the country, and in tune with the philosophy of integrated water resources management.

  1. 30 CFR 402.6 - Water-Resources Research Program.

    Science.gov (United States)

    2010-07-01

    ... productivity of water when used for agricultural, municipal, and commercial purposes; and (8) The economic, legal, engineering, social, recreational, biological, geographic, ecological, and other aspects of water... interpreting the results of scientific and engineering research on water-resources problems. (10) Providing...

  2. Dissolved nitrogen in drinking water resources of farming ...

    African Journals Online (AJOL)

    Administrator

    of the total drinking water needs. Dry season vegetable farmers also prepare their nur- sery beds close to streams and use surface water for irri- gation. The proximity of nurseries to streams results in clearing of stream bank vegetation to accommodate nur- series. Pollution of stream water and depletion of their resources ...

  3. Human and climate impacts on global water resources

    NARCIS (Netherlands)

    Wada, Y.|info:eu-repo/dai/nl/341387819

    2013-01-01

    Over past decades, terrestrial water fluxes have been affected by humans at an unprecedented scale and the fingerprints that humans have left on Earth’s water resources are turning up in a diverse range of records. In this thesis, a state-of-the-art global hydrological model (GHM) and global water

  4. A century of lessons about water resources in northeastern forests

    Science.gov (United States)

    James W. Hornbeck; James N. Kochenderfer; James N. Kochenderfer

    2001-01-01

    Water resources in forests of the northeastern United States have been a contentious issue throughout the 20th century. The Weeks Law of 1911 recognized the needs to protect water yield and quality, and stimulated long-term interest in the relationships between forests and water. Research has provided a clear understanding of the roles of forests in hydrologic and...

  5. Protecting water resources from pollution in the Lake Badovc

    Energy Technology Data Exchange (ETDEWEB)

    Avdullahi, Sabri; Fejza, Islam; Tmava, Ahmet [Faculty of Geosciences and Technology, University of Prishtina, Str. Parku Industrial, 40000 Mitrovic, Republic of Kosova

    2012-07-01

    In recent years, the international community has witnessed incidence of climate variability and human activities. The objective of this paper is protecting water resources from pollution in the catchments area of Lake Badovc. The catchments area of the Lake Badovc has a size of 109 km² and the active storage volume of the lake is assessed to 26.4 Mill.m3. Around 28% of the total population of Municipality of Prishtina supply with drinking water from Lake Badovc. The hydrologic modelling system used, is HEC-HMS developed by the Hydrologic Engineering Centre of the US Corps of Engineers. The model is designed to simulate the rainfall-runoff processes of catchments areas and is applicable to a wide range of geographic areas.Water samples are taken from two streams reach Lake Badovc and from the lake in three different depths (5m, 10m and 15m) at different locations. Concerning the environment impact more than 140 interviews were conducted and questionnaires filled in the period October-November for Mramor area, concentrating on the most important issues: building, water supply, wastewater disposal and west disposal.

  6. Water resources development in the Molai area, Greece

    International Nuclear Information System (INIS)

    1981-01-01

    The first volume of this report describes the work, carried out by the Government of Greece, with the assistance of UNDP and FAO, to assess the availability of groundwater for the irrigation of up to 6000 km in the Molai plain, located in the southern Peloponnese. The limestone reservoir of groundwater is restricted to the area 10 km 2 . Its groundwater is of rather poor quality (EC more than 2.0 mmho/cm) and it has a low head 3-7 m above sea level, which is 77-150 m below land surface. A water balance is presented which has been confirmed on a groundwater model. The fresh water of the limestone aquifer is characterised by the admixture of a variable amount of sea-water. The water of the Neogene aquifer is of much better quality. Combining the available resources, the irrigated area in the Molai plain can be tripled to cover half the net irrigable area. The economic feasibility of such a project has been studied

  7. Dynamical resource nexus assessments: from accounting to sustainability approaches

    Science.gov (United States)

    Salmoral, Gloria; Yan, Xiaoyu

    2017-04-01

    Continued economic development and population growth result in increasing pressures on natural resources, from local to international levels, for meeting societal demands on water, energy and food. To date there are a few tools that link models to identify the relationships and to account for flows of water, energy and food. However, these tools in general can offer only a static view often at national level and with annual temporal resolution. Moreover, they can only account flows but cannot consider the required amounts and conditions of the natural capital that supplies and maintains these flows. With the emerging nexus thinking, our research is currently focused on promoting dynamical environmental analyses beyond the conventional silo mentalities. Our study aims to show new advancements in existing tools (e.g., dynamical life cycle assessment) and develop novel environmental indicators relevant for the resource nexus assessment. We aim to provide a step forward when sustainability conditions and resilience thresholds are aligned with flows under production (e.g., food, water and energy), process level under analysis (e.g., local production, transport, manufacturing, final consumption, reuse, disposal) and existing biophysical local conditions. This approach would help to embrace and better characterise the spatiotemporal dynamics, complexity and existing links between and within the natural and societal systems, which are crucial to evaluate and promote more environmentally sustainable economic activities.