Microbiological methods for the water recovery systems test, revision 1.1
Rhoads, Tim; Kilgore, M. V., Jr.; Mikell, A. T., Jr.
1990-01-01
Current microbiological parameters specified to verify microbiological quality of Space Station Freedom water quality include the enumeration of total bacteria, anaerobes, aerobes, yeasts and molds, enteric bacteria, gram positives, gram negatives, and E. coli. In addition, other parameters have been identified as necessary to support the Water Recovery Test activities to be conducted at the NASA/MSFC later this year. These other parameters include aerotolerant eutrophic mesophiles, legionellae, and an additional method for heterotrophic bacteria. If inter-laboratory data are to be compared to evaluate quality, analytical methods must be eliminated as a variable. Therefore, each participating laboratory must utilize the same analytical methods and procedures. Without this standardization, data can be neither compared nor validated between laboratories. Multiple laboratory participation represents a conservative approach to insure quality and completeness of data. Invariably, sample loss will occur in transport and analyses. Natural variance is a reality on any test of this magnitude and is further enhanced because biological entities, capable of growth and death, are specific parameters of interest. The large variation due to the participation of human test subjects has been noted with previous testing. The resultant data might be dismissed as 'out of control' unless intra-laboratory control is included as part of the method or if participating laboratories are not available for verification. The purpose of this document is to provide standardized laboratory procedures for the enumeration of certain microorganisms in water and wastewater specific to the water recovery systems test. The document consists of ten separate cultural methods and one direct count procedure. It is not intended nor is it implied to be a complete microbiological methods manual.
Cold water recovery reduces anaerobic performance.
Crowe, M J; O'Connor, D; Rudd, D
2007-12-01
This study investigated the effects of cold water immersion on recovery from anaerobic cycling. Seventeen (13 male, 4 female) active subjects underwent a crossover, randomised design involving two testing sessions 2 - 6 d apart. Testing involved two 30-s maximal cycling efforts separated by a one-hour recovery period of 10-min cycling warm-down followed by either passive rest or 15-min cold water immersion (13 - 14 degrees C) with passive rest. Peak power, total work and postexercise blood lactate were significantly reduced following cold water immersion compared to the first exercise test and the control condition. These variables did not differ significantly between the control tests. Peak exercise heart rate was significantly lower after cold water immersion compared to the control. Time to peak power, rating of perceived exertion, and blood pH were not affected by cold water immersion compared to the control. Core temperature rose significantly (0.3 degrees C) during ice bath immersion but a similar increase also occurred in the control condition. Therefore, cold water immersion caused a significant decrease in sprint cycling performance with one-hour recovery between tests.
National Aeronautics and Space Administration — The AES Water Recovery Project (WRP) is advancing environmental control and life support systems water recovery technologies to support human exploration beyond low...
Vacuum distillation/vapor filtration water recovery
Honegger, R. J.; Neveril, R. B.; Remus, G. A.
1974-01-01
The development and evaluation of a vacuum distillation/vapor filtration (VD/VF) water recovery system are considered. As a functional model, the system converts urine and condensates waste water from six men to potable water on a steady-state basis. The system is designed for 180-day operating durations and for function on the ground, on zero-g aircraft, and in orbit. Preparatory tasks are summarized for conducting low gravity tests of a vacuum distillation/vapor filtration system for recovering water from urine.
Process Control for Precipitation Prevention in Space Water Recovery Systems
Sargusingh, Miriam; Callahan, Michael R.; Muirhead, Dean
2015-01-01
The ability to recover and purify water through physiochemical processes is crucial for realizing long-term human space missions, including both planetary habitation and space travel. Because of their robust nature, rotary distillation systems have been actively pursued by NASA as one of the technologies for water recovery from wastewater primarily comprised of human urine. A specific area of interest is the prevention of the formation of solids that could clog fluid lines and damage rotating equipment. To mitigate the formation of solids, operational constraints are in place that limits such that the concentration of key precipitating ions in the wastewater brine are below the theoretical threshold. This control in effected by limiting the amount of water recovered such that the risk of reaching the precipitation threshold is within acceptable limits. The water recovery limit is based on an empirically derived worst case wastewater composition. During the batch process, water recovery is estimated by monitoring the throughput of the system. NASA Johnson Space Center is working on means of enhancing the process controls to increase water recovery. Options include more precise prediction of the precipitation threshold. To this end, JSC is developing a means of more accurately measuring the constituent of the brine and/or wastewater. Another means would be to more accurately monitor the throughput of the system. In spring of 2015, testing will be performed to test strategies for optimizing water recovery without increasing the risk of solids formation in the brine.
Flight Testing of the Forward Osmosis Bag for Water Recovery on STS-135
Roberts, Michael S.; Soler, Monica; Mortenson, Todd; McCoy, LaShelle; Woodward, Spencer; Levine, Howard G.
2011-01-01
The Forward Osmosis Bag (FOB) is a personal water purification device for recovery of potable liquid from almost any non-potable water source. The FOB experiment was flown as a sortie mission on STS-135/ULF7 using flight-certified materials and a design based on the X-Pack(TradeMark) from Hydration Technology Innovations (Albany, OR). The primary objective was to validate the technology for use under microgravity conditions. The FOB utilizes a difference in solute concentration across a selectively permeable membrane to draw water molecules from the non-potable water while rejecting most chemical and all microbial contaminants contained within. Six FOB devices were tested on STS-135 for their ability to produce a potable liquid permeate from a feed solution containing 500 mL potassium chloride (15 g/L) amended with 0.1% methyl blue dye (w:v) tracer against an osmotic gradient created by addition of 60 mL of concentrate containing the osmolytes fructose and glucose, and 0.01% sodium fluorescein (w:v) tracer. Three FOB devices were physically mixed by hand for 2 minutes by a crewmember after loading to augment membrane wetting for comparison with three unmixed FOB devices. Hydraulic flux rate and rejection of salt and dye in microgravity were determined from a 60-mL sample collected by the crew on orbit after 6 hours. Post-flight analysis of samples collected on orbit demonstrated that the Forward Osmosis Bag achieved expected design specifications in microgravity. The hydraulic flux rate of water across the membrane was reduced approximately 50% in microgravity relative to ground controls that generated an average of 50 mL per hour using the same water and osmolyte solutions. The membrane rejected both potassium and chloride at >92% and methyl blue dye at >99.9%. Physical mixing of the FOB during water recovery did not have any significant effect on either flux rate or rejection of solutes from the water solution. The absence of buoyancy-driven convection in
Test results on reuse of reclaimed shower water - A summary
Verostko, Charles E.; Garcia, Rafael; Sauer, Richard; Reysa, Richard P.; Linton, Arthur T.
1989-01-01
Results are presented from tests to evaluate a microgravity whole body shower and waste water recovery system design for possible use on the Space Station. Several water recovery methods were tested, including phase change distillation, a thermoelectric hollow fiber membrane evaporation subsystem, and a reverse osmosis dynamic membrane system. Consideration is given to the test hardware, the types of soaps evaluated, the human response to showering with reclaimed water, chemical treatment for microbial control, the procedures for providing hygienic water, and the quality of water produced by the systems. All three of the waste water recovery systems tested successfully produced reclaimed water for reuse.
Energy saving and recovery measures in integrated urban water systems
Freni, Gabriele; Sambito, Mariacrocetta
2017-11-01
The present paper describes different energy production, recovery and saving measures which can be applied in an integrated urban water system. Production measures are often based on the installation of photovoltaic systems; the recovery measures are commonly based on hydraulic turbines, exploiting the available pressure potential to produce energy; saving measures are based on substitution of old pumps with higher efficiency ones. The possibility of substituting some of the pipes of the water supply system can be also considered in a recovery scenario in order to reduce leakages and recovery part of the energy needed for water transport and treatment. The reduction of water losses can be obtained through the Active Leakage Control (ALC) strategies resulting in a reduction in energy consumption and in environmental impact. Measures were applied to a real case study to tested it the efficiency, i.e., the integrated urban water system of the Palermo metropolitan area in Sicily (Italy).
Water Recovery from Brines to Further Close the Water Recovery Loop in Human Spaceflight
Jackson, W. Andrew; Barta, Daniel J.; Anderson, Molly S.; Lange, Kevin E.; Hanford, Anthony J.; Shull, Sarah A.; Carter, D. Layne
2014-01-01
Further closure of water recovery systems will be necessary for future long duration human exploration missions. NASA's Space Technology Roadmap for Human Health, Life Support and Habitation Systems specified a milestone to advance water management technologies during the 2015 to 2019 timeframe to achieve 98% H2O recovery from a mixed wastewater stream containing condensate, urine, hygiene, laundry, and water derived from waste. This goal can only be achieved by either reducing the amount of brines produced by a water recovery system or by recovering water from wastewater brines. NASA convened a Technical Interchange Meeting (TIM) on the topic of Water Recovery from Brines (WRB) that was held on January14-15th, 2014 at Johnson Space Center. Objectives of the TIM were to review systems and architectures that are sources of brines and the composition of brines they produce, review the state of the art in NASA technology development and perspectives from other industries, capture the challenges and difficulties in developing brine processing hardware, identify key figures of merit and requirements to focus technology development and evaluate candidate technologies, and identify other critical issues including microgravity sensitivity, and concepts of operation, safety. This paper represents an initial summary of findings from the workshop.
Design of the Brine Evaporation Bag for Increased Water Recovery in Microgravity
Hayden, Anna L.; Delzeit, Lance D.
2015-01-01
The existing water recovery system on the International Space Station (ISS) is limited to 75% reclamation; consequently, long duration space missions are currently unfeasible due to the large quantity of water necessary to sustain the crew. The Brine Evaporation Bag (BEB) is a proposed system to supplement the existing water recovery system aboard the ISS that can to increase water recovery to 99%. The largest barrier to high water recovery is mineral scaling inside the water recovery equipment, which leads to equipment failure; therefore, some water must remain to keep the minerals dissolved. This waste stream is liquid brine containing salts, acids, organics, and water. The BEB is designed to recover this remaining water while protecting the equipment from scale. The BEB consists of a sealed bag containing a hydrophobic membrane that allows water vapor and gas to pass through. It is operated under vacuum, heated, and continuously filled with brine to boil away the water. The water vapor is recovered and the solids are contained inside the bag for disposal. The BEB can dry the brine to a solid block. Ongoing work includes improving the design of the BEB and the evaporator to prevent leaks, maximize the rate of water removal, and minimize energy use and weight. Additional testing will determine whether designs are heat- or mass-transfer limited and the optimal water recovery rate.
Air Evaporation closed cycle water recovery technology - Advanced energy saving designs
Morasko, Gwyndolyn; Putnam, David F.; Bagdigian, Robert
1986-01-01
The Air Evaporation water recovery system is a visible candidate for Space Station application. A four-man Air Evaporation open cycle system has been successfully demonstrated for waste water recovery in manned chamber tests. The design improvements described in this paper greatly enhance the system operation and energy efficiency of the air evaporation process. A state-of-the-art wick feed design which results in reduced logistics requirements is presented. In addition, several design concepts that incorporate regenerative features to minimize the energy input to the system are discussed. These include a recuperative heat exchanger, a heat pump for energy transfer to the air heater, and solar collectors for evaporative heat. The addition of the energy recovery devices will result in an energy reduction of more than 80 percent over the systems used in earlier manned chamber tests.
Facility for generating crew waste water product for ECLSS testing
Buitekant, Alan; Roberts, Barry C.
1990-01-01
An End-use Equipment Facility (EEF) has been constructed which is used to simulate water interfaces between the Space Station Freedom Environmental Control and Life Support Systems (ECLSS) and man systems. The EEF is used to generate waste water to be treated by ECLSS water recovery systems. The EEF will also be used to close the water recovery loop by allowing test subjects to use recovered hygiene and potable water during several phases of testing. This paper describes the design and basic operation of the EEF.
Winkler, H. E.; Roebelen, G. J., Jr.
1980-01-01
A three-man urine water recovery preprototype subsystem using a new concept to provide efficient potable water recovery from waste fluids on extended duration space flights has been designed, fabricated, and tested. Low power, compactness, and gravity insensitive operation are featured in this vacuum distillation subsystem that combines a hollow fiber polysulfone membrane evaporator with a thermoelectric heat pump. Application and integration of these key elements have solved problems inherent in previous reclamation subsystem designs. The hollow fiber elements provide positive liquid/gas phase control with no moving parts other than a waste liquid recirculation pump and a product water withdrawal pump. Tubular membranes provide structural integrity, improving on previous flat sheet membrane designs. A thermoelectric heat pump provides latent energy recovery.
Analysis of Water Recovery Rate from the Heat Melt Compactor
Balasubramaniam, R.; Hegde, U.; Gokoglu, S.
2013-01-01
Human space missions generate trash with a substantial amount of plastic (20% or greater by mass). The trash also contains water trapped in food residue and paper products and other trash items. The Heat Melt Compactor (HMC) under development by NASA Ames Research Center (ARC) compresses the waste, dries it to recover water and melts the plastic to encapsulate the compressed trash. The resulting waste disk or puck represents an approximately ten-fold reduction in the volume of the initial trash loaded into the HMC. In the current design concept being pursued, the trash is compressed by a piston after it is loaded into the trash chamber. The piston face, the side walls of the waste processing chamber and the end surface in contact with the waste can be heated to evaporate the water and to melt the plastic. Water is recovered by the HMC in two phases. The first is a pre-process compaction without heat or with the heaters initially turned on but before the waste heats up. Tests have shown that during this step some liquid water may be expelled from the chamber. This water is believed to be free water (i.e., not bound with or absorbed in other waste constituents) that is present in the trash. This phase is herein termed Phase A of the water recovery process. During HMC operations, it is desired that liquid water recovery in Phase A be eliminated or minimized so that water-vapor processing equipment (e.g., condensers) downstream of the HMC are not fouled by liquid water and its constituents (i.e., suspended or dissolved matter) exiting the HMC. The primary water recovery process takes place next where the trash is further compacted while the heated surfaces reach their set temperatures for this step. This step will be referred to herein as Phase B of the water recovery process. During this step the waste chamber may be exposed to different selected pressures such as ambient, low pressure (e.g., 0.2 atm), or vacuum. The objective for this step is to remove both bound and
Thermoelectric integrated membrane evaporation water recovery technology
Roebelen, G. J., Jr.; Winkler, H. E.; Dehner, G. F.
1982-01-01
The recently developed Thermoelectric Integrated Membrane Evaporation Subsystem (TIMES) offers a highly competitive approach to water recovery from waste fluids for future on-orbit stations such as the Space Operations Center. Low power, compactness and gravity insensitive operation are featured in this vacuum distillation subsystem that combines a hollow fiber membrane evaporator with a thermoelectric heat pump. The hollow fiber elements provide positive liquid/gas phase control with no moving parts other than pumps and an accumulator, thus solving problems inherent in other reclamation subsystem designs. In an extensive test program, over 850 hours of operation were accumulated during which time high quality product water was recovered from both urine and wash water at an average steady state production rate of 2.2 pounds per hour.
Hydropower recovery in water supply systems: Models and case study
International Nuclear Information System (INIS)
Vilanova, Mateus Ricardo Nogueira; Balestieri, José Antônio Perrella
2014-01-01
Highlights: • We present hydropower recovery models for water supply systems. • Hydropower recovery potential in water supply systems is highly variable. • The case studied could make the supply systems self-sufficient in terms of energy. • Hydropower recovery can reduce GHGs emissions and generate carbon credits. - Abstract: The energy efficiency of water supply systems can be increased through the recovery of hydraulic energy implicit to the volumes of water transported in various stages of the supply process, which can be converted into electricity through hydroelectric recovery systems. Such a process allows the use of a clean energy source that is usually neglected in water supplies, reducing its dependence on energy from the local network and the system’s operation costs. This article evaluates the possibilities and benefits of the use of water supply facilities, structures and equipment for hydraulic energy recovery, addressing several applicable hydroelectric models. A real case study was developed in Brazil to illustrate the technical, economic and environmental aspects of hydropower recovery in water supply systems
Improved Energy Recovery by Anaerobic Grey Water Sludge Treatment with Black Water
Directory of Open Access Journals (Sweden)
Taina Tervahauta
2014-08-01
Full Text Available This study presents the potential of combining anaerobic grey water sludge treatment with black water in an up-flow anaerobic sludge blanket (UASB reactor to improve energy recovery within source-separated sanitation concepts. Black water and the mixture of black water and grey water sludge were compared in terms of biochemical methane potential (BMP, UASB reactor performance, chemical oxygen demand (COD mass balance and methanization. Grey water sludge treatment with black water increased the energy recovery by 23% in the UASB reactor compared to black water treatment. The increase in the energy recovery can cover the increased heat demand of the UASB reactor and the electricity demand of the grey water bioflocculation system with a surplus of 0.7 kWh/cap/y electricity and 14 MJ/cap/y heat. However, grey water sludge introduced more heavy metals in the excess sludge of the UASB reactor and might therefore hinder its soil application.
Arsenic control during aquifer storage recovery cycle tests in the Floridan Aquifer.
Mirecki, June E; Bennett, Michael W; López-Baláez, Marie C
2013-01-01
Implementation of aquifer storage recovery (ASR) for water resource management in Florida is impeded by arsenic mobilization. Arsenic, released by pyrite oxidation during the recharge phase, sometimes results in groundwater concentrations that exceed the 10 µg/L criterion defined in the Safe Drinking Water Act. ASR was proposed as a major storage component for the Comprehensive Everglades Restoration Plan (CERP), in which excess surface water is stored during the wet season, and then distributed during the dry season for ecosystem restoration. To evaluate ASR system performance for CERP goals, three cycle tests were conducted, with extensive water-quality monitoring in the Upper Floridan Aquifer (UFA) at the Kissimmee River ASR (KRASR) pilot system. During each cycle test, redox evolution from sub-oxic to sulfate-reducing conditions occurs in the UFA storage zone, as indicated by decreasing Fe(2+) /H2 S mass ratios. Arsenic, released by pyrite oxidation during recharge, is sequestered during storage and recovery by co-precipitation with iron sulfide. Mineral saturation indices indicate that amorphous iron oxide (a sorption surface for arsenic) is stable only during oxic and sub-oxic conditions of the recharge phase, but iron sulfide (which co-precipitates arsenic) is stable during the sulfate-reducing conditions of the storage and recovery phases. Resultant arsenic concentrations in recovered water are below the 10 µg/L regulatory criterion during cycle tests 2 and 3. The arsenic sequestration process is appropriate for other ASR systems that recharge treated surface water into a sulfate-reducing aquifer. Published 2012. This article is a U.S. Government work and is in the public domain in the USA.
Space Station Freedom regenerative water recovery system configuration selection
Reysa, R.; Edwards, J.
1991-01-01
The Space Station Freedom (SSF) must recover water from various waste water sources to reduce 90 day water resupply demands for a four/eight person crew. The water recovery system options considered are summarized together with system configuration merits and demerits, resource advantages and disadvantages, and water quality considerations used to select the SSF water recovery system.
Water Landing Impact of Recovery Space Capsule: A Research Overview
Nakano, Eiichiro; Uchikawa, Hideaki; Tanno, Hideyuki; Sugimoto, Ryu
2014-01-01
For the design of a manned or cargo space capsule, it is important to precisely estimate the Earth landing loads to the crew or cargo, and to limit the loads to within a permissible range. Water landing simulations and scale-model water landing tests with varying conditions for descending velocity, pitch angle, and horizontal velocity during splashdown were conducted to estimate the magnitude of water impact on the recovery space capsule. This paper describes the results of the simulation and...
Phosphate and organic fertilizer recovery from black water
Tervahauta, T.H.
2014-01-01
In this thesis the integration of treatment systems for black and grey water was investigated to improve resource recovery within source-separated sanitation concepts. Special focus was set on phosphate and organic fertilizer recovery from vacuum collected black water. Currently, the soil
Development of a condenser for the dual catalyst water recovery system
Budinikas, P.; Rasouli, F.; Rabadi, N.
1983-01-01
Conceptual evaporation/condensation systems suitable for integration with the catalytic water recovery method were evaluated. The primary requirements for each concept were its capability to operate under zero-gravity conditions, condense recovered water from a vapor-noncondensable gas mixture, and integrate with the catalytic system. Specific energy requirements were estimated for concepts meeting the primary requirements, and the concept most suitable for integration with the catalytic system was proposed. A three-man rate condenser capable of integration with the proposed system, condensing water vapor in presence of noncondensables and transferring the heat of condensation to feed urine was designed, fabricated, and tested. It was treated with steam/air mixtures at atmospheric and elevated pressures and integrated with an actual catalytic water recovery system. The condenser has a condensation efficiency exceeding 90% and heat transfer rate of approximately 85% of theoretical value at coolant temperature ranging from 7 to 80 deg C.
Potable water recovery for spacecraft application by electrolytic pretreatment/air evaporation
Wells, G. W.
1975-01-01
A process for the recovery of potable water from urine using electrolytic pretreatment followed by distillation in a closed-cycle air evaporator has been developed and tested. Both the electrolytic pretreatment unit and the air evaporation unit are six-person, flight-concept prototype, automated units. Significantly extended wick lifetimes have been achieved in the air evaporation unit using electrolytically pretreated, as opposed to chemically pretreated, urine feed. Parametric test data are presented on product water quality, wick life, process power, maintenance requirements, and expendable requirements.
Energy Recovery in Existing Water Networks: Towards Greater Sustainability
Directory of Open Access Journals (Sweden)
Modesto Pérez-Sánchez
2017-02-01
Full Text Available Analyses of possible synergies between energy recovery and water management are essential for achieving sustainable improvements in the performance of irrigation water networks. Improving the energy efficiency of water systems by hydraulic energy recovery is becoming an inevitable trend for energy conservation, emissions reduction, and the increase of profit margins as well as for environmental requirements. This paper presents the state of the art of hydraulic energy generation in drinking and irrigation water networks through an extensive review and by analyzing the types of machinery installed, economic and environmental implications of large and small hydropower systems, and how hydropower can be applied in water distribution networks (drinking and irrigation where energy recovery is not the main objective. Several proposed solutions of energy recovery by using hydraulic machines increase the added value of irrigation water networks, which is an open field that needs to be explored in the near future.
Uranium recovery from mine water
International Nuclear Information System (INIS)
Sarkar, K.M.
1984-01-01
In many plant trials it has been proven that very small amounts (10 to 20 ppm) of uranium dissolved in mine water can be effectively recovered by the use of ion exchange resins and this uranium recovery has many advantages. In this paper an economic analysis at different levels of uranium contamination and at different market prices of uranium are described. For this study an operating mine-mill complex with a sulphuric acid leach circuit, followed by solvent extraction (SX) process, is considered, where contaminated mine water is available in excess of process requirements. It is further assumed that the sulphuric acid eluant containing uranium would be mixed with the mill pregnant liquor stream that proceeds to the SX plant for final uranium recovery
Energy Technology Data Exchange (ETDEWEB)
Preter, Felipe C.; Rocha, Marcelo S.; Simoes-Moreira, Jose Roberto [SISEA - Alternative Energy Systems Lab. Dept. of Mechanical Engineering. University of Sao Paulo (EP/USP), SP (Brazil)], e-mails: felipe.preter@poli.usp.br, msrocha@poli.usp.br, jrsimoes@usp.br; Andreos, Ronaldo [COMGAS - Companhia de Gas de Sao Paulo, SP (Brazil)], e-mail: randreos@comgas.com.br
2010-07-01
In this work, a CCHP or tri generation system has been projected, mounted, and tested in laboratory, combining a microturbine for power generation, a heat recovery boiler for hot water production, and an ammonia water absorption chiller for chilled water production. The project was motivated by the large practical applications of this kind of energy recovery system in commerce, and industry, and, in general, more than 85% of the energy source is used as power, hot water, and cold water. In the first part, the trigeneration system theoretical model is detailed, and in the second part, experimental results are presented for different operation conditions. (author)
Recovery of diverse microbes in high turbidity surface water samples using dead-end ultrafiltration.
Mull, Bonnie; Hill, Vincent R
2012-12-01
Dead-end ultrafiltration (DEUF) has been reported to be a simple, field-deployable technique for recovering bacteria, viruses, and parasites from large-volume water samples for water quality testing and waterborne disease investigations. While DEUF has been reported for application to water samples having relatively low turbidity, little information is available regarding recovery efficiencies for this technique when applied to sampling turbid water samples such as those commonly found in lakes and rivers. This study evaluated the effectiveness of a DEUF technique for recovering MS2 bacteriophage, enterococci, Escherichia coli, Clostridium perfringens, and Cryptosporidium parvum oocysts in surface water samples having elevated turbidity. Average recovery efficiencies for each study microbe across all turbidity ranges were: MS2 (66%), C. parvum (49%), enterococci (85%), E. coli (81%), and C. perfringens (63%). The recovery efficiencies for MS2 and C. perfringens exhibited an inversely proportional relationship with turbidity, however no significant differences in recovery were observed for C. parvum, enterococci, or E. coli. Although ultrafilter clogging was observed, the DEUF method was able to process 100-L surface water samples at each turbidity level within 60 min. This study supports the use of the DEUF method for recovering a wide array of microbes in large-volume surface water samples having medium to high turbidity. Published by Elsevier B.V.
Vacuum distillation/vapor filtration water recovery, phases 1 and 2
Honegger, R. J.; Remus, G. A.; Krug, E. K.
1973-01-01
The research is reported on the development of an evaporator for vacuum distillation/vapor filtration VD/VF water reclamation system for use on manned space flights. The design, fabrication, and tests of a six-man evaporator are described. It is concluded that: (1) A condenser with an internal rotating impeller and coolant surfaces directly opposite the condensing surfaces is an effective condenser. (2) The VD/VF evaporator, catalyst unit and condenser function satisfactorily based on thermal, mechanical and recovery performance during a 145-hour evaluation test. (3) The quality of recovered water, as measured by analyses for total organic carbon, pH, conductivity, turbidity, and viable bacteria density was within established limits for potability.
Improved Energy Recovery by Anaerobic Grey Water Sludge Treatment with Black Water
Tervahauta, T.H.; Bryant, I.M.; Hernandez Leal, L.; Buisman, C.J.N.; Zeeman, G.
2014-01-01
This study presents the potential of combining anaerobic grey water sludge treatment with black water in an up-flow anaerobic sludge blanket (UASB) reactor to improve energy recovery within source-separated sanitation concepts. Black water and the mixture of black water and grey water sludge were
Elden, N. C.; Winkler, H. E.; Price, D. F.; Reysa, R. P.
1983-01-01
Water recovery subsystems are being tested at the NASA Lyndon B. Johnson Space Center for Space Station use to process waste water generated from urine and wash water collection facilities. These subsystems are being integrated into a water management system that will incorporate wash water and urine processing through the use of hyperfiltration and vapor compression distillation subsystems. Other hardware in the water management system includes a whole body shower, a clothes washing facility, a urine collection and pretreatment unit, a recovered water post-treatment system, and a water quality monitor. This paper describes the integrated test configuration, pertinent performance data, and feasibility and design compatibility conclusions of the integrated water management system.
Bioflocculation of grey water for improved energy recovery within decentralized sanitation concepts.
Hernández Leal, L; Temmink, H; Zeeman, G; Buisman, C J N
2010-12-01
Bioflocculation of grey water was tested with a lab-scale membrane bioreactor in order to concentrate the COD. Three concentration factors were tested based on the ratio of sludge retention time (SRT) and hydraulic retention time (HRT): 3, 8 and 12. COD concentration factor was up to 7.1, achieving a final concentration of 7.2 g COD L(-1). Large fractions of suspended COD were recovered in the concentrate (57%, 81% and 82% at SRT/HRT ratios of 3, 8 and 12, respectively) indicating a strong bioflocculation of grey water. A maximum of 11% of COD mineralization of grey water was measured at the longest SRT tested (1 d). The integration of bioflocculation of grey water in decentralized sanitation concepts may increase the overall production of methane by 73%, based on the biogas produced by black water only. Therefore, bioflocculation is a promising grey water pre-treatment step for energy recovery within decentralized sanitation concepts. 2010 Elsevier Ltd. All rights reserved.
Impact of Water Recovery from Wastes on the Lunar Surface Mission Water Balance
Fisher, John W.; Hogan, John Andrew; Wignarajah, Kanapathipi; Pace, Gregory S.
2010-01-01
Future extended lunar surface missions will require extensive recovery of resources to reduce mission costs and enable self-sufficiency. Water is of particular importance due to its potential use for human consumption and hygiene, general cleaning, clothes washing, radiation shielding, cooling for extravehicular activity suits, and oxygen and hydrogen production. Various water sources are inherently present or are generated in lunar surface missions, and subject to recovery. They include: initial water stores, water contained in food, human and other solid wastes, wastewaters and associated brines, ISRU water, and scavenging from residual propellant in landers. This paper presents the results of an analysis of the contribution of water recovery from life support wastes on the overall water balance for lunar surface missions. Water in human wastes, metabolic activity and survival needs are well characterized and dependable figures are available. A detailed life support waste model was developed that summarizes the composition of life support wastes and their water content. Waste processing technologies were reviewed for their potential to recover that water. The recoverable water in waste is a significant contribution to the overall water balance. The value of this contribution is discussed in the context of the other major sources and loses of water. Combined with other analyses these results provide guidance for research and technology development and down-selection.
International Nuclear Information System (INIS)
1996-06-01
A water level recovery test was conducted at Building 9201-2 at the Oak Ridge Y-12 Plant in Oak Ridge, Tennessee, from 12:45 p.m. on July 29 until 8:22 a.m. on July 31, 1994. The purpose of the test was to improve the general understanding of the subsurface hydrology around the building. The information is needed to determine the minimum pumping capacity necessary to maintain safe water levels in the basement of the building and to assist in designing systems for treating mercury-bearing waters in the basement. The test was initiated by shutting off the three main sump pumps in Building 9201-2 (i.e., O-12, E-13, and E-22) for 43.5 hr and allowing the water in the basement to approach a static level. The pumps in sumps F-3 and P-6 were also not operating during the test. During the test, water levels were monitored in 5 sumps (P-6, O-12, F-3, E-13, and E-22); a pit near sump K-22; 4 monitoring wells or piezometers in the basement near the O-12 sump, and 16 wells outside of the building. Sump K-22 was dry during the entire test
Higgins, Trevor R; Climstein, Mike; Cameron, Melainie
2013-04-01
In team sports, a cycle of training, competition, and recovery occurs weekly during the competitive season. In this research, we evaluated hydrotherapy for recovery from a simulated game of rugby union tracked over a week of training. Twenty-four experienced male rugby union players (mean ± SD age 19.46 ± 0.82 years, weight 82.38 ± 11.12 kg, height 178.54 ± 5.75 cm) were randomly divided into 3 groups: cold water immersion (n = 8), contrast bath therapy (n = 8), and a control group (n = 8). The 2 forms of hydrotherapy were administered immediately after a simulated rugby game. Testing was conducted 1 hour before the game and at 5 intervals postgame: 1, 48, 72, 96, and 144 hours. Dependent variables included countermovement jump, 10- and 40-m sprints, sessional rating of perceived exertion (RPE), flexibility, thigh circumference, and self-reported delayed onset muscle soreness (DOMS). Significant differences in DOMS were found between the cold water immersion and contrast bath groups at 48 hours post intervention (p = 0.02), and between the control and contrast bath groups at 72 (p = 0.03) and 96 (p = 0.04) hours post intervention. Cold water immersion and contrast bath groups reported significantly different RPE at 72 hours (p = ?) and 96 hours post (p = 0.05) intervention. Athletes' perceptions of muscle soreness and sessional RPE scores for training were greater in the contrast bath group (20%) after the simulated game and throughout the training week. Although results from passive and power tests were inconclusive in determining whether cold water immersion or passive recovery was more effective in attenuating fatigue, results indicated contrast baths had little benefit in enhancing recovery during a cyclic week of rugby union.
Water Recovery with the Heat Melt Compactor in a Microgravity Environment
Golliher, Eric L.; Goo, Jonathan; Fisher, John
2015-01-01
The Heat Melt Compactor is a proposed utility that will compact astronaut trash, extract the water for eventual re-use, and form dry square tiles that can be used as additional ionizing radiation shields for future human deep space missions. The Heat Melt Compactor has been under development by a consortium of NASA centers. The downstream portion of the device is planned to recover a small amount of water while in a microgravity environment. Drop tower low gravity testing was performed to assess the effect of small particles on a capillary-based water/air separation device proposed for the water recovery portion of the Heat Melt Compactor.
Energy Technology Data Exchange (ETDEWEB)
Abhijit Dandekar; Shirish Patil; Santanu Khataniar
2008-12-31
Numerous early reports on experimental works relating to the role of wettability in various aspects of oil recovery have been published. Early examples of laboratory waterfloods show oil recovery increasing with increasing water-wetness. This result is consistent with the intuitive notion that strong wetting preference of the rock for water and associated strong capillary-imbibition forces gives the most efficient oil displacement. This report examines the effect of wettability on waterflooding and gasflooding processes respectively. Waterflood oil recoveries were examined for the dual cases of uniform and non-uniform wetting conditions. Based on the results of the literature review on effect of wettability and oil recovery, coreflooding experiments were designed to examine the effect of changing water chemistry (salinity) on residual oil saturation. Numerous corefloods were conducted on reservoir rock material from representative formations on the Alaska North Slope (ANS). The corefloods consisted of injecting water (reservoir water and ultra low-salinity ANS lake water) of different salinities in secondary as well as tertiary mode. Additionally, complete reservoir condition corefloods were also conducted using live oil. In all the tests, wettability indices, residual oil saturation, and oil recovery were measured. All results consistently lead to one conclusion; that is, a decrease in injection water salinity causes a reduction in residual oil saturation and a slight increase in water-wetness, both of which are comparable with literature observations. These observations have an intuitive appeal in that water easily imbibes into the core and displaces oil. Therefore, low-salinity waterfloods have the potential for improved oil recovery in the secondary recovery process, and ultra low-salinity ANS lake water is an attractive source of injection water or a source for diluting the high-salinity reservoir water. As part of the within-scope expansion of this project
Development of the Next Generation Type Water Recovery System
Oguchi, Mitsuo; Tachihara, Satoru; Maeda, Yoshiaki; Ueoka, Terumi; Soejima, Fujito; Teranishi, Hiromitsu
According to NASA, an astronaut living on the International Space Station (ISS) requires approximately 7 kg of water per day. This includes 2 kg of drinking water as well as sanitary fresh water for hand washing, gargling, etc. This water is carried to the space station from the earth, so when more people are staying on the space station, or staying for a longer period of time, the cost of transporting water increases. Accordingly, water is a valuable commodity, and restrictions are applied to such activities as brushing teeth, washing hair, and washing clothes. The life of an astronaut in space is not necessarily a healthy one. JAXA has experience in the research of water recovery systems. Today, utilizing knowledge learned through experiences living on the space station and space shuttles, and taking advantage of the development of new materials for device construction, it is possible to construct a new water recovery system. Therefore, JAXA and New Medican Tech Corporation (NMT) have created a system for collaborative development. Based on the technologies of both companies, we are proceeding to develop the next generation of water recovery devices in order to contribute to safe, comfortable, and healthy daily life for astronauts in space. The goal of this development is to achieve a water purification system based on reverse osmosis (RO) membranes that can perform the following functions. • Preprocessing that removes ammonia and breaks down organic matter contained in urine. • Post-processing that adds minerals and sterilizes the water. • Online TOC measurement for monitoring water quality. • Functions for measuring harmful substances. The RO membrane is an ultra-low-pressure type membrane with a 0.0001 micron (0.1 nanometer) pore size and an operating pressure of 0.4 to 0.6 MPa. During processing with the RO membrane, nearly all of the minerals contained in the cleaned water are removed, resulting in water that is near the quality of deionized water
Zandvoort, Coen S.; de Zwart, Jelmer R.; van Keeken, Brenda L.; Viroux, Patrick J.F.; Tiemessen, Ivo J.H.
The purpose of the present study was to investigate whether a customised cold-water immersion (CWIc) protocol was more effective in enhancing acute performance recovery than a one-size-fits-all CWI (CWIs) or active recovery (AR) protocol. On three separate testing days, 10 healthy, physically
A modelling assessment of acidification and recovery of European surface waters
Jenkins, A.; Camarero, L.; Cosby, B. J.; Ferrier, R. C.; Forsius, M.; Helliwell, R. C.; Kopácek, J.; Majer, V.; Moldan, F.; Posch, M.; Rogora, M.; Schöpp, W.; Wright, R. F.
The increase in emission of sulphur oxides and nitrogen (both oxidised and reduced forms) since the mid-1800s caused a severe decline in pH and ANC in acid-sensitive surface waters across Europe. Since c.1980, these emissions have declined and trends towards recovery from acidification have been widely observed in time-series of water chemistry data. In this paper, the MAGIC model was applied to 10 regions (the SMART model to one) in Europe to address the question of future recovery under the most recently agreed emission protocols (the 1999 Gothenburg Protocol). The models were calibrated using best available data and driven using S and N deposition sequences for Europe derived from EMEP data. The wide extent and the severity of water acidification in 1980 in many regions were illustrated by model simulations which showed significant deterioration in ANC away from the pre-acidification conditions. The simulations also captured the recovery to 2000 in response to the existing emission reductions. Predictions to 2016 indicated further significant recovery towards pre-acidification chemistry in all regions except Central England (S Pennines), S Alps, S Norway and S Sweden. In these areas it is clear that further emission reductions will be required and that the recovery of surface waters will take several decades as soils slowly replenish their depleted base cation pools. Chemical recovery may not, however, ensure biological recovery and further reductions may also be required to enable these waters to achieve the "good ecological status" as required by the EU Water Framework Directive.
Recovery of water from cacti for use in small farming communities
African Journals Online (AJOL)
sunny t
2013-10-02
Oct 2, 2013 ... Full Length Research Paper. Recovery of water ... 35°C and a pH of 5.5. This relates to a yield of 550 L of water per ton of cacti, making chemical water .... recovery of juice from pineapples by up to 14%. Demir et al. (2001) did ...
Improved Energy Recovery by Anaerobic Grey Water Sludge Treatment with Black Water
Tervahauta, Taina; Bryant, Isaac; Leal, Lucía; Buisman, Cees; Zeeman, Grietje
2014-01-01
This study presents the potential of combining anaerobic grey water sludge treatment with black water in an up-flow anaerobic sludge blanket (UASB) reactor to improve energy recovery within source-separated sanitation concepts. Black water and the mixture of black water and grey water sludge were compared in terms of biochemical methane potential (BMP), UASB reactor performance, chemical oxygen demand (COD) mass balance and methanization. Grey water sludge treatment with black water increased...
Alternative Water Processor Test Development
Pickering, Karen D.; Mitchell, Julie; Vega, Leticia; Adam, Niklas; Flynn, Michael; Wjee (er. Rau); Lunn, Griffin; Jackson, Andrew
2012-01-01
The Next Generation Life Support Project is developing an Alternative Water Processor (AWP) as a candidate water recovery system for long duration exploration missions. The AWP consists of biological water processor (BWP) integrated with a forward osmosis secondary treatment system (FOST). The basis of the BWP is a membrane aerated biological reactor (MABR), developed in concert with Texas Tech University. Bacteria located within the MABR metabolize organic material in wastewater, converting approximately 90% of the total organic carbon to carbon dioxide. In addition, bacteria convert a portion of the ammonia-nitrogen present in the wastewater to nitrogen gas, through a combination of nitrogen and denitrification. The effluent from the BWP system is low in organic contaminants, but high in total dissolved solids. The FOST system, integrated downstream of the BWP, removes dissolved solids through a combination of concentration-driven forward osmosis and pressure driven reverse osmosis. The integrated system is expected to produce water with a total organic carbon less than 50 mg/l and dissolved solids that meet potable water requirements for spaceflight. This paper describes the test definition, the design of the BWP and FOST subsystems, and plans for integrated testing.
International Nuclear Information System (INIS)
Polley, Graham Thomas; Picon-Nunez, Martin; Lopez-Maciel, Jose de Jesus
2010-01-01
This paper describes procedures for the design of processes in which water and energy consumption form a large part of the operating cost. Good process design can be characterised by a number of properties, amongst the most important are: efficient use of raw materials, low capital cost and good operability. In terms of thermodynamic analysis these processes can be characterised as being either a 'pinch' problem or a 'threshold' problem. This paper concentrates on developing designs for problems of the threshold type. Most of the problems discussed by previous workers have been of this type. With these properties in mind this work looks at the design of integrated water and energy systems that exhibit the following features: 1. minimum water consumption, 2. minimum energy consumption, and 3. simple network structure. The approach applies for single contaminant. It is shown that the water conservation problem and the heat recovery problems can be de-coupled and the water conservation options should be established first. It is then shown that the number of heaters and heat recovery units required for the system, the quantity and type of hot utility needed for the plant and the complexity of the heat recovery network can all be determined without having to design any heat recovery network. This allows the engineer to select the better water conservation option before embarking on the design of the heat recovery network. For this type of problem the design of the heat recovery network itself is usually simple and straightforward.
Cold water immersion enhances recovery of submaximal muscle function after resistance exercise.
Roberts, Llion A; Nosaka, Kazunori; Coombes, Jeff S; Peake, Jonathan M
2014-10-15
We investigated the effect of cold water immersion (CWI) on the recovery of muscle function and physiological responses after high-intensity resistance exercise. Using a randomized, cross-over design, 10 physically active men performed high-intensity resistance exercise followed by one of two recovery interventions: 1) 10 min of CWI at 10°C or 2) 10 min of active recovery (low-intensity cycling). After the recovery interventions, maximal muscle function was assessed after 2 and 4 h by measuring jump height and isometric squat strength. Submaximal muscle function was assessed after 6 h by measuring the average load lifted during 6 sets of 10 squats at 80% of 1 repetition maximum. Intramuscular temperature (1 cm) was also recorded, and venous blood samples were analyzed for markers of metabolism, vasoconstriction, and muscle damage. CWI did not enhance recovery of maximal muscle function. However, during the final three sets of the submaximal muscle function test, participants lifted a greater load (P work during subsequent training sessions, which could enhance long-term training adaptations. Copyright © 2014 the American Physiological Society.
Free product recovery at spill sites with fluctuating water tables
International Nuclear Information System (INIS)
Parker, J.C.; Katyal, A.K.; Zhu, J.L.; Kremesec, V.J.; Hockman, E.L.
1992-01-01
Spills and leaks of hydrocarbons from underground storage tanks, pipelines and other facilities pose a serious potential for groundwater contamination which can be very costly to remediate. The severity of the impacts and the cost of remediation can be reduced by various means. Lateral spreading of free phase hydrocarbons on the groundwater table can be prevented by pumping water to control the hydraulic gradient. Recovery of floating product may be performed by skimming hydrocarbons from wells, usually in combination with water pumping to increase the gradient. The environmental variables (water table gradient, water table fluctuations due to regional recovery wells, rates of water pumping)
Heat recovery from shower water; Warmteterugwinning uit douchewater
Energy Technology Data Exchange (ETDEWEB)
Heidemans, J. [Hei-Tech, Emmen (Netherlands)
2011-09-15
With a payback period of several years, heat recovery from shower water in swimming pools but also in, for example, apartment buildings are an attractive form of energy saving. Possible are savings from 30 to 50% on energy, which is tested and proved by measurements in the heat exchanger of showers in a swimming pool in Denmark. [Dutch] Met een terugverdientijd van enkele jaren is warmteterugwinning uit douchewater in zwembaden maar ook in bijvoorbeeld sporthallen en appartementengebouwen een aantrekkelijke vorm van energiebesparing. Er kan een besparing worden gerealiseerd van 30 tot 50% op het energiegebruik van het douchewater. Metingen aan een douchewarmtewisselaar in een zwembad in Denemarken tonen dit aan.
Closed Process of Shale Oil Recovery from Circulating Washing Water by Hydrocyclones
Directory of Open Access Journals (Sweden)
Yuan Huang
2016-12-01
Full Text Available The conventional oil recovery system in the Fushun oil shale retorting plant has a low oil recovery rate. A large quantity of fresh water is used in the system, thereby consuming a considerable amount of water and energy, as well as polluting the environment. This study aims to develop a closed process of shale oil recovery from the circulating washing water for the Fushun oil shale retorting plant. The process would increase oil yield and result in clean production. In this process, oil/water hydrocyclone groups were applied to decrease the oil content in circulating water and to simultaneously increase oil yield. The oil sludge was removed by the solid/liquid hydrocyclone groups effectively, thereby proving the smooth operation of the devices and pipes. As a result, the oil recovery rate has increased by 5.3 %, which corresponds to 230 tonnes a month.
Co-regulation of water and K(+) transport in sunflower plants during water stress recovery.
Benlloch, Manuel; Benlloch-González, María
2016-06-01
16-day-old sunflower (Helianthus annuus L.) plants were subjected to deficit irrigation for 12 days. Following this period, plants were rehydrated for 2 days to study plant responses to post-stress recovery. The moderate water stress treatment applied reduced growth in all plant organs and the accumulation of K(+) in the shoot. After the rehydration period, the stem recovered its growth and reached a similar length to the control, an effect which was not observed in either root or leaves. Moreover, plant rehydration after water stress favored the accumulation of K(+) in the apical zone of the stem and expanding leaves. In the roots of plants under water stress, watering to field capacity, once the plants were de- topped, rapidly favored K(+) and water transport in the excised roots. This quick and short-lived response was not observed in roots of plants recovered from water stress for 2 days. These results suggest that the recovery of plant growth after water stress is related to coordinated water and K(+) transport from the root to the apical zone of the stem and expanding leaves. This stimulation of K(+) transport in the root and its accumulation in the cells of the growing zones of the stem must be one of the first responses induced in the plant during water stress recovery. Copyright © 2016 Elsevier GmbH. All rights reserved.
Hydraulic failure defines the recovery and point of death in water-stressed conifers.
Brodribb, Tim J; Cochard, Hervé
2009-01-01
This study combines existing hydraulic principles with recently developed methods for probing leaf hydraulic function to determine whether xylem physiology can explain the dynamic response of gas exchange both during drought and in the recovery phase after rewatering. Four conifer species from wet and dry forests were exposed to a range of water stresses by withholding water and then rewatering to observe the recovery process. During both phases midday transpiration and leaf water potential (Psileaf) were monitored. Stomatal responses to Psileaf were established for each species and these relationships used to evaluate whether the recovery of gas exchange after drought was limited by postembolism hydraulic repair in leaves. Furthermore, the timing of gas-exchange recovery was used to determine the maximum survivable water stress for each species and this index compared with data for both leaf and stem vulnerability to water-stress-induced dysfunction measured for each species. Recovery of gas exchange after water stress took between 1 and >100 d and during this period all species showed strong 1:1 conformity to a combined hydraulic-stomatal limitation model (r2 = 0.70 across all plants). Gas-exchange recovery time showed two distinct phases, a rapid overnight recovery in plants stressed to 50% loss of Kleaf. Maximum recoverable water stress (Psimin) corresponded to a 95% loss of Kleaf. Thus, we conclude that xylem hydraulics represents a direct limit to the drought tolerance of these conifer species.
Pumping and recovery test analysis of groundwater Well in Martajasah, Bangkalan, Madura
International Nuclear Information System (INIS)
Adi Gunawan Muhammad
2010-01-01
Martajasah is one of the villages in Bangkalan Region, Madura, which have difficulty of fresh water. This area has a lot of potential that can be developed, particularly the potential of religious tourism. To increase the utilization potential of the region and support the public healthy, in 2007 PPGN - BATAN cooperated with the Government of Bangkalan has made one (I) exploration/production groundwater - wells with the expectation it can meet a demand of fresh water in the Martajasah Village area. To determine the capacity of the wells, the maximum discharge pumping and the optimum discharge pumping from the wells pumping test it is necessary should be conducted, which includes step draw down pumping test, constant rate pumping test and recovery test. The purpose of this activity is to determine amount of well loss, loss of aquifer, well hydraulics equations and the value of the efficiency of wells to determine the optimum and maximum discharge wells and calculate the value of transmissivity / transmissivity (T) from the aquifer. The scope of these activities include the preparation of working equipment, testing of all equipment, measurement of static groundwater table, pumping test, and analysis of pumping test. Based on the result from step draw down test, well hydraulics equations obtained Sw = 0.0079 Q + 0.000003 Q 2 , so that according to the well hydraulics equations are than obtained a maximum pumping discharge (Q max ) = 3.9 liters / second (336.7 m 3 ) / days) with the well efficiency (E) = 89%, so the optimum pumping discharge (Q opt )=3.455 liters / second = 298.52 m 3 /day. Based on the result from constant rate pumping test and recovery test showed adequate transmissivity of wells, i e T = 136.5 m 2 / day = 5.6875 m 2 / hour = 0.094 m 2 /minute. (author)
Waste heat and water recovery opportunities in California tomato paste processing
International Nuclear Information System (INIS)
Amón, Ricardo; Maulhardt, Mike; Wong, Tony; Kazama, Don; Simmons, Christopher W.
2015-01-01
Water and energy efficiency are important for the vitality of the food processing industry as demand for these limited resources continues to increase. Tomato processing, which is dominated by paste production, is a major industry in California – where the majority of tomatoes are processed in the United States. Paste processing generates large amounts of condensate as moisture is removed from the fruit. Recovery of the waste heat in this condensate and reuse of the water may provide avenues to decrease net energy and water use at processing facilities. However, new processing methods are needed to create demand for the condensate waste heat. In this study, the potential to recover condensate waste heat and apply it to the tomato enzyme thermal inactivation processing step (the hot break) is assessed as a novel application. A modeling framework is established to predict heat transfer to tomatoes during the hot break. Heat recovery and reuse of the condensate water are related to energy and monetary savings gained through decreased use of steam, groundwater pumping, cooling towers, and wastewater processing. This analysis is informed by water and energy usage data from relevant unit operations at a commercial paste production facility. The case study indicates potential facility seasonal energy and monetary savings of 7.3 GWh and $166,000, respectively, with most savings gained through reduced natural gas use. The sensitivity of heat recovery to various process variables associated with heat exchanger design and processing conditions is presented to identify factors that affect waste heat recovery. - Highlights: • The potential to recovery waste heat in tomato paste processing is examined. • Heat transfer from evaporator condensate to tomatoes in the hot break is modeled. • Processing facility data is used in model to predict heat recovery energy savings. • The primary benefit of heat recovery is reduced use of natural gas in boilers. • Reusing
International Nuclear Information System (INIS)
Raveendran, Nanda; Rao, D.D.; Hegde, A.G.
2010-01-01
Presence of radionuclides in drinking water which emits Alpha and Beta particles are the potential sources of internal exposure in drinking water. Gross alpha and gross beta determination in drinking water and packaged drinking water (PDW) as per BIS (Bureau of Indian standards) standards is discussed here. The methods have been tested to account for losses in the radiochemical procedures using radionuclides such as 137 Cs, 90 Sr, 226 Ra, 239 Pu, 243 Am, 232 U. The methods have also been validated in an IAEA proficiency test conducted during 2009. Monitoring of gross alpha and gross beta activity observed in drinking water/packaged drinking water from various states of India were within the limits set by BIS. Average radiochemical recoveries of 84% and 63% were obtained for gross α and gross β respectively. (author)
Design and Testing of a Lyophilizer for Water Recovery from Solid Waste
Litwiller, Eric; Fisher, John; Flynn, Michael
2005-01-01
Mixed liquid/solid wastes, including feces, water processor effluents, and food waste, can be lyophilized (freeze-dried) to recover the water they contain and stabilize the solids remain. Previous research has demonstrated the potential benefits of using thermoelectric heat pumps to build a lyophilizer for processing waste in microgravity. These results were used to build a working prototype suitable for ground-based human testing. This paper describes the prototype design and presents the results of functional and performance tests. Equivalent system mass parameters are calculated, and practical issues such as sanitary waste handling in microgravity are addressed.
Wallis, Ilka; Prommer, Henning; Pichler, Thomas; Post, Vincent; Norton, Stuart B; Annable, Michael D; Simmons, Craig T
2011-08-15
Aquifer storage and recovery (ASR) is an aquifer recharge technique in which water is injected in an aquifer during periods of surplus and withdrawn from the same well during periods of deficit. It is a critical component of the long-term water supply plan in various regions, including Florida, USA. Here, the viability of ASR as a safe and cost-effective water resource is currently being tested at a number of sites due to elevated arsenic concentrations detected during groundwater recovery. In this study, we developed a process-based reactive transport model of the coupled physical and geochemical mechanisms controlling the fate of arsenic during ASR. We analyzed multicycle hydrochemical data from a well-documented affected southwest Floridan site and evaluated a conceptual/numerical model in which (i) arsenic is initially released during pyrite oxidation triggered by the injection of oxygenated water (ii) then largely complexes to neo-formed hydrous ferric oxides before (iii) being remobilized during recovery as a result of both dissolution of hydrous ferric oxides and displacement from sorption sites by competing anions.
Biological responses to the chemical recovery of acidified fresh waters in the UK
International Nuclear Information System (INIS)
Monteith, D.T.; Hildrew, A.G.; Flower, R.J.; Raven, P.J.; Beaumont, W.R.B.; Collen, P.; Kreiser, A.M.; Shilland, E.M.; Winterbottom, J.H.
2005-01-01
We report biological changes at several UK Acid Waters Monitoring Network lakes and streams that are spatially consistent with the recovery of water chemistry induced by reductions in acid deposition. These include trends toward more acid-sensitive epilithic diatom and macroinvertebrate assemblages, an increasing proportional abundance of macroinvertebrate predators, an increasing occurrence of acid-sensitive aquatic macrophyte species, and the recent appearance of juvenile (<1 year old) brown trout in some of the more acidic flowing waters. Changes are often shown to be directly linked to annual variations in acidity. Although indicative of biological improvement in response to improving water chemistry, 'recovery' in most cases is modest and very gradual. While specific ecological recovery endpoints are uncertain, it is likely that physical and biotic interactions are influencing the rate of recovery of certain groups of organisms at particular sites. - Recently observed changes in the species composition of UK lakes and streams are consistent with chemical recovery from acidification
Biological responses to the chemical recovery of acidified fresh waters in the UK
Energy Technology Data Exchange (ETDEWEB)
Monteith, D.T. [Environmental Change Research Centre, University College London, 26 Bedford Way, London, WC1H 0AP (United Kingdom)]. E-mail: d.monteith@geog.ucl.ac.uk; Hildrew, A.G. [School of Biological Sciences, Queen Mary, University of London, London, E1 4NS (United Kingdom); Flower, R.J. [Environmental Change Research Centre, University College London, 26 Bedford Way, London, WC1H 0AP (United Kingdom); Raven, P.J. [Environment Agency, Rio House, Waterside Drive, Aztec West, Almondsbury, Bristol, BS32 4UD (United Kingdom); Beaumont, W.R.B. [Centre for Ecology and Hydrology Dorset, Winfrith Technology Centre, Winfrith, Newburgh, Dorchester, Dorset DT2 8ZD (United Kingdom); Collen, P. [Fisheries Research Services, Freshwater Laboratory, Faskally, Pitlochry, Perthshire, PH16 5LB (United Kingdom); Kreiser, A.M. [Environmental Change Research Centre, University College London, 26 Bedford Way, London, WC1H 0AP (United Kingdom); Shilland, E.M. [Environmental Change Research Centre, University College London, 26 Bedford Way, London, WC1H 0AP (United Kingdom); Winterbottom, J.H. [School of Biological Sciences, Queen Mary, University of London, London, E1 4NS (United Kingdom)
2005-09-15
We report biological changes at several UK Acid Waters Monitoring Network lakes and streams that are spatially consistent with the recovery of water chemistry induced by reductions in acid deposition. These include trends toward more acid-sensitive epilithic diatom and macroinvertebrate assemblages, an increasing proportional abundance of macroinvertebrate predators, an increasing occurrence of acid-sensitive aquatic macrophyte species, and the recent appearance of juvenile (<1 year old) brown trout in some of the more acidic flowing waters. Changes are often shown to be directly linked to annual variations in acidity. Although indicative of biological improvement in response to improving water chemistry, 'recovery' in most cases is modest and very gradual. While specific ecological recovery endpoints are uncertain, it is likely that physical and biotic interactions are influencing the rate of recovery of certain groups of organisms at particular sites. - Recently observed changes in the species composition of UK lakes and streams are consistent with chemical recovery from acidification.
The Yo-Yo intermittent recovery test
DEFF Research Database (Denmark)
Bangsbo, Jens; Iaia, F. Marcello; Krustrup, Peter
2008-01-01
The two Yo-Yo intermittent recovery (IR) tests evaluate an individual's ability to repeatedly perform intense exercise. The Yo-Yo IR level 1 (Yo-Yo IR1) test focuses on the capacity to carry out intermittent exercise leading to a maximal activation of the aerobic system, whereas Yo-Yo IR level 2...
Advanced Energy and Water Recovery Technology from Low Grade Waste Heat
Energy Technology Data Exchange (ETDEWEB)
Dexin Wang
2011-12-19
performance was also done, which shows this heat transfer enhancement approach works well in a wide parameters range for typical flue gas conditions. Better understanding of condensing heat transfer mechanism for porous membrane heat transfer surfaces, shows higher condensation and heat transfer rates than non-permeable tubes, due to existence of the porous membrane walls. Laboratory testing has documented increased TMC performance with increased exhaust gas moisture content levels, which has exponentially increased potential markets for the product. The TMC technology can uniquely enhance waste heat recovery in tandem with water vapor recovery for many other industrial processes such as drying, wet and dry scrubber exhaust gases, dewatering, and water chilling. A new metallic substrate membrane tube development and molded TMC part fabrication method, provides an economical way to expand this technology for scaled up applications with less than 3 year payback expectation. A detailed market study shows a broad application area for this advanced waste heat and water recovery technology. A commercialization partner has been lined up to expand this technology to this big market. This research work led to new findings on the TMC working mechanism to improve its performance, better scale up design approaches, and economical part fabrication methods. Field evaluation work needs to be done to verify the TMC real world performance, and get acceptance from the industry, and pave the way for our commercial partner to put it into a much larger waste heat and waste water recovery market. This project is addressing the priority areas specified for DOE Industrial Technologies Program's (ITP's): Energy Intensive Processes (EIP) Portfolio - Waste Heat Minimization and Recovery platform.
Diagram of the Water Recovery and Management for the International Space Station
2000-01-01
This diagram shows the flow of water recovery and management in the International Space Station (ISS). The Environmental Control and Life Support System (ECLSS) Group of the Flight Projects Directorate at the Marshall Space Flight Center is responsible for the regenerative ECLSS hardware, as well as providing technical support for the rest of the system. The regenerative ECLSS, whose main components are the Water Recovery System (WRS), and the Oxygen Generation System (OGS), reclaims and recycles water oxygen. The ECLSS maintains a pressurized habitation environment, provides water recovery and storage, maintains and provides fire detection/ suppression, and provides breathable air and a comfortable atmosphere in which to live and work within the ISS. The ECLSS hardware will be located in the Node 3 module of the ISS.
Financing Disaster Recovery and Resilience Mitigation for Water and Wastewater Utilities
Free webinar series on Financing for Disaster Recovery and Resilience Mitigation for Water and Wastewater Utilities, hosted by EPA's Water Infrastructure and Resiliency Finance Center and Water Security Division.
Waste water processing technology for Space Station Freedom - Comparative test data analysis
Miernik, Janie H.; Shah, Burt H.; Mcgriff, Cindy F.
1991-01-01
Comparative tests were conducted to choose the optimum technology for waste water processing on SSF. A thermoelectric integrated membrane evaporation (TIMES) subsystem and a vapor compression distillation subsystem (VCD) were built and tested to compare urine processing capability. Water quality, performance, and specific energy were compared for conceptual designs intended to function as part of the water recovery and management system of SSF. The VCD is considered the most mature and efficient technology and was selected to replace the TIMES as the baseline urine processor for SSF.
Tritium recovery from tritiated water with a two-stage palladium membrane reactor
International Nuclear Information System (INIS)
Birdsell, S.A.; Willms, R.S.
1997-01-01
A process to recover tritium from tritiated water has been successfully demonstrated at TSTA. The 2-stage palladium membrane reactor (PMR) is capable of recovering tritium from water without generating additional waste. This device can be used to recover tritium from the substantial amount of tritiated water that is expected to be generated in the International Thermonuclear Experimental Reactor both from torus exhaust and auxiliary operations. A large quantity of tritiated waste water exists world wide because the predominant method of cleaning up tritiated streams is to oxidize tritium to tritiated water. The latter can be collected with high efficiency for subsequent disposal. The PMR is a combined catalytic reactor/permeator. Cold (non-tritium) water processing experiments were run in preparation for the tritiated water processing tests. Tritium was recovered from a container of molecular sieve loaded with 2,050 g (2,550 std. L) of water and 4.5 g of tritium. During this experiment, 27% (694 std. L) of the water was processed resulting in recovery of 1.2 g of tritium. The maximum water processing rate for the PMR system used was determined to be 0.5 slpm. This correlates well with the maximum processing rate determined from the smaller PMR system on the cold test bench and has resulted in valuable scale-up and design information
Tritium recovery from tritiated water with a two-stage palladium membrane reactor
Energy Technology Data Exchange (ETDEWEB)
Birdsell, S.A.; Willms, R.S.
1997-04-01
A process to recover tritium from tritiated water has been successfully demonstrated at TSTA. The 2-stage palladium membrane reactor (PMR) is capable of recovering tritium from water without generating additional waste. This device can be used to recover tritium from the substantial amount of tritiated water that is expected to be generated in the International Thermonuclear Experimental Reactor both from torus exhaust and auxiliary operations. A large quantity of tritiated waste water exists world wide because the predominant method of cleaning up tritiated streams is to oxidize tritium to tritiated water. The latter can be collected with high efficiency for subsequent disposal. The PMR is a combined catalytic reactor/permeator. Cold (non-tritium) water processing experiments were run in preparation for the tritiated water processing tests. Tritium was recovered from a container of molecular sieve loaded with 2,050 g (2,550 std. L) of water and 4.5 g of tritium. During this experiment, 27% (694 std. L) of the water was processed resulting in recovery of 1.2 g of tritium. The maximum water processing rate for the PMR system used was determined to be 0.5 slpm. This correlates well with the maximum processing rate determined from the smaller PMR system on the cold test bench and has resulted in valuable scale-up and design information.
Separation and recovery of chromium and vanadium metal ions from waste waters
International Nuclear Information System (INIS)
Rothmann, H.; Bauer, G.; Stuhr, A.; Retelsdorf, H-J.
1987-01-01
Possibilities of Cr- and V- recovery from waste waters, precipitation of chromate and vanadate ions as insoluble compounds, absorption of Cr and V on solid ion exchange resins, absorption of Cr and V on fluid ion exchangers. Extraction with fluid exchangers: simultaneous extraction of Cr and V with Ion Exchanger Hoe F 1857 to determine the distribution isotherms, separate extraction of Cr in a continuously operating mixer-settler plant, separate extraction of vanadate in a constantly operating mixer-settler plant, test with an extraction column, losses in the organic phase during chromium and vanadium extraction, discussion of the test results and economic considerations
Recovery of uranium from sea water
International Nuclear Information System (INIS)
Tabushi, Iwao; Kobuke, Yoshiaki
1984-01-01
The present status of technology for the recovery of uranium has been reviewed. Adsorbent qualities were discussed in terms of three important criteria: adsorption rate, equilibrium adsorption and chemical as well as physical stability. It was elucidated that a significant improvement of the adsorption rate is most important. Efforts were made to clarify factors influencing the adsorption rate. A method to treat a tremendous amount of sea water is of much importance as well. Pumping-up and direct use of sea currents were compared with each other. It has been emphasized that the active utilization of the various advantages of the latter method is crucial for the realization of the recovery project. The physical capability of the method was illustrated. Some composite systems with electric power generation plants were also discussed. (author)
Full recovery of Arundo donax particleboard from swelling test without waterproofing additives
Directory of Open Access Journals (Sweden)
Jose-Antonio Flores-Yepes
2012-11-01
Full Text Available This paper presents the development of particleboard based on common reed, reproducing the industry standard manufacturing process applied to wood chipboard. One of the main properties of the resulting board was its resistance to water, due to the hydrophobic properties of the common reed, despite there being no incorporation of melamine or any other waterproofing additive. The boards that were developed were analyzed using 2 mm and 4 mm sieves for fibre selection, a manufacturing pressure of 3 N/mm2 and 25 N/mm2, and a volume of urea formaldehyde resin content ranging from 5.2% to 13% (8 to 20% liquid format. Standard destructive tests were performed. It was found that under certain applied conditions, namely high pressure and adequate resin proportion (a pressure of over 3 N/mm2 and over 15% liquid resin, Arundo donax L. particleboard demonstrated full recovery from the swelling test. This finding highlights an unmatched property in terms of recovery from the swelling test of the designed board. This property confers a interesting property to be used in high humidity environments without the need for special resin or waterproofing process.
Escherichia coli. A sanitary methodology for faecal water pollution tests
International Nuclear Information System (INIS)
Bonadonna, L.
2001-01-01
Among the traditional indictors of faecal water pollution, Escherichia coli has shown to fit better with the definition of indicator organism. Till now its recovery has been time-consuming and needs confirmation tests. In this report more rapid and direct methods, based on enzymatic reactions, are presented [it
Sodium-water reaction test facility (SWAT-3)
International Nuclear Information System (INIS)
Shimazu, Hisashi; Ukechi, Kazutoshi; Sasakura, Kazutake; Kusunoki, Junichi
1976-01-01
In the development of the liquid metal cooled fast breeder reactor (LMFBR), the steam generator (SG) is considered one of the most important components. The Power Reactor and Nuclear Fuel Development Corporation (PNC) is now promoting the research and development of the SG system used with the prototype fast breeder reactor ''Monju''. In this research, the phenomena of the sodium-water reaction in the SG are the key which must be investigated for the solution of problems. The test facility (SWAT-3) simulating Monju's SG on the scale of 1/2.5 was designed, fabricated and installed by IHI at Oarai Engineering Center of PNC, its pre-operation being accomplished in February 1975. The purpose of SWAT-3 is summarized as follows: (1) To perform an overall test on the safety of Monju's SG and intermediate heat transport system under the design condition against sodium-water reaction accidents. (2) To investigate the damage of the SG structure caused by the sodium-water reaction, and the possibility of repair and recovery operations. The first test was accomplished successfully on June 9, 1975. As a result of the test, the fundamental function of this test facility was proven to be satisfactory as expected. (auth.)
Phosphorus and water recovery by a novel osmotic membrane bioreactor-reverse osmosis system.
Luo, Wenhai; Hai, Faisal I; Price, William E; Guo, Wenshan; Ngo, Hao H; Yamamoto, Kazuo; Nghiem, Long D
2016-01-01
An osmotic membrane bioreactor-reverse osmosis (OMBR-RO) hybrid system integrated with periodic microfiltration (MF) extraction was evaluated for simultaneous phosphorus and clean water recovery from raw sewage. In this hybrid system, the forward osmosis membrane effectively retained inorganic salts and phosphate in the bioreactor, while the MF membrane periodically bled them out for phosphorus recovery with pH adjustment. The RO process was used for draw solute recovery and clean water production. Results show that phosphorus recuperation from the MF permeate was most effective when the solution pH was adjusted to 10, whereby the recovered precipitate contained 15-20% (wt/wt) of phosphorus. Periodic MF extraction also limited salinity build-up in the bioreactor, resulting in a stable biological performance and an increase in water flux during OMBR operation. Despite the build-up of organic matter and ammonia in the draw solution, OMBR-RO allowed for the recovery of high quality reused water. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Liu, Ming; Qin, Yuanzhi; Yan, Hui; Han, Xiaoqu; Chong, Daotong
2015-01-01
Highlights: • Pre-drying and water recovery technologies were used to conserve energy and water. • The energy and water conservation potential were analyzed with reference cases. • The air-cooling unit produces water when the water content of lignite is high enough. • Influences of main parameters on energy and water conservation were analyzed. - Abstract: Lignite is considered as a competitive energy raw material with high security of supply viewed from a global angle. However, lignite-fired power plants have many shortcomings, including high investment, low energy efficiency and high water use. To address these issues, the drying and water recovery technologies are integrated within lignite-fired power plants. Both air-cooling and wet-cooling units with three kinds of lignite as feeding fuel were analyzed quantitatively. Results showed that energy conservation and water conservation are obtained simultaneously. The power plant firing high moisture lignite becomes more environmental friendly with higher power generation efficiency and a lower water makeup rate than the one firing low moisture lignite. And further calculation revealed that the air-cooling unit needs no makeup water and even produces some water as it generates power, when the water carrying coefficient is higher than 40 g/MJ.
Water-rock interaction during diagenesis and thermal recovery, Cold Lake, Alberta
Energy Technology Data Exchange (ETDEWEB)
Abercrombie, H.J.
1988-12-01
Fluid and rocks interact at high temperatures during diagenesis and steam assisted thermal recovery of bitumen from the Clearwater Formation at Cold Lake, Alberta. A study was carried out to assess the effects of natural diagenesis in rocks of the formation, and using these data, to relate the chemical and isotopic compositions of fluids produced during thermal recovery to water-rock interactions occurring in the reservoir. X-ray diffraction (XRD) studies on core from Leming and Marguerite Lake document a variety of diagenetic clays including mixed layer minerals smectite-illite and chlorite-smectite, chlorite, illite, berthierine and kaolinite. A method for internally generating factors to convert clay mineral XRD peak heights to relative weight percents was used. Semi-quantitative results show that smectite-illite is ubiquitous and the most abundant clay present. Details are provided of the diagenetic sequence illustrating water-rock interaction over a prolonged period. Three types of water were found to be produced from the wells: injected water, formation water associated with bitumen, and bottom water from the underlying McMurray Formation. Produced water compositions were used to estimate in-situ temperatures of fluids produced from reservoirs. It is concluded that equilibrium closed-system models can be applied to natural diagenesis and artificial diagenesis induced during thermal recovery. 132 refs., 52 figs., 5 tabs.
Altunina, L. K.; Kuvshinov, I. V.; Kuvshinov, V. A.; Kozlov, V. V.; Stasyeva, L. A.
2017-12-01
This work presents the results of laboratory and field tests of thermotropic composition MEGA with two simultaneously acting gelling components, polymer and inorganic. The composition is intended for improving oil recovery and water shut-off at oilfields developed by thermal flooding, and cyclic-steam stimulated oil production wells. The composition forms an in-situ "gel-in-gel" system with improved structural-mechanical properties, using reservoir or carrier fluid heat for gelling. The gel blocks water breakthrough into producing wells and redistribute fluid flows, thus increasing the oil recovery factor.
The automated recovery of [18O] water by a simple modification
International Nuclear Information System (INIS)
Zhang Jinming; Tian Jiahe; Chen Yinmao
2001-01-01
A diagram is presented of the scheme for recovery of oxygen 18 water. There is a 5-8% decrease in the total activity produced using the recovered water, and the recovered water can be reused for production of fluorine 18
Argus, Christos K; Broatch, James R; Petersen, Aaron C; Polman, Remco; Bishop, David J; Halson, Shona
2017-08-01
An athlete's ability to recover quickly is important when there is limited time between training and competition. As such, recovery strategies are commonly used to expedite the recovery process. To determine the effectiveness of both cold-water immersion (CWI) and contrast water therapy (CWT) compared with control on short-term recovery (<4 h) after a single full-body resistance-training session. Thirteen men (age 26 ± 5 y, weight 79 ± 7 kg, height 177 ± 5 cm) were assessed for perceptual (fatigue and soreness) and performance measures (maximal voluntary isometric contraction [MVC] of the knee extensors, weighted and unweighted countermovement jumps) before and immediately after the training session. Subjects then completed 1 of three 14-min recovery strategies (CWI, CWT, or passive sitting [CON]), with the perceptual and performance measures reassessed immediately, 2 h, and 4 h postrecovery. Peak torque during MVC and jump performance were significantly decreased (P < .05) after the resistance-training session and remained depressed for at least 4 h postrecovery in all conditions. Neither CWI nor CWT had any effect on perceptual or performance measures over the 4-h recovery period. CWI and CWT did not improve short-term (<4-h) recovery after a conventional resistance-training session.
Dynamic Modeling of Process Technologies for Closed-Loop Water Recovery Systems
Allada, Rama Kumar; Lange, Kevin; Anderson, Molly
2011-01-01
Detailed chemical process simulations are a useful tool in designing and optimizing complex systems and architectures for human life support. Dynamic and steady-state models of these systems help contrast the interactions of various operating parameters and hardware designs, which become extremely useful in trade-study analyses. NASA s Exploration Life Support technology development project recently made use of such models to compliment a series of tests on different waste water distillation systems. This paper presents dynamic simulations of chemical process for primary processor technologies including: the Cascade Distillation System (CDS), the Vapor Compression Distillation (VCD) system, the Wiped-Film Rotating Disk (WFRD), and post-distillation water polishing processes such as the Volatiles Removal Assembly (VRA) that were developed using the Aspen Custom Modeler and Aspen Plus process simulation tools. The results expand upon previous work for water recovery technology models and emphasize dynamic process modeling and results. The paper discusses system design, modeling details, and model results for each technology and presents some comparisons between the model results and available test data. Following these initial comparisons, some general conclusions and forward work are discussed.
Dynamic Modeling of Process Technologies for Closed-Loop Water Recovery Systems
Allada, Rama Kumar; Lange, Kevin E.; Anderson, Molly S.
2012-01-01
Detailed chemical process simulations are a useful tool in designing and optimizing complex systems and architectures for human life support. Dynamic and steady-state models of these systems help contrast the interactions of various operating parameters and hardware designs, which become extremely useful in trade-study analyses. NASA s Exploration Life Support technology development project recently made use of such models to compliment a series of tests on different waste water distillation systems. This paper presents dynamic simulations of chemical process for primary processor technologies including: the Cascade Distillation System (CDS), the Vapor Compression Distillation (VCD) system, the Wiped-Film Rotating Disk (WFRD), and post-distillation water polishing processes such as the Volatiles Removal Assembly (VRA). These dynamic models were developed using the Aspen Custom Modeler (Registered TradeMark) and Aspen Plus(Registered TradeMark) process simulation tools. The results expand upon previous work for water recovery technology models and emphasize dynamic process modeling and results. The paper discusses system design, modeling details, and model results for each technology and presents some comparisons between the model results and available test data. Following these initial comparisons, some general conclusions and forward work are discussed.
Suamir, I. N.; Sukadana, I. B. P.; Arsana, M. E.
2018-01-01
One energy-saving technology that starts gaining attractive for hotel industry application in Indonesia is the utilization of waste heat of a central air conditioning system to heat water for domestic hot water supply system. Implementing the technology for such application at a hotel was found that hot water capacity generated from the heat recovery system could satisfy domestic hot water demand of the hotel. The gas boilers installed in order to back up the system have never been used. The hot water supply, however, was found to be instable with hot water supply temperature fluctuated ranging from 45 °C to 62 °C. The temperature fluctuations reaches 17 °C, which is considered instable and can reduce hot water usage comfort level. This research is aimed to optimize the thermal energy storage in order to minimize the temperature instability of heat recovery hot water supply system. The research is a case study approach based on cooling and hot water demands of a hotel in Jakarta-Indonesia that has applied water cooled chillers with heat recovery systems. The hotel operation with 329 guest rooms and 8 function rooms showed that hot water production in the heat recovery system completed with 5 m3 thermal energy storage (TES) could not hold the hot water supply temperature constantly. The variations of the cooling demand and hot water demands day by day were identified. It was found that there was significant mismatched of available time (hours) between cooling demand which is directly correlated to the hot water production from the heat recovery system and hot water usage. The available TES system could not store heat rejected from the condenser of the chiller during cooling demand peak time between 14.00 and 18.00 hours. The extra heat from the heat recovery system consequently increases the temperature of hot water up to 62 °C. It is about 12 K above 50 °C the requirement hot water temperature of the hotel. In contrast, the TES could not deliver proper
Effects of slow recovery rates on water column geochemistry in aquitard wells
Schilling, K.E.
2011-01-01
Monitoring wells are often installed in aquitards to verify effectiveness for preventing migration of surface contaminants to underlying aquifers. However, water sampling of aquitard wells presents a challenge due to the slow recovery times for water recharging the wells, which can take as long as weeks, months or years to recharge depending on the sample volume needed. In this study, downhole profiling and sampling of aquitard wells was used to assess geochemical changes that occur in aquitard wells during water level recovery. Wells were sampled on three occasions spanning 11years, 1year and 1week after they were purged and casing water showed substantial water chemistry variations. Temperature decreased with depth, whereas pH and specific conductance increased with depth in the water column after 11years of water level recovery. Less stable parameters such as dissolved O2 (DO) and Eh showed strong zonation in the well column, with DO stratification occurring as the groundwater slowly entered the well. Oxidation of reduced till groundwater along with degassing of CO2 from till pore water affects mineral solubility and dissolved solid concentrations. Recommendations for sampling slowly recovering aquitard wells include identifying the zone of DO and Eh stratification in the well column and collecting water samples from below the boundary to better measure unstable geochemical parameters. ?? 2011 Elsevier Ltd.
Water recovery in a concentrated solar power plant
Raza, Aikifa; Higgo, Alex R.; Alobaidli, Abdulaziz; Zhang, TieJun
2016-05-01
For CSP plants, water consumption is undergoing increasing scrutiny particularly in dry and arid regions with water scarcity conditions. Significant amount of water has to be used for parabolic trough mirror cleaning to maintain high mirror reflectance and optical efficiency in sandy environment. For this specific purpose, solar collectors are washed once or twice every week at Shams 1, one of the largest CSP plant in the Middle East, and about 5 million gallons of demineralized water is utilized every year without further recovery. The produced waste water from a CSP plant contains the soiling i.e. accumulated dust and some amount of organic contaminants, as indicated by our analysis of waste water samples from the solar field. We thus need to develop a membrane based system to filter fine dust particulates and to degrade organic contaminant simultaneously. Membrane filtration technology is considered to be cost-effective way to address the emerging problem of a clean water shortage, and to reuse the filtered water after cleaning solar collectors. But there are some major technical barriers to improve the robustness and energy efficiency of filtration membranes especially when dealing with the removal of ultra-small particles and oil traces. Herein, we proposed a robust and scalable nanostructured inorganic microporous filtration copper mesh. The inorganic membrane surface wettability is tailored to enhance the water permeability and filtration flux by creating nanostructures. These nanostructured membranes were successfully employed to recover water collected after cleaning the reflectors of solar field of Shams 1. Another achievement was to remove the traces of heat transfer fluid (HTF) from run-off water which was collected after accidental leakage in some of the heat exchangers during the commissioning of the Shams 1 for safe disposal into the main stream. We hope, by controlling the water recovery factor and membrane reusability performance, the membrane
Ambiguity in measuring matrix diffusion with single-well injection/recovery tracer tests
Lessoff, S.C.; Konikow, Leonard F.
1997-01-01
Single-well injection/recovery tracer tests are considered for use in characterizing and quantifying matrix diffusion in dual-porosity aquifers. Numerical modeling indicates that neither regional drift in homogeneous aquifers, nor heterogeneity in aquifers having no regional drift, nor hydrodynamic dispersion significantly affects these tests. However, when drift is coupled simultaneously with heterogeneity, they can have significant confounding effects on tracer return. This synergistic effect of drift and heterogeneity may help explain irreversible flow and inconsistent results sometimes encountered in previous single-well injection/recovery tracer tests. Numerical results indicate that in a hypothetical single-well injection/recovery tracer test designed to demonstrate and measure dual-porosity characteristics in a fractured dolomite, the simultaneous effects of drift and heterogeneity sometimes yields responses similar to those anticipated in a homogeneous dual-porosity formation. In these cases, tracer recovery could provide a false indication of the occurrence of matrix diffusion. Shortening the shut-in period between injection and recovery periods may make the test less sensitive to drift. Using multiple tracers having different diffusion characteristics, multiple tests having different pumping schedules, and testing the formation at more than one location would decrease the ambiguity in the interpretation of test data.
Cost Effective Recovery of Low-TDS Frac Flowback Water for Re-use
Energy Technology Data Exchange (ETDEWEB)
Claire Henderson; Harish Acharya; Hope Matis; Hareesh Kommepalli; Brian Moore; Hua Wang
2011-03-31
The project goal was to develop a cost-effective water recovery process to reduce the costs and envi-ronmental impact of shale gas production. This effort sought to develop both a flowback water pre-treatment process and a membrane-based partial demineralization process for the treatment of the low-Total Dissolved Solids (TDS) portion of the flowback water produced during hydrofracturing operations. The TDS cutoff for consideration in this project is < 35,000 {approx} 45,000 ppm, which is the typical limit for economic water recovery employing reverse osmosis (RO) type membrane desalination processes. The ultimate objective is the production of clean, reclaimed water suitable for re-use in hydrofracturing operations. The team successfully compiled data on flowback composition and other attributes across multiple shale plays, identified the likely applicability of membrane treatment processes in those shales, and expanded the proposed product portfolio to include four options suitable for various reuse or discharge applications. Pretreatment technologies were evaluated at the lab scale and down-selected based upon their efficacy in removing key contaminants. The chosen technologies were further validated by performing membrane fouling studies with treated flowback water to demonstrate the technical feasibility of flowback treatment with RO membranes. Process flow schemes were constructed for each of the four product options based on experimental performance data from actual flowback water treatment studies. For the products requiring membrane treatment, membrane system model-ing software was used to create designs for enhanced water recovery beyond the typical seawater desalination benchmark. System costs based upon vendor and internal cost information for all process flow schemes were generated and are below target and in line with customer expectations. Finally, to account for temporal and geographic variability in flowback characteristics as well as local
Energy Technology Data Exchange (ETDEWEB)
Continental Shelf Associates, Inc.
1999-08-16
This report presents the results of a study of terminated produced water discharge sites in the coastal waters of Louisiana. Environmental recovery at the sites is documented by comparing pre-termination and post-termination (six months and one year) data. Produced water, sediments, and sediment interstitial water samples were analyzed for radionuclides, metals, and hydrocarbons. Benthic infauna were identified from samples collected in the vicinity of the discharge and reference sites. Radium isotope activities were determined in fish and crustacean samples. In addition, an environmental risk assessment is made on the basis of the concentrations of metals and hydrocarbons determined in the samples.
Heavy Oil Recovery Ohmsett Test Report
2012-06-01
U.S. The first phase of separation is to refloat the oil for physical collection using a conveyor belt or rope mop oil skimmer. The open discharge is...inverted cone-shroud installed in the Frac tank for physical collection using a conveyor belt or rope mop oil skimmer. Heavy Oil Recovery Ohmsett Test...develop and test viable designs for systems which can detect and recover oil from subsurface environments. This is the second major report within this
Lunn, Griffin; Spencer, LaShelle; Ruby, Anna-Maria; McCaskill, Andrew
2014-01-01
Current International Space Station water recovery regimes produce a sizable portion of waste water brine. This brine is highly toxic and water recovery is poor: a highly wasteful proposition. With new biological techniques that do not require waste water chemical pretreatment, the resulting brine would be chromium-free and nitrate rich which can allow possible fertilizer recovery for future plant systems. Using a system of ion exchange resins we can remove hardness, sulfate, phosphate and nitrate from these brines to leave only sodium and potassium chloride. At this point modern chlor-alkali cells can be utilized to produce a low salt stream as well as an acid and base stream. The first stream can be used to gain higher water recovery through recycle to the water separation stage while the last two streams can be used to regenerate the ion exchange beds used here, as well as other ion exchange beds in the ISS. Conveniently these waste products from ion exchange regeneration would be suitable as plant fertilizer. In this report we go over the performance of state of the art resins designed for high selectivity of target ions under brine conditions. Using ersatz ISS waste water we can evaluate the performance of specific resins and calculate mass balances to determine resin effectiveness and process viability. If this system is feasible then we will be one step closer to closed loop environmental control and life support systems (ECLSS) for current or future applications.
Recovery From Exercise-Induced Muscle Damage: Cold-Water Immersion Versus Whole-Body Cryotherapy.
Abaïdia, Abd-Elbasset; Lamblin, Julien; Delecroix, Barthélémy; Leduc, Cédric; McCall, Alan; Nédélec, Mathieu; Dawson, Brian; Baquet, Georges; Dupont, Grégory
2017-03-01
To compare the effects of cold-water immersion (CWI) and whole-body cryotherapy (WBC) on recovery kinetics after exercise-induced muscle damage. Ten physically active men performed single-leg hamstring eccentric exercise comprising 5 sets of 15 repetitions. Immediately postexercise, subjects were exposed in a randomized crossover design to CWI (10 min at 10°C) or WBC (3 min at -110°C) recovery. Creatine kinase concentrations, knee-flexor eccentric (60°/s) and posterior lower-limb isometric (60°) strength, single-leg and 2-leg countermovement jumps, muscle soreness, and perception of recovery were measured. The tests were performed before and immediately, 24, 48, and 72 h after exercise. Results showed a very likely moderate effect in favor of CWI for single-leg (effect size [ES] = 0.63; 90% confidence interval [CI] = -0.13 to 1.38) and 2-leg countermovement jump (ES = 0.68; 90% CI = -0.08 to 1.43) 72 h after exercise. Soreness was moderately lower 48 h after exercise after CWI (ES = -0.68; 90% CI = -1.44 to 0.07). Perception of recovery was moderately enhanced 24 h after exercise for CWI (ES = -0.62; 90% CI = -1.38 to 0.13). Trivial and small effects of condition were found for the other outcomes. CWI was more effective than WBC in accelerating recovery kinetics for countermovement-jump performance at 72 h postexercise. CWI also demonstrated lower soreness and higher perceived recovery levels across 24-48 h postexercise.
Supercritical water gasification of sewage sludge: gas production and phosphorus recovery
Acelas Soto, N.Y.; Lopez, D.P.; Brilman, Derk Willem Frederik; Kersten, Sascha R.A.; Kootstra, A.M.J.
2014-01-01
In this study, the feasibility of the gasification of dewatered sewage sludge in supercritical water (SCW) for energy recovery combined with P-recovery from the solid residue generated in this process was investigated. SCWG temperature (400 °C, 500 °C, 600 °C) and residence time (15 min, 30 min, 60
Field Testing of Downgradient Uranium Mobility at an In-Situ Recovery Uranium Mine
Reimus, P. W.; Clay, J. T.; Rearick, M.; Perkins, G.; Brown, S. T.; Basu, A.; Chamberlain, K.
2015-12-01
In-situ recovery (ISR) mining of uranium involves the injection of O2 and CO2 (or NaHCO3) into saturated roll-front deposits to oxidize and solubilize the uranium, which is then removed by ion exchange at the surface and processed into U3O8. While ISR is economical and environmentally-friendly relative to conventional mining, one of the challenges of extracting uranium by this process is that it leaves behind a geochemically-altered aquifer that is exceedingly difficult to restore to pre-mining geochemical conditions, a regulatory objective. In this research, we evaluated the ability of the aquifer downgradient of an ISR mining area to attenuate the transport of uranium and other problem constituents that are mobilized by the mining process. Such an evaluation can help inform both regulators and the mining industry as to how much restoration of the mined ore zone is necessary to achieve regulatory compliance at various distances downgradient of the mining zone even if complete restoration of the ore zone proves to be difficult or impossible. Three single-well push-pull tests and one cross-well test were conducted in which water from an unrestored, previously-mined ore zone was injected into an unmined ore zone that served as a geochemical proxy for the downgradient aquifer. In all tests, non-reactive tracers were injected with the previously-mined ore zone water to allow the transport of uranium and other constituents to be compared to that of the nonreactive species. In the single-well tests, it was shown that the recovery of uranium relative to the nonreactive tracers ranged from 12-25%, suggesting significant attenuation capacity of the aquifer. In the cross-well test, selenate, molybdate and metavanadate were injected with the unrestored water to provide information on the transport of these potentially-problematic anionic constituents. In addition to the species-specific transport information, this test provided valuable constraints on redox conditions within
Performance of high-recovery recycling reverse osmosis with wash water
Herrmann, Cal C.
1993-01-01
Inclusion of a recycling loop for partially-desalted water from second-stage reverse-osmosis permeate has been shown useful for achieving high-recovery at moderate applied pressures. This approach has now been applied to simulated wash waters, to obtain data on retention by the membranes of solutes in a mixture comparable to anticipated spacecraft hygiene wastewaters, and to generate an estimate of the maximum concentration that can be expected without causing membrane fouling. A first experiment set provides selectivity information from a single membrane and an Igepon detergent, as a function of final concentration. A reject concentration of 3.1% Total Organic Carbon has been reached, at a pressure of 1.4 Mega Pascals, without membrane fouling. Further experiments have generated selectivity values for the recycle configuration from two washwater simulations, as a function of applied pump pressure. Reverse osmosis removal has also been tested for washwater containing detergent formulated for plant growth compatibility (containing nitrogen, phosphorous and potassium functional groups.)
Bead Evaporator for Complete Water and Salt Recovery from Brine, Phase I
National Aeronautics and Space Administration — A microgravity-compatible Brine Evaporation and Mineralization System (BEMS) is proposed for 100% water recovery from highly contaminated wastewater as well as water...
Gas exchange and hydraulics in seedlings of Hevea brasiliensis during water stress and recovery.
Chen, Jun-Wen; Zhang, Qiang; Li, Xiao-Shuang; Cao, Kun-Fang
2010-07-01
The response of plants to drought has received significant attention, but far less attention has been given to the dynamic response of plants during recovery from drought. Photosynthetic performance and hydraulic capacity were monitored in seedlings of Hevea brasiliensis under water stress and during recovery following rewatering. Leaf water relation, gas exchange rate and hydraulic conductivity decreased gradually after water stress fell below a threshold, whereas instantaneous water use efficiency and osmolytes increased significantly. After 5 days of rewatering, leaf water relation, maximum stomatal conductance (g(s-max)) and plant hydraulic conductivity had recovered to the control levels except for sapwood area-specific hydraulic conductivity, photosynthetic assimilation rate and osmolytes. During the phase of water stress, stomata were almost completely closed before water transport efficiency decreased substantially, and moreover, the leaf hydraulic pathway was more vulnerable to water stress-induced embolism than the stem hydraulic pathway. Meanwhile, g(s-max) was linearly correlated with hydraulic capacity when water stress exceeded a threshold. In addition, a positive relationship was shown to occur between the recovery of g(s-max) and of hydraulic capacity during the phase of rewatering. Our results suggest (i) that stomatal closure effectively reduces the risk of xylem dysfunction in water-stressed plants at the cost of gas exchange, (ii) that the leaf functions as a safety valve to protect the hydraulic pathway from water stress-induced dysfunction to a larger extent than does the stem and (iii) that the full drought recovery of gas exchange is restricted by not only hydraulic factors but also non-hydraulic factors.
Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers
Energy Technology Data Exchange (ETDEWEB)
Edward Levy; Harun Bilirgen; John DuPoint
2011-03-31
Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: (1) An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing high-moisture, low rank coals. (2) Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. (3) Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. (4) Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. (5) Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. (6) Condensed flue gas water treatment needs and costs. (7) Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. (8) Results of cost-benefit studies of condensing heat exchangers.
Recovery of Water from Boiler Flue Gas Using Condensing Heat Exchangers
Energy Technology Data Exchange (ETDEWEB)
Levy, Edward; Bilirgen, Harun; DuPont, John
2011-03-31
Most of the water used in a thermoelectric power plant is used for cooling, and DOE has been focusing on possible techniques to reduce the amount of fresh water needed for cooling. DOE has also been placing emphasis on recovery of usable water from sources not generally considered, such as mine water, water produced from oil and gas extraction, and water contained in boiler flue gas. This report deals with development of condensing heat exchanger technology for recovering moisture from flue gas from coal-fired power plants. The report describes: • An expanded data base on water and acid condensation characteristics of condensing heat exchangers in coal-fired units. This data base was generated by performing slip stream tests at a power plant with high sulfur bituminous coal and a wet FGD scrubber and at a power plant firing highmoisture, low rank coals. • Data on typical concentrations of HCl, HNO{sub 3} and H{sub 2}SO{sub 4} in low temperature condensed flue gas moisture, and mercury capture efficiencies as functions of process conditions in power plant field tests. • Theoretical predictions for sulfuric acid concentrations on tube surfaces at temperatures above the water vapor dewpoint temperature and below the sulfuric acid dew point temperature. • Data on corrosion rates of candidate heat exchanger tube materials for the different regions of the heat exchanger system as functions of acid concentration and temperature. • Data on effectiveness of acid traps in reducing sulfuric acid concentrations in a heat exchanger tube bundle. • Condensed flue gas water treatment needs and costs. • Condensing heat exchanger designs and installed capital costs for full-scale applications, both for installation immediately downstream of an ESP or baghouse and for installation downstream of a wet SO{sub 2} scrubber. • Results of cost-benefit studies of condensing heat exchangers.
Correia, Barbara; Pintó-Marijuan, Marta; Neves, Lucinda; Brossa, Ricard; Dias, Maria Celeste; Costa, Armando; Castro, Bruno B; Araújo, Clara; Santos, Conceição; Chaves, Maria Manuela; Pinto, Glória
2014-04-01
Eucalyptus plantations are among the most productive forest stands in Portugal and Spain, being mostly used for pulp production and, more recently, as an energy crop. However, the region's Mediterranean climate, with characteristic severe summer drought, negatively affects eucalypt growth and increases mortality. Although the physiological response to water shortage is well characterized for this species, evidence about the plants' recovery ability remains scarce. In order to assess the physiological and biochemical response of Eucalyptus globulus during the recovery phase, two genotypes (AL-18 and AL-10) were submitted to a 3-week water stress period at two different intensities (18 and 25% of field capacity), followed by 1 week of rewatering. Recovery was assessed 1 day and 1 week after rehydration. Drought reduced height, biomass, water potential, NPQ and gas exchange in both genotypes. Contrarily, the levels of pigments, chlorophyll fluorescence parameters (F(v) /F(m) and (φPSII)), MDA and ABA increased. During recovery, the physiological and biochemical profile of stressed plants showed a similar trend: they experienced reversion of altered traits (MDA, ABA, E, g(s), pigments), while other parameters did not recover ((φPSII), NPQ). Furthermore, an overcompensation of CO(2) assimilation was achieved 1 week after rehydration, which was accompanied by greater growth and re-establishment of oxidative balance. Both genotypes were tolerant to the tested conditions, although clonal differences were found. AL-10 was more productive and showed a more rapid and dynamic response to rehydration (namely in carotenoid content, (φPSII) and NPQ) compared to clone AL-18. © 2013 Scandinavian Plant Physiology Society.
Possibility of heat recovery from gray water in residential building
Directory of Open Access Journals (Sweden)
Mazur Aleksandra
2017-12-01
Full Text Available Recovery of waste heat from gray water can be an interesting alternative to other energy saving systems in a building, including alternative energy sources. Mainly, due to a number of advantages including independence from weather conditions, small investment outlay, lack of user support, or a slight interference with the installation system. The purpose of this article is to present the financial effectiveness of installations which provide hot, usable water to a detached house, using a Drain Water Heat Recovery (DWHR system depending on the number of system users and the various combinations of bathing time in the shower, which has an influence on the daily warm water demand in each of the considered options. The economic analysis of the adopted installation variants is based on the Life Cycle Cost (LCC method, which is characterized by the fact that it also includes the operating costs in addition to the capital expenditure during the entire analysis period. For each case, the necessary devices were selected and the cost of their installation was estimated.
Possibility of heat recovery from gray water in residential building
Mazur, Aleksandra; Słyś, Daniel
2017-12-01
Recovery of waste heat from gray water can be an interesting alternative to other energy saving systems in a building, including alternative energy sources. Mainly, due to a number of advantages including independence from weather conditions, small investment outlay, lack of user support, or a slight interference with the installation system. The purpose of this article is to present the financial effectiveness of installations which provide hot, usable water to a detached house, using a Drain Water Heat Recovery (DWHR) system depending on the number of system users and the various combinations of bathing time in the shower, which has an influence on the daily warm water demand in each of the considered options. The economic analysis of the adopted installation variants is based on the Life Cycle Cost (LCC) method, which is characterized by the fact that it also includes the operating costs in addition to the capital expenditure during the entire analysis period. For each case, the necessary devices were selected and the cost of their installation was estimated.
International Nuclear Information System (INIS)
Zhang, Yali; Li, Huaimei; Yu, Xianjin
2012-01-01
Highlights: ► Using reduction roasting–water leaching–magnetic separation method, the recovery of iron from cyanide tailings was optimized. ► The recovery of iron was highly depended on the water-leaching process after reduction roasting. ► The results suggest that the method can be effectively used for iron recovery, and the grade of magnetic concentrate and recovery rate can reach 59.11% and 75.12%, respectively. - Abstract: Cyanide tailing is a kind of solid waste produced in the process of gold extraction from gold ore. In this paper, recovery of iron from cyanide tailings was studied with reduction roasting–water leaching process followed by magnetic separation. After analysis of chemical composition and crystalline phase, the effects of different parameters on recovery of iron were chiefly introduced. Systematic studies indicate that the high recovery rate and grade of magnetic concentrate of iron can be achieved under the following conditions: weight ratios of cyanide tailings/activated carbon/sodium carbonate/sodium sulfate, 100:10:3:10; temperature, 50 °C; time, 60 min at the reduction roasting stage; the liquid to solid ratio is 15:1 (ml/g), leaching at 60 °C for 5 min and stirring speed at 20 r/min at water-leaching; exciting current is 2 A at magnetic separation. The iron grade of magnetic concentrate was 59.11% and the recovery ratio was 75.12%. The mineralography of cyanide tailings, roasted product, water-leached sample, magnetic concentrate and magnetic tailings were studied by X-ray powder diffraction (XRD) technique. The microstructures of above products except magnetic tailings were also analyzed by scanning electron microscope (SEM) and energy disperse spectroscopy (EDS) to help understand the mechanism.
Malin, Jane T.; Flores, Luis; Fleming, Land; Throop, Daiv
2002-01-01
A hybrid discrete/continuous simulation tool, CONFIG, has been developed to support evaluation of the operability life support systems. CON FIG simulates operations scenarios in which flows and pressures change continuously while system reconfigurations occur as discrete events. In simulations, intelligent control software can interact dynamically with hardware system models. CONFIG simulations have been used to evaluate control software and intelligent agents for automating life support systems operations. A CON FIG model of an advanced biological water recovery system has been developed to interact with intelligent control software that is being used in a water system test at NASA Johnson Space Center
Zeeman, Grietje; Kujawa, Katarzyna; de Mes, Titia; Hernandez, Lucia; de Graaff, Marthe; Abu-Ghunmi, Lina; Mels, Adriaan; Meulman, Brendo; Temmink, Hardy; Buisman, Cees; van Lier, Jules; Lettinga, Gatze
2008-01-01
Based on results of pilot scale research with source-separated black water (BW) and grey water (GW), a new sanitation concept is proposed. BW and GW are both treated in a UASB (-septic tank) for recovery of CH4 gas. Kitchen waste is added to the anaerobic BW treatment for doubling the biogas production. Post-treatment of the effluent is providing recovery of phosphorus and removal of remaining COD and nitrogen. The total energy saving of the new sanitation concept amounts to 200 MJ/year in comparison with conventional sanitation, moreover 0.14 kg P/p/year and 90 litres of potential reusable water are produced. (c) IWA Publishing 2008.
Recovery of acidified European surface waters
Czech Academy of Sciences Publication Activity Database
Wright, R. F.; Larssen, T.; Camarero, L.; Cosby, B. J.; Ferrier, R. C.; Helliwell, R.; Forsius, M.; Jenkins, A.; Kopáček, Jiří; Majer, V.; Moldan, F.; Posch, M.; Rogora, M.; Schöpp, W.
2005-01-01
Roč. 39, č. 3 (2005), 64A-72A ISSN 0013-936X. [ Acid Rain 2005. International Conference on Acid Deposition /7./. Prague, 12.06.2005-17.06.2005] Grant - others:EC(XE) EMERGE EVK1-CT-1999-00032; EC(XE) RECOVER:2010 EVK1-CT-1999-00018; DEFRA(GB) EPG 1/3/194; ICST(ES) REN2000-0889/GLO Institutional research plan: CEZ:AV0Z60170517 Keywords : acid ification * recovery * European lake districts Subject RIV: DJ - Water Pollution ; Quality Impact factor: 4.054, year: 2005
Water control for enhanced oil recovery
Energy Technology Data Exchange (ETDEWEB)
Cole, R.C.; Mody, B.; Pace, J.
1981-11-01
Gains in recovery efficiency in W. Texas oil and gas fields have been realized as a result of applying 4 different chemical processes, either singly or in combination. Each of the 4 chemical processes has been tailored to meet specific reservoir requirements. Complete plugging of high flow capacity channels can be accomplished, and the high water production portion of a producing zone can be sealed by injection of gel-forming chemicals into the matrix. Both floodwater diversion and water-oil mobility ratio improvement can be attained by in situ polymerization of a one-stage polymer bank in the reservoir. In producing wells, the water-oil production ratio can be favorably changed by treating certain formulations with a nonplugging polymer which tends to restrict water flow but not oil. One feature which each of the 4 processes has in common is the ability to invade deeply into matrix which may produce long lasting results. A description of each process is presented with various placement techniques used to obtain optimum results. Data from fields which have benefited from these treatments are presented. The work describes what may be expected with each of these proven processes based on field results.
Water Recovery System Design to Accommodate Dormant Periods for Manned Missions
Tabb, David; Carter, Layne
2015-01-01
Future manned missions beyond lower Earth orbit may include intermittent periods of extended dormancy. Under the NASA Advanced Exploration System (AES) project, NASA personnel evaluated the viability of the ISS Water Recovery System (WRS) to support such a mission. The mission requirement includes the capability for life support systems to support crew activity, followed by a dormant period of up to one year, and subsequently for the life support systems to come back online for additional crewed missions. Dormancy could be a critical issue due to concerns with microbial growth or chemical degradation that might prevent water systems from operating properly when the crewed mission began. As such, it is critical that the water systems be designed to accommodate this dormant period. This paper details the results of this evaluation, which include identification of dormancy issues, results of testing performed to assess microbial stability of pretreated urine during dormancy periods, and concepts for updating to the WRS architecture and operational concepts that will enable the ISS WRS to support the dormancy requirement.
Water-cooled, fire boom blanket, test and evaluation for system prototype development
International Nuclear Information System (INIS)
Stahovec, J. G.; Urban, R. W.
1999-01-01
Initial development of actively cooled fire booms indicated that water-cooled barriers could withstand direct oil fire for several hours with little damage if cooling water were continuously supplied. Despite these early promising developments, it was realized that to build reliable full-scale system for Navy host salvage booms would require several development tests and lengthy evaluations. In this experiment several types of water-cooled fire blankets were tested at the Oil and Hazardous Materials Simulated Test Tank (OHMSETT). After the burn test the blankets were inspected for damage and additional tests were conducted to determine handling characteristics for deployment, recovery, cleaning and maintenance. Test results showed that water-cooled fire boom blankets can be used on conventional offshore oil containment booms to extend their use for controlling large floating-oil marine fires. Results also demonstrated the importance of using thermoset rubber coated fabrics in the host boom to maintain sufficient reserve seam strength at elevated temperatures. The suitability of passively cooled covers should be investigated to protect equipment and boom from indirect fire exposure. 1 ref., 2 tabs., 8 figs
Recovery from acidification in European surface waters
Czech Academy of Sciences Publication Activity Database
Evans, C. D.; Cullen, J. M.; Alewell, C.; Kopáček, Jiří; Marchetto, A.; Moldan, F.; Prechtel, A.; Rogora, M.; Veselý, J.; Wright, R.
2001-01-01
Roč. 5, č. 3 (2001), s. 283-297 ISSN 1027-5606 R&D Projects: GA ČR GA206/00/0063 Grant - others:CEC RECOVER(XE) 2010 EVK1-CT-1999-00018; GMER(DE) PT BEO 51-0339476; UKDETR(GB) EPG1/3/92; NNP(NO) SFT2000; CEC(XE) EMERGE EVK1-CT-1999-00032 Keywords : acidification * recovery * sulphate Subject RIV: DJ - Water Pollution ; Quality Impact factor: 1.127, year: 2001
New system for higher recovery rate of water borne Cryptosporidium oocysts and Giardia cysts
DEFF Research Database (Denmark)
Al-Sabi, Mohammad Nafi Solaiman; Gad, Jens; Klinting, Mette
2012-01-01
Background: The two most common water borne pathogenic protozoa, Cryptosporidium and Giardia, cause diarrhea worldwide. Detecting these parasites in water samples depends on effective parasite recovery from the water matrix. The reported low recovery rates of the currently used filter methods...... motivate the development of systems with higher recovery rates. Materials and methods: Five replicates of IMS purified Cryptosporidium oocysts and Giardia cysts (N=2x103) were injected into a specially coated filter unit with a carefully chosen pore size. Following filtration, sonication was performed...... were 85% were recorded when the filter was sonicated. Sonication usually affects parasite viability but could be tuned into a useful tool for enhanced backwash collection of parasites using a specially constructed filter unit and a sonication protocol. The filtration...
A comparison of test statistics for the recovery of rapid growth-based enumeration tests
van den Heuvel, Edwin R.; IJzerman-Boon, Pieta C.
This paper considers five test statistics for comparing the recovery of a rapid growth-based enumeration test with respect to the compendial microbiological method using a specific nonserial dilution experiment. The finite sample distributions of these test statistics are unknown, because they are
A dual model approach to ground water recovery trench design
International Nuclear Information System (INIS)
Clodfelter, C.L.; Crouch, M.S.
1992-01-01
The design of trenches for contaminated ground water recovery must consider several variables. This paper presents a dual-model approach for effectively recovering contaminated ground water migrating toward a trench by advection. The approach involves an analytical model to determine the vertical influence of the trench and a numerical flow model to determine the capture zone within the trench and the surrounding aquifer. The analytical model is utilized by varying trench dimensions and head values to design a trench which meets the remediation criteria. The numerical flow model is utilized to select the type of backfill and location of sumps within the trench. The dual-model approach can be used to design a recovery trench which effectively captures advective migration of contaminants in the vertical and horizontal planes
Effect of contrast water therapy duration on recovery of running performance.
Versey, Nathan G; Halson, Shona L; Dawson, Brian T
2012-06-01
To investigate whether contrast water therapy (CWT) assists acute recovery from high-intensity running and whether a dose-response relationship exists. Ten trained male runners completed 4 trials, each commencing with a 3000-m time trial, followed by 8 × 400-m intervals with 1 min of recovery. Ten minutes postexercise, participants performed 1 of 4 recovery protocols: CWT, by alternating 1 min hot (38°C) and 1 min cold (15°C) for 6 (CWT6), 12 (CWT12), or 18 min (CWT18), or a seated rest control trial. The 3000-m time trial was repeated 2 h later. 3000-m performance slowed from 632 ± 4 to 647 ± 4 s in control, 631 ± 4 to 642 ± 4 s in CWT6, 633 ± 4 to 648 ± 4 s in CWT12, and 631 ± 4 to 647 ± 4 s in CWT18. Following CWT6, performance (smallest worthwhile change of 0.3%) was substantially faster than control (87% probability, 0.8 ± 0.8% mean ± 90% confidence limit), however, there was no effect for CWT12 (34%, 0.0 ± 1.0%) or CWT18 (34%, -0.1 ± 0.8%). There were no substantial differences between conditions in exercise heart rates, or postexercise calf and thigh girths. Algometer thigh pain threshold during CWT12 was higher at all time points compared with control. Subjective measures of thermal sensation and muscle soreness were lower in all CWT conditions at some post-water-immersion time points compared with control; however, there were no consistent differences in whole body fatigue following CWT. Contrast water therapy for 6 min assisted acute recovery from high-intensity running; however, CWT duration did not have a dose-response effect on recovery of running performance.
van der Hoek, J P
2012-01-01
Waternet is responsible for drinking water treatment and distribution, wastewater collection and treatment, and surface water management and control (quality and quantity) in and around Amsterdam. Waternet has the ambition to operate climate neutral in 2020. To realise this ambition, measures are required to compensate for the emission of 53,000 ton CO(2)-eq/year. Energy recovery from the water cycle looks very promising. First, calculations reveal that energy recovery from the water cycle in and around Amsterdam may contribute to a total reduction in greenhouse gas emissions up to 148,000 ton CO(2)-eq/year. The challenge for the coming years is to choose combinations of all the possibilities to fulfil the energy demand as much as possible. Only then the use of fossil fuel can be minimized and inevitable greenhouse gas emissions can be compensated, supporting the target to operate climate neutral in 2020.
Maintenance and Recovery of Water System for Injection (WFI)
International Nuclear Information System (INIS)
Wan Anuar Wan Awang; Ahmad Firdaus Jalil; Wan Mohd Firdaus Wan Ishak
2015-01-01
Water system for injection (WFI) is one of the main component in manufacturing pharmaceutical materials and radiopharmaceuticals. This system accredited in 2005. Water quality produced analyzed and give the unsatisfied results. The operation of WFI was stopped temporarily due to technical problems. In 2013, recovery works were implemented with budget of RM 226,500.00. Comprehensive maintenance were implemented by Rykertech (Asia) Sdn. Bhd. With duration of 24 months (October 2014 until September 2016) with cost RM 473,550.00. Now, this system operated in good condition and produced water that meet with the specifications. (author)
Prakoso, N. I.; Rochmadi; Purwono, S.
2018-04-01
One of enhanced oil recovery (EOR) methods is using surfactants to reduce the interfacial tension between the injected fluid and the oil in old reservoir. The most important principle in enhanced oil recovery process is the dynamic interaction of surfactants with crude oil. Sodium ligno sulphonate (SLS) is a commercial surfactant and already synthesized from palm solid waste by another researcher. This work aimed to apply SLS as a surfactant for EOR especially in TPN 008 oil from Pertamina Indonesia. In its application as an EOR’s surfactant, SLS shall be passed feasibility test like IFT, thermal stability, compatibility, filtration, molecular weight, density, viscosity and pH tests. The feasibility test is very important for a preliminary test prior to another advanced test. The results demonstrated that 1% SLS solution in formation water (TPN 008) had 0.254 mN/M IFT value and was also great in thermal stability, compatibility, filtration, molecular weight, viscosity and pH test.
DEFF Research Database (Denmark)
Osman, Ali; Gringer, Nina; Svendsen, Tore
2015-01-01
Four types of herring industry processing waters; refrigerated sea water (RSW), storage water (SW), processing water from cutting (PW) and pre-salting brines (SB) were subjected to chemical characterization and biomolecule recovery using electroflocculation (EF) and ultrafiltration (UF). The high......Four types of herring industry processing waters; refrigerated sea water (RSW), storage water (SW), processing water from cutting (PW) and pre-salting brines (SB) were subjected to chemical characterization and biomolecule recovery using electroflocculation (EF) and ultrafiltration (UF...
Perez-Martin, Alfonso; Michelazzo, Chiara; Torres-Ruiz, Jose M; Flexas, Jaume; Fernández, José E; Sebastiani, Luca; Diaz-Espejo, Antonio
2014-07-01
The hypothesis that aquaporins and carbonic anhydrase (CA) are involved in the regulation of stomatal (g s) and mesophyll (g m) conductance to CO2 was tested in a short-term water-stress and recovery experiment in 5-year-old olive plants (Olea europaea) growing outdoors. The evolution of leaf gas exchange, chlorophyll fluorescence, and plant water status, and a quantitative analysis of photosynthesis limitations, were followed during water stress and recovery. These variables were correlated with gene expression of the aquaporins OePIP1.1 and OePIP2.1, and stromal CA. At mild stress and at the beginning of the recovery period, stomatal limitations prevailed, while the decline in g m accounted for up to 60% of photosynthesis limitations under severe water stress. However, g m was restored to control values shortly after rewatering, facilitating the recovery of the photosynthetic rate. CA was downregulated during water stress and upregulated after recovery. The use of structural equation modelling allowed us to conclude that both OePIP1.1 and OePIP2.1 expression could explain most of the variations observed for g s and g m. CA expression also had a small but significant effect on g m in olive under water-stress conditions. © The Author 2014. Published by Oxford University Press on behalf of the Society for Experimental Biology.
Measures for waste water management from recovery processing of Zhushanxia uranium deposit
International Nuclear Information System (INIS)
Liu Yaochi; Xu Lechang
2000-01-01
Measures for waste water management from recovery processing of Zhushanxia uranium deposit of Wengyuan Mine is analyzed, which include improving process flow, recycling process water used in uranium mill as much as possible and choosing a suitable disposing system. All these can decrease the amount of waste water, and also reduce costs of disposing waste water and harm to environment
The potential for the recovery and reuse of cooling water in Taiwan
Energy Technology Data Exchange (ETDEWEB)
You, Shu-Hai; Tseng, Dyi-Hwa; Guo, Gia-Luen; Yang, Jyh-Jian [Graduate Institute of Environmental Engineering, National Central University, Chungli (Taiwan, Province of China)
1999-04-01
The cooling water is the major part of industrial water use in Taiwan, either from the view of demand priority or supply volume. In order to save water, the loading of supply system can be reduced if the cooling water can be recovered and reused. For this reason, exploration of the recent operation status of the cooling water system has become essential in Taiwan. This study was initially focused on the current applications and reuse trends of cooling water in oil refineries, chemical industry, steel mills, food industry, electronics works, textile plants and power stations. According to the statistical analysis, the portable water and groundwater are the primary sources of makeup water for cooling systems. The multiple-chemicals method and makeup treatment are increasingly accepted for the reclamation of cooling water. On the other hand, sidestream treatment and blowdown reuse are not popular in Taiwan. The recovery rate of blowdown is only 26.8%. The fact of higher cost is the major reason to depress the willingness of recovery. Some representative plants had been selected for case study. However, most cooling water systems are only operated by operator`s experience according to field investigation. In each case, the water quality indexes were used to evaluate the operational condition of cooling water systems. There was no case plant found to be operated at appropriate cycles of concentration. This paper also presented the bottlenecks of conservation technologies of cooling water in Taiwan. These bottlenecks include increasing the cycles of concentration, the reuse of wastewater, and the blowdown treatment for reuse. This paper also demonstrates that the recovery and reuse of cooling water has great potential and is feasible for the available technologies in present Taiwan, but the industries are still unwilling to upgrade because of initial cost. Finally, some approaches associated with technology, economics, environment and policy are proposed to be a
Progress in the development of the reverse osmosis process for spacecraft wash water recovery.
Pecoraro, J. N.; Podall, H. E.; Spurlock, J. M.
1972-01-01
Research work on ambient- and pasteurization-temperature reverse osmosis processes for wash water recovery in a spacecraft environment is reviewed, and the advantages and drawbacks of each are noted. A key requirement in each case is to provide a membrane of appropriate stability and semipermeability. Reverse osmosis systems intended for such use must also take into account the specific limitations and requirements imposed by the small volume of water to be processed and the high water recovery desired. The incorporation of advanced high-temperature membranes into specially designed modules is discussed.
Georges Lwisa, Essa; Abdulkhalek, Ashrakat R.
2018-03-01
Enhanced Oil Recovery techniques are one of the top priorities of technology development in petroleum industries nowadays due to the increase in demand for oil and gas which cannot be equalized by the primary production or secondary production methods. The main function of EOR process is to displace oil to the production wells by the injection of different fluids to supplement the natural energy present in the reservoir. Moreover, these injecting fluids can also help in the alterations of the properties of the reservoir like lowering the IFTs, wettability alteration, a change in pH value, emulsion formation, clay migration and oil viscosity reduction. The objective of this experiment is to investigate the residual oil recovery by combining the effects of gas injection followed by low salinity water injection for low permeability reservoirs. This is done by a series of flooding tests on selected tight carbonate core samples taken from Zakuum oil field in Abu Dhabi by using firstly low salinity water as the base case and nitrogen & CO2injection followed by low salinity water flooding at reservoir conditions of pressure and temperature. The experimental results revealed that a significant improvement of the oil recovery is achieved by the nitrogen injection followed by the low salinity water flooding with a recovery factor of approximately 24% of the residual oil.
Lyophilization for Water Recovery From Solid Waste
Flynn, Michael; Litwiller, Eric; Reinhard, Martin
2003-01-01
This abstract describes the development of a solid waste treatment system designed for a near term human exploration mission. The technology being developed is an energy- efficient lyophilization technique that recovers water from spacecraft solid waste. In the lyophilization process water in an aqueous waste is frozen and then sublimed, resulting in the separation of the waste into a dried solid material and liquid water. This technology is ideally suited to applications where water recovery rates approaching 100% are desirable but production of CO, is not. Water contained within solid wastes accounts for approximately 3% of the total water balance. If 100% closure of the water loop is desired the water contained within this waste would need to be recovered. To facilitate operation in microgravity thermoelectric heat pumps have be used in place of traditional fluid cycle heat pumps. A mathematical model of a thermoelectric lyophilizer has been developed and used to generate energy use and processing rate parameters. The results of laboratory investigations and discussions with ALS program management have been used to iteratively arrive at a prototype design. This design address operational limitations which were identified in the laboratory studies and handling and health concerns raised by ALS program management. The current prototype design is capable of integration into the ISS Waste Collection System.
Cold water immersion recovery following intermittent-sprint exercise in the heat.
Pointon, Monique; Duffield, Rob; Cannon, Jack; Marino, Frank E
2012-07-01
This study examined the effects of cold water immersion (CWI) on recovery of neuromuscular function following simulated team-sport exercise in the heat. Ten male team-sport athletes performed two sessions of a 2 × 30-min intermittent-sprint exercise (ISE) in 32°C and 52% humidity, followed by a 20-min CWI intervention or passive recovery (CONT) in a randomized, crossover design. The ISE involved a 15-m sprint every minute separated by bouts of hard running, jogging and walking. Voluntary and evoked neuromuscular function, ratings of perceived muscle soreness (MS) and blood markers for muscle damage were measured pre- and post-exercise, immediately post-recovery, 2-h and 24-h post-recovery. Measures of core temperature (Tcore), heart rate (HR), capillary blood and perceptions of exertion, thermal strain and thirst were also recorded at the aforementioned time points. Post-exercise maximal voluntary contraction (MVC) and activation (VA) were reduced in both conditions and remained below pre-exercise values for the 24-h recovery (P recovery period (P recovery rate of reduction in Tcore, HR and MS was enhanced with CWI whilst increasing MVC and VA (P recovery MVC and activation were significantly higher in CONT compared to CWI (P = 0.05). Following exercise in the heat, CWI accelerated the reduction in thermal and cardiovascular load, and improved MVC alongside increased central activation immediately and 2-h post-recovery. However, despite improved acute recovery CWI resulted in an attenuated MVC 24-h post-recovery.
Recovery Efficiency Test Project: Phase 1, Activity report
Energy Technology Data Exchange (ETDEWEB)
Overbey, W.K. Jr.; Wilkins, D.W.; Keltch, B.; Saradji, B.; Salamy, S.P.
1988-04-01
This report is the second volume of the Recovery Efficiency Test Phase I Report of Activities. Volume 1 covered selection, well planning, drilling, coring, logging and completion operations. This volume reports on well testing activities, reclamation activities on the drilling site and access roads, and the results of physical and mechanical properties tests on the oriented core material obtained from a horizontal section of the well. 3 refs., 21 figs., 10 tabs.
Reese, Ronald S.; Alvarez-Zarikian, Carlos A.
2007-01-01
Well construction, hydraulic well test, ambient water-quality, and cycle test data were inventoried and compiled for 30 aquifer storage and recovery facilities constructed in the Floridan aquifer system in southern Florida. Most of the facilities are operated by local municipalities or counties in coastal areas, but five sites are currently being evaluated as part of the Comprehensive Everglades Restoration Plan. The relative performance of all sites with adequate cycle test data was determined, and compared with four hydrogeologic and design factors that may affect recovery efficiency. Testing or operational cycles include recharge, storage, and recovery periods that each last days or months. Cycle test data calculations were made including the potable water (chloride concentration of less than 250 milligrams per liter) recovery efficiency per cycle, total recovery efficiency per cycle, and cumulative potable water recovery efficiencies for all of the cycles at each site. The potable water recovery efficiency is the percentage of the total amount of potable water recharged for each cycle that is recovered; potable water recovery efficiency calculations (per cycle and cumulative) were the primary measures used to evaluate site performance in this study. Total recovery efficiency, which is the percent recovery at the end of each cycle, however, can be substantially higher and is the performance measure normally used in the operation of water-treatment plants. The Upper Floridan aquifer of the Floridan aquifer system currently is being used, or planned for use, at 29 of the aquifer storage and recovery sites. The Upper Floridan aquifer is continuous throughout southern Florida, and its overlying confinement is generally good; however, the aquifer contains brackish to saline ground water that can greatly affect freshwater storage and recovery due to dispersive mixing within the aquifer. The hydrogeology of the Upper Floridan varies in southern Florida; confinement
A multi-stage oil-water-separating process design for the sea oil spill recovery robot
Zhang, Min-ge; Wu, Jian-guo; Lin, Xinhua; Wang, Xiao-ming
2018-03-01
Oil spill have the most common pollution to the marine ecological environment. In the late stage of physical method recovery, because of the thin oil and the strong sea breeze, the recovery vessels has low efficiency and high energy consumption. This paper develops a multi-stage oil-water-separating process carried by the sea oil spill recovery robot in severe conditions. This design consists of three separation process, among which both the first and third process adopt corrugated sheets horizontal oil-water separator, while the second is hydraulic rotary breaker. This design also equiptment with rectifier and cyclone separator and other important components. This process has high flexibility and high recovery efficiency. The implement effect is significant.
Numerical analysis of heat and mass transfer for water recovery in an evaporative cooling tower
Lee, Hyunsub; Son, Gihun
2017-11-01
Numerical analysis is performed for water recovery in an evaporative cooling tower using a condensing heat exchanger, which consists of a humid air channel and an ambient dry air channel. The humid air including water vapor produced in an evaporative cooling tower is cooled by the ambient dry air so that the water vapor is condensed and recovered to the liquid water. The conservation equations of mass, momentum, energy and vapor concentration in each fluid region and the energy equation in a solid region are simultaneously solved with the heat and mass transfer boundary conditions coupled to the effect of condensation on the channel surface of humid air. The present computation demonstrates the condensed water film distribution on the humid air channel, which is caused by the vapor mass transfer between the humid air and the colder water film surface, which is coupled to the indirect heat exchange with the ambient air. Computations are carried out to predict water recovery rate in parallel, counter and cross-flow type heat exchangers. The effects of air flow rate and channel interval on the water recovery rate are quantified.
Oil recovery enhancement from fractured, low permeability reservoirs. [Carbonated Water
Energy Technology Data Exchange (ETDEWEB)
Poston, S.W.
1991-01-01
The results of the investigative efforts for this jointly funded DOE-State of Texas research project achieved during the 1990-1991 year may be summarized as follows: Geological Characterization - Detailed maps of the development and hierarchical nature the fracture system exhibited by Austin Chalk outcrops were prepared. The results of these efforts were directly applied to the development of production decline type curves applicable to a dual-fracture-matrix flow system. Analysis of production records obtained from Austin Chalk operators illustrated the utility of these type curves to determine relative fracture/matrix contributions and extent. Well-log response in Austin Chalk wells has been shown to be a reliable indicator of organic maturity. Shear-wave splitting concepts were used to estimate fracture orientations from Vertical Seismic Profile, VSP data. Several programs were written to facilitate analysis of the data. The results of these efforts indicated fractures could be detected with VSP seismic methods.Development of the EOR Imbibition Process - Laboratory displacement as well as Magnetic Resonance Imaging, MRI and Computed Tomography, CT imaging studies have shown the carbonated water-imbibition displacement process significantly accelerates and increases recovery from oil saturated, low permeability rocks.Field Tests - Two operators amenable to conducting a carbonated water flood test on an Austin Chalk well have been identified. Feasibility studies are presently underway.
Oil Recovery Enhancement from Fractured, Low Permeability Reservoirs. [Carbonated Water
Poston, S. W.
1991-01-01
The results of the investigative efforts for this jointly funded DOE-State of Texas research project achieved during the 1990-1991 year may be summarized as follows: Geological Characterization - Detailed maps of the development and hierarchical nature the fracture system exhibited by Austin Chalk outcrops were prepared. The results of these efforts were directly applied to the development of production decline type curves applicable to a dual-fracture-matrix flow system. Analysis of production records obtained from Austin Chalk operators illustrated the utility of these type curves to determine relative fracture/matrix contributions and extent. Well-log response in Austin Chalk wells has been shown to be a reliable indicator of organic maturity. Shear-wave splitting concepts were used to estimate fracture orientations from Vertical Seismic Profile, VSP data. Several programs were written to facilitate analysis of the data. The results of these efforts indicated fractures could be detected with VSP seismic methods. Development of the EOR Imbibition Process - Laboratory displacement as well as Magnetic Resonance Imaging, MRI and Computed Tomography, CT imaging studies have shown the carbonated water-imbibition displacement process significantly accelerates and increases recovery from oil saturated, low permeability rocks. Field Tests - Two operators amenable to conducting a carbonated water flood test on an Austin Chalk well have been identified. Feasibility studies are presently underway.
Energy Technology Data Exchange (ETDEWEB)
Guillen Nunez, Victor Raul; Carvalho, Marcio da Silveira [Pontifical Catholic University of Rio de Janeiro (PUC-Rio), RJ (Brazil). Dept. of Mechanical Engineering], E-mail: msn@puc-rio.br; Basante, Vladimir Alvarado [University of Wyoming, Laramie, WY (United States). Dept. of Chemical/Petroleum Engineering], E-mail: valvard@uwyo.edu
2010-07-01
The Water injection flooding is a common method to improve reservoir sweep and pressure maintenance. The heavy-oil-recovery efficiency is in part limited by the high water-to-oil mobility ratio. Several enhanced oil recovery methods are being developed as more efficient alternatives to water flooding. Dispersion injection, in particular oil-water emulsion injection, has been tried with relative success as an enhanced oil recovery method, but the technique is not fully developed or understood. If emulsion injection proves to be an effective EOR method, its use would bring the added benefit of disposing produced water with small oil content that could be modified to serve as the injected oil-water emulsion. The use of such methods requires a detailed analysis of the different flow regimes of emulsions through the porous space of a reservoir rock. If the drop size of the disperse phase is of the same order of magnitude as the pore size, the drops may agglomerate and partially block water flow through pores. This flow regime may be used to control the mobility of the injected liquid, leading to higher recovery factor. We have shown in recent experiments of oil displacement in a sandstone core that, the oil recovery factor could be raised from approximately 40 %, obtained with water injection only, up to approximately 75 % by alternating water and emulsion injection. Although these results clearly show the improvement in the recovery factor, the mechanisms responsible for the phenomenon have not been clearly elucidated. In this work, two sandstone cores were used to demonstrate the effect of flow rate (capillary number) on the mobility control by emulsion injection. Figure 1 shows a schematic representation of the experiment set-up. The experiments show that raising the flow rate by a factor of 10 (0.03 ml/min to 0.3 ml/min), the oil recovered factor decreases considerably. (author)
International Nuclear Information System (INIS)
Wang, Zhenying; Zhang, Xiaoyue; Li, Zhen
2016-01-01
Highlights: • Flue gas driven open absorption system that efficiently recovers total heat. • Efficient heat and water recovery for various kinds of fossil fuel boilers. • Heat and water recovery efficiencies increase with moisture content of flue gas. • Temperature requirements for district heat supply and domestic hot water were met. • Experimental system surpasses conventional condensing system in total heat recovery. - Abstract: This paper presents an open absorption system for total heat recovery from fossil fuel boilers using the high temperature flue gas as the regeneration heat source. In this system, liquid desiccant serves as the recycling medium, which absorbs waste heat and moisture contained in the low temperature flue gas in the packed tower and then regenerates in the regenerator by the high temperature flue gas. Water vapor generated in the regenerator gets condensed after releasing heat to the heating water system and the condensing water also gets recycled. The return water collects heat from the solution water heat exchanger, the flue gas water heat exchanger and the condenser respectively and is then used for district heating. Driven by the vapor pressure difference between high humidity flue gas and the liquid desiccant, the heat recovery efficiency of the system is not limited by the dew point of the flue gas, enabling a warmer water to be heated up than the conventional condensing boiler. The performance of this system was analyzed theoretically and experimentally and the results showed that the system operated well for both district heat supply and domestic hot water supply. The system efficiency increased with the moisture content of flue gas and the total heat recovery was about 8.5%, 17.2%, 21.2%, and 9.2% higher than the conventional condensing system in the case of coal fired boiler, fuel oil boiler, natural gas boiler, and coke oven gas boiler, respectively.
Abo Markeb, Ahmad; Alonso, Amanda; Dorado, Antonio David; Sánchez, Antoni; Font, Xavier
2016-08-01
A novel nanocomposite (NC) based on magnetite nanoparticles (Fe3O4-NPs) immobilized on the surface of a cationic exchange polymer, C100, using a modification of the co-precipitation method was developed to obtain magnetic NCs for phosphate removal and recovery from water. High-resolution transmission electron microscopy-energy-dispersive spectroscopy, scanning electron microscopy , X-ray diffraction, and inductively coupled plasma optical emission spectrometry were used to characterize the NCs. Continuous adsorption process by the so-called breakthrough curves was used to determine the adsorption capacity of the Fe3O4-based NC. The adsorption capacity conditions were studied under different conditions (pH, phosphate concentration, and concentration of nanoparticles). The optimum concentration of iron in the NC for phosphate removal was 23.59 mgFe/gNC. The sorption isotherms of this material were performed at pH 5 and 7. Taking into account the real application of this novel material in real water, the experiments were performed at pH 7, achieving an adsorption capacity higher than 4.9 mgPO4-P/gNC. Moreover, Freundlich, Langmuir, and a combination of them fit the experimental data and were used for interpreting the influence of pH on the sorption and the adsorption mechanism for this novel material. Furthermore, regeneration and reusability of the NC were tested, obtaining 97.5% recovery of phosphate for the first cycle, and at least seven cycles of adsorption-desorption were carried out with more than 40% of recovery. Thus, this work described a novel magnetic nanoadsorbent with properties for phosphate recovery in wastewater.
Recovery of uranium from sea water - a laboratory study
International Nuclear Information System (INIS)
Jayawant, D.V.; Iyer, N.S.; Koppiker, K.S.
1991-01-01
Sea water contains traces of uranium, but the volume of sea water being enormous, the total quantity of uranium available from the sources is very large. From time to time, claims have been made elsewhere that a breakthrough has been made in developing a technology to recovery this uranium at an economic cost. Studies have been carried out at Uranium Extraction Division over a few years to develop a suitable technique to separate the uranium from sea water. Studies were primarily directed towards preparation of suitable inorganic ion exchangers and studying their properties. In this paper preparation of ion exchangers based on hydrous titanium oxide and the data collected in laboratory trials on their application for uranium adsorption from sea water are presented. (author). 11 refs., 2 tabs
Effect of a 5-min cold-water immersion recovery on exercise performance in the heat.
Peiffer, J J; Abbiss, C R; Watson, G; Nosaka, K; Laursen, P B
2010-05-01
This study examined the effect of a 5-min cold-water immersion (14 degrees C) recovery intervention on repeated cycling performance in the heat. 10 male cyclists performed two bouts of a 25-min constant-paced (254 (22) W) cycling session followed by a 4-km time trial in hot conditions (35 degrees C, 40% relative humidity). The two bouts were separated by either 15 min of seated recovery in the heat (control) or the same condition with 5-min cold-water immersion (5th-10th minute), using a counterbalanced cross-over design (CP(1)TT(1) --> CWI or CON --> CP(2)TT(2)). Rectal temperature was measured immediately before and after both the constant-paced sessions and 4-km timed trials. Cycling economy and Vo(2) were measured during the constant-paced sessions, and the average power output and completion times were recorded for each time trial. Compared with control, rectal temperature was significantly lower (0.5 (0.4) degrees C) in cold-water immersion before CP(2) until the end of the second 4-km timed trial. However, the increase in rectal temperature (0.5 (0.2) degrees C) during CP(2) was not significantly different between conditions. During the second 4-km timed trial, power output was significantly greater in cold-water immersion (327.9 (55.7) W) compared with control (288.0 (58.8) W), leading to a faster completion time in cold-water immersion (6.1 (0.3) min) compared with control (6.4 (0.5) min). Economy and Vo(2) were not influenced by the cold-water immersion recovery intervention. 5-min cold-water immersion recovery significantly lowered rectal temperature and maintained endurance performance during subsequent high-intensity exercise. These data indicate that repeated exercise performance in heat may be improved when a short period of cold-water immersion is applied during the recovery period.
International Nuclear Information System (INIS)
Chi, Se Hwan; Hong, Jun Hwa; Lee, Bong Sang; Oh, Jong Myung; Song, Sook Hyang; Milan, Brumovsky
1999-03-01
The neutron irradiation embrittlement phenomenon of light water RPV steels greatly affects the life span for safe operation of a reactor. Reliable evaluation and prediction of the embrittlement of RPV steels, especially of aged reactors, are of importance to the safe operation of a reactor. In addition, the thermal recovery of embrittled RPV has been recognized as an option for life extension. This study aimed to tracer/refine available technologies for embrittlement characterization and prediction, to prepare relevant materials for several domestic RPV steels of the embrittlement and recovery, and to find out possible remedy for steel property betterment. Small specimen test techniques, magnetic measurement techniques, and the Meechan and Brinkmann's recovery curve analysis method were examined/applied as the evaluation techniques. Results revealed a high irradiation sensitivity in YG 3 RPV steel. Further extended study may be urgently needed. Both the small specimen test technique for the direct determination of fracture toughness, and the magnetic measurement technique for embrittlement evaluation appeared to be continued for the technical improvement and data base preparation. Manufacturing process relevant to the heat treatment appeared to be improved in lowering the irradiation sensitivity of the steel. Further study is needed especially in applying the present techniques to the new structural materials under new irradiation environment of advanced reactors. (author)
International Nuclear Information System (INIS)
El-Shahawy, M.R.; Ramzi, M.; Farag, R.M.
2014-01-01
The counts of sulfate reducing bacteria (SRB) in the water samples collected from the well head (formation water) and outlet of petroleum treatment plant (Produced water) in a petroleum field in middle delta- Egypt were determined. The data showed a low count of (SRB) in the collected formation water sample and there was an obvious increase in the bacterial counts which appeared in the produced water, that may reveal that the presence of appropriate conditions for the growth of (SRB) in the closed system in treatment plant. Two scale inhibitors were tested through jar test, the scale inhibitor I had maximum efficiency at 20 ppm, two SRB biocides were screened for their bactericidal activities. It was found that the biocides A was slightly superior in respect to the antibacterial efficacy compared to B in presence of 20 ppm scale inhibitor. These biocides were test for the study of the combined treatment with gamma radiation to maximize the efficiency on sulfate reducing bacteria using the minimum effective dose of both radiation and biocides to eliminate the negative impacts of the chemicals used and the radiation applied. The results demonstrated that, the lethal doses of biocides were (300 ppm) of biocides A or (400 ppm) of biocides B at 1 kGy irradiation dose. The treated produced water was evaluated in respect of enhanced oil recovery, the data showed increase of the recovery capacity by the irradiation and chemical treatment. This technology could be used for the water that are injected into reservoirs, and suitable for oil field and pipeline operators, and presented a viable bacteria control method
Lithium recovery from shale gas produced water using solvent extraction
International Nuclear Information System (INIS)
Jang, Eunyoung; Jang, Yunjai; Chung, Eunhyea
2017-01-01
Shale gas produced water is hypersaline wastewater generated after hydraulic fracturing. Since the produced water is a mixture of shale formation water and fracturing fluid, it contains various organic and inorganic components, including lithium, a useful resource for such industries as automobile and electronics. The produced water in the Marcellus shale area contains about 95 mg/L lithium on average. This study suggests a two-stage solvent extraction technique for lithium recovery from shale gas produced water, and determines the extraction mechanism of ions in each stage. All experiments were conducted using synthetic shale gas produced water. In the first-stage, which was designed for the removal of divalent cations, more than 94.4% of Ca"2"+, Mg"2"+, Sr"2"+, and Ba"2"+ ions were removed by using 1.0 M di-(2-ethylhexyl) phosphoric acid (D2EHPA) as an extractant. In the second-stage, for lithium recovery, we could obtain a lithium extraction efficiency of 41.2% by using 1.5 M D2EHPA and 0.3 M tributyl phosphate (TBP). Lithium loss in the first-stage was 25.1%, and therefore, the total amount of lithium recovered at the end of the two-step extraction procedure was 30.8%. Through this study, lithium, one of the useful mineral resources, could be selectively recovered from the shale gas produced water and it would also reduce the wastewater treatment cost during the development of shale gas. - Highlights: • Lithium was extracted from shale gas produced water using an organic solvent. • Two-stage solvent extraction technique was applied. • Divalent cations were removed in the first stage by D2EHPA. • Lithium was selectively recovered in the second stage by using TBP with D2EHPA.
Directory of Open Access Journals (Sweden)
Islam M. T.
2012-11-01
Full Text Available Gas exchange parameters and chlorophyll fluorescence of four pot grown Galician grapevines (Vitis vinifera L. cv. Albariño, Brancellao, Godello and Treixadura were examined under different levels of water stress in greenhouse. After extreme stress, gas exchange recovery responses were evaluated. Average ΨPD for control and stressed plants were -0.4MPa and -1.45MPa respectively. All varieties showed gradual declining of all gas exchange parameters (gs, E and A with increasing of stress periods. Under stressed conditions, Albariño and Godello showed higher CO2 assimilation rate. At the end of stress period leaf defoliation was found in Albariño and Brancellao. Gas exchange recovery was higher for both Godello and Treixadura. A better response of auxiliary bud recovery was present in Albariño than in Brancellao. Close correlations between water stress and gas exchange parameters were found and it varies on genotype. Albariño, Godello and Treixadura followed same diurnal patterns of gas exchange rate for control and stressed plant respectively. Diurnal pattern of CO2 assimilation rate of all tested varieties followed gs and E. Only Brancellao showed treatment effect on mid-day Fv/Fm. Among four varieties photoinhibition was only found in Brancellao. At stressed condition physiological responses of grapevines were genotype depended.
Differential current measurement in the BNL energy recovery linac test facility
International Nuclear Information System (INIS)
Cameron, Peter
2006-01-01
An energy recovery linac (ERL) test facility is presently under construction at BNL [V.N. Litvinenko, et al., High current energy recovery linac at BNL, PAC, 2005; I. Ben-Zvi, et al., Extremely high current, high brightness energy recovery linac, PAC, 2005]. The goal of this test facility is to demonstrate CW operation with an average beam current greater than 100mA, and with greater than 99.95% efficiency of current recovery. This facility will serve as a test bed for the novel high current CW photo-cathode [A. Burrill, et al., Multi-alkali photocathode development at BNL, PAC, 2005; A. Murray, et al., State-of-the-art electron guns and injector designs for energy recovery linacs, PAC, 2005], the superconducting RF cavity with HOM dampers [R. Calaga, et al., High current superconducting cavities at RHIC, EPAC, 2004; R. Calaga, et al., in: Proceedings of the 11th workshop on RF superconductivity, Lubeck, Germany, 2003], and the lattice [D. Kayran, V. Litvinenko, Novel method of emittance preservation in ERL merging system in presence of strong space charge forces, PAC, 2005; D. Kayran, et al., Optics for high brightness and high current ERL project at BNL, PAC, 2005] and feedback systems needed to insure the specified beam parameters. It is an important stepping stone for electron cooling in RHIC [I. Ben-Zvi, et al., Electron cooling of RHIC, PAC, 2005], and essential to meet the luminosity specifications of RHICII [T. Hallman, et al., RHICII/eRHIC white paper, available at http://www.bnl.gov/henp/docs/NSAC_RHICII-eRHIC_2-15-03.pdf]. The expertise and experience gained in this effort might also extend forward into a 10-20GeV ERL for the electron-ion collider eRHIC [http://www.agsrhichome.bnl.gov/eRHIC/, Appendix A, The linac-ring option, 2005]. We report here on the use of a technique of differential current measurement to monitor the efficiency of current recovery in the test facility, and investigate the possibility of using such a monitor in the machine
Recovery of uranium resources from sea water
International Nuclear Information System (INIS)
Kurushima, Morihiro
1980-01-01
After the oil crisis in 1973, the development of atomic energy has become important as substitute energy, and the stable acquisition of uranium resources is indispensable, in order to promote smoothly the use of atomic energy. The Ministry of International Trade and Industry has engaged actively in the project ''The survey on the technical development of the system for recovering uranium and others from sea water'' since 1974. 80% of the uranium resources in the world is distributed in USA, Canada, South Africa, Australia and Niger, and in near future, the price of uranium ores may be raised. Japan must promote powerfully the development of foreign uranium resources, but also it is very important to get domestic uranium by efficiently recovering the uranium dissolved in sea water, the amount of which was estimated at 4 billion tons, and its practical use is expected in 1990s. The uranium concentration in sea water is about 3 g in 1000 t sea water. The processes of separation and recovery are as follows: (1) adsorption of uranium to titanic acid powder adsorbent by bringing sea water in contact with it, (2) dissolving the collected uranium with ammonium carbonate, the desorption agent, (3) concentration of uranium solution by ion exchange method or ion flotation method to 2800 ppm. The outline of the model plant is explained. (Kako, I.)
Coagulant recovery and reuse for drinking water treatment.
Keeley, James; Jarvis, Peter; Smith, Andrea D; Judd, Simon J
2016-01-01
Coagulant recovery and reuse from waterworks sludge has the potential to significantly reduce waste disposal and chemicals usage for water treatment. Drinking water regulations demand purification of recovered coagulant before they can be safely reused, due to the risk of disinfection by-product precursors being recovered from waterworks sludge alongside coagulant metals. While several full-scale separation technologies have proven effective for coagulant purification, none have matched virgin coagulant treatment performance. This study examines the individual and successive separation performance of several novel and existing ferric coagulant recovery purification technologies to attain virgin coagulant purity levels. The new suggested approach of alkali extraction of dissolved organic compounds (DOC) from waterworks sludge prior to acidic solubilisation of ferric coagulants provided the same 14:1 selectivity ratio (874 mg/L Fe vs. 61 mg/L DOC) to the more established size separation using ultrafiltration (1285 mg/L Fe vs. 91 mg/L DOC). Cation exchange Donnan membranes were also examined: while highly selective (2555 mg/L Fe vs. 29 mg/L DOC, 88:1 selectivity), the low pH of the recovered ferric solution impaired subsequent treatment performance. The application of powdered activated carbon (PAC) to ultrafiltration or alkali pre-treated sludge, dosed at 80 mg/mg DOC, reduced recovered ferric DOC contamination to water quality parameters. Several PAC-polished recovered coagulants provided the same or improved DOC and turbidity removal as virgin coagulant, as well as demonstrating the potential to reduce disinfection byproducts and regulated metals to levels comparable to that attained from virgin material. Copyright © 2015 Elsevier Ltd. All rights reserved.
Tervahauta, T.H.; Weijden, van der R.D.; Flemming, R.L.; Hernández, L.; Zeeman, G.; Buisman, C.J.N.
2014-01-01
Recovery of phosphorus from wastewater as calcium phosphate could diminish the need for mining of scarce phosphate rock resources. This study introduces a novel approach to phosphorus recovery by precipitation of calcium phosphate granules in anaerobic treatment of black water. The granules formed
DEFF Research Database (Denmark)
Zarebska, Agata; Petrinic, Irena; Hey, Tobias
, organic, and biological fouling, membrane characterization is not a trivial task. The aim of this work is to characterize fouling of FO biomimetic aquaporin membranes during water recovery from municipal wastewater. Membrane fouling was characterized using Scanning Electron Microscopy, X-ray Dispersive......Generally more than 99.93% of municipal wastewater is composed of water, therefore water recovery can alleviate global water stress which currently exists. Traditional ways to extract water from wastewater by the use of membrane bioreactors combined with reverse osmosis (RO), or micro...... compared to other pressure driven membrane processes, some fouling can occur. This entails that by reducing fouling, increased FO membrane performance can be expected, thus increasing the economic viability of FO processes. Since various types of fouling might occur in membrane systems such as inorganic...
Methane recovery from coal mine gas using hydrate formation in water-in-oil emulsions
International Nuclear Information System (INIS)
Zhong, Dong-Liang; Ding, Kun; Lu, Yi-Yu; Yan, Jin; Zhao, Wei-Long
2016-01-01
Highlights: • A water-in-oil emulsion was developed for CH_4 separation from coal mine methane gas. • Stable W/O emulsions were obtained with water cut in the range of (10–70%). • Gas hydrates nucleated faster with the reduction of water–oil volume ratio. • Gas uptake increased with the decrease of water–oil volume ratio. • CH_4 recovery was greatly enhanced by hydrate formation in W/O emulsions. - Abstract: In this work, a water-in-oil (W/O) emulsion was developed using liquid water, mineral oil, Sorbitan monooleate (Span 80), and cyclopentane. It was employed to enhance gas hydrate formation for CH_4 separation from a simulated coal mine methane (CMM) gas (30 mol% CH_4, 60 mol% N_2, and 10 mol% O_2). The stability test at atmospheric pressure and at a high pressure of 3.5 MPa showed that stable W/O emulsions were obtained when the water–oil volume ratio (WOR) was below 80%. The emulsified droplets size was measured with WOR ranging from 10% to 70%. Then kinetic experiments of CH_4 separation by hydrate formation in W/O emulsions were carried out at 273.6 K and (3.5–5.0) MPa in batch operation. The results indicated that water–oil volume ratio is a key factor that affects the kinetics of gas hydrate formation from the CMM gas mixture. Hydrate nucleation was observed to occur faster while WOR was decreased, and gas uptake increased significantly with the decrease of WOR. CH_4 concentration in the recovered gas mixture was increased to 52 mol% as compared to 30 mol% in the original gas mixture through one-stage hydrate formation in the W/O emulsions. It was found that the experimental conditions of 273.6 K, 3.5 MPa and WOR = 30% were favorable for CH_4 recovery from the CMM gas. The CH_4 recovery obtained under these conditions was 43%. It was higher than those obtained at WOR = 10% and 70%, and was greatly increased as compared with those obtained in the same reactor with the presence of TBAB (26%) and CP (33%).
Energy Technology Data Exchange (ETDEWEB)
Chi, Se Hwan; Hong, Jun Hwa; Lee, Bong Sang; Oh, Jong Myung; Song, Sook Hyang; Milan, Brumovsky [NRI Czech (Czech Republic)
1999-03-01
The neutron irradiation embrittlement phenomenon of light water RPV steels greatly affects the life span for safe operation of a reactor. Reliable evaluation and prediction of the embrittlement of RPV steels, especially of aged reactors, are of importance to the safe operation of a reactor. In addition, the thermal recovery of embrittled RPV has been recognized as an option for life extension. This study aimed to tracer/refine available technologies for embrittlement characterization and prediction, to prepare relevant materials for several domestic RPV steels of the embrittlement and recovery, and to find out possible remedy for steel property betterment. Small specimen test techniques, magnetic measurement techniques, and the Meechan and Brinkmann's recovery curve analysis method were examined/applied as the evaluation techniques. Results revealed a high irradiation sensitivity in YG 3 RPV steel. Further extended study may be urgently needed. Both the small specimen test technique for the direct determination of fracture toughness, and the magnetic measurement technique for embrittlement evaluation appeared to be continued for the technical improvement and data base preparation. Manufacturing process relevant to the heat treatment appeared to be improved in lowering the irradiation sensitivity of the steel. Further study is needed especially in applying the present techniques to the new structural materials under new irradiation environment of advanced reactors. (author)
Coal washery effluent treatment for material recovery and water reuse
Energy Technology Data Exchange (ETDEWEB)
Banerjee, N.N.; Chaudhuri, M.
1980-10-01
Th effluent from coal washeries consisting mainly of coal fines is normally discharged to inland surface waters and causes severe river pollution with substantial loss of good quality coking coal. The study reported in this paper was undertaken to characterize the effluents from several coal washeries and to evaluate the potential of using various coagulants and coagulant aids for clarification of the effluent with a view to recovery of the coal fines and reuse of the clarified effluent. It has been demonstrated that higher recovery of coal fines can be achieved by using coagulants like alum or ferric chloride with or without coagulant aids with an added advantage of reuse of the clarified effluent in the washery.
Analysis of tritium behaviour and recovery from a water-cooled Pb17Li blanket
International Nuclear Information System (INIS)
Malara, C.; Casini, G.; Viola, A.
1995-01-01
The question of the tritium recovery in water-cooled Pb17Li blankets has been under investigation for several years at JRC Ispra. The method which has been more extensively analysed is that of slowly circulating the breeder out from the blanket units and of extracting the tritium from it outside the plasma vacuum vessel by helium gas purging or vacuum degassing in a suited process apparatus. A computerized model of the tritium behaviour in the blanket units and in the extraction system was developed. It includes four submodels: (1) tritium permeation process from the breeder to the cooling water as a function of the local operative conditions (tritium concentration in Pb17Li, breeder temperature and flow rate); (2) tritium mass balance in each breeding unit; (3) tritium desorption from the breeder material to the gas phase of the extraction system; (4) tritium extraction efficiency as a function of the design parameters of the recovery apparatus. In the present paper, on the basis of this model, a parametric study of the tritium permeation rate in the cooling water and of the tritium inventory in the blanket is carried out. Results are reported and discussed in terms of dimensionless groups which describe the relative effects of the overall resistance on tritium transfer to the cooling water (with and without permeation barriers), circulating Pb17Li flow rate and extraction efficiency of the tritium recovery unit. The parametric study is extended to the recovery unit in the case of tritium extraction by helium purge or vacuum degassing in a droplet spray unit. (orig.)
Huang, H. E.; Liang, C. P.; Jang, C. S.; Chen, J. S.
2015-12-01
Land subsidence due to groundwater exploitation is an urgent environmental problem in Choushui river alluvial fan in Taiwan. Aquifer storage and recovery (ASR), where excess surface water is injected into subsurface aquifers for later recovery, is one promising strategy for managing surplus water and may overcome water shortages. The performance of an ASR scheme is generally evaluated in terms of recovery efficiency, which is defined as percentage of water injected in to a system in an ASR site that fulfills the targeted water quality criterion. Site selection of an ASR scheme typically faces great challenges, due to the spatial variability of groundwater quality and hydrogeological condition. This study proposes a novel method for the ASR site selection based on drinking quality criterion. Simplified groundwater flow and contaminant transport model spatial distributions of the recovery efficiency with the help of the groundwater quality, hydrological condition, ASR operation. The results of this study may provide government administrator for establishing reliable ASR scheme.
Kibassa, Deusdedit
2011-01-01
In Tanzania, the National Water Policy (NAWAPO) of 2002 clearly stipulates that access to water supply and sanitation is a right for every Tanzanian and that cost recovery is the foundation of sustainable service delivery. To meet these demands, water authorities have introduced cost recovery and a water sharing system. The overall objective of this study was to assess the impact of cost recovery and the sharing system on water policy implementation and human rights to water in four villages in the Ileje district. The specific objectives were: (1) to assess the impact of cost recovery and the sharing system on the availability of water to the poor, (2) to assess user willingness to pay for the services provided, (3) to assess community understanding on the issue of water as a human right, (4) to analyse the implications of the results in relation to policies on human rights to water and the effectiveness of the implementation of the national water policy at the grassroots, and (5) to establish the guidelines for water pricing in rural areas. Questionnaires at water demand, water supply, ability and willingness to pay and revenue collection were the basis for data collection. While 36.7% of the population in the district had water supply coverage, more than 73,077 people of the total population of 115,996 still lacked access to clean and safe water and sanitation services in the Ileje district. The country's rural water supply coverage is 49%. Seventy-nine percent of the interviewees in all four villages said that water availability in litres per household per day had decreased mainly due to high water pricing which did not consider the income of villagers. On the other hand, more than 85% of the villagers were not satisfied with the amount they were paying because the services were still poor. On the issue of human rights to water, more than 92% of the villagers know about their right to water and want it exercised by the government. In all four villages, more than
Inventory and review of aquifer storage and recovery in southern Florida
Reese, Ronald S.
2002-01-01
publications > water resources investigations > report 02-4036 US Department of the Interior US Geological Survey WRI 02-4036Inventory and Review of Aquifer Storage and Recovery in Southern Florida By Ronald S. ReeseTallahassee, Florida 2002 prepared as part of the U.S. Geological Survey Place-Based Studies Program ABSTRACT Abstract Introduction Inventory of Data Case Studies Summary References Tables Aquifer storage and recovery in southern Florida has been proposed on an unprecedented scale as part of the Comprehensive Everglades Restoration Plan. Aquifer storage and recovery wells were constructed or are under construction at 27 sites in southern Florida, mostly by local municipalities or counties located in coastal areas. The Upper Floridan aquifer, the principal storage zone of interest to the restoration plan, is the aquifer being used at 22 of the sites. The aquifer is brackish to saline in southern Florida, which can greatly affect the recovery of the freshwater recharged and stored.Well data were inventoried and compiled for all wells at most of the 27 sites. Construction and testing data were compiled into four main categories: (1) well identification, location, and construction data; (2) hydraulic test data; (3) ambient formation water-quality data; and (4) cycle testing data. Each cycle during testing or operation includes periods of recharge of freshwater, storage, and recovery that each last days or months. Cycle testing data include calculations of recovery efficiency, which is the percentage of the total amount of potable water recharged for each cycle that is recovered.Calculated cycle test data include potable water recovery efficiencies for 16 of the 27 sites. However, the number of cycles at most sites was limited; except for two sites, the highest number of cycles was five. Only nine sites had a recovery efficiency above 10 percent for the first cycle, and 10 sites achieved a recovery efficiency above 30 percent during at least one cycle. The
Directory of Open Access Journals (Sweden)
Mark Mullett
2014-03-01
Full Text Available Two nanofiltration membranes, a Dow NF 270 polyamide thin film and a TriSep TS 80 polyamide thin film, were investigated for their retention of ionic species when filtering mine influenced water streams at a range of acidic pH values. The functional iso-electric point of the membranes, characterized by changes in retention over a small pH range, were examined by filtering solutions of sodium sulphate. Both membranes showed changes in retention at pH 3, suggesting a zero net charge on the membranes at this pH. Copper mine drainage and synthetic solutions of mine influenced water were filtered using the same membranes. These solutions were characterized by pH values within 2 and 5, thus crossing the iso-electric point of both membranes. Retention of cations was maximized when the feed solution pH was less than the iso-electric point of the membrane. In these conditions, the membrane has a net positive charge, reducing the transmission rate of cations. From the recoveries of a range of cations, the suitability of nanofiltration was discussed relative to the compliance with mine water discharge criteria and the recovery of valuable commodity metals. The nanofiltration process was demonstrated to offer advantages in metal recovery from mine waste streams, concomitantly enabling discharge criteria for the filtrate disposal to be met.
Energy recovery in SUDS towards smart water grids: A case study
International Nuclear Information System (INIS)
Ramos, Helena M.; Teyssier, Charlotte; Samora, Irene; Schleiss, Anton J.
2013-01-01
The development of a methodology for urban flood adaptation and energy recovery solutions is resting on the concept of Sustainable Urban Drainage Systems (SUDS) as a measure to reduce risks of urban flooding while fully utilizing the available resources. Flood drainage systems are infrastructures essential in urban areas, which include retention ponds that can be used as water storage volumes to damp floods and simultaneously to produce energy, constituting innovative solutions to be integrated in future smart water grid′s designs. The consideration of urban flooding as a problem caused by excess water that can be harvested and re-used is expected to provide a comprehensive representation of a water-energy nexus for future urban areas. The study comprises an optimization of energy recovery in SUDS of a small district area of Lisbon down-town through the use of a low-head hydropower converter. The status-quo solution based on a basin catchment for the average expected runoff is analysed, with influence of the tidal backwater effect of the Atlantic Ocean which causes difficulties to the drainage of excess flow. The methodology used to reach the flow damping and the optimized solution for energy production is presented. -- Highlights: •An innovative solution for Sustainable Urban Drainage Systems (SUDS). •Use of retention ponds to reduce risks of urban flooding while producing energy. •Use of recently developed hydropower converters for low heads. •Solution to be integrated in future smart water networks for increasing efficiency. •Water and energy nexus for sustainable operation towards future smart cities
Effect of illite clay and divalent cations on bitumen recovery
Energy Technology Data Exchange (ETDEWEB)
Ding, X. [SNC-Lavalin Inc., Calgary, AB (Canada); Repka, C. [Baker Petrolite Corp., Fort McMurray, AB (Canada); Xu, Z.; Masliyah, J. [Alberta Univ., Edmonton, AB (Canada). Dept. of Chemical and Materials Engineering
2006-12-15
Nearly 35 per cent of Canada's petroleum needs can be met from the Athabasca oil sands, particularly as conventional sources of petroleum decline. The interactions between bitumen and clay minerals play a key role in the recovery process of bitumen because they affect bitumen aeration. The 2 clays minerals found in various oil sands extraction process streams are kaolinite and illite. In this study, doping flotation tests using deionized water and electrokinetic studies were performed to examine the effect of illite clays on bitumen recovery. The effect of magnesium ions was also examined and compared with calcium ions. This paper also discussed the effects of temperature and tailings water chemistry. The negative effect of illite clay on bitumen recovery was found to be associated with its acidity. Denver flotation cell measurements indicated that the addition of calcium or magnesium ions to the flotation deionized water had only a slight effect on bitumen recovery, but the co-addition of illite clay and divalent cations resulted in a dramatic reduction in bitumen recovery. The effect was more significant at lower process temperature and low pH values. Zeta potential distributions of illite suspensions and bitumen emulsions were measured individually and as a mixture to determine the effect of divalent cations on the interaction between bitumen and illite clay. The presence of 1 mM calcium or magnesium ions in deionized water had a pronounced effect on the interactions between bitumen and illite clay. Slime coating of illite onto bitumen was not observed in zeta potential distribution measurements performed in alkaline tailings water. When tests were conducted using plant recycle water, the combination of illite clay and divalent cations did not have an adverse effect on bitumen recovery. 25 refs., 3 tabs., 15 figs.
Method selection for sustainability assessments: The case of recovery of resources from waste water.
Zijp, M C; Waaijers-van der Loop, S L; Heijungs, R; Broeren, M L M; Peeters, R; Van Nieuwenhuijzen, A; Shen, L; Heugens, E H W; Posthuma, L
2017-07-15
Sustainability assessments provide scientific support in decision procedures towards sustainable solutions. However, in order to contribute in identifying and choosing sustainable solutions, the sustainability assessment has to fit the decision context. Two complicating factors exist. First, different stakeholders tend to have different views on what a sustainability assessment should encompass. Second, a plethora of sustainability assessment methods exist, due to the multi-dimensional characteristic of the concept. Different methods provide other representations of sustainability. Based on a literature review, we present a protocol to facilitate method selection together with stakeholders. The protocol guides the exploration of i) the decision context, ii) the different views of stakeholders and iii) the selection of pertinent assessment methods. In addition, we present an online tool for method selection. This tool identifies assessment methods that meet the specifications obtained with the protocol, and currently contains characteristics of 30 sustainability assessment methods. The utility of the protocol and the tool are tested in a case study on the recovery of resources from domestic waste water. In several iterations, a combination of methods was selected, followed by execution of the selected sustainability assessment methods. The assessment results can be used in the first phase of the decision procedure that leads to a strategic choice for sustainable resource recovery from waste water in the Netherlands. Copyright © 2017 Elsevier Ltd. All rights reserved.
Quantitative Recovery of Aeromonas hydrophila from Nsukka Sewage
African Journals Online (AJOL)
Sewage samples were analyzed for the recovery of Aeromonas hydrophila. The pH of the samples ranged from 8.2 - 9.6 and the temperature from 20.0 – 28.7. Samples were enriched in alkaline peptone water medium (pH 8.4) before plating on different selective media. Media tested for the recovery of Aeromonas ...
Balcik-Canbolat, Cigdem; Sengezer, Cisel; Sakar, Hacer; Karagunduz, Ahmet; Keskinler, Bulent
2017-11-01
It has been recognized by the whole world that textile industry which produce large amounts of wastewater with strong color and toxic organic compounds is a major problematical industry requiring effective treatment solutions. In this study, reverse osmosis (RO) membranes were tested on biologically treated real dye bath wastewater with and without pretreatment by nanofiltration (NF) membrane to recovery. Also membrane fouling and reuse potential of membranes were investigated by multiple filtrations. Obtained results showed that only NF is not suitable to produce enough quality to reuse the wastewater in a textile industry as process water while RO provide successfully enough permeate quality. The results recommend that integrated NF/RO membrane process is able to reduce membrane fouling and allow long-term operation for real dye bath wastewater.
Investigating the interactions of decentralized and centralized wastewater heat recovery systems.
Sitzenfrei, Robert; Hillebrand, Sebastian; Rauch, Wolfgang
2017-03-01
In the urban water cycle there are different sources for extracting energy. In addition to potential and chemical energy in the wastewater, thermal energy can also be recovered. Heat can be recovered from the wastewater with heat exchangers that are located decentralized and/or centralized at several locations throughout the system. It can be recovered directly at the source (e.g. in the showers and bathrooms), at building block level (e.g. warm water tanks collecting all grey water), in sewers or at the wastewater treatment plant. However, an uncoordinated installation of systems on such different levels can lead to competing technologies. To investigate these interactions, a modelling environment is set up, tested and calibrated based on continuous sewer temperature and flow measurements. With that approach different heat recovery scenarios on a household level (decentralized) and of in-sewer heat recovery (centralized) are investigated. A maximum performance drop of 40% for a centralized energy recovery system was estimated when all bathrooms are equipped with decentralized recovery systems. Therefore, the proposed modelling approach is suitable for testing different future conditions and to identify robust strategies for heat recovery systems from wastewater.
Amoxicillin in a biological water recovery system
International Nuclear Information System (INIS)
Morse, A.; Jackson, A.; Rainwater, K.; Pickering, K.
2002-01-01
wastewater recovery system as a drinking water supply source. (author)
Page, Declan; Miotliński, Konrad; Dillon, Peter; Taylor, Russel; Wakelin, Steve; Levett, Kerry; Barry, Karen; Pavelic, Paul
2011-10-01
A changing climate and increasing urbanisation has driven interest in the use of aquifer storage and recovery (ASR) schemes as an environmental management tool to supplement conventional water resources. This study focuses on ASR with stormwater in a low permeability fractured rock aquifer and the selection of water treatment methods to prevent well clogging. In this study two different injection and recovery phases were trialed. In the first phase ~1380 m(3) of potable water was injected and recovered over four cycles. In the second phase ~3300 m(3) of treated stormwater was injected and ~2410 m(3) were subsequently recovered over three cycles. Due to the success of the potable water injection cycles, its water quality was used to set pre-treatment targets for harvested urban stormwater of ≤ 0.6 NTU turbidity, ≤ 1.7 mg/L dissolved organic carbon and ≤ 0.2 mg/L biodegradable dissolved organic carbon. A range of potential ASR pre-treatment options were subsequently evaluated resulting in the adoption of an ultrafiltration/granular activated carbon system to remove suspended solids and nutrients which cause physical and biological clogging. ASR cycle testing with potable water and treated stormwater demonstrated that urban stormwater containing variable turbidity (mean 5.5 NTU) and organic carbon (mean 8.3 mg/L) concentrations before treatment could be injected into a low transmissivity fractured rock aquifer and recovered for irrigation supplies. A small decline in permeability of the formation in the vicinity of the injection well was apparent even with high quality water that met turbidity and DOC but could not consistently achieve the BDOC criteria. Copyright © 2011 Elsevier Ltd. All rights reserved.
Directory of Open Access Journals (Sweden)
Y. Shi
2016-02-01
Full Text Available Poly (vinyl alcohol/poly (vinyl pyrrolidone (PVA/PVP hydrogels with various polymerization degrees of PVA were synthesized by a repeated freezing-thawing method. The influence of polymerization degree on microstructure, water content, friction coefficient, compressive fatigue and recovery properties of PVA/PVP hydrogels were investigated. The results showed that higher polymerization degree resulted in larger compressive modulus and lower friction coefficient. The fatigue behaviors of PVA/PVP hydrogels were evaluated under sinusoidal compressive loading from 200 to 800 N at 5 Hz for up to 50 000 cycles. The unconfined uniaxial compressive tests of PVA/PVP hydrogels were performed before and after fatigue test. During the fatigue test, the height of the hydrogel rapidly decreased at first and gradually became stable with loading cycles. The compressive tangent modulus measured 0 h after fatigue was significantly larger than the values obtained before test, and then the modulus recovered to its original level for 48 h after test. However, the geometry of hydrogels could not return to the original level due to the creep effects. PVA/PVP hydrogels prepared with lower polymerization degree showed better recovery capability than that prepared with high polymerization degree.
Water quality and herbivory interactively drive coral-reef recovery patterns in American Samoa.
Directory of Open Access Journals (Sweden)
Peter Houk
Full Text Available BACKGROUND: Compared with a wealth of information regarding coral-reef recovery patterns following major disturbances, less insight exists to explain the cause(s of spatial variation in the recovery process. METHODOLOGY/PRINCIPAL FINDINGS: This study quantifies the influence of herbivory and water quality upon coral reef assemblages through space and time in Tutuila, American Samoa, a Pacific high island. Widespread declines in dominant corals (Acropora and Montipora resulted from cyclone Heta at the end of 2003, shortly after the study began. Four sites that initially had similar coral reef assemblages but differential temporal dynamics four years following the disturbance event were classified by standardized measures of 'recovery status', defined by rates of change in ecological measures that are known to be sensitive to localized stressors. Status was best predicted, interactively, by water quality and herbivory. Expanding upon temporal trends, this study examined if similar dependencies existed through space; building multiple regression models to identify linkages between similar status measures and local stressors for 17 localities around Tutuila. The results highlighted consistent, interactive interdependencies for coral reef assemblages residing upon two unique geological reef types. Finally, the predictive regression models produced at the island scale were graphically interpreted with respect to hypothesized site-specific recovery thresholds. CONCLUSIONS/SIGNIFICANCE: Cumulatively, our study purports that moving away from describing relatively well-known patterns behind recovery, and focusing upon understanding causes, improves our foundation to predict future ecological dynamics, and thus improves coral reef management.
Ntengwe, F. W.
The recovery of costs in water utilities is a key element in sustainability of both the provider and of the water resource itself. This paper examines the role played by consumer awareness in their willingness to pay for water supply in two cities in Zambia. Research conducted in Kitwe and Lusaka reveals that level of awareness, willingness to pay and cost recovery all vary directly. Whereas awareness may increase consumers’ willingness to pay, therefore assisting service provider’s cost recovery, the research presented here also reveals that factors such as ability to pay, affordability of bills, quality of water and of the service provided, as well as good business-consumer relations are important factors affecting a utility’s ability to recover its costs. If water utilities are to attain sustainability over the long-term, they will have to embark on and maintain consumer awareness programmes, raise the quality of service (e.g., through improved operation and maintenance), and develop and apply the right water tariff.
Developing the multiple stress-strain creep recovery (MS-SCR) test
Elnasri, Mahmoud; Airey, Gordon; Thom, Nick
2018-04-01
While most published work from Europe has been concerned with evaluating binders' resistance to rutting based on their stiffness (deformation resistance), work originating in the US has mainly been concerned with ranking binders based on their recoverability in a multiple stress form. This paper details the design of a new modified multiple stress-strain creep recovery (MS-SCR) test. The test is designed to evaluate binders' rutting resistance based on two rutting resistance mechanisms: stiffness and recoverability. A preliminary investigation is presented in this paper followed by details of the design of the new modified test. A 40/60 penetration grade bitumen and bitumen-filler mastics prepared with three filler concentrations (35%, 50%, and 65% filler content by mass of mastic) were tested. In addition, two polymer modified bitumens (PMBs) using the same base bitumen type were examined for validation. Two parameters are introduced to characterise the short and long recovery in the new test. In terms of stiffness, the test allows the behaviour of binders at different stress levels and loading cycles to be studied and produces a new parameter that can quantify the degree of modification. Finally, a relationship between nonlinearity and normal force in the test was investigated.
International Nuclear Information System (INIS)
Han, Xiaoqu; Yan, Junjie; Karellas, Sotirios; Liu, Ming; Kakaras, Emmanuel; Xiao, Feng
2017-01-01
Highlights: • Energy-saving potential of FPLPS in different cold-ends and lignite types is evaluated. • Water-saving of FPLPS is realized through recovery of water extracted from lignite. • Integrations of low pressure economizer and spray tower with FPLPS are proposed. • Thermodynamic and economic performances of different schemes are investigated. - Abstract: The flue gas pre-dried lignite-fired power system (FPLPS) integrates the fan mill flue gas dryer with an open pulverizing system and yields an increase of the boiler efficiency. Particularly, the dryer exhaust gas contains a large amount of vapor removed from high moisture lignite, which exhibits great potential for waste heat and water recovery. Two available options are considered to realize the extraction of water from lignite: the low pressure economizer (LPE) for water-cooled units and the spray tower (SPT) integrated with heat pump for air-cooled units. This paper aims at evaluating the energy saving and water recovery potentials of the FPLPS integrated with both schemes. Results showed that the plant efficiency improvement of the FPLPS at base case varied from 1.14% to 1.47% depending on the moisture content of raw lignite. The water recovery ratio and plant efficiency improvement in the optimal LPE scheme were 39.4% and 0.20%, respectively. In contrast, 83.3% of water recover ratio and 110.6 MW_t_h heat supply were achieved in the SPT system. Both schemes were economically feasible with discounted payback periods of around 3 years. Moreover, parametric analysis was conducted to examine the economic viability of both schemes with different lignite types and market factors.
Recovery of uranium from uranium mine waters and copper ore leaching solutions
Energy Technology Data Exchange (ETDEWEB)
George, D R; Ross, J R [Salt Lake City Metallurgy Research Center, Salt Lake City, UT (United States)
1967-06-15
Waters pumped from uranium mines in New Mexico are processed by ion exchange to recover uranium. Production is approximately 200 lb U{sub 3}O{sub 8}/d from waters containing 5 to 15 ppm U{sub 3}O{sub 8}. Recoveries range from 80 to 90%. Processing plants are described. Uranium has been found in the solutions resulting from the leaching of copper-bearing waste rock at most of the major copper mines in western United States. These solutions, which are processed on a very large scale for recovery of copper, contain 2 to 12 ppm U{sub 3}O{sub 8}. Currently, uranium is not being recovered, but a potential production of up to 6000 lb U{sub 3}O{sub 8}/d is indicated. Ion exchange and solvent extraction research studies are described. (author)
Tan, Kunxiong
Recovering heat rejected from the condenser in a refrigeration system to generate service hot water for buildings is commonly seen in both tropics and subtropics. This study included a critical literature review on heat recovery from air-conditioning/refrigeration systems, with particular emphasis on the direct condenser heat recovery and its related mathematical simulation models. The review identified many applications of desuperheaters to small-scaled residential air-conditioning or heat pump units. The heat and mass transfer characteristics of a RUWCT have been studied in detail, which is based on the theory of direct contact heat and mass transfer between moist air and water. The thesis reports on the differences in the heat and mass transfer process that takes place in a RUWCT, a standard water cooling tower and a spray room. A corrective factor that accounts for the change of chilled water mass flow rate is incorporated into the theoretical analysis of a RUWCT. The algorithms developed from the theoretical analysis are capable of predicting the heat exchange capacity of a RUWCT at any operating conditions. This theoretical analysis is the first of its kind. Extensive field experimental work on the heat and mass transfer characteristics of a RUWCT has been carried out in a hotel building in Haikou, Hainan province of China, where the RUWCT is installed. Results from the experimental work indicate that the theoretical analysis can represent the heat and mass transfer characteristics in a RUWCT with an acceptable accuracy. A numerical analysis for a RUWCT is undertaken to determine both air and water states at intermediate horizontal sections along the tower height. Field experimental data confirm that the predicted air and water conditions at the tower inlet and outlet are of acceptable accuracy. A steady-state mathematical model is developed to simulate the operational performance of a water chiller plant complete with a desuperheater heat recovery system and
An assessment of climate change impacts on micro-hydropower energy recovery in water supply networks
Brady, Jennifer; Patil, Sopan; McNabola, Aonghus; Gallagher, John; Coughlan, Paul; Harris, Ian; Packwood, Andrew; Williams, Prysor
2015-04-01
Continuity of service of a high quality water supply is vital in sustaining economic and social development. However, water supply and wastewater treatment are highly energy intensive processes and the overall cost of water provision is rising rapidly due to increased energy costs, higher capital investment requirements, and more stringent regulatory compliance in terms of both national and EU legislation. Under the EU Directive 2009/28/EC, both Ireland and the UK are required to have 16% and 15% respectively of their electricity generated by renewable sources by 2020. The projected impacts of climate change, population growth and urbanisation will place additional pressures on resources, further increasing future water demand which in turn will lead to higher energy consumption. Therefore, there is a need to achieve greater efficiencies across the water industry. The implementation of micro-hydropower turbines within the water supply network has shown considerable viability for energy recovery. This is achieved by harnessing energy at points of high flow or pressure along the network which can then be utilised on site or alternatively sold to the national grid. Micro-hydropower can provide greater energy security for utilities together with a reduction in greenhouse gas emissions. However, potential climate change impacts on water resources in the medium-to-long term currently act as a key barrier to industry confidence as changes in flow and pressure within the network can significantly alter the available energy for recovery. The present study aims to address these uncertainties and quantify the regional and local impacts of climate change on the viability of energy recovery across water infrastructure in Ireland and the UK. Specifically, the research focuses on assessing the potential future effects of climate change on flow rates at multiple pressure reducing valve sites along the water supply network and also in terms of flow at a number of wastewater
Liberato, Maria Astrid Rocha; Gonçalves, José Francisco de Carvalho; Chevreuil, Larissa Ramos; Nina Junior, Adamir da Rocha; Fernandes, Andreia Varmes; Santos Junior, Ulysses Moreira dos
2006-01-01
The physiological performance of acariquara (Minquartia guianensis) seedlings submitted to water deficit and the recovery of physiological parameters during rehydration were investigated in a greenhouse experiment. The analyzed parameters were: leaf water potential, gas exchange and chlorophyll a fluorescence. After thirty-five days, non-irrigated plants exhibited a leaf water potential 70 % lower compared to control plants (irrigated daily) and the stomatal conductance reached values close t...
Jasper, Cameron A.
Although aquifer recharge and recovery systems are a sustainable, decentralized, low cost, and low energy approach for the reclamation, treatment, and storage of post- treatment wastewater, they can suffer from poor infiltration rates and the development of a near-surface clogging layer within infiltration ponds. One such aquifer recharge and recovery system, the Aurora Water site in Colorado, U.S.A, functions at about 25% of its predicted capacity to recharge floodplain deposits by flooding infiltration ponds with post-treatment wastewater extracted from river bank aquifers along the South Platte River. The underwater self-potential method was developed to survey self-potential signals at the ground surface in a flooded infiltration pond for mapping infiltration pathways. A method for using heat as a groundwater tracer within the infiltration pond used an array of in situ high-resolution temperature sensing probes. Both relatively positive and negative underwater self-potential anomalies are consistent with observed recovery well pumping rates and specific discharge estimates from temperature data. Results from electrical resistivity tomography and electromagnetics surveys provide consistent electrical conductivity distributions associated with sediment textures. A lab method was developed for resistivity tests of near-surface sediment samples. Forward numerical modeling synthesizes the geophysical information to best match observed self- potential anomalies and provide permeability distributions, which is important for effective aquifer recharge and recovery system design, and optimization strategy development.
Fernández-Elías, Valentín E; Ortega, Juan F; Nelson, Rachael K; Mora-Rodriguez, Ricardo
2015-09-01
It is usually stated that glycogen is stored in human muscle bound to water in a proportion of 1:3 g. We investigated this proportion in biopsy samples during recovery from prolonged exercise. On two occasions, nine aerobically trained subjects ([Formula: see text] = 54.4 ± 1.05 mL kg(-1) min(-1); mean ± SD) dehydrated 4.6 ± 0.2 % by cycling 150 min at 65 % [Formula: see text] in a hot-dry environment (33 ± 4 °C). One hour after exercise subjects ingested 250 g of carbohydrates in 400 mL of water (REHLOW) or the same syrup plus water to match fluid losses (i.e., 3170 ± 190 mL; REHFULL). Muscle biopsies were obtained before, 1 and 4 h after exercise. In both trials muscle water decreased from pre-exercise similarly by 13 ± 6 % and muscle glycogen by 44 ± 10 % (P recovery, glycogen levels were similar in both trials (79 ± 15 and 87 ± 18 g kg(-1) dry muscle; P = 0.20) while muscle water content was higher in REHFULL than in REHLOW (3814 ± 222 vs. 3459 ± 324 g kg(-1) dm, respectively; P recovery ratio 1:3) while during REHFULL this ratio was higher (1:17). Our findings agree with the long held notion that each gram of glycogen is stored in human muscle with at least 3 g of water. Higher ratios are possible (e.g., during REHFULL) likely due to water storage not bound to glycogen.
Energy Technology Data Exchange (ETDEWEB)
Knutson, Chad [Univ. of Illinois, Champaign, IL (United States); Dastgheib, Seyed A. [Univ. of Illinois, Champaign, IL (United States); Yang, Yaning [Univ. of Illinois, Champaign, IL (United States); Ashraf, Ali [Univ. of Illinois, Champaign, IL (United States); Duckworth, Cole [Univ. of Illinois, Champaign, IL (United States); Sinata, Priscilla [Univ. of Illinois, Champaign, IL (United States); Sugiyono, Ivan [Univ. of Illinois, Champaign, IL (United States); Shannon, Mark A. [Univ. of Illinois, Champaign, IL (United States); Werth, Charles J. [Univ. of Illinois, Champaign, IL (United States)
2012-07-01
Power generation in the Illinois Basin is expected to increase by as much as 30% by the year 2030, and this would increase the cooling water consumption in the region by approximately 40%. This project investigated the potential use of produced water from CO2 enhanced oil recovery (CO2-EOR) operations; coal-bed methane (CBM) recovery; and active and abandoned underground coal mines for power plant cooling in the Illinois Basin. Specific objectives of this project were: (1) to characterize the quantity, quality, and geographic distribution of produced water in the Illinois Basin; (2) to evaluate treatment options so that produced water may be used beneficially at power plants; and (3) to perform a techno-economic analysis of the treatment and transportation of produced water to thermoelectric power plants in the Illinois Basin. Current produced water availability within the basin is not large, but potential flow rates up to 257 million liters per day (68 million gallons per day (MGD)) are possible if CO2-enhanced oil recovery and coal bed methane recovery are implemented on a large scale. Produced water samples taken during the project tend to have dissolved solids concentrations between 10 and 100 g/L, and water from coal beds tends to have lower TDS values than water from oil fields. Current pretreatment and desalination technologies including filtration, adsorption, reverse osmosis (RO), and distillation can be used to treat produced water to a high quality level, with estimated costs ranging from $2.6 to $10.5 per cubic meter ($10 to $40 per 1000 gallons). Because of the distances between produced water sources and power plants, transportation costs tend to be greater than treatment costs. An optimization algorithm was developed to determine the lowest cost pipe network connecting sources and sinks. Total water costs increased with flow rate up to 26 million liters per day (7 MGD), and the range was from $4 to $16 per cubic meter
Qin, Mohan; Molitor, Hannah; Brazil, Brian; Novak, John T; He, Zhen
2016-01-01
A microbial electrolysis cell (MEC)-forward osmosis (FO) system was previously reported for recovering ammonium and water from synthetic solutions, and here it has been advanced with treating landfill leachate. In the MEC, 65.7±9.1% of ammonium could be recovered in the presence of cathode aeration. Without aeration, the MEC could remove 54.1±10.9% of ammonium from the leachate, but little ammonia was recovered. With 2M NH4HCO3 as the draw solution, the FO process achieved 51% water recovery from the MEC anode effluent in 3.5-h operation, higher than that from the raw leachate. The recovered ammonia was used as a draw solute in the FO for successful water recovery from the treated leachate. Despite the challenges with treating returning solution from the FO, this MEC-FO system has demonstrated the potential for resource recovery from wastes, and provide a new solution for sustainable leachate management. Copyright © 2015 Elsevier Ltd. All rights reserved.
Water tables constrain height recovery of willow on Yellowstone's northern range.
Bilyeu, Danielle M; Cooper, David J; Hobbs, N Thompson
2008-01-01
Excessive levels of herbivory may disturb ecosystems in ways that persist even when herbivory is moderated. These persistent changes may complicate efforts to restore ecosystems affected by herbivores. Willow (Salix spp.) communities within the northern range in Yellowstone National Park have been eliminated or degraded in many riparian areas by excessive elk (Cervus elaphus L.) browsing. Elk browsing of riparian willows appears to have diminished following the reintroduction of wolves (Canis lupis L.), but it remains uncertain whether reduced herbivory will restore willow communities. The direct effects of elk browsing on willows have been accompanied by indirect effects from the loss of beaver (Castor canadensis Kuhl) activity, including incision of stream channels, erosion of fine sediments, and lower water tables near streams historically dammed by beaver. In areas where these changes have occurred, lowered water tables may suppress willow height even in the absence of elk browsing. We conducted a factorial field experiment to understand willow responses to browsing and to height of water tables. After four years of protection from elk browsing, willows with ambient water tables averaged only 106 cm in height, with negligible height gain in two of three study species during the last year of the experiment. Willows that were protected from browsing and had artificially elevated water tables averaged 147 cm in height and gained 19 cm in the last year of the experiment. In browsed plots, elevated water tables doubled height gain during a period of slightly reduced browsing pressure. We conclude that water availability mediates the rate of willow height gain and may determine whether willows grow tall enough to escape the browse zone of elk and gain resistance to future elk browsing. Consequently, in areas where long-term beaver absence has resulted in incised stream channels and low water tables, a reduction in elk browsing alone may not be sufficient for recovery
Methods to maximise recovery of environmental DNA from water samples.
Directory of Open Access Journals (Sweden)
Rheyda Hinlo
Full Text Available The environmental DNA (eDNA method is a detection technique that is rapidly gaining credibility as a sensitive tool useful in the surveillance and monitoring of invasive and threatened species. Because eDNA analysis often deals with small quantities of short and degraded DNA fragments, methods that maximize eDNA recovery are required to increase detectability. In this study, we performed experiments at different stages of the eDNA analysis to show which combinations of methods give the best recovery rate for eDNA. Using Oriental weatherloach (Misgurnus anguillicaudatus as a study species, we show that various combinations of DNA capture, preservation and extraction methods can significantly affect DNA yield. Filtration using cellulose nitrate filter paper preserved in ethanol or stored in a -20°C freezer and extracted with the Qiagen DNeasy kit outperformed other combinations in terms of cost and efficiency of DNA recovery. Our results support the recommendation to filter water samples within 24hours but if this is not possible, our results suggest that refrigeration may be a better option than freezing for short-term storage (i.e., 3-5 days. This information is useful in designing eDNA detection of low-density invasive or threatened species, where small variations in DNA recovery can signify the difference between detection success or failure.
Advanced regenerative heat recovery system
Prasad, A.; Jasti, J. K.
1982-02-01
A regenerative heat recovery system was designed and fabricated to deliver 1500 scfm preheated air to a maximum temperature of 1600 F. Since this system is operating at 2000 F, the internal parts were designed to be fabricated with ceramic materials. This system is also designed to be adaptable to an internal metallic structure to operate in the range of 1100 to 1500 F. A test facility was designed and fabricated to test this system. The test facility is equipped to impose a pressure differential of up to 27 inches of water column in between preheated air and flue gas lines for checking possible leakage through the seals. The preliminary tests conducted on the advanced regenerative heat recovery system indicate the thermal effectiveness in the range of 60% to 70%. Bench scale studies were conducted on various ceramic and gasket materials to identify the proper material to be used in high temperature applications. A market survey was conducted to identify the application areas for this heat recovery system. A cost/benefit analysis showed a payback period of less than one and a half years.
Spontaneous Recovery of Human Spatial Memory in a Virtual Water Maze
Luna, David; Martínez, Héctor
2015-01-01
The occurrence of spontaneous recovery in human spatial memory was assessed using a virtual environment. In Experiment 1, spatial memory was established by training participants to locate a hidden platform in a virtual water maze using a set of four distal landmarks. In Experiment 2, after learning about the location of a hidden platform, the…
Classification of methods and equipment recovery secondary waters
Directory of Open Access Journals (Sweden)
G. V. Kalashnikov
2017-01-01
Full Text Available The issues of purification of secondary waters of industrial production have an important place and are relevant in the environmental activities of all food and chemical industries. For cleaning the transporter-washing water of beet-sugar production the key role is played by the equipment of treatment plants. A wide variety of wastewater treatment equipment is classified according to various methods. Typical structures used are sedimentation tanks, hydrocyclones, separators, centrifuges. In turn, they have a different degree of purification, productivity through the incoming suspension and purified secondary water. This is equipment is divided into designs, depending on the range of particles to be removed. A general classification of methods for cleaning the transporter-washing water, as well as the corresponding equipment, is made. Based on the analysis of processes and instrumentation, the main methods of wastewater treatment are identified: mechanical, physicochemical, combined, biological and disinfection. To increase the degree of purification and reduce technical and economic costs, a combined method is widely used. The main task of the site for cleaning the transporter-washing waters of sugar beet production is to provide the enterprise with water in the required quantity and quality, with economical use of water resources, taking into account the absence of pollution of surface and groundwater by industrial wastewater. In the sugar industry is currently new types of washing equipment of foreign production are widely used, which require high quality and a large amount of purified transporter-washing water for normal operation. The proposed classification makes it possible to carry out a comparative technical and economic analysis when choosing the methods and equipment for recuperation of secondary waters. The main equipment secondary water recovery used at the beet-sugar plant is considered. The most common beet processing plant is a
Peng, Changsheng; Liu, Yanyan; Bi, Jingjing; Xu, Huizhen; Ahmed, Abou-Shady
2011-05-30
In this paper, a laboratory-scale process which combined electrolysis (EL) and electrodialysis (ED) was developed to treat copper-containing wastewater. The feasibility of such process for copper recovery as well as water reuse was determined. Effects of three operating parameters, voltage, initial Cu(2+) concentration and water flux on the recovery of copper and water were investigated and optimized. The results showed that about 82% of copper could be recovered from high concentration wastewater (HCW, >400mg/L) by EL, at the optimal conditions of voltage 2.5 V/cm and water flux 4 L/h; while 50% of diluted water could be recycled from low concentration wastewater (LCW, water flux 4 L/h. However, because of the limitation of energy consumption (EC), LCW for EL and HCW for ED could not be treated effectively, and the effluent water of EL and concentrated water of ED should be further treated before discharged. Therefore, the combination process of EL and ED was developed to realize the recovery of copper and water simultaneously from both HCW and LCW. The results of the EL-ED process showed that almost 99.5% of copper and 100% of water could be recovered, with the energy consumption of EL ≈ 3 kW h/kg and ED ≈ 2 kW h/m(3). According to SEM and EDX analysis, the purity of recovered copper was as high as 97.9%. Copyright © 2011 Elsevier B.V. All rights reserved.
Potentials of heat recovery from 850C LEP cooling water
International Nuclear Information System (INIS)
Koelling, M.
1982-06-01
Most of the cooling water from LEP has a too low temperature (30 to 40 0 C) to be considered for economical recovery of energy. However, it is hoped that the heat from the klystrons be removed at a temperature of 85 0 C and that this part of the LEP cooling water might be used for saving primary energy. In this study different possibilities have been investigated to make use of the waste heat for heating purposes during winter time, for saving energy in the refrigeration process in summer and for power generation. Cost estimates for these installations are also given and show their economic drawbacks. (orig.)
Sustainable water recovery from oily wastewater via forward osmosis-membrane distillation (FO-MD).
Zhang, Sui; Wang, Peng; Fu, Xiuzhu; Chung, Tai-Shung
2014-04-01
This study proposed and investigated a hybrid forward osmosis - membrane distillation (FO-MD) system for sustainable water recovery from oily wastewater by employing lab-fabricated FO and MD hollow fiber membranes. Stable oil-in-water emulsions of different concentrations with small droplet sizes (oil droplets and partial permeation of acetic acid could be achieved. Finally, an integrated FO-MD system was developed to treat the oily wastewater containing petroleum, surfactant, NaCl and acetic acid at 60 °C in the batch mode. The water flux in FO undergoes three-stage decline due to fouling and reduction in osmotic driving force, but is quite stable in MD regardless of salt concentration. Oily wastewater with relatively high salinity could be effectively recovered by the FO-MD hybrid system while maintaining large water flux, at least 90% feed water recovery could be readily attained with only trace amounts of oil and salts, and the draw solution was re-generated for the next rounds of FO-MD run. Interestingly, significant amount of acetic acid was also retained in the permeate for further reuse as a chemical additive during the production of crude oil. The work has demonstrated that not only water but also organic additives in the wastewater could be effectively recovered by FO-MD systems for reuse or other utilizations. Copyright © 2014 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Lu, Haibao; Leng, Jinsong; Min Huang, Wei; Fu, Y Q
2014-01-01
A thermally responsive polyurethane shape memory polymer (SMP) can be actuated in water through a hydrogen bonding interaction between water and the SMP. In this work, we present a comprehensive approach to quantify the hydrogen bonding on the shape recovery behavior of a polyurethane SMP. The stimuli response to the hydrogen bonding of the polyurethane SMP was investigated in ethanol/water mixtures by varying the water content. It was found that depending on the water content, the SMP features a critical hydrogen bonding strength associated with its shape recovery behavior. The Hildebrand solubility parameter theory was employed to quantitatively identify and separate the hydrogen bonding effect of the ethanol/water mixture on the shape recovery ratio and the time. Furthermore, a phenomenological model was developed to predict the glass transition temperature and the shape recovery time of a polyurethane SMP and was verified by the available experimental results. (paper)
Application of temperature responsive polymers for water recovery from mineral tailings
Energy Technology Data Exchange (ETDEWEB)
Franks, G.; O' Shea, J.P.; Qiao, G. [Melbourne Univ., Melbourne (Australia). Australian Mineral Science Research Inst.; Li, H. [Alberta Research Council, Edmonton, AB (Canada)
2008-07-01
The Australian Mineral Science Research Institute ((AMSRI) was built in 2005 as a collaborative research project between industry and academic researchers in Australia. Conventional flocculants produce inter-particle attraction that causes aggregation, rapid sedimentation, and high moisture levels in resulting cakes and sediments. This presentation described a study conducted at the AMSRI to evaluate stimulus responsive flocculation processes for dewatering. Stimuli included pH and temperature. Polymers used in the experiments included non-ionic polymers (PNIPAM) cationic co-polymers (CPNIPAM) and cationic polyacrylamide (PAM). Silica powder, kaolinite, and alumina powder settling results with PNIPAM at 22 degrees and 50 degrees C were investigated. Kaolinite settling results at 22 and 50 degrees C were also investigated. Supernatants at 22 and 50 degrees C were compared. Alumina settling results with PNIPAMs were tested at different charge densities. The effects of non-ionic PNIPAM on water clarity were also evaluated. Results of the study showed that all processes developed in the study have the potential for improving water recovery and reducing the volume of oil sands tailings. Solids flocculation and consolidation appeared to be possible using only a single polymer. It was concluded that polymer performance depends on molecular weight, dosage, and charge density. tabs., figs.
International Nuclear Information System (INIS)
Smith, P.J.; Van Brunt, K.M.
1992-11-01
This document describes the proposed plan for closure of the Test Area North-726 chromate water storage and Test Area North-726A chromate treatment units at the Idaho National Engineering Laboratory in accordance with the Resource Conservation and Recovery Act interim status closure requirements. The location, size, capacity, and history of the units are described, and their current status is discussed. The units will be closed by treating remaining waste in storage, followed by thorough decontamination of the systems. Sufficient sampling and analysis, and documentation of all activities will be performed to demonstrate clean closure
Directory of Open Access Journals (Sweden)
Joan Laur
Full Text Available Gas exchange is constrained by the whole-plant hydraulic conductance (Kplant. Leaves account for an important fraction of Kplant and may therefore represent a major determinant of plant productivity. Leaf hydraulic conductance (Kleaf decreases with increasing water stress, which is due to xylem embolism in leaf veins and/or the properties of the extra-xylary pathway. Water flow through living tissues is facilitated and regulated by water channel proteins called aquaporins (AQPs. Here we assessed changes in the hydraulic conductance of Populus trichocarpa leaves during a dehydration-rewatering episode. While leaves were highly sensitive to drought, Kleaf recovered only 2 hours after plants were rewatered. Recovery of Kleaf was absent when excised leaves were bench-dried and subsequently xylem-perfused with a solution containing AQP inhibitors. We examined the expression patterns of 12 highly expressed AQP genes during a dehydration-rehydration episode to identify isoforms that may be involved in leaf hydraulic adjustments. Among the AQPs tested, several genes encoding tonoplast intrinsic proteins (TIPs showed large increases in expression in rehydrated leaves, suggesting that TIPs contribute to reversing drought-induced reductions in Kleaf. TIPs were localized in xylem parenchyma, consistent with a role in facilitating water exchange between xylem vessels and adjacent living cells. Dye uptake experiments suggested that reversible embolism formation in minor leaf veins contributed to the observed changes in Kleaf.
Laur, Joan; Hacke, Uwe G
2014-01-01
Gas exchange is constrained by the whole-plant hydraulic conductance (Kplant). Leaves account for an important fraction of Kplant and may therefore represent a major determinant of plant productivity. Leaf hydraulic conductance (Kleaf) decreases with increasing water stress, which is due to xylem embolism in leaf veins and/or the properties of the extra-xylary pathway. Water flow through living tissues is facilitated and regulated by water channel proteins called aquaporins (AQPs). Here we assessed changes in the hydraulic conductance of Populus trichocarpa leaves during a dehydration-rewatering episode. While leaves were highly sensitive to drought, Kleaf recovered only 2 hours after plants were rewatered. Recovery of Kleaf was absent when excised leaves were bench-dried and subsequently xylem-perfused with a solution containing AQP inhibitors. We examined the expression patterns of 12 highly expressed AQP genes during a dehydration-rehydration episode to identify isoforms that may be involved in leaf hydraulic adjustments. Among the AQPs tested, several genes encoding tonoplast intrinsic proteins (TIPs) showed large increases in expression in rehydrated leaves, suggesting that TIPs contribute to reversing drought-induced reductions in Kleaf. TIPs were localized in xylem parenchyma, consistent with a role in facilitating water exchange between xylem vessels and adjacent living cells. Dye uptake experiments suggested that reversible embolism formation in minor leaf veins contributed to the observed changes in Kleaf.
Studies Concerning Water-Surface Deposits in Recovery Boilers
Energy Technology Data Exchange (ETDEWEB)
Strandberg, O; Arvesen, J; Dahl, L
1971-11-15
The Feed-water Committee of the Stiftelsen Svensk Cellulosaforskning (Foundation for Swedish Cellulose Research) has initiated research and investigations which aim to increase knowledge about water-surface deposits in boiler tubes, and the resulting risks of gas-surface corrosion in chemical recovery boilers (sulphate pulp industry). The Committee has arranged with AB Atomenergi, Studsvik, for investigations into the water-surface deposits on tubes from six Scandinavian boilers. These investigations have included direct measurements of the thermal conductivity of the deposits, and determinations of their quantity, thickness and structure have been carried out. Previous investigations have shown that gas-surface corrosion can occur at tube temperatures above 330 deg C. The measured values for the thermal conductivity of the deposits indicate that even with small quantities of deposit (c. 1 g/dm2 ) and a moderate boiler pressure (40 atm), certain types of deposit can give rise to the above-mentioned surface temperature, at which the risk of gas-surface corrosion becomes appreciable. For higher boiler pressures the risk is great even with a minimal layer of deposit. The critical deposit thickness can be as low as 0.1 mm
2010-07-01
... for Use With Small Appliances C Appendix C to Subpart F of Part 82 Protection of Environment... Recovery Devices for Use With Small Appliances Recovery Efficiency Test Procedure for Refrigerant Recovery Equipment Used on Small Appliances The following test procedure is utilized to evaluate the efficiency of...
Osmotically-driven membrane processes for water reuse and energy recovery
Achilli, Andrea
Osmotically-driven membrane processes are an emerging class of membrane separation processes that utilize concentrated brines to separate liquid streams. Their versatility of application make them an attractive alternative for water reuse and energy production/recovery. This work focused on innovative applications of osmotically-driven membrane processes. The novel osmotic membrane bioreactor (OMBR) system for water reuse was presented. Experimental results demonstrated high sustainable flux and relatively low reverse diffusion of solutes from the draw solution into the mixed liquor. Membrane fouling was minimal and controlled with osmotic backwashing. The OMBR system was found to remove greater than 99% of organic carbon and ammonium-nitrogen. Forward osmosis (FO) can employ different draw solution in its process. More than 500 inorganic compounds were screened as draw solution candidates, the desktop screening process resulted in 14 draw solutions suitable for FO applications. The 14 draw solutions were then tested in the laboratory to evaluate water flux and reverse salt diffusion through the membrane. Results indicated a wide range of water flux and reverse salt diffusion depending on the draw solution utilized. Internal concentration polarization was found to lower both water flux and reverse salt diffusion by reducing the draw solution concentration at the interface between the support and dense layer of the membrane. A small group of draw solutions was found to be most suitable for FO processes with currently available FO membranes. Another application of osmotically-driven membrane processes is pressure retarded osmosis (PRO). PRO was investigated as a viable source of renewable energy. A PRO model was developed to predict water flux and power density under specific experimental conditions. The predictive model was tested using experimental results from a bench-scale PRO system. Previous investigations of PRO were unable to verify model predictions due to
Water Recovery System Architecture and Operational Concepts to Accommodate Dormancy
Carter, Layne; Tabb, David; Anderson, Molly
2017-01-01
Future manned missions beyond low Earth orbit will include intermittent periods of extended dormancy. The mission requirement includes the capability for life support systems to support crew activity, followed by a dormant period of up to one year, and subsequently for the life support systems to come back online for additional crewed missions. NASA personnel are evaluating the architecture and operational concepts that will allow the Water Recovery System (WRS) to support such a mission. Dormancy could be a critical issue due to concerns with microbial growth or chemical degradation that might prevent water systems from operating properly when the crewed mission began. As such, it is critical that the water systems be designed to accommodate this dormant period. This paper identifies dormancy issues, concepts for updating the WRS architecture and operational concepts that will enable the WRS to support the dormancy requirement.
Kordana, Sabina; Słys, Daniel
2017-11-01
The paper analyses the profitability of the use of Drain Water Heat Recovery units. An original simulation model was used for this purpose, and a detached residential building located in Poland was selected as the test facility. The conducted analysis proved that the type of the hot water heater has decisive influence on the profitability level of such an investment. Application of the abovementioned technology is particularly profitable, when water is heated with the use of an electrical device. When the energy source in the system is a gas water heater, the obtained calculation results are not as favourable, and the period of investment return in many cases exceeds the expected service life of these devices. Moreover, the analysis demonstrated that the potential energy savings, and thus also the financial savings, may be in both cases increased as a result of simultaneous intake of water from various water taps.
Synthesis of ZnO nanoparticles for oil-water interfacial tension reduction in enhanced oil recovery
Soleimani, Hassan; Baig, Mirza Khurram; Yahya, Noorhana; Khodapanah, Leila; Sabet, Maziyar; Demiral, Birol M. R.; Burda, Marek
2018-02-01
Nanoparticles show potential use in applications associated with upstream oil and gas engineering to increase the performance of numerous methods such as wettability alteration, interfacial tension reduction, thermal conductivity and enhanced oil recovery operations. Surface tension optimization is an important parameter in enhanced oil recovery. Current work focuses on the new economical method of surface tension optimization of ZnO nanofluids for oil-water interfacial tension reduction in enhanced oil recovery. In this paper, zinc oxide (ZnO) nanocrystallites were prepared using the chemical route and explored for enhanced oil recovery (EOR). Adsorption of ZnO nanoparticles (NPs) on calcite (111) surface was investigated using the adsorption locator module of Materials Studio software. It was found that ZnO nanoparticles show maximum adsorption energy of - 253 kcal/mol. The adsorption of ZnO on the rock surface changes the wettability which results in capillary force reduction and consequently increasing EOR. The nanofluids have been prepared by varying the concentration of ZnO nanoparticles to find the optimum value for surface tension. The surface tension (ST) was calculated with different concentration of ZnO nanoparticles using the pendant drop method. The results show a maximum value of ST 35.57 mN/m at 0.3 wt% of ZnO NPs. It was found that the nanofluid with highest surface tension (0.3 wt%) resulted in higher recovery efficiency. The highest recovery factor of 11.82% at 0.3 wt% is due to the oil/water interfacial tension reduction and wettability alteration.
Polymer filtration: A new technology for selective metals recovery
Energy Technology Data Exchange (ETDEWEB)
Smith, B.F.; Robison, T.W.; Cournoyer, M.E.; Wilson, K.V.; Sauer, N.N.; Mullen, K.I.; Lu, M.T.; Jarvinen, J.J.
1995-04-01
Polymer Filtration (PF) was evaluated for the recovery of electroplating metal ions (zinc and nickel) from rinse waters. Polymer Filtration combines the use of water-soluble metal-binding polymers and ultrafiltration to concentrate metal ions from dilute rinse water solutions. The metal ions are retained by the polymers; the smaller, unbound species freely pass through the ultrafiltration membrane. By using this process the ultrafiltered permeate more than meets EPA discharge limits. The metal ions are recovered from the concentrated polymer solution by pH adjustment using diafiltration and can be recycled to the original electroplating baths with no deleterious effects on the test panels. Metal-ion recovery is accomplished without producing sludge.
Aboagye, G; Rowe, M T
2018-07-01
The recovery of Mycobacterium avium subspecies paratuberculosis (Map) from the environment can be a laborious process - owing to Map being fastidious, its low number, and also high numbers of other microbial populations in such settings. Protocols i.e. filtration, decontamination and modified elution were devised to recover Map from spiked water sediments. Three culture media: Herrold's Egg Yolk Media (HEYM), Middlebrook 7H10 (M-7H10) and Bactec 12B were then employed to grow the organism following its elution. In the sterile sediment samples the recovery of Map was significant between the time of exposure for each of HEYM and M-7H10, and insignificant between both media (P < 0.05). However, in the non-sterile sediment samples, the HEYM grew other background microflora including moulds at all the times of exposure whilst 4 h followed by M-7H10 culture yielded Map colonies without any background microflora. Using sterile samples only for the Bactec 12B, the recovery of Map decreased as time of exposure increased. Based on these findings, M-7H10 should be considered for the recovery of Map from the natural environment including water sediments where the recovery of diverse microbial species remains a challenge. Map is a robust pathogen that abides in the environment. In water treatment operations, Map associates with floccules and other particulate matter including sediments. It is also a fastidious organism, and its detection and recovery from the water environment is a laborious process and can be misleading within the abundance of other mycobacterial species owing to their close resemblance in phylogenetic traits. In the absence of a reliable recovery method, Map continues to pose public health risks through biofilm in household water tanks, hence the need for the development of a reliable recovery protocol to monitor the presence of Map in water systems in order to curtail its public health risks. Copyright © 2018 Elsevier B.V. All rights reserved.
Cost Recovery in Urban Water Services : Select Experiences in Indian Cities
Gupta, Anjali Sen
2011-01-01
The report draws on a Water and Sanitation Program (WSP) study from 2008 which made a comparative analysis of 23 Urban Local Bodies (ULBs)-looking at seven cities in detail and another 16 based on secondary data-to understand the factors affecting cost recovery in India and provide an indication of current performance. It also draws out examples and lessons to inform reform approaches and ...
Industrial Tests to Modify Molten Copper Slag for Improvement of Copper Recovery
Guo, Zhengqi; Zhu, Deqing; Pan, Jian; Zhang, Feng; Yang, Congcong
2018-04-01
In this article, to improve the recovery of copper from copper slag by flotation process, industrial tests of the modification process involving addition of a composite additive into molten copper slag were conducted, and the modified slag was subjected to the flotation process to confirm the modification effect. The phase evolution of the slag in the modification process was revealed by thermodynamic calculations, x-ray diffraction, optical microscopy and scanning electron microscopy. The results show that more copper was transformed and enriched in copper sulfide phases. The magnetite content in the modified slag decreased, and that of "FeO" increased correspondingly, leading to a better fluidity of the molten slag, which improved the aggregation and growth of fine particles of the copper sulfide minerals. Closed-circuit flotation tests of the original and modified slags were conducted, and the results show that the copper recovery increased obviously from 69.15% to 73.38%, and the copper grade of concentrates was elevated slightly from 20.24% to 21.69%, further confirming that the industrial tests of the modification process were successful. Hence, the modification process has a bright future in industrial applications for enhancing the recovery of copper from the copper slag.
Recovery coefficients as a test of system linearity of response in PET
International Nuclear Information System (INIS)
Geworski, L.; Munz, D.L.; Knoop, B.; Hofmann, M.; Knapp, W.H.
2002-01-01
Aim: New imaging protocols have created an increasing demand for quantitation in dedicated PET. Besides attenuation and scatter correction the recovery correction, accounting for the instrument's limited spatial resolution, has gained importance. For clinical practicability these corrections should work independent from the object, i.e. from the actual distribution of emitter and absorber. Aim of the study was to test this object independency, i.e. system linearity of response, by comparing recovery coefficients (RC) determined for different object geometries. In fact, this comparison may serve as a final test on system linearity of response, as measured on the quantitative accuracy by which the activity concentration in small lesions can be recovered. Method: For hot and cold spot imaging situations spatial distribution of activity is different. Therefore, scatter correction algorithm has to deal with different scatter distributions. If all factors disturbing system linearity, specifically scatter and attenuation, are corrected to a sufficient degree of accuracy, the system behaves linearly resulting in the theoretical relationship. CSRC = (1-HSRC). Thus, this equation, applied hot and cold spot measurements, will serve as a test on the effectiveness of the corrections and, hence, as a test of system linearity of response. Following IEC standard procedures (IEC 61675-1) measurements were done with and without interplane septa (2D/3D) on an ECAT EXACT 922 using a cylindrical phantom containing six spheres of different diameters (10 mm - 40 mm). All data were corrected for attenuation (transmission scan) and scatter (2D: deconvolution, 3D: scatter model), as implemented in the scanner's standard software. Recovery coefficients were determined for cold (CSRC) and hot (HSRC) lesions using both 2D and 3D acquisition mode. Results: CSRC directly measured versus CSRC calculated according to eq. (1) from HSRC resulted in an excellent agreement for both 2D and 3D data
Directory of Open Access Journals (Sweden)
Yanfei eCai
2015-12-01
Full Text Available Rhododendron delavayi Franch is an evergreen shrub or small tree with large scarlet flowers that makes it highly attractive as an ornamental species. The species is native to southwest China and southeast Asia, especially the Himalayan region, showing good adaptability and tolerance to drought. To understand the water stress coping mechanisms of R. delavayi, we analysed the plant’s photosynthetic performance during water stress and recovery. In particular, we looked at the regulation of stomatal (gs and mesophyll conductance (gm, and maximum rate of carboxylation (Vcmax. After four days of water stress treatment, the net CO2 assimilation rate (AN declined slightly while gs and gm were not affected and stomatal limitation (SL was therefore negligible. At this stage mesophyll conductance limitation (MCL and biochemical limitation (BL constituted the main limitation factors. After eight days of water stress treatment, AN, gs and gm had decreased notably. At this stage SL increased markedly and MCL even more so, while BL remained relatively constant. After re-watering, the recovery of AN, gs and gm was rapid, although remaining below the levels of the control plants, while Vcmax fully regained control levels after three days of re-watering. MCL remained the main limitation factor irrespective of the degree of photosynthetic recovery. In conclusion, in our experiment MCL was the main photosynthetic limitation factor of R. delavayi under water stress and during the recovery phase, with the regulation of gm probably being the result of interactions between the environment and leaf anatomical features.
Performance analysis of diesel engine heat pump incorporated with heat recovery
International Nuclear Information System (INIS)
Shah, N.N.; Huang, M.J.; Hewitt, N.J.
2016-01-01
Highlights: • Diesel engine heat pump with heat recovery. • Water-to-water source heat pump based on R134a. • Possibility for different flow temperature for heat distribution system. • Possible retrofit application in off-gas or weak electricity network area. • Potential to diversify use of fossil fuel, primary energy and CO_2 emission savings. - Abstract: This paper presents experimental study of diesel engine heat pump (DEHP) system to find potential as retrofit technology in off-gas or weak electricity network area to replace existing gas/oil/electric heating system in domestic sector. Test set-up of diesel engine driven water-to-water heat pump system was built which included heat recovery arrangement from the engine coolant & exhaust gas. The system was designed to meet typical house heating demand in Northern Ireland. Performance of DEHP was evaluated to meet house-heating demand at different flow temperature (35, 45, 55 & 65 °C), a typical requirement of underfloor space heating, medium/high temperature radiators and domestic hot water. The performance was evaluated against four-evaporator water inlet temperature (0, 5, 10 & 15 °C) and at three different engine speed 1600, 2000 & 2400 rpm. Experiment results were analysed in terms of heating/cooling capacity, heat recovery, total heat output, primary energy ratio (PER), isentropic efficiency, etc. Test results showed that DEHP is able to meet house-heating demand with help of heat recovery with reduced system size. Heat recovery contributed in a range of 22–39% in total heat output. It is possible to achieve high flow temperature in a range of 74 °C with help of heat recovery. Overall system PER varied in a range of 0.93–1.33. Speed increment and flow temperature has significant impact on heat recovery, total heat output and PER. A case scenario with different flow temperature to match house-heating demand has been presented to show working potential with different heat distribution system
Löfgren, Stefan; Aastrup, Mats; Bringmark, Lage; Hultberg, Hans; Lewin-Pihlblad, Lotta; Lundin, Lars; Karlsson, Gunilla Pihl; Thunholm, Bo
2011-12-01
Recovery from anthropogenic acidification in streams and lakes is well documented across the northern hemisphere. In this study, we use 1996-2009 data from the four Swedish Integrated Monitoring catchments to evaluate how the declining sulfur deposition has affected sulfate, pH, acid neutralizing capacity, ionic strength, aluminum, and dissolved organic carbon in soil water, groundwater and runoff. Differences in recovery rates between catchments, between recharge and discharge areas and between soil water and groundwater are assessed. At the IM sites, atmospheric deposition is the main human impact. The chemical trends were weakly correlated to the sulfur deposition decline. Other factors, such as marine influence and catchment features, seem to be as important. Except for pH and DOC, soil water and groundwater showed similar trends. Discharge areas acted as buffers, dampening the trends in streamwater. Further monitoring and modeling of these hydraulically active sites should be encouraged.
Examination of uranium recovery technique from sea water using natural components for adsorbent
International Nuclear Information System (INIS)
Tanaka, Nobuyuki; Masaki, Hiroyuki; Shimizu, Takao; Tokiwai, Moriyasu
2010-01-01
In this study, we investigated the potency of natural components as adsorbent for uranium recovery from seawater. In addition, cost evaluation of uranium recovery from seawater using natural components for adsorbents was performed. Furthermore, new ideas on reservation system of adsorbents at sea area were proposed. Several poly-phenols were selected as adsorbent reagents, then they were adsorbed on the support such as cotton fiber by several methods as the followings; chemical syntheses, electrical beam irradiation, and traditional dyeing. As a result, the adsorbent made by traditional dyeing method using gallnut tannin as natural component, was showed high performance for uranium recovery from seawater on only the first. It was evaluated that traditional dyeing method had also advantage in the manufacturing cost, comparing with earlier method. Additionally, it was considered that reservation system of adsorbent at sea was able to be simplified compared with earlier system. Consequently, uranium recovery from sea water using natural components as adsorbent proposed in this study had a potency of practical use. (author)
Energy Technology Data Exchange (ETDEWEB)
Cobelo-Garcia, Antonio [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)]. E-mail: antonio.cobelo-garcia@plymouth.ac.uk; Turner, Andrew [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Millward, Geoffrey E. [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom); Couceiro, Fay [School of Earth, Ocean and Environmental Sciences, University of Plymouth, Drake Circus, Plymouth PL4 8AA (United Kingdom)
2007-03-07
The recovery of dissolved platinum group elements (PGE: Pd(II), Pt(IV) and Rh(III)) added to Milli-Q[reg] water, artificial freshwater and seawater and filtered natural waters has been studied, as a function of pH and PGE concentration, in containers of varying synthetic composition. The least adsorptive and/or precipitative loss was obtained for borosilicate glass under most of the conditions employed, whereas the greatest loss was obtained for low-density polyethylene. Of the polymeric materials tested, the adsorptive and/or precipitative loss of PGE was lowest for fluorinated ethylene propylene (Teflon[reg]). The loss of Pd(II) in freshwater was significant due to its affinity for surface adsorption and its relatively low solubility. The presence of natural dissolved organic matter increases the recovery of Pd(II) but enhances the loss of Pt(IV). The loss of Rh(III) in seawater was significant and was mainly due to precipitation, whereas Pd(II) recovery was enhanced, compared to freshwater, because of its complexation with chloride. The results have important implications regarding protocols employed for sample preservation and controlled laboratory experiments used in the study of the speciation and biogeochemical behaviour of PGE.
Thyroglobulin recovery test of sera containing elevated levels of anti-thyroglobulin antibodies
International Nuclear Information System (INIS)
Hervas, I.; Gonzalez-Cabezas, P.; Flores, D.; Perez-Pastor, J.L.; Bello, P.; Rivas, A.; Alonso, J.; Olivas, C.; Mateo, A.
2002-01-01
Aim: Thyroglobulin (Tg) is a macro-molecule synthesized exclusively in the thyroid gland for the synthesis of thyroid hormones. In differentiated thyroid carcinoma, after radical thyroidectomy, the discovering of measurable quantities of Tg can be indicator of relapse y/or spread of disease but Thyroglobulin antibodies can alter the determination of Tg. The aim of this study is to assess and measure the interference of Tg antibodies on the Tg determination. Methods: We have selected 50 consecutive serum whose Tg-antibodies levels were higher than the normality values (0-100 UI/mL). Tg-antibodies were measured using a 'sandwich' radioimmunometric assay on solid phase. We have performed a recovery test on these sera. This test consists on adding a known quantity (50 UI) of Tg on that sera and then measure the Tg values to find out the percentage of Tg that is recuperated. Tg was measured using a radioimmunometric assay on solid phase. Results: Sera were divided in two groups: A.- 15 sera with Tg-antibodies levels between 100-250 UI/mL: 85% of them presented a Tg recovery percentage higher than 90% (Tg-antibodies did not interfere on Tg values due to Tg was recovered almost in its totality). B.- 53 sera with Tg-antibodies levels higher than 250 UI/mL: Only 10% of them presented a Tg recovery percentage higher than >90% . (90% of sera interfered on Tg values). 70% of that sera presented percentages under 50%. The Pearson's correlation coefficient between Tg-antibodies and Tg recovery percentage was -0.34. Conclusions: The majority (90%)of sera with Tg-antibodies higher than 250 UI/mL presented an high interference on Tg determination. However the majority of sera with Tg-antibodies between 100-250 did not show any interference on Tg determination. There are not linear correlation between highest values and lowest percentages of Tg recovered. We recommend the realization of Tg recovery test on sera with elevated Tg antibodies specially when are higher than 250 UI/mL
Lin, Qianxin; Mendelssohn, Irving A; Bryner, Nelson P; Walton, William D
2005-03-15
In-situ burning of oiled wetlands potentially provides a cleanup technique that is generally consistent with present wetland management procedures. The effects of water depth (+10, +2, and -2 cm), oil type (crude and diesel), and oil penetration of sediment before the burn on the relationship between vegetation recovery and soil temperature for three coastal marsh types were investigated. The water depth over the soil surface during in-situ burning was a key factor controlling marsh plant recovery. Both the 10- and 2-cm water depths were sufficient to protect marsh vegetation from burning impacts, with surface soil temperatures of fire significantly impeded the post-burn recovery of Spartina alterniflora and Sagittaria lancifolia but did not detrimentally affect the recovery of Spartina patens and Distichlis spicata. Oil type (crude vs diesel) and oil applied to the marsh soil surface (0.5 L x m(-2)) before the burn did not significantly affect plant recovery. Thus, recovery is species-specific when no surface water exists. Even water at the soil surface will most likely protect wetland plants from burning impact.
Exergy efficiency enhancement of MSF desalination by heat recovery from hot distillate water stages
International Nuclear Information System (INIS)
Al-Weshahi, Mohammed A.; Anderson, Alexander; Tian, Guohong
2013-01-01
This detailed exergy analysis of a 3800 m 3 /h Multi-Stage Flash (MSF) desalination plant is based on the latest published thermodynamics properties of water and seawater. The parameters of the study were extracted from a validated model of MSF desalination using IPSEpro software. The results confirmed that the overall exergy efficiency of the unit is lower than would be desirable at only 5.8%. Exergy inputs were destroyed by 55%, 17%, 10%, 4.3%, and 14% respectively, in the heat recovery stages, brine heater, heat rejection stages, pumps and brine streams disposal. Moreover, the detail of the study showed that the lowest exergy destruction occurs in the first stage, increasing gradually in heat recovery stages and sharply in heat rejection stages. The study concludes that recovering the heat from the hot distillate water stages can improve unit exergy efficiency from its low 5.8% to a more economical 14%, with the hot water parameters suitable for powering other thermal systems such as absorption chiller and multi-effect desalination
Recovery efficiency test project, Phase 2 activity report
Energy Technology Data Exchange (ETDEWEB)
Overbey, W.K. Jr.; Salamy, S.P.; Locke, C.D.
1989-02-01
The Recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency of gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. This volume contains appendices for: (1) supporting material and procedures for data frac'' stimulation of zone 6 using nitrogen and nitrogen foam; (2) supporting material and procedures for stimulation no. 1 nitrogen gas frac on zone no. 1; (3) supporting material and procedures for stimulation no. 2 in zone no. 1 using liquid CO{sub 2}; (4) supporting material and procedures for frac no. 3 on zone no.1 using nitrogen foam and proppant; (5) supporting material and procedures for stimulation no. 4 in zones 2--3 and 4 using nitrogen foam and proppant; (6) supporting materials and procedures for stimulation no. 5 in zones 5 and 8; and (7) fracture diagnostics reports and supporting materials.
Galle, Alexander; Florez-Sarasa, Igor; Tomas, Magdalena; Pou, Alicia; Medrano, Hipolito; Ribas-Carbo, Miquel; Flexas, Jaume
2009-01-01
While the responses of photosynthesis to water stress have been widely studied, acclimation to sustained water stress and recovery after re-watering is poorly understood. In particular, the factors limiting photosynthesis under these conditions, and their possible interactions with other environmental conditions, are unknown. To assess these issues, changes of photosynthetic CO(2) assimilation (A(N)) and its underlying limitations were followed during prolonged water stress and subsequent re-watering in tobacco (Nicotiana sylvestris) plants growing under three different climatic conditions: outdoors in summer, outdoors in spring, and indoors in a growth chamber. In particular, the regulation of stomatal conductance (g(s)), mesophyll conductance to CO(2) (g(m)), leaf photochemistry (chlorophyll fluorescence), and biochemistry (V(c,max)) were assessed. Leaf gas exchange and chlorophyll fluorescence data revealed that water stress induced a similar degree of stomatal closure and decreased A(N) under all three conditions, while V(c,max) was unaffected. However, the behaviour of g(m) differed depending on the climatic conditions. In outdoor plants, g(m) strongly declined with water stress, but it recovered rapidly (1-2 d) after re-watering in spring while it remained low many days after re-watering in summer. In indoor plants, g(m) initially declined with water stress, but then recovered to control values during the acclimation period. These differences were reflected in different velocities of recovery of A(N) after re-watering, being the slowest in outdoor summer plants and the fastest in indoor plants. It is suggested that these differences among the experiments are related to the prevailing climatic conditions, i.e. to the fact that stress factors other than water stress have been superimposed (e.g. excessive light and elevated temperature). In conclusion, besides g(s), g(m) contributes greatly to the limitation of photosynthesis during water stress and during
Aquifer Storage Recovery (ASR) of chlorinated municipal drinking water in a confined aquifer
Izbicki, John A.; Petersen, Christen E.; Glotzbach, Kenneth J.; Metzger, Loren F.; Christensen, Allen H.; Smith, Gregory A.; O'Leary, David R.; Fram, Miranda S.; Joseph, Trevor; Shannon, Heather
2010-01-01
About 1.02 x 106 m3 of chlorinated municipal drinking water was injected into a confined aquifer, 94-137 m below Roseville, California, between December 2005 and April 2006. The water was stored in the aquifer for 438 days, and 2.64 x 106 m3 of water were extracted between July 2007 and February 2008. On the basis of Cl data, 35% of the injected water was recovered and 65% of the injected water and associated disinfection by-products (DBPs) remained in the aquifer at the end of extraction. About 46.3 kg of total trihalomethanes (TTHM) entered the aquifer with the injected water and 37.6 kg of TTHM were extracted. As much as 44 kg of TTHMs remained in the aquifer at the end of extraction because of incomplete recovery of injected water and formation of THMs within the aquifer by reactions with freechlorine in the injected water. Well-bore velocity log data collected from the Aquifer Storage Recovery (ASR) well show as much as 60% of the injected water entered the aquifer through a 9 m thick, high-permeability layer within the confined aquifer near the top of the screened interval. Model simulations of ground-water flow near the ASR well indicate that (1) aquifer heterogeneity allowed injected water to move rapidly through the aquifer to nearby monitoring wells, (2) aquifer heterogeneity caused injected water to move further than expected assuming uniform aquifer properties, and (3) physical clogging of high-permeability layers is the probable cause for the observed change in the distribution of borehole flow. Aquifer heterogeneity also enhanced mixing of native anoxic ground water with oxic injected water, promoting removal of THMs primarily through sorption. A 3 to 4-fold reduction in TTHM concentrations was observed in the furthest monitoring well 427 m downgradient from the ASR well, and similar magnitude reductions were observed in depth-dependent water samples collected from the upper part of the screened interval in the ASR well near the end of the extraction
Recovery in soccer : part ii-recovery strategies.
Nédélec, Mathieu; McCall, Alan; Carling, Chris; Legall, Franck; Berthoin, Serge; Dupont, Gregory
2013-01-01
In the formerly published part I of this two-part review, we examined fatigue after soccer matchplay and recovery kinetics of physical performance, and cognitive, subjective and biological markers. To reduce the magnitude of fatigue and to accelerate the time to fully recover after completion, several recovery strategies are now used in professional soccer teams. During congested fixture schedules, recovery strategies are highly required to alleviate post-match fatigue, and then to regain performance faster and reduce the risk of injury. Fatigue following competition is multifactorial and mainly related to dehydration, glycogen depletion, muscle damage and mental fatigue. Recovery strategies should consequently be targeted against the major causes of fatigue. Strategies reviewed in part II of this article were nutritional intake, cold water immersion, sleeping, active recovery, stretching, compression garments, massage and electrical stimulation. Some strategies such as hydration, diet and sleep are effective in their ability to counteract the fatigue mechanisms. Providing milk drinks to players at the end of competition and a meal containing high-glycaemic index carbohydrate and protein within the hour following the match are effective in replenishing substrate stores and optimizing muscle-damage repair. Sleep is an essential part of recovery management. Sleep disturbance after a match is common and can negatively impact on the recovery process. Cold water immersion is effective during acute periods of match congestion in order to regain performance levels faster and repress the acute inflammatory process. Scientific evidence for other strategies reviewed in their ability to accelerate the return to the initial level of performance is still lacking. These include active recovery, stretching, compression garments, massage and electrical stimulation. While this does not mean that these strategies do not aid the recovery process, the protocols implemented up until
Produced Water Reuse Considerations for In-Situ Recovery: a Case Development
Energy Technology Data Exchange (ETDEWEB)
Kus, J.; Card, R.
1984-01-01
Steam-assisted methods for in-situ recovery in Canada typically operate at steam to oil ratios of approximately 3 to 1 and generate in the order of 2 to 5 barrels of produced water per barrel of production. To raise the large quantities of steam required for reservoir stimulation, once-through type steam generators are most commonly used. They are typically designed to produce about 80 per cent quality steam from soft, oil-free feedwater. Suncor Inc operates a cyclic steam injection pilot project near Fort Kent, Alberta. In the early 1980s, Suncor planned an expansion of the 180 m/sup 3//d (1,130 bbl/d) facility to 800 m/sup 3//d (5,000 bbl/d). The expansion necessitated the development of a reliable water supply. Preliminary investigations into the feasibility of reusing produced water as the sole source of supply for the project expansion revealed this to be a costly and technically high risk option, given the specific produced water characteristics. As a result, an innovative alternative was developed to use a blend of produced water and municipal effluent from a nearby town as the water supply. This paper presents the rationale for the selection of this unique water supply and the process design considerations for the resulting water treatment system.
Matheny, A. M.; Bohrer, G.
2017-12-01
Above-ground water storage in vegetation plays an integral role in the avoidance of hydraulic impairment to transpiration. New high temporal resolution measurements of dynamic changes in tree hydraulic capacitance are facilitating insights into vegetation water use strategies. Diurnal withdrawal from water storage in leaves, branches, stems, and roots significantly impacts sap flow, stomatal conductance, and transpiration. The ability to store and use water varies based on soil- and root-water availability, tree size, wood vessel anatomy and density, and stomatal response strategy (i.e. isohydricity). We present results from a three-year long study of stem capacitance dynamics in five species in a mixed deciduous forest in Michigan. The site receives 800mm of rainfall annually, but water potential in the well-drained sandy soil nears the permanent wilting point several times annually. We demonstrate radical differences in stored water use between drought tolerant and intolerant species. Red maple, a drought intolerant, isohydric species, showed a strong dependence on stem capacitance for transpiration during both wet and dry periods. Red oak, a more drought hearty, deep rooted, anisohydric species, was much less reliant on withdrawal from water storage during all conditions. During well-watered conditions, withdrawal from storage by red maple was 10 kg day-1, yet storage withdrawal from similarly sized red oaks was 1 kg day-1. Red oaks only drew strongly upon stored water during the driest extremes. Metrics of hydration status derived from capacitance provide a means to explore drought response and recovery. Declines in consecutive days' maximum capacitance indicate an inability to restore lost water and can be used to mark the onset of water stress. Drought recovery can be quantified as the time required for stem water content to return to pre-drought volumes. Capacitance withdrawal and depletion exhibit a clear threshold response to declining soil water
Recovery of energy from geothermal brine and other hot water sources
Wahl, III, Edward F.; Boucher, Frederic B.
1981-01-01
Process and system for recovery of energy from geothermal brines and other hot water sources, by direct contact heat exchange between the brine or hot water, and an immiscible working fluid, e.g. a hydrocarbon such as isobutane, in a heat exchange column, the brine or hot water therein flowing countercurrent to the flow of the working fluid. The column can be operated at subcritical, critical or above the critical pressure of the working fluid. Preferably, the column is provided with a plurality of sieve plates, and the heat exchange process and column, e.g. with respect to the design of such plates, number of plates employed, spacing between plates, area thereof, column diameter, and the like, are designed to achieve maximum throughput of brine or hot water and reduction in temperature differential at the respective stages or plates between the brine or hot water and the working fluid, and so minimize lost work and maximize efficiency, and minimize scale deposition from hot water containing fluid including salts, such as brine. Maximum throughput approximates minimum cost of electricity which can be produced by conversion of the recovered thermal energy to electrical energy.
An introduction to the water recovery x-ray rocket
Miles, Drew M.; McEntaffer, Randall L.; Schultz, Ted B.; Donovan, Benjamin D.; Tutt, James H.; Yastishock, Daniel; Steiner, Tyler; Hillman, Christopher R.; McCoy, Jake A.; Wages, Mitchell; Hull, Sam; Falcone, Abe; Burrows, David N.; Chattopadhyay, Tanmoy; Anderson, Tyler; McQuaide, Maria
2017-08-01
The Water Recovery X-ray Rocket (WRXR) is a sounding rocket payload that will launch from the Kwajalein Atoll in April 2018 and seeks to be the first astrophysics sounding rocket payload to be water recovered by NASA. WRXR's primary instrument is a grating spectrometer that consists of a mechanical collimator, X-ray reflection gratings, grazing-incidence mirrors, and a hybrid CMOS detector. The instrument will obtain a spectrum of the diffuse soft X-ray emission from the northern part of the Vela supernova remnant and is optimized for 3rd and 4th order OVII emission. Utilizing a field of view of 3.25° × 3.25° and resolving power of λ/δλ ≍40-50 in the lines of interest, the WRXR spectrometer aims to achieve the most highly-resolved spectrum of Vela's diffuse soft X-ray emission. This paper presents introductions to the payload and the science target.
Murray, R. W.
1973-01-01
A comprehensive study of advanced water recovery and solid waste processing techniques employed in both aerospace and domestic or commercial applications is reported. A systems approach was used to synthesize a prototype system design of an advanced water treatment/waste processing system. Household water use characteristics were studied and modified through the use of low water use devices and a limited amount of water reuse. This modified household system was then used as a baseline system for development of several water treatment waste processing systems employing advanced techniques. A hybrid of these systems was next developed and a preliminary design was generated to define system and hardware functions.
Xiao, Meng; Zhang, Zhong-Zhi; Wang, Jing-Xiu; Zhang, Guang-Qing; Luo, Yi-Jing; Song, Zhao-Zheng; Zhang, Ji-Yuan
2013-11-01
The diversity of indigenous bacterial community and the functional species in the water samples from three production wells of a low permeability oil reservoir was investigated by high-throughput sequencing technology. The potential of application of indigenous bacteria for enhancing oil recovery was evaluated by examination of the effect of bacterial stimulation on the formation water-oil-rock surface interactions and micromodel test. The results showed that production well 88-122 had the most diverse bacterial community and functional species. The broth of indigenous bacteria stimulated by an organic nutrient activator at aerobic condition changed the wettability of the rock surface from oil-wet to water-wet. Micromodel test results showed that flooding using stimulated indigenous bacteria following water flooding improved oil recovery by 6.9% and 7.7% in fractured and unfractured micromodels, respectively. Therefore, the zone of low permeability reservoir has a great potential for indigenous microbial enhanced oil recovery. Copyright © 2013 Elsevier Ltd. All rights reserved.
The Recovery of Water and Nitrogen from Urine in BLSS
Xie, Beizhen; Liu, Hong; Deng, Shengda
The recycle and reuse of the wastewater is one of the main factors for realizing a higher closure degree of bioregenerative life support system (BLSS), and the treatment and recovery of the crew’s urine are the most difficult and critical issues. Urine contains a lot of water and high concentrations of urea and salts. Water can be used for the irrigation of the plants in BLSS, and the nitrogen is also the necessary nutrient for plant growth. Therefore, if the nitrogen could be recycled simultaneously while desalting the urine, the substance circulation and the closure of BLSS could be improved significantly. In this study, two-step method was conducted to treat the urine and recycle the water and nitrogen. The urea was hydrolyzed firstly, and then the water vapor and ammonia gas were cooled and collected by using reduced pressure distillation in alkaline condition. High temperature acidification and urease processing methods were studied during the urea hydrolysis step. The treatment conditions of both methods were optimized and the degrees of hydrolysis were compared. This investigation may provide a reference for the establishment of the urine recycle in BLSS.
International Nuclear Information System (INIS)
Blanchard, R.J.
1995-09-01
This Engineering Task Plan (ETP) describes the tasks, i.e., tests, studies, external support and modifications planned to increase the recovery of the recovery of the waste tank contents using combinations of improved techniques, equipment, knowledge, experience and testing to better the recovery rates presently being experienced
DEFF Research Database (Denmark)
Christensen, Peter Møller; Bangsbo, Jens
2016-01-01
) and the influence from prior intense exercise on subsequent performance and physiological response to moderate and maximal exercise with and without the use of cold water immersion (CWI) in recovery (part B). In part A, performance times during eight World championships for male track cyclists were extracted from...... min preceded by an identical warm-up period in both a control setting (CON) and using cold water immersion in recovery (CWI; 15 min at 15°C). Performance was lowered (P
Directory of Open Access Journals (Sweden)
Daoqian eChen
2016-01-01
Full Text Available Non-irrigated crops in temperate climates and irrigated crops in arid climates are subjected to continuous cycles of water stress and re-watering. Thus, fast and efficient recovery from water stress may be among the key determinants of plant drought adaptation. The present study was designed to comparatively analyze the roles of drought resistance and drought recovery in drought adaptation and to investigate the physiological basis of genotypic variation in drought adaptation in maize (Zea mays seedlings. As the seedlings behavior in growth associate with yield under drought, it could partly reflect the potential of drought adaptability. Growth and physiological responses to progressive drought stress and recovery were observed in seedlings of ten maize lines. The results showed that drought adaptability is closely related to drought recovery (r = 0.714**, but not to drought resistance (r = 0.332. Drought induced decreases in leaf water content, water potential, osmotic potential, gas exchange parameters, chlorophyll content, Fv/Fm and nitrogen content, and increased H2O2 accumulation and lipid peroxidation. After recovery, most of these physiological parameters rapidly returned to normal levels. The physiological responses varied between lines. Further correlation analysis indicated that the physiological bases of drought resistance and drought recovery are definitely different, and that maintaining higher chlorophyll content (r = 0.874*** and Fv/Fm (r = 0.626* under drought stress contributes to drought recovery. Our results suggest that both drought resistance and recovery are key determinants of plant drought adaptation, and that drought recovery may play a more important role than previously thought. In addition, leaf water potential, chlorophyll content and Fv/Fm could be used as efficient reference indicators in the selection of drought-adaptive genotypes.
Pérez-Pérez, J G; Syvertsen, J P; Botía, P; García-Sánchez, F
2007-08-01
Since salinity and drought stress can occur together, an assessment was made of their interacting effects on leaf water relations, osmotic adjustment and net gas exchange in seedlings of the relatively chloride-sensitive Carrizo citrange, Citrus sinensis x Poncirus trifoliata. Plants were fertilized with nutrient solution with or without additional 100 mm NaCl (salt and no-salt treatments). After 7 d, half of the plants were drought stressed by withholding irrigation water for 10 d. Thus, there were four treatments: salinized and non-salinized plants under drought-stress or well-watered conditions. After the drought period, plants from all stressed treatments were re-watered with nutrient solution without salt for 8 d to study recovery. Leaf water relations, gas exchange parameters, chlorophyll fluorescence, proline, quaternary ammonium compounds and leaf and root concentrations of Cl(-) and Na(+) were measured. Salinity increased leaf Cl(-) and Na(+) concentrations and decreased osmotic potential (Psi(pi)) such that leaf relative water content (RWC) was maintained during drought stress. However, in non-salinized drought-stressed plants, osmotic adjustment did not occur and RWC decreased. The salinity-induced osmotic adjustment was not related to any accumulation of proline, quaternary ammonium compounds or soluble sugars. Net CO(2) assimilation rate (A(CO2)) was reduced in leaves from all stressed treatments but the mechanisms were different. In non-salinized drought-stressed plants, lower A(CO2) was related to low RWC, whereas in salinized plants decreased A(CO2) was related to high levels of leaf Cl(-) and Na(+). A(CO2) recovered after irrigation in all the treatments except in previously salinized drought-stressed leaves which had lower RWC and less chlorophyll but maintained high levels of Cl(-), Na(+) and quaternary ammonium compounds after recovery. High leaf levels of Cl(-) and Na(+) after recovery apparently came from the roots. Plants preconditioned by
Rapid forest recovery of carbon and water fluxes after a tropical firestorm
Brando, P. M.; Silverio, D. V.; Migliavacca, M.; Santos, C.; Kolle, O.; Balch, J.; Maracahipes, L.; Bustamante, M.; Coe, M. T.; Trumbore, S.
2017-12-01
Forest disturbances interact synergistically and drive potentially large and persistent degradation of ecosystem services in the tropics. Here we analyze multi-year measurements of carbon (C) and water (evapotranspiration; ET) fluxes in forests recovering from 7 years of prescribed fires. Located in southeast Amazonia, the experimental forest consisted of three 50-ha plots burned annually, triennially, or not at all between 2004-2010. During the subsequent seven-year recovery period from 2011 to present, tree survivorship and biomass sharply declined, with aboveground C stocks decreasing by 70-94% along forest edges. While vegetation regrowth in the forest understory triggered partial canopy closure, light-demanding grasses covered roughly the same area in 2015 that they did in 2012. However, the spatial distribution of grasses drastically changed, while C4 grass species replaced C3 ones. Surprisingly, the observed alterations in forest structure and dynamics rendered minor or no changes in total C fluxes and ET, probably because plants in the burned forest increased light- and reduced ecosystem water-use efficiency. Hence, delayed post-fire mortality of large trees can reduce forest C stocks and create opportunities for the establishment of invasive grasses, Yet, post-fire vegetation growth can rapidly restore C uptake and ET by optimizing resources use. These results show that tropical forests can rapidly recover the capacity to cycle water and carbon following disturbances, but also that a full recovery of biomass and vegetation dominance may take many years or decades.
Cunha Costa, da J.M.R.; Tervahauta, T.; Weijden, van der R.D.; Hernández Leal, L.; Zeeman, G.; Buisman, C.J.N.
2017-01-01
Calcium phosphate (CaP) granules were discovered in the anaerobic treatment of vacuum collected black water (BW), using upflow anaerobic sludge blanket (UASB) technology. This allows simultaneous recovery of CaP granules and methane in the UASB reactor. However, the role of BW composition on CaP
The Water Recovery X-ray Rocket (WRX-R)
Miles, Drew
2017-08-01
The Water Recovery X-ray Rocket (WRX-R) is a diffuse soft X-ray spectrometer that will launch on a sounding rocket from the Kwajalein Atoll. WRX-R has a field of view of >10 deg2 and will observe the Vela supernova remnant. A mechanical collimator, state-of-the-art off-plane reflection grating array and hybrid CMOS detector will allow WRX to achieve the most highly-resolved spectrum of the Vela SNR ever recorded. In addition, this payload will fly a hard X-ray telescope that is offset from the soft X-ray spectrometer in order to observe the pulsar at the center of the remnant. We present here an introduction to the instrument, the expected science return, and an update on the state of the payload as we work towards launch.
Directory of Open Access Journals (Sweden)
Dr. S. RAJAMANI
2017-05-01
Full Text Available World leather sector generates 600million m3 of wastewater per annum. The Asian tanneries contributes more than 350 million m3 of wastewater from the process of 8 to 10 millions tons of hides and skins. Environmental challenges due to depletion of quality water resources and increase in salinity, it has become necessary to control Total Dissolved Solids (TDS in the treated effluent with water recovery wherever feasible. Adoption of special membrane system has been engineered in many individual and Common Effluent Treatment Plants (CETPs in India, China and other leather producing countries. The sustainability of saline reject management is one of the major challenges. Conventional tannery wastewater treatment systems include physiochemical and biological treatment to reduce Chromium, BOD, COD and Suspended Solids. To tackle treated effluent with TDS in the rage of 10000 to 30000mg/l, multiple stage high pressure membrane units have been designed and implemented for recovery of water. To reduce the chemical usage and sludge generation in the tertiary treatment, Membrane Bio-Reactor (MBR has been adopted which replace secondary clarifier and sophisticated tertiary treatment units such as Reactive Clarifier, Ultra-filtration (UF, etc. Commercial scale high-tech membrane systems have been implemented in many locations for the capacities ranging from 500 to 10000m3/day. Recent applied R&D on the environmental protection techniques with focus on water-recovery for reuse, salt recovery, marine disposal of saline reject with proper bio-control system, etc. are dealt in this novel technical paper.
Oosting, Ellen; Hoogeboom, Thomas J; Appelman-de Vries, Suzan A; Swets, Adam; Dronkers, Jaap J; van Meeteren, Nico L U
2016-01-01
The aim of this study was to evaluate the value of conventional factors, the Risk Assessment and Predictor Tool (RAPT) and performance-based functional tests as predictors of delayed recovery after total hip arthroplasty (THA). A prospective cohort study in a regional hospital in the Netherlands with 315 patients was attending for THA in 2012. The dependent variable recovery of function was assessed with the Modified Iowa Levels of Assistance scale. Delayed recovery was defined as taking more than 3 days to walk independently. Independent variables were age, sex, BMI, Charnley score, RAPT score and scores for four performance-based tests [2-minute walk test, timed up and go test (TUG), 10-meter walking test (10 mW) and hand grip strength]. Regression analysis with all variables identified older age (>70 years), Charnley score C, slow walking speed (10 mW >10.0 s) and poor functional mobility (TUG >10.5 s) as the best predictors of delayed recovery of function. This model (AUC 0.85, 95% CI 0.79-0.91) performed better than a model with conventional factors and RAPT scores, and significantly better (p = 0.04) than a model with only conventional factors (AUC 0.81, 95% CI 0.74-0.87). The combination of performance-based tests and conventional factors predicted inpatient functional recovery after THA. Two simple functional performance-based tests have a significant added value to a more conventional screening with age and comorbidities to predict recovery of functioning immediately after total hip surgery. Patients over 70 years old, with comorbidities, with a TUG score >10.5 s and a walking speed >1.0 m/s are at risk for delayed recovery of functioning. Those high risk patients need an accurate discharge plan and could benefit from targeted pre- and postoperative therapeutic exercise programs.
Validity of multiple stress creep recovery test for LADOTD asphalt binder specification.
2010-09-01
The objectives of this research are to characterize the elastic response of various binders used by LADOTD to determine the feasibility of the Multiple Stress Creep Recovery (MSCR) test to be included in the LADOTD asphalt binder specification and to...
López-Jurado, Javier; Balao, Francisco; Mateos-Naranjo, Enrique
2016-12-01
Dianthus inoxianus is an endangered species endemic from a small littoral area in the SW Spain, with an unusual flowering season under the adverse conditions of dry Mediterranean summer. A greenhouse experiment was designed to assess the physiological traits involved in drought acclimation and recovery of 3-month-old plants. The evolution of plant water status, leaf gas exchange, chlorophyll fluorescence, photosynthetic pigments concentrations and a quantitative analysis of photosynthesis limitations were followed during water stress and re-watering. Our results indicated that the plant water status, Ψ w and RWC, only decreased at the end of the drought period (18th day), together with the net photosynthetic rate, A N . Photosynthetic impair was mainly caused by diffusional limitations (SL and MCL) of CO 2 , as indicated the joint and marked decrease of g s , g m and C i during drought period, while V c,max did not vary. After rewatering, leaf water status recovered faster than photosynthetic one, reaching control values on day 1 after recovery, while A N , g m and C i took 7 days. Additionally, g s showed the slowest recovery taking 15 days, but g s decrease was enough to keep Ψ w and RWC at constant values throughout the experiment. Results suggest a high tolerance and recovery of D. inoxianus from severe drought periods. This drought tolerance was also reflected in the stability of its photochemical apparatus and pigments concentrations, as indicated the constant values of F v /F m , Ф PSII and pigments concentrations through experimental period. However, prolonged drought events due to global climate change could negatively affect the physiological mechanisms of this species. Copyright © 2016 Elsevier Masson SAS. All rights reserved.
Water extraction of pyrolysis oil: the first step for the recovery of renewable chemicals
Vitasari, C.R.; Meindersma, G.W.; Haan, de A.B.
2011-01-01
The interest in biomass as a source of renewable energy and chemicals has been increasing in keeping up with the transition to a sustainable bio-based economy. An important initial step of chemicals recovery from biomass-derived pyrolysis oil is water extraction where most of polar compounds are
Schimpchen, Jan; Wagner, Maximilian; Ferrauti, Alexander; Kellmann, Michael; Pfeiffer, Mark; Meyer, Tim
2017-06-01
We investigated whether cold water immersion (CWI) after intensive training sessions can enhance recovery in elite Olympic weightlifters, taking into account each athlete's individual response pattern. The entire German male Olympic weightlifting national team participated in the study (n = 7), ensuring collection of data from elite athletes only. Using a randomized cross-over design, the athletes went through 2 high-intensity training microcycles consisting of 5 training sessions that were either followed by a CWI or passive recovery. Barbell speed in a snatch pull movement, blood parameters, and subjective ratings of general fatigue and recovery were assessed throughout the study. Physical performance at 2 snatch pull intensities (85% one repetition maximum [1RM]: -0.15% vs. -0.22%, p = 0.94; 90% 1RM: -0.7% vs. +1.23%, p = 0.25) did not differ significantly (condition × time). Although questionnaires revealed a significant decline in the ratings of overall recovery (p creatine kinase: p = 0.53; urea: p = 0.43; cortisol: p = 0.59; testosterone: p = 0.53; testosterone:cortisol ratio: p = 0.69). In general, CWI did not prove to be an effective tool to enhance recovery in elite Olympic weightlifters over a 3-day intensive training period. However, even though the group was rather homogeneous with regard to performance, there were considerable intersubject differences in their response to CWI. It seems that athletes are best advised on a case-by-case basis.
Recovery of lithium from geothermal water by amorphous hydrous aluminium oxide
International Nuclear Information System (INIS)
Wada, Hideo; Kitamura, Takao; Ooi, Kenta; Katoh, Shunsaku
1984-01-01
Effects of chemical composition, temperature, and lithium concentration of geothermal water on lithium recovery by amorphous hydrous aluminium oxide (a-HAO) were investigated in order to evaluate the feasibility of this process. The results are summarized as follows: (1) Among various chemical consituents in geothermal water, silica interfered with the lithium adsorption. The lithium uptake decreased when silica concentration exceeded 73 mg/l under 100 mg/50 ml a-HAO to solution ratio. (2) The lithium uptake decreased with an increase of adsorption temperature and was not observed above 40 deg C. At higher temperature, the crystallization of a-HAO to bayerite occurred prior to lithium adsorption. (3) The lithium uptake increased with an increase of lithium concentration. Lithium uptake comparable with lithium contents in lithium ores was obtained at the lithium concentration of 30 mg/l at 20 deg C. These results show that a-HAO is applicable to collect lithium from geothermal water if silica can be removed before lithium adsorption. (author)
Recovery of uranium in mine waters
International Nuclear Information System (INIS)
Sugier, P.
1967-01-01
In a brief introductory survey the author indicates the date on which leaching was first observed in the CEA mines and lists the main factors necessary for, or favourable to, the solubilization of uranium in mines. Information is given on the various sources of this type at present identified in France and the methods used to recover uranium in mines situated near ore-concentration plants. An explanation is given for the use of the calcium precipitation technique in connection with waters produced in mines not situated near ore-concentration plants. Data are given on the results of laboratory tests carried out on waters containing uranium, together with a description of an industrial-scale facility built in consequence of these tests. Details are given of the statistical results obtained. The author concludes by outlining the programme which will be implemented in the near future with a view to increasing the tonnage of uranium produced by in situ leaching and indicates that the CEA engineers are very optimistic about the prospects of this new low-cost method of producing uranium. (author) [fr
International Nuclear Information System (INIS)
Mazilu, Mihai; Costescu, Sanda
2002-01-01
An installation for recovery of sodium sulfate and sulfur suspensions from waste water was conceived. It consists from a preheater, vacuum evaporator and a refrigerating system with drum and scraper. This equipment concentration the solution by eliminating in the first stage the water in the vacuum evaporator. The water resulting at this stage is chemically pure and can be discharged in the sewage sludge system. The concentrated solution is then directed to the refrigerating system with drum and scrapper. Here the sodium sulfates, thiosulfates and sulfides get crystallized onto the drum surface. The resulting aqueous solution to be discharged in the sewage sludge system is previously analyzed as in case of the absent of the recovery installation, but the amount of pollutants will be much lower because sulfates, thiosulfates and sulfides were already recovered as scales from the drum. These solid scales can be used in detergent industry
A single well pumping and recovery test to measure in situ acrotelm transmissivity in raised bogs
Schaaf, van der S.
2004-01-01
A quasi-steady-state single pit pumping and recovery test to measure in situ the transmissivity of the highly permeable upper layer of raised bogs, the acrotelm, is described and discussed. The basic concept is the expanding depression cone during both pumping and recovery. It is shown that applying
Sun, Dongya; Gao, Yifan; Hou, Dianxun; Zuo, Kuichang; Chen, Xi; Liang, Peng; Zhang, Xiaoyuan; Ren, Zhiyong Jason; Huang, Xia
2018-04-01
Recovery of nutrient resources from the wastewater is now an inevitable strategy to maintain the supply of both nutrient and water for our huge population. While the intensive energy consumption in conventional nutrient recovery technologies still remained as the bottleneck towards the sustainable nutrient recycle. This study proposed an enlarged microbial nutrient recovery cell (EMNRC) which was powered by the energy contained in wastewater and achieved multi-cycle nutrient recovery incorporated with in situ wastewater treatment. With the optimal recovery solution of 3 g/L NaCl and the optimal volume ratio of wastewater to recovery solution of 10:1, >89% of phosphorus and >62% of ammonium nitrogen were recovered into struvite. An extremely low water input ratio of water. It was proved the EMNRC system was a promising technology which could utilize the chemical energy contained in wastewater itself and energy-neutrally recover nutrient during the continuous wastewater purification process.
Improved process for the injection of water for secondary recovery of petroleum
Energy Technology Data Exchange (ETDEWEB)
1967-07-24
In this process for the secondary recovery of petroleum from the formation, an aqueous displacing medium is injected through an injection well in communication with the formation. In this aqueous medium, a polymer is dissolved and the petroleum is thus displaced toward a producing well also in communication with the formation. The polymer is a liquid organic polymer, substantially linear, water-soluble, and having a resistance characteristic of at least 1.5. The polymer is dissolved in water in sufficient quantity such that the viscosity of the displacing medium is 0.5-15% of the viscosity of the crude oil to be displaced. The displacing medium is substantially free of molecular oxygen.
The Advanced Exploration Systems Water Recovery Project: Innovation on 2 Fronts
Sarguisingh, Miriam M.; Neumeyer, Derek; Shull, Sarah
2012-01-01
As NASA looks forward to sending humans farther away from Earth, we will have to develop a transportation architecture that is highly reliable and that can sustain life for long durations without the benefit of Earth s proximity for continuous resupply or even operational guidance. NASA has consistently been challenged with performing great feats of innovation, but particularly in this time of economic stress, we are challenged to go farther with less. The Advanced Exploration Systems (AES) projects were implemented to address both of these needs by not only developing innovative technologies, but by incorporating innovative management styles and processes that foster the needed technical innovation given a small amount of resources. This presentation explains how the AES Water Recovery Project is exhibiting innovation on both fronts; technical and process. The AES Water Recovery Project (WRP) is actively engineering innovative technologies in order to maximize the efficiency of water recovery. The development of reliable, energy-efficient, and low-mass spacecraft systems to provide environmental control and life support (ECLS) is critical to enable long-duration human missions outside of low-Earth orbit. Recycling of life support consumables is necessary to reduce resupply mass and provide for vehicle autonomy. To address this, the WRP is working on a rotary distiller that has shown enhanced performance over the state-of-the-art (SOA). Additionally, the WRP is looking at innovative ways to address issues present in the state-of-the-art (SOA) systems pertaining to toxicity and calcium scale buildup. As an AES project, the WRP has a more streamlined Skunk Works like approach to technology development intended to reduce overhead but achieve a more refined end product. The project has incorporated key partnerships between NASA centers as well as between NASA and industry. A minimal project management style has been implemented such that risks are managed and
Ballesteros, M.; Ayerbe, J.; Casares, M.; Cañadas, E. M.; Lorite, J.
2017-04-01
The loss of biological soil crusts represents a challenge for the restoration of disturbed environments, specifically in particular substrates hosting unique lichen communities. However, the recovery of lichen species affected by mining is rarely addressed in restoration projects. Here, we evaluate the translocation of Diploschistes diacapsis, a representative species of gypsum lichen communities affected by quarrying. We tested how a selection of adhesives could improve thallus attachment to the substrate and affect lichen vitality (as CO2 exchange and fluorescence) in rainfall-simulation and field experiments. Treatments included: white glue, water, hydroseeding stabiliser, gum arabic, synthetic resin, and a control with no adhesive. Attachment differed only in the field, where white glue and water performed best. Adhesives altered CO2 exchange and fluorescence yield. Notably, wet spoils allowed thalli to bind to the substrate after drying, revealing as the most suitable option for translocation. The satisfactory results applying water on gypsum spoils are encouraging to test this methodology with other lichen species. Implementing these measures in restoration projects would be relatively easy and cost-effective. It would help not only to recover lichen species in the disturbed areas but also to take advantage of an extremely valuable biological material that otherwise would be lost.
Silins, U.; Bladon, K. D.; Stone, M.; Emelko, M. B.; Collins, A.; Boon, S.; Williams, C.; Wagner, M. J.; Martens, A. M.; Anderson, A.
2012-12-01
Broad regions of western North America rely on water supplies that originate from forested regions of the Rocky Mountain cordillera where landuse pressures, and stresses including changing natural disturbance regimes associated with shifting climates has been impacting critical source water supplies from this region. Increases in magnitude and severity of wildfires along with impacts on downstream water supplies has been observed along the length of the North American Rocky Mountain chain, however, the longevity of these impacts (including impacts to important water quality parameters) remain highly uncertain because processes regulating recovery from such disturbances can span a range of timescales from a few years to decades depending on both the hydro-climatic regime, and which water quality parameters are important. Studies document such long-term changes are few. The Southern Rockies Watershed Project (SRWP) was established to document the magnitude and recovery from the severe 2003 Lost Creek wildfire in the Crowsnest Pass region of southwest Alberta, Canada. Hydrology, water quality (physical & chemical) have been studies in 9 instrumented catchments (4-14 km2) encompassing burned, burned and salvage logged, prescribed burned, and unburned (reference) conditions since late winter 2004. While most important water quality parameters were strongly elevated in burned and burned-salvage logged catchments after the fire, strongly differential rates of recovery were observed for contaminant concentration, export, and yield across a range of water quality parameters (2004-2011). For example, while various nitrogen (N) species (total nitrogen, dissolved nitrogen, NO3-, NH4+) showed 2-7 fold increases in concentration the first 1-2 years after the wildfire, N recovered back to baseline concentrations 4-5 years after the wildfire. In contrast, eight full years after the wildfire (2011), no recovery of sediment or phosphorus (P) production (soluble reactive, total
Beam Diagnostics for the BNL Energy Recovery Linac Test Facility
International Nuclear Information System (INIS)
Cameron, Peter; Ben-Zvi, Ilan; Blaskiewicz, Michael; Brennan, Michael; Connolly, Roger; Dawson, William; Degen, Chris; DellaPenna, Al; Gassner, David; Kesselman, Martin; Kewish, Jorg; Litvinenko, Vladimir; Mead, Joseph; Oerter, Brian; Russo, Tom; Vetter, Kurt; Yakimenko, Vitaly
2004-01-01
An Energy Recovery Linac (ERL) test facility is presently under construction at BNL. The goals of this test facility are first to demonstrate stable intense CW electron beam with parameters typical for the RHIC e-cooling project (and potentially for eRHIC), second to test novel elements of the ERL (high current CW photo-cathode, superconducting RF cavity with HOM dampers, and feedback systems), and finally to test lattice dependence of stability criteria. Planned diagnostics include position monitors, loss monitors, transverse profile monitors (both optical and wires), scrapers/halo monitors, a high resolution differential current monitor, phase monitors, an energy spread monitor, and a fast transverse monitor (for beam break-up studies and the energy feedback system). We discuss diagnostics challenges that are unique to this project, and present preliminary system specifications. In addition, we include a brief discussion of the timing system
Uranium from sea-water. Possibilities of recovery, exploiting slow coastal currents
International Nuclear Information System (INIS)
Bettinali, C.; Pantanetti, F.
1976-01-01
The authors analyse the interest in uranium recovery from sea-water within the framework of uranium world supply problems. The most reliable methods proposed for recovery are summarized and discussed, both from the chemical and the plant project points of view. Tides as a source of energy for water movement cannot be used in the Mediterranean and therefore only currents can be taken into account. The acceptable cost of an exchanger, in relation to the uranium price, is considered and related to known exchangers. The characteristics of exchanging elements are examined and the influence of the speed of sea currents discussed. The extractable uranium is a function of the exchange rate and of the speed of the flow inside the exchanging system; therefore it is quite clear that the current speed is not a prerequisite and that coastal currents around Italy are suitable. Exchanging elements built with sheets parallel to the flow, exchanging pans containing granular or fibrous exchangers have been considered. The main characteristics of a 1000 t/a plant are discussed considering different possibilities. The most acceptable seems to be the continuous extraction system. The parameters needed to calculate the dimensions of such a plant are given and the relation between the length and speed of the moving chain discussed. A rough economic evaluation of the plant cost - starting from known technologies - and of the final cost of the uranium oxide produced is made. (author)
Technology strategy for enhanced recovery; Technology Target Areas; TTA3 - enhanced recovery
Energy Technology Data Exchange (ETDEWEB)
2007-07-01
could probably be implemented with existing facilities and within the relevant time frame. The Research and development effort in the 1980's and early 1990's on chemical methods gained a lot of knowledge and expertise at the research institutes and in the oil companies. The new effort should be based on the existing knowledge, focus on pilot testing and field implementation, and redoing of work should be avoided. A lot of excellent work has been carried out on EOR for the NCS. The following main common challenges for all of the studied EOR methods have been identified and can be grouped in 3 main categories: 1. Recovery process understanding 2. Field recovery predictions 3. Pilots and field trials The recommendations from the enhanced recovery group (TTA3) are the following: ) There is a clear need for increased support for focussed projects over a wide range of EOR methods in order to achieve the high ambitions for reserve replacement and recovery factors that have been set for the NCS fields. The EOR share of the total PETROMAKS programme should be raised significantly above today's 7.5% of the PETROMAKS budge. Furthermore, high priority should be given to pilots on EOR methods and field trials and to launch EOR projects within Demo2000. There is today none EOR projects financed through Demo2000. ) A special initiative is recommended to generate and support projects for improved water flooding by the use of chemical additives (chemical flooding). A workshop seminar should be arranged to discuss specific Research and development projects in the area of water based EOR methods (chemical additives). ) Projects on sweep improvements for gas or WAG injection i.e. Foam Assisted WAG (FAWAG), especially related to field implementation should be encouraged. (Author)
International Nuclear Information System (INIS)
Suzuki, Mitsuhiro; Takeda, Takeshi; Nakamura, Hideo
2010-02-01
A series of break size parameter tests (SB-PV-07 and SB-PV-08) were conducted at the Large Scale Test Facility (LSTF) of ROSA-V Program by simulating a vessel top small break loss-of-coolant accident (SBLOCA) at a pressurized water reactor (PWR). Typical phenomena to the vessel top break LOCA and effectiveness of operator recovery actions on core cooling were studied under an assumption of total failure of high pressure injection (HPI) system. The LSTF simulates a 4-loop 3423 MWt PWR by a full-height, full-pressure and 1/48 volume scaling two-loop system. Typical phenomena of vessel top break LOCA are clarified for the cases with break sizes of 1.0 and 0.1% cold leg break equivalent. The results from a 0.5% top break LOCA test (SB-PV-02) in the early ROSA-IV Program was referred during discussion. Operator actions of HPI recovery in the 1.0% top break test and steam generator (SG) depressurization in the 0.1% top break test were initiated when temperature at core exit thermocouple (CET) reached 623 K during core boil-off. Both operator actions resulted in immediate recovery of core cooling. Based on the obtained data, several thermal-hydraulic phenomena were discussed further such as relations between vessel top head water level and steam discharge at the break, and between coolant mass inventory transient and core heat-up and quench behavior, and CET performances to detect core heat-up under influences of three-dimensional (3D) steam flows in the core and core exit. (author)
Tank testing of skimmers with waxy and viscous oils
International Nuclear Information System (INIS)
1989-10-01
A series of tests of four offshore skimmers (Framo ACW-400, GT-185, Walosep W2, Heavy Oil Skimmer) was conducted in a 120-by-60-meter wave basin. Each skimmer was tested with each of 3 oils: a conventional crude, a waxy crude, and a bunker oil. Each test involved 4-6 h of skimming, partly conducted in waves having a period of 4 s and heights of 0.4-0.8 m. Near the end of selected tests, the additive Elastol was applied to the oil and its effect on recovery parameters evaluated. All the optimum results were obtained in calm conditions. In general, waves had no effect on the performance of the Walosep W2, had little effect on the performance of the GT-185, and greatly reduced the performance of the Framo. The experimental Heavy Oil Skimmer failed to recover oil at significant rates without addition of Elastol to the oils. The fluid recovery rate less the water entrainment rate generally declined as oil viscosity increased. For a waxy oil, recovery rates under conditions typical of the Grand Banks in summer would be 30-40% less than for a conventional crude with the Framo skimmer and about the same as the recovery rates for conventional crude with the Walosep and GT-185 skimmers. The Walosep, unlike the other skimmers, did not entrain more water when skimming waxy oil compared to conventional oil. Adding Elastol to the oils improved the corrected recovery rates of the Walosep by ca 15% and had no effect on its water entrainment rate. For the Framo, Elastol addition had no effect on the recovery rate but increased its water entrainment rate. Elastol reduced the GT-185's recovery rate by 25-35% and increased its water entrainment rate. Adding Elastol had several negative effects on subsequent downstream operations. 11 refs., 55 figs., 14 tabs
Long-term durability test of acid recovery evaporators made of Ti-5% Ta alloy and zirconium
International Nuclear Information System (INIS)
Takeuchi, Masayuki; Koizumi, Tsutomu; Koyama, Tomozo
2001-05-01
Mock-ups of acid recovery evaporators which are made of Ti-5% Ta alloy and Zr were tested under inactive condition for forty thousands hours to improve a corrosion resistance of acid recovery evaporator in Tokai reprocessing plant (TRP). The mock-up unit was designed and produced referring to the specification of acid recovery evaporator in TRP and the evaporation performance of the mock-up was 1/27 of TRP. A long-term durability of both evaporators was demonstrated by results of operation data, evaporation performance and corrosion resistance. The mock-up unit did not suffer from any trouble during the running test and the operation data such as temperature, flow, concentrations of nitric acid and metal ions were fairly stable within standard condition. As for the corrosion resistance, cracks and local corrosion such as intergranular attack were not observed on both evaporators after the running test, and a corrosion of weld was not selective. The average corrosion rates at measuring points were less than 0.1 mm/yr, respectively, however, thickness of the Ti-5% Ta alloy evaporator was slightly reduced at all points of vapor phase region. In addition, from the result by test coupon, it is found that both materials have low susceptibility to stress corrosion cracking in this environment. The destructive inspection showed that the mechanical properties of both materials were not degraded during the running test. Finally, the total running time of the mock-up unit is much more than a maximum running time of acid recovery evaporator made of stainless steel in TRP (nearly 15,000 hours). On the basis of the test results, an excellent durability of Ti-5% Ta alloy and Zr evaporators under was successfully demonstrated throughout the mock-up test from an engineering perspective. (author)
Directory of Open Access Journals (Sweden)
Chungsan Lim
2014-06-01
Full Text Available Objectives:This study was performed to check for reversibility in the changes induced by a 13-week, repeated, dose toxicity test of Sweet Bee Venom (SBV in Sprague-Dawley (SD rats. Methods:Fifteen male and 15 female SD rats were treated with 0.28 mg/kg of SBV (high-dosage group and the same numbers of male and female SD rats were treated with 0.2 mL/kg of normal saline (control group for 13 weeks. We selected five male and five female SD rats from the high-dosage group and the same numbers of male and female SD rats from the control group, and we observed these rats for four weeks. We conducted body-weight measurements, ophthalmic examinations, urinalyses and hematology, biochemistry, histology tests. Results:(1 Hyperemia and movement disorder were observed in the 13-week, repeated, dose toxicity test, but these symptoms were not observed during the recovery period. (2 The rats in the high-dose group showed no significant changes in weight compared to the control group. (3 No significant differences in the ophthalmic parameters, urine analyses, complete blood cell counts (CBCs, and biochemistry were observed among the recovery groups. (4 No changes in organ weights were observed during the recovery period. (5 Histological examination of the thigh muscle indicated cell infiltration, inflammation, degeneration, necrosis of muscle fiber, and fibrosis during the treatment period, but these changes were not observed during the recovery period. The fatty liver change that was observed during the toxicity test was not observed during the recovery period. No other organ abnormalities were observed. Conclusion:The changes that occurred during the 13-week, repeated, dose toxicity test are reversible, and SBV can be safely used as a treatment modality.
Balakrishnan, M; Batra, R; Batra, V S; Chandramouli, G; Choudhury, D; Hälbig, T; Ivashechkin, P; Jain, J; Mandava, K; Mense, N; Nehra, V; Rögener, F; Sartor, M; Singh, V; Srinivasan, M R; Tewari, P K
2018-07-01
Diffusion dialysis, acid retardation and nanofiltration plants were acquired from Europe and demonstrated in several Indian metal finishing companies over a three year period. These companies are primarily small and medium enterprises (SMEs). Free acid recovery rate from spent pickling baths using diffusion dialysis and retardation was in the range of 78-86% and 30-70% respectively. With nanofiltration, 80% recovery rate of rinse water was obtained. The demonstrations created awareness among the metal finishing companies to reuse resources (acid/water) from the effluent streams. However, lack of efficient oil separators, reliable chemical analysis and trained personnel as well as high investment cost limit the application of these technologies. Local manufacturing, plant customization and centralized treatment are likely to encourage the uptake of such technologies in the Indian metal finishing sector. Copyright © 2018 Elsevier Ltd. All rights reserved.
DEFF Research Database (Denmark)
Chakravarty, Krishna Hara; Fosbøl, Philip Loldrup; Thomsen, Kaj
2015-01-01
Modified sea water has been shown to affect the oil recovery fraction considerably during secondary and tertiary waterfloods. Available soluble potential ions (i.e. Ca2+, Mg2+ & SO42-) in the interacting waterflood (ITW) are suggested to play a key role in increasing the displacement efficiency...... of oil. In previous studies, compositions of injected waterfloods (IJW) have been correlated to the observed oil recovery. This study highlights differences between IJW and ITW for different studies reported in literature....
Scaling of counter-current imbibition recovery curves using artificial neural networks
Jafari, Iman; Masihi, Mohsen; Nasiri Zarandi, Masoud
2018-06-01
Scaling imbibition curves are of great importance in the characterization and simulation of oil production from naturally fractured reservoirs. Different parameters such as matrix porosity and permeability, oil and water viscosities, matrix dimensions, and oil/water interfacial tensions have an effective on the imbibition process. Studies on the scaling imbibition curves along with the consideration of different assumptions have resulted in various scaling equations. In this work, using an artificial neural network (ANN) method, a novel technique is presented for scaling imbibition recovery curves, which can be used for scaling the experimental and field-scale imbibition cases. The imbibition recovery curves for training and testing the neural network were gathered through the simulation of different scenarios using a commercial reservoir simulator. In this ANN-based method, six parameters were assumed to have an effect on the imbibition process and were considered as the inputs for training the network. Using the ‘Bayesian regularization’ training algorithm, the network was trained and tested. Training and testing phases showed superior results in comparison with the other scaling methods. It is concluded that using the new technique is useful for scaling imbibition recovery curves, especially for complex cases, for which the common scaling methods are not designed.
Nevada test site water-supply wells
International Nuclear Information System (INIS)
Gillespie, D.; Donithan, D.; Seaber, P.
1996-05-01
A total of 15 water-supply wells are currently being used at the Nevada Test Site (NTS). The purpose of this report is to bring together the information gleaned from investigations of these water-supply wells. This report should serve as a reference on well construction and completion, static water levels, lithologic and hydrologic characteristics of aquifers penetrated, and general water quality of water-supply wells at the NTS. Possible sources for contamination of the water-supply wells are also evaluated. Existing wells and underground nuclear tests conducted near (within 25 meters (m)) or below the water table within 2 kilometers (km) of a water-supply were located and their hydrogeologic relationship to the water-supply well determined
Recovery And Valorization Of Snakehead Fish Channa Striata Surimi Wash Water As Stock Albumin Tablet
Directory of Open Access Journals (Sweden)
Ikbal Syukroni
2017-11-01
Full Text Available Surimi washing process is aimed to concentrate the myofibril protein by removing catepsin enzyme fat pigment blood and sarcoplasmic protein which is soluble in wash water. The soluble subtances cause trouble environment if it was untreated. In addition recovery protein will give benefit both in reducing trouble environment and utilizing soluble protein as sources of albumin protein. The objectives of research were to recover albumin from snakehead fish surimi wash water and to valorize as stock albumin tablet. Recovery of albumin use 0.05 m ultrafiltration membrane and the valorization of albumin tablets was by direct compression. The protein band with molecular weight of 67.741 kDa on the retentate was detected as albumin. Concentration of protein recover by ultrafiltration membrane increased 89.98 and the albumin content 3.50.4 gdl. Based on the result of chemical composition and microbiology analysis albumin of snakehead surimi wash water appropriate with Indonesia National Standard SNI quality requirement about snakehead fish albumin extract. The best formulation in the preparation of surimi wash water albumin tablet was by using corn starch excipients with uniformity weight value 410.39 0.09 g hardness value 7.65 0.8 Kp uniformity size of tablet with diameter 1 cm and thickness 0.59 cm friability value 2.3 and disintregation time of the tablet is 2 minutes 16 second.
Directory of Open Access Journals (Sweden)
Adriana Dailey
2015-12-01
Full Text Available This study aimed to develop optimal microwave assisted extraction conditions for recovery of phenolic compounds and antioxidant properties from the macadamia skin, an abundant waste source from the macadamia industry. Water, a safe, accessible, and inexpensive solvent, was used as the extraction solvent and Response Surface Methodology (RSM was applied to design and analyse the conditions for microwave-assisted extraction (MAE. The results showed that RSM models were reliable for the prediction of extraction of phenolic compounds and antioxidant properties. Within the tested ranges, MAE radiation time and power, as well as the sample-to-solvent ratio, affected the extraction efficiency of phenolic compounds, flavonoids, proanthocyanidins, and antioxidant properties of the macadamia skin; however, the impact of these variables was varied. The optimal MAE conditions for maximum recovery of TPC, flavonoids, proanthocyanidins and antioxidant properties from the macadamia skin were MAE time of 4.5 min, power of 30% (360 W and sample-to-water ratio of 5 g/100 mL. Under these conditions, an extract could be prepared with TPC of 45 mg/g, flavonoids of 29 mg RUE/g of dried macadamia skin.
Valder, Joshua F.; Delzer, Gregory C.; Price, Curtis V.; Sandstrom, Mark W.
2008-01-01
The National Water-Quality Assessment (NAWQA) Program of the U.S. Geological Survey (USGS) began implementing Source Water-Quality Assessments (SWQAs) in 2002 that focus on characterizing the quality of source water and finished water of aquifers and major rivers used by some of the larger community water systems in the United States. As used for SWQA studies, source water is the raw (ambient) water collected at the supply well prior to water treatment (for ground water) or the raw (ambient) water collected from the river near the intake (for surface water). Finished water is the water that is treated, which typically involves, in part, the addition of chlorine or other disinfection chemicals to remove pathogens, and is ready to be delivered to consumers. Finished water is collected before the water enters the distribution system. This report describes the study design and percent recoveries of anthropogenic organic compounds (AOCs) with and without the addition of ascorbic acid to preserve water samples containing free chlorine. The percent recoveries were determined by using analytical results from a laboratory study conducted in 2004 by the USGS's National Water Quality Laboratory (NWQL) and from data collected during 2004-06 for a field study currently (2008) being conducted by the USGS's NAWQA Program. The laboratory study was designed to determine if preserving samples with ascorbic acid (quenching samples) adversely affects analytical performance under controlled conditions. During the laboratory study, eight samples of reagent water were spiked for each of five analytical schedules evaluated. Percent recoveries from these samples were then compared in two ways: (1) four quenched reagent spiked samples analyzed on day 0 were compared with four quenched reagent spiked samples analyzed on day 7 or 14, and (2) the combined eight quenched reagent spiked samples analyzed on day 0, 7, or 14 were compared with eight laboratory reagent spikes (LRSs). Percent
Recovery of Organic and Amino Acids from Sludge and Fish Waste in Sub Critical Water Conditions
Directory of Open Access Journals (Sweden)
Muhammad Faisal
2011-12-01
Full Text Available The possibility of organic and amino acid production from the treatment of sludge and fish waste using water at sub critical conditions was investigated. The results indicated that at sub-critical conditions, where the ion product of water went through a maximum, the formation of organic acids was favorable. The presence of oxidant favored formation of acetic and formic acid. Other organic acids of significant amount were propionic, succinic and lactic acids. Depending on the type of wastes, formation of other organic acids was also possible. Knowing the organic acids obtained by hydrolysis and oxidation in sub-critical water of various wastes are useful in designing of applicable waste treatment process, complete degradation of organic wastes into volatile carbon and water, and also on the viewpoint of resource recovery. The production of lactic acid was discussed as well. The results indicated that temperature of 573 K, with the absence of oxidant, yield of lactic acid from fish waste was higher than sewage sludge. The maximum yield of total amino acids (137 mg/g-dry fish from waste fish entrails was obtained at subcritical condition (T = 523 K, P = 4 MPa at reaction time of 60 min by using the batch reactor. The amino acids obtained in this study were mainly alanine and glycine. Keywords: organic acids, amino acids, sub-critical water, hydrothermal, resources recovery
Energy consumption by forward osmosis treatment of landfill leachate for water recovery.
Iskander, Syeed Md; Zou, Shiqiang; Brazil, Brian; Novak, John T; He, Zhen
2017-05-01
Forward osmosis (FO) is an alternative approach for treating landfill leachate with potential advantages of reducing leachate volume and recovering high quality water for direct discharge or reuse. However, energy consumption by FO treatment of leachate has not been examined before. Herein, the operational factors such as recirculation rates and draw concentrations were studied for their effects on the quantified energy consumption by an FO system treating actual leachate collected from two different landfills. It was found that the energy consumption increased with a higher recirculation rate and decreased with a higher draw concentration, and higher water recovery tended to reduce energy consumption. The highest energy consumption was 0.276±0.033kWhm -3 with the recirculation rate of 110mLmin -1 and 1-M draw concentration, while the lowest of 0.005±0.000kWhm -3 was obtained with 30mLmin -1 recirculation and 3-M draw concentration. The leachate with lower concentrations of the contaminants had a much lower requirement for energy, benefited from its higher water recovery. Osmotic backwashing appeared to be more effective for removing foulants, but precise understanding of membrane fouling and its controlling methods will need a long-term study. The results of this work have implied that FO treatment of leachate could be energy efficient, especially with the use of a suitable draw solute that can be regenerated in an energy efficient way and/or through combination with other treatment technologies that can reduce contaminant concentrations before FO treatment, which warrants further investigation. Copyright © 2017 Elsevier Ltd. All rights reserved.
DEFF Research Database (Denmark)
Ottosen, Lisbeth M.; Jensen, Pernille Erland; Kirkelund, Gunvor Marie
2016-01-01
was suspended in water in the anolyte, which was separated from the catholyte by a cation exchange membrane. Electrolysis at the anode acidified the SSA suspension, and hereby P, Cu, Pb, Cd and Zn were extracted. The heavy metal ions electromigrated into the catholyte and were thus separated from the filtrate......Phosphorus (P) is indispensable for all forms of life on Earth and as P is a finite resource, it is highly important to increase recovery of P from secondary resources. This investigation is focused on P recovery from sewage sludge ash (SSA) by a two-compartment electrodialytic separation (EDS......) technique. Two SSAs are included in the investigation and they contained slightly less P than phosphate rock used in commercial fertilizer production and more heavy metals. The two-compartment electrodialytic technique enabled simultaneous recovery of P and separation of heavy metals. During EDS the SSA...
Recovery of Zn from acid mine water and electric arc furnace dust in an integrated process.
Carranza, Francisco; Romero, Rafael; Mazuelos, Alfonso; Iglesias, Nieves
2016-01-01
In this paper, the purification of acid mine water and the treatment of electric arc furnace dust (EAFD) are integrated into one process with the aim of recovering the Zn content of both effluent and waste. Zinc recovery can reduce the cost of their environmental management: purified acid mine water is discharged after removing all metals; EAFD ceases to be hazardous waste; and Zn is valorised. The process consists of the recovery of Zn as zinc oxide and its purification into commercial products. First, EAFD is leached with acid water and the dissolved metals are selectively precipitated as hydroxides. After EADF leaching, ferrous iron is bio-oxidized and Fe and Al are then precipitated; in the following stage, Cu, Ni, Co and Cd are cemented and finally Zn is precipitated as ZnO. In order to purify water that finally is discharged to a river, lime is used as the neutralizing agent, which results in a precipitate of mainly gypsum, MnO, and ZnO. From the impure zinc oxide produced, various alternatives for the attainment of commercial products, such as basic zinc carbonate and electrolytic zinc, are studied in this work. Copyright © 2015 Elsevier Ltd. All rights reserved.
Fluid diversion in oil recovery
International Nuclear Information System (INIS)
Nimir, Hassan B.
1999-01-01
In any oil recovery process, large scale heterogeneities, such as fractures, channels, or high-permeability streaks, can cause early break through of injected fluid which will reduce oil recovery efficiency. In waterflooding, enhanced oil recovery, and acidizing operations, this problem is particularly acute because of the cost of the injected fluid. On the other hand coping with excess water production is always a challenging task for field operators. The cost of handling and disposing produced water can significantly shorten the economic production life of an oil well. The hydrostatic pressure created by high fluid levels in a well (water coning) is also detrimental to oil production. In this paper, the concept of fluid diversion is explained. Different methods that are suggested to divert the fluid into the oil-bearing-zones are briefly discussed, to show their advantages and disadvantages. Methods of reducing water production in production well are also discussed. (Author)
Cognitive performance and aphasia recovery.
Fonseca, José; Raposo, Ana; Martins, Isabel Pavão
2018-03-01
Objectives This study assessed cognitive performance of subjects with aphasia during the acute stage of stroke and evaluated how such performance relates to recovery at 3 months. Materials & methods Patients with aphasia following a left hemisphere stroke were evaluated during the first (baseline) and the fourth-month post onset. Assessment comprised non-verbal tests of attention/processing speed (Symbol Search, Cancelation Task), executive functioning (Matrix Reasoning, Tower of Hanoi, Clock Drawing, Motor Initiative), semantic (Camel and Cactus Test), episodic and immediate memory (Memory for Faces Test, 5 Objects Memory Test, and Spatial Span. Recovery was measured by the Token Test score at 3 months. The impact of baseline performance on recovery was evaluated by logistic regression adjusting for age, education, severity of aphasia and the Alberta Stroke Program Early CT (ASPECT) score. Results Thirty-nine subjects (with a mean of 66.5 ± 10.6 years of age, 17 men) were included. Average baseline cognitive performance was within normal range in all tests except in memory tests (semantic, episodic and immediate memory) for which scores were ≤-1.5sd. Subjects with poor aphasia recovery (N = 27) were older and had fewer years of formal education but had identical ASPECT score compared to those with favorable recovery. Considering each test individually, the score obtained on the Matrix Reasoning test was the only one to predict aphasia recovery (Exp(B)=24.085 p = 0.038). Conclusions The Matrix Reasoning Test may contribute to predict aphasia recovery. Cognitive performance is a measure of network disruption but may also indicate the availability of recovery strategies.
Air-water tests in support of LLTR series II Test A-4
International Nuclear Information System (INIS)
Chen, K.
1980-07-01
A series of tests injecting air into a tank of stagnant water was conducted in June 1980 utilizing the GE Plenum Mixing Test Facility in San Jose, California. The test was concerned with investigating the behavior of air jets at a submerged orifice in water over a wide range of flow rates. The main objective was to improve the basic understanding of gas-liquid phenomena (e.g., leak dynamics, gas bubble agglomeration, etc.) in a simulated tube bundle through visualization. The experimental results from these air-water tests will be used as a guide to help select the leak size for LLTR Series II Test A-4 because air-water system is a good simulation of water-sodium mixture
International Nuclear Information System (INIS)
Abbasi, S.; Wahba, H.; AL-Masri, M.S.
2010-01-01
The fast development of tanning industry led to an increase in environmental problems resulting from discharging its wastes to the surrounding environment. Thus solving this problem became one of the most important aims that the researchers work on. The chromium content of the industrial water wastes of the tanning industry considered as the main pollutant for the environment. The Aleppo Bentonite is used in early research to remove the chromium from the industrial waste water.The current research aims to find a method to activate the Aleppo Bentonite in order to increase the effective removal of chromium from the industrial waste water which is produced by tanning industry, as well as to specify the optimal conditions for chromium recovery.This study used the Aleppo Bentonite, whose origin is Tal Ajar-Aleppo to study the activation aspects using Sulfuric Acid, Hydrochloric Acid and Nitric Acid, in addition to study the recovery aspects using the same acids and hydrogen peroxide and to specify the optimal conditions for chromium recovery through applying some experiments based on three main factors: concentration, settling time and temperature.It was observed from the applied experiments that it is possible to recover chromium from Bentonite efficiently up to (80% - 90%) by treating the Bentonite with hydrogen peroxide(33% concentration) at room temperature, or by treating it with hydrogen peroxide(8.25% concentration) at 75 o C, while the settling time factor proved that full recovery of chromium is obtained during the first hour, and increasing the time factor does not affect the efficiency of chromium recovery. (author)
Enzymes for Enhanced Oil Recovery (EOR)
Energy Technology Data Exchange (ETDEWEB)
Nasiri, Hamidreza
2011-04-15
enzymes on interactions in the oil/brine/solid system was studied. It was found that enzymes can change the adhesion behavior of the crude oil on glass surfaces from adhesion to non-adhesion when they are added to the brine solution. This was confirmed by contact angle measurements, which showed that contact angles became more water-wet (i.e. decreased) after exposure to enzyme solutions. Possible mechanisms giving rise to these observations, including catalysis of ester hydrolysis and enzyme adsorption, were discussed and tested. An experimental study of changes in oil-water interfacial properties by addition of enzymes and proteins, including measurements of interfacial tension and electrophoretic mobility, has been performed. It was found that the effect of enzymes on oil-water properties is minor compared to their effect on oil-water-solid properties. Their contribution to change interfacial tension between oil and water is not significant while they affect the electrophoretic mobility of emulsified oil in enzyme-brine solution to some extent. Attempts were also made to study changes in both oil and water phase composition after equilibration with enzymes. However, since the chemical composition of crude oil is highly complex, a model oil was used in some of the experiments. The model oil was chosen to be a water insoluble ester (ethyl decanoate) solved in mineral oil in an effort to verify the possible role of catalysis of ester hydrolysis. Dynamic core displacements using sandstone and carbonate rocks were conducted to show the potential of improved oil recovery by enzyme- and combined enzyme-surfactant flooding. Most of the core flooding experiments commenced with water flooding from initial water saturation, Swi, (established with synthetic sea water) which will be referred to as secondary mode displacements. Accordingly, tertiary oil recovery processes were used to describe injection of enzyme and/or enzyme-surfactant solutions from residual oil saturation, Sor
Feasibility of recovery boiler in paper and pulp industry
International Nuclear Information System (INIS)
Rashid, H.
2010-01-01
in this paper feasibility of recovery boiler in terms of economics and environmental impacts in studied. Recovery boilers are employed in the pulp and paper industry where the cooking agent is recovered by burning black liquor. Cooking agent is exhausted due to the absorption of lignin (a burnable component) in cooking agent in the process of straw cooking. The process of recovery boiler is to remove lignin by combustion from black liquor, and heat is produced during the combustion of lignin which is used to produce steam. Recovery boiler is economical as it is recovering valuable chemicals and steam is produced as a byproduct. Steam from recovery boiler is also used for concentrating weak black liquor to concentrated black liquor recovering 50% of the utility water being used at the plant. The regenerated water in the form of foul condensate is reused in the process. The recovery of hazardous chemicals also reduces load of environmental pollution. Which otherwise can pollute the water reservoirs, and regeneration of water makes it environmentally friendly plant. Construction and challenges in operation of recovery boiler such as smelt-water explosion are also discussed in this paper. (author)
Mechanics of vacuum-enhanced recovery of hydrocarbons
International Nuclear Information System (INIS)
Barnes, D.L.; McWhorter, D.B.
1995-01-01
A growing body of field data demonstrates the enhancement of product recovery that can be achieved by applying a partial vacuum to recovery wells. Typical explanations for the observed improvement in performance invoke an increased slope of the cone of depression created in the water-table surface. Explanations related to water-table slope do not consider the gradient induced in the hydrocarbon by virtue of the airflow. Also, the airflow may induce a gradient in the aqueous phase that is not reflected in a water-table drawdown. The equations for steady-state flow of three immiscible fluids elucidate the fundamental mechanics of vacuum-enhanced recovery or bioslurping. Airflow to the recovery well causes hydrocarbon to migrate toward the well, independent of any gravity effects that may be created. Also, the relative permeability to hydrocarbon is affected by both water and airflow in the vicinity of the recovery well. Two critical airflow rates delineate the conditions for which only air is recovered, air and hydrocarbon are recovered, and all three phases are recovered
International Nuclear Information System (INIS)
Abdul, A.S.
1992-01-01
More than 200,000 gallons of automatic transmission fluid (ATF) leaked from an underground storage tank system and contaminated an area of about 64,000 ft 2 of a soil and ground water system. A pumping strategy for improved drainage and recovery of free oil was developed, tested in a laboratory model aquifer, and implemented (1) the oil recovery rate is carefully controlled to maximize the pumping rate while maintaining continuity between the oil layer in the soil and the recovery well, to avoid isolation of the oil in the subsurface; and (2) the rate of ground water pumping is controlled to maintain the depressed oil/water interface at its prepumped position. This approach prevents further spread of oil into the ground water, prevents reduction in the volume of recoverable oil due to residual retention, and maintains a gradient for oil flow toward the recovery well. In a model aquifer study, nearly 100% of the recoverable volume of ATF was pumped from the system, and about 56,000 gallons of the ATF has been recovered from the field site
Stability Proxies for Water-in-Oil Emulsions and Implications in Aqueous-based Enhanced Oil Recovery
Directory of Open Access Journals (Sweden)
Mehrnoosh Moradi
2011-07-01
Full Text Available Several researchers have proposed that mobility control mechanisms can positively contribute to oil recovery in the case of emulsions generated in Enhanced-Oil Recovery (EOR operations. Chemical EOR techniques that use alkaline components or/and surfactants are known to produce undesirable emulsions that create operational problems and are difficult to break. Other water-based methods have been less studied in this sense. EOR processes such as polymer flooding and LoSalTM injection require adjustments of water chemistry, mainly by lowering the ionic strength of the solution or by decreasing hardness. The decreased ionic strength of EOR solutions can give rise to more stable water-in-oil emulsions, which are speculated to improve mobility ratio between the injectant and the displaced oil. The first step toward understanding the connection between the emulsions and EOR mechanisms is to show that EOR conditions, such as salinity and hardness requirements, among others, are conducive to stabilizing emulsions. In order to do this, adequate stability proxies are required. This paper reviews commonly used emulsion stability proxies and explains the advantages and disadvantage of methods reviewed. This paper also reviews aqueous-based EOR processes with focus on heavy oil to contextualize in-situ emulsion stabilization conditions. This context sets the basis for comparison of emulsion stability proxies.
Honeywell Cascade Distiller System Performance Testing Interim Results
Callahan, Michael R.; Sargusingh, Miriam
2014-01-01
The ability to recover and purify water through physiochemical processes is crucial for realizing long-term human space missions, including both planetary habitation and space travel. Because of their robust nature, distillation systems have been actively pursued as one of the technologies for water recovery. The Cascade Distillation System (CDS) is a vacuum rotary distillation system with potential for greater reliability and lower energy costs than existing distillation systems. The CDS was previously under development through Honeywell and NASA. In 2009, an assessment was performed to collect data to support down-selection and development of a primary distillation technology for application in a lunar outpost water recovery system. Based on the results of this testing, an expert panel concluded that the CDS showed adequate development maturity, TRL-4, together with the best product water quality and competitive weight and power estimates to warrant further development. The Advanced Exploration Systems (AES) Water Recovery Project (WRP) worked to address weaknesses identified by The Panel; namely bearing design and heat pump power efficiency. Testing at the NASA-JSC Advanced Exploration System Water Laboratory (AES Water Lab) using a prototype Cascade Distillation Subsystem (CDS) wastewater processor (Honeywell International, Torrance, Calif.) with test support equipment and control system developed by Johnson Space Center was performed to evaluate performance of the system with the upgrades. The CDS will also have been challenged with ISS analog waste streams and a subset of those being considered for Exploration architectures. This paper details interim results of the AES WRP CDS performance testing.
Nair, Abhilash T; Ahammed, M Mansoor
2014-09-01
In the present study, feasibility of recovering the coagulant from water treatment plant sludge with sulphuric acid and reusing it in post-treatment of upflow anaerobic sludge blanket (UASB) reactor effluent treating municipal wastewater were studied. The optimum conditions for coagulant recovery from water treatment plant sludge were investigated using response surface methodology (RSM). Sludge obtained from plants that use polyaluminium chloride (PACl) and alum coagulant was utilised for the study. Effect of three variables, pH, solid content and mixing time was studied using a Box-Behnken statistical experimental design. RSM model was developed based on the experimental aluminium recovery, and the response plots were developed. Results of the study showed significant effects of all the three variables and their interactions in the recovery process. The optimum aluminium recovery of 73.26 and 62.73 % from PACl sludge and alum sludge, respectively, was obtained at pH of 2.0, solid content of 0.5 % and mixing time of 30 min. The recovered coagulant solution had elevated concentrations of certain metals and chemical oxygen demand (COD) which raised concern about its reuse potential in water treatment. Hence, the coagulant recovered from PACl sludge was reused as coagulant for post-treatment of UASB reactor effluent treating municipal wastewater. The recovered coagulant gave 71 % COD, 80 % turbidity, 89 % phosphate, 77 % suspended solids and 99.5 % total coliform removal at 25 mg Al/L. Fresh PACl also gave similar performance but at higher dose of 40 mg Al/L. The results suggest that coagulant can be recovered from water treatment plant sludge and can be used to treat UASB reactor effluent treating municipal wastewater which can reduce the consumption of fresh coagulant in wastewater treatment.
Williams, David E.
2011-01-01
Node 1 flew to the International Space Station (ISS) on Flight 2A during December 1998. To date the National Aeronautics and Space Administration (NASA) has learned a lot of lessons from this module based on its history of approximately two years of acceptance testing on the ground and currently its twelve years on-orbit. This paper will provide an overview of the ISS Environmental Control and Life Support (ECLS) design of the Node 1 Atmosphere Control and Storage (ACS) and Water Recovery and Management (WRM) subsystems and it will document some of the lessons that have been learned to date for these subsystems based on problems prelaunch, problems encountered on-orbit, and operational problems/concerns. It is hoped that documenting these lessons learned from ISS will help in preventing them in future Programs.
Katuri, Krishna; Bettahalli Narasimha, Murthy Srivatsa; Wang, Xianbin; Matar, Gerald; Chisca, Stefan; Nunes, Suzana Pereira; Saikaly, Pascal
2016-01-01
A novel electrocatalytic and microfiltration polymeric hollow fiber is fabricated for simultaneous recovery of energy (H2) and clean fresh water from wastewater, hence addressing two grand challenges facing society in the current century (i.e., providing adequate supplies of clean fresh water and energy as the world's population increases).
Katuri, Krishna
2016-09-12
A novel electrocatalytic and microfiltration polymeric hollow fiber is fabricated for simultaneous recovery of energy (H2) and clean fresh water from wastewater, hence addressing two grand challenges facing society in the current century (i.e., providing adequate supplies of clean fresh water and energy as the world\\'s population increases).
[Optimization of solid-phase extraction for enrichment of toxic organic compounds in water samples].
Zhang, Ming-quan; Li, Feng-min; Wu, Qian-yuan; Hu, Hong-ying
2013-05-01
A concentration method for enrichment of toxic organic compounds in water samples has been developed based on combined solid-phase extraction (SPE) to reduce impurities and improve recoveries of target compounds. This SPE method was evaluated in every stage to identify the source of impurities. Based on the analysis of Waters Oasis HLB without water samples, the eluent of SPE sorbent after dichloromethane and acetone contributed 85% of impurities during SPE process. In order to reduce the impurities from SPE sorbent, soxhlet extraction of dichloromethane followed by acetone and lastly methanol was applied to the sorbents for 24 hours and the results had proven that impurities were reduced significantly. In addition to soxhlet extraction, six types of prevalent SPE sorbents were used to absorb 40 target compounds, the lgK(ow) values of which were within the range of 1.46 and 8.1, and recovery rates were compared. It was noticed and confirmed that Waters Oasis HLB had shown the best recovery results for most of the common testing samples among all three styrenedivinylbenzene (SDB) polymer sorbents, which were 77% on average. Furthermore, Waters SepPak AC-2 provided good recovery results for pesticides among three types of activated carbon sorbents and the average recovery rates reached 74%. Therefore, Waters Oasis HLB and Waters SepPak AC-2 were combined to obtain a better recovery and the average recovery rate for the tested 40 compounds of this new SPE method was 87%.
Next generation of CO2 enhanced water recovery with subsurface energy storage in China
Li, Qi; Kühn, Michael; Ma, Jianli; Niu, Zhiyong
2017-04-01
Carbon dioxide (CO2) utilization and storage (CCUS) is very popular in comparison with traditional CO2 capture and storage (CCS) in China. In particular, CO2 storage in deep saline aquifers with enhanced water recovery (CO2-EWR) [1] is gaining more and more attention as a cleaner production technology. The CO2-EWR was written into the "U.S.-China Joint Announcement on Climate Change" released November 11, 2014. "Both sides will work to manage climate change by demonstrating a new frontier for CO2 use through a carbon capture, use, and sequestration (CCUS) project that will capture and store CO2 while producing fresh water, thus demonstrating power generation as a net producer of water instead of a water consumer. This CCUS project with enhanced water recovery will eventually inject about 1.0 million tonnes of CO2 and create approximately 1.4 million cubic meters of freshwater per year." In this article, at first we reviewed the history of the CO2-EWR and addressed its current status in China. Then, we put forth a new generation of the CO2-EWR with emphasizing the collaborative solutions between carbon emission reductions and subsurface energy storage or renewable energy cycle [2]. Furthermore, we figured out the key challenging problems such as water-CCUS nexus when integrating the CO2-EWR with the coal chemical industry in the Junggar Basin, Xinjiang, China [3-5]. Finally, we addressed some crucial problems and strategic consideration of the CO2-EWR in China with focuses on its technical bottleneck, relative advantage, early opportunities, environmental synergies and other related issues. This research is not only very useful for the current development of CCUS in the relative "cold season" but also beneficial for the energy security and clean production in China. [1] Li Q, Wei Y-N, Liu G, Shi H (2015) CO2-EWR: a cleaner solution for coal chemical industry in China. Journal of Cleaner Production 103:330-337. doi:10.1016/j.jclepro.2014.09.073 [2] Streibel M
Progress of R&D on water cooled ceramic breeder for ITER test blanket system and DEMO
Energy Technology Data Exchange (ETDEWEB)
Kawamura, Yoshinori, E-mail: kawamura.yoshinori@jaea.go.jp [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Tanigawa, Hisashi; Hirose, Takanori; Enoeda, Mikio [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Sato, Satoshi [Japan Atomic Energy Agency, 2-4 Shirane Shirakata, Tokai, Ibaraki 319-1195 (Japan); Ochiai, Kentaro [Japan Atomic Energy Agency, 2-166 Omotedate Obuchi, Rokkasho, Aomori 039-3212 (Japan); Konno, Chikara; Edao, Yuki; Hayashi, Takumi [Japan Atomic Energy Agency, 2-4 Shirane Shirakata, Tokai, Ibaraki 319-1195 (Japan); Hoshino, Tsuyoshi; Nakamichi, Masaru; Tanigawa, Hiroyasu [Japan Atomic Energy Agency, 2-166 Omotedate Obuchi, Rokkasho, Aomori 039-3212 (Japan); Nishi, Hiroshi; Suzuki, Satoshi; Ezato, Koichiro; Seki, Yohji [Japan Atomic Energy Agency, 801-1 Mukoyama, Naka, Ibaraki 311-0193 (Japan); Yamanishi, Toshihiko [Japan Atomic Energy Agency, 2-166 Omotedate Obuchi, Rokkasho, Aomori 039-3212 (Japan)
2016-11-01
Highlights: • Thermo-hydraulic calculation in the TBM at the water ingress event has been done. • Shielding calculations for the ITER equatorial port #18 were conducted by using C-lite model. • Prototypic pebbles of Be{sub 17}Ti{sub 2} and Be{sub 12}V had a good oxidation property similar to Be{sub 12}Ti pebble. • Li rich Li{sub 2}TiO{sub 3} pebbles were successfully fabricated using the emulsion method by controlling sintering atmosphere. • New tritium production/recovery experiments at FNS have been started by using ionization chamber as on-line gas monitor. - Abstract: The development of a water cooled ceramic breeder (WCCB) test blanket module (TBM) is being performed as one of the most important steps toward DEMO blanket in Japan. For the TBM testing and development of DEMO blanket, R&D has been performed on the module fabrication technology, breeder and multiplier pebble fabrication technology, tritium production rate evaluation, as well as structural and safety design activities. The fabrication of full-scale first wall, side walls, breeder pebble bed box and back wall was completed, and assembly of TBM with box structure was successfully achieved. Development of advanced breeder and multiplier pebbles for higher chemical stability was continued for future DEMO blanket application. From the view point of TBM test result evaluation and DEMO blanket performance design, the development of the blanket tritium transport simulation technology, investigation of the TBM neutron measurement technology and the evaluation of the tritium production and recovery test using D-T neutron in the fusion neutron source (FNS) facility has been performed. This paper provides an overview of the recent achievements of the development of the WCCB Blanket in Japan.
Cold leg condensation tests. Task C. Steam--water interaction tests
International Nuclear Information System (INIS)
Brodrick, J.R.; Loiselle, V.
1974-03-01
A report is presented of tests to determine the condensation efficiency of ECC water injected into a quality fluid mixture flowing through the cold leg. In particular, a specific objective was to determine if the mixture of ECC water and quality fluid reached thermodynamic equilibrium before exiting the cold leg. Further, the stability of the ECC water/quality fluid interaction would be assessed by interpretation of thermocouple records and utilization of a section of cold leg piping with view ports to film the interaction whenever possible. The cold leg condensation tests showed complete condensation of the 5 lbm/sec steam quality mixtures in the cold leg by the ECC water flows of the test matrix. The cold leg exit fluid temperature remained below the saturation temperature and had good agreement with the predicted cold leg outlet temperature, calculated assuming total condensation. (U.S.)
High sensitivity pyrogen testing in water and dialysis solutions.
Daneshian, Mardas; Wendel, Albrecht; Hartung, Thomas; von Aulock, Sonja
2008-07-20
The dialysis patient is confronted with hundreds of litres of dialysis solution per week, which pass the natural protective barriers of the body and are brought into contact with the tissue directly in the case of peritoneal dialysis or indirectly in the case of renal dialysis (hemodialysis). The components can be tested for living specimens or dead pyrogenic (fever-inducing) contaminations. The former is usually detected by cultivation and the latter by the endotoxin-specific Limulus Amoebocyte Lysate Assay (LAL). However, the LAL assay does not reflect the response of the human immune system to the wide variety of possible pyrogenic contaminations in dialysis fluids. Furthermore, the test is limited in its sensitivity to detect extremely low concentrations of pyrogens, which in their sum result in chronic pathologies in dialysis patients. The In vitro Pyrogen Test (IPT) employs human whole blood to detect the spectrum of pyrogens to which humans respond by measuring the release of the endogenous fever mediator interleukin-1beta. Spike recovery checks exclude interference. The test has been validated in an international study for pyrogen detection in injectable solutions. In this study we adapted the IPT to the testing of dialysis solutions. Preincubation of 50 ml spiked samples with albumin-coated microspheres enhanced the sensitivity of the assay to detect contaminations down to 0.1 pg/ml LPS or 0.001 EU/ml in water or saline and allowed pyrogen detection in dialysis concentrates or final working solutions. This method offers high sensitivity detection of human-relevant pyrogens in dialysis solutions and components.
Directory of Open Access Journals (Sweden)
Tomoya Nishiwaki
2014-03-01
Full Text Available Various types of fiber reinforced cementitious composites (FRCCs were experimentally studied to evaluate their self-healing capabilities regarding their watertightness and mechanical properties. Cracks were induced in the FRCC specimens during a tensile loading test, and the specimens were then immersed in static water for self-healing. By water permeability and reloading tests, it was determined that the FRCCs containing synthetic fiber and cracks of width within a certain range (<0.1 mm exhibited good self-healing capabilities regarding their watertightness. Particularly, the high polarity of the synthetic fiber (polyvinyl alcohol (PVA series and hybrid fiber reinforcing (polyethylene (PE and steel code (SC series showed high recovery ratio. Moreover, these series also showed high potential of self-healing of mechanical properties. It was confirmed that recovery of mechanical property could be obtained only in case when crack width was sufficiently narrow, both the visible surface cracks and the very fine cracks around the bridging of the SC fibers. Recovery of the bond strength by filling of the very fine cracks around the bridging fibers enhanced the recovery of the mechanical property.
Simultaneous Waste Heat and Water Recovery from Power Plant Flue Gases for Advanced Energy Systems
Energy Technology Data Exchange (ETDEWEB)
Wang, Dexin [Gas Technology Inst., Des Plaines, IL (United States)
2016-12-31
This final report presents the results of a two-year technology development project carried out by a team of participants sponsored by the Department of Energy (DOE). The objective of this project is to develop a membrane-based technology to recover both water and low grade heat from power plant flue gases. Part of the recovered high-purity water and energy can be used directly to replace plant boiler makeup water as well as improving its efficiency, and the remaining part of the recovered water can be used for Flue Gas Desulfurization (FGD), cooling tower water makeup or other plant uses. This advanced version Transport Membrane Condenser (TMC) with lower capital and operating costs can be applied to existing plants economically and can maximize waste heat and water recovery from future Advanced Energy System flue gases with CO2 capture in consideration, which will have higher moisture content that favors the TMC to achieve higher efficiency.
Melt water interaction tests. PREMIX tests PM10 and PM11
Energy Technology Data Exchange (ETDEWEB)
Kaiser, A.; Schuetz, W.; Will, H. [Forschungszentrum Karlsruhe Inst. fuer Reaktorsicherheit, Karlsruhe (Germany)
1998-01-01
A series of experiments is being performed in the PREMIX test facility in which the mixing behaviour is investigated of a hot alumina melt discharged into water. The major parameters have been: the melt mass, the number of nozzles, the distance between the nozzle and the water, and the depth of the water. The paper describes the last two tests in which 20 kg of melt were released through one and three nozzles, respectively, directly into the water whose depth was 500 mm. The melt penetration and the associated phenomena of mixing are described by means of high-speed films and various measurements. The steam production and, subsequently, the pressure increased markedly only after the melt had reached the bottom of the pool. Spreading of the melt across the bottom caused violent boiling in both tests. Whereas the boiling lasted for minutes in the single-jet test, a steam explosion occurred in the triple-jet test about one second after the start of melt penetration. (author)
Anderson, Daniel; Nunn, James; Tyler, Christopher J
2018-03-01
Anderson, D, Nunn, J, and Tyler, CJ. Effect of cold (14° C) vs. ice (5° C) water immersion on recovery from intermittent running exercise. J Strength Cond Res 32(3): 764-771, 2018-The purpose was to compare 14° C (CWI14° C) and 5° C (CWI5° C) cold water immersion after intermittent running. On 3 occasions, 9 male team-sport players undertook 12 minutes of CWI14° C, CWI5° C, or nonimmersed seated recovery (CON) after 45 minutes of intermittent running exercise. Maximal cycling performance and markers of recovery were measured before and in the 0-72 hours after exercise. Peak power output (PPO) was immediately reduced after all interventions (d = 1.8). CWI5° C was more effective at restoring PPO than CWI14° C (d = 0.38) and CON (d = 0.28) 24 hours after exercise, whereas both CON (d = 0.20) and CWI5 (d = 0.37) were more effective than CWI14° C after 48 hours. Cold water immersion (CWI) was more effective than CON at restoring PPO 72 hours after exercise (d = 0.28-0.30). Mean power output (MPO) was higher in CON compared with CWI5° C (d = 0.30) and CWI14° C (d = 0.21), but there was no difference between CWI5° C and CWI14° C (d = 0.08). CWI5° C was more effective than CWI14° C for restoring MPO to baseline levels 24 hours (d = 0.28) and 72 hours (d = 0.28) after exercise; however, CON was more, or equally, effective as CWI5° C and CWI14° C throughout. Lactate and creatine kinase concentrations were unaffected. Perceived muscle soreness remained elevated in CWI5 and CON throughout but was similar to baseline in CWI14° C after 72 hours. In conclusion, repeated bouts of exercise are initially impaired after 5 and 14° C CWI, but PPO may be improved 72 hours after exercise. Cold water immersion is not recommended for acute recovery based on these data. Athletes and coaches should use the time currently allocated to CWI for more effective and alternative recovery modalities.
Institutional path dependence and environmental water recovery in Australia’s Murray-Darling Basin
Directory of Open Access Journals (Sweden)
Graham R. Marshall
2016-10-01
Full Text Available The concept of institutional path dependence offers useful ways of understanding the trajectories of water policy reforms and how past institutional arrangements, policy paradigms and development patterns constrain current and future choices and limit institutional adaptability. The value of this concept is demonstrated through an analysis of environmental water recovery in Australia’s Murray-Darling Basin, where while significant water volumes have been reallocated to the environment, the costs have also been significant. While there are significant lessons from the Australian experience, attempts to emulate the approach involve substantive risks and may be prohibitively costly for less wealthy nations. Context-specific institutional analysis is emphasised as fundamental to water reform and critical for reform architecture and sequencing. A key finding is that while crisis can provide powerful catalysts for institutional innovation, institutional path dependence in the absence of active and disruptive policy entrepreneurs fosters a strong tendency to reinforce the status quo and limit innovation, potentially exposing social-ecological systems to greater shocks due to climate change and other sources of escalating uncertainty.
Directory of Open Access Journals (Sweden)
Michael Holmes
2016-10-01
Full Text Available Background: Cryotherapy is the process of cooling the body, is typically used therapeutically, and is often used as a method of recovery relative to sport and exercise performance. The purpose of this review is to compare the current literature on WBC to that of CWI and determine whether WBC provides any additional enhancements for sport and exercise recovery. These include tissue temperature reduction, markers of muscle damage, markers of inflammation, and parasympathetic reactivation. Method: Common methods of cryotherapy include cold water immersion (CWI, ice packs, ice massages, and gel or cooling creams. CWI is the most common method among athletes; however, a new form of cryotherapy, known as whole-body cryotherapy (WBC, has recently emerged. Since its introduction, WBC has grown in popularity among practitioners and athletes. WBC involves short exposures (generally between 2-4 minutes to very cold air (-100o C to -140o C in a controlled room and setting. Furthermore, many of the studies on WBC were observational and did not contain a control group. Conclusion: Despite its growing popularity, the alleged benefits of WBC are largely based on anecdotal evidence as randomized, clinically-controlled studies regarding its efficacy are limited. Keywords: cryotherapy, cold water immersion, exercise, recovery, muscle damage, inflammation
Rakotonimaro, Tsiverihasina V; Neculita, Carmen Mihaela; Bussière, Bruno; Benzaazoua, Mostafa; Zagury, Gérald J
2017-01-01
The treatment of mine drainage-impacted waters generates considerable amounts of sludge, which raises several concerns, such as storage and disposal, stability, and potential social and environmental impacts. To alleviate the storage and management costs, as well as to give the mine sludge a second life, recovery and reuse have recently become interesting options. In this review, different recovery and reuse options of sludge originating from active and passive treatment of mine drainage are identified and thoroughly discussed, based on available laboratory and field studies. The most valuable products presently recovered from the mine sludge are the iron oxy-hydroxides (ochre). Other by-products include metals, elemental sulfur, and calcium carbonate. Mine sludge reuse includes the removal of contaminants, such as As, P, dye, and rare earth elements. Mine sludge can also be reused as stabilizer for contaminated soil, as fertilizer in agriculture/horticulture, as substitute material in construction, as cover over tailings for acid mine drainage prevention and control, as material to sequester carbon dioxide, and in cement and pigment industries. The review also stresses out some of the current challenges and research needs. Finally, in order to move forward, studies are needed to better estimate the contribution of sludge recovery/reuse to the overall costs of mine water treatment.
Directory of Open Access Journals (Sweden)
Edwin A. Chukwudeme
2009-09-01
Full Text Available An EOR study has been performed applying miscible CO2 flooding and compared with that for water flooding. Three different oils are used, reference oil (n-decane, model oil (n-C10, SA, toluene and 0.35 wt % asphaltene and crude oil (10 wt % asphaltene obtained from the Middle East. Stearic acid (SA is added representing a natural surfactant in oil. For the non-asphaltenic oil, miscible CO2 flooding is shown to be more favourable than that by water. However, it is interesting to see that for first years after the start of the injection (< 3 years it is shown that there is almost no difference between the recovered oils by water and CO2, after which (> 3 years oil recovery by gas injection showed a significant increase. This may be due to the enhanced performance at the increased reservoir pressure during the first period. Maximum oil recovery is shown by miscible CO2 flooding of asphaltenic oil at combined temperatures and pressures of 50 °C/90 bar and 70 °C/120 bar (no significant difference between the two cases, about 1% compared to 80 °C/140 bar. This may support the positive influence of the high combined temperatures and pressures for the miscible CO2 flooding; however beyond a certain limit the oil recovery declined due to increased asphaltene deposition. Another interesting finding in this work is that for single phase oil, an almost linear relationship is observed between the pressure drop and the asphaltene deposition regardless of the flowing fluid pressure.
International Nuclear Information System (INIS)
Xiu Furong; Zhang Fushen
2009-01-01
An effective and benign process for copper and lead recovery from waste printed circuit boards (PCBs) was developed. In the process, the PCBs was pre-treated in supercritical water, then subjected to electrokinetic (EK) process. Experimental results showed that supercritical water oxidation (SCWO) process was strong enough to decompose the organic compounds of PCBs, and XRD spectra indicated that copper and lead were oxidized into CuO, Cu 2 O and β-PbO 2 in the process. The optimum SCWO treatment conditions were 60 min, 713 K, 30 MPa, and EK treatment time, constant current density were 11 h, 20 mA cm -2 , respectively. The recovery percentages of copper and lead under optimum SCWO + EK treatment conditions were around 84.2% and 89.4%, respectively. In the optimized EK treatment, 74% of Cu was recovered as a deposit on the cathode with a purity of 97.6%, while Pb was recovered as concentrated solutions in either anode (23.1%) or cathode (66.3%) compartments but little was deposited on the electrodes. It is believed that the process is effective and practical for Cu and Pb recovery from waste electric and electronic equipments.
International Nuclear Information System (INIS)
Volk, Brent L; Lagoudas, Dimitris C; Maitland, Duncan J
2011-01-01
In this work, tensile tests and one-dimensional constitutive modeling were performed on a high recovery force polyurethane shape memory polymer that is being considered for biomedical applications. The tensile tests investigated the free recovery (zero load) response as well as the constrained displacement recovery (stress recovery) response at extension values up to 25%, and two consecutive cycles were performed during each test. The material was observed to recover 100% of the applied deformation when heated at zero load in the second thermomechanical cycle, and a stress recovery of 1.5–4.2 MPa was observed for the constrained displacement recovery experiments. After the experiments were performed, the Chen and Lagoudas model was used to simulate and predict the experimental results. The material properties used in the constitutive model—namely the coefficients of thermal expansion, shear moduli, and frozen volume fraction—were calibrated from a single 10% extension free recovery experiment. The model was then used to predict the material response for the remaining free recovery and constrained displacement recovery experiments. The model predictions match well with the experimental data
Dhanarajan, Gunaseelan; Rangarajan, Vivek; Bandi, Chandrakanth; Dixit, Abhivyakti; Das, Susmita; Ale, Kranthikiran; Sen, Ramkrishna
2017-08-20
A lipopeptide biosurfactant produced by marine Bacillus megaterium and a biopolymer produced by thermophilic Bacillus licheniformis were tested for their application potential in the enhanced oil recovery. The crude biosurfactant obtained after acid precipitation effectively reduced the surface tension of deionized water from 70.5 to 28.25mN/m and the interfacial tension between lube oil and water from 18.6 to 1.5mN/m at a concentration of 250mgL -1 . The biosurfactant exhibited a maximum emulsification activity (E 24 ) of 81.66% against lube oil. The lipopeptide micelles were stabilized by addition of Ca 2+ ions to the biosurfactant solution. The oil recovery efficiency of Ca 2+ conditioned lipopeptide solution from a sand-packed column was optimized by using artificial neural network (ANN) modelling coupled with genetic algorithm (GA) optimization. Three important parameters namely lipopeptide concentration, Ca 2+ concentration and solution pH were considered for optimization studies. In order to further improve the recovery efficiency, a water soluble biopolymer produced by Bacillus licheniformis was used as a flooding agent after biosurfactant incubation. Upon ANN-GA optimization, 45% tertiary oil recovery was achieved, when biopolymer at a concentration of 3gL -1 was used as a flooding agent. Oil recovery was only 29% at optimal conditions predicted by ANN-GA, when only water was used as flooding solution. The important characteristics of biopolymers such as its viscosity, pore plugging capabilities and bio-cementing ability have also been tested. Thus, as a result of biosurfactant incubation and biopolymer flooding under the optimal process conditions, a maximum oil recovery of 45% was achieved. Therefore, this study is novel, timely and interesting for it showed the combined influence of biosurfactant and biopolymer on solubilisation and mobilization of oil from the soil. Copyright © 2017 Elsevier B.V. All rights reserved.
Minett, G M; Duffield, R; Billaut, F; Cannon, J; Portus, M R; Marino, F E
2014-08-01
This study examined the effects of post-exercise cooling on recovery of neuromuscular, physiological, and cerebral hemodynamic responses after intermittent-sprint exercise in the heat. Nine participants underwent three post-exercise recovery trials, including a control (CONT), mixed-method cooling (MIX), and cold-water immersion (10 °C; CWI). Voluntary force and activation were assessed simultaneously with cerebral oxygenation (near-infrared spectroscopy) pre- and post-exercise, post-intervention, and 1-h and 24-h post-exercise. Measures of heart rate, core temperature, skin temperature, muscle damage, and inflammation were also collected. Both cooling interventions reduced heart rate, core, and skin temperature post-intervention (P recovery of voluntary force by 12.7 ± 11.7% (mean ± SD) and 16.3 ± 10.5% 1-h post-exercise compared to MIX and CONT, respectively (P 0.05). CWI reduced cerebral oxygenation compared to MIX and CONT post-intervention (P recovery after post-exercise cooling appear to be disassociated with cerebral oxygenation, rather reflecting reductions in thermoregulatory demands to sustain force production. © 2013 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Launch and Recovery System Literature Review
2010-12-01
water. Goldie [21] suggests a sled or cart recovery system for use with UAV’s on the Littoral Combatant Ship (LCS) and other small deck navy ships...21. Goldie , J., “A Recovery System for Unmanned Aerial Vehicles (UAVs) Aboard LCS and other Small-Deck Navy Ships,” ASNE Launch and Recovery of
Effects of Microwave Radiation on Oil Recovery
Esmaeili, Abdollah
2011-12-01
A variety of oil recovery methods have been developed and applied to mature and depleted reservoirs in order to improve the efficiency. Microwave radiation oil recovery method is a relatively new method and has been of great interest in the recent years. Crude oil is typically co-mingled with suspended solids and water. To increase oil recovery, it is necessary to remove these components. The separation of oil from water and solids using gravitational settling methods is typically incomplete. Oil-in-water and oil-water-solid emulsions can be demulsified and separated into their individual layers by microwave radiation. The data also show that microwave separation is faster than gravity separation and can be faster than conventional heating at many conditions. After separation of emulsion into water and oil layers, water can be discharged and oil is collected. High-frequency microwave recycling process can recover oil and gases from oil shale, residual oil, drill cuttings, tar sands oil, contaminated dredge/sediments, tires and plastics with significantly greater yields and lower costs than are available utilizing existing known technologies. This process is environmentally friendly, fuel-generating recycler to reduce waste, cut emissions, and save energy. This paper presents a critical review of Microwave radiation method for oil recovery.
International Nuclear Information System (INIS)
Waddill, D.W.
1997-01-01
This paper describes the development and testing of a semianalytical model that may be used to design LNAPL containment and recovery systems at spill sites. The objective of this study was to derive an enhanced semianalytical algorithm for calculating recovery and trapping of free phase oil. The enhancements were derived and evaluated by comparison with an established numerical model that describes transient flow of oil and water. The semianalytical model employs an analytical solution for steady-state drawdown in an unconfined aquifer due to water pumping. When pumping rates are sufficient to contain the separate phase plume, the model calculates recoverable and residual oil volumes based on the initial free oil distribution. Refinements were implemented to calculate the water-table drawdown and the maximum unsaturated zone residual saturation (S og ) as functions of soil type. Also the influence of hysteresis on the oil-water capillary fringe was incorporated into the calculation of oil trapping below a rising oil-water interface. A method was derived to reduce saturated zone trapping to account for oil recovery that occurs while pumping proceeds. The above enhancements yielded close agreement between the semianalytical model and the transient model predictions of recoverable oil and residua oil in the unsaturated and saturated zones. The models were compared for hypothetical gasoline spills in a sandy and a silt loam soil, using a range of pumping rates and regional water-table fluctuations. Field data from a pipeline leak were evaluated by the semianalytical model for hypothetical scenarios involving oil recovery from three wells and a falling regional water table
Coats, Erik R; Wilson, Patrick I
2017-04-18
Wastewater resource recovery has been advocated for decades; necessary structural pathways were long-ago articulated, and established and emerging technologies exist. Nevertheless, broad wastewater valorization remains elusive. In considering implementation barriers, the argument is made that decision-makers focus on avoiding permit violations and negative publicity by embracing a conservative/safe approach-seemingly ignoring research on economic/environmental benefits. Conversely positing that economics is a primary barrier, we investigated, characterized, and described nontechnical socio-political barriers to realizing wastewater resource recovery. Principal actors in the Pacific NW region of the U.S. (representing a progressive populace facing stringent water quality regulations) were interviewed. Results revealed that economics were, indeed, the primary barrier to implementation/expansion of the WRRF concept. Consistent throughout interviews was a prevalent sense that the "cost of doing something (different)" was a principal consideration in resource recovery actions/policies. Moreover, "economics drives decisions," and "95% the bottom line is money. Show return on investment, it will get people's attention." Who pays was also a concern: "Government isn't going to pay. The states and Federal government won't give any grants, and we can't raise rates." Applying business case evaluations was seen as a pathway to actualizing resource recovery. Most encouragingly, the consensus was that resource recovery is a necessary future paradigm, and that real barriers are surmountable.
Page, Declan; Dillon, Peter; Vanderzalm, Joanne; Toze, Simon; Sidhu, Jatinder; Barry, Karen; Levett, Kerry; Kremer, Sarah; Regel, Rudi
2010-01-01
The objective of the Parafield Aquifer Storage Transfer and Recovery research project in South Australia is to determine whether stormwater from an urban catchment that is treated in a constructed wetland and stored in an initially brackish aquifer before recovery can meet potable water standards. The water produced by the stormwater harvesting system, which included a constructed wetland, was found to be near potable quality. Parameters exceeding the drinking water guidelines before recharge included small numbers of fecal indicator bacteria and elevated iron concentrations and associated color. This is the first reported study of a managed aquifer recharge (MAR) scheme to be assessed following the Australian guidelines for MAR. A comprehensive staged approach to assess the risks to human health and the environment of this project has been undertaken, with 12 hazards being assessed. A quantitative microbial risk assessment undertaken on the water recovered from the aquifer indicated that the residual risks posed by the pathogenic hazards were acceptable if further supplementary treatment was included. Residual risks from organic chemicals were also assessed to be low based on an intensive monitoring program. Elevated iron concentrations in the recovered water exceeded the potable water guidelines. Iron concentrations increased after underground storage but would be acceptable after postrecovery aeration treatment. Arsenic concentrations in the recovered water continuously met the guideline concentrations acceptable for potable water supplies. However, the elevated concentration of arsenic in native groundwater and its presence in aquifer minerals suggest that the continuing acceptable residual risk from arsenic requires further evaluation.
Recovery of mineral oil from waste emulsion using electrocoagulation method
Directory of Open Access Journals (Sweden)
Razali Mohd Najib
2016-01-01
Full Text Available This paper presents a research to recover mineral oil from industrial waste emulsion. This research also evaluates the standard of water produced after the oil recovery. The ecosystem could be polluted if this waste is not treated prior to discharge. The equipment needed for this experiment is power supply (generator, connecting wire and metal plate for providing the coagulant. The chosen plates were aluminium and iron plate. The power supply will be connected to the plate producing anode (positive terminal and cathode (negative terminal. Both plates are immersed into a beaker containing waste emulsion. The charge supplied by the current will cause the aluminium or ferum to dissisipate and became ions. These ions will attract the oil to flock together and float at the surface. The water will then filter by using filter paper. Electrocoagulation was done without addition of chemical thus can prevent the hazard from the chemicals. The samples was sent for oil and grease test. The optimum time needed for recovery of oil was 3 hours. The percentage recovery reach constant trend of 95% afterwards. When the power consumption increases, the percentage recovery also increases. However, the current should be lower than 0.5 ampere as it is the limit that human body can withstand. Thus, power consumption of 27.5 Watt was chosen as optimum value. The oil recovery of at power consumption at 27.5W is 96%. The best plate in the process was the aluminium pair which can recover more than ferum plate. The present work concludes the promising future for waste water treatment by usage of electrocoagulation technique.
Possibilities of heat energy recovery from greywater systems
Niewitecka, Kaja
2018-02-01
Waste water contains a large amount of heat energy which is irretrievably lost, so it is worth thinking about the possibilities of its recovery. It is estimated that in a residential building with full sanitary fittings, about 70% of the total tap water supplied is discharged as greywater and could be reused. The subject of the work is the opportunity to reuse waste water as an alternative source of heat for buildings. For this purpose, the design of heat exchangers used in the process of greywater heat recovery in indoor sewage systems, public buildings as well as in industrial plants has been reviewed. The possibility of recovering heat from waste water transported in outdoor sewage systems was also taken into consideration. An exemplary waste water heat recovery system was proposed, and the amount of heat that could be obtained using a greywater heat recovery system in a residential building was presented. The work shows that greywater heat recovery systems allow for significant savings in preheating hot tap water, and the rate of cost reimbursement depends on the purpose of the building and the type of installation. At the same time, the work shows that one should adjust the construction solutions of heat exchangers and indoor installations in buildings to the quality of the medium flowing, which is greywater.
Chekli, Laura
2016-11-25
The present study focused on the performance of the FDFO process to achieve simultaneous water reuse from wastewater and production of nutrient solution for hydroponic application. Bio-methane potential (BMP) measurements were firstly carried out to determine the effect of osmotic concentration of wastewater achieved in the FDFO process on the anaerobic activity. Results showed that 95% water recovery from the FDFO process is the optimum value for further AnMBR treatment. Nine different fertilizers were then tested based on their FO performance (i.e. water flux, water recovery and reverse salt flux) and final nutrient concentration. From this initial screening, ammonium phosphate monobasic (MAP), ammonium sulfate (SOA) and mono-potassium phosphate were selected for long term experiments to investigate the maximum water recovery achievable. After the experiments, hydraulic membrane cleaning was performed to assess the water flux recovery. SOA showed the highest water recovery rate, up to 76% while KH2PO4 showed the highest water flux recovery, up to 75% and finally MAP showed the lowest final nutrient concentration. However, substantial dilution was still necessary to comply with the standards for fertigation even if the recovery rate was increased.
Job demands-resources model in the context of recovery : Testing recovery experiences as mediators
Kinnunen, Ulla; Feldt, Taru; Siltaloppi, Marjo; Sonnentag, Sabine
2011-01-01
The aim of the present study was to extend the original Job Demands– Resources (JD-R) model by taking into account recovery as an important mediation mechanism between work characteristics and well-being/ill-health. Specifically, we examined whether recovery experiences—strategies promoting recovery—might have a mediating role in the JD-R model among 527 employees from a variety of different jobs. The results showed that psychological detachment fully mediated the effects of job demands on fa...
Central Nevada Test Area Monitoring Report
International Nuclear Information System (INIS)
Brad Lyles; Jenny Chapman; John Healey; David Gillespie
2006-01-01
Water level measurements were performed and water samples collected from the Central Nevada Test Area model validation wells in September 2006. Hydraulic head measurements were compared to previous observations; the MV wells showed slight recovery from the drilling and testing operation in 2005. No radioisotopes exceeded limits set in the Corrective Action Decision Document/Corrective Action Plan, and no significant trends were observed when compared to previous analyses
Directory of Open Access Journals (Sweden)
Lu Cai
Full Text Available The objective of this study is to provide information on metabolic changes occurring in Chinese sturgeon (an ecologically important endangered fish subjected to repeated cycles of fatigue and recovery and the effect on swimming capability. Fatigue-recovery cycles likely occur when fish are moving through the fishways of large dams and the results of this investigation are important for fishway design and conservation of wild Chinese sturgeon populations. A series of four stepped velocity tests were carried out successively in a Steffensen-type swimming respirometer and the effects of repeated fatigue-recovery on swimming capability and metabolism were measured. Significant results include: (1 critical swimming speed decreased from 4.34 bl/s to 2.98 bl/s; (2 active oxygen consumption (i.e. the difference between total oxygen consumption and routine oxygen consumption decreased from 1175 mgO2/kg to 341 mgO2/kg and was the primary reason for the decrease in Ucrit; (3 excess post-exercise oxygen consumption decreased from 36 mgO2/kg to 22 mgO2/kg; (4 with repeated step tests, white muscle (anaerobic metabolism began contributing to propulsion at lower swimming speeds. Therefore, Chinese sturgeon conserve energy by swimming efficiently and have high fatigue recovery capability. These results contribute to our understanding of the physiology of the Chinese sturgeon and support the conservation efforts of wild populations of this important species.
International Nuclear Information System (INIS)
Saha, S.; Saha, P.
1992-01-01
This paper highlights the use of steam-condensate exchange system for recovery of deuterium from condensate of ammonia plant, which is adopted at Heavy Water Plant, Talcher. Deuterium concentration in the condensate leaving the steam-condensate exchange column can be brought down very close to the deuterium concentration in water thereby achieving practically complete deuterium recovery. (author). 2 tabs., 1 fig
Life-cycle testing of receiving waters with Ceriodaphnia dubia
International Nuclear Information System (INIS)
Stewart, A.J.; Beane, B.K.
1995-01-01
Seven-day tests with Ceriodaphnia are commonly used to estimate the toxicity of effluents or receiving waters, but may yield no toxicity outcomes even when pollutants are present (a possible type II error). The authors conducted two sets of full life-cycle tests with C. dubia to (1) see if tests with longer exposure periods revealed evidence for toxicity that might not be evident from shorter tests, and (2) determine the relative importance of water quality versus food as factors influencing C. dubia reproduction. In the first set of tests, daphnids were reared in diluted mineral water (control), water from a stream impacted by coal fly-ash, or water from a mercury-contaminated retention basin. The second set of tests used water from the retention basin only, but this water was either filtered or not filtered, and food was either added or not added. C. dubia survival and reproduction did not differ much among the three waters in the first set of tests. However, both parameters were strongly affected by the filtering and food-addition treatments in the second set of tests. Thus, C. dubia seems to be moderately insensitive to general water-quality factors, but quite sensitive to food-related parameters. Regression analysis showed that the predictability of life-time reproduction of C. dubia from 7-day test results was low in five of six cases. The increase in predictability as a function of test duration also differed among water types (first set of tests), and among treatments (second set of tests). Thus, 7-day tests with C. dubia may be used to quantify water-quality problems, but it may not be possible to reliably extrapolate the results of such tests to longer time scales
International Nuclear Information System (INIS)
Phi Wah Tooi
2010-01-01
Full text: The Konzen in-house designed anaerobic digester system for the POME (Palm Oil Mill Effluent) treatment process is one of the registered Clean Development Mechanism (CDM) projects in Malaysia. It is an organic wastewater treatment process which achieves excellent co-benefits objectives through the prevention of water pollution and reduction of greenhouse gas emissions, which is estimated to be 40,000 to 50,000 t-CO 2 per year. The anaerobic digester was designed in mesophile mode with temperature ranging from 37 degree Celsius to 45 degree Celsius. A microorganisms growth is optimum under moderately warm temperature conditions. The operating temperature of the anaerobic digester needs to be maintained constantly. There are two waste heat recovery systems designed to make the treatment process self-sustaining. The heat recovered will be utilised as a clean energy source to heat up the anaerobic digester indirectly. The first design for the waste heat recovery system utilises heat generated from the flue gas of the biogas flaring system. A stainless steel water tank with an internal water layer is installed at the top level of the flare stack. The circulating water is heated by the methane enriched biogas combustion process. The second design utilizes heat generated during the compression process for the biogas compressor operation. The compressed biogas needs to be cooled before being recycled back into the digester tank for mixing purposes. Both the waste heat recovery systems use a design which applies a common water circulation loop and hot water tank to effectively become a closed loop. The hot water tank will perform both storage and temperature buffer functions. The hot water is then used to heat up recycled sludge from 30 degree Celsius to 45 degree Celsius with the maximum temperature setting at 50 degree Celsius. The recycled sludge line temperature will be measured and monitored by a temperature sensor and transmitter, which will activate the
Preoperational test report, raw water system
Energy Technology Data Exchange (ETDEWEB)
Clifton, F.T.
1997-10-29
This represents the preoperational test report for the Raw Water System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system supplies makeup water to the W-030 recirculation evaporative cooling towers for tanks AY1O1, AY102, AZ1O1, AZ102. The Raw Water pipe riser and associated strainer and valving is located in the W-030 diesel generator building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System.
Preoperational test report, raw water system
International Nuclear Information System (INIS)
Clifton, F.T.
1997-01-01
This represents the preoperational test report for the Raw Water System, Project W-030. Project W-030 provides a ventilation upgrade for the four Aging Waste Facility tanks. The system supplies makeup water to the W-030 recirculation evaporative cooling towers for tanks AY1O1, AY102, AZ1O1, AZ102. The Raw Water pipe riser and associated strainer and valving is located in the W-030 diesel generator building. The tests verify correct system operation and correct indications displayed by the central Monitor and Control System
Cold immersion recovery responses in the diabetic foot with neuropathy.
Bharara, Manish; Viswanathan, Vijay; Cobb, Jonathan E
2008-10-01
The aim of this article was to investigate the effectiveness of testing cold immersion recovery responses in the diabetic foot with neuropathy using a contact thermography system based on thermochromic liquid crystals. A total of 81 subjects with no history of diabetic foot ulceration were assigned to neuropathy, non neuropathy and healthy groups. Each group received prior verbal and written description of the test objectives and subsequently underwent a comprehensive foot care examination. The room temperature and humidity were consistently maintained at 24 degrees C and less than 50%, respectively, with air conditioning. The right foot for each subject was located on the measurement platform after cold immersion in water at 18-20 degrees C. Whole-field thermal images of the plantar foot were recorded for 10 minutes. Patients with diabetes with neuropathy show the highest 'delta temperature', that is difference between the temperature after 10-minute recovery period and baseline temperature measured independently at all the three sites tested, that is first metatarsal head (MTH), second MTH and heel. This clinical study showed for the first time the evidence of poor recovery times for the diabetic foot with neuropathy when assessing the foot under load. A temperature deficit (because of poor recovery to baseline temperature) suggests degeneration of thermoreceptors, leading to diminished hypothalamus-mediated activity in the diabetic neuropathic group.
International Nuclear Information System (INIS)
Lopez, O; Missimer, T M; Stenchikov, G
2014-01-01
An average of less than 50 mm yr −1 of rainfall occurs in the hyperarid region of central Western Saudi Arabia. Climate change is projected to create greater variation in rainfall accumulation with more intense rainfall and flood events and longer duration droughts. To manage climate change and variability in ephemeral stream basins, dams are being constructed across wadi channels to capture stormwater, but a large percentage of this stored water is lost to evaporation. A dam/reservoir system located in Wadi Al Murwani in Western Saudi Arabia was recently constructed and is expected to contain a maximum stored water volume of 150 million m 3 . A hydrologic assessment of a dunefield lying 45 km downstream was conducted to evaluate its potential use for aquifer storage and recovery of the reservoir water. A 110 m elevation difference between the base of the dam and the upper level of the dunefield occurs, allowing conveyance of the water from the reservoir to the dunefield storage site by gravity feed without pumping, making the recharge system extremely energy efficient. Aquifer storage and recovery coupled with dams would allow water management during extreme droughts and climate change and has widespread potential application in arid regions
Lopez Valencia, Oliver Miguel
2014-07-28
An average of less than 50 mm yr-1 of rainfall occurs in the hyperarid region of central Western Saudi Arabia. Climate change is projected to create greater variation in rainfall accumulation with more intense rainfall and flood events and longer duration droughts. To manage climate change and variability in ephemeral stream basins, dams are being constructed across wadi channels to capture stormwater, but a large percentage of this stored water is lost to evaporation. A dam/reservoir system located in Wadi Al Murwani in Western Saudi Arabia was recently constructed and is expected to contain a maximum stored water volume of 150 million m3. A hydrologic assessment of a dunefield lying 45 km downstream was conducted to evaluate its potential use for aquifer storage and recovery of the reservoir water. A 110 m elevation difference between the base of the dam and the upper level of the dunefield occurs, allowing conveyance of the water from the reservoir to the dunefield storage site by gravity feed without pumping, making the recharge system extremely energy efficient. Aquifer storage and recovery coupled with dams would allow water management during extreme droughts and climate change and has widespread potential application in arid regions. 2014 IOP Publishing Ltd.
Effect of hydrotherapy on recovery from fatigue.
Vaile, J; Halson, S; Gill, N; Dawson, B
2008-07-01
The present study investigated the effects of three hydrotherapy interventions on next day performance recovery following strenuous training. Twelve cyclists completed four experimental trials differing only in 14-min recovery intervention: cold water immersion (CWI), hot water immersion (HWI), contrast water therapy (CWT), or passive recovery (PAS). Each trial comprised five consecutive exercise days of 105-min duration, including 66 maximal effort sprints. Additionally, subjects performed a total of 9-min sustained effort (time trial - TT). After completing each exercise session, athletes performed one of four recovery interventions (randomly assigned to each trial). Performance (average power), core temperature, heart rate (HR), and rating of perceived exertion (RPE) were recorded throughout each session. Sprint (0.1 - 2.2 %) and TT (0.0 - 1.7 %) performance were enhanced across the five-day trial following CWI and CWT, when compared to HWI and PAS. Additionally, differences in rectal temperature were observed between interventions immediately and 15-min post-recovery; however, no significant differences were observed in HR or RPE regardless of day of trial/intervention. Overall, CWI and CWT appear to improve recovery from high-intensity cycling when compared to HWI and PAS, with athletes better able to maintain performance across a five-day period.
Testing odorants recovery from a novel metallized fluorinated ethylene propylene gas sampling bag.
Zhu, Wenda; Koziel, Jacek A; Cai, Lingshuang; Wright, Donald; Kuhrt, Fred
2015-12-01
Industry-standard Tedlar bags for odor sample collection from confined animal feeding operations (CAFOs) have been challenged by the evidence of volatile organic compound (VOC) losses and background interferences. Novel impermeable aluminum foil with a thin layer of fluorinated ethylene propylene (FEP) film on the surface that is in contact with a gas sample was developed to address this challenge. In this research, Tedlar and metallized FEP bags were compared for (a) recoveries of four characteristic CAFO odorous VOCs (ethyl mercaptan, butyric acid, isovaleric acid and p-cresol) after 30 min and 24 hr sample storage time and for (b) chemical background interferences. All air sampling and analyses were performed with solid-phase microextraction (SPME) followed by gas chromatography-mass spectroscopy (GC-MS). Mean target gas sample recoveries from metallized FEP bags were 25.9% and 28.0% higher than those in Tedlar bags, for 30 min and 24 hr, respectively. Metallized FEP bags demonstrated the highest p-cresol recoveries after 30-min and 24-hr storage, 96.1±44.5% and 44.8±10.2%, respectively, among different types of sampling bags reported in previous studies. However, a higher variability was observed for p-cresol recovery with metallized FEP bags. A 0% recovery of ethyl mercaptan was observed with Tedlar bags after 24-hr storage, whereas an 85.7±7.4% recovery was achieved with metallized FEP bags. Recoveries of butyric and isovaleric acids were similar for both bag types. Two major impurities in Tedlar bags' background were identified as N,N-dimethylacetamide and phenol, while backgrounds of metallized FEP bags were significantly cleaner. Reusability of metallized FEP bags was tested. Caution is advised when using polymeric materials for storage of livestock-relevant odorous volatile organic compounds. The odorants loss with storage time confirmed that long-term storage in whole-air form is ill advised. A focused short-term odor sample containment should be
California Drought Recovery Assessment Using GRACE Satellite Gravimetry Information
Love, C. A.; Aghakouchak, A.; Madadgar, S.; Tourian, M. J.
2015-12-01
California has been experiencing its most extreme drought in recent history due to a combination of record high temperatures and exceptionally low precipitation. An estimate for when the drought can be expected to end is needed for risk mitigation and water management. A crucial component of drought recovery assessments is the estimation of terrestrial water storage (TWS) deficit. Previous studies on drought recovery have been limited to surface water hydrology (precipitation and/or runoff) for estimating changes in TWS, neglecting the contribution of groundwater deficits to the recovery time of the system. Groundwater requires more time to recover than surface water storage; therefore, the inclusion of groundwater storage in drought recovery assessments is essential for understanding the long-term vulnerability of a region. Here we assess the probability, for varying timescales, of California's current TWS deficit returning to its long-term historical mean. Our method consists of deriving the region's fluctuations in TWS from changes in the gravity field observed by NASA's Gravity Recovery and Climate Experiment (GRACE) satellites. We estimate the probability that meteorological inputs, precipitation minus evaporation and runoff, over different timespans will balance the current GRACE-derived TWS deficit (e.g. in 3, 6, 12 months). This method improves upon previous techniques as the GRACE-derived water deficit comprises all hydrologic sources, including surface water, groundwater, and snow cover. With this empirical probability assessment we expect to improve current estimates of California's drought recovery time, thereby improving risk mitigation.
Life-cycle testing of receiving waters with Ceriodaphnia dubia
Energy Technology Data Exchange (ETDEWEB)
Stewart, A.J.; Konetsky, B.K.
1996-12-31
Seven-day tests with Ceriodaphnia dubia are commonly used to estimate toxicity of effluents or receiving waters but can sometimes yield {open_quotes}no toxicity{close_quotes} outcomes even if pollutants are present. We conducted two sets of full life-cycle tests with C. dubia to (1) see if tests with longer exposure periods would reveal evidence for toxicity that might not be evident from 7-day tests, and (2) determine the relative importance of water quality versus food as factors influencing C. dubia reproduction. In the first set of tests, C. dubia was reared in diluted mineral water (negative control), water from a stream impacted by coal fly-ash, or water from a retention basin containing sediments contaminated with mercury, other metals and polychlorinated biphenyls. The second set of tests used water from the retention basin only, but this water was either filtered or not filtered, and food was either added or not added, prior to testing. C. dubia survival and reproduction did not differ much among the three water types in the first set of tests, but these two parameters were strongly affected by the filtering and food-addition treatments in the second set of tests. Thus, C. dubia appeared to be relatively insensitive to general water-quality factors, but quite sensitive to food-related factors. Regression analyses showed that the predictability of life-time reproduction by C. dubia from the results of 7-day tests was very low (R{sup 2}< 0.35) in five of the six experiments. The increase in predictability as a function of test duration also differed among water types in the first set of tests, and among treatments in the second set of tests. Thus, 7-day tests with C. dubia may be used to quantify water-quality problems, but it may not be possible to reliably extrapolate the results of these tests to longer time scales.
DEFF Research Database (Denmark)
Sohal, Muhammad Adeel Nassar; Thyne, Geoffrey; Søgaard, Erik Gydesen
2017-01-01
The additional oil recovery from fractured & oil-wet carbonates by ionically modified water is principally based on changing wettability and often attributed to an improvement in water wetness. The influence of different parameters like dilution of salinity, potential anions, temperature, pressure......, lithology, pH, oil acid and base numbers to improve water wetting has been tested in recovery experiments. In these studies temperature is mainly investigated to observe the reactivity of potential anions (SO42-, PO33-, and BO33-) at different concentrations. But the influence of systematically increasing...... and 100 times. It was observed that as temperature increased the water-wetness decreased for seawater and seawater dilutions, however, the presence of elevated sulfate can somewhat counter this trend as sulfate increased oil wetting....
Study on expansion power recovery in CO2 trans-critical cycle
International Nuclear Information System (INIS)
Tian Hua; Ma Yitai; Li Minxia; Wang Wei
2010-01-01
Due to the ozone depletion potential and global warming potential of CFCs and HCFCs, CO 2 is considered as most potential alternative refrigerant. However, there are serious throttle losses and low system efficiency to CO 2 trans-critical cycle because of its low critical temperature and high operating pressure. The aim of this paper is to design an expander to recover expansion power in CO 2 trans-critical cycle. The theoretical analysis and calculation show that 14-23% of input power of compressor can be recovered. A prototype of rolling piston expander is designed and manufactured and its test facility is established. The test facility consists of CO 2 trans-critical cycle, the expander, the chilling water system and the cooling water system. The experimental results show that the recovery ratio and expander efficiency are affected by rotational speed, inlet temperature and mass flow of expander. The highest recovery ratio can reach to 0.145, which means 14.5% of input power of compressor can be recovered. The expander efficiency can reach to 45%.
Reverse osmosis for wash water recovery in space vehicles.
Lawrence, R. W.; Saltonstall, C. W., Jr.
1973-01-01
Tests were carried out on both synthetic and real wash water derived from clothes laundry to determine the utility of reverse osmosis in recovering the water for recycle use. A blend membrane made from cellulose di- and triacetates, and a cross-linked cellulose acetate/methacrylate were evaluated. Both were found acceptable. A number of detergents were evaluated, including a cationic detergent, sodium dodecyl sulfate, potassium palmitate, and sodium dodecylbenzenesulfonate. The tests were all made at a temperature of 165 F to minimize microbial growth. Long-term (15 to 30 day) runs were made at 600 and 400 psi on laundry water which was pretreated either by alum addition and sand filtration or by filtration only through 0.5 micron filters. A 30-day run was made using a 2-in. diameter by 22-in. long spiral module at 400 psig with filtering as the pretreatment. The membrane fouling by colloidal matter was found to be controllable. The unit produced initially 55 gal/day and 27 gal/day after 30 days.
Directory of Open Access Journals (Sweden)
Anastasia Papadopoulou
2012-01-01
Full Text Available This paper presents the basic principles for the integration of the water and carbon footprints cost into the resource and environmental costs respectively, taking the suggestions set by the Water Framework Directive (WFD 2000/60/EC one step forward. WFD states that full water cost recovery (FWCR should be based on the estimation of the three sub-costs related: direct; environmental; and resource cost. It also strongly suggests the EU Member States develop and apply effective water pricing policies to achieve FWCR. These policies must be socially just to avoid any social injustice phenomena. This is a very delicate task to handle, especially within the fragile economic conditions that the EU is facing today. Water losses play a crucial role for the FWC estimation. Water losses should not be neglected since they are one of the major “water uses” in any water supply network. A methodology is suggested to reduce water losses and the related Non Revenue Water (NRW index. An Expert Decision Support System is proposed to assess the FWC incorporating the Water and Carbon Footprint costs.
[Eosin Y-water test for sperm function examination].
Zha, Shu-wei; Lü, Nian-qing; Xu, Hao-qin
2015-06-01
Based on the principles of the in vitro staining technique, hypotonic swelling test, and water test, the Eosin Y-water test method was developed to simultaneously detect the integrity of the sperm head and tail and sperm membrane structure and function. As a widely used method in clinical laboratories in China, the Eosin Y-water test is methodologically characterized by three advantages. Firstly, both the sperm head and tail can be detected at the same time, which allows easy and comprehensive assessment of membrane damage in different parts of sperm. Secondly, distilled water is used instead of the usual formula solution to simplify and standardize the test by eliminating any potential effects on the water molecules through the sperm membrane due to different osmotic pressure or different sugar proportions and electrolyte solutions. Thirdly, the test takes less time and thus can be repeated before and after treatment. This article focuses on the fundamental principles and modification of the Eosin Y-water test and its application in sperm function examination and routine semen analysis for male infertility, assessment of the quality of sperm retrieved by testicular fine needle aspiration, semen cryopreservation program development, and evaluation of sperm membrane integrity after microwave radiation.
Directory of Open Access Journals (Sweden)
Joice Simone Dos Santos
2012-10-01
Full Text Available This study had the goals to evaluate the effect of the dry storage length on the occlusion and rehydration of E. ibaguense inflorescences, and the influence of the cut at the basis of the stem on the recovery of water uptake. The inflorescences were harvested patronized to 30 cm, long, followed by dry storage at 24ºC for 12, 24, 36 and 48 hours. At the end of each stress period, the inflorescences returned to the water for 24 hours, and during this period, it was determined the alterations on the fresh mass and the relative water content (RWC of petals, followed by the length of vase life. In another experiment, the inflorescences were dry stored for 36 hours, and after it was done cut at the lower base of the stem with lengths varying from 0.5, 1.0, 2.0, 3.0 and 4.0 cm, and then placed in deionized water. The inflorescences dry stored for 12 hours recovered the fresh mass and RWC when placed in water, but there was no recovery when the inflorescences had 24, 36 or 48 hours of water stress. Regardless the length of the dry storage, there was reduction of flower vase life compared to inflorescences without water stress. The 0.5 cm cut at the base of the stem after 36 hours of dry storage, did not affect the vase life, but cuts of 1.0, 2.0, 3.0 or 4.0 cm increased the vase life compared to control flowers without any cut. Cuts of 1.0, 2.0, 3.0 or 4.0 cm at the base of the stem enhanced the water uptake, lowering temporarily the rate transpiration: water uptake of the inflorescences.
Water Resource Recovery Facilities (WRRFs) with anaerobic digestion have been harnessing biogas for heat and power since at least the 1920’s. A few are approaching “energy neutrality” and some are becoming “energy positive” through a combination of energy efficiency measures and...
Integrated water and waste management system for future spacecraft
Ingelfinger, A. L.; Murray, R. W.
1974-01-01
Over 200 days of continuous testing have been completed on an integrated waste management-water recovery system developed by General Electric under a jointly funded AEC/NASA/AF Contract. The 4 man system provides urine, feces, and trash collection; water reclamation; storage, heating and dispensing of the water; storage and disposal of the feces and urine residue and all of other nonmetallic waste material by incineration. The heat required for the 1200 deg F purification processes is provided by a single 420-w radioisotope heater. A second 836-w radioisotope heater supplemented by 720 w of electrical heat provides for distillation and water heating. Significant test results are no pre-or-post treatment, greater than 98 per cent potable water recovery, approximately 95 per cent reduction in solids weight and volume, all outflows are sterile with the water having no bacteria or virus, and the radioisotope capsule radiation level is only 7.9 mrem/hr unshielded at 1 m (neutrons and gamma).
Chekli, Laura; Kim, Youngjin; Phuntsho, Sherub; Li, Sheng; Ghaffour, Noreddine; Leiknes, TorOve; Shon, Ho Kyong
2017-02-01
The present study focused on the performance of the FDFO process to achieve simultaneous water reuse from wastewater and production of nutrient solution for hydroponic application. Bio-methane potential (BMP) measurements were firstly carried out to determine the effect of osmotic concentration of wastewater achieved in the FDFO process on the anaerobic activity. Results showed that 95% water recovery from the FDFO process is the optimum value for further AnMBR treatment. Nine different fertilizers were then tested based on their FO performance (i.e. water flux, water recovery and reverse salt flux) and final nutrient concentration. From this initial screening, ammonium phosphate monobasic (MAP), ammonium sulfate (SOA) and mono-potassium phosphate were selected for long term experiments to investigate the maximum water recovery achievable. After the experiments, hydraulic membrane cleaning was performed to assess the water flux recovery. SOA showed the highest water recovery rate, up to 76% while KH 2 PO 4 showed the highest water flux recovery, up to 75% and finally MAP showed the lowest final nutrient concentration. However, substantial dilution was still necessary to comply with the standards for fertigation even if the recovery rate was increased. Copyright © 2016 Elsevier Ltd. All rights reserved.
Use of polymers in oil recovery processes
Energy Technology Data Exchange (ETDEWEB)
Stanislav, J.F.
Water-soluble polymers are used extensively in various stages of gas and oil production operations, typical examples being enhanced oil recovery, water production control, and well drilling. A variety of polymetric materials, both naturally occurring and synthetic ones, are currently used; guar and cellulose derivatives, xanthan gum, polysaccharides, polyacrylamides and others. In this work, only the application of polymeric materials to enhanced recovery processes is discussed.
Roberts, Llion A; Muthalib, Makii; Stanley, Jamie; Lichtwark, Glen; Nosaka, Kazunori; Coombes, Jeff S; Peake, Jonathan M
2015-08-15
Cold water immersion (CWI) and active recovery (ACT) are frequently used as postexercise recovery strategies. However, the physiological effects of CWI and ACT after resistance exercise are not well characterized. We examined the effects of CWI and ACT on cardiac output (Q̇), muscle oxygenation (SmO2), blood volume (tHb), muscle temperature (Tmuscle), and isometric strength after resistance exercise. On separate days, 10 men performed resistance exercise, followed by 10 min CWI at 10°C or 10 min ACT (low-intensity cycling). Q̇ (7.9 ± 2.7 l) and Tmuscle (2.2 ± 0.8°C) increased, whereas SmO2 (-21.5 ± 8.8%) and tHb (-10.1 ± 7.7 μM) decreased after exercise (P < 0.05). During CWI, Q̇ (-1.1 ± 0.7 l) and Tmuscle (-6.6 ± 5.3°C) decreased, while tHb (121 ± 77 μM) increased (P < 0.05). In the hour after CWI, Q̇ and Tmuscle remained low, while tHb also decreased (P < 0.05). By contrast, during ACT, Q̇ (3.9 ± 2.3 l), Tmuscle (2.2 ± 0.5°C), SmO2 (17.1 ± 5.7%), and tHb (91 ± 66 μM) all increased (P < 0.05). In the hour after ACT, Tmuscle, and tHb remained high (P < 0.05). Peak isometric strength during 10-s maximum voluntary contractions (MVCs) did not change significantly after CWI, whereas it decreased after ACT (-30 to -45 Nm; P < 0.05). Muscle deoxygenation time during MVCs increased after ACT (P < 0.05), but not after CWI. Muscle reoxygenation time after MVCs tended to increase after CWI (P = 0.052). These findings suggest first that hemodynamics and muscle temperature after resistance exercise are dependent on ambient temperature and metabolic demands with skeletal muscle, and second, that recovery of strength after resistance exercise is independent of changes in hemodynamics and muscle temperature. Copyright © 2015 the American Physiological Society.
Processing of spent nickelcatalyst for fat recovery
Directory of Open Access Journals (Sweden)
NASIR Mohammad Ibraim
2001-01-01
Full Text Available Spent nickel catalyst (SNC has the potential of insulting the quality of the environment in a number of ways. Its disposal has a pollution effect. Optimum recovery of fat from SNC, could save the environment and reduce the oil loss. Hexane has been the solvent of choice for oil extraction. Alternative solvents considered to have been safer have been evaluated. Hexane, isopropanol, ethanol and heptane were examined using soxhlet extraction. While hexane is more efficient in oil recovery from SNC, isopropanol proved to be very good in clear separation of oil from waste material and also provides high solvent recovery compared to other solvents. Isopropanol extraction with chill separation of miscella into lower oil-rich phase, and an upper, solvent-rich recyclable phase save mush energy of vaporization for distilling. An aqueous extraction process with immiscible solvent assisted was tested. Solvent like hexane added to SNC, and water added later with continuous stirring. The mixture was stirred for about 30 minutes, prior to centrifugation. Aqueous process extracted less amount of oil compared to solvent extraction.
Energy Technology Data Exchange (ETDEWEB)
Heijboer, R.; Van Deelen-Bremer, M.H.; de Vos, F.; Zeijseink, A.G.L. [KEMA Nederland B.V. (Netherlands)
2007-07-01
In the power generation process a large amount of water is needed, for steam generation, flue gas cleaning etc. On the other hand a large amount of water is emitted to the atmosphere via the stack. For example a 400 MW coal fired power plant with a flue gas desulfurisation plant emits about 1,500,000 m{sup 3} per hour with a water concentration of about 11%. The emitted water has a rather good quality compared to surface water and needs less effort to be treated for use as make-up water. As the available amount of water in the flue gas from the earlier mentioned power plant is about 150 tons per hour, recovering 20% of this amount covers the make-up water needs of this 400 MW power plant. Direct condensation of the flue gas needs large cooling power and the condensed water is acidic and corrosive and needs cleanup treatment before it can be used in the water/steam cycle. KEMA developed a technology based on gas separation membranes which makes it possible to recover water from flue gas. The process is covered by a wide patent. The principle of the membrane is comparable to the material that is used in fabric like SympaTex{reg_sign} and GORE-TEX{reg_sign}. The GORE-TEX material is permeable to water vapor but rejects liquid water. The driving force is the water vapor pressure close to the human skin which is the higher than the water vapor pressure open the outside of the clothing. The selectivity of the GORE-TEX material however is not good enough to be used at the temperature of flue gas. The University of Twente (Netherlands) developed a membrane material based on modified PEEK which is highly selective of water vapor at flue gas temperatures. Based on the fact that flat membranes have an uneconomical surface to volume ratio, the choice has been made to use hollow fibre membranes. 6 figs.
2008-01-01
[figure removed for brevity, see original site] Click on the image for the animation This video shows the propulsion system on an engineering model of NASA's Phoenix Mars Lander being successfully tested. Instead of fuel, water is run through the propulsion system to make sure that the spacecraft holds up to vibrations caused by pressure oscillations. The test was performed very early in the development of the mission, in 2005, at Lockheed Martin Space Systems, Denver. Early testing was possible because Phoenix's main structure was already in place from the 2001 Mars Surveyor program. The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.
Rangasamy, Suresh Babu
2013-07-01
Spinal cord injuries usually produce loss or impairment of sensory, motor and reflex function below the level of damage. In the absence of functional regeneration or manipulations that promote regeneration, spontaneous improvements in motor functions occur due to the activation of multiple compensatory mechanisms in animals and humans following the partial spinal cord injury. Many studies were performed on quantitative evaluation of locomotor recovery after induced spinal cord injury in animals using behavioral tests and scoring techniques. Although few studies on rodents have led to clinical trials, it would appear imperative to use nonhuman primates such as macaque monkeys in order to relate the research outcomes to recovery of functions in humans. In this review, we will discuss some of our research evidences concerning the degree of spontaneous recovery in bipedal locomotor functions of bonnet monkeys that underwent spinal cord hemisection/contusion lesions. To our knowledge, this is the first report to discuss on the extent of spontaneous recovery in bipedal locomotion of macaque monkeys through the application of footprint analyzing technique. In addition, the results obtained were compared with the published data on recovery of quadrupedal locomotion of spinally injured rodents. We propose that the mechanisms underlying spontaneous recovery of functions in spinal cord lesioned monkeys may be correlated to the mature function of spinal pattern generator for locomotion under the impact of residual descending and afferent connections. Moreover, based on analysis of motor functions observed in locomotion in these subjected monkeys, we understand that spinal automatism and development of responses by afferent stimuli from outside the cord could possibly contribute to recovery of paralyzed hindlimbs. This report also emphasizes the functional contribution of progressive strengthening of undamaged nerve fibers through a collateral sprouts/synaptic plasticity formed
Conceptual process design for uranium recovery from sea water
International Nuclear Information System (INIS)
Suzuki, Motoyuki; Chihara, Kazuyuki; Fujimoto, Masahiko; Yagi, Hiroshi; Wada, Akihiko.
1985-01-01
Based on design of uranium recovery process from sea water, total cost for uranium production was estimated. Production scale of 1,000 ton-uranium per year was supposed, because of the big demand for uranium in the second age, i.e., fast breeder reactor age. The process is described as follows: Fluidized bed of hydrous titanium oxide (diameter is 0.1 mm, saturated adsorption capacity is 510 μg-U/g-Ad, adsorption capacity for ten days is 150 μg-U/g-Ad) is supposed, as an example, to be utilized as the primarily concentration unit. Fine adsorbent particles can be transferred as slurry in all of the steps of adsorption, washing, desorption, washing, regeneration. As an example, ammonium carbonate is applied to desorb the adsorbed uranium from titanium oxide. Then, stripping method is adopted for desorbent recovery. As for the secondary concentration, strong basic anion exchange method is supposed. The first step of process design is to determine the mass balance of each component through the whole process system by using the signal diagram. Then, the scale of each unit process, with which the mass balances are satisfied, is estimated by detailed chemical engineering calculation. Also, driving cost of each unit operation is estimated. As a result, minimum total cost of 160,000 yen/kg-U is obtained. Adsorption process cost is 80 to 90 % of the total cost. Capital cost and driving cost are fifty-fifty in the adsorption process cost. Pump driving cost forms a big part of the driving cost. Further concentrated study should be necessary on the adsorption process design. It might be important to make an effort on direct utilization of ocean current for saving the pump driving cost. (author)
International Nuclear Information System (INIS)
Tsuchihashi, Toshio; Maki, Toshio; Suzuki, Takeshi
1997-01-01
The fast inversion recovery (fast IR) pulse sequence was evaluated. We compared the fast fluid attenuated inversion recovery (fast FLAIR) pulse sequence in which inversion time (TI) was established as equal to the water null point for the purpose of the water-suppressed T 2 -weighted image, with the fast short TI inversion recovery (fast STIR) pulse sequence in which TI was established as equal to the fat null point for purpose of fat suppression. In the fast FLAIR pulse sequence, the water null point was increased by making TR longer. In the FLAIR pulse sequence, the longitudinal magnetization contrast is determined by TI. If TI is increased, T 2 -weighted contrast improves in the same way as increasing TR for the SE pulse sequence. Therefore, images should be taken with long TR and long TI, which are longer than TR and longer than the water null point. On the other hand, the fat null point is not affected by TR in the fast STIR pulse sequence. However, effective TE was affected by variation of the null point. This increased in proportion to the increase in effective TE. Our evaluation indicated that the fast STIR pulse sequence can control the extensive signals from fat in a short time. (author)
The use of helical heat exchanger for heat recovery domestic water-cooled air-conditioners
International Nuclear Information System (INIS)
Yi Xiaowen; Lee, W.L.
2009-01-01
An experimental study on the performance of a domestic water-cooled air-conditioner (WAC) using tube-in-tube helical heat exchanger for preheating of domestic hot water was carried out. The main aims are to identify the comprehensive energy performance (space cooling and hot water preheating) of the WAC and the optimum design of the helical heat exchanger taking into account the variation in tap water flow rate. A split-type WAC was set up for experimental study at different indoor and outdoor conditions. The cooling output, the amount of recovered heat, and the power consumption for different hot water flow rates were measured. The experimental results showed that the cooling coefficient of performance (COP) of the WAC improves with the inclusion of the heat recovery option by a minimum of 12.3%. This can be further improved to 20.6% by an increase in tap water flow rate. Same result was observed for the comprehensive COP of the WAC. The maximum achievable comprehensive COP was 4.92 when the tap water flow rate was set at 7.7 L/min. The overall heat transfer coefficient of the helical heat exchanger under various operating conditions were determined by Wilson plot. A mathematical model relating the over all heat transfer coefficient to the outer pipe diameter was established which provides a convenient way of optimising the design of the helical heat exchanger
Hemachandra, Chamini K; Pathiratne, Asoka
2017-01-01
Biological effect directed in vivo tests with model organisms are useful in assessing potential health risks associated with chemical contaminations in surface waters. This study examined the applicability of two in vivo test systems viz. plant, Allium cepa root based tests and fish, Oreochromis niloticus erythrocyte based tests for screening cytogenotoxic potential of raw source water, water treatment waste (effluents) and treated water of drinking water treatment plants (DWTPs) using two DWTPs associated with a major river in Sri Lanka. Measured physico-chemical parameters of the raw water, effluents and treated water samples complied with the respective Sri Lankan standards. In the in vivo tests, raw water induced statistically significant root growth retardation, mitodepression and chromosomal abnormalities in the root meristem of the plant and micronuclei/nuclear buds evolution and genetic damage (as reflected by comet scores) in the erythrocytes of the fish compared to the aged tap water controls signifying greater genotoxicity of the source water especially in the dry period. The effluents provoked relatively high cytogenotoxic effects on both test systems but the toxicity in most cases was considerably reduced to the raw water level with the effluent dilution (1:8). In vivo tests indicated reduction of cytogenotoxic potential in the tested drinking water samples. The results support the potential applications of practically feasible in vivo biological test systems such as A. cepa root based tests and the fish erythrocyte based tests as complementary tools for screening cytogenotoxicity potential of the source water and water treatment waste reaching downstream of aquatic ecosystems and for evaluating cytogenotoxicity eliminating efficacy of the DWTPs in different seasons in view of human and ecological safety. Copyright © 2016 Elsevier Ltd. All rights reserved.
International Nuclear Information System (INIS)
Molochnikova, N.P.; Shkinev, V.M.; Myasoedov, B.F.
1995-01-01
The feasibility has been demonstrated of using two-phase aqueous systems based on water-soluble polymers, polyethylene glycol and dextran sulfate, in thin-layer and extraction chromatography for recovery and separation of actinides. A convenient method has been proposed for continuous recovery of 239 Np from 243 Am, originating from differences in sorption of tri- and pentavalent actinides from sulfate solutions containing potassium phosphotungstate by silica gel impregnated with polyethylene glycol. New plates for thin-layer chromatography using water-soluble polymers have been developed. These plates were used to study behavior of americium in various oxidation states in thin sorbent layers
Selected hydraulic test analysis techniques for constant-rate discharge tests
International Nuclear Information System (INIS)
Spane, F.A. Jr.
1993-03-01
The constant-rate discharge test is the principal field method used in hydrogeologic investigations for characterizing the hydraulic properties of aquifers. To implement this test, the aquifer is stressed by withdrawing ground water from a well, by using a downhole pump. Discharge during the withdrawal period is regulated and maintained at a constant rate. Water-level response within the well is monitored during the active pumping phase (i.e., drawdown) and during the subsequent recovery phase following termination of pumping. The analysis of drawdown and recovery response within the stress well (and any monitored, nearby observation wells) provides a means for estimating the hydraulic properties of the tested aquifer, as well as discerning formational and nonformational flow conditions (e.g., wellbore storage, wellbore damage, presence of boundaries, etc.). Standard analytical methods that are used for constant-rate pumping tests include both log-log type-curve matching and semi-log straight-line methods. This report presents a current ''state of the art'' review of selected transient analysis procedures for constant-rate discharge tests. Specific topics examined include: analytical methods for constant-rate discharge tests conducted within confined and unconfined aquifers; effects of various nonideal formation factors (e.g., anisotropy, hydrologic boundaries) and well construction conditions (e.g., partial penetration, wellbore storage) on constant-rate test response; and the use of pressure derivatives in diagnostic analysis for the identification of specific formation, well construction, and boundary conditions
Higgins, Trevor; Cameron, Melainie; Climstein, Mike
2012-06-11
ABSTRACT: In team sports, during the competitive season, peak performance in each game is of utmost importance to coaching staff and players. To enhance recovery from training and games a number of recovery modalities have been adopted across professional sporting teams. To date there is little evidence in the sport science literature identifying the benefit of modalities in promoting recovery between sporting competition games. This research evaluated hydrotherapy as a recovery strategy following a simulated game of rugby union and a week of recovery and training, with dependent variables between two simulated games of rugby union evaluated. Twenty-four male players were randomly divided into three groups: one group (n=8) received cold water immersion therapy (2 X 5min at 10oC, whilst one group (n=8) received contrast bath therapy (5 cycles of 10oC/38oC) and the control group (n=8) underwent passive recovery (15mins, thermo neutral environment). The two forms of hydrotherapy were administered following a simulated rugby union game (8 circuits x 11 stations) and after three training sessions. Dependent variables where generated from five physical stations replicating movement characteristics of rugby union and one skilled based station, as well as sessional RPE values between two simulated games of rugby union. No significant differences were identified between groups across simulated games, across dependent variables. Effect size analysis via Cohen's d and ηp2 did identify medium trends between groups. Overall trends indicated that both treatment groups had performance results in the second simulated game above those of the control group of between 2% and 6% across the physical work stations replicating movement characteristics of rugby union. In conclusion, trends in this study may indicate that ice baths and contrasts baths may be more advantageous to athlete's recovery from team sport than passive rest between successive games of rugby union We are pleased to
Atmosphere Resource Recovery and Environmental Monitoring
Roman, Monsi; Howard, David
2015-01-01
Atmosphere Resource Recovery and Environmental Monitoring (ARREM) is a project focused on evolving existing and maturing emerging 'closed loop' atmosphere revitalization (AR) life support systems that produce clean, breathable air for crewmembers, and developing a suite of low mass, low power environmental monitors to detect and measure air- and waterborne constituents and contaminants. The objective is to improve reliability and efficiency, reduce mass and volume, and increase recovery of oxygen from carbon dioxide created by human metabolism from 43% to greater than 90%. The technology developments under ARREM are vital to extending human space missions from low-Earth orbit like the International Space Station to destinations deeper into space such as Mars where dependency on Earth for resupply of maintenance items and critical life support elements such as water and oxygen is not possible. The primary goal of the ARREM project is to demonstrate that systems meet the more stringent performance parameters for deep space exploration and are compatible with other systems within closed loop life support through a series of integrated tests performed in an environmental test chamber capable of simulating human metabolic activities and measuring systems outputs.
Aziz, A.; Thalal; Amri, I.; Herisiswanto; Mainil, A. K.
2017-09-01
This This paper presents the performance of residential split air conditioner (RSAC) using hydrocarbon refrigerant (HCR22) as the effect on the use of heat recovery water heater system (HRWHS). In this study, RSAC was modified with addition of dummy condenser (trombone coil type) as heat recovery water heater system (HRWHS). This HRWHS is installed between a compressor and a condenser by absorbing a part of condenser waste heat. The results show that RSAC with HRWHS is adequate to generate hot water with the temperature range about 46.58˚C - 48.81˚C when compared to without HRWHS and the use of dummy condenser does not give significant effect to the split air conditioner performance. When the use of HRWHS, the refrigerant charge has increase about 19.05%, the compressor power consumption has slightly increase about 1.42% where cooling capacity almost the same with slightly different about 0.39%. The condenser heat rejection is lower about 2.68% and the COP has slightly increased about 1.05% when compared to without HRWHS. The use of HRWHS provide free hot water, it means there is energy saving for heating water without negative impact to the system performance of RSAC.
Gumbo, B
2000-01-01
The Harare metropolis in Zimbabwe, extending upstream from Manyame Dam in the Upper Manyame River Basin, consists of the City of Harare and its satellite towns: Chitungwiza, Norton, Epworth and Ruwa. The existing urban drainage system is typically a single-use-mixing system: water is used and discharged to "waste", excreta are flushed to sewers and eventually, after "treatment", the effluent is discharged to a drinking water supply source. Polluted urban storm water is evacuated as fast as possible. This system not only ignores the substantial value in "waste" materials, but it also exports problems to downstream communities and to vulnerable fresh-water sources. The question is how can the harare metropolis urban drainage system, which is complex and has evolved over time, be rearranged to achieve sustainability (i.e. water conservation, pollution prevention at source, protection of the vulnerable drinking water sources and recovery of valuable materials)? This paper reviews current concepts regarding the future development of the urban drainage system in line with the new vision of "Sustainable Cities of the Future". The Harare Metropolis in Zimbabwe is taken as a case, and philosophical options for re-engineering the drainage system are discussed.
Grey water treatment concept integrating water and carbon recovery and removal of micropollutants
Hernandez Leal, L.; Zeeman, G.; Buisman, C.J.N.
2011-01-01
A total treatment concept was developed for grey water from 32 houses in Sneek, The Netherlands. A thorough characterization of COD, nutrients, metals, micropollutants and anions was carried out. Four biological treatment systems were tested: aerobic, anaerobic, combined anaerobic¿+¿aerobic and a
Energy Technology Data Exchange (ETDEWEB)
Chukwudeme, E. A.; Hamouda, A. A. [Department of Petroleum Engineering, University of Stavanger, 4036 Stavanger (Norway)
2009-07-01
An EOR study has been performed applying miscible CO{sub 2} flooding and compared with that for water flooding. Three different oils are used, reference oil (n-decane), model oil (n-C10, SA, toluene and 0.35 wt % asphaltene) and crude oil (10 wt % asphaltene) obtained from the Middle East. Stearic acid (SA) is added representing a natural surfactant in oil. For the non-asphaltenic oil, miscible CO{sub 2} flooding is shown to be more favourable than that by water. However, it is interesting to see that for first years after the start of the injection (< 3 years) it is shown that there is almost no difference between the recovered oils by water and CO{sub 2}, after which (> 3 years) oil recovery by gas injection showed a significant increase. This may be due to the enhanced performance at the increased reservoir pressure during the first period. Maximum oil recovery is shown by miscible CO{sub 2} flooding of asphaltenic oil at combined temperatures and pressures of 50 {sup o}C/90 bar and 70 {sup o}C/120 bar (no significant difference between the two cases, about 1%) compared to 80 {sup o}C/140 bar. This may support the positive influence of the high combined temperatures and pressures for the miscible CO{sub 2} flooding; however beyond a certain limit the oil recovery declined due to increased asphaltene deposition. Another interesting finding in this work is that for single phase oil, an almost linear relationship is observed between the pressure drop and the asphaltene deposition regardless of the flowing fluid pressure. (author)
11 CFR 100.131 - Testing the waters.
2010-01-01
... 11 Federal Elections 1 2010-01-01 2010-01-01 false Testing the waters. 100.131 Section 100.131 Federal Elections FEDERAL ELECTION COMMISSION GENERAL SCOPE AND DEFINITIONS (2 U.S.C. 431) Exceptions to Expenditures § 100.131 Testing the waters. (a) General exemption. Payments made solely for the purpose of...
11 CFR 100.72 - Testing the waters.
2010-01-01
... 11 Federal Elections 1 2010-01-01 2010-01-01 false Testing the waters. 100.72 Section 100.72 Federal Elections FEDERAL ELECTION COMMISSION GENERAL SCOPE AND DEFINITIONS (2 U.S.C. 431) Exceptions to Contributions § 100.72 Testing the waters. (a) General exemption. Funds received solely for the purpose of...
Phosphorus recovery as struvite from eutropic waters by XDA-7 resin.
Li, Huanwen; Ye, Zhiping; Lin, Ying; Wang, Fengying
2012-01-01
Phosphorus releases into aquatic environment and its subsequent contribution to eutrophication have resulted in a widespread global pollution issue. However, phosphorus is a non-renewable source. The potential supplies of phosphorus are decreasing worldwide. Therefore, removal and recovery of phosphorus from the eutropic waters is important, emergent and necessary. In this research, experiments for recovering phosphate from eutropic waters by anion exchange combined with struvite precipitation were conducted. The results indicated that the prepared XDA-7 resin was an effective adsorbent for phosphate. The adsorption isotherm of XDA-7 resin was found to be a modified Freundlich type. The maximum phosphate adsorption (20.9 mg/g) occurred in the pH range of 6.0-8.0. Phosphate adsorbed on the XDA-7 resin was effectively desorbed with 8% NaCl solution, and the resin was able to be regenerated with 3% NaClO and 4% NaOH solutions. Phosphate desorbed from the resin was recovered as magnesium ammonium phosphate (struvite). The obtained struvite was analyzed by acid dissolution method, scanning electron microscope (SEM) and Fourier transform infrared spectroscopy (FTIR). The struvite precipitate was found to be 75.8% in purity, a high-value fertilizer.
Stewart-Maddox, N. S.; Tysor, E. H.; Swanson, J.; Degon, A.; Howard, J.; Tsinnajinnie, L.; Frisbee, M. D.; Wilson, J. L.; Newman, B. D.
2014-12-01
A community well is the primary water supply to the town of El Rito. This small rural town in is located in a semi-arid, mountainous portion of northern New Mexico where water is scarce. The well is 72 meters from a nearby intermittent stream. Initial tritium sampling suggests a groundwater connection between the stream and well. The community is concerned with the sustainability and future quality of the well water. If this well is as tightly connected to the stream as the tritium data suggests, then the well is potentially at risk due to upstream contamination and the impacts of extended drought. To examine this, we observed the well over a two-week period performing pump and recovery tests, electrical resistivity surveys, and physical observations of the nearby stream. We also collected general chemistry, stable isotope and radon samples from the well and stream. Despite the large well diameter, our pump test data exhibited behavior similar to a Theis curve, but the rate of drawdown decreased below the Theis curve late in the test. This decrease suggests that the aquifer is being recharged, possibly through delayed yield, upwelling of groundwater, or from the stream. The delayed yield hypothesis is supported by our electrical resistivity surveys, which shows very little change in the saturated zone over the course of the pump test, and by low values of pump-test estimated aquifer storativity. Observations of the nearby stream showed no change in stream-water level throughout the pump test. Together this data suggests that the interaction between the stream and the well is low, but recharge could be occurring through other mechanisms such as delayed yield. Additional pump tests of longer duration are required to determine the exact nature of the aquifer and its communication with the well.
International Nuclear Information System (INIS)
Williamson, Jill P.; Emmert, Gary L.
2013-01-01
Graphical abstract: A device for on-line monitoring of the water disinfectants silver (I) ion or iodine in recycled water is presented. Simply change the reagents and the sample loop volume to switch between silver ion and iodine configurations. -- Highlights: •Automated FIA device for monitoring Ag + or I 2 residuals in recycled drinking water. •Method detection limits of Ag + of 52 μg L −1 and I 2 of 2 μg L −1 . •Mean % recoveries for Ag + of 104 ± 1% and for I 2 of 96.2 ± 0.1%. •% relative standard deviation estimates for Ag + of 1.4% and for I 2 of 5.7%. •Bias measurements agreed to 11.3 μg L −1 for Ag + and to 27.3 μg L −1 for I 2 . -- Abstract: A laboratory-built flow injection analyzer is reported for monitoring the drinking water disinfectants silver (I) ion and iodine in water produced from NASA's water recovery system. This analyzer uses spectrophotometric detection with a custom made 10 cm optical flow cell. Optimization and interference studies are discussed for the silver (I) ion configuration. Subsequent results using the silver (I) configuration with minor modifications and alternative reagents gave promising results for iodine determinations as well. The estimated MDL values for Ag + and I 2 are 52 μg L −1 Ag + and 2 μg L −1 I 2 ; the mean percent recoveries were 104% and 96.2% for Ag + and I 2 respectfully; and percent relative standard deviations were estimated at 1.4% for Ag + and 5.7% for I 2 . The agreement of this potentially multifunctional analyzer to reference methods for each respective water disinfectant is measured using Bland–Altman analysis as well as more traditional estimates
Sprint cycling performance is maintained with short-term contrast water immersion.
Crampton, David; Donne, Bernard; Egaña, Mikel; Egana, Mikel; Warmington, Stuart A
2011-11-01
Given the widespread use of water immersion during recovery from exercise, we aimed to investigate the effect of contrast water immersion on recovery of sprint cycling performance, HR and, blood lactate. Two groups completed high-intensity sprint exercise before and after a 30-min randomized recovery. The Wingate group (n = 8) performed 3 × 30-s Wingate tests (4-min rest periods). The repeated intermittent sprint group (n = 8) cycled for alternating 30-s periods at 40% of predetermined maximum power and 120% maximum power, until exhaustion. Both groups completed three trials using a different recovery treatment for each trial (balanced randomized application). Recovery treatments were passive rest, 1:1 contrast water immersion (2.5 min of cold (8°C) to 2.5 min of hot (40°C)), and 1:4 contrast water immersion (1 min of cold to 4 min of hot). Blood lactate and HR were recorded throughout, and peak power and total work for pre- and postrecovery Wingate performance and exercise time and total work for repeated sprinting were recorded. Recovery of Wingate peak power was 8% greater after 1:4 contrast water immersion than after passive rest, whereas both contrast water immersion ratios provided a greater recovery of exercise time (∼ 10%) and total work (∼ 14%) for repeated sprinting than for passive rest. Blood lactate was similar between trials. Compared with passive rest, HR initially declined more slowly during contrast water immersion but increased with each transition to a cold immersion phase. These data support contrast water immersion being effective in maintaining performance during a short-term recovery from sprint exercise. This effect needs further investigation but is likely explained by cardiovascular mechanisms, shown here by an elevation in HR upon each cold immersion.
Fast recovery strain measurements in a nuclear test environment
International Nuclear Information System (INIS)
Kitchen, W.R.; Nauman, W.J.; Vollmer, D.W.
1979-01-01
The recovery of early-time (50 μs or less) strain gage data on structural response experiments in underground nuclear tests has been a continuing problem for experimenters at the Nevada Test Site. Strain measurement is one of the primary techniques used to obtain experimental data for model verification and correlation with predicted effects. Peak strains generally occur within 50 to 100 μs of the radiation exposure. Associated with the exposure is an intense electromagnetic impulse that produces potentials of kilovolts and currents of kiloamperes on the experimental structures. For successful operation, the transducer and associated recording system must recover from the initial noise overload and accurately track the strain response within about 50 μs of the nuclear detonation. A gaging and fielding technique and a recording system design that together accomplish these objectives are described. Areas discussed include: (1) noise source model; (2) experimental cassette design, gage application, grounding, and shielding; (3) cable design and shielding between gage and recorder; (4) recorder design including signal conditioner/amplifier, digital encoder, buffer memory, and uphole data transmission; and (5) samples of experimental data
International Nuclear Information System (INIS)
Muirhead, D.; Rainwater, K.; Jackson, A.; Urban, L.; Morse, A.
2002-01-01
'Full text:' Currently, in many areas of the nation, small communities exist without access to adequate and safe water supplies. Texas, New Mexico, Arizona, and California have several of these communities, called colonias, along the border with Mexico. Many of these communities suffer from high rates of infectious disease due to contaminated sources, unacceptable available water quality, insufficient water quantity, and/or undeveloped infrastructure. Solving these types of problems will require a design born of careful integration of cultural, technical, and regulatory considerations. This project proposes to utilize constructed wetland design as a viable economic solution for a colonia situation that can serve as a test case for more widespread use of this technology. The design will merge technical, social and regulatory aspects of water recycling into one approach. Detailed requirements of the design will include scientific, engineering, and cultural aspects of the system. Based on the social, economic, technical, and environmental information gathered, select up to two on-site water recovery system technologies that are simple, inexpensive, and culturally acceptable. Details of design (plants selected, effluent discharge) are based on interviews with colonia residents to determine their needs. Final site selection is based on poor soils (inappropriate for a leach field), vicinity to schools, and interested families. A comparison of options determined a constructed wetland to be the most viable option. Chipped tires are used as the media, hence, a solid waste problem (local resource) in colonias is converted to a beneficial use. We then analyze and monitor the field performance of the constructed wetland paying special attention to the early TSS discharge of rust particles from steel belted tires. Students are involved from colonia communities in monitoring of systems and environmental data collection. The lessons learned to date are given and construction will
International Nuclear Information System (INIS)
Ragunathan, P.; Mitra, S.K.; Jain, D.K.; Nayar, M.G.; Ramani, M.P.S.
1989-04-01
The paper briefly describes a design study of an electrolytic cascade process plant for enrichment and recovery of tritium from irradiated heavy water moderators from Rajasthan Atomic Power Station Reactors. In direct multistage electrolysis process, tritiated heavy water from the reactor units is fed to the electrolytic cell modules arranged in the form of a cascade where it is enriched and decomposed into O 2 gas stream and D 2 /DT gas stream. The direct electrolysis of tritiated heavy water allows tritium to be concentrated in the aqueous phase. Several stages are used to achieve the necessary enrichment. The cascade plant incorporates the advanced electrolyser technology developed in Bhabha Atomic Research Centre (Bombay) using porous nickel electrodes, capable o f high current density operation at reduced energy consumption for electrolysis. (author). 3 tabs
Mihelcic, James R; Ren, Zhiyong Jason; Cornejo, Pablo K; Fisher, Aaron; Simon, A J; Snyder, Seth W; Zhang, Qiong; Rosso, Diego; Huggins, Tyler M; Cooper, William; Moeller, Jeff; Rose, Bob; Schottel, Brandi L; Turgeon, Jason
2017-07-18
This Feature examines significant challenges and opportunities to spur innovation and accelerate adoption of reliable technologies that enhance integrated resource recovery in the wastewater sector through the creation of a national testbed network. The network is a virtual entity that connects appropriate physical testing facilities, and other components needed for a testbed network, with researchers, investors, technology providers, utilities, regulators, and other stakeholders to accelerate the adoption of innovative technologies and processes that are needed for the water resource recovery facility of the future. Here we summarize and extract key issues and developments, to provide a strategy for the wastewater sector to accelerate a path forward that leads to new sustainable water infrastructures.
Directory of Open Access Journals (Sweden)
Mohamed Y. Saleh
2017-11-01
Full Text Available The plant-based-sea water culture medium is introduced to in vitro cultivation and in situ recovery of the microbiome of halophytes. The ice plant (Mesembryanthemum crystallinum was used, in the form of juice and/or dehydrated plant powder packed in teabags, to supplement the natural sea water. The resulting culture medium enjoys the combinations of plant materials as rich source of nutrients and sea water exercising the required salt stress. As such without any supplements, the culture medium was sufficient and efficient to support very good in vitro growth of halotolerant bacteria. It was also capable to recover their in situ culturable populations in the phyllosphere, ecto-rhizosphere and endo-rhizosphere of halophytes prevailing in Lake Mariout, Egypt. When related to the total bacterial numbers measured for Suaeda pruinosa roots by quantitative-PCR, the proposed culture medium increased culturability (15.3–19.5% compared to the conventional chemically-synthetic culture medium supplemented with (11.2% or without (3.8% NaCl. Based on 16S rRNA gene sequencing, representative isolates of halotolerant bacteria prevailed on such culture medium were closely related to Bacillus spp., Halomonas spp., and Kocuria spp. Seed germination tests on 25–50% sea water agar indicated positive interaction of such bacterial isolates with the germination and seedlings’ growth of barley seeds.
Tritium-gas/water-vapor monitor. Tests and evaluation
International Nuclear Information System (INIS)
Jalbert, R.A.
1982-07-01
A tritium gas/water-vapor monitor was designed and built by the Health Physics Group at the Los Alamos National Laboratory. In its prototype configuration, the monitor took the shape of two separate instruments: a (total) tritium monitor and a water-vapor monitor. Both instruments were tested and evaluated. The tests of the (total) tritium monitor, basically an improved version of the standard flow-through ion-chamber instrument, are briefly reported here and more completely elsewhere. The tests of the water-vapor monitor indicated that the novel approach used to condense water vapor for scintillation counting has a number of serious drawbacks and that further development of the instrument is unwarranted
Orion Ground Test Article Water Impact Tests: Photogrammetric Evaluation of Impact Conditions
Vassilakos, Gregory J.; Mark, Stephen D.
2018-01-01
The Ground Test Article (GTA) is an early production version of the Orion Crew Module (CM). The structural design of the Orion CM is being developed based on LS-DYNA water landing simulations. As part of the process of confirming the accuracy of LS-DYNA water landing simulations, the GTA water impact test series was conducted at NASA Langley Research Center (LaRC) to gather data for comparison with simulations. The simulation of the GTA water impact tests requires the accurate determination of the impact conditions. To accomplish this, the GTA was outfitted with an array of photogrammetry targets. The photogrammetry system utilizes images from two cameras with a specialized tracking software to determine time histories for the 3-D coordinates of each target. The impact conditions can then be determined from the target location data.
Iosa, Marco; Guariglia, Cecilia; Matano, Alessandro; Paolucci, Stefano; Pizzamiglio, Luigi
2016-12-01
Extrapersonal unilateral spatial neglect after stroke is associated to a poor rehabilitation outcome. Minor attention has been paid to the recovery of personal neglect, to its relationship with the recovery of extrapersonal neglect and of independency in activities of daily living. The present study aims at evaluating whether there is an association between recovery of extrapersonal and personal neglect. The secondary aim was to investigate if personal neglect may affect the effectiveness of neurorehabilitation in patients with subacute stroke. Observational study. Neurorehabilitation Hospital in Rome, Italy, inpatients. A sample of 49 patients with unilateral spatial neglect resulting from right ischemic cerebral infarction was enrolled in this study, divided into three subgroups according to the presence and the degree of personal neglect, and evaluated pre and postneurorehabilitation. Personal neglect was evaluated using Zoccolotti and Judica's Scale, extrapersonal neglect using Letter Cancellation Test, Barrage Test, Sentence Reading Test and Wundt-Jastrow Area Illusion Test. Barthel Index (BI), Rivermead Mobility Index, and Canadian Neurological Scale were also administered. Results showed the following: 1) recovery of personal neglect was not significantly correlated with that of extrapersonal neglect, despite both the disorders were ameliorated after a "non-specific" rehabilitation treatment; 2) personal neglect per se was not an additional negative prognostic factor in the rehabilitation findings. Our results suggested that the recoveries of the two types of neglect are independent from each other, and that the presence of personal neglect does not imply significant additional problems to the functional outcomes. Our study highlighted the need of novel tools to assess the presence and to improve the recovery of personal neglect.
Lowering operation costs by energy recovery
Energy Technology Data Exchange (ETDEWEB)
Wegener, W; Hausmann, H; Hausmann, K H
1976-01-01
Heat recovery and the heat sources available as well as possible applications of the heat recovered are discussed. Groundwater, shower water and waste air are considered as energy sources. Energy recovery by means of finned-tube systems and the heat pump, and economic aspects of the techniques are described.
Standard test methods for the strong-base resins used in the recovery of uranium
International Nuclear Information System (INIS)
Ford, M.A.; Lombaard, L.R.
1986-01-01
There are no detailed specifications for the strong-base ion-exchange resins used in continuous ion-exchange plants, and it was considered that a very useful purpose would be served by the publication of a series of standard laboratory tests on which such specifications could be based. This report describes test methods that are relevant to the ion-exchange recovery of uranium. They include tests of the physical properties of strong-base resins (relative density, particle-size distribution, and moisture content) and of their chemical properties (theoretical capacity, equilibrium capacity, kinetics of loading and elution). Included are several supporting procedures that are used in conjunction with these methods
Potential Osteoporosis Recovery by Deep Sea Water through Bone Regeneration in SAMP8 Mice
Directory of Open Access Journals (Sweden)
Hen-Yu Liu
2013-01-01
Full Text Available The aim of this study is to examine the therapeutic potential of deep sea water (DSW on osteoporosis. Previously, we have established the ovariectomized senescence-accelerated mice (OVX-SAMP8 and demonstrated strong recovery of osteoporosis by stem cell and platelet-rich plasma (PRP. Deep sea water at hardness (HD 1000 showed significant increase in proliferation of osteoblastic cell (MC3T3 by MTT assay. For in vivo animal study, bone mineral density (BMD was strongly enhanced followed by the significantly increased trabecular numbers through micro-CT examination after a 4-month deep sea water treatment, and biochemistry analysis showed that serum alkaline phosphatase (ALP activity was decreased. For stage-specific osteogenesis, bone marrow-derived stromal cells (BMSCs were harvested and examined. Deep sea water-treated BMSCs showed stronger osteogenic differentiation such as BMP2, RUNX2, OPN, and OCN, and enhanced colony forming abilities, compared to the control group. Interestingly, most untreated OVX-SAMP8 mice died around 10 months; however, approximately 57% of DSW-treated groups lived up to 16.6 months, a life expectancy similar to the previously reported life expectancy for SAMR1 24 months. The results demonstrated the regenerative potentials of deep sea water on osteogenesis, showing that deep sea water could potentially be applied in osteoporosis therapy as a complementary and alternative medicine (CAM.
Integration of Aquifer Storage Transfer and Recovery and HACCP for Ensuring Drinking Water Quality
Lee, S. I.; Ji, H. W.
2015-12-01
The integration of ASTR (Aquifer Storage Transfer and Recovery) and HACCP (Hazard Analysis and Critical Control Point) is being attempted to ensure drinking water quality in a delta area. ASTR is a water supply system in which surface water is injected into a well for storage and recovered from a different well. During the process natural water treatment is achieved in the aquifer. ASTR has advantages over surface reservoirs in that the water is protected from external contaminants and free from water loss by evaporation. HACCP, originated from the food industry, can efficiently manage hazards and reduce risks when it is introduced to the drinking water production. The study area is the located in the Nakdong River Delta, South Korea. Water quality of this region has been deteriorated due to the increased pollution loads from the upstream cities and industrial complexes. ASTR equipped with HACCP system is suggested as a means to heighten the public trust in drinking water. After the drinking water supply system using ASTR was decomposed into ten processes, principles of HACCP were applied. Hazardous event analysis was conducted for 114 hazardous events and nine major hazardous events were identified based on the likelihood and the severity assessment. Potential risk of chemical hazards, as a function of amounts, travel distance and toxicity, was evaluated and the result shows the relative threat a city poses to the drinking water supply facility. Next, critical control points were determined using decision tree analysis. Critical limits, maximum and/or minimum values to which biological, chemical or physical parameters must be controlled, were established. Other procedures such as monitoring, corrective actions and will be presented.
Recovery efficiency test project, Phase 2 activity report. Volume 2, Final report
Energy Technology Data Exchange (ETDEWEB)
Overbey, W.K. Jr.; Salamy, S.P.; Locke, C.D.
1989-02-01
The Recovery Efficiency Test well project addressed a number of technical issues. The primary objective was to determine the increased efficiency of gas recovery of a long horizontal wellbore over that of a vertical wellbore and, more specifically, what improvements can be expected from inducing multiple hydraulic fractures from such a wellbore. This volume contains appendices for: (1) supporting material and procedures for ``data frac`` stimulation of zone 6 using nitrogen and nitrogen foam; (2) supporting material and procedures for stimulation no. 1 nitrogen gas frac on zone no. 1; (3) supporting material and procedures for stimulation no. 2 in zone no. 1 using liquid CO{sub 2}; (4) supporting material and procedures for frac no. 3 on zone no.1 using nitrogen foam and proppant; (5) supporting material and procedures for stimulation no. 4 in zones 2--3 and 4 using nitrogen foam and proppant; (6) supporting materials and procedures for stimulation no. 5 in zones 5 and 8; and (7) fracture diagnostics reports and supporting materials.
Zhu, Xiuping
2014-06-17
Several technologies, including pressure-retarded osmosis (PRO), reverse electrodialysis (RED), and capacitive mixing (CapMix), are being developed to recover energy from salinity gradients. Here, we present a new approach to capture salinity gradient energy based on the expansion and contraction properties of poly(acrylic acid) hydrogels. These materials swell in fresh water and shrink in salt water, and thus the expansion can be used to capture energy through mechanical processes. In tests with 0.36 g of hydrogel particles 300 to 600 μm in diameter, 124 mJ of energy was recovered in 1 h (salinity ratio of 100, external load of 210 g, water flow rate of 1 mL/min). Although these energy recovery rates were relatively lower than those typically obtained using PRO, RED, or CapMix, the costs of hydrogels are much lower than those of membranes used in PRO and RED. In addition, fouling might be more easily controlled as the particles can be easily removed from the reactor for cleaning. Further development of the technology and testing of a wider range of conditions should lead to improved energy recoveries and performance. © 2014 American Chemical Society.
Zhu, Xiuping; Yang, Wulin; Hatzell, Marta C.; Logan, Bruce E.
2014-01-01
Several technologies, including pressure-retarded osmosis (PRO), reverse electrodialysis (RED), and capacitive mixing (CapMix), are being developed to recover energy from salinity gradients. Here, we present a new approach to capture salinity gradient energy based on the expansion and contraction properties of poly(acrylic acid) hydrogels. These materials swell in fresh water and shrink in salt water, and thus the expansion can be used to capture energy through mechanical processes. In tests with 0.36 g of hydrogel particles 300 to 600 μm in diameter, 124 mJ of energy was recovered in 1 h (salinity ratio of 100, external load of 210 g, water flow rate of 1 mL/min). Although these energy recovery rates were relatively lower than those typically obtained using PRO, RED, or CapMix, the costs of hydrogels are much lower than those of membranes used in PRO and RED. In addition, fouling might be more easily controlled as the particles can be easily removed from the reactor for cleaning. Further development of the technology and testing of a wider range of conditions should lead to improved energy recoveries and performance. © 2014 American Chemical Society.
From Drought to Recovery: a GRACE-Based Assessment of Groundwater Storage Variations in California
McEvoy, A.; Famiglietti, J. S.; Liu, P. W.; Reager, J. T., II
2017-12-01
The 2011-2015 drought in California was the most severe on record and significantly depleted state water reserves. However, after the consecutive wet winters of 2015-16 and 2016-17, water storage in reservoirs, soil, snowpack, and aquifers began recovering and the state government lifted the drought emergency for all California counties except four. But is the drought really "over"? Quantifiable metrics of groundwater storage are necessary to provide such evidence, yet in situ measurements are sparse at best. Here we holistically test whether California state water resources have fully recovered in the Sacramento, San Joaquin, and Tulare Lake basins of California, using remote sensing satellite observations, in situ measurements, and numerical models. Specifically, we partition water storage into four components of the terrestrial water cycle: soil moisture, snow water equivalent, surface water, and groundwater. We derive soil moisture and snow water equivalent from the North American Land Data Assimilation System (NLDAS) and we use the California Data Exchange Center (CDEC) network to measure in situ reservoir storage. To estimate changes in groundwater storage, we subtract these three components from the total water storage derived from the Gravity Recovery and Climate Experiment (GRACE) satellite. Preliminary results show that the groundwater storage plummeted to a record low during the 2011-2015 drought. The results also show a rapid recovery in total water storage from 2015-2017. Moreover, we find that groundwater accounts for, on average, 60% of the total water storage variations in the study basins. Our results hold social significance when placed in the context of arid California: Did the groundwater recover? Is this the largest recovery that California can expect? Finally, our results have implications for the utility of remote sensing to inform water resource management decisions.
Hydrologic Tests at Characterization Well R-14
Energy Technology Data Exchange (ETDEWEB)
S. McLin; W. Stone
2004-08-01
Well R-14 is located in Ten Site Canyon and was completed at a depth of 1316 ft below ground surface (bgs) in August 2002 within unassigned pumiceous deposits located below the Puye Formation (fanglomerate). The well was constructed with two screens positioned below the regional water table. Individual static depths measured for each isolated screen after the Westbay{trademark} transducer monitoring system was installed in mid-December 2002 were nearly identical at 1177 ft bgs, suggesting only horizontal subsurface flow at this time, location, and depth. Screen 1 straddles the geologic contact between the Puye fanglomerate and unassigned pumiceous deposits. Screen 2 is located about 50 ft deeper than screen 1 and is only within the unassigned pumiceous deposits. Constant-rate, straddle-packer, injection tests were conducted at screen 2, including two short tests and one long test. The short tests were 1 minute each but at different injection rates. These short tests were used to select an appropriate injection rate for the long test. We analyzed both injection and recovery data from the long test using the Theis, Theis recovery, Theis residual-recovery, and specific capacity techniques. The Theis injection, Theis recovery, and specific capacity methods correct for partial screen penetration; however, the Theis residual-recovery method does not. The long test at screen 2 involved injection at a rate of 10.1 gallons per minute (gpm) for 68 minutes and recovery for the next 85 minutes. The Theis analysis for screen 2 gave the best fit to residual recovery data. These results suggest that the 158-ft thick deposits opposite screen 2 have a transmissivity (T) equal to or greater than 143 ft{sup 2}/day, and correspond to a horizontal hydraulic conductivity (K) of at least 0.9 ft/day. The specific capacity method yielded a T value equal to or greater than 177 ft{sup 2}/day, and a horizontal K of at least 1.1 ft/day. Results from the injection and recovery phases of the
Water NSTF Design, Instrumentation, and Test Planning
Energy Technology Data Exchange (ETDEWEB)
Lisowski, Darius D.; Gerardi, Craig D.; Hu, Rui; Kilsdonk, Dennis J.; Bremer, Nathan C.; Lomperski, Stephen W.; Kraus, Adam R.; Bucknor, Matthew D.; Lv, Qiuping; Farmer, Mitchell T.
2017-08-01
The following report serves as a formal introduction to the water-based Natural convection Shutdown heat removal Test Facility (NSTF) program at Argonne. Since 2005, this US Department of Energy (DOE) sponsored program has conducted large scale experimental testing to generate high-quality and traceable validation data for guiding design decisions of the Reactor Cavity Cooling System (RCCS) concept for advanced reactor designs. The most recent facility iteration, and focus of this report, is the operation of a 1/2 scale model of a water-RCCS concept. Several features of the NSTF prototype align with the conceptual design that has been publicly released for the AREVA 625 MWt SC-HTGR. The design of the NSTF also retains all aspects common to a fundamental boiling water thermosiphon, and thus is well poised to provide necessary experimental data to advance basic understanding of natural circulation phenomena and contribute to computer code validation. Overall, the NSTF program operates to support the DOE vision of aiding US vendors in design choices of future reactor concepts, advancing the maturity of codes for licensing, and ultimately developing safe and reliable reactor technologies. In this report, the top-level program objectives, testing requirements, and unique considerations for the water cooled test assembly are discussed, and presented in sufficient depth to support defining the program’s overall scope and purpose. A discussion of the proposed 6-year testing program is then introduced, which outlines the specific strategy and testing plan for facility operations. The proposed testing plan has been developed to meet the toplevel objective of conducting high-quality test operations that span across a broad range of single- and two-phase operating conditions. Details of characterization, baseline test cases, accident scenario, and parametric variations are provided, including discussions of later-stage test cases that examine the influence of geometric
Wilson, Laura J; Cockburn, Emma; Paice, Katherine; Sinclair, Scott; Faki, Tanwir; Hills, Frank A; Gondek, Marcela B; Wood, Alyssa; Dimitriou, Lygeri
2018-01-01
Cryotherapy is an increasingly popular recovery strategy used in an attempt to attenuate the negative impact of strenuous physical activity on subsequent exercise. Therefore, this study aimed to assess the effects of whole body cryotherapy (WBC) and cold water immersion (CWI) on markers of recovery following a marathon. Thirty-one endurance trained males completed a marathon. Participants were randomly assigned to a CWI, WBC or placebo group. Perceptions of muscle soreness, training stress and markers of muscle function were recorded before the marathon and at 24 and 48 h post exercise. Blood samples were taken at baseline, post intervention and 24 and 48 h post intervention to assess inflammation and muscle damage. WBC had a harmful effect on muscle function compared to CWI post marathon. WBC positively influenced perceptions of training stress compared to CWI. With the exception of C-reactive protein (CRP) at 24 and 48 h, neither cryotherapy intervention positively influenced blood borne markers of inflammation or structural damage compared to placebo. The findings show WBC has a negative impact on muscle function, perceptions of soreness and a number of blood parameters compared to CWI, contradicting the suggestion that WBC may be a superior recovery strategy. Further, cryotherapy is no more effective than a placebo intervention at improving functional recovery or perceptions of training stress following a marathon. These findings lend further evidence to suggest that treatment belief and the placebo effect may be largely responsible for the beneficial effects of cryotherapy on recovery following a marathon.
Leal Junior, Ernesto Cesar; de Godoi, Vanessa; Mancalossi, José Luis; Rossi, Rafael Paolo; De Marchi, Thiago; Parente, Márcio; Grosselli, Douglas; Generosi, Rafael Abeche; Basso, Maira; Frigo, Lucio; Tomazoni, Shaiane Silva; Bjordal, Jan Magnus; Lopes-Martins, Rodrigo Alvaro Brandão
2011-07-01
In the last years, phototherapy has becoming a promising tool to improve skeletal muscle recovery after exercise, however, it was not compared with other modalities commonly used with this aim. In the present study we compared the short-term effects of cold water immersion therapy (CWIT) and light emitting diode therapy (LEDT) with placebo LEDT on biochemical markers related to skeletal muscle recovery after high-intensity exercise. A randomized double-blind placebo-controlled crossover trial was performed with six male young futsal athletes. They were treated with CWIT (5°C of temperature [SD ±1°]), active LEDT (69 LEDs with wavelengths 660/850 nm, 10/30 mW of output power, 30 s of irradiation time per point, and 41.7 J of total energy irradiated per point, total of ten points irradiated) or an identical placebo LEDT 5 min after each of three Wingate cycle tests. Pre-exercise, post-exercise, and post-treatment measurements were taken of blood lactate levels, creatine kinase (CK) activity, and C-reactive protein (CRP) levels. There were no significant differences in the work performed during the three Wingate tests (p > 0.05). All biochemical parameters increased from baseline values (p < 0.05) after the three exercise tests, but only active LEDT decreased blood lactate levels (p = 0.0065) and CK activity (p = 0.0044) significantly after treatment. There were no significant differences in CRP values after treatments. We concluded that treating the leg muscles with LEDT 5 min after the Wingate cycle test seemed to inhibit the expected post-exercise increase in blood lactate levels and CK activity. This suggests that LEDT has better potential than 5 min of CWIT for improving short-term post-exercise recovery.
Design and Testing of an Educational Water Tunnel
Kosaraju, Srinivas
2017-11-01
A new water tunnel is designed and tested for educational and research purposes at Northern Arizona University. The university currently owns an educational wind tunnel with a test section of 12in X 12in X 24in. However, due to limited size of test section and range of Reynolds numbers, its application is currently limited to very few experiments. In an effort to expand the educational and research capabilities, a student team is tasked to design, build and test a water tunnel as a Capstone Senior Design project. The water tunnel is designed to have a test section of 8in X 8in X 36in. and be able to test up to Re = 50E3. Multiple numerical models are used to optimize the flow field inside the test section before building the physical apparatus. The water tunnel is designed to accommodate multiple experiments for drag and lift studies. The built-in die system can deliver up to three different colors to study the streamlines and vortex shedding from the surfaces. During the first phase, a low discharge pump is used to achieve Re = 4E3 to test laminar flows. In the second phase, a high discharge pump will be used to achieve targeted Re = 50E3 to study turbulent flows.
Skelton, Robert P; Brodribb, Timothy J; McAdam, Scott A M; Mitchell, Patrick J
2017-09-01
Drought can cause major damage to plant communities, but species damage thresholds and postdrought recovery of forest productivity are not yet predictable. We used an El Niño drought event as a natural experiment to test whether postdrought recovery of gas exchange could be predicted by properties of the water transport system, or if metabolism, primarily high abscisic acid concentration, might delay recovery. We monitored detailed physiological responses, including shoot sapflow, leaf gas exchange, leaf water potential and foliar abscisic acid (ABA), during drought and through the subsequent rehydration period for a sample of eight canopy and understory species. Severe drought caused major declines in leaf water potential, elevated foliar ABA concentrations and reduced stomatal conductance and assimilation rates in our eight sample species. Leaf water potential surpassed levels associated with incipient loss of leaf hydraulic conductance in four species. Following heavy rainfall gas exchange in all species, except those trees predicted to have suffered hydraulic impairment, recovered to prestressed rates within 1 d. Recovery of plant gas exchange was rapid and could be predicted by the hydraulic safety margin, providing strong support for leaf vulnerability to water deficit as an index of damage under natural drought conditions. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.
Modeling of the Temperature Field Recovery in the Oil Pool
Khabibullin, I. L.; Davtetbaev, A. Ya.; Mar'in, D. F.; Khisamov, A. A.
2018-05-01
This paper considers the problem on mathematical modeling of the temperature field recovery in the oil pool upon termination of injection of water into the pool. The problem is broken down into two stages: injection of water and temperature and pressure recovery upon termination of injection. A review of the existing mathematical models is presented, analytical solutions for a number of cases have been constructed, and a comparison of the analytical solutions of different models has been made. In the general form, the expression has been obtained that permits determining the temperature change in the oil pool upon termination of injection of water (recovery of the temperature field).
Ghaffour, Noreddine
2013-01-01
Desalination is no longer considered as a nonconventional resource to supply potable water in several countries, especially in the Gulf Corporation Countries (GCC) and Middle East and North Africa (MENA) region as most of the big cities rely almost 100% on desalinated water for their supply. Due to the continuous increase in water demand, more large-scale plants are expected to be constructed in the region. However, most of the large cities in these countries have very limited water storage capacity, ranging from hours to a few days only and their groundwater capacity is very limited. The growing need for fresh water has led to significant cost reduction, because of technological improvements of desalination technologies which makes it an attractive option for water supply even in countries where desalination was unthinkable in the past. In the GCC/MENA region, operating records show that water demand is relatively constant during the year, while power demand varies considerably with a high peak in the summer season. However, desalination and power plants are economically and technically efficient only if they are fully operated at close to full capacity. In addition, desalination plants are exposed to external constraints leading to unexpected shutdowns (e.g. red tides). Hybridization of different technologies, including reverse osmosis and thermal-based plants, is used to balance the power to water mismatch in the demand by using the idle power from co-generation systems during low power demand periods. This has led to consideration of storage of additional desalinated water to allow for maximum production and stability in operation. Aquifer storage and recovery (ASR) would then be a good option to store the surplus of desalinated water which could be used when water demand is high or during unexpected shutdowns of desalination plants. In addition, increased reuse of treated wastewater could bring an integrated approach to water resources management. In this
International Nuclear Information System (INIS)
Janat, M.
2009-01-01
Efficient crop use of nitrogen (N) fertilizer is critical from economic and environmental viewpoints, especially under irrigated conditions. Cotton yield parameters, fiber quality, water- and N-use efficiency responses to N, and irrigation methods in northern Syria were evaluated. Field trials were conducted for two growing seasons on a Chromoxerertic Rhodoxeralf soil. Treatments consisted of drip fertigation, furrow irrigation, and five different rates of N fertilizer (50, 100, 150, 200, and 250 kg N /ha). Cotton was irrigated when soil moisture in the specified active root depth was 80% of the field capacity as indicated by the neutron probe. Seed cotton yield was higher than the national average (3,928 kg/ha) by at least 12% as compared to all treatments. Lint properties were not negatively affected by the irrigation method or N rates. Water savings under drip fertigation ranged between 25 and 50% of irrigation water relative to furrow irrigation. Crop water-use efficiencies of the drip-fertigated treatments were in most cases 100% higher than those of the corresponding furrow-irrigated treatments. The highest water demand was during the fruit-setting growth stage. It was also concluded that under drip fertigation, 100 -150 N kg/ha was adequate and comparable with the highest N rates tested under furrow irrigation regarding lint yield, N uptake, and recovery. Based on cotton seed yield and weight of stems, the overall amount of N removed from the field for the drip-fertigated treatments ranged between 101-118 kg and 116-188 N/ha for 2001 and 2002, respectively. The N removal ranged between 94-113 and 111-144 kg N/ha for the furrow-irrigated treatments for 2001 and 2002, respectively. (author)
Santoso, Rio Pudjidarma; Riastuti, Rini
2018-05-01
The purpose of this research is to evaluate the corrosion process which occurs on the water side of Heat Recovery Steam Generator (HRSG) superheater tube. The tube was 13CrMo44 and divided into 3 types of specimen: new tube, used tube (with oxide layer on surface), cleaned-used tube (without oxide layer on surface). The evaluation of corrosion parameters wasperformed using deaerated ultra-high purity water (boiler feed water) in two methods of testing: Tafel polarization and Electrochemical Impedance Spectroscopy (EIS). Tafel polarization was excellent as its capability to show the value of corrosion current and the corrosion rate explicitly, on the other hand, EIS was excellent as its capability to explain for corrosion mechanism on metal interface in detail. Both methods showed that the increase of electrolyte temperature from 25°C to 55°C would increase the corrosion rate with the mechanism of decreasing polarization resistance due to thinning out the passive film thickness and enlarge the area of reduction reaction of cathode. Magnetite oxide scale which is laid on the surface of used tube specimen shows protective nature to reduce the corrosion rate, and clear up this oxide would increase the corrosion rate back as new tube.
Energy Technology Data Exchange (ETDEWEB)
Williamson, Jill P.; Emmert, Gary L., E-mail: gemmert@memphis.edu
2013-08-20
Graphical abstract: A device for on-line monitoring of the water disinfectants silver (I) ion or iodine in recycled water is presented. Simply change the reagents and the sample loop volume to switch between silver ion and iodine configurations. -- Highlights: •Automated FIA device for monitoring Ag{sup +} or I{sub 2} residuals in recycled drinking water. •Method detection limits of Ag{sup +} of 52 μg L{sup −1} and I{sub 2} of 2 μg L{sup −1}. •Mean % recoveries for Ag{sup +} of 104 ± 1% and for I{sub 2} of 96.2 ± 0.1%. •% relative standard deviation estimates for Ag{sup +} of 1.4% and for I{sub 2} of 5.7%. •Bias measurements agreed to 11.3 μg L{sup −1} for Ag{sup +} and to 27.3 μg L{sup −1} for I{sub 2}. -- Abstract: A laboratory-built flow injection analyzer is reported for monitoring the drinking water disinfectants silver (I) ion and iodine in water produced from NASA's water recovery system. This analyzer uses spectrophotometric detection with a custom made 10 cm optical flow cell. Optimization and interference studies are discussed for the silver (I) ion configuration. Subsequent results using the silver (I) configuration with minor modifications and alternative reagents gave promising results for iodine determinations as well. The estimated MDL values for Ag{sup +} and I{sub 2} are 52 μg L{sup −1} Ag{sup +} and 2 μg L{sup −1} I{sub 2}; the mean percent recoveries were 104% and 96.2% for Ag{sup +} and I{sub 2} respectfully; and percent relative standard deviations were estimated at 1.4% for Ag{sup +} and 5.7% for I{sub 2}. The agreement of this potentially multifunctional analyzer to reference methods for each respective water disinfectant is measured using Bland–Altman analysis as well as more traditional estimates.
Model-based Extracted Water Desalination System for Carbon Sequestration
Energy Technology Data Exchange (ETDEWEB)
Gettings, Rachel; Dees, Elizabeth
2017-03-23
The focus of this research effort centered around water recovery from high Total Dissolved Solids (TDS) extracted waters (180,000 mg/L) using a combination of water recovery (partial desalination) technologies. The research goals of this project were as follows: 1. Define the scope and test location for pilot-scale implementation of the desalination system, 2.Define a scalable, multi-stage extracted water desalination system that yields clean water, concentrated brine, and, salt from saline brines, and 3. Validate overall system performance with field-sourced water using GE pre-pilot lab facilities. Conventional falling film-mechanical vapor recompression (FF-MVR) technology was established as a baseline desalination process. A quality function deployment (QFD) method was used to compare alternate high TDS desalination technologies to the base case FF-MVR technology, including but not limited to: membrane distillation (MD), forward osmosis (FO), and high pressure reverse osmosis (HPRO). Technoeconomic analysis of high pressure reverse osmosis (HPRO) was performed comparing the following two cases: 1. a hybrid seawater RO (SWRO) plus HPRO system and 2. 2x standard seawater RO system, to achieve the same total pure water recovery rate. Pre-pilot-scale tests were conducted using field production water to validate key process steps for extracted water pretreatment. Approximately 5,000 gallons of field produced water was processed through, microfiltration, ultrafiltration, and steam regenerable sorbent operations. Improvements in membrane materials of construction were considered as necessary next steps to achieving further improvement in element performance at high pressure. Several modifications showed promising results in their ability to withstand close to 5,000 PSI without gross failure.
Gao, Peike; Li, Guoqiang; Li, Yanshu; Li, Yan; Tian, Huimei; Wang, Yansen; Zhou, Jiefang; Ma, Ting
2016-01-01
This study used an exogenous lipopeptide-producing Bacillus subtilis to strengthen the indigenous microbial enhanced oil recovery (IMEOR) process in a water-flooded reservoir in the laboratory. The microbial processes and driving mechanisms were investigated in terms of the changes in oil properties and the interplay between the exogenous B. subtilis and indigenous microbial populations. The exogenous B. subtilis is a lipopeptide producer, with a short growth cycle and no oil-degrading ability. The B. subtilis facilitates the IMEOR process through improving oil emulsification and accelerating microbial growth with oil as the carbon source. Microbial community studies using quantitative PCR and high-throughput sequencing revealed that the exogenous B. subtilis could live together with reservoir microbial populations, and did not exert an observable inhibitory effect on the indigenous microbial populations during nutrient stimulation. Core-flooding tests showed that the combined exogenous and indigenous microbial flooding increased oil displacement efficiency by 16.71%, compared with 7.59% in the control where only nutrients were added, demonstrating the application potential in enhanced oil recovery in water-flooded reservoirs, in particular, for reservoirs where IMEOR treatment cannot effectively improve oil recovery.
Colin B. Fuss; Charles T. Driscoll; John L. Campbell
2015-01-01
Atmospheric acid deposition of sulfate and nitrate has declined markedly in the northeastern United States due to emissions controls. We investigated long-term trends in soil water (1984â2011) and stream water (1982â2011) chemistry along an elevation gradient of a forested watershed to evaluate the progress of recovery of drainage waters from acidic deposition at the...
Birungi, Z S; Chirwa, E M N
2015-12-15
Thallium (Tl) is a highly volatile and toxic heavy metal regarded to cause pollution even at very low concentrations of several parts per million. Despite the extremely high risk of Tl in the environment, limited information on removal/recovery exists. The study focussed on the use of green algae to determine the sorption potential and recovery of Tl. From the study, removal efficiency was achieved at 100% for lower concentrations of ≥150 mg/L of Tl. At higher concentrations in a range of 250-500 mg/L, the performance of algae was still higher with sorption capacity (qmax) between 830 and 1000 mg/g. Generally, Chlorella vulgaris was the best adsorbent with a high qmax and lower affinity of 1000 mg/g and 1.11 L/g, respectively. When compared to other studies on Tl adsorption, the tested algae showed a better qmax than most adsorbents. The kinetic studies showed better correlation co-efficient of ≤0.99 for Pseudo-second order model than the first order model. Recovery was achieved highest for C. vulgaris using nitric acid at 93.3%. The strongest functional groups responsible for Tl binding on the algal cell wall were carboxyl and phenols. Green algae from freshwater bodies showed significant potential for Tl removal/recovery from industrial wastewater. Copyright © 2015 Elsevier B.V. All rights reserved.
Islam, M.; Berrios, J.
2012-01-01
Gas exchange parameters and chlorophyll fluorescence of four pot grown Galician grapevines (Vitis vinifera L. cv. Albariño, Brancellao, Godello and Treixadura) were examined under different levels of water stress in greenhouse. After extreme stress, gas exchange recovery responses were evaluated. Average ΨPD for control and stressed plants were -0.4MPa and -1.45MPa respectively. All varieties showed gradual declining of all gas exchange parameters (gs, E and A) with increasing of stress perio...
Albalate, Daniel, 1980-; Bel i Queralt, Germà, 1963-; Geddes, R. Richard
2012-01-01
We use an ordered logistic model to empirically examine the factors that explain varying degrees of private involvement in the U.S. water sector through public-private partnerships. Our estimates suggest that a variety of factors help explain greater private participation in this sector. We find that the risk to private participants regarding cost recovery is an important driver of private participation. The relative cost of labor is also a key factor in determining the degree of private invo...
Montgomery, Paul G; Pyne, David B; Hopkins, Will G; Dorman, Jason C; Cook, Katherine; Minahan, Clare L
2008-09-01
To evaluate the effectiveness of recovery strategies on physical performance during a 3-day tournament style basketball competition, 29 male players (mean age 19.1 years, s= 2.1; height 1.84 m, s= 0.34; body mass 88.5 kg, s= 14.7) were assigned to one of three treatment groups: carbohydrate+stretching (7.7 g kg(-1) day(-1), s= 1.7; 'n = 9), cold water immersion (11 degrees C, 5 x 1; n = 10) or full leg compression garments (18 mmHg, approximately 18 h; n = 10). Effects of the recovery strategies on pre-post tournament performance tests were expressed as the mean change (% +/- standard deviation of the change score). Changes and differences were standardized for accumulated game time, assessed against the smallest worthwhile change for each test, and reported qualitatively. Accumulated fatigue was evident over the tournament with small to moderate impairments in performance tests. Sprint and agility performance decreased by 0.7% (s = 1.3) and 2.0% (s = 1.9) respectively. Vertical jump decreased substantially after the first day for all treatments, and remained suppressed post-tournament. Cold water immersion was substantially better in maintaining 20-m acceleration with only a 0.5% (s = 1.4) reduction in 20-m time after 3 days compared with a 3.2% (s = 1.6) reduction for compression. Cold water immersion (-1.4%, s = 1.7) and compression (-1.5%, s = 1.7) showed similar substantial benefits in maintaining line-drill performance over the tournament, whereas carbohydrate+stretching elicited a 0.4% (s =1.8) reduction. Sit-and-reach flexibility decreased for all groups, although cold water immersion resulted in the smallest reduction in flexibility. Basketball tournament play elicited small to moderate impairments in physical test performance. In conclusion, cold water immersion appears to promote better restoration of physical performance measures than carbohydrate + stretching routines and compression garments.
Development test procedure High Pressure Water Jet System
International Nuclear Information System (INIS)
Crystal, J.B.
1995-01-01
Development testing will be performed on the water jet cleaning fixture to determine the most effective arrangement of water jet nozzles to remove contamination from the surfaces of canisters and other debris. The following debris may be stained with dye to simulate surface contaminates: Mark O, Mark I, and Mark II Fuel Storage Canisters (both stainless steel and aluminum), pipe of various size, (steel, stainless, carbon steel and aluminum). Carbon steel and stainless steel plate, channel, angle, I-beam and other surfaces, specifically based on the Scientific Ecology Group (SEG) inventory and observations of debris within the basin. Test procedure for developmental testing of High Pressure Water Jet System
International Nuclear Information System (INIS)
Peris, Bernardo; Navarro-Esbrí, Joaquín; Molés, Francisco
2013-01-01
This work is focused on waste heat recovery of jacket cooling water from Internal Combustion Engines (ICEs). Cooling water heat does not always find use due to its low temperature, typically around 90 °C, and usually is rejected to the ambient despite its high thermal power. An efficient way to take benefit from the ICE cooling water waste heat can be to increase the power output through suitable bottoming Organic Rankine Cycles (ORCs). Thereby, this work simulates six configurations using ten non flammable working fluids and evaluates their performances in efficiency, safety, cost and environmental terms. Results show that the Double Regenerative ORC using SES36 gets the maximum net efficiency of 7.15%, incrementing the ICE electrical efficiency up to 5.3%, although requires duplicating the number of main components and high turbine size. A more rigorous analysis, based on the system feasibility, shows that small improvements in the basic cycle provide similar gains compared to the most complex schemes proposed. So, the single Regenerative ORC using R236fa and the Reheat Regenerative ORC using R134a seem suitable cycles which provide a net efficiency of 6.55%, incrementing the ICE electrical efficiency up to 4.9%. -- Highlights: • Suitable bottoming cycles for ICE cooling water waste heat recovery are studied. • Non flammable working fluids and various ORC configurations are evaluated. • Double regenerative cycle using SES36 is the most efficient configuration. • Regenerative and reheat regenerative ORCs seem feasible cycles. • Electrical efficiency of the ICE can be improved up to 5.3%
Full Scale Drinking Water System Decontamination at the Water Security Test Bed
U.S. Environmental Protection Agency — The EPA’s Water Security Test Bed (WSTB) facility is a full-scale representation of a drinking water distribution system. In collaboration with the Idaho National...
Energy Technology Data Exchange (ETDEWEB)
Ishizawa, M.; Iida, S.; Abe, I.; Yamamoto, M. [NTT Integrated Information and Energy Systems Laboratories, Tokyo (Japan)
1997-08-20
NTT is developing a phosphoric-acid fuel-cell energy system for telecommunication co-generation systems to reduce energy costs and help preserve the environment. Fuel cells are used to provide electrical power to telecommunication equipment and the heat energy that is generated is used by the absorption refrigerators to cool the telecommunication rooms throughout the year. We field-tested this fuel-cell energy system in a telephone office. Two heat recovery methods were applied in the test: one uses direct steam heat recovery from fuel-cell stack coolant to keep the heat recovery temperature high and to avoid requiring a heat exchanger for the recovery; the other uses heat recovery from the reformer exhaust gas that is directly in contact with the heat recovery water to recover heat more economically. Our field tests confirmed that the average efficiency of heat recovery from fuel-cell stack coolant is 16%, and from the reformer exhaust gas is 9% under 80-kW continuous operation. Maximum total efficiency including electrical power efficiency was confirmed to be about 73% under the condition of 100-kW and an S/C ratio of 2.5 in the winter period: heat recovery from the fuel-cell stack coolant was 23%, from the reformer exhaust gas was 10%, and from electrical conversion was about 40%. 9 refs., 12 figs., 1 tab.
Lithium test module on ITER: engineering design of the tritium recovery system
International Nuclear Information System (INIS)
Finn, P.A.
1988-01-01
The design presented is an overview of the tritium recovery system for a lithium module on an ITER type reactor. The design of a tritium recovery system for larger blanket units, sectors, etc. could use the information developed in this report. A goal of this design was to ensure that a reliable, integrated performance of the tritium recovery system could be demonstrated. An equally important goal was to measure and account for the tritium in the liquid lithium blanket module and its recovery system in order to validate the operation of the blanket module
Estimation of free-hydrocarbon recovery from dual-pump systems
International Nuclear Information System (INIS)
Charbeneau, R.J.
1995-01-01
Free-product hydrocarbon which floats on the water table may be recovered using single-pump and dual-pump systems. The factors that affect the long-term free-product recovery using dual-pump systems include the free-product thickness as measured in monitoring wells, the ground-water pumping rate, hydrocarbon density and viscosity, and the soil permeability. This paper presents a simple model for prediction of free-product recovery using dual-pump systems. The model predicts the long-term rather than short-term recovery rates, and lends itself to spreadsheet calculations on microcomputers. A particularly simple form arises for cases where the drawdown is small. An application for estimating recovery from a dual-pump system is presented, and limitations of the model are summarized
Knežević, Varja; Tunić, Tanja; Gajić, Pero; Marjan, Patricija; Savić, Danko; Tenji, Dina; Teodorović, Ivana
2016-11-01
Recovery after exposure to herbicides-atrazine, isoproturon, and trifluralin-their binary and ternary mixtures, was studied under laboratory conditions using a slightly adapted standard protocol for Lemna minor. The objectives of the present study were (1) to compare empirical to predicted toxicity of selected herbicide mixtures; (2) to assess L. minor recovery potential after exposure to selected individual herbicides and their mixtures; and (3) to suggest an appropriate recovery potential assessment approach and endpoint in a modified laboratory growth inhibition test. The deviation of empirical from predicted toxicity was highest in binary mixtures of dissimilarly acting herbicides. The concentration addition model slightly underestimated mixture effects, indicating potential synergistic interactions between photosynthetic inhibitors (atrazine and isoproturon) and a cell mitosis inhibitor (trifluralin). Recovery after exposure to the binary mixture of atrazine and isoproturon was fast and concentration-independent: no significant differences between relative growth rates (RGRs) in any of the mixtures (IC10 Mix , 25 Mix , and 50 Mix ) versus control level were recorded in the last interval of the recovery phase. The recovery of the plants exposed to binary and ternary mixtures of dissimilarly acting herbicides was strictly concentration-dependent. Only plants exposed to IC10 Mix , regardless of the herbicides, recovered RGRs close to control level in the last interval of the recovery phase. The inhibition of the RGRs in the last interval of the recovery phase compared with the control level is a proposed endpoint that could inform on reversibility of the effects and indicate possible mixture effects on plant population recovery potential.
Energy Technology Data Exchange (ETDEWEB)
Etcheber, H; Jouanneau, J M
1980-12-01
The advantages and disadvantages of three methods used to recover heavy metals from estuarine waters are compared. Deposition, filtration, and centrifugation were used on samples from the Gironde estuary of France. Recovery by deposition is satisfactory in cases of flocculation and high turbidity. Centrifugation is reliable for the determination of several elements in zones of low turbidity. (12 references, 4 tables)
Outline of sodium-water reaction test in case of large leak with SWAT-3 testing equipments
International Nuclear Information System (INIS)
Sato, Minoru
1978-01-01
The key component in sodium-cooled fast reactors in steam generators, and the sodium-water reaction owing to the break of heating tubes may cause serious damages in equipments and pipings. The main factor controlling this phenomenon is the rate of leak of water. When the rate of water leak is small, the propagation of heating tube breaking may occur owing to ''wastage phenomenon'', on the other hand, when the rate of water leak is large, the phenomena of explosive pressure and flow occur due to the reaction heat and a large quantity of hydrogen generated by the reaction. In PNC, the testing equipments of SWAT-2 for small water leak and SWAT-1 for large leak were constructed, and the development test has been carried out to establish the method of safety design experimentally. The synthetic test equipment for the safety of steam generators, SWAT-3, was constructed to carry out the large water leak test in the scale close to actual plants. The object of the test, the outline of the test equipment, the phenomena of pressure and flow in the water injection test, the confirmation of the occurrence of secondary breaking of adjacent heating tubes, and the disposal of reaction products are described in this paper. This test is till going on, and the final conclusion will be reported later. (Kako, I.)
Oil Recovery Increases by Low-Salinity Flooding: Minnelusa and Green River Formations
Energy Technology Data Exchange (ETDEWEB)
Eric P. Robertson
2010-09-01
Waterflooding is by far the most widely used method in the world to increase oil recovery. Historically, little consideration has been given in reservoir engineering practice to the effect of injection brine composition on waterflood displacement efficiency or to the possibility of increased oil recovery through manipulation of the composition of the injected water. However, recent work has shown that oil recovery can be significantly increased by modifying the injection brine chemistry or by injecting diluted or low salinity brine. This paper reports on laboratory work done to increase the understanding of improved oil recovery by waterflooding with low salinity injection water. Porous media used in the studies included outcrop Berea sandstone (Ohio, U.S.A.) and reservoir cores from the Green River formation of the Uinta basin (Utah, U.S.A.). Crude oils used in the experimental protocols were taken from the Minnelusa formation of the Powder River basin (Wyoming, U.S.A.) and from the Green River formation, Monument Butte field in the Uinta basin. Laboratory corefloods using Berea sandstone, Minnelusa crude oil, and simulated Minnelusa formation water found a significant relationship between the temperature at which the oil- and water-saturated cores were aged and the oil recovery resulting from low salinity waterflooding. Lower aging temperatures resulted in very little to no additional oil recovery, while cores aged at higher temperatures resulted in significantly higher recoveries from dilute-water floods. Waterflood studies using reservoir cores and fluids from the Green River formation of the Monument Butte field also showed significantly higher oil recoveries from low salinity waterfloods with cores flooded with fresher water recovering 12.4% more oil on average than those flooded with undiluted formation brine.
Protecting drinking water: water quality testing and PHAST in South Africa.
Breslin, E D
2000-01-01
The paper presents an innovative field-based programme that uses a simple total coliform test and the approach of PHAST (Participatory Hygiene And Sanitation Transformation) to help communities exploring possible water quality problems and actions that can be taken to address them. The Mvula Trust, a South African water and environmental sanitation NGO, has developed the programme. It is currently being tested throughout South Africa. The paper provides two case studies on its implementation in the field, and suggests ways in which the initiative can be improved in the future.
In-pile test of tritium recovery from lithium oxide
International Nuclear Information System (INIS)
Kurasawa, Toshimasa; Yoshida, Hiroshi; Watanabe, Hitoshi; Takeshita, Hidefumi; Miyauchi, Takejiro; Matsui, Tomoaki
1984-05-01
In-situ tritium recovery experiment with sintered lithium oxide pellets was performed under a high neutron fluence in the JRR-2. The irradiation hole VT-10 is the vertical one in the fuel rods region of the reactor, and the neutron flux is as follows: the thermal neutron flux with the epithermal neutron; 1.12 x 10 14 n/cm 2 . sec, the fast neutron flux; 1.0 x 10 12 n/cm 2 . sec. Irradiation material is the four pellets of cylindrical Li 2 O with the size of 11mm-OD, 1.8mm-ID, 10mm-H, and their total weight is 6.67g(the apparent bulk density 86%TD). A sweep gas capsule with a inner heater was constructed for the present study. Irradiation temperatures were regulated in the high temperature range, 470 -- 760 0 C. Four cycles of irradiation tests were carried out from May to August in 1983, and the effective thermal neutron fluence and the burnup of 6 Li were 5.9 x 10 19 nvt and 0.24% of total lithium(natural abundance of Li), respectively. The amount of generated tritium was calculated to be 31.2Ci by using a value of the depression factor of the thermal neutron flux(0.148) and the effective neutron cross section(543b) for the 6 Li(n, α) 3 H reaction. Present report describes the tritium release behavior in the in-situ tritium recovery apparatus and discuss the effects of the moisture, the hydrogen spiking, the irradiation temperature, etc.. Problems relative to a real time measurement of a comparatively high tritium concentration(10 -1 -- 10 2 μCi/cm 3 ) in the helium gas stream were also investigated. (author)
New test for oil soluble/water dispersible gas pipeline inhibitors
Energy Technology Data Exchange (ETDEWEB)
Stegmann, D.W.; Asperger, R.G.
1987-01-01
The wheel test provides good mixing of the condensate and water phases, the coupons are exposed to both phases. Therefore, the wheel test cannot distinguish between inhibitors that need continuous mixing of the these phases to maintain a water dispersion of the inhibitor and inhibitors that will self disperse into the water. This concept becomes important for pipelines in stratified flow where the water can settle out. In these cases with low turbulence, the inhibitor must self disperse into the water to be effective. The paper describes a test method to measure the effectiveness of an inhibitor and its ability to self disperse. The effectiveness of several inhibitors as predicted by the new test method is discussed relative to data from the wheel test and breaker tests. Field performance of these inhibitors in a gas gathering line, with liquids in stratified flow, are cities and compared with the results of the various laboratory tests.
Directory of Open Access Journals (Sweden)
Redzal Abu Hanifah
Full Text Available In adults, heart rate recovery is a predictor of mortality, while in adolescents it is associated with cardio-metabolic risk factors. The aim of this study was to examine the relationship between body composition measures and heart rate recovery (HRR after step test in Malaysian secondary school students.In the Malaysian Health and Adolescents Longitudinal Research Team (MyHEART study, 1071 healthy secondary school students, aged 13 years old, participated in the step test. Parameters for body composition measures were body mass index z-score, body fat percentage, waist circumference, and waist height ratio. The step test was conducted by using a modified Harvard step test. Heart rate recovery of 1 minute (HRR1min and heart rate recovery of 2 minutes (HRR2min were calculated by the difference between the peak pulse rate during exercise and the resting pulse rate at 1 and 2 minutes, respectively. Analysis was done separately based on gender. Pearson correlation analysis was used to determine the association between the HRR parameters with body composition measures, while multiple regression analysis was used to determine which body composition measures was the strongest predictor for HRR.For both gender groups, all body composition measures were inversely correlated with HRR1min. In girls, all body composition measures were inversely correlated with HRR2min, while in boys all body composition measures, except BMI z-score, were associated with HRR2min. In multiple regression, only waist circumference was inversely associated with HRR2min (p=0.024 in boys, while in girls it was body fat percentage for HRR2min (p=0.008.There was an inverse association between body composition measurements and HRR among apparently healthy adolescents. Therefore, it is important to identify cardio-metabolic risk factors in adolescent as an early prevention of consequent adulthood morbidity. This reiterates the importance of healthy living which should start from young.
Abu Hanifah, Redzal; Mohamed, Mohd. Nahar Azmi; Jaafar, Zulkarnain; Abdul Mohsein, Nabilla Al-Sadat; Jalaludin, Muhammad Yazid; Abdul Majid, Hazreen; Murray, Liam; Cantwell, Marie; Su, Tin Tin
2013-01-01
Background In adults, heart rate recovery is a predictor of mortality, while in adolescents it is associated with cardio-metabolic risk factors. The aim of this study was to examine the relationship between body composition measures and heart rate recovery (HRR) after step test in Malaysian secondary school students. Methods In the Malaysian Health and Adolescents Longitudinal Research Team (MyHEART) study, 1071 healthy secondary school students, aged 13 years old, participated in the step test. Parameters for body composition measures were body mass index z-score, body fat percentage, waist circumference, and waist height ratio. The step test was conducted by using a modified Harvard step test. Heart rate recovery of 1 minute (HRR1min) and heart rate recovery of 2 minutes (HRR2min) were calculated by the difference between the peak pulse rate during exercise and the resting pulse rate at 1 and 2 minutes, respectively. Analysis was done separately based on gender. Pearson correlation analysis was used to determine the association between the HRR parameters with body composition measures, while multiple regression analysis was used to determine which body composition measures was the strongest predictor for HRR. Results For both gender groups, all body composition measures were inversely correlated with HRR1min. In girls, all body composition measures were inversely correlated with HRR2min, while in boys all body composition measures, except BMI z-score, were associated with HRR2min. In multiple regression, only waist circumference was inversely associated with HRR2min (p=0.024) in boys, while in girls it was body fat percentage for HRR2min (p=0.008). Conclusion There was an inverse association between body composition measurements and HRR among apparently healthy adolescents. Therefore, it is important to identify cardio-metabolic risk factors in adolescent as an early prevention of consequent adulthood morbidity. This reiterates the importance of healthy living
Prevalence and causes of abnormal PSA recovery.
Lautenbach, Noémie; Müntener, Michael; Zanoni, Paolo; Saleh, Lanja; Saba, Karim; Umbehr, Martin; Velagapudi, Srividya; Hof, Danielle; Sulser, Tullio; Wild, Peter J; von Eckardstein, Arnold; Poyet, Cédric
2018-01-26
Prostate-specific antigen (PSA) test is of paramount importance as a diagnostic tool for the detection and monitoring of patients with prostate cancer. In the presence of interfering factors such as heterophilic antibodies or anti-PSA antibodies the PSA test can yield significantly falsified results. The prevalence of these factors is unknown. We determined the recovery of PSA concentrations diluting patient samples with a standard serum of known PSA concentration. Based on the frequency distribution of recoveries in a pre-study on 268 samples, samples with recoveries 120% were defined as suspect, re-tested and further characterized to identify the cause of interference. A total of 1158 consecutive serum samples were analyzed. Four samples (0.3%) showed reproducibly disturbed recoveries of 10%, 68%, 166% and 4441%. In three samples heterophilic antibodies were identified as the probable cause, in the fourth anti-PSA-autoantibodies. The very low recovery caused by the latter interference was confirmed in serum, as well as heparin- and EDTA plasma of blood samples obtained 6 months later. Analysis by eight different immunoassays showed recoveries ranging between PSA which however did not show any disturbed PSA recovery. About 0.3% of PSA determinations by the electrochemiluminescence assay (ECLIA) of Roche diagnostics are disturbed by heterophilic or anti-PSA autoantibodies. Although they are rare, these interferences can cause relevant misinterpretations of a PSA test result.
The Performance test of Mechanical Sodium Pump with Water Environment
International Nuclear Information System (INIS)
Cho, Chungho; Kim, Jong-Man; Ko, Yung Joo; Jeong, Ji-Young; Kim, Jong-Bum; Ko, Bock Seong; Park, Sang Jun; Lee, Yoon Sang
2015-01-01
As contrasted with PWR(Pressurized light Water Reactor) using water as a coolant, sodium is used as a coolant in SFR because of its low melting temperature, high thermal conductivity, the high boiling temperature allowing the reactors to operate at ambient pressure, and low neutron absorption cross section which is required to achieve a high neutron flux. But, sodium is violently reactive with water or oxygen like the other alkali metal. So Very strict requirements are demanded to design and fabricate of sodium experimental facilities. Furthermore, performance testing in high temperature sodium environments is more expensive and time consuming and need an extra precautions because operating and maintaining of sodium experimental facilities are very difficult. The present paper describes performance test results of mechanical sodium pump with water which has been performed with some design changes using water test facility in SAM JIN Industrial Co. To compare the hydraulic characteristic of model pump with water and sodium, the performance test of model pump were performed using vender's experimental facility for mechanical sodium pump. To accommodate non-uniform thermal expansion and to secure the operability and the safety, the gap size of some parts of original model pump was modified. Performance tests of modified mechanical sodium pump with water were successfully performed. Water is therefore often selected as a surrogate test fluid because it is not only cheap, easily available and easy to handle but also its important hydraulic properties (density and kinematic viscosity) are very similar to that of the sodium. Normal practice to thoroughly test a design or component before applied or installed in reactor is important to ensure the safety and operability in the sodium-cooled fast reactor (SFR). So, in order to estimate the hydraulic behavior of the PHTS pump of DSFR (600 MWe Demonstraion SFR), the performance tests of the model pump such as performance
Frenzel, I.; Frenzel, I.; Holdik, H.; Stamatialis, Dimitrios; Pourcelly, G.; Wessling, Matthias
2005-01-01
Electro-electrodialysis is a promising technology for chromic acid recovery and static rinse water purification. It combines the recovery of the plating chemicals from rinse water, the elimination of metallic impurities from the process and rinse water treatment in one step. Previous industrial use
On the mechanism of rapid postirradiation recovery of yeast
International Nuclear Information System (INIS)
Glazunov, A.V.; Kapul'tsevich, Yu.G.
1983-01-01
Rapid postirradiation recovery of diploid yeast Saccharomyces cerevisiae is equally effective both in water and in a liquid nutrition medium. In the haploid strains, rapid recovery occurs more readily in the log phase than in the stationary phase of growth. In the diploid strains, rapid recovery is more effective in the log phase than in the stationary phase. Rapid recovery of yeast does not require an additional protein synthesis. Damages induced by UV-light are not sub ected to rapid recovery
Studies on the recovery of uranium from low-grade ores in India
International Nuclear Information System (INIS)
Jayaram, K.M.V.; Dwivedy, K.K.; Deshpande, A.S.; Ramachar, T.M.
1976-01-01
Investigations were carried out to utilize the available para-marginal and low-grade ores - chlorite schists, amphibolites, carbonate ores, clays and quartzites - analysing between 0.027 and 0.08% U 3 O 8 . In addition, tests were undertaken on the technical and economic feasibility of recovering uranium as a byproduct from the copper flotation tailings and phosphorites. Heap and bacterial leaching tests were conducted on quartz-chlorite schists from the Singhbhum district, Bihar, analysing about 0.03% U 3 O 8 . Studies also showed that the ores harbour active Ferrobacillus ferrooxidans. Studies on 10-mesh samples of amphibolites from Inderwa, Bihar, (0.08% U 3 O 8 ) showed that only 32.8% recovery could be obtained by wet tabling and 85% by agitation leaching, while static leaching tests yielded 81% recovery in 24 hours of contact time. Similar tests on calcareous phyllites (0.05% U 3 O 8 ) with 30 kg/t Na 2 CO 3 and 8 kg/t NaHCO 3 yielded 86% uranium leachability at ambient temperature. Biogenic uraniferous clay from Udaisagar (0.029% U 3 O 8 ) yielded 43.3% uranium recovery using 1000 l/t of neutral water for 6 h. Percolation leaching tests were conducted with hard quartzites (0.06% U 3 O 8 ), and the results showed that 81% uranium could be recovered in 24 days. Although preliminary ore dressing studies on tailings obtained from the copper flotation (0.013% U 3 O 8 ) at Surda yielded a concentrate analysing 0.063% U 3 O 8 at 66% recovery, recent tests on the tailings from the copper concentrator indicated only 48% recovery at a grade of 0.112% owing to decrease in the feed grade. Studies on the utilization of large-capacity gravity machines and selective mining of uranium-rich copper lodes may render this source economic. Preliminary studies on a phosphorite sample containing 22.0% P 2 O 5 and 0.04% U 3 O 8 from the Mussorie area in Uttar Pradesh on calcination followed by scrubbing yielded a sand enriched in P 2 O 5 values (33.7% P 2 O 5 at 92.5% recovery) but
The economics of aquifer storage recovery technology
Energy Technology Data Exchange (ETDEWEB)
David, R.; Pyne, G.
2014-10-01
Aquifer storage recovery (ASR) technology is increasingly being utilized around the world for storing water underground through one or more wells during wet months and other times when water is available for storage. The water is then recovered from the same wells when needed to meet a growing variety of water supply objectives. The economics of ASR constitute the principal reason for its increasing utilization. ASR unit capital costs are typically less than half those of other water supply and water storage alternatives. Unit operating costs are usually only slightly greater than for conventional production well-fields. Marginal costs for ASR storage and recovery provide a powerful tool for making more efficient use of existing infrastructure, providing water supply sustainability and reliability at relatively low cost. The opportunity exists for a careful analysis of the net present value of ASR well-fields, addressing not only the associated capital and operating costs but also the value of the benefits achieved for each of the water supply objectives at each site. (Author)
The economics of aquifer storage recovery technology
International Nuclear Information System (INIS)
David, R.; Pyne, G.
2014-01-01
Aquifer storage recovery (ASR) technology is increasingly being utilized around the world for storing water underground through one or more wells during wet months and other times when water is available for storage. The water is then recovered from the same wells when needed to meet a growing variety of water supply objectives. The economics of ASR constitute the principal reason for its increasing utilization. ASR unit capital costs are typically less than half those of other water supply and water storage alternatives. Unit operating costs are usually only slightly greater than for conventional production well-fields. Marginal costs for ASR storage and recovery provide a powerful tool for making more efficient use of existing infrastructure, providing water supply sustainability and reliability at relatively low cost. The opportunity exists for a careful analysis of the net present value of ASR well-fields, addressing not only the associated capital and operating costs but also the value of the benefits achieved for each of the water supply objectives at each site. (Author)
Directory of Open Access Journals (Sweden)
Bo Long
2014-03-01
Full Text Available In this paper, aiming at the energy loss and harmonic problems in the conventional power accumulator battery pack testing system (PABPTS, an improved multi-functional energy recovery PABPTS (ERPABPTS for electric vehicles (EVs was proposed. The improved system has the functions of harmonic detection, suppression, reactive compensation and energy recovery. The ERPABPTS, which contains a bi-directional buck-boost direct current (DC-DC converter and a bi-directional alternating current (AC-DC converter with an inductor-capacitor-inductor (LCL type filter interfacing to the AC-grid, is proposed. System configuration and operation principle of the combined system are discussed first, then, the reactive compensation and harmonic suppression controller under balanced grid-voltage condition are presented. Design of a fourth order band-pass Butterworth filter for current harmonic detection is put forward, and the reactive compensator design procedure considering the non-linear load is also illustrated. The proposed scheme is implemented in a 175-kW prototype in the laboratory. Simulation and experimental results show that the combined configuration can effectively realize energy recovery for high accuracy current test requirement, meanwhile, can effectively achieve reactive compensation and current harmonic suppression.
Robertson, Eric P
2011-05-24
A method for oil recovery whereby an exothermic water reactant (EWR) encapsulated in a water soluble coating is placed in water and pumped into one or more oil wells in contact with an oil bearing formation. After the water carries the EWR to the bottom of the injection well, the water soluble coating dissolves and the EWR reacts with the water to produce heat, an alkali solution, and hydrogen. The heat from the EWR reaction generates steam, which is forced into the oil bearing formation where it condenses and transfers heat to the oil, elevating its temperature and decreasing the viscosity of the oil. The aqueous alkali solution mixes with the oil in the oil bearing formation and forms a surfactant that reduces the interfacial tension between the oil and water. The hydrogen may be used to react with the oil at these elevated temperatures to form lighter molecules, thus upgrading to a certain extent the oil in situ. As a result, the oil can flow more efficiently and easily through the oil bearing formation towards and into one or more production wells.
International Nuclear Information System (INIS)
Zhang, Ben; DeBartolo, Janae E.; Song, Jie
2017-01-01
Maintaining adequate or enhancing mechanical properties of shape memory polymers (SMPs) after shape recovery in an aqueous environment are greatly desired for biomedical applications of SMPs as self-fitting tissue scaffolds or minimally invasive surgical implants. Here we report stable temporary shape fixing and facile shape recovery of biodegradable triblock amphiphilic SMPs containing a poly(ethylene glycol) (PEG) center block and flanking poly(lactic acid) or poly(lactic-co-glycolic acid) blocks in warm water, accompanied with concomitant enhanced mechanical strengths. Differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WXRD) and small-angle X-ray scattering (SAXS) analyses revealed that the unique stiffening of the amphiphilic SMPs upon hydration was due to hydration-driven microphase separation and PEG crystallization. We further demonstrated that the chemical composition of degradable blocks in these SMPs could be tailored to affect the persistence of hydration-induced stiffening upon subsequent dehydration. These properties combined open new horizons for these amphiphilic SMPs for smart weight-bearing in vivo applications (e.g. as self-fitting intervertebral discs). In conclusion, this study also provides a new material design strategy to strengthen polymers in aqueous environment in general.
Waste acid/metal solution reduction and recovery by vacuum distillation
International Nuclear Information System (INIS)
Jones, E.O.; Wilcox, W.A.; Johnson, N.T.; Bowdish, F.W.
1995-01-01
Processes involving distillation under reduced pressure were developed at the Pacific Northwest Laboratory several years ago to recover spent acid solutions generated during the manufacture of nuclear fuel for the N-Reactor at the Hanford site. Following construction and testing of a pilot-plant, the technology was licensed to Viatec Recovery Systems, Inc. for commercialization. The technology developed included specialized distillation and rectification of volatile acids, removal of water and/or volatile acid from sulfuric acid, and precipitation of salts. A key feature of the Waste Acid Detoxification and Reclamation (WADR) technology is the development and use of advanced thermoplastic and fluoropolymer materials of construction in all critical process equipment. The technology was then expanded to include crystallization to recover metal salts for possible reuse. Economic and environmental advantages of the procedures include recovery of acids for reuse, simplification or elimination of the disposal of waste solutions, and possible recovery of metals. Industries expected to benefit from such applications include galvanizing, electroplating, sand leaching and any where metals are cleaned in acid solutions. Currently a modular system has been assembled for recovery of several different spent acid solutions
Abney, Morgan B.; Greenwood, Zachary; Miller, Lee A.; Alvarez, Giraldo; Iannantuono, Michelle; Jones, Kenny
2013-01-01
State-of-the-art life support carbon dioxide (CO2) reduction technology, based on the Sabatier reaction, is theoretically capable of 50% recovery of oxygen from metabolic CO2. This recovery is constrained by the limited availability of reactant hydrogen. Post-processing of the methane byproduct from the Sabatier reactor results in hydrogen recycle and a subsequent increase in oxygen recovery. For this purpose, a Methane Post-Processor Assembly containing three sub-systems has been developed and tested. The assembly includes a Methane Purification Assembly (MePA) to remove residual CO2 and water vapor from the Sabatier product stream, a Plasma Pyrolysis Assembly (PPA) to partially pyrolyze methane into hydrogen and acetylene, and an Acetylene Separation Assembly (ASepA) to purify the hydrogen product for recycle. The results of partially integrated testing of the sub-systems are reported
International Nuclear Information System (INIS)
Brown, A.; Farrow, J.R.C.; Burgess, W.
1996-01-01
This study examines the potential for enhancing hydrocarbon contaminant mass recovery from ground water using high vacuum soil vapor extraction (SVE). The effectiveness of this form of remediation is compared with the effectiveness of conventional pump-and-treat. This study focuses on the performance of a high vacuum SVE system at two ground water monitoring wells (MW-17 and MW-65b) at a site in Santa Barbara, California, US. The site is a highly characterized site with vadose zone and ground water petroleum hydrocarbon contamination (gasoline). The ground water wells are located beyond a defined area of vadose zone soil contamination. Ground water hydrocarbon contamination [light non-aqueous phase liquid (LNAPL) and dissolved phase] is present at each of the wells. the ground water wells have been part of a low-flow, pump-and-treat, ground water treatment system (GWTS) since August, 1986. The low transmissivity of the aquifer sediments prevent flow rates above approximately 0.02 gpm (0.01 l/min) per well
Cold vacuum drying residual free water test description
International Nuclear Information System (INIS)
Pajunen, A.L.
1997-01-01
Residual free water expected to remain in a Multi-Canister Overpack (MCO) after processing in the Cold Vacuum Drying (CVD) Facility is investigated based on three alternative models of fuel crevices. Tests and operating conditions for the CVD process are defined based on the analysis of these models. The models consider water pockets constrained by cladding defects, water constrained in a pore or crack by flow through a porous bed, and water constrained in pores by diffusion. An analysis of comparative reaction rate constraints is also presented indicating that a pressure rise test can be used to show MCO's will be thermally stable at operating temperatures up to 75 C
Water electrolysis system refurbishment and testing
Greenough, B. M.
1972-01-01
The electrolytic oxygen generator for the back-up water electrolysis system in a 90-day manned test was refurbished, improved and subjected to a 182-day bench test. The performance of the system during the test demonstrated the soundness of the basic electrolysis concept, the high development status of the automatic controls which allowed completely hands-off operation, and the capability for orbital operation. Some design improvements are indicated.
Mechanical ventilation with heat recovery in arctic climate
DEFF Research Database (Denmark)
Kragh, Jesper; Svendsen, Svend
2005-01-01
Mechanical ventilations systems with highly effective heat recovery units in arctic climate have problems with condensing water from the extracted humid indoor air. If the condensing water freezes to ice in the heat recovery unit, the airflow rate will quickly diminish due to the increasing...... pressure drop. Preheating the inlet air (outdoor air) to a temperature just above 0ºC is typically used to solve the problem. To minimize the energy cost, a more efficient solution to the problem is therefore desirable. In this project a new design of a heat recovery unit has been developed to the low......-energy house in Sisimiut, which is capable of continuously defrosting itself. The disadvantage of the unit is that it is quite big compared with other units. In this paper the new heat recovery unit is described and laboratory measurements are presented showing that the unit is capable of continuously...
DEFF Research Database (Denmark)
Kalafatakis, Stavros; Braekevelt, Sylvie; Carlsen, Vilhelmsen
2017-01-01
A great amount of research has been performed during the last 10 years focusing on forward osmosis (FO)processes. The main driving force is to find an effective and low energy demanding methodology for water recovery as well as up-concentration of valuable products. Nevertheless, the energetic...... and financial benefits of this technology can be undermined from the fact that FO should be usually coupled with reverse osmosis (RO) for subsequent water purification and draw solution regeneration. Hence, a different approach was applied in order to omit the RO step. Crude glycerol and enzymatically...... pretreated wheat straw, which are common 2nd generation biorefinery feedstocks, have been evaluated as possible draw solution. In this way, water can be directly recovered and transferred back into the fermentation loop without further purification. Applying the Aquaporin InsideTM Forward Osmosis system...
Borrat, Xavier; Ubre, Marta; Risco, Raquel; Gambús, Pedro L; Pedroso, Angela; Iglesias, Aina; Fernandez-Esparrach, Gloria; Ginés, Àngels; Balust, Jaume; Martínez-Palli, Graciela
2018-03-27
The use of sedation for diagnostic procedures including gastrointestinal endoscopy is rapidly growing. Recovery of cognitive function after sedation is important because it would be important for most patients to resume safe, normal life soon after the procedure. Computerized tests have shown being accurate descriptors of cognitive function. The purpose of the present study was to evaluate the time course of cognitive function recovery after sedation with propofol and remifentanil. A prospective observational double blind clinical study conducted in 34 young healthy adults undergoing elective outpatient colonoscopy under sedation with the combination of propofol and remifentanil using a target controlled infusion system. Cognitive function was measured using a validated battery of computerized cognitive tests (Cogstate™, Melbourne, Australia) at different predefined times: prior to starting sedation (Tbaseline), and then 10 min (T10), 40 min (T40) and 120 min (T120) after the end of colonoscopy. Tests included the assessment of psychomotor function, attention, visual memory and working memory. All colonoscopies were completed (median time: 26 min) without significant adverse events. Patients received a median total dose of propofol and remifentanil of 149 mg and 98 µg, respectively. Psychomotor function and attention declined at T10 but were back to baseline values at T40 for all patients. The magnitude of psychomotor task reduction was large (d = 0.81) however 100% of patients were recovered at T40. Memory related tasks were not affected 10 min after ending sedation. Cognitive impairment in attention and psychomotor function after propofol and remifentanil sedation was significant and large and could be easily detected by computerized cognitive tests. Even though, patients were fully recovered 40 min after ending the procedure. From a cognitive recovery point of view, larger studies should be undertaken to propose adequate criteria for discharge
Torfs, Elena; Marti, M. Carmen; Locatelli, Florent; Balemans, Sophie; Burger, Raimund; Diehl, Stefan; Laurent, Julien; Vanrolleghem, Peter A.; Francois, Pierre; Nopens, Ingmar
2017-01-01
A new perspective on the modelling of settling behaviour in water resource recovery facilities is introduced. The ultimate goal is to describe in a unified way the processes taking place both in primary settling tanks (PSTs) and secondary settling tanks (SSTs) for a more detailed operation and control. First, experimental evidence is provided, pointing out distributed particle properties (such as size, shape, density, porosity, and flocculation state) as an important common source of distribu...
Performance experimental investigation of novel multifunctional nanohybrids on enhanced oil recovery
Gharibshahi, Reza; Jafari, Arezou; Omidkhah, Mohammadreza; Nezhad, Javad Razavi
2018-01-01
The unique characteristics of materials at the nanoscale make them a good candidate to use in the enhanced oil recovery (EOR) processes. Therefore, in this study, the effect of functionalized multi-walled carbon nanotube/silica nanohybrids on the oil recovery factor is investigated experimentally and nanofluids were injected into a glass micromodel for the first time. The nanohybrids synthesized by using sol-gel method. Micromodels as microscale apparatuses considered as 2D porous medium. Because they enable visual observation of phase displacement behavior at the pore scale. Distillated water used as the dispersion medium of nanoparticles for nanofluids preparation. A series of runs designed for flooding operations included water injection, carbon nanotube/water injection and two nanohybrids with different weight of MWCNT to the overall weight of the nanohybrid structure (10% and 70%) into the distilled water. Also, the oil recovery factor was considered as the goal parameter to compare the results. It has been found that functionalized multi-walled carbon nanotube/silica nanohybrids have a great potential in enhanced oil recovery processes. Results showed that addition of nanohybrids into distillate water causes enhancement of sweep efficiency. In other words, the fingering effect decreases and higher surface of porous medium is in contact with the injected fluid. So the higher amount of oil can produce from the porous medium consequently. By injecting nanofluid with 0.1 wt. % of carbon nanotube, the oil recovery factor increases about 11 % in comparison with water injection alone. Also by increasing the weight of MWCNT to the overall weight of the nanohybrid structure from 10% to 70%, the oil recovery factor increases from 35% to 39%.
Water Leak Localisation and Recovery in Tore Supra
International Nuclear Information System (INIS)
Martinez, A.; Samaille, F.; Chantant, M.; Hatchressian, J.-C.
2006-01-01
For almost 20 years, Tore Supra (TS) Tokamak uses water as a coolant for its plasma facing and in-vessels components. It can be considered as ITER relevant on this particular aspect. During plasma operation in TS, the water inlet temperature and outlet pressure are 120 o C and 2.4 MPa respectively, while baking is performed at 200 o C and 2 Mpa. It happened, that unexpected localized power deposits damaged in-vessels components leading to more or less large water leaks. In order to protect the vacuum vessel from over-pressurisation in case of large water leaks and to avoid the release of eventual activated materials, a pressure suppression system, composed of two rupture disks and a relief pipe header, has been designed. In the event of smaller leaks, the issue for Tore Supra operations is to apply methods capable of detecting and localising leaking water cooling circuits inside the vacuum vessel within an acceptable time. For this purpose, drainage and drying systems have been designed and manufactured to evacuate completely the water in the components and vacuum vessel, facilitating, in that way, leak testing procedure of the components. A new system allows the localization of the leaky circuit remotely by using the cooling loops monitoring system. The sub-circuits can be selected, isolated and de pressurized by the operator. Simultaneously the vacuum is monitored in the vessel and analyzed with a mass spectrometer. The water resulting from the steam condensation in the cold parts of the vacuum vessel is pumped by a new specific vacuum system in the lower parts of the machine and stored in tanks to avoid dissipation of activated products in the environment. Filters are implemented on the outlets lines of the pumps. The in-vessels components fed by the upper part of the cooling loop are connected in parallel and the water inlets and outlets are located on top of the machine, so some difficulties were encountered to drain-off completely this components. Presently
International Nuclear Information System (INIS)
Fruland, R.M.; Lundgren, R.E.
1989-04-01
This report describes the progress during 1988 of 14 Hanford Site ground-water monitoring projects covering 16 hazardous waste facilities and 1 nonhazardous waste facility (the Solid Waste Landfill). Each of the projects is being conducted according to federal regulations based on the Resource Conservation and Recovery Act (RCRA) of 1976 and the State of Washington Administrative Code. 21 refs., 23 figs., 8 tabs
Callahan, Michael R.; Sargusingh, Miriam J.
2015-01-01
The ability to recover and purify water is crucial for realizing long-term human space missions. The National Aeronautics and Space Admininstration and Honeywell co-developed a five-stage vacuum rotary distillation water recovery system referred to as the Cascade Distillation Subsystem (CDS). Over the past three years, NASA's Advanced Exploration Systems (AES) Water Recovery Project (WRP) has been working toward the development of a flight-forward CDS design. In 2012 the original CDS prototype underwent a series of incremental upgrades and tests intened to both demonstrate the feasibility of a on-orbit demonstration of the system and to collect operational and performance data to be used to inform a second generation design. The latest testing of the CDS Generation 1.0 prototype was conducted May 29 through July 2, 2014. Initial system performance was benchmarked by processing deionized water and sodium chloride. Following, the system was challenged with analogue urine waste stream solutions stabilized with an Oxone-based and the two International Space Station baseline and alternative pretreatment solutions. During testing, the system processed more than 160 kilograms of wastewater with targeted water recoveries between 75 and 85% depending on the specific waste stream tested. For all wastewater streams, contaminant removals from wastewater feed to product water distillate, were estimated at greater than 99%. The average specific energy of the system was less than 120 Watt-hours/kilogram. The following paper provides detailed information and data on the performance of the CDS as challenged per the WRP test objectives.
Tan, Cher Lin Clara; Sapiha, Kostantyn; Leong, Yoke Fun Hannah; Choi, Siwon; Anariba, Franklin; Thio, Beng Joo Reginald
2015-07-21
A "lotus-like" effect is applied to demonstrate the ability of the Leidenfrost water droplets to recover Cu particles on a heated Al substrate. Cu particles on the heated surface adhere to the rim of the Leidenfrost droplets and eventually coat the droplets' surface to form an aggregation. When Fe filings are added to the Cu particles, the aggregated mixture can then be collected using a strong rare earth magnet (NdFeB) upon evaporation of the water. We also show that the Leidenfrost effect can be effectively utilized to recover both hydrophobic (dust and activated carbon) and hydrophilic (SiO2 and MgO) particles from heated Al surfaces without any topographical modification or surfactant addition. Our results show that hydrophobic and hydrophilic materials can be collected with >92% and >96% effectiveness on grooved and smooth Al surfaces, respectively. Furthermore, we observed no significant differences in the amount of material collected above the Leidenfrost point within the tested temperature range (240 °C vs. 340 °C) as well as when the Al sheet was replaced with a Cu sheet as the substrate. However, we did observe that the Leidenfrost droplets were able to collect a greater amount of material when the working liquid was water than when it was ethanol. Our findings show promise in the development of an effective precious coinage metal filings recovery technology for application in the mint industry, as well as the self-cleaning of metallic and semiconductor surfaces where manual cleaning is not amenable.
Catalytic membrane reactors for tritium recovery from tritiated water in the ITER fuel cycle
International Nuclear Information System (INIS)
Tosti, S.; Violante, V.; Basile, A.; Chiappetta, G.; Castelli, S.; De Francesco, M.; Scaglione, S.; Sarto, F.
2000-01-01
Palladium and palladium-silver permeators have been obtained by coating porous ceramic tubes with a thin metal layer. Three coating techniques have been studied and characterized: chemical electroless deposition (PdAg film thickness of 10 μm), ion sputtering (about 1 μm) and rolling of thin metal sheets (50 μm). The Pd-ceramic membranes have been used for manufacturing catalytic membrane reactors (CMR) for hydrogen and its isotopes recovering and purifying. These composite membranes and the CMR have been studied and developed for a closed-loop process with reference to the design requirements of the international thermonuclear experimental reactor (ITER) blanket tritium recovery system in the enhanced performance phase of operation. The membranes and CMR have been tested in a pilot plant equipped with temperature, pressure and flow-rate on-line measuring and controlling devices. The conversion value for the water gas shift reaction in the CMR has been measured close to 100% (always above the equilibrium one, 80% at 350 deg. C): the effect of the membrane is very clear since the reaction is moved towards the products because of the continuous hydrogen separation. The rolled thin film membranes have separated the hydrogen from other gases with a complete selectivity and exhibited a slightly larger mass transfer resistance with respect to the electroless membranes. Preliminary tests on the sputtered membranes have also been carried out with a promising performance. Considerations on the use of different palladium alloy in order to improve the performances of the membranes in terms of permeation flux and mechanical strength, such as palladium/yttrium, are also reported
Analysis of vehicle exhaust waste heat recovery potential using a Rankine cycle
International Nuclear Information System (INIS)
Domingues, António; Santos, Helder; Costa, Mário
2013-01-01
This study evaluates the vehicle exhaust WHR (waste heat recovery) potential using a RC (Rankine cycle ). To this end, both a RC thermodynamic model and a heat exchanger model have been developed. Both models use as input, experimental data obtained from a vehicle tested on a chassis dynamometer. The thermodynamic analysis was performed for water, R123 and R245fa and revealed the advantage of using water as the working fluid in applications of thermal recovery from exhaust gases of vehicles equipped with a spark-ignition engine. Moreover, the heat exchanger effectiveness for the organic working fluids R123 and R245fa is higher than that for the water and, consequently, they can also be considered appropriate for use in vehicle WHR applications through RCs when the exhaust gas temperatures are relatively low. For an ideal heat exchanger, the simulations revealed increases in the internal combustion engine thermal and vehicle mechanical efficiencies of 1.4%–3.52% and 10.16%–15.95%, respectively, while for a shell and tube heat exchanger, the simulations showed an increase of 0.85%–1.2% in the thermal efficiency and an increase of 2.64%–6.96% in the mechanical efficiency for an evaporating pressure of 2 MPa. The results confirm the advantages of using the thermal energy contained in the vehicle exhaust gases through RCs. Furthermore, the present analysis demonstrates that improved evaporator designs and appropriate expander devices allowing for higher evaporating pressures are required to obtain the maximum WHR potential from vehicle RC systems. -- Highlights: ► This study evaluates the vehicle exhaust waste heat recovery potential using Rankine cycle systems. ► A thermodynamic model and a heat exchanger model were developed. ► Experimental data obtained in a vehicle tested on a chassis dynamometer was used as models input. ► Thermodynamic analysis was performed for water, R123 and R245fa. ► Results confirm advantages of using the thermal energy
International Nuclear Information System (INIS)
Stensrud, W.A.; Bame, M.A.; Lantz, K.D.; LaVenue, A.M.; Palmer, J.B.; Saulnier, G.J. Jr.
1987-01-01
Part A of this report describes the objectives, scope, design, equipment, and methodology for a long-term pumping test conducted at the Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. The test was conducted to provide technical assistance as part of the ongoing hydrologic characterization of the WIPP site. The test is referred to as the northern multipad pumping test, because it was designed to create a hydraulic stress over a wide area of the northern half of the WIPP site. The fluid-pressure and water-level recovery in both pumping and observation wells were monitored for a minimum of 72 days. The test interval was the Culebra Dolomite Member of the Rustler Formation. Twenty-three observation wells completed in the Culebra dolomite were monitored at least once a month as part of the regional water-level monitoring program. Severl wells completed in the Magenta Dolomite Member of the Rustler Formation were monitored during the test to assess the possibility of Magenta-Culebra communication in the expected area of influence of this test. The succeeding sections of this part of Hydrologic Data Report No. 5 present detailed descriptions of the test objectives, pretest data collection, test equipment and test-well configuration, the observation-well network, and test results. 3 refs., 147 figs., 107 tabs
Enticott, Joanne C; Shawyer, Frances; Brophy, Lisa; Russell, Grant; Fossey, Ellie; Inder, Brett; Mazza, Danielle; Vasi, Shiva; Weller, Penelope June; Wilson-Evered, Elisabeth; Edan, Vrinda; Meadows, Graham
2016-12-20
General practitioners (GPs) in Australia play a central role in the delivery of mental health care. This article describes the PULSAR (Principles Unite Local Services Assisting Recovery) Primary Care protocol, a novel mixed methods evaluation of a training intervention for GPs in recovery-oriented practice. The aim of the intervention is to optimize personal recovery in patients consulting study GPs for mental health issues. The intervention mixed methods design involves a stepped-wedge cluster randomized controlled trial testing the outcomes of training in recovery-oriented practice, together with an embedded qualitative study to identify the contextual enablers and challenges to implementing recovery-oriented practice. The project is conducted in Victoria, Australia between 2013 and 2017. Eighteen general practices and community health centers are randomly allocated to one of two steps (nine months apart) to start an intervention comprising GP training in the delivery of recovery-oriented practice. Data collection consists of cross-sectional surveys collected from patients of participating GPs at baseline, and again at the end of Steps 1 and 2. The primary outcome is improvement in personal recovery using responses to the Questionnaire about the Process of Recovery. Secondary outcomes are improvements in patient-rated measures of personal recovery and wellbeing, and of the recovery-oriented practice they have received, using the INSPIRE questionnaire, the Warwick-Edinburgh Mental Well-being Scale, and the Kessler Psychological Distress Scale. Participant data will be analyzed in the group that the cluster was assigned to at each study time point. Another per-protocol dataset will contain all data time-stamped according to the date of intervention received at each cluster site. Qualitative interviews with GPs and patients at three and nine months post-training will investigate experiences and challenges related to implementing recovery-oriented practice in primary
studies on solvent extraction of free hydrogen cyanide from river water
African Journals Online (AJOL)
A method for free and strongly complexed cyanide measurement in river water was developed. Recovery tests from solution with and without river water, using various solvent combinations and background control were investigated to obtain an accurate and precise extraction method for the measurement of hydrogen ...
The minimal ice water caloric test compared with established vestibular caloric test procedures.
Schmäl, Frank; Lübben, Björn; Weiberg, Kerstin; Stoll, Wolfgang
2005-01-01
Caloric testing of the vestibular labyrinth is usually performed by classical caloric test procedures (CCTP) using water warmed to 30 degrees C and 44 degrees C. Ice water irrigation (4 degrees C) is usually not performed, although it might be useful as a bedside test. To verify the validity of the Minimal Ice Water Caloric Test (MIWCT), comparative video-oculographic investigations were performed in 22 healthy subjects using ice water (0.5 ml, 1.0 ml, 2 ml), CCTP, and cold air (27 degrees C). Frequency, amplitude, slow phase velocity (SPV), the onset, and the duration of nystagmus were documented. After addition of three ice cubes, the temperature of conventional tap water (16 degrees C) fell within 13 min to 4 degrees C. In pessimum position the subjects demonstrated no nystagmus response. Compared to CCTP, MIWCT was associated with a significantly later onset of nystagmus and a significant prolongation of the nystagmus reaction. In contrast to air stimulation (27 degrees C), a significant Spearman's correlation was noted between MIWCT (1 and 2 ml) and established CCTP in respect of essential nystagmus parameters (frequency, amplitude and SPV). Furthermore, MIWCT (0.5 and 1 ml) showed a higher sensitivity and specificity with regard to the detection of canal paresis based on Jongkees' formula compared to stimulation with air 27 degrees C. Thus, MIWCT appears to be a suitable procedure for bedside investigation of vestibular function outside the vestibular laboratory, e.g. in a hospital ward, where bedridden patients with vertigo occasionally require vestibular testing.
Composite tube cracking in kraft recovery boilers: A state-of-the-art review
Energy Technology Data Exchange (ETDEWEB)
Singbeil, D.L.; Prescott, R. [Pulp and Paper Research Inst. of Canada, Vancouver, British Columbia (Canada); Keiser, J.R.; Swindeman, R.W. [Oak Ridge National Lab., TN (United States)
1997-07-01
Beginning in the mid-1960s, increasing energy costs in Finland and Sweden made energy recovery more critical to the cost-effective operation of a kraft pulp mill. Boiler designers responded to this need by raising the steam operating pressure, but almost immediately the wall tubes in these new boilers began to corrode rapidly. Test panels installed in the walls of the most severely corroding boiler identified austenitic stainless steel as sufficiently resistant to the new corrosive conditions, and discussions with Sandvik AB, a Swedish tube manufacturer, led to the suggestion that coextruded tubes be used for water wall service in kraft recovery boilers. Replacement of carbon steel by coextruded tubes has solved most of the corrosion problems experienced by carbon steel wall tubes, however, these tubes have not been problem-free. Beginning in early 1995, a multidisciplinary research program funded by the US Department of Energy was established to investigate the cause of cracking in coextruded tubes and to develop improved materials for use in water walls and floors of kraft recovery boilers. One portion of that program, a state-of-the-art review of public- and private-domain documents related to coextruded tube cracking in kraft recovery boilers is reported here. Sources of information that were consulted for this review include the following: tube manufacturers, boiler manufacturers, public-domain literature, companies operating kraft recovery boilers, consultants and failure analysis laboratories, and failure analyses conducted specifically for this project. Much of the information contained in this report involves cracking problems experienced in recovery boiler floors and those aspects of spout and air-port-opening cracking not readily attributable to thermal fatigue. 61 refs.
Latif-Eugenín, F; Beaz-Hidalgo, R; Figueras, M J
2016-09-01
To perform a comparative study for determining the optimum culture method (direct plating or enrichment) and medium (ampicillin dextrin agar (ADA), starch ampicillin agar (SAA), bile salts irgasan brilliant green modified (BIBG-m)) for recovering Aeromonas species from water and shellfish samples. By direct culture, Aeromonas was detected in 65% (13/20) of the water samples and in 54·5% (6/11) of the shellfish samples. However, when a pre-enrichment step was included, the number of positive water samples increased to 75% (15/20) and the ones of shellfish to 90·1% (10/11). The enriched culture significantly favoured (P culture medium for detecting Aeromonas from water was ADA. However, no differences were observed in the case of shellfish samples (P > 0·05). Isolation of Aeromonas media from water was favoured (P culture method and medium used influenced the recovery of some Aeromonas species from water and shellfish samples. This fact should be considered in future prevalence studies to avoid overestimating the above mentioned Aeromonas species. © 2016 The Society for Applied Microbiology.
Directory of Open Access Journals (Sweden)
Irene Samora
2016-08-01
Full Text Available Water supply systems (WWSs are one of the main manmade water infrastructures presenting potential for micro-hydropower. Within urban networks, local decentralized micro-hydropower plants (MHPs may be inserted in the regional electricity grid or used for self-consumption at the local grid level. Nevertheless, such networks are complex and the quantification of the potential for micro-hydropower other than that achieved by replacing pressure reducing valves (PRVs is difficult. In this work, a methodology to quantify the potential for hydropower based on the excess energy in a network is proposed and applied to a real case. A constructive solution is presented based on the use of a novel micro-turbine for energy conversion, the five blade tubular propeller (5BTP. The location of the MHP within the network is defined with an optimization algorithm that maximizes the net present value after 20 years of operation. These concepts are tested for the WSS in the city of Fribourg, Switzerland. The proposed solution captures 10% of the city’s energy potential and represents an economic interest. The results confirm the location of PRVs as potential sites for energy recovery and stress the need for careful sensitivity analysis of the consumption. Finally, an expedited method is derived to estimate the costs and energy that one 5BTP can produce in a given network.
Arora, Rajeev; Palta, Jiwan P.
1991-01-01
Plasma membrane ATPase has been proposed to be functionally altered during early stages of injury caused by a freeze-thaw stress. Complete recovery from freezing injury in onion cells during the postthaw period provided evidence in support of this proposal. During recovery, a simultaneous decrease in ion leakage and disappearance of water soaking (symptoms of freeze-thaw injury) has been noted. Since reabsorption of ions during recovery must be an active process, recovery of plasma membrane ATPase (active transport system) functions has been implicated. In the present study, onion (Allium cepa L. cv Downing Yellow Globe) bulbs were subjected to a freeze-thaw stress which resulted in a reversible (recoverable) injury. Plasma membrane ATPase activity in the microsomes (isolated from the bulb scales) and ion leakage rate (efflux/hour) from the same scale tissue were measured immediately following thawing and after complete recovery. In injured tissue (30-40% water soaking), plasma membrane ATPase activity was reduced by about 30% and this was paralleled by about 25% higher ion leakage rate. As water soaking disappeared during recovery, the plasma membrane ATPase activity and the ion leakage rate returned to about the same level as the respective controls. Treatment of freeze-thaw injured tissue with vanadate, a specific inhibitor of plasma membrane ATPase, during postthaw prevented the recovery process. These results indicate that recovery of freeze-injured tissue depends on the functional activity of plasma membrane ATPase. PMID:16668063
Modelling of a Naphtha Recovery Unit (NRU with Implications for Process Optimization
Directory of Open Access Journals (Sweden)
Jiawei Du
2018-06-01
Full Text Available The naphtha recovery unit (NRU is an integral part of the processes used in the oil sands industry for bitumen extraction. The principle role of the NRU is to recover naphtha from the tailings for reuse in this process. This process is energy-intensive, and environmental guidelines for naphtha recovery must be met. Steady-state models for the NRU system are developed in this paper using two different approaches. The first approach is a statistical, data-based modelling approach where linear regression models have been developed using Minitab® from plant data collected during a performance test. The second approach involves the development of a first-principles model in Aspen Plus® based on the NRU process flow diagram. A novel refinement to this latter model, called “withdraw and remix”, is proposed based on comparing actual plant data to model predictions around the two units used to separate water and naphtha. The models developed in this paper suggest some interesting ideas for the further optimization of the process, in that it may be possible to achieve the required naphtha recovery using less energy. More plant tests are required to validate these ideas.
Sá, Ana Carolina; Sousa, Gabriela; Santos, Alice; Santos, Cristina; Abelha, Fernando José
2015-01-01
The "Quality of Recovery 15" questionnaire is used for the study of quality recovery after anesthesia. The aim of this study was to validate the Portuguese version of "Quality of Recovery 15" questionnaire. After study approval by the institutional ethics committee, an observational and cohort prospective study was conducted on patients scheduled for elective surgery from June to August 2013. The "Quality of Recovery 15" questionnaire was translated in accordance with available guidelines. The "Quality of Recovery 15" Portuguese version was used before surgery (T0) and 24h postoperatively (T1) on 170 patients. Patients who were unable to give informed consent or had cognitive impairment were excluded. Poor quality of recovery was defined for "Quality of Recovery 15" score at T1 lower than the mean "Quality of Recovery 15" score minus 1 standard deviation. Reliability and observer disagreement was assessed using interclass correlation. Non-parametric tests were used for comparisons. There was a negative correlation between "Quality of Recovery 15" score and time spent in the postanesthesia care(p = -0.264, p = 0.004) and length of hospital stay (p = -0.274, p = 0.004). Thirty-two patients (19%) had poor quality of recovery. Patients with poor quality of recovery had more frequently diabetes mellitus and hypertension and they were taking antidepressants drugs more frequently. Patients with poor quality of recovery were more frequently submitted to combined anesthesia and less frequently to general anesthesia and locoregional anesthesia (p = 0.008). The questionnaire had a good internal consistency and test-retest reliability was good. The Portuguese version of the "Quality of Recovery 15" showed a good correlation with the original. This questionnaire appears to be an accurate and reliable assessment for quality of recovery.
Dielectric-breakdown tests of water at 6 MV
Directory of Open Access Journals (Sweden)
W. A. Stygar
2009-01-01
Full Text Available We have conducted dielectric-breakdown tests on water subject to a single unipolar pulse. The peak voltages used for the tests range from 5.8 to 6.8 MV; the effective pulse widths range from 0.60 to 1.1 μs; and the effective areas tested range from 1.8×10^{5} to 3.6×10^{6} cm^{2}. The tests were conducted on water-insulated coaxial capacitors. The two electrodes of each capacitor have outer and inner radii of 99 and 56 cm, respectively. Results of the tests are consistent with predictions of the water-dielectric-breakdown relation developed in [Phys. Rev. ST Accel. Beams 9, 070401 (2006PRABFM1098-440210.1103/PhysRevSTAB.9.070401].
Cost Effective Surfactant Formulations for Improved Oil Recovery in Carbonate Reservoirs
Energy Technology Data Exchange (ETDEWEB)
William A. Goddard; Yongchun Tang; Patrick Shuler; Mario Blanco; Yongfu Wu
2007-09-30
This report summarizes work during the 30 month time period of this project. This was planned originally for 3-years duration, but due to its financial limitations, DOE halted funding after 2 years. The California Institute of Technology continued working on this project for an additional 6 months based on a no-cost extension granted by DOE. The objective of this project is to improve the performance of aqueous phase formulations that are designed to increase oil recovery from fractured, oil-wet carbonate reservoir rock. This process works by increasing the rate and extent of aqueous phase imbibition into the matrix blocks in the reservoir and thereby displacing crude oil normally not recovered in a conventional waterflood operation. The project had three major components: (1) developing methods for the rapid screening of surfactant formulations towards identifying candidates suitable for more detailed evaluation, (2) more fundamental studies to relate the chemical structure of acid components of an oil and surfactants in aqueous solution as relates to their tendency to wet a carbonate surface by oil or water, and (3) a more applied study where aqueous solutions of different commercial surfactants are examined for their ability to recover a West Texas crude oil from a limestone core via an imbibition process. The first item, regarding rapid screening methods for suitable surfactants has been summarized as a Topical Report. One promising surfactant screening protocol is based on the ability of a surfactant solution to remove aged crude oil that coats a clear calcite crystal (Iceland Spar). Good surfactant candidate solutions remove the most oil the quickest from the surface of these chips, plus change the apparent contact angle of the remaining oil droplets on the surface that thereby indicate increased water-wetting. The other fast surfactant screening method is based on the flotation behavior of powdered calcite in water. In this test protocol, first the calcite
Ihsan, Mohammed; Watson, Greig; Abbiss, Chris R
2016-08-01
Intense training results in numerous physiological perturbations such as muscle damage, hyperthermia, dehydration and glycogen depletion. Insufficient/untimely restoration of these physiological alterations might result in sub-optimal performance during subsequent training sessions, while chronic imbalance between training stress and recovery might lead to overreaching or overtraining syndrome. The use of post-exercise cold water immersion (CWI) is gaining considerable popularity among athletes to minimize fatigue and accelerate post-exercise recovery. CWI, through its primary ability to decrease tissue temperature and blood flow, is purported to facilitate recovery by ameliorating hyperthermia and subsequent alterations to the central nervous system (CNS), reducing cardiovascular strain, removing accumulated muscle metabolic by-products, attenuating exercise-induced muscle damage (EIMD) and improving autonomic nervous system function. The current review aims to provide a comprehensive and detailed examination of the mechanisms underpinning acute and longer term recovery of exercise performance following post-exercise CWI. Understanding the mechanisms will aid practitioners in the application and optimisation of CWI strategies to suit specific recovery needs and consequently improve athletic performance. Much of the literature indicates that the dominant mechanism by which CWI facilitates short term recovery is via ameliorating hyperthermia and consequently CNS mediated fatigue and by reducing cardiovascular strain. In contrast, there is limited evidence to support that CWI might improve acute recovery by facilitating the removal of muscle metabolites. CWI has been shown to augment parasympathetic reactivation following exercise. While CWI-mediated parasympathetic reactivation seems detrimental to high-intensity exercise performance when performed shortly after, it has been shown to be associated with improved longer term physiological recovery and day to day
van Lopik, Jan H.; Hartog, Niels; Zaadnoordijk, Willem Jan
2016-08-01
The efficiency of heat recovery in high-temperature (>60 °C) aquifer thermal energy storage (HT-ATES) systems is limited due to the buoyancy of the injected hot water. This study investigates the potential to improve the efficiency through compensation of the density difference by increased salinity of the injected hot water for a single injection-recovery well scheme. The proposed method was tested through numerical modeling with SEAWATv4, considering seasonal HT-ATES with four consecutive injection-storage-recovery cycles. Recovery efficiencies for the consecutive cycles were investigated for six cases with three simulated scenarios: (a) regular HT-ATES, (b) HT-ATES with density difference compensation using saline water, and (c) theoretical regular HT-ATES without free thermal convection. For the reference case, in which 80 °C water was injected into a high-permeability aquifer, regular HT-ATES had an efficiency of 0.40 after four consecutive recovery cycles. The density difference compensation method resulted in an efficiency of 0.69, approximating the theoretical case (0.76). Sensitivity analysis showed that the net efficiency increase by using the density difference compensation method instead of regular HT-ATES is greater for higher aquifer hydraulic conductivity, larger temperature difference between injection water and ambient groundwater, smaller injection volume, and larger aquifer thickness. This means that density difference compensation allows the application of HT-ATES in thicker, more permeable aquifers and with larger temperatures than would be considered for regular HT-ATES systems.
Park, YoungAh; Haun, Verena C
2017-10-01
Despite growing recovery research, little is known about couple-dyadic processes of recovery from work. Given that dual-earner couples experience most of their recovery opportunities during nonwork times when they are together, partners in a couple relationship may substantially affect recovery and work engagement. In this study, we propose a couple-dyadic model in which weekend partner recovery support (reported by the recipient partner) is positively related to the recipient partner's state of recovery after the weekend which, in turn, increases the recipient's work engagement the following week (actor-actor mediation effect). We also test the effect of one's state of recovery on the partner's subsequent work engagement (partner effect). Additionally, work-linked relationship status is tested as a moderator of the partner effect. Actor-partner interdependence mediation modeling is used to analyze the data from 167 dual-earner couples who answered surveys on 4 measurement occasions. The results support the indirect effect of partner recovery support on work engagement through the postweekend state of recovery. Multigroup analysis results reveal that the partner effect of state of recovery on work engagement is significant for work-linked couples only and is absent for non-work-linked couples. Theoretical and practical implications, limitations, and future research directions are discussed. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Directory of Open Access Journals (Sweden)
Justine Bresson
Full Text Available Mutualistic bacteria can alter plant phenotypes and confer new abilities to plants. Some plant growth-promoting rhizobacteria (PGPR are known to improve both plant growth and tolerance to multiple stresses, including drought, but reports on their effects on plant survival under severe water deficits are scarce. We investigated the effect of Phyllobacterium brassicacearum STM196 strain, a PGPR isolated from the rhizosphere of oilseed rape, on survival, growth and physiological responses of Arabidopsis thaliana to severe water deficits combining destructive and non-destructive high-throughput phenotyping. Soil inoculation with STM196 greatly increased the survival rate of A. thaliana under several scenarios of severe water deficit. Photosystem II efficiency, assessed at the whole-plant level by high-throughput fluorescence imaging (Fv/Fm, was related to the probability of survival and revealed that STM196 delayed plant mortality. Inoculated surviving plants tolerated more damages to the photosynthetic tissues through a delayed dehydration and a better tolerance to low water status. Importantly, STM196 allowed a better recovery of plant growth after rewatering and stressed plants reached a similar biomass at flowering than non-stressed plants. Our results highlight the importance of plant-bacteria interactions in plant responses to severe drought and provide a new avenue of investigations to improve drought tolerance in agriculture.
International Nuclear Information System (INIS)
Dalston, C.O.
1984-01-01
Tri-n-butyl phosphate associated with an inert hydrocarbon is the main solvent used in reprocessing of nuclear irradiated fuel arising of pressurized water reactors. The combined action of radiation and nitric acid cause severe damage to solvent, in reprocessing steps. The recovery of the solvent is, thus, of great importance, since it decreases the amount of the waste and improves the process economy. A comparative analysis of several methods of the recovery of this solvent was carried out, such as: alkaline washing, adsorption with resins, adsorption with aluminium oxide, adsorption by active carbon and adsorption by vermiculite. Some modifications of analytical 95 Zr test and a mathematical definition of two new parameters (degradation grade and efficiency of recovery) were done. Through this modified 95 Zr test, the residence time and the rate of degraded solvent: recuperator were determined. After laboratory tests, vermiculite associated with active carbon was employed for the treatment of 50 liters of tri-n-butyl phosphate (30% V/V)-dodecane, degraded by hydrolysis. Other analyses were performed to check the potentialities of these solids for this solvent recovery. (Author) [pt
Endurance Test and Evaluation of Alkaline Water Electrolysis Cells
Kovach, Andrew J.; Schubert, Franz H.; Chang, B. J.; Larkins, Jim T.
1985-01-01
The overall objective of this program is to assess the state of alkaline water electrolysis cell technology and its potential as part of a Regenerative Fuel Cell System (RFCS) of a multikilowatt orbiting powerplant. The program evaluates the endurance capabilities of alkaline electrolyte water electrolysis cells under various operating conditions, including constant condition testing, cyclic testing and high pressure testing. The RFCS demanded the scale-up of existing cell hardware from 0.1 sq ft active electrode area to 1.0 sq ft active electrode area. A single water electrolysis cell and two six-cell modules of 1.0 sq ft active electrode area were designed and fabricated. The two six-cell 1.0 sq ft modules incorporate 1.0 sq ft utilized cores, which allow for minimization of module assembly complexity and increased tolerance to pressure differential. A water electrolysis subsystem was designed and fabricated to allow testing of the six-cell modules. After completing checkout, shakedown, design verification and parametric testing, a module was incorporated into the Regenerative Fuel Cell System Breadboard (RFCSB) for testing at Life Systems, Inc., and at NASA JSC.
Laboratory effectiveness testing of water-in-oil emulsion breakers
International Nuclear Information System (INIS)
Fingas, M.F.; Fieldhouse, B.; Bier, I.; Conrod, D.; Tennyson, E.
1995-01-01
The physics and chemistry of water-in-oil emulsions dominate the development of effectiveness tests. Emulsions are variable in stability--this variability is largely dependent on oil type and degree of weathering. These factors complicate the development of a test. Emulsions which have low stability will apparently break easily with chemical emulsion breakers. Broken emulsions will form a foam-like material, called rag, which retains water which is not part of the stable emulsions. Analytical methods used to determine the final stability of the broken or unbroken emulsion were evaluated. Measurements of water content and viscosity measurements show correlation to emulsion stability. Viscosity provides a more reliable measure of emulsion stability but water content measurements are more convenient and are largely used in this study. Twelve tests were developed in the past. Two testing methods have been developed to a usable stage. These tests are described and data using them provided. The effects of mixing time, agent amount, settling time and mixing energy on effectiveness results are presented
Directory of Open Access Journals (Sweden)
Shuang Cindy Cao
2016-02-01
Full Text Available Biopolymers have shown a great effect in enhanced oil recovery because of the improvement of water-flood performance by mobility control, as well as having been considered for oil contaminated-soil remediation thanks to their mobility control and water-flood performance. This study focused on the wettability analysis of biopolymers such as chitosan (85% deacetylated power, PEO (polyethylene oxide, Xanthan (xanthan gum, SA (Alginic Acid Sodium Salt, and PAA (polyacrylic acid, including the measurements of contact angles, interfacial tension, and viscosity. Furthermore, a micromodel study was conducted to explore pore-scale displacement phenomena during biopolymer injection into the pores. The contact angles of biopolymer solutions are higher on silica surfaces submerged in decane than at atmospheric conditions. While interfacial tensions of the biopolymer solutions have a relatively small range of 25 to 39 mN/m, the viscosities of biopolymer solutions have a wide range, 0.002 to 0.4 Pa·s, that dramatically affect both the capillary number and viscosity number. Both contact angles and interfacial tension have effects on the capillary entry pressure that increases along with an applied effective stress by overburden pressure in sediments. Additionally, a high injection rate of biopolymer solutions into the pores illustrates a high level of displacement ratio. Thus, oil-contaminated soil remediation and enhanced oil recovery should be operated in cost-efficient ways considering the injection rates and capillary entry pressure.
Effect of synthetic vernix biofilms on barrier recovery of damaged mouse skin.
Oudshoorn, Marion H M; Rissmann, Robert; van der Coelen, Dennis; Hennink, Wim E; Ponec, Maria; Bouwstra, Joke A
2009-08-01
The aim of this work was to investigate whether topical application of synthetic biofilms supports and accelerates the recovery of the murine skin barrier, disrupted by sequential tape stripping. Therefore, various biofilms were applied topically on disrupted mouse skin to determine which formulation could improve barrier function, as was observed previously for the natural biofilm vernix caseosa (VC). The biofilms [i.e. particles (synthetic corneocytes) embedded in a synthetic lipid matrix] mimic closely the physicochemical properties and structure of VC. Various formulations were prepared using different particle:lipid ratios, particles with different initial water content and uncoated or lipid-coated particles. It was observed that application of all tested formulations improved the skin barrier recovery rate and reduced crust formation and epidermal hyperproliferation. However, only one of the biofilms [i.e. B1; composed of uncoated particles with 50% (w/w) initial water content and particle:lipid ratio of 2:1] mimicked the effects of native VC most closely. This indicates the importance of the presence of individual components, i.e. barrier lipids and water, as well as the ratio of these components. Consequently, these observations suggest the potential use of this biofilm treatment clinically.
Directory of Open Access Journals (Sweden)
Schaub, M.
2004-06-01
Full Text Available The interaction of an additional source of mortality with the underlying “natural” one strongly affects population dynamics. We propose an alternative way to test between two forms of interaction, total additivity and compensation. In contrast to existing approaches, only ring-recovery data where the cause of death of each recovered individual is known are needed. Cause-specific mortality proportions are estimated based on a multistate capture-recapture model. The hypotheses are tested by inspecting the correlation between the cause-specific mortality proportions. A variance decomposition is performed to obtain a proper estimate of the true process correlation. The estimation of the cause-specific mortality proportions is the most critical part of the approach. It works well if at least one of the two mortality rates varies across time and the two recovery rates are constant across time. We illustrate this methodology by a case study of White Storks Ciconia ciconia where we tested whether mortality induced by power line collision is additive to other forms of mortality.
Two-step optimization of pressure and recovery of reverse osmosis desalination process.
Liang, Shuang; Liu, Cui; Song, Lianfa
2009-05-01
Driving pressure and recovery are two primary design variables of a reverse osmosis process that largely determine the total cost of seawater and brackish water desalination. A two-step optimization procedure was developed in this paper to determine the values of driving pressure and recovery that minimize the total cost of RO desalination. It was demonstrated that the optimal net driving pressure is solely determined by the electricity price and the membrane price index, which is a lumped parameter to collectively reflect membrane price, resistance, and service time. On the other hand, the optimal recovery is determined by the electricity price, initial osmotic pressure, and costs for pretreatment of raw water and handling of retentate. Concise equations were derived for the optimal net driving pressure and recovery. The dependences of the optimal net driving pressure and recovery on the electricity price, membrane price, and costs for raw water pretreatment and retentate handling were discussed.
June 3, 2011 work plan for a pilot-scale treatability evaluation with a commercial wastewater treatment facility, Water Recovery Inc. (WRI) located in Jacksonville, Florida. Region ID: 04 DocID: 10749927, DocDate: 06-03-2011
Directory of Open Access Journals (Sweden)
Hermassi Souhail
2015-03-01
Full Text Available The aim of the present study was to investigate relationships between a performance index derived from the Yo-Yo Intermittent Recovery Test level 1 (Yo-Yo IR1 and other measures of physical performance and skill in handball players. The other measures considered included peak muscular power of the lower limbs (Wpeak, jumping ability (squat and counter-movement jumps (SJ, CMJ, a handball skill test and the average sprinting velocities over the first step (VS and the first 5 m (V5m. Test scores for 25 male national-level adolescent players (age: 17.2 ± 0.7 years averaged 4.83 ± 0.34 m·s-1 (maximal velocity reached at the Yo-Yo IR1; 917 ± 105 Watt, 12.7 ± 3 W·kg-1 (Wpeak; 3.41 ± 0.5 m·s-1 and 6.03 ± 0.6 m·s-1 (sprint velocities for Vs and V5m respectively and 10.3 ± 1 s (handball skill test. Yo-Yo IR1 test scores showed statistically significant correlations with all of the variables examined: Wpeak (W and W·kg-1 r = 0.80 and 0.65, respectively, p≤0.001; sprinting velocities (r = 0.73 and 0.71 for VS and V5m respectively; p≤0.001; jumping performance (SJ: r = 0.60, p≤0.001; CMJ: r= 0.66, p≤0.001 and the handball skill test (r = 0.71; p≤0.001. We concluded that the Yo-Yo test score showed a sufficient correlation with other potential means of assessing handball players, and that intra-individual changes of Yo-Yo IR1 score could provide a useful composite index of the response to training or rehabilitation, although correlations lack sufficient precision to help in players’ selection.
Hermassi, Souhail; Aouadi, Ridha; Khalifa, Riadh; van den Tillaar, Roland; Shephard, Roy J; Chelly, Mohamed Souhaiel
2015-03-29
The aim of the present study was to investigate relationships between a performance index derived from the Yo-Yo Intermittent Recovery Test level 1 (Yo-Yo IR1) and other measures of physical performance and skill in handball players. The other measures considered included peak muscular power of the lower limbs (Wpeak), jumping ability (squat and counter-movement jumps (SJ, CMJ), a handball skill test and the average sprinting velocities over the first step (VS) and the first 5 m (V5m). Test scores for 25 male national-level adolescent players (age: 17.2 ± 0.7 years) averaged 4.83 ± 0.34 m·s(-1) (maximal velocity reached at the Yo-Yo IR1); 917 ± 105 Watt, 12.7 ± 3 W·kg(-1) (Wpeak); 3.41 ± 0.5 m·s(-1) and 6.03 ± 0.6 m·s(-1) (sprint velocities for Vs and V5m respectively) and 10.3 ± 1 s (handball skill test). Yo-Yo IR1 test scores showed statistically significant correlations with all of the variables examined: Wpeak (W and W·kg(-1)) r = 0.80 and 0.65, respectively, p≤0.001); sprinting velocities (r = 0.73 and 0.71 for VS and V5m respectively; p≤0.001); jumping performance (SJ: r = 0.60, p≤0.001; CMJ: r= 0.66, p≤0.001) and the handball skill test (r = 0.71; p≤0.001). We concluded that the Yo-Yo test score showed a sufficient correlation with other potential means of assessing handball players, and that intra-individual changes of Yo-Yo IR1 score could provide a useful composite index of the response to training or rehabilitation, although correlations lack sufficient precision to help in players' selection.
Testing of wet scrap recovery equipment for mixed oxide scrap reprocessing
International Nuclear Information System (INIS)
Demiter, J.A.; Klem, M.J.; Owen, T.J.
1984-08-01
The Wet Scrap Recovery (WSR) program was initiated at the Hanford Engineering Development Laboratory (HEDL) by Westinghouse Hanford Company in Richland, Washington to demonstrate fuel fabrication scrap recovery and reconversion to fuel grade oxide powder using the continuous coprecipitation-calcination (COPRECAL) conversion process. Advancements in process control equipment and instrumentation were also developed and demonstrated
Long Duration Testing of a Spacesuit Water Membrane Evaporator Prototype
Bue, Grant C.; Makinen, Janice; Cox, Marlon; Watts, Carly; Campbell, Colin; Vogel, Matthew; Colunga, Aaron; Conger, Bruce
2012-01-01
The Spacesuit Water Membrane Evaporator (SWME) is a heat-rejection device that is being developed to perform thermal control for advanced spacesuits. Cooling is achieved by circulating water from the liquid cooling garment (LCG) through hollow fibers (HoFi s), which are small hydrophobic tubes. Liquid water remains within the hydrophobic tubes, but water vapor is exhausted to space, thereby removing heat. A SWME test article was tested over the course of a year, for a total of 600 cumulative hours. In order to evaluate SWME tolerance to contamination due to constituents caused by distillation processes, these constituents were allowed to accumulate in the water as evaporation occurred. A test article was tested over the course of a year for a total of 600 cumulative hours. The heat rejection performance of the SWME degraded significantly--below 700 W, attributable to the accumulation of rust in the circulating loop and biofilm growth. Bubble elimination capability, a feature that was previously proven with SWME, was compromised during the test, most likely due to loss of hydrophobic properties of the hollow fibers. The utilization of water for heat rejection was shown not to be dependent on test article, life cycle, heat rejection rate, or freezing of the membranes.
Environmental regulations handbook for enhanced oil recovery. Final report
Energy Technology Data Exchange (ETDEWEB)
Wilson, T.D.
1980-08-01
A guide to environmental laws and regulations which have special significance for enhanced oil recovery (EOR) is presented. The Clean Air Act, the Clean Water Act, the Safe Drinking Water Act, Resource Conservation and Recovery Act, federal regulations, and state regulations are discussed. This handbook has been designed as a planning tool and a convenient reference source. The 16 states included comprise the major oil-producing states in various regions of the state. The major topics covered are: general guidelines for complying with environmental laws and regulations; air pollution control; water pollution control; protecting drinking water: underground injection control; hazardous waste management; and federal laws affecting siting or operation of EOR facilities. (DMC)
International Nuclear Information System (INIS)
Gu Zhaolin; Liu Hongjuan; Li Yun
2004-01-01
Latent heat thermal energy storage systems can be used to recover the rejected heat from air conditioning systems, which can be used to generate low-temperature hot water. It decreases not only the consumption of primary energy for heating domestic hot water but also the calefaction to the surroundings due to the rejection of heat from air conditioning systems. A recovery system using phase change materials (PCMs) to store the rejected (sensible and condensation) heat from air conditioning system has been developed and studied, making up the shortage of other sensible heat storage system. Also, PCMs compliant for heat recovery of air conditioning system should be developed. Technical grade paraffin wax has been discussed in this paper in order to develop a paraffin wax based PCM for the recovery of rejected heat from air conditioning systems. The thermal properties of technical grade paraffin wax and the mixtures of paraffin wax with lauric acid and with liquid paraffin (paraffin oil) are investigated and discussed, including volume expansion during the phase change process, the freezing point and the heat of fusion
Analysis of aquifer tests conducted in borehole USW G-2, 1996, Yucca Mountain, Nevada
International Nuclear Information System (INIS)
O'Brien, G.M.
1998-01-01
Borehole USW G-2 is located north of Yucca Mountain in a large-hydraulic-gradient area. Two single-borehole aquifer tests were conducted in the borehole during 1996. A 54.9-hour pumping period was conducted February 6--8, 1996, and a 408-hour pumping period was conducted April 8--25, 1996. The purpose of testing was to obtain estimates of the aquifer-system transmissivity and to determine if perched water was affecting the observed water level in borehole USW G-2. This report presents and analyzes data collected between February 6 and December 17, 1996. Analysis of the aquifer-test data indicated that fracture flow, dual-porosity flow, and boundary-affected flow conditions were observed in the drawdown and recovery data. Transmissivity estimates ranged from 2.3 to 12 meters squared per day. The most representative transmissivity estimate for the interval tested is the early-time mean transmissivity of 9.4 meters squared per day. The Calico Hills Formation was the primary formation tested, but the top 3 meters of the nonpumping water column was within the overlying Topopah Spring Tuff. Persistent residual drawdown following pumping more than 6 million liters of water during aquifer testing may indicate that the bore-hole intersected a perched water body. After 236 days of recovery, residual drawdown was 0.5 meter. The quantitative effect of the perched water on the observed water level in borehole USW G-2, however, cannot be determined with the available data
DEFF Research Database (Denmark)
Baty, Florent; Ritz, Christian; Jensen, Signe Marie
2017-01-01
6-min walk tests (6MWT) are routinely performed in patients with chronic obstructive pulmonary disease (COPD). Oxygen uptake ([Formula: see text]) kinetics during 6MWT can be modeled and derived parameters provide indicators of patients' exercise capacity. Post-exercise [Formula: see text] recovery...... also provides important parameters of patients' fitness which has not been extensively investigated in COPD. Several nonlinear regression models with different underlying biological assumptions may be suitable for describing recovery kinetics. Multimodel inference (model averaging) can then be used...... to capture the uncertainty in considering several models. Our aim was to apply multimodel inference in order to better understand the physiological underpinnings of [Formula: see text] recovery after 6MWT in patients with COPD. 61 patients with COPD (stages 2 to 4) were included in this study. Oxygen...
Trait Positive Affect Buffers the Effects of Acute Stress on Skin Barrier Recovery
Robles, Theodore F.; Brooks, Kathryn P.; Pressman, Sarah D.
2010-01-01
Objective This study examines the role of self-reported trait positive affect (PA) on skin barrier recovery after skin disruption, and whether the role of trait PA in wound healing is consistent with the direct effects model or the stress-buffering model of PA and health. Design Sixty healthy participants (mean age 22.7 ± 3.9 years) completed a self-report measure of trait positive and negative affect, underwent a “tape-stripping” procedure that disrupts normal skin barrier function, and were randomly assigned to a Stress (Trier Social Stress Test) or No Stress (reading task) condition. Main Outcome Measures Skin barrier recovery was assessed by measuring transepidermal water loss up to 2 hr after skin disruption. Results Multilevel modeling indicated that greater trait PA was related to faster skin barrier recovery (p < .05). The effects of PA on skin barrier recovery were independent of levels of trait NA. Conclusion These findings suggest that trait PA may influence skin barrier recovery following a brief stressor. In addition, these results provide additional evidence that trait PA can positively impact objective health outcomes. PMID:19450044
Pretreatment Solution for Water Recovery Systems
Muirhead, Dean (Inventor)
2018-01-01
Chemical pretreatments are used to produce usable water by treating a water source with a chemical pretreatment that contains a hexavalent chromium and an acid to generate a treated water source, wherein the concentration of sulfate compounds in the acid is negligible, and wherein the treated water source remains substantially free of precipitates after the addition of the chemical pretreatment. Other methods include reducing the pH in urine to be distilled for potable water extraction by pretreating the urine before distillation with a pretreatment solution comprising one or more acid sources selected from a group consisting of phosphoric acid, hydrochloric acid, and nitric acid, wherein the urine remains substantially precipitate free after the addition of the pretreatment solution. Another method described comprises a process for reducing precipitation in urine to be processed for water extraction by mixing the urine with a pretreatment solution comprising hexavalent chromium compound and phosphoric acid.
Maximizing recovery of water-soluble proteins through acetone precipitation.
Crowell, Andrew M J; Wall, Mark J; Doucette, Alan A
2013-09-24
Solvent precipitation is commonly used to purify protein samples, as seen with the removal of sodium dodecyl sulfate through acetone precipitation. However, in its current practice, protein loss is believed to be an inevitable consequence of acetone precipitation. We herein provide an in depth characterization of protein recovery through acetone precipitation. In 80% acetone, the precipitation efficiency for six of 10 protein standards was poor (ca. ≤15%). Poor recovery was also observed for proteome extracts, including bacterial and mammalian cells. As shown in this work, increasing the ionic strength of the solution dramatically improves the precipitation efficiency of individual proteins, and proteome mixtures (ca. 80-100% yield). This is obtained by including 1-30 mM NaCl, together with acetone (50-80%) which maximizes protein precipitation efficiency. The amount of salt required to restore the recovery correlates with the amount of protein in the sample, as well as the intrinsic protein charge, and the dielectric strength of the solution. This synergistic approach to protein precipitation in acetone with salt is consistent with a model of ion pairing in organic solvent, and establishes an improved method to recover proteins and proteome mixtures in high yield. Copyright © 2013 Elsevier B.V. All rights reserved.
Long recovery VLF perturbations associated with lightning discharges
Salut, M. M.; Abdullah, M.; Graf, K. L.; Cohen, M. B.; Cotts, B. R. T.; Kumar, Sushil
2012-08-01
Long D-region ionospheric recovery perturbations are a recently discovered and poorly understood subcategory of early VLF events, distinguished by exceptionally long ionospheric recovery times of up to 20 min (compared to more typical ˜1 min recovery times). Characteristics and occurrence rates of long ionospheric recovery events on the NWC transmitter signal recorded at Malaysia are presented. 48 long recovery events were observed. The location of the causative lightning discharge for each event is determined from GLD360 and WWLLN data, and each discharge is categorized as being over land or sea. Results provide strong evidence that long recovery events are attributed predominately to lightning discharges occurring over the sea, despite the fact that lightning activity in the region is more prevalent over land. Of the 48 long recovery events, 42 were attributed to lightning activity over water. Analysis of the causative lightning of long recovery events in comparison to all early VLF events reveals that these long recovery events are detectable for lighting discharges at larger distances from the signal path, indicating a different scattering pattern for long recovery events.
How to automatically test and validate your database backup and recovery strategy
International Nuclear Information System (INIS)
Gaspar Aparicio, Ruben
2011-01-01
The major challenge we solve with this software project is the automated validation of backups sent to tape for Oracle databases. While Oracle Recovery Manager (RMAN) provides tools like 'restore validate', the real and only certain proof is a restore. This initial aim evolved to provide a recovery platform capable to cover more complex user cases, such as validations of backup strategy of Very Large DataBases (VLDB), and schema recoveries to cure logical errors or to provide the kind of database snapshots by means of exports.
Jiang, Yaxin; Liang, Jiaming; Liu, Yang
2016-01-01
The extraction process used to obtain bitumen from the oil sands produces large volumes of oil sands process-affected water (OSPW). As a newly emerging desalination technology, forward osmosis (FO) has shown great promise in saving electrical power requirements, increasing water recovery, and minimizing brine discharge. With the support of this funding, a FO system was constructed using a cellulose triacetate FO membrane to test the feasibility of OSPW desalination and contaminant removal. The FO systems were optimized using different types and concentrations of draw solution. The FO system using 4 M NH4HCO3 as a draw solution achieved 85% water recovery from OSPW, and 80 to 100% contaminant rejection for most metals and ions. A water backwash cleaning method was applied to clean the fouled membrane, and the cleaned membrane achieved 77% water recovery, a performance comparable to that of new FO membranes. This suggests that the membrane fouling was reversible. The FO system developed in this project provides a novel and energy efficient strategy to remediate the tailings waters generated by oil sands bitumen extraction and processing.
Associating Polymer Networks Based on Cyclodextrin Inclusion Compounds for Heavy Oil Recovery
Directory of Open Access Journals (Sweden)
Xi Li
2018-01-01
Full Text Available This work evaluates an approach to improve the enhanced heavy oil recovery performance of hydrophobic associating polymer. A polymeric system based on water-soluble hydrophobic associating polymer (WSHAP and cyclodextrin (CD polymer was proposed in this work. Addition of CD polymer to WSHAP forms interpolymer bridges by inclusion of CD groups with hydrophobic tails, and thereby the network structure is strengthened. The proposed system offers good viscoelasticity, pronounced shear thinning, and interesting viscosity-temperature relations. Sand pack tests indicated that the proposed system can build high resistance factor during the propagation in porous media, and its moderate adsorption phenomenon was represented by the thickness of the adsorbed layer. The relationship between effective viscosity and oil recovery increment indicated that the proposed system can significantly reduce the residual oil saturation due to the “piston-like” propagation. The overall oil recovery was raised by 5.7 and 24.5% of the original oil in place compared with WSHAP and partially hydrolyzed polyacrylamide (HPAM, respectively.
The analysis of scaling mechanism for water-injection pipe columns in the Daqing Oilfield
Jing, Guolin; Tang, Shan; Li, Xiaoxiao; Wang, Huaiyuan
2013-01-01
Although water-injection in mature reservoirs is a promising low-cost method of enhanced oil recovery (EOR), in the process of development in the oilfield, scale has been produced in water-injection pipe columns. The ability to prevent and control the deposition of scale is critical to the efficient recovery of crude oil from hard environments, as part of the broader discipline of “flow assurance” in the petroleum industry. To this end laboratory-scale deposition tests have been useful to und...
A Compact, Efficient Pyrolysis/Oxidation System for Solid Waste Resource Recovery in Space, Phase II
National Aeronautics and Space Administration — Pyrolysis processing can be used in near term missions for volume reduction, water recovery (drying), stabilization, and enhanced water and oxygen recovery through...
Fukushima Nuclear Crisis Recovery: A Modular Water Treatment System Deployed in Seven Weeks - 12489
Energy Technology Data Exchange (ETDEWEB)
Denton, Mark S.; Mertz, Joshua L. [Kurion, Inc., P.O. Box 5901, Oak Ridge, Tennessee 37831 (United States); Bostick, William D. [Materials and Chemistry Laboratory, Inc. (MCL) ETTP, Building K-1006, 2010 Highway 58, Suite 1000, Oak Ridge, Tennessee 37830 (United States)
2012-07-01
must remember that, in addition to attempting to do isotope removal in the competition of seawater (as high as 18,000 ppm sodium due to concentration), some 350,000 gallons of turbine oil was dispersed into the flooded buildings as well. The proposed system consisted of a 4 guard vessel skid for the oil and debris, 4 skids containing 16 cesium towers in a lead-lag layout with removable vessels (sent to an interim storage facility), and a 4 polishing vessel skid for iodine removal and trace cesium levels. At a flow rate of at least 220 gallons per minute, the system has routinely removed over 99% of the cesium, the main component of the activity, since going on line. To date, some 50% of the original activity has been removed and stabilized and cold shutdown of the plant was announced on December 10, 2011. In March and April alone, 10 cubic feet of Engineered Herschelite was shipped to Seabrook Nuclear Power Plant, NPP, to support the April 1, 2011 outage cleanup; 400 cubic feet was shipped to Oak Ridge National Laboratory (ORNL) for strontium (Sr-90) ground water remediation; and 6000 cubic feet (100 metric tons, MT, or 220,400 pounds) was readied for the Fukushima Nuclear Power Station with an additional 100 MT on standby for replacement vessels. This experience and accelerated media production in the U.S. bore direct application to what was to soon be used in Fukushima. How such a sophisticated and totally unique system and huge amount of media could be deployable in such a challenging and changing matrix, and in only seven weeks, is outlined in this paper as well as the system and operation itself. As demonstrated herein, all ten major steps leading up to the readiness and acceptance of a modular emergency technology recovery system were met and in a very short period of time, thus utilizing three decades of experience to produce and deliver such a system literally in seven weeks: - EPRI - U.S. Testing and Experience Leading to Introduction to EPRI - Japan and
Bioflocculation of grey water for improved energy recovery within decentralized sanitation concepts
Hernandez Leal, L.; Temmink, B.G.; Zeeman, G.; Buisman, C.J.N.
2010-01-01
Bioflocculation of grey water was tested with a lab-scale membrane bioreactor in order to concentrate the COD. Three concentration factors were tested based on the ratio of sludge retention time (SRT) and hydraulic retention time (HRT): 3, 8 and 12. COD concentration factor was up to 7.1, achieving
Recovery of plasma volume after 1 week of exposure at 4,350 m
DEFF Research Database (Denmark)
Robach, Paul; Lafforgue, Eric; Olsen, Niels Vidiendal
2002-01-01
Plasma volume (PV) decreases at high altitude, but is rapidly restored upon return to sea-level (RSL). The aim of this study was (1) to describe PV recovery upon RSL with concomitant changes in major fluid regulating hormones, and (2) to test the hypothesis that PV recovery is promoted...... natriuretic factor (ANF) and arginine vasopressin (AVP) were measured at rest and during exercise. The subjects were divided into two groups 1 h before RSL, one group receiving PV expansion (475+/-219 ml) to ensure normovolemia (PVX, n=6), the others serving as controls (Control, n=4). PV decreased by 13...... groups, whereas water output dropped in RSL. PVX increased urine flow rate in RSL1 compared with subjects not given PVX. The present results suggest that PV recovery during early RSL is mainly due to a decreased diuresis, promoted at least in part by changes in fluid regulating hormones. However, neither...
PROCESS TEST WORK FOR THE RECOVERY OF TANTALITE ...
African Journals Online (AJOL)
The Nassarawa Pegmatoids which intrude gneisses, schists and metabasites occur in the northeastern part of half – degree sheet 209. The study aims at elevating the knowledge of economic potentials of Ta – Nb mineralization in the area and enhancing the recovery and extraction percentage of the Ta – Nb concentrates ...
Directory of Open Access Journals (Sweden)
Tariq Mahmood
2010-04-01
Full Text Available Heavy metal’s release without treatment poses a significant threat to the environment. Heavy metals are non-biodegradable and persistent. In the present study the ash of water hyacinth (Eichhornia crassipes, was used to remove six metals from aqueous solutions through biosorption. Results of batch and column experiments showed excellent adsorption capacity. Removal of lead, chromium, zinc, cadmium, copper, and nickel was 29.83, 1.263, 1.575, 3.323, 2.984 and 1.978 µgg-1, respectively. The biosorptive capacity was maximum with pH >8.00. Desorption in µgg-1 of ash for lead, chromium, zinc, cadmium, copper, and nickel was 18.10, 9.99, 11.99, 27.54, 21.09, and 3.71 respectively. Adsorption/desorption of these metals from ash showed the potential of this technology for recovery of metals for further usages. Hydrogen adsorption was also studied with a Sievert-type apparatus. Hydrogen adsorption experiments showed significant storage capacity of water hyacinth ash.
The Quality Testing of Water from Microbiology and Radioactivity
International Nuclear Information System (INIS)
Zainul Kamal; Yazid, M.; Mulyaningsih; Iim lmroatin
2002-01-01
The quality testing of well water from microbiologic and radioactivity has been done. The samples were taken from Degolan and Lodadi village, Ngemplak, Sleman. The quality testing based from standard procedure of microbiologic and environmental radioactivity. From the experimentally results showed that E. Coli in well water = 5 - 920 JPT / 100 ml, Streptococcus in well water 0 - 4 JPT /100 ml, E. Coli and Streptococcus in PAM water 0 JPT / 100 ml, radioactivity β totally in well water 0.08-0.34 Bq/l and in PAM water 0.08 - 0.31 Bq/l. From the dates required could be concluded that in microbiologically aspects the value of E. Coli and Streptococcus in well water higher than the threshold value from Health Department Rl 416/Menkes/PER/IX/1990, in radioactivity aspect lower than the threshold value from Health Department RI 416/Menkes/PER/IX/1990. (author)
Li, Kun; Jiang, Chao; Wang, Jianxing; Wei, Yuansong
2016-01-01
A combination of membrane bioreactor (MBR) and nanofiltration (NF) was tested at pilot-scale treating textile wastewater from the wastewater treatment station of a textile mill in Wuqing District of Tianjin (China). The MBR-NF process showed a much better treatment efficiency on the removal of the chemical oxygen demand, total organic carbon, color and turbidity in comparison with the conventional processes. The water recovery rate was enhanced to over 90% through the recycling of NF concentrate to the MBR, while the MBR-NF showed a stable permeate water quality that met with standards and could be directly discharged or further reused. The recycled NF concentrate caused an accumulation of refractory compounds in the MBR, which significantly influenced the treatment efficiency of the MBR. However, the sludge characteristics showed that the activated sludge activity was not obviously inhibited. The results of fluorescence spectra and molecular weight distribution indicated that those recalcitrant pollutants were mostly protein-like substances and a small amount of humic acid-like substances (650-6,000 Da), which contributed to membrane fouling of NF. Although the penetrated protein-like substances caused the residual color in NF permeate, the MBR-NF process was suitable for the advanced treatment and reclamation of textile wastewater under high water yield.
Butudom, P; Schott, H C; Davis, M W; Kobe, C A; Nielsen, B D; Eberhart, S W
2002-09-01
Because the primary stimulus for thirst is an increase in plasma tonicity, we hypothesised that dehydrated horses would drink a greater total volume of fluid voluntarily during the first hour of recovery when they were initially offered salt water. To test this hypothesis, bodyweight (bwt), fluid intake (FI) and [Na+] were measured in 6 Arabian horses offered 3 rehydration solutions. After dehydration was induced by frusemide administration (1 mg/kg bwt, i.v.) followed by 45 km treadmill exercise, water (W), 0.45% NaCl and 0.9% NaCl were offered, in a randomised order, during the initial 5 min after completing exercise. Horses were subsequently placed in a stall and further intake of plain water during the first hour of recovery was measured. By the end of exercise, horses lost 5.2 +/- 0.2, 5.6 +/- 0.3 and 5.7 +/- 0.2% (P>0.05) bwt and FI during the first 5 min of recovery was 10.5 +/- 0.7, 11.6 +/- 0.8 and 11.6 +/- 1.5 l (P>0.05) for W, 0.45% NaCl and 0.9% NaCl, respectively. After 20 min of recovery, [Na+] had decreased with W but remained unchanged from the end exercise values for both saline solutions. During the initial hour of recovery, further water intake was 0.9 +/- 0.4, 5.0 +/- 0.5 and 6.9 +/- 0.7 l (Psalt water as the initial rehydration fluid maintained an elevated [Na+] and resulted in greater total FI and recovery of bwt loss during the first hour of recovery, in comparison to offering only plain water.
International Nuclear Information System (INIS)
1999-01-01
This booklet describes a series of administrative procedures regarding the code of practice in Alberta for the release of hydrostatic test water from hydrostatic testing of petroleum liquid and gas pipelines. The topics covered include the registration process, the type and quality of water to use during the test, and the analytical methods to be used. Reporting schedule and record keeping information are also covered. Schedule 1 discusses the requirements for the release of hydrostatic test water to land, while Schedule 2 describes the requirements for the release of hydrostatic test water to receiving water. 3 tabs
Werner, Craig M.
2014-06-01
Wastewater treatment is energy intensive, with modern wastewater treatment processes consuming 0.6 kWh/m3 of water treated, half of which is required for aeration. Considering that wastewater contains approximately 2 kWh/m3 of energy and represents a reliable alternative