WorldWideScience

Sample records for water reactors results

  1. Light water reactor safety

    CERN Document Server

    Pershagen, B

    2013-01-01

    This book describes the principles and practices of reactor safety as applied to the design, regulation and operation of light water reactors, combining a historical approach with an up-to-date account of the safety, technology and operating experience of both pressurized water reactors and boiling water reactors. The introductory chapters set out the basic facts upon which the safety of light water reactors depend. The central section is devoted to the methods and results of safety analysis. The accidents at Three Mile Island and Chernobyl are reviewed and their implications for light wate

  2. Recent results of research on supercritical water-cooled reactors in Europe

    Energy Technology Data Exchange (ETDEWEB)

    Starflinger, J.; Koehly, C.; Schulenberg, T. [Forschungszentrum Karlsruhe, Karlsruhe (Germany); Maraczy, C. [AEKI-KFKI, Budapest (Hungary); Toivonen, A.; Penttila, S. [VTT Technical Research Centre, Espoo (Finland); Chandra, L.; Lycklama a Nijeholt, J.A. [Nuclear Research and Consultancy Group (NRG), Petten (Netherlands)

    2009-07-01

    In Europe, the research on Supercritical Water-Cooled Reactors is integrated in a project called 'High Performance Light Water Reactor Phase 2' (HPLWR Phase 2), co-funded by the European Commission. Ten partners and three active supporters are working on critical scientific issues to determine the potential of this reactor concept in the electricity market. The recent design of the HPLWR including flow paths is described in this paper. Exemplarily, design analyses are presented addressing neutronics, thermal-hydraulics, thermo-mechanics, materials investigations and heat transfer. (author)

  3. WATER BOILER REACTOR

    Science.gov (United States)

    King, L.D.P.

    1960-11-22

    As its name implies, this reactor utilizes an aqueous solution of a fissionable element salt, and is also conventional in that it contains a heat exchanger cooling coil immersed in the fuel. Its novelty lies in the utilization of a cylindrical reactor vessel to provide a critical region having a large and constant interface with a supernatant vapor region, and the use of a hollow sleeve coolant member suspended from the cover assembly in coaxial relation with the reactor vessel. Cool water is circulated inside this hollow coolant member, and a gap between its outer wall and the reactor vessel is used to carry off radiolytic gases for recombination in an external catalyst chamber. The central passage of the coolant member defines a reflux condenser passage into which the externally recombined gases are returned and condensed. The large and constant interface between fuel solution and vapor region prevents the formation of large bubbles and minimizes the amount of fuel salt carried off by water vapor, thus making possible higher flux densities, specific powers and power densities.

  4. Standard Practice for Analysis and Interpretation of Light-Water Reactor Surveillance Results, E706(IA)

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2001-01-01

    1.1 This practice covers the methodology, summarized in Annex A1, to be used in the analysis and interpretation of neutron exposure data obtained from LWR pressure vessel surveillance programs; and, based on the results of that analysis, establishes a formalism to be used to evaluate present and future condition of the pressure vessel and its support structures (1-70). 1.2 This practice relies on, and ties together, the application of several supporting ASTM standard practices, guides, and methods (see Master Matrix E 706) (1, 5, 13, 48, 49). In order to make this practice at least partially self-contained, a moderate amount of discussion is provided in areas relating to ASTM and other documents. Support subject areas that are discussed include reactor physics calculations, dosimeter selection and analysis, and exposure units. Note 1—(Figure 1 is deleted in the latest update. The user is refered to Master Matrix E 706 for the latest figure of the standards interconnectivity). 1.3 This practice is restri...

  5. Cleaning natural water in the clarifier reactor

    Science.gov (United States)

    Skolubovich, Yuriy; Skolubovich, Aleksandr; Voitov, Evgeniy; Soppa, Mikhail; Chirkunov, Yuriy

    2017-10-01

    The problems of cleaning low turbidity high-color surface waters for drinking water supply are considered. A new design of the clarifier reactor is proposed, which increases the efficiency of water purification and at the same time reduces its operating costs. A detailed description of clarifier reactor design and its operation is given. The study results of the clarifier reactor operation in real conditions for the purification of low turbidity high-color waters are shown. Due to the weighted layer of dense loading use in a process of water purification, the structure productivity can be increased by 2-3 times in comparison with conventional clarifiers with suspended sediment. Using reagents for water purification, the clarifier reactor, due to the processes of contact coagulation, allows reducing the consumption of reagents up to 50%. Investigations of the clarifier reactor operation in technological schemes for various waters purification, including sewage, showed their effectiveness and prospects.

  6. Thermal-Hydraulic Results for the Boiling Water Reactor Dry Cask Simulator.

    Energy Technology Data Exchange (ETDEWEB)

    Durbin, Samuel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lindgren, Eric R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2017-09-01

    single assembly geometry with well-controlled boundary conditions simplified interpretation of results. Two different arrangements of ducting were used to mimic conditions for aboveground and belowground storage configurations for vertical, dry cask systems with canisters. Transverse and axial temperature profiles were measured throughout the test assembly. The induced air mass flow rate was measured for both the aboveground and belowground configurations. In addition, the impact of cross-wind conditions on the belowground configuration was quantified. Over 40 unique data sets were collected and analyzed for these efforts. Fourteen data sets for the aboveground configuration were recorded for powers and internal pressures ranging from 0.5 to 5.0 kW and 0.3 to 800 kPa absolute, respectively. Similarly, fourteen data sets were logged for the belowground configuration starting at ambient conditions and concluding with thermal-hydraulic steady state. Over thirteen tests were conducted using a custom-built wind machine. The results documented in this report highlight a small, but representative, subset of the available data from this test series. This addition to the dry cask experimental database signifies a substantial addition of first-of-a-kind, high-fidelity transient and steady-state thermal-hydraulic data sets suitable for CFD model validation.

  7. CHIMNEY FOR BOILING WATER REACTOR

    Science.gov (United States)

    Petrick, M.

    1961-08-01

    A boiling-water reactor is described which has vertical fuel-containing channels for forming steam from water. Risers above the channels increase the head of water radially outward, whereby water is moved upward through the channels with greater force. The risers are concentric and the radial width of the space between them is somewhat small. There is a relatively low rate of flow of water up through the radially outer fuel-containing channels, with which the space between the risers is in communication. (AE C)

  8. HEAVY WATER MODERATED NEUTRONIC REACTOR

    Science.gov (United States)

    Szilard, L.

    1958-04-29

    A nuclear reactor of the type which utilizes uranium fuel elements and a liquid coolant is described. The fuel elements are in the form of elongated tubes and are disposed within outer tubes extending through a tank containing heavy water, which acts as a moderator. The ends of the fuel tubes are connected by inlet and discharge headers, and liquid bismuth is circulated between the headers and through the fuel tubes for cooling. Helium is circulated through the annular space between the outer tubes in the tank and the fuel tubes to cool the water moderator to prevent boiling. The fuel tubes are covered with a steel lining, and suitable control means, heat exchange means, and pumping means for the coolants are provided to complete the reactor assembly.

  9. BOILING WATER REACTOR WITH FEED WATER INJECTION NOZZLES

    Science.gov (United States)

    Treshow, M.

    1963-04-30

    This patent covers the use of injection nozzles for pumping water into the lower ends of reactor fuel tubes in which water is converted directly to steam. Pumping water through fuel tubes of this type of boiling water reactor increases its power. The injection nozzles decrease the size of pump needed, because the pump handles only the water going through the nozzles, additional water being sucked into the tubes by the nozzles independently of the pump from the exterior body of water in which the fuel tubes are immersed. The resulting movement of exterior water along the tubes holds down steam formation, and thus maintains the moderator effectiveness, of the exterior body of water. (AEC)

  10. HEAVY WATER COMPONENTS TEST REACTOR DECOMMISSIONING

    Energy Technology Data Exchange (ETDEWEB)

    Austin, W.; Brinkley, D.

    2011-10-13

    The Heavy Water Components Test Reactor (HWCTR) Decommissioning Project was initiated in 2009 as a Comprehensive Environmental Response, Compensation and Liability Act (CERCLA) Removal Action with funding from the American Recovery and Reinvestment Act (ARRA). This paper summarizes the history prior to 2009, the major D&D activities, and final end state of the facility at completion of decommissioning in June 2011. The HWCTR facility was built in 1961, operated from 1962 to 1964, and is located in the northwest quadrant of the Savannah River Site (SRS) approximately three miles from the site boundary. The HWCTR was a pressurized heavy water test reactor used to develop candidate fuel designs for heavy water power reactors. In December of 1964, operations were terminated and the facility was placed in a standby condition as a result of the decision by the U.S. Atomic Energy Commission to redirect research and development work on heavy water power reactors to reactors cooled with organic materials. For about one year, site personnel maintained the facility in a standby status, and then retired the reactor in place. In the early 1990s, DOE began planning to decommission HWCTR. Yet, in the face of new budget constraints, DOE deferred dismantlement and placed HWCTR in an extended surveillance and maintenance mode. The doors of the reactor facility were welded shut to protect workers and discourage intruders. In 2009 the $1.6 billion allocation from the ARRA to SRS for site footprint reduction at SRS reopened the doors to HWCTR - this time for final decommissioning. Alternative studies concluded that the most environmentally safe, cost effective option for final decommissioning was to remove the reactor vessel, both steam generators, and all equipment above grade including the dome. The transfer coffin, originally above grade, was to be placed in the cavity vacated by the reactor vessel and the remaining below grade spaces would be grouted. Once all above equipment

  11. SUPERHEATING IN A BOILING WATER REACTOR

    Science.gov (United States)

    Treshow, M.

    1960-05-31

    A boiling-water reactor is described in which the steam developed in the reactor is superheated in the reactor. This is accomplished by providing means for separating the steam from the water and passing the steam over a surface of the fissionable material which is not in contact with the water. Specifically water is boiled on the outside of tubular fuel elements and the steam is superheated on the inside of the fuel elements.

  12. Instrumentation and control strategies for an integral pressurized water reactor

    Directory of Open Access Journals (Sweden)

    Belle R. Upadhyaya

    2015-03-01

    Full Text Available Several vendors have recently been actively pursuing the development of integral pressurized water reactors (iPWRs that range in power levels from small to large reactors. Integral reactors have the features of minimum vessel penetrations, passive heat removal after reactor shutdown, and modular construction that allow fast plant integration and a secure fuel cycle. The features of an integral reactor limit the options for placing control and safety system instruments. The development of instrumentation and control (I&C strategies for a large 1,000 MWe iPWR is described. Reactor system modeling—which includes reactor core dynamics, primary heat exchanger, and the steam flashing drum—is an important part of I&C development and validation, and thereby consolidates the overall implementation for a large iPWR. The results of simulation models, control development, and instrumentation features illustrate the systematic approach that is applicable to integral light water reactors.

  13. Coolant mixing in pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hoehne, T.; Grunwald, G.

    1998-10-01

    The behavior of PWRs during cold water or boron dilution transients is strongly influenced by the distribution of coolant temperature and boron concentration at the core inlet. This distribution is the needed input to 3-dimensional neutron kinetics to calculate the power distribution in the core. It mainly depends on how the plugs of cold or unborated water formed in a single loop are mixed in the downcomer and in the lower plenum. To simulate such mixture phenomena requires the application of 3-dimensional CFD (computational fluid dynamics) codes. The results of the simulation have to be validated against mixture experiments at scaled facilities. Therefore, in the framework of a research project funded by BMBF, the institute creates a 1:5 mixture facility representing first the geometry of a German pressurized water reactor and later the European Pressurized Water Reactor (EPR) geometry. The calculations are based on the CFD Code CFX-4. (orig.)

  14. Light Water Reactor Sustainability Program: Computer-Based Procedures for Field Activities: Results from Three Evaluations at Nuclear Power Plants

    Energy Technology Data Exchange (ETDEWEB)

    Oxstrand, Johanna [Idaho National Lab. (INL), Idaho Falls, ID (United States); Le Blanc, Katya [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bly, Aaron [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    The Computer-Based Procedure (CBP) research effort is a part of the Light-Water Reactor Sustainability (LWRS) Program, which is a research and development (R&D) program sponsored by Department of Energy (DOE) and performed in close collaboration with industry R&D programs that provides the technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants. One of the primary missions of the LWRS program is to help the U.S. nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. One area that could yield tremendous savings in increased efficiency and safety is in improving procedure use. Nearly all activities in the nuclear power industry are guided by procedures, which today are printed and executed on paper. This paper-based procedure process has proven to ensure safety; however, there are improvements to be gained. Due to its inherent dynamic nature, a CBP provides the opportunity to incorporate context driven job aids, such as drawings, photos, and just-in-time training. Compared to the static state of paper-based procedures (PBPs), the presentation of information in CBPs can be much more flexible and tailored to the task, actual plant condition, and operation mode. The dynamic presentation of the procedure will guide the user down the path of relevant steps, thus minimizing time spent by the field worker to evaluate plant conditions and decisions related to the applicability of each step. This dynamic presentation of the procedure also minimizes the risk of conducting steps out of order and/or incorrectly assessed applicability of steps.

  15. Supercritical-pressure light water cooled reactors

    CERN Document Server

    Oka, Yoshiaki

    2014-01-01

    This book focuses on the latest reactor concepts, single pass core and experimental findings in thermal hydraulics, materials, corrosion, and water chemistry. It highlights research on supercritical-pressure light water cooled reactors (SCWRs), one of the Generation IV reactors that are studied around the world. This book includes cladding material development and experimental findings on heat transfer, corrosion and water chemistry. The work presented here will help readers to understand the fundamental elements of reactor design and analysis methods, thermal hydraulics, materials and water

  16. Advances in light water reactor technologies

    CERN Document Server

    Saito, Takehiko; Ishiwatari, Yuki; Oka, Yoshiaki

    2010-01-01

    ""Advances in Light Water Reactor Technologies"" focuses on the design and analysis of advanced nuclear power reactors. This volume provides readers with thorough descriptions of the general characteristics of various advanced light water reactors currently being developed worldwide. Safety, design, development and maintenance of these reactors is the main focus, with key technologies like full MOX core design, next-generation digital I&C systems and seismic design and evaluation described at length. This book is ideal for researchers and engineers working in nuclear power that are interested

  17. Results of the Nucifer reactor neutrino experiment

    Energy Technology Data Exchange (ETDEWEB)

    Buck, Christian; Lindner, Manfred [MPIK Heidelberg (Germany)

    2016-07-01

    Nuclear reactors are a strong and pure source of electron antineutrinos. With neutrino experiments close to compact reactor cores new insights into neutrino properties and reactor physics can be obtained. The Nucifer experiment is one of the pioneers in this class of very short baseline projects. Its detector to reactor distance is only about 7 m. The data obtained in the last years allowed to estimate the plutonium concentration in the reactor core by the neutrino flux measurement. This is of interest for safeguard applications and non proliferation efforts. The antineutrinos in Nucifer are detected via the inverse beta decay on free protons. Those Hydrogen nuclei are provided by 850 liters of organic liquid scintillator. For higher detection efficiency and background reduction the liquid is loaded with Gadolinium. Despite all shielding efforts and veto systems the background induced by the reactor activity and cosmogenic particles is still the main challenge in the experiment. The principle of the Nucifer detector is similar to the needs of upcoming experiments searching for sterile neutrinos. Therefore, the Nucifer results are also valuable input for the understanding and optimization of those next generation projects. The observation of sterile neutrinos would imply new physics beyond the standard model.

  18. Comparison of depletion results for a boiling water reactor fuel element with CASMO and SCALE 6.1 (TRITON/NEWT)

    Energy Technology Data Exchange (ETDEWEB)

    Mesado, C.; Morera, D.; Miro, R.; Barrachina, T.; Verdu, G., E-mail: cmesado@isirym.upv.es, E-mail: dmorera@isirym.upv.es, E-mail: rmiro@isirym.upv.es, E-mail: tbarrachina@isirym.upv.es, E-mail: gverdu@isirym.upv.es [Universitat Politecnica de Valencia (UPV), Valencia (Spain). Institute for the Industrial, Radiophysical and Environmental Safety; Concejal, Alberto, E-mail: acbe@iberdrola.es [Iberdrola Ingenieria y Construcion, S.A.U, Madrid (Spain); Soler, Amparo, E-mail: asoler@iberdrola.es [SEA Propulsion S. L., Madrid (Spain); Melara, Jose, E-mail: j.melara@iberdrola.es [Iberdrola Generacion Nuclear, Madrid (Spain)

    2013-07-01

    In this work, the results of depletion calculations with CASMO and SCALE 6.1 (TRITON) are compared. To achieve it, a region of a Boiling Water Reactor (BWR) fuel element is modeled, using both codes. To take into account different operating conditions, the simulations are repeated with different void fraction, ranging from null void fraction to a void fraction closed to one. Special care was used to keep in mind that the homogenization of the materials and the two group approach was the same in both codes. Additionally, KENO-VI and MCDANCOFF modules are used. The k-effective calculated by KENO-VI is used to ensure that the starting point was correct and MCDANCOFF module is used to calculate the Dancoff factors in order to improve the model accuracy. To validate the whole process, a comparison of k{sub eff}, and cross-sections collapsed and homogenized is shown. The results show a very good agreement, with an average error around the 1.75%. Furthermore, an automatic process for translating CASMO data to SCALE input decks was developed. The reason for the translation is the fact that SCALE's TRITON module is a new code very powerful and continuously being developed. Thus, great advantage can be taken from the current and future SCALE features. This is hoped to produce more realistic models, and hence, increase the accuracy of neutronic libraries. (author)

  19. Materials for high performance light water reactors

    Science.gov (United States)

    Ehrlich, K.; Konys, J.; Heikinheimo, L.

    2004-05-01

    A state-of-the-art study was performed to investigate the operational conditions for in-core and out-of-core materials in a high performance light water reactor (HPLWR) and to evaluate the potential of existing structural materials for application in fuel elements, core structures and out-of-core components. In the conventional parts of a HPLWR-plant the approved materials of supercritical fossil power plants (SCFPP) can be used for given temperatures (⩽600 °C) and pressures (≈250 bar). These are either commercial ferritic/martensitic or austenitic stainless steels. Taking the conditions of existing light water reactors (LWR) into account an assessment of potential cladding materials was made, based on existing creep-rupture data, an extensive analysis of the corrosion in conventional steam power plants and available information on material behaviour under irradiation. As a major result it is shown that for an assumed maximum temperature of 650 °C not only Ni-alloys, but also austenitic stainless steels can be used as cladding materials.

  20. Self-Sustaining Thorium Boiling Water Reactors

    Directory of Open Access Journals (Sweden)

    Ehud Greenspan

    2012-10-01

    Full Text Available A thorium-fueled water-cooled reactor core design approach that features a radially uniform composition of fuel rods in stationary fuel assembly and is fuel-self-sustaining is described. This core design concept is similar to the Reduced moderation Boiling Water Reactor (RBWR proposed by Hitachi to fit within an ABWR pressure vessel, with the following exceptions: use of thorium instead of depleted uranium for the fertile fuel; elimination of the internal blanket; and elimination of absorbers from the axial reflectors, while increasing the length of the fissile zone. The preliminary analysis indicates that it is feasible to design such cores to be fuel-self-sustaining and to have a comfortably low peak linear heat generation rate when operating at the nominal ABWR power level of nearly 4000 MWth. However, the void reactivity feedback tends to be too negative, making it difficult to have sufficient shutdown reactivity margin at cold zero power condition. An addition of a small amount of plutonium from LWR used nuclear fuel was found effective in reducing the magnitude of the negative void reactivity effect and enables attaining adequate shutdown reactivity margin; it also flattens the axial power distribution. The resulting design concept offers an efficient incineration of the LWR generated plutonium in addition to effective utilization of thorium. Additional R&D is required in order to arrive at a reliable practical and safe design.

  1. Fluid flow separation in a reactor pressure vessel during an ECC injection. Single phase flow and two phase flow (air-water) experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Thierry Bichet; Alain Martin [EDF - Research and Development Division - Fluid Mechanics and Heat Transfert 6, quai Watier - B.P. 49 - 78401 Chatou CEDEX 01 (France); Frederic Beaud [EDF/ Industry - Basic Design Department., 12-14, Avenue Dutrievoz 69628 Villeurbanne CEDEX (France)

    2005-07-01

    Full text of publication follows: Within the framework of the nuclear power plant lifetime issue, the assessment of the French 900 MWe (3-loops) series reactor pressure vessel (RPV) integrity has been performed. A simplified analysis has shown that the most severe loading conditions are given by the small break loss of coolant accidents due to the pressurized injection of cold water (9 deg. C) into the cold leg and down comer of the RPV. During these transient scenarios, single or two-phase (uncovered cold leg) flows have been shown in the cold leg, depending on the crack size and RPV model (900 MWe or 1300 MWe). An experimental study has been carried out, on the one hand, to consolidate the numerical results obtained with CFD home code (Code-Saturne) which mainly showed the stratified flow in the cold leg and the fluid flow separation and its oscillations in the down comer during a single phase scenario. These physical phenomena are important for the thermal RPV loading assessment. On the other hand, the absence of experimental two-phase data necessitated to carry out an experimental study around the mixing area behavior (free surface, stratified flow) during an ECC injection with an uncovered cold leg. The new EDF R and D mock up, called HYBISCUS, is a facility which is made out of Plexiglas (atmosphere pressure) and represents a half scale CP0 geometry with one cold leg and part of the down comer. The mock up modularity allows us to insert representative ECC nozzles and a thermal shield. In reference to the reactor scenarios, the experimental operating conditions are derived from the conservation of the density effects (Froude number). For that, a heated salted water flow is used to represent the ECC injection whereas water represents the cold leg fluid. This mock up has been defined in order to represent single phase flow (cold leg and down comer full of water) or two-phase flow (uncovered cold leg) ECC scenarios. This paper reports experimental results

  2. SELF-REGULATING BOILING-WATER NUCLEAR REACTORS

    Science.gov (United States)

    Ransohoff, J.A.; Plawchan, J.D.

    1960-08-16

    A boiling-water reactor was designed which comprises a pressure vessel containing a mass of water, a reactor core submerged within the water, a reflector tank disposed within the reactor, the reflector tank being open at the top to the interior of the pressure vessel, and a surge tank connected to the reflector tank. In operation the reflector level changes as a function of the pressure witoin the reactor so that the reactivity of the reactor is automatically controlled.

  3. Light water reactor lower head failure analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rempe, J.L.; Chavez, S.A.; Thinnes, G.L. [EG and G Idaho, Inc., Idaho Falls, ID (United States)] [and others

    1993-10-01

    This document presents the results from a US Nuclear Regulatory Commission-sponsored research program to investigate the mode and timing of vessel lower head failure. Major objectives of the analysis were to identify plausible failure mechanisms and to develop a method for determining which failure mode would occur first in different light water reactor designs and accident conditions. Failure mechanisms, such as tube ejection, tube rupture, global vessel failure, and localized vessel creep rupture, were studied. Newly developed models and existing models were applied to predict which failure mechanism would occur first in various severe accident scenarios. So that a broader range of conditions could be considered simultaneously, calculations relied heavily on models with closed-form or simplified numerical solution techniques. Finite element techniques-were employed for analytical model verification and examining more detailed phenomena. High-temperature creep and tensile data were obtained for predicting vessel and penetration structural response.

  4. Advanced reactor design study. Assessing nonbackfittable concepts for improving uranium utilization in light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Fleischman, R.M.; Goldsmith, S.; Newman, D.F.; Trapp, T.J.; Spinrad, B.I.

    1981-09-01

    The objective of the Advanced Reactor Design Study (ARDS) is to identify and evaluate nonbackfittable concepts for improving uranium utilization in light water reactors (LWRs). The results of this study provide a basis for selecting and demonstrating specific nonbackfittable concepts that have good potential for implementation. Lead responsibility for managing the study was assigned to the Pacific Northwest Laboratory (PNL). Nonbackfittable concepts for improving uranium utilization in LWRs on the once-through fuel cycle were selected separately for PWRs and BWRs due to basic differences in the way specific concepts apply to those plants. Nonbackfittable concepts are those that are too costly to incorporate in existing plants, and thus, could only be economically incorporated in new reactor designs or plants in very early stages of construction. Essential results of the Advanced Reactor Design Study are summarized.

  5. European research and actual results in the project ''high performance light water reactors phase 2''; Europaeische Forschung und aktuelle Ergebnisse im Projekt ''High Performance Light Water Reactor Phase 2''

    Energy Technology Data Exchange (ETDEWEB)

    Starflinger, J.; Schulenberg, T. [Karlsruher Institut fuer Technologie (KIT), Karlsruhe (DE). Inst. fuer Kern- und Energietechnik (IKET)

    2010-05-15

    The high performance light water reactor (HPLWR) is a LWR working with supercritical water as coolant medium and moderator. The operational pressure is 25 MPa and the fresh steam temperatures are above 500 C, resulting in a significantly higher turbine power and an enhanced efficiency It is expected the electricity production cost will be lower than those of conventional LWR. Phase two included a feasibility study of the HPLWR. The work packages are: design and integration, core design, safety, materials, heat transfer, education and dissemination, and management. The authors describe the actual results in the frame of these work packages.

  6. Hydrogen and water reactor safety: proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    Separate abstracts were prepared for papers presented in the following areas of interest: 1) hydrogen research programs; 2) hydrogen behavior during light water reactor accidents; 3) combustible gas generation; 4) hydrogen transport and mixing; 5) combustion modeling and experiments; 6) accelerated flames and detonations; 7) combustion mitigation and control; and 8) equipment survivability.

  7. Light-water reactor accident classification

    Energy Technology Data Exchange (ETDEWEB)

    Washburn, B.W.

    1980-02-01

    The evolution of existing classifications and definitions of light-water reactor accidents is considered. Licensing practice and licensing trends are examined with respect to terms of art such as Class 8 and Class 9 accidents. Interim definitions, consistent with current licensing practice and the regulations, are proposed for these terms of art.

  8. Design of virtual SCADA simulation system for pressurized water reactor

    Science.gov (United States)

    Wijaksono, Umar; Abdullah, Ade Gafar; Hakim, Dadang Lukman

    2016-02-01

    The Virtual SCADA system is a software-based Human-Machine Interface that can visualize the process of a plant. This paper described the results of the virtual SCADA system design that aims to recognize the principle of the Nuclear Power Plant type Pressurized Water Reactor. This simulation uses technical data of the Nuclear Power Plant Unit Olkiluoto 3 in Finland. This device was developed using Wonderware Intouch, which is equipped with manual books for each component, animation links, alarm systems, real time and historical trending, and security system. The results showed that in general this device can demonstrate clearly the principles of energy flow and energy conversion processes in Pressurized Water Reactors. This virtual SCADA simulation system can be used as instructional media to recognize the principle of Pressurized Water Reactor.

  9. Design of virtual SCADA simulation system for pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wijaksono, Umar, E-mail: umar.wijaksono@student.upi.edu; Abdullah, Ade Gafar; Hakim, Dadang Lukman [Electrical Power System Research Group, Department of Electrical Engineering Education, Jl. Dr. Setiabudi No. 207 Bandung, Indonesia 40154 (Indonesia)

    2016-02-08

    The Virtual SCADA system is a software-based Human-Machine Interface that can visualize the process of a plant. This paper described the results of the virtual SCADA system design that aims to recognize the principle of the Nuclear Power Plant type Pressurized Water Reactor. This simulation uses technical data of the Nuclear Power Plant Unit Olkiluoto 3 in Finland. This device was developed using Wonderware Intouch, which is equipped with manual books for each component, animation links, alarm systems, real time and historical trending, and security system. The results showed that in general this device can demonstrate clearly the principles of energy flow and energy conversion processes in Pressurized Water Reactors. This virtual SCADA simulation system can be used as instructional media to recognize the principle of Pressurized Water Reactor.

  10. Electrochemistry of Water-Cooled Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Macdonald, Dgiby; Urquidi-Macdonald, Mirna; Pitt, Jonathan

    2006-08-08

    This project developed a comprehensive mathematical and simulation model for calculating thermal hydraulic, electrochemical, and corrosion parameters, viz. temperature, fluid flow velocity, pH, corrosion potential, hydrogen injection, oxygen contamination, stress corrosion cracking, crack growth rate, and other important quantities in the coolant circuits of water-cooled nuclear power plants, including both Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). The model is being used to assess the three major operational problems in Pressurized Water Reactors (PWR), which include mass transport, activity transport, and the axial offset anomaly, and provide a powerful tool for predicting the accumulation of SCC damage in BWR primary coolant circuits as a function of operating history. Another achievement of the project is the development of a simulation tool to serve both as a training tool for plant operators and as an engineering test-bed to evaluate new equipment and operating strategies (normal operation, cold shut down and others). The development and implementation of the model allows us to estimate the activity transport or "radiation fields" around the primary loop and the vessel, as a function of the operating parameters and the water chemistry.

  11. Heavy Water Components Test Reactor Decommissioning - Major Component Removal

    Energy Technology Data Exchange (ETDEWEB)

    Austin, W.; Brinkley, D.

    2010-05-05

    The Heavy Water Components Test Reactor (HWCTR) facility (Figure 1) was built in 1961, operated from 1962 to 1964, and is located in the northwest quadrant of the Savannah River Site (SRS) approximately three miles from the site boundary. The HWCTR facility is on high, well-drained ground, about 30 meters above the water table. The HWCTR was a pressurized heavy water test reactor used to develop candidate fuel designs for heavy water power reactors. It was not a defense-related facility like the materials production reactors at SRS. The reactor was moderated with heavy water and was rated at 50 megawatts thermal power. In December of 1964, operations were terminated and the facility was placed in a standby condition as a result of the decision by the U.S. Atomic Energy Commission to redirect research and development work on heavy water power reactors to reactors cooled with organic materials. For about one year, site personnel maintained the facility in a standby status, and then retired the reactor in place. In 1965, fuel assemblies were removed, systems that contained heavy water were drained, fluid piping systems were drained, deenergized and disconnected and the spent fuel basin was drained and dried. The doors of the reactor facility were shut and it wasn't until 10 years later that decommissioning plans were considered and ultimately postponed due to budget constraints. In the early 1990s, DOE began planning to decommission HWCTR again. Yet, in the face of new budget constraints, DOE deferred dismantlement and placed HWCTR in an extended surveillance and maintenance mode. The doors of the reactor facility were welded shut to protect workers and discourage intruders. The $1.6 billion allocation from the American Recovery and Reinvestment Act to SRS for site clean up at SRS has opened the doors to the HWCTR again - this time for final decommissioning. During the lifetime of HWCTR, 36 different fuel assemblies were tested in the facility. Ten of these

  12. Light water reactor fuel response during reactivity initiated accident experiments

    Energy Technology Data Exchange (ETDEWEB)

    MacDonald, P. E.; McCardell, R. K.; Martinson, Z. R.; Seiffert, S. L.

    1979-01-01

    Experimental results from six recent Power Burst Facility (PBF) reactivity initiated accident (RIA) tests are compared with data from previous Special Power Excursion Reactor Test (SPERT), and Japanese Nuclear Safety Research Reactor (NSRR) tests. The RIA fuel behavior experimental program recently started in the PBF is being conducted with coolant conditions typical of hot-startup conditions in a commercial boiling water reactor. The SPERT and NSRR test programs investigated the behavior of single or small clusters of light water reactor (LWR) type fuel rods under approximate room temperature and atmospheric pressure conditions in capsules containing stagnant water. As observed in the SPERT and NSRR tests, energy deposition, and consequent enthalpy increase in the PBF test fuel, appears to be the single most important variable. However, the consequences of failure at boiling water hot-startup system conditions appear to be more severe than previously observed in either the stagnant capsule SPERT or NSRR tests. Metallographic examination of both previously unirradiated and irradiated PBF fuel rod cross sections revealed extensive variation in cladding wall thicknesses (involving considerable plastic flow) and fuel shattering along grain boundaries in both restructured and unrestructured fuel regions. Oxidation of the cladding resulted in fracture at the location of cladding thinning and disintegration of the rods during quench. In addition,swelling of the gaseous and potentially volatile fission products in previously irradiated fuel resulted in volume increases of up to 180% and blockage of the coolant channels within the flow shrouds surrounding the fuel rods.

  13. Environmentally assisted cracking in light water reactors.

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, O. K.; Chung, H. M.; Clark, R. W.; Gruber, E. E.; Shack, W. J.; Soppet, W. K.; Strain, R. V.

    2007-11-06

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors (LWRs) from January to December 2002. Topics that have been investigated include: (a) environmental effects on fatigue crack initiation in carbon and low-alloy steels and austenitic stainless steels (SSs), (b) irradiation-assisted stress corrosion cracking (IASCC) of austenitic SSs in BWRs, (c) evaluation of causes and mechanisms of irradiation-assisted cracking of austenitic SS in PWRs, and (d) cracking in Ni-alloys and welds. A critical review of the ASME Code fatigue design margins and an assessment of the conservation in the current choice of design margins are presented. The existing fatigue {var_epsilon}-N data have been evaluated to define the effects of key material, loading, and environmental parameters on the fatigue lives of carbon and low-alloy steels and austenitic SSs. Experimental data are presented on the effects of surface roughness on fatigue crack initiation in these materials in air and LWR environments. Crack growth tests were performed in BWR environments on SSs irradiated to 0.9 and 2.0 x 10{sup 21} n x cm{sup -2}. The crack growth rates (CGRs) of the irradiated steels are a factor of {approx}5 higher than the disposition curve proposed in NUREG-0313 for thermally sensitized materials. The CGRs decreased by an order of magnitude in low-dissolved oxygen (DO) environments. Slow-strain-rate tensile (SSRT) tests were conducted in high-purity 289 C water on steels irradiated to {approx}3 dpa. The bulk S content correlated well with the susceptibility to intergranular SCC in 289 C water. The IASCC susceptibility of SSs that contain >0.003 wt. % S increased drastically. bend tests in inert environments at 23 C were conducted on broken pieces of SSRT specimens and on unirradiated specimens of the same materials after hydrogen charging. The results of the tests and a review of other data in the literature

  14. Fast reactor cooled by supercritical light water

    Energy Technology Data Exchange (ETDEWEB)

    Ishiwatari, Yuki; Mukouhara, Tami; Koshizuka, Seiichi; Oka, Yoshiaki [Tokyo Univ., Nuclear Engineering Research Lab., Tokai, Ibaraki (Japan)

    2001-09-01

    This report introduces the result of a feasibility study of a fast reactor cooled by supercritical light water (SCFR) with once-through cooling system. It is characterized by (1) no need of steam separator, recirculation system, or steam generator, (2) 1/7 of core flow rate compared with BWR or PWR, (3) high temperature and high pressure permits small turbine and high efficiency exceeding 44%, (4) structure and operation of major components are already experienced by LWRs or thermal power plants. Modification such as reducing blanket fuels and increasing seed fuels are made to achieve highly economic utilization of Pu and high power (2 GWe). The following restrictions were satisfied. (1) Maximum linear heat rate 39 kW/m, (2) Maximum surface temperature of Inconel cladding 620degC, (3) Negative void reactivity coefficient, (4) Fast neutron irradiation rate at the inner surface of pressure vessel less than 2.0x10{sup 19} n/cm{sup 2}. Thus the high power density of 167 MW/m{sup 3} including blanket is thought to contributes economy. The high conversion is attained to be 0.99 Pu fission residual rate by the outer radius of fuel rod of 0.88 mm. The breeding of 1.034 by Pu fission residual rate can be achieved by using briquette (tube-in-shell) type fuel structure. (K. Tsuchihashi)

  15. Boiling water neutronic reactor incorporating a process inherent safety design

    Science.gov (United States)

    Forsberg, C.W.

    1985-02-19

    A boiling-water reactor core is positioned within a prestressed concrete reactor vessel of a size which will hold a supply of coolant water sufficient to submerge and cool the reactor core by boiling for a period of at least one week after shutdown. Separate volumes of hot, clean (nonborated) water for cooling during normal operation and cool highly borated water for emergency cooling and reactor shutdown are separated by an insulated wall during normal reactor operation with contact between the two water volumes being maintained at interfaces near the top and bottom ends of the reactor vessel. Means are provided for balancing the pressure of the two water volumes at the lower interface zone during normal operation to prevent entry of the cool borated water into the reactor core region, for detecting the onset of excessive power to coolant flow conditions in the reactor core and for detecting low water levels of reactor coolant. Cool borated water is permitted to flow into the reactor core when low reactor coolant levels or excessive power to coolant flow conditions are encountered.

  16. Production test IP-750 raw water as a reactor coolant. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Frymier, J.W.; Geier, R.G.

    1966-08-10

    Approximately ten years ago single-tube tests demonstrated the feasibility of using unfiltered river water as a reactor coolant from the standpoint of aluminum corrosion and film formation. However, some effluent activity penalty was indicated. Inasmuch as both current water plant operation and the characteristics of Columbia River water have changed, it was deemed appropriate to reinvestigate the use of partially treated water as a reactor coolant. This report summarizes the results of a half-reactor test carried out at F Reactor.

  17. Reactor core and plant design concepts of the Canadian supercritical water-cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yetisir, M.; Gaudet, M.; Bailey, J.; Rhodes, D.; Guzonas, D.; Hamilton, H.; Haque, Z.; Pencer, J.; Sartipi, A. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    Canada is developing a 1200 MWe supercritical water-cooled reactor (SCWR), which has evolved from the well-established pressure-tube type CANDU{sup 1} reactor. This SCWR reactor concept, which is often referred to as the Canadian SCWR, uses supercritical water as a coolant, has a low-pressure heavy water moderator and a direct cycle for power production. The reactor concept incorporates advanced safety features, such as passive emergency core cooling, long-term decay heat rejection to the environment and fuel melt prevention via passive moderator cooling. These features significantly reduce the core damage frequency beyond existing nuclear reactors. This paper presents a description of the Canadian SCWR core design concept, the integration of in-core and out-of-core components and the mechanical plant design concept. Supporting systems for reactor safety, reactor control and moderator cooling are also described. (author)

  18. Is light water reactor technology sustainable?

    Energy Technology Data Exchange (ETDEWEB)

    Rothwell, G. [Stanford Univ., Dept. of Economics, CA (United States); Van der Zwaan, B. [Vrije Univ., Amsterdam, Inst. for Environmental Studies (Netherlands)

    2001-07-01

    This paper proposes criteria for determining ''intermediate sustainability'' over a 500-year horizon. We apply these criteria to Light Water Reactor (LWR) technology and the LWR industry. We conclude that LWR technology does not violate intermediate sustainability criteria for (1) environmental externalities, (2) worker and public health and safety, or (3) accidental radioactive release. However, it does not meet criteria to (1) efficiently use depleted uranium and (2) avoid uranium enrichment technologies that can lead to nuclear weapons proliferation. Finally, current and future global demand for LWR technology might be below the minimum needed to sustain the current global LWR industry. (author)

  19. Superheated Water-Cooled Small Modular Underwater Reactor Concept

    OpenAIRE

    Shirvan, Koroush; Kazimi, Mujid

    2016-01-01

    A novel fully passive small modular superheated water reactor (SWR) for underwater deployment is designed to produce 160 MWe with steam at 500ºC to increase the thermodynamic efficiency compared with standard light water reactors. The SWR design is based on a conceptual 400-MWe integral SWR using the internally and externally cooled annular fuel (IXAF). The coolant boils in the external channels throughout the core to approximately the same quality as a conventional boiling water reactor and ...

  20. Environmentally assisted cracking in light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, O.K.; Chung, H.M.; Gruber, E.E. [and others

    1996-07-01

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors (LWRs) from April 1995 to December 1995. Topics that have been investigated include fatigue of carbon and low-alloy steel used in reactor piping and pressure vessels, EAC of Alloy 600 and 690, and irradiation-assisted stress corrosion cracking (IASCC) of Type 304 SS. Fatigue tests were conducted on ferritic steels in water that contained various concentrations of dissolved oxygen (DO) to determine whether a slow strain rate applied during different portions of a tensile-loading cycle are equally effective in decreasing fatigue life. Crack-growth-rate tests were conducted on compact-tension specimens from several heats of Alloys 600 and 690 in simulated LWR environments. Effects of fluoride-ion contamination on susceptibility to intergranular cracking of high- and commercial- purity Type 304 SS specimens from control-tensile tests at 288 degrees Centigrade. Microchemical changes in the specimens were studied by Auger electron spectroscopy and scanning electron microscopy to determine whether trace impurity elements may contribute to IASCC of these materials.

  1. NUCLEAR SUPERHEATER FOR BOILING WATER REACTOR

    Science.gov (United States)

    Holl, R.J.; Klecker, R.W.; Graham, C.B.

    1962-05-15

    A description is given of a boiling water reactor having a superheating region integral with the core. The core consists essentially of an annular boiling region surrounding an inner superheating region. Both regions contain fuel elements and are separated by a cylindrical wall, perforations being provided in the lower portion of the cylindrical wall to permit circulation of a common water moderator between the two regions. The superheater region comprises a plurality of tubular fuel assemblies through which the steam emanating from the boiling region passes to the steam outlet. Each superheater fuel assembly has an outer double-walled cylinder, the double walls being concentrically spaced and connected together at their upper ends but open at the bottom to provide for differential thermal expansion of the inner and outer walls. Gas is entrapped in the annulus between the walls which acts as an insulating space between the fissionable material inside and the moderator outside. (AEC)

  2. Multi-Applications Small Light Water Reactor - NERI Final Report

    Energy Technology Data Exchange (ETDEWEB)

    S. Michale Modro; James E. Fisher; Kevan D. Weaver; Jose N. Reyes, Jr.; John T. Groome; Pierre Babka; Thomas M. Carlson

    2003-12-01

    The Multi-Application Small Light Water Reactor (MASLWR) project was conducted under the auspices of the Nuclear Energy Research Initiative (NERI) of the U.S. Department of Energy (DOE). The primary project objectives were to develop the conceptual design for a safe and economic small, natural circulation light water reactor, to address the economic and safety attributes of the concept, and to demonstrate the technical feasibility by testing in an integral test facility. This report presents the results of the project. After an initial exploratory and evolutionary process, as documented in the October 2000 report, the project focused on developing a modular reactor design that consists of a self-contained assembly with a reactor vessel, steam generators, and containment. These modular units would be manufactured at a single centralized facility, transported by rail, road, and/or ship, and installed as a series of self-contained units. This approach also allows for staged construction of an NPP and ''pull and replace'' refueling and maintenance during each five-year refueling cycle.

  3. Undermoderated spectrum MOX core study. Supercritical pressure light water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Oka, Yoshiaki; Kosizuka, Seiichi [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab.

    1998-09-01

    The supercritical pressure light water cooling reactor is a nuclear reactor concept with the once through type and the direct cycle reactor cooled with supercritical pressure water. The cooling water controlled with the feed pump flows directly to the turbine and a recirculation is never done by the nuclear reactor of this type. Therefore, this system isn`t equipped with the recirculation system and the steam separator, the system becomes simple. As for this system, it is expected that the cost performance improves. Here, the outline of former study is described. (author)

  4. Commercial Light Water Reactor Tritium Extraction Facility

    Energy Technology Data Exchange (ETDEWEB)

    McHood, M D

    2000-10-12

    A geotechnical investigation program has been completed for the Commercial Light Water Reactor - Tritium Extraction Facility (CLWR-TEF) at the Savannah River Site (SRS). The program consisted of reviewing previous geotechnical and geologic data and reports, performing subsurface field exploration, field and laboratory testing, and geologic and engineering analyses. The purpose of this investigation was to characterize the subsurface conditions for the CLWR-TEF in terms of subsurface stratigraphy and engineering properties for design and to perform selected engineering analyses. The objectives of the evaluation were to establish site-specific geologic conditions, obtain representative engineering properties of the subsurface and potential fill materials, evaluate the lateral and vertical extent of any soft zones encountered, and perform engineering analyses for slope stability, bearing capacity and settlement, and liquefaction potential. In addition, provide general recommendations for construction and earthwork.

  5. Radiation Protection at Light Water Reactors

    CERN Document Server

    Prince, Robert

    2012-01-01

    This book is aimed at Health Physicists wishing to gain a better understanding of the principles and practices associated with a light water reactor (LWR) radiation protection program. The role of key program elements is presented in sufficient detail to assist practicing radiation protection professionals in improving and strengthening their current program. Details related to daily operation and discipline areas vital to maintaining an effective LWR radiation protection program are presented. Programmatic areas and functions important in preventing, responding to, and minimizing radiological incidents and the importance of performing effective incident evaluations and investigations are described. Elements that are integral in ensuring continuous program improvements are emphasized throughout the text.

  6. Strategic Targeting of Light Water Reactors.

    Science.gov (United States)

    1982-03-01

    Effects of Nuclear Weapons. U.S. Department of Defense and U.S. Department of Energy, 1977. 15. Glasstone, Samuel and Walter H. Jordan . Nuclear Power and...0 ’Nhi Mi V ni M 10 NN -4 M2 0 M 0-42(N N Mi 𔃺 - i hi V 10M N (N M2𔃾 - 0 0 0’ 1 0 %r N -T0 m - q- 0 It 14 qTm 4T mi hi m’ 10m N m 02 m 0- m 0 m -i...AFIT/GNE/PF/8ZM- 7 4. TITLE (and Subtitle) S.’ T’ PE OF REPORT & PERIOD COVERED STRATEGIC TARGETING MS THESIS OF LIGUfl WATER REACTORS 6. PERFORMING OIG

  7. Light Water Reactor Sustainability Accomplishments Report

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, Kathryn A. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-02-01

    Welcome to the 2014 Light Water Reactor Sustainability (LWRS) Program Accomplishments Report, covering research and development highlights from 2014. The LWRS Program is a U.S. Department of Energy research and development program to inform and support the long-term operation of our nation’s commercial nuclear power plants. The research uses the unique facilities and capabilities at the Department of Energy national laboratories in collaboration with industry, academia, and international partners. Extending the operating lifetimes of current plants is essential to supporting our nation’s base load energy infrastructure, as well as reaching the Administration’s goal of reducing greenhouse gas emissions to 80% below 1990 levels by the year 2050. The purpose of the LWRS Program is to provide technical results for plant owners to make informed decisions on long-term operation and subsequent license renewal, reducing the uncertainty, and therefore the risk, associated with those decisions. In January 2013, 104 nuclear power plants operated in 31 states. However, since then, five plants have been shut down (several due to economic reasons), with additional shutdowns under consideration. The LWRS Program aims to minimize the number of plants that are shut down, with R&D that supports long-term operation both directly (via data that is needed for subsequent license renewal), as well indirectly (with models and technology that provide economic benefits). The LWRS Program continues to work closely with the Electric Power Research Institute (EPRI) to ensure that the body of information needed to support SLR decisions and actions is available in a timely manner. This report covers selected highlights from the three research pathways in the LWRS Program: Materials Aging and Degradation, Risk-Informed Safety Margin Characterization, and Advanced Instrumentation, Information, and Control Systems Technologies, as well as a look-ahead at planned activities for 2015. If you

  8. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Shropshire

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  9. Implementation of multiple measures to improve reactor recirculation pump sealing performance in nuclear boiling water reactor service

    Energy Technology Data Exchange (ETDEWEB)

    Loenhout, Gerard van [Flowserve B.V., Etten-Leur (Netherlands). Nuclear Services and Solutions Engineering; Hurni, Juerg

    2014-07-01

    A modern reactor recirculation pump circulates a large volume of high temperature, very pure water from the reactor pressure vessel back to the core. A crucial technical problem with a recirculation pump, such as a mechanical seal indicating loss of sealing pressure, may result in a power station having to shut down for repair. The paper describes the sudden increase in stray current phenomenon leading to rapid and severe deterioration of the mechanical end face shaft seal in a reactor recirculation pump. This occurred after the installation of a variable frequency converter replacing the original motorgenerator set.

  10. Introduction to reactor internal materials for pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Woo Suk; Hong, Joon Hwa; Jee, Se Hwan; Lee, Bong Sang; Kuk, Il Hyun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1994-06-01

    This report reviewed the R and D states of reactor internal materials in order to be a reference for researches and engineers who are concerning on localization of the materials in the field or laboratory. General structure of PWR internals and material specification for YGN 3 and 4 were reviewed. States-of-arts on R and D of stainless steel and Alloy X-750 were reviewed, and degradation mechanisms of the components were analyzed. In order to develop the good domestic materials for reactor internal, following studies would be carried out: microstructure, sensitization behavior, fatigue property, irradiation-induced stress corrosion cracking/radiation-induced segregation, radiation embrittlement. (Author) 7 refs., 14 figs., 5 tabs.,.

  11. Water inventory management in condenser pool of boiling water reactor

    Science.gov (United States)

    Gluntz, Douglas M.

    1996-01-01

    An improved system for managing the water inventory in the condenser pool of a boiling water reactor has means for raising the level of the upper surface of the condenser pool water without adding water to the isolation pool. A tank filled with water is installed in a chamber of the condenser pool. The water-filled tank contains one or more holes or openings at its lowermost periphery and is connected via piping and a passive-type valve (e.g., squib valve) to a high-pressure gas-charged pneumatic tank of appropriate volume. The valve is normally closed, but can be opened at an appropriate time following a loss-of-coolant accident. When the valve opens, high-pressure gas inside the pneumatic tank is released to flow passively through the piping to pressurize the interior of the water-filled tank. In so doing, the initial water contents of the tank are expelled through the openings, causing the water level in the condenser pool to rise. This increases the volume of water available to be boiled off by heat conducted from the passive containment cooling heat exchangers. 4 figs.

  12. Boiling water reactor radiation shielded Control Rod Drive Housing Supports

    Energy Technology Data Exchange (ETDEWEB)

    Baversten, B.; Linden, M.J. [ABB Combustion Engineering Nuclear Operations, Windsor, CT (United States)

    1995-03-01

    The Control Rod Drive (CRD) mechanisms are located in the area below the reactor vessel in a Boiling Water Reactor (BWR). Specifically, these CRDs are located between the bottom of the reactor vessel and above an interlocking structure of steel bars and rods, herein identified as CRD Housing Supports. The CRD Housing Supports are designed to limit the travel of a Control Rod and Control Rod Drive in the event that the CRD vessel attachement went to fail, allowing the CRD to be ejected from the vessel. By limiting the travel of the ejected CRD, the supports prevent a nuclear overpower excursion that could occur as a result of the ejected CRD. The Housing Support structure must be disassembled in order to remove CRDs for replacement or maintenance. The disassembly task can require a significant amount of outage time and personnel radiation exposure dependent on the number and location of the CRDs to be changed out. This paper presents a way to minimize personal radiation exposure through the re-design of the Housing Support structure. The following paragraphs also delineate a method of avoiding the awkward, manual, handling of the structure under the reactor vessel during a CRD change out.

  13. Self-Sustaining Thorium Boiling Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Greenspan, Ehud [Univ. of California, Berkeley, CA (United States); Gorman, Phillip M. [Univ. of California, Berkeley, CA (United States); Bogetic, Sandra [Univ. of California, Berkeley, CA (United States); Seifried, Jeffrey E. [Univ. of California, Berkeley, CA (United States); Zhang, Guanheng [Univ. of California, Berkeley, CA (United States); Varela, Christopher R. [Univ. of California, Berkeley, CA (United States); Fratoni, Massimiliano [Univ. of California, Berkeley, CA (United States); Vijic, Jasmina J. [Univ. of California, Berkeley, CA (United States); Downar, Thomas [Univ. of Michigan, Ann Arbor, MI (United States); Hall, Andrew [Univ. of Michigan, Ann Arbor, MI (United States); Ward, Andrew [Univ. of Michigan, Ann Arbor, MI (United States); Jarrett, Michael [Univ. of Michigan, Ann Arbor, MI (United States); Wysocki, Aaron [Univ. of Michigan, Ann Arbor, MI (United States); Xu, Yunlin [Univ. of Michigan, Ann Arbor, MI (United States); Kazimi, Mujid [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Shirvan, Koroush [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Mieloszyk, Alexander [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States); Todosow, Michael [Brookhaven National Lab. (BNL), Upton, NY (United States); Brown, Nicolas [Brookhaven National Lab. (BNL), Upton, NY (United States); Cheng, Lap [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2015-03-15

    The primary objectives of this project are to: Perform a pre-conceptual design of a core for an alternative to the Hitachi proposed fuel-self- sustaining RBWR-AC, to be referred to as a RBWR-Th. The use of thorium fuel is expected to assure negative void coefficient of reactivity (versus positive of the RBWR-AC) and improve reactor safety; Perform a pre-conceptual design of an alternative core to the Hitachi proposed LWR TRU transmuting RBWR-TB2, to be referred to as the RBWR-TR. In addition to improved safety, use of thorium for the fertile fuel is expected to improve the TRU transmutation effectiveness; Compare the RBWR-Th and RBWR-TR performance against that of the Hitachi RBWR core designs and sodium cooled fast reactor counterparts - the ARR and ABR; and, Perform a viability assessment of the thorium-based RBWR design concepts to be identified along with their associated fuel cycle, a technology gap analysis, and a technology development roadmap. A description of the work performed and of the results obtained is provided in this Overview Report and, in more detail, in the Attachments. The major findings of the study are summarized.

  14. Design and Fluid Dynamic Investigations for a High Performance Light Water Reactor Fuel Assembly

    Science.gov (United States)

    Hofmeister, Jan; Laurin, Eckart; Class, Andreas G.

    2005-11-01

    Within the 5th Framework Program of the European Commission a nuclear light water reactor with supercritical steam conditions has been investigated called High Performance Light Water Reactor (HPLWR). This reactor concept is distinct from conventional light water reactor concepts by the fact, that supercritical water is used to achieve higher core outlet temperatures. The reactor operates with a high system pressure, high heat-up of the coolant within the core, and high outlet temperatures of the coolant resulting in a thermal efficiency of up to 44%. We present the design concept proposed by IKET, and a fluid dynamic problem in the foot piece of the fuel assembly, where unacceptable temperature variations must be omitted.

  15. Transactions of the nineteenth water reactor safety information meeting

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, A.J. (comp.)

    1991-10-01

    This report contains summaries of papers on reactor safety research to be presented at the 19th Water Reactor Safety Information Meeting at the Bethesda Marriott Hotel in Bethesda, Maryland, October 28--30, 1991. The summaries briefly describe the programs and results of nuclear safety research sponsored by the Office of Nuclear Regulatory Research, USNRC. Summaries of invited papers concerning nuclear safety issues from US government laboratories, the electric utilities, the Electric Power Research Institute (EPRI), the nuclear industry, and from the governments and industry in Europe and Japan are also included. The summaries have been compiled in one report to provide a basis for meaningful discussion and information exchange during the course of the meeting, and are given in the order of their presentation in each session. The individual summaries have been cataloged separately.

  16. Non-linear analysis in Light Water Reactor design

    Energy Technology Data Exchange (ETDEWEB)

    Rashid, Y.R.; Sharabi, M.N.; Nickell, R.E.; Esztergar, E.P.; Jones, J.W.

    1980-03-01

    The results obtained from a scoping study sponsored by the US Department of Energy (DOE) under the Light Water Reactor (LWR) Safety Technology Program at Sandia National Laboratories are presented. Basically, this project calls for the examination of the hypothesis that the use of nonlinear analysis methods in the design of LWR systems and components of interest include such items as: the reactor vessel, vessel internals, nozzles and penetrations, component support structures, and containment structures. Piping systems are excluded because they are being addressed by a separate study. Essentially, the findings were that nonlinear analysis methods are beneficial to LWR design from a technical point of view. However, the costs needed to implement these methods are the roadblock to readily adopting them. In this sense, a cost-benefit type of analysis must be made on the various topics identified by these studies and priorities must be established. This document is the complete report by ANATECH International Corporation.

  17. Thermal-Hydraulics analysis of pressurized water reactor core by using single heated channel model

    Directory of Open Access Journals (Sweden)

    Reza Akbari

    2017-08-01

    Full Text Available Thermal hydraulics of nuclear reactor as a basis of reactor safety has a very important role in reactor design and control. The thermal-hydraulic analysis provides input data to the reactor-physics analysis, whereas the latter gives information about the distribution of heat sources, which is needed to perform the thermal-hydraulic analysis. In this study single heated channel model as a very fast model for predicting thermal hydraulics behavior of pressurized water reactor core has been developed. For verifying the results of this model, we used RELAP5 code as US nuclear regulatory approved thermal hydraulics code. The results of developed single heated channel model have been checked with RELAP5 results for WWER-1000. This comparison shows the capability of single heated channel model for predicting thermal hydraulics behavior of reactor core.

  18. Candidate materials performance under Supercritical Water Reactor (SCWR) conditions

    Energy Technology Data Exchange (ETDEWEB)

    Toivonen, A.; Penttilae, S.; Rissanen, L. (VTT Technical Research Centre of Finland, Espoo (Finland))

    2010-05-15

    The High Performance Light Water Reactor (HPLWR) is working at super-critical pressure (25 MPa) and a core coolant temperature up to 500 deg C. As an evolutionary step this reactor type follows the development path of modern supercritical coal-fired plants. This paper reviews the results on performance of commercial candidate materials for in-core applications focusing on corrosion, stress corrosion cracking (SCC) and creep issues. General corrosion (oxidation) tests with an inlet oxygen concentration of 125-150 ppb have been performed on several iron and nickel alloys at 300 to 650 deg C and 25 MPa in supercritical water. Stress corrosion cracking (SCC) susceptibility of selected austenitic stainless steels and a high chromium ODS (Oxide Dispersion Strengthened) alloy were also studied in slow strain rate tests (SSRT) in supercritical water at 500 deg C and 650 deg C. Furthermore, constant load creep tests have been performed on selected austenitic steels at 500 deg C and 650 deg C in supercritical water (25 MPa, 1 ppm O{sub 2}) and in an inert atmosphere (He, pressure 1 atm). Based on the materials studies, the current candidate materials for the core internals are austenitic steels with sufficient oxidation and creep resistance up to 500-550 deg C. High chromium austenitic steels and ODS alloys steels are considered for the fuel rod cladding due to their oxidation resistance up to 650 deg C. However, problems with manufacturing and joining of ODS alloys need to be solved. Alloys with high nickel content were not considered for the SCC or creep studies because of the strong effect of Ni on neutronics of the reactor core (orig.)

  19. Capital Cost: Pressurized Water Reactor Plant Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1977-06-01

    The investment cost study for the 1139-MW(e) pressurized water reactor (PWR) central station power plant consists of two volumes. This volume includes in addition to the foreword and summary, the plant description and the detailed cost estimate.

  20. Spent fuel data base: commercial light water reactors. [PWR; BWR

    Energy Technology Data Exchange (ETDEWEB)

    Hauf, M.J.; Kniazewycz, B.G.

    1979-12-01

    As a consequence of this country's non-proliferation policy, the reprocessing of spent nuclear fuel has been delayed indefinitely. This has resulted in spent light water reactor (LWR) fuel being considered as a potential waste form for disposal. Since the Nuclear Regulatory Commission (NRC) is currently developing methodologies for use in the regulation of the management and disposal of high-level and transuranic wastes, a comprehensive data base describing LWR fuel technology must be compiled. This document provides that technology baseline and, as such, will support the development of those evaluation standards and criteria applicable to spent nuclear fuel.

  1. Process for treating effluent from a supercritical water oxidation reactor

    Science.gov (United States)

    Barnes, Charles M.; Shapiro, Carolyn

    1997-01-01

    A method for treating a gaseous effluent from a supercritical water oxidation reactor containing entrained solids is provided comprising the steps of expanding the gas/solids effluent from a first to a second lower pressure at a temperature at which no liquid condenses; separating the solids from the gas effluent; neutralizing the effluent to remove any acid gases; condensing the effluent; and retaining the purified effluent to the supercritical water oxidation reactor.

  2. Advanced Computational Thermal Fluid Physics (CTFP) and Its Assessment for Light Water Reactors and Supercritical Reactors

    Energy Technology Data Exchange (ETDEWEB)

    D.M. McEligot; K. G. Condie; G. E. McCreery; H. M. McIlroy; R. J. Pink; L.E. Hochreiter; J.D. Jackson; R.H. Pletcher; B.L. Smith; P. Vukoslavcevic; J.M. Wallace; J.Y. Yoo; J.S. Lee; S.T. Ro; S.O. Park

    2005-10-01

    Background: The ultimate goal of the study is the improvement of predictive methods for safety analyses and design of Generation IV reactor systems such as supercritical water reactors (SCWR) for higher efficiency, improved performance and operation, design simplification, enhanced safety and reduced waste and cost. The objective of this Korean / US / laboratory / university collaboration of coupled fundamental computational and experimental studies is to develop the supporting knowledge needed for improved predictive techniques for use in the technology development of Generation IV reactor concepts and their passive safety systems. The present study emphasizes SCWR concepts in the Generation IV program.

  3. The role of water chemistry for environmentally assisted cracking in low-alloy reactor pressure vessel and piping steels under boiling reactor conditions

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, H.-P.; Ritter, S

    2005-07-01

    The environmentally assisted initiation and propagation of cracks in structural materials is one of the most important degradation and ageing mechanisms in light water reactors (LWR) and may seriously affect plant availability and economics. In the first part of this paper a short general introduction on environmentally assisted cracking (EAC) and its significance for LWR is given. Then the important role of water chemistry control in reducing the EAC risk in LWR is illustrated by current research results about the effect of chloride transients and hydrogen water chemistry on the EAC crack growth behaviour of low-alloy reactor pressure vessel and piping steels under boiling water reactor conditions. (author)

  4. The CABRI fast neutron Hodoscope: Renovation, qualification program and first results following the experimental reactor restart

    Science.gov (United States)

    Chevalier, V.; Mirotta, S.; Guillot, J.; Biard, B.

    2018-01-01

    The CABRI experimental pulse reactor, located at the Cadarache nuclear research center, southern France, is devoted to the study of Reactivity Initiated Accidents (RIA). For the purpose of the CABRI International Program (CIP), managed and funded by IRSN, in the framework of an OECD/NEA agreement, a huge renovation of the facility has been conducted since 2003. The Cabri Water Loop was then installed to ensure prototypical Pressurized Water Reactor (PWR) conditions for testing irradiated fuel rods. The hodoscope installed in the CABRI reactor is a unique online fuel motion monitoring system, operated by IRSN and dedicated to the measurement of the fast neutrons emitted by the tested rod during the power pulse. It is one of the distinctive features of the CABRI reactor facility, which is operated by CEA. The system is able to determine the fuel motion, if any, with a time resolution of 1 ms and a spatial resolution of 3 mm. The hodoscope equipment has been upgraded as well during the CABRI facility renovation. This paper presents the main outcomes achieved with the hodoscope since October 2015, date of the first criticality of the CABRI reactor in its new Cabri Water Loop configuration. Results obtained during reactor commissioning phase functioning, either in steady-state mode (at low and high power, up to 23 MW) or in transient mode (start-up, possibly beyond 20 GW), are discussed.

  5. Core design analysis of the supercritical water fast reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mori, M.

    2005-10-01

    Light Water Reactor technology is nowadays the most successful commercial application of fission reactors for the production of electricity. However, in the next years, nuclear industry will have to face new and demanding challenges. The need for sustainable and cheap sources of energy, the need for public acceptance, the need for even higher safety standards, the need to minimize waste production are only a few examples. It is for these very reasons that a few next generation nuclear reactor concepts were selected for extensive research and development. Super critical water cooled reactors are one of them. The use of a supercritical coolant would in fact allow for higher thermal efficiencies and a more compact plant design. As a matter of fact, steam generators, or steam separators and driers would not be needed thus, significantly reducing construction costs. Moreover, because of the high heat capacity of supercritical water, comparatively less coolant would be needed to refrigerate the reactor. Consequently, a water-cooled reactor with a fast neutron spectrum could potentially be designed: the SuperCritical water Fast Reactor. This system presents unique features combining well-known fast and light water reactor characteristics in one design (e.g. the tendency to a positive void reactivity coefficient together with Loss Of Coolant Accidents, as design basis). The core is in fact loaded with highly enriched Mixed Oxide fuel (average plutonium content of {approx}23%), and presents a peculiar and significant geometrical and material heterogeneity (use of radial and axial blankets, solid moderator layers, several enrichment zones). The safety analysis of this very complex core layout, the development of suitable tools of investigation, and the optimization of the void reactivity effect through core design, is the main objective of this work. (orig.)

  6. Summary of the 4th workshop on the reduced-moderation water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Nakatsuka, Toru; Ishikawa, Nobuyuki; Iwamura, Takamichi (eds.) [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    2001-09-01

    The research on Reduced-Moderation Water Reactors (RMWRs) has been performed in JAERI for the development of future innovative reactors. The workshop on the RMWRs has been held every year since fiscal 1997 aimed at information exchange between JAERI and other organizations such as universities, laboratories, utilities and vendors. The 4th workshop was held on March 2, 2001 under the joint auspices of JAERI and North Kanto branch of Atomic Energy Society of Japan. The workshop began with three lectures on recent research activities in JAERI entitled 'Recent Situation of Research on Reduced-Moderation Water Reactor', 'Analysis on Electricity Generation Costs of Reduced Moderation Water Reactors' and 'Reprocessing Technology for Spent Mixed-Oxides Fuel from LWR'. Then five lectures followed: 'Micro Reactor Physics of MOX Fueled LWR' which shows the recent results of reactor physics, Fast Reactor Cooled by Supercritical Light Water' which is another type of reduced-moderation reactor, 'Phase 1 of Feasibility Studies on Commercialized Fast Breeder Reactor Cycle System' mainly conducted by Japan Nuclear Cycle Development Institute (JNC), 'Integral Type Small PWR with Stand-alone Safety' which is intended to suit for the future consumers' needs, and Utilization of Plutonium in Reduced-Moderation Water Reactors' which dictates benefits of plutonium utilization with RMWRs. This report includes the original papers presented at the workshop and summaries of the questions and answers for each lecture, as well as presentation handouts, program and participant list as appendixes. The 8 of the presented papers are indexed individually. (J.P.N.)

  7. Superheated Water-Cooled Small Modular Underwater Reactor Concept

    Directory of Open Access Journals (Sweden)

    Koroush Shirvan

    2016-12-01

    Full Text Available A novel fully passive small modular superheated water reactor (SWR for underwater deployment is designed to produce 160 MWe with steam at 500ºC to increase the thermodynamic efficiency compared with standard light water reactors. The SWR design is based on a conceptual 400-MWe integral SWR using the internally and externally cooled annular fuel (IXAF. The coolant boils in the external channels throughout the core to approximately the same quality as a conventional boiling water reactor and then the steam, instead of exiting the reactor pressure vessel, turns around and flows downward in the central channel of some IXAF fuel rods within each assembly and then flows upward through the rest of the IXAF pins in the assembly and exits the reactor pressure vessel as superheated steam. In this study, new cladding material to withstand high temperature steam in addition to the fuel mechanical and safety behavior is investigated. The steam temperature was found to depend on the thermal and mechanical characteristics of the fuel. The SWR showed a very different transient behavior compared with a boiling water reactor. The inter-play between the inner and outer channels of the IXAF was mainly beneficial except in the case of sudden reactivity insertion transients where additional control consideration is required.

  8. Latest Results from the Daya Bay Reactor Neutrino Experiment

    CERN Multimedia

    CERN. Geneva

    2014-01-01

    Among all the fundamental particles that have been experimentally observed, neutrinos remain one of the least understood. The Daya Bay Reactor Neutrino Experiment in China consists of eight identical detectors placed underground at different baselines from three groups of nuclear reactors, a configuration that is ideally suited for studying the properties of these elusive particles. This talk will present three sets of results that have just recently been released by the Daya Bay Collaboration: (i) a precision measurement of the oscillation parameters that drive the disappearance of electron antineutrinos at short baselines, (ii) a search for sterile neutrino mixing, and (iii) a high-statistics determination of the absolute flux and spectrum of reactor-produced electron antineutrinos. All of these results extend the limits of our knowledge in their respective areas and thus shed new light on neutrinos and the physics that surround them.

  9. Stress analysis of the reactor pressure vessel of the high performance light water reactors (HPLWR); Festigkeitsanalyse fuer den Reaktordruckbehaelter des High Performance Light Water Reactor (HPLWR)

    Energy Technology Data Exchange (ETDEWEB)

    Guelton, E.; Fischer, K.

    2006-12-15

    The High Performance Light Water Reactor (HPLWR) is one of the concepts of the Generation IV program. The main difference compared to current Light Water Reactors (LWR) results from the supercritical steam condition of the coolant. Due to the supercritical pressure of 25 MPa, water, used as moderator and coolant, flows as a single phase through the core. The temperatures at the outlet are above 500 C. These conditions have a major impact on the design of the Reactor Pressure Vessel (RPV). For the modelling a RPV concept is proposed, which resembles the design of current LWR and allows the use of approved materials on one side and also meets the additional demands on the other side. A first dimensioning of the RPV wall thicknesses and the geometrical proportions has been performed using the german KTA-guidelines. To verify these results, a stress analysis using the finite element method has been performed with the program ANSYS. The combined mechanical and thermal calculations provide the primary, secondary and peak stresses which are evaluated using the KTA-guidelines design loading (Level 0) and service loading level A for the different components. The results confirm the wall thicknesses estimated by Fischer et al. (2006), but there are peak stresses in the vicinity of the inlet and outlet flanges, which are very close to the allowed design limit. For larger diameters of the RPV those regions will become critical and the stresses might exceed the design limits. Design optimizations for those regions are proposed and evaluated. A readjusted geometry of the inlet flange reduces those stresses by 65%. (orig.)

  10. Assessment of the high performance light water reactor concept

    Energy Technology Data Exchange (ETDEWEB)

    Starflinger, J. [Univ. of Stuttgart, IKE, (Germany); Schulenberg, T. [Karlsruhe Inst. of Tech., Karlsruhe (Germany); Bittermann, D. [AREVA NP GmbH, Erlangen (Germany); Andreani, M. [Paul Scherrer Inst., Villigen (Switzerland); Maraczy, C. [AEKI-KFKI, Budapest (Hungary)

    2011-07-01

    From 2006-2010, the High Performance Light Water Reactor (HPLWR) was investigated within a European Funded project called HPLWR Phase 2. Operated at 25MPa with a heat-up rate in the core from 280{sup o}C to 500{sup o}C, this reactor concept provides a technological challenge in the fields of design, neutronics, thermal-hydraulics and heat transfer, materials, and safety. The assessment of the concept with respect to the goals of the technology roadmap for Generation IV Nuclear Reactors of the Generation IV International Forum shows that the HPLWR has a potential to fulfil the goals of economics, safety and proliferation resistance and physical protection. In terms of sustainability, the HPLWR with a thermal neutron spectrum investigated within this project, does not differ from existing Light Water Reactors in terms of usage of fuel and waste production. (author)

  11. Nuclear safety in light water reactors severe accident phenomenology

    CERN Document Server

    Sehgal, Bal Raj

    2011-01-01

    This vital reference is the only one-stop resource on how to assess, prevent, and manage severe nuclear accidents in the light water reactors (LWRs) that pose the most risk to the public. LWRs are the predominant nuclear reactor in use around the world today, and they will continue to be the most frequently utilized in the near future. Therefore, accurate determination of the safety issues associated with such reactors is central to a consideration of the risks and benefits of nuclear power. This book emphasizes the prevention and management of severe accidents to teach nuclear professionals

  12. Comparative assessment of nuclear fuel cycles. Light-water reactor once-through, classical fast breeder reactor, and symbiotic fast breeder reactor cycles

    Energy Technology Data Exchange (ETDEWEB)

    Hardie, R.W.; Barrett, R.J.; Freiwald, J.G.

    1980-06-01

    The object of the Alternative Nuclear Fuel Cycle Study is to perform comparative assessments of nuclear power systems. There are two important features of this study. First, this evaluation attempts to encompass the complete, integrated fuel cycle from mining of uranium ore to disposal of waste rather than isolated components. Second, it compares several aspects of each cycle - energy use, economics, technological status, proliferation, public safety, and commercial potential - instead of concentrating on one or two assessment areas. This report presents assessment results for three fuel cycles. These are the light-water reactor once-through cycle, the fast breeder reactor on the classical plutonium cycle, and the fast breeder reactor on a symbiotic cycle using plutonium and /sup 233/U as fissile fuels. The report also contains a description of the methodology used in this assessment. Subsequent reports will present results for additional fuel cycles.

  13. Pellet-Cladding Mechanical Interaction Failure Threshold for Reactivity Initiated Accidents for Pressurized Water Reactors and Boiling Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Beyer, Carl E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Geelhood, Kenneth J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2013-06-01

    Pacific Northwest National Laboratory (PNNL) has been requested by the U.S. Nuclear Regulatory Commission to evaluate the reactivity initiated accident (RIA) tests that have recently been performed in the Nuclear Safety Research Reactor (NSRR) and CABRI (French research reactor) on uranium dioxide (UO2) and mixed uranium and plutonium dioxide (MOX) fuels, and to propose pellet-cladding mechanical interaction (PCMI) failure thresholds for RIA events. This report discusses how PNNL developed PCMI failure thresholds for RIA based on least squares (LSQ) regression fits to the RIA test data from cold-worked stress relief annealed (CWSRA) and recrystallized annealed (RXA) cladding alloys under pressurized water reactor (PWR) hot zero power (HZP) conditions and boiling water reactor (BWR) cold zero power (CZP) conditions.

  14. Calculation of Radioactivity and Dose Rate of Activated Corrosion Products in Water-Cooled Fusion Reactor

    Directory of Open Access Journals (Sweden)

    Jingyu Zhang

    2016-01-01

    Full Text Available In water-cooled reactor, the dominant radioactive source term under normal operation is activated corrosion products (ACPs, which have an important impact on reactor inspection and maintenance. A three-node transport model of ACPs was introduced into the new version of ACPs source term code CATE in this paper, which makes CATE capable of theoretically simulating the variation and the distribution of ACPs in a water-cooled reactor and suitable for more operating conditions. For code testing, MIT PWR coolant chemistry loop was simulated, and the calculation results from CATE are close to the experimental results from MIT, which means CATE is available and credible on ACPs analysis of water-cooled reactor. Then ACPs in the blanket cooling loop of water-cooled fusion reactor ITER under construction were analyzed using CATE and the results showed that the major contributors are the short-life nuclides, especially Mn-56. At last a point kernel integration code ARShield was coupled with CATE, and the dose rate around ITER blanket cooling loop was calculated. Results showed that after shutting down the reactor only for 8 days, the dose rate decreased nearly one order of magnitude, which was caused by the rapid decay of the short-life ACPs.

  15. Integrity of the reactor coolant boundary of the European pressurized water reactor (EPR)

    Energy Technology Data Exchange (ETDEWEB)

    Goetsch, D.; Bieniussa, K.; Schulz, H.; Jalouneix, J.

    1997-04-01

    This paper is an abstract of the work performed in the frame of the development of the IPSN/GRS approach in view of the EPR conceptual safety features. EPR is a pressurized water reactor which will be based on the experience gained by utilities and designers in France and in Germany. The reactor coolant boundary of a PWR includes the reactor pressure vessel (RPV), those parts of the steam generators (SGs) which contain primary coolant, the pressurizer (PSR), the reactor coolant pumps (RCPs), the main coolant lines (MCLs) with their branches as well as the other connecting pipes and all branching pipes including the second isolation valves. The present work covering the integrity of the reactor coolant boundary is mainly restricted to the integrity of the main coolant lines (MCLs) and reflects the design requirements for the main components of the reactor coolant boundary. In the following the conceptual aspects, i.e. design, manufacture, construction and operation, will be assessed. A main aspect is the definition of break postulates regarding overall safety implications.

  16. Novel Photocatalytic Reactor Development for Removal of Hydrocarbons from Water

    Directory of Open Access Journals (Sweden)

    Morgan Adams

    2008-01-01

    Full Text Available Hydrocarbons contamination of the marine environment generated by the offshore oil and gas industry is generated from a number of sources including oil contaminated drill cuttings and produced waters. The removal of hydrocarbons from both these sources is one of the most significant challenges facing this sector as it moves towards zero emissions. The application of a number of techniques which have been used to successfully destroy hydrocarbons in produced water and waste water effluents has previously been reported. This paper reports the application of semiconductor photocatalysis as a final polishing step for the removal of hydrocarbons from two waste effluent sources. Two reactor concepts were considered: a simple flat plate immobilised film unit, and a new rotating drum photocatalytic reactor. Both units proved to be effective in removing residual hydrocarbons from the effluent with the drum reactor reducing the hydrocarbon content by 90% under 10 minutes.

  17. Robust observer based control for axial offset in pressurized-water nuclear reactors based on the multipoint reactor model using Lyapunov approach

    Energy Technology Data Exchange (ETDEWEB)

    Zaidabadinejad, Majid; Ansarifar, Gholam Reza [Isfahan Univ. (Iran, Islamic Republic of). Dept. of Nuclear Engineering

    2017-11-15

    In nuclear reactor imbalance of axial power distribution induces xenon oscillations. These fluctuations must be maintained bounded within allowable limits. Otherwise, the nuclear power plant could become unstable. Therefore, bounded these oscillations is considered to be a restriction for the load following operation. Also, in order to design the nuclear reactor control systems, poisons concentrations, especially xenon must be accessible. But, physical measurement of these parameters is impossible. In this paper, for the first time, in order to estimate the axial xenon oscillations and ensures these oscillations are kept bounded within allowable limits during load-following operation, a robust observer based nonlinear control based on multipoint kinetics reactor model for pressurized-water nuclear reactors is presented. The reactor core is simulated based on the multi-point nuclear reactor model (neutronic and thermal-hydraulic). Simulation results are presented to demonstrate the effectiveness of the proposed observer based controller for the load-following operation.

  18. REFLECTOR CONTROL OF A BOILING-WATER REACTOR

    Science.gov (United States)

    Treshow, M.

    1962-05-22

    A line connecting the reactor with a spent steam condenser contains a valve set to open when the pressure in the reactor exceeds a predetermined value and an orifice on the upstream side of the valve. Another line connects the reflector with this line between the orifice and the valve. An excess steam pressure causes the valve to open and the flow of steam through the line draws water out of the reflector. Provision is also made for adding water to the reflector when the steam pressure drops. (AEC)

  19. Controlling radiation fields in siemans designed light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Riess, R.; Marchl, T. [Siemens Power Generation Group, Erlangen (Germany)

    1995-03-01

    An essential item for the control of radiation fields is the minimization of the use of satellites in the reactor systems of Light Water Reactors (LWRs). A short description of the qualification of Co-replacement materials will be followed by an illustration of the locations where these materials were implemented in Siemens designed LWRs. Especially experiences in PWRs show the immense influence of reduction of cobalt sources on dose rate buildup. The corrosion and the fatique and wear behavior of the replacement materials has not created concern up to now. A second tool to keep occupational radiation doses at a low level in PWRs is the use of the modified B/Li-chemistry. This is practized in Siemens designed plants by keeping the Li level at a max. value of 2 ppm until it reaches a pH (at 300{degrees}C) of {approximately}7.4. This pH is kept constant until the end of the cycle. The substitution of cobalt base alloys and thus the removal of the Co-59 sources from the system had the largest impact on the radiation levels. Nonetheless, the effectiveness of the coolant chemistry should not be neglected either. Several years of successful operation of PWRs with the replacement materials resulted in an occupational radiation exposure which is below 0.5 man-Sievert/plant and year.

  20. Pressurized-water reactor internals aging degradation study. Phase 1

    Energy Technology Data Exchange (ETDEWEB)

    Luk, K.H. [Oak Ridge National Lab., TN (United States)

    1993-09-01

    This report documents the results of a Phase I study on the effects of aging degradations on pr internals. Primary stressers for internals an generated by the primary coolant flow in the they include unsteady hydrodynamic forces and pump-generated pressure pulsations. Other stressors are applied loads, manufacturing processes, impurities in the coolant and exposures to fast neutron fluxes. A survey of reported aging-related failure information indicates that fatigue, stress corrosion cracking (SCC) and mechanical wear are the three major aging-related degradation mechanisms for PWR internals. Significant reported failures include thermal shield flow-induced vibration problems, SCC in guide tube support pins and core support structure bolts, fatigue-induced core baffle water-jet impingement problems and excess wear in flux thimbles. Many of the reported problems have been resolved by accepted engineering practices. Uncertainties remain in the assessment of long-term neutron irradiation effects and environmental factors in high-cycle fatigue failures. Reactor internals are examined by visual inspections and the technique is access limited. Improved inspection methods, especially one with an early failure detection capability, can enhance the safety and efficiency of reactor operations.

  1. Spiral-shaped reactor for water disinfection

    KAUST Repository

    Soukane, Sofiane

    2016-04-20

    Chlorine-based processes are still widely used for water disinfection. The disinfection process for municipal water consumption is usually carried out in large tanks, specifically designed to verify several hydraulic and disinfection criteria. The hydrodynamic behavior of contact tanks of different shapes, each with an approximate total volume of 50,000 m3, was analyzed by solving turbulent momentum transport equations with a computational fluid dynamics code, namely ANSYS fluent. Numerical experiments of a tracer pulse were performed for each design to generate flow through curves and investigate species residence time distribution for different inlet flow rates, ranging from 3 to 12 m3 s−1. A new nature-inspired Conch tank design whose shape follows an Archimedean spiral was then developed. The spiral design is shown to strongly outperform the other tanks’ designs for all the selected plug flow criteria with an enhancement in efficiency, less short circuiting, and an order of magnitude improvement in mixing and dispersion. Moreover, following the intensification philosophy, after 50% reduction in its size, the new design retains its properties and still gives far better results than the classical shapes.

  2. Water chemistry management of research reactor in JAERI

    Energy Technology Data Exchange (ETDEWEB)

    Yoshijima, Tetsuo [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment

    1998-10-01

    The JRR-3M cooling system consists of four systems, namely; (1) primary cooling system, (2) heavy water cooling system, (3) helium system and (4) secondary cooling system. The heavy water is used for reflector and pressurized with helium gas. Water chemistry management of the JRR-3M cooling systems is one of the important subject for the safety operation. The main objects are to prevent the corrosion of cooling system and fuel elements, to suppress the plant radiation build-up and to minimize the generation of radioactive waste. All measured values were within the limits of specifications and JRR-3M reactor was operated with safety in 1996. Spent fuels of JRR-3M reactor are stored in the spent fuel pool. This pool water has been analyzed to prevent corrosion of aluminum cladding of spent fuels. Water chemistry of spent fuel pool water is applied to the prevention of corrosion of aluminum alloys including fuel cladding. The JRR-2 reactor was eternally stopped in December 1996 and is now under decommissioning. The JRR-2 reactor is composed of heavy water tank, fuel guide tube and horizontal experimental hole. These are constructed of aluminum alloy and biological shield and upper shield are constructed of concrete. Three types of corrosion of aluminum alloy were observed in the JRR-2. The Alkaline corrosion of aluminum tube occurred in 1972 because of the mechanical damage of the aluminum fuel guide tube which is used for fuel handling. Modification of the reactor top shield was started in 1974 and completed in 1975. (author)

  3. Removing 17β-estradiol from drinking water in a biologically active carbon (BAC) reactor modified from a granular activated carbon (GAC) reactor.

    Science.gov (United States)

    Li, Zhongtian; Dvorak, Bruce; Li, Xu

    2012-06-01

    Estrogenic compounds in drinking water sources pose potential threats to human health. Treatment technologies are needed to effectively remove these compounds for the production of safe drinking water. In this study, GAC adsorption was first tested for its ability to remove a model estrogenic compound, 17β-estradiol (E2). Although GAC showed a relatively high adsorption capacity for E2 in isotherm experiments, it appeared to have a long mass transfer zone in a GAC column reactor, causing an early leakage of E2 in the effluent. With an influent E2 concentration of 20 μg/L, the GAC reactor was able to bring down effluent E2 to ≈ 200 ng/L. To further enhance E2 removal, the GAC reactor was converted to a biologically active carbon (BAC) reactor by promoting biofilm growth in the reactor. Under optimal operating conditions, the BAC reactor had an effluent E2 concentration of ≈ 50 ng/L. With the empty bed contact times tested, the reactor exhibited more robust E2 removal performance under the BAC operation than under the GAC operation. It is noted that estrone (E1), an E2 biodegradation intermediate, was frequently detected in reactor effluent during the BAC operation. Results from this study suggested that BAC could be an effective drinking water treatment process for E2 removal and in the meantime E1 accumulation needs to be addressed. Published by Elsevier Ltd.

  4. Fuel Summary Report: Shippingport Light Water Breeder Reactor - Rev. 2

    Energy Technology Data Exchange (ETDEWEB)

    Olson, Gail Lynn; Mc Cardell, Richard Keith; Illum, Douglas Brent

    2002-09-01

    The Shippingport Light Water Breeder Reactor (LWBR) was developed by Bettis Atomic Power Laboratory to demonstrate the potential of a water-cooled, thorium oxide fuel cycle breeder reactor. The LWBR core operated from 1977-82 without major incident. The fuel and fuel components suffered minimal damage during operation, and the reactor testing was deemed successful. Extensive destructive and nondestructive postirradiation examinations confirmed that the fuel was in good condition with minimal amounts of cladding deformities and fuel pellet cracks. Fuel was placed in wet storage upon arrival at the Expended Core Facility, then dried and sent to the Idaho Nuclear Technology and Engineering Center for underground dry storage. It is likely that the fuel remains in good condition at its current underground dry storage location at the Idaho Nuclear Technology and Engineering Center. Reports show no indication of damage to the core associated with shipping, loading, or storage.

  5. Probabilistic Structural Integrity Analysis of Boiling Water Reactor Pressure Vessel under Low Temperature Overpressure Event

    Directory of Open Access Journals (Sweden)

    Hsoung-Wei Chou

    2015-01-01

    Full Text Available The probabilistic structural integrity of a Taiwan domestic boiling water reactor pressure vessel has been evaluated by the probabilistic fracture mechanics analysis. First, the analysis model was built for the beltline region of the reactor pressure vessel considering the plant specific data. Meanwhile, the flaw models which comprehensively simulate all kinds of preexisting flaws along the vessel wall were employed here. The low temperature overpressure transient which has been concluded to be the severest accident for a boiling water reactor pressure vessel was considered as the loading condition. It is indicated that the fracture mostly happens near the fusion-line area of axial welds but with negligible failure risk. The calculated results indicate that the domestic reactor pressure vessel has sufficient structural integrity until doubling of the present end-of-license operation.

  6. THE INFLUENCE OF MIEX® RESIN FOR WATER TREATMENT EFFICIENCYIN A HYBRID MEMBRANE REACTOR

    Directory of Open Access Journals (Sweden)

    Mariola Rajca

    2014-10-01

    Full Text Available The paper presents the results of studies related to the effectiveness of removal of natural organic matter (NOM from water using hybrid membrane reactor in which ion exchange and ultrafiltration processes were performed. MIEX® resin by Orica Watercare and immersed ultrafiltration polyvinylidene fluoride capillary module ZeeWeed 1 (ZW 1 by GE Power&Water operated at negative pressure were used. The application of multifunctional reactor had a positive effect on the removal of contaminants and enabled the production of high quality water. Additionally, in refer to single stage ultrafiltration it minimalized the occurrence of membrane fouling.

  7. Light Water Reactor Sustainability Program Reactor Safety Technologies Pathway Technical Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, M. L. [Univ. of Wisconsin, Madison, WI (United States); Peko, D. [US Dept. of Energy, Washington, DC (United States); Farmer, M. [Argonne National Lab. (ANL), Argonne, IL (United States); Rempe, J. [Rempe and Associates LLC, Idaho Falls, ID (United States); Humrickhouse, P. [Idaho National Lab. (INL), Idaho Falls, ID (United States); O' Brien, J. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Robb, K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Gauntt, R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Osborn, D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-06-01

    “end user” of the results from this DOE-sponsored work. The response to the Fukushima accident has been global, and there is a continuing multinational interest in collaborations to better quantify accident consequences and to incorporate lessons learned from the accident. DOE will continue to seek opportunities to facilitate collaborations that are of value to the U.S. industry, particularly where the collaboration provides access to vital data from the accident or otherwise supports or leverages other important R&D work. The purpose of the Reactor Safety Technology R&D is to improve understanding of beyond design basis events and reduce uncertainty in severe accident progression, phenomenology, and outcomes using existing analytical codes and information gleaned from severe accidents, in particular the Fukushima Daiichi events. This information will be used to aid in developing mitigating strategies and improving severe accident management guidelines for the current light water reactor fleet.

  8. Light Water Reactor Sustainability Program: Reactor Safety Technologies Pathway Technical Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, M. L. [Univ. of Wisconsin, Madison, WI (United States)

    2015-06-01

    “end user” of the results from this DOE-sponsored work. The response to the Fukushima accident has been global, and there is a continuing multinational interest in collaborations to better quantify accident consequences and to incorporate lessons learned from the accident. DOE will continue to seek opportunities to facilitate collaborations that are of value to the U.S. industry, particularly where the collaboration provides access to vital data from the accident or otherwise supports or leverages other important R&D work. The purpose of the Reactor Safety Technology R&D is to improve understanding of beyond design basis events and reduce uncertainty in severe accident progression, phenomenology, and outcomes using existing analytical codes and information gleaned from severe accidents, in particular the Fukushima Daiichi events. This information will be used to aid in developing mitigating strategies and improving severe accident management guidelines for the current light water reactor fleet.

  9. Fuel assembly design study for a reactor with supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Hofmeister, J. [RWE Power AG, Huyssenallee 2, D-45128 Essen (Germany); Waata, C. [ANSYS Germany GmbH, Staudenfeldweg 12, D-83624 Otterfing (Germany); Starflinger, J. [Forschungszentrum Karlsruhe GmbH, Institute for Nuclear and Energy Technologies, P.O. Box 3640, D-76021 Karlsruhe (Germany); Schulenberg, T. [Forschungszentrum Karlsruhe GmbH, Institute for Nuclear and Energy Technologies, P.O. Box 3640, D-76021 Karlsruhe (Germany)]. E-mail: thomas.schulenberg@iket.fzk.de; Laurien, E. [University of Stuttgart, Institute for Nuclear Technology and Energy Systems (IKE), Pfaffenwaldring 31, D-70569 Stuttgart (Germany)

    2007-08-15

    The European concept of the High Performance Light Water Reactor (HPLWR) differs from current light water reactors in a higher system pressure beyond the critical point of water, as well as a higher heat-up of the coolant within the core and thus higher core outlet temperatures, leading to a significant increase in turbine power and thermal efficiency of the power plant. The motivation to develop a novel fuel assembly for the HPLWR is caused by the high variation of coolant density in the core by more than a factor of seven. A systematic design study shows that a square fuel assembly with two rows of fuel rods and a central moderator box is best to minimize the structural material, to optimize the moderator to fuel ratio and to reduce differences of fuel rod power. Using neutronic and thermal-hydraulic analyses, a detailed mechanical design of a fuel assembly of the HPLWR has been worked out. Moreover, concepts for the head piece, the foot piece, the steam plenum and the lower mixing plenum, including the lower core plate, have been developed to account for the individual flow paths of this reactor. These allow a leak-tight counter current flow of moderator water and coolant as well as uniform mixing of different mass flows. The assembly design concept can be used as a general key component for any advanced core design of this reactor.

  10. Risk management and decision rules for light water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Griesmeyer, J. M.; Okrent, D.

    1981-01-01

    The process of developing and adopting safety objectives in quantitative terms can provide a basis for focusing societal decision making on the suitability of such objectives and upon questions of compliance with those objectives. A preliminary proposal for a light water reactor (LWR) risk management framework is presented as part of that process.

  11. Pressurized hydrogenotrophic denitrification reactor for small water systems.

    Science.gov (United States)

    Epsztein, Razi; Beliavski, Michael; Tarre, Sheldon; Green, Michal

    2017-03-15

    The implementation of hydrogenotrophic denitrification is limited due to safety concerns, poor H2 utilization and low solubility of H2 gas with the resulting low transfer rate. The current paper presents the main research work conducted on a pressurized hydrogenotrophic reactor for denitrification that was recently developed. The reactor is based on a new concept suggesting that a gas-liquid equilibrium is achieved in the closed headspace of denitrifying reactor, further produced N2 gas is carried out by the effluent and gas purging is not required. The feasibility of the proposed reactor was shown for two effluent concentrations of 10 and 1 mg NO3--N/L. Hydrogen gas utilization efficiencies of 92.8% and 96.9% were measured for the two effluent concentrations, respectively. Reactor modeling predicted high denitrification rates above 4 g NO3--N/(Lreactor·d) at reasonable operational conditions. Hydrogen utilization efficiency was improved up to almost 100% by combining the pressurized reactor with a following open-to-atmosphere polishing unit. Also, the potential of the reactor to remove ClO4- was shown. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Plant Control of the High Performance Light Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Schlagenhaufer, Marc; Starflinger, J.; Schulenberg, T. [Institute for Nuclear and Energy Technologies, Forschungszentrum Karlsruhe GmbH, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen, Baden-Wuertemberg 76344 (Germany)

    2009-06-15

    The latest design concept of the High Performance Light Water Reactor (HPLWR) includes a thermal core in which supercritical water at 25 MPa inlet pressure is heated up from 280 deg. C reactor inlet temperature to 500 deg. C core exit temperature in three steps with intermediate coolant mixing to minimize peak cladding temperatures of the fuel rods. A direct supercritical steam cycle of the HPLWR has been designed with high, intermediate and low pressure turbines with a single reheat to 441 deg. C at 4.04 MPa pressure. Three low pressure pre-heaters and four high pressure pre-heaters are foreseen to achieve the envisaged reactor inlet temperature of 280 deg. C at full load. A feedwater tank of 603 m{sup 3} at 0.55 MPa pressure serves as an accumulator for normal and accidental conditions. The steam cycle has been modelled with APROS, developed by VTT Finland, to provide thermodynamic data and cycle efficiency values under full load and part load operation conditions as well as the transient response to load changes. A plant control system has been designed in which the reactor inlet pressure is controlled by the turbine valve, the reactor power is controlled by the feedwater pumps while the life steam temperature is controlled by control rods, and the reheat temperature is controlled by the reheater valve. Neglecting the reactivity control, the core power can also be treated as input parameter such that the life steam temperature is directly controlled by the feedwater mass flow. The plant control can handle all loading and de-loading cycles including complete shut down. A constant pressure at reactor inlet is foreseen for all load cases. Peak temperatures of the fuel pins are checked with a simplified core model. Two shut down procedures starting at 50% load are presented. A reactor scram with turbine states the safe shut down of the whole plant. To avoid hard material temperature changes, a controlled shut down procedure is designed. The rotational speed of the

  13. Reconstructing the direction of reactor antineutrinos via electron scattering in Gd-doped water Cherenkov detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hellfeld, D. [Univ. of California, Berkeley, CA (United States). Dept. of Nuclear Engineering; Bernstein, A. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dazeley, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Marianno, C. [Texas A & M Univ., College Station, TX (United States). Dept. of Nuclear Engineering

    2017-01-01

    The potential of elastic antineutrino-electron scattering (ν¯e + e → ν¯e + e) in a Gd-doped water Cherenkov detector to determine the direction of a nuclear reactor antineutrino flux was investigated using the recently proposed WATCHMAN antineutrino experiment as a baseline model. The expected scattering rate was determined assuming a 13 km standoff from a 3.758 GWt light water nuclear reactor. Background was estimated via independent simulations and by appropriately scaling published measurements from similar detectors. Many potential backgrounds were considered, including solar neutrinos, misidentified reactor-based inverse beta decay interactions, cosmogenic radionuclide and water-borne radon decays, and gamma rays from the photomultiplier tubes, detector walls, and surrounding rock. The detector response was modeled using a GEANT4-based simulation package. The results indicate that with the use of low radioactivity PMTs and sufficient fiducialization, water-borne radon and cosmogenic radionuclides pose the largest threats to sensitivity. The directional sensitivity was then analyzed as a function of radon contamination, detector depth, and detector size. Lastly, the results provide a list of theoretical conditions that, if satisfied in practice, would enable nuclear reactor antineutrino directionality in a Gd-doped water Cherenkov detector approximately 10 km from a large power reactor.

  14. Draft layout, containment and performance of the safety system of the European Supercritical Water-Cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Starflinger, J.; Schlagenhaufer, M.; Kohly, C.; Schulenberg, T. [Karlsruhe Inst. of Tech., Karlsruhe (Germany); Rothschmitt, S.; Bittermann, D. [AREVA NP GmbH, Erlangen (Germany)

    2010-07-01

    In Europe, the research on Supercritical Water-Cooled Reactors is integrated in a project called 'High Performance Light Water Reactor Phase 2' (HPLWR Phase 2), co-funded by the European Commission. Ten partners and three active supporters are working on critical scientific issues to determine the potential of this reactor concept in the electricity market. Close to the end of the project the technical results are translated into a draft layout of the HPLWR. The containment and safety system are being explained. Exemplarily, a depressurization event shows the capabilities of the safety system to sufficiently cool the reactor by means of a low pressure coolant injection system. (author)

  15. Construction management of Indian pressurized heavy water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bohra, S.A. [Nuclear Power Corporation of India Limited, Vikram Sarabhai Bhavan, Anushaktinagar, Mumbai 400094 (India)]. E-mail: sabohra@npcil.co.in; Sharma, P.D. [Nuclear Power Corporation of India Limited, Vikram Sarabhai Bhavan, Anushaktinagar, Mumbai 400094 (India)

    2006-04-15

    Pandit Jawaharlal Nehru and Dr. Homi J. Bhabha, the visionary architects of Science and Technology of modern India foresaw the imperative need to establish a firm base for indigenous research and development in the field of nuclear electricity generation. The initial phase has primarily focused on the technology development in a systematic and structured manner, which has resulted in establishment of strong engineering, manufacturing and construction base. The nuclear power program started with the setting up of two units of boiling light water type reactors in 1969 for speedy establishment of nuclear technology, safety culture, and development of operation and maintenance manpower. The main aim at that stage was to demonstrate (to ourselves, and indeed to the rest of the world) that India, inspite of being a developing country, with limited industrial infrastructure and low capacity power grids, could successfully assimilate the high technology involved in the safe and economical operation of nuclear power reactors. The selection of a BWR was in contrast to the pressurized heavy water reactors (PHWR), which was identified as the flagship for the first stage of India's nuclear power program. The long-term program in three stages utilizes large reserves of thorium in the monazite sands of Kerala beaches in the third stage with first stage comprising of series of PHWR type plants with a base of 10,000 MW. India has at present 14 reactors in operation 12 of these being of PHWR type. The performance of operating units of 2720 MW has improved significantly with an overall capacity factor of about 90% in recent times. The construction work on eight reactor units with installed capacity of 3960 MW (two PHWRs of 540 MW each, four PHWRs of 220 MW each and two VVERs of 1000 MW each) is proceeding on a rapid pace with project schedules of less than 5 years from first pour of concrete. This is being achieved through advanced construction technology and management. Present

  16. The Consortium for Advanced Simulation of Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ronaldo Szilard; Hongbin Zhang; Doug Kothe; Paul Turinsky

    2011-10-01

    The Consortium for Advanced Simulation of Light Water Reactors (CASL) is a DOE Energy Innovation Hub for modeling and simulation of nuclear reactors. It brings together an exceptionally capable team from national labs, industry and academia that will apply existing modeling and simulation capabilities and develop advanced capabilities to create a usable environment for predictive simulation of light water reactors (LWRs). This environment, designated as the Virtual Environment for Reactor Applications (VERA), will incorporate science-based models, state-of-the-art numerical methods, modern computational science and engineering practices, and uncertainty quantification (UQ) and validation against data from operating pressurized water reactors (PWRs). It will couple state-of-the-art fuel performance, neutronics, thermal-hydraulics (T-H), and structural models with existing tools for systems and safety analysis and will be designed for implementation on both today's leadership-class computers and the advanced architecture platforms now under development by the DOE. CASL focuses on a set of challenge problems such as CRUD induced power shift and localized corrosion, grid-to-rod fretting fuel failures, pellet clad interaction, fuel assembly distortion, etc. that encompass the key phenomena limiting the performance of PWRs. It is expected that much of the capability developed will be applicable to other types of reactors. CASL's mission is to develop and apply modeling and simulation capabilities to address three critical areas of performance for nuclear power plants: (1) reduce capital and operating costs per unit energy by enabling power uprates and plant lifetime extension, (2) reduce nuclear waste volume generated by enabling higher fuel burnup, and (3) enhance nuclear safety by enabling high-fidelity predictive capability for component performance.

  17. Fuel Summary Report: Shippingport Light Water Breeder Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Illum, D.B.; Olson, G.L.; McCardell, R.K.

    1999-01-01

    The Shippingport Light Water Breeder Reactor (LWBR) was a small water cooled, U-233/Th-232 cycle breeder reactor developed by the Pittsburgh Naval Reactors to improve utilization of the nation's nuclear fuel resources in light water reactors. The LWBR was operated at Shippingport Atomic Power Station (APS), which was a Department of Energy (DOE) (formerly Atomic Energy Commission)-owned reactor plant. Shippingport APS was the first large-scale, central-station nuclear power plant in the United States and the first plant of such size in the world operated solely to produce electric power. The Shippingport LWBR was operated successfully from 1977 to 1982 at the APS. During the five years of operation, the LWBR generated more than 29,000 effective full power hours (EFPH) of energy. After final shutdown, the 39 core modules of the LWBR were shipped to the Expended Core Facility (ECF) at Naval Reactors Facility at the Idaho National Engineering and Environmental Laboratory (INEEL). At ECF, 12 of the 39 modules were dismantled and about 1000 of more than 17,000 rods were removed from the modules of proof-of-breeding and fuel performance testing. Some of the removed rods were kept at ECF, some were sent to Argonne National Laboratory-West (ANL-W) in Idaho and some to ANL-East in Chicago for a variety of physical, chemical and radiological examinations. All rods and rod sections remaining after the experiments were shipped back to ECF, where modules and loose rods were repackaged in liners for dry storage. In a series of shipments, the liners were transported from ECF to Idaho Nuclear Technology Engineering Center (INTEC), formerly the Idaho Chemical Processing Plant (ICPP). The 47 liners containing the fully-rodded and partially-derodded core modules, the loose rods, and the rod scraps, are now stored in underground dry wells at CPP-749.

  18. 77 FR 3009 - Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors

    Science.gov (United States)

    2012-01-20

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors..., ``Knowledge and Abilities Catalog for Nuclear Power Plant Operators: Advanced Boiling Water Reactors.'' DATES...

  19. 76 FR 14437 - Economic Simplified Boiling Water Reactor Standard Design: GE Hitachi Nuclear Energy; Issuance of...

    Science.gov (United States)

    2011-03-16

    ... From the Federal Register Online via the Government Publishing Office ] NUCLEAR REGULATORY COMMISSION Economic Simplified Boiling Water Reactor Standard Design: GE Hitachi Nuclear Energy; Issuance of... GE Hitachi Nuclear Energy (GEH) for the economic simplified boiling water reactor (ESBWR) standard...

  20. Conceptual design of a large heavy water reactor for US siting

    Energy Technology Data Exchange (ETDEWEB)

    Shapiro, N L; Jesick, J F

    1979-09-01

    Information is presented concerning fuel management and safety and licensing assessment of the pressurized heavy water reactor; and commercial introduction of the pressurized heavy water reactor in the United States.

  1. Water distribution in a sorption enhanced methanation reactor by time resolved neutron imaging.

    Science.gov (United States)

    Borgschulte, A; Delmelle, R; Duarte, R B; Heel, A; Boillat, P; Lehmann, E

    2016-06-29

    Water adsorption enhanced catalysis has been recently shown to greatly increase the conversion yield of CO2 methanation. However, the joint catalysis and adsorption process requires new reactor concepts. We measured the spatial water distribution in a model fixed bed reactor using time resolved neutron imaging. Due to the high neutron attenuation coefficient of hydrogen, the absorbed water in the sorption catalyst gives a high contrast allowing us to follow its formation and map its distribution. At the same time, the product gas was analysed by FTIR-gas analysis. The measurements provided crucial insights into the future design of sorption reactors: during the sorption enhanced reaction, a reaction front runs through the reactor. Once the extension of the reaction front reaches the exhaust, the conversion rate of sorption enhanced methanation decreases. The existence of a reaction front running through the reactor is prerequisite for a high conversion rate. We give a simple model of the experimental results, in particular the conditions, under which a reaction front is established. In particular the latter effect must be taken into account for the dimensions of a large scale reactor.

  2. Guidance for Developing Principal Design Criteria for Advanced (Non-Light Water) Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Holbrook, Mark [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kinsey, Jim [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    In July 2013, the US Department of Energy (DOE) and US Nuclear Regulatory Commission (NRC) established a joint initiative to address a key portion of the licensing framework essential to advanced (non-light water) reactor technologies. The initiative addressed the “General Design Criteria for Nuclear Power Plants,” Appendix A to10 Code of Federal Regulations (CFR) 50, which were developed primarily for light water reactors (LWRs), specific to the needs of advanced reactor design and licensing. The need for General Design Criteria (GDC) clarifications in non-LWR applications has been consistently identified as a concern by the industry and varied stakeholders and was acknowledged by the NRC staff in their 2012 Report to Congress1 as an area for enhancement. The initiative to adapt GDC requirements for non-light water advanced reactor applications is being accomplished in two phases. Phase 1, managed by DOE, consisted of reviews, analyses and evaluations resulting in recommendations and deliverables to NRC as input for NRC staff development of regulatory guidance. Idaho National Laboratory (INL) developed this technical report using technical and reactor technology stakeholder inputs coupled with analysis and evaluations provided by a team of knowledgeable DOE national laboratory personnel with input from individual industry licensing consultants. The DOE national laboratory team reviewed six different classes of emerging commercial reactor technologies against 10 CFR 50 Appendix A GDC requirements and proposed guidance for their adapted use in non-LWR applications. The results of the Phase 1 analysis are contained in this report. A set of draft Advanced Reactor Design Criteria (ARDC) has been proposed for consideration by the NRC in the establishment of guidance for use by non-LWR designers and NRC staff. The proposed criteria were developed to preserve the underlying safety bases expressed by the original GDC, and recognizing that advanced reactors may take

  3. Standard Guide for Benchmark Testing of Light Water Reactor Calculations

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2010-01-01

    1.1 This guide covers general approaches for benchmarking neutron transport calculations in light water reactor systems. A companion guide (Guide E2005) covers use of benchmark fields for testing neutron transport calculations and cross sections in well controlled environments. This guide covers experimental benchmarking of neutron fluence calculations (or calculations of other exposure parameters such as dpa) in more complex geometries relevant to reactor surveillance. Particular sections of the guide discuss: the use of well-characterized benchmark neutron fields to provide an indication of the accuracy of the calculational methods and nuclear data when applied to typical cases; and the use of plant specific measurements to indicate bias in individual plant calculations. Use of these two benchmark techniques will serve to limit plant-specific calculational uncertainty, and, when combined with analytical uncertainty estimates for the calculations, will provide uncertainty estimates for reactor fluences with ...

  4. Stability analysis of the high performance light water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ortega Gomez, Tino

    2009-03-15

    In the Generation IV international advanced nuclear reactor development program, the High Performance Light Water Reactor (HPLWR) is one of the most promising candidates. Important features are its inherently high thermodynamic efficiency (of approximately 45 %) and the ability to use existing supercritical water technology which previously has been developed and deployed for fossil fired power plants. Within a HPLWR core, the fluid experiences a drastic change in thermal and transport properties such as density, dynamic viscosity, specific heat and thermal conductivity, as the supercritical water is heated from 280 C to 500 C. The density change substantially exceeds that in a Boiling Water Reactor (i.e., HPLWR: density changes from 780 kg/m{sup 3} to 90 kg/m{sup 3}; BWR: density changes from 750 kg/m{sup 3} to 198 kg/m3). Due to this density change, the HPLWR can be - under certain operation parameters - susceptible to various thermal-hydraulic flow instabilities, which have to be avoided. In this thesis a stability analysis for the HPLWR is presented. This analysis is based on analytical considerations and numerical results, which were obtained by a computer code developed by the author. The heat-up stages of the HPLWR three-pass core are identified in respect to the relevant flow instability phenomena. The modeling approach successfully used for BWR stability analysis is extended to supercritical pressure operation conditions. In particular, a one-dimensional equation set representing the coolant flow of HPLWR fuel assemblies has been implemented in a commercial software named COMSOL to perform steady-state, time-dependent, and modal analyses. An investigation of important static instabilities (i.e., Ledinegg instabilities, flow maldistribution) and Pressure Drop Oscillations (PDO) have been carried out and none were found under operation conditions of the HPLWR. Three types of Density Wave Oscillation (DWO) modes have been studied: the single channel DWO, the

  5. 77 FR 38339 - Dairyland Power Cooperative, La Crosse Boiling Water Reactor Exemption From Certain Security...

    Science.gov (United States)

    2012-06-27

    ... COMMISSION Dairyland Power Cooperative, La Crosse Boiling Water Reactor Exemption From Certain Security Requirements 1.0 Background The La Crosse Boiling Water Reactor (LACBWR) is owned and was operated by the..., which utilized a forced-circulation, direct-cycle boiling water reactor as its heat source. The plant is...

  6. 77 FR 36014 - Initial Test Program of Emergency Core Cooling Systems for Boiling-Water Reactors

    Science.gov (United States)

    2012-06-15

    ... COMMISSION Initial Test Program of Emergency Core Cooling Systems for Boiling-Water Reactors AGENCY: Nuclear...-1277, ``Initial Test Program of Emergency Core Cooling Systems for Boiling- Water Reactors.'' This... testing features of emergency core cooling systems (ECCSs) for boiling-water reactors (BWRs). DATES...

  7. Roadmap for Nondestructive Evaluation of Reactor Pressure Vessel Research and Development by the Light Water Reactor Sustainability Program

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Cyrus M [ORNL; Nanstad, Randy K [ORNL; Clayton, Dwight A [ORNL; Matlack, Katie [Georgia Institute of Technology; Ramuhalli, Pradeep [Pacific Northwest National Laboratory (PNNL); Light, Glenn [Southwest Research Institute, San Antonio

    2012-09-01

    The Department of Energy s (DOE) Light Water Reactor Sustainability (LWRS) Program is a five year effort which works to develop the fundamental scientific basis to understand, predict, and measure changes in materials and systems, structure, and components as they age in environments associated with continued long-term operations of existing commercial nuclear power reactors. This year, the Materials Aging and Degradation (MAaD) Pathway of this program has placed emphasis on emerging Non-Destructive Evaluation (NDE) methods which support these objectives. DOE funded Research and Development (R&D) on emerging NDE techniques to support commercial nuclear reactor sustainability is expected to begin next year. This summer, the MAaD Pathway invited subject matter experts to participate in a series of workshops which developed the basis for the research plan of these DOE R&D NDE activities. This document presents the results of one of these workshops which are the DOE LWRS NDE R&D Roadmap for Reactor Pressure Vessels (RPV). These workshops made a substantial effort to coordinate the DOE NDE R&D with that already underway or planned by the Electric Power Research Institute (EPRI) and the Nuclear Regulatory Commission (NRC) through their representation at these workshops.

  8. Applicability of a multivariable autoregressive method to boiling water reactor core stability estimation

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, S.; Fukunishi, K.; Kishi, S.; Yoshimoto, Y.; Kishimoto, K.

    1986-08-01

    A multivariable autoregressive (MAR) method is applied to the core stability estimation of a boiling water reactor-5 operation. Noise data measured during steady-state operations at startup tests are used. In this method, the closed loop transfer function from reactor pressure to reactor power is identified from reactor noise data and transformed into an impulse response function. The decay ratio representing stability characteristics is evaluated from this function. The variation range of decay ratio estimates obtained by this method is sufficiently small, if the analyzing conditions are appropriately selected. The value of the decay ratio is 0.23 during natural circulation and decreases with core flow, reaching close to zero at the rated power. A similar power dependence for the decay ratio is seen in results from a core stability analysis code. The MAR method is a useful tool for stability estimation, even if no external disturbance tests are conducted.

  9. Prediction of Reactor Vessel Water Level Using Fuzzy Neural Networks in Severe Accidents due to LOCA

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soonho; Kim, Jaehawn; Na, Mangyun [Chosun Univ., Gwangju (Korea, Republic of)

    2013-05-15

    When the initial events that may lead to the severe accident such as Loss Of Coolant Accident (LOCA) and Steam Generator Tube Rupture (SGTR) occurs at a nuclear power plant, it is most important to check the status of the plant conditions by observing the safety-related parameters such as neutron flux, pressurizer pressure, steam generator pressure and water level. In this paper, we propose a method of predicting the water level of coolant in the reactor vessel that directly affect the important events such as the exposure of the reactor core and the damage of reactor vessel by using a Fuzzy Neural Network (FNN) method. In addition, the data for verifying a proposed model was obtained by simulating the severe accident scenarios for the OPR1000 nuclear power plant using the MAAP4 code. In this paper, a prediction model was developed for predicting the reactor vessel water level using the FNN method. The proposed FNN model was verified based on the simulation data of OPR1000 by using MAAP4 code. As a result of simulation, we could see that the performance of the proposed FNN model is quite satisfactory but some large errors are observed occasionally. If the proposed FNN model is optimized by using a variety of data, it is possible to predict the reactor vessel water level exactly.

  10. On the study of catalytic membrane reactor for water detritiation: Modeling approach

    Energy Technology Data Exchange (ETDEWEB)

    Liger, Karine, E-mail: karine.liger@cea.fr [CEA, DEN, DTN/SMTA/LIPC Cadarache, Saint Paul-lez-Durance F-13108 (France); Mascarade, Jérémy [CEA, DEN, DTN/SMTA/LIPC Cadarache, Saint Paul-lez-Durance F-13108 (France); Joulia, Xavier; Meyer, Xuan-Mi [Université de Toulouse, INPT, UPS, Laboratoire de Génie Chimique, 4, Allée Emile Monso, Toulouse F-31030 (France); CNRS, Laboratoire de Génie Chimique, Toulouse F-31030 (France); Troulay, Michèle; Perrais, Christophe [CEA, DEN, DTN/SMTA/LIPC Cadarache, Saint Paul-lez-Durance F-13108 (France)

    2016-11-01

    Highlights: • Experimental results for the conversion of tritiated water (using deuterium as a simulant of tritium) by means of a catalytic membrane reactor in view of tritium recovery. • Phenomenological 2D model to represent catalytic membrane reactor behavior including the determination of the compositions of gaseous effluents. • Good agreement between the simulation results and experimental measurements performed on the dedicated facility. • Explanation of the unexpected behavior of the catalytic membrane reactor by the modeling results and in particular the gas composition estimation. - Abstract: In the framework of tritium recovery from tritiated water, efficiency of packed bed membrane reactors have been successfully demonstrated. Thanks to protium isotope swamping, tritium bonded water can be recovered under the valuable Q{sub 2} form (Q = H, D or T) by means of isotope exchange reactions occurring on catalyst surface. The use of permselective Pd-based membrane allows withdrawal of reactions products all along the reactor, and thus limits reverse reaction rate to the benefit of the direct one (shift effect). The reactions kinetics, which are still little known or unknown, are generally assumed to be largely greater than the permeation ones so that thermodynamic equilibriums of isotope exchange reactions are generally assumed. This paper proposes a new phenomenological 2D model to represent catalytic membrane reactor behavior with the determination of gas effluents compositions. A good agreement was obtained between the simulation results and experimental measurements performed on a dedicated facility. Furthermore, the gas composition estimation permits to interpret unexpected behavior of the catalytic membrane reactor. In the next future, further sensitivity analysis will be performed to determine the limits of the model and a kinetics study will be conducted to assess the thermodynamic equilibrium of reactions.

  11. Recent Results from Daya Bay Reactor Neutrino Experiment

    CERN Document Server

    Hu, Bei-Zhen

    2015-01-01

    The Daya Bay reactor neutrino experiment announced the discovery of a non-zero value of \\sin^22\\theta_{13} with significance better than 5 \\sigma in 2012. The experiment is continuing to improve the precision of \\sin^22\\theta_{13} and explore other physics topics. In this talk, I will show the current oscillation and mass-squared difference results which are based on the combined analysis of the measured rates and energy spectra of antineutrino events, an independent measurement of \\theta_{13} using IBD events where delayed neutrons are captured on hydrogens, and a search for light sterile neutrinos.

  12. Design concept of the high performance light water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Schulenberg, Thomas; Starflinger, Joerg [Forschungszentrum Karlsruhe GmbH Technik und Umwelt (Germany). Inst. for Nuclear and Energy Technologies; Bittermann, Dietmar [AREVA NP GmbH, Erlangen (Germany). NEP-G Process

    2009-04-15

    The 'High Performance Light Water Reactor' (HPLWR) is a Light Water Reactor operating with supercritical water as coolant. At a pressure of 25 MPa in the core, water is heated up from 280 to 500 C. For these conditions, the envisaged net plant efficiency is 43.5%. The core design concept is based on a so-called '3-pass-core' in which the coolant is heated up in three subsequent steps. After each step, the coolant is mixed avoiding hot streaks possibly leading to unacceptable wall temperatures. The design of such a core comprises fuel assemblies containing 40 fuel rods and an inner and outer box for a better neutron moderation. Nine of these are assembled to a cluster with common head- and foot piece. The coolant is mixed inside an upper and inside a lower mixing chamber and leaves the reactor pressure vessel through a co-axial pipe, which protects the vessel wall against too high temperatures. (orig.)

  13. FMDP Reactor Alternative Summary Report: Volume 2 - CANDU heavy water reactor alternative

    Energy Technology Data Exchange (ETDEWEB)

    Greene, S.R.; Spellman, D.J.; Bevard, B.B. [and others

    1996-09-01

    The Department of Energy Office of Fissile Materials Disposition (DOE/MD) initiated a detailed analysis activity to evaluate each of ten plutonium disposition alternatives that survived an initial screening process. This document, Volume 2 of a four volume report, summarizes the results of these analyses for the CANDU reactor based plutonium disposition alternative.

  14. Dense Medium Plasma Water Purification Reactor (DMP WaPR) Project

    Data.gov (United States)

    National Aeronautics and Space Administration — The Dense Medium Plasma Water Purification Reactor offers significant improvements over existing water purification technologies used in Advanced Life Support...

  15. Structural analysis of fuel rod applied to pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Faria, Danilo P.; Pinheiro, Andre Ricardo M.; Lotto, André A., E-mail: danilo.pinheiro@marinha.mil.br [Centro Tecnológico da Marinha em São Paulo (CTMSP), São Paulo, SP (Brazil)

    2017-07-01

    The design of fuel assemblies applied to Pressurized Water Reactors (PWR) has several requirements and acceptance criteria that must be attended for licensing. In the case of PWR fuel rods, an important mechanical structural requirement is to keep the radial stability when submitted to the coolant external pressure. In the framework of the Accident Tolerant Fuel (ATF) program new materials have been studied to replace zirconium based alloys as cladding, including iron-based alloys. In this sense, efforts have been made to evaluate the behavior of these materials under PWR conditions. The present work aims to evaluate the collapse cold pressure of a stainless steel thin-walled tube similar to that used as cladding material of fuel rods by means of the comparison of numeric data, and experimental results. As a result of the simulations, it was observed that the collapse pressure has a value intermediate value between those found by regulatory requirements and analytical calculations. The experiment was carried out for the validation of the computational model using test specimens of thin-walled tubes considering empty tube. The test specimens were sealed at both ends by means of welding. They were subjected to a high pressure device until the collapse of the tubes. Preliminary results obtained from experiments with the empty test specimens indicate that the computational model can be validated for stainless steel cladding, considering the difference between collapse pressure indicated in the regulatory document and the actual limit pressure concerning to radial instability of tubes with the studied characteristics. (author)

  16. Fixed-biofilm reactors applied to waste water treatment and aquacultural water recirculating systems

    NARCIS (Netherlands)

    Bovendeur, J.

    1989-01-01

    Fixed-biofilm waste water treatment may be regarded as one of the oldest engineered biological waste water treatment methods. With the recent introduction of modern packing materials, this type of reactor has received a renewed impuls for implementation in a wide field of water treatment.

    In

  17. Advanced Water-Gas Shift Membrane Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Sean Emerson; Thomas Vanderspurt; Susanne Opalka; Rakesh Radhakrishnan; Rhonda Willigan

    2009-01-07

    The overall objectives for this project were: (1) to identify a suitable PdCu tri-metallic alloy membrane with high stability and commercially relevant hydrogen permeation in the presence of trace amounts of carbon monoxide and sulfur; and (2) to identify and synthesize a water gas shift catalyst with a high operating life that is sulfur and chlorine tolerant at low concentrations of these impurities. This work successfully achieved the first project objective to identify a suitable PdCu tri-metallic alloy membrane composition, Pd{sub 0.47}Cu{sub 0.52}G5{sub 0.01}, that was selected based on atomistic and thermodynamic modeling alone. The second objective was partially successful in that catalysts were identified and evaluated that can withstand sulfur in high concentrations and at high pressures, but a long operating life was not achieved at the end of the project. From the limited durability testing it appears that the best catalyst, Pt-Re/Ce{sub 0.333}Zr{sub 0.333}E4{sub 0.333}O{sub 2}, is unable to maintain a long operating life at space velocities of 200,000 h{sup -1}. The reasons for the low durability do not appear to be related to the high concentrations of H{sub 2}S, but rather due to the high operating pressure and the influence the pressure has on the WGS reaction at this space velocity.

  18. 76 FR 61118 - Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor; Notice of Meeting

    Science.gov (United States)

    2011-10-03

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION Advisory Committee on Reactor Safeguards (ACRS) Meeting of the ACRS Subcommittee on Advanced Boiling Water Reactor; Notice of Meeting The ACRS Subcommittee on Advanced Boiling Water Reactor (ABWR...

  19. Using largest Lyapunov exponent to confirm the intrinsic stability of boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gavilian-Moreno, Carlos [Iberdrola Generacion, S.A., Cofrentes Nuclear Power Plant, Project Engineering Department, Paraje le Plano S/N, Valencia (Spain); Espinosa-Paredes, Gilberto [Area de ingeniera en Recursos Energeticos, Universidad Autonoma Metropolitana-Iztapalapa, Mexico city (Mexico)

    2016-04-15

    The aim of this paper is the study of instability state of boiling water reactors with a method based in largest Lyapunov exponents (LLEs). Detecting the presence of chaos in a dynamical system is an important problem that is solved by measuring the LLE. Lyapunov exponents quantify the exponential divergence of initially close state-space trajectories and estimate the amount of chaos in a system. This method was applied to a set of signals from several nuclear power plant (NPP) reactors under commercial operating conditions that experienced instabilities events, apparently each of a different nature. Laguna Verde and Forsmark NPPs with in-phase instabilities, and Cofrentes NPP with out-of-phases instability. This study presents the results of intrinsic instability in the boiling water reactors of three NPPs. In the analyzed cases the limit cycle was not reached, which implies that the point of equilibrium exerts influence and attraction on system evolution.

  20. Using Largest Lyapunov Exponent to Confirm the Intrinsic Stability of Boiling Water Reactors

    Directory of Open Access Journals (Sweden)

    Carlos J. Gavilán-Moreno

    2016-04-01

    Full Text Available The aim of this paper is the study of instability state of boiling water reactors with a method based in largest Lyapunov exponents (LLEs. Detecting the presence of chaos in a dynamical system is an important problem that is solved by measuring the LLE. Lyapunov exponents quantify the exponential divergence of initially close state-space trajectories and estimate the amount of chaos in a system. This method was applied to a set of signals from several nuclear power plant (NPP reactors under commercial operating conditions that experienced instabilities events, apparently each of a different nature. Laguna Verde and Forsmark NPPs with in-phase instabilities, and Cofrentes NPP with out-of-phases instability. This study presents the results of intrinsic instability in the boiling water reactors of three NPPs. In the analyzed cases the limit cycle was not reached, which implies that the point of equilibrium exerts influence and attraction on system evolution.

  1. Reactor process water (PW) piping inspections, 1984--1990

    Energy Technology Data Exchange (ETDEWEB)

    Ehrhart, W.S.; Elder, J.B.; Sprayberry, R.E.; Vande Kamp, R.W.

    1990-12-31

    In July 1983, the NRC ordered the shutdown of five boiling water reactors (BWR`s) because of concerns about reliability of ultrasonic examination for detecting intergranular stress corrosion cracking (IGSCC). These concerns arose because of leaking piping at Niagara Mohawk`s Nine Mile Point which was attributed to IGSCC. The leaks were detected shortly after completion of ultrasonic examinations of the piping. At that time, the Dupont plant manager at Savannah River (SR) directed that investigations be performed to determine if similar problems could exist in SR reactors. Investigation determined that all conditions believed necessary for the initiation and propagation of IGSCC in austenitic stainless steel exist in SR reactor process water (PW) systems. Sensitized, high carbon, austenitic stainless steel, a high purity water system with high levels of dissolved oxygen, and the residual stresses associated with welding during construction combine to provide the necessary conditions. A periodic UT inspection program is now in place to monitor the condition of the reactor PW piping systems. The program is patterned after NRC NUREG 0313, i.e., welds are placed in categories based on their history. Welds in upgraded or replacement piping are examined on a standard schedule (at least every five years) while welds with evidence of IGSCC, evaluated as acceptable for service, are inspected at every extended outage (15 to 18 months). This includes all welds in PW systems three inches in diameter and above. Welds are replaced when MSCC exceeds the replacement criteria of more than twenty percent of pipe circumference of fifty percent of through-wall depth. In the future, we intend to perform flow sizing with automated UT techniques in addition to manual sizing to provide more information for comparison with future examinations.

  2. Reactor process water (PW) piping inspections, 1984--1990

    Energy Technology Data Exchange (ETDEWEB)

    Ehrhart, W.S.; Elder, J.B.; Sprayberry, R.E.; Vande Kamp, R.W.

    1990-01-01

    In July 1983, the NRC ordered the shutdown of five boiling water reactors (BWR's) because of concerns about reliability of ultrasonic examination for detecting intergranular stress corrosion cracking (IGSCC). These concerns arose because of leaking piping at Niagara Mohawk's Nine Mile Point which was attributed to IGSCC. The leaks were detected shortly after completion of ultrasonic examinations of the piping. At that time, the Dupont plant manager at Savannah River (SR) directed that investigations be performed to determine if similar problems could exist in SR reactors. Investigation determined that all conditions believed necessary for the initiation and propagation of IGSCC in austenitic stainless steel exist in SR reactor process water (PW) systems. Sensitized, high carbon, austenitic stainless steel, a high purity water system with high levels of dissolved oxygen, and the residual stresses associated with welding during construction combine to provide the necessary conditions. A periodic UT inspection program is now in place to monitor the condition of the reactor PW piping systems. The program is patterned after NRC NUREG 0313, i.e., welds are placed in categories based on their history. Welds in upgraded or replacement piping are examined on a standard schedule (at least every five years) while welds with evidence of IGSCC, evaluated as acceptable for service, are inspected at every extended outage (15 to 18 months). This includes all welds in PW systems three inches in diameter and above. Welds are replaced when MSCC exceeds the replacement criteria of more than twenty percent of pipe circumference of fifty percent of through-wall depth. In the future, we intend to perform flow sizing with automated UT techniques in addition to manual sizing to provide more information for comparison with future examinations.

  3. DIRECT-CYCLE, BOILING-WATER NUCLEAR REACTOR

    Science.gov (United States)

    Harrer, J.M.; Fromm, L.W. Jr.; Kolba, V.M.

    1962-08-14

    A direct-cycle boiling-water nuclear reactor is described that employs a closed vessel and a plurality of fuel assemblies, each comprising an outer tube closed at its lower end, an inner tube, fuel rods in the space between the tubes and within the inner tube. A body of water lying within the pressure vessel and outside the fuel assemblies is converted to saturated steam, which enters each fuel assembly at the top and is converted to superheated steam in the fuel assembly while it is passing therethrough first downward through the space between the inner and outer tubes of the fuel assembly and then upward through the inner tube. (AEC)

  4. Water treatment process in the JEN-1 Research Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Urgel, M.; Perez-Bustamante, J. A.; Batuecas, T.

    1965-07-01

    The main characteristics and requirements which must be met with by waters to be used for nuclear reactors were studied paying attention separately both to those used in primary and secondary circuits as well as to the purification systems to be employed in each case. The experiments carried out for the initial pretreatment of water and the ion-exchange de ionization processes including a number of systems consisting of separated and mixed beds loaded with a variety of different commercially available resins are described. (Author) 24 refs.

  5. Reconstructing the direction of reactor antineutrinos via electron scattering in Gd-doped water Cherenkov detectors

    Energy Technology Data Exchange (ETDEWEB)

    Hellfeld, D., E-mail: dhellfeld@berkeley.edu [Department of Nuclear Engineering, University of California, Berkeley, Berkeley, CA 94720 (United States); Bernstein, A. [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Dazeley, S., E-mail: dazeley2@llnl.gov [Lawrence Livermore National Laboratory, Livermore, CA 94550 (United States); Marianno, C. [Department of Nuclear Engineering, Texas A& M University, College Station, TX 77843 (United States)

    2017-01-01

    The potential of elastic antineutrino-electron scattering in a Gd-doped water Cherenkov detector to determine the direction of a nuclear reactor antineutrino flux was investigated using the recently proposed WATCHMAN antineutrino experiment as a baseline model. The expected scattering rate was determined assuming a 13-km standoff from a 3.758-GWt light water nuclear reactor and the detector response was modeled using a Geant4-based simulation package. Background was estimated via independent simulations and by scaling published measurements from similar detectors. Background contributions were estimated for solar neutrinos, misidentified reactor-based inverse beta decay interactions, cosmogenic radionuclides, water-borne radon, and gamma rays from the photomultiplier tubes (PMTs), detector walls, and surrounding rock. We show that with the use of low background PMTs and sufficient fiducialization, water-borne radon and cosmogenic radionuclides pose the largest threats to sensitivity. Directional sensitivity was then analyzed as a function of radon contamination, detector depth, and detector size. The results provide a list of experimental conditions that, if satisfied in practice, would enable antineutrino directional reconstruction at 3σ significance in large Gd-doped water Cherenkov detectors with greater than 10-km standoff from a nuclear reactor.

  6. Models and Stability Analysis of Boiling Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    John Dorning

    2002-04-15

    We have studied the nuclear-coupled thermal-hydraulic stability of boiling water reactors (BWRs) using a model that includes: space-time modal neutron kinetics based on spatial w-modes; single- and two-phase flow in parallel boiling channels; fuel rod heat conduction dynamics; and a simple model of the recirculation loop. The BR model is represented by a set of time-dependent nonlinear ordinary differential equations, and is studied as a dynamical system using the modern bifurcation theory and nonlinear dynamical systems analysis. We first determine the stability boundary (SB) - or Hopf bifurcation set- in the most relevant parameter plane, the inlet-subcooling-number/external-pressure-drop plane, for a fixed control rod induced external reactivity equal to the 100% rod line value; then we transform the SB to the practical power-flow map used by BWR operating engineers and regulatory agencies. Using this SB, we show that the normal operating point at 100% power is very stable, that stability of points on the 100% rod line decreases as the flow rate is reduced, and that operating points in the low-flow/high-power region are least stable. We also determine the SB that results when the modal kinetics is replaced by simple point reactor kinetics, and we thereby show that the first harmonic mode does not have a significant effect on the SB. However, we later show that it nevertheless has a significant effect on stability because it affects the basin of attraction of stable operating points. Using numerical simulations we show that, in the important low-flow/high-power region, the Hopf bifurcation that occurs as the SB is crossed is subcritical; hence, growing oscillations can result following small finite perturbations of stable steady-states on the 100% rod line at points in the low-flow/high-power region. Numerical simulations are also performed to calculate the decay ratios (DRs) and frequencies of oscillations for various points on the 100% rod line. It is

  7. Multi-Application Small Light Water Reactor Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Modro, S.M.; Fisher, J.E.; Weaver, K.D.; Reyes, J.N.; Groome, J.T.; Babka, P.; Carlson, T.M.

    2003-12-01

    The Multi-Application Small Light Water Reactor (MASLWR) project was conducted under the auspices of the Nuclear Energy Research Initiative (NERI) of the U.S. Department of Energy (DOE). The primary project objectives were to develop the conceptual design for a safe and economic small, natural circulation light water reactor, to address the economic and safety attributes of the concept, and to demonstrate the technical feasibility by testing in an integral test facility. This report presents the results of the project. After an initial exploratory and evolutionary process, as documented in the October 2000 report, the project focused on developing a modular reactor design that consists of a self-contained assembly with a reactor vessel, steam generators, and containment. These modular units would be manufactured at a single centralized facility, transported by rail, road, and/or ship, and installed as a series of self-contained units. This approach also allows for staged construction of an NPP and ''pull and replace'' refueling and maintenance during each five-year refueling cycle. Development of the baseline design concept has been sufficiently completed to determine that it complies with the safety requirements and criteria, and satisfies the major goals already noted. The more significant features of the baseline single-unit design concept include: (1) Thermal Power--150 MWt; (2) Net Electrical Output--35 MWe; (3) Steam Generator Type--Vertical, helical tubes; (4) Fuel UO{sub 2}, 8% enriched; (5) Refueling Intervals--5 years; (6) Life-Cycle--60 years. The economic performance was assessed by designing a power plant with an electric generation capacity in the range of current and advanced evolutionary systems. This approach allows for direct comparison of economic performance and forms a basis for further evaluation, economic and technical, of the proposed design and for the design evolution towards a more cost competitive concept

  8. Simulation of Water Gas Shift Zeolite Membrane Reactor

    Science.gov (United States)

    Makertiharta, I. G. B. N.; Rizki, Z.; Zunita, Megawati; Dharmawijaya, P. T.

    2017-07-01

    The search of alternative energy sources keeps growing from time to time. Various alternatives have been introduced to reduce the use of fossil fuel, including hydrogen. Many pathways can be used to produce hydrogen. Among all of those, the Water Gas Shift (WGS) reaction is the most common pathway to produce high purity hydrogen. The WGS technique faces a downstream processing challenge due to the removal hydrogen from the product stream itself since it contains a mixture of hydrogen, carbon dioxide and also the excess reactants. An integrated process using zeolite membrane reactor has been introduced to improve the performance of the process by selectively separate the hydrogen whilst boosting the conversion. Furthermore, the zeolite membrane reactor can be further improved via optimizing the process condition. This paper discusses the simulation of Zeolite Membrane Water Gas Shift Reactor (ZMWGSR) with variation of process condition to achieve an optimum performance. The simulation can be simulated into two consecutive mechanisms, the reaction prior to the permeation of gases through the zeolite membrane. This paper is focused on the optimization of the process parameters (e.g. temperature, initial concentration) and also membrane properties (e.g. pore size) to achieve an optimum product specification (concentration, purity).

  9. TMI-2 Reactor Building source term measurements: surfaces and basement water and sediment

    Energy Technology Data Exchange (ETDEWEB)

    McIsaac, C V; Keefer, D G

    1984-10-01

    Presented in this report are the results of radiochemical and elemental analyses performed on samples collected from the Three Mile Island Unit 2 Reactor Building from August 1979 to December 1983. The quantities of fission products and core materials that were measured on the external surfaces in the Reactor Building or in the water and sediment in its basement are summarized. Recent analysis results for access panels removed from the air cooling assembly and for liquid and particulate samples collected from the Reactor Building sump and reactor coolant drain tank are included in the report. Measurements show that 59% of the /sup 3/H, 2.7% of the /sup 90/Sr, 15% of the /sup 129/I, 20% of the /sup 131/I, and 42% of the /sup 137/Cs originally in the core at the time of the accident could be accounted for outside the core in the Reactor Building. With the exceptions of /sup 90/Sr and /sup 144/Ce, the vast majority of each radionuclide released was found dispersed in the water and sediment in the basement.

  10. Study of Pu consumption in Advanced Light Water Reactors. Evaluation of GE Advanced Boiling Water Reactor plants

    Energy Technology Data Exchange (ETDEWEB)

    1993-05-13

    Timely disposal of the weapons plutonium is of paramount importance to permanently safeguarding this material. GE`s 1300 MWe Advanced Boiling Water Reactor (ABWR) has been designed to utilize fill] core loading of mixed uranium-plutonium oxide fuel. Because of its large core size, a single ABWR reactor is capable of disposing 100 metric tons of plutonium within 15 years of project inception in the spiking mode. The same amount of material could be disposed of in 25 years after the start of the project as spent fuel, again using a single reactor, while operating at 75 percent capacity factor. In either case, the design permits reuse of the stored spent fuel assemblies for electrical energy generation for the remaining life of the plant for another 40 years. Up to 40 percent of the initial plutonium can also be completely destroyed using ABWRS, without reprocessing, either by utilizing six ABWRs over 25 years or by expanding the disposition time to 60 years, the design life of the plants and using two ABWRS. More complete destruction would require the development and testing of a plutonium-base fuel with a non-fertile matrix for an ABWR or use of an Advanced Liquid Metal Reactor (ALMR). The ABWR, in addition, is fully capable of meeting the tritium target production goals with already developed target technology.

  11. Dominant accident sequences in Oconee-1 pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Dearing, J F; Henninger, R J; Nassersharif, B

    1985-04-01

    A set of dominant accident sequences in the Oconee-1 pressurized water reactor was selected using probabilistic risk analysis methods. Because some accident scenarios were similar, a subset of four accident sequences was selected to be analyzed with the Transient Reactor Analysis Code (TRAC) to further our insights into similar types of accidents. The sequences selected were loss-of-feedwater, small-small break loss-of-coolant, loss-of-feedwater-initiated transient without scram, and interfacing systems loss-of-coolant accidents. The normal plant response and the impact of equipment availability and potential operator actions were also examined. Strategies were developed for operator actions not covered in existing emergency operator guidelines and were tested using TRAC simulations to evaluate their effectiveness in preventing core uncovery and maintaining core cooling.

  12. Steam-Reheat Option for Supercritical-Water-Cooled Reactors

    Science.gov (United States)

    Saltanov, Eugene

    SuperCritical-Water-cooled Reactors (SCWRs) are being developed as one of the Generation-IV nuclear-reactor concepts. Main objectives of the development are to increase thermal efficiency of a Nuclear Power Plant (NPP) and to decrease capital and operational costs. The first objective can be achieved by introducing nuclear steam reheat inside a reactor and utilizing regenerative feedwater heaters. The second objective can be achieved by designing a steam cycle that closely matches that of the mature supercritical fossil-fuelled power plants. The feasibility of these objectives is discussed. As a part of this discussion, heat-transfer calculations have been performed and analyzed for SuperCritical-Water (SCW) and SuperHeated-Steam (SHS) channels of the proposed reactor concept. In the calculations a uniform and three non-uniform Axial Heat Flux Profiles (AHFPs) were considered for six different fuels (UO2, ThO 2, MOX, UC2, UC, and UN) and at average and maximum channel power. Bulk-fluid, sheath, and fuel centerline temperatures as well as the Heat Transfer Coefficient (HTC) profiles were obtained along the fuel-channel length. The HTC values are within a range of 4.7--20 kW/m2·K and 9.7--10 kW/m2·K for the SCW and SHS channels respectively. The main conclusion is that while all the mentioned fuels may be used for the SHS channel, only UC2, UC, or UN are suitable for a SCW channel, because their fuel centerline temperatures are at least 1000°C below melting point, while that of UO2, ThO2 , and MOX may reach melting point.

  13. Materials Inventory Database for the Light Water Reactor Sustainability Program

    Energy Technology Data Exchange (ETDEWEB)

    Kazi Ahmed; Shannon M. Bragg-Sitton

    2013-08-01

    Scientific research involves the purchasing, processing, characterization, and fabrication of many sample materials. The history of such materials can become complicated over their lifetime – materials might be cut into pieces or moved to various storage locations, for example. A database with built-in functions to track these kinds of processes facilitates well-organized research. The Material Inventory Database Accounting System (MIDAS) is an easy-to-use tracking and reference system for such items. The Light Water Reactor Sustainability Program (LWRS), which seeks to advance the long-term reliability and productivity of existing nuclear reactors in the United States through multiple research pathways, proposed MIDAS as an efficient way to organize and track all items used in its research. The database software ensures traceability of all items used in research using built-in functions which can emulate actions on tracked items – fabrication, processing, splitting, and more – by performing operations on the data. MIDAS can recover and display the complete history of any item as a simple report. To ensure the database functions suitably for the organization of research, it was developed alongside a specific experiment to test accident tolerant nuclear fuel cladding under the LWRS Advanced Light Water Reactor Nuclear Fuels Pathway. MIDAS kept track of materials used in this experiment from receipt at the laboratory through all processes, test conduct and, ultimately, post-test analysis. By the end of this process, the database proved to be right tool for this program. The database software will help LWRS more efficiently conduct research experiments, from simple characterization tests to in-reactor experiments. Furthermore, MIDAS is a universal tool that any other research team could use to organize their material inventory.

  14. Ammonium recovery from reject water combined with hydrogen production in a bioelectrochemical reactor.

    Science.gov (United States)

    Wu, Xue; Modin, Oskar

    2013-10-01

    In this study, a bioelectrochemical reactor was investigated for simultaneous hydrogen production and ammonium recovery from reject water, which is an ammonium-rich side-stream produced from sludge treatment processes at wastewater treatment plants. In the anode chamber of the reactor, microorganisms converted organic material into electrical current. The electrical current was used to generate hydrogen gas at the cathode with 96±6% efficiency. Real or synthetic reject water was fed to the cathode chamber where proton reduction into hydrogen gas resulted in a pH increase which led to ammonium being converted into volatile ammonia. The ammonia could be stripped from the solution and recovered in acid. Overall, ammonium recovery efficiencies reached 94% with synthetic reject water and 79% with real reject water. This process could potentially be used to make wastewater treatment plants more resource-efficient and further research is warranted. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. The Development of the Advanced Light Water Reactor in Korea - The Korean Next Generation Reactor -

    Energy Technology Data Exchange (ETDEWEB)

    Kim, H.G.; Park, Y.S.; Kim, B.S.; Cho, S.J. [Korea Electric Power Research Institute, Taejon (Korea)

    1999-07-01

    Korean next generation reactor (KNGR), which is to be designed as a standard evolutionary advanced light water reactor (ALWR) in Korea, has been developed from 1992 as one of long-term government projects. The major characteristics of the KNGR are as follows; KNGR is 2-loop PWR and its design lift time is 60 years. The CDF and the CFF will be much lower than 10{sup -5}/RY and 10{sup -6}/RY, respectively. For the design improvement, KNGR adopted inconel-690 as a steam generator tube material, four train ECCS, refueling water storage tank inside containment, and double cylindrical concrete containment. For more reliable and easier control, compact workstations have been adopted in the design of main control complex and digital I and C technology is used for protection, control, and monitoring. In addition, KNGR has some passive design features such as fluidic device in safety injection tank, passive secondary condensing system, and passive auto-catalytic hydrogen recombiner to enhance safety. (author). 4 refs., 4 figs.

  16. Standard Guide for In-Service Annealing of Light-Water Moderated Nuclear Reactor Vessels

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2003-01-01

    1.1 This guide covers the general procedures to be considered for conducting an in-service thermal anneal of a light-water moderated nuclear reactor vessel and demonstrating the effectiveness of the procedure. The purpose of this in-service annealing (heat treatment) is to improve the mechanical properties, especially fracture toughness, of the reactor vessel materials previously degraded by neutron embrittlement. The improvement in mechanical properties generally is assessed using Charpy V-notch impact test results, or alternatively, fracture toughness test results or inferred toughness property changes from tensile, hardness, indentation, or other miniature specimen testing (1). 1.2 This guide is designed to accommodate the variable response of reactor-vessel materials in post-irradiation annealing at various temperatures and different time periods. Certain inherent limiting factors must be considered in developing an annealing procedure. These factors include system-design limitations; physical constrain...

  17. Studies on supercritical water reactor fuel assemblies using the sub-channel code COBRA-EN

    Energy Technology Data Exchange (ETDEWEB)

    Ammirabile, Luca, E-mail: luca.ammirabile@ec.europa.e [European Commission, JRC, Institute for Energy, Westerduinweg 3, 1755 LE Petten (Netherlands)

    2010-10-15

    In the Generation IV International Forum (GIF) program, the supercritical water reactor (SCWR) concept is among the six innovative reactor types selected for development in the near future. In principle the higher efficiency and better economics make the SCWR concept competitive with the current reactor design. Due to different technical challenges that, however exist, fuel assembly design represents a crucial aspect for the success of this concept. In particular large density variations, low moderation, heat transfer enhancement and deterioration have a strong effect on the core design parameters. Only a few computational tools are currently able to perform sub-channel thermal-hydraulic analysis under supercritical water conditions. At JRC-IE the existing sub-channel code COBRA-EN has been improved to work above the critical pressure of water. The water properties package of the IAPWS Industrial Formulation 1997 was integrated in COBRA-EN to compute the Thermodynamic Properties of Water and Steam. New heat transfer and pressure drop correlations more indicated for the supercritical region of water have also been incorporated in the code. As part of the efforts to appraise the new code capabilities, a code assessment was carried out on the hexagonal fuel assembly of a fast supercritical water reactor. COBRA-EN was also applied in combination with the neutronic code MCNP to investigate on the use of hydride fuel in the HPLWR supercritical water fuel assembly. The results showed that COBRA-EN was able to reproduce the results of similar studies with acceptable accuracy. Future activities will focus on the validation of the code against experimental data and the implementation of new features (counter-current moderator channel, wall, and wire-wrap models).

  18. Water cooled breeder program summary report (LWBR (Light Water Breeder Reactor) development program)

    Energy Technology Data Exchange (ETDEWEB)

    1987-10-01

    The purpose of the Department of Energy Water Cooled Breeder Program was to demonstrate pratical breeding in a uranium-233/thorium fueled core while producing electrical energy in a commercial water reactor generating station. A demonstration Light Water Breeder Reactor (LWBR) was successfully operated for more than 29,000 effective full power hours in the Shippingport Atomic Power Station. The reactor operated with an availability factor of 76% and had a gross electrical output of 2,128,943,470 kilowatt hours. Following operation, the expended core was examined and no evidence of any fuel element defects was found. Nondestructive assay of 524 fuel rods determined that 1.39 percent more fissile fuel was present at the end of core life than at the beginning, proving that breeding had occurred. This demonstrates the existence of a vast source of electrical energy using plentiful domestic thorium potentially capable of supplying the entire national need for many centuries. To build on the successful design and operation of the Shippingport Breeder Core and to provide the technology to implement this concept, several reactor designs of large breeders and prebreeders were developed for commercial-sized plants of 900--1000 Mw(e) net. This report summarizes the Water Cooled Breeder Program from its inception in 1965 to its completion in 1987. Four hundred thirty-six technical reports are referenced which document the work conducted as part of this program. This work demonstrated that the Light Water Breeder Reactor is a viable alternative as a PWR replacement in the next generation of nuclear reactors. This transition would only require a minimum of change in design and fabrication of the reactor and operation of the plant.

  19. Oak Ridge National Laboratory Support of Non-light Water Reactor Technologies: Capabilities Assessment for NRC Near-term Implementation Action Plans for Non-light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Belles, Randy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jain, Prashant K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-04-01

    The Oak Ridge National Laboratory (ORNL) has a rich history of support for light water reactor (LWR) and non-LWR technologies. The ORNL history involves operation of 13 reactors at ORNL including the graphite reactor dating back to World War II, two aqueous homogeneous reactors, two molten salt reactors (MSRs), a fast-burst health physics reactor, and seven LWRs. Operation of the High Flux Isotope Reactor (HFIR) has been ongoing since 1965. Expertise exists amongst the ORNL staff to provide non-LWR training; support evaluation of non-LWR licensing and safety issues; perform modeling and simulation using advanced computational tools; run laboratory experiments using equipment such as the liquid salt component test facility; and perform in-depth fuel performance and thermal-hydraulic technology reviews using a vast suite of computer codes and tools. Summaries of this expertise are included in this paper.

  20. High Performance Fuel Desing for Next Generation Pressurized Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mujid S. Kazimi; Pavel Hejzlar

    2006-01-31

    The use of internally and externally cooled annular fule rods for high power density Pressurized Water Reactors is assessed. The assessment included steady state and transient thermal conditions, neutronic and fuel management requirements, mechanical vibration issues, fuel performance issues, fuel fabrication methods and econmic assessment. The investigation was donducted by a team from MIT, Westinghouse, Gamma Engineering, Framatome ANP, and AECL. The analyses led to the conclusion that raising the power density by 50% may be possible with this advanced fuel. Even at the 150% power level, the fuel temperature would be a few hundred degrees lower than the current fuel temperatre. Significant economic and safety advantages can be obtained by using this fuel in new reactors. Switching to this type of fuel for existing reactors would yield safety advantages, but the economic return is dependent on the duration of plant shutdown to accommodate higher power production. The main feasiblity issue for the high power performance appears to be the potential for uneven splitting of heat flux between the inner and outer fuel surfaces due to premature closure of the outer fuel-cladding gap. This could be overcome by using a very narrow gap for the inner fuel surface and/or the spraying of a crushable zirconium oxide film at the fuel pellet outer surface. An alternative fuel manufacturing approach using vobropacking was also investigated but appears to yield lower than desirable fuel density.

  1. Experiences with austenitic steels in boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Wachter, O. [Preussische Elektrizitaets-AG (Preussenelektra), Hannover (Germany); Bruemmer, G. [Hamburgische Electricitaets-Werke AG., Hamburg (Germany)

    1997-05-01

    Stabilized austenitic steels are susceptible to intergranular stress corrosion cracking (IGSCC) under boiling water reactor (BWR) conditions. This important finding for the German nuclear power station industry arises from the detection of cracks during the last 3 years in reactor hot water pipes made from titanium-stabilized steel AISI 321 in six BWRs and in reactor core components made from the niobium-stabilized steel AISI 347 in one BWR. All the observed cracks had a common feature: they had their origin in the chromium carbide precipitates at the grain boundaries and in the associated chromium-depleted region near the grain boundary. These microstructural features in the heat-affected zones of the hot water pipe weldments were caused by the heat input during deposition of the root bead. The TiC partially dissolved in the region near the fusion line and the released carbon reacted to form chromium-rich M{sub 23}C{sub 6}. Regarding the cracks found in the core shroud and the core grid plates, it was shown that a sensitizing heat treatment of rings taken from the same heat of steel could give rise to a microstructure susceptible to IGSCC in the region of a weldment. High carbon contents coupled with low stabilization ratios led to sensitization. Residual stresses developed during welding provided the significant contributions to the tensile stress necessary for IGSCC. With regard to the service medium, the influence of the electrochemical corrosion potential (ECP) was recognized as a dominant factor, together with the conductivity. The corrosion potential was mainly determined by the radiolytic formation of H{sub 2}O{sub 2}; with increasing distance from the core, the H{sub 2}O{sub 2} content decreased owing to catalytic decomposition. For the pipes the problem of IGSCC could be resolved by the use of optimized steel (lower carbon content with maximum allowable stabilization ratio).

  2. Recent results on the RIA test in IGR reactor

    Energy Technology Data Exchange (ETDEWEB)

    Asmolov, V.; Yegorova, L. [Nuclear Safety Institute, Moscow (Russian Federation)

    1997-01-01

    At the 23d WRSM meeting the data base characterizing results of VVER high burnup fuel rods tests under reactivity-initiated accident (RIA) conditions was presented. Comparison of PWR and VVER failure thresholds was given also. Additional analysis of the obtained results was being carried out during 1996. The results of analysis show that the two different failure mechanisms were observed for PWR and VVER fuel rods. Some factors which can be as the possible reasons of these differences are presented. First of them is the state of preirradiated cladding. Published test data for PWR high burnup fuel rods demonstrated that the PWR high burnup fuel rods failed at the RIA test are characterized by very high level of oxidation and hydriding for the claddings. Corresponding researches were performed at Institute of Atomic Reactors (RLAR, Dimitrovgrad, Russia) for large set of VVER high burnup fuel rods. Results of these investigations show that preirradiated commercial Zr-1%Nb claddings practically keep their initial levels of oxidation and H{sub 2} concentration. Consequently the VVER preirradiated cladding must keep the high level of mechanical properties. The second reason leading to differences between failure mechanisms for two types of high burnup fuel rods can be the test conditions. Now such kind of analysis have been performed by two methods.

  3. Catalytic membrane reactor for water and wastewater treatment

    Science.gov (United States)

    Heng, Samuel

    A double membrane reactor was fabricated and assessed for continuous treatment of water containing organic contaminants by ozonation. This innovative reactor consisted of a zeolite membrane prepared on the inner surface of a porous a-alumina support, which served as water selective extractor and active contactor, and a porous stainless membrane which was the ozone gas diffuser. The coupling of membrane separation and chemical oxidation was found to be highly beneficial to both processes. The total organic carbon (TOC) removal rate at the retentate was enhanced by up to 2.2 times, as compared to membrane ozonation. Simultaneously, clean water (membrane support, was shown to further enhance TOC degradation, permeated TOC concentration, permeate flux, and moreover, ozone yield. The achievements of this project included: (1) The development of a novel low-temperature zeolite membrane activation method that generates consistently high quality membranes (i.e. high reproducibility and fewer defects). (2) The demonstration that gamma-alumina and gamma-alumina supported catalysts do not have significant activity and that the TOC removal enhancement usually observed during catalytic ozonation was due primarily to the contribution of adsorption and metal leaching. Thermogravimetric analysis (TGA) and elemental analysis (EA) of the spent catalyst showed that, during catalytic ozonation, oxygenated by-products of increased adsorbability were concentrated onto the gamma-alumina contactor, and were subsequently degraded. (3) The development of a method for coating high surface area gamma-alumina layers onto the grains of zeolite membrane support used as the active membrane contactor.

  4. The radiochemistry of nuclear power plants with light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Neeb, K.H.

    1997-12-31

    In this book, radioactivity and the chemical reactions of radionuclides within the different areas of a nucler power plant are discussed. The text concentrates on commercially operated light water reactors which currently represent the greatest fraction by far of the world`s nuclear power capacity. This book is not only intended for experts working in the various fields of radiochemistry in nuclear power plants. It also provides an overview of the topics dealt with for the operators of nuclear power plants, for people working in design and development and safety-related areas, as well as for those working in licensing and supervision. (orig.)

  5. Advanced fuels for plutonium management in pressurized water reactors

    Science.gov (United States)

    Vasile, A.; Dufour, Ph; Golfier, H.; Grouiller, J. P.; Guillet, J. L.; Poinot, Ch; Youinou, G.; Zaetta, A.

    2003-06-01

    Several fuel concepts are under investigation at CEA with the aim of manage plutonium inventories in pressurized water reactors. This options range from the use of mature technologies like MOX adapted in the case of MOX-EUS (enriched uranium support) and COmbustible Recyclage A ILot (CORAIL) assemblies to more innovative technologies using IMF like DUPLEX and advanced plutonium assembly (APA). The plutonium burning performances reported to the electrical production go from 7 to 60 kg (TW h) -1. More detailed analysis covering economic, sustainability, reliability and safety aspects and their integration in the whole fuel cycle would allow identifying the best candidate.

  6. Reactor Physics Behavior of Transuranic-Bearing TRISO-Particle Fuel in a Pressurized Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Michael A. Pope; R. Sonat Sen; Abderrafi M. Ougouag; Gilles Youinou; Brian Boer

    2012-04-01

    Calculations have been performed to assess the neutronic behavior of pins of Fully-Ceramic Micro-encapsulated (FCM) fuel in otherwise-conventional Pressurized Water Reactor (PWR) fuel pins. The FCM fuel contains transuranic (TRU)-only oxide fuel in tri-isotropic (TRISO) particles with the TRU loading coming from the spent fuel of a conventional LWR after 5 years of cooling. Use of the TRISO particle fuel would provide an additional barrier to fission product release in the event of cladding failure. Depletion calculations were performed to evaluate reactivity-limited burnup of the TRU-only FCM fuel. These calculations showed that due to relatively little space available for fuel, the achievable burnup with these pins alone is quite small. Various reactivity parameters were also evaluated at each burnup step including moderator temperature coefficient (MTC), Doppler, and soluble boron worth. These were compared to reference UO{sub 2} and MOX unit cells. The TRU-only FCM fuel exhibits degraded MTC and Doppler coefficients relative to UO{sub 2} and MOX. Also, the reactivity effects of coolant voiding suggest that the behavior of this fuel would be similar to a MOX fuel of very high plutonium fraction, which are known to have positive void reactivity. In general, loading of TRU-only FCM fuel into an assembly without significant quantities of uranium presents challenges to the reactor design. However, if such FCM fuel pins are included in a heterogeneous assembly alongside LEU fuel pins, the overall reactivity behavior would be dominated by the uranium pins while attractive TRU destruction performance levels in the TRU-only FCM fuel pins is. From this work, it is concluded that use of heterogeneous assemblies such as these appears feasible from a preliminary reactor physics standpoint.

  7. Evaluation of integral continuing experimental capability (CEC) concepts for light water reactor research: PWR scaling concepts

    Energy Technology Data Exchange (ETDEWEB)

    Condie, K G; Larson, T K; Davis, C B; McCreery, G E

    1987-02-01

    In this report reactor transients and thermal-hydraulic phenomena of importance (based on probabilistic risk assessment and the International Code Assessment Program) to reactor safety were examined and identified. Established scaling methodologies were used to develop potential concepts for integral thermal-hydraulic testing facilities. Advantages and disadvantages of each concept are evaluated. Analysis is conducted to examine the scaling of various phenomena in each of the selected concepts. Results generally suggest that a facility capable of operating at typical reactor operating conditions will scale most phenomena reasonably well. Although many phenomena in facilities using Freon or water at nontypical pressure will scale reasonably well, those phenomena that are heavily dependent on quality (heat transfer or critical flow for example) can be distorted. Furthermore, relation of data produced in facilities operating with nontypical fluids or at nontypical pressures to large plants will be a difficult and time consuming process.

  8. Passive gamma analysis of the boiling-water-reactor assemblies

    Science.gov (United States)

    Vo, D.; Favalli, A.; Grogan, B.; Jansson, P.; Liljenfeldt, H.; Mozin, V.; Schwalbach, P.; Sjöland, A.; Tobin, S.; Trellue, H.; Vaccaro, S.

    2016-09-01

    This research focused on the analysis of a set of stationary passive gamma measurements taken on the spent nuclear fuel assemblies from a boiling water reactor (BWR) using pulse height analysis data acquisition. The measurements were performed on 25 different BWR assemblies in 2014 at Sweden's Central Interim Storage Facility for Spent Nuclear Fuel (Clab). This study was performed as part of the Next Generation of Safeguards Initiative-Spent Fuel project to research the application of nondestructive assay (NDA) to spent fuel assemblies. The NGSI-SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay (NDA) measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. The final objective of this project is to quantify the capability of several integrated NDA instruments to meet the aforementioned goals using the combined signatures of neutrons, gamma rays, and heat. This report presents a selection of the measured data and summarizes an analysis of the results. Specifically, trends in the count rates measured for spectral lines from the following isotopes were analyzed as a function of the declared burnup and cooling time: 137Cs, 154Eu, 134Cs, and to a lesser extent, 106Ru and 144Ce. From these measured count rates, predictive algorithms were developed to enable the estimation of the burnup and cooling time. Furthermore, these algorithms were benchmarked on a set of assemblies not included in the standard assemblies set used by this research team.

  9. Secondary flows in the cooling channels of the high-performance light-water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Laurien, E.; Wintterle, Th. [Stuttgart Univ., Institute for Nuclear Technolgy and Energy Systems (IKE) (Germany)

    2007-07-01

    The new design of a High-Performance Light-Water Reactor (HPLWR) involves a three-pass core with an evaporator region, where the compressed water is heated above the pseudo-critical temperature, and two superheater regions. Due to the strong dependency of the supercritical water density on the temperature significant mass transfer between neighboring cooling channels is expected if the temperature is unevenly distributed across the fuel element. An inter-channel flow is then superimposed to the secondary flow vortices induced by the non-isotropy of turbulence. In order to gain insight into the resulting flow patterns as well as into temperature and density distributions within the various subchannels of the fuel element CFD (Computational Fluid Dynamics) calculations for the 1/8 fuel element are performed. For simplicity adiabatic boundary conditions at the moderator box and the fuel element box are assumed. Our investigation confirms earlier results obtained by subchannel analysis that the axial mass flux is significantly reduced in the corner subchannel of this fuel element resulting in a net mass flux towards the neighboring subchannels. Our results provide a first estimation of the magnitude of the secondary flows in the pseudo-critical region of a supercritical light-water reactor. Furthermore, it is demonstrated that CFD is an efficient tool for investigations of flow patterns within nuclear reactor fuel elements. (authors)

  10. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production, 3rd Quarterly Report

    Energy Technology Data Exchange (ETDEWEB)

    Mac Donald, Philip Elsworth

    2002-06-01

    The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed.

  11. DOE/NNSA perspective safeguard by design: GEN III/III+ light water reactors and beyond

    Energy Technology Data Exchange (ETDEWEB)

    Pan, Paul Y [Los Alamos National Laboratory

    2010-12-10

    An overview of key issues relevant to safeguards by design (SBD) for GEN III/IV nuclear reactors is provided. Lessons learned from construction of typical GEN III+ water reactors with respect to SBD are highlighted. Details of SBD for safeguards guidance development for GEN III/III+ light water reactors are developed and reported. This paper also identifies technical challenges to extend SBD including proliferation resistance methodologies to other GEN III/III+ reactors (except HWRs) and GEN IV reactors because of their immaturity in designs.

  12. Sustained Recycle in Light Water and Sodium-Cooled Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Steven J. Piet; Samuel E. Bays; Michael A. Pope; Gilles J. Youinou

    2010-11-01

    From a physics standpoint, it is feasible to sustain recycle of used fuel in either thermal or fast reactors. This paper examines multi-recycle potential performance by considering three recycling approaches and calculating several fuel cycle parameters, including heat, gamma, and neutron emission of fresh fuel; radiotoxicity of waste; and uranium utilization. The first recycle approach is homogeneous mixed oxide (MOX) fuel assemblies in a light water reactor (LWR). The transuranic portion of the MOX was varied among Pu, NpPu, NpPuAm, or all-TRU. (All-TRU means all isotopes through Cf-252.) The Pu case was allowed to go to 10% Pu in fresh fuel, but when the minor actinides were included, the transuranic enrichment was kept below 8% to satisfy the expected void reactivity constraint. The uranium portion of the MOX was enriched uranium. That enrichment was increased (to as much as 6.5%) to keep the fuel critical for a typical LWR irradiation. The second approach uses heterogeneous inert matrix fuel (IMF) assemblies in an LWR - a mix of IMF and traditional UOX pins. The uranium-free IMF fuel pins were Pu, NpPu, NpPuAm, or all-TRU. The UOX pins were limited to 4.95% U-235 enrichment. The number of IMF pins was set so that the amount of TRU in discharged fuel from recycle N (from both IMF and UOX pins) was made into the new IMF pins for recycle N+1. Up to 60 of the 264 pins in a fuel assembly were IMF. The assembly-average TRU content was 1-6%. The third approach uses fast reactor oxide fuel in a sodium-cooled fast reactor with transuranic conversion ratio of 0.50 and 1.00. The transuranic conversion ratio is the production of transuranics divided by destruction of transuranics. The FR at CR=0.50 is similar to the CR for the MOX case. The fast reactor cases had a transuranic content of 33-38%, higher than IMF or MOX.

  13. Thermal Hydraulic Integral Effect Tests for Pressurized Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Baek, W. P.; Song, C. H.; Kim, Y. S. and others

    2005-02-15

    The objectives of the project are to construct a thermal-hydraulic integral effect test facility and to perform various integral effect tests for design, operation, and safety regulation of pressurized water reactors. During the first phase of this project (1997.8{approx}2002.3), the basic technology for thermal-hydraulic integral effect tests was established and the basic design of the test facility was accomplished: a full-height, 1/300-volume-scaled full pressure facility for APR1400, an evolutionary pressurized water reactor that was developed by Korean industry. Main objectives of the present phase (2002.4{approx}2005.2), was to optimize the facility design and to construct the experimental facility. We have performed following researches: 1) Optimization of the basic design of the thermal-hydraulic integral effect test facility for PWRs - ATLAS (Advanced Thermal-hydraulic Test Loop for Accident Simulation) - Reduced height design for APR1400 (+ specific design features of KSNP safety injection systems) - Thermal-hydraulic scaling based on three-level scaling methodology by Ishii et al. 2) Construction of the ATLAS facility - Detailed design of the test facility - Manufacturing and procurement of components - Installation of the facility 3) Development of supporting technology for integral effect tests - Development and application of advanced instrumentation technology - Preliminary analysis of test scenarios - Development of experimental procedures - Establishment and implementation of QA system/procedure.

  14. Reactor vessel water level estimation during severe accidents using cascaded fuzzy neural networks

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dong Yeong; Yoo, Kwae Hwan; Choi, Geon Pil; Back, Ju Hyun; Na, Man Gyun [Dept. of Nuclear Engineering, Chosun University, Gwangju (Korea, Republic of)

    2016-06-15

    Global concern and interest in the safety of nuclear power plants have increased considerably since the Fukushima accident. In the event of a severe accident, the reactor vessel water level cannot be measured. The reactor vessel water level has a direct impact on confirming the safety of reactor core cooling. However, in the event of a severe accident, it may be possible to estimate the reactor vessel water level by employing other information. The cascaded fuzzy neural network (CFNN) model can be used to estimate the reactor vessel water level through the process of repeatedly adding fuzzy neural networks. The developed CFNN model was found to be sufficiently accurate for estimating the reactor vessel water level when the sensor performance had deteriorated. Therefore, the developed CFNN model can help provide effective information to operators in the event of a severe accident.

  15. Supercritical Water Gasification of Biomass in a Ceramic Reactor: Long-Time Batch Experiments

    Directory of Open Access Journals (Sweden)

    Daniele Castello

    2017-10-01

    Full Text Available Supercritical water gasification (SCWG is an emerging technology for the valorization of (wet biomass into a valuable fuel gas composed of hydrogen and/or methane. The harsh temperature and pressure conditions involved in SCWG (T > 375 °C, p > 22 MPa are definitely a challenge for the manufacturing of the reactors. Metal surfaces are indeed subject to corrosion under hydrothermal conditions, and expensive special alloys are needed to overcome such drawbacks. A ceramic reactor could be a potential solution to this issue. Finding a suitable material is, however, complex because the catalytic effect of the material can influence the gas yield and composition. In this work, a research reactor featuring an internal alumina inlay was utilized to conduct long-time (16 h batch tests with real biomasses and model compounds. The same experiments were also conducted in batch reactors made of stainless steel and Inconel 625. The results show that the three devices have similar performance patterns in terms of gas production, although in the ceramic reactor higher yields of C2+ hydrocarbons were obtained. The SEM observation of the reacted alumina surface revealed a good resistance of such material to supercritical conditions, even though some intergranular corrosion was observed.

  16. Accident analysis of heavy water cooled thorium breeder reactor

    Science.gov (United States)

    Yulianti, Yanti; Su'ud, Zaki; Takaki, Naoyuki

    2015-04-01

    Thorium has lately attracted considerable attention because it is accumulating as a by-product of large scale rare earth mining. The objective of research is to analyze transient behavior of a heavy water cooled thorium breeder that is designed by Tokai University and Tokyo Institute of Technology. That is oxide fueled, PWR type reactor with heavy water as primary coolant. An example of the optimized core has relatively small moderator to fuel volume ratio (MFR) of 0.6 and the characteristics of the core are burn-up of 67 GWd/t, breeding ratio of 1.08, burn-up reactivity loss during cycles of fuel and claddings during accident are still below limitations which are in secure condition.

  17. The application of noble metals in light-water reactors

    Science.gov (United States)

    Kim, Young-Jin; Niedrach, Leonard W.; Indig, Maurice E.; Andresen, Peter L.

    1992-04-01

    Corrosion potential is a primary determinant of the stress-corrosion cracking susceptibility of structural materials in high-temperature water. Efforts to minimize stress-corrosion cracking in light-water reactors include adding hydrogen. In someplants' out-of-core regions, the hydrogen required to achieve the desired corrosion potential is relatively high. In-core, more hydrogen is needed for an equivalent reduction in corrosion potential. Additionally, sIDe effects of high hydrogen-addition rates, including increased 16N turbine shine and 60CO deposition, have also been observed in some cases. An approach involving noble-metal coatings on and alloying additions to engineering materials dramatically improves the efficiency with which the corrosion potential is decreased as a function of hydrogen addition, such that very low potentials are obtained once a stoichiometric concentration of hydrogen (versus oxygen) is achieved.

  18. New instrumentation of reactor water level for PWR; Nueva Instrumentacion de nivel de agua del reactor para PWR

    Energy Technology Data Exchange (ETDEWEB)

    Kaercher, S.

    2005-07-01

    Today, many PWR reactors are equipped with a reactor water level instrumentation system based on different measurement methods. Due to obsolescence issues, FRAMATOME ANP started to develop and quality a new water level measurement system using heated und unheated thermocouple measurements. the measuring principle is based on the fact that the heat transfer in water is considerably higher than in steam. The electronic cabinet for signal processing is based on a proven technology already developed, qualified and installed by FRAMATOME ANP in several NPPs. It is equipped with and advanced temperature measuring transducer for acquisition and processing of thermocouple signals. (Author)

  19. Radio-toxicity of spent fuel of the advanced heavy water reactor.

    Science.gov (United States)

    Anand, S; Singh, K D S; Sharma, V K

    2010-01-01

    The Advanced Heavy Water Reactor (AHWR) is a new power reactor concept being developed at Bhabha Atomic Research Centre, Mumbai. The reactor retains many desirable features of the existing Pressurised Heavy Water Reactor (PHWR), while incorporating new, advanced safety features. The reactor aims to utilise the vast thorium resources available in India. The reactor core will use plutonium as the make-up fuel, while breeding (233)U in situ. On account of this unique combination of fuel materials, the operational characteristics of the fuel as determined by its radioactivity, decay heat and radio-toxicity are being viewed with great interest. Radio-toxicity of the spent fuel is a measure of potential radiological hazard to the members of the public and also important from the ecological point of view. The radio-toxicity of the AHWR fuel is extremely high to start with, being approximately 10(4) times that of the fresh natural U fuel used in a PHWR, and continues to remain relatively high during operation and subsequent cooling. A unique feature of this fuel is the peak observed in its radio-toxicity at approximately 10(5) y of decay cooling. The delayed increase in fuel toxicity has been traced primarily to a build-up of (229)Th, (230)Th and (226)Ra. This phenomenon has been observed earlier for thorium-based fuels and is confirmed for the AHWR fuel. This paper presents radio-toxicity data for AHWR spent fuel up to a period of 10(6) y and the results are compared with the radio-toxicity of PHWR.

  20. Implications for accident management of adding water to a degrading reactor core

    Energy Technology Data Exchange (ETDEWEB)

    Kuan, P.; Hanson, D.J.; Pafford, D.J.; Quick, K.S.; Witt, R.J. [EG and G Idaho, Inc., Idaho Falls, ID (United States)

    1994-02-01

    This report evaluates both the positive and negative consequences of adding water to a degraded reactor core during a severe accident. The evaluation discusses the earliest possible stage at which an accident can be terminated and how plant personnel can best respond to undesired results. Specifically discussed are (a) the potential for plant personnel to add water for a range of severe accidents, (b) the time available for plant personnel to act, (c) possible plant responses to water added during the various stages of core degradation, (d) plant instrumentation available to understand the core condition and (e) the expected response of the instrumentation during the various stages of severe accidents.

  1. Light Water Reactor Sustainability Program Integrated Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    Kathryn McCarthy; Jeremy Busby; Bruce Hallbert; Shannon Bragg-Sitton; Curtis Smith; Cathy Barnard

    2013-04-01

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy’s Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program’s plans.

  2. Light Water Reactor Sustainability Program Integrated Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    McCarthy, Kathryn A. [Idaho National Lab. (INL), Idaho Falls, ID (United States); Busby, Jeremy [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hallbert, Bruce [Idaho National Lab. (INL), Idaho Falls, ID (United States); Bragg-Sitton, Shannon [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Curtis [Idaho National Lab. (INL), Idaho Falls, ID (United States); Barnard, Cathy [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-04-01

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline—even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy’s Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration’s energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program’s plans.

  3. Light Water Reactor Sustainability Program Integrated Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    George Griffith; Robert Youngblood; Jeremy Busby; Bruce Hallbert; Cathy Barnard; Kathryn McCarthy

    2012-01-01

    Nuclear power has safely, reliably, and economically contributed almost 20% of electrical generation in the United States over the past two decades. It remains the single largest contributor (more than 70%) of non-greenhouse-gas-emitting electric power generation in the United States. Domestic demand for electrical energy is expected to experience a 31% growth from 2009 to 2035. At the same time, most of the currently operating nuclear power plants will begin reaching the end of their initial 20-year extension to their original 40-year operating license for a total of 60 years of operation. Figure E-1 shows projected nuclear energy contribution to the domestic generating capacity. If current operating nuclear power plants do not operate beyond 60 years, the total fraction of generated electrical energy from nuclear power will begin to decline - even with the expected addition of new nuclear generating capacity. The oldest commercial plants in the United States reached their 40th anniversary in 2009. The U.S. Department of Energy Office of Nuclear Energy's Research and Development Roadmap (Nuclear Energy Roadmap) organizes its activities around four objectives that ensure nuclear energy remains a compelling and viable energy option for the United States. The four objectives are as follows: (1) develop technologies and other solutions that can improve the reliability, sustain the safety, and extend the life of the current reactors; (2) develop improvements in the affordability of new reactors to enable nuclear energy to help meet the Administration's energy security and climate change goals; (3) develop sustainable nuclear fuel cycles; and (4) understand and minimize the risks of nuclear proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program's plans.

  4. Three core concepts for producing uranium-233 in commercial pressurized light water reactors for possible use in water-cooled breeder reactors

    Energy Technology Data Exchange (ETDEWEB)

    Conley, G.H.; Cowell, G.K.; Detrick, C.A.; Kusenko, J.; Johnson, E.G.; Dunyak, J.; Flanery, B.K.; Shinko, M.S.; Giffen, R.H.; Rampolla, D.S.

    1979-12-01

    Selected prebreeder core concepts are described which could be backfit into a reference light water reactor similar to current commercial reactors, and produce uranium-233 for use in water-cooled breeder reactors. The prebreeder concepts were selected on the basis of minimizing fuel system development and reactor changes required to permit a backfit. The fuel assemblies for the prebreeder core concepts discussed would occupy the same space envelope as those in the reference core but contain a 19 by 19 array of fuel rods instead of the reference 17 by 17 array. An instrument well and 28 guide tubes for control rods have been allocated to each prebreeder fuel assembly in a pattern similar to that for the reference fuel assemblies. Backfit of these prebreeder concepts into the reference reactor would require changes only to the upper core support structure while providing flexibility for alternatives in the type of fuel used.

  5. Neutron-gamma flux and dose calculations in a Pressurized Water Reactor (PWR

    Directory of Open Access Journals (Sweden)

    Brovchenko Mariya

    2017-01-01

    Full Text Available The present work deals with Monte Carlo simulations, aiming to determine the neutron and gamma responses outside the vessel and in the basemat of a Pressurized Water Reactor (PWR. The model is based on the Tihange-I Belgian nuclear reactor. With a large set of information and measurements available, this reactor has the advantage to be easily modelled and allows validation based on the experimental measurements. Power distribution calculations were therefore performed with the MCNP code at IRSN and compared to the available in-core measurements. Results showed a good agreement between calculated and measured values over the whole core. In this paper, the methods and hypotheses used for the particle transport simulation from the fission distribution in the core to the detectors outside the vessel of the reactor are also summarized. The results of the simulations are presented including the neutron and gamma doses and flux energy spectra. MCNP6 computational results comparing JEFF3.1 and ENDF-B/VII.1 nuclear data evaluations and sensitivity of the results to some model parameters are presented.

  6. Benchmarking severe accident computer codes for heavy water reactor applications

    Energy Technology Data Exchange (ETDEWEB)

    Choi, J.H. [International Atomic Energy Agency, Vienna (Austria)

    2010-07-01

    Consideration of severe accidents at a nuclear power plant (NPP) is an essential component of the defence in depth approach used in nuclear safety. Severe accident analysis involves very complex physical phenomena that occur sequentially during various stages of accident progression. Computer codes are essential tools for understanding how the reactor and its containment might respond under severe accident conditions. International cooperative research programmes are established by the IAEA in areas that are of common interest to a number of Member States. These co-operative efforts are carried out through coordinated research projects (CRPs), typically 3 to 6 years in duration, and often involving experimental activities. Such CRPs allow a sharing of efforts on an international basis, foster team-building and benefit from the experience and expertise of researchers from all participating institutes. The IAEA is organizing a CRP on benchmarking severe accident computer codes for heavy water reactor (HWR) applications. The CRP scope includes defining the severe accident sequence and conducting benchmark analyses for HWRs, evaluating the capabilities of existing computer codes to predict important severe accident phenomena, and suggesting necessary code improvements and/or new experiments to reduce uncertainties. The CRP has been planned on the advice and with the support of the IAEA Nuclear Energy Department's Technical Working Groups on Advanced Technologies for HWRs. (author)

  7. Technologies for Upgrading Light Water Reactor Outlet Temperature

    Energy Technology Data Exchange (ETDEWEB)

    Daniel S. Wendt; Piyush Sabharwall; Vivek Utgikar

    2013-07-01

    Nuclear energy could potentially be utilized in hybrid energy systems to produce synthetic fuels and feedstocks from indigenous carbon sources such as coal and biomass. First generation nuclear hybrid energy system (NHES) technology will most likely be based on conventional light water reactors (LWRs). However, these LWRs provide thermal energy at temperatures of approximately 300°C, while the desired temperatures for many chemical processes are much higher. In order to realize the benefits of nuclear hybrid energy systems with the current LWR reactor fleets, selection and development of a complimentary temperature upgrading technology is necessary. This paper provides an initial assessment of technologies that may be well suited toward LWR outlet temperature upgrading for powering elevated temperature industrial and chemical processes during periods of off-peak power demand. Chemical heat transformers (CHTs) are a technology with the potential to meet LWR temperature upgrading requirements for NHESs. CHTs utilize chemical heat of reaction to change the temperature at which selected heat sources supply or consume thermal energy. CHTs could directly utilize LWR heat output without intermediate mechanical or electrical power conversion operations and the associated thermodynamic losses. CHT thermal characteristics are determined by selection of the chemical working pair and operating conditions. This paper discusses the chemical working pairs applicable to LWR outlet temperature upgrading and the CHT operating conditions required for providing process heat in NHES applications.

  8. Stability analysis on natural circulation boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Metz, Peter

    1999-05-01

    The purpose of the study is a stability analysis of the simplified boiling water reactor concept. A fluid dynamics code, DYNOS, was developed and successfully validated against FRIGG and DESIRE data and a stability benchmark on the Ringhals 1 forced circulation BWR. Three simplified desings were considered in the analysis: The SWRIOOO by Siemens and the SBWR and ESBWR from the General Electric Co. For all three design operational characteristics, i.e. power versus flow rate maps, were calculated. The effects which different geometric and operational parameters, such as the riser height, inlet subcooling etc., have on the characteristics have been investigated. Dynamic simulations on the three simplified design revealed the geysering and the natural circulation oscillations modes only. They were, however, only encountered at pressure below 0.6 MPa. Stability maps for all tree simplified BWRs were calculated and plotted. The study concluded that a fast pressurisation of the reactor vessel is necessary to eliminate the possibility of geysering or natural circulation oscillations mode instability. (au) 26 tabs., 88 ills.

  9. A study on the establishment of component/equipment performance criteria considering Heavy Water Reactor characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Keun Sun; Kwon, Young Chul; Lee, Min Kyu; Lee, Yun Soo [Sunmoon Univ., Asan (Korea, Republic of); Chang, Seong Hoong; Ryo, Chang Hyun [Korea Advanced Institute of Science and Technology, Taejon (Korea, Republic of); Kim, Soong Pyung; Hwnag, Jung Rye; Chung, Chul Kee [Chosun Univ., Gwangju (Korea, Republic of)

    2002-03-15

    Foreign and domestic technology trends, regulatory requirements, design and researches for heavy water reactors are analyzed. Safety design guides of Canada industry and regulatory documents and consultative documents of Canada regulatory agency are reviewed. Applicability of MOST guidance 16 Revision 'guidance for technical criteria of nuclear reactor facility' is reviewed. Specific performance criteria are established for components and facilities for heavy water reactor.

  10. High conversion pressurized water reactor with boiling channels

    Energy Technology Data Exchange (ETDEWEB)

    Margulis, M., E-mail: maratm@post.bgu.ac.il [The Unit of Nuclear Engineering, Ben Gurion University of the Negev, POB 653, Beer Sheva 84105 (Israel); Shwageraus, E., E-mail: es607@cam.ac.uk [Department of Engineering, University of Cambridge, CB2 1PZ Cambridge (United Kingdom)

    2015-10-15

    Highlights: • Conceptual design of partially boiling PWR core was proposed and studied. • Self-sustainable Th–{sup 233}U fuel cycle was utilized in this study. • Seed-blanket fuel assembly lattice optimization was performed. • A coupled Monte Carlo, fuel depletion and thermal-hydraulics studies were carried out. • Thermal–hydraulic analysis assured that the design matches imposed safety constraints. - Abstract: Parametric studies have been performed on a seed-blanket Th–{sup 233}U fuel configuration in a pressurized water reactor (PWR) with boiling channels to achieve high conversion ratio. Previous studies on seed-blanket concepts suggested substantial reduction in the core power density is needed in order to operate under nominal PWR system conditions. Boiling flow regime in the seed region allows more heat to be removed for a given coolant mass flow rate, which in turn, may potentially allow increasing the power density of the core. In addition, reduced moderation improves the breeding performance. A two-dimensional design optimization study was carried out with BOXER and SERPENT codes in order to determine the most attractive fuel assembly configuration that would ensure breeding. Effects of various parameters, such as void fraction, blanket fuel form, number of seed pins and their dimensions, on the conversion ratio were examined. The obtained results, for which the power density was set to be 104 W/cm{sup 3}, created a map of potentially feasible designs. It was found that several options have the potential to achieve end of life fissile inventory ratio above unity, which implies potential feasibility of a self-sustainable Thorium fuel cycle in PWRs without significant reduction in the core power density. Finally, a preliminary three-dimensional coupled neutronic and thermal–hydraulic analysis for a single seed-blanket fuel assembly was performed. The results indicate that axial void distribution changes drastically with burnup. Therefore

  11. Model reactor for photocatalytic degradation of persistent chemicals in ponds and waste water.

    Science.gov (United States)

    Franke, R; Franke, C

    1999-12-01

    A laboratory scale flow-through model reactor for the degradation of persistent chemicals using titanium dioxide (TiO2) as photocatalyst immobilized on glass beads is presented. In the test system with a volume of 18 L contaminated water is pumped to the upper part of the floating reactor and flows over the coated beads which are exposed to UV-radiation. The degradation of two dyes of different persistence was investigated. Primary degradation of methylene blue did not fit a first order kinetic due to coincident adsorption onto the photocatalyst and direct photolysis, resulting in a half-life of 6 h. A filtrate of a green algae suspension accelerated the colour removal. In contrast, reactive red 2 was degraded only by photocatalysis; neither adsorption nor direct photolysis led to a colour removal. The course of primary degradation followed a first order kinetic with a half-life of 18 h and a rate constant of 0.04 h-1. Analysis of the degradation products indicated mineralization by detection of NO2- and NO3-, accompanied by a decrease of pH and an increase of conductivity. A successful adaptation of the model reactor (scale 1:10) to dimensions required for surface waters and waste water treatment plants would be a cost-efficient and environmentally sustainable application of photocatalysis for the treatment of industrially polluted water and could be of relevance for third world countries, particularly those favoured by high solar radiation.

  12. Quarterly technical report on water reactor safety programs sponsored by the Nuclear Regulatory Commission's Division of Reactor Safety Research, July--September 1975

    Energy Technology Data Exchange (ETDEWEB)

    1976-02-01

    Light water reactor safety activities performed during July through September 1975 are summarized. The isothermal blowdown test series of the Semiscale Mod-1 test program has provided data for evaluation of break flow phenomena and analyses of piping flow regimes and pump performance. In the LOFT Program, measurement uncertainties were evaluated. The Thermal Fuels Behavior Program completed two power-cooling-mismatch tests on PWR-type fuel rods to investigate critical heat flux characteristics. Model development and verification efforts of the Reactor Behavior Program included development of the SPLEN1 computer code, subroutines for the FRAP-T code, verification of RELAP4, and results of the Halden Recycle Plutonium Experiment.

  13. A Flooding Induced Station Blackout Analysis for a Pressurized Water Reactor Using the RISMC Toolkit

    Directory of Open Access Journals (Sweden)

    Diego Mandelli

    2015-01-01

    Full Text Available In this paper we evaluate the impact of a power uprate on a pressurized water reactor (PWR for a tsunami-induced flooding test case. This analysis is performed using the RISMC toolkit: the RELAP-7 and RAVEN codes. RELAP-7 is the new generation of system analysis codes that is responsible for simulating the thermal-hydraulic dynamics of PWR and boiling water reactor systems. RAVEN has two capabilities: to act as a controller of the RELAP-7 simulation (e.g., component/system activation and to perform statistical analyses. In our case, the simulation of the flooding is performed by using an advanced smooth particle hydrodynamics code called NEUTRINO. The obtained results allow the user to investigate and quantify the impact of timing and sequencing of events on system safety. In addition, the impact of power uprate is determined in terms of both core damage probability and safety margins.

  14. International academic program in technologies of light-water nuclear reactors. Phases of development and implementation

    Science.gov (United States)

    Geraskin, N. I.; Glebov, V. B.

    2017-01-01

    The results of implementation of European educational projects CORONA and CORONA II dedicated to preserving and further developing nuclear knowledge and competencies in the area of technologies of light-water nuclear reactors are analyzed. Present article addresses issues of design and implementation of the program for specialized training in the branch of technologies of light-water nuclear reactors. The systematic approach has been used to construct the program for students of nuclear specialties, which corresponding to IAEA standards and commonly accepted nuclear principles recognized in the European Union. Possibilities of further development of the international cooperation between countries and educational institutions are analyzed. Special attention is paid to e-learning/distance training, nuclear knowledge preservation and interaction with European Nuclear Education Network.

  15. Detecting pin diversion from pressurized water reactors spent fuel assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Young S.; Sitaraman, Shivakumar

    2017-01-10

    Detecting diversion of spent fuel from Pressurized Water Reactors (PWR) by determining possible diversion including the steps of providing a detector cluster containing gamma ray and neutron detectors, inserting the detector cluster containing the gamma ray and neutron detectors into the spent fuel assembly through the guide tube holes in the spent fuel assembly, measuring gamma ray and neutron radiation responses of the gamma ray and neutron detectors in the guide tube holes, processing the gamma ray and neutron radiation responses at the guide tube locations by normalizing them to the maximum value among each set of responses and taking the ratio of the gamma ray and neutron responses at the guide tube locations and normalizing the ratios to the maximum value among them and producing three signatures, gamma, neutron, and gamma-neutron ratio, based on these normalized values, and producing an output that consists of these signatures that can indicate possible diversion of the pins from the spent fuel assembly.

  16. Commercial Light Water Reactor Tritium Extraction Facility Geotechnical Summary Report

    Energy Technology Data Exchange (ETDEWEB)

    Lewis, M R

    2000-01-11

    A geotechnical investigation program has been completed for the Circulating Light Water Reactor - Tritium Extraction Facility (CLWR-TEF) at the Savannah River Site (SRS). The program consisted of reviewing previous geotechnical and geologic data and reports, performing subsurface field exploration, field and laboratory testing and geologic and engineering analyses. The purpose of this investigation was to characterize the subsurface conditions for the CLWR-TEF in terms of subsurface stratigraphy and engineering properties for design and to perform selected engineering analyses. The objectives of the evaluation were to establish site-specific geologic conditions, obtain representative engineering properties of the subsurface and potential fill materials, evaluate the lateral and vertical extent of any soft zones encountered, and perform engineering analyses for slope stability, bearing capacity and settlement, and liquefaction potential. In addition, provide general recommendations for construction and earthwork.

  17. 78 FR 46378 - La Crosse Boiling Water Reactor, Environmental Assessment and Finding of No Significant Impact...

    Science.gov (United States)

    2013-07-31

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION La Crosse Boiling Water Reactor, Environmental Assessment and Finding of No Significant Impact... of Title 10 of the Code of Federal Regulations (10 CFR) for the La Crosse Boiling Water Reactor...

  18. 77 FR 27097 - LaCrosse Boiling Water Reactor, Exemption From Certain Requirements, Vernon County, WI

    Science.gov (United States)

    2012-05-08

    ... From the Federal Register Online via the Government Publishing Office NUCLEAR REGULATORY COMMISSION LaCrosse Boiling Water Reactor, Exemption From Certain Requirements, Vernon County, WI AGENCY...) 73.55, for the LaCrosse Boiling Water Reactor (LACBWR). This Environmental Assessment (EA) has been...

  19. Technology Implementation Plan. Fully Ceramic Microencapsulated Fuel for Commercial Light Water Reactor Application

    Energy Technology Data Exchange (ETDEWEB)

    Snead, Lance Lewis [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Terrani, Kurt A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Powers, Jeffrey J. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Worrall, Andrew [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Robb, Kevin R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Snead, Mary A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-04-01

    This report is an overview of the implementation plan for ORNL's fully ceramic microencapsulated (FCM) light water reactor fuel. The fully ceramic microencapsulated fuel consists of tristructural isotropic (TRISO) particles embedded inside a fully dense SiC matrix and is intended for utilization in commercial light water reactor application.

  20. Final Report on Isotope Ratio Techniques for Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Gerlach, David C.; Gesh, Christopher J.; Hurley, David E.; Mitchell, Mark R.; Meriwether, George H.; Reid, Bruce D.

    2009-07-01

    The Isotope Ratio Method (IRM) is a technique for estimating the energy or plutonium production in a fission reactor by measuring isotope ratios in non-fuel reactor components. The isotope ratios in these components can then be directly related to the cumulative energy production with standard reactor modeling methods.

  1. Stress analyses for reactor pressure vessels by the example of a product line '69 boiling water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mkrtchyan, Lilit; Schau, Henry [TUEV SUED Energietechnik GmbH, Mannheim (Germany). Abt. Strukturverhalten; Wolf, Werner; Holzer, Wieland [TUEV SUED Industrie Service GmbH, Muenchen (Germany). Abt. Behaelter und Turbosatz; Wernicke, Robert; Trieglaff, Ralf [TUEV NORD SysTec GmbH und Co. KG, Hamburg (Germany). Abt. Festigkeit und Konstruktion

    2011-08-15

    The reactor pressure vessels (RPV) of boiling water reactors (BWR) belonging to the product line '69 have unusually designed heads. The spherical cap-shaped bottom head of the vessel is welded directly to the support flange of the lower shell course. This unusual construction has led repeatedly to controversial discussions concerning the limits and admissibility of stress intensities arising in the junction of the bottom head to the cylindrical shell. In the present paper, stress analyses for the design conditions are performed with the finite element method in order to determine and categorize the occurring stresses. The procedure of stress classification in accordance with the guidelines of German KTA 3201.2 and Section III of the ASME Code (Subsection NB) is described and subsequently demonstrated by the example of a typical BWR vessel. The accomplished investigations yield allowable stress intensities in the considered area. Additionally, limit load analyses are carried out to verify the obtained results. Complementary studies, performed for a torispherical head, prove that the determined maximum peak stresses in the junction between the bottom head and the cylindrical shell are not unusual also for pressure vessels with regular bottom head constructions. (orig.)

  2. Removal of natural organic matter and arsenic from water by electrocoagulation/flotation continuous flow reactor

    Energy Technology Data Exchange (ETDEWEB)

    Mohora, Emilijan, E-mail: emohora@ifc.org [University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg D. Obradovica 3, 21000 Novi Sad (Serbia); Roncevic, Srdjan; Dalmacija, Bozo; Agbaba, Jasmina; Watson, Malcolm; Karlovic, Elvira; Dalmacija, Milena [University of Novi Sad Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, Trg D. Obradovica 3, 21000 Novi Sad (Serbia)

    2012-10-15

    Highlights: Black-Right-Pointing-Pointer A continuous electrocoagulation/flotation reactor was designed built and operated. Black-Right-Pointing-Pointer Highest NOM removal according to UV{sub 254} was 77% relative to raw groundwater. Black-Right-Pointing-Pointer Highest NOM removal accordance to DOC was 71%, relative to raw groundwater. Black-Right-Pointing-Pointer Highest As removal archived was 85% (6.2 {mu}g/l), relative to raw groundwater. Black-Right-Pointing-Pointer Specific reactor energy and electrode consumption was 1.7 kWh/m{sup 3} and 66 g Al/m{sup 3}. - Abstract: The performance of the laboratory scale electrocoagulation/flotation (ECF) reactor in removing high concentrations of natural organic matter (NOM) and arsenic from groundwater was analyzed in this study. An ECF reactor with bipolar plate aluminum electrodes was operated in the horizontal continuous flow mode. Electrochemical and flow variables were optimized to examine ECF reactor contaminants removal efficiency. The optimum conditions for the process were identified as groundwater initial pH 5, flow rate = 4.3 l/h, inter electrode distance = 2.8 cm, current density = 5.78 mA/cm{sup 2}, A/V ratio = 0.248 cm{sup -1}. The NOM removal according to UV{sub 254} absorbance and dissolved organic matter (DOC) reached highest values of 77% and 71% respectively, relative to the raw groundwater. Arsenic removal was 85% (6.2 {mu}g As/l) relative to raw groundwater, satisfying the drinking water standards. The specific reactor electrical energy consumption was 17.5 kWh/kg Al. The specific aluminum electrode consumption was 66 g Al/m{sup 3}. According to the obtained results, ECF in horizontal continuous flow mode is an energy efficient process to remove NOM and arsenic from groundwater.

  3. Recent performance experience with US light water reactor self-actuating safety and relief valves

    Energy Technology Data Exchange (ETDEWEB)

    Hammer, C.G.

    1996-12-01

    Over the past several years, there have been a number of operating reactor events involving performance of primary and secondary safety and relief valves in U.S. Light Water Reactors. There are several different types of safety and relief valves installed for overpressure protection of various safety systems throughout a typical nuclear power plant. The following discussion is limited to those valves in the reactor coolant systems (RCS) and main steam systems of pressurized water reactors (PWR) and in the RCS of boiling water reactors (BWR), all of which are self-actuating having a setpoint controlled by a spring-loaded disk acting against system fluid pressure. The following discussion relates some of the significant recent experience involving operating reactor events or various testing data. Some of the more unusual and interesting operating events or test data involving some of these designs are included, in addition to some involving a number of similar events and those which have generic applicability.

  4. An economic optimization of pressurized light water reactor cores

    Science.gov (United States)

    Pfeifer, Holger

    Two reactor cores (1000 MWe and 600 MWe) are optimized with respect to power cost. The power cost is minimized while retaining the thermal-hydraulic margins of the reference core. Constant thermal-hydraulic margins result in similar accident thermal-hydraulic transient behavior of the cores developed during the optimization study. The cost components impacted by the optimization are once-through fuel cycle, capital, and administrative/manpower costs. The variables in the optimization are pin diameter, moderator to fuel (H/U) ratio, core length, and the number of fuel pins in the core. A sequential quadratic programming approach is employed to solve the nonlinear optimization problem with constraints. The fuel cycle costs are evaluated by the use of the linear reactivity model, and capital costs are adjusted by suitable modifications to the nuclear energy cost database reference costs. The results of the analysis shows that for fixed assembly parameters (i.e., pin diameter, H/U ratio, and core length), the optimum core is one that operates at the thermal-hydraulic limits. Cores optimized with unconstrained assembly characteristics contain a larger number of smaller pins at a higher H/U ratio. This follows the trend in current reactor designs. While the lifetime power cost savings for the optimized core are less than 4 million dollars (versus a present day total cost of 6.9 billion dollars), the optimization analysis shows that higher thermal-hydraulic margins can be attained with minimum power cost increases. With increased emphasis on reactor safety, significantly higher safety margins may therefore be achieved without a significant power cost increase. The optimized configurations were found to be relatively insensitive to fuel cycle cost component variations.

  5. Three-component U-Pu-Th fuel for plutonium irradiation in heavy water reactors

    Directory of Open Access Journals (Sweden)

    Peel Ross

    2016-01-01

    Full Text Available This paper discusses concepts for three-component fuel bundles containing plutonium, uranium and thorium for use in pressurised heavy water reactors, and cases for and against implementation of such a nuclear energy system in the United Kingdom. Heavy water reactors are used extensively in Canada, and are deploying within India and China, whilst the UK is considering the use of heavy water reactors to manage its plutonium inventory of 140 tonnes. The UK heavy water reactor proposal uses a mixed oxide (MOX fuel of plutonium in depleted uranium, within the enhanced CANDU-6 (EC-6 reactor. This work proposes an alternative heterogeneous fuel concept based on the same reactor and CANFLEX fuel bundle, with eight large-diameter fuel elements loaded with natural thorium oxide and 35 small-diameter fuel elements loaded with a MOX of plutonium and reprocessed uranium stocks from UK MAGNOX and AGR reactors. Indicative neutronic calculations suggest that such a fuel would be neutronically feasible. A similar MOX may alternatively be fabricated from reprocessed <5% enriched light water reactor fuel, such as the fuel of the AREVA EPR reactor, to consume newly produced plutonium from reprocessing, similar to the DUPIC (direct use of PWR fuel in CANDU process.

  6. Outline of the safety research results, in the power reactor field, fiscal year 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-11-01

    The Power Reactor and Nuclear Fuel Development Corporation (PNC) has promoted the safety research in fiscal year of 1996 according to the Fundamental Research on Safety Research (fiscal year 1996 to 2000) prepared on March, 1996. Here is described on the research results in fiscal year 1996, the first year of the 5 years programme, and whole outline of the fundamental research on safety research, on the power reactor field (whole problems on the new nuclear converter and the fast breeder reactor field and problems relating to the power reactor in the safety for earthquake and probability theoretical safety evaluation field). (G.K.)

  7. IAEA coordinated research project on thermal-hydraulics of Supercritical Water-Cooled Reactors (SCWRs)

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, K. [Vienna International Centre, P.O. Box 100, 1400 Vienna (Austria); Aksan, S. N. [International Atomic Energy Agency, 1400 Vienna (Austria)

    2012-07-01

    The Supercritical Water-Cooled Reactor (SCWR) is an innovative water-cooled reactor concept, which uses supercritical pressure water as reactor coolant. It has been attracting interest of many researchers in various countries mainly due to its benefits of high thermal efficiency and simple primary systems, resulting in low capital cost. The IAEA started in 2008 a Coordinated Research Project (CRP) on Thermal-Hydraulics of SCWRs as a forum to foster the exchange of technical information and international collaboration in research and development. This paper summarizes the activities and current status of the CRP, as well as major progress achieved to date. At present, 15 institutions closely collaborate in several tasks. Some organizations have been conducting thermal-hydraulics experiments and analysing the data, and others have been participating in code-to-test and/or code-to-code benchmark exercises. The expected outputs of the CRP are also discussed. Finally, the paper introduces several IAEA activities relating to or arising from the CRP. (authors)

  8. Welding residual stress distributions for dissimilar metal nozzle butt welds in pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Ji Soo; Kim, Ju Hee; Bae, Hong Yeol; OH, Chang Young; Kim, Yun Jae [Korea Univ., Seoul (Korea, Republic of); Lee, Kyungsoo [Korea Electric Power Research Institute, Daejeon (Korea, Republic of); Song, Tae Kwang [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2012-02-15

    In pressurized water nuclear reactors, dissimilar metal welds are susceptible to primary water stress corrosion cracking. To access this problem, accurate estimation of welding residual stresses is important. This paper provides general welding residual stress profiles in dissimilar metal nozzle butt welds using finite element analysis. By introducing a simplified shape for dissimilar metal nozzle butt welds, changes in the welding residual stress distribution can be seen using a geometry variable. Based on the results, a welding residual stress profile for dissimilar metal nozzle butt welds is proposed that modifies the existing welding residual stress profile for austenitic pipe butt welds.

  9. Radiological performance of hot water layer system in open pool type reactor

    Directory of Open Access Journals (Sweden)

    Amr Abdelhady

    2013-06-01

    Full Text Available The paper presents the calculated dose rate carried out by using MicroShield code to show the importance of hot water layer system (HWL in 22 MW open pool type reactor from the radiation protection safety point of view. The paper presents the dose rate profiles over the pool surface in normal and abnormal operations of HWL system. The results show that, in case of losing the hot water layer effect, the radiation dose rate profiles over the pool surface will increase from values lower than the worker permissible dose limits to values very higher than the permissible dose limits.

  10. Best estimate approach for the evaluation of critical heat flux phenomenon in the boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kaliatka, Tadas; Kaliatka, Algirdas; Uspuras, Eudenijus; Vaisnoras, Mindaugas [Lithuanian Energy Institute, Kaunas (Lithuania); Mochizuki, Hiroyasu; Rooijen, W.F.G. van [Fukui Univ. (Japan). Research Inst. of Nuclear Engineering

    2017-05-15

    Because of the uncertainties associated with the definition of Critical Heat Flux (CHF), the best estimate approach should be used. In this paper the application of best-estimate approach for the analysis of CHF phenomenon in the boiling water reactors is presented. At first, the nodalization of RBMK-1500, BWR-5 and ABWR fuel assemblies were developed using RELAP5 code. Using developed models the CHF and Critical Heat Flux Ratio (CHFR) for different types of reactors were evaluated. The calculation results of CHF were compared with the well-known experimental data for light water reactors. The uncertainty and sensitivity analysis of ABWR 8 x 8 fuel assembly CHFR calculation result was performed using the GRS (Germany) methodology with the SUSA tool. Finally, the values of Minimum Critical Power Ratio (MCPR) were calculated for RBMK-1500, BWR-5 and ABWR fuel assemblies. The paper demonstrate how, using the results of sensitivity analysis, to receive the MCPR values, which covers all uncertainties and remains best estimated.

  11. A study on the irradiation embrittlement and recovery characteristics of light water reactor pressure vessel steels

    Energy Technology Data Exchange (ETDEWEB)

    Chi, Se Hwan; Hong, Jun Hwa; Lee, Bong Sang; Oh, Jong Myung; Song, Sook Hyang; Milan, Brumovsky [NRI Czech (Czech Republic)

    1999-03-01

    The neutron irradiation embrittlement phenomenon of light water RPV steels greatly affects the life span for safe operation of a reactor. Reliable evaluation and prediction of the embrittlement of RPV steels, especially of aged reactors, are of importance to the safe operation of a reactor. In addition, the thermal recovery of embrittled RPV has been recognized as an option for life extension. This study aimed to tracer/refine available technologies for embrittlement characterization and prediction, to prepare relevant materials for several domestic RPV steels of the embrittlement and recovery, and to find out possible remedy for steel property betterment. Small specimen test techniques, magnetic measurement techniques, and the Meechan and Brinkmann's recovery curve analysis method were examined/applied as the evaluation techniques. Results revealed a high irradiation sensitivity in YG 3 RPV steel. Further extended study may be urgently needed. Both the small specimen test technique for the direct determination of fracture toughness, and the magnetic measurement technique for embrittlement evaluation appeared to be continued for the technical improvement and data base preparation. Manufacturing process relevant to the heat treatment appeared to be improved in lowering the irradiation sensitivity of the steel. Further study is needed especially in applying the present techniques to the new structural materials under new irradiation environment of advanced reactors. (author)

  12. Design guide for category II reactors light and heavy water cooled reactors. [US DOE

    Energy Technology Data Exchange (ETDEWEB)

    Brynda, W J; Lobner, P R; Powell, R W; Straker, E A

    1978-05-01

    The Department of Energy (DOE), in the ERDA Manual, requires that all DOE-owned reactors be sited, designed, constructed, modified, operated, maintained, and decommissioned in a manner that gives adequate consideration to health and safety factors. Specific guidance pertinent to the safety of DOE-owned reactors is found in Chapter 0540 of the ERDA Manual. The purpose of this Design Guide is to provide additional guidance to aid the DOE facility contractor in meeting the requirement that the siting, design, construction, modification operation, maintainance, and decommissioning of DOW-owned reactors be in accordance with generally uniform standards, guide and codes which are comparable to those applied to similar reactors licensed by the Nuclear Regulatory Commission (NRC). This Design Guide deals principally with the design and functional requirements of Category II reactor structure, components, and systems.

  13. Light Water Reactor Sustainability Program: Integrated Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2017-05-01

    proliferation and terrorism. The Light Water Reactor Sustainability (LWRS) Program is the primary programmatic activity that addresses Objective 1. This document summarizes the LWRS Program’s plans. For the LWRS Program, sustainability is defined as the ability to maintain safe and economic operation of the existing fleet of nuclear power plants for a longer-than-initially-licensed lifetime. It has two facets with respect to long-term operations: (1) manage the aging of plant systems, structures, and components so that nuclear power plant lifetimes can be extended and the plants can continue to operate safely, efficiently, and economically; and (2) provide science-based solutions to the industry to implement technology to exceed the performance of the current labor-intensive business model.

  14. Local stability tests in Dresden 2 boiling water reactor

    Energy Technology Data Exchange (ETDEWEB)

    March-Leuba, J.; Fry, D.N.; Buchanan, M.E.; McNew, C.O.

    1984-04-01

    This report presents the results of a local stability test performed at Dresden Unit 2 in May 1983 to determine the effect of a new fuel element design on local channel stability. This test was performed because the diameter of the new fuel rods increases the heat transfer coefficient, making the reactor more responsive and, thus, more susceptible to instabilities. After four of the new fuel elements with a 9 x 9 array of fuel rods were loaded into Dresden 2, the test was performed by inserting an adjacent control rod all the way in and then withdrawing it to its original position at maximum speed. At the moment of the test, reactor conditions were 52.7% power and 38.9% flow. Both the new 9 x 9 fuel elements and the standard 8 x 8 ones proved to be locally stable when operating at minimum pump speed at the beginning of cycle in Dresden 2, and no significant difference was found between the behavior of the two fuel types. Finally, Dresden 2 showed a high degree of stability during control rod and normal noise type perturbations.

  15. TSS tool measurements in CANDU reactors - results and issues

    Energy Technology Data Exchange (ETDEWEB)

    Popescu, L. [Nuclear Safety Solutions Limited, Toronto, Ontario (Canada)]. E-mail: liliana.popescu@nuclearsafetysolutions.com; Van Den Brekel, N. [Ontario Power Generation, Pickering, Ontario (Canada)]. E-mail: nick.vandenbrekel@opg.com; Wallace, A. [Kinectrics, Inc., Toronto, Ontario (Canada)]. E-mail: andy.wallace@kinectrics.com; Micuda, L. [Bruce Power, Toronto, Ontario (Canada)]. E-mail: larry.micuda@brucepower.com

    2006-07-01

    Historically, scrape sampling has been the standard method for monitoring deuterium (D) uptake by CANDU Zr-2.5Nb pressure tubes (PTs). The total equivalent hydrogen isotope concentration, ([H]eq), was determined by measuring the deuterium concentration [D] in the scrape samples and adding the initial hydrogen concentration measured from PT offcuts. The corresponding Terminal Solid Solubility for hydride Dissolution Temperature (TTSSD) was then calculated using the TSSD equation provided in the Fitness for Service Guidelines (FFSG). Recently, the Terminal Solid Solubility (TSS) Tool has been adopted by both OPG and Bruce Power as an alternative to scrape sampling. The TSS Tool provides a direct in-situ measurement of TTSSD, which can be converted to [H]eq and [D] to allow comparison with the previous scrape data and corresponding predictive models. The present paper summarizes the TSS Tool experience in OPG and Bruce Power reactors since 2003. To date, 118 pressure tubes in 10 reactors have been subject to TSS Tool measurements. The issues associated with TSS Tool performance and interpretation of TTSSD measurements are identified and discussed. (author)

  16. 78 FR 35990 - All Operating Boiling-Water Reactor Licensees With Mark I And Mark II Containments; Docket Nos...

    Science.gov (United States)

    2013-06-14

    ... COMMISSION All Operating Boiling-Water Reactor Licensees With Mark I And Mark II Containments; Docket Nos... Licensees operate boiling-water reactors (BWRs) with Mark I and Mark II containment designs. II. The events... Boiling Water Reactors with Mark I and Mark II Containments'' (November 26, 2012). Option 2 in SECY-12...

  17. 78 FR 63516 - Initial Test Program of Emergency Core Cooling Systems for New Boiling-Water Reactors

    Science.gov (United States)

    2013-10-24

    ... COMMISSION Initial Test Program of Emergency Core Cooling Systems for New Boiling-Water Reactors AGENCY... Cooling Systems for New Boiling-Water Reactors.'' This RG describes testing methods the NRC staff...)-1277, ``Initial Test Program of Emergency Core Cooling Systems for Boiling-Water Reactors.'' DG-1277...

  18. 78 FR 64029 - Cost-Benefit Analysis for Radwaste Systems for Light-Water-Cooled Nuclear Power Reactors

    Science.gov (United States)

    2013-10-25

    ... COMMISSION Cost-Benefit Analysis for Radwaste Systems for Light-Water-Cooled Nuclear Power Reactors AGENCY... Systems for Light-Water-Cooled Nuclear Power Reactors,'' in which the NRC made editorial corrections and... analysis for liquid and gaseous radwaste system components for light water nuclear power reactors...

  19. 10 CFR 50.46 - Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors.

    Science.gov (United States)

    2010-01-01

    ... light-water nuclear power reactors. 50.46 Section 50.46 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC... Approvals § 50.46 Acceptance criteria for emergency core cooling systems for light-water nuclear power reactors. (a)(1)(i) Each boiling or pressurized light-water nuclear power reactor fueled with uranium oxide...

  20. Response of the Gamma TIP Detectorsin a Nuclear Boiling Water Reactor

    OpenAIRE

    Fridström, Richard

    2010-01-01

    In order to monitor a nuclear boiling water reactor fixed and movable detectors are used, such as the neutron sensitive LPRM (Local Power Range Monitors) detectors and the gamma sensitive TIP (Traversing Incore Probe) detectors. These provide a mean to verify the predictions obtained from core simulators, which are used for planning and following up the reactor operation. The core simulators calculate e.g. the neutron flux and power distribution in the reactor core. The simulators can also si...

  1. An evaluation of alternative reactor vessel cutting technologies for the experimental boiling water reactor at Argonne National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Boing, L.E.; Henley, D.R. (Argonne National Lab., IL (USA)); Manion, W.J.; Gordon, J.W. (Nuclear Energy Services, Inc., Danbury, CT (USA))

    1989-12-01

    Metal cutting techniques that can be used to segment the reactor pressure vessel of the Experimental Boiling Water Reactor (EBWR) at Argonne National Laboratory (ANL) have been evaluated by Nuclear Energy Services. Twelve cutting technologies are described in terms of their ability to perform the required task, their performance characteristics, environmental and radiological impacts, and cost and schedule considerations. Specific recommendations regarding which technology should ultimately be used by ANL are included. The selection of a cutting method was the responsibility of the decommissioning staff at ANL, who included a relative weighting of the parameters described in this document in their evaluation process. 73 refs., 26 figs., 69 tabs.

  2. Comparison of Standard Light Water Reactor Cross-Section Libraries using the United States Nuclear Regulatory Commission Boiling Water Reactor Benchmark Problem

    Directory of Open Access Journals (Sweden)

    Kulesza Joel A.

    2016-01-01

    Full Text Available This paper describes a comparison of contemporary and historical light water reactor shielding and pressure vessel dosimetry cross-section libraries for a boiling water reactor calculational benchmark problem. The calculational benchmark problem was developed at Brookhaven National Laboratory by the request of the U. S. Nuclear Regulatory Commission. The benchmark problem was originally evaluated by Brookhaven National Laboratory using the Oak Ridge National Laboratory discrete ordinates code DORT and the BUGLE-93 cross-section library. In this paper, the Westinghouse RAPTOR-M3G three-dimensional discrete ordinates code was used. A variety of cross-section libraries were used with RAPTOR-M3G including the BUGLE93, BUGLE-96, and BUGLE-B7 cross-section libraries developed at Oak Ridge National Laboratory and ALPAN-VII.0 developed at Westinghouse. In comparing the calculated fast reaction rates using the four aforementioned cross-section libraries in the pressure vessel capsule, for six dosimetry reaction rates, a maximum relative difference of 8% was observed. As such, it is concluded that the results calculated by RAPTOR-M3G are consistent with the benchmark and further that the different vintage BUGLE cross-section libraries investigated are largely self-consistent.

  3. Defluoridation of water via electrically controlled anion exchange by polyaniline modified electrode reactor.

    Science.gov (United States)

    Cui, Hao; Li, Qin; Qian, Yan; Tang, Rong; An, Hao; Zhai, Jianping

    2011-11-01

    A polyaniline (PANI) modified electrode reactor was designed for fluoride removal from aqueous solutions. The innovative concept behind the reactor design is that the uptake and elute of fluoride could be well controlled by modulating the potential of the PANI film. The maximum fluoride removal capacity of PANI is more than 20 mg/g at a positive voltage based on the electrically controlled anion-exchange mechanism. The results of batch tests showed that terminal potential values had a major impact on fluoride removal by this PANI, with optimal removal occurring at 1.5 V. The fluoride removal capacity (q(e)) increased rapidly within 5 min and reached equilibrium within 10 min, which indicated a rapid removal velocity of fluoride by PANI under this condition. The applicability of defluoridation using the PANI reactor to treat fluoride-contaminated tap water was also tested through flow cell breakthrough studies. At initial fluoride concentrations of 5 mg/L and 10 mg/L, the breakthrough capacities were 20.08 mg/g and 19.24 mg/g, respectively. Moreover, during the first half of the period before the breakthrough point, the fluoride concentration of the treated solution was below the WHO's recommended levels (1.5 mg/L). The results of the five consecutive treatment-regeneration studies also showed that the PANI films could be reused. Taken together, these results implied that the electrically controlled anion exchange by the PANI-modified electrode reactor may be an effective technique for the removal of fluoride from water. Copyright © 2011 Elsevier Ltd. All rights reserved.

  4. Summary of the 3rd workshop on the reduced-moderation water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Ishikawa, Nobuyuki; Nakatsuka, Tohru; Iwamura, Takamichi [eds.

    2000-06-01

    The research activities of a Reduced-Moderation Water Reactor (RMWR) are being performed for a development of the next generation water-cooled reactor. A workshop on the RMWR was held on March 3rd 2000 aiming to exchange information between JAERI and other organizations such as universities, laboratories, utilities and vendors. This report summarizes the contents of lectures and discussions on the workshop. The 1st workshop was held on March 1998 focusing on the review of the research activities and future research plan. The succeeding 2nd workshop was held on March 1999 focusing on the topics of the plutonium utilization in water-cooled reactors. The 3rd workshop was held on March 3rd 2000, which was attended by 77 participants. The workshop began with a lecture titled 'Recent Situation Related to Reduced-Moderation Water Reactor (RMWR)', followed by 'Program on MOX Fuel Utilization in Light Water Reactors' which is the mainstream scenario of plutonium utilization by utilities, and 'Feasibility Studies on Commercialized Fast Breeder Reactor Cycle System' mainly conducted by Japan Nuclear Cycle Development Institute (JNC). Also, following lectures were given as the recent research activities in JAERI: 'Progress in Design Study on Reduced-Moderation Water Reactors', 'Long-Term Scenarios of Power Reactors and Fuel Cycle Development and the Role of Reduced Moderation Water Reactors', 'Experimental and Analytical Study on Thermal Hydraulics' and Reactor Physics Experiment Plan using TCA'. At the end of the workshop, a general discussion was performed about the research and development of the RMWR. This report includes the original papers presented at the workshop and summaries of the questions and answers for each lecture and general discussion, as well as presentation viewgraphs, program and participant list as appendixes. The 7 of the presented papers are indexed individually. (J.P.N.)

  5. Transactions of the Twenty-First Water Reactor Safety Information Meeting

    Energy Technology Data Exchange (ETDEWEB)

    Monteleone, S. [comp.

    1993-10-01

    This report contains summaries of papers on reactor safety research to be presented at the 21st Water Reactor Safety Information Meeting at the Bethesda Marriott Hotel, Bethesda, Maryland, October 25--27, 1993. The summaries briefly describe the programs and results of nuclear safety research sponsored by the Office of Nuclear Regulatory Research, US NRC. Summaries of invited papers concerning nuclear safety issues from US government laboratories, the electric utilities, the Electric Power Research Institute (EPRI), the nuclear industry, and from foreign governments and industry are also included. The summaries have been compiled in one report to provide a basis for meaningful discussion and information exchange during the course of the meeting and are given in the order of their presentation in each session.

  6. Integral Inherently Safe Light Water Reactor (I2S-LWR)

    Energy Technology Data Exchange (ETDEWEB)

    Petrovic, Bojan [Georgia Inst. of Technology, Atlanta, GA (United States); Memmott, Matthew [Brigham Young Univ., Provo, UT (United States); Boy, Guy [Florida Inst. of Technology, Melbourne, FL (United States); Charit, Indrajit [Univ. of Idaho, Moscow, ID (United States); Manera, Annalisa [Univ. of Michigan, Ann Arbor, MI (United States); Downar, Thomas [Univ. of Michigan, Ann Arbor, MI (United States); Lee, John [Univ. of Michigan, Ann Arbor, MI (United States); Muldrow, Lycurgus [Morehouse College, Atlanta, GA (United States); Upadhyaya, Belle [Univ. of Tennessee, Knoxville, TN (United States); Hines, Wesley [Univ. of Tennessee, Knoxville, TN (United States); Haghighat, Alierza [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)

    2017-10-02

    This final report summarizes results of the multi-year effort performed during the period 2/2013- 12/2016 under the DOE NEUP IRP Project “Integral Inherently Safe Light Water Reactors (I2S-LWR)”. The goal of the project was to develop a concept of a 1 GWe PWR with integral configuration and inherent safety features, at the same time accounting for lessons learned from the Fukushima accident, and keeping in mind the economic viability of the new concept. Essentially (see Figure 1-1) the project aimed to implement attractive safety features, typically found only in SMRs, to a larger power (1 GWe) reactor, to address the preference of some utilities in the US power market for unit power level on the order of 1 GWe.

  7. Transactions of the twenty-fifth water reactor safety information meeting

    Energy Technology Data Exchange (ETDEWEB)

    Monteleone, S. [comp.

    1997-09-01

    This report contains summaries of papers on reactor safety research to be presented at the 25th Water Reactor Safety Information Meeting at the Bethesda Marriott Hotel in Bethesda, Maryland, October 20--22, 1997. The summaries briefly describe the programs and results of nuclear safety research sponsored by the Office of Nuclear Regulatory Research, US NRC. Summaries of invited papers concerning nuclear safety issues from US government laboratories, the electric utilities, the nuclear industry, and from foreign governments and industry are also included. The summaries have been compiled in one report to provide a basis for meaningful discussion of information exchanged during the course of the meeting, and are given in order of their presentation in each session.

  8. Transactions of the twenty-second water reactor safety information meeting

    Energy Technology Data Exchange (ETDEWEB)

    None

    1994-10-01

    This report contains summaries of papers on reactor safety research to be presented at the 22nd Water Reactor Safety Information Meeting at the Bethesda Marriott Hotel, Bethesda, Maryland, October 24--26, 1994. The summaries briefly describe the programs and results of nuclear safety research sponsored by the Office of Nuclear Regulatory Research, US NRC. Summaries of invited papers concerning nuclear safety issues from US government laboratories, the electric utilities, the nuclear industry, and from foreign governments and industry are also included. The summaries have been compiled in one report to provide a basis for meaningful discussion and information exchange during the course of the meeting and are given in the order of their presentation in each session. Individual papers have been cataloged separately.

  9. Power level effects on thorium-based fuels in pressure-tube heavy water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bromley, B.P.; Edwards, G.W.R., E-mail: blair.bromley@cnl.ca [Canadian Nuclear Laboratories, Chalk River, Ontario (Canada); Sambavalingam, P. [Univ. of Ontario Inst. of Technology, Oshawa, Ontario (Canada)

    2016-06-15

    Lattice and core physics modeling and calculations have been performed to quantify the impact of power/flux levels on the reactivity and achievable burnup for 35-element fuel bundles made with Pu/Th or U-233/Th. The fissile content in these bundles has been adjusted to produce on the order of 20 MWd/kg burnup in homogeneous cores in a 700 MWe-class pressure-tube heavy water reactor, operating on a once-through thorium cycle. Results demonstrate that the impact of the power/flux level is modest for Pu/Th fuels but significant for U-233/Th fuels. In particular, high power/flux reduces the breeding and burnup potential of U-233/Th fuels. Thus, there may be an incentive to operate reactors with U-233/Th fuels at a lower power density or to develop alternative refueling schemes that will lower the time-average specific power, thereby increasing burnup.(author)

  10. Modeling the behavior of a light-water production reactor target rod

    Energy Technology Data Exchange (ETDEWEB)

    Sherwood, D.J.

    1992-03-01

    Pacific Northwest Laboratory has been conducting a series of in-reactor experiments in the Idaho National Engineering Laboratory (INEL) Advanced Test Reactor (ATR) to determine the amount of tritium released by permeation from a target rod under neutron irradiation. The model discussed in this report was developed from first principles to model the behavior of the first target rod irradiated in the ATR. The model can be used to determine predictive relationships for the amount of tritium that permeates through the target rod cladding during irradiation. The model consists of terms and equations for tritium production, gettering, partial pressure, and permeation, all of which are described in this report. The model addressed only the condition of steady state and features only a single adjustable parameter. The target rod design for producing tritium in a light-water reactor was tested first in the WC-1 in-reactor experiment. During irradiation, tritium is generated in the target rod within the ceramic lithium target material. The target rod has been engineered to limit the release of tritium to the reactor coolant during normal operations. The engineered features are a nickel-plated Zircaloy-4 getter and a barrier coating on the cladding surfaces. The ceramic target is wrapped with the getter material and the resulting ``pencils`` are inserted into the barrier coated cladding. These features of the rod are described in the report, along with the release of tritium from the ceramic target. The steady-state model could be useful for the design procedure of target rod components.

  11. Modeling the behavior of a light-water production reactor target rod

    Energy Technology Data Exchange (ETDEWEB)

    Sherwood, D.J.

    1992-03-01

    Pacific Northwest Laboratory has been conducting a series of in-reactor experiments in the Idaho National Engineering Laboratory (INEL) Advanced Test Reactor (ATR) to determine the amount of tritium released by permeation from a target rod under neutron irradiation. The model discussed in this report was developed from first principles to model the behavior of the first target rod irradiated in the ATR. The model can be used to determine predictive relationships for the amount of tritium that permeates through the target rod cladding during irradiation. The model consists of terms and equations for tritium production, gettering, partial pressure, and permeation, all of which are described in this report. The model addressed only the condition of steady state and features only a single adjustable parameter. The target rod design for producing tritium in a light-water reactor was tested first in the WC-1 in-reactor experiment. During irradiation, tritium is generated in the target rod within the ceramic lithium target material. The target rod has been engineered to limit the release of tritium to the reactor coolant during normal operations. The engineered features are a nickel-plated Zircaloy-4 getter and a barrier coating on the cladding surfaces. The ceramic target is wrapped with the getter material and the resulting pencils'' are inserted into the barrier coated cladding. These features of the rod are described in the report, along with the release of tritium from the ceramic target. The steady-state model could be useful for the design procedure of target rod components.

  12. Licensing assessment of the Candu Pressurized Heavy Water Reactor. Preliminary safety information document. Volume II. [USA

    Energy Technology Data Exchange (ETDEWEB)

    1977-06-01

    ERDA has requested United Engineers and Constructors (UE and C) to evaluate the design of the Canadian natural uranium fueled, heavy water moderated (CANDU) nuclear reactor power plant to assess its conformance with the licensing criteria and guidelines of the U.S. Nuclear Regulatory Commission (USNRC) for light water reactors. This assessment was used to identify cost significant items of nonconformance and to provide a basis for developing a detailed cost estimate for a 1140 MWe, 3-loop Pressurized Heavy Water Reactor (PHWR) located at the Middletown, USA Site.

  13. Bacterial Colonization of Pellet Softening Reactors Used during Drinking Water Treatment

    NARCIS (Netherlands)

    Hammes, F.; Boon, N.; Vital, M.; Ross, P.; Magic-Knezev, A.; Dignum, M.

    2010-01-01

    Pellet softening reactors are used in centralized and decentralized drinking water treatment plants for the removal of calcium (hardness) through chemically induced precipitation of calcite. This is accomplished in fluidized pellet reactors, where a strong base is added to the influent to increase

  14. 77 FR 23513 - Updated Aging Management Criteria for Reactor Vessel Internal Components of Pressurized Water...

    Science.gov (United States)

    2012-04-19

    ... COMMISSION Updated Aging Management Criteria for Reactor Vessel Internal Components of Pressurized Water... Management Criteria for PWR Reactor Vessel Internal Components.'' The original notice provided the ADAMS... published a notice requesting public comments on draft LR-ISG-2011-04, ``Updated Aging Management Criteria...

  15. Supercritical water gasification of sewage sludge in continuous reactor.

    Science.gov (United States)

    Amrullah, Apip; Matsumura, Yukihiko

    2017-10-05

    In this study, a process for the continuous recovery of phosphorus and generation of gas from sewage sludge is investigated for the first time using supercritical water gasification (SCWG). A continuous reactor was employed and experiments were conducted by varying the temperature (500-600 °C) and residence time (5-60 s) while fixing the pressure at 25 MPa. The behavior of phosphorus during the SCWG process was studied. The effect of the temperature and time on the composition of the product gas was also investigated. A model of the reaction kinetics for the SCWG of sewage sludge was developed. The organic phosphorus (OP) was rapidly converted into inorganic phosphorus (IP) within a short residence time of 10 s. The gaseous products were mainly composed of H2, CO2, and CH4. The reaction followed first order kinetics, and the model was found to fit the experimental data well. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. TOBI: A nonlinear model for boiling water reactor stability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wehle, F. (Siemens/KWU, Offenbach (West Germany)); Pruitt, D.W.

    1990-06-01

    The magnitude and the divergent nature of the oscillations during the LaSalle unit 2 nuclear power plant even on March 9, 1988, renewed concern about the state of knowledge on boiling water reactor (BWR) instabilities and was followed by many activities, e.g., the Idaho Stability Symposium. For appropriate representation of the physical processes, typical BWR time-domain stability calculations with, e.g., TRAC, RETRAN, or THERMIT require a large number of axial nodes and are very costly with regard to computer time. Linear models are inexpensive, but only valid as long as the parameters have no large deviation from the reference operating conditions. The objective of this work is the development of a physical model that is applicable for stability analysis in the nonlinear regime, but without the disadvantage of numerical problems and excessive computing times. The basic concept of the model TOBI is the integral study of the interaction between the time-dependent single- and two-phase regions. A series of calculations for purely thermal-hydraulic systems and BWRs has shown that TOBI is a convenient tool for stability analysis. Because of the simple but physically realistic modeling, it is very helpful in achieving an improved understanding of the mechanisms that affect BWR stability, and it is inexpensive, with regard to computer time, to perform extensive parameter sensitivity studies, even in the nonlinear regime.

  17. Study on unstable fracture characteristics of light water reactor piping

    Energy Technology Data Exchange (ETDEWEB)

    Kurihara, Ryoichi [Japan Atomic Energy Research Inst., Naka, Ibaraki (Japan). Naka Fusion Research Establishment

    1998-08-01

    Many testing studies have been conducted to validate the applicability of the leak before break (LBB) concept for the light water reactor piping in the world. It is especially important among them to clarify the condition that an inside surface crack of the piping wall does not cause an unstable fracture but ends in a stable fracture propagating only in the pipe thickness direction, even if the excessive loading works to the pipe. Pipe unstable fracture tests performed in Japan Atomic Energy Research Institute had been planned under such background, and clarified the condition for the cracked pipe to cause the unstable fracture under monotonous increase loading or cyclic loading by using test pipes with the inside circumferential surface crack. This paper examines the pipe unstable fracture by dividing it into two parts. One is the static unstable fracture that breaks the pipe with the inside circumferential surface crack by increasing load monotonously. Another is the dynamic unstable fracture that breaks the pipe by the cyclic loading. (author). 79 refs.

  18. Installation of the Light-Water Breeder Reactor at the Shippingport Atomic Power Station (LWBR Development Program)

    Energy Technology Data Exchange (ETDEWEB)

    Massimino, R.J.; Williams, D.A.

    1983-05-01

    This report summarizes the refueling operations performed to install a Light Water Breeder Reactor (LWBR) core into the existing pressurized water reactor vessel at the Shippingport Atomic Power Station. Detailed descriptions of the major installation operations (e.g., primary system preconditioning, fuel installation, pressure boundary seal welding) are included as appendices to this report; these operations are of technical interest to any reactor servicing operation, whether the reactor is a breeder or a conventional light water non-breeder core.

  19. Experimental Studies of NGNP Reactor Cavity Cooling System With Water

    Energy Technology Data Exchange (ETDEWEB)

    Corradini, Michael; Anderson, Mark; Hassan, Yassin; Tokuhiro, Akira

    2013-01-16

    This project will investigate the flow behavior that can occur in the reactor cavity cooling system (RCCS) with water coolant under the passive cooling-mode of operation. The team will conduct separate-effects tests and develop associated scaling analyses, and provide system-level phenomenological and computational models that describe key flow phenomena during RCCS operation, from forced to natural circulation, single-phase flow and two-phase flow and flashing. The project consists of the following tasks: Task 1. Conduct separate-effects, single-phase flow experiments and develop scaling analyses for comparison to system-level computational modeling for the RCCS standpipe design. A transition from forced to natural convection cooling occurs in the standpipe under accident conditions. These tests will measure global flow behavior and local flow velocities, as well as develop instrumentation for use in larger scale tests, thereby providing proper flow distribution among standpipes for decay heat removal. Task 2. Conduct separate-effects experiments for the RCCS standpipe design as two-phase flashing occurs and flow develops. As natural circulation cooling continues without an ultimate heat sink, water within the system will heat to temperatures approaching saturation , at which point two-phase flashing and flow will begin. The focus is to develop a phenomenological model from these tests that will describe the flashing and flow stability phenomena. In addition, one could determine the efficiency of phase separation in the RCCS storage tank as the two-phase flashing phenomena ensues and the storage tank vents the steam produced. Task 3. Develop a system-level computational model that will describe the overall RCCS behavior as it transitions from forced flow to natural circulation and eventual two-phase flow in the passive cooling-mode of operation. This modeling can then be used to test the phenomenological models developed as a function of scale.

  20. Study of a fuel assembly for the nuclear reactor of IV generation cooled with supercritical water; Estudio de un ensamble de combustible para el reactor nuclear de generacion IV enfriado con agua supercritica

    Energy Technology Data Exchange (ETDEWEB)

    Barragan M, A.; Martin del Campo M, C.; Francois L, J. L. [UNAM, Facultad de Ingenieria, Departamento de Sistemas Energeticos, Ciudad Universitaria, 04510 Mexico D. F. (Mexico); Espinosa P, G., E-mail: albrm29@yahoo.com [Universidad Autonoma Metropolitana, Unidad Iztapalapa, Area de Ingenieria en Recursos Energeticos, Av. San Rafael Atlixco 186, Col. Vicentina, 09340 Mexico D. F. (MX)

    2011-11-15

    In this work a neutron study is presented about a square assembly design of double line of fuel rods, with moderator box to the center of the arrangement, for a nuclear reactor cooled with supercritical water (SCWR). The SCWR reactor was chosen by the characteristics of its design, mainly because is based in light water reactors (PWR and BWR), and the operational experience that has of them allow to use models and similar programs to simulate the fuel and the nucleus of this type of reactors. To develop the necessary models and to carry out the design and analysis of the SCWR reactor, the neutron codes MCNPX and Helios were used. The reason of using both codes, is because the code MCNPX used thoroughly in the neutron simulation of these reactors, it has been our reference code to analyze the results obtained with the Helios code which results are more efficient because its calculation times are minors. In the nucleus design the same parameters for both codes were considered. The results show that the design with Helios is a viable option to simulate these reactors since their values of the neutrons multiplication factor are very similar to those obtained with MCNPX. On the other hand, it could be corroborated that the CASMO-4 code is inadequate to simulate the fuel to the temperature conditions and water pressure in the SCWR. (Author)

  1. Development of neutron measurement techniques in reactor diagnostics and determination of water content and water flow

    Energy Technology Data Exchange (ETDEWEB)

    Avdic, Senada

    2000-09-01

    The present thesis deals with three comparatively different topics in neutron physics research. These topics are as follows: construction and experimental investigation of a new detector, capable of measuring the neutron current, and investigation of the possibility to use it for the localisation of a neutron source in a simple experimental arrangement; execution of neutron transmission measurements based on a stationary neutron generator, and the study of their suitability for determining the volume porosity of geological samples; study of the possibility for improving the accuracy of water flow measurements based on the pulsed neutron activation technique. The first subject of this thesis concerns the measurement of the neutron current by a newly constructed detector. The motivation for this work stems from a recent suggestion that the performance of core monitoring methods could be enhanced if, in addition to the scalar neutron flux, also the neutron current was measured. To this end, a current detector was based on a scintillator mounted on a fibre and a Cd layer on one side of the detector. The measurements of the 2-D neutron current were performed in an experimental system by using this detector. The efficiency of the detector in reactor diagnostics was illustrated by demonstrating that the position of a neutron source can be determined by measuring the scalar neutron flux and the neutron current in one spatial point. The results of measurement and calculation show both the suitability of the detector construction for the measurement of the neutron current vector and the use of the current in diagnostics and monitoring. The second subject of this thesis concerns fast neutron transmission measurements, based on a stationary neutron generator, for determining the volume porosity of a sample in a model experiment. Such a technique could be used in field measurements with obvious advantages in comparison with thermal neutron transmission techniques, which can

  2. Advanced Test Reactor probabilistic risk assessment methodology and results summary

    Energy Technology Data Exchange (ETDEWEB)

    Eide, S.A.; Atkinson, S.A.; Thatcher, T.A.

    1992-01-01

    The Advanced Test Reactor (ATR) probabilistic risk assessment (PRA) Level 1 report documents a comprehensive and state-of-the-art study to establish and reduce the risk associated with operation of the ATR, expressed as a mean frequency of fuel damage. The ATR Level 1 PRA effort is unique and outstanding because of its consistent and state-of-the-art treatment of all facets of the risk study, its comprehensive and cost-effective risk reduction effort while the risk baseline was being established, and its thorough and comprehensive documentation. The PRA includes many improvements to the state-of-the-art, including the following: establishment of a comprehensive generic data base for component failures, treatment of initiating event frequencies given significant plant improvements in recent years, performance of efficient identification and screening of fire and flood events using code-assisted vital area analysis, identification and treatment of significant seismic-fire-flood-wind interactions, and modeling of large loss-of-coolant accidents (LOCAs) and experiment loop ruptures leading to direct damage of the ATR core. 18 refs.

  3. Evaluation of an accident management strategy of emergency water injection using fire engines in a typical pressurized water reactor

    Directory of Open Access Journals (Sweden)

    Soo-Yong Park

    2015-10-01

    Full Text Available Following the Fukushima accident, a special safety inspection was conducted in Korea. The inspection results show that Korean nuclear power plants have no imminent risk for expected maximum potential earthquake or coastal flooding. However long- and short-term safety improvements do need to be implemented. One of the measures to increase the mitigation capability during a prolonged station blackout (SBO accident is installing injection flow paths to provide emergency cooling water of external sources using fire engines to the steam generators or reactor cooling systems. This paper illustrates an evaluation of the effectiveness of external cooling water injection strategies using fire trucks during a potential extended SBO accident in a 1,000 MWe pressurized water reactor. With regard to the effectiveness of external cooling water injection strategies using fire engines, the strategies are judged to be very feasible for a long-term SBO, but are not likely to be effective for a short-term SBO.

  4. Cooling performance of a water-cooling panel system for modular high-temperature gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Takada, Shoji; Suzuki, Kunihiko; Inagaki, Yoshiyuki; Sudo, Yukio [Japan Atomic Energy Research Institute, Ibaraki-ken (Japan)

    1995-12-31

    Experiments on a water cooling panel system were performed to investigate its heat removal performance and the temperature distribution of components for a modular high-temperature gas-cooled reactor (MHTGR). The analytical code THANPACST2 was applied to analyze the experimental results to verify the validity of the analytical method and the model.

  5. Formation and deposition of platinum nanoparticles under boiling water reactor conditions

    Science.gov (United States)

    Grundler, Pascal V.; Veleva, Lyubomira; Ritter, Stefan

    2017-10-01

    Stress corrosion cracking (SCC) is a well-known degradation mechanism for components of boiling water reactors (BWRs). Therefore the mitigation of SCC is important for ensuring the integrity of the reactor system. Noble metal chemical application (NMCA) has been developed by General Electric to mitigate SCC and reduce the negative side-effects of hydrogen water chemistry used initially for SCC mitigation. NMCA is now widely applied as an online process (OLNC) during power operation. However, the understanding of the parameters that control the formation and deposition of the noble metal (Pt) particles in a BWR was still incomplete. To fill this knowledge gap, systematic studies on the formation and deposition behaviour of Pt particles in simulated and real BWR environment were performed in the framework of a research project at PSI. The present paper summarizes the most important findings. Experiments in a sophisticated high-temperature water loop revealed that the flow conditions, water chemistry, the Pt injection rate, and the pre-conditioning of the stainless steel surfaces have an impact on the Pt deposition behaviour. Slower Pt injection rates and stoichiometric excess of H2 over O2 produce smaller particles, which may increase the efficiency of the OLNC technique in mitigating SCC. Surfaces with a well-developed oxide layer retain more Pt particles. Furthermore, the pre- and post-OLNC exposure times play an important role for the Pt deposition on specimens exposed at the KKL power plant. Redistribution of Pt in the plant takes place, but most of the Pt apparently does not redeposit on the steel surfaces in the reactor system. Comparison of lab and plant results also demonstrated that plant OLNC applications can be simulated reasonably well on the lab scale.

  6. Nonlinear control for core power of pressurized water nuclear reactors using constant axial offset strategy

    Directory of Open Access Journals (Sweden)

    Gholam Reza Ansarifar

    2015-12-01

    Full Text Available One of the most important operations in nuclear power plants is load following, in which an imbalance of axial power distribution induces xenon oscillations. These oscillations must be maintained within acceptable limits otherwise the nuclear power plant could become unstable. Therefore, bounded xenon oscillation is considered to be a constraint for the load following operation. In this paper, the design of a sliding mode control (SMC, which is a robust nonlinear controller, is presented. SMC is a means to control pressurized water nuclear reactor (PWR power for the load following operation problem in a way that ensures xenon oscillations are kept bounded within acceptable limits. The proposed controller uses constant axial offset (AO strategy to ensure xenon oscillations remain bounded. The constant AO is a robust state constraint for the load following problem. The reactor core is simulated based on the two-point nuclear reactor model with a three delayed neutron groups. The stability analysis is given by means of the Lyapunov approach, thus the control system is guaranteed to be stable within a large range. The employed method is easy to implement in practical applications and moreover, the SMC exhibits the desired dynamic properties during the entire output-tracking process independent of perturbations. Simulation results are presented to demonstrate the effectiveness of the proposed controller in terms of performance, robustness, and stability. Results show that the proposed controller for the load following operation is so effective that the xenon oscillations are kept bounded in the given region.

  7. Light Water Reactor Sustainability Program: Analysis of Pressurized Water Reactor Station Blackout Caused by External Flooding Using the RISMC Toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Curtis [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States); Prescott, Steven [Idaho National Lab. (INL), Idaho Falls, ID (United States); Alfonsi, Andrea [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cogliati, Joshua [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kinoshita, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-08-01

    The existing fleet of nuclear power plants is in the process of extending its lifetime and increasing the power generated from these plants via power uprates. In order to evaluate the impact of these factors on the safety of the plant, the Risk Informed Safety Margin Characterization (RISMC) project aims to provide insight to decision makers through a series of simulations of the plant dynamics for different initial conditions (e.g., probabilistic analysis and uncertainty quantification). This report focuses, in particular, on the application of a RISMC detailed demonstration case study for an emergent issue using the RAVEN and RELAP-7 tools. This case study looks at the impact of a couple of challenges to a hypothetical pressurized water reactor, including: (1) a power uprate, (2) a potential loss of off-site power followed by the possible loss of all diesel generators (i.e., a station black-out event), (3) and earthquake induces station-blackout, and (4) a potential earthquake induced tsunami flood. The analysis is performed by using a set of codes: a thermal-hydraulic code (RELAP-7), a flooding simulation tool (NEUTRINO) and a stochastic analysis tool (RAVEN) – these are currently under development at the Idaho National Laboratory.

  8. Capital cost: pressurized water reactor plant. Commercial electric power cost studies

    Energy Technology Data Exchange (ETDEWEB)

    1977-06-01

    The investment cost study for the 1139 MW(e) pressurized water reactor (PWR) central station power plant consists of two volumes. This volume contains the drawings, equipment list and site description.

  9. Mesos-scale modeling of irradiation in pressurized water reactor concrete biological shields

    Energy Technology Data Exchange (ETDEWEB)

    Le Pape, Yann [ORNL; Huang, Hai [Idaho National Laboratory (INL)

    2016-01-01

    Neutron irradiation exposure causes aggregate expansion, namely radiation-induced volumetric expansion (RIVE). The structural significance of RIVE on a portion of a prototypical pressurized water reactor (PWR) concrete biological shield (CBS) is investigated by using a meso- scale nonlinear concrete model with inputs from an irradiation transport code and a coupled moisture transport-heat transfer code. RIVE-induced severe cracking onset appears to be triggered by the ini- tial shrinkage-induced cracking and propagates to a depth of > 10 cm at extended operation of 80 years. Relaxation of the cement paste stresses results in delaying the crack propagation by about 10 years.

  10. Neutronic study on seed-blanket type reduced-moderation water reactor fuel assembly

    OpenAIRE

    Shelley, A.; 久語 輝彦; 嶋田 昭一郎; 大久保 努; 岩村 公道

    2004-01-01

    Neutronic study has been done for a PWR-type reduced-moderation water reactor with seed-blanket fuel assemblies to achieve a high conversion ratio, a negative void coefficient and a high burnup by using a MOX fuel. The results of the precise assembly burnup calculations show that the recommended numbers of seed and blanket layers are 15(S15) and 5(B5), respectively. By the optimization of axial configuration, the S15B5 assembly with the seed of 1000times2 mm high, internal blanket of 150 mm h...

  11. Membrane contactor/separator for an advanced ozone membrane reactor for treatment of recalcitrant organic pollutants in water

    Science.gov (United States)

    Kit Chan, Wai; Jouët, Justine; Heng, Samuel; Lun Yeung, King; Schrotter, Jean-Christophe

    2012-05-01

    An advanced ozone membrane reactor that synergistically combines membrane distributor for ozone gas, membrane contactor for pollutant adsorption and reaction, and membrane separator for clean water production is described. The membrane reactor represents an order of magnitude improvement over traditional semibatch reactor design and is capable of complete conversion of recalcitrant endocrine disrupting compounds (EDCs) in water at less than three minutes residence time. Coating the membrane contactor with alumina and hydrotalcite (Mg/Al=3) adsorbs and traps the organics in the reaction zone resulting in 30% increase of total organic carbon (TOC) removal. Large surface area coating that diffuses surface charges from adsorbed polar organic molecules is preferred as it reduces membrane polarization that is detrimental to separation.

  12. Calculation of releases of radioactive materials in gaseous and liquid effluents from boiling water reactors (BWR-GALE Code)

    Energy Technology Data Exchange (ETDEWEB)

    Bangart, R.L.; Bell, L.G.; Boegli, J.S.; Burke, W.C.; Lee, J.Y.; Minns, J.L.; Stoddart, P.G.; Weller, R.A.; Collins, J.T.

    1978-12-01

    The calculational procedures described in the report reflect current NRC staff practice. The methods described will be used in the evaluation of applications for construction permits and operating licenses docketed after January 1, 1979, until this NUREG is revised as a result of additional staff review. The BWR-GALE (Boiling Water Reactor Gaseous and Liquid Effluents) Code is a computerized mathematical model for calculating the release of radioactive material in gaseous and liquid effluents from boiling water reactors (BWRs). The calculations are based on data generated from operating reactors, field tests, laboratory tests, and plant-specific design considerations incorporated to reduce the quantity of radioactive materials that may be released to the environment.

  13. Feasibility Study of Supercritical Light Water Cooled Reactors for Electric Power Production

    Energy Technology Data Exchange (ETDEWEB)

    Philip MacDonald; Jacopo Buongiorno; James Sterbentz; Cliff Davis; Robert Witt; Gary Was; J. McKinley; S. Teysseyre; Luca Oriani; Vefa Kucukboyaci; Lawrence Conway; N. Jonsson: Bin Liu

    2005-02-13

    The supercritical water reactor (SCWR) has been the object of interest throughout the nuclear Generation IV community because of its high potential: a simple, direct cycle, compact configuration; elimination of many traditional LWR components, operation at coolant temperatures much higher than traditional LWRs and thus high thermal efficiency. It could be said that the SWR was viewed as the water counterpart to the high temperature gas reactor.

  14. Zeolite Membrane Reactor for Water Gas Shift Reaction for Hydrogen Production

    Energy Technology Data Exchange (ETDEWEB)

    Lin, Jerry Y.S. [Arizona State Univ., Mesa, AZ (United States)

    2013-01-29

    Gasification of biomass or heavy feedstock to produce hydrogen fuel gas using current technology is costly and energy-intensive. The technology includes water gas shift reaction in two or more reactor stages with inter-cooling to maximize conversion for a given catalyst volume. This project is focused on developing a membrane reactor for efficient conversion of water gas shift reaction to produce a hydrogen stream as a fuel and a carbon dioxide stream suitable for sequestration. The project was focused on synthesizing stable, hydrogen perm-selective MFI zeolite membranes for high temperature hydrogen separation; fabricating tubular MFI zeolite membrane reactor and stable water gas shift catalyst for membrane reactor applications, and identifying experimental conditions for water gas shift reaction in the zeolite membrane reactor that will produce a high purity hydrogen stream. The project has improved understanding of zeolite membrane synthesis, high temperature gas diffusion and separation mechanisms for zeolite membranes, synthesis and properties of sulfur resistant catalysts, fabrication and structure optimization of membrane supports, and fundamentals of coupling reaction with separation in zeolite membrane reactor for water gas shift reaction. Through the fundamental study, the research teams have developed MFI zeolite membranes with good perm-selectivity for hydrogen over carbon dioxide, carbon monoxide and water vapor, and high stability for operation in syngas mixture containing 500 part per million hydrogen sulfide at high temperatures around 500°C. The research teams also developed a sulfur resistant catalyst for water gas shift reaction. Modeling and experimental studies on the zeolite membrane reactor for water gas shift reaction have demonstrated the effective use of the zeolite membrane reactor for production of high purity hydrogen stream.

  15. Swelling in light water reactor internal components: Insights from computational modeling

    Energy Technology Data Exchange (ETDEWEB)

    Stoller, Roger E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Barashev, Alexander V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Tennessee, Knoxville, TN (United States); Golubov, Stanislav I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-08-01

    A modern cluster dynamics model has been used to investigate the materials and irradiation parameters that control microstructural evolution under the relatively low-temperature exposure conditions that are representative of the operating environment for in-core light water reactor components. The focus is on components fabricated from austenitic stainless steel. The model accounts for the synergistic interaction between radiation-produced vacancies and the helium that is produced by nuclear transmutation reactions. Cavity nucleation rates are shown to be relatively high in this temperature regime (275 to 325°C), but are sensitive to assumptions about the fine scale microstructure produced under low-temperature irradiation. The cavity nucleation rates observed run counter to the expectation that void swelling would not occur under these conditions. This expectation was based on previous research on void swelling in austenitic steels in fast reactors. This misleading impression arose primarily from an absence of relevant data. The results of the computational modeling are generally consistent with recent data obtained by examining ex-service components. However, it has been shown that the sensitivity of the model s predictions of low-temperature swelling behavior to assumptions about the primary damage source term and specification of the mean-field sink strengths is somewhat greater that that observed at higher temperatures. Further assessment of the mathematical model is underway to meet the long-term objective of this research, which is to provide a predictive model of void swelling at relevant lifetime exposures to support extended reactor operations.

  16. Power Maneuvering of Pressurized Water Reactors with Axially Variable Strength Control Rods

    Science.gov (United States)

    Kim, Ung-Soo; Seong, Poong-Hyun

    2004-02-01

    In this research, axially variable strength control rods (AVSCRs) are developed to solve the problems related to the axial power distribution of a reactor during power maneuvering of pressurized water reactors (PWRs). The control rods are classified into two types: multipurpose control rods and regulating control rods. Two multipurpose control rod banks (AVSCR1, AVSCR2) are newly developed; conventional axially uniform strength control rods are adopted as regulating control rod banks to minimize the design change. The newly developed AVSCRs are axially three-sectioned and their worth shapes are optimized to obtain appropriate moving characteristics related to the variation of the axial offset (AO) according to the motion of the AVSCRs. The operation strategy for the power maneuvering is developed in consideration of the moving characteristics of the AVSCRs. This strategy consists of simple logics, and no use of reactivity compensation by boron is considered. Finally, the AVSCRs are applied to the power maneuvering with a typical 100-50-100%, 2-6-2-14 h pattern of daily load-follow for all burn-up state of the core. From the application results, it is shown that the use of AVSCRs makes it possible to regulate AO within the target band during the power maneuvering with only control rods. Consequently, power maneuvering is accomplished without reactivity compensation by a change in boron concentration, and the AVSCRs can cover the entire burn-up states of the reactor core.

  17. Computation and comparison of Pd-based membrane reactor performances for water gas shift reaction and isotope swamping in view of highly tritiated water decontamination

    Energy Technology Data Exchange (ETDEWEB)

    Santucci, Alessia, E-mail: alessia.santucci@enea.it [Associazione ENEA-Euratom sulla Fusione, C.R. ENEA Frascati, Via E. Fermi 45, 00044 Frascati, RM (Italy); Rizzello, Claudio [Tesi Sas, Via Bolzano 28, Roma (Italy); Tosti, Silvano [Associazione ENEA-Euratom sulla Fusione, C.R. ENEA Frascati, Via E. Fermi 45, 00044 Frascati, RM (Italy)

    2013-10-15

    Highlights: • A dedicated detritiation process for highly tritiated water (HTW) has to be identified. • Water gas shift and isotopic swamping via Pd–Ag membrane reactor are possible processes. • A parametric analysis through two simulation codes is performed. • A comparison in terms of the decontamination factor is provided. -- Abstract: In a D–T fusion machine, due to the possible reaction between tritium and oxygen, some potential sources of highly tritiated water (HTW) can be identified. Therefore, a dedicated detritiation process has to be assessed either for economic and safety reasons. In this view, the use of a Pd-based membrane reactor performing isotopic exchange reactions can be considered since hydrogen isotopes exclusively permeate the Pd–Ag membrane and their exchange over the catalyst realizes the water detritiation. In this activity, the treatment of highly tritiated water, generated by an ITER-like machine (i.e. 2 kg of stoichiometric HTO containing up to 300 g of tritium), via a Pd-membrane reactor is studied in terms of decontamination capability. Especially, a parametric analysis of two processes (water gas shift and isotopic swamping) performed in a Pd-based membrane reactor is carried out by using two mathematical models previously developed and experimentally verified. Particularly, the effect of the reactor temperature, the membrane thickness, the reaction pressure and the protium sweep flow-rate is investigated. Moreover, a comparison in terms of the decontamination factor and the number of reactors necessary to detritiate the HTW are provided. Generally, the results reveal a higher decontamination capability of the WGS reaction respect with the IS (maximum DF values of about 120 and 1.6 in the case of WGS and IS, respectively). However some drawbacks, mainly related with the formation of tritiated species, can occur by performing the WGS.

  18. Non normal modal analysis of oscillations in boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Suarez-Antola, Roberto, E-mail: roberto.suarez@miem.gub.uy [Ministerio de Industria, Energia y Mineria (MIEM), Montevideo (Uruguay); Flores-Godoy, Jose-Job, E-mail: job.flores@ibero.mx [Universidad Iberoamericana (UIA), Mexico, DF (Mexico). Dept. de Fisica Y Matematicas

    2013-07-01

    The first objective of the present work is to construct a simple reduced order model for BWR stability analysis, combining a two nodes nodal model of the thermal hydraulics with a two modes modal model of the neutronics. Two coupled non-linear integral-differential equations are obtained, in terms of one global (in phase) and one local (out of phase) power amplitude, with direct and cross feedback reactivities given as functions of thermal hydraulics core variables (void fractions and temperatures). The second objective is to apply the effective life time approximation to further simplify the nonlinear equations. Linear approximations for the equations of the amplitudes of the global and regional modes are derived. The linearized equation for the amplitude of the global mode corresponds to a decoupled and damped harmonic oscillator. An analytical closed form formula for the damping coefficient, as a function of the parameters space of the BWR, is obtained. The coefficient changes its sign (with the corresponding modification in the decay ratio) when a stability boundary is crossed. This produces a supercritical Hopf bifurcation, with the steady state power of the reactor as the bifurcation parameter. However, the linearized equation for the amplitude of the regional mode corresponds always to an over-damped and always coupled (with the amplitude of the global mode) harmonic oscillator, for every set of possible values of core parameters (including the steady state power of the reactor) in the framework of the present mathematical model. The equation for the above mentioned over damped linear oscillator is closely connected with a non-normal operator. Due to this connection, there could be a significant transient growth of some solutions of the linear equation. This behavior allows a significant shrinking of the basin of attraction of the equilibrium state. The third objective is to apply the above approach to partially study the stability of the regional mode and

  19. In-vessel Retention Strategy for High Power Reactors - K-INERI Final Report (includes SBLB Test Results for Task 3 on External Reactor Vessel Cooling (ERVC) Boiling Data and CHF Enhancement Correlations)

    Energy Technology Data Exchange (ETDEWEB)

    F. B. Cheung; J. Yang; M. B. Dizon; J. Rempe

    2005-01-01

    In-vessel retention (IVR) of core melt is a key severe accident management strategy adopted by some operating nuclear power plants and proposed for some advanced light water reactors (ALWRs). If there were inadequate cooling during a reactor accident, a significant amount of core material could become molten and relocate to the lower head of the reactor vessel, as happened in the Three Mile Island Unit 2 (TMI-2) accident. If it is possible to ensure that the vessel head remains intact so that relocated core materials are retained within the vessel, the enhanced safety associated with these plants can reduce concerns about containment failure and associated risk. For example, the enhanced safety of the Westinghouse Advanced 600 MWe PWR (AP600), which relied upon External Reactor Vessel Cooling (ERVC) for IVR, resulted in the U.S. Nuclear Regulatory Commission (US NRC) approving the design without requiring certain conventional features common to existing LWRs. However, it is not clear that currently proposed external reactor vessel cooling (ERVC) without additional enhancements could provide sufficient heat removal for higher-power reactors (up to 1500 MWe). Hence, a collaborative, three-year, U.S. - Korean International Nuclear Energy Research Initiative (INERI) project was completed in which the Idaho National Engineering and Environmental Laboratory (INEEL), Seoul National University (SNU), Pennsylvania State University (PSU), and the Korea Atomic Energy Research Institute (KAERI) investigated the performance of ERVC and an in-vessel core catcher (IVCC) to determine if IVR is feasible for reactors up to 1500 MWe.

  20. Corrosion fatigue crack growth behaviour of austenitic stainless steels under light water reactor conditions

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, H.P., E-mail: hans-peter.seifert@psi.ch [Paul Scherrer Institute (PSI), Nuclear Energy and Safety Research Department, Laboratory for Nuclear Materials, 5232 Villigen PSI (Switzerland); Ritter, S.; Leber, H.J. [Paul Scherrer Institute (PSI), Nuclear Energy and Safety Research Department, Laboratory for Nuclear Materials, 5232 Villigen PSI (Switzerland)

    2012-02-15

    Highlights: Black-Right-Pointing-Pointer Corrosion fatigue in austenitic stainless steels under light water reactor conditions. Black-Right-Pointing-Pointer Identification of major parameters of influence. Black-Right-Pointing-Pointer Critical system conditions for environmental acceleration of fatigue crack growth. Black-Right-Pointing-Pointer Proposal for new code fatigue curves, which consider environmental effects. - Abstract: The corrosion fatigue crack growth behaviour of different wrought low-carbon and stabilised austenitic stainless steels was characterised under simulated boiling water and primary pressurised water reactor conditions by cyclic fatigue tests with pre-cracked fracture mechanics specimens in the temperature range from 70 to 320 Degree-Sign C. The major parameter effects and critical conjoint threshold conditions, which result in relevant environmental acceleration of fatigue crack growth are discussed and summarised. Furthermore, the observed corrosion fatigue behaviour is compared with the corresponding (corrosion) fatigue curves in the ASME and JSME boiler and pressure vessel code or open literature and conclusions with regard to their adequacy and conservatism are given.

  1. Environmentally assisted cracking in light water reactors. Semiannual report, July 1998-December 1998.

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, O. K.; Chung, H. M.; Gruber, E. E.; Kassner, T. F.; Ruther, W. E.; Shack, W. J.; Smith, J. L.; Soppet, W. K.; Strain; R. V. (Energy Technology); ( APS-USR)

    1999-10-01

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors from July 1998 to December 1998. Topics that have been investigated include (a) environmental effects on fatigue S-N behavior of primary pressure boundary materials, (b) irradiation-assisted stress corrosion cracking of austenitic stainless steels (SSs), and (c) EAC of Alloys 600 and 690. Fatigue tests have been conducted to determine the crack initiation and crack growth characteristics of austenitic SSs in LWR environments. Procedures are presented for incorporating the effects of reactor coolant environments on the fatigue life of pressure vessel and piping steels. Slow-strain-rate tensile tests and posttest fractographic analyses were conducted on several model SS alloys irradiated to {approx}0.3 and 0.9 x 10{sup 21} n {center_dot} cm{sup -2} (E > 1 MeV) in helium at 289 C in the Halden reactor. The results have been used to determine the influence of alloying and impurity elements on the susceptibility of these steels to irradiation-assisted stress corrosion cracking. Fracture toughness J-R curve tests were also conducted on two heats of Type 304 SS that were irradiated to {approx}0.3 x 10{sup 21} n {center_dot} cm{sup -2} in the Halden reactor. Crack-growth-rate tests have been conducted on compact-tension specimens of Alloys 600 and 690 under constant load to evaluate the resistance of these alloys to stress corrosion cracking in LWR environments.

  2. Design and installation of a hot water layer system at the Tehran research reactor

    Directory of Open Access Journals (Sweden)

    Mirmohammadi Sayedeh Leila

    2013-01-01

    Full Text Available A hot water layer system (HWLS is a novel system for reducing radioactivity under research reactor containment. This system is particularly useful in pool-type research reactors or other light water reactors with an open pool surface. The main purpose of a HWLS is to provide more protection for operators and reactor personnel against undesired doses due to the radio- activity of the primary loop. This radioactivity originates mainly from the induced radioactivity contained within the cooling water or probable minute leaks of fuel elements. More importantly, the bothersome radioactivity is progressively proportional to reactor power and, thus, the HWLS is a partial solution for mitigating such problems when power upgrading is planned. Following a series of tests and checks for different parameters, a HWLS has been built and put into operation at the Tehran research reactor in 2009. It underwent a series of comprehensive tests for a period of 6 months. Within this time-frame, it was realized that the HWLS could provide a better protection for reactor personnel against prevailing radiation under containment. The system is especially suitable in cases of abnormality, e. g. the spread of fission products due to fuel failure, because it prevents the mixing of pollutants developed deep in the pool with the upper layer and thus mitigates widespread leakage of radioactivity.

  3. Study of Pu consumption in advanced light water reactors: Evaluation of GE advanced boiling water reactor plants - compilation of Phase 1B task reports

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1993-09-15

    This report contains an extensive evaluation of GE advanced boiling water reactor plants prepared for United State Department of Energy. The general areas covered in this report are: core and system performance; fuel cycle; infrastructure and deployment; and safety and environmental approval.

  4. An organic profile of a pressurised water reactor secondary plant

    Energy Technology Data Exchange (ETDEWEB)

    Eeden, Nestor van; Stwayi, Mandisibuntu; Gericke, Gerhard [Eskom Holdings SOC Ltd., Western Cape (South Africa). Koeberg Power Station

    2012-07-15

    Make-up water addition to the steam/water cycle at Koeberg Nuclear Power Station usually results in a corresponding increase of the chloride concentration in the steam generator blowdown system. During plant transients, when higher than normal make-up is required to the secondary plant, the concentration of chloride occasionally exceeds the limiting value for the station chemistry performance indicator. Irrespective of this, the demineralised water make-up supply tanks, which are routinely analysed for chloride, are within all recognised acceptable standards for secondary water make-up and therefore these tanks do not initially appear to be the source of chloride contamination. Water treatment at the plant relies essentially on ion exchange, which has been proven to be very effective in removing inorganic ionic species such as chloride. Organic compounds are less effectively removed by ion exchange and may pass through the treatment system, and these organics can reside undetected in the make-up water tanks. Historically, the elevated chloride concentration following high system make-up has been attributed to chlorinated organic compounds known as trihalomethanes being present in the make-up water tanks, but no rigorous study had been undertaken. As it has been assumed that the majority of chloride in the secondary system originates from the make-up water organic impurities, it was considered important to confirm this by compiling an organic profile of the secondary plant. The use of organic additives was also taken into account in the profile. This work has confirmed the contribution from trihalomethanes and has also found that other organochlorides contribute even more significantly to the overall chloride inventory of the secondary plant. (orig.)

  5. Environmentally-Assisted Cracking of Low-Alloy Reactor Pressure Vessel Steels under Boiling Water Reactor Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, H.P.; Ritter, S

    2002-02-01

    The present report summarizes the experimental work performed by PSI on the environmentally-assisted cracking (EAC) of low-alloy steels (LAS) in the frame of the RIKORR-project during the period from January 2000 to August 2001. Within this project, the EAC crack growth behaviour of different low-alloy reactor pressure vessel (RPV) steels, weld filler and weld heat-affected zone materials is investigated under simulated transient and steady-state BWR/NWC power operation conditions. The EAC crack growth behaviour of different low-alloy RPV steels was characterized by slow rising load (SRL) / low-frequency corrosion fatigue (LFCF) and constant load tests with pre-cracked fracture mechanics specimens in oxygenated high-temperature water at temperatures of either 288, 250, 200 or 150 C. These tests revealed the following important interim results: Under low-flow and highly oxidizing (ECP >= 100 mV SHE) conditions, the ASME XI 'wet' reference fatigue crack growth curve could be significantly exceeded by cyclic fatigue loading at low frequencies (<0.001 Hz), at high and low load-ratios R, and by ripple loading near to DKth fatigue thresholds. The BWR VIP 60 SCC disposition lines may be significantly or slightly exceeded (even in steels with a low sulphur content) in the case of small load fluctuations at high load ratios (ripple loading) or at intermediate temperatures (200 -250 C) in RPV materials, which show a distinct susceptibility to dynamic strain ageing (DSA). (author)

  6. Declassification of radioactive water from a pool type reactor after nuclear facility dismantling

    Science.gov (United States)

    Arnal, J. M.; Sancho, M.; García-Fayos, B.; Verdú, G.; Serrano, C.; Ruiz-Martínez, J. T.

    2017-09-01

    This work is aimed to the treatment of the radioactive water from a dismantled nuclear facility with an experimental pool type reactor. The main objective of the treatment is to declassify the maximum volume of water and thus decrease the volume of radioactive liquid waste to be managed. In a preliminary stage, simulation of treatment by the combination of reverse osmosis (RO) and evaporation have been performed. Predicted results showed that the combination of membrane and evaporation technologies would result in a volume reduction factor higher than 600. The estimated time to complete the treatment was around 650 h (25-30 days). For different economical and organizational reasons which are explained in this paper, the final treatment of the real waste had to be reduced and only evaporation was applied. The volume reduction factor achieved in the real treatment was around 170, and the time spent for treatment was 194 days.

  7. Inter-laboratory comparisons of short-lived gamma-emitting radionuclides in nuclear reactor water.

    Science.gov (United States)

    Klemola, S K

    2008-01-01

    Inter-laboratory comparisons of gamma-emitting nuclides in nuclear power plant coolant water have been carried out in Finland since 1994. The reactor water samples are taken and prepared by one of the two nuclear power plants and delivered to the participants. Since all the participants get their sample within just a few hours it has been possible to analyse and compare results of nuclides with half-lives shorter than 1h. The total number of short-lived nuclides is 26. All the main nuclides are regularly identified and the activities have been obtained with reasonable accuracy throughout the years. The overall deviation of the results has decreased in 13 years. The effects of true coincidence summing and discrepancies in nuclear data have been identified as potential sources of remaining discrepancies. All the participants have found this type of comparison very useful.

  8. The uncertainty analysis of a liquid metal reactor for burning minor actinides from light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    The neutronics analysis of a liquid metal reactor for burning minor actinides has shown that uncertainties in the nuclear data of several key minor actinide isotopes can introduce large uncertainties in the predicted performance of the core. A comprehensive sensitivity and uncertainty analysis was performed on a 1200 MWth actinide burner designed for a low burnup reactivity swing, negative doppler coefficient, and low sodium void worth. Sensitivities were generated using depletion perturbation methods for the equilibrium cycle of the reactor and covariance data was taken ENDF-B/V and other published sources. The relative uncertainties in the burnup swing, doppler coefficient, and void worth were conservatively estimated to be 180%, 97%, and 46%, respectively. 5 refs., 1 fig., 3 tabs. (Author)

  9. Biological mine water treatment operating a one stage reactor system

    CSIR Research Space (South Africa)

    Baloyi, MJ

    2006-05-01

    Full Text Available cuttings, the source of cellulose. The total experimental period was 113 days, which was divided over 4 periods resulting from the addition of fresh grass cuttings and the feed water flow rate. It was concluded from this study that the microorganisms from...

  10. Study of plutonium disposition using existing GE advanced Boiling Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    1994-06-01

    The end of the cold war and the resulting dismantlement of nuclear weapons has resulted in the need for the US to dispose of 50 to 100 metric tons of excess of plutonium in a safe and proliferation resistant manner. A number of studies, including the recently released National Academy of Sciences (NAS) study, have recommended conversion of plutonium into spent nuclear fuel with its high radiation barrier as the best means of providing permanent conversion and long-term diversion resistance to this material. The NAS study ``Management and Disposition of Excess Weapons Plutonium identified Light Water Reactor spent fuel as the most readily achievable and proven form for the disposition of excess weapons plutonium. The study also stressed the need for a US disposition program which would enhance the prospects for a timely reciprocal program agreement with Russia. This summary provides the key findings of a GE study where plutonium is converted into Mixed Oxide (MOX) fuel and a typical 1155 MWe GE Boiling Water Reactor (BWR) is utilized to convert the plutonium to spent fuel. A companion study of the Advanced BWR has recently been submitted. The MOX core design work that was conducted for the ABWR enabled GE to apply comparable fuel design concepts and consequently achieve full MOX core loading which optimize plutonium throughput for existing BWRs.

  11. Light Water Reactor Sustainability Program. Digital Architecture Requirements

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Kenneth [Idaho National Lab. (INL), Idaho Falls, ID (United States); Oxstrand, Johanna [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-03-01

    The Digital Architecture effort is a part of the Department of Energy (DOE) sponsored Light-Water Reactor Sustainability (LWRS) Program conducted at Idaho National Laboratory (INL). The LWRS program is performed in close collaboration with industry research and development (R&D) programs that provides the technical foundations for licensing and managing the long-term, safe, and economical operation of current nuclear power plants (NPPs). One of the primary missions of the LWRS program is to help the U.S. nuclear industry adopt new technologies and engineering solutions that facilitate the continued safe operation of the plants and extension of the current operating licenses. Therefore, a major objective of the LWRS program is the development of a seamless digital environment for plant operations and support by integrating information from plant systems with plant processes for nuclear workers through an array of interconnected technologies. In order to get the most benefits of the advanced technology suggested by the different research activities in the LWRS program, the nuclear utilities need a digital architecture in place to support the technology. A digital architecture can be defined as a collection of information technology (IT) capabilities needed to support and integrate a wide-spectrum of real-time digital capabilities for nuclear power plant performance improvements. It is not hard to imagine that many processes within the plant can be largely improved from both a system and human performance perspective by utilizing a plant wide (or near plant wide) wireless network. For example, a plant wide wireless network allows for real time plant status information to easily be accessed in the control room, field workers’ computer-based procedures can be updated based on the real time plant status, and status on ongoing procedures can be incorporated into smart schedules in the outage command center to allow for more accurate planning of critical tasks. The goal

  12. Graphite-moderated and heavy water-moderated spectral shift controlled reactors; Reactores de moderador solido controlados por desplazamiento espectral

    Energy Technology Data Exchange (ETDEWEB)

    Alcala Ruiz, F.

    1984-07-01

    It has been studied the physical mechanisms related with the spectral shift control method and their general positive effects on economical and non-proliferant aspects (extension of the fuel cycle length and low proliferation index). This methods has been extended to non-hydrogenous fuel cells of high moderator/fuel ratio: heavy water cells have been con- trolled by graphite rods graphite-moderated and gas-cooled cells have been controlled by berylium rods and graphite-moderated and water-cooled cells have been controlled by a changing mixture of heavy and light water. It has been carried out neutron and thermal analysis on a pre design of these types of fuel cells. We have studied its neutron optimization and their fuel cycles, temperature coefficients and proliferation indices. Finally, we have carried out a comparative analysis of the fuel cycles of conventionally controlled PWRs and graphite-moderated, water-cooled and spectral shift controlled reactors. (Author) 71 refs.

  13. European research activities within the project: High Performance Light Water Reactor phase 2 (HPLWR phase 2)

    Energy Technology Data Exchange (ETDEWEB)

    Starflinger, J.; Schulenberg, T. [Forschungszentrum Karlsruhe GmbH, Institute for Nuclear and Energy Technologies, Karlsruhe (Germany); Marsault, P. [CEA Cadarache (DER/SESI), 13 - Saint Paul lez Durance (France). Dept. d' Etudes des Reacteurs; Bittermann, D. [AREVA NP, NEPR-G, Erlangen (Germany); Maraczy, C. [AEKI-KFKI, Budapest (Hungary); Laurien, E. [Stuttgart Univ. IKE (Germany); Lycklama, J.A. [NRG Petten, NL (Netherlands); Anglart, H. [KTH Energy Technology, Stockholm (Sweden); Aksan, N. [Paul Scherrer Institut CH, Villigen PSI (Switzerland); Ruzickova, M. [UJV Rez plc, Husinec-Rez c.p. (Czech Republic); Heikinheimo, L. [VTT, FIN (Finland)

    2007-07-01

    The High Performance Light Water Reactor (HPLWR) is a Light Water Reactor (LWR) operating at supercritical pressure (25 MPa). It belongs to the six reactors currently being investigated under the framework of the Generation IV International Forum. The most visible advantage of the HPLWR shall be the low construction costs in the order of 1000 Euro/kWe, because of size reduction of components and buildings compared to current Light Water Reactors, and the low electricity production costs which are targeted at 3-4 cents/kWh. In Europe, investigations on the HPLWR have been integrated into a joint research project, called High Performance Light Water Reactor Phase 2 (HPLWR Phase 2), which is co-funded by the European Commission. Within 42 months, ten partners from eight European countries working on critical scientific issues shall show the feasibility of the HPLWR concept. This paper reports on 5 points relevant for HPLWR: 1) design and integration, 2) core design, 3) safety, 4) materials, and 5) heat transfer. The final goal is to assess the future potential of this reactor in the electricity market.

  14. Reacting flow simulations of supercritical water oxidation of PCB-contaminated transformer oil in a pilot plant reactor

    Directory of Open Access Journals (Sweden)

    V. Marulanda

    2011-06-01

    Full Text Available The scale-up of a supercritical water oxidation process, based on recent advancements in kinetic aspects, reactor configuration and optimal operational conditions, depends on the research and development of simulation tools, which allow the designer not only to understand the complex multiphysics phenomena that describe the system, but also to optimize the operational parameters to attain the best profit for the process and guarantee its safe operation. Accordingly, this paper reports a multiphysics simulation with the CFD software Comsol Multiphysics 3.3 of a pilot plant reactor for the supercritical water oxidation of a heavily PCB-contaminated mineral transformer oil. The proposed model was based on available information for the kinetic aspects of the complex mixture and the optimal operational conditions obtained in a lab-scale continuous supercritical water oxidation unit. The pilot plant simulation results indicate that it is not feasible to scale-up directly the optimal operational conditions obtained in the isothermal lab-scale experiments, due to the excess heat released by the exothermic oxidation reactions that result in outlet temperatures higher than 600°C, even at reactor inlet temperatures as low as 400°C. Consequently, different alternatives such as decreasing organic flowrates or a new reactor set-up with multiple oxidant injections should be considered to guarantee a safe operation.

  15. Development of a PID-Fuzzy controller in the water level control of a pressurizer of a nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Brito, Thiago S.P.; Lira, Carlos A.B.O.; Vasconcelos, Wagner E., E-mail: thiago.brito86@yahoo.com.br, E-mail: cabol@ufpe.br, E-mail: wagner@unicap.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil). Centro de Tecnologia e Geociencias. Departamento de Energia Nuclear; Universidade Catolica de Pernambuco (UNICAP), Recife, PE (Brazil). Centro de Ciencias e Tecnologia

    2017-11-01

    It is well known that safety in the operation of nuclear power plants is a primary requirement because a failure of this system can result in serious problems to the environment. A nuclear reactor has several systems that help keep it in normal operation, within safety margins. Many of these systems operate in the control of variable quantities in the primary circuit of a reactor. However, nuclear reactors are nonlinear physical systems, and this introduces a complexity in the control strategies. Among several mechanisms in the thermal-hydraulic system of a reactor that actuate as a controller, the pressurizer is the component responsible for absorbing pressure variations that occur in the primary circuit. This work aims at the development of a PID controller (Proportional Integral Derivative) based on fuzzy logic to operate in a pressurizer of a nuclear Pressurized Water Reactor. A Fuzzy Controller was developed using the process of fuzzification, inference, and defuzzification of the variables of interest to a pressurizer, then this controller was coupled to a PID Controller building a PID Controller, but oriented by Fuzzy logic. Subsequently, the PID-Fuzzy Controller was experimentally validated in a Simulation Plant in which transients like those in a PWR were conducted. The PID parameters were analyzed and adjusted for better responses and results. The results of the validation were also compared to simple controllers (on / off). (author)

  16. Interfacing systems LOCA (loss-of-coolant accidents): Pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Bozoki, G.; Kohut, P.; Fitzpatrick, R.

    1989-02-01

    This report summarizes a study performed by Brookhaven National Laboratory for the Office of Nuclear Regulatory Research, Reactor and Plant Safety Issues Branch, Division of Reactor and Plant Systems, US Nuclear Regulatory Commission. This study was requested by the NRC in order to provide a technical basis for the resolution of Generic Issue 105 ''Interfacing LOCA at LWRs.'' This report deals with pressurized water reactors (PWRs). A parallel report was also accomplished for boiling water reactors. This study focuses on three representative PWRs and extrapolates the plant-specific findings for their generic applicability. In addition, a generic analysis was performed to investigate the cost-benefit aspects of imposing a testing program that would require some minimum level of leak testing of the pressure isolation valves on plants that presently have no such requirements. 28 refs., 31 figs., 64 tabs.

  17. Searching for full power control rod patterns in a boiling water reactor using genetic algorithms

    Energy Technology Data Exchange (ETDEWEB)

    Montes, Jose Luis [Departamento Sistemas Nucleares, ININ, Carr. Mexico-Toluca Km. 36.5, Ocoyoacac, Edo. de Mexico (Mexico)]. E-mail: jlmt@nuclear.inin.mx; Ortiz, Juan Jose [Departamento Sistemas Nucleares, ININ, Carr. Mexico-Toluca Km. 36.5, Ocoyoacac, Edo. de Mexico (Mexico)]. E-mail: jjortiz@nuclear.inin.mx; Requena, Ignacio [Departamento Ciencias Computacion e I.A. ETSII, Informatica, Universidad de Granada, C. Daniel Saucedo Aranda s/n. 18071 Granada (Spain)]. E-mail: requena@decsai.ugr.es; Perusquia, Raul [Departamento Sistemas Nucleares, ININ, Carr. Mexico-Toluca Km. 36.5, Ocoyoacac, Edo. de Mexico (Mexico)]. E-mail: rpc@nuclear.inin.mx

    2004-11-01

    One of the most important questions related to both safety and economic aspects in a nuclear power reactor operation, is without any doubt its reactivity control. During normal operation of a boiling water reactor, the reactivity control of its core is strongly determined by control rods patterns efficiency. In this paper, GACRP system is proposed based on the concepts of genetic algorithms for full power control rod patterns search. This system was carried out using LVNPP transition cycle characteristics, being applied too to an equilibrium cycle. Several operation scenarios, including core water flow variation throughout the cycle and different target axial power distributions, are considered. Genetic algorithm fitness function includes reactor security parameters, such as MLHGR, MCPR, reactor k{sub eff} and axial power density.

  18. Removal of several pesticides in a falling water film DBD reactor with activated carbon textile: Energy efficiency.

    Science.gov (United States)

    Vanraes, Patrick; Ghodbane, Houria; Davister, Dries; Wardenier, Niels; Nikiforov, Anton; Verheust, Yannick P; Van Hulle, Stijn W H; Hamdaoui, Oualid; Vandamme, Jeroen; Van Durme, Jim; Surmont, Pieter; Lynen, Frederic; Leys, Christophe

    2017-06-01

    Bio-recalcitrant micropollutants are often insufficiently removed by modern wastewater treatment plants to meet the future demands worldwide. Therefore, several advanced oxidation techniques, including cold plasma technology, are being investigated as effective complementary water treatment methods. In order to permit industrial implementation, energy demand of these techniques needs to be minimized. To this end, we have developed an electrical discharge reactor where water treatment by dielectric barrier discharge (DBD) is combined with adsorption on activated carbon textile and additional ozonation. The reactor consists of a DBD plasma chamber, including the adsorptive textile, and an ozonation chamber, where the DBD generated plasma gas is bubbled. In the present paper, this reactor is further characterized and optimized in terms of its energy efficiency for removal of the five pesticides α-HCH, pentachlorobenzene, alachlor, diuron and isoproturon, with initial concentrations ranging between 22 and 430 μg/L. Energy efficiency of the reactor is found to increase significantly when initial micropollutant concentration is decreased, when duty cycle is decreased and when oxygen is used as feed gas as compared to air and argon. Overall reactor performance is improved as well by making it work in single-pass operation, where water is flowing through the system only once. The results are explained with insights found in literature and practical implications are discussed. For the used operational conditions and settings, α-HCH is the most persistent pesticide in the reactor, with a minimal achieved electrical energy per order of 8 kWh/m 3 , while a most efficient removal of 3 kWh/m 3 or lower was reached for the four other pesticides. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. Alkylation of Benzene with Propylene in a Flow-Through Membrane Reactor and Fixed-Bed Reactor: Preliminary Results

    Directory of Open Access Journals (Sweden)

    Sibele Pergher

    2012-05-01

    Full Text Available Benzene alkylation with propylene was studied in the gas phase using a catalytic membrane reactor and a fixed-bed reactor in the temperature range of 200–300 °C and with a weight hourly space velocity (WHSV of 51 h−1. β-zeolite was prepared by hydrothermal synthesis using silica, aluminum metal and TEAOH as precursors. The membrane’s XRD patterns showed good crystallinity for the β-zeolite film, while scanning electron microscopy SEM results indicated that its random polycrystalline film was approximately 1 μm thick. The powders’ specific area was determined to be 400 m2×g−1 by N2 adsorption/desorption, and the TPD results indicated an overall acidity of 3.4 mmol NH3×g−1. Relative to the powdered catalyst, the catalytic membrane showed good activity and product selectivity for cumene.

  20. Membrane reactor for water detritiation: a parametric study on operating parameters

    Energy Technology Data Exchange (ETDEWEB)

    Mascarade, J.; Liger, K.; Troulay, M.; Perrais, C. [CEA, DEN, DTN/STPA/LIPC, Centre de Cadarache, Saint-Paul-lez-Durance (France); Joulia, X.; Meyer, X.M. [Universite de Toulouse, INPT, UPS, Laboratoire de Genie Chimique, Toulouse (France); CNRS, Laboratoire de Genie Chimique, Toulouse (France)

    2015-03-15

    This paper presents the results of a parametric study done on a single stage finger-type packed-bed membrane reactor (PBMR) used for heavy water vapor de-deuteration. Parametric studies have been done on 3 operating parameters which are: the membrane temperature, the total feed flow rate and the feed composition through D{sub 2}O content variations. Thanks to mass spectrometer analysis of streams leaving the PBMR, speciation of deuterated species was achieved. Measurement of the amounts of each molecular component allowed the calculation of reaction quotient at the packed-bed outlet. While temperature variation mainly influences permeation efficiency, feed flow rate perturbation reveals dependence of conversion and permeation properties to contact time between catalyst and reacting mixture. The study shows that isotopic exchange reactions occurring on the catalyst particles surface are not thermodynamically balanced. Moreover, the variation of the heavy water content in the feed exhibits competition between permeation and conversion kinetics.

  1. NUCLEAR REACTOR

    Science.gov (United States)

    Miller, H.I.; Smith, R.C.

    1958-01-21

    This patent relates to nuclear reactors of the type which use a liquid fuel, such as a solution of uranyl sulfate in ordinary water which acts as the moderator. The reactor is comprised of a spherical vessel having a diameter of about 12 inches substantially surrounded by a reflector of beryllium oxide. Conventionnl control rods and safety rods are operated in slots in the reflector outside the vessel to control the operation of the reactor. An additional means for increasing the safety factor of the reactor by raising the ratio of delayed neutrons to prompt neutrons, is provided and consists of a soluble sulfate salt of beryllium dissolved in the liquid fuel in the proper proportion to obtain the result desired.

  2. Crack initiation in smooth fatigue specimens of austenitic stainless steel in light water reactor environments.

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, O. K.; Smith, J. L.

    1999-04-08

    The fatigue design curves for structural materials specified in Section III of the ASME Boiler and Pressure Vessel Code are based on tests of smooth polished specimens at room temperature in air. The effects of light water reactor (LWR) coolant environments are not explicitly addressed by the Code design curves; however, recent test data illustrate the detrimental effects of LWR coolant environments on the fatigue resistance of austenitic stainless steels (SSs). Certain loading and environmental conditions have led to test specimen fatigue lives that are significantly shorter than those obtained in air. Results of fatigue tests that examine the influence of reactor environments on crack initiation and crack growth of austenitic SSs are presented. Block loading was used to mark the fracture surface to determine crack length as a function of fatigue cycles in water environments, Crack lengths were measured by scanning electron microscopy. The mechanism for decreased fatigue life in LWR environments is discussed, and crack growth rates in the smooth fatigue specimens are compared with existing data from studies of crack growth rates.

  3. Computational Neutronics Methods and Transmutation Performance Analyses for Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    M. Asgari; B. Forget; S. Piet; R. Ferrer; S. Bays

    2007-03-01

    The urgency for addressing repository impacts has grown in the past few years as a result of Spent Nuclear Fuel (SNF) accumulation from commercial nuclear power plants. One obvious path that has been explored by many is to eliminate the transuranic (TRU) inventory from the SNF thus reducing the need for additional long term repository storage sites. One strategy for achieving this is to burn the separated TRU elements in the currently operating U.S. Light Water Reactor (LWR) fleet. Many studies have explored the viability of this strategy by loading a percentage of LWR cores with TRU in the form of either Mixed Oxide (MOX) fuels or Inert Matrix Fuels (IMF). A task was undertaken at INL to establish specific technical capabilities to perform neutronics analyses in order to further assess several key issues related to the viability of thermal recycling. The initial computational study reported here is focused on direct thermal recycling of IMF fuels in a heterogeneous Pressurized Water Reactor (PWR) bundle design containing Plutonium, Neptunium, Americium, and Curium (IMF-PuNpAmCm) in a multi-pass strategy using legacy 5 year cooled LWR SNF. In addition to this initial high-priority analysis, three other alternate analyses with different TRU vectors in IMF pins were performed. These analyses provide comparison of direct thermal recycling of PuNpAmCm, PuNpAm, PuNp, and Pu.

  4. Plutonium recycle test reactor characterization activities and results

    Energy Technology Data Exchange (ETDEWEB)

    Cornwell, B.C.

    1997-05-01

    Report contains results of PRTR core and associated structures characterization performed in January and February of 1997. Radiation survey data are presented, along with recommendations for stabilization activities before transitioning to a decontamination and decommissioning function. Recommendations are also made about handling the waste generated by the stabilization activities, and actions suggested by the Decontamination and Decommissioning organization.

  5. Advanced Fuels Campaign Light Water Reactor Accident Tolerant Fuel Performance Metrics

    Energy Technology Data Exchange (ETDEWEB)

    Brad Merrill; Melissa Teague; Robert Youngblood; Larry Ott; Kevin Robb; Michael Todosow; Chris Stanek; Mitchell Farmer; Michael Billone; Robert Montgomery; Nicholas Brown; Shannon Bragg-Sitton

    2014-02-01

    The safe, reliable and economic operation of the nation’s nuclear power reactor fleet has always been a top priority for the United States’ nuclear industry. As a result, continual improvement of technology, including advanced materials and nuclear fuels, remains central to industry’s success. Decades of research combined with continual operation have produced steady advancements in technology and yielded an extensive base of data, experience, and knowledge on light water reactor (LWR) fuel performance under both normal and accident conditions. In 2011, following the Great East Japan Earthquake, resulting tsunami, and subsequent damage to the Fukushima Daiichi nuclear power plant complex, enhancing the accident tolerance of LWRs became a topic of serious discussion. As a result of direction from the U.S. Congress, the U.S. Department of Energy Office of Nuclear Energy (DOE-NE) initiated an Accident Tolerant Fuel (ATF) Development program. The complex multiphysics behavior of LWR nuclear fuel makes defining specific material or design improvements difficult; as such, establishing qualitative attributes is critical to guide the design and development of fuels and cladding with enhanced accident tolerance. This report summarizes a common set of technical evaluation metrics to aid in the optimization and down selection of candidate designs. As used herein, “metrics” describe a set of technical bases by which multiple concepts can be fairly evaluated against a common baseline and against one another. Furthermore, this report describes a proposed technical evaluation methodology that can be applied to assess the ability of each concept to meet performance and safety goals relative to the current UO2 – zirconium alloy system and relative to one another. The resultant ranked evaluation can then inform concept down-selection, such that the most promising accident tolerant fuel design option(s) can continue to be developed for lead test rod or lead test assembly

  6. Water chemistry of the secondary circuit at a nuclear power station with a VVER power reactor

    Science.gov (United States)

    Tyapkov, V. F.; Erpyleva, S. F.

    2017-05-01

    Results of implementation of the secondary circuit organic amine water chemistry at Russian nuclear power plant (NPP) with VVER-1000 reactors are presented. The requirements for improving the reliability, safety, and efficiency of NPPs and for prolonging the service life of main equipment items necessitate the implementation of new technologies, such as new water chemistries. Data are analyzed on the chemical control of power unit coolant for quality after the changeover to operation with the feed of higher amines, such as morpholine and ethanolamine. Power units having equipment containing copper alloy components were converted from the all-volatile water chemistry to the ethanolamine or morpholine water chemistry with no increase in pH of the steam generator feedwater. This enables the iron content in the steam generator feedwater to be decreased from 6-12 to 2.0-2.5 μg/dm3. It is demonstrated that pH of high-temperature water is among the basic factors controlling erosion and corrosion wear of the piping and the ingress of corrosion products into NPP steam generators. For NPP power units having equipment whose construction material does not include copper alloys, the water chemistries with elevated pH of the secondary coolant are adopted. Stable dosing of correction chemicals at these power units maintains pH25 of 9.5 to 9.7 in the steam generator feedwater with a maximum iron content of 2 μg/dm3 in the steam generator feedwater.

  7. Study on the Use of Hydride Fuel in High-Performance Light Water Reactor Concept

    OpenAIRE

    Haileyesus Tsige-Tamirat; Luca Ammirabile

    2015-01-01

    Hydride fuels have features which could make their use attractive in future advanced power reactors. The potential benefit of use of hydride fuel in HPLWR without introducing significant modification in the current core design concept of the high-performance light water reactor (HPLWR) has been evaluated. Neutronics and thermal hydraulic analyses were performed for a single assembly model of HPLWR with oxide and hydride fuels. The hydride assembly shows higher moderation with softer neutron s...

  8. IRIS Reactor a Suitable Option to Provide Energy and Water Desalination for the Mexican Northwest Region

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, G.; Ramirez, R.; Gomez, C.; Viais, J.

    2004-10-03

    The Northwest region of Mexico has a deficit of potable water, along this necessity is the region growth, which requires of additional energy capacity. The IRIS reactor offers a very suitable source of energy given its modular size of 300 MWe and it can be coupled with a desalination plant to provide the potable water for human consumption, agriculture and industry. The present paper assess the water and energy requirements for the Northwest region of Mexico and how the deployment of the IRIS reactor can satisfy those necessities. The possible sites for deployment of Nuclear Reactors are considered given the seismic constraints and the closeness of the sea for external cooling. And in the other hand, the size of the desalination plant and the type of desalination process are assessed accordingly with the water deficit of the region.

  9. Environmentally-assisted cracking in austenitic light water reactor structural materials. Final report of the KORA-I project

    Energy Technology Data Exchange (ETDEWEB)

    Seifert, H.-P.; Ritter, S

    2009-03-15

    The following document is the final report of the KORA-I project, which was performed at the Paul Scherrer Institute (PSI) between 2006 and 2008 and was funded by the Swiss Nuclear Safety Inspectorate (ENSI). The three sub-projects of KORA-I covered the experimental characterisation of the effect of the reactor coolant environment on fatigue initiation and crack growth in austenitic stainless steels under boiling and pressurised water reactor conditions, the experimental evaluation of the potential and limits of the electrochemical noise measurement technique for the early detection of stress corrosion cracking initiation in austenitic stainless steels under boiling water reactor/normal water chemistry conditions, as well as the characterisation of the stress corrosion crack growth behaviour in the fusion line region of an Alloy 182-low-alloy reactor pressure vessel steel dissimilar metal weld. The main scientific results and major conclusions of the three sub-projects are discussed in three independent parts of this report. (author)

  10. UV disinfection of indigenous aerobic spores: implications for UV reactor validation in unfiltered waters.

    Science.gov (United States)

    Mamane-Gravetz, Hadas; Linden, Karl G

    2004-07-01

    Conventional validation testing of UV reactors use cultured microorganisms spiked into test water flowing through a reactor. These tests are limited by the microbe titer it is possible to grow, thus limiting the size of the reactor it is possible to validate. The goal of this study was to examine the UV inactivation of indigenous aerobic spores naturally occurring in raw/unfiltered water supplies and to assess their use as an alternative indicator for validation testing of UV reactor performance, specifically for unfiltered water supplies planning large UV reactors. These spores were found in all raw waters tested in concentrations ranging between 20 and 12,000 CFU/100 mL and were very resistant to UV irradiation compared to a range of different microbes in the literature (i.e. adenovirus, MS-2 coliphage, and Cryptosporidium parvum). The inactivation of indigenous natural aerobic spores followed first-order kinetics with an inactivation coefficient ranging between 0.013 and 0.022 cm2/mJ with a high correlation coefficient. It was determined that naturally occurring aerobic spores, well characterized with respect to UV 253.7 nm inactivation, can be a useful tool when validating plant performance, and might also be used as a regular monitor of UV fluence and performance in a water treatment plant.

  11. Nuclear reactor with makeup water assist from residual heat removal system

    Science.gov (United States)

    Corletti, Michael M.; Schulz, Terry L.

    1993-01-01

    A pressurized water nuclear reactor uses its residual heat removal system to make up water in the reactor coolant circuit from an in-containment refueling water supply during staged depressurization leading up to passive emergency cooling by gravity feed from the refueling water storage tank, and flooding of the containment building. When depressurization commences due to inadvertence or a manageable leak, the residual heat removal system is activated manually and prevents flooding of the containment when such action is not necessary. Operation of the passive cooling system is not impaired. A high pressure makeup water storage tank is coupled to the reactor coolant circuit, holding makeup coolant at the operational pressure of the reactor. The staged depressurization system vents the coolant circuit to the containment, thus reducing the supply of makeup coolant. The level of makeup coolant can be sensed to trigger opening of successive depressurization conduits. The residual heat removal pumps move water from the refueling water storage tank into the coolant circuit as the coolant circuit is depressurized, preventing reaching the final depressurization stage unless the makeup coolant level continues to drop. The residual heat removal system can also be coupled in a loop with the refueling water supply tank, for an auxiliary heat removal path.

  12. Light Water Reactor Sustainability Program Support and Modeling for the Boiling Water Reactor Station Black Out Case Study Using RELAP and RAVEN

    Energy Technology Data Exchange (ETDEWEB)

    Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States); Smith, Curtis [Idaho National Lab. (INL), Idaho Falls, ID (United States); Riley, Thomas [Idaho National Lab. (INL), Idaho Falls, ID (United States); Schroeder, John [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Alfonsi, Aldrea [Idaho National Lab. (INL), Idaho Falls, ID (United States); Nielsen, Joe [Idaho National Lab. (INL), Idaho Falls, ID (United States); Maljovec, Dan [Idaho National Lab. (INL), Idaho Falls, ID (United States); Wang, Bie [Idaho National Lab. (INL), Idaho Falls, ID (United States); Pascucci, Valerio [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-09-01

    The existing fleet of nuclear power plants is in the process of extending its lifetime and increasing the power generated. In order to evaluate the impact of these two factors on the safety of the plant, the Risk Informed Safety Margin Characterization (RISMC) project aims to provide insight to decision makers through a series of simulations of the plant dynamics for different initial conditions (e.g., probabilistic analysis and uncertainty quantification). This report focuses, in particular, on the impact of power uprate on the safety of a boiled water reactor system. The case study considered is a loss of off-site power followed by the loss of diesel generators, i.e., a station black out (SBO) event. Analysis is performed by using a thermo-hydraulic code, i.e. RELAP-5, and a stochastic analysis tool currently under development at INL, i.e. RAVEN. Starting from the event tree models contained in SAPHIRE, we built the input file for RELAP-5 that models in great detail system dynamics under SBO conditions. We also interfaced RAVEN with RELAP-5 so that it would be possible to run multiple RELAP-5 simulation runs by changing specific keywords of the input file. We both employed classical statistical tools, i.e. Monte-Carlo, and more advanced machine learning based algorithms to perform uncertainty quantification in order to quantify changes in system performance and limitations as a consequence of power uprate. We also employed advanced data analysis and visualization tools that helped us to correlate simulation outcome such as maximum core temperature with a set of input uncertain parameters. Results obtained gave a detailed overview of the issues associated to power uprate for a SBO accident scenario. We were able to quantify how timing of safety related events were impacted by a higher reactor core power. Such insights can provide useful material to the decision makers to perform risk-infomed safety margins management.

  13. Feasibility Study of Supercritical Light Water Cooled Fast Reactors for Actinide Burning and Electric Power Production Progress Report for Year 1, Quarter 2 (January - March 2002)

    Energy Technology Data Exchange (ETDEWEB)

    Mac Donald, Philip Elsworth; Buongiorno, Jacopo; Davis, Cliff Bybee; Weaver, Kevan Dean

    2002-03-01

    The use of light water at supercritical pressures as the coolant in a nuclear reactor offers the potential for considerable plant simplification and consequent capital and O&M cost reduction compared with current light water reactor (LWR) designs. Also, given the thermodynamic conditions of the coolant at the core outlet (i.e. temperature and pressure beyond the water critical point), very high thermal efficiencies of the power conversion cycle are possible (i.e. up to about 45%). Because no change of phase occurs in the core, the need for steam separators and dryers as well as for BWR-type re-circulation pumps is eliminated, which, for a given reactor power, results in a substantially shorter reactor vessel and smaller containment building than the current BWRs. Furthermore, in a direct cycle the steam generators are not needed.

  14. Preliminary Study on the High Efficiency Supercritical Pressure Water-Cooled Reactor for Electricity Generation

    Energy Technology Data Exchange (ETDEWEB)

    Bae, Yoon Yeong; Park, Jong Kyun; Cho, Bong Hyun and others

    2006-01-15

    This research has been performed to introduce a concept of supercritical pressure water cooled reactor(SCWR) in Korea The area of research includes core conceptual design, evaluation of candidate fuel, fluid systems conceptual design with mechanical consideration, preparation of safety analysis code, and construction of supercritical pressure heat transfer test facility, SPHINX, and preliminary test. As a result of the research, a set of tools for the reactor core design has been developed and the conceptual core design with solid moderator was proposed. The direct thermodynamic cycle has been studied to find a optimum design. The safety analysis code has also been adapted to supercritical pressure condition. A supercritical pressure CO2 heat transfer test facility has been constructed and preliminary test proved the facility works as expected. The result of this project will be good basis for the participation in the international collaboration under GIF GEN-IV program and next 5-year mid and long term nuclear research program of MOST. The heat transfer test loop, SPHINX, completed as a result of this project may be used for the power cycle study as well as further heat transfer study for the various geometries.

  15. Adsorption and transformation of PAHs from water by a laccase-loading spider-type reactor

    Energy Technology Data Exchange (ETDEWEB)

    Niu, Junfeng, E-mail: junfengn@bnu.edu.cn [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China); Dai, Yunrong, E-mail: daiyunrong@mail.bnu.edu.cn [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China); Guo, Huiyuan, E-mail: hyguo0216@163.com [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China); Xu, Jiangjie, E-mail: 1993120hb@163.com [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China); Shen, Zhenyao, E-mail: zyshen@bnu.edu.cn [State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875 (China)

    2013-03-15

    Highlights: ► Laccase-loading spider-type reactor (LSTR) is got by emulsion electrospinning. ► LSTR consists of beads-in-string fibers with more laccase and higher activity. ► LSTR can achieve the rapid and efficient removal of PAHs from water. ► Aquatic environmental factors have little influence on the PAH removal by LSTR. ► A synergetic mechanism includes adsorption, directional migration and degradation. -- Abstract: The remediation of polycyclic aromatic hydrocarbons (PAHs) polluted waters has become a concern as a result of the widespread use of PAHs and their adverse impacts on water ecosystems and human health. To remove PAHs rapidly and efficiently in situ, an active fibrous membrane, laccase-loading spider-type reactor (LSTR) was fabricated by electrospinning a poly(D,L-lactide-co-glycolide) (PDLGA)/laccase emulsion. The LSTR is composed of beads-in-string structural core–shell fibers, with active laccase encapsulated inside the beads and nanoscale pores on the surface of the beads. This structure can load more laccase and retains higher activity than do linear structural core–shell fibers. The LSTR achieves the efficient removal/degradation of PAHs in water, which is attributed to not only the protection of the laccase activity by the core–shell structure but also the pre-concentration (adsorption) of PAHs on the surface of the LSTR and the concentration of laccase in the beads. Moreover, the effects of pH, temperature and dissolved organic matter (DOM) concentration on the removal of PAHs by the LSTR, in comparison with that by free laccase, have been taken into account. A synergetic mechanism including adsorption, directional migration and degradation for PAH removal is proposed.

  16. Drinking water treatment using a submerged internal-circulation membrane coagulation reactor coupled with permanganate oxidation.

    Science.gov (United States)

    Zhang, Zhongguo; Liu, Dan; Qian, Yu; Wu, Yue; He, Peiran; Liang, Shuang; Fu, Xiaozheng; Li, Jiding; Ye, Changqing

    2017-06-01

    A submerged internal circulating membrane coagulation reactor (MCR) was used to treat surface water to produce drinking water. Polyaluminum chloride (PACl) was used as coagulant, and a hydrophilic polyvinylidene fluoride (PVDF) submerged hollow fiber microfiltration membrane was employed. The influences of trans-membrane pressure (TMP), zeta potential (ZP) of the suspended particles in raw water, and KMnO 4 dosing on water flux and the removal of turbidity and organic matter were systematically investigated. Continuous bench-scale experiments showed that the permeate quality of the MCR satisfied the requirement for a centralized water supply, according to the Standards for Drinking Water Quality of China (GB 5749-2006), as evaluated by turbidity (water flux, the removal of turbidity, TOC and dissolved organic carbon (DOC) in the raw water also increased with increasing TMP in the range of 0.01-0.05MPa. High ZP induced by PACl, such as 5-9mV, led to an increase in the number of fine and total particles in the MCR, and consequently caused serious membrane fouling and high permeate turbidity. However, the removal of TOC and DOC increased with increasing ZP. A slightly positive ZP, such as 1-2mV, corresponding to charge neutralization coagulation, was favorable for membrane fouling control. Moreover, dosing with KMnO 4 could further improve the removal of turbidity and DOC, thereby mitigating membrane fouling. The results are helpful for the application of the MCR in producing drinking water and also beneficial to the research and application of other coagulation and membrane separation hybrid processes. Copyright © 2016. Published by Elsevier B.V.

  17. Physical aspects of the Canadian generation IV supercritical water-cooled pressure tube reactor plant design

    Energy Technology Data Exchange (ETDEWEB)

    Gaudet, M.; Yetisir, M.; Haque, Z. [Atomic Energy of Canada Limited, Chalk River, ON (Canada)

    2014-07-01

    The form of the containment building is a function of the requirements imposed by various systems. In order to provide sufficient driving force for naturally-circulated emergency cooling systems, as well as providing a gravity-driven core flooding pool function, the Canadian SCWR reactor design relies on elevation differences between the reactor and the safety systems. These elevation differences, the required cooling pool volumes and the optimum layout of safety-related piping are major factors influencing the plant design. As a defence-in-depth, the containment building and safety systems also provide successive barriers to the unplanned release of radioactive materials, while providing a path for heat flow to the ultimate heat sink, the atmosphere. Access to the reactor for refuelling is from the top of the reactor, with water used as shielding during the refuelling operations. The accessibility to the reactor and protection of the environment are additional factors influencing the plant design. This paper describes the physical implementation of the major systems of the Canadian SCWR within the reactor building, and the position of major plant services relative to the reactor building. (author)

  18. Design of an overmoderated fuel and a full MOX core for plutonium consumption in boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Francois, J.L. E-mail: franmar@prodigy.net.mx; Campo, C.M. del; Hernandez, J

    2002-11-01

    The use of uranium-plutonium mixed oxide fuel (MOX) in light water reactors (LWR) is nowadays a current practice in several countries. Generally 1/3 of the reactor core is loaded with MOX fuel assemblies and the other 2/3 with uranium assemblies. Nevertheless the plutonium utilization could be more effective if the full core could be loaded with MOX fuel. In this paper the design of a boiling water reactor (BWR) core fully loaded with an overmoderated MOX fuel design is investigated. The design of overmoderated BWR MOX fuel assemblies based on a 10x10 lattice are developed, these designs improve the neutron spectrum and the plutonium consumption rate, compared with standard MOX assemblies. In order to increase the moderator to fuel ratio two approaches are followed: in the first approach, 8 or 12 fuel rods are replaced by water rods in the 10x10 lattice; in the second approach, an 11x11 lattice with 24 water rods is designed with an active fuel length very close to the standard MOX assembly. The results of the depletion behavior and the main steady state core parameters are presented. The feasibility of a full core loaded with the 11x11 overmoderated MOX fuel assembly is verified. This design take advantage of the softer spectrum comparable to the 10x10 lattice with 12 water rods but with thermal limits comparable to the standard MOX fuel assembly.

  19. Anaerobic Treatment of Concentrated Black Water in a UASB Reactor at a Short HRT

    Directory of Open Access Journals (Sweden)

    Cees J. N. Buisman

    2010-02-01

    Full Text Available This research describes the feasibility of applying a UASB reactor for the treatment of concentrated black (toilet water at 25 °C. On average 78% of the influent load of COD at an HRT of 8.7 days was removed. Produced methane can be converted to 56 MJ/p/y as electricity and 84 MJ/p/y as heat by combined heat and power (CHP. Minimum reactor volume at full scale was calculated to be 63L per person (for black water containing 16 gCOD/L produced at 5 L/p/d and this is more than two times smaller than other type of reactors for anaerobic treatment of concentrated black water.

  20. Recriticality in a BWR (boiling water reactor) following a core damage event

    Energy Technology Data Exchange (ETDEWEB)

    Scott, W.B.; Harrison, D.G.; Libby, R.A.; Tokarz, R.D. (Pacific Northwest Lab., Richland, WA (USA)); Wooton, R.D.; Denning, R.S.; Tayloe, R.W. Jr. (Battelle Memorial Inst., Columbus, OH (USA))

    1990-12-01

    This report describes the results of a study conducted by Pacific Northwest Laboratory to assist the US Nuclear Regulatory Commission in evaluating the potential for recriticality in boiling water reactors (BWRs) during certain low probability severe accidents. Based on a conservative bounding analysis, this report concludes that there is a potential for recriticality in BWRs if core reflood occurs after control blade melting has begun but prior to significant fuel rod melting. However, a recriticality event will most likely not generate a pressure pulse significant enough to fail the vessel. Instead, a quasi-steady power level would result and the containment pressure and temperature would increase until the containment failure pressure is reached, unless actions are taken to terminate the event. Two strategies are identified that would aid in regaining control of the reactor and terminate the recriticality event before containment failure pressures are reached. The first strategy involves initiating boration injection at or before the time of core reflood if the potential for control blade melting exists. The second strategy involves initiating residual heat removal suppression pool cooling to remove the heat load generated by the recriticality event and thus extend the time available for boration. 31 figs., 17 tabs.

  1. OECD - HRP Summer School on Light Water Reactor Structural Materials. August 26th - 30th, 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-07-01

    In cooperation with the OECD Nuclear Energy Agency (NEA), the Halden Reactor Project organised a Summer School on Light Water Reactor Structural Materials in the period August 26 - 30, 2002. The summer school was primarily intended for people who wanted to become acquainted with materials-related subjects and issues without being experts. It is especially hoped that the summer school served to transfer knowledge to the ''young generation'' in the field of nuclear. Experts from Halden Project member organisations were solicited for the following programme: (1) Overview of The Nuclear Community and Current Issues, (2) Regulatory Framework for Ensuring Structural Integrity, (3) Non-Destructive Testing for Detection of Cracks, (4) Part I - Basics of Radiation and Radiation Damage, (5) Part II - Radiation Effects on Reactor Internal Materials, (6) Water Chemistry and Radiolysis Effects in LWRs, (7) PWR and Fast Breeder Reactor Internals, (8) PWR and Fast Breeder Reactor Internals, (9) Secondary Side Corrosion Cracking of PWR Steam Generator Tubes, (10) BWR Materials and Their Interaction with the Environment, (11) Radiation Damage in Reactor Pressure Vessels.

  2. Replacement of outboard main steam isolation valves in a boiling water reactor plant

    Energy Technology Data Exchange (ETDEWEB)

    Schlereth, J.R.; Pennington, D.

    1996-12-01

    Most Boiling Water Reactor plants utilize wye pattern globe valves for main steam isolation valves for both inboard and outboard isolation. These valves have required a high degree of maintenance attention in order to pass the plant local leakage rate testing (LLRT) requirements at each outage. Northern States Power made a decision in 1993 to replace the outboard valves at it`s Monticello plant with double disc gate valves. The replacement of the outboard valves was completed during the fall outage in 1994. During the spring outage in April of 1996 the first LLRT testing was performed with excellent results. This presentation will address the decision process, time requirements and planning necessary to accomplish the task as well as the performance results and cost effectiveness of replacing these components.

  3. Fast burner reactor benchmark results from the NEA working party on physics of plutonium recycle

    Energy Technology Data Exchange (ETDEWEB)

    Hill, R.N.; Wade, D.C. [Argonne National Lab., IL (United States); Palmiotti, G. [CEA - Cadarache, Saint-Paul-Les-Durance (France)

    1995-12-01

    As part of a program proposed by the OECD/NEA Working Party on Physics of Plutonium Recycling (WPPR) to evaluate different scenarios for the use of plutonium, fast reactor physics benchmarks were developed; fuel cycle scenarios using either PUREX/TRUEX (oxide fuel) or pyrometallurgical (metal fuel) separation technologies were specified. These benchmarks were designed to evaluate the nuclear performance and radiotoxicity impact of a transuranic-burning fast reactor system. International benchmark results are summarized in this paper; and key conclusions are highlighted.

  4. Zinc corrosion after loss-of-coolant accidents in pressurized water reactors – Physicochemical effects

    Energy Technology Data Exchange (ETDEWEB)

    Kryk, Holger, E-mail: h.kryk@hzdr.de [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, P.O. Box 510119, D-01314 Dresden (Germany); Hoffmann, Wolfgang [Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, P.O. Box 510119, D-01314 Dresden (Germany); Kästner, Wolfgang; Alt, Sören; Seeliger, André; Renger, Stefan [Hochschule Zittau/Görlitz, Institute of Process Technology, Process Automation and Measuring Technology, Theodor-Körner-Allee 16, D-02763 Zittau (Germany)

    2014-12-15

    Highlights: • Physicochemical effects due to post-LOCA zinc corrosion in PWR were elucidated. • Decreasing solubility of corrosion products with increasing temperature was found. • Solid corrosion products may be deposited on hot surfaces and/or within hot-spots. • Corrosion products precipitating from coolant were identified as zinc borates. • Depending on coolant temperature, different types of zinc borate are formed. - Abstract: Within the framework of the reactor safety research, generic experimental investigations were carried out aiming at the physicochemical background of possible zinc corrosion product formation, which may occur inside the reactor pressure vessel during the sump circulation operation after loss-of-coolant accidents in pressurized water reactors. The contact of the boric acid containing coolant with hot-dip galvanized steel containment internals causes corrosion of the corresponding materials resulting in dissolution of the zinc coat. A retrograde solubility of zinc corrosion products with increasing temperature was observed during batch experiments of zinc corrosion in boric acid containing coolants. Thus, the formation and deposition of solid corrosion products cannot be ruled out if the coolant containing dissolved zinc is heated up during its recirculation into hot regions within the emergency cooling circuit (e.g. hot-spots in the core). Corrosion experiments at a lab-scale test facility, which included formation of corrosion products at a single heated cladding tube, proved that dissolved zinc, formed at low temperatures in boric acid solution by zinc corrosion, turns into solid deposits of zinc borates when contacting heated zircaloy surfaces during the heating of the coolant. Moreover, the temperature of formation influences the chemical composition of the zinc borates and thus the deposition and mobilization behavior of the products.

  5. A Neural-Network-Based Nonlinear Adaptive State-Observer for Pressurized Water Reactors

    Directory of Open Access Journals (Sweden)

    Zhe Dong

    2013-10-01

    Full Text Available Although there have been some severe nuclear accidents such as Three Mile Island (USA, Chernobyl (Ukraine and Fukushima (Japan, nuclear fission energy is still a source of clean energy that can substitute for fossil fuels in a centralized way and in a great amount with commercial availability and economic competitiveness. Since the pressurized water reactor (PWR is the most widely used nuclear fission reactor, its safe, stable and efficient operation is meaningful to the current rebirth of the nuclear fission energy industry. Power-level regulation is an important technique which can deeply affect the operation stability and efficiency of PWRs. Compared with the classical power-level controllers, the advanced power-level regulators could strengthen both the closed-loop stability and control performance by feeding back the internal state-variables. However, not all of the internal state variables of a PWR can be obtained directly by measurements. To implement advanced PWR power-level control law, it is necessary to develop a state-observer to reconstruct the unmeasurable state-variables. Since a PWR is naturally a complex nonlinear system with parameters varying with power-level, fuel burnup, xenon isotope production, control rod worth and etc., it is meaningful to design a nonlinear observer for the PWR with adaptability to system uncertainties. Due to this and the strong learning capability of the multi-layer perceptron (MLP neural network, an MLP-based nonlinear adaptive observer is given for PWRs. Based upon Lyapunov stability theory, it is proved theoretically that this newly-built observer can provide bounded and convergent state-observation. This observer is then applied to the state-observation of a special PWR, i.e., the nuclear heating reactor (NHR, and numerical simulation results not only verify its feasibility but also give the relationship between the observation performance and observer parameters.

  6. Effect of Water Vapor on Toluene Removal in Catalysis-DBD Plasma Reactors

    Science.gov (United States)

    Wang, Jingting; Cao, Xu; Zhang, Renxi; Gong, Ting; Hou, Huiqi; Chen, Shanping; Zhang, Ruina

    2016-04-01

    The experiment was carried out in a cylindrical dielectric barrier discharge (DBD) reactor assisted with a catalyst to decompose toluene under different humidity. In order to explore the synergistic effect on removing toluene in the catalysis-DBD reactor, this paper investigated the decomposition efficiency and the energy consumption in the catalysis-DBD and the non-catalyst DBD reactors under different humidity. The results showed that the catalysis-DBD reactor had a better performance than the non-catalysis one at the humidity ratio of 0.4%, and the removal efficiency of toluene could reach 88.6% in the catalysis-DBD reactor, while it was only 59.9% in the non-catalytic reactor. However, there was no significant difference in the removal efficiency of toluene between the two reactors when the humidities were 1.2% and 2.4%. Additionally, the degradation products were also analyzed in order to gain a better understanding of the mechanism of decomposing toluene in a catalysis-DBD reactor. supported by the Key Project which is sponsored by the Science and Technology Commission of Shanghai Municipality (No. 13231201903), the Key Programs for Science and Technology Development sponsored by the Science and Technology Commission of Shanghai Municipality (Nos. 13231201901 and 14DZ1208401), and the Key Project sponsored by the State-owned Assets Supervision and Administration Commission of Shanghai, China (No. 2013019)

  7. Report from the Light Water Reactor Sustainability Workshop on On-Line Monitoring Technologies

    Energy Technology Data Exchange (ETDEWEB)

    Thomas Baldwin; Magdy Tawfik; Leonard Bond

    2010-06-01

    shown great interest in supplying necessary support to help this industry to move forward as indicated by the recent workshop conducted in support of this interest. The Light Water Reactor Sustainability Workshop on On-Line Monitoring Technologies provided an opportunity for industry stakeholders and researchers to gather in order to collectively identify the nuclear industry’s needs in the areas of OLM technologies including diagnostics, prognostics, and RUL. Additionally, the workshop provided the opportunity for attendees to pinpoint technology gaps and research capabilities along with the fostering of future collaboration in order to bridge the gaps identified. Attendees concluded that a research and development program is critical to future nuclear operations. Program activities would result in enhancing and modernizing the critical capabilities of instrumentation, information, and control technologies for long-term nuclear asset operation and management. Adopting a comprehensive On Line Monitoring research program intends to: • Develop national capabilities at the university and laboratory level • Create or renew infrastructure needed for long-term research, education, and testing • Support development and testing of needed I&C technologies • Improve understanding of, confidence in, and decisions to employ these new technologies in the nuclear power sector and achieve successful licensing and deployment.

  8. Inquiry into the radiological consequences of power uprates at light-water reactors worldwide

    Energy Technology Data Exchange (ETDEWEB)

    Bilic Zabric, Tea; Tomic, Bojan; Lundgren, Klas; Sjoeberg, Mats

    2007-05-15

    the controlled areas is especially important. Leadership, composition and organization of the large demanding tasks are critical for successful implementation of power uprate and keeping received doses at a minimum. Good planning and preparation, which reflects experience from similar projects elsewhere, adherence to procedures and supervision from plant personnel as well as consequential application of ALARA principles and good practices are important factors. It has not been found a direct relationship between the uprates and the occupational exposures. The occupational doses on some plants seem to be higher after the uprate, while on others seem to be lower. However the general trend in light-water reactors worldwide is gradually reduced occupational exposures. There is no obvious correlation of the power uprate and fuel failures. However, performance of fuel for PWRs and BWRs went in opposing directions, improving for PWRs and deteriorating for BWRs. For BWRs investment in the condensate cleanup efficiency results in favourable water chemistry conditions that can be maintained, or even improved, after the power uprate. The higher steam velocity after a power uprate can increase the radiation levels around main steam lines and other turbine components due to a considerable increase in steam moisture content. This problem can be overcome with a recent design and installation of new steam dryers in the reactor pressure vessel to reduce steam moisture. Issues of relevance for PWRs include: Increase in the rate of production of H-3 due to higher boron concentration and power level, especially for longer fuel cycles; Control of pH and Lithium as an essential means of controlling the corrosion level and thus radiation levels. Fuel related corrosion problems are shown to be less visible with good pH control and shorter fuel cycles.

  9. Core Flow Distribution from Coupled Supercritical Water Reactor Analysis

    Directory of Open Access Journals (Sweden)

    Po Hu

    2014-01-01

    Full Text Available This paper introduces an extended code package PARCS/RELAP5 to analyze steady state of SCWR US reference design. An 8 × 8 quarter core model in PARCS and a reactor core model in RELAP5 are used to study the core flow distribution under various steady state conditions. The possibility of moderator flow reversal is found in some hot moderator channels. Different moderator flow orifice strategies, both uniform across the core and nonuniform based on the power distribution, are explored with the goal of preventing the reversal.

  10. Franco-German nuclear cooperation: from the `common product` to the first European pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Vignon, D. [Societe Franco-Americaine de Constructions Atomiques (FRAMATOME), 92 - Paris-la-Defense (France)

    1999-01-01

    It has now been 10 years since Framatome and Siemens decided to collaborate on the design and sales of an advanced nuclear power plant (NPP) model based on pressurized water reactor (PWR) technology. Originally called the `common product`, this model was renamed the European pressurized water reactor when Electricite de France (EDF) and the German electric utilities joined this cooperative development effort in 1992. Since the beginning, this cooperation has been formalized in the framework of an agreement that led to the founding of a joint and equally owned subsidiary, Nucler Power International (NPI), which is reponsible for leading the development of the new model and later handling its export sales.

  11. Energy efficient electrocoagulation using a new flow column reactor to remove nitrate from drinking water - Experimental, statistical, and economic approach.

    Science.gov (United States)

    Hashim, Khalid S; Shaw, Andy; Al Khaddar, Rafid; Pedrola, Montserrat Ortoneda; Phipps, David

    2017-07-01

    In this investigation, a new bench-scale electrocoagulation reactor (FCER) has been applied for drinking water denitrification. FCER utilises the concepts of flow column to mix and aerate the water. The water being treated flows through the perforated aluminium disks electrodes, thereby efficiently mixing and aerating the water. As a result, FCER reduces the need for external stirring and aerating devices, which until now have been widely used in the electrocoagulation reactors. Therefore, FCER could be a promising cost-effective alternative to the traditional lab-scale EC reactors. A comprehensive study has been commenced to investigate the performance of the new reactor. This includes the application of FCER to remove nitrate from drinking water. Estimation of the produced amount of H2 gas and the yieldable energy from it, an estimation of its preliminary operating cost, and a SEM (scanning electron microscope) investigation of the influence of the EC process on the morphology of the surface of electrodes. Additionally, an empirical model was developed to reproduce the nitrate removal performance of the FCER. The results obtained indicated that the FCER reduced the nitrate concentration from 100 to 15 mg/L (World Health Organization limitations for infants) after 55 min of electrolysing at initial pH of 7, GBE of 5 mm, CD of 2 mA/cm2, and at operating cost of 0.455 US $/m3. Additionally, it was found that FCER emits H2 gas enough to generate a power of 1.36 kW/m3. Statistically, the relationship between the operating parameters and nitrate removal could be modelled with R2 of 0.848. The obtained SEM images showed a large number dents on anode's surface due to the production of aluminium hydroxides. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  12. Effect of water losses by evaporation and chemical reaction in an industrial slaker reactor

    Directory of Open Access Journals (Sweden)

    Ricardo Andreola

    2007-03-01

    Full Text Available A dynamic model of the slaker reactor was developed and validated for Klabin Paraná Papéis causticizing system, responsable for white liquor generation used by the plant. The model considered water losses by evaporation and chemical reaction. The model showed a good agreement with the industrial plant measures of active alkali, total titratable alkali and temperature, without the need of adjustment of any parameter. The simulated results showed that the water consumption by the slaking reaction and evaporation exerted significant influence on the volumetric flow rate of limed liquor, which imposed a decrease of 4.6% in the amount of water in reactor outlet.Foi desenvolvido e testado um modelo dinâmico do reator de apagamento do sistema de caustificação da Klabin Paraná Papéis, responsável pela geração do licor branco utilizado na planta. O modelo contempla perdas de água por evaporação e por reação química e apresentou boa concordância com dados industriais de álcali ativo, álcali total titulável e temperatura, sem a necessidade de ajuste de nenhum parâmetro. Os resultados obtidos a partir de simulações revelam que o consumo de água pela reação de apagamento, bem como pela evaporação, exercem uma influência significativa sobre a vazão volumétrica na saída do reator, impondo uma diminuição de 4,6% sobre o teor de água na corrente de saída do reator em relação à alimentação.

  13. Study on the Use of Hydride Fuel in High-Performance Light Water Reactor Concept

    Directory of Open Access Journals (Sweden)

    Haileyesus Tsige-Tamirat

    2015-01-01

    Full Text Available Hydride fuels have features which could make their use attractive in future advanced power reactors. The potential benefit of use of hydride fuel in HPLWR without introducing significant modification in the current core design concept of the high-performance light water reactor (HPLWR has been evaluated. Neutronics and thermal hydraulic analyses were performed for a single assembly model of HPLWR with oxide and hydride fuels. The hydride assembly shows higher moderation with softer neutron spectrum and slightly more uniform axial power distribution. It achieves a cycle length of 18 months with sufficient excess reactivity. At Beginning of Cycle the fuel temperature coefficient of the hydride assembly is higher whereas the moderator and void coefficients are lower. The thermal hydraulic results show that the achievable fuel temperature in the hydride assembly is well below the design limits. The potential benefits of the use of hydride fuel in the current design of the HPLWR with the achieved improvements in the core neutronics characteristics are not sufficient to justify the replacement of the oxide fuel. Therefore for a final evaluation of the use of hydride fuels in HPLWR concepts additional studies which include modification of subassembly and core layout designs are required.

  14. Bayesian Optimization Analysis of Containment-Venting Operation in a Boiling Water Reactor Severe Accident

    Directory of Open Access Journals (Sweden)

    Xiaoyu Zheng

    2017-03-01

    Full Text Available Containment venting is one of several essential measures to protect the integrity of the final barrier of a nuclear reactor during severe accidents, by which the uncontrollable release of fission products can be avoided. The authors seek to develop an optimization approach to venting operations, from a simulation-based perspective, using an integrated severe accident code, THALES2/KICHE. The effectiveness of the containment-venting strategies needs to be verified via numerical simulations based on various settings of the venting conditions. The number of iterations, however, needs to be controlled to avoid cumbersome computational burden of integrated codes. Bayesian optimization is an efficient global optimization approach. By using a Gaussian process regression, a surrogate model of the “black-box” code is constructed. It can be updated simultaneously whenever new simulation results are acquired. With predictions via the surrogate model, upcoming locations of the most probable optimum can be revealed. The sampling procedure is adaptive. Compared with the case of pure random searches, the number of code queries is largely reduced for the optimum finding. One typical severe accident scenario of a boiling water reactor is chosen as an example. The research demonstrates the applicability of the Bayesian optimization approach to the design and establishment of containment-venting strategies during severe accidents.

  15. Environmentally assisted cracking in light water reactors : semiannual report, July 2000 - December 2000.

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, O. K.; Chung, H. M.; Gruber, E. E.; Shack, W. J.; Soppet, W. K.; Strain, R. V.; Energy Technology

    2002-04-01

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors (LWRs) from July 2000 to December 2000. Topics that have been investigated include (a) environmental effects on fatigue S-N behavior of primary pressure boundary materials, (b) irradiation-assisted stress corrosion cracking (IASCC) of austenitic stainless steels (SSs), and (c) EAC of Alloys 600 and 690. The fatigue strain-vs.-life data are summarized for the effects of various material, loading, and environmental parameters on the fatigue lives of carbon and low-alloy steels and austenitic SSs. Effects of the reactor coolant environment on the mechanism of fatigue crack initiation are discussed. Two methods for incorporating the effects of LWR coolant environments into the ASME Code fatigue evaluations are presented. Slow-strain-rate tensile tests and posttest fractographic analyses were conducted on several model SS alloys irradiated to {approx}0.9 x 10{sup 21} n {center_dot} cm{sup -2} (E > 1 MeV) in He at 289 C in the Halden reactor. The results were used to determine the influence of alloying and impurity elements on the susceptibility of these steels to IASCC. A fracture toughness J-R curve test was conducted on a commercial heat of Type 304 SS that was irradiated to {approx}2.0 x 10{sup 21} n {center_dot} cm{sup -2} in the Halden reactor. The results were compared with the data obtained earlier on steels irradiated to 0.3 and 0.9 x 10{sup 21} n {center_dot} cm{sup -2} (E > 1 MeV) (0.45 and 1.35 dpa). Neutron irradiation at 288 C was found to decrease the fracture toughness of austenitic SSs. Tests were conducted on compact-tension specimens of Alloy 600 under cyclic loading to evaluate the enhancement of crack growth rates in LWR environments. Then, the existing fatigue crack growth data on Alloys 600 and 690 were analyzed to establish the effects of temperature, load ratio, frequency, and stress intensity range

  16. Hydraulic modelling for analysis of the hot water layer stability in research reactor; Modelagem hidraulica para analise da estabilidade de camada de agua quente em reator de piscina

    Energy Technology Data Exchange (ETDEWEB)

    Ribeiro, Rogerio; Yanagihara, Jurandir Itizo

    1995-12-31

    Pool reactors are research reactors, which allow easy access to the core and are simple to operate. Reactors of this kind operating at power levels higher than about one megawatt need a hot water layer at the surface of the pool, in order to keep surface activity below acceptable levels and enable free access to the upper part of the reactor. This work presents similitude criteria derived by dimensional analysis and by non dimensioning the basic equations to analyze this layer`s stability in a reduced scale model. The flow in the reactor is complex. It is impossible to consider all the phenomena with a single similitude criterion. The best would be to construct several models considering all the similitude criteria and then combine the results. Economical reasons and available time in the majority of the cases are a restrain to this procedure. Then, the most important criteria to the considered phenomenon must be chosen in order to give the best results. This work identifies three similitude criteria that were considered important to analyze the pool reactor`s hot water layer stability. (author) 16 refs., 3 figs.

  17. Thermal-hydraulic analysis of heat transfer in subchannels of the European high performance supercritical Water-Cooled Reactor for different CFD turbulence models

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Landy Y.; Rojas, Leorlen Y.; Gamez, Abel; Rosales, Jesus; Gonzalez, Daniel; Garcia, Carlos, E-mail: lcastro@instec.cu, E-mail: leored1984@gmail.com, E-mail: agamezgmf@gmail.com, E-mail: jrosales@instec.cu, E-mail: danielgonro@gmail.com, E-mail: cgh@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba); Oliveira, Carlos Brayner de, E-mail: cabol@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Dominguez, Dany S., E-mail: dsdominguez@gmail.com [Universidade Estadual de Santa Cruz (UESC), Ilheus, BA (Brazil). Pos-Graduacao em Modelagem Computacional

    2015-07-01

    Chosen as one of six Generation‒IV nuclear-reactor concepts, Supercritical Water-cooled Reactors (SCWRs) are expected to have high thermal efficiencies within the range of 45 - 50% owing to the reactor's high pressures and outlet temperatures. In this reactor, the primary water enters the core under supercritical-pressure condition (25 MPa) at a temperature of 280 deg C and leaves it at a temperature of up to 510 deg C. Due to the significant changes in the physical properties of water at supercritical-pressure, the system is susceptible to local temperature, density and power oscillations. The behavior of supercritical water into the core of the SCWR, need to be sufficiently studied. Most of the methods available to predict the effects of the heat transfer phenomena within the pseudocritical region are based on empirical one-directional correlations, which do not capture the multidimensional effects and do not provide accurate results in regions such as the deteriorated heat transfer regime. In this paper, computational fluid dynamics (CFD) analysis was carried out to study the thermal-hydraulic behavior of supercritical water flows in sub-channels of a typical European High Performance Light Water Reactor (HPLWR) fuel assembly using commercial CFD code CFX-14. It was determined the steady-state equilibrium parameters and calculated the temperature and density distributions. A comparative study for different turbulence models were carried out and the obtained results are discussed. (author)

  18. Review of Transient Fuel Test Results at Sandia National Laboratories and the Potential for Future Fast Reactor Fuel Transient Testing in the Annular Core Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wright, Steven A.; Pickard, Paul S.; Parma, Edward J.; Vernon, Milton E.; Kelly, John; Tikare, Veena [Sandia National Laboratories, Org 6872 MS-1146, PO Box 5800 Albuquerque, New Mexico 87185 (United States)

    2009-06-15

    Reactor driven transient tests of fast reactor fuels may be required to support the development and certification of new fuels for Fast Reactors. The results of the transient fuel tests will likely be needed to support licensing and to provide validation data to support the safety case for a variety of proposed fast fuel types and reactors. In general reactor driven transient tests are used to identify basic phenomenology during reactor transients and to determine the fuel performance limits and margins to failure during design basis accidents such as loss of flow, loss of heat sink, and reactivity insertion accidents. This paper provides a summary description of the previous Sandia Fuel Disruption and Transient Axial Relocation tests that were performed in the Annular Core Research Reactor (ACRR) for the U.S. Nuclear Regulatory Commission almost 25 years ago. These tests consisted of a number of capsule tests and flowing gas tests that used fission heating to disrupt fresh and irradiated MOX fuel. The behavior of the fuel disruption, the generation of aerosols and the melting and relocation of fuel and cladding was recorded on high speed cinematography. This paper will present videos of the fuel disruption that was observed in these tests which reveal stark differences in fuel behavior between fresh and irradiated fuel. Even though these tests were performed over 25 years ago, their results are still relevant to today's reactor designs. These types of transient tests are again being considered by the Advanced Fuel Cycle Initiative to support the Global Nuclear Energy Partnership because of the need to perform tests on metal fuels and transuranic fuels. Because the Annular Core Research Reactor is the only transient test facility available within the US, a brief summary of Sandia's continued capability to perform these tests in the ACRR will also be provided. (authors)

  19. Integration of Cleaner Production and Waste Water Treatment on Tofu Small Industry for Biogas Production using AnSBR Reactor

    Directory of Open Access Journals (Sweden)

    Setyowati Rahayu Suparni

    2018-01-01

    Full Text Available A research on developing a system that integrates clean production and waste water treatment for biogas production in tofu small industry has been conducted. In this research, tofu waste water was turned into biogas using an AnSBR reactor. Mud from the sewage system serves as the inoculums. This research involved: (1 workshop; (2 supervising; (3 technical meeting; (4 network meeting, and (5 technical application. Implementation of clean production integrated with waste water treatment reduced the amount of waste water to be treated in a treatment plant. This means less cost for construction and operation of waste water treatment plants, as inherent limitations associated with such plants like lack of fund, limited area, and technological issues are inevitable. Implementation of clean production prior to waste water treatment reduces pollution figures down to certain levels that limitations in waste water treatment plants can be covered. Results show that biogas in 16 days HRT in an AnSBR reactor contains CH4(78.26 % and CO2 (20.16 %. Meanwhile, treatments using a conventional bio-digester result in biogas with 72.16 % CH4 and 18.12 % CO2. Hence, biogas efficiency for the AnSBR system is 2.14 times greater than that of a conventional bio-digester.

  20. Severe water ingress accident analysis for a Modular High Temperature Gas Cooled Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Zuoyi [Inst. of Nuclear Energy Technology Tsinghua Univ., Beijing, BJ (China); Scherer, Winfried

    1997-12-31

    This paper analyzes the severe water ingress accidents in the SIEMENS 200MW Modular High Temperature Gas Cooled Reactor (HTR-Module) under the assumption of no active safety protection systems in order to find the safety margin of the current HTR-Module design. A water, steam and helium multi-phase cavity model is originally developed and implemented in the DSNP simulation system. The developed DSNP system is used to simulate the primary circuit of HTR-Module power plant. The comparisons of the models with the TINTE calculations validate the current simulation. After analyzing the effects of blower separation on water droplets, the wall heat storage, etc., it is found that the maximum H{sub 2}O density increase rate in the reactor core is smaller than 0.3 kg/(m{sup 3}s). The liquid water vaporization in the steam generator and H{sub 2}O transport from the steam generator to the reactor core reduces the impulse of the H{sub 2}O in the reactor core. The nuclear reactivity increase caused by the water ingress leads to a fast power excursion, which, however, is inherently counterbalanced by negative feedback effects. Concerning the integrity of the fuel elements, the safety relevant temperature limit of 1600degC was not reached in any case. (author)

  1. Environmentally assisted cracking in light water reactors. Semiannual report, April 1994--September 1994, Volume 19

    Energy Technology Data Exchange (ETDEWEB)

    Chopra, O.K.; Chung, H.M.; Gavenda, D.J. [and others

    1995-09-01

    This report summarizes work performed by Argonne National Laboratory (ANL) on fatigue and environmentally assisted cracking (EAC) in light water reactors from April to September 1994. Topics that have been investigated include (a) fatigue of carbon and low-alloy steel used in piping and reactor pressure vessels, (b) EAC of austenitic stainless steels (SSs) and Alloy 600, and (c) irradiation-assisted stress corrosion cracking (IASCC) of Type 304 SS. Fatigue tests have been conducted on A106-Gr B and A533-Gr B steels in oxygenated water to determine whether a slow strain rate applied during different portions of a tensile-loading cycle are equally effective in decreasing fatigue life. Crack growth data were obtained on fracture-mechanics specimens of SSs and Alloy 600 to investigate EAC in simulated boiling water reactor (BWR) and pressurized water reactor environments at 289{degrees}C. The data were compared with predictions from crack growth correlations developed at ANL for SSs in water and from rates in air from Section XI of the ASME Code. Microchemical changes in high- and commercial-purity Type 304 SS specimens from control-blade absorber tubes and a control-blade sheath from operating BWRs were studied by Auger electron spectroscopy and scanning electron microscopy to determine whether trace impurity elements may contribute to IASCC of these materials.

  2. TRAC-PF1: an advanced best-estimate computer program for pressurized water reactor analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liles, D.R.; Mahaffy, J.H.

    1984-02-01

    The Transient Reactor Analysis Code (TRAC) is being developed at the Los Alamos National Laboratory to provide advanced best-estimate predictions of postulated accidents in light water reactors. The TRAC-PF1 program provides this capability for pressurized water reactors and for many thermal-hydraulic experimental facilities. The code features either a one-dimensional or a three-dimensional treatment of the pressure vessel and its associated internals; a two-phase, two-fluid nonequilibrium hydrodynamics model with a noncondensable gas field; flow-regime-dependent constitutive equation treatment; optional reflood tracking capability for both bottom flood and falling-film quench fronts; and consistent treatment of entire accident sequences including the generation of consistent initial conditions. This report describes the thermal-hydraulic models and the numerical solution methods used in the code. Detailed programming and user information also are provided.

  3. Nodalization effects on RELAP5 results related to MTR research reactor transient scenarios

    Directory of Open Access Journals (Sweden)

    Khedr Ahmed

    2005-01-01

    Full Text Available The present work deals with the anal y sis of RELAP5 results obtained from the evaluation study of the total loss of flow transient with the deficiency of the heat removal system in a research reactor using two different nodalizations. It focuses on the effect of nodalization on the thermal-hydraulic evaluation of the re search reactor. The analysis of RELAP5 results has shown that nodalization has a big effect on the predicted scenario of the postulated transient. There fore, great care should be taken during the nodalization of the reactor, especially when the avail able experimental or measured data are insufficient for making a complete qualification of the nodalization. Our analysis also shows that the research reactor pool simulation has a great effect on the evaluation of natural circulation flow and on other thermal-hydraulic parameters during the loss of flow transient. For example, the on set time of core boiling changes from less than 2000 s to 15000 s, starting from the beginning of the transient. This occurs if the pool is simulated by two vertical volumes in stead of one vertical volume.

  4. Final report for the Light Water Breeder Reactor proof-of-breeding analytical support project

    Energy Technology Data Exchange (ETDEWEB)

    Graczyk, D.G.; Hoh, J.C.; Martino, F.J.; Nelson, R.E.; Osudar, J.; Levitz, N.M.

    1987-05-01

    The technology of breeding /sup 233/U from /sup 232/Th in a light water reactor is being developed and evaluated by the Westinghouse Bettis Atomic Power Laboratory (BAPL) through operation and examination of the Shippingport Light Water Breeder Reactor (LWBR). Bettis is determining the end-of-life (EOL) inventory of fissile uranium in the LWBR core by nondestructive assay of a statistical sample comprising approximately 500 EOL fuel rods. This determination is being made with an irradiated-fuel assay gauge based on neutron interrogation and detection of delayed neutrons from each rod. The EOL fissile inventory will be compared with the beginning-of-life fissile loading of the LWBR to determine the extent of breeding. In support of the BAPL proof-of-breeding (POB) effort, Argonne National Laboratory (ANL) carried out destructive physical, chemical, and radiometric analyses on 17 EOL LWBR fuel rods that were previously assayed with the nondestructive gauge. The ANL work included measurements on the intact rods; shearing of the rods into pre-designated contiguous segments; separate dissolution of each of the more than 150 segments; and analysis of the dissolver solutions to determine each segment's uranium content, uranium isotopic composition, and loading of selected fission products. This report describes the facilities in which this work was carried out, details operations involved in processing each rod, and presents a comprehensive discussion of uncertainties associated with each result of the ANL measurements. Most operations were carried out remotely in shielded cells. Automated equipment and procedures, controlled by a computer system, provided error-free data acquisition and processing, as well as full replication of operations with each rod. Despite difficulties that arose during processing of a few rod segments, the ANL destructive-assay results satisfied the demanding needs of the parent LWBR-POB program.

  5. Study of plutonium disposition using the GE Advanced Boiling Water Reactor (ABWR)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-04-30

    The end of the cold war and the resulting dismantlement of nuclear weapons has resulted in the need for the U.S. to disposition 50 to 100 metric tons of excess of plutonium in parallel with a similar program in Russia. A number of studies, including the recently released National Academy of Sciences (NAS) study, have recommended conversion of plutonium into spent nuclear fuel with its high radiation barrier as the best means of providing long-term diversion resistance to this material. The NAS study {open_quotes}Management and Disposition of Excess Weapons Plutonium{close_quotes} identified light water reactor spent fuel as the most readily achievable and proven form for the disposition of excess weapons plutonium. The study also stressed the need for a U.S. disposition program which would enhance the prospects for a timely reciprocal program agreement with Russia. This summary provides the key findings of a GE study where plutonium is converted into Mixed Oxide (MOX) fuel and a 1350 MWe GE Advanced Boiling Water Reactor (ABWR) is utilized to convert the plutonium to spent fuel. The ABWR represents the integration of over 30 years of experience gained worldwide in the design, construction and operation of BWRs. It incorporates advanced features to enhance reliability and safety, minimize waste and reduce worker exposure. For example, the core is never uncovered nor is any operator action required for 72 hours after any design basis accident. Phase 1 of this study was documented in a GE report dated May 13, 1993. DOE`s Phase 1 evaluations cited the ABWR as a proven technical approach for the disposition of plutonium. This Phase 2 study addresses specific areas which the DOE authorized as appropriate for more in-depth evaluations. A separate report addresses the findings relative to the use of existing BWRs to achieve the same goal.

  6. Pyrite-enhanced methylene blue degradation in non-thermal plasma water treatment reactor

    Energy Technology Data Exchange (ETDEWEB)

    Benetoli, Luis Otavio de Brito, E-mail: luskywalcker@yahoo.com.br [Departamento de Quimica, Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil); Cadorin, Bruno Mena; Baldissarelli, Vanessa Zanon [Departamento de Quimica, Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil); Geremias, Reginaldo [Departamento de Ciencias Rurais, Universidade Federal de Santa Catarina (UFSC), Curitibanos, SC (Brazil); Goncalvez de Souza, Ivan [Departamento de Quimica, Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil); Debacher, Nito Angelo, E-mail: debacher@qmc.ufsc.br [Departamento de Quimica, Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil)

    2012-10-30

    Highlights: Black-Right-Pointing-Pointer We use O{sub 2} as the feed gas and pyrite was added to the non-thermal plasma reactor. Black-Right-Pointing-Pointer The methylene blue removal by NTP increased in the presence of pyrite. Black-Right-Pointing-Pointer The total organic carbon content decreased substantially. Black-Right-Pointing-Pointer The acute toxicity test showed that the treated solution is not toxic. Black-Right-Pointing-Pointer The dye degradation occurs via electron impact as well as successive hydroxylation. - Abstract: In this study, methylene blue (MB) removal from an aqueous phase by electrical discharge non-thermal plasma (NTP) over water was investigated using three different feed gases: N{sub 2}, Ar, and O{sub 2}. The results showed that the dye removal rate was not strongly dependent on the feed gas when the electrical current was kept the same for all gases. The hydrogen peroxide generation in the water varied according to the feed gas (N{sub 2} < Ar < O{sub 2}). Using O{sub 2} as the feed gas, pyrite was added to the reactor in acid medium resulting in an accentuated increase in the dye removal, which suggests that pyrite acts as a Fenton-like catalyst. The total organic carbon (TOC) content of the dye solution decreased slightly as the plasma treatment time increased, but in the presence of the pyrite catalyst the TOC removal increased substantially. The acute toxicity test using Artemia sp. microcrustaceans showed that the treated solution is not toxic when Ar, O{sub 2} or O{sub 2}-pyrite is employed. Electrospray ionization mass spectrometry analysis (ESI-MS) of the treated samples indicated that the dye degradation occurs via high energy electron impact as well as successive hydroxylation in the benzene rings of the dye molecules.

  7. The simulation of thermohydraulic phenomena in a pressurized water reactor primary loop

    Energy Technology Data Exchange (ETDEWEB)

    Popp, M

    1987-01-01

    Several important fluid flow and heat transfer phenomena essential to nuclear power reactor safety were investigated. Scaling and modeling laws for pressurized water reactors are reviewed and a new scaling approach focusing on the overall loop behavior is presented. Scaling criteria for one- and two-phase natural circulation are developed, as well as a simplified model describing the first phase of a small break loss of coolant accident. Reactor vessel vent valve effects are included in the analysis of steady one-phase natural circulation flow. Two new dimensionless numbers, which uniquely describe one-phase flow in natural circulation loops, were deduced and are discussed. A scaled model of the primary loop of a typical Babcock and Wilcox reactor was designed, built, and tested. The particular prototype modeled was the TMI unit 2 reactor. The electrically heated, stainless steel model operates at a maximum pressure of 300 psig and has a maximum heat input of 188 kW. The model is about 4 times smaller in height than the prototype reactor, with a nominal volume scale of 1:500. Experiments were conducted establishing subcooled natural circulation in the model loop. Both steady flow and power transients were investigated.

  8. Warm Water Oxidation Verification - Scoping and Stirred Reactor Tests

    Energy Technology Data Exchange (ETDEWEB)

    Braley, Jenifer C.; Sinkov, Sergey I.; Delegard, Calvin H.; Schmidt, Andrew J.

    2011-06-15

    Scoping tests to evaluate the effects of agitation and pH adjustment on simulant sludge agglomeration and uranium metal oxidation at {approx}95 C were performed under Test Instructions(a,b) and as per sections 5.1 and 5.2 of this Test Plan prepared by AREVA. (c) The thermal testing occurred during the week of October 4-9, 2010. The results are reported here. For this testing, two uranium-containing simulant sludge types were evaluated: (1) a full uranium-containing K West (KW) container sludge simulant consisting of nine predominant sludge components; (2) a 50:50 uranium-mole basis mixture of uraninite [U(IV)] and metaschoepite [U(VI)]. This scoping study was conducted in support of the Sludge Treatment Project (STP) Phase 2 technology evaluation for the treatment and packaging of K-Basin sludge. The STP is managed by CH2M Hill Plateau Remediation Company (CHPRC) for the U.S. Department of Energy. Warm water ({approx}95 C) oxidation of sludge, followed by immobilization, has been proposed by AREVA and is one of the alternative flowsheets being considered to convert uranium metal to UO{sub 2} and eliminate H{sub 2} generation during final sludge disposition. Preliminary assessments of warm water oxidation have been conducted, and several issues have been identified that can best be evaluated through laboratory testing. The scoping evaluation documented here was specifically focused on the issue of the potential formation of high strength sludge agglomerates at the proposed 95 C process operating temperature. Prior hydrothermal tests conducted at 185 C produced significant physiochemical changes to genuine sludge, including the formation of monolithic concretions/agglomerates that exhibited shear strengths in excess of 100 kPa (Delegard et al. 2007).

  9. Optimization of power-cycle arrangements for Supercritical Water cooled Reactors (SCWRs)

    Science.gov (United States)

    Lizon-A-Lugrin, Laure

    The world energy demand is continuously rising due to the increase of both the world population and the standard of life quality. Further, to assure both a healthy world economy as well as adequate social standards, in a relatively short term, new energy-conversion technologies are mandatory. Within this framework, a Generation IV International Forum (GIF) was established by the participation of 10 countries to collaborate for developing nuclear power reactors that will replace the present technology by 2030. The main goals of these nuclear-power reactors are: economic competitiveness, sustainability, safety, reliability and resistance to proliferation. As a member of the GIF, Canada has decided to orient its efforts towards the design of a CANDU-type Super Critical Water-cooled Reactor (SCWR). Such a system must run at a coolant outlet temperature of about 625°C and at a pressure of 25 MPa. It is obvious that at such conditions the overall efficiency of this kind of Nuclear Power Plant (NPP) will compete with actual supercritical water-power boilers. In addition, from a heat-transfer viewpoint, the use of a supercritical fluid allows the limitation imposed by Critical Heat Flux (CHF) conditions, which characterize actual technologies, to be removed. Furthermore, it will be also possible to use direct thermodynamic cycles where the supercritical fluid expands right away in a turbine without the necessity of using intermediate steam generators and/or separators. This work presents several thermodynamic cycles that could be appropriate to run SCWR power plants. Improving both thermal efficiency and mechanical power constitutes a multi-objective optimization problem and requires specific tools. To this aim, an efficient and robust evolutionary algorithm, based on genetic algorithm, is used and coupled to an appropriate power plant thermodynamic simulation model. The results provide numerous combinations to achieve a thermal efficiency higher than 50% with a

  10. Environmentally assisted cracking in light water reactors. Semiannual report, October 1993--March 1994. Volume 18

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.M.; Chopra, O.K.; Erck, R.A.; Kassner, T.F.; Michaud, W.F.; Ruther, W.E.; Sanecki, J.E.; Shack, W.J.; Soppet, W.K. [Argonne National Lab., IL (United States)

    1995-03-01

    This report summarizes work performed by Argonne National Laboratory (ANL) on fatigue and environmentally assisted cracking (EAC) in light water reactors (LWRs) during the six months from October 1993 to March 1994. EAC and fatigue of piping, pressure vessels, and core components in LWRs are important concerns in operating plants and as extended reactor lifetimes are envisaged. Topics that have been investigated include (a) fatigue of low-alloy steel used in piping, steam generators, and reactor pressure vessels, (b) EAC of wrought and cast austenitic stainless steels (SSs), and (c) radiation-induced segregation and irradiation-assisted stress corrosion cracking (IASCC) of Type 304 SS after accumulation of relatively high fluence. Fatigue tests have been conducted on A302-Gr B low-alloy steel to verify whether the current predictions of modest decreases of fatigue life in simulated pressurized water reactor water are valid for high-sulfur heats that show environmentally enhanced fatigue crack growth rates. Additional crack growth data were obtained on fracture-mechanics specimens of austenitic SSs to investigate threshold stress intensity factors for EAC in high-purity oxygenated water at 289{degrees}C. The data were compared with predictions based on crack growth correlations for wrought austenitic SS in oxygenated water developed at ANL and rates in air from Section XI of the ASME Code. Microchemical and microstructural changes in high- and commercial-purity Type 304 SS specimens from control-blade absorber tubes and a control-blade sheath from operating boiling water reactors were studied by Auger electron spectroscopy and scanning electron microscopy to determine whether trace impurity elements, which are not specified in the ASTM specifications, may contribute to IASCC of solution-annealed materials.

  11. Simulation of the Lower Head Boiling Water Reactor Vessel in a Severe Accident

    Directory of Open Access Journals (Sweden)

    Alejandro Nuñez-Carrera

    2012-01-01

    Full Text Available The objective of this paper is the simulation and analysis of the BoilingWater Reactor (BWR lower head during a severe accident. The COUPLE computer code was used in this work to model the heatup of the reactor core material that slumps in the lower head of the reactor pressure vessel. The prediction of the lower head failure is an important issue in the severe accidents field, due to the accident progression and the radiological consequences that are completely different with or without the failure of the Reactor Pressure Vessel (RPV. The release of molten material to the primary containment and the possibility of steam explosion may produce the failure of the primary containment with high radiological consequences. Then, it is important to have a detailed model in order to predict the behavior of the reactor vessel lower head in a severe accident. In this paper, a hypothetical simulation of a Loss of Coolant Accident (LOCA with simultaneous loss of off-site power and without injection of cooling water is presented with the proposal to evaluate the temperature distribution and heatup of the lower part of the RPV. The SCDAPSIM/RELAP5 3.2 code was used to build the BWR model and conduct the numerical simulation.

  12. Quarterly technical progress report on water reactor safety programs sponsored by the Nuclear Regulatory Commission's Division of Reactor Safety Research, January--March 1976

    Energy Technology Data Exchange (ETDEWEB)

    Zane, J. O.; Farman, R. F.; Hanson, D. J.; Peterson, A. C.; Ybarrondo, L. J.; Berta, V. T.; Naff, S. A.; Crocker, J. G.; Martinson, Z. R.; Smolik, G. R.; Cawood, G. W.; Quapp, W. J.; Ramsthaler, J. H.; Ransom, V. H.; Scofield, M. P.; Dearien, J. A.; Bohn, M. P.; Burnham, B. W.; James, S. W.; Lee, W. H.; Lime, J. F.; Nalezny, C. L.; MacDonald, P. E.; Thompson, L. B.; Domenico, W. F.; Rice, R. E.; Hendrix, C. E.; Davis, C. B.

    1976-06-01

    Light water reactor sfaety research performed January through March 1976 is summarized. Results of the Semiscale Mod-1 blowdown heat transfer test series relating to those phenomena that influence core fluid and heat transfer effects are analyzed, and preliminary analyses of the recently completed reflood heat transfer test series are summarized for the forced and gravity feed reflood tests. The first nonnuclear LOCE in the LOFT program was successfully completed and preliminary results are presented. Preliminary results are given for the PCM 8-1 RF Test, the PCM-2A Test, and the Irradiation Effects Scoping Test 2 in the Thermal Fuel Behavior Program. Model development and verification efforts reported in the Reactor Behavior Program include checkout of RELAP4/MOD5 Update 1, development of a new hydrodynamic model for two-phase separated flows, development of the RACHET code to assess the assumptions in current fuel behavior codes of uniform stress and strain in the cladding, modifications of the containment code BEACON, analysis of results from the Halden Assembly IFA-429 helium sorption experiment, development of correlations for the thermal conductivity of UO/sub 2/ and (U,Pu)O/sub 2/, and evaluation of RALAP4 through comparison of calculated results with data from the GE Blowdown Heat Transfer and Semiscale experiments.

  13. Experimental and numerical stability investigations on natural circulation boiling water reactors

    NARCIS (Netherlands)

    Marcel, C.P.

    2007-01-01

    The stability of natural circulation boiling water reactors is investigated with a strong emphasis on experiments. Two different facilities are used for such a task: the GENESIS facility (to which a void reactivity feedback system is artificially added) and the CIRCUS facility. In addition,

  14. 77 FR 16270 - Updated Aging Management Criteria for Reactor Vessel Internal Components of Pressurized Water...

    Science.gov (United States)

    2012-03-20

    ... COMMISSION Updated Aging Management Criteria for Reactor Vessel Internal Components of Pressurized Water... license renewal interim staff guidance (LR-ISG), LR-ISG-2011-04, ``Updated Aging Management Criteria for... Aging Lessons Learned (GALL) Report for the aging management of stainless steel structures and...

  15. Light-water-reactor safety program. Quarterly progress report, April--June 1977

    Energy Technology Data Exchange (ETDEWEB)

    Sachs, R G; Kyger, J A

    1977-01-01

    The report summarizes work performed on the following water-reactor-safety problems: (1) loss-of-coolant accident research in heat transfer and fluid dynamics; (2) transient fuel response and fission-product release; (3) mechanical properties of zircaloy containing oxygen; and (4) steam-explosion studies.

  16. Local Fission Gas Release and Swelling in Water Reactor Fuel during Slow Power Transients

    DEFF Research Database (Denmark)

    Mogensen, Mogens Bjerg; Walker, C.T.; Ray, I.L.F.

    1985-01-01

    Gas release and fuel swelling caused by a power increase in a water reactor fuel (burn-up 2.7–4.5% FIMA) is described. At a bump terminal level of about 400 W/cm (local value) gas release was 25–40%. The formation of gas bubbles on grain boundaries and their degree of interlinkage are the two...

  17. Analysis of Removal Alternatives for the Heavy Water Components Test Reactor at the Savannah River Site

    Energy Technology Data Exchange (ETDEWEB)

    Owen, M.B. [Westinghouse Savannah River Co., Aiken, SC (United States)

    1996-08-01

    This engineering study was developed to evaluate different options for decommissioning of the Heavy Water Components Test Reactor (HWCTR) at the Savannah River Site. This document will be placed in the DOE-SRS Area reading rooms for a period of 30 days in order to obtain public input to plans for the demolition of HWCTR.

  18. Nuclear Engineering Computer Modules, Thermal-Hydraulics, TH-1: Pressurized Water Reactors.

    Science.gov (United States)

    Reihman, Thomas C.

    This learning module is concerned with the temperature field, the heat transfer rates, and the coolant pressure drop in typical pressurized water reactor (PWR) fuel assemblies. As in all of the modules of this series, emphasis is placed on developing the theory and demonstrating its use with a simplified model. The heart of the module is the PWR…

  19. A study of implementing In-Cycle-Shuffle strategy to a decommissioning boiling water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Chung-Yuan, E-mail: tuckjason@iner.gov.tw; Tung, Wu-Hsiung; Yaur, Shyun-Jung

    2017-06-15

    Highlights: • A loading pattern strategy ICS (In-Cycle-Shuffle) was implemented to the last cycle of the boiling water reactor. • The best power sharing distribution and ICS timing was found. • A new parameter “Burnup sharing” is presented to evaluate ICS strategy. - Abstract: In this paper, a loading pattern strategy In-Cycle-Shuffle (ICS) is implemented to the last cycle of the boiling water reactor (BWR) before decommissioning to save the fuel cycle cost. This method needs a core shutdown during the operation of a cycle to change the loading pattern to gain more reactivity. The reactivity model is used to model the ICS strategy in order to find out the best ICS timing and the optimum power sharing distribution before ICS and after ICS. Several parameters of reactivity model are modified and the effect of burnable poison, gadolinium (Gd), is considered in this research. Three cases are presented and it is found that the best ICS timing is at about two-thirds of total cycle length no matter the poisoning effect of Gd is considered or not. According to the optimum power sharing distribution result, it is suggested to decrease the once burnt power and increase the thrice burnt fuel power as much as possible before ICS. After ICS, it is suggested to increase the positive reactivity fuel power and decrease the thrice burnt fuel power as much as possible. A new parameter “Burnup sharing” is presented to evaluate the special case whose EOC power weighting factor and the burnup accumulation factor in the reactivity model are quite different.

  20. Prediction of the reactor vessel water level using fuzzy neural networks in severe accident circumstance of NPPs

    Energy Technology Data Exchange (ETDEWEB)

    Park, Soon Ho; Kim, Dae Seop; Kim, Jae Hwan; Na, Man Gyun [Dept. of Nuclear Engineering, Chosun University, Gwangju (Korea, Republic of)

    2014-06-15

    Safety-related parameters are very important for confirming the status of a nuclear power plant. In particular, the reactor vessel water level has a direct impact on the safety fortress by confirming reactor core cooling. In this study, the reactor vessel water level under the condition of a severe accident, where the water level could not be measured, was predicted using a fuzzy neural network (FNN). The prediction model was developed using training data, and validated using independent test data. The data was generated from simulations of the optimized power reactor 1000 (OPR1000) using MAAP4 code. The informative data for training the FNN model was selected using the subtractive clustering method. The prediction performance of the reactor vessel water level was quite satisfactory, but a few large errors were occasionally observed. To check the effect of instrument errors, the prediction model was verified using data containing artificially added errors. The developed FNN model was sufficiently accurate to be used to predict the reactor vessel water level in severe accident situations where the integrity of the reactor vessel water level sensor is compromised. Furthermore, if the developed FNN model can be optimized using a variety of data, it should be possible to predict the reactor vessel water level precisely.

  1. Water-ingress analysis for the 200 MWe pebble-bed modular high temperature gas-cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zheng Yanhua, E-mail: zhengyh@mail.tsinghua.edu.c [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China); Shi Lei; Wang Yan [Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084 (China)

    2010-10-15

    Water ingress into the primary circuit is generally recognized as one of the severe accidents with potential hazard to the modular high temperature gas-cooled reactor adopting steam-turbine cycle, which will cause a positive reactivity introduction, as well as the chemical corrosion of graphite fuel elements and reflector structure material. Besides, increase of the primary pressure may result in the opening of the safety valves, consequently leading the release of radioactive isotopes and flammable water gas. The analysis of such a kind of important and particular accident is significant to verify the inherent safety characteristics of the modular HTR plants. Based on the preliminary design of the 200 MWe high temperature gas-cooled reactor pebble-bed modular (HTR-PM), the design basis accident of a double-ended guillotine break of one heating tube and the beyond design basis accident of a large break of the main steam collection plate have been analyzed by using TINTE code, which is a special transient analysis program for high temperature gas-cooled reactors. Some safety relevant concerns, such as the fuel temperature, the primary loop pressure, the graphite corrosion, the water gas releasing amount, as well as the natural convection influence on the condition of failing to close the blower flaps, have been studied in detail. The calculation results indicate that even under some severe hypothetical postulates, the HTR-PM is able to keep the inherent safeties of the modular high temperature gas-cooled reactor and has a relatively good natural plant response, which will not result in environmental radiation hazard.

  2. Design of a supercritical water-cooled reactor with a three-pass core arrangement

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, K. [EnBW Kernkraft GmbH, Kernkraftwerk Philippsburg, D-76661 Philippsburg (Germany)], E-mail: kai-fischer@gmx.de; Schulenberg, T. [Forschungszentrum Karlsruhe GmbH, Institute for Nuclear and Energy Technologies, P.O. Box 3640, D-76021 Karlsruhe (Germany); Laurien, E. [University of Stuttgart, Institute for Nuclear and Energy Systems (IKE), Pfaffenwaldring 31, D-70569 Stuttgart (Germany)

    2009-04-15

    The Supercritical Water-cooled Reactor (SCWR) is one of the six concepts of the Generation IV International Forum. In Europe, investigations have been integrated into a joint research project, called High Performance Light Water Reactor (HPLWR). Due to the higher heat up within the core and a higher outlet temperature, a significant increase in turbine power and thermal efficiency of the plant can be expected. Besides the higher pressure and higher steam temperature, the design concept of this type of reactor differs significantly from a conventional LWR by a different core concept. In order to achieve the high outlet temperature of over 500 deg. C, a core with a three-step heat up and intermediate mixing is proposed to keep local cladding temperatures within today's material limits. A design for the reactor pressure vessel (RPV) and the internals has been worked out to incorporate a core arrangement with three passes. All components have been dimensioned following the safety standards of the nuclear safety standards commission in Germany. Additionally, a fuel assembly cluster with head and foot piece has been developed to facilitate the complex flow path for the multi-pass concept. The design of the internals and of the RPV is verified using mechanical or, in the case of large thermal deformations, combined mechanical and thermal stress analyses. Furthermore, the reactor design ensures that the total coolant flow path remains closed against leakage of colder moderator water even in case of large thermal expansions of the components. The design of the RPV and internals is now available for detailed analyses of the core and the reactor.

  3. Elimination of water pathogens with solar radiation using an automated sequential batch CPC reactor

    Energy Technology Data Exchange (ETDEWEB)

    Polo-Lopez, M.I., E-mail: mpolo@psa.es [Plataforma Solar de Almeria - CIEMAT, PO Box 22, 04200 Tabernas, Almeria (Spain); Fernandez-Ibanez, P., E-mail: pilar.fernandez@psa.es [Plataforma Solar de Almeria - CIEMAT, PO Box 22, 04200 Tabernas, Almeria (Spain); Ubomba-Jaswa, E., E-mail: euniceubombajaswa@yahoo.com [Natural Resources and the Environment, CSIR, PO Box 395, Pretoria (South Africa); Navntoft, C., E-mail: christian.navntoft@solarmate.com.ar [Instituto de Investigacion e Ingenieria Ambiental, Universidad Nacional de San Martin (3iA-UNSAM), Peatonal Belgrano 3563, B1650ANQ San Martin (Argentina); Universidad Tecnologica Nacional - Facultad Regional Buenos Aires - Departamento de Ingenieria Civil - Laboratorio de Estudios sobre Energia Solar, (UTN-FRBA-LESES), Mozart 2300, (1407) Ciudad Autonoma de Buenos Aires, Republica Argentina (Argentina); Garcia-Fernandez, I., E-mail: irene.garcia@psa.es [Plataforma Solar de Almeria - CIEMAT, PO Box 22, 04200 Tabernas, Almeria (Spain); Dunlop, P.S.M., E-mail: psm.dunlop@ulster.ac.uk [Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2 (Ireland); Schmid, M. [Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2 (Ireland); Byrne, J.A., E-mail: j.byrne@ulster.ac.uk [Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin 2 (Ireland); and others

    2011-11-30

    Solar disinfection (SODIS) of water is a well-known, effective treatment process which is practiced at household level in many developing countries. However, this process is limited by the small volume treated and there is no indication of treatment efficacy for the user. Low cost glass tube reactors, together with compound parabolic collector (CPC) technology, have been shown to significantly increase the efficiency of solar disinfection. However, these reactors still require user input to control each batch SODIS process and there is no feedback that the process is complete. Automatic operation of the batch SODIS process, controlled by UVA-radiation sensors, can provide information on the status of the process, can ensure the required UVA dose to achieve complete disinfection is received and reduces user work-load through automatic sequential batch processing. In this work, an enhanced CPC photo-reactor with a concentration factor of 1.89 was developed. The apparatus was automated to achieve exposure to a pre-determined UVA dose. Treated water was automatically dispensed into a reservoir tank. The reactor was tested using Escherichia coli as a model pathogen in natural well water. A 6-log inactivation of E. coli was achieved following exposure to the minimum uninterrupted lethal UVA dose. The enhanced reactor decreased the exposure time required to achieve the lethal UVA dose, in comparison to a CPC system with a concentration factor of 1.0. Doubling the lethal UVA dose prevented the need for a period of post-exposure dark inactivation and reduced the overall treatment time. Using this reactor, SODIS can be automatically carried out at an affordable cost, with reduced exposure time and minimal user input.

  4. Elimination of water pathogens with solar radiation using an automated sequential batch CPC reactor.

    Science.gov (United States)

    Polo-López, M I; Fernández-Ibáñez, P; Ubomba-Jaswa, E; Navntoft, C; García-Fernández, I; Dunlop, P S M; Schmid, M; Byrne, J A; McGuigan, K G

    2011-11-30

    Solar disinfection (SODIS) of water is a well-known, effective treatment process which is practiced at household level in many developing countries. However, this process is limited by the small volume treated and there is no indication of treatment efficacy for the user. Low cost glass tube reactors, together with compound parabolic collector (CPC) technology, have been shown to significantly increase the efficiency of solar disinfection. However, these reactors still require user input to control each batch SODIS process and there is no feedback that the process is complete. Automatic operation of the batch SODIS process, controlled by UVA-radiation sensors, can provide information on the status of the process, can ensure the required UVA dose to achieve complete disinfection is received and reduces user work-load through automatic sequential batch processing. In this work, an enhanced CPC photo-reactor with a concentration factor of 1.89 was developed. The apparatus was automated to achieve exposure to a pre-determined UVA dose. Treated water was automatically dispensed into a reservoir tank. The reactor was tested using Escherichia coli as a model pathogen in natural well water. A 6-log inactivation of E. coli was achieved following exposure to the minimum uninterrupted lethal UVA dose. The enhanced reactor decreased the exposure time required to achieve the lethal UVA dose, in comparison to a CPC system with a concentration factor of 1.0. Doubling the lethal UVA dose prevented the need for a period of post-exposure dark inactivation and reduced the overall treatment time. Using this reactor, SODIS can be automatically carried out at an affordable cost, with reduced exposure time and minimal user input. Copyright © 2011 Elsevier B.V. All rights reserved.

  5. Results of the Irradiation of R6R018 in the Advanced Test Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Adam B Robinson; Daniel Wachs; Pavel Medvedev; Curtis Clark; Gray Chang; Misti Lillo; Jan-Fong Jue; Glenn Moore; Jared Wight

    2010-04-01

    For over 30 years the Reduced Enrichment for Research and Test Reactors (RERTR) program has worked to provide the fuel technology and analytical support required to convert research and test reactors from nuclear fuels that utilize highly enriched uranium (HEU) to fuels based on low-enriched uranium (LEU) (defined as <20% U-235). This effort is driven by a desire to minimize international civilian commerce in weapons usable materials. The RERTR fuel development program has executed a wide array of fuel tests over the last decade that clearly established the viability of research reactor fuels based on uranium-molybdenum (U-Mo) alloys. Fuel testing has included a large number of dispersion type fuels capable of providing uranium densities up to approximately 8.5 g U/cc (~1.7 g U-235/cc at 20% enrichment). The dispersion fuel designs tested are very similar to existing research test reactor fuels in that the U-Mo particles simply replace the current fuel phase within the matrix. In 2003 it became evident that the first generation U-Mo-based dispersion fuel within an aluminum matrix exhibited significant fuel performance problems at high power and burn-up. These issues have been successfully addressed with a modest modification to the matrix material composition. Testing has shown that small additions of silicon (2–5 wt%) to the aluminum (Al) matrix stabilizes the fuel performance. The fuel plate R6R018 which was irradiated in the Advanced Test Reactor (ATR) as part of the RERTR-9B experiment was part of an investigation into the role of the silicon content in the matrix. This plate consisted of a U-7Mo fuel phase dispersed in an Al-3.5Si matrix clad in Al-6061. This report outlines the fabrication history, the as fabricated analysis performed prior to irradiation, the irradiation conditions, the post irradiation examination results, and an analysis of the plates behavior.

  6. Overview of Prevention for Water Hammer by Check Valve Action in Nuclear Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Dayong; Yoon, Hyungi; Seo, Kyoungwoo; Kim, Seonhoon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-10-15

    Water hammer can cause serious damage to pumping system and unexpected system pressure rise in the pipeline. In nuclear reactor, water hammer can influence on the integrity of safety related system. Water hammer in nuclear reactor have been caused by voiding in normally water-filled lines, steam condensation line containing both steam and water, as well as by rapid check valve action. Therefore, this study focuses on the water hammer by check valve among the sources of water hammer occurrence and suggests proper methodology for check valve type selection against water hammer. This study focuses on the water hammer by check valve action among the sources of water hammer occurrence and suggests proper methodology for check valve type selection against water hammer. If the inadvertent pump trip or pipe rupture in high velocity and pressure pipe is predicted, the fast response check valve such as tiled disc, dual disc and nozzle check valve should be installed in the system. If the inadvertent pump trip or pipe rupture in very high velocity and pressure pipe and excessively large revered flow velocity are predicted, the very slowly closing check valve such as controlled closure check valve should be installed in the system.

  7. Sequencing Batch Reactor pilot plant in waste water treatment plants; Impiego di un impianto pilota del tipo Seguencing Batch Reactor (SBR) come strumento di gestione di impianti di depurazione in aree sensibili : Indagine preliminare

    Energy Technology Data Exchange (ETDEWEB)

    Musacco, Alessandro; Beccari, Mario [Rome, Univ. La Sapienza (Italy). Dip. di Chimica; Cecchi, Franco [Aquila, Univ. (Italy). Dip. di Chimica, Ingegneria Chimica e Materiali]|[ASPIV, Venice (Italy)

    1997-07-01

    The flexibility of Sequencing Batch Reactors is ideally suited to provide useful guidelines for reliable operation of large waste water treatment plants such as the plant at Fusina (Venice). This paper shows the preliminary results of experimental investigations carried out in a pilot scale Sequencing Batch Reactor plant. The main purpose has been to verify the effect of the addition of readily biodegradable COD from the acidogenic fermentation of the organic fraction of municipal solid wastes. This has to be considered an external carbon source for denitrification. The results underline the advantages of an integration between solid waste management and wastewater treatment.

  8. In-Vessel Melt Retention of Pressurized Water Reactors: Historical Review and Future Research Needs

    OpenAIRE

    Ma, Weimin; Yuan, Yidan; Sehgal, Bal Raj

    2016-01-01

    A historical review of in-vessel melt retention (IVR) is given, which is a severe accident mitigation measure extensively applied in Generation III pressurized water reactors (PWRs). The idea of IVR actually originated from the back-fitting of the Generation II reactor Loviisa VVER-440 in order to cope with the core-melt risk. It was then employed in the new deigns such as Westinghouse AP1000, the Korean APR1400 as well as Chinese advanced PWR designs HPR1000 and CAP1400. The most influential...

  9. Thin-film fixed-bed reactor for solar photocatalytic inactivation of Aeromonas hydrophila: influence of water quality

    Directory of Open Access Journals (Sweden)

    Khan Sadia J

    2012-11-01

    Full Text Available Abstract Background Controlling fish disease is one of the major concerns in contemporary aquaculture. The use of antibiotics or chemical disinfection cannot provide a healthy aquaculture system without residual effects. Water quality is also important in determining the success or failure of fish production. Several solar photocatalytic reactors have been used to treat drinking water or waste water without leaving chemical residues. This study has investigated the impact of several key aspects of water quality on the inactivation of the pathogenic bacterium Aeromonas hydrophila using a pilot-scale thin-film fixed-bed reactor (TFFBR system. Results The level of inactivation of Aeromonas hydrophila ATCC 35654 was determined using a TFFBR with a photocatalytic area of 0.47 m2 under the influence of various water quality variables (pH, conductivity, turbidity and colour under high solar irradiance conditions (980–1100 W m-2, at a flow rate of 4.8 L h-1 through the reactor. Bacterial enumeration were obtained through conventional plate count using trypticase soy agar media, cultured in conventional aerobic conditions to detect healthy cells and under ROS-neutralised conditions to detect both healthy and sub-lethally injured (oxygen-sensitive cells. The results showed that turbidity has a major influence on solar photocatalytic inactivation of A. hydrophila. Humic acids appear to decrease TiO2 effectiveness under full sunlight and reduce microbial inactivation. pH in the range 7–9 and salinity both have no major effect on the extent of photoinactivation or sub-lethal injury. Conclusions This study demonstrates the effectiveness of the TFFBR in the inactivation of Aeromonas hydrophila under the influence of several water quality variables at high solar irradiance, providing an opportunity for the application of solar photocatalysis in aquaculture systems, as long as turbidity remains low.

  10. Heat Transfer Phenomena in Supercritical Water Nuclear Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Mark H. Anderson; MichaelL. Corradini; Riccardo Bonazza; Jeremy R. Licht

    2007-10-03

    A supercritical water heat transfer facility has been built at the University of Wisconsin to study heat transfer in ancircular and square annular flow channel. A series of integral heat transfer measurements has been carried out over a wide range of heat flux, mas velocity and bulk water temperatures at a pressure of 25 MPa. The circular annular test section geometry is a 1.07 cm diameter heater rod within a 4.29 diameter flow channel.

  11. Reactor safeguards

    CERN Document Server

    Russell, Charles R

    1962-01-01

    Reactor Safeguards provides information for all who are interested in the subject of reactor safeguards. Much of the material is descriptive although some sections are written for the engineer or physicist directly concerned with hazards analysis or site selection problems. The book opens with an introductory chapter on radiation hazards, the construction of nuclear reactors, safety issues, and the operation of nuclear reactors. This is followed by separate chapters that discuss radioactive materials, reactor kinetics, control and safety systems, containment, safety features for water reactor

  12. Preliminary Feasibility, Design, and Hazard Analysis of a Boiling Water Test Loop Within the Idaho National Laboratory Advanced Test Reactor National Scientific User Facility

    Energy Technology Data Exchange (ETDEWEB)

    Douglas M. Gerstner

    2009-05-01

    The Advanced Test Reactor (ATR) is a pressurized light-water reactor with a design thermal power of 250 MW. The principal function of the ATR is to provide a high neutron flux for testing reactor fuels and other materials. The ATR and its support facilities are located at the Idaho National Laboratory (INL). A Boiling Water Test Loop (BWTL) is being designed for one of the irradiation test positions within the. The objective of the new loop will be to simulate boiling water reactor (BWR) conditions to support clad corrosion and related reactor material testing. Further it will accommodate power ramping tests of candidate high burn-up fuels and fuel pins/rods for the commercial BWR utilities. The BWTL will be much like the pressurized water loops already in service in 5 of the 9 “flux traps” (region of enhanced neutron flux) in the ATR. The loop coolant will be isolated from the primary coolant system so that the loop’s temperature, pressure, flow rate, and water chemistry can be independently controlled. This paper presents the proposed general design of the in-core and auxiliary BWTL systems; the preliminary results of the neutronics and thermal hydraulics analyses; and the preliminary hazard analysis for safe normal and transient BWTL and ATR operation.

  13. Overview of the US Department of Energy Light Water Reactor Sustainability Program

    Energy Technology Data Exchange (ETDEWEB)

    K. A. McCarthy; D. L. Williams; R. Reister

    2012-05-01

    The US Department of Energy Light Water Reactor Sustainability Program is focused on the long-term operation of US commercial power plants. It encompasses two facets of long-term operation: (1) manage the aging of plant systems, structures, and components so that nuclear power plant lifetimes can be extended and the plants can continue to operate safely, efficiently, and economically; and (2) provide science-based solutions to the nuclear industry that support implementation of performance improvement technologies. An important aspect of the Light Water Reactor Sustainability Program is partnering with industry and the Nuclear Regulatory Commission to support and conduct the long-term research needed to inform major component refurbishment and replacement strategies, performance enhancements, plant license extensions, and age-related regulatory oversight decisions. The Department of Energy research, development, and demonstration role focuses on aging phenomena and issues that require long-term research and/or unique Department of Energy laboratory expertise and facilities and are applicable to all operating reactors. This paper gives an overview of the Department of Energy Light Water Reactor Sustainability Program, including vision, goals, and major deliverables.

  14. Cracks propagation by stress corrosion cracking in conditions of Boiling Water Reactor (BWR); Propagacion de grietas por corrosion bajo esfuerzo en condiciones de reactor de agua hirviente (BWR)

    Energy Technology Data Exchange (ETDEWEB)

    Fuentes C, P

    2003-07-01

    This work presents the results of the assays carried out in the Laboratory of Hot Cells of the National Institute of Nuclear Research (ININ) to a type test tube Compact Tension (CT), built in steel austenitic stainless type 304L, simulating those conditions those that it operates a Boiling Water Reactor (BWR), at temperature 288 C and pressure of 8 MPa, to determine the speed to which the cracks spread in this material that is of the one that different components of a reactor are made, among those that it highlights the reactor core vessel. The application of the Hydrogen Chemistry of the Water is presented (HWC) that is one alternative to diminish the corrosion effect low stress in the component, this is gets controlling the quantity of oxygen and of hydrogen as well as the conductivity of the water. The rehearsal is made following the principles of the Mechanics of Elastic Lineal Fracture (LEFM) that considers a crack of defined size with little plastic deformation in the tip of this; the measurement of crack advance is continued with the technique of potential drop of direct current of alternating signal, this is contained inside the standard Astm E-647 (Method of Test Standard for the Measurement of Speed of Growth of Crack by fatigue) that is the one that indicates us as carrying out this test. The specifications that should complete the test tubes that are rehearsed as for their dimensions, it forms, finish and determination of mechanical properties (tenacity to the fracture mainly) they are contained inside the norm Astm E-399, the one which it is also based on the principles of the fracture mechanics. The obtained results were part of a database to be compared with those of other rehearsals under different conditions, Normal Chemistry of the Water (NWC) and it dilutes with high content of O{sub 2}; to determine the conditions that slow more the phenomena of stress corrosion cracking, as well as the effectiveness of the used chemistry and of the method of

  15. On the Burning of Plutonium Originating from Light Water Reactor Use in a Fast Molten Salt Reactor—A Neutron Physical Study

    Directory of Open Access Journals (Sweden)

    Bruno Merk

    2015-11-01

    Full Text Available An efficient burning of the plutonium produced during light water reactor (LWR operation has the potential to significantly improve the sustainability indices of LWR operations. The work offers a comparison of the efficiency of Pu burning in different reactor configurations—a molten salt fast reactor, a LWR with mixed oxide (MOX fuel, and a sodium cooled fast reactor. The calculations are performed using the HELIOS 2 code. All results are evaluated against the plutonium burning efficiency determined in the Consommation Accrue de Plutonium dans les Réacteurs à Neutrons RApides (CAPRA project. The results are discussed with special view on the increased sustainability of LWR use in the case of successful avoidance of an accumulation of Pu which otherwise would have to be forwarded to a final disposal. A strategic discussion is given about the unavoidable plutonium production, the possibility to burn the plutonium to avoid a burden for the future generations which would have to be controlled.

  16. The D&D of the Experimental Boiling Water Reactor (EBWR)

    Energy Technology Data Exchange (ETDEWEB)

    Fellhauer, C.R.; Boling, L.E.; Yule, T.J.; Bhattacharyya, S.K.

    1996-03-01

    Argonne National Laboratory has completed the D&D of the Experimental Boiling Water Reactor. The Project consisted of decontaminating and for packaging as radioactive waste the reactor vessel and internals, contaminated piping systems, miscellaneous tanks, pumps, and associated equipment. The D&D work involved dismantling process equipment and associated plumbing, ductwork drain lines, etc., performing size reduction of reactor vessel internals in the fuel pool, packaging and manifesting all radioactive and mixed waste, and performing a thorough survey of the facility after the removal of activated and contaminated material. Non-radioactive waste was disposed of in the ANL-E landfill or recycled. In January 1996 the EBWR facility was formally decommissioned and transferred from EM-40 to EM-30. This paper will discuss the details of this ten year effort.

  17. Implementation of strength pareto evolutionary algorithm II in the multiobjective burnable poison placement optimization of KWU pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Gharari, Rahman [Nuclear Science and Technology Research Institute (NSTRI), Tehran (Iran, Islamic Republic of); Poursalehi, Navid; Abbasi, Mohmmadreza; Aghale, Mahdi [Nuclear Engineering Dept, Shahid Beheshti University, Tehran (Iran, Islamic Republic of)

    2016-10-15

    In this research, for the first time, a new optimization method, i.e., strength Pareto evolutionary algorithm II (SPEA-II), is developed for the burnable poison placement (BPP) optimization of a nuclear reactor core. In the BPP problem, an optimized placement map of fuel assemblies with burnable poison is searched for a given core loading pattern according to defined objectives. In this work, SPEA-II coupled with a nodal expansion code is used for solving the BPP problem of Kraftwerk Union AG (KWU) pressurized water reactor. Our optimization goal for the BPP is to achieve a greater multiplication factor (K-e-f-f) for gaining possible longer operation cycles along with more flattening of fuel assembly relative power distribution, considering a safety constraint on the radial power peaking factor. For appraising the proposed methodology, the basic approach, i.e., SPEA, is also developed in order to compare obtained results. In general, results reveal the acceptance performance and high strength of SPEA, particularly its new version, i.e., SPEA-II, in achieving a semioptimized loading pattern for the BPP optimization of KWU pressurized water reactor.

  18. Implementation of Strength Pareto Evolutionary Algorithm II in the Multiobjective Burnable Poison Placement Optimization of KWU Pressurized Water Reactor

    Directory of Open Access Journals (Sweden)

    Rahman Gharari

    2016-10-01

    Full Text Available In this research, for the first time, a new optimization method, i.e., strength Pareto evolutionary algorithm II (SPEA-II, is developed for the burnable poison placement (BPP optimization of a nuclear reactor core. In the BPP problem, an optimized placement map of fuel assemblies with burnable poison is searched for a given core loading pattern according to defined objectives. In this work, SPEA-II coupled with a nodal expansion code is used for solving the BPP problem of Kraftwerk Union AG (KWU pressurized water reactor. Our optimization goal for the BPP is to achieve a greater multiplication factor (Keff for gaining possible longer operation cycles along with more flattening of fuel assembly relative power distribution, considering a safety constraint on the radial power peaking factor. For appraising the proposed methodology, the basic approach, i.e., SPEA, is also developed in order to compare obtained results. In general, results reveal the acceptance performance and high strength of SPEA, particularly its new version, i.e., SPEA-II, in achieving a semioptimized loading pattern for the BPP optimization of KWU pressurized water reactor.

  19. Thin-film fixed-bed reactor for solar photocatalytic inactivation of Aeromonas hydrophila: influence of water quality.

    Science.gov (United States)

    Khan, Sadia J; Reed, Robert H; Rasul, Mohammad G

    2012-11-29

    Controlling fish disease is one of the major concerns in contemporary aquaculture. The use of antibiotics or chemical disinfection cannot provide a healthy aquaculture system without residual effects. Water quality is also important in determining the success or failure of fish production. Several solar photocatalytic reactors have been used to treat drinking water or waste water without leaving chemical residues. This study has investigated the impact of several key aspects of water quality on the inactivation of the pathogenic bacterium Aeromonas hydrophila using a pilot-scale thin-film fixed-bed reactor (TFFBR) system. The level of inactivation of Aeromonas hydrophila ATCC 35654 was determined using a TFFBR with a photocatalytic area of 0.47 m(2) under the influence of various water quality variables (pH, conductivity, turbidity and colour) under high solar irradiance conditions (980-1100 W m(-2)), at a flow rate of 4.8 L h(-1) through the reactor. Bacterial enumeration were obtained through conventional plate count using trypticase soy agar media, cultured in conventional aerobic conditions to detect healthy cells and under ROS-neutralised conditions to detect both healthy and sub-lethally injured (oxygen-sensitive) cells. The results showed that turbidity has a major influence on solar photocatalytic inactivation of A. hydrophila. Humic acids appear to decrease TiO(2) effectiveness under full sunlight and reduce microbial inactivation. pH in the range 7-9 and salinity both have no major effect on the extent of photoinactivation or sub-lethal injury. This study demonstrates the effectiveness of the TFFBR in the inactivation of Aeromonas hydrophila under the influence of several water quality variables at high solar irradiance, providing an opportunity for the application of solar photocatalysis in aquaculture systems, as long as turbidity remains low.

  20. Detoxification of tar water by anaerobic treatment in an UASB reactor - A study of the degradation of phenolic compounds in a combined denitrifying and anaerobic UASB reactor

    Energy Technology Data Exchange (ETDEWEB)

    Skibsted Mogensen, A.; Schmidt, J.E.; Ahring, B.K. [Technical Univ., Dept. of Environmental Science and Engineering, Lyngby (Denmark)

    1998-08-01

    The digestion of pyrolysis condensate (PC) in two combined anaerobic and denitrifying upflow anaerobic sludge blanket (UASB) reactors was studied. A COD removal of 80% was achieved with an influent concentration of 1.43% PC{sub pH}. When the reactor was fed with 100% PC during a period of 10 days good reactor operation was observed. Despite less than one retention time of operation, the results indicated clearly, that PC could be used as substrate in the biogas process, even in very high concentrations. A combined anaerobic and denitrifying UASB reactor was successfully digesting 5.5% of wet oxidised PC, but further loading increments deteriorated the anaerobic digestion process. The detoxification of PC was studied by determining the degradation of phenols during reactor operation and the toxicity of PC was decreased more than 77 times witnessed through decreased inhibition of the nitrification process. Phenol, methyl and dimethyl phenols along with methoxyphenols were shown to be degraded within the reactor systems. Degradation rates for phenol and substituted phenols were determined by the reactor experiment indicating that the biomass was selective towards the substrates. Maximum growth rates and half saturation constants for phenol, 4-Methylphenol and 2-Methoxy-4-methylphenol were determined in batch experiments. The degradation rates of phenols determined in batches were significantly higher compared to degradation rates observed in the reactor systems digesting pyrolysis condensate. Determination of the population of methanogens revealed, that Methanosarcina was found only in one reactor, while Methanobacterium and Methanosaeta were found in reactors and inoculum. A UASB reactor was designed for the treatment of pyrolysis condensate at the gasification plant at Harbooere, Denmark. (au) 35 refs.

  1. Modeling of water lighting process and calculation of the reactor-clarifier to improve energy efficiency

    Science.gov (United States)

    Skolubovich, Yuriy; Skolubovich, Aleksandr; Voitov, Evgeniy; Soppa, Mikhail; Chirkunov, Yuriy

    2017-10-01

    The article considers the current questions of technological modeling and calculation of the new facility for cleaning natural waters, the clarifier reactor for the optimal operating mode, which was developed in Novosibirsk State University of Architecture and Civil Engineering (SibSTRIN). A calculation technique based on well-known dependences of hydraulics is presented. A calculation example of a structure on experimental data is considered. The maximum possible rate of ascending flow of purified water was determined, based on the 24 hour clarification cycle. The fractional composition of the contact mass was determined with minimal expansion of contact mass layer, which ensured the elimination of stagnant zones. The clarification cycle duration was clarified by the parameters of technological modeling by recalculating maximum possible upward flow rate of clarified water. The thickness of the contact mass layer was determined. Likewise, clarification reactors can be calculated for any other lightening conditions.

  2. Environmentally assisted cracking in light water reactors annual report January - December 2005.

    Energy Technology Data Exchange (ETDEWEB)

    Alexandreanu, B.; Chen, Y.; Chopra, O. K.; Chung, H. M.; Gruber, E. E.; Shack, W. J.; Soppet, W. K.

    2007-08-31

    This report summarizes work performed from January to December 2005 by Argonne National Laboratory on fatigue and environmentally assisted cracking in light water reactors (LWRs). Existing statistical models for estimating the fatigue life of carbon and low-alloy steels and austenitic stainless steels (SSs) as a function of material, loading, and environmental conditions were updated. Also, the ASME Code fatigue adjustment factors of 2 on stress and 20 on life were critically reviewed to assess the possible conservatism in the current choice of the margins. An approach, based on an environmental fatigue correction factor, for incorporating the effects of LWR environments into ASME Section III fatigue evaluations is discussed. The susceptibility of austenitic stainless steels and their welds to irradiation-assisted stress corrosion cracking (IASCC) is being evaluated as a function of the fluence level, water chemistry, material chemistry, and fabrication history. For this task, crack growth rate (CGR) tests and slow strain rate tensile (SSRT) tests are being conducted on various austenitic SSs irradiated in the Halden boiling water reactor. The SSRT tests are currently focused on investigating the effects of the grain boundary engineering process on the IASCC of the austenitic SSs. The CGR tests were conducted on Type 316 SSs irradiated to 0.45-3.0 dpa, and on sensitized Type 304 SS and SS weld heat-affected-zone material irradiated to 2.16 dpa. The CGR tests on materials irradiated to 2.16 dpa were followed by a fracture toughness test in a water environment. The effects of material composition, irradiation, and water chemistry on growth rates are discussed. The susceptibility of austenitic SS core internals to IASCC and void swelling is also being evaluated for pressurized water reactors. Both SSRT tests and microstructural examinations are being conducted on specimens irradiated in the BOR-60 reactor in Russia to doses up to 20 dpa. Crack growth rate data

  3. Experimental Evaluation of a Water Shield for a Surface Power Reactor

    Science.gov (United States)

    Pearson, J. Boise; Reid, Robert S.

    2006-01-01

    As part of the Vision for Space Exploration the end of the next decade will bring man back to the surface of the moon. One of the most critical issues for the establishment of human presence on the moon will be the availability of compact power sources. The establishment of man on the moon will require power from greater than 10's of kWt's in follow on years. Nuclear reactors are extremely we11 suited to meet the needs for power generation on the lunar or Martian surface. reactor system. Several competing concepts exist for lightweight, safe, robust shielding systems such as a water shield, lithium hydride (LiH), Boron Carbide, and others. Water offers several potential advantages, including reduced cost, reduced technical risk, and reduced mass. Water has not typically been considered for space reactor applications because of the need for gravity to remove the potential for radiation streaming paths. The water shield concept relies on predictions of passive circulation of the shield water by natural convection to adequately cool the shield. This prediction needs to be experimentally evaluated, especially for shields with complex geometries. MSFC has developed the experience and fac necessary to do this evaluation in the Early Flight Fission - Test Facility (EFF-TF).

  4. Preliminary Evaluation of Convective Heat Transfer in a Water Shield for a Surface Power Reactor

    Science.gov (United States)

    Pearson J. Boise; Reid, Robert S.

    2007-01-01

    As part of the Vision for Space Exploration, the end of the next decade will bring man back to the surface of the moon. A crucial issue for the establishment of human presence on the moon will be the availability of compact power sources. This presence could require greater than 10's of kWt's in follow on years. Nuclear reactors are well suited to meet the needs for power generation on the lunar or Martian surface. Radiation shielding is a key component of any surface power reactor system. Several competing concepts exist for lightweight, safe, robust shielding systems such as a water shield, lithium hydride (LiH), and boron carbide. Water offers several potential advantages, including reduced cost, reduced technical risk, and reduced mass. Water has not typically been considered for space reactor applications because of the need for gravity to fix the location of any vapor that could form radiation streaming paths. The water shield concept relies on the predictions of passive circulation of the shield water by natural convection to adequately cool the shield. This prediction needs to be experimentally evaluated, especially for shields with complex geometries. NASA Marshall Space Flight Center has developed the experience and facilities necessary to do this evaluation in its Early Flight Fission - Test Facility (EFF-TF).

  5. Environmentally assisted cracking in Light Water Reactors. Volume 16: Semiannual report, October 1992--March 1993

    Energy Technology Data Exchange (ETDEWEB)

    Chung, H.M.; Chopra, O.K.; Ruther, W.E.; Kassner, T.F.; Michaud, W.F.; Park, J.Y.; Sanecki, J.E.; Shack, W.J.

    1993-09-01

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors (LWRs) during the six months from October 1992 to March 1993. Fatigue and EAC of piping, pressure vessels, and core components in LWRs are important concerns as extended reactor lifetimes are envisaged. Topics that have been investigated include (1) fatigue of low-alloy steel used in piping, steam generators, and reactor pressure vessels. (2) EAC of cast stainless steels (SSs), (3) radiation-induced segregation and irradiation-assisted stress corrosion cracking of Type 304 SS after accumulation of relatively high fluence, and (4) EAC of low-alloy steels. Fatigue tests were conducted on medium-sulfur-content A106-Gr B piping and A533-Gr B pressure vessel steels in simulated PWR water and in air. Additional crack growth data were obtained on fracture-mechanics specimens of cast austenitic SSs in the as-received and thermally aged conditions and chromium-nickel-plated A533-Gr B steel in simulated boiling-water reactor (BWR) water at 289{degrees}C. The data were compared with predictions based on crack growth correlations for ferritic steels in oxygenated water and correlations for wrought austenitic SS in oxygenated water developed at ANL and rates in air from Section XI of the ASME Code. Microchemical and microstructural changes in high- and commercial-purity Type 304 SS specimens from control-blade absorber tubes and a control-blade sheath from operating BWRs were studied by Auger electron spectroscopy and scanning electron microscopy.

  6. Oxidation of hazardous waste in supercritical water: Part 1, A comparison of modeling and experimental results for methanol destruction

    Energy Technology Data Exchange (ETDEWEB)

    Butler, P.B. [Iowa Univ., Iowa City, IA (United States); Bergan, N.E.; Bramlette, T.T. [Sandia National Labs., Livermore, CA (United States); Westbrook, C.K.; Pitz, W.J. [Lawrence Livermore National Lab., CA (United States)

    1991-12-31

    Recent experiments at Sandia National Laboratories conducted in conjunction with MODEC Corporation have demonstrated successful clean-up of contaminated water in a supercritical water reactor. These experiments targeted wastes of interest to Department of Energy (DOE) production facilities. In this paper we present modeling and experimental results for a surrogate waste containing 98% water, 2% methanol, and parts per million of chlorinated hydrocarbons and laser dyes. Our initial modeling results consider only methanol and water. Experimental data are available for inlet and outlet conditions (composition, flow rate, and temperature), and axial temperature profiles along the outside reactor wall. The purpose of our model is to study the chemical and physical processes inside the reactor. We are particularly interested in the parameters that control the location of the reaction zone. The laboratory-scale reactor operates at 25 MPa., between 300 K and 900 K; it is modeled as a plug-flow reactor with a specified temperature profile. We use Chemkin Real-Gas to calculate mixture density, with the Peng-Robinson equation of state. The elementary reaction set for methanol oxidation and reactions of other C{sub 1} and C{sub 2} hydrocarbons is based on previous models for gas-phase kinetics. Results from our calculations show that the methanol is 99.99% destroyed at 1/3 the total reactor length. Although we were not able to measure composition of the fluid inside the experimental reactor, this prediction occurs near the location of the high reactor temperature. This indicates that the chemical reaction is triggered by thermal effects, not kinetic rates. Results from ideal-gas calculations show nearly identical chemical profiles inside the reactor in dimensionless distance. However, reactor residence times are overpredicted by nearly 150% using an ideal-gas assumption.

  7. CLSM bleed water reduction test results

    Energy Technology Data Exchange (ETDEWEB)

    Langton, C.A. [Westinghouse Savannah River Company, Aiken, SC (United States); Rajendran, N. [Bechtel Savannah River Company, Aiken, SC (United States)

    1997-04-21

    Previous testing by BSRI/SRTC/Raytheon indicated that the CLSM specified for the Tank 20 closure generates about 6 gallons (23 liters) of bleed water per cubic yard of material (0.76 m3).1 This amount to about 10 percent of the total mixing water. HLWE requested that the CLSM mix be optimized to reduce bleed water while maintaining flow. Elimination of bleed water from the CLSM mix specified for High-Level Waste Tank Closure will result in waste minimization, time savings and cost savings. Over thirty mixes were formulated and evaluated at the on-site Raytheon Test Laboratory. Improved low bleed water CLSM mixes were identified. Results are documented in this report.

  8. Destruction of plutonium using non-uranium fuels in pressurized water reactor peripheral assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Chodak, III, Paul [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    1996-05-01

    This thesis examines and confirms the feasibility of using non-uranium fuel in a pressurized water reactor (PWR) radial blanket to eliminate plutonium of both weapons and civilian origin. In the equilibrium cycle, the periphery of the PWR is loaded with alternating fresh and once burned non-uranium fuel assemblies, with the interior of the core comprised of conventional three batch UO2 assemblies. Plutonium throughput is such that there is no net plutonium production: production in the interior is offset by destruction in the periphery. Using this approach a 50 MT WGPu inventory could be eliminated in approximately 400 reactor years of operation. Assuming all other existing constraints were removed, the 72 operating US PWRs could disposition 50 MT of WGPu in 5.6 years. Use of a low fissile loading plutonium-erbium inert-oxide-matrix composition in the peripheral assemblies essentially destroys 100% of the 239Pu and ≥90% {sub total}Pu over two 18 month fuel cycles. Core radial power peaking, reactivity vs EFPD profiles and core average reactivity coefficients were found to be comparable to standard PWR values. Hence, minimal impact on reload licensing is anticipated. Examination of potential candidate fuel matrices based on the existing experience base and thermo-physical properties resulted in the recommendation of three inert fuel matrix compositions for further study: zirconia, alumina and TRISO particle fuels. Objective metrics for quantifying the inherent proliferation resistance of plutonium host waste and fuel forms are proposed and were applied to compare the proposed spent WGPu non-uranium fuel to spent WGPu MOX fuels and WGPu borosilicate glass logs. The elimination disposition option spent non-uranium fuel product was found to present significantly greater barriers to proliferation than other plutonium disposal products.

  9. A non-linear reduced order methodology applicable to boiling water reactor stability analysis

    Energy Technology Data Exchange (ETDEWEB)

    Prill, Dennis Paul

    2013-12-06

    Thermal-hydraulic coupling between power, flow rate and density, intensified by neutronics feedback are the main drivers of boiling water reactor (BWR) stability behavior. High-power low-flow conditions in connection with unfavorable power distributions can lead the BWR system into unstable regions where power oscillations can be triggered. This important threat to operational safety requires careful analysis for proper understanding. Analyzing an exhaustive parameter space of the non-linear BWR system becomes feasible with methodologies based on reduced order models (ROMs), saving computational cost and improving the physical understanding. Presently within reactor dynamics, no general and automatic prediction of high-dimensional ROMs based on detailed BWR models are available. In this thesis a systematic self-contained model order reduction (MOR) technique is derived which is applicable for several classes of dynamical problems, and in particular to BWRs of any degree of details. Expert knowledge can be given by operational, experimental or numerical transient data and is transfered into an optimal basis function representation. The methodology is mostly automated and provides the framework for the reduction of various different systems of any level of complexity. Only little effort is necessary to attain a reduced version within this self-written code which is based on coupling of sophisticated commercial software. The methodology reduces a complex system in a grid-free manner to a small system able to capture even non-linear dynamics. It is based on an optimal choice of basis functions given by the so-called proper orthogonal decomposition (POD). Required steps to achieve reliable and numerical stable ROM are given by a distinct calibration road-map. In validation and verification steps, a wide spectrum of representative test examples is systematically studied regarding a later BWR application. The first example is non-linear and has a dispersive character

  10. Core damage severity evaluation for pressurized water reactors by artificial intelligence methods

    Science.gov (United States)

    Mironidis, Anastasios Pantelis

    1998-12-01

    During the course of nuclear power evolution, accidents have occurred. However, in the western world, none of them had a severe impact on the public because of the design features of nuclear plants. In nuclear reactors, barriers constitute physical obstacles to uncontrolled fission product releases. These barriers are an important factor in safety analysis. During an accident, reactor safety systems become actuated to prevent the barriers from been breached. In addition, operators are required to take specified actions, meticulously depicted in emergency response procedures. In an accident, on-the-spot knowledge regarding the condition of the core is necessary. In order to make the right decisions toward mitigating the accident severity and its consequences, we need to know the status of the core [1, 3]. However, power plant instrumentation that can provide a direct indication of the status of the core during the time when core damage is a potential outcome, does not exist. Moreover, the information from instruments may have large uncertainty of various types. Thus, a very strong potential for misinterpreting incoming information exists. This research endeavor addresses the problem of evaluating the core damage severity of a Pressurized Water Reactor during a transient or an accident. An expert system has been constructed, that incorporates knowledge and reasoning of human experts. The expert system's inference engine receives incoming plant data that originate in the plethora of core-related instruments. Its knowledge base relies on several massive, multivariate fuzzy logic rule-sets, coupled with several artificial neural networks. These mathematical models have encoded information that defines possible core states, based on correlations of parameter values. The inference process classifies the core as intact, or as experiencing clad damage and/or core melting. If the system detects a form of core damage, a quantification procedure will provide a numerical

  11. Numerical Analysis on the Calandria Tubes in the Moderator of a Heavy Water Reactor Using OpenFOAM and Other Codes

    Science.gov (United States)

    Chang, Se-Myong; Kim, Hyoung Tae

    2014-06-01

    CANDU, a prototype of heavy water reactor is modeled for the moderator system with porous media buoyancy-effect heat-transfer turbulence model. OpenFOAM, a set of C++ classes and libraries developed under the object-oriented concept, is selected as the tool of numerical analysis. The result from this computational code is compared with experiments and other commercial code data through ANSYS-CFX and COMSOL Multi-physics. The three-dimensional code concerning buoyancy force, turbulence, and heat transfer is tested and shown to be successful for the analysis of thermo-hydraulic system of heavy water reactors.

  12. Experimental studies on catalytic hydrogen recombiners for light water reactors; Experimentelle Untersuchungen zu katalytischen Wasserstoffkombinatoren fuer Leichtwasserreaktoren

    Energy Technology Data Exchange (ETDEWEB)

    Drinovac, P.

    2006-06-19

    In the course of core melt accidents in nuclear power plants a large amount of hydrogen can be produced and form an explosive or even detonative gas mixture with aerial oxygen in the reactor building. In the containment atmosphere of pressurized water reactors hydrogen combines a phlogistically with the oxygen present to form water vapor even at room temperature. In the past, experimental work conducted at various facilities has contributed little or nothing to an understanding of the operating principles of catalytic recombiners. Hence, the purpose of the present study was to conduct detailed investigations on a section of a recombiner essentially in order to deepen the understanding of reaction kinetics and heat transport processes. The results of the experiments presented in this dissertation form a large data base of measurements which provides an insight into the processes taking place in recombiners. The reaction-kinetic interpretation of the measured data confirms and deepens the diffusion theory - proposed in an earlier study. Thus it is now possible to validate detailed numeric models representing the processes in recombiners. Consequently the present study serves to broaden and corroborate competence in this significant area of reactor technology. In addition, the empirical knowledge thus gained may be used for a critical reassessment of previous numeric model calculations. (orig.)

  13. Characterization of a siphonal flow electro-coagulation reactor for the water de-pollution; Caracterisation d'un reacteur d'electrocoagulation a ecoulement siphoide pour la depollution des eaux

    Energy Technology Data Exchange (ETDEWEB)

    Deffontaines, B.; Deffontaines-Fourez, M.; Thivel, P.X. [Unversite du Littoral - Cote d' Opale, Centre Universitaire Descartes, Lab. d' Etude en Genie Industriel et Management Environnemental, 62 - Longuenesse (France)

    2001-07-01

    The aim of this study is the establishment of a global quantitative relation between the kinetic and the hydrodynamic of a siphonal flow reactor. First results of the application in dyeing effluents recycling illustrate the reactor performance on the MES abatement and the turbidity of the recycling waters in the production cycle. (A.L.B.)

  14. Ex-Vessel corium coolability and steam explosion energetics in nordic light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, T.N.; Ma, W.M.; Karbojian, A.; Kudinov, P.; Tran, C.T.; Hansson, C.R. [Royal Institute of Technology (KTH), (Sweden)

    2008-03-15

    This report presents advances and insights from the KTH's study on corium pool heat transfer in the BWR lower head; debris bed formation; steam explosion energetics; thermal hydraulics and coolability in bottom-fed and heterogeneous debris beds. Specifically, for analysis of heat transfer in a BWR lower plenum an advanced threedimensional simulation tool was developed and validated, using a so-called effective convectivity approach and Fluent code platform. An assessment of corium retention and coolability in the reactor pressure vessel (RPV) lower plenum by means of water supplied through the Control Rod Guide Tube (CRGT) cooling system was performed. Simulant material melt experiments were performed in an intermediate temperature range (1300-1600K) on DEFOR test facility to study formation of debris beds in high and low subcooled water pools characteristic of in-vessel and ex-vessel conditions. Results of the DEFOR-E scoping experiments and related analyses strongly suggest that porous beds formed in ex-vessel from a fragmented high-temperature debris is far from homogeneous. Calculation results of bed thermal hydraulics and dryout heat flux with a two-dimensional thermal-hydraulic code give the first basis to evaluate the extent by which macro and micro inhomogeneity can enhance the bed coolability. The development and validation of a model for two-phase natural circulation through a heated porous medium and its application to the coolability analysis of bottom-fed beds enables quantification of the significant effect of dryout heat flux enhancement (by a factor of 80-160%) due to bottom coolant injection. For a qualitative and quantitative understanding of steam explosion, the SHARP system and its image processing methodology were used to characterize the dynamics of a hot liquid (melt) drop fragmentation and the volatile liquid (coolant) vaporization. The experimental results provide a basis to suggest that the melt drop preconditioning is instrumental to

  15. STUDY OF WATER HAMMERS IN THE FILLING OF THE SYSTEM OF PRESSURE COMPENSATION IN THE WATER-COOLED AND WATER-MODERATED POWER REACTORS

    Directory of Open Access Journals (Sweden)

    A. V. Korolyev

    2017-01-01

    Full Text Available The research presented in the article conforms to the severe accident that took place at the Three Mail Island nuclear power plant in the USA. The research is focused on improving the reliability of the pressure compensator that is an important equipment of the primary circuit. In order to simulate such a situation, the stand has been developed to simulate the design of the pressurizer of the PWR-440 reactor, in particular an elliptical shape of the upper lid which has a steam outlet pipe at the top of the construction that creates conditions for occurrence of such water hammers. For the experiments, an installation has been created that makes it possible to measure and record the water hammering that occur when the tanks are filled. Measurement of the amplitude of the water hammering was carried out by a specially developed piezoelectric sensor, and the registration – by a light-beam oscilloscope. The technique of carrying out the experiment is described and the results of an experimental study of the water hammers arising when the vessels are completely filled are presented. Quantitative data were obtained on the amplitudes of the hydraulic impacts depending on the rate of filling of the vessel and the diameter of the outlet, the maximum pressure of the hydraulic shock was 7–9 atm. Comparison of calculated and experimental data has been performed. The allowable discrepancy is explained by the calculated value of the system stiffness coefficient, which did not take into account the presence of welded seams in the tank that imparts the system with additional rigidity. The calculated relationships are obtained, that make it possible to estimate the amplitudes of the water hammers through the acceleration of the water level in front of the outlet from a vessel with an elliptical bottom. The possibility of a water hammer in the pressure compensator is demonstrated by experiment and by theoretical calculations. Based on the experimental data, a

  16. Assessment of Water Ingress Accidents in a Modular High-Temperature Gas-Cooled Reactor

    OpenAIRE

    Zhang, Z.; Dong, Y; Scherer, W

    2005-01-01

    Severe water ingress accidents in the 200-MW HTR-module were assessed to determine the safety margins of modular pebble-bed high-temperature gas-cooled reactors (HTR-module). The 200-MW HTR-module was designed by Siemens under the criteria that no active safety protection systems were necessary because of its inherent safe nature. For simulating the behavior of the HTR-module during severe water ingress accidents, a water, steam, and helium multiphase cavity model was developed and implemente...

  17. Boiling water reactor in a prestressed reinforced concrete vessel for an atomic central heating-and-power plant

    Energy Technology Data Exchange (ETDEWEB)

    Tokarev, Yu.I.; Sokolov, I.N.; Skvortsov, S.A.; Sidorov, A.M.; Krauze, L.V.

    1978-04-01

    The possibility of using a boiling water reactor in a prestressed reinforced concrete vessel for an atomic central heating-and-power plant (CHPP) was considered, with design features of the reactor intended for a two-purpose plant. A prestressed reinforced concrete vessel and integral arrangement of the primary circuit ensured reliability of the atomic CHPP using various CHPP flowsheets.

  18. Air scaling and modeling studies for the 1/5-scale mark I boiling water reactor pressure suppression experiment

    Energy Technology Data Exchange (ETDEWEB)

    Lai, W.; McCauley, E.W.

    1978-01-04

    Results of table-top model experiments performed to investigate pool dynamics effects due to a postulated loss-of-coolant accident (LOCA) for the Peach Bottom Mark I boiling water reactor containment system guided subsequent conduct of the 1/5-scale torus experiment and provided new insight into the vertical load function (VLF). Pool dynamics results were qualitatively correct. Experiments with a 1/64-scale fully modeled drywell and torus showed that a 90/sup 0/ torus sector was adequate to reveal three-dimensional effects; the 1/5-scale torus experiment confirmed this.

  19. Coagulant recovery from water treatment plant sludge and reuse in post-treatment of UASB reactor effluent treating municipal wastewater.

    Science.gov (United States)

    Nair, Abhilash T; Ahammed, M Mansoor

    2014-09-01

    In the present study, feasibility of recovering the coagulant from water treatment plant sludge with sulphuric acid and reusing it in post-treatment of upflow anaerobic sludge blanket (UASB) reactor effluent treating municipal wastewater were studied. The optimum conditions for coagulant recovery from water treatment plant sludge were investigated using response surface methodology (RSM). Sludge obtained from plants that use polyaluminium chloride (PACl) and alum coagulant was utilised for the study. Effect of three variables, pH, solid content and mixing time was studied using a Box-Behnken statistical experimental design. RSM model was developed based on the experimental aluminium recovery, and the response plots were developed. Results of the study showed significant effects of all the three variables and their interactions in the recovery process. The optimum aluminium recovery of 73.26 and 62.73 % from PACl sludge and alum sludge, respectively, was obtained at pH of 2.0, solid content of 0.5 % and mixing time of 30 min. The recovered coagulant solution had elevated concentrations of certain metals and chemical oxygen demand (COD) which raised concern about its reuse potential in water treatment. Hence, the coagulant recovered from PACl sludge was reused as coagulant for post-treatment of UASB reactor effluent treating municipal wastewater. The recovered coagulant gave 71 % COD, 80 % turbidity, 89 % phosphate, 77 % suspended solids and 99.5 % total coliform removal at 25 mg Al/L. Fresh PACl also gave similar performance but at higher dose of 40 mg Al/L. The results suggest that coagulant can be recovered from water treatment plant sludge and can be used to treat UASB reactor effluent treating municipal wastewater which can reduce the consumption of fresh coagulant in wastewater treatment.

  20. Automatic boiling water reactor control rod pattern design using particle swarm optimization algorithm and local search

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Cheng-Der, E-mail: jdwang@iner.gov.tw [Nuclear Engineering Division, Institute of Nuclear Energy Research, No. 1000, Wenhua Rd., Jiaan Village, Longtan Township, Taoyuan County 32546, Taiwan, ROC (China); Lin, Chaung [National Tsing Hua University, Department of Engineering and System Science, 101, Section 2, Kuang Fu Road, Hsinchu 30013, Taiwan (China)

    2013-02-15

    Highlights: ► The PSO algorithm was adopted to automatically design a BWR CRP. ► The local search procedure was added to improve the result of PSO algorithm. ► The results show that the obtained CRP is the same good as that in the previous work. -- Abstract: This study developed a method for the automatic design of a boiling water reactor (BWR) control rod pattern (CRP) using the particle swarm optimization (PSO) algorithm. The PSO algorithm is more random compared to the rank-based ant system (RAS) that was used to solve the same BWR CRP design problem in the previous work. In addition, the local search procedure was used to make improvements after PSO, by adding the single control rod (CR) effect. The design goal was to obtain the CRP so that the thermal limits and shutdown margin would satisfy the design requirement and the cycle length, which is implicitly controlled by the axial power distribution, would be acceptable. The results showed that the same acceptable CRP found in the previous work could be obtained.

  1. Mixing of cooling water in the mixing chambers of the HPLWR-High Performance Light Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Wank, Alexander, E-mail: alexander.wank@siemens.co [Karlsruhe Institute of Technology (KIT), Institute for Nuclear and Energy Technologies, P.O. Box 3640, 76021 Karlsruhe (Germany); Starflinger, Joerg; Schulenberg, Thomas [Karlsruhe Institute of Technology (KIT), Institute for Nuclear and Energy Technologies, P.O. Box 3640, 76021 Karlsruhe (Germany); Laurien, Eckart [University of Stuttgart, Institute for Nuclear Technology and Energy Systems (IKE) Pfaffenwaldring 31, D-70550 Stuttgart (Germany)

    2010-10-15

    The High Performance Light Water Reactor (HPLWR), a supercritical water cooled reactor concept with multiple heat-up steps, requires efficient mixing of the coolant between these steps to minimize hot spots in the core. Analyzing and improving the mixing in the mixing chamber above the core, situated between evaporator and superheater assemblies, and below the core, between the first and second superheater, is one of the challenges in the design process of the HPLWR. Different measures to enhance mixing have been studied with CFD analyses, in which a new design approach has been applied to the upper mixing chamber. It simplifies the complex structures and takes the effects of the disregarded structures into account by introducing source terms into the momentum equations.

  2. Status of CEA studies on the fast spectrum option for supercritical water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Marsault, Ph.; Thevenot, C.; Rimpault, G.; Antoni, O.; Arnoux, P.; Aniel, S. [CEA Cadarache, 13108 Saint-Paul-lez-Durance (France)

    2006-07-01

    Full text: The concepts of supercritical-pressure light water cooled reactors (SCWR) have been proposed and studied for almost 40 years. However, limited results are available on these concepts and in particular on the key technological points related to concept feasibility. CEA is conducting targeted R and D studies to be in a position to have a better judgment of the interest of these concepts. The paper reports on the work progress on the fast spectrum version of SCWR. The CEA R and D programme is focused on feasibility and conceptual design studies of a SCWR version with a fast neutron spectrum. The challenge is to determine a core design where high conversion ratio must also meet a negative void coefficient at end of cycle for a power range of about 1000 MWe and burnup near 60 GWd/t. First evaluations are performed with a pre-dimensioning tool (COPERNIC sheets) and followed by neutronic and thermal-hydraulic applications (ERANOS code system and CATHARE 2.5 code) Other parts of the programme are considered to be essential in order to be able to address the key points of SCWR feasibility: - extension to supercritical conditions of computer codes needed to make evaluations and limited conceptual design studies (reactor core physics, thermal-hydraulics). Neutronic studies have to take in account coupling effect with thermal-hydraulic relative to strong water density change along the fuel assembly: the CEA effort cover a generic reference calculation with coupling TRIPOLI and FLICA code (neutronic Monte-Carlo and thermalhydraulic) for the SCWR thermal spectrum option. Other main effort concern the adaptation of CATHARE 2.5 to fully describe depressurization from supercritical domain: adaptation of correlation, ability to perform computation in both supercritical and standard domain; - material studies, the cladding material being the major concern: tests are performed on selected material in despite of experimental difficulties dues to the high temperature range

  3. Establishment of a Hub for the Light Water Reactor Sustainability Online Monitoring Community

    Energy Technology Data Exchange (ETDEWEB)

    Nancy J. Lybeck; Magdy S. Tawfik; Binh T. Pham

    2011-08-01

    Implementation of online monitoring and prognostics in existing U.S. nuclear power plants will involve coordinating the efforts of national laboratories, utilities, universities, and private companies. Internet-based collaborative work environments provide necessary communication tools to facilitate interaction between geographically diverse participants. Available technologies were considered, and a collaborative workspace was established at INL as a hub for the light water reactor sustainability online monitoring community.

  4. Multi-physical developments for safety related investigations of low moderated boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Schlenker, Markus Thomas

    2014-12-19

    The main objective of this dissertation is the development and optimization of a low moderated boiling water reactor (BWR) core with improved fuel utilization to be incorporated in a Gen II BWR nuclear power plant. The assessment of the new core design is done by comparing it with a full MOX BWR core design regarding neutron physical and thermal-hydraulic design and safety criteria (e.g. inherent reactivity coefficients) and different sustainability parameters (e.g. conversion ratio).

  5. Light-water-reactor safety research program: quarterly progress report, July--September 1977

    Energy Technology Data Exchange (ETDEWEB)

    None

    1978-01-01

    Progress is summarized on the Argonne National Laboratory work performed during July, August, and September 1977 on water-reactor-safety problems. The following research and development areas are covered: (1) loss-of-coolant accident research: heat transfer and fluid dynamics; (2) transient fuel response and fission-product release program; (3) mechanical properties of Zircaloy containing oxygen; and (4) steam-explosion studies.

  6. Literature search on Light Water Reactor (LWR) fuel and absorber rod fabrication, 1960--1976

    Energy Technology Data Exchange (ETDEWEB)

    Sample, C R [comp.

    1977-02-01

    A literature search was conducted to provide information supporting the design of a conceptual Light Water Reactor (LWR) Fuel Fabrication plant. Emphasis was placed on fuel processing and pin bundle fabrication, effects of fuel impurities and microstructure on performance and densification, quality assurance, absorber and poison rod fabrication, and fuel pin welding. All data have been taken from publicly available documents, journals, and books. This work was sponsored by the Finishing Processes-Mixed Oxide (MOX) Fuel Fabrication Studies program at HEDL.

  7. Analysis of a Partial MOX Core Design with Tritium Targets for Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Anistratov, Dmitriy Y. [Texas A & M Univ., College Station, TX (United States); Adams, Marvin L. [Texas A & M Univ., College Station, TX (United States)

    1998-04-19

    This report constitutes tangible and verifiable deliverable associated with the task To study the effects of using WG MOX fuel in tritium-producing LWR” of the subproject Water Reactor Options for Disposition of Plutonium. The principal investigators of this subproject are Naeem M. Abdurrahman of the University of Texas at Austin and Marvin L. Adams of Texas A&M University. This work was sponsored by the Amarillo National Resource Center for Plutonium.

  8. Defluoridation of drinking water by electrocoagulation/electroflotation in a stirred tank reactor with a comparative performance to an external-loop airlift reactor

    Energy Technology Data Exchange (ETDEWEB)

    Essadki, A.H., E-mail: essadki@hotmail.com [Ecole Superieure de Technologie de Casablanca, BP 8012, Oasis, Casablanca (Morocco); Gourich, B. [Ecole Superieure de Technologie de Casablanca, BP 8012, Oasis, Casablanca (Morocco); Vial, Ch. [Laboratoire de Genie Chimique et Biochimique, LGCB-UBP/ENSCCF, 24 avenue des Landais, BP 206, 63174 Aubiere Cedex (France); Delmas, H. [Laboratoire de Genie Chimique, ENSIACET-INPT, 5 rue Paulin Talabot, 31106 Toulouse (France); Bennajah, M. [Ecole Superieure de Technologie de Casablanca, BP 8012, Oasis, Casablanca (Morocco); Laboratoire de Genie Chimique, ENSIACET-INPT, 5 rue Paulin Talabot, 31106 Toulouse (France)

    2009-09-15

    Defluoridation using batch electrocoagulation/electroflotation (EC/EF) was carried out in two reactors for comparison purpose: a stirred tank reactor (STR) close to a conventional EC cell and an external-loop airlift reactor (ELAR) that was recently described as an innovative reactor for EC. The respective influences of current density, initial concentration and initial pH on the efficiency of defluoridation were investigated. The same trends were observed in both reactors, but the efficiency was higher in the STR at the beginning of the electrolysis, whereas similar values were usually achieved after 15 min operation. The influence of the initial pH was explained using the analyses of sludge composition and residual soluble aluminum species in the effluents, and it was related to the prevailing mechanisms of defluoridation. Fluoride removal and sludge reduction were both favored by an initial pH around 4, but this value required an additional pre-treatment for pH adjustment. Finally, electric energy consumption was similar in both reactors when current density was lower than 12 mA/cm{sup 2}, but mixing and complete flotation of the pollutants were achieved without additional mechanical power in the ELAR, using only the overall liquid recirculation induced by H{sub 2} microbubbles generated by water electrolysis, which makes subsequent treatments easier to carry out.

  9. Defluoridation of drinking water by electrocoagulation/electroflotation in a stirred tank reactor with a comparative performance to an external-loop airlift reactor.

    Science.gov (United States)

    Essadki, A H; Gourich, B; Vial, Ch; Delmas, H; Bennajah, M

    2009-09-15

    Defluoridation using batch electrocoagulation/electroflotation (EC/EF) was carried out in two reactors for comparison purpose: a stirred tank reactor (STR) close to a conventional EC cell and an external-loop airlift reactor (ELAR) that was recently described as an innovative reactor for EC. The respective influences of current density, initial concentration and initial pH on the efficiency of defluoridation were investigated. The same trends were observed in both reactors, but the efficiency was higher in the STR at the beginning of the electrolysis, whereas similar values were usually achieved after 15min operation. The influence of the initial pH was explained using the analyses of sludge composition and residual soluble aluminum species in the effluents, and it was related to the prevailing mechanisms of defluoridation. Fluoride removal and sludge reduction were both favored by an initial pH around 4, but this value required an additional pre-treatment for pH adjustment. Finally, electric energy consumption was similar in both reactors when current density was lower than 12mA/cm(2), but mixing and complete flotation of the pollutants were achieved without additional mechanical power in the ELAR, using only the overall liquid recirculation induced by H(2) microbubbles generated by water electrolysis, which makes subsequent treatments easier to carry out.

  10. 10 CFR Appendix J to Part 50 - Primary Reactor Containment Leakage Testing for Water-Cooled Power Reactors

    Science.gov (United States)

    2010-01-01

    ...-Cooled Power Reactors J Appendix J to Part 50 Energy NUCLEAR REGULATORY COMMISSION DOMESTIC LICENSING OF PRODUCTION AND UTILIZATION FACILITIES Pt. 50, App. J Appendix J to Part 50—Primary Reactor Containment... basis accident and specified either in the technical specification or associated bases. J. Pt (p.s.i.g...

  11. Light Water Reactor Sustainability Program Status of Silicon Carbide Joining Technology Development

    Energy Technology Data Exchange (ETDEWEB)

    Bragg-Sitton, Shannon M. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-09-01

    Advanced, accident tolerant nuclear fuel systems are currently being investigated for potential application in currently operating light water reactors (LWR) or in reactors that have attained design certification. Evaluation of potential options for accident tolerant nuclear fuel systems point to the potential benefits of silicon carbide (SiC) relative to Zr-based alloys, including increased corrosion resistance, reduced oxidation and heat of oxidation, and reduced hydrogen generation under steam attack (off-normal conditions). If demonstrated to be applicable in the intended LWR environment, SiC could be used in nuclear fuel cladding or other in-core structural components. Achieving a SiC-SiC joint that resists corrosion with hot, flowing water, is stable under irradiation and retains hermeticity is a significant challenge. This report summarizes the current status of SiC-SiC joint development work supported by the Department of Energy Light Water Reactor Sustainability Program. Significant progress has been made toward SiC-SiC joint development for nuclear service, but additional development and testing work (including irradiation testing) is still required to present a candidate joint for use in nuclear fuel cladding.

  12. Supercritical Water Reactor (SCWR) - Survey of Materials Research and Development Needs to Assess Viability

    Energy Technology Data Exchange (ETDEWEB)

    Philip E. MacDonald

    2003-09-01

    Supercritical water-cooled reactors (SCWRs) are among the most promising advanced nuclear systems because of their high thermal efficiency [i.e., about 45% vs. 33% of current light water reactors (LWRs)] and considerable plant simplification. SCWRs achieve this with superior thermodynamic conditions (i.e., high operating pressure and temperature), and by reducing the containment volume and eliminating the need for recirculation and jet pumps, pressurizer, steam generators, steam separators and dryers. The reference SCWR design in the U.S. is a direct cycle, thermal spectrum, light-water-cooled and moderated reactor with an operating pressure of 25 MPa and inlet/outlet coolant temperature of 280/500 °C. The inlet flow splits, partly to a down-comer and partly to a plenum at the top of the reactor pressure vessel to flow downward through the core in special water rods to the inlet plenum. This strategy is employed to provide good moderation at the top of the core, where the coolant density is only about 15-20% that of liquid water. The SCWR uses a power conversion cycle similar to that used in supercritical fossil-fired plants: high- intermediate- and low-pressure turbines are employed with one moisture-separator re-heater and up to eight feedwater heaters. The reference power is 3575 MWt, the net electric power is 1600 MWe and the thermal efficiency is 44.8%. The fuel is low-enriched uranium oxide fuel and the plant is designed primarily for base load operation. The purpose of this report is to survey existing materials for fossil, fission and fusion applications and identify the materials research and development needed to establish the SCWR viabilitya with regard to possible materials of construction. The two most significant materials related factors in going from the current LWR designs to the SCWR are the increase in outlet coolant temperature from 300 to 500 °C and the possible compatibility issues associated with the supercritical water environment.

  13. Light Water Reactor Sustainability Program: Digital Technology Business Case Methodology Guide

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Ken [Idaho National Lab. (INL), Idaho Falls, ID (United States); Lawrie, Sean [ScottMadden, Inc., Raleigh, NC (United States); Hart, Adam [ScottMadden, Inc., Raleigh, NC (United States); Vlahoplus, Chris [ScottMadden, Inc., Raleigh, NC (United States)

    2014-09-01

    The Department of Energy’s (DOE’s) Light Water Reactor Sustainability Program aims to develop and deploy technologies that will make the existing U.S. nuclear fleet more efficient and competitive. The program has developed a standard methodology for determining the impact of new technologies in order to assist nuclear power plant (NPP) operators in building sound business cases. The Advanced Instrumentation, Information, and Control (II&C) Systems Technologies Pathway is part of the DOE’s Light Water Reactor Sustainability (LWRS) Program. It conducts targeted research and development (R&D) to address aging and reliability concerns with the legacy instrumentation and control and related information systems of the U.S. operating light water reactor (LWR) fleet. This work involves two major goals: (1) to ensure that legacy analog II&C systems are not life-limiting issues for the LWR fleet and (2) to implement digital II&C technology in a manner that enables broad innovation and business improvement in the NPP operating model. Resolving long-term operational concerns with the II&C systems contributes to the long-term sustainability of the LWR fleet, which is vital to the nation’s energy and environmental security. The II&C Pathway is conducting a series of pilot projects that enable the development and deployment of new II&C technologies in existing nuclear plants. Through the LWRS program, individual utilities and plants are able to participate in these projects or otherwise leverage the results of projects conducted at demonstration plants. Performance advantages of the new pilot project technologies are widely acknowledged, but it has proven difficult for utilities to derive business cases for justifying investment in these new capabilities. Lack of a business case is often cited by utilities as a barrier to pursuing wide-scale application of digital technologies to nuclear plant work activities. The decision to move forward with funding usually hinges on

  14. Design of PIλDμ controller for global power control of Pressurized Heavy Water Reactor.

    Science.gov (United States)

    Bongulwar, M R; Patre, B M

    2017-07-01

    In this paper, a robust stabilizing controller design method is presented for global power control of a Pressurized Heavy Water Reactor (PHWR) under step-back condition scheme using a Fractional Order Proportional Integral Derivative (PIλDμ) controller resulting into robust performance. The method is applicable to design a controller for One Non Integer Order Plus Time Delay (NIOPTD-I) plant which satisfies design specifications such as phase margin and gain crossover frequency. Stability boundary locus method is used in (Kp, Ki, Kd) parameter space for NIOPTD-I plants to obtain stability region. The robust performance is obtained by satisfying flat phase condition at gain crossover frequency where phase is almost constant for large span of frequencies. The simulation result of the proposed PIλDμ controller shows active step-back control to the insertion of the rod with no undershoot and with the robust performance, hence safe to the plant for gain variations from 500% lower side to 1000% upper side. The PIλDμ controller with a plant shows that 30% and 50% global power drop from initial 100% is achieved in a reasonable time without undershoot. Copyright © 2017 ISA. Published by Elsevier Ltd. All rights reserved.

  15. EVALUATION OF ACOUSTICAL HOLOGRAPHY FOR THE INSPECTION OF LIGHT WATER REACTOR WELD ASSEMBLIES

    Energy Technology Data Exchange (ETDEWEB)

    Collins, H. D.; Gribble, R. P.

    1982-06-01

    The primary objective of this program was the evaluation of acoustical holography techniques for characterization of the light water reactor weld surface signatures in the nuclear safeguards program. The accurate characterization of weld surface irregulari ties and vertical deviations was achieved using acoustical holographic interferometric techniques. Preselected weld surfaces were inspected and the vertical deviations characterized by phase measurements or fringe densities in the image. Experimental results on Sandia samples verify depth deviation sensitivities of 0.11 {micro}m to 0.16 {micro}m. The two point interferogram technique is recommended for surveillance of the weld surface associated wi th fuel rod removal in the nuclear safeguard program. The use of this unique holographic signal processing provides essentially a fail-safe method for surveillance of clandestine fuel rod removal. Statistical analysis indicates 99.99% (weld surface deviation) confidence interval between 2~m and 3~m can be achieved. These results illustrate the extremely high resolution capabilities of the surveillance technique employing coherent signal processing.

  16. Fracture analysis of axially cracked pressure tube of pressurized heavy water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, S.; Bhasin, V.; Mahajan, S.C. [Bhabha Atomic Research Centre, Bombay (India)] [and others

    1997-04-01

    Three Dimensional (313) finite element elastic plastic fracture analysis was done for through wall axially cracked thin pressure tubes of 220 MWe Indian Pressurized Heavy Water Reactor. The analysis was done for Zr-2 and Zr-2.5Nb pressure tubes operating at 300{degrees}C and subjected to 9.5 Mpa internal pressure. Critical crack length was determined based on tearing instability concept. The analysis included the effect of crack face pressure due to the leaking fluid from tube. This effect was found to be significant for pressure tubes. The available formulae for calculating J (for axially cracked tubes) do not take into account the effect of crack face pressure. 3D finite element analysis also gives insight into variation of J across the thickness of pressure tube. It was observed that J is highest at the mid-surface of tube. The results have been presented in the form of across the thickness average J value and a peak factor on J. Peak factor on J is ratio of J at mid surface to average J value. Crack opening area for different cracked lengths was calculated from finite element results. The fracture assessment of pressure tubes was also done using Central Electricity Generating Board R-6 method. Ductile tearing was considered.

  17. Measurements Methods for the analysis of Nuclear Reactors Thermal Hydraulic in Water Scaled Facilities

    Science.gov (United States)

    Spaccapaniccia, C.; Planquart, P.; Buchlin, J. M. AB(; ), AC(; )

    2018-01-01

    The Belgian nuclear research institute (SCK•CEN) is developing MYRRHA. MYRRHA is a flexible fast spectrum research reactor, conceived as an accelerator driven system (ADS). The configuration of the primary loop is pool-type: the primary coolant and all the primary system components (core and heat exchangers) are contained within the reactor vessel, while the secondary fluid is circulating in the heat exchangers. The primary coolant is Lead Bismuth Eutectic (LBE). The recent nuclear accident of Fukushima in 2011 changed the requirements for the design of new reactors, which should include the possibility to remove the residual decay heat through passive primary and secondary systems, i.e. natural convection (NC). After the reactor shut down, in the unlucky event of propeller failures, the primary and secondary loops should be able to remove the decay heat in passive way (Natural Convection). The present study analyses the flow and the temperature distribution in the upper plenum by applying laser imaging techniques in a laboratory scaled water model. A parametric study is proposed to study stratification mitigation strategies by varying the geometry of the buffer tank simulating the upper plenum.

  18. Fuel Sustainability And Actinide Production Of Doping Minor Actinide In Water-Cooled Thorium Reactor

    Science.gov (United States)

    Permana, Sidik

    2017-07-01

    Fuel sustainability of nuclear energy is coming from an optimum fuel utilization of the reactor and fuel breeding program. Fuel cycle option becomes more important for fuel cycle utilization as well as fuel sustainability capability of the reactor. One of the important issues for recycle fuel option is nuclear proliferation resistance issue due to production plutonium. To reduce the proliferation resistance level, some barriers were used such as matrial barrier of nuclear fuel based on isotopic composition of even mass number of plutonium isotope. Analysis on nuclear fuel sustainability and actinide production composition based on water-cooled thorium reactor system has been done and all actinide composition are recycled into the reactor as a basic fuel cycle scheme. Some important parameters are evaluated such as doping composition of minor actinide (MA) and volume ratio of moderator to fuel (MFR). Some feasible parameters of breeding gains have been obtained by additional MA doping and some less moderation to fuel ratios (MFR). The system shows that plutonium and MA are obtained low compositions and it obtains some higher productions of even mass plutonium, which is mainly Pu-238 composition, as a control material to protect plutonium to be used as explosive devices.

  19. Survey of Regulations Applicable to the Finned Containment in Korean Nuclear Power Plant for Light Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Noh, Hyung Gyun [Pohang University, Pohang (Korea, Republic of); Kang, Hie Chan [Kunsan University, Gunsan (Korea, Republic of)

    2016-05-15

    In severe accident, the molten corium would discharge into the reactor cavity and interact with water and concrete of cavity. Molten corium includes non-oxidation metals such as Zr, Fe and Cr. These metal species reacted with water emit hydrogen gas. In addition to this, a mount of steam can be emitted to the containment such as steam line break accident. As a result, steam and hydrogen gas can pressurize containment over the design pressure and threaten its integrity. For this reasons, a concept equipped with finned on the containment building was proposed for coping with prolonged accident. Finned containment can enhance heat transfer to the ambient, and the building itself is working as a heat sink. Multiple metal fins and metal rod are penetrated into containment wall, and the rods are working as an additional path of heat removal. To be accepted in the nuclear power plants, this configuration should satisfy the requirement of heat removal and follow all regulations related with containment also. For applying to Korean nuclear power plants, the finned containment should follow all regulations specialized in Korea such as Nuclear regulatory criteria for light water reactor and Guidelines of nuclear safety examination for light water reactor. A concept of containment as a passive cooling system has been proposed. Furthermore, the new containment concept can be applied on the real containment which satisfies the various regulations. Finned containment would be expected positive effects on heat removal from the containment. If the fins are properly welded to the liner, finned containment could satisfy the leak tightness and prevention of external influences. Finned containment could be favorable to protect external impact like aircraft crash because of the additional structural integrity by the fins.

  20. Light Water Reactor Sustainability Program Grizzly Year-End Progress Report

    Energy Technology Data Exchange (ETDEWEB)

    Benjamin Spencer; Yongfeng Zhang; Pritam Chakraborty; S. Bulent Biner; Marie Backman; Brian Wirth; Stephen Novascone; Jason Hales

    2013-09-01

    The Grizzly software application is being developed under the Light Water Reactor Sustainability (LWRS) program to address aging and material degradation issues that could potentially become an obstacle to life extension of nuclear power plants beyond 60 years of operation. Grizzly is based on INL’s MOOSE multiphysics simulation environment, and can simultaneously solve a variety of tightly coupled physics equations, and is thus a very powerful and flexible tool with a wide range of potential applications. Grizzly, the development of which was begun during fiscal year (FY) 2012, is intended to address degradation in a variety of critical structures. The reactor pressure vessel (RPV) was chosen for an initial application of this software. Because it fulfills the critical roles of housing the reactor core and providing a barrier to the release of coolant, the RPV is clearly one of the most safety-critical components of a nuclear power plant. In addition, because of its cost, size and location in the plant, replacement of this component would be prohibitively expensive, so failure of the RPV to meet acceptance criteria would likely result in the shutting down of a nuclear power plant. The current practice used to perform engineering evaluations of the susceptibility of RPVs to fracture is to use the ASME Master Fracture Toughness Curve (ASME Code Case N-631 Section III). This is used in conjunction with empirically based models that describe the evolution of this curve due to embrittlement in terms of a transition temperature shift. These models are based on an extensive database of surveillance coupons that have been irradiated in operating nuclear power plants, but this data is limited to the lifetime of the current reactor fleet. This is an important limitation when considering life extension beyond 60 years. The currently available data cannot be extrapolated with confidence further out in time because there is a potential for additional damage mechanisms (i

  1. Results on the neutron energy distribution measurements at the RECH-1 Chilean nuclear reactor

    Energy Technology Data Exchange (ETDEWEB)

    Aguilera, P., E-mail: paguilera87@gmail.com; Romero-Barrientos, J. [Comisión Chilena de Energía Nuclear, Nueva Bilbao 12501, La Reina, Santiago (Chile); Universidad de Chile, Dpto. de Física, Facultad de Ciencias, Las Palmeras 3425, Nuñoa, Santiago (Chile); Molina, F. [Comisión Chilena de Energía Nuclear, Nueva Bilbao 12501, La Reina, Santiago (Chile)

    2016-07-07

    Neutron activations experiments has been perform at the RECH-1 Chilean Nuclear Reactor to measure its neutron flux energy distribution. Samples of pure elements was activated to obtain the saturation activities for each reaction. Using - ray spectroscopy we identify and measure the activity of the reaction product nuclei, obtaining the saturation activities of 20 reactions. GEANT4 and MCNP was used to compute the self shielding factor to correct the cross section for each element. With the Expectation-Maximization algorithm (EM) we were able to unfold the neutron flux energy distribution at dry tube position, near the RECH-1 core. In this work, we present the unfolding results using the EM algorithm.

  2. Proceedings of the US Nuclear Regulatory Commission twentieth water reactor safety information meeting; Volume 2, Severe accident research, Thermal hydraulics

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, A.J. [comp.] [Brookhaven National Lab., Upton, NY (United States)

    1993-03-01

    This three-volume report contains papers presented at the Twentieth Water Reactor Safety Information Meeting held at the Bethesda Marriott Hotel, Bethesda, Maryland, during the week of October 21--23, 1992. The papers describe progress and results of programs in nuclear safety research conducted in this country and abroad. Foreign participation in the meeting included 10 different papers presented by researchersfrom CEC, China, Finland, France, Germany, Japan, Spain and Taiwan. Selected papers have been processed separately for inclusion in the Energy Science and Technology Database.

  3. Passive Gamma Analysis of the Boiling-Water-Reactor Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Vo, Duc Ta [Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Favalli, Andrea [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-03-31

    Passive gamma analysis can be used to determine BU and CT of BWR assembly. The analysis is somewhat more complicated and less effective than similar method for PWR assemblies. From the measurements along the lengths of the BWR1 and BWR9 assemblies, there are hints that we may be able to use their information to help improve the model functions for better results.

  4. Iron removal, energy consumption and operating cost of electrocoagulation of drinking water using a new flow column reactor.

    Science.gov (United States)

    Hashim, Khalid S; Shaw, Andy; Al Khaddar, Rafid; Pedrola, Montserrat Ortoneda; Phipps, David

    2017-03-15

    The goal of this project was to remove iron from drinking water using a new electrocoagulation (EC) cell. In this research, a flow column has been employed in the designing of a new electrocoagulation reactor (FCER) to achieve the planned target. Where, the water being treated flows through the perforated disc electrodes, thereby effectively mixing and aerating the water being treated. As a result, the stirring and aerating devices that until now have been widely used in the electrocoagulation reactors are unnecessary. The obtained results indicated that FCER reduced the iron concentration from 20 to 0.3 mg/L within 20 min of electrolysis at initial pH of 6, inter-electrode distance (ID) of 5 mm, current density (CD) of 1.5 mA/cm2, and minimum operating cost of 0.22 US $/m3. Additionally, it was found that FCER produces H2 gas enough to generate energy of 10.14 kW/m3. Statistically, it was found that the relationship between iron removal and operating parameters could be modelled with R2 of 0.86, and the influence of operating parameters on iron removal followed the order: C0>t>CD>pH. Finally, the SEM (scanning electron microscopy) images showed a large number of irregularities on the surface of anode due to the generation of aluminium hydroxides. Crown Copyright © 2016. Published by Elsevier Ltd. All rights reserved.

  5. Simulating the corrosion of zirconium alloys in the water coolant of VVER reactors

    Science.gov (United States)

    Kritskii, V. G.; Berezina, I. G.; Motkova, E. A.

    2013-07-01

    A model for predicting the corrosion of cladding zirconium alloys depending on their composition and operating conditions is proposed. Laws of thermodynamics and chemical kinetics of the reactions through which the multicomponent zirconium alloy is oxidized in the reactor coolant constitute the physicochemical heart of the model. The developed version of the model is verified against the results obtained from tests of fuel rod claddings made of commercial-grade and experimental zirconium alloys carried out by different researchers under autoclave and reactor conditions. It is shown that the proposed model adequately describes the corrosion of alloys in coolants used at nuclear power stations. It is determined that, owing to boiling of coolant and its acidification in a VVER-1200 reactor, Zr-1% Nb alloys with additions of iron and oxygen must be more resistant to corrosion than the commercial-grade alloy E110.

  6. Proceedings of the Water Reactor Fuel Performance Meeting - WRFPM / Top Fuel 2009

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-06-15

    SFEN, ENS, SNR, ANS, AESJ, CNS KNS, IAEA and NEA are jointly organizing the 2009 International Water Reactor Fuel Performance / TopFuel 2009 Meeting following the 2008 KNS Water Reactor Performance Meeting held during October 19-23, 2008 in Seoul, Korea. This meeting is held annually on a tri-annual rotational basis in Europe, USA and Asia. In 2009, this meeting will be held in Paris, September 6-10, 2009 in coordination with the Global 2009 Conference at the same date and place. That would lead to a common opening session, some common technical presentations, a common exhibition and common social events. The technical scope of the meeting includes all aspects of nuclear fuel from fuel rod to core design as well as manufacturing, performance in commercial and test reactors or on-going and future developments and trends. Emphasis will be placed on fuel reliability in the general context of nuclear 'Renaissance' and recycling perspective. The meeting includes selectively front and/or back end issues that impact fuel designs and performance. In this frame, the conference track devoted to 'Concepts for transportation and interim storage of spent fuels and conditioned waste' will be shared with 'GLOBAL' conference. Technical Tracks: - 1. Fuel Performance, Reliability and Operational Experience: Fuel operating experience and performance; experience with high burn-up fuels; water side corrosion; stress corrosion cracking; MOX fuel performance; post irradiation data on lead fuel assemblies; radiation effects; water chemistry and corrosion counter-measures. - 2. Transient Fuel Behaviour and Safety Related Issues: Transient fuel behavior and criteria (RIA, LOCA, ATWS, Ramp tests..). Fuel safety-related issues such as PCI (pellet cladding interaction), transient fission gas releases and cladding bursting/ballooning during transient events - Advances in fuel performance modeling and core reload methodology, small and large-scale fuel testing

  7. Comparison of different solar reactors for household disinfection of drinking water in developing countries: evaluation of their efficacy in relation to the waterborne enteropathogen Cryptosporidium parvum.

    Science.gov (United States)

    Gómez-Couso, H; Fontán-Sainz, M; Navntoft, C; Fernández-Ibáñez, P; Ares-Mazás, E

    2012-11-01

    Solar water disinfection (SODIS) is a type of treatment that can significantly improve the microbiological quality of drinking water at household level and therefore prevent waterborne diseases in developing countries. Cryptosporidium parvum is an obligate protozoan parasite responsible for the diarrhoeal disease cryptosporidiosis in humans and animals. Recently, this parasite has been selected by the WHO as a reference pathogen for protozoan parasites in the evaluation of household water treatment options. In this study, the field efficacy of different static solar reactors [1.5 l transparent plastic polyethylene terephthalate (PET) bottles as well as 2.5 l borosilicate glass and 25 l methacrylate reactors fitted with compound parabolic concentrators (CPC)] for solar disinfection of turbid waters experimentally contaminated with C. parvum oocysts was compared. Potential oocyst viability was determined by inclusion/exclusion of the fluorogenic vital dye propidium iodide. The results demonstrate that static solar reactors fitted with CPCs are an excellent alternative to the conventional SODIS method with PET bottles. These reactors improved the efficacy of the SODIS method by enabling larger volumes of water to be treated and, in some cases, the C. parvum oocysts were rendered totally unviable, minimising the negative effects of turbidity. Copyright © 2012 Royal Society of Tropical Medicine and Hygiene. Published by Elsevier Ltd. All rights reserved.

  8. Corrosion Behavior of Carbon Steel Coated with Octadecylamine in the Secondary Circuit of a Pressurized Water Reactor

    Science.gov (United States)

    Jäppinen, Essi; Ikäläinen, Tiina; Järvimäki, Sari; Saario, Timo; Sipilä, Konsta; Bojinov, Martin

    2017-10-01

    Corrosion and particle deposition in the secondary circuits of pressurized water reactors can be mitigated by alternative water chemistries featuring film-forming amines. In the present work, the corrosion of carbon steel in secondary side water with or without octadecylamine (ODA) is studied by in situ electrochemical impedance spectroscopy, combined with weight loss/gain measurements, scanning electron microscopy and glow-discharge optical emission spectroscopy. The impedance spectra are interpreted using the mixed-conduction model to extract kinetic parameters of oxide growth and metal dissolution through it. From the experimental results, it can be concluded that ODA addition reduces the corrosion rate of both fresh and pre-oxidized carbon steel in secondary circuit significantly by slowing down both interfacial reactions and transport through the oxide layer.

  9. Modeling of Hydrodynamic Processes at a Large Leak of Water into Sodium in the Fast Reactor Coolant Circuit

    Directory of Open Access Journals (Sweden)

    Sergey Perevoznikov

    2016-10-01

    Full Text Available In this paper, we describe a physicomathematical model of the processes that occur in a sodium circuit with a variable flow cross-section in the case of a water leak into sodium. The application area for this technique includes the possibility of analyzing consequences of this leak as applied to sodium–water steam generators in fast neutron reactors. Hydrodynamic processes that occur in sodium circuits in the event of a water leak are described within the framework of a one-dimensional thermally nonequilibrium three-component gas–liquid flow model (sodium–hydrogen–sodium hydroxide. Consideration is given to the results of a mathematical modeling of experiments involving steam injection into the sodium loop of a circulation test facility. That was done by means of the computer code in which the proposed model had been implemented.

  10. Theoretical assessment of bonaccordite formation in pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Rak, Zs, E-mail: zrak@ncsu.edu [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695 (United States); O' Brien, C.J. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695 (United States); Shin, D. [Materials Science and Technology Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6063 (United States); Andersson, A.D.; Stanek, C.R. [Materials Science and Technology Division, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Brenner, D.W. [Department of Materials Science and Engineering, North Carolina State University, Raleigh, NC 27695 (United States)

    2016-06-15

    The free energy of formation of bonaccordite (Ni{sub 2}FeBO{sub 5}) as a function of temperature has been calculated using a technique that combines first principles calculations with experimental free energies of formation of aqueous species. The results suggest that bonaccordite formation from aqueous metal ions (Ni{sup 2+} andFe{sup 3+}) and boric acid is thermodynamically favorable at elevated temperature and pH that have been predicted to exist at the CRUD-clad interface in deposits thicker than 60 μm.

  11. Development of Abnormal Operating Strategies for Station Blackout in Shutdown Operating Mode in Pressurized Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Duk-Joo; Lee, Seung-Chan; Sung, Je-Joong; Ha, Sang-Jun [KHNP CRI, Daejeon (Korea, Republic of); Hwang, Su-Hyun [FNC Tech. Co., Yongin (Korea, Republic of)

    2016-10-15

    Loss of all AC power is classified as one of multiple failure accident by regulatory guide of Korean accident management program. Therefore we need develop strategies for the abnormal operating procedure both of power operating and shutdown mode. This paper developed abnormal operating guideline for loss of all AC power by analysis of accident scenario in pressurized water reactor. This paper analyzed the loss of ultimate heat sink (LOUHS) in shutdown operating mode and developed the operating strategy of the abnormal procedure. Also we performed the analysis of limiting scenarios that operator actions are not taken in shutdown LOUHS. Therefore, we verified the plant behavior and decided operator action to taken in time in order to protect the fuel of core with safety. From the analysis results of LOUHS, the fuel of core maintained without core uncovery for 73 minutes respectively for opened RCS states after the SBO occurred. Therefore, operator action for the emergency are required to take in 73 minutes for opened RCS state. Strategy is to cooldown by using spent fuel pool cooling system. This method required to change the plant design in some plant. In RCS boundary closed state, first abnormal operating strategy in shutdown LOUHS is first abnormal operating strategy in shutdown LOUHS is to remove the residual heat of core by steam dump flow and auxiliary feedwater of SG.

  12. Development of Cold Spray Coatings for Accident-Tolerant Fuel Cladding in Light Water Reactors

    Science.gov (United States)

    Maier, Benjamin; Yeom, Hwasung; Johnson, Greg; Dabney, Tyler; Walters, Jorie; Romero, Javier; Shah, Hemant; Xu, Peng; Sridharan, Kumar

    2018-02-01

    The cold spray coating process has been developed at the University of Wisconsin-Madison for the deposition of oxidation-resistant coatings on zirconium alloy light water reactor fuel cladding with the goal of improving accident tolerance during loss of coolant scenarios. Coatings of metallic (Cr), alloy (FeCrAl), and ceramic (Ti2AlC) materials were successfully deposited on zirconium alloy flats and cladding tube sections by optimizing the powder size, gas preheat temperature, pressure and composition, and other process parameters. The coatings were dense and exhibited excellent adhesion to the substrate. Evaluation of the samples after high-temperature oxidation tests at temperatures up to 1300°C showed that the cold spray coatings significantly mitigate oxidation kinetics because of the formation of thin passive oxide layers on the surface. The results of the study indicate that the cold spray coating process is a viable near-term option for developing accident-tolerant zirconium alloy fuel cladding.

  13. A modified firefly algorithm applied to the nuclear reload problem of a pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Oliveira, Iona Maghali Santos de; Schirru, Roberto, E-mail: ioliveira@con.ufrj.b, E-mail: schirru@lmp.ufrj.b [Universidade Federal do Rio de Janeiro (PEN/COPPE/UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-Graduacao de Engenharia. Programa de Engenharia Nuclear

    2011-07-01

    The Nuclear Reactor Reload Problem (NRRP) is an issue of great importance and concern in nuclear engineering. It is the problem related with the periodic operation of replacing part of the fuel of a nuclear reactor. Traditionally, this procedure occurs after a period of operation called a cycle, or whenever the nuclear power plant is unable to continue operating at its nominal power. Studied for more than 40 years, the NRRP still remains a challenge for many optimization techniques due to its multiple objectives concerning economics, safety and reactor physics calculations. Characteristics such as non-linearity, multimodality and high dimensionality also make the NRRP a very complex optimization problem. In broad terms, it aims at getting the best arrangement of fuel in the nuclear reactor core that leads to a maximization of the operating time. The primary goal is to design fuel loading patterns (LPs) so that the core produces the required energy output in an economical way, without violating safety limits. Since multiple feasible solutions can be obtained to this problem, judicious optimization is required in order to identify the most economical among them. In this sense, this paper presents a new contribution in this area and introduces a modified firefly algorithm (FA) to perform LPs optimization for a pressurized water reactor. Based on the original FA introduced by Xin-She Yang in 2008, the proposed methodology seems to be very promising as an optimizer to the NRRP. The experiments performed and the comparisons with some well known best performing algorithms from the literature, confirm this statement. (author)

  14. Simulation of a low temperature water gas shift reactor using the heterogeneous model/application to a pem fuel cell

    Science.gov (United States)

    Giunta, Pablo; Amadeo, Norma; Laborde, Miguel

    In the last few years, a renewed interest in the water gas shift (WGS) reaction at low temperature has arisen due to its application to fuel cells. In this work, a simulation of a fixed bed reactor for this reaction, which forms part of a hydrogen production-purification train for a 10 kW PEM fuel cell using ethanol as the raw material, was carried out. A commercial Cu/Zn/Ba/Al 2O 3 catalyst was employed and a one-dimensional heterogeneous model was applied for the simulation. The catalyst deactivation due to thermal factors (sintering) was taken into account in the model. Isothermal and adiabatic regimes were analyzed as well. Results of the simulation indicate that the pellet can be considered isothermal but temperature gradients in the film cannot be disregarded. On the other hand, concentration gradients in the film can be ignored but CO profiles are established inside the pellet. Adiabatic operation can be recommended because of its simplicity of operation and construction. The reactor volume is strongly sensitive to the CO outlet concentration at CO levels lower than 6000 ppm. For a 10 kW PEM fuel cell, using adequate pellet size and taking into account the catalyst deactivation, a reactor volume of 0.64 l would be enough to obtain an outlet CO concentration of about 7160 ppm. This concentration value can be handled by the next purification stage, COPROX.

  15. Standard technical specifications for combustion engineering pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    1979-08-01

    This Standard Technical Specification (STS) has been structured for the broadest possible use on Combustion Engineering plants currently being reviewed for an Operating License. Two separate and discrete containment specification sections are provided for each of the following containment types: Atmospheric and Dual. Optional specifications are provided for those features and systems which may be included in individual plant designs but are not generic in their scope of application. Alternate specifications are provided in a limited number of cases to cover situations where alternate specification requirements are necessary on a generic basis because of design differences. This revision of STS does not typically include requirements which may be added or revised as a result of the NRC staff's further review of the Three Mile Island incident.

  16. Standard technical specifications for Westinghouse pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, P.C.

    1979-07-01

    This Standard Technical Specification (STS) has been structured for the broadest possible use on Westinghouse plants currently being reviewed for an Operating License. Accordingly, the document contains specifications applicable to plants with (1) either 3 or 4 loops and (2) with and without loop stop valves. In addition, four separate and discrete containment specification sections are provided for each of the following containment types: Atmospheric, Ice Condenser, Sub-Atmospheric, and Dual. Optional specifications are provided for those features and systems which may be included in individual plant designs but are not generic in their scope of application. Alternate specifications are provided in a limited number of cases to cover situations where alternate specification requirements are necessary on a generic basis because of design differences. This revision of the STS does not typically include requirements which may be added or revised as a result of the NRC staff's further review of the Three Mile Island incident.

  17. MODULAR AND FULL SIZE SIMPLIFIED BOILING WATER REACTOR DESIGN WITH FULLY PASSIVE SAFETY SYSTEMS

    Energy Technology Data Exchange (ETDEWEB)

    M. Ishii; S. T. Revankar; T. Downar; Y. Xu, H. J. Yoon; D. Tinkler; U. S. Rohatgi

    2003-06-16

    OAK B204 The overall goal of this three-year research project was to develop a new scientific design of a compact modular 200 MWe and a full size 1200 MWe simplified boiling water reactors (SBWR). Specific objectives of this research were: (1) to perform scientific designs of the core neutronics and core thermal-hydraulics for a small capacity and full size simplified boiling water reactor, (2) to develop a passive safety system design, (3) improve and validate safety analysis code, (4) demonstrate experimentally and analytically all design functions of the safety systems for the design basis accidents (DBA) and (5) to develop the final scientific design of both SBWR systems, 200 MWe (SBWR-200) and 1200 MWe (SBWR-1200). The SBWR combines the advantages of design simplicity and completely passive safety systems. These advantages fit well within the objectives of NERI and the Department of Energy's focus on the development of Generation III and IV nuclear power. The 3-year research program was structured around seven tasks. Task 1 was to perform the preliminary thermal-hydraulic design. Task 2 was to perform the core neutronic design analysis. Task 3 was to perform a detailed scaling study and obtain corresponding PUMA conditions from an integral test. Task 4 was to perform integral tests and code evaluation for the DBA. Task 5 was to perform a safety analysis for the DBA. Task 6 was to perform a BWR stability analysis. Task 7 was to perform a final scientific design of the compact modular SBWR-200 and the full size SBWR-1200. A no cost extension for the third year was requested and the request was granted and all the project tasks were completed by April 2003. The design activities in tasks 1, 2, and 3 were completed as planned. The existing thermal-hydraulic information, core physics, and fuel lattice information was collected on the existing design of the simplified boiling water reactor. The thermal-hydraulic design were developed. Based on a detailed

  18. Solar radiation disinfection of drinking water at temperate latitudes: inactivation rates for an optimised reactor configuration.

    Science.gov (United States)

    Davies, C M; Roser, D J; Feitz, A J; Ashbolt, N J

    2009-02-01

    Solar radiation-driven inactivation of bacteria, virus and protozoan pathogen models was quantified in simulated drinking water at a temperate latitude (34 degrees S). The water was seeded with Enterococcus faecalis, Clostridium sporogenes spores, and P22 bacteriophage, each at ca 1x10(5) mL(-1), and exposed to natural sunlight in 30-L reaction vessels. Water temperature ranged from 17 to 39 degrees C during the experiments lasting up to 6h. Dark controls showed little inactivation and so it was concluded that the inactivation observed was primarily driven by non-thermal processes. The optimised reactor design achieved S90 values (cumulative exposure required for 90% reduction) for the test microorganisms in the range 0.63-1.82 MJ m(-2) of Global Solar Exposure (GSX) without the need for TiO2 as a catalyst. High turbidity (840-920 NTU) only reduced the S(90) value by 0.05). However, inactivation was significantly reduced for E. faecalis and P22 when the transmittance of UV wavelengths was attenuated by water with high colour (140 PtCo units) or a suboptimally transparent reactor lid (prob.SODIS type pasteurization were not produced, non-thermal inactivation alone appeared to offer a viable means for reliably disinfecting low colour source waters by greater than 4 orders of magnitude on sunny days at 34 degrees S latitude.

  19. Neutronic and Thermal-hydraulic Modelling of High Performance Light Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Seppaelae, Malla [VTT Technical Research Centre of Finland, P.O.Box 1000, FI02044 VTT (Finland)

    2008-07-01

    High Performance Light Water Reactor (HPLWR), which is studied in EU project 'HPLWR2', uses water at supercritical pressures as coolant and moderator to achieve higher core outlet temperature and thus higher efficiency compared to present reactors. At VTT Technical Research Centre of Finland, functionality of the thermal-hydraulics in the coupled reactor dynamics code TRAB3D/ SMABRE was extended to supercritical pressures for the analyses of HPLWR. Input models for neutronics and thermal-hydraulics were made for TRAB3D/ SMABRE according to the latest HPLWR design. A preliminary analysis was performed in which the capability of SMABRE in the transition from supercritical pressures to subcritical pressures was demonstrated. Parameterized two-group cross sections for TRAB3D neutronics were received from Hungarian Academy of Sciences KFKI Atomic Energy Research Institute together with a subroutine for handling them. PSG, a new Monte Carlo transport code developed at VTT, was also used to generate two-group constants for HPLWR and comparisons were made with the KFKI cross sections and MCNP calculations. (author)

  20. Improving activity transport models for water-cooled nuclear power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Burrill, K.A

    2001-08-01

    Eight current models for describing radioactivity transport and radiation field growth around water-cooled nuclear power reactors have been reviewed and assessed. A frequent failing of the models is the arbitrary nature of the determination of the important processes. Nearly all modelers agree that the kinetics of deposition and release of both dissolved and particulate material must be described. Plant data must be used to guide the selection and development of suitable improved models, with a minimum of empirically-based rate constraints being used. Limiting case modelling based on experimental data is suggested as a way to simplify current models and remove their subjectivity. Improved models must consider the recent change to 'coordinated water chemistry' that appears to produce normal solubility behaviour for dissolved iron throughout the fuel cycle in PWRs, but retrograde solubility remains for dissolved nickel. Profiles are suggested for dissolved iron and nickel concentrations around the heat transport system in CANDU reactors, which operate nominally at constant chemistry, i.e., pH{sub T} constant with time, and which use carbon steel isothermal piping. These diagrams are modified for a CANDU reactor with stainless steel piping, in order to show the changes expected. The significance of these profiles for transport in PWRs is discussed for further model improvement. (author)

  1. Light Water Reactor Sustainability Program Advanced Seismic Soil Structure Modeling

    Energy Technology Data Exchange (ETDEWEB)

    Bolisetti, Chandrakanth [Idaho National Lab. (INL), Idaho Falls, ID (United States); Coleman, Justin Leigh [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2015-06-01

    Risk calculations should focus on providing best estimate results, and associated insights, for evaluation and decision-making. Specifically, seismic probabilistic risk assessments (SPRAs) are intended to provide best estimates of the various combinations of structural and equipment failures that can lead to a seismic induced core damage event. However, in some instances the current SPRA approach has large uncertainties, and potentially masks other important events (for instance, it was not the seismic motions that caused the Fukushima core melt events, but the tsunami ingress into the facility). SPRA’s are performed by convolving the seismic hazard (this is the estimate of all likely damaging earthquakes at the site of interest) with the seismic fragility (the conditional probability of failure of a structure, system, or component given the occurrence of earthquake ground motion). In this calculation, there are three main pieces to seismic risk quantification, 1) seismic hazard and nuclear power plants (NPPs) response to the hazard, 2) fragility or capacity of structures, systems and components (SSC), and 3) systems analysis. Two areas where NLSSI effects may be important in SPRA calculations are, 1) when calculating in-structure response at the area of interest, and 2) calculation of seismic fragilities (current fragility calculations assume a lognormal distribution for probability of failure of components). Some important effects when using NLSSI in the SPRA calculation process include, 1) gapping and sliding, 2) inclined seismic waves coupled with gapping and sliding of foundations atop soil, 3) inclined seismic waves coupled with gapping and sliding of deeply embedded structures, 4) soil dilatancy, 5) soil liquefaction, 6) surface waves, 7) buoyancy, 8) concrete cracking and 9) seismic isolation The focus of the research task presented here-in is on implementation of NLSSI into the SPRA calculation process when calculating in-structure response at the area

  2. Kinetics of vinyl acetate emulsion polymerization in a pulsed tubular reactor: comparison between experimental and simulation results

    Directory of Open Access Journals (Sweden)

    Sayer C.

    2002-01-01

    Full Text Available A new reactor, the pulsed sieve plate column (PSPC, was developed to perform continuous emulsion polymerization reactions. This reactor combines the enhanced flexibility of tubular reactors with the mixing behavior provided by sieved plates and by the introduction of pulses that is important to prevent emulsion destabilization. The main objective of this work is to study the kinetics of vinyl acetate (VA emulsion polymerization reactions performed in this PSPC. Therefore, both experimental studies and reaction simulations were performed. Results showed that it is possible to obtain high conversions with rather low residence times in the PSPC.

  3. Titanium-Water Thermosyphon Gamma Radiation Effects and Results

    Science.gov (United States)

    Sanzi, James L.; Jaworske, Donald A.; Goodenow, Debra A.

    2012-01-01

    Titanium-water thermosyphons are being considered for use in heat rejection systems for fission power systems. Their proximity to the nuclear reactor will result in some exposure to gamma irradiation. Non-condensable gas formation from radiation may breakdown water over time and render a portion of the thermosyphon condenser inoperable. A series of developmental thermosyphons were operated at nominal operating temperature with accelerated gamma irradiation exposures on the same order of magnitude that is expected in eight years of heat rejection system operation. Temperature data were obtained during exposure at three locations on each thermosyphon; evaporator, condenser, and condenser end cap. Some non-condensable gas was evident, however thermosyphon performance was not affected because the non-condensable gas was compressed into the fill tube region at the top of the thermosyphon, away from the heat rejecting fin. The trend appeared to be an increasing amount of non-condensable gas formation with increasing gamma irradiation dose. Hydrogen is thought to be the most likely candidate for the non-condensable gas and hydrogen is known to diffuse through grain boundaries. Post-exposure evaluation of selected thermosyphons at temperature and in a vacuum chamber revealed that the non-condensable gas likely diffused out of the thermosyphons over a relatively short period of time. Further research shows a number of experimental and theoretical examples of radiolysis occurring through gamma radiation alone in pure water.

  4. Titanium-Water Thermosyphon Gamma Radiation Exposure and Results

    Science.gov (United States)

    Sanzi, James, L.A; Jaworske, Donald, A.; Goodenow, Debra, A.

    2012-01-01

    Titanium-water thermosyphons are being considered for use in heat rejection systems for fission power systems. Their proximity to the nuclear reactor will result in some gamma irradiation. Noncondensable gas formation from radiation-induced breakdown of water over time may render portions of the thermosyphon condenser inoperable. A series of developmental thermosyphons were operated at nominal operating temperature under accelerated gamma irradiation, with exposures on the same order of magnitude as that expected in 8 years of heat rejection system operation. Temperature data were obtained during exposure at three locations on each thermosyphon: evaporator, condenser, and condenser end cap. Some noncondensable gas was evident; however, thermosyphon performance was not affected because the noncondensable gas was compressed into the fill tube region at the top of the thermosyphon, away from the heat rejecting fin. The trend appeared to be an increasing amount of noncondensable gas formation with increasing gamma irradiation dose. Hydrogen is thought to be the most likely candidate for the noncondensable gas and hydrogen is known to diffuse through grain boundaries. Post-exposure evaluation of one thermosyphon in a vacuum chamber and at temperature revealed that the noncondensable gas diffused out of the thermosyphon over a relatively short period of time. Further research shows a number of experimental and theoretical examples of radiolysis occurring through gamma radiation alone in pure water.

  5. Cogeneration of Electricity and Potable Water Using The International Reactor Innovative And Secure (IRIS) Design

    Energy Technology Data Exchange (ETDEWEB)

    Ingersoll, D.T.; Binder, J.L.; Kostin, V.I.; Panov, Y.K.; Polunichev, V.; Ricotti, M.E.; Conti, D.; Alonso, G.

    2004-10-06

    The worldwide demand for potable water has been steadily growing and is projected to accelerate, driven by a continued population growth and industrialization of emerging countries. This growth is reflected in a recent market survey by the World Resources Institute, which shows a doubling in the installed capacity of seawater desalination plants every ten years. The production of desalinated water is energy intensive, requiring approximately 3-6 kWh/m3 of produced desalted water. At current U.S. water use rates, a dedicated 1000 MW power plant for every one million people would be required to meet our water needs with desalted water. Nuclear energy plants are attractive for large scale desalination application. The thermal energy produced in a nuclear plant can provide both electricity and desalted water without the production of greenhouse gases. A particularly attractive option for nuclear desalination is to couple a desalination plant with an advanced, modular, passively safe reactor design. The use of small-to-medium sized nuclear power plants allows for countries with smaller electrical grid needs and infrastructure to add new electrical and water capacity in more appropriate increments and allows countries to consider siting plants at a broader number of distributed locations. To meet these needs, a modified version of the International Reactor Innovative and Secure (IRIS) nuclear power plant design has been developed for the cogeneration of electricity and desalted water. The modular, passively safe features of IRIS make it especially well adapted for this application. Furthermore, several design features of the IRIS reactor will ensure a safe and reliable source of energy and water even for countries with limited nuclear power experience and infrastructure. The IRIS-D design utilizes low-quality steam extracted from the low-pressure turbine to boil seawater in a multi-effect distillation desalination plant. The desalination plant is based on the horizontal

  6. Light Water Reactor Sustainability Program: Digital Architecture Project Plan

    Energy Technology Data Exchange (ETDEWEB)

    Thomas, Ken [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-09-01

    There are many technologies available to the nuclear power industry to improve efficiency in plant work activities. These range from new control room technologies to those for mobile field workers. They can make a positive impact on a wide range of performance objectives – increase in productivity, human error reduction, validation of results, accurate transfer of data, and elimination of repetitive tasks. It is expected that the industry will more and more turn to these technologies to achieve these operational efficiencies to lower costs. At the same time, this will help utilities manage a looming staffing problem as the inevitable retirement wave of the more seasoned workers affects both staffing levels and knowledge retention. A barrier to this wide-scale implementation of new technologies for operational efficiency is the lack of a comprehensive digital architecture that can support the real-time information exchanges needed to achieve the desired operational efficiencies. This project will define an advanced digital architecture that will accommodate the entire range of system, process, and plant worker activity to enable the highest degree of integration, thereby creating maximum efficiency and productivity. This pilot project will consider a range of open standards that are suitable for the various data and communication requirements of a seamless digital environment. It will map these standards into an overall architecture to support the II&C developments of this research program.

  7. Performance-related characteristics of water reactor fuel

    Science.gov (United States)

    Bairiot, H.; Vanderborck, Y.; Dumbruch, G.

    1982-04-01

    The most widely utilized manufacturing routes are based on different conversion processes: precipitation from aqueous solutions ("wet processes") and dry processes. The characteristics of the resulting powders (grain size, flowability, etc…) influence the pellet fabrication steps and even the sintered pellet characteristics. Depending on the powder characteristics, the pelletizing can be done directly or requires a previous conditioning. This preconditioning may include blending additives for further processing, for modifying the final pellet structure or for incorporating fissile or poison material. Controls at this stage are usually limited to homogeneity of the dispersion of additives. The sintering process parameters are monitored to insure that the pellet structure presents adequate densification stability. As a final product, the pellet is also subjected to all the controls required to demonstrate that the specifications are met. The paper reviews the controls applied for what regards the major components, the structural features and the geometry. Rather than the presentation of control techniques, the paper discusses the subject in the light of methods and procedures, typically applied in todays industrial fabrication.

  8. Microbial fouling community analysis of the cooling water system of a nuclear test reactor with emphasis on sulphate reducing bacteria.

    Science.gov (United States)

    Balamurugan, P; Joshi, M Hiren; Rao, T S

    2011-10-01

    Culture and molecular-based techniques were used to characterize bacterial diversity in the cooling water system of a fast breeder test reactor (FBTR). Techniques were selected for special emphasis on sulphate-reducing bacteria (SRB). Water samples from different locations of the FBTR cooling water system, in addition to biofilm scrapings from carbon steel coupons and a control SRB sample were characterized. Whole genome extraction of the water samples and SRB diversity by group specific primers were analysed using nested PCR and denaturing gradient gel electrophoresis (DGGE). The results of the bacterial assay in the cooling water showed that the total culturable bacteria (TCB) ranged from 10(3) to 10(5) cfu ml(-1); iron-reducing bacteria, 10(3) to 10(5) cfu ml(-1); iron oxidizing bacteria, 10(2) to 10(3) cfu ml(-1) and SRB, 2-29 cfu ml(-1). However, the counts of the various bacterial types in the biofilm sample were 2-3 orders of magnitude higher. SRB diversity by the nested PCR-DGGE approach showed the presence of groups 1, 5 and 6 in the FBTR cooling water system; however, groups 2, 3 and 4 were not detected. The study demonstrated that the PCR protocol influenced the results of the diversity analysis. The paper further discusses the microbiota of the cooling water system and its relevance in biofouling.

  9. The burnup dependence of light water reactor spent fuel oxidation

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, B.D.

    1998-07-01

    Over the temperature range of interest for dry storage or for placement of spent fuel in a permanent repository under the conditions now being considered, UO{sub 2} is thermodynamically unstable with respect to oxidation to higher oxides. The multiple valence states of uranium allow for the accommodation of interstitial oxygen atoms in the fuel matrix. A variety of stoichiometric and nonstoichiometric phases is therefore possible as the fuel oxidizers from UO{sub 2} to higher oxides. The oxidation of UO{sub 2} has been studied extensively for over 40 years. It has been shown that spent fuel and unirradiated UO{sub 2} oxidize via different mechanisms and at different rates. The oxidation of LWR spent fuel from UO{sub 2} to UO{sub 2.4} was studied previously and is reasonably well understood. The study presented here was initiated to determine the mechanism and rate of oxidation from UO{sub 2.4} to higher oxides. During the early stages of this work, a large variability in the oxidation behavior of samples oxidized under nearly identical conditions was found. Based on previous work on the effect of dopants on UO{sub 2} oxidation and this initial variability, it was hypothesized that the substitution of fission product and actinide impurities for uranium atoms in the spent fuel matrix was the cause of the variable oxidation behavior. Since the impurity concentration is roughly proportional to the burnup of a specimen, the oxidation behavior of spent fuel was expected to be a function of both temperature and burnup. This report (1) summarizes the previous oxidation work for both unirradiated UO{sub 2} and spent fuel (Section 2.2) and presents the theoretical basis for the burnup (i.e., impurity concentration) dependence of the rate of oxidation (Sections 2.3, 2.4, and 2.5), (2) describes the experimental approach (Section 3) and results (Section 4) for the current oxidation tests on spent fuel, and (3) establishes a simple model to determine the activation energies

  10. Test Plan for the Boiling Water Reactor Dry Cask Simulator

    Energy Technology Data Exchange (ETDEWEB)

    Durbin, Samuel [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Lindgren, Eric R. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-11-01

    canister. The symmetric single assembly geometry with well-controlled boundary conditions simplifies interpretation of results. Various configurations of outer concentric ducting will be used to mimic conditions for above and below-ground storage configurations of vertical, dry cask systems with canisters. Radial and axial temperature profiles will be measured for a wide range of decay power and helium cask pressures. Of particular interest is the evaluation of the effect of increased helium pressure on allowable heat load and the effect of simulated wind on a simplified below ground vent configuration. While incorporating the best available information, this test plan is subject to changes due to improved understanding from modeling or from as-built deviations to designs. As-built conditions and actual procedures will be documented in the final test report.

  11. Target fuels for plutonium and minor actinide transmutation in pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Washington, J., E-mail: jwashing@gmail.com [Nuclear Science and Engineering Program, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); King, J., E-mail: kingjc@mines.edu [Nuclear Science and Engineering Program, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); Shayer, Z., E-mail: zshayer@mines.edu [Department of Physics, Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States)

    2017-03-15

    Highlights: • We evaluate transmutation fuels for plutonium and minor actinide destruction in LWRs. • We model a modified AP1000 fuel assembly in SCALE6.1. • We evaluate spectral shift absorber coatings to improve transmutation performance. - Abstract: The average nuclear power plant produces twenty metric tons of used nuclear fuel per year, containing approximately 95 wt% uranium, 1 wt% plutonium, and 4 wt% fission products and transuranic elements. Fast reactors are a preferred option for the transmutation of plutonium and minor actinides; however, an optimistic deployment time of at least 20 years indicates a need for a nearer-term solution. This study considers a method for plutonium and minor actinide transmutation in existing light water reactors and evaluates a variety of transmutation fuels to provide a common basis for comparison and to determine if any single target fuel provides superior transmutation properties. A model developed using the NEWT module in the SCALE 6.1 code package provided performance data for the burnup of the target fuel rods in the present study. The target fuels (MOX, PuO{sub 2}, Pu{sub 3}Si{sub 2}, PuN, PuUZrH, PuZrH, PuZrHTh, and PuZrO{sub 2}) are evaluated over a 1400 Effective Full Power Days (EFPD) interval to ensure each assembly remained critical over the entire burnup period. The MOX (5 wt% PuO{sub 2}), Pu{sub 0.31}ZrH{sub 1.6}Th{sub 1.08}, and PuZrO{sub 2}MgO (8 wt% Pu) fuels result in the highest rate of plutonium transmutation with the lowest rate of curium-244 production. This study selected eleven different burnable absorbers (B{sub 4}C, CdO, Dy{sub 2}O{sub 3}, Er{sub 2}O{sub 3}, Eu{sub 2}O{sub 3}, Gd{sub 2}O{sub 3}, HfO{sub 2}, In{sub 2}O{sub 3}, Lu{sub 2}O{sub 3}, Sm{sub 2}O{sub 3}, and TaC) for evaluation as spectral shift absorber coatings on the outside of the fuel pellets to determine if an absorber coating can improve the transmutation properties of the target fuels. The PuZrO{sub 2}MgO (8 wt% Pu) target

  12. Passive containment cooling system with drywell pressure regulation for boiling water reactor

    Science.gov (United States)

    Hill, Paul R.

    1994-01-01

    A boiling water reactor having a regulating valve for placing the wetwell in flow communication with an intake duct of the passive containment cooling system. This subsystem can be adjusted to maintain the drywell pressure at (or slightly below or above) wetwell pressure after the initial reactor blowdown transient is over. This addition to the PCCS design has the benefit of eliminating or minimizing steam leakage from the drywell to the wetwell in the longer-term post-LOCA time period and also minimizes the temperature difference between drywell and wetwell. This in turn reduces the rate of long-term pressure buildup of the containment, thereby extending the time to reach the design pressure limit.

  13. General installation of pressurized water reactors; Installation generale des reacteurs a eau sous pression

    Energy Technology Data Exchange (ETDEWEB)

    Kaercher, M. [Electricite de France (EDF), 75 - Paris (France)

    2002-07-01

    This article describes the criteria considered for the installation of PWR reactors according to the most recent French standard: the N4 - 1450 MWe plant series which benefits of the experience feedback of the previous 900 and 1300 MWe series: 1 - functional organization: nuclear island, classical island; 2 - general principles of installation: safety, functional and operation requirements, grouping of equipments inside buildings, criteria of equipments separation; 3 - location of the main equipments, plot plan: specific site constraints, sitting of facilities, leveling; 4 - general installation of buildings: reactor building, fuel building, electrical and auxiliaries building, nuclear auxiliaries building, machines room, pumping station, standby generators building, water storage tank and pool building, effluents processing building; 5 - the EPR european concept: 4 sub-series concept, prevention of serious accidents, annual collective dose. (J.S.)

  14. Start-up performance and granular sludge features of an improved external circulating anaerobic reactor for algae-laden water treatment

    OpenAIRE

    Yaqin Yu; Xiwu Lu

    2017-01-01

    The microbial characteristics of granular sludge during the rapid start of an enhanced external circulating anaerobic reactor were studied to improve algae-laden water treatment efficiency. Results showed that algae laden water was effectively removed after about 35 d, and the removal rates of chemical oxygen demand (COD) and algal toxin were around 85% and 92%, respectively. Simultaneously, the gas generation rate was around 380 mL/gCOD. The microbial community structure in the granular slud...

  15. A continuous stirred hydrogen-based polyvinyl chloride membrane biofilm reactor for the treatment of nitrate contaminated drinking water.

    Science.gov (United States)

    Xia, Siqing; Zhang, YanHao; Zhong, FoHua

    2009-12-01

    A continuous stirred hydrogen-based polyvinyl chloride (PVC) membrane biofilm reactor (MBfR) was investigated to remove nitrate from the drinking water. The reactor was operated over 100 days, and the result showed that the average nitrate denitrification rate of 1.2 g NO(3)(-)-N/m(2) d and the total nitrogen (TN) removal of 95.1% were achieved with the influent nitrate concentration of 50 mg NO(3)(-)-N/L and the hydrogen pressure of 0.05 MPa. Under the same conditions, the average rate of hydrogen utilization by biofilm was 0.031 mg H(2)/cm(2) d, which was sufficient to remove 50 mg NO(3)(-)-N/L from the contaminated water with the effluent nitrate and nitrite concentrations below drinking water limit values. The average hydrogen utilization efficiency was achieved as high as 99.5%. Flux analysis demonstrated that, compared to sulfate reduction, nitrate reduction competed more strongly for hydrogen electron, and obtained more electrons in high influent nitrate loading.

  16. Characteristics and economy of the European reactor of pressurized water (EPR); Caracteristicas y economia del reactor europeo de agua a presion (EPR)

    Energy Technology Data Exchange (ETDEWEB)

    Ortiz V, J.; Ramirez S, J.R.; Palacios H, J.C. [ININ, 52045 Ocoyoacac, Estado de Mexico (Mexico)]. e-mail: jov@nuclear.inin.mx

    2005-07-01

    The high current costs of the fossil fuels, have propitiated that the industries of electric power generation in the world reconsider the nuclear option as medium of generation. In Europe, the more recently contracted nuclear power plant is that of Olkiluoto-III in Finland that waits it enters in operation at the end of 2009. The reactor that will be installed in this power plant will be a prototype of pressurized water reactor of the companies AREVA and EDF. In this work they are described the reactor EPR and the major components of the nuclear power plant as well as the main characteristics of safety and the flexibility of the operation of the EPR. The supposed costs reported in different sources of information are also described and calculated with information provided by the manufacturer company. (Author)

  17. Quarterly technical progress report on water reactor safety programs sponsored by the Nuclear Regulatory Commission's Division of Reactor Safety Research, October--December 1975

    Energy Technology Data Exchange (ETDEWEB)

    1976-05-01

    Light water reactor safety activities performed during October--December 1975 are reported. The blowdown heat transfer tests series of the Semiscale Mod-1 test program was completed. In the LOFT Program, preparations were made for nonnuclear testing. The Thermal Fuels Behavior Program completed a power-cooling-mismatch test and an irradiation effects test on PWR-type fuel rods. Model development and verification efforts of the Reactor Behavior Program included developing new analysis models for the RELAP4 computer code, subroutines for the FRAP-S and FRAP-T codes, and new models for predicting reactor fuel restructuring and zircaloy cladding behavior; an analysis of post-CHF fuel behavior was made using FRAP-T.

  18. Prediction of the moderator temperature field in a heavy water reactor based on a cellular neural network

    Directory of Open Access Journals (Sweden)

    S.O. Starkov

    2017-06-01

    Full Text Available Reactors with heavy water coolants and moderators have been used extensively in today's power industry. Monitoring of the moderator condition plays an important role in ensuring normal operation of a power plant. A cellular neural network, the architecture of which has been adapted for hardware implementation, is proposed for use in a system for prediction of the heavy water moderator temperature. A reactor model composed in accordance with the CANDU Darlington heavy water reactor design was used to form the training sample collection and to control correct operation of the neural network structure. The sample components for the adjustment and configuration of the network topology include key parameters that characterize the energy generation process in the core. The paper considers the feasibility of the temperature prediction only for the calandria's central cross-section. To solve this problem, the cellular neural network architecture has been designed, and major parts of the digital computational element and methods for their implementation based on an FPLD have also been developed. The method is described for organizing an optical coupling between individual neural modules within the network, which enables not only the restructuring of the topology in the training process, but also the assignment of priorities for the propagation of the information signals of neurons depending on the activity in a situation analysis at the neural network structure inlet. Asynchronous activation of cells was used based on an oscillating fractal network, the basis for which was a modified ring oscillator. The efficiency of training the proposed architecture using stochastic diffusion search algorithms is evaluated. A comparative analysis of the model behavior and the results of the neural network operation have shown that the use of the neural network approach is effective in safety systems of power plants.

  19. Development of a simplified methodology for the isotopic determination of fuel spent in Light Water Reactors; Desarrollo de una metodologia simplificada para la determinacion isotopica del combustible gastado en reactores de agua ligera

    Energy Technology Data Exchange (ETDEWEB)

    Hernandez N, H.; Francois L, J.L. [FI-UNAM, 04510 Mexico D.F. (Mexico)]. e-mail: hermilo@lairn.fi-b.unam.mx

    2005-07-01

    The present work presents a simplified methodology to quantify the isotopic content of the spent fuel of light water reactors; their application is it specific to the Laguna Verde Nucleo electric Central by means of a balance cycle of 18 months. The methodology is divided in two parts: the first one consists on the development of a model of a simplified cell, for the isotopic quantification of the irradiated fuel. With this model the burnt one is simulated 48,000 MWD/TU of the fuel in the core of the reactor, taking like base one fuel assemble type 10x10 and using a two-dimensional simulator for a fuel cell of a light water reactor (CPM-3). The second part of the methodology is based on the creation from an isotopic decay model through an algorithm in C++ (decay) to evaluate the amount, by decay of the radionuclides, after having been irradiated the fuel until the time in which the reprocessing is made. Finally the method used for the quantification of the kilograms of uranium and obtained plutonium of a normalized quantity (1000 kg) of fuel irradiated in a reactor is presented. These results will allow later on to make analysis of the final disposition of the irradiated fuel. (Author)

  20. Crack growth behaviour of low alloy steels for pressure boundary components under transient light water reactor operating conditions (CASTOC)

    Energy Technology Data Exchange (ETDEWEB)

    Foehl, J.; Weissenberg, T. [Materialpruefungsanstalt, Univ. Stuttgart (Germany); Gomez-Briceno, D.; Lapena, J. [Centro de Investigaciones Energeticas, Medioambientales y Tecnologicas (CIEMAT) (Spain); Ernestova, M.; Zamboch, M. [Nuclear Research Inst. (NRI) (Czech Republic); Seifert, H.P.; Ritter, S. [Paul Scherrer Inst. (PSI) (Switzerland); Roth, A.; Devrient, B. [Framatome ANP GmbH (F ANP) (Germany); Ehrnsten, U. [Technical Research Centre of Finland (VTT) (Finland)

    2004-07-01

    The CASTOC project addresses environmentally assisted cracking (EAC) phenomena in low alloy steels used for pressure boundary components in both Western type boiling water reactors (BWR) and Russian type pressurised water reactors (VVER). It comprises the four work packages (WP): inter-laboratory comparison test (WP1); EAC behaviour under static load (WP2), EAC behaviour under cyclic load and load transients (WP3); evaluation of the results with regard to their relevance for components in practice (WP4). The use of sophisticated test facilities and measurement techniques for the on-line detection of crack advances have provided a more detailed understanding of the mechanisms of environmentally assisted cracking and provided quantitative data of crack growth rates as a function of loading events and time, respectively. The effect of several major parameters controlling EAC was investigated with particular emphasis on the transferability of the results to components in service. The obtained crack growth rate data were reflected on literature data and on commonly applied prediction curves as presented in the appropriate Code. At relevant stress intensity factors it could be shown that immediate cessation of growing cracks occurs after changing from cyclic to static load in high purity oxygenated BWR water and oxygen-free VVER water corresponding to steady state operation conditions. Susceptibility to environmentally assisted cracking under static load was observed for a heat affected zone material in oxygenated high purity water and also in base materials during a chloride transient representing BWR water condition below Action Level 1 of the EPRI Water Chemistry Guidelines according to the lectrical conductivity of the water but in the range of Action Level 2 according to the content of chlorides. Time based crack growth was also observed in one Russian type base material in oxygenated VVER water and in one Western type base material in oxygenated high purity BWR

  1. Application of Genetic Algorithm methodologies in fuel bundle burnup optimization of Pressurized Heavy Water Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jayalal, M.L., E-mail: jayalal@igcar.gov.in [Electronics, Instrumentation and Radiological Safety Group (EIRSG), Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamil Nadu (India); Ramachandran, Suja [Electronics, Instrumentation and Radiological Safety Group (EIRSG), Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamil Nadu (India); Rathakrishnan, S. [Reactor Physics Section, Madras Atomic Power Station (MAPS), Kalpakkam, Tamil Nadu (India); Satya Murty, S.A.V. [Electronics, Instrumentation and Radiological Safety Group (EIRSG), Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamil Nadu (India); Sai Baba, M. [Resources Management Group (RMG), Indira Gandhi Centre for Atomic Research (IGCAR), Kalpakkam, Tamil Nadu (India)

    2015-01-15

    Highlights: • We study and compare Genetic Algorithms (GA) in the fuel bundle burnup optimization of an Indian Pressurized Heavy Water Reactor (PHWR) of 220 MWe. • Two Genetic Algorithm methodologies namely, Penalty Functions based GA and Multi Objective GA are considered. • For the selected problem, Multi Objective GA performs better than Penalty Functions based GA. • In the present study, Multi Objective GA outperforms Penalty Functions based GA in convergence speed and better diversity in solutions. - Abstract: The work carried out as a part of application and comparison of GA techniques in nuclear reactor environment is presented in the study. The nuclear fuel management optimization problem selected for the study aims at arriving appropriate reference discharge burnup values for the two burnup zones of 220 MWe Pressurized Heavy Water Reactor (PHWR) core. Two Genetic Algorithm methodologies namely, Penalty Functions based GA and Multi Objective GA are applied in this study. The study reveals, for the selected problem of PHWR fuel bundle burnup optimization, Multi Objective GA is more suitable than Penalty Functions based GA in the two aspects considered: by way of producing diverse feasible solutions and the convergence speed being better, i.e. it is capable of generating more number of feasible solutions, from earlier generations. It is observed that for the selected problem, the Multi Objective GA is 25.0% faster than Penalty Functions based GA with respect to CPU time, for generating 80% of the population with feasible solutions. When average computational time of fixed generations are considered, Penalty Functions based GA is 44.5% faster than Multi Objective GA. In the overall performance, the convergence speed of Multi Objective GA surpasses the computational time advantage of Penalty Functions based GA. The ability of Multi Objective GA in producing more diverse feasible solutions is a desired feature of the problem selected, that helps the

  2. Expert assessments of the cost of light water small modular reactors.

    Science.gov (United States)

    Abdulla, Ahmed; Azevedo, Inês Lima; Morgan, M Granger

    2013-06-11

    Analysts and decision makers frequently want estimates of the cost of technologies that have yet to be developed or deployed. Small modular reactors (SMRs), which could become part of a portfolio of carbon-free energy sources, are one such technology. Existing estimates of likely SMR costs rely on problematic top-down approaches or bottom-up assessments that are proprietary. When done properly, expert elicitations can complement these approaches. We developed detailed technical descriptions of two SMR designs and then conduced elicitation interviews in which we obtained probabilistic judgments from 16 experts who are involved in, or have access to, engineering-economic assessments of SMR projects. Here, we report estimates of the overnight cost and construction duration for five reactor-deployment scenarios that involve a large reactor and two light water SMRs. Consistent with the uncertainty introduced by past cost overruns and construction delays, median estimates of the cost of new large plants vary by more than a factor of 2.5. Expert judgments about likely SMR costs display an even wider range. Median estimates for a 45 megawatts-electric (MWe) SMR range from $4,000 to $16,300/kWe and from $3,200 to $7,100/kWe for a 225-MWe SMR. Sources of disagreement are highlighted, exposing the thought processes of experts involved with SMR design. There was consensus that SMRs could be built and brought online about 2 y faster than large reactors. Experts identify more affordable unit cost, factory fabrication, and shorter construction schedules as factors that may make light water SMRs economically viable.

  3. Measurement and Analysis of Structural Integrity of Reactor Core Support Structure in Pressurized Water Reactor (PWR) Plant

    Science.gov (United States)

    Ansari, Saleem A.; Haroon, Muhammad; Rashid, Atif; Kazmi, Zafar

    2017-02-01

    Extensive calculation and measurements of flow-induced vibrations (FIV) of reactor internals were made in a PWR plant to assess the structural integrity of reactor core support structure against coolant flow. The work was done to meet the requirements of the Fukushima Response Action Plan (FRAP) for enhancement of reactor safety, and the regulatory guide RG-1.20. For the core surveillance measurements the Reactor Internals Vibration Monitoring System (IVMS) has been developed based on detailed neutron noise analysis of the flux signals from the four ex-core neutron detectors. The natural frequencies, displacement and mode shapes of the reactor core barrel (CB) motion were determined with the help of IVMS. The random pressure fluctuations in reactor coolant flow due to turbulence force have been identified as the predominant cause of beam-mode deflection of CB. The dynamic FIV calculations were also made to supplement the core surveillance measurements. The calculational package employed the computational fluid dynamics, mode shape analysis, calculation of power spectral densities of flow & pressure fields and the structural response to random flow excitation forces. The dynamic loads and stiffness of the Hold-Down Spring that keeps the core structure in position against upward coolant thrust were also determined by noise measurements. Also, the boron concentration in primary coolant at any time of the core cycle has been determined with the IVMS.

  4. Multi-objective optimization of a compact pressurized water nuclear reactor computational model for biological shielding design using innovative materials

    Energy Technology Data Exchange (ETDEWEB)

    Tunes, M.A., E-mail: matheus.tunes@usp.br [Department of Metallurgical and Materials Engineering, Escola Politécnica da Universidade de São Paulo, Av. Prof. Mello Moraes, 2463 – CEP 05508 – 030 São Paulo (Brazil); Oliveira, C.R.E. de, E-mail: cassiano@unm.edu [Department of Nuclear Engineering, The University of New Mexico, Farris Engineering Center, 221, Albuquerque, NM 87131-1070 (United States); Schön, C.G., E-mail: schoen@usp.br [Department of Metallurgical and Materials Engineering, Escola Politécnica da Universidade de São Paulo, Av. Prof. Mello Moraes, 2463 – CEP 05508 – 030 São Paulo (Brazil)

    2017-03-15

    Highlights: • Use of two n-γ transport codes leads to optimized model of compact nuclear reactor. • It was possible to safely reduce both weight and volume of the biological shielding. • Best configuration obtained by using new composites for both γ and n attenuation. - Abstract: The aim of the present work is to develop a computational model of a compact pressurized water nuclear reactor (PWR) to investigate the use of innovative materials to enhance the biological shielding effectiveness. Two radiation transport codes were used: the first one – MCNP – for the PWR design and the GEM/EVENT to simulate (in a 1D slab) the behavior of several materials and shielding thickness on gamma and neutron radiation. Additionally MATLAB Optimization Toolbox was used to provide new geometric configurations of the slab aiming at reducing the volume and weight of the walls by means of a cost/objective function. It is demonstrated in the reactor model that the dose rate outside biological shielding has been reduced by one order of magnitude for the optimized model compared with the initial configuration. Volume and weight of the shielding walls were also reduced. The results indicated that one-dimensional deterministic code to reach an optimized geometry and test materials, combined with a three-dimensional model of a compact nuclear reactor in a stochastic code, is a fast and efficient procedure to test shielding performance and optimization before the experimental assessment. A major outcome of this research is that composite materials (ECOMASS 2150TU96) may replace (with advantages) traditional shielding materials without jeopardizing the nuclear power plant safety assurance.

  5. Implementation and evaluation of fuel creep using advanced light-water reactor materials in FRAPCON 3.5

    Science.gov (United States)

    Carroll, Spencer

    As current reactors approach the end of their operable lifetime, new reactors are needed if nuclear power is to continue being generated in the United States. Some utilities have already began construction on newer, more advanced LWR reactors, which use the same fuel as current reactors and have a similar but updated design. Others are researching next generation (GEN-IV) reactors which have new designs that utilize alternative fuel, coolants and other reactor materials. Many of these alternative fuels are capable of achieving higher burnups and are designed to be more accident tolerant than the currently used UO2 fuel. However, before these new materials can be used, extensive research must be done in order to obtain a detailed understanding of how the new fuels and other materials will interact. New fuels, such as uranium nitride (UN) and uranium carbide (UC) have several advantages over UO2, such as increased burnup capabilities and higher thermal conductivities. However, there are issues with each that prevent UC and UN from being used as direct replacements for UO2. Both UC and UN swell at a significantly higher rate than UO2 and neither fuel reacts favorably when exposed to water. Due to this, UC and UN are being considered more for GEN-IV reactors that use alternative coolant rather than for current LWRs. In an effort to increase accident tolerance, silicon carbide (SiC) is being considered for use as an alternative cladding. The high strength, high melting point and low oxidation of SiC make it an attractive cladding choice, especially in an accident scenario. However, as a ceramic, SiC is not ductile and will not creep outwards upon pellet-clad mechanical interaction (PCMI) which can cause a large build up in interfacial pressure. In order to understand the interaction between the high swelling fuels and unyielding SiC cladding, data on the properties and behaviors of these materials must be gathered and incorporated into FRAPCON. FRAPCON is a fuel

  6. AES Water Architecture Study Interim Results

    Science.gov (United States)

    Sarguisingh, Miriam J.

    2012-01-01

    The mission of the Advanced Exploration System (AES) Water Recovery Project (WRP) is to develop advanced water recovery systems in order to enable NASA human exploration missions beyond low earth orbit (LEO). The primary objective of the AES WRP is to develop water recovery technologies critical to near term missions beyond LEO. The secondary objective is to continue to advance mid-readiness level technologies to support future NASA missions. An effort is being undertaken to establish the architecture for the AES Water Recovery System (WRS) that meets both near and long term objectives. The resultant architecture will be used to guide future technical planning, establish a baseline development roadmap for technology infusion, and establish baseline assumptions for integrated ground and on-orbit environmental control and life support systems (ECLSS) definition. This study is being performed in three phases. Phase I of this study established the scope of the study through definition of the mission requirements and constraints, as well as indentifying all possible WRS configurations that meet the mission requirements. Phase II of this study focused on the near term space exploration objectives by establishing an ISS-derived reference schematic for long-duration (>180 day) in-space habitation. Phase III will focus on the long term space exploration objectives, trading the viable WRS configurations identified in Phase I to identify the ideal exploration WRS. The results of Phases I and II are discussed in this paper.

  7. Characterization of solids in the Three Mile Island Unit 2 reactor defueling water

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, D. O.

    1987-12-01

    Because of the impact of poor water clarity on defueling operations at the Three Mile Island Unit 2 Nuclear Power Station, a study was undertaken to characterize suspended particulates in the reactor defueling water. The examination included cascade filtration through Nuclepore filters of progressively smaller pore sizes, using three water samples obtained at different times and after varying degrees of clarification. The solids collected on the filters were examined with a scanning electron microscope and analyzed with energy-dispersive x-ray fluorescence. A wide variety of solids was observed, and 26 elements were detected. These included all the materials expected from the reactor system (uranium, zirconium, silver, cadmium, indium, iron, chromium, and nickel), chemicals and zeolites used to decontaminate the water (aluminum, silicon, sodium), common impurities (potassium, chlorine, sulfur, magnesium, calcium, and others), as well as some unexpected metals (molybdenum, manganese, bromine, and lead). There was also evidence for the presence of organic material. A diverse assortment of particles with widely varying surface properties was found to be present.

  8. Start-up performance and granular sludge features of an improved external circulating anaerobic reactor for algae-laden water treatment.

    Science.gov (United States)

    Yu, Yaqin; Lu, Xiwu

    2017-09-01

    The microbial characteristics of granular sludge during the rapid start of an enhanced external circulating anaerobic reactor were studied to improve algae-laden water treatment efficiency. Results showed that algae laden water was effectively removed after about 35 d, and the removal rates of chemical oxygen demand (COD) and algal toxin were around 85% and 92%, respectively. Simultaneously, the gas generation rate was around 380 mL/gCOD. The microbial community structure in the granular sludge of the reactor was complicated, and dominated by coccus and filamentous bacteria. Methanosphaera, Methanolinea, Thermogymnomonas, Methanoregula, Methanomethylovorans, and Methanosaeta were the major microorganisms in the granular sludge. The activities of protease and coenzyme F420 were high in the granular sludge. The intermittent stirring device and the reverse-flow system were further found to overcome the disadvantage of the floating and crusting of cyanobacteria inside the reactor. Meanwhile, the effect of mass transfer inside the reactor can be accelerated to help give the reactor a rapid start.

  9. Start-up performance and granular sludge features of an improved external circulating anaerobic reactor for algae-laden water treatment

    Directory of Open Access Journals (Sweden)

    Yaqin Yu

    2017-09-01

    Full Text Available The microbial characteristics of granular sludge during the rapid start of an enhanced external circulating anaerobic reactor were studied to improve algae-laden water treatment efficiency. Results showed that algae laden water was effectively removed after about 35 d, and the removal rates of chemical oxygen demand (COD and algal toxin were around 85% and 92%, respectively. Simultaneously, the gas generation rate was around 380 mL/gCOD. The microbial community structure in the granular sludge of the reactor was complicated, and dominated by coccus and filamentous bacteria. Methanosphaera, Methanolinea, Thermogymnomonas, Methanoregula, Methanomethylovorans, and Methanosaeta were the major microorganisms in the granular sludge. The activities of protease and coenzyme F420 were high in the granular sludge. The intermittent stirring device and the reverse-flow system were further found to overcome the disadvantage of the floating and crusting of cyanobacteria inside the reactor. Meanwhile, the effect of mass transfer inside the reactor can be accelerated to help give the reactor a rapid start.

  10. System-Level Heat Transfer Analysis, Thermal- Mechanical Cyclic Stress Analysis, and Environmental Fatigue Modeling of a Two-Loop Pressurized Water Reactor. A Preliminary Study

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Subhasish [Argonne National Lab. (ANL), Argonne, IL (United States); Soppet, William [Argonne National Lab. (ANL), Argonne, IL (United States); Majumdar, Saurin [Argonne National Lab. (ANL), Argonne, IL (United States); Natesan, Ken [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-01-03

    This report provides an update on an assessment of environmentally assisted fatigue for light water reactor components under extended service conditions. This report is a deliverable in April 2015 under the work package for environmentally assisted fatigue under DOE's Light Water Reactor Sustainability program. In this report, updates are discussed related to a system level preliminary finite element model of a two-loop pressurized water reactor (PWR). Based on this model, system-level heat transfer analysis and subsequent thermal-mechanical stress analysis were performed for typical design-basis thermal-mechanical fatigue cycles. The in-air fatigue lives of components, such as the hot and cold legs, were estimated on the basis of stress analysis results, ASME in-air fatigue life estimation criteria, and fatigue design curves. Furthermore, environmental correction factors and associated PWR environment fatigue lives for the hot and cold legs were estimated by using estimated stress and strain histories and the approach described in NUREG-6909. The discussed models and results are very preliminary. Further advancement of the discussed model is required for more accurate life prediction of reactor components. This report only presents the work related to finite element modelling activities. However, in between multiple tensile and fatigue tests were conducted. The related experimental results will be presented in the year-end report.

  11. Development of high-fidelity multiphysics system for light water reactor analysis

    Science.gov (United States)

    Magedanz, Jeffrey W.

    There has been a tendency in recent years toward greater heterogeneity in reactor cores, due to the use of mixed-oxide (MOX) fuel, burnable absorbers, and longer cycles with consequently higher fuel burnup. The resulting asymmetry of the neutron flux and energy spectrum between regions with different compositions causes a need to account for the directional dependence of the neutron flux, instead of the traditional diffusion approximation. Furthermore, the presence of both MOX and high-burnup fuel in the core increases the complexity of the heat conduction. The heat transfer properties of the fuel pellet change with irradiation, and the thermal and mechanical expansion of the pellet and cladding strongly affect the size of the gap between them, and its consequent thermal resistance. These operational tendencies require higher fidelity multi-physics modeling capabilities, and this need is addressed by the developments performed within this PhD research. The dissertation describes the development of a High-Fidelity Multi-Physics System for Light Water Reactor Analysis. It consists of three coupled codes -- CTF for Thermal Hydraulics, TORT-TD for Neutron Kinetics, and FRAPTRAN for Fuel Performance. It is meant to address these modeling challenges in three ways: (1) by resolving the state of the system at the level of each fuel pin, rather than homogenizing entire fuel assemblies, (2) by using the multi-group Discrete Ordinates method to account for the directional dependence of the neutron flux, and (3) by using a fuel-performance code, rather than a Thermal Hydraulics code's simplified fuel model, to account for the material behavior of the fuel and its feedback to the hydraulic and neutronic behavior of the system. While the first two are improvements, the third, the use of a fuel-performance code for feedback, constitutes an innovation in this PhD project. Also important to this work is the manner in which such coupling is written. While coupling involves combining

  12. Proceedings of the US Nuclear Regulatory Commission fifteenth water reactor safety information meeting: Volume 6, Decontamination and decommissioning, accident management, TMI-2

    Energy Technology Data Exchange (ETDEWEB)

    Weiss, A. J. [comp.

    1988-02-01

    This six-volume report contains 140 papers out of the 164 that were presented at the Fifteenth Water Reactor Safety Information Meeting held at the National Bureau of Standards, Gaithersburg, Maryland, during the week of October 26-29, 1987. The papers are printed in the order of their presentation in each session and describe progress and results of programs in nuclear safety research conducted in this country and abroad. This report, Volume 6, discusses decontamination and decommissioning, accident management, and the Three Mile Island-2 reactor accident. Thirteen reports have been cataloged separately.

  13. Study of process of water disinfection it saw energy solar using an experimental reactor; Estudo do proceso de desinfeccao de agua via energia solar utilizando um reator experimental

    Energy Technology Data Exchange (ETDEWEB)

    Batista, C. H.; Prado, L. R.; Lima, A. S.; Egues, S. M. S.; Araujo, P. M. M.

    2008-07-01

    In this work, was conducted an experimental study of the efficiency of a solar reactor in the disinfection of drinking water using photolysis (UV) and heterogeneous photo catalysis (TiO{sub 2}/UV). The experiments were conducted in batch mode, evaluating the effects of reactor inclination and the presence of a solar concentrator. The results indicated that the employed system was capable to promote the complete disinfection in 150 min using only the photo thermic effect, and in 120 min with the addition of immobilized TiO{sub 2} and the solar concentrator. (Author)

  14. A large scale fullerenes synthesis solar reactor modelling and first experimental results

    Energy Technology Data Exchange (ETDEWEB)

    Guillard, T.; Flamand, G.; Robert, J.F.; Rivoire, B.; Olalde, G.; Alvarez, L. [Centre National de la Recherche Scientifique (CNRS-IMP), 66 - Font-Romeu (France); Laplaze, D. [Universite de Montpellier, GDPC, 34 (France)

    1999-03-01

    After the promising results obtained with a 2 kW solar furnace for fullerenes and nano-tubes synthesis, a large scale production project using the 1 MW Odeillo solar furnace started in 1997. This paper presents the first experimental results obtained with a concept-validation vessel and the comparison with a numerical simulation of the target thermal behavior. It is shown that a 6 mm i.d. graphite rod heated by a 500 W/cm{sup 2} incident solar flux density (I{sub s}) reaches a front temperature of 2800 K, in agreement with the thermal model. On this basis, accurate prediction of maximum working temperature of the 1 MW reactor is proposed: 3400 K for I{sub s} = 900 W/cm{sup 2}. (authors)

  15. Compound effects of operating parameters on burnup credit criticality analysis in boiling water reactor spent fuel assemblies

    Directory of Open Access Journals (Sweden)

    Shang-Chien Wu

    2018-02-01

    Full Text Available This study proposes a new method of analyzing the burnup credit in boiling water reactor spent fuel assemblies against various operating parameters. The operating parameters under investigation include fuel temperature, axial burnup profile, axial moderator density profile, and control blade usage. In particular, the effects of variations in one and two operating parameters on the curve of effective multiplication factor (keff versus burnup (B are, respectively, the so-called single and compound effects. All the calculations were performed using SCALE 6.1 together with the Evaluated Nuclear Data Files, part B (ENDF/B-VII238-neutron energy group data library. Furthermore, two geometrical models were established based on the General Electric (GE14 10 × 10 boiling water reactor fuel assembly and the Generic Burnup-Credit (GBC-68 storage cask. The results revealed that the curves of keff versus B, due to single and compound effects, can be approximated using a first degree polynomial of B. However, the reactivity deviation (or changes of keff,Δk in some compound effects was not a summation of the all Δk resulting from the two associated single effects. This phenomenon is undesirable because it may to some extent affect the precise assessment of burnup credit. In this study, a general formula was thus proposed to express the curves of keff versus B for both single and compound effects.

  16. ROLE OF PASSIVE SAFETY FEATURES IN PREVENTION AND MITIGATION OF SEVERE PLANT CONDITIONS IN INDIAN ADVANCED HEAVY WATER REACTOR

    Directory of Open Access Journals (Sweden)

    VIKAS JAIN

    2013-10-01

    Full Text Available Pressing demands of economic competitiveness, the need for large-scale deployment, minimizing the need of human intervention, and experience from the past events and incidents at operating reactors have guided the evolution and innovations in reactor technologies. Indian innovative reactor ‘AHWR’ is a pressure-tube type natural circulation based boiling water reactor that is designed to meet such requirements, which essentially reflect the needs of next generation reactors. The reactor employs various passive features to prevent and mitigate accidental conditions, like a slightly negative void reactivity coefficient, passive poison injection to scram the reactor in event of failure of the wired shutdown systems, a large elevated pool of water as a heat sink inside the containment, passive decay heat removal based on natural circulation and passive valves, passive ECC injection, etc. It is designed to meet the fundamental safety requirements of safe shutdown, safe decay heat removal and confinement of activity with no impact in public domain, and hence, no need for emergency planning under all conceivable scenarios. This paper examines the role of the various passive safety systems in prevention and mitigation of severe plant conditions that may arise in event of multiple failures. For the purpose of demonstration of the effectiveness of its passive features, postulated scenarios on the lines of three major severe accidents in the history of nuclear power reactors are considered, namely; the Three Mile Island (TMI, Chernobyl and Fukushima accidents. Severe plant conditions along the lines of these scenarios are postulated to the extent conceivable in the reactor under consideration and analyzed using best estimate system thermal-hydraulics code RELAP5/Mod3.2. It is found that the various passive systems incorporated enable the reactor to tolerate the postulated accident conditions without causing severe plant conditions and core degradation.

  17. Summary of estimated doses and risks resulting from routine radionuclide releases from fast breeder reactor fuel cycle facilities

    Energy Technology Data Exchange (ETDEWEB)

    Miller, C.W.; Meyer, H.R.

    1985-01-01

    A project is underway at Oak Ridge National Laboratory to assess the human health and environment effects associated with operation of Liquid Metal Fast Breeder Reactor fuel cycle. In this first phase of the work, emphasis was focused on routine radionuclide releases from reactor and reprocessing facilities. For this study, sites for fifty 1-GW(e) capacity reactors and three reprocessing plants were selected to develop scenarios representative of US power requirements. For both the reactor and reprocessing facility siting schemes selected, relatively small impacts were calculated for locality-specific populations residing within 100 km. Also, the results of these analyses are being used in the identification of research priorities. 13 refs., 2 figs., 3 tabs.

  18. Preliminary analysis of the postulated changes needed to achieve rail cask handling capabilities at selected light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Konzek, G.J.

    1986-02-01

    Reactor-specific railroad and crane information for all LWRs in the US was extracted from current sources of information. Based on this information, reactors were separated into two basic groups consisting of reactors with existing, usable rail cask capabilities and those without these capabilities. The latter group is the main focus of this study. The group of reactors without present rail cask handling capabilities was further separated into two subgroups consisting of reactors considered essentially incapable of handling a large rail cask of about 100 tons and reactors where postulated facility changes could result in rail cask handling capabilities. Based on a selected population of 127 reactors, the results of this assessment indicate that usable rail cask capabilities exist at 83 (65%) of the reactors. Twelve (27%) of the remaining 44 reactors are deemed incapable of handling a large rail cask without major changes, and 32 reactors are considered likely candidates for potentially achieving rail cask handling capabilities. In the latter group, facility changes were postulated that would conceptually enable these reactors to handle large rail casks. The estimated cost per plant of required facility changes varied widely from a high of about $35 million to a low of <$0.3 million. Only 11 of the 32 plants would require crane upgrades. Spur track and right-of-way costs would apparently vary widely among sites. These results are based on preliminary analyses using available generic cost data. They represent lower bound values that are useful for developing an initial assessment of the viability of the postulated changes on a system-wide basis, but are not intended to be absolute values for specific reactors or sites.

  19. Numerical simulation of severe water ingress accidents in a modular high temperature gas cooled reactor

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Zuoyi; Scherer, W.

    1996-01-01

    This report analyzes reverse water ingress accidents in the SIEMENS 200 MW Modular Pebble-Bed High Temperature Gas Cooled Reactor (HTR-MODULE) under the assumption of no active safety protection systems in order to find the safety margins of the current HTR-MODULE design and to realize a catastrophe-free nuclear technology. A water, steam and helium multi-phase cavity model is developed and implemented in the DSNP simulation system. The DSNP system is then used to simulate the primary and secondary circuit of a HTR-MODULE power plant. Comparisons of the model with experiments and with TINTE calculations serve as validation of the simulation. The analysis of the primary circuit tries to answer the question how fast the water enters the reactor core. It was found that the maximum H{sub 2}O concentration increase in the reactor core is smaller than 0.3 kg/(m{sup 3}s). The liquid water vaporization in the steam generator and H{sub 2}O transport from the steam generator to the reactor core reduce the ingress velocity of the H{sub 2}O into the reactor core. In order to answer the question how much water enters the primary circuit, the full cavitation of the feed water pumps is analyzed. It is found that if the secondary circuit is depressurized enough, the feed water pumps will be inherently stopped by the full cavitation. This limits the water to be pumped from the deaerator to the steam generator. A comprehensive simulation of the MODUL-HTR power plant then shows that the H{sub 2}O inventory in the primary circuit can be limited to about 3000 kg. The nuclear reactivity increase caused by the water ingress leads to a fast power excursion, which, however, is inherently counterbalanced by negative feedback effects. Concerning the integrity of the fuel elements, the safety relevant temperature limit of 1600 C was not reached in any case. (orig.) [Deutsch] Dieser Bericht analysiert schwere Wassereinbruch-Stoerfaelle im 200 MW modularen Kugelhaufen-Hochtemperaturreaktor (HTR

  20. Applicability of GALE-86 Codes to Integral Pressurized Water Reactor designs

    Energy Technology Data Exchange (ETDEWEB)

    Geelhood, Kenneth J. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Rishel, Jeremy P. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2012-06-01

    This report describes work that Pacific Northwest National Laboratory is doing to assist the U.S. Nuclear Regulatory Commission (NRC) Office of New Reactors (NRO) staff in their reviews of applications for nuclear power plants using new reactor core designs. These designs include small integral PWRs (IRIS, mPower, and NuScale reactor designs), HTGRs, (pebble-bed and prismatic-block modular reactor designs) and SFRs (4S and PRISM reactor designs). Under this specific task, PNNL will assist the NRC staff in reviewing the current versions of the GALE codes and identify features and limitations that would need to be modified to accommodate the technical review of iPWR and mPower® license applications and recommend specific changes to the code, NUREG-0017, and associated NRC guidance. This contract is necessary to support the licensing of iPWRs with a near-term focus on the B&W mPower® reactor design. While the focus of this review is on the mPower® reactor design, the review of the code and the scope of recommended changes consider a revision of the GALE codes that would make them universally applicable for other types of integral PWR designs. The results of a detailed comparison between PWR and iPWR designs are reported here. Also included is an investigation of the GALE code and its basis and a determination as to the applicability of each of the bases to an iPWR design. The issues investigated come from a list provided by NRC staff, the results of comparing the PWR and iPWR designs, the parameters identified as having a large impact on the code outputs from a recent sensitivity study and the main bases identified in NUREG-0017. This report will provide a summary of the gaps in the GALE codes as they relate to iPWR designs and for each gap will propose what work could be performed to fill that gap and create a version of GALE that is applicable to integral PWR designs.

  1. In-Vessel Melt Retention of Pressurized Water Reactors: Historical Review and Future Research Needs

    Directory of Open Access Journals (Sweden)

    Weimin Ma

    2016-03-01

    Full Text Available A historical review of in-vessel melt retention (IVR is given, which is a severe accident mitigation measure extensively applied in Generation III pressurized water reactors (PWRs. The idea of IVR actually originated from the back-fitting of the Generation II reactor Loviisa VVER-440 in order to cope with the core-melt risk. It was then employed in the new deigns such as Westinghouse AP1000, the Korean APR1400 as well as Chinese advanced PWR designs HPR1000 and CAP1400. The most influential phenomena on the IVR strategy are in-vessel core melt evolution, the heat fluxes imposed on the vessel by the molten core, and the external cooling of the reactor pressure vessel (RPV. For in-vessel melt evolution, past focus has only been placed on the melt pool convection in the lower plenum of the RPV; however, through our review and analysis, we believe that other in-vessel phenomena, including core degradation and relocation, debris formation, and coolability and melt pool formation, may all contribute to the final state of the melt pool and its thermal loads on the lower head. By looking into previous research on relevant topics, we aim to identify the missing pieces in the picture. Based on the state of the art, we conclude by proposing future research needs.

  2. Survey of Worldwide Light Water Reactor Experience with Mixed Uranium-Plutonium Oxide Fuel

    Energy Technology Data Exchange (ETDEWEB)

    Cowell, B.S.; Fisher, S.E.

    1999-02-01

    The US and the Former Soviet Union (FSU) have recently declared quantities of weapons materials, including weapons-grade (WG) plutonium, excess to strategic requirements. One of the leading candidates for the disposition of excess WG plutonium is irradiation in light water reactors (LWRs) as mixed uranium-plutonium oxide (MOX) fuel. A description of the MOX fuel fabrication techniques in worldwide use is presented. A comprehensive examination of the domestic MOX experience in US reactors obtained during the 1960s, 1970s, and early 1980s is also presented. This experience is described by manufacturer and is also categorized by the reactor facility that irradiated the MOX fuel. A limited summary of the international experience with MOX fuels is also presented. A review of MOX fuel and its performance is conducted in view of the special considerations associated with the disposition of WG plutonium. Based on the available information, it appears that adoption of foreign commercial MOX technology from one of the successful MOX fuel vendors will minimize the technical risks to the overall mission. The conclusion is made that the existing MOX fuel experience base suggests that disposition of excess weapons plutonium through irradiation in LWRs is a technically attractive option.

  3. Simulation and control of water-gas shift packed bed reactor with inter-stage cooling

    Science.gov (United States)

    Saw, S. Z.; Nandong, J.

    2016-03-01

    Water-Gas Shift Reaction (WGSR) has become one of the well-known pathways for H2 production in industries. The issue with WGSR is that it is kinetically favored at high temperatures but thermodynamically favored at low temperatures, thus requiring careful consideration in the control design in order to ensure that the temperature used does not deactivate the catalyst. This paper studies the effect of a reactor arrangement with an inter-stage cooling implemented in the packed bed reactor to look at its effect on outlet temperature. A mathematical model is developed based on one-dimensional heat and mass transfers which incorporate the intra-particle effects. It is shown that the placement of the inter-stage cooling and the outlet temperature exiting the inter-stage cooling have strong influence on the reaction conversion. Several control strategies are explored for the process. It is shown that a feedback- feedforward control strategy using Multi-scale Control (MSC) is effective to regulate the reactor temperature profile which is critical to maintaining the catalysts activity.

  4. Design of a supercritical water-cooled reactor. Pressure vessel and internals

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Kai

    2008-08-15

    The High Performance Light Water Reactor (HPLWR) is a light water reactor with supercritical steam conditions which has been investigated within the 5th Framework Program of the European Commission. Due to the supercritical pressure of 25 MPa, water, used as moderator and as coolant, flows as a single phase through the core and can be directly fed to the turbine. Using the technology of coal fired power plants with supercritical steam conditions, the heat-up in the core is done in several steps to achieve the targeted high steam outlet temperature of 500.C without exceeding available cladding material limits. Based on a first design of a fuel assembly cluster for a HPLWR with a single pass core, the surrounding internals and the reactor pressure vessel (RPV) are dimensioned for the first time, following the safety standards of the nuclear safety standards commission in Germany. Furthermore, this design is extended to the incorporation of core arrangements with two and three passes. The design of the internals and the RPV are verified using mechanical or, in the case of large thermal deformations, combined mechanical and thermal stress analyses. Additionally, a passive safety component for the feedwater inlet of the RPV of the HPLWR is designed. Its purpose is the reduction of the mass flow rate in case of a LOCA for a feedwater line break until further steps are executed. Starting with a simple vortex diode, several steps are executed to enhance the performance of the diode and adapt it to this application. Then, this first design is further optimized using combined 1D and 3D flow analyses. Parametric studies determine the performance and characteristic for changing mass flow rates for this backflow limiter. (orig.)

  5. Search Results Help - Water | ECHO | US EPA

    Science.gov (United States)

    ECHO, Enforcement and Compliance History Online, provides compliance and enforcement information for approximately 800,000 EPA-regulated facilities nationwide. ECHO includes permit, inspection, violation, enforcement action, and penalty information about facilities regulated under the Clean Air Act (CAA) Stationary Source Program, Clean Water Act (CWA) National Pollutant Elimination Discharge System (NPDES), and/or Resource Conservation and Recovery Act (RCRA). Information also is provided on surrounding demographics when available. Search Results Help explains how to navigate the search results page and describes the data presented.

  6. Interim results of the study of control room crew staffing for advanced passive reactor plants

    Energy Technology Data Exchange (ETDEWEB)

    Hallbert, B.P.; Sebok, A.; Haugset, K. [OECD Halden Reactor Project (Norway)

    1996-03-01

    Differences in the ways in which vendors expect the operations staff to interact with advanced passive plants by vendors have led to a need for reconsideration of the minimum shift staffing requirements of licensed Reactor Operators and Senior Reactor Operators contained in current federal regulations (i.e., 10 CFR 50.54(m)). A research project is being carried out to evaluate the impact(s) of advanced passive plant design and staffing of control room crews on operator and team performance. The purpose of the project is to contribute to the understanding of potential safety issues and provide data to support the development of design review guidance. Two factors are being evaluated across a range of plant operating conditions: control room crew staffing; and characteristics of the operating facility itself, whether it employs conventional or advanced, passive features. This paper presents the results of the first phase of the study conducted at the Loviisa nuclear power station earlier this year. Loviisa served as the conventional plant in this study. Data collection from four crews were collected from a series of design basis scenarios, each crew serving in either a normal or minimum staffing configuration. Results of data analyses show that crews participating in the minimum shift staffing configuration experienced significantly higher workload, had lower situation awareness, demonstrated significantly less effective team performance, and performed more poorly as a crew than the crews participating in the normal shift staffing configuration. The baseline data on crew configurations from the conventional plant setting will be compared with similar data to be collected from the advanced plant setting, and a report prepared providing the results of the entire study.

  7. Photocatalytic Membrane Reactors (PMRs in Water Treatment: Configurations and Influencing Factors

    Directory of Open Access Journals (Sweden)

    Xiang Zheng

    2017-07-01

    Full Text Available The lack of access to clean water remains a severe issue all over the world. Coupling photocatalysis with the membrane separation process, which is known as a photocatalytic membrane reactor (PMR, is promising for water treatment. PMR has developed rapidly during the last few years, and this paper presents an overview of the progress in the configuration and operational parameters of PMRs. Two main configurations of PMRs (PMRs with immobilized photocatalyst; PMRs with suspended photocatalyst are comprehensively described and characterized. Various influencing factors on the performance of PMRs, including photocatalyst, light source, water quality, aeration and membrane, are detailed. Moreover, a discussion on the current problems and development prospects of PMRs for practical application are presented.

  8. Numerical investigation on stress corrosion cracking behavior of dissimilar weld joints in pressurized water reactor plants

    Directory of Open Access Journals (Sweden)

    Lingyan Zhao

    2014-07-01

    Full Text Available There have been incidents recently where stress corrosion cracking (SCC observed in the dissimilar metal weld (DMW joints connecting the reactor pressure vessel (RPV nozzle with the hot leg pipe. Due to the complex microstructure and mechanical heterogeneity in the weld region, dissimilar metal weld joints are more susceptible to SCC than the bulk steels in the simulated high temperature water environment of pressurized water reactor (PWR. Tensile residual stress (RS, in addition to operating loads, has a great contribution to SCC crack growth. Limited experimental conditions, varied influence factors and diverging experimental data make it difficult to accurately predict the SCC behavior of DMW joints with complex geometry, material configuration, operating loads and crack shape. Based on the film slip/dissolution oxidation model and elastic-plastic finite element method (EPFEM, an approach is developed to quantitatively predict the SCC growth rate of a RPV outlet nozzle DMW joint. Moreover, this approach is expected to be a pre-analytical tool for SCC experiment of DMW joints in PWR primary water environment.

  9. A study of the tritium behavior in coolant and moderator system of heavy water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, S. P.; Song, S. S.; Chae, K. S. and others [Chosun Univ., Gwangju (Korea, Republic of)

    1993-12-15

    The objectives of this report is to present a regulatory policy on the environmental impact and personnel exposure by understanding the generation, accumulation, environmental release and management of tritium in heavy water reactors. By estimating the tritium concentration at Wolsong nuclear plant site by estimating and forecasting the generation and accumulation of tritium in coolant and moderator systems at Wolsong unit 1, we will study the management and release of tritium at Wolsong units 3 and 4 which are ready for construction. The major activities of this study are as follows : tritium generation and accumulation in heavy water reactor, a quantitative assessment of the accumulation and release of tritium at Wolsong nuclear plant site, heavy water management at Wolsong nuclear plants. The tritium concentration and accumulation trends in the systems at Wolsong unit 1 was estimated. A quantitative assessment of the tritium accumulation and release for Wolsong 2, 3 and 4 based on data from Wolsong 1 was performed. The tritium removal schemes and its long-term management plan were made.

  10. Optical modeling of nickel-base alloys oxidized in pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Clair, A. [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Universite de Bourgogne, 9 avenue Alain Savary, BP 47870, 21078 Dijon cedex (France); Foucault, M.; Calonne, O. [Areva ANP, Centre Technique Departement Corrosion-Chimie, 30 Bd de l' industrie, BP 181, 71205 Le Creusot (France); Finot, E., E-mail: Eric.Finot@u-bourgogne.fr [Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303 CNRS, Universite de Bourgogne, 9 avenue Alain Savary, BP 47870, 21078 Dijon cedex (France)

    2012-10-01

    The knowledge of the aging process involved in the primary water of pressurized water reactor entails investigating a mixed growth mechanism in the corrosion of nickel-base alloys. A mixed growth induces an anionic inner oxide and a cationic diffusion parallel to a dissolution-precipitation process forms the outer zone. The in situ monitoring of the oxidation kinetics requires the modeling of the oxide layer stratification with the full knowledge of the optical constants related to each component. Here, we report the dielectric constants of the alloys 600 and 690 measured by spectroscopic ellipsometry and fitted to a Drude-Lorentz model. A robust optical stratification model was determined using focused ion beam cross-section of thin foils examined by transmission electron microscopy. Dielectric constants of the inner oxide layer depleted in chromium were assimilated to those of the nickel thin film. The optical constants of both the spinels and extern layer were determined. - Highlights: Black-Right-Pointing-Pointer Spectroscopic ellipsometry of Ni-base alloy oxidation in pressurized water reactor Black-Right-Pointing-Pointer Measurements of the dielectric constants of the alloys Black-Right-Pointing-Pointer Optical simulation of the mixed oxidation process using a three stack model Black-Right-Pointing-Pointer Scattered crystallites cationic outer layer; linear Ni-gradient bottom layer Black-Right-Pointing-Pointer Determination of the refractive index of the spinel and the Cr{sub 2}O{sub 3} layers.

  11. Integrated Water Gas Shift Membrane Reactors Utilizing Novel, Non Precious Metal Mixed Matrix Membrane

    Energy Technology Data Exchange (ETDEWEB)

    Ferraris, John P. [Univ. of Texas-Dallas, Richardson, TX (United States). Dept. of Chemistry

    2013-09-30

    Nanoparticles of zeolitic imidazolate frameworks and other related hybrid materials were prepared by modifying published synthesis procedures by introducing bases, changing stoichiometric ratios, or adjusting reaction conditions. These materials were stable at temperatures >300 °C and were compatible with the polymer matrices used to prepare mixed- matrix membranes (MMMs). MMMs tested at 300 °C exhibited a >30 fold increase in permeability, compared to those measured at 35 °C, while maintaining H2/CO2 selectivity. Measurements at high pressure (up to 30 atm) and high temperature (up to 300 °C) resulted in an increase in gas flux across the membrane with retention of selectivity. No variations in permeability were observed at high pressures at either 35 or 300 °C. CO2-induced plasticization was not observed for Matrimid®, VTEC, and PBI polymers or their MMMs at 30 atm and 300 °C. Membrane surface modification by cross-linking with ethanol diamine resulted in an increase in H2/CO2 selectivity at 35 °C. Spectrometric analysis showed that the cross-linking was effective to temperatures <150 °C. At higher temperatures, the cross-linked membranes exhibit a H2/CO2 selectivity similar to the uncross-linked polymer. Performance of the polybenzimidazole (PBI) hollow fibers prepared at Santa Fe Science and Technology (SFST, Inc.) showed increased flux and selectivity at 300 °C, which is comparable to a flat PBI membrane. A water-gas shift reactor has been built and currently being optimized for testing under DOE conditions.

  12. Nuclear Systems Enhanced Performance Program, Maintenance Cycle Extension in Advanced Light Water Reactor Design

    Energy Technology Data Exchange (ETDEWEB)

    Professor Neill Todreas

    2001-10-01

    A renewed interest in new nuclear power generation in the US has spurred interest in developing advanced reactors with features which will address the public's concerns regarding nuclear generation. However, it is economic performance which will dictate whether any new orders for these plants will materialize. Economic performance is, to a great extent, improved by maximizing the time that the plant is on-line generating electricity relative to the time spent off-line conducting maintenance and refueling. Indeed, the strategy for the advanced light water reactor plant IRIS (International Reactor, Innovative and Secure) is to utilize an eight year operating cycle. This report describes a formalized strategy to address, during the design phase, the maintenance-related barriers to an extended operating cycle. The top-level objective of this investigation was to develop a methodology for injecting component and system maintainability issues into the reactor plant design process to overcome these barriers. A primary goal was to demonstrate the applicability and utility of the methodology in the context of the IRIS design. The first step in meeting the top-level objective was to determine the types of operating cycle length barriers that the IRIS design team is likely to face. Evaluation of previously identified regulatory and investment protection surveillance program barriers preventing a candidate operating PWR from achieving an extended (48 month) cycle was conducted in the context of the IRIS design. From this analysis, 54 known IRIS operating cycle length barriers were identified. The resolution methodology was applied to each of these barriers to generate design solution alternatives for consideration in the IRIS design. The methodology developed has been demonstrated to narrow the design space to feasible design solutions which enable a desired operating cycle length, yet is general enough to have broad applicability. Feedback from the IRIS design team

  13. Development of Advanced High Uranium Density Fuels for Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, James [Univ. of Wisconsin, Madison, WI (United States); Butt, Darryl [Boise State Univ., ID (United States); Meyer, Mitchell [Idaho National Lab. (INL), Idaho Falls, ID (United States); Xu, Peng [Westinghouse Electric Corporation, Pittsburgh, PA (United States)

    2016-02-15

    This work conducts basic materials research (fabrication, radiation resistance, thermal conductivity, and corrosion response) on U3Si2 and UN, two high uranium density fuel forms that have a high potential for success as advanced light water reactor (LWR) fuels. The outcome of this proposed work will serve as the basis for the development of advance LWR fuels, and utilization of such fuel forms can lead to the optimization of the fuel performance related plant operating limits such as power density, power ramp rate and cycle length.

  14. Study of High Fluence Radiation-induced Swelling and Hardening under Light Water Reactor Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Golubov, Stanislav I. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Barashev, Alexander V. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Stoller, Roger E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2016-09-01

    This report documents a comprehensive model that has been developed to enable simulations of microstructural evolution under the irradiation conditions typical of light water reactor (LWR) internal components. The model, which accounts cascade production of point defects and vacancy, interstitial faulted dislocation loops, interstitial clusters migrating one-dimensionally and the evolution of the network dislocation structure, has been parameterized to account damage accumulation in austenitic stainless steels. Nucleation and growth of an ensemble of cavities is based on accounting the residual and produced by irradiation He atoms and existence of the dislocation and production biases. Additional applications and potential future developments for the model are also discussed.

  15. Test Results From a Direct Drive Gas Reactor Simulator Coupled to a Brayton Power Conversion Unit

    Science.gov (United States)

    Hervol, David S.; Briggs, Maxwell H.; Owen, Albert K.; Bragg-Sitton, Shannon M.

    2009-01-01

    The Brayton Power Conversion Unit (BPCU) located at NASA Glenn Research Center (GRC) in Cleveland, OH is a closed cycle system incorporating a turboaltemator, recuperator, and gas cooler connected by gas ducts to an external gas heater. For this series of tests, the BPCU was modified by replacing the gas heater with the Direct Drive Gas heater or DOG. The DOG uses electric resistance heaters to simulate a fast spectrum nuclear reactor similar to those proposed for space power applications. The combined system thermal transient behavior was the focus of these tests. The BPCU was operated at various steady state points. At each point it was subjected to transient changes involving shaft rotational speed or DOG electrical input. This paper outlines the changes made to the test unit and describes the testing that took place along with the test results.

  16. 2016 Annual Inspection and Radiological Survey Results for the Piqua, Ohio, Decommissioned Reactor Site, July 2016

    Energy Technology Data Exchange (ETDEWEB)

    Zimmerman, Brian [USDOE Office of Legacy Management, Washington, DC (United States); Miller, Michele [Navarro Research and Engineering, Oak Ridge, TN (United States)

    2016-07-01

    This report presents the findings of the annual inspection and radiological survey of the Piqua, Ohio, Decommissioned Reactor Site (site). The decommissioned nuclear power demonstration facility was inspected and surveyed on April 15, 2016. The site, located on the east bank of the Great Miami River in Piqua, Ohio, was in fair physical condition. There is no requirement for a follow-up inspection, partly because City of Piqua (City) personnel participated in a March 2016 meeting to address reoccurring safety concerns. Radiological survey results from 104 locations revealed no removable contamination. One direct beta activity reading in a floor drain on the 56-foot level (1674 disintegrations per minute [dpm]/100 square centimeters [cm2]) exceeded the minimum detectable activity (MDA). Beta activity has been detected in the past at this floor drain. The reading was well below the action level of 5000 dpm/100 cm2.

  17. Initial Results from the CHOOZ Long Baseline Reactor Neutrino Oscillation Experiment

    CERN Document Server

    Apollonio, M

    1998-01-01

    Initial results are presented from CHOOZ, a long-baseline reactor-neutrino vacuum-oscillation experiment. Electron antineutrinos were detected by a liquid scintillation calorimeter located at a distance of about 1 km. The detector was constructed in a tunnel protected from cosmic rays by a 300 MWE rock overburden. This massive shielding strongly reduced potentially troublesome backgrounds due to cosmic-ray muons, leading to a background rate of about one event per day, more than an order of magnitude smaller than the observed neutrino signal. From the statistical agreement between detected and expected neutrino event rates, we find (at 90% confidence level) no evidence for neutrino oscillations in the electron antineutrino disappearance mode for the parameter region given approximately by deltam**2 > 0.9 10**(-3) eV**2 for maximum mixing and (sin(2 theta)**2) > 0.18 for large deltam**2.

  18. Evaluation of fuel fabrication and the back end of the fuel cycle for light-water- and heavy-water-cooled nuclear power reactors

    Energy Technology Data Exchange (ETDEWEB)

    Carter, W.L.; Olsen, A.R.

    1979-06-01

    The classification of water-cooled nuclear reactors offers a number of fuel cycles that present inherently low risk of weapons proliferation while making power available to the international community. Eight fuel cycles in light water reactor (LWR), heavy water reactor (HWR), and the spectral shift controlled reactor (SSCR) systems have been proposed to promote these objectives in the International Fuel Cycle Evaluation (INFCE) program. Each was examined in an effort to provide technical and economic data to INFCE on fuel fabrication, refabrication, and reprocessing for an initial comparison of alternate cycles. The fuel cycles include three once-through cycles that require only fresh fuel fabrication, shipping, and spent fuel storage; four cycles that utilize denatured uranium--thorium and require all recycle operations; and one cycle that considers the LWR--HWR tandem operation requiring refabrication but no reprocessing.

  19. Population dynamics of ammonia-oxidizing bacteria in an aerated submerged biofilm reactor for micropolluted raw water pretreatment.

    Science.gov (United States)

    Qin, Ying-Ying; Zhang, Xiao-Wen; Ren, Hong-Qiang; Li, Dao-Tang; Yang, Hong

    2008-05-01

    Population dynamics of ammonia-oxidizing bacteria (AOB) in a full-scale aerated submerged biofilm reactor for micropolluted raw water pretreatment was investigated using molecular techniques for a period of 1 year. The ammonia monooxygenase (amoA) gene fragments were amplified from DNA and RNA extracts of biofilm samples. Denaturing gradient gel electrophoresis (DGGE) profile based on the amoA messenger RNA approach exhibited a more variable pattern of temporal dynamics of AOB communities than the DNA-derived approach during the study. Phylogenetic analysis of excised DGGE bands revealed three AOB groups affiliated with the Nitrosomonas oligotropha lineage, Nitrosomonas communis lineage, and an unknown Nitrosomonas group. The population size of betaproteobacterial AOB, quantified with 16S ribosomal RNA gene real-time polymerase chain reaction assay, ranged from 6.63 x 10(5) to 2.67 x 10(9) cells per gram of dry biofilm and corresponded to 0.23-1.8% of the total bacterial fraction. Quantitative results of amoA gene of the three specific AOB groups revealed changes in competitive dominance between AOB of the N. oligotropha lineage and N. communis lineage. Water temperature is shown to have major influence on AOB population size in the reactor by the statistic analysis, and a positive correlation between AOB cell numbers and ammonia removal efficiency is suggested (r = 0.628, P < 0.05).

  20. Adaptation of a High Frequency Ultrasonic Transducer to the Measurement of Water Temperature in a Nuclear Reactor

    Science.gov (United States)

    Zaz, G.; Calzavara, Y.; Le Clézio, E.; Despaux, G.

    Most high flux reactors possess for research purposes fuel elements composed of plates. Their relative distance is a crucial parameter, particularly concerning the irradiation history. For the High Flux Reactor (RHF) of the Institute Laue-Langevin (ILL), the measurement of this distance with a microscopic resolution becomes extremely challenging. To address this issue, a specific ultrasonic transducer, presented in a first paper, has been designed and manufactured to be inserted into the 1.8 mm width channel existing between curved fuel plates. It was set on a blade yielding a total device thickness of 1 mm. To achieve the expected resolution, the system is excited with frequencies up to 70 MHz and integrated into a set of high frequency acquisition instruments. Thanks to a specific signal processing, this device allows the distance measurement through the evaluation of the ultrasonic wave time of fight. One of the crucial points is then the evaluation of the local water temperature inside the water channel. To obtain a precise estimation of this parameter, the ultrasonic sensor is used as a thermometer thanks to the analysis of the spectral components of the acoustic signal propagating inside the sensor multilayered structure. The feasibility of distance measurement was proved during the December 2013 experiment in the RHF fuel element of the ILL. Some of the results will be presented as well as some experimental constraints identified to improve the accuracy of the measurement in future works.

  1. A Two‐Fluid model study of hydrogen production via water gas shift in fluidized bed membrane reactors

    OpenAIRE

    J.W. Voncken, Ramon; Roghair, Ivo; Van Sint Annaland, Martin

    2017-01-01

    Fluidized bed membrane reactors have been proposed as a promising reactor concept for the production of ultra-pure hydrogen via Water Gas Shift (WGS). High-flux thin-film dense palladium-based membranes are used to selectively extract hydrogen from the reaction medium, which shifts the thermodynamic equilibrium towards the products’ side, increasing the conversion. A Two-Fluid Model (TFM) has been used to investigate the effect of hydrogen extraction via perm-selective membranes on the WGS re...

  2. Natural convection reactor

    Energy Technology Data Exchange (ETDEWEB)

    Babcock, D.F.; Bernath, L.; Menegus, R.L.; Ring, H.F.

    1956-05-01

    A previous report described the conceptual design of a plutonium producing reactor that may be characterized as follows: Power output (2000 MW); cooling - (natural convection of light water through the reactor, up through a draft tube to an evaporative cooling pond, then back to the reactor, and fuel (400 to 500 tons of uranium enriched to 1.2% U-235). Because this reactor would be cooled by the natural convection of light water, it is believed that the construction costs would be significantly less than for a Savannah or Hanford type reactor. Such expensive items as water treatment and water pumping facilities would be eliminated entirely. The inventory of 500 tons of slightly enriched uranium, however, is an unattractive feature. It represents not only a large dollar investment but also makes the reactor less attractive for construction during periods of national emergency because of the almost certain scarcity of even slightly enriched uranium at that time. The Atomic Energy Commission asked that the design be reviewed with the objective of reducing the inventory of uranium, The results of this review are given in this report.

  3. Proposed and existing passive and inherent safety-related structures, systems, and components (building blocks) for advanced light-water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Forsberg, C.W.; Moses, D.L.; Lewis, E.B.; Gibson, R.; Pearson, R.; Reich, W.J.; Murphy, G.A.; Staunton, R.H.; Kohn, W.E.

    1989-10-01

    A nuclear power plant is composed of many structures, systems, and components (SSCs). Examples include emergency core cooling systems, feedwater systems, and electrical systems. The design of a reactor consists of combining various SSCs (building blocks) into an integrated plant design. A new reactor design is the result of combining old SSCs in new ways or use of new SSCs. This report identifies, describes, and characterizes SSCs with passive and inherent features that can be used to assure safety in light-water reactors. Existing, proposed, and speculative technologies are described. The following approaches were used to identify the technologies: world technical literature searches, world patent searches, and discussions with universities, national laboratories and industrial vendors. 214 refs., 105 figs., 26 tabs.

  4. Combined cooling and purification system for nuclear reactor spent fuel pit, refueling cavity, and refueling water storage tank

    Science.gov (United States)

    Corletti, Michael M.; Lau, Louis K.; Schulz, Terry L.

    1993-01-01

    The spent fuel pit of a pressured water reactor (PWR) nuclear power plant has sufficient coolant capacity that a safety rated cooling system is not required. A non-safety rated combined cooling and purification system with redundant branches selectively provides simultaneously cooling and purification for the spent fuel pit, the refueling cavity, and the refueling water storage tank, and transfers coolant from the refueling water storage tank to the refueling cavity without it passing through the reactor core. Skimmers on the suction piping of the combined cooling and purification system eliminate the need for separate skimmer circuits with dedicated pumps.

  5. Integration of Methane Steam Reforming and Water Gas Shift Reaction in a Pd/Au/Pd-Based Catalytic Membrane Reactor for Process Intensification.

    Science.gov (United States)

    Castro-Dominguez, Bernardo; Mardilovich, Ivan P; Ma, Liang-Chih; Ma, Rui; Dixon, Anthony G; Kazantzis, Nikolaos K; Ma, Yi Hua

    2016-09-19

    Palladium-based catalytic membrane reactors (CMRs) effectively remove H₂ to induce higher conversions in methane steam reforming (MSR) and water-gas-shift reactions (WGS). Within such a context, this work evaluates the technical performance of a novel CMR, which utilizes two catalysts in series, rather than one. In the process system under consideration, the first catalyst, confined within the shell side of the reactor, reforms methane with water yielding H₂, CO and CO₂. After reforming is completed, a second catalyst, positioned in series, reacts with CO and water through the WGS reaction yielding pure H₂O, CO₂ and H₂. A tubular composite asymmetric Pd/Au/Pd membrane is situated throughout the reactor to continuously remove the produced H₂ and induce higher methane and CO conversions while yielding ultrapure H₂ and compressed CO₂ ready for dehydration. Experimental results involving (i) a conventional packed bed reactor packed (PBR) for MSR, (ii) a PBR with five layers of two catalysts in series and (iii) a CMR with two layers of two catalysts in series are comparatively assessed and thoroughly characterized. Furthermore, a comprehensive 2D computational fluid dynamics (CFD) model was developed to explore further the features of the proposed configuration. The reaction was studied at different process intensification-relevant conditions, such as space velocities, temperatures, pressures and initial feed gas composition. Finally, it is demonstrated that the above CMR module, which was operated for 600 h, displays quite high H₂ permeance and purity, high CH₄ conversion levels and reduced CO yields.

  6. Conducting thermomechanical fatigue test in air at light water reactor relevant temperature intervals

    Energy Technology Data Exchange (ETDEWEB)

    Ramesh, Mageshwaran [Paul Scherrer Institute, Laboratory for Nuclear Materials, CH-5232 Villigen-PSI (Switzerland); Leber, Hans J., E-mail: hans.leber@psi.ch [Paul Scherrer Institute, Laboratory for Nuclear Materials, CH-5232 Villigen-PSI (Switzerland); Diener, Markus; Spolenak, Ralph [Laboratory for Nanometallurgy, Department of Materials, ETH Zuerich, Wolfgang-Pauli-Strasse 10, CH-8093 Zurich (Switzerland)

    2011-08-01

    In Light Water Reactors (LWR), many structural components are made of austenitic stainless steels (SS). These components are subject to extreme conditions, such as large temperature gradients and pressure loads during service. Hence, the fatigue and fracture behavior of austenitic SS under these conditions has evoked consistent interest over the years. Most studies dealing with this problem in the past, investigated the isothermal fatigue (IF) condition, which is not the case in the service, and less attention has been paid to thermomechanical fatigue (TMF). Moreover, the existing codes of practice and standards for TMF testing are mainly derived from the high temperature TMF tests (T{sub mean} > 400 deg. C). This work presents the development of a facility to perform TMF tests under LWR relevant temperature interval in air. The realized testing parameters and tolerances are compared with the recommendations of existing codes of practice and standards from high temperature tests. The effectiveness of the testing facility was verified with series of TMF and IF tests performed on specimens made out of a commercial austenitic SS TP347 pipe material. The results revealed that the existing tolerances in standards are quite strict for the application of lower temperature ranges TMF tests. It was found that the synchronous, in-phase (IP) TMF tested specimens possess a higher lifetime than those subjected to the asynchronous, out-of-phase (OP) TMF and IF at T{sub max} in the investigated strain range for austenitic SS. Nevertheless, the fatigue lifetime of all the test conditions was similar in the engineering scale.

  7. Application of Forward Osmosis Membrane in a Sequential Batch Reactor for Water Reuse

    KAUST Repository

    Li, Qingyu

    2011-07-01

    Forward osmosis (FO) is a novel membrane process that potentially can be used as an energy-saving alternative to conventional membrane processes. The objective of this study is to investigate the performance of a FO membrane to draw water from wastewater using seawater as draw solution. A study on a novel osmotic sequential batch reactor (OsSBR) was explored. In this system, a plate and frame FO cell including two flat-sheet FO membranes was submerged in a bioreactor treating the wastewater. We found it feasible to treat the wastewater by the OsSBR process. The DOC removal rate was 98.55%. Total nitrogen removal was 62.4% with nitrate, nitrite and ammonium removals of 58.4%, 96.2% and 88.4% respectively. Phosphate removal was almost 100%. In this OsSBR system, the 15-hour average flux for a virgin membrane with air scouring is 3.103 LMH. After operation of 3 months, the average flux of a fouled membrane is 2.390 LMH with air scouring (23% flux decline). Air scouring can help to remove the loose foulants on the active layer, thus helping to maintain the flux. Cleaning of the FO membrane fouled in the active layer was probably not effective under the conditions of immersing the membrane in the bioreactor. LC-OCD results show that the FO membrane has a very good performance in rejecting biopolymers, humics and building blocks, but a limited ability in rejecting low molecular weight neutrals.

  8. Coupled 3D neutron kinetics and thermalhydraulic characteristics of the Canadian supercritical water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Hummel, David William, E-mail: hummeld@mcmaster.ca; Novog, David Raymond

    2016-03-15

    Highlights: • A coupled spatial kinetics and thermalhydraulics model of the PT-SCWR was created. • Positive power excursions were demonstrated during accident-like transients. • The reactor will inherently self-shutdown in such transients with some delay. • A fast-acting shutdown system would limit the consequences of the power pulse. - Abstract: The Canadian Supercritical Water-cooled Reactor concept, as an evolution of the CANada Deuterium Uranium (CANDU) reactor, includes both pressure tubes and a low temperature heavy water moderator. The current Pressure Tube type SCWR (PT-SCWR) concept features 64-element fuel assemblies placed within High Efficiency Re-entrant Channels (HERCs) that connect to core inlet and outlet plena. Among current SCWR concepts the PT-SCWR is unique in that the HERC separates multiple coolant and moderator regions, giving rise to coupled neutronic-thermalhydraulic feedbacks beyond those present in CANDU or contemporary Light Water Reactors. The objective of this work was thus to model the coupled neutronic-thermal hydraulic properties of the PT-SCWR to establish the impact of these multiple regions on the core's transient behavior. To that end, the features of the PT-SCWR were first modeled with the neutron transport code DRAGON to create a database of homogenized and condensed cross-sections and thermalhydraulic feedback coefficients. These were used as input to a core-level neutron diffusion model created with the code DONJON. The behavior of the primary heat transport system was modeled with the thermalhydraulic system code CATHENA. A procedure was developed to couple the outputs of DONJON and CATHENA, facilitating three-dimensional spatial neutron kinetics and coupled thermalhydraulic analysis of the PT-SCWR core. Several postulated transients were initiated within the coupled model by changing the core inlet and outlet boundary conditions. Decreasing coolant density around the fuel was demonstrated to produce positive

  9. Results from the DOE Advanced Gas Reactor Fuel Development and Qualification Program

    Energy Technology Data Exchange (ETDEWEB)

    David Petti

    2014-06-01

    Modular HTGR designs were developed to provide natural safety, which prevents core damage under all design basis accidents and presently envisioned severe accidents. The principle that guides their design concepts is to passively maintain core temperatures below fission product release thresholds under all accident scenarios. This level of fuel performance and fission product retention reduces the radioactive source term by many orders of magnitude and allows potential elimination of the need for evacuation and sheltering beyond a small exclusion area. This level, however, is predicated on exceptionally high fuel fabrication quality and performance under normal operation and accident conditions. Germany produced and demonstrated high quality fuel for their pebble bed HTGRs in the 1980s, but no U.S. manufactured fuel had exhibited equivalent performance prior to the Advanced Gas Reactor (AGR) Fuel Development and Qualification Program. The design goal of the modular HTGRs is to allow elimination of an exclusion zone and an emergency planning zone outside the plant boundary fence, typically interpreted as being about 400 meters from the reactor. To achieve this, the reactor design concepts require a level of fuel integrity that is better than that claimed for all prior US manufactured TRISO fuel, by a few orders of magnitude. The improved performance level is about a factor of three better than qualified for German TRISO fuel in the 1980’s. At the start of the AGR program, without a reactor design concept selected, the AGR fuel program selected to qualify fuel to an operating envelope that would bound both pebble bed and prismatic options. This resulted in needing a fuel form that could survive at peak fuel temperatures of 1250°C on a time-averaged basis and high burnups in the range of 150 to 200 GWd/MTHM (metric tons of heavy metal) or 16.4 to 21.8% fissions per initial metal atom (FIMA). Although Germany has demonstrated excellent performance of TRISO-coated UO

  10. Quarterly technical progress report on water reactor safety programs sponsored by the Nuclear Regulatory Commission's Division of Reactor Safety Research, October--December 1976

    Energy Technology Data Exchange (ETDEWEB)

    Ferguson, J. B. [ed.

    1977-04-01

    Light water reactor safety research performed October through December 1976 is discussed. An analysis to determine the effect of emergency core coolant (ECC) injection location and pump speed on system response characteristics was performed. An analysis to evaluate the capability of commonly used critical heat flux (CHF) correlations to calculate the time of the first CHF in the Semiscale core during a loss-of-coolant experiment (LOCE) was performed. A test program and study to determine the effect thermocouples mounted on the outside fuel rod surfaces would have on the departure from nucleate boiling (DNB) phenomena in the LOFT core during steady state operation were completed. A correlation for use in predicting DNB heat fluxes in the LOFT core was developed. Tests of an experimental transit time flowmeter were completed. A nuclear test was performed to obtain fuel rod behavior data from four PWR-type rods during film boiling operation representative of PWR conditions. Preliminary results from the postirradiation examination of Test IE-1 fuel rods are given. Results of Irradiation Effects Tests IE-2 and IE-3 are given. Gap Conductance Test GC 2-1 was performed to evaluate the effects of fuel density, initial gap width, and fill gas composition on the pellet-cladding gap conductance.

  11. Commercial Light Water Reactor -Tritium Extraction Facility Process Waste Assessment (Project S-6091)

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, R.H.; Delley, A.O.; Alexander, G.J.; Clark, E.A.; Holder, J.S.; Lutz, R.N.; Malstrom, R.A.; Nobles, B.R. [Westinghouse Savannah River Co., Aiken, SC (United States); Carson, S.D. [Sandia National Laboratories, New Mexico, NM (United States); Peterson, P.K. [Sandia National Laboratories, New Mexico, NM (United States)

    1997-11-30

    The Savannah River Site (SRS) has been tasked by the Department of Energy (DOE) to design and construct a Tritium Extraction Facility (TEF) to process irradiated tritium producing burnable absorber rods (TPBARs) from a Commercial Light Water Reactor (CLWR). The plan is for the CLWR-TEF to provide tritium to the SRS Replacement Tritium Facility (RTF) in Building 233-H in support of DOE requirements. The CLWR-TEF is being designed to provide 3 kg of new tritium per year, from TPBARS and other sources of tritium (Ref. 1-4).The CLWR TPBAR concept is being developed by Pacific Northwest National Laboratory (PNNL). The TPBAR assemblies will be irradiated in a Commercial Utility light water nuclear reactor and transported to the SRS for tritium extraction and processing at the CLWR-TEF. A Conceptual Design Report for the CLWR-TEF Project was issued in July 1997 (Ref. 4).The scope of this Process Waste Assessment (PWA) will be limited to CLWR-TEF processing of CLWR irradiated TPBARs. Although the CLWR- TEF will also be designed to extract APT tritium-containing materials, they will be excluded at this time to facilitate timely development of this PWA. As with any process, CLWR-TEF waste stream characteristics will depend on process feedstock and contaminant sources. If irradiated APT tritium-containing materials are to be processed in the CLWR-TEF, this PWA should be revised to reflect the introduction of this contaminant source term.

  12. Modeling of a Flooding Induced Station Blackout for a Pressurized Water Reactor Using the RISMC Toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Mandelli, Diego; Prescott, Steven R; Smith, Curtis L; Alfonsi, Andrea; Rabiti, Cristian; Cogliati, Joshua J; Kinoshita, Robert A

    2011-07-01

    In the Risk Informed Safety Margin Characterization (RISMC) approach we want to understand not just the frequency of an event like core damage, but how close we are (or are not) to key safety-related events and how might we increase our safety margins. The RISMC Pathway uses the probabilistic margin approach to quantify impacts to reliability and safety by coupling both probabilistic (via stochastic simulation) and mechanistic (via physics models) approaches. This coupling takes place through the interchange of physical parameters and operational or accident scenarios. In this paper we apply the RISMC approach to evaluate the impact of a power uprate on a pressurized water reactor (PWR) for a tsunami-induced flooding test case. This analysis is performed using the RISMC toolkit: RELAP-7 and RAVEN codes. RELAP-7 is the new generation of system analysis codes that is responsible for simulating the thermal-hydraulic dynamics of PWR and boiling water reactor systems. RAVEN has two capabilities: to act as a controller of the RELAP-7 simulation (e.g., system activation) and to perform statistical analyses (e.g., run multiple RELAP-7 simulations where sequencing/timing of events have been changed according to a set of stochastic distributions). By using the RISMC toolkit, we can evaluate how power uprate affects the system recovery measures needed to avoid core damage after the PWR lost all available AC power by a tsunami induced flooding. The simulation of the actual flooding is performed by using a smooth particle hydrodynamics code: NEUTRINO.

  13. Thermal-Hydraulic Research Review and Cooperation Outcome for Light Water Reactor Fuel

    Energy Technology Data Exchange (ETDEWEB)

    In, Wang Kee; Shin, Chang Hwan; Lee, Chan; Chun, Tae Hyun; Oh, Dong Seok [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Lee, Chi Young [Pukyong Nat’l Univ., Busan (Korea, Republic of)

    2016-12-15

    The fuel assembly for pressurized water reactor (PWR) cons