WorldWideScience

Sample records for water reactor analysis

  1. To the analysis of reactor noise in boiling water reactors

    International Nuclear Information System (INIS)

    Seifritz, W.

    1972-01-01

    The paper contains some basic thoughts on the problem of neutron flux oscillations in power reactors. The advantages of self-powered detectors and their function are explained. In addition, noise measurements of the boiling water reactors at Lingen and Holden are described, and the possibilities of an employment of vanadium detectors for the analysis of reactor noise are discussed. The final pages of the paper contain a complete list of the author's publications in the field of reactor noise analysis. (RW/AK) [de

  2. Thermohydraulic analysis of pressurized water reactors

    International Nuclear Information System (INIS)

    Veloso, M.A.

    1980-01-01

    The computer program PANTERA is applied in the thermo-hydraulic analysis of Pressurized Water Reactor Cores (PWR). It is a version of COBRA-IIIC in which a new thermal conduction model for fuel rods was introduced. The results calculated by this program are compared with experimental data obtained from bundles of fuel rods, simulating reactor conditions. The validity of the new thermal model is checked too. The PANTERA code, through a simplified procedure of calculation, is used in the thermo-hydraulic analysis of Indian Point, Unit 2, reactor core, in stationary conditions. The results are discussed and compared with design data. (Autor) [pt

  3. Light-water reactor safety analysis codes

    International Nuclear Information System (INIS)

    Jackson, J.F.; Ransom, V.H.; Ybarrondo, L.J.; Liles, D.R.

    1980-01-01

    A brief review of the evolution of light-water reactor safety analysis codes is presented. Included is a summary comparison of the technical capabilities of major system codes. Three recent codes are described in more detail to serve as examples of currently used techniques. Example comparisons between calculated results using these codes and experimental data are given. Finally, a brief evaluation of current code capability and future development trends is presented

  4. WRAP: a water reactor analysis package

    International Nuclear Information System (INIS)

    Anderson, M.M.

    1977-06-01

    The modular computational system known as the Water Reactor Analysis Package (WRAP) has been developed at the Savannah River Laboratory. WRAP is essentially a reprogrammed version of the RELAP4 computer code with an extensively restructured input format, a dynamic dimensioning capability and additional computational capabilities such as an automatic steady-state option for pressurized water reactors and an automatic restart capability with provision for renodalization. The report describes the capabilities of WRAP at its current stage of development. The addition of new capabilities (e.g., a BWR steady-state capability), the inclusion of improved models (e.g., models in RELAP4/M0D8) and the development of improved numerical techniques to reduce execution time are being planned at this time

  5. Light water reactor lower head failure analysis

    International Nuclear Information System (INIS)

    Rempe, J.L.; Chavez, S.A.; Thinnes, G.L.

    1993-10-01

    This document presents the results from a US Nuclear Regulatory Commission-sponsored research program to investigate the mode and timing of vessel lower head failure. Major objectives of the analysis were to identify plausible failure mechanisms and to develop a method for determining which failure mode would occur first in different light water reactor designs and accident conditions. Failure mechanisms, such as tube ejection, tube rupture, global vessel failure, and localized vessel creep rupture, were studied. Newly developed models and existing models were applied to predict which failure mechanism would occur first in various severe accident scenarios. So that a broader range of conditions could be considered simultaneously, calculations relied heavily on models with closed-form or simplified numerical solution techniques. Finite element techniques-were employed for analytical model verification and examining more detailed phenomena. High-temperature creep and tensile data were obtained for predicting vessel and penetration structural response

  6. Light water reactor lower head failure analysis

    Energy Technology Data Exchange (ETDEWEB)

    Rempe, J.L.; Chavez, S.A.; Thinnes, G.L. [EG and G Idaho, Inc., Idaho Falls, ID (United States)] [and others

    1993-10-01

    This document presents the results from a US Nuclear Regulatory Commission-sponsored research program to investigate the mode and timing of vessel lower head failure. Major objectives of the analysis were to identify plausible failure mechanisms and to develop a method for determining which failure mode would occur first in different light water reactor designs and accident conditions. Failure mechanisms, such as tube ejection, tube rupture, global vessel failure, and localized vessel creep rupture, were studied. Newly developed models and existing models were applied to predict which failure mechanism would occur first in various severe accident scenarios. So that a broader range of conditions could be considered simultaneously, calculations relied heavily on models with closed-form or simplified numerical solution techniques. Finite element techniques-were employed for analytical model verification and examining more detailed phenomena. High-temperature creep and tensile data were obtained for predicting vessel and penetration structural response.

  7. Thermodynamic analysis of a supercritical water reactor

    International Nuclear Information System (INIS)

    Edwards, M.

    2007-01-01

    A thermodynamic model has been developed for a hypothetical design of a Supercritical Water Reactor, with emphasis on Canadian design criteria. The model solves for cycle efficiency, mass flows and physical conditions throughout the plant based on input parameters of operating pressures and efficiencies of components. The model includes eight feedwater heaters, three feedwater pumps, a deaerator, a condenser, the core, three turbines and two reheaters. To perform the calculations, Microsoft Excel was used in conjunction with FLUIDCAL-IAPWS95 and VBA code. The calculations show that a thermal efficiency of 47.5% can be achieved with a core outlet temperature of 625 o C. (author)

  8. Analysis of an accelerator-driven subcritical light water reactor

    International Nuclear Information System (INIS)

    Kruijf, W.J.M. de; Wakker, P.H.; Wetering, T.F.H. van de; Verkooijen, A.H.M.

    1997-01-01

    An analysis of the basic characteristics of an accelerator-driven light water reactor has been made. The waste in the nuclear fuel cycle is considerably less than in the light water reactor open fuel cycle. This is mainly caused by the use of equilibrium nuclear fuel in the reactor. The accelerator enables the use of a fuel composition with infinite multiplication factor k ∞ < 1. The main problem of the use of this type of fuel is the strongly peaked flux distribution in the reactor core. A simple analytical model shows that a large core is needed with a high peak power factor in order to generate net electric energy. The fuel in the outer regions of the reactor core is used very poorly. 7 refs., 4 figs., 1 tab

  9. Issues affecting advanced passive light-water reactor safety analysis

    International Nuclear Information System (INIS)

    Beelman, R.J.; Fletcher, C.D.; Modro, S.M.

    1992-01-01

    Next generation commercial reactor designs emphasize enhanced safety through improved safety system reliability and performance by means of system simplification and reliance on immutable natural forces for system operation. Simulating the performance of these safety systems will be central to analytical safety evaluation of advanced passive reactor designs. Yet the characteristically small driving forces of these safety systems pose challenging computational problems to current thermal-hydraulic systems analysis codes. Additionally, the safety systems generally interact closely with one another, requiring accurate, integrated simulation of the nuclear steam supply system, engineered safeguards and containment. Furthermore, numerical safety analysis of these advanced passive reactor designs wig necessitate simulation of long-duration, slowly-developing transients compared with current reactor designs. The composite effects of small computational inaccuracies on induced system interactions and perturbations over long periods may well lead to predicted results which are significantly different than would otherwise be expected or might actually occur. Comparisons between the engineered safety features of competing US advanced light water reactor designs and analogous present day reactor designs are examined relative to the adequacy of existing thermal-hydraulic safety codes in predicting the mechanisms of passive safety. Areas where existing codes might require modification, extension or assessment relative to passive safety designs are identified. Conclusions concerning the applicability of these codes to advanced passive light water reactor safety analysis are presented

  10. Flow analysis in a supercritical water oxidation reactor

    International Nuclear Information System (INIS)

    Oh, C.H.; Kochan, R.J.; Beller, J.M.

    1996-01-01

    Supercritical water oxidation (SCWO), also known as hydrothermal oxidation (HTO), involves the oxidation of hazardous waste at conditions of elevated temperature and pressure (e.g., 500 C--600 C and 234.4 bar) in the presence of approximately 90% of water and a 10% to 20% excess amount of oxidant over the stoichiometric requirement. Under these conditions, organic compounds are completely miscible with supercritical water, oxygen and nitrogen, and are rapidly oxidized to carbon dioxide and water. The essential part of the process is the reactor. Many reactor designs such as tubular, vertical vessel, and transpiring wall type have been proposed, patented, and tested at both bench and pilot scales. These designs and performances need to be scaled up to a waste throughput 10--100 times that currently being tested. Scaling of this magnitude will be done by creating a numerical thermal-hydraulic model of the smaller reactor for which test data is available, validating the model against the available data, and then using the validated model to investigate the larger reactor performance. This paper presents a flow analysis of the MODAR bench scale reactor (vertical vessel type). These results will help in the design of the reactor in an efficient manner because the flow mixing coupled with chemical kinetics eventually affects the process destruction efficiency

  11. 20% inlet header break analysis of Advanced Heavy Water Reactor

    International Nuclear Information System (INIS)

    Srivastava, A.; Gupta, S.K.; Venkat Raj, V.; Singh, R.; Iyer, K.

    2001-01-01

    The proposed Advanced Heavy Water Reactor (AHWR) is a 750 MWt vertical pressure tube type boiling light water cooled and heavy water moderated reactor. A passive design feature of this reactor is that the heat removal is achieved through natural circulation of primary coolant at all power levels, with no primary coolant pumps. Loss of coolant due to failure of inlet header results in depressurization of primary heat transport (PHT) system and containment pressure rise. Depressurization activates various protective and engineered safety systems like reactor trip, isolation condenser and advanced accumulator, limiting the consequences of the event. This paper discusses the thermal hydraulic transient analysis for evaluating the safety of the reactor, following 20% inlet header break using RELAP5/MOD3.2. For the analysis, the system is discretized appropriately to simulate possible flow reversal in one of the core paths during the transient. Various modeling aspects are discussed in this paper and predictions are made for different parameters like pressure, temperature, steam quality and flow in different parts of the Primary Heat Transport (PHT) system. Flow and energy discharges into the containment are also estimated for use in containment analysis. (author)

  12. Quality analysis in pressurized water reactor fuel

    International Nuclear Information System (INIS)

    Darolles, J.F.

    1975-01-01

    An integrated system which has been set up to administrate and analyze the quality is described. This system is in actual operation. The basic principles for quality analysis system are traceability, i.e., identification, location and history of fuel components and quality evaluation during manufacturing. The quality analysis system operates in the following areas: data recording and transmission, data processing, quality file generation. The interest of such a system may be noted particularly in manufacturing, for the constitution of quality files, the design of products and the processing of data from irradiated fuel assemblies [fr

  13. Safety analysis for boiling water reactors

    International Nuclear Information System (INIS)

    Kersting, E.; Linden, J. von; Mueller-Ecker, D.; Werner, W.

    1993-07-01

    This report is the translation of GRS-95 'Sicherheitsanalyse fuer Siedewasserreaktoren - Zusammenfassende Darstellung'. Recent analysis results -concerning the chapters on accident management, fire and earthquake - that were not included in the German text have been added to this translation. In cases of doubt, GRS-102 (main volume) is the factually correct version. (orig.)

  14. Accident analysis of heavy water cooled thorium breeder reactor

    International Nuclear Information System (INIS)

    Yulianti, Yanti; Su’ud, Zaki; Takaki, Naoyuki

    2015-01-01

    Thorium has lately attracted considerable attention because it is accumulating as a by-product of large scale rare earth mining. The objective of research is to analyze transient behavior of a heavy water cooled thorium breeder that is designed by Tokai University and Tokyo Institute of Technology. That is oxide fueled, PWR type reactor with heavy water as primary coolant. An example of the optimized core has relatively small moderator to fuel volume ratio (MFR) of 0.6 and the characteristics of the core are burn-up of 67 GWd/t, breeding ratio of 1.08, burn-up reactivity loss during cycles of < 0.2% dk/k, and negative coolant reactivity coefficient. One of the nuclear reactor accidents types examined here is Unprotected Transient over Power (UTOP) due to withdrawing of the control rod that result in the positive reactivity insertion so that the reactor power will increase rapidly. Another accident type is Unprotected Loss of Flow (ULOF) that caused by failure of coolant pumps. To analyze the reactor accidents, neutron distribution calculation in the nuclear reactor is the most important factor. The best expression for the neutron distribution is the Boltzmann transport equation. However, solving this equation is very difficult so that the space-time diffusion equation is commonly used. Usually, space-time diffusion equation is solved by employing a point kinetics approach. However, this approach is less accurate for a spatially heterogeneous nuclear reactor and the nuclear reactor with quite large reactivity input. Direct method is therefore used to solve space-time diffusion equation which consider spatial factor in detail during nuclear reactor accident simulation. Set of equations that obtained from full implicit finite-difference method is solved by using iterative methods. The indication of UTOP accident is decreasing macroscopic absorption cross-section that results large external reactivity, and ULOF accident is indicated by decreasing coolant flow. The

  15. Accident analysis of heavy water cooled thorium breeder reactor

    Energy Technology Data Exchange (ETDEWEB)

    Yulianti, Yanti [Department of Physics, University of Lampung Jl. Sumantri Brojonegoro No.1 Bandar Lampung, Indonesia Email: y-yanti@unila.ac.id (Indonesia); Su’ud, Zaki [Department of Physics, Bandung Institute of Technology Jl. Ganesha 10 Bandung, Indonesia Email: szaki@fi.itb.ac.id (Indonesia); Takaki, Naoyuki [Department of Nuclear Safety Engineering Cooperative Major in Nuclear Energy (Graduate School) 1-28-1 Tamazutsumi,Setagayaku, Tokyo158-8557, Japan Email: ntakaki@tcu.ac.jp (Japan)

    2015-04-16

    Thorium has lately attracted considerable attention because it is accumulating as a by-product of large scale rare earth mining. The objective of research is to analyze transient behavior of a heavy water cooled thorium breeder that is designed by Tokai University and Tokyo Institute of Technology. That is oxide fueled, PWR type reactor with heavy water as primary coolant. An example of the optimized core has relatively small moderator to fuel volume ratio (MFR) of 0.6 and the characteristics of the core are burn-up of 67 GWd/t, breeding ratio of 1.08, burn-up reactivity loss during cycles of < 0.2% dk/k, and negative coolant reactivity coefficient. One of the nuclear reactor accidents types examined here is Unprotected Transient over Power (UTOP) due to withdrawing of the control rod that result in the positive reactivity insertion so that the reactor power will increase rapidly. Another accident type is Unprotected Loss of Flow (ULOF) that caused by failure of coolant pumps. To analyze the reactor accidents, neutron distribution calculation in the nuclear reactor is the most important factor. The best expression for the neutron distribution is the Boltzmann transport equation. However, solving this equation is very difficult so that the space-time diffusion equation is commonly used. Usually, space-time diffusion equation is solved by employing a point kinetics approach. However, this approach is less accurate for a spatially heterogeneous nuclear reactor and the nuclear reactor with quite large reactivity input. Direct method is therefore used to solve space-time diffusion equation which consider spatial factor in detail during nuclear reactor accident simulation. Set of equations that obtained from full implicit finite-difference method is solved by using iterative methods. The indication of UTOP accident is decreasing macroscopic absorption cross-section that results large external reactivity, and ULOF accident is indicated by decreasing coolant flow. The

  16. Non-linear analysis in Light Water Reactor design

    International Nuclear Information System (INIS)

    Rashid, Y.R.; Sharabi, M.N.; Nickell, R.E.; Esztergar, E.P.; Jones, J.W.

    1980-03-01

    The results obtained from a scoping study sponsored by the US Department of Energy (DOE) under the Light Water Reactor (LWR) Safety Technology Program at Sandia National Laboratories are presented. Basically, this project calls for the examination of the hypothesis that the use of nonlinear analysis methods in the design of LWR systems and components of interest include such items as: the reactor vessel, vessel internals, nozzles and penetrations, component support structures, and containment structures. Piping systems are excluded because they are being addressed by a separate study. Essentially, the findings were that nonlinear analysis methods are beneficial to LWR design from a technical point of view. However, the costs needed to implement these methods are the roadblock to readily adopting them. In this sense, a cost-benefit type of analysis must be made on the various topics identified by these studies and priorities must be established. This document is the complete report by ANATECH International Corporation

  17. Light water reactor safety

    CERN Document Server

    Pershagen, B

    2013-01-01

    This book describes the principles and practices of reactor safety as applied to the design, regulation and operation of light water reactors, combining a historical approach with an up-to-date account of the safety, technology and operating experience of both pressurized water reactors and boiling water reactors. The introductory chapters set out the basic facts upon which the safety of light water reactors depend. The central section is devoted to the methods and results of safety analysis. The accidents at Three Mile Island and Chernobyl are reviewed and their implications for light wate

  18. Assembly homogenization techniques for light water reactor analysis

    International Nuclear Information System (INIS)

    Smith, K.S.

    1986-01-01

    Recent progress in development and application of advanced assembly homogenization methods for light water reactor analysis is reviewed. Practical difficulties arising from conventional flux-weighting approximations are discussed and numerical examples given. The mathematical foundations for homogenization methods are outlined. Two methods, Equivalence Theory and Generalized Equivalence Theory which are theoretically capable of eliminating homogenization error are reviewed. Practical means of obtaining approximate homogenized parameters are presented and numerical examples are used to contrast the two methods. Applications of these techniques to PWR baffle/reflector homogenization and BWR bundle homogenization are discussed. Nodal solutions to realistic reactor problems are compared to fine-mesh PDQ calculations, and the accuracy of the advanced homogenization methods is established. Remaining problem areas are investigated, and directions for future research are suggested. (author)

  19. Taipower's transient analysis methodology for pressurized water reactors

    International Nuclear Information System (INIS)

    Huang, Pinghue

    1998-01-01

    The methodology presented in this paper is a part of the 'Taipower's Reload Design and Transient Analysis Methodologies for Light Water Reactors' developed by the Taiwan Power Company (TPC) and the Institute of Nuclear Energy Research. This methodology utilizes four computer codes developed or sponsored by Electric Power Research institute: system transient analysis code RETRAN-02, core thermal-hydraulic analysis code COBRAIIIC, three-dimensional spatial kinetics code ARROTTA, and fuel rod evaluation code FREY. Each of the computer codes was extensively validated. Analysis methods and modeling techniques were conservatively established for each application using a systematic evaluation with the assistance of sensitivity studies. The qualification results and analysis methods were documented in detail in TPC topical reports. The topical reports for COBRAIIIC, ARROTTA. and FREY have been reviewed and approved by the Atomic Energy Council (ABC). TPC 's in-house transient methodology have been successfully applied to provide valuable support for many operational issues and plant improvements for TPC's Maanshan Units I and 2. Major applications include the removal of the resistance temperature detector bypass system, the relaxation of the hot-full-power moderator temperature coefficient design criteria imposed by the ROCAEC due to a concern on Anticipated Transient Without Scram, the reduction of boron injection tank concentration and the elimination of the heat tracing, and the reduction of' reactor coolant system flow. (author)

  20. Dynamic operator actions analysis for inherently safe fast reactors and light water reactors

    International Nuclear Information System (INIS)

    Ho, V.; Apostolakis, G.

    1988-01-01

    A comparative dynamic human actions analysis of inherently safe fast reactors (ISFRs) and light water reactors (LWRs) in terms of systems response and estimated human error rates is presented. Brief overviews of the ISFR and LWR systems are given to illustrate the design differences. Key operator actions required by the ISFR reactor shutdown and decay heat removal systems are identified and are compared with those of the LWR. It is observed that, because of the passive nature of the ISFR safety-related systems, a large time window is available for operator actions during transient events. Furthermore, these actions are fewer in number, are less complex, and have lower error rates and less severe consequences than those of the LWRs. We expect the ISFR operator errors' contribution to risk is smaller (at least in the context of the existing human reliability models) than that of the LWRs. (author)

  1. Analysis of core calculation schemes for advanced water reactors

    International Nuclear Information System (INIS)

    Nicolas, Anne

    1989-01-01

    This research thesis addresses the analysis of the core control of sub-moderated water reactors with plutonium fuel and varying spectrum. Firstly, a calculation scheme is defined, based on transport theory for the three existing assembly configurations. It is based on the efficiency analysis of the control cluster and of the flow sheet shape in the assembly. Secondly, studies of the assembly with control cluster and within a theory of diffusion with homogenization or detailed assembly representation are performed by taking the environment into account in order to assess errors. Thirdly, due to the presence of a very efficient absorbent in control clusters, a deeper physical analysis requires the study of the flow gradient existing at the interface between assemblies. A parameter is defined to assess this gradient, and theoretically calculated by using finite elements. Developed software is validated [fr

  2. Analysis of severe accidents in pressurized heavy water reactors

    International Nuclear Information System (INIS)

    2008-06-01

    Certain very low probability plant states that are beyond design basis accident conditions and which may arise owing to multiple failures of safety systems leading to significant core degradation may jeopardize the integrity of many or all the barriers to the release of radioactive material. Such event sequences are called severe accidents. It is required in the IAEA Safety Requirements publication on Safety of the Nuclear Power Plants: Design, that consideration be given to severe accident sequences, using a combination of engineering judgement and probabilistic methods, to determine those sequences for which reasonably practicable preventive or mitigatory measures can be identified. Acceptable measures need not involve the application of conservative engineering practices used in setting and evaluating design basis accidents, but rather should be based on realistic or best estimate assumptions, methods and analytical criteria. Recently, the IAEA developed a Safety Report on Approaches and Tools for Severe Accident Analysis. This publication provides a description of factors important to severe accident analysis, an overview of severe accident phenomena and the current status in their modelling, categorization of available computer codes, and differences in approaches for various applications of severe accident analysis. The report covers both the in- and ex-vessel phases of severe accidents. The publication is consistent with the IAEA Safety Report on Accident Analysis for Nuclear Power Plants and can be considered as a complementary report specifically devoted to the analysis of severe accidents. Although the report does not explicitly differentiate among various reactor types, it has been written essentially on the basis of available knowledge and databases developed for light water reactors. Therefore its application is mostly oriented towards PWRs and BWRs and, to a more limited extent, they can be only used as preliminary guidance for other types of reactors

  3. Cost analysis of light water reactor power plants

    International Nuclear Information System (INIS)

    Mooz, W.E.

    1978-06-01

    A statistical analysis is presented of the capital costs of light water reactor (LWR) electrical power plants. The objective is twofold: to determine what factors are statistically related to capital costs and to produce a methodology for estimating these costs. The analysis in the study is based on the time and cost data that are available on U.S. nuclear power plants. Out of a total of about 60 operating plants, useful capital-cost data were available on only 39 plants. In addition, construction-time data were available on about 65 plants, and data on completed construction permit applications were available for about 132 plants. The cost data were first systematically adjusted to constant dollars. Then multivariate regression analyses were performed by using independent variables consisting of various physical and locational characteristics of the plants. The dependent variables analyzed were the time required to obtain a construction permit, the construction time, and the capital cost

  4. Analysis of thermal fatigue events in light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Okuda, Yasunori [Institute of Nuclear Safety System Inc., Seika, Kyoto (Japan)

    2000-09-01

    Thermal fatigue events, which may cause shutdown of nuclear power stations by wall-through-crack of pipes of RCRB (Reactor Coolant Pressure Boundary), are reported by licensees in foreign countries as well as in Japan. In this paper, thermal fatigue events reported in anomalies reports of light water reactors inside and outside of Japan are investigated. As a result, it is clarified that the thermal fatigue events can be classified in seven patterns by their characteristics, and the trend of the occurrence of the events in PWRs (Pressurized Water Reactors) has stronger co-relation to operation hours than that in BWRs (Boiling Water Reactors). Also, it is concluded that precise identification of locations where thermal fatigue occurs and its monitoring are important to prevent the thermal fatigue events by aging or miss modification. (author)

  5. Stability analysis on natural circulation boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Metz, Peter

    1999-05-01

    The purpose of the study is a stability analysis of the simplified boiling water reactor concept. A fluid dynamics code, DYNOS, was developed and successfully validated against FRIGG and DESIRE data and a stability benchmark on the Ringhals 1 forced circulation BWR. Three simplified desings were considered in the analysis: The SWRIOOO by Siemens and the SBWR and ESBWR from the General Electric Co. For all three design operational characteristics, i.e. power versus flow rate maps, were calculated. The effects which different geometric and operational parameters, such as the riser height, inlet subcooling etc., have on the characteristics have been investigated. Dynamic simulations on the three simplified design revealed the geysering and the natural circulation oscillations modes only. They were, however, only encountered at pressure below 0.6 MPa. Stability maps for all tree simplified BWRs were calculated and plotted. The study concluded that a fast pressurisation of the reactor vessel is necessary to eliminate the possibility of geysering or natural circulation oscillations mode instability. (au) 26 tabs., 88 ills.

  6. Stability analysis on natural circulation boiling water reactors

    International Nuclear Information System (INIS)

    Metz, Peter

    1999-05-01

    The purpose of the study is a stability analysis of the simplified boiling water reactor concept. A fluid dynamics code, DYNOS, was developed and successfully validated against FRIGG and DESIRE data and a stability benchmark on the Ringhals 1 forced circulation BWR. Three simplified desings were considered in the analysis: The SWRIOOO by Siemens and the SBWR and ESBWR from the General Electric Co. For all three design operational characteristics, i.e. power versus flow rate maps, were calculated. The effects which different geometric and operational parameters, such as the riser height, inlet subcooling etc., have on the characteristics have been investigated. Dynamic simulations on the three simplified design revealed the geysering and the natural circulation oscillations modes only. They were, however, only encountered at pressure below 0.6 MPa. Stability maps for all tree simplified BWRs were calculated and plotted. The study concluded that a fast pressurisation of the reactor vessel is necessary to eliminate the possibility of geysering or natural circulation oscillations mode instability. (au)

  7. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    Energy Technology Data Exchange (ETDEWEB)

    D. E. Shropshire

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program’s understanding of the cost drivers that will determine nuclear power’s cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-iradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  8. Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems

    International Nuclear Information System (INIS)

    Shropshire, D.E.

    2009-01-01

    The Advanced Fuel Cycle Economic Analysis of Symbiotic Light-Water Reactor and Fast Burner Reactor Systems, prepared to support the U.S. Advanced Fuel Cycle Initiative (AFCI) systems analysis, provides a technology-oriented baseline system cost comparison between the open fuel cycle and closed fuel cycle systems. The intent is to understand their overall cost trends, cost sensitivities, and trade-offs. This analysis also improves the AFCI Program's understanding of the cost drivers that will determine nuclear power's cost competitiveness vis-a-vis other baseload generation systems. The common reactor-related costs consist of capital, operating, and decontamination and decommissioning costs. Fuel cycle costs include front-end (pre-irradiation) and back-end (post-irradiation) costs, as well as costs specifically associated with fuel recycling. This analysis reveals that there are large cost uncertainties associated with all the fuel cycle strategies, and that overall systems (reactor plus fuel cycle) using a closed fuel cycle are about 10% more expensive in terms of electricity generation cost than open cycle systems. The study concludes that further U.S. and joint international-based design studies are needed to reduce the cost uncertainties with respect to fast reactor, fuel separation and fabrication, and waste disposition. The results of this work can help provide insight to the cost-related factors and conditions needed to keep nuclear energy (including closed fuel cycles) economically competitive in the U.S. and worldwide. These results may be updated over time based on new cost information, revised assumptions, and feedback received from additional reviews.

  9. Analysis of water cooled reactors stability; Analiza stabilnosti reaktorskih sistema hladjenih vodom

    Energy Technology Data Exchange (ETDEWEB)

    Marinkovic, P; Pesic, M [Boris Kidric Institute of Nuclear Sciences, Vinca, Belgrade (Yugoslavia)

    1980-07-01

    A model for stability analysis of non-boiling water cooled nuclear system is developed. The model is based on linear reactor kinetics and space averaged heat transfer in reactor and heat-exchanger. The transfer functions are defined and the analysis was applied to nuclear reactor RA at 'Boris Kidric' Institute - Vinca. (author)

  10. Analysis of alternative light water reactor (LWR) fuel cycles

    International Nuclear Information System (INIS)

    Heeb, C.M.; Aaberg, R.L.; Boegel, A.J.; Jenquin, U.P.; Kottwitz, D.A.; Lewallen, M.A.; Merrill, E.T.; Nolan, A.M.

    1979-12-01

    Nine alternative LWR fuel cycles are analyzed in terms of the isotopic content of the fuel material, the relative amounts of primary and recycled material, the uranium and thorium requirements, the fuel cycle costs and the fraction of energy which must be generated at secured sites. The fuel materials include low-enriched uranium (LEU), plutonium-uranium (MOX), highly-enriched uranium-thorium (HEU-Th), denatured uranium-thorium (DU-Th) and plutonium-thorium (Pu-Th). The analysis is based on tracing the material requirements of a generic pressurized water reactor (PWR) for a 30-year period at constant annual energy output. During this time period all the created fissile material is recycled unless its reactivity worth is less than 0.2% uranium enrichment plant tails

  11. Boiling water reactor stability analysis in the time domain

    International Nuclear Information System (INIS)

    Borkowski, J.A.

    1991-01-01

    Boiling water nuclear reactors may experience density wave instabilities. These instabilities cause the density, and consequently the mass flow rate, to oscillate in the shrouded fuel bundles. This effect causes the nuclear power generation to oscillate due to the tight coupling of flow to power, especially under gravity-driven circulation. In order to predict the amplitude of the power oscillation, a time domain transient analysis tool may be employed. The modeling tool must have sufficient hydrodynamic detail to model natural circulation in two-phase flow as well as the coupled nuclear feedback. TRAC/BF1 is a modeling code with such capabilities. A dynamic system model has been developed for a typical boiling water reactor. Using this tool it has been demonstrated that density waxes may be modeled in this fashion and that their resultant hydrodynamic and nuclear behavior correspond well to simple theory. Several cases have been analyzed using this model, the goal being to determine the coupling between the channel hydrodynamics and the nuclear power. From that study it has been concluded that two-phase friction controls the extent of the oscillation and that the existing conventional methodologies of implementing two-phase friction into analysis codes of this type can lead to significant deviation in results from case to case. It has also been determined that higher dimensional nuclear feedback models reduce the extent of the oscillation. It has also been confirmed from a nonlinear dynamic standpoint that the birth of this oscillation may be described as a Hopf Bifurcation

  12. Structural analysis and modeling of water reactor fuel rod behavior

    International Nuclear Information System (INIS)

    Roshan Zamir, M.

    2000-01-01

    An important aspect of the design and analysis of nuclear reactor is the ability to predict the behavior of fuel elements in the adverse environment of a reactor system under normal and emergency operating conditions. To achieve these objectives and in order to provide a suitable computer code based on fundamental material properties for design and study of the thermal-mechanical behavior of water reactor fuel rods during their irradiation life and also to demonstrate the fuel rod design and modeling for students, The KIANA-1 computer program has been developed by the writer at Amir-Kabir university of technology with support of Atomic Energy Organization of Iran. KIANA-1 is an integral one-dimensional computer program for the thermal and mechanical analysis in order to predict fuel rods performance and also parameter study of Zircaloy-clad UO 2 fuel rod during steady state conditions. The code has been designed for the following main objectives: To give a solution for the steady state heat conduction equation for fuel as a heat source and clad by using finite difference, control volume and semi-analytical methods in order to predict the temperature profile in the fuel and cladding. To predict the inner gas pressures due to the filling gases and released gaseous fission products. To predict the fission gas production and release by using a simple diffusion model based on the Booth models and an empirical model. To calculate the fuel-clad gap conductance for cracked fuel with partial contact zones to a closed gap with strong contact. To predict the distribution of stress in three principal directions in the fuel and sheet by assuming one-dimensional plane strain and asymmetric idealization. To calculate the strain distribution in three principal directions and the corresponding deformation in the fuel and cladding. For this purpose the permanent strain such as creep or plasticity as well as the thermoelastic deformation and also the swelling, densification, cracking

  13. Analysis on small long life reactor using thorium fuel for water cooled and metal cooled reactor types

    International Nuclear Information System (INIS)

    Permana, Sidik

    2009-01-01

    Long-life reactor operation can be adopted for some special purposes which have been proposed by IAEA as the small and medium reactor (SMR) program. Thermal reactor and fast reactor types can be used for SMR and in addition to that program the utilization of thorium fuel as one of the candidate as a 'partner' fuel with uranium fuel which can be considered for optimizing the nuclear fuel utilization as well as recycling spent fuel. Fissile U-233 as the main fissile material for thorium fuel shows higher eta-value for wider energy range compared with other fissile materials of U-235 and Pu-239. However, it less than Pu-239 for fast energy region, but it still shows high eta-value. This eta-value gives the reactor has higher capability for obtaining breeding condition or high conversion capability. In the present study, the comparative analysis on small long life reactor fueled by thorium for different reactor types (water cooled and metal cooled reactor types). Light water and heavy water have been used as representative of water-cooled reactor types, and for liquid metal-cooled reactor types, sodium-cooled and lead-bismuth-cooled have been adopted. Core blanket arrangement as general design configuration, has been adopted which consist of inner blanket region fueled by thorium oxide, and two core regions (inner and out regions) fueled by fissile U-233 and thorium oxide with different percentages of fissile content. SRAC-CITATION and JENDL-33 have been used as core optimization analysis and nuclear data library for this analysis. Reactor operation time can reaches more than 10 years operation without refueling and shuffling for different reactor types and several power outputs. As can be expected, liquid metal cooled reactor types can be used more effective for obtaining long life reactor with higher burnup, higher power density, higher breeding capability and lower excess reactivity compared with water-cooled reactors. Water cooled obtains long life core operation

  14. Calculation system for physical analysis of boiling water reactors

    International Nuclear Information System (INIS)

    Bouveret, F.

    2001-01-01

    Although Boiling Water Reactors generate a quarter of worldwide nuclear electricity, they have been only little studied in France. A certain interest now shows up for these reactors. So, the aim of the work presented here is to contribute to determine a core calculation methodology with CEA (Commissariat a l'Energie Atomique) codes. Vapour production in the reactor core involves great differences in technological options from pressurised water reactor. We analyse main physical phenomena for BWR and offer solutions taking them into account. BWR fuel assembly heterogeneity causes steep thermal flux gradients. The two dimensional collision probability method with exact boundary conditions makes possible to calculate accurately the flux in BWR fuel assemblies using the APOLLO-2 lattice code but induces a very long calculation time. So, we determine a new methodology based on a two-level flux calculation. Void fraction variations in assemblies involve big spectrum changes that we have to consider in core calculation. We suggest to use a void history parameter to generate cross-sections libraries for core calculation. The core calculation code has also to calculate the depletion of main isotopes concentrations. A core calculation associating neutronics and thermal-hydraulic codes lays stress on points we still have to study out. The most important of them is to take into account the control blade in the different calculation stages. (author)

  15. Uncertainty analysis of LBLOCA for Advanced Heavy Water Reactor

    International Nuclear Information System (INIS)

    Srivastava, A.; Lele, H.G.; Ghosh, A.K.; Kushwaha, H.S.

    2008-01-01

    , uncertainty analysis for the Large Break LOCA (200% Inlet Header Break) of Advanced Heavy Water Reactor (AHWR) has been carried out. The uncertainty analysis was carried out for the peak cladding temperature (PCT), based on the two different methods i.e., Wilk's method and the response surface technique. Their findings have also been compared

  16. Analysis of scrams and forced outages at boiling water reactors

    International Nuclear Information System (INIS)

    Earle, R.T.; Sullivan, W.P.; Miller, K.R.; Schwegman, W.J.

    1980-07-01

    This report documents the results of a study of scrams and forced outages at General Electric Boiling Water Reactors (BWRs) operating in the United States. This study was conducted for Sandia Laboratories under a Light Water Reactor Safety Program which it manages for the United States Department of Energy. Operating plant data were used to identify the causes of scrams and forced outages. Causes of scrams and forced outages have been summarized as a function of operating plant and plant age and also ranked according to the number of events per year, outage time per year, and outage time per event. From this ranking, identified potential improvement opportunities were evaluated to determine the associated benefits and impact on plant availability

  17. Passive gamma analysis of the boiling-water-reactor assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Vo, D., E-mail: ducvo@lanl.gov [Los Alamos National Laboratory, Los Alamos, NM (United States); Favalli, A. [Los Alamos National Laboratory, Los Alamos, NM (United States); Grogan, B. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Jansson, P. [Uppsala University, Uppsala (Sweden); Liljenfeldt, H. [Oak Ridge National Laboratory, Oak Ridge, TN (United States); Mozin, V. [Lawrence Livermore National Laboratory, Livermore, CA (United States); Schwalbach, P. [European Atomic Energy Community (EURATOM), Luxemburg (Luxembourg); Sjöland, A. [Swedish Nuclear Fuel and Waste Management Company, Stockholm (Sweden); Tobin, S.; Trellue, H. [Los Alamos National Laboratory, Los Alamos, NM (United States); Vaccaro, S. [European Atomic Energy Community (EURATOM), Luxemburg (Luxembourg)

    2016-09-11

    This research focused on the analysis of a set of stationary passive gamma measurements taken on the spent nuclear fuel assemblies from a boiling water reactor (BWR) using pulse height analysis data acquisition. The measurements were performed on 25 different BWR assemblies in 2014 at Sweden's Central Interim Storage Facility for Spent Nuclear Fuel (Clab). This study was performed as part of the Next Generation of Safeguards Initiative–Spent Fuel project to research the application of nondestructive assay (NDA) to spent fuel assemblies. The NGSI–SF team is working to achieve the following technical goals more easily and efficiently than in the past using nondestructive assay (NDA) measurements of spent fuel assemblies: (1) verify the initial enrichment, burnup, and cooling time of facility declaration; (2) detect the diversion or replacement of pins, (3) estimate the plutonium mass, (4) estimate the decay heat, and (5) determine the reactivity of spent fuel assemblies. The final objective of this project is to quantify the capability of several integrated NDA instruments to meet the aforementioned goals using the combined signatures of neutrons, gamma rays, and heat. This report presents a selection of the measured data and summarizes an analysis of the results. Specifically, trends in the count rates measured for spectral lines from the following isotopes were analyzed as a function of the declared burnup and cooling time: {sup 137}Cs, {sup 154}Eu, {sup 134}Cs, and to a lesser extent, {sup 106}Ru and {sup 144}Ce. From these measured count rates, predictive algorithms were developed to enable the estimation of the burnup and cooling time. Furthermore, these algorithms were benchmarked on a set of assemblies not included in the standard assemblies set used by this research team.

  18. Design and analysis on super-critical water cooled power reactors

    International Nuclear Information System (INIS)

    Ishiwatari, Yuki

    2005-01-01

    The Super-Critical Water Cooled Power Reactors (SCPR) is cooled by 25 MPa supercritical water of 280degC at reactor inlet and greater than 500degC at reactor outlet and directly connected with turbine/generators with high energy conversion efficiency. This corresponds to the deletion of recirculation system and steam-water separation system of BWR type reactors or of pressurizer and steam generator of PWR type reactors. In addition to the design study of the university of Tokyo, technology development of the SCPR for practical use has started under the collaboration of industry and academia since 2000. Mockup single tube and bundle tests for heat transfer/fluid flow characteristics of the design have been conducted with 3D heat transfer analysis. Materials compatible with coolant conditions for fuel cans and reactor internals are also assessed. Overall evaluation of the reactor concept is under way. (T. Tanaka)

  19. Models and Stability Analysis of Boiling Water Reactors

    International Nuclear Information System (INIS)

    Dorning, John

    2002-01-01

    We have studied the nuclear-coupled thermal-hydraulic stability of boiling water reactors (BWRs) using a model that includes: space-time modal neutron kinetics based on spatial w-modes; single- and two-phase flow in parallel boiling channels; fuel rod heat conduction dynamics; and a simple model of the recirculation loop. The BR model is represented by a set of time-dependent nonlinear ordinary differential equations, and is studied as a dynamical system using the modern bifurcation theory and nonlinear dynamical systems analysis. We first determine the stability boundary (SB) - or Hopf bifurcation set- in the most relevant parameter plane, the inlet-subcooling-number/external-pressure-drop plane, for a fixed control rod induced external reactivity equal to the 100% rod line value; then we transform the SB to the practical power-flow map used by BWR operating engineers and regulatory agencies. Using this SB, we show that the normal operating point at 100% power is very stable, that stability of points on the 100% rod line decreases as the flow rate is reduced, and that operating points in the low-flow/high-power region are least stable. We also determine the SB that results when the modal kinetics is replaced by simple point reactor kinetics, and we thereby show that the first harmonic mode does not have a significant effect on the SB. However, we later show that it nevertheless has a significant effect on stability because it affects the basin of attraction of stable operating points. Using numerical simulations we show that, in the important low-flow/high-power region, the Hopf bifurcation that occurs as the SB is crossed is subcritical; hence, growing oscillations can result following small finite perturbations of stable steady-states on the 100% rod line at points in the low-flow/high-power region. Numerical simulations are also performed to calculate the decay ratios (DRs) and frequencies of oscillations for various points on the 100% rod line. It is

  20. Models and Stability Analysis of Boiling Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    John Dorning

    2002-04-15

    We have studied the nuclear-coupled thermal-hydraulic stability of boiling water reactors (BWRs) using a model that includes: space-time modal neutron kinetics based on spatial w-modes; single- and two-phase flow in parallel boiling channels; fuel rod heat conduction dynamics; and a simple model of the recirculation loop. The BR model is represented by a set of time-dependent nonlinear ordinary differential equations, and is studied as a dynamical system using the modern bifurcation theory and nonlinear dynamical systems analysis. We first determine the stability boundary (SB) - or Hopf bifurcation set- in the most relevant parameter plane, the inlet-subcooling-number/external-pressure-drop plane, for a fixed control rod induced external reactivity equal to the 100% rod line value; then we transform the SB to the practical power-flow map used by BWR operating engineers and regulatory agencies. Using this SB, we show that the normal operating point at 100% power is very stable, that stability of points on the 100% rod line decreases as the flow rate is reduced, and that operating points in the low-flow/high-power region are least stable. We also determine the SB that results when the modal kinetics is replaced by simple point reactor kinetics, and we thereby show that the first harmonic mode does not have a significant effect on the SB. However, we later show that it nevertheless has a significant effect on stability because it affects the basin of attraction of stable operating points. Using numerical simulations we show that, in the important low-flow/high-power region, the Hopf bifurcation that occurs as the SB is crossed is subcritical; hence, growing oscillations can result following small finite perturbations of stable steady-states on the 100% rod line at points in the low-flow/high-power region. Numerical simulations are also performed to calculate the decay ratios (DRs) and frequencies of oscillations for various points on the 100% rod line. It is

  1. Power Excursion Accident Analysis of Research Water Reactor

    International Nuclear Information System (INIS)

    Khaled, S.M.; Doaa, G.M.

    2009-01-01

    A three-dimensional neutronic code POWEX-K has been developed, and it has been coupled with the sub-channel thermal-hydraulic core analysis code SV based on the Single Mass Velocity Model. This forms the integrated neutronic/thermal hydraulics code system POWEX-K/SV for the accident analysis. The Training and Research Reactors at Budapest University of Technology and Economics (BME-Reactor) has been taken as a reference reactor. The cross-section generation procedure based on WIMS. The code uses an implicit difference approach for both the diffusion equations and thermal-hydraulics modules, with reactivity feedback effects due to coolant and fuel temperatures. The code system was applied to analyzing power excursion accidents initiated by ramp reactivity insertion of 1.2 $. The results show that the reactor is inherently safe in case of such accidents i.e. no core melt is expected even if the safety rods do not fall into the core

  2. SCRELA, LOCA Analysis of Super-Critical Light-Water Reactors

    International Nuclear Information System (INIS)

    Lee, J.H.; Koshizuka, S.; Oka, Y.

    2001-01-01

    Description of program or function: LOCA Analysis Code for the Supercritical-Water Cooled Reactor. - Blowdown Module: Calculation of the Blowdown Phase and Refill Phase. - Reflood Module: Calculation of the Reflood Phase

  3. Application of linearized model to the stability analysis of the pressurized water reactor

    International Nuclear Information System (INIS)

    Li Haipeng; Huang Xiaojin; Zhang Liangju

    2008-01-01

    A Linear Time-Invariant model of the Pressurized Water Reactor is formulated through the linearization of the nonlinear model. The model simulation results show that the linearized model agrees well with the nonlinear model under small perturbation. Based upon the Lyapunov's First Method, the linearized model is applied to the stability analysis of the Pressurized Water Reactor. The calculation results show that the methodology of linearization to stability analysis is conveniently feasible. (authors)

  4. Numerical analysis and scale experiment design of the hot water layer system of the Brazilian Multipurpose Reactor (RMB reactor)

    International Nuclear Information System (INIS)

    Schweizer, Fernando Lage Araújo

    2014-01-01

    The Brazilian Multipurpose Reactor (RMB) consists in a 30 MW open pool research reactor and its design is currently in development. The RMB is intended to produce a neutron flux applied at material irradiation for radioisotope production and materials and nuclear fuel tests. The reactor is immersed in a deep water pool needed for radiation shielding and thermal protection. A heating and purifying system is applied in research reactors with high thermal power in order to create a Hot Water Layer (HWL) on the pool top preventing that contaminated water from the reactor core neighboring reaches its surface reducing the room radiation dose rate. This dissertation presents a study of the HWL behavior during the reactor operation first hours where perturbations due to the cooling system and pool heating induce a mixing flow in the HWL reducing its protection. Numerical simulations using the CFD code CFX 14.0 have been performed for theoretical dose rate estimation during reactor operation, for a 1/10 scaled down model using dimensional analysis and mesh testing as an initial verification of the commercial code application. Equipment and sensor needed for an experimental bench project were defined by the CFD numerical simulation. (author)

  5. Light Water Reactor Sustainability Program: Analysis of Pressurized Water Reactor Station Blackout caused by external flooding using the RISMC toolkit

    International Nuclear Information System (INIS)

    2014-01-01

    The existing fleet of nuclear power plants is in the process of extending its lifetime and increasing the power generated from these plants via power uprates. In order to evaluate the impacts of these two factors on the safety of the plant, the Risk Informed Safety Margin Characterization project aims to provide insights to decision makers through a series of simulations of the plant dynamics for different initial conditions (e.g., probabilistic analysis and uncertainty quantification). This paper focuses on the impacts of power uprate on the safety margin of a boiling water reactor for a flooding induced station black-out event. Analysis is performed by using a combination of thermal-hydraulic codes and a stochastic analysis tool currently under development at the Idaho National Laboratory, i.e. RAVEN. We employed both classical statistical tools, i.e. Monte-Carlo, and more advanced machine learning based algorithms to perform uncertainty quantification in order to quantify changes in system performance and limitations as a consequence of power uprate. Results obtained give a detailed investigation of the issues associated with a plant power uprate including the effects of station black-out accident scenarios. We were able to quantify how the timing of specific events was impacted by a higher nominal reactor core power. Such safety insights can provide useful information to the decision makers to perform risk informed margins management.

  6. Thermal-Hydraulics analysis of pressurized water reactor core by using single heated channel model

    Directory of Open Access Journals (Sweden)

    Reza Akbari

    2017-08-01

    Full Text Available Thermal hydraulics of nuclear reactor as a basis of reactor safety has a very important role in reactor design and control. The thermal-hydraulic analysis provides input data to the reactor-physics analysis, whereas the latter gives information about the distribution of heat sources, which is needed to perform the thermal-hydraulic analysis. In this study single heated channel model as a very fast model for predicting thermal hydraulics behavior of pressurized water reactor core has been developed. For verifying the results of this model, we used RELAP5 code as US nuclear regulatory approved thermal hydraulics code. The results of developed single heated channel model have been checked with RELAP5 results for WWER-1000. This comparison shows the capability of single heated channel model for predicting thermal hydraulics behavior of reactor core.

  7. Design and analysis of pressurized water reactor systems

    International Nuclear Information System (INIS)

    Juhn, P.E.; Kim, Y.H.

    1979-01-01

    To help develop nuclear engineering technologies in local industry sectors, technical and economical data on pressurized water reactor systems and components have been collected, systematically analyzed and computerized to a certain degree. Codes and standards necessary for engineering design of PWR systems have been surveyed and clarified in terms of NSSS, turbine-generator system and BOP, then again rearranged with respect to quality classes and seismic classes. Some design manuals, criteria and guidelines regarding design, construction, test and operation of PWR plants have also been surveyed and collected. Benchmark cost calculation for the construction of a 900 MWe PWR plant, according to the standard format, was carried out, and computer model on construction costs was improved and updated by considering the local supply of labor and materials. And for the indigeneous development of PWR equipment and materials, such data as delivery schedule and manufacturers of 52 systems and 36,000 components have also been reviewed herein. (author)

  8. Topics to be covered in safety analysis reports for nuclear power plants with pressurized water reactors or boiling water reactors in the F.R.G

    International Nuclear Information System (INIS)

    Kohler, H.A.G.

    1977-01-01

    This manual aims at defining the standards to be used in Safety Analysis Reports for Nuclear Power Plants with Pressurized Water Reactors or Boiling Water Reactors in the Federal Republic of Germany. The topics to be covered are: Information about the site (geographic situation, settlement, industrial and military facilities, transport and communications, meteorological conditions, geological, hydrological and seismic conditions, radiological background), description of the power plant (building structures, safety vessel, reactor core, cooling system, ventilation systems, steam power plant, electrical facilities, systems for measurement and control), indication of operation (commissioning, operation, safety measures, radiation monitoring, organization), incident analysis (reactivity incidents, loss-of-coolant incidents, external impacts). (HP) [de

  9. Structural analysis of fuel rod applied to pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Faria, Danilo P.; Pinheiro, Andre Ricardo M.; Lotto, André A., E-mail: danilo.pinheiro@marinha.mil.br [Centro Tecnológico da Marinha em São Paulo (CTMSP), São Paulo, SP (Brazil)

    2017-07-01

    The design of fuel assemblies applied to Pressurized Water Reactors (PWR) has several requirements and acceptance criteria that must be attended for licensing. In the case of PWR fuel rods, an important mechanical structural requirement is to keep the radial stability when submitted to the coolant external pressure. In the framework of the Accident Tolerant Fuel (ATF) program new materials have been studied to replace zirconium based alloys as cladding, including iron-based alloys. In this sense, efforts have been made to evaluate the behavior of these materials under PWR conditions. The present work aims to evaluate the collapse cold pressure of a stainless steel thin-walled tube similar to that used as cladding material of fuel rods by means of the comparison of numeric data, and experimental results. As a result of the simulations, it was observed that the collapse pressure has a value intermediate value between those found by regulatory requirements and analytical calculations. The experiment was carried out for the validation of the computational model using test specimens of thin-walled tubes considering empty tube. The test specimens were sealed at both ends by means of welding. They were subjected to a high pressure device until the collapse of the tubes. Preliminary results obtained from experiments with the empty test specimens indicate that the computational model can be validated for stainless steel cladding, considering the difference between collapse pressure indicated in the regulatory document and the actual limit pressure concerning to radial instability of tubes with the studied characteristics. (author)

  10. Photocatalytic reactors for treating water pollution with solar illumination: a simplified analysis for n-steps flow reactors with recirculation

    Energy Technology Data Exchange (ETDEWEB)

    Sagawe, G.; Bahnemann, D. [Universitaet Hannover (Germany). Institut fuer Technische Chemie; Brandi, R.J.; Cassano, A.E. [INTEC Universidad Nacional del Litoral and CONICET, Sante Fe (Argentina)

    2005-09-01

    The concentration of dissolved oxygen in water, in equilibrium with atmospheric air (ca. 8 ppm at 20{sup o}C), defines the limits of all practical oxidizing processes for removing pollutants in photocatalytic reactors. To solve this limitation, an alternative approach to that of a continuously aerated reactor is the use of a recirculating system with aeration performed after every cycle at the reactor entering stream. As defined by the nature of a single recirculating step (the need of a reactor operation at a rather low concentration range), this procedure results in a very low photonic efficiency (thus requiring a large photon collecting area and consequently increasing the capital cost). The design engineer will have to resort to a series of several reactors with recirculation. This solution may then lead to a very high Photonic Efficiency for the entire process (i.e., a reduced light harvesting area) at the price of an increase in the required capital cost (due to the larger number of reactors). This paper provides a very simple analysis and analytical expressions that can be used to estimate, for a desired degree of degradation, a trade-off solution between a high number of reactors and a very large surface area to collect the solar photons. (author)

  11. Light Water Reactor Sustainability Program: Analysis of Pressurized Water Reactor Station Blackout Caused by External Flooding Using the RISMC Toolkit

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Curtis [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mandelli, Diego [Idaho National Lab. (INL), Idaho Falls, ID (United States); Prescott, Steven [Idaho National Lab. (INL), Idaho Falls, ID (United States); Alfonsi, Andrea [Idaho National Lab. (INL), Idaho Falls, ID (United States); Rabiti, Cristian [Idaho National Lab. (INL), Idaho Falls, ID (United States); Cogliati, Joshua [Idaho National Lab. (INL), Idaho Falls, ID (United States); Kinoshita, Robert [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2014-08-01

    The existing fleet of nuclear power plants is in the process of extending its lifetime and increasing the power generated from these plants via power uprates. In order to evaluate the impact of these factors on the safety of the plant, the Risk Informed Safety Margin Characterization (RISMC) project aims to provide insight to decision makers through a series of simulations of the plant dynamics for different initial conditions (e.g., probabilistic analysis and uncertainty quantification). This report focuses, in particular, on the application of a RISMC detailed demonstration case study for an emergent issue using the RAVEN and RELAP-7 tools. This case study looks at the impact of a couple of challenges to a hypothetical pressurized water reactor, including: (1) a power uprate, (2) a potential loss of off-site power followed by the possible loss of all diesel generators (i.e., a station black-out event), (3) and earthquake induces station-blackout, and (4) a potential earthquake induced tsunami flood. The analysis is performed by using a set of codes: a thermal-hydraulic code (RELAP-7), a flooding simulation tool (NEUTRINO) and a stochastic analysis tool (RAVEN) – these are currently under development at the Idaho National Laboratory.

  12. The uncertainty analysis of a liquid metal reactor for burning minor actinides from light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1998-12-31

    The neutronics analysis of a liquid metal reactor for burning minor actinides has shown that uncertainties in the nuclear data of several key minor actinide isotopes can introduce large uncertainties in the predicted performance of the core. A comprehensive sensitivity and uncertainty analysis was performed on a 1200 MWth actinide burner designed for a low burnup reactivity swing, negative doppler coefficient, and low sodium void worth. Sensitivities were generated using depletion perturbation methods for the equilibrium cycle of the reactor and covariance data was taken ENDF-B/V and other published sources. The relative uncertainties in the burnup swing, doppler coefficient, and void worth were conservatively estimated to be 180%, 97%, and 46%, respectively. 5 refs., 1 fig., 3 tabs. (Author)

  13. The uncertainty analysis of a liquid metal reactor for burning minor actinides from light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Hang Bok [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1999-12-31

    The neutronics analysis of a liquid metal reactor for burning minor actinides has shown that uncertainties in the nuclear data of several key minor actinide isotopes can introduce large uncertainties in the predicted performance of the core. A comprehensive sensitivity and uncertainty analysis was performed on a 1200 MWth actinide burner designed for a low burnup reactivity swing, negative doppler coefficient, and low sodium void worth. Sensitivities were generated using depletion perturbation methods for the equilibrium cycle of the reactor and covariance data was taken ENDF-B/V and other published sources. The relative uncertainties in the burnup swing, doppler coefficient, and void worth were conservatively estimated to be 180%, 97%, and 46%, respectively. 5 refs., 1 fig., 3 tabs. (Author)

  14. Non normal modal analysis of oscillations in boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Suarez-Antola, Roberto, E-mail: roberto.suarez@miem.gub.uy [Ministerio de Industria, Energia y Mineria (MIEM), Montevideo (Uruguay); Flores-Godoy, Jose-Job, E-mail: job.flores@ibero.mx [Universidad Iberoamericana (UIA), Mexico, DF (Mexico). Dept. de Fisica Y Matematicas

    2013-07-01

    The first objective of the present work is to construct a simple reduced order model for BWR stability analysis, combining a two nodes nodal model of the thermal hydraulics with a two modes modal model of the neutronics. Two coupled non-linear integral-differential equations are obtained, in terms of one global (in phase) and one local (out of phase) power amplitude, with direct and cross feedback reactivities given as functions of thermal hydraulics core variables (void fractions and temperatures). The second objective is to apply the effective life time approximation to further simplify the nonlinear equations. Linear approximations for the equations of the amplitudes of the global and regional modes are derived. The linearized equation for the amplitude of the global mode corresponds to a decoupled and damped harmonic oscillator. An analytical closed form formula for the damping coefficient, as a function of the parameters space of the BWR, is obtained. The coefficient changes its sign (with the corresponding modification in the decay ratio) when a stability boundary is crossed. This produces a supercritical Hopf bifurcation, with the steady state power of the reactor as the bifurcation parameter. However, the linearized equation for the amplitude of the regional mode corresponds always to an over-damped and always coupled (with the amplitude of the global mode) harmonic oscillator, for every set of possible values of core parameters (including the steady state power of the reactor) in the framework of the present mathematical model. The equation for the above mentioned over damped linear oscillator is closely connected with a non-normal operator. Due to this connection, there could be a significant transient growth of some solutions of the linear equation. This behavior allows a significant shrinking of the basin of attraction of the equilibrium state. The third objective is to apply the above approach to partially study the stability of the regional mode and

  15. Stability analysis of supercritical-pressure light water-cooled reactor in constant pressure operation

    International Nuclear Information System (INIS)

    Suhwan, JI; Shirahama, H.; Koshizuka, S.; Oka, Y.

    2001-01-01

    The purpose of this study is to evaluate the thermal-hydraulic and the thermal-nuclear coupled stabilities of a supercritical pressure light water-cooled reactor. A stability analysis code at supercritical pressure is developed. Using this code, stabilities of full and partial-power reactor operating at supercritical pressure are investigated by the frequency-domain analysis. Two types of SCRs are analyzed; a supercritical light water reactor (SCLWR) and a supercritical water-cooled fast reactor (SCFR). The same stability criteria as Boiling Water Reactor are applied. The thermal-hydraulic stability of SCLWR and SCFR satisfies the criteria with a reasonable orifice loss coefficient. The decay ratio of the thermal-nuclear coupled stability in SCFR is almost zero because of a small coolant density coefficient of the fast reactor. The evaluated decay ratio of the thermal-nuclear coupled stability is 3,41 ∼ 10 -V at 100% power in SCFR and 0,028 at 100% power in SCLWR. The sensitivity is investigated. It is found that the thermal-hydraulic stability is sensitive to the mass flow rate strongly and the thermal-nuclear coupled stability to the coolant density coefficient. The bottom power peak distribution makes the thermal-nuclear stability worse and the thermal-nuclear stability better. (author)

  16. Analysis of water hammer in control rod drive systems of boiling water reactor nuclear power plants

    International Nuclear Information System (INIS)

    Safwat, H.H.; Arastu, A.H.; Lau, S.

    1983-01-01

    The method of characteristics is applied to analyze water hammer in BWR (Boiling Water Reactor) Control Rod Drive (CRD) Systems following fast opening of scram valves. The modelling of the CRD mechanism is presented. Numerical predictions are compared to experimental data. (author)

  17. Finite element analysis of thermal stresses of the reactor vessel in a severe light water reactor accident

    International Nuclear Information System (INIS)

    Borovkov, A.I.; Semenov, A.S.; Granovsky, V.S.; Kovtunova, S.V.

    1995-01-01

    The thermal stress and damage analysis of the light water reactor (LWR) vessel is considered in a severe accident conditions. The high temperature corium accumulates on the vessel bottom and necessary condition of its holding is intensive cooling of vessel. External flooding with outside cooling of the LWR vessel is one of the accident management strategies being proposed to ensure the integrity of the vessel after a severe accident. (author). 8 refs., 5 figs

  18. Finite element analysis of thermal stresses of the reactor vessel in a severe light water reactor accident

    Energy Technology Data Exchange (ETDEWEB)

    Borovkov, A.I.; Semenov, A.S. [St. Petersburg State Technical Univ. (Russian Federation); Granovsky, V.S.; Kovtunova, S.V. [Research Inst. of Technology, Sosnovy Bor (Russian Federation)

    1995-12-31

    The thermal stress and damage analysis of the light water reactor (LWR) vessel is considered in a severe accident conditions. The high temperature corium accumulates on the vessel bottom and necessary condition of its holding is intensive cooling of vessel. External flooding with outside cooling of the LWR vessel is one of the accident management strategies being proposed to ensure the integrity of the vessel after a severe accident. (author). 8 refs., 5 figs.

  19. Benefit analysis of reprocessing and recycling light water reactor fuel

    International Nuclear Information System (INIS)

    1976-12-01

    The macro-economic impact of reprocessing and recycling fuel for nuclear power reactors is examined, and the impact of reprocessing on the conservation of natural uranium resources is assessed. The LWR fuel recycle is compared with a throwaway cycle, and it is concluded that fuel recycle is favorable on the basis of economics, as well as being highly desirable from the standpoint of utilization of uranium resources

  20. CFD simulation analysis and validation for CPR1000 pressurized water reactor

    International Nuclear Information System (INIS)

    Zhang Mingqian; Ran Xiaobing; Liu Yanwu; Yu Xiaolei; Zhu Mingli

    2013-01-01

    Background: With the rapid growth in the non-nuclear area for industrial use of Computational fluid dynamics (CFD) which has been accompanied by dramatically enhanced computing power, the application of CFD methods to problems relating to Nuclear Reactor Safety (NRS) is rapidly accelerating. Existing research data have shown that CFD methods could predict accurately the pressure field and the flow repartition in reactor lower plenum. But simulations for the full domain of the reactor have not been reported so far. Purpose: The aim is to determine the capabilities of the codes to model accurately the physical phenomena which occur in the full reactor vessel. Methods: The flow field of the CPR1000 reactor which is associated with a typical pressurized water reactor (PWR) is simulated by using ANSYS CFX. The pressure loss in reactor pressure vessel, the hydraulic loads of guide tubes and support columns, and the bypass flow of head dome were obtained by calculations for the full domain of the reactor. The results were validated by comparing with the determined reference value of the operating nuclear plant (LingAo nuclear plant), and the transient simulation was conducted in order to better understand the flow in reactor pressure vessel. Results: It was shown that the predicted pressure loss with CFD code was slightly different with the determined value (10% relative deviation for the total pressure loss), the hydraulic loads were less than the determined value with maximum relative deviation 50%, and bypass flow of head dome was approximately the same with determined value. Conclusion: This analysis practice predicts accurately the physical phenomena which occur in the full reactor vessel, and can be taken as a guidance for the nuclear plant design development and improve our understanding of reactor flow phenomena. (authors)

  1. Core Flow Distribution from Coupled Supercritical Water Reactor Analysis

    Directory of Open Access Journals (Sweden)

    Po Hu

    2014-01-01

    Full Text Available This paper introduces an extended code package PARCS/RELAP5 to analyze steady state of SCWR US reference design. An 8 × 8 quarter core model in PARCS and a reactor core model in RELAP5 are used to study the core flow distribution under various steady state conditions. The possibility of moderator flow reversal is found in some hot moderator channels. Different moderator flow orifice strategies, both uniform across the core and nonuniform based on the power distribution, are explored with the goal of preventing the reversal.

  2. Hydraulic modelling for analysis of the hot water layer stability in research reactor

    International Nuclear Information System (INIS)

    Ribeiro, Rogerio; Yanagihara, Jurandir Itizo

    1995-01-01

    Pool reactors are research reactors, which allow easy access to the core and are simple to operate. Reactors of this kind operating at power levels higher than about one megawatt need a hot water layer at the surface of the pool, in order to keep surface activity below acceptable levels and enable free access to the upper part of the reactor. This work presents similitude criteria derived by dimensional analysis and by non dimensioning the basic equations to analyze this layer's stability in a reduced scale model. The flow in the reactor is complex. It is impossible to consider all the phenomena with a single similitude criterion. The best would be to construct several models considering all the similitude criteria and then combine the results. Economical reasons and available time in the majority of the cases are a restrain to this procedure. Then, the most important criteria to the considered phenomenon must be chosen in order to give the best results. This work identifies three similitude criteria that were considered important to analyze the pool reactor's hot water layer stability. (author)

  3. Quantitative Analysis of Microbes in Water Tank of G.A. Siwabessy Reactor

    International Nuclear Information System (INIS)

    Itjeu Karliana; Diah Dwiana Lestiani

    2003-01-01

    The quality of water in reactor system has an important role because it could effect the function as a coolant and the operation of reactor indirectly. The study of microbe analyzes has been carried out to detect the existence of microbes in water tank and quantitative analyzes of microbes also has been applied as a continuation of the previous study. The samples is taken out from the end side of reactor GA Siwabessy's tank, inoculated in TSA (Tripcase Soy Agar) medium, put in incubator at 30 - 35 o C for 4 days. The results of experiment show the reconfirmation for the existence of bacteria and the un-existence of yield. The quantitative analysis with TPC method show the growth rate of bacteria is twice in 24 hours. (author)

  4. TRAC-PF1: an advanced best-estimate computer program for pressurized water reactor analysis

    International Nuclear Information System (INIS)

    Liles, D.R.; Mahaffy, J.H.

    1984-02-01

    The Transient Reactor Analysis Code (TRAC) is being developed at the Los Alamos National Laboratory to provide advanced best-estimate predictions of postulated accidents in light water reactors. The TRAC-PF1 program provides this capability for pressurized water reactors and for many thermal-hydraulic experimental facilities. The code features either a one-dimensional or a three-dimensional treatment of the pressure vessel and its associated internals; a two-phase, two-fluid nonequilibrium hydrodynamics model with a noncondensable gas field; flow-regime-dependent constitutive equation treatment; optional reflood tracking capability for both bottom flood and falling-film quench fronts; and consistent treatment of entire accident sequences including the generation of consistent initial conditions. This report describes the thermal-hydraulic models and the numerical solution methods used in the code. Detailed programming and user information also are provided

  5. Thermal analysis and design of a passive reflux condenser for the simplified boiling water reactor

    International Nuclear Information System (INIS)

    Bijlani, C.; Patti, F.; Prasad, V.

    1993-01-01

    At present, the advanced light water reactors (ALWRS) in the United States are being designed to remove reactor decay heat for a period of 72 h following a postulated loss-of-coolant accident (LOCA). The water in the pools external to the containment is evaporated or boiled off to remove the decay heat. It is presumed that the water in the pools can be replenished within 72 h through operator actions or outside assistance. Some countries in Europe require that the plant be designed to remove the reactor decay heat for a much longer duration than 72 h without external assistance. This paper presents an analysis and design of a passive heat exchanger called a reflux condenser (RC), which was considered for an ALWR-the 600-MW(electric) simplified boiling water reactor. The RC is required to condense the steam formed when the water in the pool in which the passive containment cooling system (PCCS) is immersed boils following a LOCA. The RCs are nuclear non-safety related. This paper presents steady-state performance of an RC at various outdoor air dry-bulb temperatures under still air conditions

  6. Analysis of water hammer phenomena in RBMK-1500 reactor main circulation circuit

    International Nuclear Information System (INIS)

    Kaliatka, A.; Uspuras, E.; Vaisnoras, M.

    2006-01-01

    Water hammer can occur in any thermal-hydraulic systems. Water hammer can reach pressure levels far exceeding the pressure range of a pipe given by the manufacturer, and it can lead to the failure of the pipeline integrity. In the past three decades, since a large number of water hammer events occurred in the light-water- reactor power plants, a number of comprehensive studies on the phenomena associated with water hammer events have been performed. There are three basic types of severe water hammer occurring at power plants that can result in significant plant damage: rapid valve operation events; void-induced water hammer; condensation-induced water hammer. Correct prediction of water hammer transients, is therefore of paramount importance for the safe operation of the plant. Therefore verifying of computer codes capability to simulate water hammer type transients is very important issue at performing of safety analyses for nuclear power plants. Verification of RELAP5/MOD3.3 code capability to simulate water hammer type transients employing the experimental investigations is presented. Experience gained from benchmarking analyses has been used at development of the detail RELAP5 code RBMK-1500 model for simulation of water hammer effects in reactor main circulation circuit. Analysis of reactor cooling system shows, that water hammers can occur in main circulation circuit of RBMK-1500 reactor in cases of: (1) Guillotine break of the inlet piping upstream of the Group Distribution Header and (2) Guillotine break of the pressure piping upstream the Main Circulation Pump check valve. Analysis of above mentioned accident scenarios is presented in this paper. First scenario of the accident potentially is more dangerous, because the pressure pulses influence not only the reactor cooling circuit, but also the piping of safety related system (Emergency Core Cooling System pipeline) connected to affected Group Distribution Header. The performed analysis using RELAP5 code

  7. Analysis of pressurized water reactor accidents in reactivity disturbances. II

    International Nuclear Information System (INIS)

    Tinka, I.

    1978-01-01

    The logic structure of program FATRAP is described. The time course of reactivity temporal and spatial distributions of neutron flux density and power, characteristic temperatures of the individual reactor zones and the heat flux density from cladding to the coolant can be obtained as the main results. The basic program funcitons were tested for a point and a one-dimensional model. In the basic test the absorption rod was removed uncontrollably at a preset speed for 0.5 s with the reactivity feedback operative. A second test simulated the action of the accident protection system with a delay of 0.1 s started when the 7500 MW power had been obtained. The last test consisted in simulating a start-up accident with an initial power of 2.25 MW. For the said chosen accident models reactivity feedback is responsible for the formation of the appropriate power peak while the accident protection attendance alone can considerably reduce temperatures during the process. (J.F.)

  8. Vaporization Rate Analysis of Primary Cooling Water from Reactor PUSPATI TRIGA (RTP) Tank

    International Nuclear Information System (INIS)

    Tonny Anak Lanyau; Mohd Fazli Zakaria; Yahya Ismail

    2011-01-01

    Primary cooling system consists of pumps, heat exchangers, probes, a nitrogen-16 diffuser and associated valves is connected to the reactor TRIGA PUSPATI (RTP) tank by aluminium pipes. Both the primary cooling system and the reactor tank is filled with demineralized light water (H 2 O), which serves as a coolant, moderator as well as shielding. During reactor operation, vaporization in the reactor tank will reduce the primary water and contribute to the formation of vapor in the reactor hall. The vaporization may influence the function of the water subsequently may affect the safety of the reactor operation. It is essential to know the vaporization rate of the primary water to ensure its functionality. This paper will present the vaporization rate of the primary cooling water from the reactor tank and the influence of temperature of the water in the reactor tank to the vaporization rate. (author)

  9. Analysis of French (Paluel) pressurized water reactor design differences compared to current US PWR designs

    International Nuclear Information System (INIS)

    1986-05-01

    To understand better the regulatory approaches to reactor safety in foreign countries, the staff of the Nuclear Regulatory Commisssion has reviewed design information on the Paluel nuclear power plant, one of the current standard 1300-MWe plant operating in France. This report provides the staff's evaluation of major design differences between this standardized French plant and current US pressurized water reactor plants, as well as insights concerning French regulatory practices. The staff identified approximately 25 design differences, and an analysis of the safety significance of each of these design features is presented, along with an assessment comparing the relative safety benefit of each

  10. Super critical water reactors

    International Nuclear Information System (INIS)

    Dumaz, P.; Antoni, O; Arnoux, P.; Bergeron, A; Renault, C.; Rimpault, G.

    2005-01-01

    Water is used as a calori-porter and moderator in the most major nuclear centers which are actually in function. In the pressurized water reactor (PWR) and boiling water reactor (BWR), water is maintained under critical point of water (21 bar, 374 Centigrade) which limits the efficiency of thermodynamic cycle of energy conversion (yield gain of about 33%) Crossing the critical point, one can then use s upercritical water , the obtained pressure and temperature allow a significant yield gains. In addition, the supercritical water offers important properties. Particularly there is no more possible coexistence between vapor and liquid. Therefore, we don't have more boiling problem, one of the phenomena which limits the specific power of PWR and BWR. Since 1950s, the reactor of supercritical water was the subject of studies more or less detailed but neglected. From the early 1990s, this type of conception benefits of some additional interests. Therefore, in the international term G eneration IV , the supercritical water reactors had been considered as one of the big options for study as Generation IV reactors. In the CEA, an active city has engaged from 1930 with the participation to a European program: The HPWR (High Performance Light Water Reactor). In this contest, the R and D studies are focused on the fields of neutrons, thermodynamic and materials. The CEA intends to pursue a limited effort of R and D in this field, in the framework of international cooperation, preferring the study of versions of rapid spectrum. (author)

  11. User's guide to input for WRAP: a water reactor analysis package

    International Nuclear Information System (INIS)

    Gregory, M.V.

    1977-06-01

    The document describes the input records required to execute the Water Reactor Analysis Package (WRAP) for the analysis of thermal-hydraulic transients in primarily light water reactors. The card input required by RELAP4 has been significantly modified to broaden the code's input processing capabilities: (1) All input is in the form of templated, named records. (2) All components (volumes, junctions, etc.) are named rather than numbered, and system relationships are formed by defining associations between the names. (3) A hierarchical part structure is used which allows collections of components to be described as discrete parts (these parts may then be catalogued for use in a wide range of cases). A sample problem, the small break analysis of the Westinghouse Trojan Plant, is discussed and detailed, step-by-step instructions in setting up an input data base are presented. A master list of all input templates for WRAP is compiled

  12. SCALE-4 analysis of pressurized water reactor critical configurations. Volume 1: Summary

    International Nuclear Information System (INIS)

    DeHart, M.D.

    1995-03-01

    The requirements of ANSI/ANS 8.1 specify that calculational methods for away-from-reactor criticality safety analyses be validated against experimental measurements. If credit is to be taken for the reduced reactivity of burned or spent fuel relative to its original fresh composition, it is necessary to benchmark computational methods used in determining such reactivity worth against spent fuel reactivity measurements. This report summarizes a portion of the ongoing effort to benchmark away-from-reactor criticality analysis methods using critical configurations from commercial pressurized water reactors (PWR). The analysis methodology utilized for all calculations in this report is based on the modules and data associated with the SCALE-4 code system. Each of the five volumes comprising this report provides an overview of the methodology applied. Subsequent volumes also describe in detail the approach taken in performing criticality calculations for these PWR configurations: Volume 2 describes criticality calculations for the Tennessee Valley Authority's Sequoyah Unit 2 reactor for Cycle 3; Volume 3 documents the analysis of Virginia Power's Surry Unit 1 reactor for the Cycle 2 core; Volume 4 documents the calculations performed based on GPU Nuclear Corporation's Three Mile Island Unit 1 Cycle 5 core; and, lastly, Volume 5 describes the analysis of Virginia Power's North Anna Unit 1 Cycle 5 core. Each of the reactor-specific volumes provides the details of calculations performed to determine the effective multiplication factor for each reactor core for one or more critical configurations using the SCALE-4 system; these results are summarized in this volume. Differences between the core designs and their possible impact on the criticality calculations are also discussed. Finally, results are presented for additional analyses performed to verify that solutions were sufficiently converged

  13. Photocatalytic reactors for treating water pollution with solar illumination. I: a simplified analysis for batch reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sagawe, G.; Bahnemann, D. [Inst. fuer Technische Chemie, Univ. Hannover, Hannover (Germany); Brandi, R.J.; Cassano, A.E. [INTEC (Univ. Nacional del Litoral and CONICET), Santa Fe (Argentina)

    2003-07-01

    Usual applications of photocatalytic reactors for treating wastewater exhibit the difficulty of handling fluids having varying composition and/or concentrations; thus, a detailed kinetic representation may not be possible. When the catalyst activation is obtained employing solar illumination an additional complexity always coexists: solar fluxes are permanently changing with time. For comparing different reacting systems under similar operating conditions and to provide approximate estimations for scaling up purposes, simplified models may be useful. For these approximations the model parameters should be restricted as much as possible to initial physical and boundary conditions such as: initial concentrations (expressed as such or as TOC measurements), flow rate or reactor volume, irradiated reactor area, incident radiation fluxes and a fairly simple experimental observation such as the photonic efficiency. A combination of a new concept: the ''actual observed photonic efficiency'' with ideal reactor models and empirical kinetic rate expressions can be used to provide rather simple working equations that can be efficiently used to describe the performance of practical reactors. In this paper, the method has been developed for the case of a photocatalytic batch reactor (PBR). (orig.)

  14. Mathematical model for safety analysis of heavy water power reactor

    International Nuclear Information System (INIS)

    Milovanovic, M.; Humo, E.; Mitrovic, S.

    1966-01-01

    Fundamental information in formulating the mathematical model for accident analysis is concerned with reactivity changes of the system. These parameters are: changes of fuel and moderator temperature, changes of the upper reflector thickness, reactivity changes due to moderator density variation dependent on the steam quantity and neutron flux distribution in the core

  15. Supercritical Water Reactors

    International Nuclear Information System (INIS)

    Bouchter, J.C.; Dufour, P.; Guidez, J.; Latge, C.; Renault, C.; Rimpault, G.

    2014-01-01

    The supercritical water reactor (SCWR) is one of the 6 concepts selected for the 4. generation of nuclear reactors. SCWR is a new concept, it is an attempt to optimize boiling water reactors by using the main advantages of supercritical water: only liquid phase and a high calorific capacity. The SCWR requires very high temperatures (over 375 C degrees) and very high pressures (over 22.1 MPa) to operate which allows a high conversion yield (44% instead of 33% for a PWR). Low volumes of coolant are necessary which makes the neutron spectrum shift towards higher energies and it is then possible to consider fast reactors operating with supercritical water. The main drawbacks of supercritical water is the necessity to use very high pressures which has important constraints on the reactor design, its physical properties (density, calorific capacity) that vary strongly with temperatures and pressures and its very high corrosiveness. The feasibility of the concept is not yet assured in terms of adequate materials that resist to corrosion, reactor stability, reactor safety, and reactor behaviour in accidental situations. (A.C.)

  16. Pressurised water reactor operation

    International Nuclear Information System (INIS)

    Birnie, S.; Lamonby, J.K.

    1987-01-01

    The operation of a pressurized water reactor (PWR) is described with respect to the procedure for a unit start-up. The systems details and numerical data are for a four loop PWR station of the design proposed for Sizewell-'B', United Kingdom. A description is given of: the initial conditions, filling the reactor coolant system (RCS), heat-up and pressurisation of the RCS, secondary system preparations, reactor start-up, and reactivity control at power. (UK)

  17. Application of advanced irradiation analysis methods to light water reactor pressure vessel test and surveillance programs

    International Nuclear Information System (INIS)

    Odette, R.; Dudey, N.; McElroy, W.; Wullaert, R.; Fabry, A.

    1977-01-01

    Inaccurate characterization and inappropriate application of neutron irradiation exposure variables contribute a substantial amount of uncertainty to embrittlement analysis of light water reactor pressure vessels. Damage analysis involves characterization of the irradiation environment (dosimetry), correlation of test and surveillance metallurgical and dosimetry data, and projection of such data to service conditions. Errors in available test and surveillance dosimetry data are estimated to contribute a factor of approximately 2 to the data scatter. Non-physical (empirical) correlation procedures and the need to extrapolate to the vessel may add further error. Substantial reductions in these uncertainties in future programs can be obtained from a more complete application of available damage analysis tools which have been developed for the fast reactor program. An approach to reducing embrittlement analysis errors is described, and specific examples of potential applications are given. The approach is based on damage analysis techniques validated and calibrated in benchmark environments

  18. Uncertainty Analysis of Light Water Reactor Fuel Lattices

    Directory of Open Access Journals (Sweden)

    C. Arenas

    2013-01-01

    Full Text Available The study explored the calculation of uncertainty based on available cross-section covariance data and computational tool on fuel lattice levels, which included pin cell and the fuel assembly models. Uncertainty variations due to temperatures changes and different fuel compositions are the main focus of this analysis. Selected assemblies and unit pin cells were analyzed according to the OECD LWR UAM benchmark specifications. Criticality and uncertainty analysis were performed using TSUNAMI-2D sequence in SCALE 6.1. It was found that uncertainties increase with increasing temperature, while kinf decreases. This increase in the uncertainty is due to the increase in sensitivity of the largest contributing reaction of uncertainty, namely, the neutron capture reaction 238U(n, γ due to the Doppler broadening. In addition, three types (UOX, MOX, and UOX-Gd2O3 of fuel material compositions were analyzed. A remarkable increase in uncertainty in kinf was observed for the case of MOX fuel. The increase in uncertainty of kinf in MOX fuel was nearly twice the corresponding value in UOX fuel. The neutron-nuclide reaction of 238U, mainly inelastic scattering (n, n′, contributed the most to the uncertainties in the MOX fuel, shifting the neutron spectrum to higher energy compared to the UOX fuel.

  19. Photocatalytic reactors for treating water pollution with solar illumination. II: a simplified analysis for flow reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sagawe, G.; Bahnemann, D. [Inst. fuer Technische Chemie, Univ. Hannover, Hannover (Germany); Brandi, R.J.; Cassano, A.E. [INTEC (Univ. Nacional del Litoral and CONICET), Santa Fe (Argentina)

    2003-07-01

    Very frequently outgoing streams of real wastewaters do not have a definite and constant composition. Additionally, when the degradation process makes use of solar irradiation, the photon flux is hardly constant. These two factors strongly militate against the use of very elaborate, exact models for analyzing the performance of the employed reactors. In these cases, approximate methods may be the most practical approach. One possible way is presented in this paper. The observed photonic efficiency concept developed in a previous contribution (sagawe et al., 2002a) is applied to continuous reactors for both steady state and transient operations of photocatalytic reactions applied to wastewaters decontamination processes. For this reactor the local observed photonic efficiency, defined at each reactor longitudinal position, is the convenient property to express the concentration spatial evolution. It is also shown that the description of the reactor performance employing a mass balance can be done in a rather simple way introducing a mass-moving coordinate transformation that remodel the mass inventory and permits working with simpler ordinary differential equations. (orig.)

  20. A flooding induced station blackout analysis for a pressurized water reactor using the RISMC toolkit

    International Nuclear Information System (INIS)

    Mandelli, Diego; Prescott, Steven; Smith, Curtis; Alfonsi, Andrea; Rabiti, Cristian; Cogliati, Joshua; Kinoshita, Robert

    2015-01-01

    In this paper we evaluate the impact of a power uprate on a pressurized water reactor (PWR) for a tsunami-induced flooding test case. This analysis is performed using the RISMC toolkit: the RELAP-7 and RAVEN codes. RELAP-7 is the new generation of system analysis codes that is responsible for simulating the thermal-hydraulic dynamics of PWR and boiling water reactor systems. RAVEN has two capabilities: to act as a controller of the RELAP-7 simulation (e.g., component/system activation) and to perform statistical analyses. In our case, the simulation of the flooding is performed by using an advanced smooth particle hydrodynamics code called NEUTRINO. The obtained results allow the user to investigate and quantify the impact of timing and sequencing of events on system safety. The impact of power uprate is determined in terms of both core damage probability and safety margins

  1. Moderator feedback effects in two-dimensional nodal methods for pressurized water reactor analysis

    International Nuclear Information System (INIS)

    Downar, T.J.

    1987-01-01

    A method was developed for incorporating moderator feedback effects in two-dimensional nodal codes used for pressurized water reactor (PWR) neutronic analysis. Equations for the assembly average quality and density are developed in terms of the assembly power calculated in two dimensions. The method is validated with a Westinghouse PWR using the Electric Power Research Institute code SIMULATE-E. Results show a several percent improvement is achieved in the two-dimensional power distribution prediction compared to methods without moderator feedback

  2. Uncertainty analysis of light water reactor unit fuel pin cells

    Energy Technology Data Exchange (ETDEWEB)

    Kamerow, S.; Ivanov, K., E-mail: sln107@PSU.EDU, E-mail: kni1@PSU.EDU [Department of Mechanical and Nuclear Engineering, The Pennsylvania State University, PA (United States); Moreno, C. Arenas, E-mail: cristina.arenas@UPC.EDU [Department of Physics and Nuclear Engineering, Technical University of Catalonia, Barcelona (Spain)

    2011-07-01

    The study explored the calculation of uncertainty based on available covariance data and computational tools. Uncertainty due to temperature changes and different fuel compositions are the main focus of this analysis. Selected unit fuel pin cells were analyzed according to the OECD LWR UAM benchmark specifications. Criticality and uncertainty analyses were performed using TSUNAMI-1D sequence in SCALE 6.0. It was found that uncertainties increase with increasing temperature while k{sub eff} decreases. This increase in the uncertainty is due to the increase in sensitivity of the largest contributor of uncertainty, namely nuclide reaction {sup 238}U (n, gamma). The sensitivity grew larger as the capture cross-section of {sup 238}U expanded due to Doppler broadening. In addition, three different compositions (UOx, MOx, and UOxGd{sub 2}O{sub 3}) of fuel cells were analyzed. It showed a remarkable increase in uncertainty in k{sub eff} for the case of the MOx fuel cell and UOxGd{sub 2}O{sub 3} fuel cell. The increase in the uncertainty of k{sub eff} in UOxGd{sub 2}O{sub 3} fuel was nearly twice of that in MOx fuel and almost four times the amount in UOx fuel. The components of the uncertainties in k{sub eff} in each case were examined and it was found that the neutron-nuclide reaction of {sup 238}U, mainly (n,n'), contributed the most to the uncertainties in the cases of MOx and UOxGd{sub 2}O{sub 3}. At higher energy, the covariance coefficient matrix of {sup 238}U (n,n') to {sup 238}U (n,n') and {sup 238}U (n,n') cross-section showed very large values. Further, examination of the UOxGd{sub 2}O{sub 3} case found that the {sup 238}U (n,n') became the dominant contributor to the uncertainty because most of the thermal neutrons in the cell were absorbed by Gadolinium in UOxGd{sub 2}O{sub 3} case and thus shifting the neutron spectrum to higher energy. For the MOx case on other hand, {sup 239}Pu has a very strong absorption cross-section at low energy

  3. Reactor water sampling device

    International Nuclear Information System (INIS)

    Sakamaki, Kazuo.

    1992-01-01

    The present invention concerns a reactor water sampling device for sampling reactor water in an in-core monitor (neutron measuring tube) housing in a BWR type reactor. The upper end portion of a drain pipe of the reactor water sampling device is attached detachably to an in-core monitor flange. A push-up rod is inserted in the drain pipe vertically movably. A sampling vessel and a vacuum pump are connected to the lower end of the drain pipe. A vacuum pump is operated to depressurize the inside of the device and move the push-up rod upwardly. Reactor water in the in-core monitor housing flows between the drain pipe and the push-up rod and flows into the sampling vessel. With such a constitution, reactor water in the in-core monitor housing can be sampled rapidly with neither opening the lid of the reactor pressure vessel nor being in contact with air. Accordingly, operator's exposure dose can be reduced. (I.N.)

  4. The safety of light water reactors

    International Nuclear Information System (INIS)

    Pershagen, B.

    1986-04-01

    The book describes the principles and practices of reactor safety as applied to the design, regulation and operation of both pressurized water reactors and boiling water reactors. The central part of the book is devoted to methods and results of safety analysis. Some significant events are described, notably the Three Mile Island accident. The book concludes with a chapter on the PIUS principle of inherent reactor safety as applied to the SECURE type of reactor developed in Sweden. (G.B.)

  5. Safety analysis of a high temperature supercritical pressure light water cooled and moderated reactor

    International Nuclear Information System (INIS)

    Ishiwatari, Y.; Oka, Y.; Koshizuka, S.

    2002-01-01

    A safety analysis code for a high temperature supercritical pressure light water cooled reactor (SCLWR-H) with water rods cooled by descending flow, SPRAT-DOWN, is developed. The hottest channel, a water rod, down comer, upper and lower plenums, feed pumps, etc. are modeled as junction of nodes. Partial of the feed water flows downward from the upper dome of the reactor pressure vessel to the water rods. The accidents analyzed here are total loss of feed water flow, feed water pump seizure, and control rods ejection. All the accidents satisfy the criteria. The accident event at which the maximum cladding temperature is the highest is total loss of feedwater flow. The transients analyzed here are loss of feed water heating, inadvertent start-up of an auxiliary water supply system, partial loss of feed water flow, loss of offsite power, loss of load, and abnormal withdrawal of control rods. All the transients satisfied the criteria. The transient event for which the maximum cladding temperature is the highest is control rod withdrawal at normal operation. The behavior of loss of load transient is different from that of BWR. The power does not increase because loss of flow occurs and the density change is small. The sensitivities of the system behavior to various parameters during transients and accidents are analyzed. The parameters having strong influence are the capacity of the auxiliary water supply system, the coast down time of the main feed water pumps, and the time delay of the main feed water pumps trip. The control rod reactivity also has strong influence. (authors)

  6. Thermo-fluid analysis of water cooled research reactors in natural convection

    International Nuclear Information System (INIS)

    Veloso, Maria Auxiliadora Fortini

    2004-01-01

    The STHIRP-1 computer program, which fundamentals are described in this work, uses the principles of the subchannels analysis and has the capacity to simulate, under steady state and transient conditions, the thermal and hydraulic phenomena which occur inside the core of a water-refrigerated research reactor under a natural convection regime. The models and empirical correlations necessary to describe the flow phenomena which can not be described by theoretical relations were selected according to the characteristics of the reactor operation. Although the primary objective is the calculation of research reactors, the formulation used to describe the fluid flow and the thermal conduction in the heater elements is sufficiently generalized to extend the use of the program for applications in power reactors and other thermal systems with the same features represented by the program formulations. To demonstrate the analytical capacity of STHIRP-l, there were made comparisons between the results calculated and measured in the research reactor TRIGA IPR-R1 of CDTN/CNEN. The comparisons indicate that the program reproduces the experimental data with good precision. Nevertheless, in the future there must be used more consistent experimental data to corroborate the validation of the program. (author)

  7. Best-estimate methodology for analysis of anticipated transients without scram in pressurized water reactors

    International Nuclear Information System (INIS)

    Rebollo, L.

    1993-01-01

    Union Fenosa, a utility company in Spain, has performed research on pressurized water reactor (PWR) safety with respect to the development of a best-estimate methodology for the analysis of anticipated transients without scram (ATWS), i.e., those anticipated transients for which failure of the reactor protection system is postulated. A scientific and technical approach is adopted with respect to the ATWS phenomenon as it affects a PWR, specifically the Zorita nuclear power plant, a single-loop Westinghouse-designed PWR in Spain. In this respect, an ATWS sequence analysis methodology based on published codes that is generically applicable to any PWR is proposed, which covers all the anticipated phenomena and defines the applicable acceptance criteria. The areas contemplated are cell neutron analysis, core thermal hydraulics, and plant dynamics, which are developed, qualified, and plant dynamics, which are developed, qualified, and validated by comparison with reference calculations and measurements obtained from integral or separate-effects tests

  8. TRAC-BD1: transient reactor analysis code for boiling-water systems

    International Nuclear Information System (INIS)

    Spore, J.W.; Weaver, W.L.; Shumway, R.W.; Giles, M.M.; Phillips, R.E.; Mohr, C.M.; Singer, G.L.; Aguilar, F.; Fischer, S.R.

    1981-01-01

    The Boiling Water Reactor (BWR) version of the Transient Reactor Analysis Code (TRAC) is being developed at the Idaho National Engineering Laboratory (INEL) to provide an advanced best-estimate predictive capability for the analysis of postulated accidents in BWRs. The TRAC-BD1 program provides the Loss of Coolant Accident (LOCA) analysis capability for BWRs and for many BWR related thermal hydraulic experimental facilities. This code features a three-dimensional treatment of the BWR pressure vessel; a detailed model of a BWR fuel bundle including multirod, multibundle, radiation heat transfer, leakage path modeling capability, flow-regime-dependent constitutive equation treatment, reflood tracking capability for both falling films and bottom flood quench fronts, and consistent treatment of the entire accident sequence. The BWR component models in TRAC-BD1 are described and comparisons with data presented. Application of the code to a BWR6 LOCA is also presented

  9. Mechanical behaviour of the reactor vessel support of a pressurized water reactor: tests and analysis

    International Nuclear Information System (INIS)

    Bolvin, M.; L'huby, Y.; Quillico, J.J.; Humbert, J.M.; Thomas, J.P.; Hugenschmitt, R.

    1985-08-01

    The PWR reactor vessel is supported by a steel ring laying on the reactor pit. This support has to ensure a good behaviour of the vessel in the event of accidental conditions (earthquake and pipe rupture). A new evolution of the evaluation methods of the applied forces has shown a significant increase in the design loads used until now. In order to take into account these new forces, we carried out a test on a representative mock-up of the vessel support (scale 1/6). This test was performed by CEA, EDF and FRAMATOME. Several static equivalent forces were applied on the experimental mock-up. Displacements and strains were simultaneously recorded. The results of the test have enabled to justify the design of the pit and the ring, to show up a wide safety margin until the collapse of the structures and to check our hypothesis about the transmission of the forces between the ring and the pit

  10. Comparison and analysis on transient characteristics of integral pressurized water reactors

    International Nuclear Information System (INIS)

    Zhang, Guoxu; Xie, Heng

    2017-01-01

    Highlights: • Two IPWR Relap5 models with different PSS design were developed. • Postulated SBO and SBLOCA were analyzed. • PRHRS in primary PSS design showed stable performance under different scenarios. • Secondary PRHRS design faced flow instability. - Abstract: In the present work, the similarities and differences of representative IPWRs (integral pressurized water reactor) are studied, and two typical reactor design schemes are summarized. To get a comprehensive understanding of their transient characteristics, SBO (station blackout) and SBLOCA (small break LOCA) are simulated and analyzed respectively by using Relap5/Mod3.2. The calculation results show that, both designs are effective in keeping reactor safe. However, the transient features of the two designs show significant differences. In the primary side passive safety system (PSS) connection design, PRHRS (passive residual heat removal system) shows a roughly congruent performance in removing residual heat under various accidents. While in secondary side PSS connection design, the capability of PRHRS is closely related to primary coolant circulation condition. In SBLOCA analysis, different design approach shows different primary coolant water inventory change trend. And primary PSS connection design could potentially keep reactor core well covered for a longer time.

  11. Experimental and computational analysis of the hot water layer for the radiological protection in swimming pool reactor

    International Nuclear Information System (INIS)

    Ribeiro, Rogerio.

    1995-01-01

    Pool reactors are research reactors, which allow easy access to the core and rare simple to operate. Reactors of this kind operating at power levels higher than about one megawatt need a hot water layer at the surface of the pool, in order to keep surface activity below acceptable levels and enable free access to the upper part of the reactor. An experimental apparatus was constructed to study the hot water layer stability. Thermocouples were used to measure the temperature field. A numerical analysis was conducted simultaneously. Regarding experimental results, representative temperature contour lines of the hot water layer were plotted. The temperature field was determined in the numerical analysis and temperature contour lines corresponding to those of the experimental results were plotted. The hot water layer kept stable for experimental and numerical results. Good agreement between the results for the hot water layer position and thickness has been obtained. (author). 21 refs., 40 figs., 15 tabs

  12. Thermo hydraulic analysis of narrow channel effect in supercritical-pressure light water reactor

    International Nuclear Information System (INIS)

    Zhou Tao; Chen Juan; Cheng Wanxu

    2012-01-01

    Highlights: ► Detailed thermal analysis with different narrow gaps between fuel rods is given. ► Special characteristics of narrow channels effect on heat transfer in supercritical pressure are shown. ► Reasonable size selection of gaps between fuel rods is proposed for SCWR. - Abstract: The size of the gap between fuel rods has important effects on flow and heat transfer in a supercritical-pressure light water reactor. Based on thermal analysis at different coolant flow rates, the reasonable value range of gap size between fuel rods is obtained, for which the maximum cladding temperature safety limits and installation technology are comprehensively considered. Firstly, for a given design flow rate of coolant, thermal hydraulic analysis of supercritical pressure light water reactor with different gap sizes is provided by changing the fuel rod pitch only. The results show that, by means of reducing the gap size between fuel rods, the heat transfer coefficients between coolant and fuel rod, as well as the heat transfer coefficient between coolant and water rod, would both increase noticeably. Furthermore, the maximum cladding temperature will significantly decrease when the moderator temperature is decreased but coolant temperature remains essentially constant. Meanwhile, the reduction in the maximum cladding temperature in the inner assemblies is much larger than that in the outer assemblies. In addition, the maximum cladding temperature could be further reduced by means of increasing coolant flow rate for each gap size. Finally, the characteristics of narrow channels effect are proposed, and the maximum allowable gap between fuel rods is obtained by making full use of the enhancing narrow channels effect on heat transfer, and concurrently considering installation. This could provide a theoretical reference for supercritical-pressure light water reactor design optimization, in which the effects of gap size and flow rate on heat transfer are both considered.

  13. Loss of coolant analysis for CIRENE-LATINA heavy water reactor

    International Nuclear Information System (INIS)

    Chiantore, B.; Dubbini, M.; Proto, G.

    1978-01-01

    CIRENE is a heavy-water moderated, boiling water cooled pressure tube reactor. Fuel is natural uranium. A variety of breaks in the primary coolant system have been postulated for the analysis of the CIRENE Latina Plant (now under construction) such as double-end break of inlet header, downcomer, steam line and inlet feeders. The basic tool for analysis is the TILT-N Code which has been purposely developed for simulating the nuclear, thermal and hydrodynamic behaviour of the CIRENE core and associated heat transport system. An extensive full-scale test programme has been carried out by CNEN and CISE which fully confirms the adequacy of the model. The main results of the analysis show that maximum temperatures are far from those leading to significant fuel damage and that adequate core cooling is provided over the whole transient. (author)

  14. SACI - O: A code for the analysis of transients in a pressurized water reactor core

    International Nuclear Information System (INIS)

    Resende Lobo, A.A. de; Soares, P.A.

    1979-03-01

    The SACI-O digital computer code consists basically of a pressurized water reactor core model. It is useful in the analysis of fast reactivity transients shorter than the loop transit time. The program can also be used for evaluating the core behaviour, during other transients, when the inlet coolant conditions are known. SACI-O uses point model neutron kinetics taking into account moderator and fuel reactivity effects, and fission products decay. The neutronic and thermal-hydraulic equations are solved for an average fuel pin described by a single axial node. To perform a more detailed calculation, the modeling of another cooling channel, which can be divided into axial segments, is included in the program. The reactor trip system is also partially simulated. (Author) [pt

  15. Analysis of boiling water reactors capacities for the 100% MOX fuel recycling

    International Nuclear Information System (INIS)

    Knoche, Dietrich

    1999-01-01

    The electro-nuclear park exploitation leads to plutonium production. The plutonium recycling in boiling water reactors performs a use possibility. The difference between the neutronic characteristics of the uranium and the plutonium need to evaluate the substitution impact of UOX fuel by MOX fuel on the reactor operating and safety. The analysis of the main points reached to the following conclusions: the reactivity coefficients are negative, during a cooling accident the re-divergence depends on the isotopic vector of the used plutonium, the efficiency lost of control cross resulting from the plutonium utilization can be compensate by the increase of the B 4C enrichment by 10 B and the change of the steel structure by an hafnium structure, the reactivity control in evolution can be obtained by the fuel poisoning (gadolinium, erbium) and the power map control by the plutonium content monitoring. (A.L.B.)

  16. Subchannel analysis of 37-rod tight-lattice bundle experiments for reduced-moderation water reactor

    International Nuclear Information System (INIS)

    Nakatsuka, Toru; Tamai, Hidesada; Akimoto, Hajime

    2005-01-01

    R and D project to investigate thermal-hydraulic performance of tight-lattice fuel bundles for Reduced-Moderation Water Reactor (RMWR) started at Japan Atomic Energy Research Institute (JAERI) in collaboration with utilities, reactor vendors and universities from 2002. The RMWR realizes a high conversion ratio larger than 0.1 for sustainable energy supply through plutonium multiple recycling based on the well-experienced LWR technologies. The reactor core comprises tight-lattice fuel assemblies with gap clearance of around 1.0 mm to reduce the water volume ratio to achieve the high conversion ratio. A problem of utmost importance from a thermal-hydraulic point of view is the coolability of the tight-lattice assembly with such a small gap width. JAERI has been carrying out experimental study to investigate the system parameter effects on the thermal-hydraulic performance and to confirm the feasibility of the core. In the present study, the subchannel analysis code NASCA was applied to 37-rod tight-lattice bundle experiments. The NASCA can give good predictions of critical power for the gap width of 1.3 mm while the prediction accuracy decreases for the gap width of 1.0 mm. To improve the prediction accuracy, the code will be modified to take the effect of film thickness distribution around fuel rods on boiling transition. (author)

  17. Reliability analysis of protection system of advanced pressurized water reactor - APR 1400

    International Nuclear Information System (INIS)

    Varde, P. V.; Choi, J. G.; Lee, D. Y.; Han, J. B.

    2003-04-01

    Reliability analysis was carried out for the protection system of the Korean Advanced Pressurized Water Reactor - APR 1400. The main focus of this study was the reliability analysis of digital protection system, however, towards giving an integrated statement of complete protection reliability an attempt has been made to include the shutdown devices and other related aspects based on the information available to date. The sensitivity analysis has been carried out for the critical components / functions in the system. Other aspects like importance analysis and human error reliability for the critical human actions form part of this work. The framework provided by this study and the results obtained shows that this analysis has potential to be utilized as part of risk informed approach for future design / regulatory applications

  18. Reactor water chemistry control

    International Nuclear Information System (INIS)

    Kundu, A.K.

    2010-01-01

    Tarapur Atomic Power Station - 1 and 2 (TAPS) is a twin unit Boiling Water Reactors (BWRs) built in 1960's and operating presently at 160MWe. TAPS -1 and 2 are one of the vintage reactors operating in the world and belongs to earlier generation of BWRs has completed 40 years of successful, commercial and safe operation. In 1980s, both the reactors were de-rated from 660MWth to 530MWth due to leaks in the Secondary Steam Generators (SSGs). In BWR the feed water acts as the primary coolant which dissipates the fission heat and thermalises the fast neutrons generated in the core due to nuclear fission reaction and under goes boiling in the Reactor Pressure Vessel (RPV) to produce steam. Under the high reactor temperature and pressure, RPV and the primary system materials are highly susceptible to corrosion. In order to avoid local concentration of the chemicals in the RPV of BWR, chemical additives are not recommended for corrosion prevention of the system materials. So to prevent corrosion of the RPV and the primary system materials, corrosion resistant materials like stainless steel (of grade SS304, SS304L and SS316LN) is used as the structural material for most of the primary system components. In case of feed water system, main pipe lines are of carbon steel and the heater shell materials are of carbon steel lined with SS whereas the feed water heater tubes are of SS-304. In addition to the choice of materials, another equally important factor for corrosion prevention and corrosion mitigation of the system materials is maintaining highly pure water quality and strict water chemistry regime for both the feed water and the primary coolant, during operation and shutdown of the reactor. This also helps in controlled migration of corrosion product to and from the reactor core and to reduce radiation field build up across the primary system materials. Experience in this field over four decades added to the incorporation of modern techniques in detection of low

  19. TRAC-B thermal-hydraulic analysis of the Black Fox boiling water reactor

    International Nuclear Information System (INIS)

    Martin, R.P.

    1993-05-01

    Thermal-hydraulic analyses of six hypothetical accident scenarios for the General Electric Black Fox Nuclear Project boiling water reactor were performed using the TRAC-BF1 computer code. This work is sponsored by the US Nuclear Regulatory Commission and is being done in conjunction with future analysis work at the US Nuclear Regulatory Commission Technical Training Center in Chattanooga, Tennessee. These accident scenarios were chosen to assess and benchmark the thermal-hydraulic capabilities of the Black Fox Nuclear Project simulator at the Technical Training Center to model abnormal transient conditions

  20. Dynamic analysis of the condensate feedwater system in boiling water reactor plants

    International Nuclear Information System (INIS)

    Tanji, J.; Omori, T.

    1982-01-01

    The computer code, CONFAC, has been developed for dynamic analysis of the condensate feedwater system in boiling water reactor plants. This code simulates the hydrodynamics in the piping system, the pump dynamics, and the feedwater controller in order to clarify the system transient characteristics in such cases as pump trip incidents. Code verification was performed by comparison between analytical results and actual plant operational data. Satisfactory agreement was obtained. With the code, appropriate pump start/stop interlocks were estimated for preventing pump cavitation in pump trip incidents

  1. Energy-analysis of the total nuclear energy cycle based on light water reactors

    International Nuclear Information System (INIS)

    Kistemaker, J.

    1975-01-01

    The energy economy of the total nuclear energy cycle is investigated. Attention is paid to the importance of fossil fuel saving by using nuclear energy. The energy analysis is based on the construction and operation of power plants with an electric output of 1000MWe. Light water moderated reactors with a 2.7 - 3.2% enriched uranium core are considered. Additionally, the whole fuel cycle including ore winning and refining, enrichment and fuel element manufacturing and reprocessing has been taken into account. Neither radioactive waste storage problems nor safety problems related to the nuclear energy cycle and safeguarding have been dealt with, as exhaustive treatments can be found elswhere

  2. Accident sequence analysis for a BWR [Boiling Water Reactor] during low power and shutdown operations

    International Nuclear Information System (INIS)

    Whitehead, D.W.; Hake, T.M.

    1990-01-01

    Most previous Probabilistic Risk Assessments have excluded consideration of accidents initiated in low power and shutdown modes of operation. A study of the risk associated with operation in low power and shutdown is being performed at Sandia National Laboratories for a US Boiling Water Reactor (BWR). This paper describes the proposed methodology for the analysis of the risk associated with the operation of a BWR during low power and shutdown modes and presents preliminary information resulting from the application of the methodology. 2 refs., 2 tabs

  3. Water cooled nuclear reactor

    International Nuclear Information System (INIS)

    1975-01-01

    A description is given of a cooling water intake collector for a nuclear reactor. It includes multiple sub-collectors extending out in a generally parallel manner to each other, each one having a first end and a second one separated along their length, and multiple water outlets for connecting each one to a corresponding pressure tube of the reactor. A first end tube and a second one connect the sub-collector tubes together to their first and second ends respectively. It also includes multiple collector tubes extending transversely by crossing over the sub-collector tubes and separated from each other in the direction of these tubes. Each collector tubes has a water intake for connecting to a water pump and multiple connecting tubes separated over its length and connecting each one to the corresponding sub-collector [fr

  4. Water treatment process for nuclear reactors

    International Nuclear Information System (INIS)

    Marwan, M.A.; Khattab, M.S.; Hanna, A.N.

    1992-01-01

    Water treatment for purification is very important in reactor cooling systems as well as in many industrial applications. Since impurities in water are main source of problems, it is necessary to achieve and maintain high purity of water before utilization in reactor cooling systems. The present work investigate water treatment process for nuclear reactor utilization. Analysis of output water chemistry proved that demineralizing process is an appropriate method. Extensive experiments were conducted to determine economical concentration of the regenerates to obtain the optimum quantity of pure water which reached to 15 cubic meter instead of 10 cubic-meter per regeneration. Running cost is consequently decreased by about 30 %. output water chemistry agree with the recommended specifications for reactor utilization. The radionuclides produced in the primary cooling water due to reactor operation are determined. It is found that 70% of radioactive contaminants are retained by purification through resin of reactor filter. Decontamination factor and filter efficiency are also determined.5 fig., 3 tab

  5. The Effect of Different Perturbations on the Stability Analysis of Light Water Reactors

    International Nuclear Information System (INIS)

    Dykin, Victor

    2010-09-01

    Neutron noise analysis techniques are studied and developed, with primary use of determining the stability of Boiling Water Reactors (BWRs). In particular, the role of a specific perturbation prevailing in Light Water Reactors, the propagating density perturbation, in the stability of BWRs and on the noise field of LWRs in general, is investigated by considering three topics. In the first topics, we investigate how the neutronic response of the reactor, usually described as a second order system driven by a white noise driving force, is affected by a non-white driving force. This latter arises from the reactivity effect of the propagating density perturbations. The investigation is performed by using spectral and correlation analysis. Propagating perturbations with different velocities are analyzed. We investigate how the accuracy of the determination of the so-called decay ratio (DR) of the system, based on the assumption of white noise driving force, deteriorates with deviations from the white noise character of the driving force. In the second topics, the space dependence of the neutron noise, induced by propagating density perturbations, represented through the perturbation of the absorption, is determined and discussed. A full analytical solution was obtained by the use of the Green's function technique. The solution was analyzed for different frequencies and different system sizes. An interesting new interference effect between the point-kinetic and space-dependent components of the induced noise was discovered and interpreted in physical terms. In the last topics, a non-linear stability analysis of a BWR is performed, using so called Reduced Order Model (ROM) techniques. A ROM is usually constructed by reducing the full set of 3D space-time dependent neutron-kinetics, thermal-hydraulics and heat transfer equations to time-dependent ones, by considering space dependence in a lumped parameter model (one or two discrete channels). The main novelty of our work

  6. SCDAP: a light water reactor computer code for severe core damage analysis

    International Nuclear Information System (INIS)

    Marino, G.P.; Allison, C.M.; Majumdar, D.

    1982-01-01

    Development of the first code version (MODO) of the Severe Core Damage Analysis Package (SCDAP) computer code is described, and calculations made with SCDAP/MODO are presented. The objective of this computer code development program is to develop a capability for analyzing severe disruption of a light water reactor core, including fuel and cladding liquefaction, flow, and freezing; fission product release; hydrogen generation; quenched-induced fragmentation; coolability of the resulting geometry; and ultimately vessel failure due to vessel-melt interaction. SCDAP will be used to identify the phenomena which control core behavior during a severe accident, to help quantify uncertainties in risk assessment analysis, and to support planning and evaluation of severe fuel damage experiments and data. SCDAP/MODO addresses the behavior of a single fuel bundle. Future versions will be developed with capabilities for core-wide and vessel-melt interaction analysis

  7. Pressurized water reactor system model for control system design and analysis

    International Nuclear Information System (INIS)

    Cooper, K.F.; Cain, J.T.

    1975-01-01

    Satisfactory operation of present generation Pressurized Water Reactor (PWR) Nuclear Power systems requires that several independent and interactive control systems be designed. Since it is not practical to use an actual PWR system as a design tool, a mathematical model of the system must be developed as a design and analysis tool. The model presented has been developed to be used as an aid in applying optimal control theory to design and implement new control systems for PWR plants. To be applicable, the model developed must represent the PWR system in its normal operating range. For safety analysis the operating conditions of the system are usually abnormal and, therefore, the system modeling requirements are different from those for control system design and analysis

  8. Continuous radiochemical analysis of fission products in a nuclear reactor water coolant

    International Nuclear Information System (INIS)

    Moskvin, L.N.; Zakharov, L.K.; Leont'ev, G.G.; Mel'nikov, V.A.; Orlenkov, I.S.; Slutskij, G.K.

    1975-01-01

    Method for continuous radiochemical analysis of I, Cs, Ba, Sr and Ce isotopes in a reactor water heat-transfer agent was developed. A continuous two-dimensional chromatographic process of complex mixtures separation of substances proved to be feasible on several parallel sorbent layers, which moved at constant velocities and separated by stationary intermediate collectors. Tests on model solutions containing I, Ce, Cs and Ba isotopes and on heat-carrier samples showed quantitative separation of elements. The results were indicative of a basic possibility of using multisorbent chromatographs for continuous control of multicomponent mixtures, particularly for control of radioactive fission product compositions in water heat-transfer agents in nuclear power plants. A diagram is shown for a two-dimensional chromatographic separation of a multicomponent mixture. Also shown is a flow chart of an installation for continuous control of iodine and cesium isotope activities

  9. Water treatment process for nuclear reactors

    International Nuclear Information System (INIS)

    Marwan, M.A.; Khattab, M.S.; Hanna, A.N.

    1993-01-01

    Water treatment for purification is very important in reactor cooling systems as well as in many industrial applications. Since impurities in water are main source of problems, it is necessary to achieve and maintain high purity of water before utilization in reactor cooling systems. The present work investigates water treatment process for nuclear reactor utilization. Analysis of outwater chemistry proved that demineralizing process is an appropriate method. Extensive experiments were conducted to determine economical concentration of the regenerants to obtain the optimum quantity of pure water which reached to 15 cubic-meter instead of 10 cubic-meter per regeneration. Running cost is consequently decreased by about 30%. Output water chemistry agrees with the recommended specifications for reactor utilization. The radionuclides produced in the primary cooling water due to reactor operation are determined. It is found that 70% of radioactive contaminants are retained by purification through resin of reactor filter. Decontamination factor and filter efficiency are also determined

  10. Analysis of proposed gamma-ray detection system for the monitoring of core water inventory in a pressurized water reactor

    International Nuclear Information System (INIS)

    Markoff, D.M.

    1987-12-01

    An initial study has been performed of the feasibility of employing an axial array of gamma detectors located outside the pressure vessel to monitor the coolant in a PWR. A one-dimensional transport analysis model is developed for the LOFT research reactor and for a mock-PWR geometry. The gamma detector response to coolant voiding in the core and downcomer has been determined for both geometries. The effects of various conditions (for example, time after shutdown, materials in the transport path, and the relative void fraction in different water regions) on the detector response are studied. The calculational results have been validated by a favorable comparison with LOFT experimental data. Within the limitations and approximations considered in the analysis, the results indicate that the gamma-ray detection scheme is able to unambiguously respond to changes in the coolant inventory within any vessel water region

  11. Noise analysis method for monitoring the moderator temperature coefficient of pressurized water reactors: Neural network calibration

    International Nuclear Information System (INIS)

    Thomas, J.R. Jr.; Adams, J.T.

    1994-01-01

    A neural network was trained with data for the frequency response function between in-core neutron noise and core-exit thermocouple noise in a pressurized water reactor, with the moderator temperature coefficient (MTC) as target. The trained network was subsequently used to predict the MTC at other points in the same fuel cycle. Results support use of the method for operating pressurized water reactors provided noise data can be accumulated for several fuel cycles to provide a training base

  12. Thermal-Hydraulic Analysis of a Supercritical Water Reactor (SCWR) Core

    International Nuclear Information System (INIS)

    Kucukboyaci, V.N.; Oriani, L.

    2004-01-01

    The supercritical water reactor (SCWR) has been the object of interest throughout the nuclear Generation IV community because of its high potential: a simple, direct cycle, compact configuration; elimination of many traditional LWR components, operation at coolant temperatures much higher than traditional LWRs and thus high thermal efficiency. It could be said that the SWR was viewed as the water counterpart to the high temperature gas reactor

  13. An advanced frequency-domain code for boiling water reactor (BWR) stability analysis and design

    International Nuclear Information System (INIS)

    Behrooz, A.

    2008-01-01

    The two-phase flow instability is of interest for the design and operation of many industrial systems such as boiling water reactors (BWRs), chemical reactors, and steam generators. In case of BWRs, the flow instabilities are coupled to the power instabilities via neutronic-thermal hydraulic feedbacks. Since these instabilities produce also local pressure oscillations, the coolant flashing plays a very important role at low pressure. Many frequency-domain codes have been used for two-phase flow stability analysis of thermal hydraulic industrial systems with particular emphasis to BWRs. Some were ignoring the effect of the local pressure, or the effect of 3D power oscillations, and many were not able to deal with the neutronics-thermal hydraulics problems considering the entire core and all its fuel assemblies. The new frequency domain tool uses the best available nuclear, thermal hydraulic, algebraic and control theory methods for simulating BWRs and analyzing their stability in either off-line or on-line fashion. The novel code takes all necessary information from plant files via an interface, solves and integrates, for all reactor fuel assemblies divided into a number of segments, the thermal-hydraulic non-homogenous non-equilibrium coupled linear differential equations, and solves the 3D, two-energy-group diffusion equations for the entire core (with spatial expansion of the neutron fluxes in Legendre polynomials).It is important to note that the neutronics equations written in terms of flux harmonics for a discretized system (nodal-modal equations) generate a set of large sparse matrices. The eigenvalue problem associated to the discretized core statics equations is solved by the implementation of the implicit restarted Arnoldi method (IRAM) with implicit shifted QR mechanism. The results of the steady state are then used for the calculation of the local transfer functions and system transfer matrices. The later are large-dense and complex matrices, (their size

  14. WATER BOILER REACTOR

    Science.gov (United States)

    King, L.D.P.

    1960-11-22

    As its name implies, this reactor utilizes an aqueous solution of a fissionable element salt, and is also conventional in that it contains a heat exchanger cooling coil immersed in the fuel. Its novelty lies in the utilization of a cylindrical reactor vessel to provide a critical region having a large and constant interface with a supernatant vapor region, and the use of a hollow sleeve coolant member suspended from the cover assembly in coaxial relation with the reactor vessel. Cool water is circulated inside this hollow coolant member, and a gap between its outer wall and the reactor vessel is used to carry off radiolytic gases for recombination in an external catalyst chamber. The central passage of the coolant member defines a reflux condenser passage into which the externally recombined gases are returned and condensed. The large and constant interface between fuel solution and vapor region prevents the formation of large bubbles and minimizes the amount of fuel salt carried off by water vapor, thus making possible higher flux densities, specific powers and power densities.

  15. Analysis of loss-of-coolant accidents in pressurized water reactors

    International Nuclear Information System (INIS)

    Moldaschl, H.

    1982-01-01

    Analysis of loss-of-coolant accidents in pressurized water reactors -Quantification of the influence of leak size, control assembly worth, boron concentration and initial power by a dynamic operations criterion. Neutronic and thermohydraulic behaviour of a pressurized water reactor during a loss-of-coolant accident (LOCA) is mainly influenced by -change of fuel temperature, -void in the primary coolant. They cause a local stabilization of power density, that means that also in the case of small leaks local void is the main stabilization effect. As a consequence the increase of fuel temperature remains very small even under extremely hypothetical assumptions: small leak, positive reactivity feedback (positive coolant temperature coefficient, negative density coefficient) at the beginning of the accident and all control assemblies getting stuck. Restrictions which have been valid up to now for permitted start-up conditions to fulfill inherent safety requirements can be lossened substantially by a dynamic operations criterion. Burnable poisons for compensation of reactivity theorefore can be omitted. (orig.)

  16. Definition and Analysis of Heavy Water Reactor Benchmarks for Testing New Wims-D Libraries

    International Nuclear Information System (INIS)

    Leszczynski, Francisco

    2000-01-01

    This work is part of the IAEA-WIMS Library Update Project (WLUP). A group of heavy water reactor benchmarks have been selected for testing new WIMS-D libraries, including calculations with WIMSD5B program and the analysis of results.These benchmarks cover a wide variety of reactors and conditions, from fresh fuels to high burnup, and from natural to enriched uranium.Besides, each benchmark includes variations in lattice pitch and in coolants (normally heavy water and void).Multiplication factors with critical experimental bucklings and other parameters are calculated and compared with experimental reference values.The WIMS libraries used for the calculations were generated with basic data from JEF-2.2 Rev.3 (JEF) and ENDF/B-VI iNReleaseln 5 (E6) Results obtained with WIMS-86 (W86) library, included with WIMSD5B package, from Windfrith, UK with adjusted data, are included also, for showing the improvements obtained with the new -not adjusted- libraries.The calculations with WIMSD5B were made with two methods (input program options): PIJ (two-dimension collision probability method) and DSN (one-dimension Sn method, with homogenization of materials by ring).The general conclusions are: the library based on JEF data and the DSN meted give the best results, that in average are acceptable

  17. Analysis of a total loss of pool water accident in MTR-type research reactors

    International Nuclear Information System (INIS)

    Yilmazer, A.; Yavuz, H.

    2004-01-01

    In this study, the transient in which the pool water is lost throughout one or more of the main coolant pipes which are supposed to be broken guillotine-like is investigated for the TR-2 research reactor in Istanbul. The applicability of the methods used for other similar types of research reactors is shown. Decrease of the pool water level until the top of the core, and from the top to the bottom of the core are examined as two successive phases of the accident. Finite difference scheme and integral methods are employed to solve energy equations and the results of both methods are compared. The finite difference solution uses an explicit form for the analysis of the first phase, and a moving boundary approach for the second phase. The integral method is based on the assumption that the temperatures appearing in the energy equations have the same profiles during the transient as the steady state ones. Analyses are done both for nominal and hot channel, and the results of both methods are observed to be in agreement. (orig.)

  18. Analysis of a total loss of pool water accident in MTR-type research reactors

    Energy Technology Data Exchange (ETDEWEB)

    Yilmazer, A. [Hacettepe University, Ankara (Turkey). Nuclear Engineering Department; Yavuz, H. [Istanbul Technical University (Turkey). Energy Institute

    2004-08-01

    In this study, the transient in which the pool water is lost throughout one or more of the main coolant pipes which are supposed to be broken guillotine-like is investigated for the TR-2 research reactor in Istanbul. The applicability of the methods used for other similar types of research reactors is shown. Decrease of the pool water level until the top of the core, and from the top to the bottom of the core are examined as two successive phases of the accident. Finite difference scheme and integral methods are employed to solve energy equations and the results of both methods are compared. The finite difference solution uses an explicit form for the analysis of the first phase, and a moving boundary approach for the second phase. The integral method is based on the assumption that the temperatures appearing in the energy equations have the same profiles during the transient as the steady state ones. Analyses are done both for nominal and hot channel, and the results of both methods are observed to be in agreement. (orig.)

  19. Taiwan Power Company's power distribution analysis and fuel thermal margin verification methods for pressurized water reactors

    International Nuclear Information System (INIS)

    Huang, P.H.

    1995-01-01

    Taiwan Power Company's (TPC's) power distribution analysis and fuel thermal margin verification methods for pressurized water reactors (PWRs) are examined. The TPC and the Institute of Nuclear Energy Research started a joint 5-yr project in 1989 to establish independent capabilities to perform reload design and transient analysis utilizing state-of-the-art computer programs. As part of the effort, these methods were developed to allow TPC to independently perform verifications of the local power density and departure from nucleate boiling design bases, which are required by the reload safety evaluation for the Maanshan PWR plant. The computer codes utilized were extensively validated for the intended applications. Sample calculations were performed for up to six reload cycles of the Maanshan plant, and the results were found to be quite consistent with the vendor's calculational results

  20. The pressurized water reactor

    International Nuclear Information System (INIS)

    Gallagher, J.L.

    1987-01-01

    Pressurized water reactor technology has reached a maturity that has engendered a new surge of innovation, which in turn, has led to significant advances in the technology. These advances, characterized by bold thinking but conservative execution, are resulting in nuclear plant designs which offer significant performance and safety improvements. This paper describes the innovations which are being designed into mainstream PWR technology as well as the desings which are resulting from such innovations. (author)

  1. Supercritical-pressure light water cooled reactors

    CERN Document Server

    Oka, Yoshiaki

    2014-01-01

    This book focuses on the latest reactor concepts, single pass core and experimental findings in thermal hydraulics, materials, corrosion, and water chemistry. It highlights research on supercritical-pressure light water cooled reactors (SCWRs), one of the Generation IV reactors that are studied around the world. This book includes cladding material development and experimental findings on heat transfer, corrosion and water chemistry. The work presented here will help readers to understand the fundamental elements of reactor design and analysis methods, thermal hydraulics, materials and water

  2. Analysis of assembly serial number usage in domestic light-water reactors

    International Nuclear Information System (INIS)

    Reich, W.J.; Moore, R.S.

    1991-05-01

    Domestic light-water reactor (LWR) fuel assemblies are identified by a serial number that is placed on each assembly. These serial numbers are used as identifiers throughout the life of the fuel. The uniqueness of assembly serial numbers is important in determining their effectiveness as unambiguous identifiers. The purpose of this study is to determine what serial numbering schemes are used, the effectiveness of these schemes, and to quantify how many duplicate serial numbers occur on domestic LWR fuel assemblies. The serial numbering scheme adopted by the American National Standards Institute (ANSI) ensures uniqueness of assembly serial numbers. The latest numbering scheme adopted by General Electric (GE), was also found to be unique. Analysis of 70,971 fuel assembly serial numbers from permanently discharged fuel identified 11,948 serial number duplicates. Three duplicate serial numbers were found when analysis focused on duplication within the individual fuel inventory at each reactor site, but these were traced back to data entry errors and will be corrected by the Energy Information Administration (EIA). There were also three instances where the serial numbers used to identify assemblies used for hot cell studies differed from the serial numbers reported to the EIA. It is recommended that fuel fabricators and utilities adhere to the ANSI serial numbering scheme to ensure serial number uniqueness. In addition, organizations collecting serial number information, should request that all known serial numbers physically attached or associated with each assembly be reported and identified by the corresponding number scheme. 10 refs., 5 tabs

  3. Breeding and plutonium characterization analysis on actinides closed water-cooled thorium reactor

    International Nuclear Information System (INIS)

    Permana, Sidik; Sekimoto, Hiroshi; Takaki, Naoyuki

    2009-01-01

    Higher difficulties (barrier) or more complex design of nuclear weapon, material fabrication and handling and isotopic enrichment can be achieved by a higher isotopic barrier. The isotopic material barrier includes critical mass, heat-generation rate, spontaneous neutron generation and radiation. Those isotopic barriers in case of plutonium isotope is strongly depend on the even mass number of plutonium isotope such as 238 Pu, 240 Pu and 242 Pu and for 233 U of thorium cycle depends on 232 U. In this present study, fuel sustainability as fuel breeding capability and plutonium characterization as main focus of proliferation resistance analysis have been analyzed. Minor actinide (MA) is used as doping material to be loaded into the reactors with thorium fuel. Basic design parameters are based on actinide closed-cycle reactor cooled by heavy water. The evaluation use equilibrium burnup analysis coupled with cell calculation of SRAC and nuclear data library is JENDL.32. Parametrical survey has been done to analyze the effect of MA doping rate, different moderation ratio for several equilibrium burnup cases. Plutonium characterization which based on plutonium isotope composition is strongly depending on MA doping concentration and different moderation conditions. Breeding condition can be achieved and high proliferation resistance level can be obtained by the present reactor systems. Higher isotopic plutonium composition of Pu-238 (more than 40%) can be obtained compared with other plutonium isotopes. In addition, higher moderation ratio gives the isotope composition of 238 Pu increases, however, it obtains lower composition when MA doping is increased and it slightly lower composition for higher burnup. Meanwhile, higher 240 Pu composition can be achieved by higher MA doping rate as well as for obtaining higher breeding capability. (author)

  4. Reactor water level control device

    International Nuclear Information System (INIS)

    Hiramatsu, Yohei.

    1980-01-01

    Purpose: To increase the rapid response of the waterlevel control converting a reactor water level signal into a non-linear type, when the water level is near to a set value, to stabilize the water level reducting correlatively the reactor water level variation signal to stabilize greatly from the set value, and increasing the variation signal. Constitution: A main vapor flow quality transmitter detects the vapor flow generated in a reactor and introduced into a turbine. A feed water flow transmitter detects the quantity of a feed water flow from the turbine to the reactor, this detected value is sent to an addition operating apparatus. On the other hand, the power signal of the reactor water level transmitter is sent to the addition operating apparatus through a non-linear water level signal converter. The addition operation apparatus generates a signal for requesting the feed water flow quantity from both signals. Upon this occasion, the reactor water level signal converter makes small the reactor water level variation when the reactor level is close the set value, and when the water level deviates greatly from the set value, the reactor water level variation is made large thereby to improve the rapid response of the reactor coater level control. (Yoshino, Y.)

  5. Photocatalytic reactors for treating water pollution with solar illumination, Part 3: a simplified analysis for recirculating reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sagawe, G.; Bahnemann, D. [Hannover Univ. (Germany). Inst. fuer Technische Chemie; Brandi, R.J.; Cassano, A.E. [Universidad Nacional de Litoral, Santa Fe (Argentina). Inst. de Desarrollo Tecnologico para la Imdustria Quimica

    2004-11-01

    A solar photoreactor operated in the batch, recirculating mode is analyzed in terms of very simple observable variables such as the impinging photon flux, the incident area, the initial concentration, the flow rate, the reactor volume and a property defined as the Observed Photonic Efficiency. The proposed equipment is made of a tubular reactor, a tank, a pump and the connecting pipes. The analysis is formulated in terms of the photon input corresponding to an equivalent batch system that is derived as a new reaction coordinate for photoreactions. Employing several plausible approximations, the pollutant concentration evolution in the tank is cast in terms of very simple analytical solutions. Process photonic efficiencies are defined for the system operation and calculated with respect to the maximum achievable yield corresponding to the differential operation of the solar recirculating reactor. (Author)

  6. Coarse mesh finite element method for boiling water reactor physics analysis

    International Nuclear Information System (INIS)

    Ellison, P.G.

    1983-01-01

    A coarse mesh method is formulated for the solution of Boiling Water Reactor physics problems using two group diffusion theory. No fuel assembly cross-section homogenization is required; water gaps, control blades and fuel pins of varying enrichments are treated explicitly. The method combines constrained finite element discretization with infinite lattice super cell trial functions to obtain coarse mesh solutions for which the only approximations are along the boundaries between fuel assemblies. The method is applied to bench mark Boiling Water Reactor problems to obtain both the eigenvalue and detailed flux distributions. The solutions to these problems indicate the method is useful in predicting detailed power distributions and eigenvalues for Boiling Water Reactor physics problems

  7. Anticipated transient without scram analysis of the simplified boiling water reactor following main steam isolation valve closure with boron injection

    International Nuclear Information System (INIS)

    Khan, H.J.; Cheng, H.S.; Rohatgi, U.S.

    1996-01-01

    The simplified boiling water reactor (SBWR) operating in natural circulation is designed with many passive safety features. An anticipated transient without scram (ATWS) initiated by inadvertent closure of the main steam isolation valve (MSIV) in an SBWR has been analyzed using the RAMONA-4B code of Brookhaven National Laboratory. This analysis demonstrates the predicted performance of the SBWR during an MSIV closure ATWS, followed by shutdown of the reactor through injection of boron into the reactor core from the standby liquid control system

  8. Failure analysis of cracked head spray piping from the Dresden Unit 2 Boiling Water Reactor

    International Nuclear Information System (INIS)

    Diercks, D.R.; Dragel, G.M.

    1983-07-01

    Several sections of Type 304 stainless steel head spray piping, 6.25 cm (2.5 in.) in diameter, from the Dresden Unit 2 Boiling Water Reactor were examined to determine the nature and causes of coolant leakages detected during hydrostatic tests. Extensive pitting was observed on the outside surface of the piping, and three cracks, all located at a helical stripe apparently rubbed onto the outer surface of the piping, were also noted. Metallographic examination revealed that the cracking had initiated at the outer surface of the pipe, and showed it to be transgranular and highly branched, characteristic of chloride stress corrosion cracking. The surface pitting also appeared to have been caused by chlorides. A scanning electron microprobe x-ray analysis of the corrosion product in the cracks confirmed the presence of chlorides and also indicated the presence of calcium

  9. Light water reactor fuel analysis code FEMAXI-7; model and structure

    International Nuclear Information System (INIS)

    Suzuki, Motoe; Udagawa, Yutaka; Saitou, Hiroaki

    2011-03-01

    A light water reactor fuel analysis code FEMAXI-7 has been developed for the purpose of analyzing the fuel behavior in both normal conditions and anticipated transient conditions. This code is an advanced version which has been produced by incorporating the former version FEMAXI-6 with numerous functional improvements and extensions. In FEMAXI-7, many new models have been added and parameters have been clearly arranged. Also, to facilitate effective maintenance and accessibility of the code, modularization of subroutines and functions have been attained, and quality comment descriptions of variables or physical quantities have been incorporated in the source code. With these advancements, the FEMAXI-7 code has been upgraded to a versatile analytical tool for high burnup fuel behavior analyses. This report describes in detail the design, basic theory and structure, models and numerical method, and improvements and extensions. (author)

  10. Light water reactor fuel analysis code FEMAXI-7. Model and structure

    International Nuclear Information System (INIS)

    Suzuki, Motoe; Udagawa, Yutaka; Nagase, Fumihisa; Saitou, Hiroaki

    2013-07-01

    A light water reactor fuel analysis code FEMAXI-7 has been developed for the purpose of analyzing the fuel behavior in both normal conditions and anticipated transient conditions. This code is an advanced version which has been produced by incorporating the former version FEMAXI-6 with numerous functional improvements and extensions. In FEMAXI-7, many new models have been added and parameters have been clearly arranged. Also, to facilitate effective maintenance and accessibility of the code, modularization of subroutines and functions have been attained, and quality comment descriptions of variables or physical quantities have been incorporated in the source code. With these advancements, the FEMAXI-7 code has been upgraded to a versatile analytical tool for high burnup fuel behavior analyses. This report describes in detail the design, basic theory and structure, models and numerical method of FEMAXI-7, and its improvements and extensions. (author)

  11. Description and user's manual of light water reactor fuel analysis code FEMAXI-IV (Ver.2)

    International Nuclear Information System (INIS)

    Suzuki, Motoe; Saitou, Hiroaki.

    1997-03-01

    FEMAXI-IV is an advanced version of FEMAXI-III, the analysis code of light water reactor fuel behavior in which various functions and improvements have been incorporated. The present report describes in detail the basic theories and structure, the models and numerical solutions applied, and the material properties adopted in the version 2 which is an improved version of the first version of FEMAXI-IV. In FEMAXI-IV (Ver.2), bugs have been fixed, pellet thermal conductivity properties have been updated, and thermal-stress-induced FP gas release model have been incorporated. In order to facilitate effective and wide-ranging application of the code, types and methods of input/output of the code are also described, and a sample output in an actual form is included. (author)

  12. Light water reactor fuel analysis code FEMAXI-IV(Ver.2). Detailed structure and user's manual

    International Nuclear Information System (INIS)

    Suzuki, Motoe; Saitou, Hiroaki.

    1997-11-01

    A light water reactor fuel behavior analysis code FEMAXI-IV(Ver.2) was developed as an improved version of FEMAXI-IV. Development of FEMAXI-IV has been already finished in 1992, though a detailed structure and input manual of the code have not been open to users yet. Here, the basic theories and structure, the models and numerical solutions applied to FEMAXI-IV(Ver.2), and the material properties adopted in the code are described in detail. In FEMAXI-IV(Ver.2), programming bugs in previous FEMAXI-IV were eliminated, renewal of the pellet thermal conductivity was performed, and a model of thermal-stress restraint on FP gas release was incorporated. For facilitation of effective and wide-ranging application of the code, methods of input/output of the code are also described in detail, and sample output is included. (author)

  13. Pressurized-water reactors

    International Nuclear Information System (INIS)

    Bush, S.H.

    1983-03-01

    An overview of the pressurized-water reactor (PWR) pressure boundary problems is presented. Specifically exempted will be discussions of problems with pumps, valves and steam generators on the basis that they will be covered in other papers. Pressure boundary reliability is examined in the context of real or perceived problems occurring over the past 5 to 6 years since the last IAEA Reliability Symposium. Issues explicitly covered will include the status of the pressurized thermal-shock problem, reliability of inservice inspections with emphasis on examination of the region immediately under the reactor pressure vessel (RPV) cladding, history of piping failures with emphasis on failure modes and mechanisms. Since nondestructive examination is the topic of one session, discussion will be limited to results rather than techniques

  14. Advanced boiling water reactor

    International Nuclear Information System (INIS)

    Nishimura, N.; Nakai, H.; Ross, M.A.

    1999-01-01

    In the Boiling Water Reactor (BWR) system, steam generated within the nuclear boiler is sent directly to the main turbine. This direct cycle steam delivery system enables the BWR to have a compact power generation building design. Another feature of the BWR is the inherent safety that results from the negative reactivity coefficient of the steam void in the core. Based on the significant construction and operation experience accumulated on the BWR throughout the world, the ABWR was developed to further improve the BWR characteristics and to achieve higher performance goals. The ABWR adopted 'First of a Kind' type technologies to achieve the desired performance improvements. The Reactor Internal Pump (RIP), Fine Motion Control Rod Drive (FMCRD), Reinforced Concrete Containment Vessel (RCCV), three full divisions of Emergency Core Cooling System (ECCS), integrated digital Instrumentation and Control (I and C), and a high thermal efficiency main steam turbine system were developed and introduced into the ABWR. (author)

  15. Economic Analysis on Direct Use of Spent Pressurized Water Reactor Fuel in CANDU Reactors - I: DUPIC Fuel Fabrication Cost

    International Nuclear Information System (INIS)

    Choi, Hangbok; Ko, Won Il; Yang, Myung Seung

    2001-01-01

    A preliminary conceptual design of a Direct Use of spent Pressurized water reactor (PWR) fuel In Canada deuterium uranium (CANDU) reactors (DUPIC) fuel fabrication plant was studied, which annually converts spent PWR fuel of 400 tonnes heavy element (HE) into CANDU fuel. The capital and operating costs were estimated from the viewpoint of conceptual design. Assuming that the annual discount rate is 5% during the construction (5 yr) and operation period (40 yr) and contingency is 25% of the capital cost, the levelized unit cost (LUC) of DUPIC fuel fabrication was estimated to be 616 $/kg HE, which is mostly governed by annual operation and maintenance costs that correspond to 63% of LUC. Among the operation and maintenance cost components being considered, the waste disposal cost has the dominant effect on LUC (∼49%). From sensitivity analyses of production capacity, discount rate, and contingency, it was found that the production capacity of the plant is the major parameter that affects the LUC

  16. Light Water Reactor Sustainability Program A Reference Plan for Control Room Modernization: Planning and Analysis Phase

    Energy Technology Data Exchange (ETDEWEB)

    Jacques Hugo; Ronald Boring; Lew Hanes; Kenneth Thomas

    2013-09-01

    The U.S. Department of Energy’s Light Water Reactor Sustainability (LWRS) program is collaborating with a U.S. nuclear utility to bring about a systematic fleet-wide control room modernization. To facilitate this upgrade, a new distributed control system (DCS) is being introduced into the control rooms of these plants. The DCS will upgrade the legacy plant process computer and emergency response facility information system. In addition, the DCS will replace an existing analog turbine control system with a display-based system. With technology upgrades comes the opportunity to improve the overall human-system interaction between the operators and the control room. To optimize operator performance, the LWRS Control Room Modernization research team followed a human-centered approach published by the U.S. Nuclear Regulatory Commission. NUREG-0711, Rev. 3, Human Factors Engineering Program Review Model (O’Hara et al., 2012), prescribes four phases for human factors engineering. This report provides examples of the first phase, Planning and Analysis. The three elements of Planning and Analysis in NUREG-0711 that are most crucial to initiating control room upgrades are: • Operating Experience Review: Identifies opportunities for improvement in the existing system and provides lessons learned from implemented systems. • Function Analysis and Allocation: Identifies which functions at the plant may be optimally handled by the DCS vs. the operators. • Task Analysis: Identifies how tasks might be optimized for the operators. Each of these elements is covered in a separate chapter. Examples are drawn from workshops with reactor operators that were conducted at the LWRS Human System Simulation Laboratory HSSL and at the respective plants. The findings in this report represent generalized accounts of more detailed proprietary reports produced for the utility for each plant. The goal of this LWRS report is to disseminate the technique and provide examples sufficient to

  17. A statistical analysis of pellet-clad interaction failures in water reactor fuel

    International Nuclear Information System (INIS)

    McDonald, S.G.; Fardo, R.D.; Sipush, P.J.; Kaiser, R.S.

    1981-01-01

    The primary objective of the statistical analysis was to develop a mathematical function that would predict PCI fuel rod failures as a function of the imposed operating conditions. Linear discriminant analysis of data from both test and commercial reactors was performed. The initial data base used encompassed 713 data points (117 failures and 596 non-failures) representing a wide variety of water cooled reactor fuel (PWR, BWR, CANDU, and SGHWR). When applied on a best-estimate basis, the resulting function simultaneously predicts approximately 80 percent of both the failure and non-failure data correctly. One of the most significant predictions of the analysis is that relatively large changes in power can be tolerated when the pre-ramp irradiation power is low, but that only small changes in power can be tolerated when the pre-ramp irradiation power is high. However, it is also predicted that fuel rods irradiated at low power will fail at lower final powers than those irradiated at high powers. Other results of the analysis are that fuel rods with high clad operating temperatures can withstand larger power increases that fuel rods with low clad operating temperatures, and that burnup has only a minimal effect on PCI performance after levels of approximately 10000 MWD/MTU have been exceeded. These trends in PCI performance and the operating parameters selected are believed to be consistent with mechanistic considerations. Published PCI data indicate that BWR fuel usually operates at higher local powers and changes in power, lower clad temperatures, and higher local ramp rates than PWR fuel

  18. Coupled thermo-mechanical creep analysis for boiling water reactor pressure vessel lower head

    International Nuclear Information System (INIS)

    Villanueva, Walter; Tran, Chi-Thanh; Kudinov, Pavel

    2012-01-01

    Highlights: ► We consider a severe accident in a BWR with melt pool formation in the lower head. ► We study the influence of pool depth on vessel failure mode with creep analysis. ► There are two modes of failure; ballooning of vessel bottom and a localized creep. ► External vessel cooling can suppress creep and subsequently prevent vessel failure. - Abstract: In this paper we consider a hypothetical severe accident in a Nordic-type boiling water reactor (BWR) at the stage of relocation of molten core materials to the lower head and subsequent debris bed and then melt pool formation. Nordic BWRs rely on reactor cavity flooding as a means for ex-vessel melt coolability and ultimate termination of the accident progression. However, different modes of vessel failure may result in different regimes of melt release from the vessel, which determine initial conditions for melt coolant interaction and eventually coolability of the debris bed. The goal of this study is to define if retention of decay-heated melt inside the reactor pressure vessel is possible and investigate modes of the vessel wall failure otherwise. The mode of failure is contingent upon the ultimate mechanical strength of the vessel structures under given mechanical and thermal loads and applied cooling measures. The influence of pool depth and respective transient thermal loads on the reactor vessel failure mode is studied with coupled thermo-mechanical creep analysis. Efficacy of control rod guide tube (CRGT) cooling and external vessel wall cooling as potential severe accident management measures is investigated. First, only CRGT cooling is considered in simulations revealing two different modes of vessel failure: (i) a ‘ballooning’ of the vessel bottom and (ii) a ‘localized creep’ concentrated within the vicinity of the top surface of the melt pool. Second, possibility of in-vessel retention with CRGT and external vessel cooling is investigated. We found that the external vessel

  19. Biodosimetric analysis of medium pressure UV disinfection reactor treating unfiltered surface water

    International Nuclear Information System (INIS)

    Leinan, B.E.; Craik, S.A.; Smith, D.W.; Belosevic, M.

    2002-01-01

    Many small and medium-sized communities use chlorination of surface water as their sole treatment of potable water. Ultraviolet (UV) disinfection may offer these communities a cost effective treatment option for protection against pathogens not readily inactivated by chlorine. The effectiveness of UV reactors for microorganism reduction, however, is sensitive to UV dose delivery, which is in turn influenced by water quality characteristics. The effectiveness of a Calgon Carbon Inc. Sentinel medium-pressure UV reactor for microorganism reduction was determined using biodosimetry with two non-pathogenic indicator organisms - MS2 phage and Bacillus subtilis. Testing was conducted using low turbidity (<0.5 NTU) lake water characterized by relatively high absorbance in the UV range (UVT of approx. 87 to 88% at 254 nm). The efficiency of UV dose delivery in the reactor was determined for various operating conditions by calculating the normalized reductive equivalent irradiance (REI). With a single lamp in operation, the normalized REI measured with B. subtilis increased significantly when the flow rate through the reactor was increased from 380 L/min to 1140 L/min. This increase in reactor efficiency was believed to be due to improved reactor hydrodynamics and axial mixing that accompanied the higher flow rates. In contrast, treatment efficiency based on biodosimetry with MS2 phage was found to decrease with increasing flow rate when a single lamp was in operation. In general, treatment efficiency was greater when more than one adjacent lamp was in operation, suggesting that the influence of flow short-circuiting with single lamp operation. Differences between the outcomes observed with the two indicator microorganisms were not resolved, however, it was concluded that reactor efficiency was sensitive to both water flow rate and the number of adjacent lamps that were in operation. (author)

  20. Reactor water injection facility

    Energy Technology Data Exchange (ETDEWEB)

    Yoshikawa, Kazuhiro; Kinoshita, Shoichiro

    1997-05-02

    A steam turbine and an electric generator are connected by way of a speed convertor. The speed convertor is controlled so that the number of rotation of the electric generator is constant irrespective of the speed change of the steam turbine. A shaft coupler is disposed between the turbine and the electric generator or between the turbine and a water injection pump. With such a constitution, the steam turbine and the electric generator are connected by way of the speed convertor, and since the number of revolution of the electric generator is controlled to be constant, the change of the number of rotation of the turbine can be controlled irrespective of the change of the number of rotation of the electric generator. Accordingly, the flow rate of the injection water from the water injection pump to a reactor pressure vessel can be controlled freely thereby enabling to supply stable electric power. (T.M.)

  1. Economic Analysis on Direct Use of Spent Pressurized Water Reactor Fuel in CANDU Reactors - IV: DUPIC Fuel Cycle Cost

    International Nuclear Information System (INIS)

    Ko, Won Il; Choi, Hangbok; Yang, Myung Seung

    2001-01-01

    This study examines the economics of the DUPIC fuel cycle using unit costs of fuel cycle components estimated based on conceptual designs. The fuel cycle cost (FCC) was calculated by a deterministic method in which reference values of fuel cycle components are used. The FCC was then analyzed by a Monte Carlo simulation to get the uncertainty of the FCC associated with the unit costs of the fuel cycle components. From the deterministic analysis on the equilibrium fuel cycle model, the DUPIC FCC was estimated to be 6.21 to 6.34 mills/kW.h for DUPIC fuel options, which is a little smaller than that of the once-through FCC by 0.07 to 0.27 mills/kW.h. Considering the uncertainty (0.40 to 0.44 mills/kW.h) of the FCC estimated by the Monte Carlo simulation method, the cost difference between the DUPIC and once-through fuel cycle is negligible. On the other hand, the material balance calculation has shown that the DUPIC fuel cycle can save natural uranium resources by ∼20% and reduce the spent fuel arising by ∼65% compared with the once-through fuel cycle. In conclusion, the DUPIC fuel cycle is comparable with the once-through fuel cycle from the viewpoint of FCC. In the future, it should be important to consider factors such as the environmental benefit owing to natural uranium savings, the capability of reusing spent pressurized water reactor fuel, and the safeguardability of the fuel cycle when deciding on an advanced nuclear fuel cycle option

  2. Dynamics analysis of a boiling water reactor based on multivariable autoregressive modeling

    International Nuclear Information System (INIS)

    Oguma, Ritsuo; Matsubara, Kunihiko

    1980-01-01

    The establishment of the highly reliable mathematical model for the dynamic characteristics of a reactor is indispensable for the achievement of safe operation in reactor plants. The authors have tried to model the dynamic characteristics of a reactor based on the identification technique, taking the JPDR (Japan Power Demonstration Reactor) as the object, as one of the technical studies for diagnosing BWR anomaly, and employed the multivariable autoregressive modeling (MAR method) as one of the useful methods for forwarding the analysis. In this paper, the outline of the system analysis by MAR modeling is explained, and the identification experiments and their analysis results performed in the phase 4 of the power increase test of the JPDR are described. The authors evaluated the results of identification based on only reactor noises, making reference to the results of identification in the case of exciting the system by applying artificial irregular disturbance, in order to clarify the extent in which the modeling is possible by reactor noises only. However, some difficulties were encountered. The largest problem is the one concerning the separation and identification of the noise sources exciting the variables from the dynamic characteristics among the variables. If the effective technique can be obtained to this problem, the approach by the identification technique based on the probability model might be a powerful tool in the field of reactor noise analysis and the development of diagnosis technics. (Wakatsuki, Y.)

  3. Bifurcation analysis of the simplified models of boiling water reactor and identification of global stability boundary

    Energy Technology Data Exchange (ETDEWEB)

    Pandey, Vikas; Singh, Suneet, E-mail: suneet.singh@iitb.ac.in

    2017-04-15

    Highlights: • Non-linear stability analysis of nuclear reactor is carried out. • Global and local stability boundaries are drawn in the parameter space. • Globally stable, bi-stable, and unstable regions have been demarcated. • The identification of the regions is verified by numerical simulations. - Abstract: Nonlinear stability study of the neutron coupled thermal hydraulics instability has been carried out by several researchers for boiling water reactors (BWRs). The focus of these studies has been to identify subcritical and supercritical Hopf bifurcations. Supercritical Hopf bifurcation are soft or safe due to the fact that stable limit cycles arise in linearly unstable region; linear and global stability boundaries are same for this bifurcation. It is well known that the subcritical bifurcations can be considered as hard or dangerous due to the fact that unstable limit cycles (nonlinear phenomena) exist in the (linearly) stable region. The linear stability leads to a stable equilibrium in such regions, only for infinitesimally small perturbations. However, finite perturbations lead to instability due to the presence of unstable limit cycles. Therefore, it is evident that the linear stability analysis is not sufficient to understand the exact stability characteristics of BWRs. However, the effect of these bifurcations on the stability boundaries has been rarely discussed. In the present work, the identification of global stability boundary is demonstrated using simplified models. Here, five different models with different thermal hydraulics feedback have been investigated. In comparison to the earlier works, current models also include the impact of adding the rate of change in temperature on void reactivity as well as effect of void reactivity on rate of change of temperature. Using the bifurcation analysis of these models the globally stable region in the parameter space has been identified. The globally stable region has only stable solutions and

  4. Bifurcation analysis of the simplified models of boiling water reactor and identification of global stability boundary

    International Nuclear Information System (INIS)

    Pandey, Vikas; Singh, Suneet

    2017-01-01

    Highlights: • Non-linear stability analysis of nuclear reactor is carried out. • Global and local stability boundaries are drawn in the parameter space. • Globally stable, bi-stable, and unstable regions have been demarcated. • The identification of the regions is verified by numerical simulations. - Abstract: Nonlinear stability study of the neutron coupled thermal hydraulics instability has been carried out by several researchers for boiling water reactors (BWRs). The focus of these studies has been to identify subcritical and supercritical Hopf bifurcations. Supercritical Hopf bifurcation are soft or safe due to the fact that stable limit cycles arise in linearly unstable region; linear and global stability boundaries are same for this bifurcation. It is well known that the subcritical bifurcations can be considered as hard or dangerous due to the fact that unstable limit cycles (nonlinear phenomena) exist in the (linearly) stable region. The linear stability leads to a stable equilibrium in such regions, only for infinitesimally small perturbations. However, finite perturbations lead to instability due to the presence of unstable limit cycles. Therefore, it is evident that the linear stability analysis is not sufficient to understand the exact stability characteristics of BWRs. However, the effect of these bifurcations on the stability boundaries has been rarely discussed. In the present work, the identification of global stability boundary is demonstrated using simplified models. Here, five different models with different thermal hydraulics feedback have been investigated. In comparison to the earlier works, current models also include the impact of adding the rate of change in temperature on void reactivity as well as effect of void reactivity on rate of change of temperature. Using the bifurcation analysis of these models the globally stable region in the parameter space has been identified. The globally stable region has only stable solutions and

  5. Fracture analysis of axially cracked pressure tube of pressurized heavy water reactor

    International Nuclear Information System (INIS)

    Krishnan, S.; Bhasin, V.; Mahajan, S.C.

    1997-01-01

    Three Dimensional (313) finite element elastic plastic fracture analysis was done for through wall axially cracked thin pressure tubes of 220 MWe Indian Pressurized Heavy Water Reactor. The analysis was done for Zr-2 and Zr-2.5Nb pressure tubes operating at 300 degrees C and subjected to 9.5 Mpa internal pressure. Critical crack length was determined based on tearing instability concept. The analysis included the effect of crack face pressure due to the leaking fluid from tube. This effect was found to be significant for pressure tubes. The available formulae for calculating J (for axially cracked tubes) do not take into account the effect of crack face pressure. 3D finite element analysis also gives insight into variation of J across the thickness of pressure tube. It was observed that J is highest at the mid-surface of tube. The results have been presented in the form of across the thickness average J value and a peak factor on J. Peak factor on J is ratio of J at mid surface to average J value. Crack opening area for different cracked lengths was calculated from finite element results. The fracture assessment of pressure tubes was also done using Central Electricity Generating Board R-6 method. Ductile tearing was considered

  6. Light water reactor fuel analysis code. FEMAXI-6 (Ver.1). Detailed structure and user's manual

    International Nuclear Information System (INIS)

    Suzuki, Motoe; Saitou, Hiroaki

    2006-02-01

    A light water reactor fuel analysis code FEMAXI-6 is an advanced version which has been produced by integrating the former version FEMAXI-V with numerous functional improvements and extensions. In particular, the FEMAXI-6 code has attained a complete coupled solution of thermal analysis and mechanical analysis, enabling an accurate prediction of pellet-clad gap size and PCMI in high burnup fuel rods. Also, such new models have been implemented as pellet-clad bonding and fission gas bubble swelling, and linkage function with detailed burning analysis code has been enhanced. Furthermore, a number of new materials properties and parameters have been introduced. With these advancements, the FEMAXI-6 code has been upgraded to a versatile analytical tool for high burnup fuel behavior not only in the normal operation but also in anticipated transient conditions. This report describes in detail the design, basic theory and structure, models and numerical method, improvements and extensions, and method of model modification. In order to facilitate effective and wide-ranging application of the code, formats and methods of input/output of the code are also described, and a sample output in an actual form is included. (author)

  7. Fracture analysis of axially cracked pressure tube of pressurized heavy water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, S.; Bhasin, V.; Mahajan, S.C. [Bhabha Atomic Research Centre, Bombay (India)] [and others

    1997-04-01

    Three Dimensional (313) finite element elastic plastic fracture analysis was done for through wall axially cracked thin pressure tubes of 220 MWe Indian Pressurized Heavy Water Reactor. The analysis was done for Zr-2 and Zr-2.5Nb pressure tubes operating at 300{degrees}C and subjected to 9.5 Mpa internal pressure. Critical crack length was determined based on tearing instability concept. The analysis included the effect of crack face pressure due to the leaking fluid from tube. This effect was found to be significant for pressure tubes. The available formulae for calculating J (for axially cracked tubes) do not take into account the effect of crack face pressure. 3D finite element analysis also gives insight into variation of J across the thickness of pressure tube. It was observed that J is highest at the mid-surface of tube. The results have been presented in the form of across the thickness average J value and a peak factor on J. Peak factor on J is ratio of J at mid surface to average J value. Crack opening area for different cracked lengths was calculated from finite element results. The fracture assessment of pressure tubes was also done using Central Electricity Generating Board R-6 method. Ductile tearing was considered.

  8. Severe water ingress accident analysis for a Modular High Temperature Gas Cooled Reactor

    International Nuclear Information System (INIS)

    Zhang Zuoyi; Scherer, Winfried

    1997-01-01

    This paper analyzes the severe water ingress accidents in the SIEMENS 200MW Modular High Temperature Gas Cooled Reactor (HTR-Module) under the assumption of no active safety protection systems in order to find the safety margin of the current HTR-Module design. A water, steam and helium multi-phase cavity model is originally developed and implemented in the DSNP simulation system. The developed DSNP system is used to simulate the primary circuit of HTR-Module power plant. The comparisons of the models with the TINTE calculations validate the current simulation. After analyzing the effects of blower separation on water droplets, the wall heat storage, etc., it is found that the maximum H 2 O density increase rate in the reactor core is smaller than 0.3 kg/(m 3 s). The liquid water vaporization in the steam generator and H 2 O transport from the steam generator to the reactor core reduces the impulse of the H 2 O in the reactor core. The nuclear reactivity increase caused by the water ingress leads to a fast power excursion, which, however, is inherently counterbalanced by negative feedback effects. Concerning the integrity of the fuel elements, the safety relevant temperature limit of 1600degC was not reached in any case. (author)

  9. Safety analysis of high temperature reactor cooled and moderated by supercritical light water

    International Nuclear Information System (INIS)

    Ishiwatari, Yuki; Oka, Yoshiaki; Koshizuka, Seiichi

    2003-01-01

    This paper describes 'Safety' of a high temperature supercritical light water cooled and moderated reactor (SCRLWR-H) with descending flow water rods. The safety system of the SCLWR-H is similar to that of a BWR. It consists of reactor scram, high pressure auxiliary feedwater system (AFS), low pressure core injection system (LPCI), safety relief valves (SRV), automatic depressurization system (ADS), and main steam isolation valves (MSIV). Ten types of transients and five types of accidents are analyzed using a plant transient analysis code SPRAT-DOWN. The sequences are determined referring to LWRs. At the 'Loss of load without turbine bypass' transient, the coolant density and the core power are increased by the over-pressurization, and at the same time the core flow rate is decreased by the closure of the turbine control valves. The peak cladding temperature increases to 727degC. The high temperature at this type of transient is one of the characteristics of the SCLWR-H. Conversely at 'feedwater-loss' events, the core power decrease to some extend by density feedback before the reactor scram. The peak cladding temperatures at the 'Partial loss of feedwater' transient and the 'Total loss of feedwater' accident are only 702degC and 833degC, respectively. The cladding temperature does not increase so much at the transients 'Loss of feedwater heating' and 'CR withdrawal' because of the operation of the plant control system. All the transients and accidents satisfy the satisfy criteria with good margins. The highest cladding temperatures of the transients and the accidents are 727degC and 833degC at the 'Loss of load without turbine bypass' and 'Total loss of feedwater', respectively. The duration of the high cladding temperature is very short at the transients. According to the parametric survey, the peak cladding temperature are sensitive to the parameters such as the pump coast-down time, delay of pump trip, AFS capacity, AFS delay, CR worth, and SRV setpoint

  10. Reactor water level control device

    International Nuclear Information System (INIS)

    Utagawa, Kazuyuki.

    1993-01-01

    A device of the present invention can effectively control fluctuation of a reactor water level upon power change by reactor core flow rate control operation. That is, (1) a feedback control section calculates a feedwater flow rate control amount based on a deviation between a set value of a reactor water level and a reactor water level signal. (2) a feed forward control section forecasts steam flow rate change based on a reactor core flow rate signal or a signal determining the reactor core flow rate, to calculate a feedwater flow rate control amount which off sets the steam flow rate change. Then, the sum of the output signal from the process (1) and the output signal from the process (2) is determined as a final feedwater flow rate control signal. With such procedures, it is possible to forecast the steam flow rate change accompanying the reactor core flow rate control operation, thereby enabling to conduct preceding feedwater flow rate control operation which off sets the reactor water level fluctuation based on the steam flow rate change. Further, a reactor water level deviated from the forecast can be controlled by feedback control. Accordingly, reactor water level fluctuation upon power exchange due to the reactor core flow rate control operation can rapidly be suppressed. (I.S.)

  11. Noise analysis of the Dodewaard boiling water reactor: characteristics and time history

    International Nuclear Information System (INIS)

    Veer, J.H.C. v.d.; Kema, N.V.

    1982-01-01

    Reactor noise measurements have been performed in the Dodewaard BWR since the eighth fuel cycle (1978). Analysis of the noise characteristics of the ex-core neutron detectors are reported. As a result characteristics of the global component of the boiling noise and the influence of oscillatory effects in reactor pressure control and steam flow rate are described. The influence of power feedback effects on the detection of global noise at low frequencies is given using point kinetic reactor theory. Results are reported on the behaviour of the neutron noise characteristics during one fuel cycle and on the behaviour from fuel cycle 8 to 11. (author)

  12. On the determination of boiling water reactor characteristics by noise analysis

    International Nuclear Information System (INIS)

    Kleiss, J.

    1983-01-01

    In boiling water reactors the main noise source is the boiling process in the core and the most important variable is the neutron flux, thus the effect of the steam bubbles on the neutron flux is studied in detail. An experiment has been performed in a small subcritical reactor to measure the response of a neutron detector to the passage of a single air bubble. A mathematical model for the description of the response was tested and the results agree very well with the experiment. Noise measurements in the Dodewaard boiling water reactor are discussed. The construction of a twin self-powered neutron detector, developed to perform steam velocity measurements in the core is described. The low-frequency part of the neutron noise characteristics is considered. The transfer functions exhibit a good agreement with ones obtained by independent means: control rod step experiments and model calculations. (Auth.)

  13. Limiting factor analysis of high availability nuclear plants (boiling water reactors). Final report

    International Nuclear Information System (INIS)

    Frederick, L.G.; Brady, R.M.; Shor, S.W.W.; McCusker, J.T.; Alden, W.M.; Kovacs, S.

    1979-08-01

    The pertinent results are presented of a 16-month study conducted for Electric Power Research Institute by General Electric Company, Bechtel Power Corporation, and Philadelphia Electric Company. The study centered around the Peach Bottom 2 Atomic Power Station, but also included limited study of operations at 20 additional operating boiling water reactors. The purpose of the study was to identify and evaluate key factors limiting plant availability, and to identify potential improvements for eliminating or alleviating those limitations. The key limiting factors were found to be refueling activities; activities related to the reactor fuel; reactor scrams; activities related to 20 operating systems or major components; delays due to radiation, turbid water during refueling operations, facilities/working conditions, and dirt/foreign material; and general maintenance/repair of valves and piping. Existing programs to reduce the effect on plant unavailability are identified, and suggestions for further action are made

  14. Feasibility study and economic analysis on thorium utilization in heavy water reactors

    International Nuclear Information System (INIS)

    1978-07-01

    Even though natural uranium is a more easily usable fuel in heavy water reactors, thorium fuel cycles have also been considered owing to certain attractive features of the thorium fuel cycle in heavy water reactors. The relatively higher fission neutron yield per thermal neutron absorption in 233 U combined with the very low neutron absorption cross section of heavy water make it possible to achieve breeding in a heavy water reactor operating on Th- 233 U fuel cycle. Even if the breeding ratio is very low, once a self-sustaining cycle is achieved, thereafter dependence on uranium can be completely eliminated. Thus, with a self-sustaining Th- 233 U fuel cycle in heavy water reactors, a given quantity of natural uranium will be capable of supporting a much larger installed generating capacity to significantly longer period of time. However, since thorium does not contain any fissile isotope, fissile material has to be added at the beginning. Concentrated fissile material is considerably more expensive than the 235 U contained in natural uranium. This makes the fuel cycle cost higher with thorium fuel cycle, at least during the initial stages. The situation is made worse by the fact that, because of its higher thermal neutron absorption cross section, thorium requires a higher concentration of fissile material than 238 U. Nevertheless, because of the superior nuclear characteristics of 233 U, once uranium becomes more expensive, thorium fuel cycle in heavy water reactors may become economically acceptable. Furthermore, the energy that can be made available from a given quantity of uranium is considerably increased with a self-sustaining thorium fuel cycle

  15. Analysis of Removal Alternatives for the Heavy Water Components Test Reactor at the Savannah River Site

    International Nuclear Information System (INIS)

    Owen, M.B.

    1996-08-01

    This engineering study was developed to evaluate different options for decommissioning of the Heavy Water Components Test Reactor (HWCTR) at the Savannah River Site. This document will be placed in the DOE-SRS Area reading rooms for a period of 30 days in order to obtain public input to plans for the demolition of HWCTR

  16. An analysis of the water-level monitoring system for a boiling-water reactor

    International Nuclear Information System (INIS)

    Carlson, R.W.; Belblidia, L.A.; Russell, J.L. Jr.

    1985-01-01

    The water-level instrumentation system is very important to the overall safety of a BWR. This system is being monitored by the Safety Parameter Display System (SPDS) that is being installed in Georgia Power Company's Plant Hatch. One of the most significant functions of the SPDS is the comparison of redundant instrument readings and formation of the best estimate of each parameter from those readings which are consistent. When comparing water-level instrument readings, it is necessary to correct the individual readings for differences between current and calibration conditions as well as for differences between calibration conditions for the multiple instruments. This paper documents the examination of the water-level instrumentation system at Plant Hatch and presents the development of the equations that were used to determine the differences between indicated and actual water levels. (author)

  17. Bounding analysis of containment of high pressure melt ejection in advanced light water reactors

    International Nuclear Information System (INIS)

    Additon, S.L.; Fontana, M.H.; Carter, J.C.

    1990-01-01

    This paper reports on the loadings on containment due to direct containment heating (DCH) as a result of high pressure melt ejection (HPME) in advanced light water reactors (ALWR) which were estimated using conservative, bounding analyses. The purpose of the analyses was to scope the magnitude of the possible loadings and to indicate the performance needed from potential mitigation methods, such as a cavity configuration that limits energy transfer to the upper containment volume. Analyses were performed for three cases which examined the effect of availability of high pressure reactor coolant system water at the time of reactor vessel melt through and the effect of preflooding of the reactor cavity. The amount of core ejected from the vessel was varied from 100% to 0% for all cases. Results indicate that all amounts of core debris dispersal could be accommodated by the containment for the case where the reactor cavity was preflooded. For the worst case, all the energy from in-vessel hydrogen generation and combustion plus that from 45% of the entire molten core would be required to equilibrate with the containment upper volume in order to reach containment failure pressure

  18. Breeding capability and void reactivity analysis of heavy-water-cooled thorium reactor

    International Nuclear Information System (INIS)

    Permana, Sidik; Takaki, Naoyuki; Sekimoto, Hiroshi

    2008-01-01

    The fuel breeding and void reactivity coefficient of thorium reactors have been investigated using heavy water as coolant for several parametric surveys on moderator-to-fuel ratio (MFR) and burnup. The equilibrium fuel cycle burnup calculation has been performed, which is coupled with the cell calculation for this evaluation. The η of 233 U shows its superiority over other fissile nuclides in the surveyed MFR ranges and always stays higher than 2.1, which indicates that the reactor has a breeding condition for a wide range of MFR. A breeding condition with a burnup comparable to that of a standard PWR or higher can be achieved by adopting a larger pin gap (1-6 mm), and a pin gap of about 2 mm can be used to achieve a breeding ratio (BR) of 1.1. A feasible design region of the reactors, which fulfills the breeding condition and negative void reactivity coefficient, has been found. A heavy-water-cooled PWR-type Th- 233 U fuel reactor can be designed as a breeder reactor with negative void coefficient. (author)

  19. Boiling water reactor

    International Nuclear Information System (INIS)

    Matsumoto, Tomoyuki; Inoue, Kotaro; Ishida, Masayoshi.

    1975-01-01

    Object: To connect a feedwater pipe to a recycling pipe line, the recycling pipe line being made smaller in diameter, thereby minimizing loss of coolant resulting from rupture of the pipe and improving safety against trouble of coolant loss. Structure: A feedwater pipe is directly connected to a recycling pipe line before a booster pump, and a mixture of recycling water and feedwater is increased in pressure by the booster pump, after which it is introduced into a jet pump in the form of water for driving the jet pump to suck surrounding water causing it to be flown into the core. In accordance with the abovementioned structure, since the flow of feedwater can be used as a part of water for driving the jet pump, the flow within the recycling pipe line may be decreased so that the recycling pipe line can be made smaller in diameter to reduce the flow of coolant in the reactor, which flows out when the pipe is ruptured. (Furukawa, Y.)

  20. Economic analysis of self-generated plutonium recycling in light water reactor

    International Nuclear Information System (INIS)

    Deguchi, Morimoto; Hirabayashi, Fumio; Yumoto, Ryozo

    1978-01-01

    This paper describes on the economics of plutonium recycle to light water reactors (LWRs). In the situation that plutonium market does not exist, it is realistic for utilities to recycle the self-generated plutonium to their own reactors. The economic incentive to recycle self-generated plutonium, plutonium fuel fabrication penalty, and the dependence of fuel cycle cost on fuel cycle cost parameters are considered. In recycling self-generated plutonium, two alternatives for fuel element design are feasible. Those are the all-plutonium design and the island design. In the present analysis, the all-plutonium design was chosen for PWRs. The calculation of reactivity variation along with burnup for both uranium fuel and plutonium fuel was done with LASER-PNC code. Plutonium inventory and other nuclear data were calculated with CHAIN code. It is expected that equilibrium composition is reached after 5 or 6 times of recycling. For the calculation of fuel cycle cost, MITCOST code was used. The recent increase in the prices of uranium ore, enrichment and reprocessing services was taken into account. The fuel cycle cost of plutonium recycle is lower than that of uranium fuel cycle within a certain limit of plutonium fabrication penalty. It is shown that the fabrication penalty of about 1250 dollar/kgHM for each plutonium successive recycle reduces the cost difference to zero. The change in other cost components affects break-even fabrication penalty, in which the fuel cycle cost of plutonium recycle is equal to that of uranium cycle. (Kato, T.)

  1. Transients analysis able to lead Pressurised Water Reactors cores to degraded situations, analysis of resulting configurations

    International Nuclear Information System (INIS)

    Shin, Hyeong-Ki

    1999-01-01

    The severe accidents that occurred recently on nuclear reactors such as Chernobyl and T.M.1.2 have led many countries utilizing nuclear energy to examine their severe accident management. This thesis focuses on this problem and aims at analyzing, in terms of reactivity, degraded core behavior resulting from different accidental configurations. Two types of core degradation can be encountered: local degradation (the destruction of isolated assemblies in the core) or spreading degradation (the destruction of neighboring assemblies). The TMI accident is an example of spreading degradation in the core. The simplicity of implementing the control rod ejection accident calculation as compared to other accidental transients have motivated the choice of this accident as a determinant for local degraded core configurations. The control rod ejection accident presents important three dimensional effects and introduces neutronic/thermohydraulic coupling. The implementation and validation of already existing three dimensional coupled calculation scheme, allowed one to analyze the consequences of such an accident and to the conclusion that only unrealistic hypotheses of assembly permutation could lead to a partial core degradation. A reasonable estimate of stored energy in the assemblies with high bum up, in relation to the stored energy in the hot spot, was also obtained for the first time. The recently performed experiments (CABRI experiments) showed that in highly burned up assemblies, the capacity to store energy decreases strongly in relation to new assemblies. This first estimate of the distribution of produced energy between different assemblies, during the rod ejection accident, offers an important piece of knowledge in the study of the consequences of an eventual fuel cycle extension (presently under consideration by development companies). Finally, the analysis of degraded core reactivity itself has been performed for a vast range of the degraded core configurations

  2. Advances in light water reactor technologies

    CERN Document Server

    Saito, Takehiko; Ishiwatari, Yuki; Oka, Yoshiaki

    2010-01-01

    ""Advances in Light Water Reactor Technologies"" focuses on the design and analysis of advanced nuclear power reactors. This volume provides readers with thorough descriptions of the general characteristics of various advanced light water reactors currently being developed worldwide. Safety, design, development and maintenance of these reactors is the main focus, with key technologies like full MOX core design, next-generation digital I&C systems and seismic design and evaluation described at length. This book is ideal for researchers and engineers working in nuclear power that are interested

  3. Analysis of an ultrasonic level device for in-core Pressurized Water Reactor coolant detection

    International Nuclear Information System (INIS)

    Johnson, K.R.

    1981-01-01

    A rigorous semi-empirical approach was undertaken to model the response of an ultrasonic level device (ULD) for application to in-core coolant detection in Pressurized Water Reactors (PWRs). An equation is derived for the torsional wave velocity v/sub t phi/ in the ULD. Existing data reduction techniques were analyzed and compared to results from use of the derived equation. Both methods yield liquid level measurements with errors of approx. 5%. A sensitivity study on probe performance at reactor conditions predicts reduced level responsivity from data at lower temperatures

  4. A non-linear reduced order methodology applicable to boiling water reactor stability analysis

    International Nuclear Information System (INIS)

    Prill, Dennis Paul

    2013-01-01

    Thermal-hydraulic coupling between power, flow rate and density, intensified by neutronics feedback are the main drivers of boiling water reactor (BWR) stability behavior. High-power low-flow conditions in connection with unfavorable power distributions can lead the BWR system into unstable regions where power oscillations can be triggered. This important threat to operational safety requires careful analysis for proper understanding. Analyzing an exhaustive parameter space of the non-linear BWR system becomes feasible with methodologies based on reduced order models (ROMs), saving computational cost and improving the physical understanding. Presently within reactor dynamics, no general and automatic prediction of high-dimensional ROMs based on detailed BWR models are available. In this thesis a systematic self-contained model order reduction (MOR) technique is derived which is applicable for several classes of dynamical problems, and in particular to BWRs of any degree of details. Expert knowledge can be given by operational, experimental or numerical transient data and is transfered into an optimal basis function representation. The methodology is mostly automated and provides the framework for the reduction of various different systems of any level of complexity. Only little effort is necessary to attain a reduced version within this self-written code which is based on coupling of sophisticated commercial software. The methodology reduces a complex system in a grid-free manner to a small system able to capture even non-linear dynamics. It is based on an optimal choice of basis functions given by the so-called proper orthogonal decomposition (POD). Required steps to achieve reliable and numerical stable ROM are given by a distinct calibration road-map. In validation and verification steps, a wide spectrum of representative test examples is systematically studied regarding a later BWR application. The first example is non-linear and has a dispersive character

  5. Application of safety checklist to the analysis of the IEA-R1 reactor water retreatment system

    International Nuclear Information System (INIS)

    Sauer, Maria Eugenia Lago Jacques; Sara Neto, Antonio Jorge; Lima, Toni Carlos Caboclo de; Ribeiro, Maria Alice Morato

    2005-01-01

    In 1999, the management of the IEA-R1 Research Reactor (pool type - 5 MWth), located at IPEN/CNEN-SP, started the evaluation of the Reactor Pool Water Retreatment System to identify operational aspects, which could compromise the operators safety. The purpose was to identify and propose enhancements to the system which would be installed to substitute for the existing one. This process was conducted through a qualitative study of the system in operation. This study was carried out by a team composed of specialists in reactor operation, systems maintenance and radiological protection, and one safety analyst. The study consisted, basically, in local inspections to verify the physical and operational conditions of each equipment / component as well as aspects related to maintenance activities of the system. The process control and the operator procedures associated with the retreatment of the reactor pool water were also reviewed. The methodology adopted to develop the study was based in process hazard analysis technique named Safety Checklist. This paper presents a summary of this study and the main results obtained. Some operational and safety problems identified, the prevention and/or correction means to avoid them, and the recommendations and suggestions that have been implemented to the new design of the IEA-R1 Reactor Water Retreatment System, whose installation was concluded in 2003, are also presented. (author)

  6. Sensor fault analysis using decision theory and data-driven modeling of pressurized water reactor subsystems

    International Nuclear Information System (INIS)

    Upadhyaya, B.R.; Skorska, M.

    1984-01-01

    Instrument fault detection and estimation is important for process surveillance, control, and safety functions of a power plant. The method incorporates the dual-hypotheses decision procedure and system characterization using data-driven time-domain models of signals representing the system. The multivariate models can be developed on-line and can be adapted to changing system conditions. For the method to be effective, specific subsystems of pressurized water reactors were considered, and signal selection was made such that a strong causal relationship exists among the measured variables. The technique is applied to the reactor core subsystem of the loss-of-fluid test reactor using in-core neutron detector and core-exit thermocouple signals. Thermocouple anomalies such as bias error, noise error, and slow drift in the sensor are detected and estimated using appropriate measurement models

  7. Reactor performance calculations for water reactors

    International Nuclear Information System (INIS)

    Hicks, D.

    1970-04-01

    The principles of nuclear, thermal and hydraulic performance calculations for water cooled reactors are discussed. The principles are illustrated by describing their implementation in the UKAEA PATRIARCH scheme of computer codes. This material was originally delivered as a course of lectures at the Technical University of Helsinki in Summer of 1969.

  8. Pressurized water reactor flow arrangement

    International Nuclear Information System (INIS)

    Gibbons, J.F.; Knapp, R.W.

    1980-01-01

    A flow path is provided for cooling the control rods of a pressurized water reactor. According to this scheme, a small amount of cooling water enters the control rod guide tubes from the top and passes downwards through the tubes before rejoining the main coolant flow and passing through the reactor core. (LL)

  9. Light water reactor safety research project

    International Nuclear Information System (INIS)

    Markoczy, G.; Aksan, S.N.; Behringer, K.; Prodan, M.; Stierli, F.; Ullrich, G.

    1980-07-01

    The research and development activities for the safety of Light Water Power Reactors carried out 1979 at the Swiss Federal Institute for Reactor Research are described. Considerations concerning the necessity, objectives and size of the Safety Research Project are presented, followed by a detailed discussion of the activities in the five tasks of the program, covering fracture mechanics and nondestructive testing, thermal-hydraulics, reactor noise analysis and pressure vessel steel surveillance. (Auth.)

  10. Thermal fluid flow analysis in downcomer of JAERI passive safety light water reactor (JPSR)

    International Nuclear Information System (INIS)

    Kunii, K.; Iwamura, T.; Murao, Y.

    1995-01-01

    The residual heat for the JPSR (JAERI Passive Safety Light Water Reactor) is removed by a natural-circulation of coolant flowing through downcomer. The numerical analysis has been performed taking account of the downcomer being a three-dimensional annulus flow pass with the purposes to confirm the abilities of (1) approximation of three-dimensional thermal fluid flow in downcomer to simple one-dimensional one assumed on the preliminary design of the passive residual heat removal system and (2) achievement of an enough driving-force of the natural circulation to remove the residual heat. The following results were obtained : (1) Flow pattern in downcomer shows remarkable three-dimensionality (multi-dimensionality) at lower inlet flow rate not to be able to approximate to one-dimensional flow field. However, the temperature distribution does not deviate from uniform one so much even if the multi-dimensional flow such as large vortex arises. (2) It can be expected to obtain the required enough driving-force at a steady state in any case of inlet flow rate where multi-dimensional flow pattern appears. (3) The increase ratio of the driving-force with the time-integrated coolant amount can be estimated as two functional curves in case of higher and other lower inlet flow rates not dependent only on the respective inlet flow rate. (Author)

  11. Light water reactor fuel analysis code FEMAXI-7. Model and structure [Revised edition

    International Nuclear Information System (INIS)

    Suzuki, Motoe; Udagawa, Yutaka; Amaya, Masaki; Saitou, Hiroaki

    2014-03-01

    A light water reactor fuel analysis code FEMAXI-7 has been developed for the purpose of analyzing the fuel behavior in both normal conditions and anticipated transient conditions. This code is an advanced version which has been produced by incorporating the former version FEMAXI-6 with numerous functional improvements and extensions. In FEMAXI-7, many new models have been added and parameters have been clearly arranged. Also, to facilitate effective maintenance and accessibility of the code, modularization of subroutines and functions have been attained, and quality comment descriptions of variables or physical quantities have been incorporated in the source code. With these advancements, the FEMAXI-7 code has been upgraded to a versatile analytical tool for high burnup fuel behavior analyses. This report is the revised edition of the first one which describes in detail the design, basic theory and structure, models and numerical method, and improvements and extensions. The first edition, JAEA-Data/Code 2010-035, was published in 2010. The first edition was extended by orderly addition and disposition of explanations of models and organized as the revised edition after three years interval. (author)

  12. Comparative study of Thermal Hydraulic Analysis Codes for Pressurized Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Yang Hoon; Jang, Mi Suk; Han, Kee Soo [Nuclear Engineering Service and Solution Co. Ltd., Daejeon (Korea, Republic of)

    2015-05-15

    Various codes are used for the thermal hydraulic analysis of nuclear reactors. The use of some codes among these is limited by user and some codes are not even open to general person. Thus, the use of alternative code is considered for some analysis. In this study, simple thermal hydraulic behaviors are analyzed using three codes to show that alternative codes are possible for the analysis of nuclear reactors. We established three models of the simple u-tube manometer using three different codes. RELAP5 (Reactor Excursion and Leak Analysis Program), SPACE (Safety and Performance Analysis CodE for nuclear power Plants), GOTHIC (Generation of Thermal Hydraulic Information for Containments) are selected for this analysis. RELAP5 is widely used codes for the analysis of system behavior of PWRs. SPACE has been developed based on RELAP5 for the analysis of system behavior of PWRs and licensing of the code is in progress. And GOTHIC code also has been widely used for the analysis of thermal hydraulic behavior in the containment system. The internal behavior of u-tube manometer was analyzed by RELAP5, SPACE and GOTHIC codes. The general transient behavior was similar among 3 codes. However, the stabilized status of the transient period analyzed by REPAP5 was different from the other codes. It would be resulted from the different physical models used in the other codes, which is specialized for the multi-phase thermal hydraulic behavior analysis.

  13. Analysis of a Partial MOX Core Design with Tritium Targets for Light Water Reactors

    Energy Technology Data Exchange (ETDEWEB)

    Anistratov, Dmitriy Y. [Texas A & M Univ., College Station, TX (United States); Adams, Marvin L. [Texas A & M Univ., College Station, TX (United States)

    1998-04-19

    This report constitutes tangible and verifiable deliverable associated with the task To study the effects of using WG MOX fuel in tritium-producing LWR” of the subproject Water Reactor Options for Disposition of Plutonium. The principal investigators of this subproject are Naeem M. Abdurrahman of the University of Texas at Austin and Marvin L. Adams of Texas A&M University. This work was sponsored by the Amarillo National Resource Center for Plutonium.

  14. Supercritical water-cooled reactor fuel management and economic comparison and analysis

    International Nuclear Information System (INIS)

    Cai Guangming; Ruan Liangcheng; Liu Xuechun

    2014-01-01

    The supercritical water-cooled reactor (SCWR) is expected to have an excellent fuel economical efficiency because of its high thermal efficiency. This article compares CSR1OOO with the current mainstream PWR and ABWR on the aspect of the economical efficiency of fuel management, and finally makes an unexpected conclusion that the SCWR has worse fuel economy than others. And it remains to be deliberated whether the SCWR will be the fourth generation of nuclear system. (authors)

  15. RELAP5 - a new tool for pressurized water reactor safety analysis

    International Nuclear Information System (INIS)

    Perneczky, L.

    1988-11-01

    The RELAP type pressurized water reactor safety system codes are used world wide for the loss of coolant accident analyses. In this paper the RELAP5, the advanced generation of the code family is presented. The relationship to RELAP4/mod6 version is discussed. The capability of the RELAP5/mod1-EUR version for small, medium and large break LOCA is investigated based on international user experience. (author) 30 refs

  16. Computational fluid dynamic analysis of a closure head penetration in a pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Forsyth, D.R.; Schwirian, R.E. [Westinghouse Electric Corp., Pittsburgh, PA (United States)

    1995-09-01

    ALLOY 600 has been used typically for penetrations through the closure head in pressurized water reactors because of its thermal compatibility with carbon steel, superior resistance to chloride attack and higher strength than the austenitic stainless steels. Recent plant operating experience with this alloy has indicated that this material may be susceptible to degradation. One of the major parameters relating to degradation of the head penetrations are the operational temperatures and stress levels in the penetration.

  17. Nuclear power plant control room task analysis. Pilot study for pressurized water reactors

    International Nuclear Information System (INIS)

    Barks, D.B.; Kozinsky, E.J.; Eckel, S.

    1982-05-01

    The purposes of this nuclear plant task analysis pilot study: to demonstrate the use of task analysis techniques on selected abnormal or emergency operation events in a nuclear power plant; to evaluate the use of simulator data obtained from an automated Performance Measurement System to supplement and validate data obtained by traditional task analysis methods; and to demonstrate sample applications of task analysis data to address questions pertinent to nuclear power plant operational safety: control room layout, staffing and training requirements, operating procedures, interpersonal communications, and job performance aids. Five data sources were investigated to provide information for a task analysis. These sources were (1) written operating procedures (event-based); (2) interviews with subject matter experts (the control room operators); (3) videotapes of the control room operators (senior reactor operators and reactor operators) while responding to each event in a simulator; (4) walk-/talk-throughs conducted by control room operators for each event; and (5) simulator data from the PMS

  18. Benchmarking lattice physics data and methods for boiling water reactor analysis

    International Nuclear Information System (INIS)

    Cacciapouti, R.J.; Edenius, M.; Harris, D.R.; Hebert, M.J.; Kapitz, D.M.; Pilat, E.E.; VerPlanck, D.M.

    1983-01-01

    The objective of the work reported was to verify the adequacy of lattice physics modeling for the analysis of the Vermont Yankee BWR using a multigroup, two-dimensional transport theory code. The BWR lattice physics methods have been benchmarked against reactor physics experiments, higher order calculations, and actual operating data

  19. Analysis on blow-down transient in water ingress accident of high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Wang, Yan; Zheng, Yanhua; Li, Fu; Shi, Lei

    2014-01-01

    Water ingress into the primary circuit is generally recognized as one of the severe accidents with potential hazard to the modular high temperature gas-cooled reactor, which will cause a positive reactivity introduction with the increase of steam density in reactor core to enhance neutron slowing-down, also the chemical corrosion of graphite fuel elements and the damage of reflector structure material. The increase of the primary pressure may result in the opening of the safety valves, consequently leading the release of radioactive isotopes and flammable water gas. The research on water ingress transient is significant for the verification of inherent safety characteristics of high temperature gas-cooled reactor. The 200 MWe high temperature gas-cooled reactor (HTR-PM), designed by the Institute of Nuclear and New Energy Technology of Tsinghua University, is exampled to be analyzed in this paper. The design basis accident (DBA) scenarios of double-ended guillotine break of single heat-exchange tube (steam generator heat-exchange tube rupture) are simulated by the thermal-hydraulic analysis code, and some key concerns which are relative to the amount of water into the reactor core during the blow-down transient are analyzed in detail. The results show that both of water mass and steam ratio of the fluid spouting from the broken heat-exchange tube are affected by break location, which will increase obviously with the broken location closing to the outlet of the heat-exchange tube. The double-ended guillotine rupture at the outlet of the heat-exchange will result more steam penetrates into the reactor core in the design basis accident of water ingress. The mass of water ingress will also be affected by the draining system. It is concluded that, with reasonable optimization on design to balance safety and economy, the total mass of water ingress into the primary circuit of reactor could be limited effectively to meet the safety requirements, and the pollution of

  20. Next generation light water reactors

    International Nuclear Information System (INIS)

    Omoto, Akira

    1992-01-01

    In the countries where the new order of nuclear reactors has ceased, the development of the light water reactors of new type has been discussed, aiming at the revival of nuclear power. Also in Japan, since it is expected that light water reactors continue to be the main power reactor for long period, the technology of light water reactors of next generation has been discussed. For the development of nuclear power, extremely long lead time is required. The light water reactors of next generation now in consideration will continue to be operated till the middle of the next century, therefore, they must take in advance sufficiently the needs of the age. The improvement of the way men and the facilities should be, the simple design, the flexibility to the trend of fuel cycle and so on are required for the light water reactors of next generation. The trend of the development of next generation light water reactors is discussed. The construction of an ABWR was started in September, 1991, as No. 6 plant in Kashiwazaki Kariwa Power Station. (K.I.)

  1. Advanced light-water reactors

    International Nuclear Information System (INIS)

    Golay, M.W.; Todreas, N.E.

    1990-01-01

    Environmental concerns, economics and the earth's finite store of fossil fuels argue for a resuscitation of nuclear power. The authors think improved light-water reactors incorporating passive safety features can be both safe and profitable, but only if attention is paid to economics, effective management and rigorous training methods. The experience of nearly four decades has winnowed out designs for four basic types of reactor: the heavy-water reactor (HWR), the gas-cooled rector (GCR), the liquid-metal-cooled reactor (LMR) and the light-water reactor (LWR). Each design is briefly described before the paper discusses the passive safety features of the AP-600 rector, so-called because it employs an advanced pressurized water design and generates 600 MW of power

  2. A domain-specific analysis system for examining nuclear reactor simulation data for light-water and sodium-cooled fast reactors

    International Nuclear Information System (INIS)

    Billings, Jay Jay; Deyton, Jordan H.; Forest Hull, S.; Lingerfelt, Eric J.; Wojtowicz, Anna

    2015-01-01

    Highlights: • Data analysis for high-performance simulations of reactors will be a problem that we address with a new management system. • We describe new input-output libraries for nuclear reactor simulations. • We describe a new user interface for visualizing and analyzing simulation results. • We show the utility of these systems with a 17 × 17 fuel assembly example simulation. • The availability of the code and avenues for collaboration are presented. - Abstract: Building a new generation of fission reactors in the United States presents many technical and regulatory challenges. One important challenge is the need to share and present results from new high-fidelity, high-performance simulations in an easily usable way. Since modern multiscale, multi-physics simulations can generate petabytes of data, they will require the development of new techniques and methods to reduce the data to familiar quantities of interest (e.g., pin powers, temperatures) with a more reasonable resolution and size. Furthermore, some of the results from these simulations may be new quantities for which visualization and analysis techniques are not immediately available in the community and need to be developed. This paper describes a new system for managing high-performance simulation results in a domain-specific way that naturally exposes quantities of interest for light water and sodium-cooled fast reactors. It describes requirements to build such a system and the technical challenges faced in its development at all levels (simulation, user interface, etc.). An example comparing results from two different simulation suites for a single assembly in a light-water reactor is presented, along with a detailed discussion of the system’s requirements and design

  3. Application of noise analysis technique for monitoring the moderator temperature coefficient of reactivity in pressurized water reactors

    International Nuclear Information System (INIS)

    Shieh, D.J.; Upadhyaya, B.R.; Sweeney, F.J.

    1987-01-01

    A new technique, based on the noise analysis of neutron detector and core-exit coolant temperature signals, is developed for monitoring the moderator temperature coefficient of reactivity in pressurized water reactors (PWRs). A detailed multinodal model is developed and evaluated for the reactor core subsystem of the loss-of-fluid test (LOFT) reactor. This model is used to study the effect of changing the sign of the moderator temperature coefficient of reactivity on the low-frequency phase angle relationship between the neutron detector and the core-exit temperature noise signals. Results show that the phase angle near zero frequency approaches - 180 deg for negative coefficients and 0 deg for positive coefficients when the perturbation source for the noise signals is core coolant flow, inlet coolant temperature, or random heat transfer

  4. Chemistry in water reactors

    International Nuclear Information System (INIS)

    Hermansson, H.P.; Norring, K.

    1994-01-01

    The international conference Chemistry in Water Reactors was arranged in Nice 24-27/04/1994 by the French Nuclear Energy Society. Examples of technical program areas were primary chemistry, operational experience, fundamental studies and new technology. Furthermore there were sessions about radiation field build-up, hydrogen chemistry, electro-chemistry, condensate polishing, decontamination and chemical cleaning. The conference gave the impression that there are some areas that are going to be more important than others during the next few years to come. Cladding integrity: Professor Ishigure from Japan emphasized that cladding integrity is a subject of great concern, especially with respect to waterside corrosion, deposition and release of crud. Chemistry control: The control of the iron/nickel concentration quotient seems to be not as important as previously considered. The future operation of a nuclear power plant is going to require a better control of the water chemistry than achievable today. One example of this is solubility control via regulation in BWR. Trends in USA: means an increasing use of hydrogen, minimization of SCC/IASCC, minimization of radiation fields by thorough chemistry control, guarding fuel integrity by minimization of cladding corrosion and minimization of flow assisted corrosion. Stellite replacement: The search for replacement materials will continue. Secondary side crevice chemistry: Modeling and practical studies are required to increase knowledge about the crevice chemistry and how it develops under plant operation conditions. Inhibitors: Inhibitors for IGSCC and IGA as well for the primary- (zinc) as for the secondary side (Ti) should be studied. The effects and mode of operation of the inhibitors should be documented. Chemical cleaning: of heat transfer surfaces will be an important subject. Prophylactic cleaning at regular intervals could be one mode of operation

  5. Ultrasonic evaluation of end cap weld joints of fuel elements of pressurized heavy water reactors using signal analysis methods

    International Nuclear Information System (INIS)

    Raj, B.; Thavasimuthu, M.; Subramanian, C.V.; Kalyanasundaram, P.; Rajagopalan, C.

    1992-01-01

    This paper describes the application of ultrasonic digital signal analysis for the detection of fine defects of the order of 10% or lower of wall thickness (WT) of 370 microns in the resistance welded end cap-cladding tube joints of fuel elements used in Pressurised Heavy Water Reactors (PHWR s). The results obtained for the detection of such defects, have confirmed the sensitivity and reliability of this approach, and were further validated by destructive metallography. (author)

  6. Exergy analysis of a system using a chemical heat pump to link a supercritical water-cooled nuclear reactor and a thermochemical water splitting cycle

    International Nuclear Information System (INIS)

    Granovskii, M.; Dincer, I.; Rosen, M. A.; Pioro, I

    2007-01-01

    The power generation efficiency of nuclear plants is mainly determined by the permissible temperatures and pressures of the nuclear reactor fuel and coolants. These parameters are limited by materials properties and corrosion rates and their effect on nuclear reactor safety. The advanced materials for the next generation of CANDU reactors, which employ steam as a coolant and heat carrier, permit the increased steam parameters (outlet temperature up to 625 degree C and pressure of about 25 MPa). Supercritical water-cooled (SCW) nuclear power plants are expected to increase the power generation efficiency from 35 to 45%. Supercritical water-cooled nuclear reactors can be linked to thermochemical water splitting cycles for hydrogen production. An increased steam temperature from the nuclear reactor makes it also possible to utilize its energy in thermochemical water splitting cycles. These cycles are considered by many as one of the most efficient ways to produce hydrogen from water and to have advantages over traditional low-temperature water electrolysis. However, even lower temperature water splitting cycles (Cu-Cl, UT-3, etc.) require a heat supply at the temperatures over 550-600 degree C. A sufficient increase in the heat transfer from the nuclear reactor to a thermochemical water splitting cycle, without jeopardizing nuclear reactor safety, might be effectively achieved by application of a heat pump which increases the temperature the heat supplied by virtue of a cyclic process driven by mechanical or electrical work. A high temperature chemical heat pump which employs the reversible catalytic methane conversion reaction is proposed. The reaction shift from exothermic to endothermic and back is achieved by a change of the steam concentration in the reaction mixture. This heat pump, coupled with a SCW nuclear plant on one side and thermochemical water splitting cycle on the other, increases the temperature level of the 'nuclear' heat and, thus, the intensity of

  7. Reactor Safety Analysis

    International Nuclear Information System (INIS)

    Arien, B.

    1998-01-01

    The objective of SCK-CEN's programme on reactor safety is to develop expertise in probabilistic and deterministic reactor safety analysis. The research programme consists of four main activities, in particular the development of software for reliability analysis of large systems and participation in the international PHEBUS-FP programme for severe accidents, the development of an expert system for the aid to diagnosis; the development and application of a probabilistic reactor dynamics method. Main achievements in 1999 are reported

  8. The heavy water reactors

    International Nuclear Information System (INIS)

    Brudermueller, G.

    1976-01-01

    This is a survey of the development so far of this reactor line which is in operation all over the world in various types (e.g. BHWR, PHWR). MZFR and the CANDU-type reactors are discussed in more detail. (UA) [de

  9. Nuclear reactor in deep water

    International Nuclear Information System (INIS)

    Anon.

    1980-01-01

    Events during October 1980, when the Indian Point 2 nuclear reactor was flooded by almost 500 000 litres of water from the Hudson river, are traced and the jumble of human errors and equipment failures chronicled. Possible damage which could result from the reactor getting wet and from thermal shock are considered. (U.K.)

  10. Calculation and analysis of thermal–hydraulics fluctuations in pressurized water reactors

    International Nuclear Information System (INIS)

    Malmir, Hessam; Vosoughi, Naser

    2015-01-01

    Highlights: • Single-phase thermal–hydraulics noise equations are originally derived in the frequency domain. • The fluctuations of all the coolant parameters are calculated, without any simplifying assumptions. • The radial distribution of the temperature fluctuations in the fuel, gap and cladding are taken into account. • The closed-loop calculations are performed by means of the point kinetics noise theory. • Both the space- and frequency-dependence of the thermal–hydraulics fluctuations are analyzed. - Abstract: Analysis of thermal–hydraulics fluctuations in pressurized water reactors (e.g., local and global temperature or density fluctuations, as well as primary and charging pumps fluctuations) has various applications in calculation or measurement of the core dynamical parameters (temperature or density reactivity coefficients) in addition to thermal–hydraulics surveillance and diagnostics. In this paper, the thermal–hydraulics fluctuations in PWRs are investigated. At first, the single-phase thermal–hydraulics noise equations (in the frequency domain) are originally derived, without any simplifying assumptions. The fluctuations of all the coolant parameters, as well as the radial distribution of the temperature fluctuations in the fuel, gap and cladding are taken into account. Then, the derived governing equations are discretized using the finite volume method (FVM). Based on the discretized equations and the proposed algorithm of solving, a single heated channel noise calculation code (SHC-Noise) is developed, by which the steady-state and fluctuating parameters of PWR fuel assemblies can be calculated. The noise sources include the inlet coolant temperature and velocity fluctuations, in addition to the power density noises. The developed SHC-Noise code is benchmarked in different cases and scenarios. Furthermore, to show the effects of the power feedbacks, the closed-loop calculations are performed by means of the point kinetics noise

  11. Analysis of severe core damage accident progression for the heavy water reactor

    International Nuclear Information System (INIS)

    Tong Lili; Yuan Kai; Yuan Jingtian; Cao Xuewu

    2010-01-01

    In this study, the severe accident progression analysis of generic Canadian deuterium uranium reactor 6 was preliminarily provided using an integrated severe accident analysis code. The selected accident sequences were multiple steam generator tube rupture and large break loss-of-coolant accidents because these led to severe core damage with an assumed unavailability for several critical safety systems. The progressions of severe accident included a set of failed safety systems normally operated at full power, and initiative events led to primary heat transport system inventory blow-down or boil off. The core heat-up and melting, steam generator response,fuel channel and calandria vessel failure were analyzed. The results showed that the progression of a severe core damage accident induced by steam generator tube rupture or large break loss-of-coolant accidents in a CANDU reactor was slow due to heat sinks in the calandria vessel and vault. (authors)

  12. Thermodynamic analysis of the use a chemical heat pump to link a supercritical water-cooled nuclear reactor and a thermochemical water-splitting cycle for hydrogen production

    International Nuclear Information System (INIS)

    Granovskii, Mikhail; Dincer, Ibrahim; Rosen, Marc A.; Pioro, Igor

    2008-01-01

    Increases in the power generation efficiency of nuclear power plants (NPPs) are mainly limited by the permissible temperatures in nuclear reactors and the corresponding temperatures and pressures of the coolants in reactors. Coolant parameters are limited by the corrosion rates of materials and nuclear-reactor safety constraints. The advanced construction materials for the next generation of CANDU reactors, which employ supercritical water (SCW) as a coolant and heat carrier, permit improved 'steam' parameters (outlet temperatures up to 625degC and pressures of about 25 MPa). An increase in the temperature of steam allows it to be utilized in thermochemical water splitting cycles to produce hydrogen. These methods are considered by many to be among the most efficient ways to produce hydrogen from water and to have advantages over traditional low-temperature water electrolysis. However, even lower temperature water splitting cycles (Cu-Cl, UT-3, etc.) require an intensive heat supply at temperatures higher than 550-600degC. A sufficient increase in the heat transfer from the nuclear reactor to a thermochemical water splitting cycle, without jeopardizing nuclear reactor safety, might be effectively achieved by application of a heat pump, which increases the temperature of the heat supplied by virtue of a cyclic process driven by mechanical or electrical work. Here, a high-temperature chemical heat pump, which employs the reversible catalytic methane conversion reaction, is proposed. The reaction shift from exothermic to endothermic and back is achieved by a change of the steam concentration in the reaction mixture. This heat pump, coupled with the second steam cycle of a SCW nuclear power generation plant on one side and a thermochemical water splitting cycle on the other, increases the temperature of the 'nuclear' heat and, consequently, the intensity of heat transfer into the water splitting cycle. A comparative preliminary thermodynamic analysis is conducted of

  13. Fundamentals of pressurized water reactors

    International Nuclear Information System (INIS)

    Murray, L.

    1982-01-01

    In many countries, the pressurized water reactor (PWR) is the most widely used, even though it requires enrichment of the uranium to about 3% in U-235 and the moderator-coolant must be maintained at a high pressure, about 2200 pounds per square inch. Our objective in this series of seven lectures is to describe the design and operating characteristics of the PWR system, discuss the reactor physics methods used to evaluate performance, examine the way fuel is consumed and produced, study the instrumentation system, review the physics measurements made during initial startup of the reactor, and outline the administrative aspects of starting up a reactor and operating it safely and effectively

  14. Reactor Safety Analysis

    International Nuclear Information System (INIS)

    Arien, B.

    2000-01-01

    The objective of SCK-CEN's programme on reactor safety is to develop expertise in probabilistic and deterministic reactor safety analysis. The research programme consists of two main activities, in particular the development of software for reliability analysis of large systems and participation in the international PHEBUS-FP programme for severe accidents. Main achievements in 1999 are reported

  15. Analysis of a small break loss-of-coolant accident of pressurized water reactor by APROS

    Energy Technology Data Exchange (ETDEWEB)

    Al-Falahi, A. [Helsinki Univ. of Technology, Espoo (Finland); Haennine, M. [VTT Energy, Espoo (Finland); Porkholm, K. [IVO International, Ltd., Vantaa (Finland)

    1995-09-01

    The purpose of this paper is to study the capability of APROS (Advanced PROcess Simulator) code to simulate the real plant thermal-hydraulic transient of a Small Break Loss-Of-Coolant Accident (SBLOCA) of Loss-Of-Fluid Test (LOFT) facility. The LOFT is a scaled model of a Pressurized Water Reactor (PWR). This work is a part of a larger validation of the APROS thermal-hydraulic models. The results of SBLOCA transient calculated by APROS showed a reasonable agreement with the measured data.

  16. Burn up Theoretical Analysis of A Thorium Fuel Rod in Light Water Reactor

    International Nuclear Information System (INIS)

    Gaber, F.A.; Aziz, M.; Elsheikh, B.

    2008-01-01

    A computer model was designed to analyze the burn up and irradiation of both Th-Pu and Th-U fuel rod in a typical light water reactors conditions. MCNP computer model was designed to simulate the fuel rod burnup and evaluate neutron flux and group constants . A system of ordinary differential equations were solved numerically to evaluate the isotopic concentrations for both the two types of fuel using the previous calculated data from MCNP model. The results are analyzed and compared with published data where satisfactory agreement was found

  17. Pressurized water reactor systems

    International Nuclear Information System (INIS)

    Meyer, P.J.

    1975-01-01

    Design and mode of operation of the main PWR components are described: reactor core, pressure vessel and internals, cooling systems with pumps and steam generators, ancillary systems, and waste processing. (TK) [de

  18. Analysis of removal alternatives for the Heavy Water Components Test Reactor at the Savannah River Site. Revision 1

    Energy Technology Data Exchange (ETDEWEB)

    Owen, M.B.

    1997-04-01

    This engineering study evaluates different alternatives for decontamination and decommissioning of the Heavy Water Components Test Reactor (HWCTR). Cooled and moderated with pressurized heavy water, this uranium-fueled nuclear reactor was designed to test fuel assemblies for heavy water power reactors. It was operated for this purpose from march of 1962 until December of 1964. Four alternatives studied in detail include: (1) dismantlement, in which all radioactive and hazardous contaminants would be removed, the containment dome dismantled and the property restored to a condition similar to its original preconstruction state; (2) partial dismantlement and interim safe storage, where radioactive equipment except for the reactor vessel and steam generators would be removed, along with hazardous materials, and the building sealed with remote monitoring equipment in place to permit limited inspections at five-year intervals; (3) conversion for beneficial reuse, in which most radioactive equipment and hazardous materials would be removed and the containment building converted to another use such as a storage facility for radioactive materials, and (4) entombment, which involves removing hazardous materials, filling the below-ground structure with concrete, removing the containment dome and pouring a concrete cap on the tomb. Also considered was safe storage, but this approach, which has, in effect, been followed for the past 30 years, did not warrant detailed evaluation. The four other alternatives were evaluate, taking into account factors such as potential effects on the environment, risks, effectiveness, ease of implementation and cost. The preferred alternative was determined to be dismantlement. This approach is recommended because it ranks highest in the comparative analysis, would serve as the best prototype for the site reactor decommissioning program and would be most compatible with site property reuse plans for the future.

  19. Analysis of removal alternatives for the Heavy Water Components Test Reactor at the Savannah River Site. Revision 1

    International Nuclear Information System (INIS)

    Owen, M.B.

    1997-04-01

    This engineering study evaluates different alternatives for decontamination and decommissioning of the Heavy Water Components Test Reactor (HWCTR). Cooled and moderated with pressurized heavy water, this uranium-fueled nuclear reactor was designed to test fuel assemblies for heavy water power reactors. It was operated for this purpose from march of 1962 until December of 1964. Four alternatives studied in detail include: (1) dismantlement, in which all radioactive and hazardous contaminants would be removed, the containment dome dismantled and the property restored to a condition similar to its original preconstruction state; (2) partial dismantlement and interim safe storage, where radioactive equipment except for the reactor vessel and steam generators would be removed, along with hazardous materials, and the building sealed with remote monitoring equipment in place to permit limited inspections at five-year intervals; (3) conversion for beneficial reuse, in which most radioactive equipment and hazardous materials would be removed and the containment building converted to another use such as a storage facility for radioactive materials, and (4) entombment, which involves removing hazardous materials, filling the below-ground structure with concrete, removing the containment dome and pouring a concrete cap on the tomb. Also considered was safe storage, but this approach, which has, in effect, been followed for the past 30 years, did not warrant detailed evaluation. The four other alternatives were evaluate, taking into account factors such as potential effects on the environment, risks, effectiveness, ease of implementation and cost. The preferred alternative was determined to be dismantlement. This approach is recommended because it ranks highest in the comparative analysis, would serve as the best prototype for the site reactor decommissioning program and would be most compatible with site property reuse plans for the future

  20. Water simulation of sodium reactors

    International Nuclear Information System (INIS)

    Grewal, S.S.; Gluekler, E.L.

    1981-01-01

    The thermal hydraulic simulation of a large sodium reactor by a scaled water model is examined. The Richardson Number, friction coefficient and the Peclet Number can be closely matched with the water system at full power and the similarity is retained for buoyancy driven flows. The simulation of thermal-hydraulic conditions in a reactor vessel provided by a scaled water experiment is better than that by a scaled sodium test. Results from a correctly scaled water test can be tentatively extrapolated to a full size sodium system

  1. Analysis of systematic error deviation of water temperature measurement at the fuel channel outlet of the reactor Maria

    International Nuclear Information System (INIS)

    Bykowski, W.

    2000-01-01

    The reactor Maria has two primary cooling circuits; fuel channels cooling circuit and reactor pool cooling circuit. Fuel elements are placed inside the fuel channels which are parallely linked in parallel, between the collectors. In the course of reactor operation the following measurements are performed: continuous measurement of water temperature at the fuel channels inlet, continuous measurement of water temperature at the outlet of each fuel channel and continuous measurement of water flow rate through each fuel channel. Based on those thermal-hydraulic parameters the instantaneous thermal power generated in each fuel channel is determined and by use of that value the thermal balance and the degree of fuel burnup is assessed. The work contains an analysis concerning estimate of the systematic error of temperature measurement at outlet of each fuel channel and so the erroneous assessment of thermal power extracted in each fuel channel and the burnup degree for the individual fuel element. The results of measurements of separate factors of deviations for the fuel channels are enclosed. (author)

  2. Water-ingress analysis for the 200 MWe pebble-bed modular high temperature gas-cooled reactor

    International Nuclear Information System (INIS)

    Zheng Yanhua; Shi Lei; Wang Yan

    2010-01-01

    Water ingress into the primary circuit is generally recognized as one of the severe accidents with potential hazard to the modular high temperature gas-cooled reactor adopting steam-turbine cycle, which will cause a positive reactivity introduction, as well as the chemical corrosion of graphite fuel elements and reflector structure material. Besides, increase of the primary pressure may result in the opening of the safety valves, consequently leading the release of radioactive isotopes and flammable water gas. The analysis of such a kind of important and particular accident is significant to verify the inherent safety characteristics of the modular HTR plants. Based on the preliminary design of the 200 MWe high temperature gas-cooled reactor pebble-bed modular (HTR-PM), the design basis accident of a double-ended guillotine break of one heating tube and the beyond design basis accident of a large break of the main steam collection plate have been analyzed by using TINTE code, which is a special transient analysis program for high temperature gas-cooled reactors. Some safety relevant concerns, such as the fuel temperature, the primary loop pressure, the graphite corrosion, the water gas releasing amount, as well as the natural convection influence on the condition of failing to close the blower flaps, have been studied in detail. The calculation results indicate that even under some severe hypothetical postulates, the HTR-PM is able to keep the inherent safeties of the modular high temperature gas-cooled reactor and has a relatively good natural plant response, which will not result in environmental radiation hazard.

  3. Light-water nuclear reactors

    International Nuclear Information System (INIS)

    Drevon, G.

    1983-01-01

    This work gives basic information on light-water reactors which is advanced enough for the reader to become familiar with the essential objectives and aspects of their design, their operation and their insertion in the industrial, economic and human environment. In view of the capital role of electric energy in the modern economy a significant place is given to electron-nuclear power stations, particularly those of the type adopted for the French programme. The work includes sixteen chapters. The first chapter relates the history and presents the various applications of light water reactors. The second refers to the general elementary knowledge of reactor physics. The third chapter deals with the high power light-water nuclear power station and thereby introduces the ensuing chapters which, up to and including chapter 13, are devoted to the components and the various aspects of the operation of power stations, in particular safety and the relationship with the environment. Chapter 14 provides information on the reactors adapted to applications other than the generation of electricity on an industrial scale. Chapter 15 shows the extent of the industrial effort devoted to light-water reactors and chapter 16 indicates the paths along which the present work is preparing the future of these reactors. The various chapters have been written to allow for separate consultation. An index of the main technical terms and a bibliography complete the work [fr

  4. RISMC advanced safety analysis project plan: FY2015 - FY2019. Light Water Reactor Sustainability Program

    International Nuclear Information System (INIS)

    Szilard, Ronaldo H; Smith, Curtis L; Youngblood, Robert

    2014-01-01

    In this report, the Advanced Safety Analysis Program (ASAP) objectives and value proposition is described. ASAP focuses on modernization of nuclear power safety analysis (tools, methods and data); implementing state-of-the-art modeling techniques (which include, for example, enabling incorporation of more detailed physics as they become available); taking advantage of modern computing hardware; and combining probabilistic and mechanistic analyses to enable a risk informed safety analysis process. The modernized tools will maintain the current high level of safety in our nuclear power plant fleet, while providing an improved understanding of safety margins and the critical parameters that affect them. Thus, the set of tools will provide information to inform decisions on plant modifications, refurbishments, and surveillance programs, while improving economics. The set of tools will also benefit the design of new reactors, enhancing safety per unit cost of a nuclear plant. As part of the discussion, we have identified three sets of stakeholders, the nuclear industry, the Department of Energy (DOE), and associated oversight organizations. These three groups would benefit from ASAP in different ways. For example, within the DOE complex, the possible applications that are seen include the safety of experimental reactors, facility life extension, safety-by-design in future generation advanced reactors, and managing security for the storage of nuclear material. This report provides information in five areas: (1) A value proposition (@@@why is this important?@@@) that will make the case for stakeholder's use of the ASAP research and development (R&D) products; (2) An identification of likely end users and pathway to adoption of enhanced tools by the end-users; (3) A proposed set of practical and achievable @@use case@@@ demonstrations; (4) A proposed plan to address ASAP verification and validation (V&V) needs; and (5) A proposed schedule for the multi-year ASAP.

  5. Reliability analysis of the service water system of Angra 1 reactor

    International Nuclear Information System (INIS)

    Tayt-Sohn, L.C.; Oliveira, L.F.S. de.

    1984-01-01

    A reliability analysis of the service water system is done aiming to use in the evaluation of the non reliability of the Component Cooling System (SRC) for great loss of cooling accidents in nuclear power plants. (E.G.) [pt

  6. Reliability analysis of the service water system of Angra 1 reactor

    International Nuclear Information System (INIS)

    Oliveira, L.F.S. de; Fleming, P.V.; Frutuoso e Melo, P.F.F.; Tayt-Sohn, L.C.

    1983-01-01

    A reliability analysis of the service water system is done aiming to use in the evaluation of the non reliability of the component cooling system (SRC) for great loss of cooling accidents in nuclear power plants. (E.G.) [pt

  7. Steam explosions in light water reactors

    International Nuclear Information System (INIS)

    1981-01-01

    The report deals with a postulated accident caused by molten fuel falling into the lower plenum of the containment of a reactor. The analysis which is presented in the report shows that the thermal energy released in the resulting steam explosion is not enough to destroy the pressure vessel or the containment. The report was prepared for the Swedish Governmental Committee on steam explosion in light water reactors. It includes statements issued by internationally well-known specialists. (G.B.)

  8. Bayesian optimization analysis of containment-venting operation in a boiling water reactor severe accident

    International Nuclear Information System (INIS)

    Zheng, Xiaoyu; Ishikawa, Jun; Sugiyama, Tomoyuki; Maryyama, Yu

    2017-01-01

    Containment venting is one of several essential measures to protect the integrity of the final barrier of a nuclear reactor during severe accidents, by which the uncontrollable release of fission products can be avoided. The authors seek to develop an optimization approach to venting operations, from a simulation-based perspective, using an integrated severe accident code, THALES2/KICHE. The effectiveness of the containment-venting strategies needs to be verified via numerical simulations based on various settings of the venting conditions. The number of iterations, however, needs to be controlled to avoid cumbersome computational burden of integrated codes. Bayesian optimization is an efficient global optimization approach. By using a Gaussian process regression, a surrogate model of the “black-box” code is constructed. It can be updated simultaneously whenever new simulation results are acquired. With predictions via the surrogate model, upcoming locations of the most probable optimum can be revealed. The sampling procedure is adaptive. Compared with the case of pure random searches, the number of code queries is largely reduced for the optimum finding. One typical severe accident scenario of a boiling water reactor is chosen as an example. The research demonstrates the applicability of the Bayesian optimization approach to the design and establishment of containment-venting strategies during severe accidents

  9. Bayesian optimization analysis of containment-venting operation in a boiling water reactor severe accident

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Xiaoyu; Ishikawa, Jun; Sugiyama, Tomoyuki; Maryyama, Yu [Nuclear Safety Research Center, Japan Atomic Energy Agency, Ibaraki (Japan)

    2017-03-15

    Containment venting is one of several essential measures to protect the integrity of the final barrier of a nuclear reactor during severe accidents, by which the uncontrollable release of fission products can be avoided. The authors seek to develop an optimization approach to venting operations, from a simulation-based perspective, using an integrated severe accident code, THALES2/KICHE. The effectiveness of the containment-venting strategies needs to be verified via numerical simulations based on various settings of the venting conditions. The number of iterations, however, needs to be controlled to avoid cumbersome computational burden of integrated codes. Bayesian optimization is an efficient global optimization approach. By using a Gaussian process regression, a surrogate model of the “black-box” code is constructed. It can be updated simultaneously whenever new simulation results are acquired. With predictions via the surrogate model, upcoming locations of the most probable optimum can be revealed. The sampling procedure is adaptive. Compared with the case of pure random searches, the number of code queries is largely reduced for the optimum finding. One typical severe accident scenario of a boiling water reactor is chosen as an example. The research demonstrates the applicability of the Bayesian optimization approach to the design and establishment of containment-venting strategies during severe accidents.

  10. Neutronics analysis of water-cooled energy production blanket for a fusion-fission hybrid reactor

    International Nuclear Information System (INIS)

    Jiang Jieqiong; Wang Minghuang; Chen Zhong; Qiu Yuefeng; Liu Jinchao; Bai Yunqing; Chen Hongli; Hu Yanglin

    2010-01-01

    Neutronics calculations were performed to analyse the parameters of blanket energy multiplication factor (M) and tritium breeding ratio (TBR) in a fusion-fission hybrid reactor for energy production named FDS (Fusion-Driven hybrid System)-EM (Energy Multiplier) blanket. The most significant and main goal of the FDS-EM blanket is to achieve the energy gain of about 1 GWe with self-sustaining tritium, i.e. the M factor is expected to be ∼90. Four different fission materials were taken into account to evaluate M in subcritical blanket: (i) depleted uranium, (ii) natural uranium, (iii) enriched uranium, and (iv) Nuclear Waste (transuranic from 33 000 MWD/MTU PWR (Pressurized Water Reactor) and depleted uranium) oxide. These calculations and analyses were performed using nuclear data library HENDL (Hybrid Evaluated Nuclear Data Library) and a home-developed code VisualBUS. The results showed that the performance of the blanket loaded with Nuclear Waste was most attractive and it could be promising to effectively obtain tritium self-sufficiency and a high-energy multiplication.

  11. Accuracy of cell calculation methods used for analysis of high conversion light water reactor lattice

    International Nuclear Information System (INIS)

    Jeong, Chang-Joon; Okumura, Keisuke; Ishiguro, Yukio; Tanaka, Ken-ichi

    1990-01-01

    Validation tests were made for the accuracy of cell calculation methods used in analyses of tight lattices of a mixed-oxide (MOX) fuel core in a high conversion light water reactor (HCLWR). A series of cell calculations was carried out for the lattices referred from an international HCLWR benchmark comparison, with emphasis placed on the resonance calculation methods; the NR, IR approximations, the collision probability method with ultra-fine energy group. Verification was also performed for the geometrical modelling; a hexagonal/cylindrical cell, and the boundary condition; mirror/white reflection. In the calculations, important reactor physics parameters, such as the neutron multiplication factor, the conversion ratio and the void coefficient, were evaluated using the above methods for various HCLWR lattices with different moderator to fuel volume ratios, fuel materials and fissile plutonium enrichments. The calculated results were compared with each other, and the accuracy and applicability of each method were clarified by comparison with continuous energy Monte Carlo calculations. It was verified that the accuracy of the IR approximation became worse when the neutron spectrum became harder. It was also concluded that the cylindrical cell model with the white boundary condition was not so suitable for MOX fuelled lattices, as for UO 2 fuelled lattices. (author)

  12. Advanced core physics and thermal hydraulics analysis of boiling water reactors using innovative fuel concepts

    International Nuclear Information System (INIS)

    Winter, Dominik

    2014-01-01

    The economical operation of a boiling water reactor (BWR) is mainly achieved by the axially uniform utilization of the nuclear fuel in the assemblies which is challenging because the neutron spectrum in the active reactor core varies with the axial position. More precisely, the neutron spectrum becomes harder the higher the position is resulting in a decrease of the fuel utilization because the microscopic fission cross section is smaller by several orders of magnitude. In this work, the use of two fuel concepts based on a mixed oxide (MOX) fuel and an innovative thorium-plutonium (ThPu) fuel is investigated by a developed simulation model encompassing thermal hydraulics, neutronics, and fuel burnup. The main feature of these fuel concepts is the axially varying enrichment in plutonium which is, in this work, recycled from spent nuclear fuel and shows a high fission fraction of the absorption cross section for fast incident neutron energies. The potential of balancing the overall fuel utilization by an increase of the fission rate in the upper part of the active height with a combination of the harder spectrum and the higher fission fraction of the absorption cross section in the BWR core is studied. The three particular calculational models for thermal hydraulics, neutronics, and fuel burnup provide results at fuel assembly and/or at core level. In the former case, the main focus lies on the thermal hydraulics analysis, fuel burnup, and activity evolution after unloading from the core and, in the latter case, special attention is paid to reactivity safety coefficients (feedback effects) and the optimization of the operational behavior. At both levels (assembly and core), the isotopic buildup and depletion rates as a function of the active height are analyzed. In addition, a comparison between the use of conventional fuel types with homogeneous enrichments and the use of the innovative fuel types is made. In the framework of the simulations, the ThPu and the MOX

  13. ENFORM II: a calculational system for light water reactor logistics and effluent analysis

    International Nuclear Information System (INIS)

    Heeb, C.M.; Lewallen, M.A.; Purcell, W.L.; Cole, B.M.

    1979-09-01

    ENFORM is a computer-based information system that addresses the material logistics, environmental releases and economics of light water reactor (LWR) operation. The most important system inputs consist of electric energy generation requirements, details of plant construction scheduling, unit costs, and environmental release factors. From these inputs the ENFORM system computes the mass balances and generates the environmental release information for noxious chemicals and radionuclides from various fuel cycle facilities (except waste disposal). Fuel cycle costs and electric power costs are also computed. All code development subsequent to 1977 is summarized. Programming instructions are provided for the modules that are comprised in the ENFORM system. ENGEN, a code that uses a generation schedule specified by the user and isotopic data generated by ORIGEN, has been developed to produce a scenario-specific data base. Other codes (ENMAT, ENRAD, etc) have been developed to use data base information to estimate radioactive and nonradioactive release information

  14. Boiling water reactor containment modeling and analysis at the Idaho National Engineering Laboratory

    International Nuclear Information System (INIS)

    Holcomb, E.E. III; Wilson, G.E.

    1984-01-01

    Under the auspices of the United States Nuclear Regulatory Commission, severe accidents are being studied at the Idaho National Engineering Laboratory. The boiling water reactor (BWR) studies have focused on postulated anticipated transients without scram (ATWS) accidents which might contribute to severe core damage or containment failure. A summary of the containment studies is presented in the context of the analytical tools (codes) used, typical transient simulation results and the need for prototypical containment data. All of these are related to current and future analytical capabilities. It is shown that torus temperatures during the ATWS depart from limiting conditions for BWR T-quencher operation, outside of which stable steam condensation has not been proven

  15. Heat exchangers in heavy water reactor systems

    International Nuclear Information System (INIS)

    Mehta, S.K.

    1988-01-01

    Important features of some major heat exchange components of pressurized heavy water reactors and DHRUVA research reactor are presented. Design considerations and nuclear service classifications are discussed

  16. High performance light water reactor

    International Nuclear Information System (INIS)

    Squarer, D.; Schulenberg, T.; Struwe, D.; Oka, Y.; Bittermann, D.; Aksan, N.; Maraczy, C.; Kyrki-Rajamaeki, R.; Souyri, A.; Dumaz, P.

    2003-01-01

    The objective of the high performance light water reactor (HPLWR) project is to assess the merit and economic feasibility of a high efficiency LWR operating at thermodynamically supercritical regime. An efficiency of approximately 44% is expected. To accomplish this objective, a highly qualified team of European research institutes and industrial partners together with the University of Tokyo is assessing the major issues pertaining to a new reactor concept, under the co-sponsorship of the European Commission. The assessment has emphasized the recent advancement achieved in this area by Japan. Additionally, it accounts for advanced European reactor design requirements, recent improvements, practical design aspects, availability of plant components and the availability of high temperature materials. The final objective of this project is to reach a conclusion on the potential of the HPLWR to help sustain the nuclear option, by supplying competitively priced electricity, as well as to continue the nuclear competence in LWR technology. The following is a brief summary of the main project achievements:-A state-of-the-art review of supercritical water-cooled reactors has been performed for the HPLWR project.-Extensive studies have been performed in the last 10 years by the University of Tokyo. Therefore, a 'reference design', developed by the University of Tokyo, was selected in order to assess the available technological tools (i.e. computer codes, analyses, advanced materials, water chemistry, etc.). Design data and results of the analysis were supplied by the University of Tokyo. A benchmark problem, based on the 'reference design' was defined for neutronics calculations and several partners of the HPLWR project carried out independent analyses. The results of these analyses, which in addition help to 'calibrate' the codes, have guided the assessment of the core and the design of an improved HPLWR fuel assembly. Preliminary selection was made for the HPLWR scale

  17. A phenomenological analysis of melt progression in the lower head of a pressurized water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Seiler, J.M., E-mail: jean-marie.seiler@cea.fr [CEA, DEN, DTN, F-38054 Grenoble (France); Tourniaire, B. [EDF/Septen, Lyon (France)

    2014-03-15

    Highlights: • We propose a phenomenological description of melt progression into the lower head. • We examine changes in heat loads on the vessel. • Heat loads are more severe than emphasized by the bounding situation assumption. • Both primary circuit and ex-vessel reflooding are necessary for in-vessel retention. • Vessel failure conditions are examined. - Abstract: The analysis of in-vessel corium cooling (IVC) and retention (IVR) involves the description of very complex and transient physical phenomena. To get round this difficulty, “bounding” situations are often emphasized for the demonstration of corium coolability, by vessel flooding and/or by reactor pit flooding. This approach however comes up against its own limitations. More realistic melt progression scenarios are required to provide plausible corium configurations and vessel failure conditions. Work to develop more realistic melt progression scenarios has been done at CEA, in collaboration with EDF. Development has concentrated on the French 1300 MWe PWR, considering both dry scenarios and the possibility of flooding of the RPC (reactor primary circuit) and/or the reactor pit. The models used for this approach have been derived from the analysis of the TMI2 accident and take benefit from the lessons derived from several programs related to pool thermal hydraulics (BALI, COPO, ACOPO, etc.), material interactions (RASPLAV, MASCA), critical heat flux (CHF) on the external surface of the vessel (KAIST, SULTAN, ULPU), etc. Important conclusions of this work are as follows: (a)After the start of corium melting and onset of melt formation in the core at low pressure (∼1 to 5 bars), it seems questionable that RPV (reactor pressure vessel) reflooding alone would be sufficient to achieve corium retention in the vessel; (b)If the vessel is not cooled externally, it may fail due to local heat-up before the whole core fuel inventory is relocated in the lower head; (c)Even if the vessel is

  18. Analysis of man-machine interaction for control and display system in main control room of light water reactor

    International Nuclear Information System (INIS)

    Santosa, Kussigit; Supriatna, Piping; Karlina, Itjeu; Widagdo, Suharyo; Darlis; Sudiono, Bambang

    1998-01-01

    One of potential hazard in Nuclear Power Plant is the failure of its operation. The accident or operation failure in the reactor must be concerned event its probability is low. The important thing should be concerned is 'Analysis of Man-Machine Interaction (MMI) for Control and Display System in Main Control Room (MCR) of Nuclear Power Reactor', especially LWR type. Control and Display System in MCR of Reactor is the main part of MMI link process in Reactor MCR work system. Signal from display system showed performance process in reactor, while this signal will be received by operator. This signal will be described through central nerve for making decision what kind must be done. Then the operator manage the next process of reactor operation through control system. So by knowing Analysis of Man-Machine Interaction for Control and Display System in Main Control Room of Power Reactor, we can understand human error probability of the operator in reactor operation

  19. FEM analysis of foundation raft for 500 MWe pressurized heavy water reactor building

    International Nuclear Information System (INIS)

    Kulkarni, N.N.; Goray, J.S.; Joshi, M.H.; Paramasivam, V.

    1989-01-01

    Foundation raft supports the containment structure and internals for 500 MWe PHW reactor building. It also serves as bottom envelop of the containment structure. In view of this, the design of foundation raft assumes great importance. The foundation raft is subjected to various load, most significant of them are dead load of structure, equipment loads transferred through a system of floors, walls and structural steel columns, pressure load during accident conditions, seismic loads, earth pressure, uplift due to buoyancy loads, foundation reaction etc. In order to achieve optimum design, the detailed structural analysis is required to be performed methodically and in most realistic manner. Finite element methods which have come in vogue with the developments in digital computers can be successfully applied in this area. The paper describes the above methods in detail for the analysis of foundation raft for the various load combinations required to be considered for safe and optimum design

  20. Design and Analysis of Thorium-fueled Reduced Moderation Boiling Water Reactors

    Science.gov (United States)

    Gorman, Phillip Michael

    The Resource-renewable Boiling Water Reactors (RBWRs) are a set of light water reactors (LWRs) proposed by Hitachi which use a triangular lattice and high void fraction to incinerate fuel with an epithermal spectrum, which is highly atypical of LWRs. The RBWRs operate on a closed fuel cycle, which is impossible with a typical thermal spectrum reactor, in order to accomplish missions normally reserved for sodium fast reactors (SFRs)--either fuel self-sufficiency or waste incineration. The RBWRs also axially segregate the fuel into alternating fissile "seed" regions and fertile "blanket" regions in order to enhance breeding and leakage probability upon coolant voiding. This dissertation focuses on thorium design variants of the RBWR: the self-sufficient RBWR-SS and the RBWR-TR, which consumes reprocessed transuranic (TRU) waste from PWR used nuclear fuel. These designs were based off of the Hitachi-designed RBWR-AC and the RBWR-TB2, respectively, which use depleted uranium (DU) as the primary fertile fuel. The DU-fueled RBWRs use a pair of axially segregated seed sections in order to achieve a negative void coefficient; however, several concerns were raised with this multi-seed approach, including difficulty with controlling the reactor and unacceptably high axial power peaking. Since thorium-uranium fuel tends to have much more negative void feedback than uranium-plutonium fuels, the thorium RBWRs were designed to use a single elongated seed to avoid these issues. A series of parametric studies were performed in order to find the design space for the thorium RBWRs, and optimize the designs while meeting the required safety constraints. The RBWR-SS was optimized to maximize the discharge burnup, while the RBWR-TR was optimized to maximize the TRU transmutation rate. These parametric studies were performed on an assembly level model using the MocDown simulator, which calculates an equilibrium fuel composition with a specified reprocessing scheme. A full core model was

  1. Analysis of mixed oxide fuel critical experiments with neutronics analysis codes for boiling water reactors

    International Nuclear Information System (INIS)

    Tamitani, Masashi; Maruyama, Hiromi; Ishii, Kazuya; Izutsu, Sadayuki; Yamaguchi, Masao

    2000-01-01

    Critical experiments of UO 2 and full mixed oxide (MOX) fuel cores conducted at the Tank-type Critical Assembly (TCA) were analyzed using BWR design-purpose codes HINES and CERES with ENDF/B files and Monte Carlo fine analysis codes VMONT and MVP with the JENDL-3.2 library. The averaged values of the multiplication factors calculated with HINES/CERES, VMONT and MVP agreed with those of experiments within 0.3%Δk. The values by the design-purpose codes showed a small difference of 0.1%Δk between UO 2 and MOX cores. Monte Carlo code results showed that the JENDL-3.2 library had a tendency to overestimate the multiplication factors of UO 2 cores by about 0.3%Δk compared with those values of MOX cores. The root mean square errors of calculated power distributions were less than 1% for HINES/CERES and VMONT. These results showed that (1) the accuracy of these codes when applied to full MOX cores was almost the same as their accuracy for UO 2 cores, which confirmed the accuracy of present core design codes for full MOX cores; and (2) the accuracy of the 190-energy-group Monte Carlo calculation code VMONT was almost the same as that of the continuous-energy Monte Carlo calculation code MVP. (author)

  2. Preliminary evaluation of SACI-O code for the analysis of transients in a pressurized water reactor core

    International Nuclear Information System (INIS)

    Soares, P.A.; Sirimarco, L.F.; Veloso, M.A.F.

    1979-03-01

    SACI-O is a computer code which deals with the dynamics of the core of pressurized light water reactors (PWR). Its applicability is determined by the evaluation of the models used in the simulation of the several phenomena and processes which occur in the core during transients. This report presents a comparison between the results obtained with SACI-O and those presented in the Final Safety Analysis Report (FSAR) of Angra dos Reis Nuclear Station, Unit 1. Although some data used in the calculations done by Westinghouse are not known, there was a good agreement between the mentioned results. (Author) [pt

  3. KIT multi-physics tools for the analysis of design and beyond design basis accidents of light water reactors

    International Nuclear Information System (INIS)

    Sanchez, Victor Hugo; Miassoedov, Alexei; Steinbrueck, M.; Tromm, W.

    2016-01-01

    This paper describes the KIT numerical simulation tools under extension and validation for the analysis of design and beyond design basis accidents (DBA) of Light Water Reactors (LWR). The description of the complex thermal hydraulic, neutron kinetics and chemo-physical phenomena going on during off-normal conditions requires the development of multi-physics and multi-scale simulations tools which are fostered by the rapid increase in computer power nowadays. The KIT numerical tools for DBA and beyond DBA are validated using experimental data of KIT or from abroad. The developments, extensions, coupling approaches and validation work performed at KIT are shortly outlined and discussed in this paper.

  4. KIT multi-physics tools for the analysis of design and beyond design basis accidents of light water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez, Victor Hugo; Miassoedov, Alexei; Steinbrueck, M.; Tromm, W. [Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen (Germany)

    2016-05-15

    This paper describes the KIT numerical simulation tools under extension and validation for the analysis of design and beyond design basis accidents (DBA) of Light Water Reactors (LWR). The description of the complex thermal hydraulic, neutron kinetics and chemo-physical phenomena going on during off-normal conditions requires the development of multi-physics and multi-scale simulations tools which are fostered by the rapid increase in computer power nowadays. The KIT numerical tools for DBA and beyond DBA are validated using experimental data of KIT or from abroad. The developments, extensions, coupling approaches and validation work performed at KIT are shortly outlined and discussed in this paper.

  5. Nonlinear dynamic response analysis in piping system for a loss of coolant accident in primary loop of pressurized water reactor

    International Nuclear Information System (INIS)

    Zhang Xiwen; He Feng; Hao Pengfei; Wang Xuefang

    2000-01-01

    Based on the elaborate force and moment analysis with characteristics method and control-volume integrating method for the piping system of primary loop under pressurized water reactor' loss of coolant accident (LOCA) conditions, the nonlinear dynamic response of this system is calculated by the updated Lagrangian formulation (ADINA code). The piping system and virtual underpinning are specially processed, the move displacement of the broken pipe with time is accurately acquired, which is very important and useful for the design of piping system and virtual underpinning

  6. Lifetime Neutron Fluence Analysis of the Ringhals Unit 1 Boiling Water Reactor

    Directory of Open Access Journals (Sweden)

    Kulesza Joel A.

    2016-01-01

    Full Text Available This paper describes a neutron fluence assessment considering the entire commercial operating history (35 cycles or ∼ 25 effective full power years of the Ringhals Unit 1 reactor pressure vessel beltline region. In this assessment, neutron (E >1.0 MeV fluence and iron atom displacement distributions were calculated on the moderator tank and reactor pressure vessel structures. To validate those calculations, five in-vessel surveillance chain dosimetry sets were evaluated as well as material samples taken from the upper core grid and wide range neutron monitor tubes to act as a form of retrospective dosimetry. During the analysis, it was recognized that delays in characterizing the retrospective dosimetry samples reduced the amount of reactions available to be counted and complicated the material composition determination. However, the comparisons between the surveillance chain dosimetry measurements (M and calculated (C results show similar and consistent results with the linear average M/C ratio of 1.13 which is in good agreement with the resultant least squares best estimate (BE/C ratios of 1.10 for both neutron (E >1.0 MeV flux and iron atom displacement rate.

  7. Thermal analysis experiment for elucidating sodium-water chemical reaction mechanism in steam generator of sodium-cooled fast reactor

    International Nuclear Information System (INIS)

    Kikuchi, Shin; Kurihara, Akikazu; Ohshima, Hiroyuki

    2012-01-01

    For the purpose of elucidating the mechanism of the sodium-water surface reaction in a steam generator of sodium-cooled fast reactors, kinetic study of the sodium (Na)-sodium hydroxide (NaOH) reaction has been carried out by using Differential Thermal Analysis (DTA) technique. The parameters, including melting points of Na and NaOH, phase transition temperature of NaOH, Na-NaOH reaction temperature, and decomposition temperature of sodium hydride (NaH) have been identified from DTA curves. Based on the measured reaction temperature, rate constant of sodium monoxide (Na 2 O) generation was obtained. Thermal analysis results indicated that Na 2 O generation at the secondary overall reaction should be considered during the sodium-water reaction. (author)

  8. System-Level Heat Transfer Analysis, Thermal- Mechanical Cyclic Stress Analysis, and Environmental Fatigue Modeling of a Two-Loop Pressurized Water Reactor. A Preliminary Study

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Subhasish [Argonne National Lab. (ANL), Argonne, IL (United States); Soppet, William [Argonne National Lab. (ANL), Argonne, IL (United States); Majumdar, Saurin [Argonne National Lab. (ANL), Argonne, IL (United States); Natesan, Ken [Argonne National Lab. (ANL), Argonne, IL (United States)

    2015-01-03

    This report provides an update on an assessment of environmentally assisted fatigue for light water reactor components under extended service conditions. This report is a deliverable in April 2015 under the work package for environmentally assisted fatigue under DOE's Light Water Reactor Sustainability program. In this report, updates are discussed related to a system level preliminary finite element model of a two-loop pressurized water reactor (PWR). Based on this model, system-level heat transfer analysis and subsequent thermal-mechanical stress analysis were performed for typical design-basis thermal-mechanical fatigue cycles. The in-air fatigue lives of components, such as the hot and cold legs, were estimated on the basis of stress analysis results, ASME in-air fatigue life estimation criteria, and fatigue design curves. Furthermore, environmental correction factors and associated PWR environment fatigue lives for the hot and cold legs were estimated by using estimated stress and strain histories and the approach described in NUREG-6909. The discussed models and results are very preliminary. Further advancement of the discussed model is required for more accurate life prediction of reactor components. This report only presents the work related to finite element modelling activities. However, in between multiple tensile and fatigue tests were conducted. The related experimental results will be presented in the year-end report.

  9. Severe transient analysis of the Penn State University Advanced Light Water Reactor

    International Nuclear Information System (INIS)

    Borkowski, J.A.

    1988-08-01

    The Penn State University Advanced Light Water Reactor (PSU ALWR) incorporates various passive and active ultra-safe features, such as continuous online injection and letdown for pressure control, a raised-loop primary system for enhanced natural circulation, a dedicated primary reservoir for enhanced thermal hydraulic control, and a secondary shutdown turbine. Because of the conceptual design basis of the project, the dynamic system modeling was to be performed using a code with a high degree of flexibility. For this reason the modeling has been performed with the Modular Modeling System (MMS). The basic design and normal transients have been performed successfully with MMS. However, the true test of an inherently safe concept lies in its response to more brutal transients. Therefore, such a demonstrative transient is chosen for the PSU ALWR: a turbine trip and reactor scram, concurrent with total loss of offsite ac power. Diesel generators are likewise unavailable. This transient demonstrates the utility of the pressure control system, the shutdown turbine generator, and the enhanced natural circulation of the PSU ALWR. The low flow rates, low pressure drops, and large derivative states encountered in such a transient pose special problems for the modeler and for MMS. The results of the transient analyses indicate excellent performance by the PSU ALWR in terms of inherently safe operation. The primary coolant enters full natural circulation, and removes all decay heat through the steam generators. Further, the steam generators continually supply sufficient steam to the shutdown power system, despite the abrupt changeover to the auxiliary feedwater system. Finally, even with coincident failures in the pressurization system, the primary repressurizes to near-normal values, without overpressurization. No core boiling or uncovery is predicted, and consequently fuel damage is avoided. 17 refs., 19 figs., 4 tabs

  10. Civacuve analysis software for mis machine examination of pressurized water reactor vessels

    International Nuclear Information System (INIS)

    Dubois, Ph.; Gagnor, A.

    2001-01-01

    The product software CIVACUVE is used by INTERCONTROLE for the analysis of UT examinations, for detection, performed by the In-Service Inspection Machine (MIS) of the vessels of nuclear power plants. This software is based on an adaptation of an algorithm of SEGMENTATION (CEA CEREM), which is applied prior to any analysis. It is equipped with tools adapted to industrial use. It allows to: - perform image analysis thanks to advanced graphic tools (Zooms, True Bscan, 'contour' selection...), - backup of all data in a database (complete and transparent backup of all informations used and obtained during the different analysis operations), - connect PC to the Database (export of Reports and even of segmented points), - issue Examination Reports, Operating Condition Sheets, Sizing curves... - and last, perform a graphic and numerical comparison between different inspections of the same vessel. Used in Belgium and France on different kind of reactor vessels, CIVACUVE has allowed to show that the principle of SEGMENTATION can be adapted to detection exams. The use of CIVACUVE generates a important time gain as well as the betterment of quality in analysis. Wide data opening toward PC's allows a real flexibility with regard to client's requirements and preoccupations

  11. Analysis of neutronics benchmarks for the utilization of mixed oxide fuel in light water reactor using DRAGON code

    International Nuclear Information System (INIS)

    Nithyadevi, Rajan; Thilagam, L.; Karthikeyan, R.; Pal, Usha

    2016-01-01

    Highlights: • Use of advanced computational code – DRAGON-5 using advanced self shielding model USS. • Testing the capability of DRAGON-5 code for the analysis of light water reactor system. • Wide variety of fuels LEU, MOX and spent fuel have been analyzed. • Parameters such as k ∞ , one, few and multi-group macroscopic cross-sections and fluxes were calculated. • Suitability of deterministic methodology employed in DRAGON-5 code is demonstrated for LWR. - Abstract: Advances in reactor physics have led to the development of new computational technologies and upgraded cross-section libraries so as to produce an accurate approximation to the true solution for the problem. Thus it is necessary to revisit the benchmark problems with the advanced computational code system and upgraded cross-section libraries to see how far they are in agreement with the earlier reported values. Present study is one such analysis with the DRAGON code employing advanced self shielding models like USS and 172 energy group ‘JEFF3.1’ cross-section library in DRAGLIB format. Although DRAGON code has already demonstrated its capability for heavy water moderator systems, it is now tested for light water reactor (LWR) and fast reactor systems. As a part of validation of DRAGON for LWR, a VVER computational benchmark titled “Neutronics Benchmarks for the Utilization of Mixed-Oxide Fuel-Volume 3” submitted by the Russian Federation has been taken up. Presently, pincell and assembly calculations are carried out considering variation in fuel temperature (both fresh and spent), moderator temperatures and boron content in the moderator. Various parameters such as infinite neutron multiplication (k ∞ ) factor, one group integrated flux, few group homogenized cross-sections (absorption, nu-fission) and reaction rates (absorption, nu-fission) of individual isotopic nuclides are calculated for different reactor states. Comparisons of results are made with the reported Monte Carlo

  12. Analysis of Chemical Species Along the Process Stages of Demineralized Water Production at Reactor G.A. Siwabessy

    International Nuclear Information System (INIS)

    Nurul Huda; Setyono; Sumijanto; Diah E L; Ihsan, M.

    2003-01-01

    The tank water of multipurpose reactor G.A. Siwabessy is supplied from a water demineralization plant which works based on ion exchange processes. Controlling the quality of the water produced by this plant is one of many factor which effects the quality of the reactor tank water. This experiment resulted a characteristic pattern data of water and its chemical species content along process stages of demineralized water production at the reactor. The experiment results showed that the pH (degree of acidity), electric conductivity and dissolved cation (Ca 2+ , Mg 2+ ) lied at the permissible range. The value fluctuation of these variables showed a right pattern. It can be concluded that the water produced by this plant met the requirements to be used as primary cooling water of the reactor. However, the value of pH is still too low although it lied in the tolerance limit. Beside that, it isn't all of water impurities concentration can be predicted by the value of pH and conductivity. Therefore, the determination of water quality for the need of reactor tank water quiet to be done continually to keep the water condition in order to meet the quality required, and to evaluate and developed its production technology. (author)

  13. Thorium in heavy water reactors

    International Nuclear Information System (INIS)

    Andersson, G.

    1984-12-01

    Advanced heavy water reactors can provide energy on a global scale beyond the foreseeable future. Their economic and safety features are promising: 1. The theoretical feasibility of the Self Sufficient Equilibrium Thorium (SSET) concept is confirmed by new calculations. Calculations show that the adjuster rod geometry used in natural uranium CANDU reactors is adequate also for SSET if the absorption in the rods is graded. 2. New fuel bundle designs can permit substantially higher power output from a CANDU reactor. The capital cost for fuel, heavy water and mechanical equipment can thereby be greatly reduced. Progress is possible with the traditional fuel material oxide, but the use of thorium metal gives much larger effects. 3. A promising long range possibility is to use pressure tanks instead of pressure tubes. Heat removal from the core is facilitated. Negative temperature and void coefficients provide inherent safety features. Refuelling under power is no longer needed if control by moderator displacement is used. Reduced quality demand on the fuel permits lower fuel costs. The neutron economy is improved by the absence of pressure and clandria tubes and also by the use of radial and axial blankets. A modular seed blanket design can reduce the Pa losses. The experience from construction of tank designs is good e.g. AAgesta, Attucha. It is now also possible to utilize technology from LWR reactors and the implementation of advanced heavy water reactors would thus be easier than HTR or LMFBR systems. (Author)

  14. Analysis of the rotation accident of assemblies in boiling water reactors

    International Nuclear Information System (INIS)

    Becerril-Gonzalez M, J. J.; Fuentes M, L.; Castillo M, J. A.; Ortiz S, J. J.; Perusquia de Cueto, R.

    2012-10-01

    For this work was analyzed the impact that would cause the load of a rotated fuel assembly in the behaviour of the core in the Cycle 14 of the Unit 1 of the nuclear power plant of Laguna Verde. To carry out this analysis the code Simulate-3 was used, with which was possible to analyze the behavior of the effective multiplication factor and the thermal limits (MAPRAT, MFLPD and MFLCPR). The rotation of fuel assemblies to 90, 180 and 270 grades was analyzed with regard to the design position, with 0, 1, 2 and 3 burnt cycles for these assemblies. The results show that the thermal limits remain inside the allowed values, therefore if this accident type happened the reactor could continue operating in a sure way. (Author)

  15. Simulation of reactor noise analysis measurement for light-water critical assembly TCA using MCNP-DSP

    International Nuclear Information System (INIS)

    Yamamoto, Toshihiro; Sakurai, Kiyoshi; Tonoike, Kotaro; Miyoshi, Yoshinori

    2001-01-01

    Reactor noise analysis methods using Monte Carlo technique have been proposed and developed in the field of nuclear criticality safety. The Monte Carlo simulation for noise analysis can be made by simulating physical phenomena in the course of neutron transport in a nuclear fuel as practically as possible. MCNP-DSP was developed by T. Valentine of ORNL for this purpose and it is a modified version of MCNP-4A. The authors applied this code to frequency analysis measurements performed in light-water critical assembly TCA. Prompt neutron generation times for critical and subcritical cores were measured by doing the frequency analysis of detector signals. The Monte Carlo simulations for these experiments were carried out using MCNP-DSP, and prompt neutron generation times were calculated. (author)

  16. Nuclear Reactor Engineering Analysis Laboratory

    International Nuclear Information System (INIS)

    Carlos Chavez-Mercado; Jaime B. Morales-Sandoval; Benjamin E. Zayas-Perez

    1998-01-01

    The Nuclear Reactor Engineering Analysis Laboratory (NREAL) is a sophisticated computer system with state-of-the-art analytical tools and technology for analysis of light water reactors. Multiple application software tools can be activated to carry out different analyses and studies such as nuclear fuel reload evaluation, safety operation margin measurement, transient and severe accident analysis, nuclear reactor instability, operator training, normal and emergency procedures optimization, and human factors engineering studies. An advanced graphic interface, driven through touch-sensitive screens, provides the means to interact with specialized software and nuclear codes. The interface allows the visualization and control of all observable variables in a nuclear power plant (NPP), as well as a selected set of nonobservable or not directly controllable variables from conventional control panels

  17. TRACG-CFD analysis of ESBWR reactor water cleanup shutdown cooling system mixing coefficient

    International Nuclear Information System (INIS)

    Gallardo, J.; Marquino, W.; Mistreanu, A.; Yang, J.

    2015-09-01

    The ESBWR is a 1520 nominal [M We] Generation III+ natural circulation boiling water reactor designed to high levels of safety utilizing features that have been successfully used before in operating BWRs, as well as standard features common to A BWR. In September of 2014, the US NRC has certified the ESBWR design for use in the USA. The RWCU/Sdc is an auxiliary system for the ESBWR nuclear island. Basic functions it performs include purifying the reactor coolant during normal operation and shutdown and providing shutdown cooling and cooldown to cold shutdown conditions. The performance of the RWCU system during shutdown cooling is directly related to the temperature of the water removed through the outlets, which is coupled with the vessel and F W temperatures through a thermal mixing coefficient. The complex three-dimensional (3-D) geometry of the BWR downcomer and lower plenum has a great impact on the flow mixing. Only a fine mesh technique like CFD can predict the 3-D temperature distribution in the RPV during shutdown and provide the RWCU/Sdc system inlet temperature. Plant shutdown is an unsteady event by nature and was modeled as a succession of CFD steady-state simulations. It is required to establish the mixing coefficient (which is a function of the heat balance and the core flow) during the operation of the RWCU system in the multiple shutdown cooling modes, and therefore a range of core flows needs to be estimated using quasi steady states obtained with TRACG. The lower end of that range is obtained from a system with minimal power decay heat and core flow; while the higher end corresponds to the power at the beginning of RWCU/Sdc operation when the cooldown is transferred to the RWCU/Sdc after the initial depressurization via the turbine bypass valves. Because the ESBWR RWCU/Sdc return and suction designs provide good mixing, the uniform mixing energy balance was found to be an adequate alternative for deriving the mixing coefficient. The CFD mass flow

  18. TRACG-CFD analysis of ESBWR reactor water cleanup shutdown cooling system mixing coefficient

    Energy Technology Data Exchange (ETDEWEB)

    Gallardo, J. [UNAM, Facultad de Ingenieria, Ciudad Universitaria, 04510 Ciudad de Mexico (Mexico); Marquino, W.; Mistreanu, A.; Yang, J., E-mail: euqrop@hotmail.com [General Electric Hitachi Nuclear Energy, Wilmington, 28401 North Carolina (United States)

    2015-09-15

    The ESBWR is a 1520 nominal [M We] Generation III+ natural circulation boiling water reactor designed to high levels of safety utilizing features that have been successfully used before in operating BWRs, as well as standard features common to A BWR. In September of 2014, the US NRC has certified the ESBWR design for use in the USA. The RWCU/Sdc is an auxiliary system for the ESBWR nuclear island. Basic functions it performs include purifying the reactor coolant during normal operation and shutdown and providing shutdown cooling and cooldown to cold shutdown conditions. The performance of the RWCU system during shutdown cooling is directly related to the temperature of the water removed through the outlets, which is coupled with the vessel and F W temperatures through a thermal mixing coefficient. The complex three-dimensional (3-D) geometry of the BWR downcomer and lower plenum has a great impact on the flow mixing. Only a fine mesh technique like CFD can predict the 3-D temperature distribution in the RPV during shutdown and provide the RWCU/Sdc system inlet temperature. Plant shutdown is an unsteady event by nature and was modeled as a succession of CFD steady-state simulations. It is required to establish the mixing coefficient (which is a function of the heat balance and the core flow) during the operation of the RWCU system in the multiple shutdown cooling modes, and therefore a range of core flows needs to be estimated using quasi steady states obtained with TRACG. The lower end of that range is obtained from a system with minimal power decay heat and core flow; while the higher end corresponds to the power at the beginning of RWCU/Sdc operation when the cooldown is transferred to the RWCU/Sdc after the initial depressurization via the turbine bypass valves. Because the ESBWR RWCU/Sdc return and suction designs provide good mixing, the uniform mixing energy balance was found to be an adequate alternative for deriving the mixing coefficient. The CFD mass flow

  19. European supercritical water cooled reactor

    International Nuclear Information System (INIS)

    Schulenberg, T.; Starflinger, J.; Marsault, P.; Bittermann, D.; Maraczy, C.; Laurien, E.; Lycklama a Nijeholt, J.A.; Anglart, H.; Andreani, M.; Ruzickova, M.; Toivonen, A.

    2011-01-01

    Highlights: → The HPLWR reactor design is an example of a supercritical water cooled reactor. → Cladding material tests have started but materials are not yet satisfactory. → Numerical heat transfer predictions are promising but need further validation. → The research project is most suited for nuclear education and training. - Abstract: The High Performance Light Water Reactor (HPLWR), how the European Supercritical Water Cooled Reactor is called, is a pressure vessel type reactor operated with supercritical water at 25 MPa feedwater pressure and 500 o C average core outlet temperature. It is designed and analyzed by a European consortium of 10 partners and 3 active supporters from 8 Euratom member states in the second phase of the HPLWR project. Most emphasis has been laid on a core with a thermal neutron spectrum, consisting of small fuel assemblies in boxes with 40 fuel pins each and a central water box to improve the neutron moderation despite the low coolant density. Peak cladding temperatures of the fuel rods have been minimized by heating up the coolant in three steps with intermediate coolant mixing. The containment design with its safety and residual heat removal systems is based on the latest boiling water reactor concept, but with different passive high pressure coolant injection systems to cause a forced convection through the core. The design concept of the steam cycle is indicating the envisaged efficiency increase to around 44%. Moreover, it provides the constraints to design the components of the balance of the plant. The project is accompanied by numerical studies of heat transfer of supercritical water in fuel assemblies and by material tests of candidate cladding alloys, performed by the consortium and supported by additional tests of the Joint Research Centre of the European Commission. Besides the scientific and technical progress, the HPLWR project turned out to be most successful in training the young generation of nuclear engineers

  20. EPRI program in water reactor safety

    International Nuclear Information System (INIS)

    Loewenstein, W.B.; Gelhaus, F.; Gopalakrishnan, A.

    1975-01-01

    The basis for EPRI's water reactor safety program is twofold. First is compilation and development of fundamental background data necessary for quantified light-water reactor (LWR) safety assurance appraisals. Second is development of realistic and experimentally bench-marked analytical procedures. The results are expected either to confirm the safety margins in current operating parameters, and to identify overly conservative controls, or, in some cases, to provide a basis for improvements to further minimize uncertainties in expected performance. Achievement of these objectives requires the synthesis of related current and projected experimental-analytical projects toward establishment of an experimentally-based analysis for the assurance of safety for LWRs

  1. Water Reactor Fuel Performance Meeting 2008

    International Nuclear Information System (INIS)

    2008-10-01

    This meeting contains articles of the Water Reactor Fuel Performance Meeting 2008 of Korean Nuclear Society, Atomic Energy Society of Japan, Chinese Nuclear Society, European Nuclear Society and American Nuclear Society. It was held on Oct. 19-23, 2008 in Seoul, Korea and subject of Meeting is 'New Clear' Fuel - A green energy solution. This proceedings is comprised of 5 tracks. The main topic titles of track are as follows: Advances in water reactor fuel technology, Fuel performance and operational experience, Transient fuel behavior and safety-related issues, Fuel cycle, spent fuel storage and transportations and Fuel modeling and analysis. (Yi, J. H.)

  2. Standard Practice for Analysis and Interpretation of Light-Water Reactor Surveillance Results, E706(IA)

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2001-01-01

    1.1 This practice covers the methodology, summarized in Annex A1, to be used in the analysis and interpretation of neutron exposure data obtained from LWR pressure vessel surveillance programs; and, based on the results of that analysis, establishes a formalism to be used to evaluate present and future condition of the pressure vessel and its support structures (1-70). 1.2 This practice relies on, and ties together, the application of several supporting ASTM standard practices, guides, and methods (see Master Matrix E 706) (1, 5, 13, 48, 49). In order to make this practice at least partially self-contained, a moderate amount of discussion is provided in areas relating to ASTM and other documents. Support subject areas that are discussed include reactor physics calculations, dosimeter selection and analysis, and exposure units. Note 1—(Figure 1 is deleted in the latest update. The user is refered to Master Matrix E 706 for the latest figure of the standards interconnectivity). 1.3 This practice is restri...

  3. Economic analysis of grid and wire wrap supported hydride and oxide fueled pressurized water reactors

    International Nuclear Information System (INIS)

    Shuffler, C.; Diller, P.; Malen, J.; Todreas, N.; Greenspan, E.; Petrovic, B.

    2009-01-01

    An economic analysis is performed to calculate the levelized unit cost of electricity (COE) for a pressurized water reactor (PWR) retrofitted with a range of potential U (45 wt.%)-ZrH 1.6 hydride and UO 2 oxide fueled geometries (i.e., combinations of rod diameter and pitch) supported by traditional grid spacers (square array) and wire wrap spacers (hexagonal array). The time frame considered in computing the COE is the remaining plant life, beginning at the time of retrofit. The goals of the analysis are twofold: (1) comparing the economic performance of UO 2 and U-ZrH 1.6 fuels for a range of retrofitted geometries supported by grid and wire wrap spacers; and (2) investigating the potential economic benefits for nuclear utilities considering retrofitting new fuels and/or geometries into existing PWR pressure vessels. Fuel cycle, operations and maintenance (O and M), and capital costs are considered. The economic performance of U-ZrH 1.6 and UO 2 fuels is found to be similar, with UO 2 fueled designs providing a slight advantage when supported by grid spacers, and U-ZrH 1.6 providing a slight advantage when supported by wire wrap spacers. These small differences in cost, however, are within the bounds of uncertainty of this study and are not believed to provide a strong economic argument for the use of one fuel type over the other. To demonstrate the potential economic benefits of retrofitted designs to nuclear utilities, two different comparisons are made. The first compares the COE for retrofitted designs with the COE for a reference PWR, assumed to have operated long enough to recuperate its initial capital investment. The costs for this reference PWR reflect the 'do-nothing' case for current plant owners whose primary expenditures are fuel cycle and O and M costs. The second comparison introduces a different reference PWR that includes the costs to operate an existing unit and the cost to purchase power from a newly constructed PWR, for comparison with

  4. Development of thermal-hydraulic analysis methodology for multiple modules of water-cooled breeder blanket in fusion DEMO reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Geon-Woo; Lee, Jeong-Hun [Department of Nuclear Engineering, Seoul National University 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Cho, Hyoung-Kyu, E-mail: chohk@snu.ac.kr [Department of Nuclear Engineering, Seoul National University 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Park, Goon-Cherl [Department of Nuclear Engineering, Seoul National University 1 Gwanak-ro, Gwanak-gu, Seoul 151-744 (Korea, Republic of); Im, Kihak [National Fusion Research Institute, 169-148, Yuseong-gu, Daejeon 305-806 (Korea, Republic of)

    2016-02-15

    Highlights: • A methodology to simulate the K-DEMO blanket system was proposed. • The results were compared with the CFD, to verify the prediction capability of MARS. • 46 Blankets in a single sector in K-DEMO were simulated using MARS-KS. • Supervisor program was devised to handle each blanket module individually. • The calculation results showed the flow rates, pressure drops, and temperatures. - Abstract: According to the conceptual design of the fusion DEMO reactor proposed by the National Fusion Research Institute of Korea, the water-cooled breeding blanket system incorporates a total of 736 blanket modules. The heat flux and neutron wall loading to each blanket module vary along their poloidal direction, and hence, thermal analysis for at least one blanket sector is required to confirm that the temperature limitations of the materials are satisfied in all the blanket modules. The present paper proposes a methodology of thermal analysis for multiple modules of the blanket system using a nuclear reactor thermal-hydraulic analysis code, MARS-KS. In order to overcome the limitations of the code, caused by the restriction on the number of computational nodes, a supervisor program was devised, which handles each blanket module separately at first, and then corrects the flow rate, considering pressure drops that occur in each module. For a feasibility test of the proposed methodology, 46 blankets in a single sector were simulated; the calculation results of the parameters, such as mass flow, pressure drops, and temperature distribution in the multiple blanket modules showed that the multi-module analysis method can be used for efficient thermal-hydraulic analysis of the fusion DEMO reactor.

  5. Hydrogen water chemistry for boiling water reactors

    International Nuclear Information System (INIS)

    Cowan, R.L.; Cowan, R.L.; Kass, J.N.; Law, R.J.

    1985-01-01

    Hydrogen Water Chemistry (HWC) is now a practical countermeasure for intergranular stress corrosion cracking (IGSCC) susceptibility of reactor structural materials in Boiling Water Reactors (BWRs). The concept, which involves adding hydrogen to the feedwater to suppress the formation of oxidizing species in the reactor, has been extensively studied in both the laboratory and in several operating plants. The Dresden-2 Unit of Commonwealth Edison Company has completed operation for one full 18-month fuel cycle under HWC conditions. The specifications, procedures, equipment, instrumentation and surveillance programs needed for commercial application of the technology are available now. This paper provides a review of the benefits to be obtained, the side affects, and the special operational considerations needed for commercial implementation of HWC. Technological and management ''Lessons Learned'' from work conducted to date are also described

  6. Stress analysis of pressurized water reactor steam generator tube denting phenomena. Interim report

    International Nuclear Information System (INIS)

    Thomas, J.M.; Cipolla, R.C.; Ranjan, G.V.; Derbalian, G.

    1978-07-01

    In some Pressurized Water Reactor (PWR) steam generators, a corrosion product has formed on the carbon steel support plate in the crevice between the tube and support plate. The corrosion product occupies more volume than the original metal; the tube-to-support plate crevice volume is thus consumed with corrosion product, and further corrosive action results in a radially inward force on the tube and a radially outward force on the corroding support plate. This has resulted in indentation (''denting'') of the tube, accompanied by occasional cracking. Large in-plane deformation and cracking of support plates has also been observed in the most severely affected plants along with some serious side effects, such as deformation and cracking of inner row tube U-bends caused by support plate movement. Mechanical aspects of the tube denting phenomena have been studied using analytical models. The models used ranged from closed form analytical solutions to state-of-the-art numerical elastic-plastic computer program for moderate strains. It was found that tube dents, such as those observed in operating steam generators, are associated with yielding of both the tubes and support plates. Also studied were the stresses in tube U-bends caused by support plate flow slot deformation

  7. Thermal-hydraulic and neutronic analysis of pressurized water reactor cores

    International Nuclear Information System (INIS)

    Alves, C.H.

    1982-01-01

    A computational code, named CANAL2, was developed for the simulation of the steady-state and transient behaviour of a Pressurized Water Reactor core. The conservation equations for the control volumes are obtained by area-averaging of the two-fluid model conservation equations and reducing them to the drift-flux model formulation. The resulting equations are aproximated by finite differences and solved by a marching-type numerical scheme. The model takes into account the exchange of mass, momentum and energy between adjacent subchannels of a fuel bundle. Turbulent mixing and diversion crossflow are considered. Correlations are provided for several heat trans and flow regimes and selected according to the local conditons. During transients core power can be evaluated by a point-Kinetics model. Fuel and coolant temperatures are feedback to the neutronics. The heat conduction equation is solved in the fuel using the Crank-Nicolson scheme. Temperature-dependent correlations are provided for the fuel and cladding thermal conductivities. Several runs were made with the code CANAL2 using the available experimental and calculated data in the open literature. Results indicate that CANAL2 is a good calculational tool for the thermal-hydraulics of PWR cores. A few refinements will make the code useful for design. (Author) [pt

  8. SunFast: A sun workstation based, fuel analysis scoping tool for pressurized water reactors

    International Nuclear Information System (INIS)

    Bohnhoff, W.J.

    1991-05-01

    The objective of this research was to develop a fuel cycle scoping program for light water reactors and implement the program on a workstation class computer. Nuclear fuel management problems are quite formidable due to the many fuel arrangement options available. Therefore, an engineer must perform multigroup diffusion calculations for a variety of different strategies in order to determine an optimum core reload. Standard fine mesh finite difference codes result in a considerable computational cost. A better approach is to build upon the proven reliability of currently available mainframe computer programs, and improve the engineering efficiency by taking advantage of the most useful characteristic of workstations: enhanced man/machine interaction. This dissertation contains a description of the methods and a user's guide for the interactive fuel cycle scoping program, SunFast. SunFast provides computational speed and accuracy of solution along with a synergetic coupling between the user and the machine. It should prove to be a valuable tool when extensive sets of similar calculations must be done at a low cost as is the case for assessing fuel management strategies. 40 refs

  9. Probabilistic fracture mechanics analysis for leak-before-break evaluation of light water reactor's piping

    International Nuclear Information System (INIS)

    Yoshimura, Shinobu; Yagawa, Genki; Akiba, Hiroshi; Fujioka, Terutaka.

    1997-01-01

    This paper describes Probabilistic Fracture Mechanics (PFM) analyses for quantitative evaluation of the likelihood of Leak-Before-Break (LBB) of Light Water Reactor's (LWR's) piping. The PFM analyses in general assume probabilistic distributions of initial crack size, applied stress cycles, crack growth laws, fracture criteria, leakage detection capability, defect inspection capability and so on. Referring to the deterministic procedure for LBB evaluation, most appropriate PFM models and data for LBB evaluation are discussed. Here the LBB index is newly proposed in order to quantitatively evaluate the likelihood of LBB. Through intensive sensitivity analyses, it is clarified that the LBB is more likely to occur for larger diameter pipe; the performance of leakage detection significantly affects the LBB likelihood; the LBB likelihood increases with plant's aging even conservatively assuming leak detection capability; the R6 method (Category 1, Option 1) for fracture criterion gives very conservative results; and In-Service Inspection (ISI) reduces the increase rate of failure probability than the failure probability itself. (author)

  10. Human error probability evaluation as part of reliability analysis of digital protection system of advanced pressurized water reactor - APR 1400

    International Nuclear Information System (INIS)

    Varde, P. V.; Lee, D. Y.; Han, J. B.

    2003-03-01

    A case of study on human reliability analysis has been performed as part of reliability analysis of digital protection system of the reactor automatically actuates the shutdown system of the reactor when demanded. However, the safety analysis takes credit for operator action as a diverse mean for tripping the reactor for, though a low probability, ATWS scenario. Based on the available information two cases, viz., human error in tripping the reactor and calibration error for instrumentations in protection system, have been analyzed. Wherever applicable a parametric study has also been performed

  11. Feasibility assessment of burnup credit in the criticality analysis of shipping casks with boiling water reactor spent fuel

    International Nuclear Information System (INIS)

    Broadhead, B.L.

    1991-08-01

    Considerable interest in the allowance of reactivity credit for the exposure history of power reactor fuel currently exists. This ''burnup credit'' issue has the potential to greatly reduce risk and cost when applied to the design and certification of spent fuel casks used for transportation and storage. Recently, analyses have demonstrated the technical feasibility and estimated the risk and economic incentives for allowing burnup credit in pressurized water reactor (PWR) spent fuel shipping cask applications. This report summarizes the extension of the previous PWR technical feasibility assessment to boiling water reactor (BWR) fuel. This feasibility analysis aims to apply simple methods that adequately characterize the time-dependent isotopic compositions of typical BWR fuel. An initial analysis objective was to identify a simple and reliable method for characterizing BWR spent fuel. Two different aspects of fuel characterization were considered:l first, the generation of burn- up dependent material interaction probabilities; second, the prediction of material inventories over time (depletion). After characterizing the spent fuel at various stages of exposure and decay, three dimensional (3-D) models for an infinite array of assemblies and, in several cases, infinite arrays of assemblies in a typical shipping cask basket were analyzed. Results for assemblies without a basket provide reactivity control requirements as a function of burnup and decay, while results including the basket allow assessment of typical basket configurations to provide sufficient reactivity control for spent BWR fuel. Resulting basket worths and reactivity trends over time are then evaluated to determine whether burnup credit is needed and feasible in BWR applications

  12. Analysis of water hammer-structure interaction in piping system for a loss of coolant accident in primary loop of pressurized water reactor

    International Nuclear Information System (INIS)

    Zhang Xiwen; Yang Jinglong; He Feng; Wang Xuefang

    2000-01-01

    The conventional analysis of water hammer and dynamics response of structure in piping system is divided into two parts, and the interaction between them is neglected. The mechanism of fluid-structure interaction under the double-end break pipe in piping system is analyzed. Using the characteristics method, the numerical simulation of water hammer-structure interaction in piping system is completed based on 14 parameters and 14 partial differential equations of fluid-piping cell. The calculated results for a loss of coolant accident (LOCA) in primary loop of pressurized water reactor show that the waveform and values of pressure and force with time in piping system are different from that of non-interaction between water hammer and structure in piping system, and the former is less than the later

  13. Reactor safety analysis

    International Nuclear Information System (INIS)

    Arien, B.

    1998-01-01

    Risk assessments of nuclear installations require accurate safety and reliability analyses to estimate the consequences of accidental events and their probability of occurrence. The objective of the work performed in this field at the Belgian Nuclear Research Centre SCK-CEN is to develop expertise in probabilistic and deterministic reactor safety analysis. The four main activities of the research project on reactor safety analysis are: (1) the development of software for the reliable analysis of large systems; (2) the development of an expert system for the aid to diagnosis; (3) the development and the application of a probabilistic reactor-dynamics method, and (4) to participate in the international PHEBUS-FP programme for severe accidents. Progress in research during 1997 is described

  14. Reactor water spontaneous circulation structure in reactor pressure vessel

    International Nuclear Information System (INIS)

    Takahashi, Kazumi

    1998-01-01

    The gap between the inner wall of a reactor pressure vessel of a BWR type reactor and a reactor core shroud forms a down comer in which reactor water flows downwardly. A feedwater jacket to which feedwater at low temperature is supplied is disposed at the outer circumference of the pressure vessel just below a gas/water separator. The reactor water at the outer circumferential portion just below the air/water separator is cooled by the feedwater jacket, and the feedwater after cooling is supplied to the feedwater entrance disposed below the feedwater jacket by way of a feedwater introduction line to supply the feedwater to the lower portion of the down comer. This can cool the reactor water in the down comer to increase the reactor water density in the down comer thereby forming strong downward flows and promote the recycling of the reactor water as a whole. With such procedures, the reactor water can be recycled stably only by the difference of the specific gravity of the reactor water without using an internal pump. In addition, the increase of the height of the pressure vessel can be suppressed. (I.N.)

  15. The European pressurized water reactor

    International Nuclear Information System (INIS)

    Leny, J.C.

    1993-01-01

    The present state of development of the European Pressurized Water Reactor (EPR) is outlined. During the so-called harmonization phase, the French and German utilities drew up their common requirements and evaluated the reactor concept developed until then with respect to these requirements. A main result of the harmonization phase was the issue, in September 1993, of the 'EPR Conceptual Safety Feature Review File' to be jointly assessed by the safety authorities in France and Germany. The safety objectives to be met by the EPR are specified in the second part of the paper, and some details of the primary and secondary side safety systems are given. (orig.) [de

  16. Development of a test facility for analyzing transients in supercritical water-cooled reactors by fractional scaling analysis

    Energy Technology Data Exchange (ETDEWEB)

    Roberto, Thiago D., E-mail: thiagodbtr@gmail.com [Instituto de Engenharia Nuclear (IEN/CNEN—RJ), Rua Hélio de Almeida, 75 21941-972, Rio de Janeiro Caixa-Postal: 68550, RJ (Brazil); Silva, Mário A. B. da, E-mail: mabs500@gmail.com [Departamento de Energia Nuclear (CTG/UFPE), Av. Professor Luiz Freire, 1000, Recife 50740-540, PE (Brazil); Lapa, Celso M.F., E-mail: lapa@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN—RJ), Rua Hélio de Almeida, 75 21941-972, Rio de Janeiro Caixa-Postal: 68550, RJ (Brazil)

    2016-01-15

    The feasibility of performing experiments using water under supercritical conditions is limited by technical and financial difficulties. These difficulties can be overcome by using model fluids that are characterized by feasible supercritical conditions, that is, lower critical pressure and critical temperature. Experimental investigations are normally used to determine the conditions under which model fluids reliably represent supercritical fluids under steady-state conditions. A fluid-to-fluid scaling approach has been proposed to determine the model fluids that represent supercritical fluids in a transient state. Recently, a similar technique known as fractional scaling analysis was developed to establish the conditions under which experiments can be performed using models that represent transients in prototypes. This paper presents a fractional scaling analysis application to determine parameters for a test facility in which transient conditions in supercritical water-cooled reactors are simulated by using carbon dioxide as a model fluid, whose critical point conditions are more feasible than those of water. Similarity is obtained between water (prototype) and carbon dioxide (model) by depressurization in a simple vessel. The main parameters required for the construction of a future test facility are obtained using the proposed method.

  17. Development of a test facility for analyzing transients in supercritical water-cooled reactors by fractional scaling analysis

    International Nuclear Information System (INIS)

    Roberto, Thiago D.; Silva, Mário A. B. da; Lapa, Celso M.F.

    2016-01-01

    The feasibility of performing experiments using water under supercritical conditions is limited by technical and financial difficulties. These difficulties can be overcome by using model fluids that are characterized by feasible supercritical conditions, that is, lower critical pressure and critical temperature. Experimental investigations are normally used to determine the conditions under which model fluids reliably represent supercritical fluids under steady-state conditions. A fluid-to-fluid scaling approach has been proposed to determine the model fluids that represent supercritical fluids in a transient state. Recently, a similar technique known as fractional scaling analysis was developed to establish the conditions under which experiments can be performed using models that represent transients in prototypes. This paper presents a fractional scaling analysis application to determine parameters for a test facility in which transient conditions in supercritical water-cooled reactors are simulated by using carbon dioxide as a model fluid, whose critical point conditions are more feasible than those of water. Similarity is obtained between water (prototype) and carbon dioxide (model) by depressurization in a simple vessel. The main parameters required for the construction of a future test facility are obtained using the proposed method.

  18. Input/output manual of light water reactor fuel analysis code FEMAXI-7 and its related codes

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Motoe; Udagawa, Yutaka; Nagase, Fumihisa [Japan Atomic Energy Agency, Nuclear Safety Research Center, Tokai, Ibaraki (Japan); Saitou, Hiroaki [ITOCHU Techno-Solutions Corporation, Tokyo (Japan)

    2013-10-15

    A light water reactor fuel analysis code FEMAXI-7 has been developed, as an extended version from the former version FEMAXI-6, for the purpose of analyzing the fuel behavior in normal conditions and in anticipated transient conditions. Numerous functional improvements and extensions have been incorporated in FEMAXI-7, which are fully disclosed in the code model description published in the form of another JAEA-Data/Code report. The present manual, which is the very counterpart of this description document, gives detailed explanations of files and operation method of FEMAXI-7 code and its related codes, methods of input/output, sample Input/Output, methods of source code modification, subroutine structure, and internal variables in a specific manner in order to facilitate users to perform fuel analysis by FEMAXI-7. (author)

  19. Input/output manual of light water reactor fuel analysis code FEMAXI-7 and its related codes

    International Nuclear Information System (INIS)

    Suzuki, Motoe; Udagawa, Yutaka; Nagase, Fumihisa; Saitou, Hiroaki

    2013-10-01

    A light water reactor fuel analysis code FEMAXI-7 has been developed, as an extended version from the former version FEMAXI-6, for the purpose of analyzing the fuel behavior in normal conditions and in anticipated transient conditions. Numerous functional improvements and extensions have been incorporated in FEMAXI-7, which are fully disclosed in the code model description published in the form of another JAEA-Data/Code report. The present manual, which is the very counterpart of this description document, gives detailed explanations of files and operation method of FEMAXI-7 code and its related codes, methods of input/output, sample Input/Output, methods of source code modification, subroutine structure, and internal variables in a specific manner in order to facilitate users to perform fuel analysis by FEMAXI-7. (author)

  20. Sump water usability analysis following LB LOCA of CANDU 6 reactor

    Energy Technology Data Exchange (ETDEWEB)

    Jang, M.S. [Nuclear Engineering Service & Solution, Daejeon (Korea, Republic of); Kim, S.M. [Korea Hydro and Nuclear Power Co. Ltd., Daejeon (Korea, Republic of); Moon, B.J.; Kim, S.R. [Nuclear Engineering Service & Solution, Daejeon (Korea, Republic of)

    2014-07-01

    This paper focused on the analysis of sump water usability as a source for low pressure emergency core cooling injection in CANDU 6 for large break loss of coolant accident, using GOTHIC-IST code. For a long term cooling, the operation of low pressure recirculation using an emergency core cooling pump is required. To operate an emergency core cooling pump, the net positive suction head of the pump should be satisfied. The maximum permissible temperature of sump water to meet the net positive suction head of an emergency core cooling pump is 87.73{sup o}C. In this study, the temperature and the level of sump water were monitored for the large break loss of coolant accident with malfunction of spray system and local air coolers. For all considered accident cases, the temperature of containment basement water was analyzed to be lower than 87.73{sup o}C and it was possible to operate the low pressure recirculation using an emergency core cooling pump for the most restricted scenario. (author)

  1. The water chemistry of CANDU PHW reactors

    International Nuclear Information System (INIS)

    LeSurf, J.E.

    1978-01-01

    This review will discuss the chemistry of the three major water circuits in a CANDU-PHW reactor, viz., the Primary Heat Transport (PHT) water, the moderator and the boiler water. An important consideration for the PHT chemistry is the control of corrosion and of the transport of corrosion products to minimize the growth of radiation fields. In new reactors the PHT will be allowed to boil, requiring reconsideration of the methods used to radiolytic oxygen and elevate the pH. Separation of the moderator from the PHT in the pressure-tubed CANDU design permits better optimization of the chemistry of each system, avoiding the compromises necessary when the same water serves both functions. Major objectives in moderator chemistry are to control (a) the radiolytic decomposition of D 2 0; (b) the concentration of soluble neutron poisons added to adjust reactivity; and (c) the chemistry of shutdown systems. The boiler water and its feed water are treated to avoid boiler tube corrosion, both during normal operation and when perturbations are caused to the feed by, for example, leaks in the condenser tubes which permit ingress of untreated condenser cooling water. Development of a system for automatic analysis and control of feed water to give rapid, reliable response to abnormal conditions is a novel feature which has been developed for incorporation in future CANDU-PHW reactors. (author)

  2. All heavy metals closed-cycle analysis on water-cooled reactors of uranium and thorium fuel cycle systems

    International Nuclear Information System (INIS)

    Permana, Sidik; Sekimoto, Hiroshi; Waris, Abdul; Takaki, Naoyuki

    2009-01-01

    Uranium and Thorium fuels as the basis fuel of nuclear energy utilization has been used for several reactor types which produce trans-uranium or trans-thorium as 'by product' nuclear reaction with higher mass number and the remaining uranium and thorium fuels. The utilization of recycled spent fuel as world wide concerns are spent fuel of uranium and plutonium and in some cases using recycled minor actinide (MA). Those fuel schemes are used for improving an optimum nuclear fuel utilization as well to reduce the radioactive waste from spent fuels. A closed-cycle analysis of all heavy metals on water-cooled cases for both uranium and thorium fuel cycles has been investigated to evaluate the criticality condition, breeding performances, uranium or thorium utilization capability and void reactivity condition. Water-cooled reactor is used for the basic design study including light water and heavy water-cooled as an established technology as well as commercialized nuclear technologies. A developed coupling code of equilibrium fuel cycle burnup code and cell calculation of SRAC code are used for optimization analysis with JENDL 3.3 as nuclear data library. An equilibrium burnup calculation is adopted for estimating an equilibrium state condition of nuclide composition and cell calculation is performed for calculating microscopic neutron cross-sections and fluxes in relation to the effect of different fuel compositions, different fuel pin types and moderation ratios. The sensitivity analysis such as criticality, breeding performance, and void reactivity are strongly depends on moderation ratio and each fuel case has its trend as a function of moderation ratio. Heavy water coolant shows better breeding performance compared with light water coolant, however, it obtains less negative or more positive void reactivity. Equilibrium nuclide compositions are also evaluated to show the production of main nuclides and also to analyze the isotopic composition pattern especially

  3. Pressurized water reactor inspection procedures

    International Nuclear Information System (INIS)

    Heinrich, D.; Mueller, G.; Otte, H.J.; Roth, W.

    1998-01-01

    Inspections of the reactor pressure vessels of pressurized water reactors (PWR) so far used to be carried out with different central mast manipulators. For technical reasons, parallel inspections of two manipulators alongside work on the refueling cavity, so as to reduce the time spent on the critical path in a revision outage, are not possible. Efforts made to minimize the inspection time required with one manipulator have been successful, but their effects are limited. Major reductions in inspection time can be achieved only if inspections are run with two manipulators in parallel. The decentralized manipulator built by GEC Alsthom Energie and so far emmployed in boiling water reactors in the USA, Spain, Switzerland and Japan allows two systems to be used in parallel, thus reducing the time required for standard inspection of a pressure vessel from some six days to three days. These savings of approximately three days are made possible without any compromises in terms of positioning by rail-bound systems. During inspection, the reactor refueling cavity is available for other revision work without any restrictions. The manipulator can be used equally well for inspecting standard PWR, PWR with a thermal shield, for inspecting the land between in-core instrumentation nozzles, BWR with and without jet pumps (complementary inspection), and for inspecting core support shrouds. (orig.) [de

  4. Pressurized Water Reactors (PWR) and Boiling Water Reactors (BWR) are compared

    International Nuclear Information System (INIS)

    Greneche, D.

    2014-01-01

    This article compares the 2 types of light water reactors that are used to produce electricity: the Pressurized Water Reactor (PWR) and the Boiling Water Reactor (BWR). Historically the BWR concept was developed after the PWR concept. Today 80% of light water reactors operating in the world are of PWR-type. This comparison is comprehensive and detailed. First the main technical features are reviewed and compared: reactor architecture, core and fuel design, reactivity control, reactor vessel, cooling systems and reactor containment. Secondly, various aspects concerning reactor operations like reactor control, fuel management, maintenance, inspections, radiation protection, waste generation and reactor reliability are presented and compared for both reactors. As for the issue of safety, it is highlighted that the accidental situations are too different for the 2 reactors to be compared. The main features of reactor safety are explained for both reactors

  5. Advances in heavy water reactors

    International Nuclear Information System (INIS)

    1994-03-01

    The current IAEA programme in advanced nuclear power technology promotes technical information exchange between Member States with major development programmes. The Technical Committee Meeting (TCM) on Advances in Heavy Water Reactors was organized by the IAEA in the framework of the activities of the International Working Group on Advanced Technologies for Water Cooled Reactors (IWGATWR) and hosted by the Atomic Energy of Canada Limited. Sixty-five participants from nine countries (Canada, Czech Republic, India, German, Japan, Republic of Korea, Pakistan, Romania and USA) and the IAEA attended the TCM. Thirty-four papers were presented and discussed in five sessions. A separate abstract was prepared for each of these papers. All recommendations which were addressed by the participants of the Technical Committee meeting to the IWGATWR have been submitted to the 5th IWGATWR meeting in September 1993. They were reviewed and used as input for the preparation of the IAEA programme in the area of advanced water cooled reactors. This TCM was mainly oriented towards advances in HWRs and on projects which are now in the design process and under discussion. Refs, figs and tabs

  6. Numerical analysis on the calandria tubes in the moderator of a heavy water reactor using OpenFOAM and other codes

    International Nuclear Information System (INIS)

    Chang, S.M.; Kim, H.T.

    2013-01-01

    CANDU, a prototype of heavy water reactor is modeled for the moderator system with porous media buoyancy-effect heat-transfer turbulence model. OpenFOAM, a set of C++ classes and libraries developed under the object-oriented concept, is selected as the tool of numerical analysis. The result from this computational code is compared with experiments and other commercial code data through ANSYS-CFX and COMSOL Multi-physics. The three-dimensional code concerning buoyancy force, turbulence, and heat transfer is tested and shown to be successful for the analysis of thermo-hydraulic system of heavy water reactors. (authors)

  7. Damage analysis of ceramic boron absorber materials in boiling water reactors and initial model for an optimum control rod management

    International Nuclear Information System (INIS)

    Schulz, W.

    2000-01-01

    concept - to calculate the control rod's working life both in the control position and the shut-down position - will automatically lead to an optimization of the control rod strategy. Control rod optimisation is demonstrated by accumulating the total amount of control rods required in a medium-sized BWR up to the total reactor holding period. At least 60% of the first core inventory - for this control rod type an existing EMPIRICAL MODEL is already available - may be used up to the total operating period without any safety loss. Looking to the present disposal situation this concept represents a practical way to reduce all high level waste. In addition benefit of utilizing this concept is that it minimizes tritium emission. Control-rods utilized within Boiling Water Reactors (BWR) are designed for the purpose to control and shape the neutron flux profile in the reactor, to adjust the range of regulation referring to the weight rate of the reactor coolant and thirdly by- shutting down the reactor at any time and under any conditions with regard to nuclear aspects, mechanical integrity and control rod history. The designation control- or shut down rod characterize the particular field of activity for a given control rod. The focal point of my work had shown to be a calculation of the nuclear working life of any control rod design as well as an optimisation method with reference to the holding period for a given control rod inventory as a result of measuring data and a theoretical analysis describing the parameters in a general validity form. (author)

  8. Light water reactor fuel analysis code FEMAXI-V (Ver.1)

    International Nuclear Information System (INIS)

    Suzuki, Motoe

    2000-09-01

    A light water fuel analysis code FEMAXI-V is an advanced version which has been produced by integrating FEMAXI-IV(Ver.2), high burn-up fuel code EXBURN-I, and a number of functional improvements and extensions, to predict fuel rod behavior in normal and transient (not accident) conditions. The present report describes in detail the basic theories and structure, models and numerical solutions applied, improvements and extensions, and the material properties adopted in FEMAXI-V(Ver.1). FEMAXI-V deals with a single fuel rod. It predicts thermal and mechanical response of fuel rod to irradiation, including FP gas release. The thermal analysis predicts rod temperature distribution on the basis of pellet heat generation, changes in pellet thermal conductivity and gap thermal conductance, (transient) change in surface heat transfer to coolant, using radial one-dimensional geometry. The heat generation density profile of pellet can be determined by adopting the calculated results of burning analysis code. The mechanical analysis performs elastic/plastic, creep and PCMI calculations by FEM. The FP gas release model calculates diffusion of FP gas atoms and accumulation in bubbles, release and increase in internal pressure of rod. In every analysis, it is possible to allow some materials properties and empirical equations to depend on the local burnup or heat flux, which enables particularly analysis of high burnup fuel behavior and boiling transient of BWR rod. In order to facilitate effective and wide-ranging application of the code, formats and methods of input/output of the code are also described, and a sample output in an actual form is included. (author)

  9. Subchannel analysis program for boiling water reactor fuel bundles based on five conservation equations of two-phase flow

    International Nuclear Information System (INIS)

    Bessho, Y.; Uchikawa, S.

    1985-01-01

    A subchannel analysis program, MENUETT, is developed for evaluation of thermal-hydraulic characteristics in boiling water reactor fuel bundles. This program is based on five conservation equations of two-phase flow with the drift-flux correlation. The cross flows are calculated separately for liquid and vapor phases from the lateral momentum conservation equation. The effects of turbulent mixing and void drift are accounted for in the program. The conservation equations are implicitly differentiated with the convective terms by the donor-cell method, and are solved iteratively in the axial and lateral directions. Data of the 3 X 3 rod bundle experiments are used for program verification. The lateral distributions of equilibrium quality and mass flow rate at the bundle exit calculated by the program compare satisfactorily with the experimental results

  10. Light water reactor fuel analysis code FEMAXI-IV(Ver.2). Detailed structure and user`s manual

    Energy Technology Data Exchange (ETDEWEB)

    Suzuki, Motoe [Japan Atomic Energy Research Inst., Tokai, Ibaraki (Japan). Tokai Research Establishment; Saitou, Hiroaki

    1997-11-01

    A light water reactor fuel behavior analysis code FEMAXI-IV(Ver.2) was developed as an improved version of FEMAXI-IV. Development of FEMAXI-IV has been already finished in 1992, though a detailed structure and input manual of the code have not been open to users yet. Here, the basic theories and structure, the models and numerical solutions applied to FEMAXI-IV(Ver.2), and the material properties adopted in the code are described in detail. In FEMAXI-IV(Ver.2), programming bugs in previous FEMAXI-IV were eliminated, renewal of the pellet thermal conductivity was performed, and a model of thermal-stress restraint on FP gas release was incorporated. For facilitation of effective and wide-ranging application of the code, methods of input/output of the code are also described in detail, and sample output is included. (author)

  11. Neutronic analysis of the European reference design of the water cooled lithium lead blanket for a DEMOnstration reactor

    International Nuclear Information System (INIS)

    Petrizzi, L.

    1994-01-01

    Water cooled lithium lead blankets, using liquid Pb-17Li eutectic both as breeder and neutron multiplier material, and martensitic steel as structural material, represent one of the four families under development in the European DEMO blanket programme. Two concepts were proposed, both reaching tritium breeding self-sufficiency: the 'box-shaped' and the 'cylindrical modules'. Also to this scope a new concept has been defined: 'the single box'. A neutronic analysis of the 'single box' is presented. A full 3-D model including the whole assembly and many of the reactor details (divertors, holes, gaps) has been defined, together with a 3-D neutron source. A tritium breeding ration (TBR) value of 1.19 confirms the tritium breeding self-sufficiency of the design. Selected power densities, calculated for the different materials and zones, are here presented. Some shielding capability considerations with respect to the toroidal field coil system are presented too. (author) 10 refs.; 3 figs.; 3 tabs

  12. An analysis of water reactor burnup data with the METHUSELAH II code

    International Nuclear Information System (INIS)

    Floyd, M.; Hicks, D.

    1964-10-01

    The METHUSELAH II code has been used to predict long term reactivity and isotopic changes in the YANKEE, Dresden and NRX reactors. In general it is shown that there is a satisfactory measure of agreement and the first core lives of YANKEE and Dresden appear well predicted. However there are discrepancies in the isotopic composition of the plutonium formed which appear to be correlated with the degree of hardness of the reactor spectrum. It is demonstrated that plausible changes in nuclear data could reduce the discrepancies. (author)

  13. LIGHT WATER MODERATED NEUTRONIC REACTOR

    Science.gov (United States)

    Christy, R.F.; Weinberg, A.M.

    1957-09-17

    A uranium fuel reactor designed to utilize light water as a moderator is described. The reactor core is in a tank at the bottom of a substantially cylindrical cross-section pit, the core being supported by an apertured grid member and comprised of hexagonal tubes each containing a pluralily of fuel rods held in a geometrical arrangement between end caps of the tubes. The end caps are apertured to permit passage of the coolant water through the tubes and the fuel elements are aluminum clad to prevent corrosion. The tubes are hexagonally arranged in the center of the tank providing an amulus between the core and tank wall which is filled with water to serve as a reflector. In use, the entire pit and tank are filled with water in which is circulated during operation by coming in at the bottom of the tank, passing upwardly through the grid member and fuel tubes and carried off near the top of the pit, thereby picking up the heat generated by the fuel elements during the fission thereof. With this particular design the light water coolant can also be used as the moderator when the uranium is enriched by fissionable isotope to an abundance of U/sup 235/ between 0.78% and 2%.

  14. Analysis of a main steam isolation valve closure anticipated transient without scram in a boiling water reactor

    International Nuclear Information System (INIS)

    Liaw, T.J.; Pan, C.; Chen, G.S.

    1989-01-01

    Anticipated transient without scram (ATWS) could be a major accident sequence with possible core melt and containment damage in a boiling water reactor (BWR). The behavior of a BWR/6 during a main stream isolation valve closure ATWS is investigated using the best-estimate computer program, RETRAN-02. The effects of both makeup coolant and boron injection on the reactor behavior are studied. It is found that the BWR/6 behaves similarly to the BWR/2 and BWR/4

  15. Thermal-hydraulic analysis of heat transfer in subchannels of the European high performance supercritical Water-Cooled Reactor for different CFD turbulence models

    Energy Technology Data Exchange (ETDEWEB)

    Castro, Landy Y.; Rojas, Leorlen Y.; Gamez, Abel; Rosales, Jesus; Gonzalez, Daniel; Garcia, Carlos, E-mail: lcastro@instec.cu, E-mail: leored1984@gmail.com, E-mail: agamezgmf@gmail.com, E-mail: jrosales@instec.cu, E-mail: danielgonro@gmail.com, E-mail: cgh@instec.cu [Instituto Superior de Tecnologias y Ciencias Aplicadas (InSTEC), La Habana (Cuba); Oliveira, Carlos Brayner de, E-mail: cabol@ufpe.br [Universidade Federal de Pernambuco (UFPE), Recife, PE (Brazil); Dominguez, Dany S., E-mail: dsdominguez@gmail.com [Universidade Estadual de Santa Cruz (UESC), Ilheus, BA (Brazil). Pos-Graduacao em Modelagem Computacional

    2015-07-01

    Chosen as one of six Generation‒IV nuclear-reactor concepts, Supercritical Water-cooled Reactors (SCWRs) are expected to have high thermal efficiencies within the range of 45 - 50% owing to the reactor's high pressures and outlet temperatures. In this reactor, the primary water enters the core under supercritical-pressure condition (25 MPa) at a temperature of 280 deg C and leaves it at a temperature of up to 510 deg C. Due to the significant changes in the physical properties of water at supercritical-pressure, the system is susceptible to local temperature, density and power oscillations. The behavior of supercritical water into the core of the SCWR, need to be sufficiently studied. Most of the methods available to predict the effects of the heat transfer phenomena within the pseudocritical region are based on empirical one-directional correlations, which do not capture the multidimensional effects and do not provide accurate results in regions such as the deteriorated heat transfer regime. In this paper, computational fluid dynamics (CFD) analysis was carried out to study the thermal-hydraulic behavior of supercritical water flows in sub-channels of a typical European High Performance Light Water Reactor (HPLWR) fuel assembly using commercial CFD code CFX-14. It was determined the steady-state equilibrium parameters and calculated the temperature and density distributions. A comparative study for different turbulence models were carried out and the obtained results are discussed. (author)

  16. Thermal-hydraulic analysis of heat transfer in subchannels of the European high performance supercritical Water-Cooled Reactor for different CFD turbulence models

    International Nuclear Information System (INIS)

    Castro, Landy Y.; Rojas, Leorlen Y.; Gamez, Abel; Rosales, Jesus; Gonzalez, Daniel; Garcia, Carlos; Oliveira, Carlos Brayner de; Dominguez, Dany S.

    2015-01-01

    Chosen as one of six Generation‒IV nuclear-reactor concepts, Supercritical Water-cooled Reactors (SCWRs) are expected to have high thermal efficiencies within the range of 45 - 50% owing to the reactor's high pressures and outlet temperatures. In this reactor, the primary water enters the core under supercritical-pressure condition (25 MPa) at a temperature of 280 deg C and leaves it at a temperature of up to 510 deg C. Due to the significant changes in the physical properties of water at supercritical-pressure, the system is susceptible to local temperature, density and power oscillations. The behavior of supercritical water into the core of the SCWR, need to be sufficiently studied. Most of the methods available to predict the effects of the heat transfer phenomena within the pseudocritical region are based on empirical one-directional correlations, which do not capture the multidimensional effects and do not provide accurate results in regions such as the deteriorated heat transfer regime. In this paper, computational fluid dynamics (CFD) analysis was carried out to study the thermal-hydraulic behavior of supercritical water flows in sub-channels of a typical European High Performance Light Water Reactor (HPLWR) fuel assembly using commercial CFD code CFX-14. It was determined the steady-state equilibrium parameters and calculated the temperature and density distributions. A comparative study for different turbulence models were carried out and the obtained results are discussed. (author)

  17. Reactor operational transient analysis

    International Nuclear Information System (INIS)

    Shin, W.K.; Chae, S.K.; Han, K.I.; Yang, K.S.; Chung, H. D.; Kim, H.G.; Moon, H.J.; Ryu, Y.H.

    1983-01-01

    To build up efficient capability of safety review and inspection for the nuclear power plants, four area of studies have performed as follows: 1) In order to search the most optimized operating method during load follow operating schemes, automatic control and normal control, are compared each other under the CAOC condition. The analysis performed by DDID code has shown that the reactor has to be controlled by the operator manually during load follow operation. 2) Through the sensitivity analysis by COBRA code, the operating parameters, such as coolant pressure, flow rate, inlet temperature, and power distribution are shown to be important to the determination of DNBR. Expecially, inlet temperature of primary coolant system is appeared as the most senstive parameter on DNBR. 3) FRAPCON code is adapted to study the sensitivity of several operational parameters on the mechanical properties of reactor fuel rod. 4) The calculations procedure which is required to be obtained the neutron fluence at the reactor vessel and the spectrum at the surveillance capsule is established. The results of computation are conpared with those of FSAR and SWRI report and proved its applicability to reactor surveillance program. (Author)

  18. Modeling and analysis of neutron noise from an ex-core detector at a pressurized water reactor

    International Nuclear Information System (INIS)

    Wood, R.T.; Perez, R.B.

    1991-01-01

    Two applications of a noise diagnostic methodology were performed using ex-core neutron detector data from a pressurized water reactor (PWR). A feedback dynamics model of the neutron power spectral density (PSD) was derived from a low-order whole-plant physical model made stochastic using the Langevin technique. From a functional fit to plant data, the response of the dynamic system to changes in important physical parameters was evaluated by a direct sensitivity analysis. In addition, changes in monitored spectra were related to changes in physical parameters and detection thresholds using common surveillance discriminants were determined. A resonance model was developed from perturbation theory to give the ex-core neutron detector response for small in-core mechanical motions in terms of a pole-strength factor, a resonance asymmetry (or skewness) factor, a vibration damping factor, and a frequency of vibration. The mechanical motion parameters for several resonances were determined by a functional fit of the model to plant data taken at various times during a fuel cycle and were tracked to determine trends that indicated vibrational changes of reactor internals. In addition, the resonance model gave the ability to separate the resonant components of the PSD after the parameters had been identified. As a result, the behavior of several vibration peaks were monitored over a fuel cycle. 9 refs., 6 figs., 1 tab

  19. Cost analysis and economic comparison for alternative fuel cycles in the heavy water cooled canadian reactor (CANDU)

    International Nuclear Information System (INIS)

    Yilmaz, S.

    2000-01-01

    Three main options in a CANDU fuel cycle involve use of: (1) natural uranium (0.711 weight percent U-235) fuel, (2) slightly enriched uranium (1.2 weight percent U-235) fuel, and (3) recovered uranium (0.83 weight percent U-235) fuel from light water reactor spent fuel. ORIGEN-2 computer code was used to identify composition of the spent fuel for each option, including the standard LWR fuel (3.3 weight percent U-235). Uranium and plutonium credit calculations were performed using ORIGEN-2 output. WIMSD-5 computer code was used to determine maximum discharge burnup values for each case. For the 3 cycles selected (natural uranium, slightly enriched uranium, recovered uranium), levelized fuel cycle cost calculations are performed over the reactor lifetime of 40 years, using unit process costs obtained from literature. Components of the fuel cycle costs are U purchase, conversion, enrichment, fabrication, SF storage, SF disposal, and reprocessing where applicable. Cost parameters whose effects on the fuel cycle cost are to be investigated are escalation ratio, discount rate and SF storage time. Cost estimations were carried out using specially developed computer programs. Share of each cost component on the total cost was determined and sensitivity analysis was performed in order to show how a change in a main cost component affects the fuel cycle cost. The main objective of this study has been to find out the most economical option for CANDU fuel cycle by changing unit prices and cost parameters

  20. Feed water control device in a reactor

    International Nuclear Information System (INIS)

    Okutani, Tetsuro.

    1984-01-01

    Purpose: To prevent substantial fluctuations of the water level in a nuclear reactor and always keep a constant standard level under any operation condition. Constitution: When the causes for fluctuating the reactor water level is resulted, a certain amount of correction signal is added to a level deviation signal for the difference between the reactor standard level and the actual reactor water level to control the flow rate of the feed water pump depending on the addition signal. If reactor scram should occur, for instance, a level correction signal changing stepwise depending on a scram signal is outputted and added to the level deviation signal. As the result, the flow rate of feed water sent into the reactor just after the scram is increased, whereby the lowering in the reactor water level upon scram can be decreased as compared with the case where no such level compensation signal is inputted. (Kamimura, M.)

  1. Mechanical Analysis of an Innovative Assembly Box with Honeycomb Structures Designed for a High Performance Light Water Reactor

    International Nuclear Information System (INIS)

    Herbell, Heiko; Himmel, Steffen; Schulenberg, Thomas

    2008-01-01

    The High Performance Light Water Reactor (HPLWR) is a water cooled reactor concept of the 4. generation, operated at a pressure beyond the critical point of water. Assemblies of this innovative reactor concept need to be built with assembly and moderator boxes, like boiling water reactors, to provide enough moderator water between them to compensate the low coolant density in the core. Hot, superheated steam conditions, on the other hand, require thermally insulated box walls rather than solid box walls to reduce the heat up of the moderator water. As a new an innovative approach, this paper describes moderator- and assembly boxes built from stainless steel honeycomb sandwich structures, in which the honeycomb cells are filled with alumina for thermal insulation. In comparison to solid box walls, the use of the presented design can provide the same stiffness but allows a drastic reduction of structural material and thus less neutron absorption. Finite element analyses are used to verify the required stiffness, to identify stress concentrations and to optimize the design. (authors)

  2. Historical perspective of thermal reactor safety in light water reactors

    International Nuclear Information System (INIS)

    Levy, S.

    1986-01-01

    A brief history of thermal reactor safety in U.S. light water reactors is provided in this paper. Important shortcomings in safety philosophy evolution versus time are identified and potential corrective actions are suggested. It should be recognized, that this analysis represents only one person's opinion and that most historical accountings reflect the author's biases and specific areas of knowledge. In that sense, many of the examples used in this paper are related to heat transfer and fluid flow safety issues, which explains why it has been included in a Thermal Hydraulics session. One additional note of caution: the value of hindsight and the selective nature of human memory when looking at the past cannot be overemphasized in any historical perspective

  3. Preliminary Feasibility, Design, and Hazard Analysis of a Boiling Water Test Loop Within the Idaho National Laboratory Advanced Test Reactor National Scientific User Facility

    International Nuclear Information System (INIS)

    Gerstner, Douglas M.

    2009-01-01

    The Advanced Test Reactor (ATR) is a pressurized light-water reactor with a design thermal power of 250 MW. The principal function of the ATR is to provide a high neutron flux for testing reactor fuels and other materials. The ATR and its support facilities are located at the Idaho National Laboratory (INL). A Boiling Water Test Loop (BWTL) is being designed for one of the irradiation test positions within the. The objective of the new loop will be to simulate boiling water reactor (BWR) conditions to support clad corrosion and related reactor material testing. Further it will accommodate power ramping tests of candidate high burn-up fuels and fuel pins/rods for the commercial BWR utilities. The BWTL will be much like the pressurized water loops already in service in 5 of the 9 'flux traps' (region of enhanced neutron flux) in the ATR. The loop coolant will be isolated from the primary coolant system so that the loop's temperature, pressure, flow rate, and water chemistry can be independently controlled. This paper presents the proposed general design of the in-core and auxiliary BWTL systems; the preliminary results of the neutronics and thermal hydraulics analyses; and the preliminary hazard analysis for safe normal and transient BWTL and ATR operation

  4. Analysis of a main steam isolation value closure anticipated transient without scram in a boiling water reactor

    International Nuclear Information System (INIS)

    Liaw, T.J.; Pan, C.; Chen, G.S.

    1989-01-01

    Anticipated transient without scram (ATWS) could be a major accident sequence with possible core melt and containment damage in a boiling water reactor (BWR). The behavior of a BWR/6 during a main steam isolation valve closure ATWS is investigated using the best-estimate computer program, RETRAN-02. The effects of both makeup coolant and boron injection on the reactor behavior are studied. It is found that the BWR/6 behaves similarly to the BWR/2 and BWR/4. Without boron injection and makeup coolant, the reactor loses its coolant inventory very quickly and the reactor power drops rapidly to ∼ 16% of rated power due to negative void reactivity. With coolant makeup from the high-pressure core spray and the reactor core isolation cooling systems, the rector reaches a quasi-steady-state condition after an initially rapidly changing transient. The dome pressure, downcomer water level, and core power oscillate around a mean value; the average core power is ∼ 15%, which is approximately equal to the power needed to heat and evaporate the subcooled makeup coolant. Lower boron concentrations in the core tend to complicate reactor behavior due to the combination of two competing phenomena: the negative boron reactivity and the positive reactivity caused by a void collapse

  5. Coupled neutronics/thermal-hydraulics analysis of a high-performance light-water reactor fuel assembly

    International Nuclear Information System (INIS)

    Waata, C.L.

    2006-07-01

    The use of water at supercritical pressure as coolant and moderator introduces a challenge in the design of a High-Performance Light-Water Reactor (HPLWR) fuel assembly. At supercritical pressure condition (P=25 MPa), the thermal-hydraulics behaviour of water differs strongly from that at sub-critical pressure due to a rapid variation of the thermal-physical properties across the pseudo-critical line. Due of the strong link between the water (moderation) and the neutron spectrum and subsequently the power distribution, a coupling of neutronics and thermal-hydraulics has become a necessity for reactor concepts operating at supercritical pressure condition. The effect of neutron moderation on the local parameters of thermal-hydraulics and vice-verse in a fuel assembly has to be considered for an accurate design analysis. In this study, the Monte Carlo N-Particle code (MCNP) and the sub-channel code STAFAS (Sub-channel Thermal-hydraulics Analysis of a Fuel Assembly under Supercritical conditions) have been coupled for the design analysis of a fuel assembly with supercritical water as coolant and moderator. Both codes are well known for complex geometry modelling. The MCNP code is used for neutronics analyses and for the prediction of power profiles of individual fuel rods. The sub-channel code STAFAS for the thermal-hydraulics analyses takes into account the coolant properties beyond the critical point as well as separate moderator channels. The coupling procedure is realized automatically. MCNP calculates the power distribution in each fuel rod, which is then transferred into STAFAS to obtain the corresponding thermal-hydraulic conditions in each sub-channel. The new thermal-hydraulic conditions are used to generate a new input deck for the next MCNP calculation. This procedure is repeated until a converged state is achieved. The coupled code system was tested on a proposed fuel assembly design of a HPLWR. An under-relaxation was introduced to achieve convergence

  6. Steady state thermal hydraulic analysis of a boiling water reactor core, for various power distributions, using computer code THABNA

    International Nuclear Information System (INIS)

    Venkat Raj, V.; Saha, D.

    1976-01-01

    The core of a boiling water reactor may see different power distributions during its operational life. How some of the typical power distributions affect some of the thermal hydraulic parameters such as pressure drop minimum critical heat flux ratio, void distribution etc. has been studied using computer code THABNA. The effect of an increase in the leakage flow has also been analysed. (author)

  7. Reactor water level measuring device

    International Nuclear Information System (INIS)

    Kuroki, Reiji; Asano, Tamotsu.

    1996-01-01

    A condensation vessel is connected to the upper portion of a reactor pressure vessel by way of a pipeline. The lower portion of the condensation vessel is connected to a low pressure side of a differential pressure transmission device by way of a reference leg pipeline. The high pressure side of the differential pressure transmission device is connected to the lower portion of the pressure vessel by way of a pipeline. The condensation vessel is equipped with a temperature sensor. When a temperature of a gas phase portion in the condensation vessel is lowered below a predetermined level, and incondensible gases in the condensation vessel starts to be dissolved in water, signals are sent from the temperature sensor to a control device and a control valve is opened. With such a constitution, CRD driving water flows into the condensation vessel, and water in which gases at the upper portion of the condensation vessel is dissolved flows into the pressure vessel by way of a pipeline. Then, gases dissolved in a reference water column in the reference leg pipeline are eliminated and the value of a reference water pressure does not change even upon abrupt lowering of pressure. (I.N.)

  8. Benchmark reference data on post irradiation analysis of light water reactor fuel samples

    International Nuclear Information System (INIS)

    Guardini, S.; Guzzi, G.

    1983-01-01

    The structure of the present report is as follows: in section I the benchmark activity (BM) is described in detail; characteristics of the reactors and fuel assemblies examinated are given, and the technical aspects of the chemical and analytical processes are discussed. In section II all the techniques used to certify the analytical data are presented, together with a discussion of evaluated random and systematic uncertainties. A comparison with the calculated values and the interpretation with ICT (Isotopic Correlation Techniques) is also presented in this section. Section III presents the results. In practice the complete sets of results referring to all JRC measurements are given here for the sake of the completeness and consistency of this final report

  9. Development of methodology for the analysis of fuel behavior in light water reactor in design basis accidents

    International Nuclear Information System (INIS)

    Salatov, A. A.; Goncharov, A. A.; Eremenko, A. S.; Kuznetsov, V. I.; Bolnov, V. A.; Gusev, A. S.; Dolgov, A. B.; Ugryumov, A. V.

    2013-01-01

    The report attempts to analyze the current experience of the safety fuel for light-water reactors (LWRs) under design-basis accident conditions in terms of its compliance with international requirements for licensing nuclear power plants. The components of fuel behavior analysis methodology in design basis accidents in LWRs were considered, such as classification of design basis accidents, phenomenology of fuel behavior in design basis accidents, system of fuel safety criteria and their experimental support, applicability of used computer codes and input data for computational analysis of the fuel behavior in accidents, way of accounting for the uncertainty of calculation models and the input data. A brief history of the development of probabilistic safety analysis methodology for nuclear power plants abroad is considered. The examples of a conservative approach to safety analysis of VVER fuel and probabilistic approach to safety analysis of fuel TVS-K are performed. Actual problems in development of the methodology of analyzing the behavior of VVER fuel at the design basis accident conditions consist, according to the authors opinion, in following: 1) Development of a common methodology for analyzing the behavior of VVER fuel in the design basis accidents, implementing a realistic approach to the analysis of uncertainty - in the future it is necessary for the licensing of operating VVER fuel abroad; 2) Experimental and analytical support to the methodology: experimental studies to identify and study the characteristics of the key uncertainties of computational models of fuel and the cladding, development of computational models of key events in codes, validation code on the basis of integral experiments

  10. Analysis of convergence of uncertainty and important factors affecting uncertainty in level 1 PSA for pressurized water reactors

    International Nuclear Information System (INIS)

    Shimada, Yoshio

    2002-01-01

    We analyzed how the convergence of mean core damage frequency (CDF) depends on the number of minimal cut sets, the sampling method and the random seed, using level 1 PSA models for Surry 1 and a Japanese 4 loop PWR plant. As a result, the followings were clarified: the good convergence efficiency of the latin hypercube sampling (LHS), the relationship between number of minimal cut sets and mean CDF, as well as the standard deviation and the easy method of judgment for mean CDF convergence. In addition, it was seen that the relationship between the number of probability variables (i.e. the number of basic events) and the number of samplings needed to converge for mean CDF. Analysis of important factors affecting uncertainty was also performed. As a result, it was found that the initiating events (especially loss of coolant accidents) were the dominant important factors. Finally, comparisons were made for the 95% confidence interval of the calculated results from the operating experience of the worldwide nuclear power plants with (1) the mean core damage frequency by PSA for 108 US plants and 51 Japanese plants and (2) the 95% confidence interval of the US and the Japanese Plant PSA model used in this research. As a result, it was clarified that the mean core damage frequency of almost all US pressurized and boiling light water reactors in the US was in the 90% confidence interval calculated from the operating experience of the nuclear power plants (PWRs and BWRs) in the world, but that of those reactors in Japan was smaller then that level. (author)

  11. Analysis of convergence of uncertainty and important factors affecting uncertainty in level 1 PSA for pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Shimada, Yoshio [Inst. of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2002-09-01

    We analyzed how the convergence of mean core damage frequency (CDF) depends on the number of minimal cut sets, the sampling method and the random seed, using level 1 PSA models for Surry 1 and a Japanese 4 loop PWR plant. As a result, the followings were clarified: the good convergence efficiency of the latin hypercube sampling (LHS), the relationship between number of minimal cut sets and mean CDF, as well as the standard deviation and the easy method of judgment for mean CDF convergence. In addition, it was seen that the relationship between the number of probability variables (i.e. the number of basic events) and the number of samplings needed to converge for mean CDF. Analysis of important factors affecting uncertainty was also performed. As a result, it was found that the initiating events (especially loss of coolant accidents) were the dominant important factors. Finally, comparisons were made for the 95% confidence interval of the calculated results from the operating experience of the worldwide nuclear power plants with (1) the mean core damage frequency by PSA for 108 US plants and 51 Japanese plants and (2) the 95% confidence interval of the US and the Japanese Plant PSA model used in this research. As a result, it was clarified that the mean core damage frequency of almost all US pressurized and boiling light water reactors in the US was in the 90% confidence interval calculated from the operating experience of the nuclear power plants (PWRs and BWRs) in the world, but that of those reactors in Japan was smaller then that level. (author)

  12. Application of the integrated analysis of safety (ISA) to sequences of Total loss of feed water in a PWR Reactor

    International Nuclear Information System (INIS)

    Moreno Chamorro, P.; Gallego Diaz, C.

    2011-01-01

    The main objective of this work is to show the current status of the implementation of integrated analysis of safety (ISA) methodology and its SCAIS associated tool (system of simulation codes for ISA) to the sequence analysis of total loss of feedwater in a PWR reactor model Westinghouse of three loops with large, dry containment.

  13. Assessment of competing reaction effect on results of activation analysis with use of water-cooled and water-moderated reactor neutron fields

    International Nuclear Information System (INIS)

    Avsaragov, Kh.B.; Toichkin, A.N.; Lobov, A.N.

    1988-01-01

    Effect of competing threshold reactions on results of neutron activation analysis (NAA) using WWER-440 reactor is investigated. (n,p) and (n,α) fast neutron and 232 Th (n,f), 235 U(n,f), 238 U(n,f) fast and thermal neutron processes are considered as competing ones. Contribution of competing reactions when determining Na, Mn, Sc, Fe, Cu, Y for the core channels of in-core monitoring and ionization chamber ring water protection is experimentally evaluated using a spectrometer with Ge(Li) detector in a set with AI-4096 analyser. Under rigid neutron fields interfering activity increases at the expense of thorium and uranium atom fission. It is stressed that when determining Zr, Mo, Ru, Ba, La, Ce, Nd contribution of fission reaction products can appear to be sufficient

  14. Intercomparison and validation of computer codes for thermalhydraulic safety analysis of heavy water reactors

    International Nuclear Information System (INIS)

    2004-08-01

    Activities within the frame of the IAEA's Technical Working Group on Advanced Technologies for HWRs (TWG-HWR) are conducted in a project within the IAEA's subprogramme on nuclear power reactor technology development. The objective of the activities on HWRs is to foster, within the frame of the TWG-HWR, information exchange and co-operative research on technology development for current and future HWRs, with an emphasis on safety, economics and fuel resource sustainability. One of the activities recommended by the TWG-HWR was an international standard problem exercise entitled: Intercomparison and validation of computer codes for thermalhydraulics safety analyses. Intercomparison and validation of computer codes used in different countries for thermalhydraulics safety analyses will enhance the confidence in the predictions made by these codes. However, the intercomparison and validation exercise needs a set of reliable experimental data. The RD-14M Large-Loss Of Coolant Accident (LOCA) test B9401 simulating HWR LOCA behaviour that was conducted by Atomic Energy of Canada Ltd (AECL) was selected for this validation project. This report provides a comparison of the results obtained from six participating countries, utilizing four different computer codes. General conclusions are reached and recommendations made

  15. Scale-4 analysis of pressurized water reactor critical configurations: Volume 5, North Anna Unit 1 Cycle 5

    International Nuclear Information System (INIS)

    Bowman, S.M.; Suto, T.

    1996-10-01

    ANSI/ANS 8.1 requires that calculational methods for away-from- reactor (AFR) criticality safety analyses be validated against experiment. This report summarizes part of the ongoing effort to benchmark AFR criticality analysis methods using selected critical configurations from commercial PWRs. Codes and data in the SCALE-4 code system were used. This volume documents the SCALE system analysis of one reactor critical configuration for North Anna Unit 1 Cycle 5. The KENO V.a criticality calculations for the North Anna 1 Cycle 5 beginning-of-cycle model yielded a value for k eff of 1. 0040±0.0005

  16. Economic Analysis of Symbiotic Light Water Reactor/Fast Burner Reactor Fuel Cycles Proposed as Part of the U.S. Advanced Fuel Cycle Initiative (AFCI)

    International Nuclear Information System (INIS)

    Williams, Kent Alan; Shropshire, David E.

    2009-01-01

    A spreadsheet-based 'static equilibrium' economic analysis was performed for three nuclear fuel cycle scenarios, each designed for 100 GWe-years of electrical generation annually: (1) a 'once-through' fuel cycle based on 100% LWRs fueled by standard UO2 fuel assemblies with all used fuel destined for geologic repository emplacement, (2) a 'single-tier recycle' scenario involving multiple fast burner reactors (37% of generation) accepting actinides (Pu,Np,Am,Cm) from the reprocessing of used fuel from the uranium-fueled LWR fleet (63% of generation), and (3) a 'two-tier' 'thermal+fast' recycle scenario where co-extracted U,Pu from the reprocessing of used fuel from the uranium-fueled part of the LWR fleet (66% of generation) is recycled once as full-core LWR MOX fuel (8% of generation), with the LWR MOX used fuel being reprocessed and all actinide products from both UO2 and MOX used fuel reprocessing being introduced into the closed fast burner reactor (26% of generation) fuel cycle. The latter two 'closed' fuel cycles, which involve symbiotic use of both thermal and fast reactors, have the advantages of lower natural uranium requirements per kilowatt-hour generated and less geologic repository space per kilowatt-hour as compared to the 'once-through' cycle. The overall fuel cycle cost in terms of $ per megawatt-hr of generation, however, for the closed cycles is 15% (single tier) to 29% (two-tier) higher than for the once-through cycle, based on 'expected values' from an uncertainty analysis using triangular distributions for the unit costs for each required step of the fuel cycle. (The fuel cycle cost does not include the levelized reactor life cycle costs.) Since fuel cycle costs are a relatively small percentage (10 to 20%) of the overall busbar cost (LUEC or 'levelized unit electricity cost') of nuclear power generation, this fuel cycle cost increase should not have a highly deleterious effect on the competitiveness of nuclear power. If the reactor life cycle

  17. Analysis of Differences in Void Coefficient Predictions for Mixed-Oxide-Fueled Tight-Pitch Light Water Reactor Cells

    International Nuclear Information System (INIS)

    Unesaki, Hironobu; Shiroya, Seiji; Kanda, Keiji; Cathalau, Stephane; Carre, Franck-Olivier; Aizawa, Otohiko; Takeda, Toshikazu

    2000-01-01

    Analysis of the benchmark problems on the void coefficient of mixed-oxide (MOX)-fueled tight-pitch cells has been performed using the Japanese SRAC code system with the JENDL-3.2 library and the French APOLLO-2 code with the CEA93 library based on JEF-2.2. The benchmark problems have been specified to investigate the physical phenomena occurring during the progressive voidage of MOX-fueled tight-pitch lattices, such as high conversion light water reactor lattices, and to evaluate the impact of nuclear data and calculational methods. Despite the most recently compiled nuclear data libraries and the sophisticated calculation schemes employed in both code systems, the k ∞ and void reactivity values obtained by the two code systems show considerable discrepancy especially in the highly voided state. The discrepancy of k ∞ values shows an obvious dependence on void fraction and also has been shown to be sensitive to the isotopic composition of plutonium. The observed discrepancies are analyzed by being decomposed into contributing isotopes and reactions and have been shown to be caused by a complicated balance of both negative and positive components, which are mainly attributable to differences in a limited number of isotopes including 239 Pu, 241 Pu, 16 O, and stainless steel

  18. A study on the pressurized water reactor (PWR) containment response analysis methodologies for postulated severe accident

    International Nuclear Information System (INIS)

    Ahn, Kwang Il

    1992-02-01

    The present study contains two major parts: one is the treatment of uncertainties involved in the current APET and the other is the importance analysis of the APET uncertainty inputs. A clear disadvantage of the expert opinion polling process approach for uncertainty analysis of the current probabilistic risk assessment (PRA) is that the sufficient robustness in the final results may not be attained against the ambiguity of the information upon which the experts base their judgement or the judgmental uncertainty arising under various imprecise and incomplete information. For the treatment of such type of uncertainty, a new approach based on fuzzy set theory is proposed. Then its potential use to the uncertainty analysis of the current PRA is proved through an analysis of accident progression event tree (APET). As a product, a formal procedure with computational algorithms suitable for application of the fuzzy set theory to the APET analysis is provided. Comparing with the uncertainty analysis results obtained by the statistical approach currently used in PRA, the present approach has several major advantages: Firstly, it greatly enhances the robustness in the final results of APET uncertainty analysis by modeling the judgmental uncertainty that arises in the probabilistic quantification of APET top events. Secondly, the modeling of APET uncertainty analysis is far more convenient because of the nonprobabilistic features of fuzzy probabilities used for uncertainty quantification of the APET top events. Thirdly, the APET model can easily be operated by means of a well defined formal propagation logic of fuzzy set theory without going through a tedious sampling procedure. Finally, the fuzzy outcomes provide at least as much information as the existing methods based on the statistical approach. Thus, the present approach can be used as a valuable alternative approach to uncertainty analysis used in the current PRA. Two importance measures for the importance analysis of

  19. Singular system analysis of the Local Power Range Monitor (LPRM) readings of a Boiling Water Reactor (BWR) in an unstable event

    International Nuclear Information System (INIS)

    Ginestar Peiro, D.; Verdu, G.; Miro, R.

    2006-01-01

    Singular system analysis is a successful technique to separate oscillating components from a given signal. A methodology is proposed to apply this technique to the signals obtained from the LPRMs of a boiling water reactor core and extract the contributions of the in-phase oscillation and the out-of-phase oscillations from the LPRM readings during an unstable event. This methodology has been validated with synthetic signals and simulations of in-phase and out-of-phase oscillations of the Leibstadt reactor. Finally, one case of Ringhals I Stability Benchmark has been analysed. (author)

  20. Presurized water reactor safety approach and analysis. From conception to experience feedback

    International Nuclear Information System (INIS)

    Libmann, J.

    1987-04-01

    This report deals in ten chapters, with the following subjects: 1. Safety approach methods; 2. Study of accidents; 3. Safety analysis; 4. Study of internal aggressions or those involved by the site; 5. Consideration of complementary situations; 6. Three Mile Island accident; 7. Safety during operation and experience feedback; 8. An example of analysis: steam generator closure plug; 9. Probabilistic safety evaluation; 10. Chernobyl accident. 30 refs [fr

  1. Layout of the safety analysis report for nuclear power plants with pressurized water reactor or boiling water reactor in the Federal Republic of Germany

    International Nuclear Information System (INIS)

    Albrecht, E.

    1980-01-01

    For a licence according to paragraph 7 of the Atomic Energy Act to construct and operate a nuclear power plant, the applicant has to submit a safety analysis report, which must describe the site, the plant, all hazards in connection with the plant and the proposed safety precautions. For the structure and the content of a safety analysis report, a first guideline was published in 1959. Only a few safety analysis reports were prepared nearly strictly according to this guideline. In 1976 a second guideline was published for a standard safety analysis report. The lecture deals with the guidelines. A survey over the structure and content of the German safety analysis reports will be given. The experience gained by the new safety analysis reports will be discussed. (orig.)

  2. Water level monitoring device in nuclear reactor

    International Nuclear Information System (INIS)

    Miura, Kiyohide; Otake, Tomohiro.

    1988-01-01

    Purpose: To monitor the water level in a pressure vessel of BWR type nuclear reactors at high accuracy by improving the compensation functions. Constitution: In the conventional water level monitor in a nuclear reactor, if the pressure vessel is displaced by the change of the pressure in the reactor or the temperature of the reactor water, the relative level of the reference water head in a condensation vessel is changed to cause deviation between the actual water level and the indicated water level to reduce the monitoring accuracy. According to the invention, means for detecting the position of the reference water head and means for detection the position in the condensation vessel are disposed to the pressure vessel. Then, relative positional change between the condensation vessel and the reference water head is calculated based on detection sinals from both of the means. The water level is compensated and calculated by water level calculation means based on the relative positional change, water level signals from the level gage and the pressure signals from the pressure gage. As a result, if the pressure vessel is displaced due to the change of the temperature or pressure, it is possible to measure the reactor water level accurately thereby remakably improve the reliability for the water level control in the nuclear reactor. (Horiuchi, T.)

  3. Reactor water clean-up device

    International Nuclear Information System (INIS)

    Tanaka, Koji; Egashira, Yasuo; Shimada, Fumie; Igarashi, Noboru.

    1983-01-01

    Purpose: To save a low temperature reactor water clean-up system indispensable so far and significantly simplify the system by carrying out the reactor water clean-up solely in a high temperature reactor water clean-up system. Constitution: The reactor water clean-up device comprises a high temperature clean-up pump and a high temperature adsorption device for inorganic adsorbents. The high temperature adsorption device is filled with amphoteric ion adsorbing inorganic adsorbents, or amphoteric ion adsorbing inorganic adsorbents and anionic adsorbing inorganic adsorbents. The reactor water clean-up device introduces reactor water by the high temperature clean-up pump through a recycling system to the high temperature adsorption device for inorganic adsorbents. Since cations such as cobalt ions and anions such as chlorine ions in the reactor water are simultaneously removed in the device, a low temperature reactor water clean-up system which has been indispensable so far can be saved to realize the significant simplification for the entire system. (Seki, T.)

  4. Feasibility analysis of modified AL-6XN steel for structure component application in supercritical water-cooled reactor

    Institute of Scientific and Technical Information of China (English)

    Xinggang LI; Qingzhi YAN; Rong MA; Haoqiang WANG; Changchun GE

    2009-01-01

    Modified AL-6XN austenite steel was patterned after AL-6XN superaustenitic stainless steel by introducing microalloy elements such as zirconium and titanium in order to adapt to recrystallizing thermo-mechanical treatment and further improve crevice corrosion resistance. Modified AL-6XN exhibited comparable tensile strength, and superior plasticity and impact toughness to commercial AL-6XN steel. The effects of aging behavior on corrosion resistance and impact toughness were measured to evaluate the qualification of modified AL-6XN steel as an in-core component and cladding material in a supercritical water-cooled reactor. Attention should be paid to degradation in corrosion resistance and impact toughness after aging for 50 hours when modified AL-6XN steel is considered as one of the candidate materials for in-core components and cladding tubes in supercritical water-cooled reactors.

  5. Linking of FRAP-T, FRAPCON and RELAP-4 codes for transient analysis and accidents of light water reactors fuel rods

    International Nuclear Information System (INIS)

    Marra Neto, A.; Silva, A.T. e; Sabundjian, G.; Freitas, R.L.; Neves Conti, T. das.

    1991-09-01

    The computer codes FRAP-T, FRAPCON and RELAP-4 have been linked for the fuel rod behavior analysis under transients and hypothetical accidents in light water reactors. The results calculated by thermal hydraulic code RELAP-4 give input in file format into the transient fuel analysis code FRAP-T. If the effect of fuel burnup is taken into account, the fuel performance code FRAPCON should provide the initial steady state data for thhe transient analysis. With the thermal hydraulic boundary conditions provided by RELAP-4 (MOD3), FRAP-T6 is used to analyse pressurized water reactor fuel rod behavior during the blowdown phase under large break loss of coolant accident conditions. Two cases have been analysed: without and with initialization from FRAPCON-2 steady state data. (author)

  6. Shutdown decay heat removal analysis of a Babcock and Wilcox pressurized water reactor: Case study

    International Nuclear Information System (INIS)

    Cramond, W.R.; Ericson, D.M. Jr.; Sanders, G.A.

    1987-03-01

    This is one of six case studies for USI A-45 Decay Heat Removal (DHR) Requirements. The purpose of this study is to identify any potential vulnerabilities in the DHR systems of a typical Babcock and Wilcox PWR, to suggest possible modifications to improve the DHR capability, and to assess the value and impact of the most promising alternatives to the existing DHR systems. The systems analysis considered small LOCAs and transient internal initiating events, and seismic, fire, extreme wind, internal and external flood, and lightning external events. A full-scale systems analysis was performed with detailed fault trees and event trees including support system dependencies. The system analysis results were extrapolated into release categories using applicable past PRA phenomenological results and improved containment failure mode probabilities. Public consequences were estimated using site specific CRAC2 calculations. The Value-Impact (VI) analysis of possible alternatives considered both onsite and offsite impacts arriving at several risk measures such as averted population dose out to a 50-mile radius and dollars per person rem averted. Uncertainties in the VI analysis are discussed and the issues of feed and bleed and secondary blowdown are analyzed

  7. The importance of transient analysis in the light water reactor licensing procedure

    International Nuclear Information System (INIS)

    Izouierdo, J.M.; Villadoniga, J.I.

    1979-01-01

    The basic principles of the Nuclear Regulation are developed in the first part of this report. The achievement of the safety objective by establishing protections -that prevent or reduce the barriers failure- is analyzed. An iterative method for the definition of the systems and components safety design bases is proposed, analyzing the role of Technical Specifications in this process. The second part shows how this methodology can be used in the case of the first barrier: the fuel cladding. The safety criteria, transient clasification problems, transient analysis and its relation with surveillance and protection systems, and the role of such analysis in fuel protection design verification are discused. (author)

  8. Statistical analysis of failure time in stress corrosion cracking of fuel tube in light water reactor

    International Nuclear Information System (INIS)

    Hirao, Keiichi; Yamane, Toshimi; Minamino, Yoritoshi

    1991-01-01

    This report is to show how the life due to stress corrosion cracking breakdown of fuel cladding tubes is evaluated by applying the statistical techniques to that examined by a few testing methods. The statistical distribution of the limiting values of constant load stress corrosion cracking life, the statistical analysis by making the probabilistic interpretation of constant load stress corrosion cracking life, and the statistical analysis of stress corrosion cracking life by the slow strain rate test (SSRT) method are described. (K.I.)

  9. Heat Transfer Analysis of the European Pressurized Water Reactor (EPR) Core Catcher Test Facility Volley

    Energy Technology Data Exchange (ETDEWEB)

    Pikkarainen, Mika; Laine, Jani; Purhonen, Heikki; Kyrki-Rajamaeki, Riitta [Lappeenranta University of Technology, P.O. 20 53851 Lappeenranta (Finland); Sairanen, Risto [Radiation and Nuclear Safety Authority, P.O. 14 00881 Helsinki (Finland)

    2008-07-01

    The EPR is designed to cope with severe accidents, involving core meltdown. A specific melt spreading area has been designed within the containment. This core catcher will be flooded by water, which transfers the decay heat to the containment heat removal system. To improve cooling, horizontal flow channels made of cast iron are located also below the core catcher. STUK, the radiation and nuclear safety authority in Finland, wanted an independent study of the functionality of the core catcher design. Effect of the presence of insulation material and boric acid in the cooling water was to be studied, as well as the general behavior of the system in different phases of the flooding of the core melt spreading area. To verify the function of the core catcher design, a scaled down test facility was built at Lappeenranta University of Technology. Since there are some physical restrictions of a test facility computational tools were applied especially for the tests where steady state conditions could not be reached without endangering the integrity of the test facility. This paper introduces the Volley test facility, computational simulations and compares them with the test results. Simulated temperatures of those Volley tests, which could be run until steady state conditions, are very close to the measured temperatures. It can be concluded also, that the temperatures are evidently below the cast iron melting point with heat fluxes used in the tests, if there is a small flow inside the cooling channels or even in case when only a few adjacent cooling channels are totally dry. (authors)

  10. Heat Transfer Analysis of the European Pressurized Water Reactor (EPR) Core Catcher Test Facility Volley

    International Nuclear Information System (INIS)

    Pikkarainen, Mika; Laine, Jani; Purhonen, Heikki; Kyrki-Rajamaeki, Riitta; Sairanen, Risto

    2008-01-01

    The EPR is designed to cope with severe accidents, involving core meltdown. A specific melt spreading area has been designed within the containment. This core catcher will be flooded by water, which transfers the decay heat to the containment heat removal system. To improve cooling, horizontal flow channels made of cast iron are located also below the core catcher. STUK, the radiation and nuclear safety authority in Finland, wanted an independent study of the functionality of the core catcher design. Effect of the presence of insulation material and boric acid in the cooling water was to be studied, as well as the general behavior of the system in different phases of the flooding of the core melt spreading area. To verify the function of the core catcher design, a scaled down test facility was built at Lappeenranta University of Technology. Since there are some physical restrictions of a test facility computational tools were applied especially for the tests where steady state conditions could not be reached without endangering the integrity of the test facility. This paper introduces the Volley test facility, computational simulations and compares them with the test results. Simulated temperatures of those Volley tests, which could be run until steady state conditions, are very close to the measured temperatures. It can be concluded also, that the temperatures are evidently below the cast iron melting point with heat fluxes used in the tests, if there is a small flow inside the cooling channels or even in case when only a few adjacent cooling channels are totally dry. (authors)

  11. Some local dilution transient in a pressurized water reactor

    International Nuclear Information System (INIS)

    Jacobson, S.

    1989-01-01

    Reactivity accidents are important in the safety analysis of a pressurized water reactor. In this anlysis ejected control rod, steam line break, start of in-active loop and boron dilution accidents are usually dealt with. However, in the analysis is not included what reactivity excursions might happen when a zone,depleted of boron passes the reactor core. This thesis investigates during what operation and emergency conditions diluted zones might exist in a pressurized water reactor and what should be the maximum volumes for then. The limiting transport means are also established in terms of reactivty addition, for the depleted zones. In order to describe the complicated mixing process in the reactor vessel during such a transportation, a typical 3-loop reactor vessel has been modulated by means of TRAC-PF1's VESSEL component. Three cases have been analysed. In the first case the reactor is in a cold condition and the ractor coolant has boron concentration of 2000 ppm. To the reactor vessel is injected an clean water colume of 14 m 3 . In the two other cases the reactor is close to hot shutdown and borated to 850 ppm. To the reactor vessel is added 41 and 13 m 3 clean water, respectively. In the thesis is shown what spatial distribution the depleted zone gets when passing through the reactor vessel in the three cases. The boron concentration in the first case did not decrease the values which would bring the reactor to critical condition. For case two was shown by means of TRAC's point kinetics model that the reactor reaches prompt criticality after 16.03 seconds after starting of the reactor coolant pump. Another prompt criticality occured two seconds later. The total energy developed during the two power escalations were about 55 GJ. A comparision with the criteria used to evaluate the ejected control rod reactivity transient showed that none of these criteria were exceeded. (64 figs.)

  12. Fuel integrity project: analysis of light water reactor fuel rods test results

    Energy Technology Data Exchange (ETDEWEB)

    Dallongeville, M.; Werle, J. [COGEMA Logistics (AREVA Group) (France); McCreesh, G. [BNFL Nuclear Sciences and Technology Services (United Kingdom)

    2004-07-01

    BNFL Nuclear Sciences and Technology Services and COGEMA LOGISTICS started in the year 2000 a joint project known as FIP (Fuel Integrity Project) with the aim of developing realistic methods by which the response of LWR fuel under impact accident conditions could be evaluated. To this end BNFL organised tests on both unirradiated and irradiated fuel pin samples and COGEMA LOGISTICS took responsibility for evaluating the test results. Interpretation of test results included simple mechanical analysis as well as simulation by Finite Element Analysis. The first tests that were available for analysis were an irradiated 3 point bending commissioning trial and a lateral irradiated hull compression test, both simulating the loading during a 9 m lateral regulatory drop. The bending test span corresponded roughly to a fuel pin intergrid distance. The outcome of the test was a failure starting at about 35 mm lateral deflection and a few percent of total deformation. Calculations were carried out using the ANSYS code employing a shell and brick model. The hull lateral compaction test corresponds to a conservative compression by neighbouring pins at the upper end of the fuel pin. In this pin region there are no pellets inside. The cladding broke initially into two and later into four parts, all of which were rather similar. Initial calculations were carried out with LS-DYNA3D models. The models used were optimised in meshing, boundary conditions and material properties. The calculation results compared rather well with the test data, in particular for the detailed ANSYS approach of the 3 point bending test, and allowed good estimations of stresses and deformations under mechanical loading as well as the derivation of material rupture criteria. All this contributed to the development of realistic numerical analysis methods for the evaluation of LWR fuel rod behaviour under both normal and accident transport conditions. This paper describes the results of the 3 point bending

  13. Fuel integrity project: analysis of light water reactor fuel rods test results

    International Nuclear Information System (INIS)

    Dallongeville, M.; Werle, J.; McCreesh, G.

    2004-01-01

    BNFL Nuclear Sciences and Technology Services and COGEMA LOGISTICS started in the year 2000 a joint project known as FIP (Fuel Integrity Project) with the aim of developing realistic methods by which the response of LWR fuel under impact accident conditions could be evaluated. To this end BNFL organised tests on both unirradiated and irradiated fuel pin samples and COGEMA LOGISTICS took responsibility for evaluating the test results. Interpretation of test results included simple mechanical analysis as well as simulation by Finite Element Analysis. The first tests that were available for analysis were an irradiated 3 point bending commissioning trial and a lateral irradiated hull compression test, both simulating the loading during a 9 m lateral regulatory drop. The bending test span corresponded roughly to a fuel pin intergrid distance. The outcome of the test was a failure starting at about 35 mm lateral deflection and a few percent of total deformation. Calculations were carried out using the ANSYS code employing a shell and brick model. The hull lateral compaction test corresponds to a conservative compression by neighbouring pins at the upper end of the fuel pin. In this pin region there are no pellets inside. The cladding broke initially into two and later into four parts, all of which were rather similar. Initial calculations were carried out with LS-DYNA3D models. The models used were optimised in meshing, boundary conditions and material properties. The calculation results compared rather well with the test data, in particular for the detailed ANSYS approach of the 3 point bending test, and allowed good estimations of stresses and deformations under mechanical loading as well as the derivation of material rupture criteria. All this contributed to the development of realistic numerical analysis methods for the evaluation of LWR fuel rod behaviour under both normal and accident transport conditions. This paper describes the results of the 3 point bending

  14. Analysis and Experimental Qualification of an Irradiation Capsule Design for Testing Pressurized Water Reactor Fuel Cladding in the High Flux Isotope Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Kurt R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Howard, Richard H. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Daily, Charles R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Petrie, Christian M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-09-01

    The Advanced Fuels Campaign within the Fuel Cycle Research and Development program of the Department of Energy Office of Nuclear Energy is currently investigating a number of advanced nuclear fuel cladding concepts to improve the accident tolerance of light water reactors. Alumina-forming ferritic alloys (e.g., FeCrAl) are some of the leading candidates to replace traditional zirconium alloys due to their superior oxidation resistance, provided no prohibitive irradiation-induced embrittlement occurs. Oak Ridge National Laboratory has developed experimental designs to irradiate thin-walled cladding tubes with representative pressurized water reactor geometry in the High Flux Isotope Reactor (HFIR) under relevant temperatures. These designs allow for post-irradiation examination (PIE) of cladding that closely resembles expected commercially viable geometries and microstructures. The experiments were designed using relatively inexpensive rabbit capsules for the irradiation vehicle. The simplistic designs combined with the extremely high neutron flux in the HFIR allow for rapid testing of a large test matrix, thus reducing the time and cost needed to advanced cladding materials closer to commercialization. The designs are flexible in that they allow for testing FeCrAl alloys, stainless steels, Inconel alloys, and zirconium alloys (as a reference material) both with and without hydrides. This will allow a direct comparison of the irradiation performance of advanced cladding materials with traditional zirconium alloys. PIE will include studies of dimensional change, microstructure variation, mechanical performance, etc. This work describes the capsule design, neutronic and thermal analyses, and flow testing that were performed to support the qualification of this new irradiation vehicle.

  15. Analysis of station blackout accidents for the Bellefonte pressurized water reactor

    International Nuclear Information System (INIS)

    Gasser, R.D.; Bieniarz, P.P.; Tills, J.L.

    1986-09-01

    An analysis has been performed for the Bellefonte PWR Unit 1 to determine the containment loading and the radiological releases into the environment from a station blackout accident. A number of issues have been addressed in this analysis which include the effects of direct heating on containment loading, and the effects of fission product heating and natural convection on releases from the primary system. The results indicate that direct heating which involves more than about 50% of the core can fail the Bellefonte containment, but natural convection in the RCS may lead to overheating and failure of the primary system piping before core slump, thus, eliminating or mitigating direct heating. Releases from the primary system are significantly increased before vessel breach due to natural circulation and after vessel breach due to reevolution of retained fission products by fission product heating of RCS structures

  16. Remarks on boiling water reactor stability analysis. Pt. 2. Stability monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Lange, Carsten; Hennig, Dieter; Hurtado, Antonio [Technische Univ. Dresden (Germany). Chair of Hydrogen and Nuclear Energy; Schuster, Roland [Kernkraftwerk Brunsbuettel GmbH und Co. oHG, Brunsbuettel (Germany); Lukas, Bernard [EnBW Kernkraft GmbH, Philippsburg (Germany). Kernkraftwerk Philippsburg; Aguirre, Carlos [Kernkraftwerk Leibstadt AG, Aargau (Switzerland)

    2012-12-15

    In part 1 of this article we explained the partly relative complex solution manifold of the differential equations describing the stability behaviour of a BWR, in particular the coexistence of different types of solutions, such as the coexistence of unstable limit cycles and stable fixed points are of interest from the operational safety point of view. The part 2 is devoted to the surveillance of the stability behaviour. We summarize some stability monitoring methods and suggest to support stability tests by RAM-ROM analyses in order to reveal in advance the stability 'landscape' of the BWR in a parameter region high sensitive for appearing of linear unstable states. The analysis of an especial stability test, performed at NPP Leibstadt (KKL), makes it clear that the measurement results can only be interpreted by application of bifurcation analysis. (orig.)

  17. Nuclear analysis and performance of the Light Water Breeder Reactor (LWBR) core power operation at Shippingport

    International Nuclear Information System (INIS)

    Hecker, H.C.

    1984-04-01

    This report presents the nuclear analysis and discusses the performance of the LWBR core at Shippingport during power operation from initial startup through end-of-life at 28,730 EFPH. Core follow depletion calculations confirmed that the reactivity bias and power distributions were well within the uncertainty allowances used in the design and safety analysis of LWBR. The magnitude of the core follow reactivity bias has shown that the calculational models used can predict the behavior of U 233 -Th systems with closely spaced fuel rod lattices and movable fuel. In addition, the calculated final fissile loading is sufficiently greater than the initial fissile inventory that the measurements to be performed for proof-of-breeding evaluations are expected to confirm that breeding has occurred

  18. Guidelines for nuclear reactor equipments safety-analysis

    International Nuclear Information System (INIS)

    1978-01-01

    The safety analysis in approving the applications for nuclear reactor constructions (or alterations) is performed by the Committee on Examination of Reactor Safety in accordance with various guidelines prescribed by the Atomic Energy Commission. In addition, the above Committee set forth its own regulations for the safety analysis on common problems among various types of nuclear reactors. This book has collected and edited those guidelines and regulations. It has two parts: Part I includes the guidelines issued to date by the Atomic Energy Commission: and Part II - regulations of the Committee. Part I has collected 8 categories of guidelines which relate to following matters: nuclear reactor sites analysis guidelines and standards for their applications; standard exposure dose of plutonium; nuclear ship operation guidelines; safety design analysis guidelines for light-water type, electricity generating nuclear reactor equipments; safety evaluation guidelines for emergency reactor core cooling system of light-water type power reactors; guidelines for exposure dose target values around light-water type electricity generating nuclear reactor equipments, and guidelines for evaluation of above target values; and meteorological guidelines for the safety analysis of electricity generating nuclear reactor equipments. Part II includes regulations of the Committee concerning - the fuel assembly used in boiling-water type and in pressurized-water type reactors; techniques of reactor core heat designs, etc. in boiling-water reactors; and others

  19. Estimation of the amount of surface contamination of a water cooled nuclear reactor by cooling water analysis

    Energy Technology Data Exchange (ETDEWEB)

    Nagy, G. [KFKI Atomic Energy Research Institute, P.O. Box 49, Budapest H-1525 (Hungary)]. E-mail: nagyg@sunserv.kfki.hu; Somogyi, A. [KFKI Atomic Energy Research Institute, P.O. Box 49, Budapest H-1525 (Hungary); Patek, G. [Paks Nuclear Power Plant, P.O. Box 71, Paks H-7031 (Hungary); Pinter, T. [Paks Nuclear Power Plant, P.O. Box 71, Paks H-7031 (Hungary); Schiller, R. [KFKI Atomic Energy Research Institute, P.O. Box 49, Budapest H-1525 (Hungary)

    2007-06-15

    Calculations, based upon on-the-spot measurements, were performed to estimate the contamination of NPP primary circuit and spent fuel storage pool solid surfaces via the composition of the cooling water in connection with a non-nuclear incident in the Paks NPP. Thirty partially burnt-up fuel element bundles were damaged during a cleaning process, an incident which resulted in the presence of fission products in the cooling water of the cleaning tank (CT) situated in a separate pool (P1). Since this medium was in contact for an extended period of time with undamaged fuel elements to be used later and also with other structural materials of the spent fuel storage pool (SP), it was imperative to assess the surface contamination of these latter ones with a particular view to the amount of fission material. In want of direct methods, one was restricted to indirect information which rested mainly on the chemical and radiochemical data of the cooling water. It was found that (i) the most important contaminants were uranium, plutonium, cesium and cerium; (ii) after the isolation of P1 and SP and an extended period of filtering the only important contaminants were uranium and plutonium; (iii) the surface contamination of the primary circuit (PC) was much lower than that of either SP or P1; (iv) some 99% of the contamination was removed from the water by the end of the filtering process.

  20. Thermal - hydraulic analysis of pressurizer water reactors using the model of open lateral boundary

    International Nuclear Information System (INIS)

    Borges, R.C.

    1980-10-01

    A computational method is developed for thermal-hydraulic analysis, where the channel may be analysed by more than one independent steps of calculation. This is made possible by the incorporation of the model of open lateral boundary in the code COBRA-IIIP, which permits the determination of the subchannel of an open lattice PWR core in a multi-step calculation. The thermal-hydraulic code COBRA-IIIP, developed at the Massachusetts Institute of Technology, is used as the basic model for this study. (Author) [pt

  1. Good practices in heavy water reactor operation

    International Nuclear Information System (INIS)

    2010-06-01

    The value and importance of organizations in the nuclear industry engaged in the collection and analysis of operating experience and best practices has been clearly identified in various IAEA publications and exercises. Both facility safety and operational efficiency can benefit from such information sharing. Such sharing also benefits organizations engaged in the development of new nuclear power plants, as it provides information to assist in optimizing designs to deliver improved safety and power generation performance. In cooperation with Atomic Energy of Canada, Ltd, the IAEA organized the workshop on best practices in Heavy Water Reactor Operation in Toronto, Canada from 16 to 19 September 2008, to assist interested Member States in sharing best practices and to provide a forum for the exchange of information among participating nuclear professionals. This workshop was organized under Technical Cooperation Project INT/4/141, on Status and Prospects of Development for and Applications of Innovative Reactor Concepts for Developing Countries. The workshop participants were experts actively engaged in various aspects of heavy water reactor operation. Participants presented information on activities and practices deemed by them to be best practices in a particular area for consideration by the workshop participants. Presentations by the participants covered a broad range of operational practices, including regulatory aspects, the reduction of occupational dose, performance improvements, and reducing operating and maintenance costs. This publication summarizes the material presented at the workshop, and includes session summaries prepared by the chair of each session and papers submitted by the presenters

  2. RETRAN sensitivity studies of light water reactor transients. Final report

    International Nuclear Information System (INIS)

    Burrell, N.S.; Gose, G.C.; Harrison, J.F.; Sawtelle, G.R.

    1977-06-01

    This report presents the results of sensitivity studies performed using the RETRAN/RELAP4 transient analysis code to identify critical parameters and models which influence light water reactor transient predictions. Various plant transients for both boiling water reactors and pressurized water reactors are examined. These studies represent the first detailed evaluation of the RETRAN/RELAP4 transient code capability in predicting a variety of plant transient responses. The wide range of transients analyzed in conjunction with the parameter and modeling studies performed identify several sensitive areas as well as areas requiring future study and model development

  3. Nuclear data sensitivity and uncertainty for the Canadian supercritical water-cooled reactor II: Full core analysis

    International Nuclear Information System (INIS)

    Langton, S.E.; Buijs, A.; Pencer, J.

    2015-01-01

    Highlights: • H-2, Pu-239, and Th-232 make large contributions to SCWR modelling sensitivity. • H-2, Pu-239, and Th-232 make large contributions to SCWR modelling uncertainty. • Isotopes of Zr make large contributions to SCWR modelling uncertainty. - Abstract: Uncertainties in nuclear data are a fundamental source of uncertainty in reactor physics calculations. To determine their contribution to uncertainties in calculated reactor physics parameters, a nuclear data sensitivity and uncertainty study is performed on the Canadian supercritical water reactor (SCWR) concept. The nuclear data uncertainty contributions to the neutron multiplication factor k eff are 6.31 mk for the SCWR at the beginning of cycle (BOC) and 6.99 mk at the end of cycle (EOC). Both of these uncertainties have a statistical uncertainty of 0.02 mk. The nuclear data uncertainty contributions to Coolant Void Reactivity (CVR) are 1.0 mk and 0.9 mk for BOC and EOC, respectively, both with statistical uncertainties of 0.1 mk. The nuclear data uncertainty contributions to other reactivity parameters range from as low as 3% of to as high as ten times the values of the reactivity coefficients. The largest contributors to the uncertainties in the reactor physics parameters are Pu-239, Th-232, H-2, and isotopes of zirconium

  4. TA-2 Water Boiler Reactor Decommissioning Project

    International Nuclear Information System (INIS)

    Durbin, M.E.; Montoya, G.M.

    1991-06-01

    This final report addresses the Phase 2 decommissioning of the Water Boiler Reactor, biological shield, other components within the biological shield, and piping pits in the floor of the reactor building. External structures and underground piping associated with the gaseous effluent (stack) line from Technical Area 2 (TA-2) Water Boiler Reactor were removed in 1985--1986 as Phase 1 of reactor decommissioning. The cost of Phase 2 was approximately $623K. The decommissioning operation produced 173 m 3 of low-level solid radioactive waste and 35 m 3 of mixed waste. 15 refs., 25 figs., 3 tabs

  5. Decay ratio estimation in pressurized water reactor

    International Nuclear Information System (INIS)

    Por, G.; Runkel, J.

    1990-11-01

    The well known decay ratio (DR) from stability analysis of boiling water reactors (BWR) is estimated from the impulse response function which was evaluated using a simplified univariate autoregression method. This simplified DR called modified DR (mDR) was applied on neutron noise measurements carried out during five fuel cycles of a 1300 MWe PWR. Results show that this fast evaluation method can be used for monitoring of the growing oscillation of the neutron flux during the fuel cycles which is a major concern of utilities in PWRs, thus it can be used for estimating safety margins. (author) 17 refs.; 10 figs

  6. Pressurized water reactor simulator. Workshop material

    International Nuclear Information System (INIS)

    2003-01-01

    The International Atomic Energy Agency (IAEA) has established an activity in nuclear reactor simulation computer programs to assist its Member States in education. The objective is to provide, for a variety of advanced reactor types, insight and practice in their operational characteristics and their response to perturbations and accident situations. To achieve this, the IAEA arranges for the development and distribution of simulation programs and educational material and sponsors courses and workshops. The workshops are in two parts: techniques and tools for reactor simulator development; and the use of reactor simulators in education. Workshop material for the first part is covered in the IAEA Training Course Series No. 12, 'Reactor Simulator Development' (2001). Course material for workshops using a WWER- 1000 reactor department simulator from the Moscow Engineering and Physics Institute, the Russian Federation is presented in the IAEA Training Course Series No. 21 'WWER-1000 Reactor Simulator' (2002). Course material for workshops using a boiling water reactor simulator developed for the IAEA by Cassiopeia Technologies Incorporated of Canada (CTI) is presented in the IAEA publication: Training Course Series No.23 'Boiling Water Reactor Simulator' (2003). This report consists of course material for workshops using a pressurized water reactor simulator

  7. Application of a new technique for human event analysis (ATHEANA) at a pressurized-water reactor

    International Nuclear Information System (INIS)

    Forester, J.A.; Kiper, K.; Ramey-Smith, A.

    1998-04-01

    Over the past several years, the US Nuclear Regulatory Commission (NRC) has sponsored the development of a new method for performing human reliability analyses (HRAs). A major impetus for the program was the recognized need for a method that would not only address errors of omission (EOOs), but also errors of commission (EOCs). Although several documents have been issued describing the basis and development of the new method referred to as ''A Technique for Human Event Analysis'' (ATHEANA), two documents were drafted to initially provide the necessary documentation for applying the method: the frame of reference (FOR) manual, which served as the technical basis document for the method and the implementation guideline (IG), which provided step by step guidance for applying the method. Upon the completion of the draft FOR manual and the draft IG in April 1997, along with several step-throughs of the process by the development team, the method was ready for a third-party test. The method was demonstrated at Seabrook Station in July 1997. The main goals of the demonstration were to (1) test the ATHENA process as described in the FOR manual and the IG, (2) test a training package developed for the method, (3) test the hypothesis that plant operators and trainers have significant insight into the EFCs that can make UAs more likely, and (4) identify ways to improve the method and its documentation. The results of the Seabrook demonstration are evaluated against the success criteria, and important findings and recommendations regarding ATHENA that were obtained from the demonstration are presented here

  8. Potential safety features and safety analysis aspects for high performance light water reactor (HPLWR)

    International Nuclear Information System (INIS)

    Aksan, N.; Schulenberg, T.; Squarer, D.

    2003-01-01

    Research Activities are ongoing worldwide to develop advanced nuclear power plants with high thermal efficiency for the purpose to improve their economical competitiveness. Within the 5th Framework Programme of the European Commission, a project has been launched with the main objective to assess the technical and economical feasibility of a high efficiency LWR operating at super critical pressure conditions. Several European research institutions, industrial partners and the University of Tokyo participated and worked in this common research project. Within the aims of the development of the HPLWR is to use both passive and active safety systems for performing safety related functions in the event of transients or accidents. Consequently substantial effort has been invested in order to define the safety features of the plant in a European environment, as well as to incorporate passive safety features into the design. Throughout this process, the European Utility Requirements (EUR) and requirements known from Generation IV initiative were considered as a guideline in general terms in order to include further advanced ideas. The HPLWR general features were compared to both requirements, indicating a potential to meet these. Since, the supercritical HPLWR represents a challenge for best-estimate safety codes like RELAP5, CATHARE and TRAB due to the fact that these codes were developed for two-phase or single-phase coolant at pressures far below critical point, work on the preliminary assessment of the appropriateness of these codes have been performed for selected relevant phenomena, and application of the codes to the selected transients on the basis of defined 'reference design'. An overview on their successful upgrade to supercritical pressures and application to some plant safety analysis are provided in the paper. Further elaborations in relation to future needs are also discussed. (author)

  9. Reactor vessel pressure transient protection for pressurized water reactors

    International Nuclear Information System (INIS)

    Zech, G.

    1978-09-01

    During the past few years the NRC has been studying the issue of protection of the reactor pressure vessels at Pressurized Water Reactors (PWRs) from transients when the vessels are at a relatively low temperature. This effort was prompted by concerns related to the safety margins available to vessel damage as a result of such events. Nuclear Reactor Regulation Category A Technical Activity No. A-26 was established to set forth the NRC plan for resolution of the generic aspects of this safety issue. The purpose of the report is to document the completion of this generic technical activity

  10. Simulation of Safety and Transient Analysis of a Pressurized Water Reactor using the Personal Computer Transient Analyzer

    Directory of Open Access Journals (Sweden)

    Sunday J. IBRAHIM

    2013-06-01

    Full Text Available Safety and transient analyses of a pressurised water reactor (PWR using the Personal Computer Transient Analyzer (PCTRAN simulator was carried out. The analyses presented a synergistic integration of a numerical model; a full scope high fidelity simulation system which adopted point reactor neutron kinetics model and movable boundary two phase fluid models to simplify the calculation of the program, so it could achieve real-time simulation on a personal computer. Various scenarios of transients and accidents likely to occur at any nuclear power plant were simulated. The simulations investigated the change of signals and parameters vis a vis loss of coolant accident, scram, turbine trip, inadvertent control rod insertion and withdrawal, containment failure, fuel handling accident in auxiliary building and containment, moderator dilution as well as a combination of these parameters. Furthermore, statistical analyses of the PCTRAN results were carried out. PCTRAN results for the loss of coolant accident (LOCA caused a rapid drop in coolant pressure at the rate of 21.8KN/m2/sec triggering a shutdown of the reactor protection system (RPS, while the turbine trip accident showed a rapid drop in total plant power at the rate of 14.3 MWe/sec causing a downtime in the plant. Fuel handling accidents mimic results showed release of radioactive materials in unacceptable doses. This work shows the potential classes of nuclear accidents likely to occur during operation in proposed reactor sites. The simulations are very appropriate in the light of Nigeria’s plan to generate nuclear energy in the region of 1000 MWe from reactors by 2017.

  11. Reactor Safety Commission Code of Practice for Pressurized Water Reactors

    International Nuclear Information System (INIS)

    1990-01-01

    The Reactor Safety Commission of the Federal German Republic has summarized in the form of Official Guidelines the safety requirements which, in the Commission's view, have to be met in the design, construction and operation of a nuclear power station equipped with a pressurized water reactor. The Third Edition of the RSK Guidelines for pressurized water reactors dated 14.10.81. is a revised and expanded version of the Second Edition dated 24.1.79. The Reactor Safety Commission will with effect from October 1981 use these Guidelines in consultations on the siting of and safety concept for the installation approval of future pressurized water reactors and will assess these nuclear power stations during their erection in the light of these Guidelines. They have not however been immediately conceived for the adaptation of existing nuclear power stations, whether under construction or in operation. The scope of application of these Guidelines to such nuclear power stations will have to be examined for each individual case. The main aim of the Guidelines is to simplify the consultation process within the reactor Safety Commission and to provide early advice on the safety requirements considered necessary by the Commission. (author)

  12. TITAN: an advanced three-dimensional coupled neutronic/thermal-hydraulics code for light water nuclear reactor core analysis

    International Nuclear Information System (INIS)

    Griggs, D.P.; Kazimi, M.S.; Henry, A.F.

    1984-06-01

    The three-dimensional nodal neutronics code QUANDRY and the three-dimensional two-fluid thermal-hydraulics code THERMIT are combined into TITAN. Steady-state and transient coupling methodologies based upon a tandem structure were devised and implemented. Additional models for nuclear feedback, equilibrium xenon and direct moderator heating were added. TITAN was tested using a boiling water two channel problem and the coupling methodologies were shown to be effective. Simulated turbine trip transients and several control rod withdrawal transients were analyzed with good results. Sensitivity studies indicated that the time-step size can affect transient results significantly. TITAN was also applied to a quarter core PWR problem based on a real reactor geometry. The steady-state results were compared to a solution produced by MEKIN-B and poor agreement between the horizontal power shapes was found. Calculations with various mesh spacings showed that the mesh spacings in the MEKIN-B analysis were too large to produce accurate results with a finite difference method. The TITAN results were shown to be reasonable. A pair of control rod ejection accidents were also analyzed with TITAN. A comparison of the TITAN PWR control rod ejection results with results from coupled point kinetics/thermal-hydraulics analyses showed that the point kinetics method used (adiabatic method for control rod reactivities, steady-state flux shape for core-averaged reactivity feedback) underpredicted the power excursion in one case and overpredicted it in the other. It was therefore concluded that point kinetics methods should be used with caution and that three-dimensional codes like TITAN are superior for analyzing PWR control rod ejection transients

  13. Method of operating heavy water moderated reactors

    International Nuclear Information System (INIS)

    Masuda, Hiroyuki.

    1980-01-01

    Purpose: To enable stabilized reactor control, and improve the working rate and the safety of the reactor by removing liquid poison in heavy water while maintaining the power level constant to thereby render the void coefficient of the coolants negative in the low power operation. Method: The operation device for a heavy water moderated reactor comprises a power detector for the reactor, a void coefficient calculator for coolants, control rods inserted into the reactor, a poison regulator for dissolving poisons into or removing them out of heavy water and a device for removing the poisons by the poison regulator device while maintaining the predetermined power level or inserting the control rods by the signals from the power detector and the void coefficient calculator in the high temperature stand-by conditions of the reactor. Then, the heavy water moderated reactor is operated so that liquid poisons in the heavy water are eliminated in the high temperature stand-by condition prior to the start for the power up while maintaining the power level constant and the plurality of control rods are inserted into the reactor core and the void coefficient of the coolants is rendered negative in the low power operation. (Seki, T.)

  14. Heavy water moderated tubular type nuclear reactor

    International Nuclear Information System (INIS)

    Oohashi, Masahisa.

    1986-01-01

    Purpose: To enable to effectively change the volume of heavy water per unit fuel lattice in heavy water moderated pressure tube type nuclear reactors. Constitution: In a nuclear reactor in which fuels are charged within pressure tubes and coolants are caused to flow between the pressure tubes and the fuels, heavy water tubes for recycling heavy water are disposed to a gas region formed to the outside of the pressure tubes. Then, the pressure tube diameter at the central portion of the reactor core is made smaller than that at the periphery of the reactor core. Further, injection means for gas such as helium is disposed to the upper portion for each of the heavy water tubes so that the level of the heavy water can easily be adjusted by the control for the gas pressure. Furthermore, heavy water reflection tubes are disposed around the reactor core. In this constitution, since the pitch for the pressure tubes can be increased, the construction and the maintenance for the nuclear reactor can be facilitated. Also, since the liquid surface of the heavy water in the heavy water tubes can be varied, nuclear properties is improved and the conversion ratio is improved. (Ikeda, J.)

  15. Study on in-vessel thermohydraulics phenomena of sodium-cooled fast reactors. 4. Numerical analysis of 1/10 scaled water experiment with the AQUA code

    International Nuclear Information System (INIS)

    Muramatu, Toshiharu; Yamaguchi, Akira

    2004-01-01

    A large-scale sodium-cooled fast breeder reactor in the feasibility studies on commercialized fast reactors has a feature of consideration of thorough simplified and compacted systems and components design to realize drastic economical improvements. Therefore, special attentions should be paid to thermohydraulic designs for gas entrainment behavior from free surface, flow-induced vibration of in-vessel components, thermal stratification in the plenum, thermal shock for various structures due to high-speed coolant flows, nonsymmetrical coolant flows, etc. in the reactor vessel. A numerical analysis was carried out with a multi-dimensional code AQUA to confirm an applicability to the evaluations for the in-vessel thermohydraulic phenomena using a 1/10 scaled water experiment simulating the large-scale fast breeder reactor in the feasibility studies. From the analysis, the following results were obtained. (1) In-vessel thermohydraulics characterized by a radiated flow pattern to the reactor vessel wall and a strong upward flow through a slit of the upper core structures were evaluated. These characteristics agreed approximately with the water experiment. (2) The upward velocity values at the slit agreed well with the experimental data under a condition of γ z = 0.3 and ξ z = 0.5, though overall evaluations of the in-vessel thermohydraulics were failed to predict quantitatively. (3) The AQUA code is applicable to the in-vessel thermohydraulics evaluations in the feasibility studies, though it is necessary to make further modifications of the calculational models for accurate evaluations. On the one hand, it was confirmed that calculated results for the 1/10 water experimental model and the 1/1 actual-scaled model agreed quantitatively for the in-vessel thermohydraulics characteristics indicated above. (author)

  16. Boiling water reactor fuel bundle

    International Nuclear Information System (INIS)

    Weitzberg, A.

    1986-01-01

    A method is described of compensating, without the use of control rods or burnable poisons for power shaping, for reduced moderation of neutrons in an uppermost section of the active core of a boiling water nuclear reactor containing a plurality of elongated fuel rods vertically oriented therein, the fuel rods having nuclear fuel therein, the fuel rods being cooled by water pressurized such that boiling thereof occurs. The method consists of: replacing all of the nuclear fuel in a portion of only the upper half of first predetermined ones of the fuel rods with a solid moderator material of zirconium hydride so that the fuel and the moderator material are axially distributed in the predetermined ones of the fuel rods in an asymmetrical manner relative to a plane through the axial midpoint of each rod and perpendicular to the axis of the rod; placing the moderator material in the first predetermined ones of the fuel rods in respective sealed internal cladding tubes, which are separate from respective external cladding tubes of the first predetermined ones of the fuel rods, to prevent interaction between the moderator material and the external cladding tube of each of the first predetermined ones of the fuel rods; and wherein the number of the first predetermined ones of the fuel rods is at least thirty, and further comprising the steps of: replacing with the moderator material all of the fuel in the upper quarter of each of the at least thirty rods; and also replacing with the moderator material all of the fuel in the adjacent lower quarter of at least sixteen of the at least thirty rods

  17. Identification of the two-phase flow in the upper part of a boiling water reactor core using reactor noise analysis

    International Nuclear Information System (INIS)

    Miteff, L.

    1983-08-01

    The starting point of this work were neutron flux correlation measurements in the core of the Muehleberg boiling water reactor. During these measurements a new effect was observed i.e. that the cross power spectral density (CPSD) phases could be approximated by two straight lines of different slopes. The two linear domains of the CPSD-phases are separated along the frequency axis by a transition interval. It was supposed that such CPSD-phases could account for the propagation in the axial direction of two different thermohydraulic perturbations in the upper part of the Muehleberg BWR-core. It was also assumed that the second linear domain of these CPSD-phases could be related to a characteristic property of an annular flow regime of the steam-water two-phase flows in the bundles around the neutron detectors. The author attempts to give an explanation for the existence of a second transport phenomenon. This was achieved by in-core and out-core correlation measurements as well as by theoretical work. The out-core measurements were performed on an water-air simulation loop by use of laser beams. (Auth.)

  18. Overview of activities for the reduction of dose rates in Swiss boiling water reactors

    International Nuclear Information System (INIS)

    Alder, H.P.; Schenker, E.

    1993-01-01

    Since March 1990, zinc has been added to the reactor water of the boiling water reactor (BWR) Leibstadt (KKL) and, since January 1991, iron has been added to the BWR Muehleberg (KKM). These changes in reactor water chemistry were accompanied by a comprehensive R+D programme. This paper covers three selected topics: a) the statistical analysis of KKL reactor water data before and after zinc addition; b) the analysis of the KKL reactor water during the 1991 annual shutdown; c) laboratory autoclave tests to clarify the role of water additives on the cobalt deposition on austenitic steel surfaces. (author) 2 figs., 4 tabs

  19. Boiling water reactor simulator. Workshop material

    International Nuclear Information System (INIS)

    2003-01-01

    The International Atomic Energy Agency (IAEA) has established an activity in nuclear reactor simulation computer programs to assist its Member States in education. The objective is to provide, for a variety of advanced reactor types, insight and practice in their operational characteristics and their response to perturbations and accident situations. To achieve this, the IAEA arranges for the development and distribution of simulation programs and workshop material and sponsors workshops. The workshops are in two parts: techniques and tools for reactor simulator development; and the use of reactor simulators in education. Workshop material for the first part is covered in the IAEA publication: Training Course Series No. 12, 'Reactor Simulator Development' (2001). Course material for workshops using a WWER- 1000 simulator from the Moscow Engineering and Physics Institute, Russian Federation is presented in the IAEA publication: Training Course Series No. 21 'WWER-1000 Reactor Simulator' (2002). Course material for workshops using a pressurized water reactor (PWR) simulator developed by Cassiopeia Technologies Incorporated, Canada, is presented in the IAEA publication: Training Course Series No. 22 'Pressurized Water Reactor Simulator' (2003). This report consists of course material for workshops using a boiling water reactor (BWR) simulator. Cassiopeia Technologies Incorporated, developed the simulator and prepared this report for the IAEA

  20. Safety analysis for research reactors

    International Nuclear Information System (INIS)

    2008-01-01

    The aim of safety analysis for research reactors is to establish and confirm the design basis for items important to safety using appropriate analytical tools. The design, manufacture, construction and commissioning should be integrated with the safety analysis to ensure that the design intent has been incorporated into the as-built reactor. Safety analysis assesses the performance of the reactor against a broad range of operating conditions, postulated initiating events and other circumstances, in order to obtain a complete understanding of how the reactor is expected to perform in these situations. Safety analysis demonstrates that the reactor can be kept within the safety operating regimes established by the designer and approved by the regulatory body. This analysis can also be used as appropriate in the development of operating procedures, periodic testing and inspection programmes, proposals for modifications and experiments and emergency planning. The IAEA Safety Requirements publication on the Safety of Research Reactors states that the scope of safety analysis is required to include analysis of event sequences and evaluation of the consequences of the postulated initiating events and comparison of the results of the analysis with radiological acceptance criteria and design limits. This Safety Report elaborates on the requirements established in IAEA Safety Standards Series No. NS-R-4 on the Safety of Research Reactors, and the guidance given in IAEA Safety Series No. 35-G1, Safety Assessment of Research Reactors and Preparation of the Safety Analysis Report, providing detailed discussion and examples of related topics. Guidance is given in this report for carrying out safety analyses of research reactors, based on current international good practices. The report covers all the various steps required for a safety analysis; that is, selection of initiating events and acceptance criteria, rules and conventions, types of safety analysis, selection of

  1. Thermo-fluid analysis of water cooled research reactors in natural convection; Analise termofluidodinamica de reatores nucleares de pesquisa refrigerados a agua em regime de conveccao natural

    Energy Technology Data Exchange (ETDEWEB)

    Veloso, Maria Auxiliadora Fortini

    2004-07-01

    The STHIRP-1 computer program, which fundamentals are described in this work, uses the principles of the subchannels analysis and has the capacity to simulate, under steady state and transient conditions, the thermal and hydraulic phenomena which occur inside the core of a water-refrigerated research reactor under a natural convection regime. The models and empirical correlations necessary to describe the flow phenomena which can not be described by theoretical relations were selected according to the characteristics of the reactor operation. Although the primary objective is the calculation of research reactors, the formulation used to describe the fluid flow and the thermal conduction in the heater elements is sufficiently generalized to extend the use of the program for applications in power reactors and other thermal systems with the same features represented by the program formulations. To demonstrate the analytical capacity of STHIRP-l, there were made comparisons between the results calculated and measured in the research reactor TRIGA IPR-R1 of CDTN/CNEN. The comparisons indicate that the program reproduces the experimental data with good precision. Nevertheless, in the future there must be used more consistent experimental data to corroborate the validation of the program. (author)

  2. Development of Hplc Techniques for the Analysis of Trace Metal Species in the Primary Coolant of a Pressurised Water Reactor.

    Science.gov (United States)

    Barron, Keiron Robert Philip

    Available from UMI in association with The British Library. The need to monitor corrosion products in the primary circuit of a pressurised water reactor (PWR), at a concentration of 10pg ml^{-1} is discussed. A review of trace and ultra-trace metal analysis, relevant to the specific requirements imposed by primary coolant chemistry, indicated that high performance liquid chromatography (HPLC), coupled with preconcentration of sample was an ideal technique. A HPLC system was developed to determine trace metal species in simulated PWR primary coolant. In order to achieve the desired detection limit an on-line preconcentration system had to be developed. Separations were performed on Aminex A9 and Benson BC-X10 analytical columns. Detection was by post column reaction with Eriochrome Black T and Calmagite Linear calibrations of 2.5-100ng of cobalt (the main species of interest), were achieved using up to 200ml samples. The detection limit for a 200ml sample was 10pg ml^{-1}. In order to achieve the desired aim of on-line collection of species at 300^circ C, the use of inorganic ion-exchangers is essential. A novel application, utilising the attractive features of the inorganic ion-exchangers titanium dioxide, zirconium dioxide, zirconium arsenophosphate and pore controlled glass beads, was developed for the preconcentration of trace metal species at temperature and pressure. The performance of these exchangers, at ambient and 300^ circC was assessed by their inclusion in the developed analytical system and by the use of radioisotopes. The particular emphasis during the development has been upon accuracy, reproducibility of recovery, stability of reagents and system contamination, studied by the use of radioisotopes and response to post column reagents. This study in conjunction with work carried out at Winfrith, resulted in a monitoring system that could follow changes in coolant chemistry, on deposition and release of metal species in simulated PWR water loops. On

  3. Functional systems of a pressurized water reactor

    International Nuclear Information System (INIS)

    Heinzel, V.

    1982-01-01

    The main topics, discussed in the present paper, are: - Principle design of the reactor coolant system - reactor pressure vessel with internals - containment design - residual heat removal and emergency cooling systems - nuclear component cooling systems - emergency feed water systems - plant electric power supply system. (orig./RW)

  4. Localized corrosion problems in water reactors

    International Nuclear Information System (INIS)

    Coriou, Henri.

    1977-01-01

    Main localized etching on the structure materials of water reactors are studied: stress corrosion on stainless steel 304 (B.W.R), stress corrosion, 'wall thinning' and denting of Inconel 600 vapor generator tubes (P.W.R.). Some mechanisms are examined and practical exemples in reactors are described. Various possible cures are presented [fr

  5. Thermal–mechanical stress analysis of pressurized water reactor pressure vessel with/without a preexisting crack under grid load following conditions

    Energy Technology Data Exchange (ETDEWEB)

    Mohanty, Subhasish, E-mail: smohanty@anl.gov; Soppet, William K.; Majumdar, Saurin; Natesan, Krishnamurti

    2016-12-15

    Highlights: • Use of intermittent renewable-energy source in power grid is becoming a trend. • Gird load-following can leads to variable power demand from Nuclear power plant. • Reactor components can be stressed differently under gird load-following mode. • Estimation of stress–strain state under grid load-following condition is essential. - Abstract: In this paper, we present thermal–mechanical stress analysis of a pressurized water reactor pressure vessel and its hot-leg and cold-leg nozzles. Results are presented from thermal and thermal–mechanical stress analysis under reactor heat-up, cool-down, and grid load-following conditions. Analysis results are given with and without the presence of preexisting crack in the reactor nozzle (axial crack in hot leg nozzle). From the model results it is found that the stress–strain states are significantly higher in case of presence of crack than without crack. The stress–strain state under grid load following condition are more realistic compared to the stress–strain state estimated assuming simplified transients.

  6. Thermal–mechanical stress analysis of pressurized water reactor pressure vessel with/without a preexisting crack under grid load following conditions

    International Nuclear Information System (INIS)

    Mohanty, Subhasish; Soppet, William K.; Majumdar, Saurin; Natesan, Krishnamurti

    2016-01-01

    Highlights: • Use of intermittent renewable-energy source in power grid is becoming a trend. • Gird load-following can leads to variable power demand from Nuclear power plant. • Reactor components can be stressed differently under gird load-following mode. • Estimation of stress–strain state under grid load-following condition is essential. - Abstract: In this paper, we present thermal–mechanical stress analysis of a pressurized water reactor pressure vessel and its hot-leg and cold-leg nozzles. Results are presented from thermal and thermal–mechanical stress analysis under reactor heat-up, cool-down, and grid load-following conditions. Analysis results are given with and without the presence of preexisting crack in the reactor nozzle (axial crack in hot leg nozzle). From the model results it is found that the stress–strain states are significantly higher in case of presence of crack than without crack. The stress–strain state under grid load following condition are more realistic compared to the stress–strain state estimated assuming simplified transients.

  7. Development of plant dynamic analysis code for integrated self-pressurized water reactor (ISPDYN), and comparative study of pressure control methods

    International Nuclear Information System (INIS)

    Kusunoki, Tsuyoshi; Yokomura, Takeyoshi; Nabeshima, Kunihiko; Shimazaki, Junya; Shinohara, Yoshikuni.

    1988-01-01

    This report describes the development of plant dynamic analysis code (ISPDYN) for integrated self-pressurized water reactor, and comparative study of pressure control methods with this code. ISPDYN is developed for integrated self-pressurized water reactor, one of the trial design by JAERI. In the transient responses, the calculated results by ISPDYN are in good agreement with the DRUCK calculations. In addition, this report presents some sensitivity studies for selected cases. Computing time of this code is very short so as about one fifth of real time. The comparative study of self-pressurized system with forced-pressurized system by this code, for rapid load decrease and increase cases, has provided useful informations. (author)

  8. Carbon-14 in reactor plant water

    International Nuclear Information System (INIS)

    Knowles, G.K.

    1979-01-01

    The method for the analysis of 14 C in reactor plant water and various waste streams previously used at the Idaho National Engineering Laboratory has been shown to be ineffective for samples which contain organic compounds. The previous method consisted of acidification and refluxing of the sample, precipitation of the liberated CO 2 , and subsequent analysis by the liquid scintillation method. The method was simple but it did not convert all compounds containing 14 C in the sample to CO 2 . The new method, while it is based on the previous method, has been improved by employing a strong oxidant, potassium persulfate and silver nitrate, for more complete oxidation of the organics to CO 2 . The new method yields 14 C values that have typically been one to two orders of magnitude higher than the values obtained using the former method. This indicates that most of the 14 C present in the current reactor water samples being analyzed is associated with trace amounts of organics

  9. Water feeding method upon reactor isolation

    International Nuclear Information System (INIS)

    Sasaki, Koichi; Takahara, Kuniaki; Hamamura, Kenji; Arakawa, Masahiro.

    1990-01-01

    The present invention concerns a method of feeding water upon reactor isolation in a plural loop type reactor having a plurality of reactor cooling systems. Water can be injected to a plurality of pools even if the pressure between the pools is not balanced and the water level in the reactor cooling system is optimally controlled. That is, water can be injected in accordance with the amount required for each of the pools by setting the opening of a turbine inlet steam control valve to somewhat higher than the cooling system pressure of the highest pressure loop. Water feeding devices upon reactor isolation were required by the same number as that for the reactor cooling systems. Whereas since pumps and turbines are used in common without worsening the water injection controllability to each of the loops according to the method of this invention and, accordingly, the cost performance can be improved. Further, since the opening degree of the turbine inlet steam control valve is controlled while making the difference pressure constant between the turbine inlet pressure and the pump exhaust pressure, the amount of the turbine exhausted steams can be reduced and, further, water injection controllability of the flow rate control valve in the injection line is improved. (I.S.)

  10. Nuclear fuel performance in boiling water reactors

    International Nuclear Information System (INIS)

    Elkins, R.B.; Baily, W.E.; Proebstle, R.A.; Armijo, J.S.; Klepfer, H.H.

    1981-01-01

    A major development program is described to improve the performance of Boiling Water Reactor fuel. This sustained program is described in four parts: 1) performance monitoring, 2) fuel design changes, 3) plant operating recommendations, and 4) advanced fuel programs

  11. Reactor water quality degradation suppressing method upon reactor start up

    International Nuclear Information System (INIS)

    Maeda, Katsuharu.

    1993-01-01

    Preceding to reactor start-up, vacuum degree in a condenser is increased, and after the vacuum degree has been increased sufficiently, a desalting tower is inserted. Then, water feed to the reactor is started and the reactor is operated so that water is supplied gradually. Thus, dissolved oxygen in the feedwater and condensates is kept low and an entire organic carbon leaching rate from resins in the condensate desalting tower is reduced. Further, since feedwater is gradually supplied after the start-up, the entire organic carbon brought into the reactor is decomposed by heat and radiation and efficiently removed by a reactor coolant cleanup system. As a result, corrosion of stainless steel or the like is suppressed, as well as integrity of fuels can be maintained. Further, degradation of water quality can be suppressed effectively not by additionally putting the condensate desalting towers to in-service in accordance with the increase of the feedwater flow rate accompanying the power up but by previously putting the condensate desalting towers to in-service. (N.H.)

  12. Water chemistry in WWER reactors

    International Nuclear Information System (INIS)

    Yurmanov, V.A.; Mamet, V.A.; Shestakov, Yu.M.; Amosov, M.M.

    1997-01-01

    In this paper ''Water Chemistry in WWER Reactors'', are briefly described the 30 WWERs in Russian and the Ukraine, and are pointed out the essential differences between the 440s and 1000s. The primary coolant in the six loops of the former type operates at 270-290 deg. C, while the four loops of the latter type are at 290-320 deg. C. Performance of the fuel has been generally good with some fission product activities emanating from tramp uranium. Incidents causing unusually high fission product levels were overheating of the 16th fuel load at Kola NPP in 1990 by a reduced coolant flow, and fuel defects at Novovoronezh NPP resulting from deposits of carbon and corrosion products. Organic carbon, depositing from the coolant in regions of high turbulence (i.e. at the spacer grids), provokes corrosion product deposition. The source of the organic is not known. New chemistry guidelines have been implemented since 1992-93 for Russian and Ukrainian WWERs. These include higher pH T values (7.0-7.1 as opposed to 6.6-6.9) and tighter controls on oxygen and impurities. Lower dose rates in steam generator channels are reported. Significant reduction in operator doses are achieved by these methods coupled with a ''soft decontamination'' involving changing the KOH concentration and, hence, the pH T before shutdown. The benefits of hydrazine treatment for deoxygenating feedwater and coolant prior to start up, for injecting before shutdown and for general chemistry control on radiation fields are described. (author). 7 refs, 9 figs, 8 tabs

  13. Water chemistry in WWER reactors

    Energy Technology Data Exchange (ETDEWEB)

    Yurmanov, V A; Mamet, V A; Shestakov, Yu M; Amosov, M M [All-Russian Scientific Research Inst. for Nuclear Power Plants Operation, Moscow (Russian Federation)

    1997-02-01

    In this paper ``Water Chemistry in WWER Reactors``, are briefly described the 30 WWERs in Russian and the Ukraine, and are pointed out the essential differences between the 440s and 1000s. The primary coolant in the six loops of the former type operates at 270-290 deg. C, while the four loops of the latter type are at 290-320 deg. C. Performance of the fuel has been generally good with some fission product activities emanating from tramp uranium. Incidents causing unusually high fission product levels were overheating of the 16th fuel load at Kola NPP in 1990 by a reduced coolant flow, and fuel defects at Novovoronezh NPP resulting from deposits of carbon and corrosion products. Organic carbon, depositing from the coolant in regions of high turbulence (i.e. at the spacer grids), provokes corrosion product deposition. The source of the organic is not known. New chemistry guidelines have been implemented since 1992-93 for Russian and Ukrainian WWERs. These include higher pH{sub T} values (7.0-7.1 as opposed to 6.6-6.9) and tighter controls on oxygen and impurities. Lower dose rates in steam generator channels are reported. Significant reduction in operator doses are achieved by these methods coupled with a ``soft decontamination`` involving changing the KOH concentration and, hence, the pH{sub T} before shutdown. The benefits of hydrazine treatment for deoxygenating feedwater and coolant prior to start up, for injecting before shutdown and for general chemistry control on radiation fields are described. (author). 7 refs, 9 figs, 8 tabs.

  14. Physics of pressurized water reactors

    International Nuclear Information System (INIS)

    Gruen, A.

    1980-01-01

    The objective of this lecture is to demonstrate typical problems and solutions encountered in the design and operation of PWR power plants. The examples selected for illustration refer to PWR's of KWU design and to results of KWU design methods. In order to understand the physics of a power reactor it is necessary to have some knowledge of the structure and design of the power plant system of which the reactor is a part. It is therefore assumed that the reader is familiar with the design of the more important components and systems of a PWR, such as fuel assemblies, control assemblies, core lay-out, reactor coolant system, instrumentation. (author)

  15. Water-immersion type ship reactor

    International Nuclear Information System (INIS)

    Okada, Hiroki; Yamamura, Toshio.

    1996-01-01

    In a water immersion-type ship reactor in which a water-tight wall is formed around a pressure vessel by way of an air permeable heat insulation layer and immersing the wall under water in a reactor container, a pressure equalizing means equipped with a back flow check valve and introducing a gas in a gas phase portion above the water level of the container into a water tight wall and a relief valve for releasing the gas in the water tight wall to the reactor container are disposed on the water tight wall. When the pressure in the water tight wall exceeds the pressure in the container, the gas in the water tight wall is released from the relief valve to the reactor container. On the contrary, when the pressure in the container exceeds the pressure in the water tight wall, the gas in the gas phase portion is flown from the pressure equalizing means equipped with a back flow check valve to the inside of the water tight wall. Thus, a differential pressure between both of them is kept around 0kg/cm 2 . A large differential pressure is not exerted on the water tight wall thereby capable of preventing rupture of them to improve reliability, as well as the thickness of the plate can be decreased thereby enabling to moderate the design for the pressure resistance and reduce the weight. (N.H.)

  16. Emergency cooling of presurized water reactor

    International Nuclear Information System (INIS)

    Sykora, D.

    1981-01-01

    The method described of emergency core cooling in the pressurized water reactor is characterized by the fact that water is transported to the disturbed primary circuit or direct to the reactor by the action of the energy and mass of the steam and/or liquid phase of the secondary circuit coolant, which during emergency core cooling becomes an emergency cooling medium. (B.S.)

  17. A GASFLOW analysis of a steam explosion accident in a typical light-water reactor confinement building

    International Nuclear Information System (INIS)

    Travis, J.R.; Wilson, T.L.; Spore, J.W.; Lam, K.L.; Rao, D.V.

    1994-01-01

    Steam over-pressurization resulting from ex-vessel steam explosion (fuel-coolant interaction) may pose a serious challenge to the integrity of a typical light-water reactor confinement building. If the steam generation rate exceeds the removal capacity of the Airborne Activity Confinement System, confinement overpressurization occurs. Thus, there is a large potential for an uncontrolled and unfiltered release of fission products from the confinement atmosphere to the environment at the time of the steam explosion. The GASFLOW computer code was used to analyze the effects of a hypothetical steam explosion and the transport of steam and hydrogen throughout a typical light-water reactor confinement building. The effects of rapid pressurization and the resulting forces on the internal structures and the heat exchanger service bay hatch covers were calculated. Pressurization of the ventilation system and the potential damage to the ventilation fans and high-efficiency particulate air filters were assessed. Because of buoyancy forces and the calculated confinement velocity field, the hydrogen diffuses and mixes in the confinement atmosphere but tends to be transported to its upper region. (author). 2 refs., 14 figs

  18. A GASFLOW analysis of a steam explosion accident in a typical light-water reactor confinement building

    International Nuclear Information System (INIS)

    Travis, J.R.; Wilson, T.L.; Spore, J.W.; Lam, K.L.; Rao, D.V.

    1994-01-01

    Steam over-pressurization resulting from ex-vessel steam explosion (fuel-coolant interaction) may pose a serious challenge to the integrity of a typical light-water reactor confinement building. If the steam generation rate exceeds the removal capacity of the Airborne Activity Confinement System, confinement over pressurization occurs. Thus, there is a large potential for an uncontrolled and unfiltered release of fission products from the confinement atmosphere to the environment at the time of the steam explosion. The GASFLOW computer code was used to analyze the effects of a hypothetical steam explosion and the transport of steam and hydrogen throughout a typical light-water reactor confinement building. The effects of rapid pressurization and the resulting forces on the internal structures and the heat exchanger service bay hatch covers were calculated. Pressurization of the ventilation system and the potential damage to the ventilation fans and high-efficiency particulate air filters were assessed. Because of buoyancy forces and the calculated confinement velocity field, the hydrogen diffuses and mixes in the confinement atmosphere but tends to be transported to its upper region

  19. Pressurized water reactors: the EPR project

    International Nuclear Information System (INIS)

    Py, J.P.; Yvon, M.

    2007-01-01

    EPR (originally 'European pressurized water reactor', and now 'evolutionary power reactor') is a model of reactor initially jointly developed by French and German engineers which fulfills the particular safety specifications of both countries but also the European utility requirements jointly elaborated by the main European power companies under the initiative of Electricite de France (EdF). Today, two EPR-based reactors are under development: one is under construction in Finland and the other, Flamanville 3 (France), received its creation permit decree on April 10, 2007. This article presents, first, the main objectives of the EPR, and then, describes the Flamanville 3 reactor: reactor type and general conditions, core and conditions of operation, primary and secondary circuits with their components, main auxiliary and recovery systems, man-machine interface and instrumentation and control system, confinement and serious accidents, arrangement of buildings. (J.S.)

  20. Critical analysis of accident scenario and consequences modelling applied to light-water reactor power plants for accident categories beyond the design basis accident (DBA)

    International Nuclear Information System (INIS)

    Brofferio, C.; Cagnetti, P.; Ferrara, V.; Manilia, E.; Pietrangeli, G.; Sennis, C.

    1985-01-01

    A critical analysis and sensitivity study of the modelling of accident scenarios and environmental consequences are presented, for light-water reactor accident categories beyond the standard design-basis-accident category. The first chapter, on ''source term'' deals with the release of fission products from a damaged core inventory and their migration within the primary circuit and the reactor containment. Particular attention is given to the influence of engineering safeguards intervention and of the chemical forms of the released fission products. The second chapter deals with their release to the atmosphere, transport and wet or dry deposition, outlining relevant partial effects and confronting short-duration or prolonged releases. The third chapter presents a variability analysis, for environmental contamination levels, for two extreme hypothetical scenarios, evidencing the importance of plume rise. A numerical plume rise model is outlined

  1. Status of advanced technology and design for water cooled reactors: Heavy water reactors

    International Nuclear Information System (INIS)

    1989-07-01

    In 1987 the IAEA established the International Working Group on Advanced Technologies for Water-Cooled Reactors (IWGATWR). Within the framework of the IWGATWR the IAEA Technical Report on Status of Advanced Technology and Design for Water Cooled Reactors, Part I: Light Water Reactors and Part II: Heavy Water Reactors, has been undertaken to document the major current activities and trends of technological improvement and development for future water reactors. Part I of the report dealing with Light Water Reactors (LWRs) was published in 1988 (IAEA-TECDOC-479). Part II of the report covers Heavy Water Reactors (HWRs) and has now been prepared. This report is based largely upon submissions from Member States. It has been supplemented by material from the presentations at the IAEA Technical Committee and Workshop on Progress in Heavy Water Reactor Design and Technology held in Montreal, Canada, December 6-9, 1988. It is hoped that this part of the report, containing the status of advanced heavy water reactor technology up to 1988 and ongoing development programmes will aid in disseminating information to Member States and in stimulating international cooperation. Refs, figs and tabs

  2. Pressurised water reactor in the UK

    International Nuclear Information System (INIS)

    Anon.

    1982-01-01

    Since the Three Mile Island accident there has been much debate about the safety considerations of Pressurised Water Reactors. Their development will continue throughout the world but it will be based upon the lessons learned from that unfortunate accident. In the United Kingdom there is a public enquiry discussing all aspects of the reactor. The papers given in this book provide an informed addition to the literature. The design, safety and licensing and construction of a pressurised water reactor system are discussed in detail. Considerations stemming from the Three Mile Island accident are presented

  3. Hydriding failure in water reactor fuel elements

    International Nuclear Information System (INIS)

    Sah, D.N.; Ramadasan, E.; Unnikrishnan, K.

    1980-01-01

    Hydriding of the zircaloy cladding has been one of the important causes of failure in water reactor fuel elements. This report reviews the causes, the mechanisms and the methods for prevention of hydriding failure in zircaloy clad water reactor fuel elements. The different types of hydriding of zircaloy cladding have been classified. Various factors influencing zircaloy hydriding from internal and external sources in an operating fuel element have been brought out. The findings of post-irradiation examination of fuel elements from Indian reactors, with respect to clad hydriding and features of hydriding failure are included. (author)

  4. LOCA analysis of the IRIS reactor

    International Nuclear Information System (INIS)

    Bajs, T.; Grgic, D.; Cavlina, N.

    2003-01-01

    The IRIS reactor (International Reactor Innovative and Secure) is an integral, light water cooled, medium power reactor. IRIS has been selected as an International Near Term Deployable (INTD) reactor, within the Generation IV International Forum activities. The IRIS concept addresses the key-requirements defined by the US DOE for next generation reactors, i.e. enhanced reliability and safety, and improved economics. It features innovative, advanced engineering, but it is firmly based on the proven technology of pressurized water reactors (PWR). An innovative safety approach has been developed to mitigate the IRIS response to small-to-medium Loss of Coolant Accident (LOCA). This strategy is based on the interaction of IRIS compact containment with the reactor vessel to limit initial blowdown, and on depressurization through the use of a passive Emergency Heat Removal System (EHRS). A small Automatic Depressurization System (ADS) provides supplementary depressurization capability. A pressure suppression system is provided to limit the pressure peak following the initial blowdown to well below the containment design limit. The ultimate result is that during a small-to-medium LOCA, the core remains covered for an extended period of time, without credit for emergency water injection or external core makeup. The IRIS LOCA response is based on 'maintaining water inventory' rather than on the principle of safety injection. This novel safety approach poses significant issues for computational and analysis methods since the IRIS vessel and containment are strongly coupled, and the system response is based on the interaction between the two. The small break LOCA was calculated using RELAP5/mod3.3 and GOTHIC codes. Break of the largest line connected to the IRIS Reactor Pressure Vessel (RPV) was analyzed. The results of the calculations confirmed good performance of the IRIS system during LOCA. (author)

  5. Water injection device for reactor container

    International Nuclear Information System (INIS)

    Sakaki, Isao.

    1996-01-01

    A pressure vessel incorporating a reactor core is placed and secured on a pedestal in a dry well of a reactor container. A pedestal water injection line is disposed opened at one end in a pedestal cavity passing through the side wall of the pedestal and led at the other end to the outside of the reactor container. A substitution dry well spray line is connected to a spray header disposed at the upper portion of the dry well. When the pressure vessel should be damaged by a molten reactor core and the molten reactor core should drop to the dry well upon occurrence of an accident, the molten reactor core on the floor of the pedestal is cooled by water injection from the pedestal water injection line. At the same time, the elevation of the pressure and the temperature in the reactor container is suppressed by the water injection of the substitution dry well spray line. This can avoid large scaled release of radioactive materials to the environmental circumference. (I.N.)

  6. Emergency water supply facility for nuclear reactor

    International Nuclear Information System (INIS)

    Karasawa, Toru

    1998-01-01

    Water is stored previously in an equipment storage pit disposed on an operator floor of a reactor building instead of a condensate storage vessel. Upon occurrence of an emergency, water is supplied from the equipment storage pit by way of a sucking pipeline to a pump of a high pressure reactor core water injection circuit and a pump of a reactor-isolation cooling circuit to supply water to a reactor. The equipment storage pit is arranged in a building so that the depth thereof is determined to keep the required amount of water by storing water at a level lower than the lower end of a pool gate during normal operation. Water is also supplied from the equipment storage pit by way of a supply pipeline to a spent fuel storage pool on the operation floor of the reactor building. Namely, water is supplied to the spent fuel storage pool by a pump of a fuel pool cooling and cleaning circuit. This can eliminate a suppression pool cleaning circuit. (I.N.)

  7. Self-Sustaining Thorium Boiling Water Reactors

    Directory of Open Access Journals (Sweden)

    Ehud Greenspan

    2012-10-01

    Full Text Available A thorium-fueled water-cooled reactor core design approach that features a radially uniform composition of fuel rods in stationary fuel assembly and is fuel-self-sustaining is described. This core design concept is similar to the Reduced moderation Boiling Water Reactor (RBWR proposed by Hitachi to fit within an ABWR pressure vessel, with the following exceptions: use of thorium instead of depleted uranium for the fertile fuel; elimination of the internal blanket; and elimination of absorbers from the axial reflectors, while increasing the length of the fissile zone. The preliminary analysis indicates that it is feasible to design such cores to be fuel-self-sustaining and to have a comfortably low peak linear heat generation rate when operating at the nominal ABWR power level of nearly 4000 MWth. However, the void reactivity feedback tends to be too negative, making it difficult to have sufficient shutdown reactivity margin at cold zero power condition. An addition of a small amount of plutonium from LWR used nuclear fuel was found effective in reducing the magnitude of the negative void reactivity effect and enables attaining adequate shutdown reactivity margin; it also flattens the axial power distribution. The resulting design concept offers an efficient incineration of the LWR generated plutonium in addition to effective utilization of thorium. Additional R&D is required in order to arrive at a reliable practical and safe design.

  8. Pressurized-water-reactor station blackout

    International Nuclear Information System (INIS)

    Dobbe, C.A.

    1983-01-01

    The purpose of the Severe Accident Sequence Analysis (SASA) Program was to investigate accident scenarios beyond the design basis. The primary objective of SASA was to analyze nuclear plant transients that could lead to partial or total core melt and evaluate potential mitigating actions. The following summarizes the pressurized water reactor (PWR) SASA effort at the Idaho National Engineering Laboratory (INEL). The INEL is presently evaluating Unresolved Safety Issue A-44 - Station Blackout from initiation of the transient to core uncovery. The balance of the analysis from core uncovery until fission product release is being performed at Sandia National Laboratory (SNL). The current analyses involve the Bellefonte Nuclear Steam Supply System (NSSS), a Babcock and Wilcox (B and W) 205 Fuel Assembly (205-FA) raised loop design to be operated by the Tennessee Valley Authority

  9. Water desalination using different capacity reactors options

    International Nuclear Information System (INIS)

    Alonso, G.; Vargas, S.; Del Valle, E.; Ramirez, R.

    2010-01-01

    The Northwest region of Mexico has a deficit of potable water, along this necessity is the region growth, which requires of additional energy capacity, cogeneration of potable water production and nuclear electricity is an option to be assessed. In this paper we will perform an economical comparison for cogeneration using a big reactor, the AP1000, and a medium size reactor, the IRIS, both of them are PWR type reactors and will be coupled to the desalination plant using the same method. For this cogeneration case we will assess the best reactor option that can cover both needs using the maximum potable water production for two different desalination methods: Multistage Flash Distillation and Multi-effect Distillation. (authors)

  10. New lineup of light water reactors

    International Nuclear Information System (INIS)

    Okamura, Kiyoshi; Oshima, Koichiro; Kitsukawa, Keisuke

    2007-01-01

    Toshiba is promoting technical studies for upcoming nuclear power plants based on its large accumulation of experience in boiling water reactor (BWR) design, manufacturing, construction, and maintenance. Our goal is to achieve higher reliability, lower life-cycle costs, and better competitiveness for nuclear power plants compared with other energy sources. In addition, we are developing a new light water reactor (LWR) lineup featuring the safest and most economical LWRs in the world as next-generation reactors almost at new construction and replacement in the Japanese and international markets expected to start from the 2020s. We are committed not only to developing BWRs with the world's highest performance but also to participating in the pressurized water reactor (PWR) market, taking advantage of the synergistic effect of both Toshiba's and Westinghouse's experience. (author)

  11. Inherently safe light water reactors

    International Nuclear Information System (INIS)

    Ise, Takeharu

    1987-01-01

    Today's large nuclear power reactors of world-wise use have been designed based on the philosophy. It seems that recent less electricity demand rates, higher capital cost and the TMI accident let us acknowledge relative small and simplified nuclear plants with safer features, and that Chernobyl accident in 1983 underlines the needs of intrinsic and passive safety characteristics. In such background, several inherently safe reactor concepts have been presented abroad and domestically. First describing 'Can inherently safe reactors be designed,' then I introduce representative reactor concepts of inherently safe LWRs advocated abroad so far. All of these innovative reactors employ intrinsic and passive features in their design, as follows: (1) PIUS, an acronym for Process Inherent Ultimate Safety, or an integral PWR with passive heat sink and passive shutdown mechanism, advocated by ASEA-ATOM of Sweden. (2) MAP(Minimum Attention Plant), or a self-pressurized, natural circulation integral PWR, promoted by CE Inc. of the U.S. (3) TPS(TRIGA Power System), or a compact PWR with passive heat sink and inherent fuel characteristics of large prompt temperature coefficient, prompted by GA Technologies Inc. of the U.S. (4) PIUS-BWR, or an inherently safe BWR employing passively actuated fluid valves, in competition with PIUS, prompted by ORNL of the U.S. Then, I will describe the domestic trends in Japan and the innovative inherently safe LWRs presented domestically so far. (author)

  12. Evaluation of nuclear reactor based activation analysis techniques

    International Nuclear Information System (INIS)

    Obrusnik, I.; Kucera, J.

    1977-09-01

    A survey is presented of the basic types of activation analysis applied in environmental control. Reactor neutron activation analysis is described (including the reactor as a neutron source, sample activation in the reactor, methodology of neutron activation analysis, sample transport into the reactor and sample packaging after irradiation, instrumental activation analysis with radiochemical separation, data measurement and evaluation, sampling and sample preparation). Sources of environmental contamination with trace elements, sampling and sample analysis by neutron activation are described. The analysis is described of soils, waters and biological materials. Methods are shown of evaluating neutron activation analysis results and of their interpretation for purposes of environmental control. (J.B.)

  13. Analysis of high burnup pressurized water reactor fuel using uranium, plutonium, neodymium, and cesium isotope correlations with burnup

    International Nuclear Information System (INIS)

    Kim, Jung Suk; Jeon, Young Shin; Park, Soon Dal; Ha, Yeong Keong; Song, Kyu Seok

    2015-01-01

    The correlation of the isotopic composition of uranium, plutonium, neodymium, and cesium with the burnup for high burnup pressurized water reactor fuels irradiated in nuclear power reactors has been experimentally investigated. The total burnup was determined by Nd-148 and the fractional 235 U burnup was determined by U and Pu mass spectrometric methods. The isotopic compositions of U, Pu, Nd, and Cs after their separation from the irradiated fuel samples were measured using thermal ionization mass spectrometry. The contents of these elements in the irradiated fuel were determined through an isotope dilution mass spectrometric method using 233 U, 242 Pu, 150 Nd, and 133 Cs as spikes. The activity ratios of Cs isotopes in the fuel samples were determined using gamma-ray spectrometry. The content of each element and its isotopic compositions in the irradiated fuel were expressed by their correlation with the total and fractional burnup, burnup parameters, and the isotopic compositions of different elements. The results obtained from the experimental methods were compared with those calculated using the ORIGEN-S code

  14. Reactor sensor surveillance using noise analysis

    International Nuclear Information System (INIS)

    Hashemian, H.M.; Thie, J.A.; Upadhyaya, B.R.

    1986-01-01

    Reactor noise signals, as measured by neutron detectors and process sensors, contain information about the dynamics of the process and sensor characteristics. The extent of sensor characteristics that can be determined from such measurements depends on the sensor type, the property of the process noise exciting the sensor and its location. This paper addresses degradation monitoring of temperature and pressure sensors, analysis methods and results of application to operating pressurized water reactors. In addition, the use of noise analysis for monitoring of pressure sensing lines in nuclear power plants is discussed

  15. Method of measuring reactor water level

    International Nuclear Information System (INIS)

    Shinohara, Kaoru.

    1979-01-01

    Purpose: To provide a water level measuring system so that a reactor water level detecting signal can be corrected in correspondence to a recirculation flow, thereby to carry out a correct water level detection in a wide range of the reactor. Method: According to the operation record of a precursor reactor, the ratio Δh of the lowering of the water level due to the recirculation flow is lowered in proportion to the ratiowith respect to the rated differential pressure of the recirculation flow. Accordingly, the flow of recirculation pump is measured by an elbow differential pressure generator utilizing an elbow of a pipe, and the measured value is multiplied by a gain by a ratio setter, and therefter, an addition computation is carried out by an adder for correcting the signal from a water level detector. When the signal from the water level detector is corrected in this manner, the influence of the lowering of the water level due to the recirculation flow can be removed, and an interlocker predetermined in the defined water level can be actuated, thus the influence of the dynamic pressure due to the recirculation flow acting on the instrumental pipe line detecting the reactor water level can be removed effectively. (Yoshino, Y.)

  16. Analysis of strategies for improving uranium utilization in pressurized water reactors. Annual technical progress report for FY 1980

    International Nuclear Information System (INIS)

    Sefcik, J.A.; Driscoll, M.J.; Lanning, D.D.

    1981-01-01

    Systematic procedures have been devised and applied to evaluate core design and fuel management strategies for improving uranium utilization in Pressurized Water Reactors operated on a once-through fuel cycle. A principal objective has been the evaluation of suggested improvements on a self-consistent basis, allowing for concurrent changes in dependent variables such as core leakage and batch power histories, which might otherwise obscure the sometimes subtle effects of interest. Two levels of evaluation have been devised: a simple but accurate analytic model based on the observed linear variations in assembly reactivity as a function of burnup; and a numerical approach, embodied in a computer program, which relaxes this assumption and combines it with empirical prescriptions for assembly (or batch) power as a function of reactivity, and core leakage as a function of peripheral assembly power. State-of-the-art physics methods, such as PDQ-7, were used to verify and supplement these techniques

  17. SBWR: A simplified boiling water reactor

    International Nuclear Information System (INIS)

    Duncan, J.D.; Sawyer, C.D.; Lagache, M.P.

    1987-01-01

    An advanced light water reactor concept is being developed for possible application in the 1990's. The concept, known as SBWR is a boiling water reactor which uses natural circulation to provide flow to the reactor core. In an emergency, a gravity driven core cooling system is used. The reactor is depressurized and water from an elevated suppression pool flows by gravity to the reactor vessel to keep the reactor core covered. The concept also features a passive containment cooling system in which water flows by gravity to cool the suppression pool wall. No operator action is required for a period of at least three days. Use of these and other passive systems allows the elimination of emergency diesel generators, core cooling pumps and heat removal pumps which is expected to simplify the plant design, reduce costs and simplify licensing. The concept is being developed by General Electric, Bechtel and the Massachusetts Institute of Technology supported by the Electric Power Research Institute and the United States Department of Energy in the United States. In Japan, The Japan Atomic Power Company has a great interest in this concept

  18. Requirements for light water reactors

    International Nuclear Information System (INIS)

    Hedin, F.

    2009-01-01

    The EUR (European Utilities Requirements) is an organization founded in 1991 whose aim was to write down the European specifications and requirements for the future reactors of third generation. EUR gathers most of the nuclear power producers of Europe. The EUR document has been built on the large and varied experience of EUR members and can be used to elaborate invitations to tender for nuclear projects. 4000 requirements only for the nuclear part of the plant are listed, among which we have: -) the probability of core meltdown for a reactor must be less than 10 -6 per year, -) the service life of every component that is not replaceable must be 60 years, -) the capacity of the spent fuel pool must be sufficient to store 10-15 years of production without clearing out. The EUR document is both open and complete: every topic has been considered, it does not favor any type of reactor but can ban any technology that is too risky or has an unfavourable feedback experience. The assessment of the conformity with the EUR document of 7 reactor projects (BWR 90/, EPR, EP1000, SWR1000, ABWR, AP1000 and VVER-AES-92) has already be made. (A.C.)

  19. Reactor surveillance by noise analysis

    International Nuclear Information System (INIS)

    Ciftcioglu, Ozer

    1988-01-01

    A real-time noise analysis system is designed for the TRIGA reactor at Istanbul Technical University. By means of the noise techniques, reactor surveillance is performed together with failure diagnosis. The fast data processing is carried out by FFT in real-time so that malfunction or non-stationary operation of the reactor in long term can be identified by comparing the noise power spectra with the corresponding reference patterns while the decision making procedure is accomplished by the method of hypothesis testing. The system being computer based safety instrumentation involves CAMAC in conjunction with the RT-11 (PDP-11) single user dedicated environment. (author)

  20. Tritium issues in commercial pressurized water reactors

    International Nuclear Information System (INIS)

    Jones, G.

    2008-01-01

    Tritium has become an important radionuclide in commercial Pressurized Water Reactors because of its mobility and tendency to concentrate in plant systems as tritiated water during the recycling of reactor coolant. Small quantities of tritium are released in routine regulated effluents as liquid water and as water vapor. Tritium has become a focus of attention at commercial nuclear power plants in recent years due to inadvertent, low-level, chronic releases arising from routine maintenance operations and from component failures. Tritium has been observed in groundwater in the vicinity of stations. The nuclear industry has undertaken strong proactive corrective measures to prevent recurrence, and continues to eliminate emission sources through its singular focus on public safety and environmental stewardship. This paper will discuss: production mechanisms for tritium, transport mechanisms from the reactor through plant, systems to the environment, examples of routine effluent releases, offsite doses, basic groundwater transport and geological issues, and recent nuclear industry environmental and legal ramifications. (authors)

  1. Status of advanced technology and design for water cooled reactors: Light water reactors

    International Nuclear Information System (INIS)

    1988-10-01

    Water reactors represent a high level of performance and safety. They are mature technology and they will undoubtedly continue to be the main stream of nuclear power. There are substantial technological development programmes in Member States for further improving the technology and for the development of new concepts in water reactors. Therefore the establishment of an international forum for the exchange of information and stimulation of international co-operation in this field has emerged. In 1987 the IAEA established the International Working Group on Advanced Technologies for Water-Cooled Reactors (IWGATWR). Within the framework of IWGATWR the IAEA Technical Report on Status of Advanced Technology and Design for Water Cooled Reactors, Part I: Light Water Reactors and Part II: Heavy Water Reactors has been undertaken to document the major current activities and different trends of technological improvements and developments for future water reactors. Part I of the report dealing with LWRs has now been prepared and is based mainly on submissions from Member States. It is hoped that this part of the report, containing the status of advanced light water reactor design and technology of the year 1987 and early 1988 will be useful for disseminating information to Agency Member States and for stimulating international cooperation in this subject area. 93 refs, figs and tabs

  2. Reliability of reactor plant water cleanup pumps

    International Nuclear Information System (INIS)

    Pearson, J.L.

    1979-01-01

    Carolina Power and Light Company's Brunswick 2 nuclear plant experienced a high reactor water cleanup pump-failure rate until inlet temperature and flow were reduced and mechanical modifications were implemented. Failures have been zero for about one year, and water cleanup efficiency has increased

  3. TRAC-PF1/MOD1: an advanced best-estimate computer program for pressurized water reactor thermal-hydraulic analysis

    International Nuclear Information System (INIS)

    Liles, D.R.; Mahaffy, J.H.

    1986-07-01

    The Los Alamos National Laboratory is developing the Transient Reactor Analysis Code (TRAC) to provide advanced best-estimate predictions of postulated accidents in light-water reactors. The TRAC-PF1/MOD1 program provides this capability for pressurized water reactors and for many thermal-hydraulic test facilities. The code features either a one- or a three-dimensional treatment of the pressure vessel and its associated internals, a two-fluid nonequilibrium hydrodynamics model with a noncondensable gas field and solute tracking, flow-regime-dependent constitutive equation treatment, optional reflood tracking capability for bottom-flood and falling-film quench fronts, and consistent treatment of entire accident sequences including the generation of consistent initial conditions. The stability-enhancing two-step (SETS) numerical algorithm is used in the one-dimensional hydrodynamics and permits this portion of the fluid dynamics to violate the material Courant condition. This technique permits large time steps and, hence, reduced running time for slow transients

  4. TRAC-PF1/MOD1: an advanced best-estimate computer program for pressurized water reactor thermal-hydraulic analysis

    Energy Technology Data Exchange (ETDEWEB)

    Liles, D.R.; Mahaffy, J.H.

    1986-07-01

    The Los Alamos National Laboratory is developing the Transient Reactor Analysis Code (TRAC) to provide advanced best-estimate predictions of postulated accidents in light-water reactors. The TRAC-PF1/MOD1 program provides this capability for pressurized water reactors and for many thermal-hydraulic test facilities. The code features either a one- or a three-dimensional treatment of the pressure vessel and its associated internals, a two-fluid nonequilibrium hydrodynamics model with a noncondensable gas field and solute tracking, flow-regime-dependent constitutive equation treatment, optional reflood tracking capability for bottom-flood and falling-film quench fronts, and consistent treatment of entire accident sequences including the generation of consistent initial conditions. The stability-enhancing two-step (SETS) numerical algorithm is used in the one-dimensional hydrodynamics and permits this portion of the fluid dynamics to violate the material Courant condition. This technique permits large time steps and, hence, reduced running time for slow transients.

  5. Heavy water moderated gas-cooled reactors

    International Nuclear Information System (INIS)

    Bailly du Bois, B.; Bernard, J.L.; Naudet, R.; Roche, R.

    1964-01-01

    France has based its main effort for the production of nuclear energy on natural Uranium Graphite-moderated gas-cooled reactors, and has a long term programme for fast reactors, but this country is also engaged in the development of heavy water moderated gas-cooled reactors which appear to present the best middle term prospects. The economy of these reactors, as in the case of Graphite, arises from the use of natural or very slightly enriched Uranium; heavy water can take the best advantages of this fuel cycle and moreover offers considerable development potential because of better reactor performances. A prototype plant EL 4 (70 MW) is under construction and is described in detail in another paper. The present one deals with the programme devoted to the development of this reactor type in France. Reasons for selecting this reactor type are given in the first part: advantages and difficulties are underlined. After reviewing the main technological problems and the Research and Development carried out, results already obtained and points still to be confirmed are reported. The construction of EL 4 is an important step of this programme: it will be a significant demonstration of reactor performances and will afford many experimentation opportunities. Now the design of large power reactors is to be considered. Extension and improvements of the mechanical structures used for EL 4 are under study, as well as alternative concepts. The paper gives some data for a large reactor in the present state of technology, as a result from optimization studies. Technical improvements, especially in the field of materials could lead to even more interesting performances. Some prospects are mentioned for the long run. Investment costs and fuel cycles are discussed in the last part. (authors) [fr

  6. Realistic thermal transient margin analysis of 'MONJU' based on plant performance measurements. Reactor vessel outlet nozzle and evaporator feed water inlet tube sheet of the manual reactor plant trip

    International Nuclear Information System (INIS)

    Yamada, Fumiaki; Mori, Takero

    2005-01-01

    In order to develop technologies and achieve safe and stable operation of Monju' as well as realize optimized design and construction of safe and economically competitive fast breeder reactors, the authors are evaluating design approach applied to 'Monju' based on actually measured behavioral data during plant operations. This report uses actual measured characteristic data of 'Monju' during a plant trip test obtained at a commissioning stage with up to 40% power output and introduces plant thermal hydraulic behavior analysis in a representative thermal transient event, i.e. a manual plant trip. Thermal transient driven loads incurred by the reactor vessel outlet nozzle and by the evaporator feed water inlet tube sheet were further derived by structural analyses and were compared with the previously derived values in the design stage and with the limit values. Though the reactor vessel outlet nozzle was exposed to larger temperature change in the trip test than the analytical prediction, the newly calculated mechanical load was about 50% of the previous evaluation in the design stage. Also, the newly analyzed mechanical load incurred by the evaporator feed water inlet tube sheet in this event had a large margin against the limit value of cumulative damage cycle fraction, although the observed temperature disturbance in a steam blow test was wilder than the analytical prediction. Thus we concluded that the Monju' plant has an assured safety margin against thermal transient in plant trip events. (author)

  7. Utility requirements for advanced light water reactors

    International Nuclear Information System (INIS)

    Machiels, A.; Gray, S.; Mulford, T.; Rodwell, E.

    1996-01-01

    The nuclear energy industry is actively engaged in developing advanced light water reactor (ALWR) designs for the next century. The new designs take advantage of the thousands of reactor-years of experience that have been accumulated by operating over 400 plants worldwide. The EPRI effort began in the early 1980's, when a survey of utility executives was conducted to determine their prerequisites for ordering nuclear power plants. The results were clear: new plants had to be simpler and safer, and have greater design margins, i.e., be more forgiving. The utility executives also supported making improvements to the established light water reactor technology, rather than trying to develop new reactor concepts. Finally, they wanted the option to build mid-size plants (∼600 MWe) in addition to full-size plants of more than 1200 MWe. 4 refs

  8. Safety aspects of pressurised water reactors

    International Nuclear Information System (INIS)

    1985-01-01

    This submission to the Health and Safety Executive has been prepared by the Institution of Professional Civil Servants (IPCS) as a contribution to the debate on safety aspects associated with Pressurized Water Reactors (PWRs). Although supporting an energy policy which includes the development of nuclear power, assurances are sought on a number of safety issues if it is decided that this should be generated by a PWR-type reactor. These issues are listed. In particular the following are mentioned: the wider publication of design information, the use of elastic-plastic fracture mechanics as the basis for determining pressure vessel integrity, the failure rate of steam generating units, water coolant quality control, greater investigation of two-phase flow accident conditions, the components of the reactor cooling system and training of reactor personnel in the understanding of LOCA effects. (U.K.)

  9. Water chemistry features of advanced heavy water reactor

    International Nuclear Information System (INIS)

    Sriram, Jayasree; Vijayan, K.; Kain, Vivekanad; Velmurugan, S.

    2015-01-01

    Advanced Heavy Water Reactor (AHWR) being designed in India proposes to use Plutonium and Thorium as fuel. The objective is to extract energy from the uranium-233 formed from Thorium. It is a heavy water moderated and light water cooled tube type boiling water reactor. It is a heavy water moderated and light water cooled tube type boiling water reactor. It is a natural circulation reactor. Thus, it has got several advanced passive safety features built into the system. The various water coolant systems are listed below. i) Main Heat transport System ii) Feed water system iii) Condenser cooling system iv) Process water system and safety systems. As it is a tube type reactor, the radiolysis control differs from the normal boiling water reactor. The coolant enters the bottom of the coolant channel, boiling takes place and then the entire steam water mixture exits the core through the long tail pipes and reaches the moisture separator. Thus, there is a need to devise methods to protect the tail pipes from oxidizing water chemistry condition. Similarly, the moderator heavy water coolant chemistry differs from that of moderator system chemistry of PHWR. The reactivity worth per ppm of gadolinium and boron are low in comparison to PHWR. As a result, much higher concentration of neutron poison has to be added for planned shutdown, start up and for actuating SDS-2. The addition of higher concentration of neutron poison result in higher radiolytic production of deuterium and oxygen. Their recombination back to heavy water has to take into account the higher production of these gases. This paper also discusses the chemistry features of safety systems of AHWR. In addition, the presentation will cover the chemistry monitoring methodology to be implemented in AHWR. (author)

  10. Nonlinear dynamics of boiling water reactors

    International Nuclear Information System (INIS)

    March-Leuba, J.; Cacuci, D.G.; Perez, R.B.

    1983-01-01

    Recent stability tests in Boiling Water Reactors (BWRs) have indicated that these reactors can exhibit the special nonlinear behavior of following a closed trajectory called limit cycle. The existence of a limit cycle corresponds to an oscillation of fixed amplitude and period. During these tests, such oscillations had their amplitudes limited to about +- 15% of the operating power. Since limit cycles are fairly insensitive to parameter variations, it is possible to operate a BWR under conditions that sustain a limit cycle (of fixed amplitude and period) over a finite range of reactor parameters

  11. Analysis of a hot-leg small break loss-of-coolant accident in a three-loop westinghouse pressurized water reactor plant

    International Nuclear Information System (INIS)

    Peterson, C.E.; Chexal, V.K.; Clements, T.B.

    1985-01-01

    The RETRAN-02 computer code was used to perform a best-estimate analysis of a 7.52-cm-diam hotleg break in a three-loop Westinghouse pressurized water reactor. This break size produced a net primary coolant mass depletion through the early portion of the transient. The primary system started to refill only after the accumulator valves opened. As the primary system refilled, there were extreme temperature differentials around the system with cold, denser fluid collecting at the lower elevations and two-phase fluid at higher elevations

  12. Analytical sensitivity of rapid isotopic analysis of water by refractometry for monitoring D2O concentration in nuclear reactor

    International Nuclear Information System (INIS)

    Dhole, K.; Tripathy, M.K.; Ghadigaonkar, R.D.; Datta, A.; Bose, H.; Roy, M.

    2011-01-01

    The feasibility of refractometry for rapid measurement of D 2 O (heavy water) concentration has been studied. Refractometry has been utilised to be an excellent analytical technique to quickly and non-invasively determine D 2 O concentration in water samples without using any chemical reagents. The measurement of refractive index property of water samples with use of temperature control has been utilized for the purpose of their quantitative analysis. The calibration performance provided a reasonable analytical sensitivity of this technique in the 1-100% D 2 O range. (author)

  13. Water vapor as a perspective coolant for fast reactors

    International Nuclear Information System (INIS)

    Kalafati, D.D.; Petrov, S.I.

    1978-01-01

    Based on analysis of foreign projects of nuclear power plants with steam-cooled fast reactors, it is shown that low breeding ratio and large doubling time were caused by using nickel alloys, high vapor pressure and small volume heat release. The possibility is shown of obtaining doubling time in the necessary limits of T 2 =10-12 years when the above reasons for steam-cooled reactors are eliminated. Favourable combination of thermophysical and thermodynamic properties of water vapor makes it perspective coolant for power fast reactors

  14. Application of reliability-centered maintenance to boiling water reactor emergency core cooling systems fault-tree analysis

    International Nuclear Information System (INIS)

    Choi, Y.A.; Feltus, M.A.

    1995-01-01

    Reliability-centered maintenance (RCM) methods are applied to boiling water reactor plant-specific emergency core cooling system probabilistic risk assessment (PRA) fault trees. The RCM is a technique that is system function-based, for improving a preventive maintenance (PM) program, which is applied on a component basis. Many PM programs are based on time-directed maintenance tasks, while RCM methods focus on component condition-directed maintenance tasks. Stroke time test data for motor-operated valves (MOVs) are used to address three aspects concerning RCM: (a) to determine if MOV stroke time testing was useful as a condition-directed PM task; (b) to determine and compare the plant-specific MOV failure data from a broad RCM philosophy time period compared with a PM period and, also, compared with generic industry MOV failure data; and (c) to determine the effects and impact of the plant-specific MOV failure data on core damage frequency (CDF) and system unavailabilities for these emergency systems. The MOV stroke time test data from four emergency core cooling systems [i.e., high-pressure coolant injection (HPCI), reactor core isolation cooling (RCIC), low-pressure core spray (LPCS), and residual heat removal/low-pressure coolant injection (RHR/LPCI)] were gathered from Philadelphia Electric Company's Peach Bottom Atomic Power Station Units 2 and 3 between 1980 and 1992. The analyses showed that MOV stroke time testing was not a predictor for eminent failure and should be considered as a go/no-go test. The failure data from the broad RCM philosophy showed an improvement compared with the PM-period failure rates in the emergency core cooling system MOVs. Also, the plant-specific MOV failure rates for both maintenance philosophies were shown to be lower than the generic industry estimates

  15. Heavy water cycle in the CANDU reactor

    International Nuclear Information System (INIS)

    Nanis, R.

    2000-01-01

    Hydrogen atom has two isotopes: deuterium 1 H 2 and tritium 1 H 3 . The deuterium oxide D 2 O is called heavy water due to its density of 1105.2 Kg/m 3 . Another important physical property of the heavy water is the low neutron capture section, suitable to moderate the neutrons into natural uranium fission reactor as CANDU. Due to the fact that into this reactor the fuel is cooled into the pressure tubes surrounded by a moderator, the usage of D 2 O as primary heat transport (PHT) agent is mandatory. Therefore a large amount of heavy water (approx. 500 tons) is used in a CANDU reactor. Being a costly resource - it represents 20% of the initial plant capital cost, D 2 O management is required to preserve it. (author)

  16. Reactor water clean-up device

    International Nuclear Information System (INIS)

    Sawa, Toshio; Takahashi, Sankichi; Takashima, Yoshie.

    1983-01-01

    Purpose: To efficiently eliminate radioactive materials such as iron oxide and cobalt ions with less heat loss by the use of an electrode assembly applied with a direct current. Constitution: In a reactor water clean-up device adapted to pass reactor water through an electrode assembly comprising at least a pair of anode and cathode applied with a direct current to eliminate various types of ions contained in the reactor water by way of the electrolysis or charge neutralization at the anode, the cathode is constituted with a corrosion resistant grid-like or porous metal plate and a layer to the upper portion of the metal plate filled with a plurality of metal spheres of about 1 - 5 mm diameter, and the anode is made of insoluble porous or spirally wound metal material. (Seki, T.)

  17. Materials for advanced water cooled reactors

    International Nuclear Information System (INIS)

    1992-09-01

    The current IAEA programme in advanced nuclear power technology promotes technical information exchange between Member States with major development programmes. The International Working Group on Advanced Technologies for Water Cooled Reactors recommended to organize a Technical Committee Meeting for the purpose of providing an international forum for technical specialists to review and discuss aspects regarding development trends in material application for advanced water cooled reactors. The experience gained from the operation of current water cooled reactors, and results from related research and development programmes, should be the basis for future improvements of material properties and applications. This meeting enabled specialists to exchange knowledge about structural materials application in the nuclear island for the next generation of nuclear power plants. Refs, figs, tabs

  18. Control-rod, pressure and flow-induced accident and transient analysis of a direct-cycle, supercritical-pressure, light-water-cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Kitoh, Kazuaki; Koshizuka, Seiichi; Oka, Yoshiaki

    1996-01-01

    The features of the direct-cycle, supercritical-pressure, light-water-cooled fast breeder reactor (SCFBR) are high thermal efficiency and simple reactor system. The safety principle is basically the same as that of an LWR since it is a water-cooled reactor. Maintaining the core flow is the basic safety requirement of the reactor, since its coolant system is the one through type. The transient behaviors at control rod, pressure and flow-induced abnormalities are analyzed and presented in this paper. The results of flow-induced transients of SCFBR were reported at ICONE-3, though pressure change was neglected. The change of fuel temperature distribution is also considered for the analysis of the rapid reactivity-induced transients such as control rod withdrawal. Total loss of flow and pump seizure are analyzed as the accidents. Loss of load, control rod withdrawal from the normal operation, loss of feedwater heating, inadvertent start of an auxiliary feedwater pump, partial loss of coolant flow and loss of external power are analyzed as the transients. The behavior of the flow-induced transients is not so much different from the analyses assuming constant pressure. Fly wheels should be equipped with the feedwater pumps to prolong the coast-down time more than 10s and to cope with the total loss of flow accident. The coolant density coefficient of the SCFBR is less than one tenth of a BWR in which the recirculation flow is used for the power control. The over pressurization transients at the loss of load is not so severe as that of a BWR. The power reaches 120%. The minimum deterioration heat flux ratio (MDHFR) and the maximum pressure are sufficiently lower than the criteria; MDHFR above 1.0 and pressure ratio below 1.10 of 27.5 MPa, maximum pressure for operation. Among the reactivity abnormalities, the control rod withdrawal transient from the normal operation is analyzed

  19. EPR (European Pressurized water Reactor) The advanced nuclear reactor

    International Nuclear Information System (INIS)

    2004-01-01

    Nuclear energy, which provides a steady supply of electricity at low cost, has its rightful place in the energy mix of the 21. century, which puts the emphasis on sustainable development. The EPR is the only 3. generation reactor under construction today. It is an evolutionary reactor that represents a new generation of pressurized water reactors with no break in the technology used for the most recent models. The EPR was developed by Framatome and Siemens, whose nuclear activities were combined in January 2001 to form Framatome ANP, a subsidiary of AREVA and Siemens. EDF and the major German electricity companies played an active part in the project. The safety authorities of the two countries joined forces to bring their respective safety standards into line and draw up joint design rules for the new reactor. The project had three objectives: meet the requirements of European utilities, comply with the safety standards laid down by the French safety authority for future pressurized water reactors, in concert with its German counterpart, and make nuclear energy even more competitive than energy generated using fossil fuels. The EPR can guarantee a safe, inexpensive electricity supply, without adding to the greenhouse effect. It meets the requirements of the safety authorities and lives up to the expectations of electricity utilities. This document presents the main characteristics of the EPR, and in particular the additional measures to prevent the occurrence of events likely to damage the core, the leak-tight containment, the measures to reduce the exposure of operating and maintenance personnel, the solutions for an even greater protection of the environment. The foreseen development of the EPR in France and abroad (Finland, China, the United States) is summarized

  20. Reaction kinetic analysis of reactor surveillance data

    Energy Technology Data Exchange (ETDEWEB)

    Yoshiie, T., E-mail: yoshiie@rri.kyoto-u.ac.jp [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka-fu 590-0494 (Japan); Kinomura, A. [Research Reactor Institute, Kyoto University, Kumatori-cho, Sennan-gun, Osaka-fu 590-0494 (Japan); Nagai, Y. [The Oarai Center, Institute for Materials Research, Tohoku University, Oarai, Ibaraki 311-1313 (Japan)

    2017-02-15

    In the reactor pressure vessel surveillance data of a European-type pressurized water reactor (low-Cu steel), it was found that the concentration of matrix defects was very high, and a large number of precipitates existed. In this study, defect structure evolution obtained from surveillance data was simulated by reaction kinetic analysis using 15 rate equations. The saturation of precipitation and the growth of loops were simulated, but it was not possible to explain the increase in DBTT on the basis of the defect structures. The sub-grain boundary segregation of solutes was discussed for the origin of the DBTT increase.

  1. ULTRA SCWR+: Practical advanced water reactor concepts

    International Nuclear Information System (INIS)

    Duffey, Romney; Khartabil, Hussam; Kuran, Sermet; Zhou, Tracy; Pioro, Igor

    2008-01-01

    Modern thermal power plants now utilize supercritical steam cycles with thermal efficiencies of over 45%. Recent developments have lead to Ultra-SuperCritical (USC) systems, which adopt reheat turbines that can attain efficiencies of over 50%. Because these turbines are already developed, demonstrated and deployed worldwide, and use existing and traditional steam cycle technology, the simplest nuclear advance is to utilize these proven thermal cycle conditions by coupling this turbine type to a reactor. This development direction is fundamentally counter to the usual approach of adopting high-temperature gas-cooled (helium-cooled) reactor cycles, for which turbines have yet to be demonstrated on commercial scale unlike the supercritical steam turbines. The ULTRA (Ultra-supercritical Light water Thermal ReActor) SCWR+ concept adopts the fundamental design approach of matching a water and steam-cooled reactor to the ultra-supercritical steam cycle, adopting the existing and planned thermal power plant turbines. The HP and IP sections are fed with conditions of 25 MPa/625degC and 7 MPa/700degC, respectively, to achieve operating plant thermal efficiencies in excess of 50%, with a direct turbine cycle. By using such low-pressure reheated steam, this concept also adopts technology that was explored and used many years ago in existing water reactors, with the potential to produce large quantities of low cost heat, which can be used for other industrial and district processes. Pressure-Tube (PT) reactors are suitable for adoption of this design approach and, in addition, have other advantages that will significantly improve water-cooled reactor technology. These additional advantages include enhanced safety and improved resource utilization and proliferation resistance. This paper describes the PT-SCWR+ concept and its potential enhancements. (author)

  2. Beyond the light water reactor

    International Nuclear Information System (INIS)

    Nero, A.V. Jr.

    1980-01-01

    One of the strong interests in examining alternative nuclear fuel cycles is to search for schemes that are more efficient than LWRs in their use of uranium, but that do not carry the additional proliferation hazard associated with widespread plutonium utilization. One possibility is to improve the uranium efficiency of current reactor types by other means than recycling. A second possibility, offering greater potential for improvement, is to utilize thorium-uranium fuel cycles in which uranium-233 is denatured by the addition of uranium-238, making enrichment necessary to yield weapons-usable material. The bulk of the reactor's fuel material would be thorium-232, so that most of the fissile material produced would be uranium-233. It is important to recognize that these two possibilities - once through improvements and denatured thorium-uranium - could be introduced sequentially in reactor types that are currently in use. Fuel cycles may change over time, but it is equally significant from the point of view of non-proliferation that they will also vary from place to place and, most importantly, from country to country. The author argues that alternative nuclear power systems and a slower growth may affect the diversion of nuclear materials to weapons. A real question, though, is whether we have time to explore the possibilities. It has become apparent that predictions made of the growth rate for nuclear power were too high. The 1000 large power plants the US was to have by the year 2000 have been reduced to fewer than 300. This reduces the pressure, resulting from our limited uranium resources, to push the LMFBR. Extra time gives us a chance to examine the possibilities

  3. Preliminary analysis of the postulated changes needed to achieve rail cask handling capabilities at selected light water reactors

    International Nuclear Information System (INIS)

    Konzek, G.J.

    1986-02-01

    Reactor-specific railroad and crane information for all LWRs in the US was extracted from current sources of information. Based on this information, reactors were separated into two basic groups consisting of reactors with existing, usable rail cask capabilities and those without these capabilities. The latter group is the main focus of this study. The group of reactors without present rail cask handling capabilities was further separated into two subgroups consisting of reactors considered essentially incapable of handling a large rail cask of about 100 tons and reactors where postulated facility changes could result in rail cask handling capabilities. Based on a selected population of 127 reactors, the results of this assessment indicate that usable rail cask capabilities exist at 83 (65%) of the reactors. Twelve (27%) of the remaining 44 reactors are deemed incapable of handling a large rail cask without major changes, and 32 reactors are considered likely candidates for potentially achieving rail cask handling capabilities. In the latter group, facility changes were postulated that would conceptually enable these reactors to handle large rail casks. The estimated cost per plant of required facility changes varied widely from a high of about $35 million to a low of <$0.3 million. Only 11 of the 32 plants would require crane upgrades. Spur track and right-of-way costs would apparently vary widely among sites. These results are based on preliminary analyses using available generic cost data. They represent lower bound values that are useful for developing an initial assessment of the viability of the postulated changes on a system-wide basis, but are not intended to be absolute values for specific reactors or sites

  4. Safety aspects of water chemistry in light water reactors

    International Nuclear Information System (INIS)

    1988-12-01

    The goals of the water chemistry control programmes are to maximize operational safety and the availability and operating life of primary system components, to maximize fuel integrity, and to control radiation buildup. To achieve these goals an effective corporate policy should be developed and implemented. Essential management responsibilities are: Recognizing of the long-term benefits of avoiding or minimizing: a) system corrosion; b) fuel failure; and c) radiation buildup. The following control or diagnostic parameters are suitable performance indicators: for PWR primary coolant circuits: pH of reactor water (by operating temperature); Concentration of chlorides in reactor water; Hydrogen (or oxygen) in reactor water. For PWR secondary coolant circuits: pH in feedwater; Cation productivity in steam generator blowdown; Iron concentration in feedwater; Oxygen concentration in condensate. And BWR coolant circuits: Conductivity of reactor water; Concentration of chlorides in reactor water; Iron concentration in feedwater; Copper concentration in feedwater. The present document represents a review of the developments in some Member States on how to implement a reasonable water chemistry programme and how to assess its effectiveness through numerical indicators. 12 figs, 20 tabs

  5. Experiences in stability testing of boiling water reactors

    International Nuclear Information System (INIS)

    March-Leuba, J.; Otaduy, P.J.

    1986-01-01

    The purpose of this paper is to summarize experiences with boiling water reactor (BWR) stability testing using noise analysis techniques. These techniques have been studied over an extended period of time, but it has been only recently that they have been well established and generally accepted. This paper contains first a review of the problem of BWR neutronic stability, focusing on its physical causes and its effects on reactor operation. The paper also describes the main techniques used to quantify, from noise measurements, the reactor's stability in terms of a decay ratio. Finally, the main results and experiences obtained from the stability tests performed at the Dresden and the Browns Ferry reactors using noise analysis techniques are summarized

  6. Environmentally assisted cracking in light water reactors

    International Nuclear Information System (INIS)

    Kassner, T.F.; Ruther, W.E.; Chung, H.M.; Hicks, P.D.; Hins, A.G.; Park, J.Y.; Soppet, W.K.; Shack, W.J.

    1992-03-01

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking in high water reactors during the six months from April 1991 through September 1991. Topics that have been investigated during this period include (1) fatigue and stress corrosion cracking (SCC) of low-alloy steel used in piping and in steam generator and reactor pressure vessels; (2) role of chromate and sulfate in simulated boiling water reactor (BWR) water on SCC of sensitized Type 304 SS; and (3) radiation-induced segregation (RIS) and irradiation-assisted SCC of Type 304 SS after accumulation of relatively high fluence. Fatigue data were obtained on medium-S-content A533-Gr B and A106-Gr B steels in high-purity (HP) deoxygenated water, in simulated pressurized water reactor (PWR) water, and in air. Crack-growth-rates (CGRs) of composite specimens of A533-Gr B/Inconel-182/Inconel-600 (plated with nickel) and homogeneous specimens of A533-Gr B were determined under small- amplitude cyclic loading in HP water with ∼ 300 ppb dissolved oxygen. CGR tests on sensitized Type 304 SS indicate that low chromate concentrations in BWR water (25--35 ppb) may actually have a beneficial effect on SCC if the sulfate concentration is below a critical level. Microchemical and microstructural changes in HP and commercial-purity Type 304 SS specimens from control-blade absorber tubes used in two operating BWRs were studied by Auger electron spectroscopy and scanning electron microscopy, and slow-strain,rate- tensile tests were conducts on tubular specimens in air and in simulated BWR water at 289 degrees C

  7. French studies and research program in pressurized water reactor safety

    International Nuclear Information System (INIS)

    Duco, J.

    1986-06-01

    The aim of researches developed now in France on water reactor safety is to obtain means and knowledge allowing to control accidental situations, including severe situations beyond design basis accidents. The main studies and researches concerning water reactors and described in this report are the following ones: core cooling accident and prevention of severe accidents, fuel behavior in accidental situation, behavior of the containment building, fission product transfer and releases in case of accident, problems related to equipment aging, and, methodology of risk analysis and ''human factor'' studies. Most of these studies follow an analytic approach of phenomena [fr

  8. Water analysis

    International Nuclear Information System (INIS)

    Garbarino, J.R.; Steinheimer, T.R.; Taylor, H.E.

    1985-01-01

    This is the twenty-first biennial review of the inorganic and organic analytical chemistry of water. The format of this review differs somewhat from previous reviews in this series - the most recent of which appeared in Analytical Chemistry in April 1983. Changes in format have occurred in the presentation of material concerning review articles and the inorganic analysis of water sections. Organic analysis of water sections are organized as in previous reviews. Review articles have been compiled and tabulated in an Appendix with respect to subject, title, author(s), citation, and number of references cited. The inorganic water analysis sections are now grouped by constituent using the periodic chart; for example, alkali, alkaline earth, 1st series transition metals, etc. Within these groupings the references are roughly grouped by instrumental technique; for example, spectrophotometry, atomic absorption spectrometry, etc. Multiconstituent methods for determining analytes that cannot be grouped in this manner are compiled into a separate section sorted by instrumental technique. References used in preparing this review were compiled from nearly 60 major journals published during the period from October 1982 through September 1984. Conference proceedings, most foreign journals, most trade journals, and most government publications are excluded. References cited were obtained using the American Chemical Society's Chemical Abstracts for sections on inorganic analytical chemistry, organic analytical chemistry, water, and sewage waste. Cross-references of these sections were also included. 860 references

  9. Coolant mixing in pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hoehne, T; Grunwald, G

    1998-10-01

    The behavior of PWRs during cold water or boron dilution transients is strongly influenced by the distribution of coolant temperature and boron concentration at the core inlet. This distribution is the needed input to 3-dimensional neutron kinetics to calculate the power distribution in the core. It mainly depends on how the plugs of cold or unborated water formed in a single loop are mixed in the downcomer and in the lower plenum. To simulate such mixture phenomena requires the application of 3-dimensional CFD (computational fluid dynamics) codes. The results of the simulation have to be validated against mixture experiments at scaled facilities. Therefore, in the framework of a research project funded by BMBF, the institute creates a 1:5 mixture facility representing first the geometry of a German pressurized water reactor and later the European Pressurized Water Reactor (EPR) geometry. The calculations are based on the CFD Code CFX-4. (orig.)

  10. Developmental Light-Water Reactor Program

    International Nuclear Information System (INIS)

    Forsberg, C.W.

    1989-12-01

    This report summarizes the progress of the Developmental Light-Water Reactor (DLWR) Program at Oak Ridge National Laboratory in FY 1989. It also includes (1) a brief description of the program, (2) definition of goals, (3) earlier achievements, and (4) proposed future activities

  11. AFRRI TRIGA Reactor water quality monitoring program

    International Nuclear Information System (INIS)

    Moore, Mark; George, Robert; Spence, Harry; Nguyen, John

    1992-01-01

    AFRRI has started a water quality monitoring program to provide base line data for early detection of tank leaks. This program revealed problems with growth of algae and bacteria in the pool as a result of contamination with nitrogenous matter. Steps have been taken to reduce the nitrogen levels and to kill and remove algae and bacteria from the reactor pool. (author)

  12. Quality assurance plan, Westinghouse Water Reactor Divisions

    Energy Technology Data Exchange (ETDEWEB)

    1976-03-01

    The Quality Assurance Program used by Westinghouse Nuclear Energy Systems Water Reactor Divisions is described. The purpose of the program is to assure that the design, materials, and workmanship on Nuclear Steam Supply System (NSSS) equipment meet applicable safety requirements, fulfill the requirements of the contracts with the applicants, and satisfy the applicable codes, standards, and regulatory requirements.

  13. Light-water reactor accident classification

    International Nuclear Information System (INIS)

    Washburn, B.W.

    1980-02-01

    The evolution of existing classifications and definitions of light-water reactor accidents is considered. Licensing practice and licensing trends are examined with respect to terms of art such as Class 8 and Class 9 accidents. Interim definitions, consistent with current licensing practice and the regulations, are proposed for these terms of art

  14. Facilitation of decommissioning light water reactors

    International Nuclear Information System (INIS)

    Moore, E.B. Jr.

    1979-12-01

    Information on design features, special equipment, and construction methods useful in the facilitation of decommissioning light water reactors is presented. A wide range of facilitation methods - from improved documentation to special decommissioning tools and techniques - is discussed. In addition, estimates of capital costs, cost savings, and radiation dose reduction associated with these facilitation methods are given

  15. Hydrogen and water reactor safety: proceedings

    International Nuclear Information System (INIS)

    1982-01-01

    Separate abstracts were prepared for papers presented in the following areas of interest: 1) hydrogen research programs; 2) hydrogen behavior during light water reactor accidents; 3) combustible gas generation; 4) hydrogen transport and mixing; 5) combustion modeling and experiments; 6) accelerated flames and detonations; 7) combustion mitigation and control; and 8) equipment survivability

  16. Hydrogen and water reactor safety: proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1982-01-01

    Separate abstracts were prepared for papers presented in the following areas of interest: 1) hydrogen research programs; 2) hydrogen behavior during light water reactor accidents; 3) combustible gas generation; 4) hydrogen transport and mixing; 5) combustion modeling and experiments; 6) accelerated flames and detonations; 7) combustion mitigation and control; and 8) equipment survivability.

  17. General description of advanced heavy water reactor

    International Nuclear Information System (INIS)

    Kakodkar, A.; Sinha, R.K.; Dhawan, M.L.

    1999-01-01

    Advanced Heavy Water Reactor is a boiling light water cooled, heavy water moderated and vertical pressure tube type reactor with its design optimised for utilisation of thorium for power generation. The core consists of (Th-U 233 )O 2 and (Th-Pu)O 2 fuel with a discharge burn up of 20,000 MWd/Te. This reactor incorporates several features to simplify the design, which eliminate certain systems and components. AHWR design is also optimised for easy replaceability of coolant channels, facilitation of in-service inspection and maintenance and ease of erection. The AHWR design also incorporates several passive systems for performing safety-related functions in the event of an accident. In case of LOCA, emergency coolant is injected through 4 accumulators of 260 m 3 capacity directly into the core. Gravity driven water pool of capacity 6000 m 3 serves to cool the core for 3 days without operator's intervention. Core submergence, passive containment isolation and passive containment cooling are the added features in AHWR. The paper describes the various process systems, core and fuel design, primary components and safety concepts of AHWR. Plant layout and technical data are also presented. The conceptual design of the reactor has been completed, and the detailed design and development is scheduled for completion in the year 2002. (author)

  18. Pressurized water reactor fuel rod design methodology

    International Nuclear Information System (INIS)

    Silva, A.T.; Esteves, A.M.

    1988-08-01

    The fuel performance program FRAPCON-1 and the structural finite element program SAP-IV are applied in a pressurized water reactor fuel rod design methodology. The applied calculation procedure allows to dimension the fuel rod components and characterize its internal pressure. (author) [pt

  19. Light water reactor safeguards system evaluation

    International Nuclear Information System (INIS)

    Varnado, G.B.; Ericson, D.M. Jr.; Bennett, H.A.; Hulme, B.L.; Daniel, S.L.

    1978-01-01

    A methodology for assessing the effectiveness of safeguards systems was developed in this study and was applied to a typical light water reactor plant. The relative importance of detection systems, barriers, response forces and other safeguards system components was examined in extensive parameter variation studies. (author)

  20. Thermohydraulic relationships for advanced water cooled reactors

    International Nuclear Information System (INIS)

    2001-04-01

    This report was prepared in the context of the IAEA's Co-ordinated Research Project (CRP) on Thermohydraulic Relationships for Advanced Water Cooled Reactors, which was started in 1995 with the overall goal of promoting information exchange and co-operation in establishing a consistent set of thermohydraulic relationships which are appropriate for use in analyzing the performance and safety of advanced water cooled reactors. For advanced water cooled reactors, some key thermohydraulic phenomena are critical heat flux (CHF) and post CHF heat transfer, pressure drop under low flow and low pressure conditions, flow and heat transport by natural circulation, condensation of steam in the presence of non-condensables, thermal stratification and mixing in large pools, gravity driven reflooding, and potential flow instabilities. The objectives of the CRP are (1) to systematically list the requirements for thermohydraulic relationships in support of advanced water cooled reactors during normal and accident conditions, and provide details of their database where possible and (2) to recommend and document a consistent set of thermohydraulic relationships for selected thermohydraulic phenomena such as CHF and post-CHF heat transfer, pressure drop, and passive cooling for advanced water cooled reactors. Chapter 1 provides a brief discussion of the background for this CRP, the CRP objectives and lists the participating institutes. Chapter 2 provides a summary of important and relevant thermohydraulic phenomena for advanced water cooled reactors on the basis of previous work by the international community. Chapter 3 provides details of the database for critical heat flux, and recommends a prediction method which has been established through international co-operation and assessed within this CRP. Chapter 4 provides details of the database for film boiling heat transfer, and presents three methods for predicting film boiling heat transfer coefficients developed by institutes

  1. Thermohydraulic relationships for advanced water cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-04-01

    This report was prepared in the context of the IAEA's Co-ordinated Research Project (CRP) on Thermohydraulic Relationships for Advanced Water Cooled Reactors, which was started in 1995 with the overall goal of promoting information exchange and co-operation in establishing a consistent set of thermohydraulic relationships which are appropriate for use in analyzing the performance and safety of advanced water cooled reactors. For advanced water cooled reactors, some key thermohydraulic phenomena are critical heat flux (CHF) and post CHF heat transfer, pressure drop under low flow and low pressure conditions, flow and heat transport by natural circulation, condensation of steam in the presence of non-condensables, thermal stratification and mixing in large pools, gravity driven reflooding, and potential flow instabilities. The objectives of the CRP are (1) to systematically list the requirements for thermohydraulic relationships in support of advanced water cooled reactors during normal and accident conditions, and provide details of their database where possible and (2) to recommend and document a consistent set of thermohydraulic relationships for selected thermohydraulic phenomena such as CHF and post-CHF heat transfer, pressure drop, and passive cooling for advanced water cooled reactors. Chapter 1 provides a brief discussion of the background for this CRP, the CRP objectives and lists the participating institutes. Chapter 2 provides a summary of important and relevant thermohydraulic phenomena for advanced water cooled reactors on the basis of previous work by the international community. Chapter 3 provides details of the database for critical heat flux, and recommends a prediction method which has been established through international co-operation and assessed within this CRP. Chapter 4 provides details of the database for film boiling heat transfer, and presents three methods for predicting film boiling heat transfer coefficients developed by institutes

  2. Definition and Analysis of Heavy Water Reactor Benchmarks for Testing New Wims-D Libraries; Definicion y Analisis de Benchmarks de Reactores de Agua Pesada para Pruebas de Nuevas Bibliotecas de Datos Wims-D

    Energy Technology Data Exchange (ETDEWEB)

    Leszczynski, Francisco [Comision Nacional de Energia Atomica, Centro Atomico Bariloche (Argentina)

    2000-07-01

    This work is part of the IAEA-WIMS Library Update Project (WLUP). A group of heavy water reactor benchmarks have been selected for testing new WIMS-D libraries, including calculations with WIMSD5B program and the analysis of results.These benchmarks cover a wide variety of reactors and conditions, from fresh fuels to high burnup, and from natural to enriched uranium.Besides, each benchmark includes variations in lattice pitch and in coolants (normally heavy water and void).Multiplication factors with critical experimental bucklings and other parameters are calculated and compared with experimental reference values.The WIMS libraries used for the calculations were generated with basic data from JEF-2.2 Rev.3 (JEF) and ENDF/B-VI iNReleaseln 5 (E6) Results obtained with WIMS-86 (W86) library, included with WIMSD5B package, from Windfrith, UK with adjusted data, are included also, for showing the improvements obtained with the new -not adjusted- libraries.The calculations with WIMSD5B were made with two methods (input program options): PIJ (two-dimension collision probability method) and DSN (one-dimension Sn method, with homogenization of materials by ring).The general conclusions are: the library based on JEF data and the DSN meted give the best results, that in average are acceptable.

  3. Probabilistic fracture mechanics analysis of boiling water reactor vessel for cool-down and low temperature over-pressurization transients

    Energy Technology Data Exchange (ETDEWEB)

    Park, Jeong Soon; Choi, Young Hwan; Jhung, Myung Jo [Safety Research Division, Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2016-04-15

    The failure probabilities of the reactor pressure vessel (RPV) for low temperature over-pressurization (LTOP) and cool-down transients are calculated in this study. For the cool-down transient, a pressure-temperature limit curve is generated in accordance with Section XI, Appendix G of the American Society of Mechanical Engineers (ASME) code, from which safety margin factors are deliberately removed for the probabilistic fracture mechanics analysis. Then, sensitivity analyses are conducted to understand the effects of some input parameters. For the LTOP transient, the failure of the RPV mostly occurs during the period of the abrupt pressure rise. For the cool-down transient, the decrease of the fracture toughness with temperature and time plays a main role in RPV failure at the end of the cool-down process. As expected, the failure probability increases with increasing fluence, Cu and Ni contents, and initial reference temperature-nil ductility transition (RTNDT). The effect of warm prestressing on the vessel failure probability for LTOP is not significant because most of the failures happen before the stress intensity factor reaches the peak value while its effect reduces the failure probability by more than one order of magnitude for the cool-down transient.

  4. Cost/benefit analysis of adding a feed-and-bleed capability to Combustion Engineering pressurized-water reactors

    International Nuclear Information System (INIS)

    Gallup, D.R.; Gahan, E.; Cherdack, R.; Skala, G.

    1983-08-01

    This report presents the results of a cost/benefit analysis for the addition of a feed-and-bleed capability to the San Onofre Nuclear Generating Station, Unit 2, (SONGS 2). Two cases of feed-and-bleed capability were investigated: 1) adding power-operated relief valves (PORVs) to the pressurizer for depressurization and using the present high-pressure safety-injection (HPSI) system for reactor-coolant-system (RCS) inventory make-up and 2) adding an independent single-train feed-and-bleed system. For the first case, it is estimated that the core-melt frequency would be incrementally reduced by 4.0E-6 per year, a factor of 1.3, at a cost of $2.5 M to $4.3 M depending on when the equipment is installed. For the second case, it is estimated that the core-melt frequency would be incrementally reduced by 1.2E-5 per year, a factor of 3, at a cost of $7.0 M to $10.3 M

  5. Analysis of two different types of hydrogen combustion during severe accidents in a typical pressurized water reactor

    International Nuclear Information System (INIS)

    Ko Yuchih; Lee Min

    2005-01-01

    Hydrogen combustion is an important phenomenon that may occur during severe accidents of Nuclear Power Plants (NPPs). Depending on the specific plant design, the initiating events, and mitigation actions executed, hydrogen combustion may have distinct characteristics and may damage the plant in various degrees. The worst scenario will be the catastrophic failure of containment. In this study two specific types of hydrogen combustion are analyzed to evaluate their impact on the containment integrity. In this paper, Station Blackout (SBO) and Loss of Coolant Accidents (LOCAs) sequences are analyzed using MAAP4 (Modular Accident Analysis Program) code. The former sequence is used to represent hydrogen combustion phenomenon under the condition that the reactor pressure vessel (RPV) breaches at high pressure and the latter sequence represents the phenomenon that RPV fails at low pressure. Two types of hydrogen combustion are observed in the simulation. The Type I hydrogen combustion represents global and instantaneous hydrogen combustion. Large pressure spike is created during the combustion and represents a threat to containment integrity. Type II hydrogen combustion is localized burn and burn continuously over a time period. There is hardly any impact of this type hydrogen burn on the containment pressurization rate. Both types of hydrogen combustion can occur in the severe accidents without any human intervention. From the accident mitigation point of view, operators should try to bring the containment into conditions that favor the Type II hydrogen combustion. (authors)

  6. Trends in light water reactor dosimetry programs

    International Nuclear Information System (INIS)

    Rahn, F.J.; Serpan, C.Z.; Fabry, A.; McElroy, W.N.; Grundl, J.A.; Debrue, J.

    1977-01-01

    Dosimetry programs and techniques play an essential role in the continued assurance of the safety and reliability of components of light water reactors. Primary concern focuses on the neutron irradiation embrittlement of reactor pressure vessels and methods by which the integrity of a pressure vessel can be predicted and monitored throughout its service life. Research in these areas requires a closely coordinated program which integrates the elements of the calculational and material sciences, the development of advanced dosimetric techniques and the use of benchmarks and validation of these methods. The paper reviews the status of the various international efforts in the dosimetry area

  7. The nuclear reactor strategy between fast breeder reactors and advanced pressurized water reactors

    International Nuclear Information System (INIS)

    Seifritz, W.

    1983-01-01

    A nuclear reactor strategy between fast breeder reactors (FBRs) and advanced pressurized water reactors (APWRs) is being studied. The principal idea of this strategy is that the discharged plutonium from light water reactors (LWRs) provides the inventories of the FBRs and the high-converter APWRs, whereby the LWRs are installed according to the derivative of a logistical S curve. Special emphasis is given to the dynamics of reaching an asymptotic symbiosis between FBRs and APWRs. The main conclusion is that if a symbiotic APWR-FBR family with an asymptotic total power level in the terawatt range is to exist in about half a century from now, we need a large number of FBRs already in an early phase

  8. Penn State advanced light water reactor concept

    International Nuclear Information System (INIS)

    Borkowski, J.A.; Smith, K.A.; Edwards, R.M.; Robinson, G.E.; Schultz, M.A.; Klevans, E.H.

    1987-01-01

    The accident at Three Mile Island heightened concerns over the safety of nuclear power. In response to these concerns, a research group at the Pennsylvania State University (Penn State) undertook the conceptual design of an advanced light water reactor (ALWR) under sponsorship of the US Dept. of Energy (DOE). The design builds on the literally hundreds of years worth of experience with light water reactor technology. The concept is a reconfigured pressurized water reactor (PWR) with the capability of being shut down to a safe condition simply by removing all ac power, both off-site and on-site. Using additional passively activated heat sinks and replacing the pressurizer with a pressurizing pump system, the concept essentially eliminates the concerns of core damage associated with a total station blackout. Evaluation of the Penn State ALWR concept has been conducted using the EPRI Modular Modeling System (MMS). Results show that a superior response to normal operating transients can be achieved in comparison to the response with a conventional PWR pressurizer. The DOE-sponsored Penn State ALWR concept has evolved into a significant reconfiguration of a PWR leading to enhanced safety characteristics. The reconfiguration has touched a number of areas in overall plant design including a shutdown turbine in the secondary system, additional passively activated heat sinks, a unique primary side pressurizing concept, a low pressure cleanup system, reactor building layout, and a low power density core design

  9. Electrochemistry of Water-Cooled Nuclear Reactors

    International Nuclear Information System (INIS)

    Dgiby Macdonald; Mirna Urquidi-Macdonald; John Mahaffy; Amit Jain Han Sang Kim; Vishisht Gupta; Jonathan Pitt

    2006-01-01

    This project developed a comprehensive mathematical and simulation model for calculating thermal hydraulic, electrochemical, and corrosion parameters, viz. temperature, fluid flow velocity, pH, corrosion potential, hydrogen injection, oxygen contamination, stress corrosion cracking, crack growth rate, and other important quantities in the coolant circuits of water-cooled nuclear power plants, including both Boiling Water Reactors (BWRs) and Pressurized Water Reactors (PWRs). The model is being used to assess the three major operational problems in Pressurized Water Reactors (PWR), which include mass transport, activity transport, and the axial offset anomaly, and provide a powerful tool for predicting the accumulation of SCC damage in BWR primary coolant circuits as a function of operating history. Another achievement of the project is the development of a simulation tool to serve both as a training tool for plant operators and as an engineering test-bed to evaluate new equipment and operating strategies (normal operation, cold shut down and others). The development and implementation of the model allows us to estimate the activity transport or ''radiation fields'' around the primary loop and the vessel, as a function of the operating parameters and the water chemistry

  10. Boiling water reactor modeling capabilities of MMS-02

    International Nuclear Information System (INIS)

    May, R.S.; Abdollahian, D.A.; Elias, E.; Shak, D.P.

    1987-01-01

    During the development period for the Modular Modeling System (MMS) library modules, the Boiling Water Reactor (BWR) has been the last major component to be addressed. The BWRX module includes models of the reactor core, reactor vessel, and recirculation loop. A pre-release version was made available for utility use in September 1983. Since that time a number of changes have been incorporated in BWRX to (1) improve running time for most transient events of interest, (2) extend its capability to include certain events of interest in reactor safety analysis, and (3) incorporate a variety of improvements to the module interfaces and user input formats. The purposes of this study were to briefly review the module structure and physical models, to point the differences between the MMS-02 BWRX module and the BWRX version previously available in the TESTREV1 library, to provide guidelines for choosing among the various user options, and to present some representative results

  11. Environmentally assisted cracking in Light Water Reactors

    International Nuclear Information System (INIS)

    Chung, H.M.; Chopra, O.K.; Ruther, W.E.; Kassner, T.F.; Michaud, W.F.; Park, J.Y.; Sanecki, J.E.; Shack, W.J.

    1993-09-01

    This report summarizes work performed by Argonne National Laboratory on fatigue and environmentally assisted cracking (EAC) in light water reactors (LWRs) during the six months from October 1992 to March 1993. Fatigue and EAC of piping, pressure vessels, and core components in LWRs are important concerns as extended reactor lifetimes are envisaged. Topics that have been investigated include (1) fatigue of low-alloy steel used in piping, steam generators, and reactor pressure vessels. (2) EAC of cast stainless steels (SSs), (3) radiation-induced segregation and irradiation-assisted stress corrosion cracking of Type 304 SS after accumulation of relatively high fluence, and (4) EAC of low-alloy steels. Fatigue tests were conducted on medium-sulfur-content A106-Gr B piping and A533-Gr B pressure vessel steels in simulated PWR water and in air. Additional crack growth data were obtained on fracture-mechanics specimens of cast austenitic SSs in the as-received and thermally aged conditions and chromium-nickel-plated A533-Gr B steel in simulated boiling-water reactor (BWR) water at 289 degrees C. The data were compared with predictions based on crack growth correlations for ferritic steels in oxygenated water and correlations for wrought austenitic SS in oxygenated water developed at ANL and rates in air from Section XI of the ASME Code. Microchemical and microstructural changes in high- and commercial-purity Type 304 SS specimens from control-blade absorber tubes and a control-blade sheath from operating BWRs were studied by Auger electron spectroscopy and scanning electron microscopy

  12. Towards intrinsically safe light-water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hannerz, K

    1983-07-01

    Most of the present impediments to the rational use of the nuclear option have their roots in the reactor safety issue. The approach taken to satisfy the escalating safety concerns has resulted in excessively complex and expensive plant designs but has failed to create public confidence. This paper describes a new approach based on the principle of Process Inherent Ultimate Safety (PIUS). With the PIUS principle, ultimate safety is obtained by guaranteeing core integrity under all credible conditions. This is accomplished on the basis of the laws of gravity and thermohydraulics alone, interacting with the heat extraction process in an intact or damaged primary circuit, without recourse to engineered safety systems that may fail or dependence on error-prone human intervention. Application of the PIUS principle to the pressurized water reactor involves a substantial redesign of the reactor and primary system but builds on established PWR technology where long-term operation is needed for verification.

  13. Towards intrinsically safe light-water reactors

    International Nuclear Information System (INIS)

    Hannerz, K.

    1983-07-01

    Most of the present impediments to the rational use of the nuclear option have their roots in the reactor safety issue. The approach taken to satisfy the escalating safety concerns has resulted in excessively complex and expensive plant designs but has failed to create public confidence. This paper describes a new approach based on the principle of Process Inherent Ultimate Safety (PIUS). With the PIUS principle, ultimate safety is obtained by guaranteeing core integrity under all credible conditions. This is accomplished on the basis of the laws of gravity and thermohydraulics alone, interacting with the heat extraction process in an intact or damaged primary circuit, without recourse to engineered safety systems that may fail or dependence on error-prone human intervention. Application of the PIUS principle to the pressurized water reactor involves a substantial redesign of the reactor and primary system but builds on established PWR technology where long-term operation is needed for verification

  14. The safety of pressurized water reactors

    International Nuclear Information System (INIS)

    Panossian, J.; Tanguy, P.

    1991-01-01

    In this paper we present a review of the status of the safety level of modern pressurized water reactors, that is to say those that meet the safety criteria accepted today by the international nuclear community. We will mainly rely on the operating experience and the Probabilistic Safety Assessments concerning French reactors. We will not back over the basic safety concepts of these reactors, which are well known. We begin with a brief review of some of the lessons learned from the two main accidents discussed in the present meeting. Three Mile Island and Chernobyl, without entering into details presented in previous papers. The presentation ends with a rather lengthy conclusion, aimed more at those not directly involved in the technical details of nuclear safety matters

  15. Advanced light water reactor plant

    International Nuclear Information System (INIS)

    Giedraityte, Zivile

    2008-01-01

    For nuclear power to be competitive with the other methods of electrical power generation the economic performance should be significantly improved by increasing the time spent on line generating electricity relative to time spent off-line conducting maintenance and refueling. Maintenance includes planned actions (surveillances) and unplanned actions (corrective maintenance) to respond to component degradation or failure. A methodology is described which is used to resolve maintenance related operating cycle length barriers. Advanced light water nuclear power plant is designed with the purpose to maximize online generating time by increasing operating cycle length. (author)

  16. Consequence analysis for nuclear reactors, Yongbyon

    International Nuclear Information System (INIS)

    Kang, Taewook; Jae, Moosung

    2017-01-01

    Since the Fukushima nuclear power plant accidents in 2011, there have been an increased public anxiety about the safety of nuclear power plants in Korea. The lack of safeguards and facility aging issues at the Yongbyon nuclear facilities have increased doubts. In this study, the consequence analysis for the 5-MWe graphite-moderated reactor in North Korea was performed. Various accident scenarios including accidents at the interim spent fuel pool in the 5-MWe reactor have been developed and evaluated quantitatively. Since data on the design and safety system of nuclear facilities are currently insufficient, the release fractions were set by applying the alternative source terms made for utilization in the analysis of a severe accident by integrating the results of studies of severe accidents occurred before. The calculation results show the early fatality zero deaths and latent cancer fatality about only 13 deaths in Seoul. Thus, actual impacts of a radiological release will be psychological in terms of downwind perceptions and anxiety on the part of potentially exposed populations. Even considering the simultaneous accident occurrence in both 5-MWe graphite-moderated reactor and 100-MWt light water reactor, the consequence analysis using the MACCS2 code shows no significant damage to people in South Korea. (author)

  17. Fundamentals of boiling water reactor (BWR)

    International Nuclear Information System (INIS)

    Bozzola, S.

    1982-01-01

    These lectures on fundamentals of BWR reactor physics are a synthesis of known and established concepts. These lectures are intended to be a comprehensive (even though descriptive in nature) presentation, which would give the basis for a fair understanding of power operation, fuel cycle and safety aspects of the boiling water reactor. The fundamentals of BWR reactor physics are oriented to design and operation. In the first lecture general description of BWR is presented, with emphasis on the reactor physics aspects. A survey of methods applied in fuel and core design and operation is presented in the second lecture in order to indicate the main features of the calculational tools. The third and fourth lectures are devoted to review of BWR design bases, reactivity requirements, reactivity and power control, fuel loading patterns. Moreover, operating limits are reviewed, as the actual limits during power operation and constraints for reactor physics analyses (design and operation). The basic elements of core management are also presented. The constraints on control rod movements during the achieving of criticality and low power operation are illustrated in the fifth lecture. Some considerations on plant transient analyses are also presented in the fifth lecture, in order to show the impact between core and fuel performance and plant/system performance. The last (sixth) lecture is devoted to the open vessel testing during the startup of a commercial BWR. A control rod calibration is also illustrated. (author)

  18. Radioactivity analysis of KAMINI reactor coolant from regulatory perspectives

    International Nuclear Information System (INIS)

    Srinivasan, T.K.; Sulthan, Bajeer; Sarangapani, R.; Jose, M.T.; Venkatraman, B.; Thilagam, L.

    2016-01-01

    KAMINI (a 30kWt) research reactor is operated for neutron radiography of fuel subassemblies and pyro devices and activation analysis of various samples. The reactor is fueled by 233 U and DM water is used as the coolant. During reactor operation, fission product noble gasses (FPNGs) such as 85m Kr, 87 Kr, 88 Kr, 135 Xe, 135m Xe and 138 Xe are detected in the coolant water. In order to detect clad failure, the water is sampled during reactor operation at regular intervals as per the technical specifications. In the present work, analysis of measured activities in coolant samples collected during reactor operation at 25 kWt are presented and compared with computed values obtained using ORIGEN (Isotope Generation) code

  19. Heavy water upgrading system in the Fugen heavy water reactor

    International Nuclear Information System (INIS)

    Matsushita, T.; Susaki, S.

    1980-01-01

    The heavy water upgrading system, which is installed in the Fugen heavy water reactor (HWR) was designed to reuse degraded heavy water generated from the deuteration-dedeuteration of resin in the ion exchange column of the moderator purification system. The electrolysis method has been applied in this system on the basis of the predicted generation rate and concentration of degraded heavy water. The structural feature of the electrolytic cell is that it consists of dual cylindrical electrodes, instead of a diaphragm as in the case of conventional water electrolysis. 2 refs

  20. Comparison of finite element and influence function methods for three-dimensional elastic analysis of boiling water reactor feedwater nozzle cracks. Phase report

    International Nuclear Information System (INIS)

    Besuner, P.M.; Caughey, W.R.

    1976-11-01

    The finite element (FE) and influence function (IF) methods are compared for a three-dimensional elastic analysis of postulated circular-shaped surface cracks in the feedwater nozzle of a typical boiling water reactor (BWR). These are two of the possible methods for determining stress intensity factors for nozzle corner cracks. The FE method is incorporated in a direct manner. The IF method is used to compute stress intensity factors only when the uncracked stress field (i.e., the stress in the uncracked solid at the locus of the crack to be eventually considered) has been computed previously. Both the IF and FE methods are described in detail and are applied to several test cases chosen for their similarity to the nozzle crack problem and for the availablility of an accurate published result obtained from some recognized third method of solution

  1. Special Analysis for the Disposal of the INL Waste Associated with the Unirradiated Light Water Breeder Reactor (LWBR) Waste Stream at the Area 5 Radioactive Waste Management Site

    Energy Technology Data Exchange (ETDEWEB)

    Shott, Gregory [National Security Technologies, LLC, Las Vegas, NV (United States)

    2017-03-21

    This special analysis (SA) evaluates whether the Idaho National Laboratory (INL) Waste Associated with the Unirradiated Light Water Breeder Reactor (LWBR) waste stream (INEL167203QR1, Revision 0) is suitable for shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) on the Nevada National Security Site (NNSS). Disposal of the INL Waste Associated with the Unirradiated LWBR waste meets all U.S. Department of Energy (DOE) Manual DOE M 435.1-1, “Radioactive Waste Management Manual,” Chapter IV, Section P performance objectives (DOE 1999). The INL Waste Associated with the Unirradiated LWBR waste stream is recommended for acceptance with the condition that the total uranium-233 (233U) inventory be limited to 2.7E13 Bq (7.2E2 Ci).

  2. Thermodynamic analysis of behaviour of boiling water reactor coolant on the basis of solubility in Fe3O4-H2O-O2 system

    International Nuclear Information System (INIS)

    Zarembo, V.I.; Slobodov, A.A.; Kritskij, V.G.; Puchkov, L.V.; Sedov, V.M.

    1986-01-01

    The thermodynamic analysis of the behaviour of boiling water reactor coolant on the basis of solubility in Fe 3 O 4 -H 2 O-O 2 system is performed for the purpose of establishing the iron existence forms in non-sedimentated suspended corrosion product particles as well as iron concentration of corrosion origin in power plants. It is shown that the iron solubility in the considered system with temperature variation occurs through the maximum at 423 K. Below this temperature the crystal Fe(OH) 3 is responsible for its value, at higher temperatures - magnetite. The growth of equilibrium oxygen concentration from 0.1 to 1000 μg/kg H 2 O only slightly increases the magnetite solubility

  3. Fission gas behaviour in water reactor fuels

    International Nuclear Information System (INIS)

    2002-01-01

    During irradiation, nuclear fuel changes volume, primarily through swelling. This swelling is caused by the fission products and in particular by the volatile ones such as krypton and xenon, called fission gas. Fission gas behaviour needs to be reliably predicted in order to make better use of nuclear fuel, a factor which can help to achieve the economic competitiveness required by today's markets. These proceedings communicate the results of an international seminar which reviewed recent progress in the field of fission gas behaviour in light water reactor fuel and sought to improve the models used in computer codes predicting fission gas release. State-of-the-art knowledge is presented for both uranium-oxide and mixed-oxide fuels loaded in water reactors. (author)

  4. The chemistry of water reactor fuel

    International Nuclear Information System (INIS)

    Potter, P.E.

    1990-01-01

    In this paper, the authors discuss features of the changes in chemical constitution which occur in fuel and fuel rods for water reactors during operation and in fault conditions. The fuel for water reactors consists of pellets of urania (UO 2 ) clad in Zircaloy. An essential step in the prediction of the fate of all the radionuclides in a fault or accident is to possess a detailed knowledge of their chemical behavior at all stages of the development of such incidents. In this paper, the authors consider: the chemical constitution of fuel during operation at temperatures corresponding to rather low ratings, together with a quite detailed discussion of the chemistry within the fuel-clad gap; the behavior of fuel subjected to higher temperatures and ratings than those of contemporary fuel; and the changes in constitution on failure of fuel rods in fault or accident conditions

  5. Pumps for German pressurized water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Dernedde, R.

    1984-01-01

    The article describes the development of a selection of pumps which are used in the primary coolant system and the high-pressure safety injection system and feed water system during the past 2 decades. The modifications were caused by the step-wise increasing power output of the plants from 300 MW up to 1300 MW. Additional important influences were given be the increased requirements for quality assurance and final-documentation. The good operating results of the delivered pumps proved that the reliability is independent of the volume of the software-package. The outlook expects that consolidation will be followed by additional steps for the order processing of components for the convoy pumps. KW: main coolant pump; primary system; boiler feed pump; reactor pump; secondary system; barrel insert pump; pressure water reactor; convoy pump; state of the art.

  6. Materials technologies of light water reactors

    International Nuclear Information System (INIS)

    Begley, R.

    1984-01-01

    Satisfactory materials performance is a key element in achieving reliable operation of light water reactors. Outstanding performance under rigorous operational conditions has been exhibited by pressure boundary components, core internals, fuel cladding, and other critical components of these systems. Corrosion and stress corrosion phenomena have, however, had an impact on plant availability, most notably relating to pipe cracking in BWR systems and steam generator corrosion in PWR systems. These experiences have stimulated extensive development activities by the nuclear industry in improved NDE techniques, investigation of corrosion phenomena, as well as improved materials and repair processes. This paper reviews key materials performance aspects of light water reactors with particular emphasis on the progress which has been made in modeling of corrosion phenomena, control of the plant operating environment, advanced material development, and application of sophisticated repair procedures. Implementation of this technology provides the basis for improved plant availability

  7. Passive systems for light water reactors

    International Nuclear Information System (INIS)

    Adinolfi, R.; Noviello, L.

    1990-01-01

    The paper reviews the most original concepts that have been considered in Italy for the back-fitting of the nuclear power plants in order to reduce the probability and the importance of the release to the environment in case of a core melt. With reference either to BWR or PWR, passive concepts have been considered for back-fitting in the following areas: pump seals damage prevention and ECCS passive operation; reactor passive depressurization; molten reactor core passive cooling; metal containment passive water cooling through a water tank located at high level; containment isolation improvement through a sealing system; containment leaks control and limitation of environmental release. In addition some considerations will be made on the protection against external events introduced from the beginning on the PUN design either on building and equipment lay-out either on structure design. (author). 5 figs

  8. Advanced light water reactors for the nineties

    International Nuclear Information System (INIS)

    Ross, F.A.; Sugnet, W.R.

    1987-01-01

    The EPRI/Industry advanced light water reactor (ALWR) program and the US Department of Energy ALWR program are closely coordinated to meet the common objective which is the availability of improved and simplified light water reactor plants that may be ordered in the next decade to meet new or replacement capacity requirements. The EPRI/Industry objectives, program participants, and foreign participants, utility requirements document, its organization and content, small plant conceptual design program, the DOE ALWR program, design verification program, General Electric ABWR design features, Combustion Engineering system design, mid-size plant development, General Electric SBWR objectives, Westinghouse/Burns and Roe design objectives, construction improvement, and improved instrumentation and control are discussed in the paper

  9. Corrosion of research reactor aluminium clad spent fuel in water

    International Nuclear Information System (INIS)

    2009-12-01

    reactor aluminium clad spent fuel. These corrosion activities were quite similar to those carried out in the CRP. Eight Member States participated in Phase-II of the CRP and five Member States in the Regional Project RLA/4/018. Two of the countries participating in the regional project were also participants in the CRP. This report documents the work performed in the IAEA Coordinated Research Project (CRP) on Corrosion of Research Reactor Aluminium Clad Spent Fuel in Water (Phase II) and in the IAEA's Technical Cooperation Regional Project for Latin America (RLA/4/018) entitled Management of Spent Fuel from Research Reactors. The key activity of both, the CRP and the Regional Project, consisted of the exposure of standard racks of corrosion coupons in the spent fuel pools of the participating research reactor laboratories and the evaluation of the coupons after predetermined exposure times, along with periodic monitoring of the storage water and evaluation of sediments settling in the spent fuel pools. The report includes: a description of the standard corrosion racks, experimental protocols, test procedures and water quality monitoring; the specific contributions by each of the participating laboratories; a compilation of all experimental results obtained and the analysis and discussion of the results, along with conclusions

  10. An Investigation into Water Chemistry in Primary Coolant Circuit of an Advanced Boiling Water Reactor

    International Nuclear Information System (INIS)

    Wu, Bing-Jhen; Yeh, Tsung-Kuang; Wang, Mei-Ya; Sheu, Rong-Jiun

    2012-09-01

    To ensure operation safety, an optimization on the coolant chemistry in the primary coolant circuit of a nuclear reactor is essential no matter what type or generation the reactor belongs to. For a better understanding toward the water chemistry in an advanced boiling water reactor (ABWR), such as the one being constructed in the northern part of Taiwan, and for a safer operation of this ABWR, we conducted a proactive, thorough water chemistry analysis prior to the completion of this reactor in this study. A numerical simulation model for water chemistry analyses in ABWRs has been developed, based upon the core technology we established in the past. This core technology for water chemistry modeling is basically an integration of water radiolysis, thermal-hydraulics, and reactor physics. The model, by the name of DEMACE - ABWR, is an improved version of the original DEMACE model and was used for radiolysis and water chemistry prediction in the Longmen ABWR in Taiwan. Predicted results pertinent to the water chemistry variation and the corrosion behavior of structure materials in the primary coolant circuit of this ABWR under rated-power operation were reported in this paper. (authors)

  11. Identification of nuclear reactor characteristics by the reactor noise analysis

    International Nuclear Information System (INIS)

    Yashima, Hideyuki

    1980-01-01

    Reactor noise analysis method was applied to TRIGA II Research Reactor (Atomic Research Laboratory, Musashi Institute of Technology) and computed power spectral density (PSD) from the CIC current record. PSD has provided many valuable informations regarding to the reactor kinetics, including the effect of control rods vibration. Another information of neutron physics parameters were obtained and this result was compared with the parameter which was formerly measured by the Feynman-α experiment. Through these experiments we could find overall frequency characteristics of TRIGA II Reactor. (author)

  12. High conversion heavy water moderated reactor

    International Nuclear Information System (INIS)

    Miyawaki, Yoshio; Wakabayashi, Toshio.

    1989-01-01

    In the present invention, fuel rods using uranium-plutonium oxide mixture fuels are arranged in a square lattice at the same pitch as that in light water cooled reactor and heavy water moderators are used. Accordingly, the volume ratio (Vm/Vf) between the moderator and the fuel can be, for example, of about 2. When heavy water is used for the moderator (coolant), since the moderating effect of heavy water is lower than that of light water, a high conversion ratio of not less than 0.8 can be obtained even if the fuel rod arrangement is equal to that of PWR (Vm/Vf about 2). Accordingly, it is possible to avoid problems caused by dense arrangement of fuel rods as in high conversion rate light water cooled reactors. That is, there are no more troubles in view of thermal hydrodynamic characteristics, re-flooding upon loss of coolant accident, etc., as well as the fuel production cost is not increased. (K.M.)

  13. Dynamic model for a boiling water reactor

    International Nuclear Information System (INIS)

    Muscettola, M.

    1963-07-01

    A theoretical formulation is derived for the dynamics of a boiling water reactor of the pressure tube and forced circulation type. Attention is concentrated on neutron kinetics, fuel element heat transfer dynamics, and the primary circuit - that is the boiling channel, riser, steam drum, downcomer and recirculating pump of a conventional La Mont loop. Models for the steam and feedwater plant are not derived. (author)

  14. Integral Pressurized Water Reactor Simulator Manual

    International Nuclear Information System (INIS)

    2017-01-01

    This publication provides detailed explanations of the theoretical concepts that the simulator users have to know to gain a comprehensive understanding of the physics and technology of integral pressurized water reactors. It provides explanations of each of the simulator screens and various controls that a user can monitor and modify. A complete description of all the simulator features is also provided. A detailed set of exercises is provided in the Exercise Handbook accompanying this publication.

  15. Thermal calculations for water cooled research reactors

    International Nuclear Information System (INIS)

    Fabrega, S.

    1979-01-01

    The formulae and the more important numerical data necessary for thermic calculations on the core of a research reactor, cooled with low pressure water, are presented. Most of the problems met by the designer and the operator are dealt with (calculations margins, cooling after shut-down). Particular cases are considered (gas release, rough walls, asymmetric cooling slabs etc.), which are not generally envisaged in works on general thermics

  16. Structural analysis of reactor fuel elements

    International Nuclear Information System (INIS)

    Weeks, R.W.

    1977-01-01

    An overview of fuel-element modeling is presented that traces the development of codes for the prediction of light-water-reactor and fast-breeder-reactor fuel-element performance. It is concluded that although the mathematical analysis is now far advanced, the development and incorporation of mechanistic constitutive equations has not kept pace. The resultant reliance on empirical correlations severely limits the physical insight that can be gained from code extrapolations. Current efforts include modeling of alternate fuel systems, analysis of local fuel-cladding interactions, and development of a predictive capability for off-normal behavior. Future work should help remedy the current constitutive deficiencies and should include the development of deterministic failure criteria for use in design

  17. Decontamination of the RA reactor heavy water system, Annex 9

    International Nuclear Information System (INIS)

    Maksimovic, Z.B.; Nikolic, R.M.; Marinkovic, M.D.; Jelic, Lj.M.

    1963-01-01

    Both stainless steel and aluminium parts of the RA reactor heavy water system system were decontaminated as well as the heavy water itself. System was contaminated with 60 Co. Decontamination factor was determined by activity measurements during distillation. Concentration of the corrosion products in the heavy water was measured by spectrochemical analysis, and found to be 0.1 - 1 mg/l. Chemical analyses of the aluminium and stainless steel surfaces showed that cobalt was adsorbed on the aluminium oxide layer. Water solution of 7%H 3 PO 4 + 2% CrO 3 was used for decontamination of the heavy water system and distillation device. This was found to be the most efficient solvent which does not affect stainless steel corrosion. Decontamination factors achieved were from 60 - 100. Decontamination results enabled determining the distribution of cobalt in the system: 10 Ci on the stainless steel parts, 50 Ci in the heavy water; and above 600 Ci on the fuel and experimental channels. Specific activity of 60 Co was calculated to be 15 Ci/g on the reactor channels, 8 Ci/g on the stainless steel parts and 3 Ci/g in the heavy water. Decontamination of the aluminium parts was not done because it was considered it could initiate corrosion. Since the efficiency of distillation is increased it was expected that permanent distillation would remove most of the activity in the reactor channels

  18. Boiling water reactor life extension monitoring

    International Nuclear Information System (INIS)

    Stancavage, P.

    1991-01-01

    In 1991 the average age of GE-supplied Boiling Water Reactors (BWRs) reached 15 years. The distribution of BWR ages range from three years to 31 years. Several of these plants have active life extension programmes, the most notable of which is the Monticello plant in Minnesota which is the leading BWR plant for license renewal in the United States. The reactor pressure vessel and its internals form the heart of the boiling water reactor (BWR) power plant. Monitoring the condition of the vessel as it operates provides a continuous report on the structural integrity of the vessel and internals. Monitors for fatigue, stress corrosion and neutron effects can confirm safety margins and predict residual life. Every BWR already incorporates facilities to track the key aging mechanisms of fatigue, stress corrosion and neutron embrittlement. Fatigue is measured by counting the cycles experienced by the pressure vessel. Stress corrosion is gauged by periodic measurements of primary water conductivity and neutron embrittlement is tracked by testing surveillance samples. The drawbacks of these historical procedures are that they are time consuming, they lag the current operation, and they give no overall picture of structural integrity. GE has developed an integrated vessel fitness monitoring system to fill the gaps in the historical, piecemetal monitoring of the BWR vessel and internals and to support plant life extension. (author)

  19. Reuse of waste water from high pressure water jet decontamination for reactor decommissioning scrap metal

    International Nuclear Information System (INIS)

    Deng Junxian; Li Xin; Hou Huijuan

    2011-01-01

    For recycle and reuse of reactor decommissioning scrap metal by high pressure water jet decontamination, large quantity of radioactive waste water will be generated. To save the cost of radioactive waste water treatment and to reduce the cost of the scrap decontamination, this part of radioactive waste water should be reused. Most of the radioactivities in the decontamination waste water come from the solid particle in the water. Thus to reuse the waste water, the solid particle in the waster should be removed. Different possible treatment technologies have been investigated. By cost benefit analysis the centrifugal separation technology is selected. (authors)

  20. Reactor noise analysis of experimental fast reactor 'JOYO'

    International Nuclear Information System (INIS)

    Ohtani, Hideji; Yamamoto, Hisashi

    1980-01-01

    As a part of dynamics tests in experimental fast reactor ''JOYO'', reactor noise tests were carried out. The reactor noise analysis techniques are effective for study of plant characteristics by determining fluctuations of process signals (neutron signal, reactor inlet temperature signals, etc.), which are able to be measured without disturbances for reactor operations. The aims of reactor noise tests were to confirm that no unstable phenomenon exists in ''JOYO'' and to gain initial data of the plant for reference of the future data. Data for the reactor noise tests treated in this paper were obtained at 50 MW power level. Fluctuations of process signals were amplified and recorded on analogue tapes. The analysis was performed using noise code (NOISA) of digital computer, with which statistical values of ASPD (auto power spectral density), CPSD (cross power spectral density), and CF (coherence function) were calculated. The primary points of the results are as follows. 1. RMS value of neutron signal at 50 MW power level is about 0.03 MW. This neutron fluctuation is not disturbing reactor operations. 2. The fluctuations of A loop reactor inlet temperatures (T sub(AI)) are larger than the fluctuations of B loop reactor inlet temperature (T sub(BI)). For this reason, the major driving force of neutron fluctuations seems to be the fluctuations of T sub(AI). 3. Core and blanket subassemblies can be divided into two halves (A and B region), with respect to the spacial motion of temperature in the reactor core. A or B region means the region in which sodium temperature fluctuations in subassembly are significantly affected by T sub(AI) or T sub(BI), respectively. This phenomenon seems to be due to the lack of mixing of A and B loop sodium in lower plenum of reactor vessel. (author)

  1. Pressurized heavy-water reactor safety

    International Nuclear Information System (INIS)

    Pease, L.; Wilson, R.

    1977-09-01

    CANDU-PWR type reactors routinely release small amounts of radioactive liquids and gases and large quantities of low-grade waste heat. Radioactive emissions are usually below 1% of the derived release limits based on ICRP limits. Waste heat is common to all power plants and is not foreseen as a problem in Canadian conditions. Risk analysis shows a very low accident probability for CANDU type reactors. Multiple barriers to release of radionuclides, quality assurance, control, and inspection, containment systems, the shutdown system, the ECCS, and leak-before-break design, would all combine to mitigate the effects of an accident. (E.C.B.)

  2. Towards intrinsically safe light-water reactors

    International Nuclear Information System (INIS)

    Hannerz, K.

    1983-02-01

    The reactor-safety issue is one of the principal problems threatening the future of the nuclear option, at least in participatory democracies. It has contributed to widespread public distrust and is the direct cause of the escalation in design complexity and quality assurance requirements that are rapidly eroding the competitive advantage of nuclear power. Redesign of the light-water reactor can eliminate those features that leave it open to public distrust and obstructive intervention. This redesign appears feasible within the realm of proven technology in those fields (fuels, materials, water chemistry, waste technology, etc.) in which extended operating experience is essential for confidence in system performance. A pressurized water reactor outline design developed to achieve the above goal is presented. The key feature is the design of the primary system extracting heat from the core so that the latter is protected from damage caused by any credible system failure or any destructive intervention from the outside by either violent means (up to and including nonnuclear warfare) or by mistaken or malicious use of the plant control systems. Such a design objective can be achieved by placing the entire primary circulation system in a large pressurized pool of cold water with a high boric acid content. Enough water is provided in the pool to allow core-decay-heat removal by evaporation for at least one week following any incident with no cooling systems operating. Subsequently it is assumed that a supply of further water (a few cubic meters per hour) from the outside can be arranged, even without the presence of the plant operating personnel

  3. Computational fluid dynamics simulations of light water reactor flows

    International Nuclear Information System (INIS)

    Tzanos, C.P.; Weber, D.P.

    1999-01-01

    Advances in computational fluid dynamics (CFD), turbulence simulation, and parallel computing have made feasible the development of three-dimensional (3-D) single-phase and two-phase flow CFD codes that can simulate fluid flow and heat transfer in realistic reactor geometries with significantly reduced reliance, especially in single phase, on empirical correlations. The objective of this work was to assess the predictive power and computational efficiency of a CFD code in the analysis of a challenging single-phase light water reactor problem, as well as to identify areas where further improvements are needed

  4. State of the art of the advanced pressurized water reactor

    International Nuclear Information System (INIS)

    Seifritz, W.; Chawla, R.

    1987-01-01

    A review is given of the present status of the works concerned with an advanced pressurized water reactor (APWR). It includes the following items: reactor physics, thermal and hydraulic investigations and other engineering aspects as well as an analysis of electricity generation cost and long-term problems of embedding the APWR in a plutonium economy. As a summary it can be stated that there are discernible no principal obstacles of technically accomplishing an APWR, but there will be necessary considerable expenses in research and development works if it should be intended to start commercial service of an APWR up to the end of this century. (author)

  5. Reactor core of light water-cooled reactor

    International Nuclear Information System (INIS)

    Miwa, Jun-ichi; Aoyama, Motoo; Mochida, Takaaki.

    1996-01-01

    In a reactor core of a light water cooled reactor, the center of the fuel rods or moderating rods situated at the outermost circumference among control rods or moderating rods are connected to divide a lattice region into an inner fuel region and an outer moderator region. In this case, the area ratio of the moderating region to the fuel region is determined to greater than 0.81 for every cross section of the fuel region. The moderating region at the outer side is increased relative to the fuel rod region at the inner side while keeping the lattice pitch of the fuel assembly constant, thereby suppressing the increase of an absolute value of a void reactivity coefficient which tends to be caused when using MOX fuels as a fuel material, by utilizing neutron moderation due to a large quantity of coolants at the outer side of the fuel region. The void reactivity coefficient can be made substantially equal with that of uranium fuel assembly without greatly reducing a plutonium loading amount or without greatly increasing linear power density. (N.H.)

  6. Performance of advanced self-shielding models in DRAGON Version4 on analysis of a high conversion light water reactor lattice

    International Nuclear Information System (INIS)

    Karthikeyan, Ramamoorthy; Hebert, Alain

    2008-01-01

    A high conversion light water reactor lattice has been analysed using the code DRAGON Version4. This analysis was performed to test the performance of the advanced self-shielding models incorporated in DRAGON Version4. The self-shielding models are broadly classified into two groups - 'equivalence in dilution' and 'subgroup approach'. Under the 'equivalence in dilution' approach we have analysed the generalized Stamm'ler model with and without Nordheim model and Riemann integration. These models have been analysed also using the Livolant-Jeanpierre normalization. Under the 'subgroup approach', we have analysed Statistical self-shielding model based on physical probability tables and Ribon extended self-shielding model based on mathematical probability tables. This analysis will help in understanding the performance of advanced self-shielding models for a lattice that is tight and has a large fraction of fissions happening in the resonance region. The nuclear data for the analysis was generated in-house. NJOY99.90 was used for generating libraries in DRAGLIB format for analysis using DRAGON and A Compact ENDF libraries for analysis using MCNP5. The evaluated datafiles were chosen based on the recommendations of the IAEA Co-ordinated Research Project on the WIMS Library Update Project. The reference solution for the problem was obtained using Monte Carlo code MCNP5. It was found that the Ribon extended self-shielding model based on mathematical probability tables using correlation model performed better than all other models

  7. Gravity Scaling of a Power Reactor Water Shield

    International Nuclear Information System (INIS)

    Reid, Robert S.; Pearson, J. Boise

    2008-01-01

    Water based reactor shielding is being considered as an affordable option for potential use on initial lunar surface reactor power systems. Heat dissipation in the shield from nuclear sources must be rejected by an auxillary thermal hydraulic cooling system. The mechanism for transferring heat through the shield is natural convection between the core surface and an array of thermosyphon radiator elements. Natural convection in a 100 kWt lunar surface reactor shield design has been previously evaluated at lower power levels (Pearson, 2006). The current baseline assumes that 5.5 kW are dissipated in the water shield, the preponderance on the core surface, but with some volumetric heating in the naturally circulating water as well. This power is rejected by a radiator located above the shield with a surface temperature of 370 K. A similarity analysis on a water-based reactor shield is presented examining the effect of gravity on free convection between a radiation shield inner vessel and a radiation shield outer vessel boundaries. Two approaches established similarity: 1) direct scaling of Rayleigh number equates gravity-surface heat flux products, 2) temperature difference between the wall and thermal boundary layer held constant on Earth and the Moon. Nussult number for natural convection (laminar and turbulent) is assumed of form Nu = CRa n . These combined results estimate similarity conditions under Earth and Lunar gravities. The influence of reduced gravity on the performance of thermosyphon heat pipes is also examined

  8. Neutron disadvantage factors in heavy water and light water reactors

    International Nuclear Information System (INIS)

    Pop-Jordanov, J.

    1966-01-01

    A number od heavy water and light water reactor cells are analyzed in this paper by applying analytical methods of neutron thermalization. Calculations done according to the one-group Amouyal-Benoist method are included in addition. Computer codes for ZUSE Z-23 computer were written by applying both methods. The obtained results of disadvantage factors are then compared to results obtained by one-group P 3 approximation and by multigroup K7-THERMOS code [sr

  9. Accident analysis in research reactors

    International Nuclear Information System (INIS)

    Adorni, M.; Bousbia-salah, A.; D'Auria, F.; Hamidouche, T.

    2007-01-01

    With the sustained development in computer technology, the possibilities of code capabilities have been enlarged substantially. Consequently, advanced safety evaluations and design optimizations that were not possible few years ago can now be performed. The challenge today is to revisit the safety features of the existing nuclear plants and particularly research reactors in order to verify that the safety requirements are still met and - when necessary - to introduce some amendments not only to meet the new requirements but also to introduce new equipment from recent development of new technologies. The purpose of the present paper is to provide an overview of the accident analysis technology applied to the research reactor, with emphasis given to the capabilities of computational tools. (author)

  10. Evolution of Framatome pressurized water reactor systems

    International Nuclear Information System (INIS)

    Leroy, C.; Bitsch, D.; Millot, J.P.

    1985-10-01

    FRAMATOME's PWR experience covers a total of 63 units, 36 of which are operating by end of 1984. More than 10 units were operated in load follow mode. Progress features, resulting from the feedback of construction and operating experience, and from the returns of a vast research and development program, were incorporated in their design through subsequent series of standard units. The last four loop standard, the N4 model, integrates in a rational way all those progress features, together with a significant design effort. The core design is based on the new Advanced Fuel Assemblies. The reactor control implements the ''Reactor Maximum Flexibility Package'' (R-MAX) which provides a high level of automatic reactor control. The steam generator incorporates an axial-mixed flow economizer design. The triangular-pitch tube bundle, together with modular steam/water separators and a rearrangement of the dryers resulted in a compact design. The reactor coolant pump benefits of higher performances over that of previous models due to an optimal hydraulic design, and of mechanical features which increase margins and facilitate the maintenance work. Following the N4 project, design work on advanced concepts is pursued by FRAMATOME. A main way of research is focused on the optimal use of fissile materials. These concepts are based on tight pitch fuel arrays, associated with a mechanical spectral shift device

  11. CFD analysis of the dynamic behaviour of a fuel rod subchannel in a supercritical water reactor with point kinetics

    International Nuclear Information System (INIS)

    Ampomah-Amoako, Emmanuel; Akaho, Edward H.K.; Nyarko, Benjamin J.B.; Ambrosini, Walter

    2013-01-01

    Highlights: • The analysis of flow stability of nuclear fuel subchannels with supercritical water is presented. • The results obtained by a CFD code are compared with those of a system code. • The model includes also heat conduction in the fuel rod and point neutron kinetics. - Abstract: The paper presents the analysis by a CFD code of coupled neutronic–thermal hydraulic instabilities in a subchannel slice belonging to a square lattice assembly. The work represents a further phase in the assessment of the suitability of CFD codes for studies of flow stability of supercritical fluids; the research started in previous work with the analysis of bare 2D circular pipes and already addressed 3D subchannel slices with no allowance for heat conduction or neutronic effects. In the present phase, a more realistic system is considered, dealing with a slice of a fuel assembly subchannel containing the regions of the pellet, the gap and the cladding and including also the effect of inlet and outlet throttling. The adopted neutronic model is a point kinetics one, including six delayed neutron groups with global Doppler and fluid density feedbacks. The response of the model to perturbations applied starting from a steady-state condition at the rated power is compared with that of a similar model developed for a 1D system code. Upward, horizontal and downward flow orientations are addressed making use of a uniform power profile and changing relevant parameters as the gap equivalent conductance and the density reactivity coefficient. A bottom-peaked power profile is also considered in the case of vertical upward flow. Though the adopted model can still be considered simple in comparison with actual details of fuel assemblies, the obtained results demonstrate the potential of the adopted methodology for more accurate analyses to be made with larger computational resources

  12. Channel type reactors with supercritical water coolant. Russian experience

    International Nuclear Information System (INIS)

    Kuznetsov, Y.N.; Gabaraev, B.A.

    2003-01-01

    Transition to coolant of supercritical parameters allows for principle engineering-andeconomic characteristics of light-water nuclear power reactors to be substantially enhanced. Russian experience in development of channel-type reactors with supercritical water coolant has demonstrated advantages and practical feasibility of such reactors. (author)

  13. Light-water reactor research and development

    International Nuclear Information System (INIS)

    1985-05-01

    This report on the national program of research and development on light water reactors is the second of two reports requested in 1982 by W. Kenneth Davis, Deputy Secretary of the Department of Energy. A first report, published in September 1983, treated the needs for safety-related R and D. In this second report, the Energy Research Advisory Board finds that, although many light water reactors are providing reliable and economic electricity, it appears unlikely that U.S. utilities will order additional reactors until the currently unacceptable economic risk, created by the regulatory climate and uncertain demand, is reduced. Thus it is unlikely that the private sector alone will fund major LWR design improvements. However, nuclear power will continue on its current course of expansion overseas. DOE participation is vitally needed to support the national interest in LWR technology. The report outlines R and D needs for a program to improve the safety, reliability, and economics of the present generation of plants; to develop evolutionary improved designs to be ready when needed; and to explore innovative longer-term concepts for deployment after the year 2000. The respective roles of government and the private sector are discussed

  14. Development of NUFREQ-N, an analytical model for the stability analysis of nuclear coupled density-wave oscillations in boiling water nuclear reactors

    International Nuclear Information System (INIS)

    Park, G.C.

    1983-01-01

    A state-of-the-art one-dimensional thermal-hydraulic model has been developed to be used for the linear analysis of nuclear-coupled density-wave oscillations in a boiling water nuclear reactor (BWR). The model accounts for phasic slip, distributed spacers, subcooled boiling, space/time-dependent power distributions and distributed heated wall dynamics. In addition to a parallel channel stability analysis, a detailed model was derived for the BWR loop analysis of both the natural and forced circulation modes of operation. In its final form, this model constitutes a multi-input, multi-output (MIMO) linear system, which features a general nodal neutron kinetics model. Kinetics parameters for use in the kinetics model have been obtained by utilizing self-consistent nodal data and power distributions. The stability characteristics of a typical BWR/4 has been investigated with the Nyquist criterion. The computer implementation of this mode, NUFREQ-N, was used for the parametric study of a typical BWR/4 and comparison were made with existing in-core and out-of-core data. Also, NUFREQ-N was used to analyze the expected stability characteristics of a typical BWR/4. The parametric results revealed important factors influencing BWR stability margin. It was found that NUFREQ-N generally agreed well with out-of-core data. This was especially true for the predicted power-to-flow transfer function, which is the most important transfer function in thermal-hydraulic stability analysis

  15. BWR [boiling-water reactor] and PWR [pressurized-water reactor] off-normal event descriptions

    International Nuclear Information System (INIS)

    1987-11-01

    This document chronicles a total of 87 reactor event descriptions for use by operator licensing examiners in the construction of simulator scenarios. Events are organized into four categories: (1) boiling-water reactor abnormal events; (2) boiling-water reactor emergency events; (3) pressurized-water reactor abnormal events; and (4) pressurized-water reactor emergency events. Each event described includes a cover sheet and a progression of operator actions flow chart. The cover sheet contains the following general information: initial plant state, sequence initiator, important plant parameters, major plant systems affected, tolerance ranges, final plant state, and competencies tested. The progression of operator actions flow chart depicts, in a flow chart manner, the representative sequence(s) of expected immediate and subsequent candidate actions, including communications, that can be observed during the event. These descriptions are intended to provide examiners with a reliable, performance-based source of information from which to design simulator scenarios that will provide a valid test of the candidates' ability to safely and competently perform all licensed duties and responsibilities

  16. Controlling hydrogen behavior in light water reactors

    International Nuclear Information System (INIS)

    Cullingford, H.S.; Edeskuty, F.J.

    1981-01-01

    In the aftermath of the incident at Three Mile Island Unit 2 (TMI-2), a new and different treatment of the Light Water Reactor (LWR) risks is needed for public safety because of the specific events involving hydrogen generation, transport, and behavior following the core damage. Hydrogen behavior in closed environments such as the TMI-2 containment building is a complex phenomenon that is not fully understood. Hence, an engineering approach is presented for prevention of loss of life, equipment, and environment in case of a large hydrogen generation in an LWR. A six-level defense strategy is described that minimizes the possibility of ignition of released hydrogen gas and otherwise mitigates the consequences of hydrogen release. Guidance is given to reactor manufacturers, utility companies, regulatory agencies, and research organizations committed to reducing risk factors and insuring safety of life, equipment, and environment

  17. Status of advanced small pressurized water reactors

    International Nuclear Information System (INIS)

    Chen Peipei; Zhou Yun

    2012-01-01

    In order to expand the nuclear power in energy and desalination, increase competitiveness in global nuclear power market, many developed countries with strong nuclear energy technology have realized the importance of Small Modular Reactor (SMR) and initiated heavy R and D programs in SMR. The Advanced Small Pressurized Water Reactor (ASPWR) is characterized by great advantages in safety and economy and can be used in remote power grid and replace mid/small size fossil plant economically. This paper reviews the history and current status of SMR and ASPWR, and also discusses the design concept, safety features and other advantages of ASPWR. The purpose of this paper is to provide an overall review of ASPWR technology in western countries, and to promote the R and D in ASPWR in China. (authors)

  18. Argentinean integrated small reactor design and scale economy analysis of integrated reactor

    International Nuclear Information System (INIS)

    Florido, P. C.; Bergallo, J. E.; Ishida, M. V.

    2000-01-01

    This paper describes the design of CAREM, which is Argentinean integrated small reactor project and the scale economy analysis results of integrated reactor. CAREM project consists on the development, design and construction of a small nuclear power plant. CAREM is an advanced reactor conceived with new generation design solutions and standing on the large experience accumulated in the safe operation of Light Water Reactors. The CAREM is an indirect cycle reactor with some distinctive and characteristic features that greatly simplify the reactor and also contribute to a highly level of safety: integrated primary cooling system, self pressurized, primary cooling by natural circulation and safety system relying on passive features. For a fully doupled economic evaluation of integrated reactors done by IREP (Integrated Reactor Evaluation Program) code transferred to IAEA, CAREM have been used as a reference point. The results shows that integrated reactors become competitive with power larger than 200MWe with Argentinean cheapest electricity option. Due to reactor pressure vessel construction limit, low pressure drop steam generator are used to reach power output of 200MWe for natural circulation. For forced circulation, 300MWe can be achieved. (author)

  19. Safety aspects of designs for future light water reactors (evolutionary reactors)

    International Nuclear Information System (INIS)

    1993-07-01

    The main purpose of this document is to describe the major innovations of proposed designs of future light water reactors, to describe specific safety characteristics and safety analysis methodologies, and to give a general overview of the most important safety aspects related to future reactors. The reactors considered in this report are limited to those intended for fixed station electrical power production, excluding most revolutionary concepts. More in depth discussion is devoted to those designs that are in a more advanced state of completion and have been more extensively described and analysed in the open literature. Other designs will be briefly described, as evidence of the large spectrum of new proposals. Some designs are similar; others implement unique features and require specific discussion (not all aspects of designs with unique features are fully discussed in this document). 131 refs, 22 figs

  20. Comparative economics of the breeder and light water reactor

    International Nuclear Information System (INIS)

    Chow, B.G.

    1980-01-01

    The issue of breeder timing is studied in this article via a breakeven analysis in which the key driving variables are conveniently segregated into two groups, with uranium price providing the linkage. In one group, the technical and cost characteristics of reactors and fuel cycles determine the uranium breakeven price. In the other group, nuclear demand projections and the uranium supply schedule determine the time paths of uranium price for a given composition of reactor types. The author finds that, even if proliferation risk is ignored, the breeder is not economically competitive with a 30%-improved once-through light water reactor before the year 2030 in the USA and in the world outside communist areas as a whole in 90% of the cases examined. In the exceptional cases, the penalty of delaying commercial breeder introduction to 2030 is small and well within the noise level of long-term energy planning. (author)

  1. A Preliminary Analysis of Reactor Performance Test (LOEP) for a Research Reactor

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Hyeonil; Park, Su-Ki [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2015-10-15

    The final phase of commissioning is reactor performance test, which is to prove the integrated performance and safety of the research reactor at full power with fuel loaded such as neutron power calibration, Control Absorber Rod/Second Shutdown Rod drop time, InC function test, Criticality, Rod worth, Core heat removal with natural mechanism, and so forth. The last test will be safety-related one to assure the result of the safety analysis of the research reactor is marginal enough to be sure about the nuclear safety by showing the reactor satisfies the acceptance criteria of the safety functions such as for reactivity control, maintenance of auxiliaries, reactor pool water inventory control, core heat removal, and confinement isolation. After all, the fuel integrity will be ensured by verifying there is no meaningful change in the radiation levels. To confirm the performance of safety equipment, loss of normal electric power (LOEP), possibly categorized as Anticipated Operational Occurrence (AOO), is selected as a key experiment to figure out how safe the research reactor is before turning over the research reactor to the owner. This paper presents a preliminary analysis of the reactor performance test (LOEP) for a research reactor. The results showed how different the transient between conservative estimate and best estimate will look. Preliminary analyses have shown all probable thermal-hydraulic transient behavior of importance as to opening of flap valve, minimum critical heat flux ratio, the change of flow direction, and important values of thermal-hydraulic parameters.

  2. The Consortium for Advanced Simulation of Light Water Reactors

    International Nuclear Information System (INIS)

    Szilard, Ronaldo; Zhang, Hongbin; Kothe, Douglas; Turinsky, Paul

    2011-01-01

    The Consortium for Advanced Simulation of Light Water Reactors (CASL) is a DOE Energy Innovation Hub for modeling and simulation of nuclear reactors. It brings together an exceptionally capable team from national labs, industry and academia that will apply existing modeling and simulation capabilities and develop advanced capabilities to create a usable environment for predictive simulation of light water reactors (LWRs). This environment, designated as the Virtual Environment for Reactor Applications (VERA), will incorporate science-based models, state-of-the-art numerical methods, modern computational science and engineering practices, and uncertainty quantification (UQ) and validation against data from operating pressurized water reactors (PWRs). It will couple state-of-the-art fuel performance, neutronics, thermal-hydraulics (T-H), and structural models with existing tools for systems and safety analysis and will be designed for implementation on both today's leadership-class computers and the advanced architecture platforms now under development by the DOE. CASL focuses on a set of challenge problems such as CRUD induced power shift and localized corrosion, grid-to-rod fretting fuel failures, pellet clad interaction, fuel assembly distortion, etc. that encompass the key phenomena limiting the performance of PWRs. It is expected that much of the capability developed will be applicable to other types of reactors. CASL's mission is to develop and apply modeling and simulation capabilities to address three critical areas of performance for nuclear power plants: (1) reduce capital and operating costs per unit energy by enabling power uprates and plant lifetime extension, (2) reduce nuclear waste volume generated by enabling higher fuel burnup, and (3) enhance nuclear safety by enabling high-fidelity predictive capability for component performance.

  3. Supercritical-pressure, once-through cycle light water cooled reactor concept

    International Nuclear Information System (INIS)

    Oka, Yoshiaki; Koshizuka, Seiichi

    2001-01-01

    The purpose of the study is to develop new reactor concepts for the innovation of light water reactors (LWR) and fast reactors. Concept of the once-through coolant cycle, supercritical-pressure light water cooled reactor was developed. Major aspects of reactor design and safety were analysed by the computer codes which were developed by ourselves. It includes core design of thermal and fast reactors, plant system, safety criteria, accident and transient analysis, LOCA, PSA, plant control, start up and stability. High enthalpy rise as supercritical boiler was achieved by evaluating the cladding temperature directly during transients. Fundamental safety principle of the reactor is monitoring coolant flow rate instead of water level of LWR. The reactor system is compact and simple because of high specific enthalpy of supercritical water and the once-through cycle. The major components are similar to those of LWR and supercritical thermal plant. Their temperature are within the experiences in spite of the high outlet coolant temperature. The reactor is compatible with tight fuel lattice fast reactor because of the high head pumps and low coolant flow rate. The power rating of the fast reactor is higher than the that of thermal reactor because of the high power density. (author)

  4. Analysis of reactor noise; Analiza reaktorskih sumova

    Energy Technology Data Exchange (ETDEWEB)

    Velickovic, Lj [Institute of Nuclear Sciences Boris Kidric, Vinca, Beograd (Yugoslavia)

    1967-11-15

    This paper describes the theoretical model for interpretation of experimental results, experimental method for study of reactor noise at the RB reactor, numerical treatment of experimental results by correlation technique for analysis of reactor noise. A computer code was written to obtain autocorrelation function and spectral density function. Experimental results obtained by oscillator technique, pulse technique, and autocorrelation method are presented and discussed.

  5. Cooling of pressurized water nuclear reactor vessels

    International Nuclear Information System (INIS)

    Curet, H.D.

    1978-01-01

    The improvement of pressurized water nuclear reactor vessels comprising flow dividers providing separate and distinct passages for the flow of core coolant water from each coolant water inlet, the flow dividers being vertically disposed in the annular flow areas provided by the walls of the vessel, the thermal shield (if present), and the core barrel is described. In the event of rupture of one of the coolant water inlet lines, water, especially emergency core coolant water, in the intact lines is thus prevented from by-passing the core by circumferential flow around the outermost surface of the core barrel and is instead directed so as to flow vertically downward through the annulus area between the vessel wall and the core barrel in a more normal manner to increase the probability of cooling of the core by the available cooling water in the lower plenum, thus preventing or delaying thermal damage to the core, and providing time for other appropriate remedial or damage preventing action by the operator

  6. Pressurized water-reactor feedwater piping response to water hammer

    International Nuclear Information System (INIS)

    Arthur, D.

    1978-03-01

    The nuclear power industry is interested in steam-generator water hammer because it has damaged the piping and components at pressurized water reactors (PWRs). Water hammer arises when rapid steam condensation in the steam-generator feedwater inlet of a PWR causes depressurization, water-slug acceleration, and slug impact at the nearest pipe elbow. The resulting pressure pulse causes the pipe system to shake, sometimes violently. The objective of this study is to evaluate the potential structural effects of steam-generator water hammer on feedwater piping. This was accomplished by finite-element computation of the response of two sections of a typical feedwater pipe system to four representative water-hammer pulses. All four pulses produced high shear and bending stresses in both sections of pipe. Maximum calculated pipe stresses varied because the sections had different characteristics and were sensitive to boundary-condition modeling

  7. Gamma spectroscopy in water cooled reactors

    International Nuclear Information System (INIS)

    Persault, M.

    1977-10-01

    Gamma spectroscopy analysis of spent fuels in power reactors; study of two typical cases: determination of the power distribution by the mean of the activity of a low periodic element (Lanthanum 140) and determination of the burnup absolute rate by examining the ratio of Cesium 134 and Cesium 137 activities. Measures were realized on fuel solutions and on fuel assemblies. Development of a power distribution map of the assemblies and comparison with the results of a three dimensional calculation of core evolution [fr

  8. Control of water chemistry in operating reactors

    International Nuclear Information System (INIS)

    Riess, R.

    1997-01-01

    Water chemistry plays a major role in fuel cladding corrosion and hydriding. Although a full understanding of all mechanisms involved in cladding corrosion does not exist, controlling the water chemistry has achieved quite some progress in recent years. As an example, in PWRs the activity transport is controlled by operating the coolant under higher pH-values (i.e. the ''modified'' B/Li-Chemistry). On the other hand, the lithium concentration is limited to a maximum value of 2 ppm in order to avoid an acceleration of the fuel cladding corrosion. In BWR plants, for example, the industry has learned on how to limit the copper concentration in the feedwater in order to limit CILC (Copper Induced Localized Corrosion) on the fuel cladding. However, economic pressures are leading to more rigorous operating conditions in power reactors. Fuel burnups are to be increased, higher efficiencies are to be achieved, by running at higher temperatures, plant lifetimes are to be extended. In summary, this paper will describe the state of the art in controlling water chemistry in operating reactors and it will give an outlook on potential problems that will arise when going to more severe operating conditions. (author). 3 figs, 6 tabs

  9. Control of water chemistry in operating reactors

    Energy Technology Data Exchange (ETDEWEB)

    Riess, R [Siemens AG Unternehmensbereich KWU, Erlangen (Germany)

    1997-02-01

    Water chemistry plays a major role in fuel cladding corrosion and hydriding. Although a full understanding of all mechanisms involved in cladding corrosion does not exist, controlling the water chemistry has achieved quite some progress in recent years. As an example, in PWRs the activity transport is controlled by operating the coolant under higher pH-values (i.e. the ``modified`` B/Li-Chemistry). On the other hand, the lithium concentration is limited to a maximum value of 2 ppm in order to avoid an acceleration of the fuel cladding corrosion. In BWR plants, for example, the industry has learned on how to limit the copper concentration in the feedwater in order to limit CILC (Copper Induced Localized Corrosion) on the fuel cladding. However, economic pressures are leading to more rigorous operating conditions in power reactors. Fuel burnups are to be increased, higher efficiencies are to be achieved, by running at higher temperatures, plant lifetimes are to be extended. In summary, this paper will describe the state of the art in controlling water chemistry in operating reactors and it will give an outlook on potential problems that will arise when going to more severe operating conditions. (author). 3 figs, 6 tabs.

  10. Advanced ceramic cladding for water reactor fuel

    International Nuclear Information System (INIS)

    Feinroth, H.

    2000-01-01

    Under the US Department of Energy's Nuclear Energy Research Initiatives (NERI) program, continuous fiber ceramic composites (CFCCs) are being developed as cladding for water reactor fuel elements. The purpose is to substantially increase the passive safety of water reactors. A development effort was initiated in 1991 to fabricate CFCC-clad tubes using commercially available fibers and a sol-gel process developed by McDermott Technologies. Two small-diameter CFCC tubes were fabricated using pure alumina and alumina-zirconia fibers in an alumina matrix. Densities of approximately 60% of theoretical were achieved. Higher densities are required to guarantee fission gas containment. This NERI work has just begun, and only preliminary results are presented herein. Should the work prove successful, further development is required to evaluate CFCC cladding and performance, including in-pile tests containing fuel and exploring a marriage of CFCC cladding materials with suitable advanced fuel and core designs. The possibility of much higher temperature core designs, possibly cooled with supercritical water, and achievement of plant efficiencies ge50% would be examined

  11. Water hammer characteristics of integral pressurized water reactor primary loop

    International Nuclear Information System (INIS)

    Zuo, Qiaolin; Qiu, Suizheng; Lu, Wei; Tian, Wenxi; Su, Guanghui; Xiao, Zejun

    2013-01-01

    Highlights: • Water hammer models developed for IPWR primary loop using MOC. • Good agreement between the developed code and the experiment. • The good agreement between WAHAP and Flowmaster can validate the equations in WAHAP. • The primary loop of IPWR suffers from slight water hammer impact. -- Abstract: The present work discussed the single-phase water hammer phenomenon, which was caused by the four-pump-alternate startup in an integral pressurized water reactor (IPWR). A new code named water hammer program (WAHAP) was developed independently based on the method of characteristic to simulate hydraulic transients in the primary system of IPWR and its components such as reactor core, once-through steam generators (OTSG), the main coolant pumps and so on. Experimental validation for the correctness of the equations and models in WAHAP was carried out and the models fit the experimental data well. Some important variables were monitored including transient volume flow rates, opening angle of valve disc and pressure drop in valves. The water hammer commercial software Flowmaster V7 was also employed to compare with WAHAP and the good agreement can validate the equations in WAHAP. The transient results indicated that the primary loop of IPWR suffers from slight water hammer impact under pump switching conditions

  12. Water hammer characteristics of integral pressurized water reactor primary loop

    Energy Technology Data Exchange (ETDEWEB)

    Zuo, Qiaolin [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, Shanxi 710049 (China); Qiu, Suizheng, E-mail: szqiu@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, Shanxi 710049 (China); Lu, Wei; Tian, Wenxi; Su, Guanghui [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xi’an, Shanxi 710049 (China); Xiao, Zejun [Nuclear Power Institute of China, Chengdu, Sichuan 610041 (China)

    2013-08-15

    Highlights: • Water hammer models developed for IPWR primary loop using MOC. • Good agreement between the developed code and the experiment. • The good agreement between WAHAP and Flowmaster can validate the equations in WAHAP. • The primary loop of IPWR suffers from slight water hammer impact. -- Abstract: The present work discussed the single-phase water hammer phenomenon, which was caused by the four-pump-alternate startup in an integral pressurized water reactor (IPWR). A new code named water hammer program (WAHAP) was developed independently based on the method of characteristic to simulate hydraulic transients in the primary system of IPWR and its components such as reactor core, once-through steam generators (OTSG), the main coolant pumps and so on. Experimental validation for the correctness of the equations and models in WAHAP was carried out and the models fit the experimental data well. Some important variables were monitored including transient volume flow rates, opening angle of valve disc and pressure drop in valves. The water hammer commercial software Flowmaster V7 was also employed to compare with WAHAP and the good agreement can validate the equations in WAHAP. The transient results indicated that the primary loop of IPWR suffers from slight water hammer impact under pump switching conditions.

  13. Is light water reactor technology sustainable?

    International Nuclear Information System (INIS)

    Rothwell, G.; Van der Zwaan, B.

    2001-01-01

    This paper proposes criteria for determining ''intermediate sustainability'' over a 500-year horizon. We apply these criteria to Light Water Reactor (LWR) technology and the LWR industry. We conclude that LWR technology does not violate intermediate sustainability criteria for (1) environmental externalities, (2) worker and public health and safety, or (3) accidental radioactive release. However, it does not meet criteria to (1) efficiently use depleted uranium and (2) avoid uranium enrichment technologies that can lead to nuclear weapons proliferation. Finally, current and future global demand for LWR technology might be below the minimum needed to sustain the current global LWR industry. (author)

  14. Startup and commissioning of pressurized water reactors

    International Nuclear Information System (INIS)

    Albert, L.J.; Gilbert, C.F.

    1983-05-01

    A critical phase of plant development is the test, startup, and commissioning period. The effort expended prior to commissioning has a definite effect on the reliability and continuing availability of the plant during its life. This paper describes a test, startup, and commissioning program for a pressurized water reactor (PWR) plant. This program commences with the completion of construction and continues through the turnover of equipment/systems to the owner's startup/ commissioning group. The paper addresses the organization of the test/startup group, planning and scheduling, test procedures and initial testing, staffing and certification of the test group, training of operators, and turnover to the owner

  15. Westinghouse Water Reactor Divisions quality assurance plan

    International Nuclear Information System (INIS)

    1977-09-01

    The Quality Assurance Program used by Westinghouse Water Reactor Divisions is described. The purpose of the program is to assure that the design, materials, and workmanship on Nuclear Steam Supply System (NSSS) equipment meet applicable safety requirements, fulfill the requirements of the contracts with the applicants, and satisfy the applicable codes, standards, and regulatory requirements. This program satisfies the NRC Quality Assurance Criteria, 10CFR50 Appendix B, to the extent that these criteria apply to safety related NSSS equipment. Also, it follows the regulatory position provided in NRC regulatory guides and the requirements of ANSI Standard N45.2.12 as identified in this Topical Report

  16. Instrument lance for boiling water reactors

    International Nuclear Information System (INIS)

    Proell, N.; Bertz, S.; Graebener, K.H.

    1980-01-01

    The instrument lance contains in the lance cover pipe a thimble as part of the drive chamber system. Other thimbles serve to carry neutron detectors. Detectors can be exchanged without opening the reactor pressure vessel and without removing the fuel elements. Furthermore the detector exchange is independent from the fuel element cycle. The measurement lance passes from the bottom of the pressure vessel over the total hight of the core in the water ducts between the fuel elements and can thus determine the neutron flux distribution. (DG) [de

  17. Light-water-reactor hydrogen manual

    International Nuclear Information System (INIS)

    Camp, A.L.; Cummings, J.C.; Sherman, M.P.; Kupiec, C.F.; Healy, R.J.; Caplan, J.S.; Sandhop, J.R.; Saunders, J.H.

    1983-06-01

    A manual concerning the behavior of hydrogen in light water reactors has been prepared. Both normal operations and accident situations are addressed. Topics considered include hydrogen generation, transport and mixing, detection, and combustion, and mitigation. Basic physical and chemical phenomena are described, and plant-specific example